Science.gov

Sample records for magnetization transfer contrast

  1. Optimization of on-resonant magnetization transfer contrast in coronary vein MRI.

    PubMed

    Stoeck, Christian T; Hu, Peng; Peters, Dana C; Kissinger, Kraig V; Goddu, Beth; Goepfert, Lois; Ngo, Long; Manning, Warren J; Kozerke, Sebastian; Nezafat, Reza

    2010-12-01

    Magnetization transfer contrast has been used commonly for endogenous tissue contrast improvements in angiography, brain, body, and cardiac imaging. Both off-resonant and on-resonant RF pulses can be used to generate magnetization transfer based contrast. In this study, on-resonant magnetization transfer preparation using binomial pulses were optimized and compared with off-resonant magnetization transfer for imaging of coronary veins. Three parameters were studied with simulations and in vivo measurements: flip angle, pulse repetitions, and binomial pulse order. Subsequently, first or second order binomial on-resonant magnetization transfer pulses with eight repetitions of 720° and 240° flip angle were used for coronary vein MRI. Flip angles of 720° yielded contrast enhancement of 115% (P < 0.0006) for first order on-resonant and 95% (P < 0.0006) for off-resonant magnetization transfer. There was no statistically significance difference between off-resonant and on-resonant first order binomial Magnetization transfer at 720°. However, for off-resonance pulses, much more preparation time is needed when compared with the binomials but with considerably reduced specific absorption rate.

  2. Simulation of the modulation transfer function dependent on the partial Fourier fraction in dynamic contrast enhancement magnetic resonance imaging.

    PubMed

    Takatsu, Yasuo; Ueyama, Tsuyoshi; Miyati, Tosiaki; Yamamura, Kenichirou

    2016-12-01

    The image characteristics in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) depend on the partial Fourier fraction and contrast medium concentration. These characteristics were assessed and the modulation transfer function (MTF) was calculated by computer simulation. A digital phantom was created from signal intensity data acquired at different contrast medium concentrations on a breast model. The frequency images [created by fast Fourier transform (FFT)] were divided into 512 parts and rearranged to form a new image. The inverse FFT of this image yielded the MTF. From the reference data, three linear models (low, medium, and high) and three exponential models (slow, medium, and rapid) of the signal intensity were created. Smaller partial Fourier fractions, and higher gradients in the linear models, corresponded to faster MTF decline. The MTF more gradually decreased in the exponential models than in the linear models. The MTF, which reflects the image characteristics in DCE-MRI, was more degraded as the partial Fourier fraction decreased.

  3. Pulsed magnetization transfer contrast MRI by a sequence with water selective excitation

    SciTech Connect

    Schick, F.

    1996-01-01

    A water selective SE imaging sequence was developed providing suitable properties for the assessment of magnetization transfer (MT) effects in tissues with considerable amounts of fat. The sequence with water selective excitation and slice selective refocusing combines the following features: The RIF exposure on the macromolecular protons is relatively low for single slice imaging without MT prepulses, since no additional pulses for fat saturation are necessary. Water selection by frequency selective excitation diminishes faults in the subtraction of images recorded with and without MT prepulses (which might arise from movements). High differences in the signal amplitudes from hyaline cartilage and muscle tissue were obtained comparing images recorded with irradiation of the series of prepulses for MT and those lacking MT prepulses. Utilizations of the described water selective approach for the assessment of MT effects in lesions of cartilage and bone are demonstrated. MT saturation was also examined in muscles with fatty degeneration of patients suffering from progressive muscular dystrophy. The described technique allows determination of MT effects with good precision in a single slice, especially in regions with dominating fat signals. 22 refs., 5 figs.

  4. Magnetization transfer contrast imaging detects early white matter changes in the APP/PS1 amyloidosis mouse model.

    PubMed

    Praet, Jelle; Bigot, Christian; Orije, Jasmien; Naeyaert, Maarten; Shah, Disha; Mai, Zhenhua; Guns, Pieter-Jan; Van der Linden, Annemie; Verhoye, Marleen

    While no definitive cure for Alzheimer's disease exists yet, currently available treatments would benefit greatly from an earlier diagnosis. It has previously been shown that Magnetization transfer contrast (MTC) imaging is able to detect amyloid β plaques in old APP/PS1 mice. In the current study we investigated if MTC is also able to visualize early amyloid β (Aβ) induced pathological changes. In a cross-sectional study, a comparison was made between the MT ratio of wild type (WT) and APP/PS1 mice at 2, 4, 6, 8 and 24 months of age. We observed an increased MT-ratio in the cortex of 24 month old APP/PS1 mice as compared to WT mice. However, when comparing the MT-ratio of the cortex of WT mice with the MT-ratio of the APP/PS1 mice at 2, 4, 6 or 8 months of age, no significant changes could be observed. In contrast to the cortex, we consistently observed a decreased MT-ratio in the splenium of 4, 6 and 8 month old APP/PS1 mice as compared to age-matched WT mice. Lastly, the decreased MT-ratio in the splenium of APP/PS1 mice correlated to the Aβ plaque deposition, astrogliosis and microgliosis. This MT-ratio decrease did however not correlate to the myelin content. Combined, our results suggest that MTC is able to visualize early Aβ-induced changes in the splenium but not the cortex of APP/PS1 mice.

  5. A potential diagnostic application of magnetization transfer contrast: an in vitro NMR study of excised human thyroid tissues

    NASA Astrophysics Data System (ADS)

    Callicott, C.; Goode, A. W.

    1998-03-01

    A series of freshly excised thyroid tissues was analysed using a nuclear magnetic resonance spectrometer and then subjected to routine histo-pathology examination. Whilst simple values for normal tissue and goitre are not significantly different, the degree of intra-subject and variability is shown to be an indicator of benign thyroid disease. Using data collected from an inversion-recovery sequence performed with and without magnetization transfer, a magnetization transfer rate constant was calculated for each tissue sample. These data suggest that this parameter may provide in vivo discrimination between follicular cancer and follicular adenoma.

  6. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, P.H.; Brainard, J.R.; Jarvinen, G.D.; Ryan, R.R.

    1997-12-30

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC{sub 16}H{sub 14}N{sub 6}. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques. 10 figs.

  7. Nuclear magnetic resonance contrast agents

    DOEpatents

    Smith, Paul H.; Brainard, James R.; Jarvinen, Gordon D.; Ryan, Robert R.

    1997-01-01

    A family of contrast agents for use in magnetic resonance imaging and a method of enhancing the contrast of magnetic resonance images of an object by incorporating a contrast agent of this invention into the object prior to forming the images or during formation of the images. A contrast agent of this invention is a paramagnetic lanthanide hexaazamacrocyclic molecule, where a basic example has the formula LnC.sub.16 H.sub.14 N.sub.6. Important applications of the invention are in medical diagnosis, treatment, and research, where images of portions of a human body are formed by means of magnetic resonance techniques.

  8. Magnetization Transfer Imaging of Rat Brain under Non-steady-state Conditions. Contrast Prediction Using a Binary Spin-Bath Model and a Super-Lorentzian Lineshape

    NASA Astrophysics Data System (ADS)

    Quesson, Bruno; Thiaudière, Eric; Delalande, Christophe; Chateil, Jean-Francois; Moonen, Chrit T. W.; Canioni, Paul

    1998-02-01

    Magnetization transfer contrast imaging using turbo spin echo and continuous wave off-resonance irradiation was carried out on rat brainin vivoat 4.7 T. By systematically varying the off-resonance irradiation power and the offset-frequency, the signal intensities obtained under steady-state for both transverse and longitudinal magnetization were successfully analyzed with a simple binary spin-bath model taking into account a free water compartment and a pool of protons with restricted motions bearing a super-Lorentzian lineshape. Due to important RF power deposition, such experimental conditions are not practical for routine imaging on humans. An extension of the model was derived to describe the system for shorter off-resonance pulse duration, i.e., when the longitudinal magnetization of the free protons has not reached a steady-state. Data sets obtained for three regions of interest, namely thecorpus callosum,the basal ganglia, and the temporal lobe, were correctly interpreted for off-resonance pulse durations varying from 0.3 to 3 s. The parameter sets obtained from the calculations made it possible to predict the contrast between the different regions as a function of the pulse power, the offset frequency, and pulse duration. Such an approach could be extended to contrast prediction for human brain at 1.5 T.

  9. Double agents and secret agents: the emerging fields of exogenous chemical exchange saturation transfer and T2-exchange magnetic resonance imaging contrast agents for molecular imaging.

    PubMed

    Daryaei, Iman; Pagel, Mark D

    2015-01-01

    Two relatively new types of exogenous magnetic resonance imaging contrast agents may provide greater impact for molecular imaging by providing greater specificity for detecting molecular imaging biomarkers. Exogenous chemical exchange saturation transfer (CEST) agents rely on the selective saturation of the magnetization of a proton on an agent, followed by chemical exchange of a proton from the agent to water. The selective detection of a biomarker-responsive CEST signal and an unresponsive CEST signal, followed by the ratiometric comparison of these signals, can improve biomarker specificity. We refer to this improvement as a "double-agent" approach to molecular imaging. Exogenous T2-exchange agents also rely on chemical exchange of protons between the agent and water, especially with an intermediate rate that lies between the slow exchange rates of CEST agents and the fast exchange rates of traditional T1 and T2 agents. Because of this intermediate exchange rate, these agents have been relatively unknown and have acted as "secret agents" in the contrast agent research field. This review exposes these secret agents and describes the merits of double agents through examples of exogenous agents that detect enzyme activity, nucleic acids and gene expression, metabolites, ions, redox state, temperature, and pH. Future directions are also provided for improving both types of contrast agents for improved molecular imaging and clinical translation. Therefore, this review provides an overview of two new types of exogenous contrast agents that are becoming useful tools within the armamentarium of molecular imaging.

  10. Double agents and secret agents: the emerging fields of exogenous chemical exchange saturation transfer and T2-exchange magnetic resonance imaging contrast agents for molecular imaging

    PubMed Central

    Daryaei, Iman; Pagel, Mark D

    2016-01-01

    Two relatively new types of exogenous magnetic resonance imaging contrast agents may provide greater impact for molecular imaging by providing greater specificity for detecting molecular imaging biomarkers. Exogenous chemical exchange saturation transfer (CEST) agents rely on the selective saturation of the magnetization of a proton on an agent, followed by chemical exchange of a proton from the agent to water. The selective detection of a biomarker-responsive CEST signal and an unresponsive CEST signal, followed by the ratiometric comparison of these signals, can improve biomarker specificity. We refer to this improvement as a “double-agent” approach to molecular imaging. Exogenous T2-exchange agents also rely on chemical exchange of protons between the agent and water, especially with an intermediate rate that lies between the slow exchange rates of CEST agents and the fast exchange rates of traditional T1 and T2 agents. Because of this intermediate exchange rate, these agents have been relatively unknown and have acted as “secret agents” in the contrast agent research field. This review exposes these secret agents and describes the merits of double agents through examples of exogenous agents that detect enzyme activity, nucleic acids and gene expression, metabolites, ions, redox state, temperature, and pH. Future directions are also provided for improving both types of contrast agents for improved molecular imaging and clinical translation. Therefore, this review provides an overview of two new types of exogenous contrast agents that are becoming useful tools within the armamentarium of molecular imaging. PMID:27747191

  11. Magnetization transfer contrast MRI for non-invasive assessment of innate and adaptive immune responses against alginate-encapsulated cells

    PubMed Central

    Chan, Kannie W.Y.; Liu, Guanshu; van Zijl, Peter C.M.; Bulte, Jeff W.M.; McMahon, Michael T.

    2014-01-01

    By means of physical isolation of cells inside semi-permeable hydrogels, encapsulation has been widely used to immunoprotect transplanted cells. While spherical alginate microcapsules are now being used clinically, there still is little known about the patient’s immune system response unless biopsies are obtained. We investigated the use of Magnetization Transfer (MT) imaging to non-invasively detect host immune responses against alginate capsules containing xenografted human hepatocytes in four groups of animals, including transplanted empty capsules (−Cells/−IS), capsules with live cells with (+LiveCells/+IS) and without immunosuppression (+LiveCells/−IS), and capsules with apoptotic cells in non-immunosuppressed animals (+DeadCells/−IS). The highest MT ratio (MTR) was found in +LiveCells/−IS, which increased from day 0 by 38% and 53% on days 7 and 14 after transplantation respectively, and corresponded to a distinctive increase in cell infiltration on histology. Furthermore, we show that macromolecular ratio maps based on MT data are more sensitive to cell infiltration and fibrosis than conventional MTR maps. Such maps showed a significant difference between +LiveCells/−IS (0.18±0.02) and +DeadCells/−IS (0.13±0.02) on day 7 (P<0.01) existed, which was not observed on MTR imaging. We conclude that MT imaging, which is clinically available, can be applied for non-invasive monitoring of the occurrence of a host immune response against encapsulated cells. PMID:24930848

  12. Whole-brain black-blood imaging with magnetization-transfer prepared spin echo-like contrast: a novel sequence for contrast-enhanced brain metastasis screening at 3T.

    PubMed

    Yoneyama, Masami; Nakamura, Masanobu; Tabuchi, Takashi; Takemura, Atsushi; Obara, Makoto; Tatsuno, Satoshi; Sawano, Seishi

    2013-07-01

    In contrast-enhanced (CE) brain metastasis screening, coexistence of enhanced blood vessel suppression and higher tumor-to-parenchyma contrast may improve radiologists' performances in detecting brain metastases compared with conventional sequences. In this study, we propose a new scheme, allowing both suppression of blood signals and improvement of tumor-to-parenchyma contrast, using motion-sensitized driven equilibrium prepared 3D low-refocusing flip-angle turbo spin echo (TSE) ("magnetization transfer prepared spin echo"-like contrast volume examination: MATLVE) for brain metastasis screening at 3.0 T, and we compare MATLVE to conventional three-dimensional (3D)-gradient recalled echo (GRE) and 3D-TSE sequences. With the use of MATLVE, the signal intensity of CE blood decreased substantially. Furthermore, the contrast ratio of tumor-to-white matter was significantly higher than in either conventional 3D-GRE or 3D-TSE. MATLVE can be used for 3D volumetric post-CE black-blood imaging, and it may be effective in detecting small brain metastases by selectively enhancing tumor signals while suppressing blood signals.

  13. APT-Weighted and NOE-Weighted Image Contrasts in Glioma with Different RF Saturation Powers Based on Magnetization Transfer Ratio Asymmetry Analyses

    PubMed Central

    Zhou, Jinyuan; Hong, Xiaohua; Zhao, Xuna; Gao, Jia-Hong; Yuan, Jing

    2013-01-01

    Purpose To investigate the saturation-power dependence of amide proton transfer (APT)-weighted and nuclear Overhauser enhancement (NOE)-weighted image contrasts in a rat glioma model at 4.7 T. Methods 9L tumor-bearing rats (n = 8) and fresh eggs (n = 4) were scanned on a 4.7-T animal MRI scanner. Z-spectra over an offset range of ±6 ppm were acquired with different saturation powers, followed by the magnetization transfer-ratio (MTR) asymmetry analyses around the water resonance. Results The NOE signal upfield from the water resonance (−2.5 to −5 ppm) was clearly visible at lower saturation powers (e.g., 0.6 μT) and was larger in the contralateral normal brain tissue than in the tumor. Conversely, the APT effect downfield from the water resonance was observed at relatively higher saturation powers (e.g., 2.1 μT) and was larger in the tumor than in the contralateral normal brain tissue. The NOE decreased the APT-weighted image signal, based on the MTR asymmetry analysis, but increased the APT-weighted image contrast between the tumor and contralateral normal brain tissue. Conclusion The APT and NOE image signals in tumor are maximized at different saturation powers. The saturation power of roughly 2 μT is ideal for APT-weighted imaging at clinical B0 field strengths. PMID:23661598

  14. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection

    NASA Astrophysics Data System (ADS)

    Sinharay, Sanhita; Pagel, Mark D.

    2016-06-01

    Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized 13C to detect the agent with outstanding sensitivity. These hyperpolarized 13C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection.

  15. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection

    PubMed Central

    Sinharay, Sanhita; Pagel, Mark D.

    2016-01-01

    Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized 13C to detect the agent with outstanding sensitivity. These hyperpolarized 13C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection. PMID:27049630

  16. Wireless power transfer magnetic couplers

    DOEpatents

    Wu, Hunter; Gilchrist, Aaron; Sealy, Kylee

    2016-01-19

    A magnetic coupler is disclosed for wireless power transfer systems. A ferrimagnetic component is capable of guiding a magnetic field. A wire coil is wrapped around at least a portion of the ferrimagnetic component. A screen is capable of blocking leakage magnetic fields. The screen may be positioned to cover at least one side of the ferrimagnetic component and the coil. A distance across the screen may be at least six times an air gap distance between the ferrimagnetic component and a receiving magnetic coupler.

  17. MRI contrast enhancement using Magnetic Carbon Nanoparticles

    NASA Astrophysics Data System (ADS)

    Chaudhary, Rakesh P.; Kangasniemi, Kim; Takahashi, Masaya; Mohanty, Samarendra K.; Koymen, Ali R.; Department of Physics, University of Texas at Arlington Team; University of Texas Southwestern Medical Center Team

    2014-03-01

    In recent years, nanotechnology has become one of the most exciting forefront fields in cancer diagnosis and therapeutics such as drug delivery, thermal therapy and detection of cancer. Here, we report development of core (Fe)-shell (carbon) nanoparticles with enhanced magnetic properties for contrast enhancement in MRI imaging. These new classes of magnetic carbon nanoparticles (MCNPs) are synthesized using a bottom-up approach in various organic solvents, using the electric plasma discharge generated in the cavitation field of an ultrasonic horn. Gradient echo MRI images of well-dispersed MCNP-solutions (in tube) were acquired. For T2 measurements, a multi echo spin echo sequence was performed. From the slope of the 1/T2 versus concentration plot, the R2 value for different CMCNP-samples was measured. Since MCNPs were found to be extremely non-reactive, and highly absorbing in NIR regime, development of carbon-based MRI contrast enhancement will allow its simultaneous use in biomedical applications. We aim to localize the MCNPs in targeted tissue regions by external DC magnetic field, followed by MRI imaging and subsequent photothermal therapy.

  18. Uniform magnetization transfer in chemical exchange saturation transfer magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Seung; Parasoglou, Prodromos; Xia, Ding; Jerschow, Alexej; Regatte, Ravinder R.

    2013-04-01

    The development of chemical exchange saturation transfer (CEST) has led to the establishment of new contrast mechanisms in magnetic resonance imaging, which serve as enablers for advanced molecular imaging strategies. Macromolecules in tissues and organs often give rise to broad and asymmetric exchange effects, called magnetization transfer (MT) effects, which can mask the CEST contrast of interest. We show here that the saturation of these macromolecular pools simultaneously at two distinct frequencies can level out the asymmetric MT effects, thus allowing one to isolate the CEST effects in vivo. For the first time, clean CEST contrast for glycosaminoglycans (gagCEST) in cartilage in the human knee joint is presented. In addition, the method allows one to clearly demarcate glycosaminoglycan measurements from cartilage and synovial fluid regions. This uniform-MT CEST methodology has wide applicability in in vivo molecular imaging (such as brain, skeletal muscle, etc).

  19. Coronary magnetic resonance vein imaging: imaging contrast, sequence, and timing.

    PubMed

    Nezafat, Reza; Han, Yuchi; Peters, Dana C; Herzka, Daniel A; Wylie, John V; Goddu, Beth; Kissinger, Kraig K; Yeon, Susan B; Zimetbaum, Peter J; Manning, Warren J

    2007-12-01

    Recently, there has been increased interest in imaging the coronary vein anatomy to guide interventional cardiovascular procedures such as cardiac resynchronization therapy (CRT), a device therapy for congestive heart failure (CHF). With CRT the lateral wall of the left ventricle is electrically paced using a transvenous coronary sinus lead or surgically placed epicardial lead. Proper transvenous lead placement is facilitated by the knowledge of the coronary vein anatomy. Cardiovascular MR (CMR) has the potential to image the coronary veins. In this study we propose and test CMR techniques and protocols for imaging the coronary venous anatomy. Three aspects of design of imaging sequence were studied: magnetization preparation schemes (T(2) preparation and magnetization transfer), imaging sequences (gradient-echo (GRE) and steady-state free precession (SSFP)), and imaging time during the cardiac cycle. Numerical and in vivo studies both in healthy and CHF subjects were performed to optimize and demonstrate the utility of CMR for coronary vein imaging. Magnetization transfer was superior to T(2) preparation for contrast enhancement. Both GRE and SSFP were viable imaging sequences, although GRE provided more robust results with better contrast. Imaging during the end-systolic quiescent period was preferable as it coincided with the maximum size of the coronary veins.

  20. Magnetic field induced differential neutron phase contrast imaging

    SciTech Connect

    Strobl, M.; Treimer, W.; Walter, P.; Keil, S.; Manke, I.

    2007-12-17

    Besides the attenuation of a neutron beam penetrating an object, induced phase changes have been utilized to provide contrast in neutron and x-ray imaging. In analogy to differential phase contrast imaging of bulk samples, the refraction of neutrons by magnetic fields yields image contrast. Here, it will be reported how double crystal setups can provide quantitative tomographic images of magnetic fields. The use of magnetic air prisms adequate to split the neutron spin states enables a distinction of field induced phase shifts and these introduced by interaction with matter.

  1. Projection phase contrast microscopy with a hard x-ray nanofocused beam: Defocus and contrast transfer

    SciTech Connect

    Salditt, T.; Giewekemeyer, K.; Fuhse, C.; Krueger, S. P.; Tucoulou, R.; Cloetens, P.

    2009-05-01

    We report a projection phase contrast microscopy experiment using hard x-ray pink beam undulator radiation focused by an adaptive mirror system to 100-200 nm spot size. This source is used to illuminate a lithographic test pattern with a well-controlled range of spatial frequencies. The oscillatory nature of the contrast transfer function with source-to-sample distance in this holographic imaging scheme is quantified and the validity of the weak phase object approximation is confirmed for the experimental conditions.

  2. Oxidation-Responsive, EuII/III-Based, Multimodal Contrast Agent for Magnetic Resonance and Photoacoustic Imaging

    PubMed Central

    2017-01-01

    We report, for the first time, a multimodal, oxidation-responsive contrast agent for magnetic resonance imaging and photoacoustic imaging that uses the differences in the properties between Eu in the +2 and +3 oxidation states. The enhancement of contrast in T1-weighted magnetic resonance and photoacoustic imaging was observed in the +2 but not in the +3 oxidation state, and the complex is a known chemical exchange saturation transfer agent for magnetic resonance imaging in the +3 oxidation state. PMID:28393130

  3. Intravascular contrast agents suitable for magnetic resonance imaging. [Dogs

    SciTech Connect

    Runge, V.M.; Clanton, J.A.; Herzer, W.A.; Gibbs, S.J.; Price, A.C.; Partain, C.L.; James, A.E. Jr.

    1984-10-01

    Two paramagnetic chelates, chromium EDTA and gadolinium DTPA, were evaluated as potential intravenous contrast agents for magnetic resonance imaging. After evaluating both agents in vitro, in vivo studies were conducted in dogs to document changes in renal appearance produced by contrast injection. Acute splenic and renal infarction were diagnosed with contrast-enhanced MR and confirmed by gamma camera imaging following administration of Tc-99m-labeled DMSA and sulfur colloid. The authors conclude that intravenous paramagnetic contrast agents presently offer the best mechanism for assessment of tissue function and changes in perfusion with MR.

  4. MR of intracranial tumors: Combined use of gadolinium and magnetization transfer

    SciTech Connect

    Kurki, T.; Niemi, P.; Valtonen, S.

    1994-10-01

    To study the potential combined application of gadolinium and magnetization transfer in the MR imaging of intracranial tumors. Twenty-two patients were imaged at low field strength (0.1 T). Corresponding gradient-echo partial saturation images without and with magnetization transfer pulse were produced. Images with intermediate repetition times were obtained in 18 cases; five different sequences were produced in 4 cases. Gadopentetate dimeglumine was used at a dose of 0.1 mmol/kg. Magnetization transfer effect increased the contrast between enhancing lesion and normal brain and the contrast between edema and normal brain; the contrast between enhancing lesion and edema was not significantly changed. On intermediate-repetition-time magnetization transfer images the contrast between enhancing tumor and normal brain and the contrast between edema and normal brain were superior to short-repetition-time magnetization transfer images, but the differentiation between enhancing tumor and edema was poorer. Magnetization transfer can be used to improve contrast in Gd-enhanced MR imaging. Combining magnetization transfer with an intermediate-repetition-time image provides the possibility for displaying both enhancing and nonehancing lesions on a single MR image. 20 refs., 7 figs., 2 tabs.

  5. Transfer matrices for magnetized CMB anisotropies

    SciTech Connect

    Giovannini, Massimo

    2006-05-15

    Large-scale magnetic fields can affect scalar cosmological perturbations whose evolution is described in the conformally Newtonian gauge and within the tight coupling approximation. The magnetized curvature perturbations present after matter-radiation equality (and prior to decoupling) are computed in terms of an appropriate transfer matrix allowing a general estimate of the Sachs-Wolfe plateau. From the observation that CMB initial conditions should be (predominantly) adiabatic, the contribution of the magnetic field intensity can be constrained.

  6. Mechanisms of contrast enhancement in magnetic resonance imaging.

    PubMed

    Lee, D H

    1991-02-01

    The use of contrast agents has increased the sensitivity and specificity of magnetic resonance imaging (MRI). Contrast in MRI is multifactorial, depending not only on T1 and T2 relaxation rates, but also on flow, proton density and, in gradient-echo sequences, on the angle of the induced field. The use of contrast agents in MRI changes the T1 and T2 relaxation rates, producing increased signal intensity on T1-weighted images or decreased signal intensity on T2-weighted images, or both. All contrast agents produce changes in magnetic susceptibility by enhancing local magnetic fields. These effects are caused by interactions between nuclear and paramagnetic substance magnet moments, which produce accentuated transitions between spin states and cause shortening of T1; the paramagnetic substance causes accentuated local fields, which lead to increased dephasing and thus shortening of T2 or T2* relaxation time. The efficacy of shortening of T1, T2 or T2* relaxation time depends on the distance between the proton nucleus and the electronic field of the paramagnetic compound, the time of their interaction (correlation time) and the paramagnetic concentration. The MRI contrast agents currently in use cause shortening of T1, T2 or T2* relaxation time. Metal chelates (e.g., gadolinium-diethylene triamine penta-acetic acid [Gd-DTPA]) in low concentration cause shortening of T1 relaxation times, and the superparamagnetics (e.g., ferrite) cause shortening of T2 relaxation times.

  7. Magnetic nanobeads as potential contrast agents for magnetic resonance imaging.

    PubMed

    Pablico-Lansigan, Michele H; Hickling, William J; Japp, Emily A; Rodriguez, Olga C; Ghosh, Anup; Albanese, Chris; Nishida, Maki; Van Keuren, Edward; Fricke, Stanley; Dollahon, Norman; Stoll, Sarah L

    2013-10-22

    Metal-oxo clusters have been used as building blocks to form hybrid nanomaterials and evaluated as potential MRI contrast agents. We have synthesized a biocompatible copolymer based on a water stable, nontoxic, mixed-metal-oxo cluster, Mn8Fe4O12(L)16(H2O)4, where L is acetate or vinyl benzoic acid, and styrene. The cluster alone was screened by NMR for relaxivity and was found to be a promising T2 contrast agent, with r1 = 2.3 mM(-1) s(-1) and r2 = 29.5 mM(-1) s(-1). Initial cell studies on two human prostate cancer cell lines, DU-145 and LNCap, reveal that the cluster has low cytotoxicity and may be potentially used in vivo. The metal-oxo cluster Mn8Fe4(VBA)16 (VBA = vinyl benzoic acid) can be copolymerized with styrene under miniemulsion conditions. Miniemulsion allows for the formation of nanometer-sized paramagnetic beads (~80 nm diameter), which were also evaluated as a contrast agent for MRI. These highly monodispersed, hybrid nanoparticles have enhanced properties, with the option for surface functionalization, making them a promising tool for biomedicine. Interestingly, both relaxivity measurements and MRI studies show that embedding the Mn8Fe4 core within a polymer matrix decreases r2 effects with little effect on r1, resulting in a positive T1 contrast enhancement.

  8. Magnetic field transfer device and method

    DOEpatents

    Wipf, S.L.

    1990-02-13

    A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180[degree] from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180[degree] from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils. 16 figs.

  9. Magnetic field transfer device and method

    DOEpatents

    Wipf, Stefan L.

    1990-01-01

    A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180.degree. from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180.degree. from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils.

  10. Development of contrast enhancing agents in magnetic resonance imaging.

    PubMed

    Lex, L

    1989-01-01

    Magnetic Resonance Imaging (MRI) is a powerful new diagnostic tool in medicine. In MRI there is a great need to improve the specific identification of different tissues i.e. to enhance the contrast between them. This review tries to cover most of the approaches known for solving this problem.

  11. Detecting Plasmon Resonance Energy Transfer with Differential Interference Contrast Microscopy

    SciTech Connect

    Augspurger, Ashley E.; Stender, Anthony S.; Han, Rui; Fang, Ning

    2013-12-30

    Gold nanoparticles are ideal probes for studying intracellular environments and energy transfer mechanisms due to their plasmonic properties. Plasmon resonance energy transfer (PRET) relies on a plasmonic nanoparticle to donate energy to a nearby resonant acceptor molecule, a process which can be observed due to the plasmonic quenching of the donor nanoparticle. In this study, a gold nanosphere was used as the plasmonic donor, while the metalloprotein cytochrome c was used as the acceptor molecule. Differential interference contrast (DIC) microscopy allows for simultaneous monitoring of complex environments and noble metal nanoparticles in real time. Using DIC and specially designed microfluidic channels, we were able to monitor PRET at the single gold particle level and observe the reversibility of PRET upon the introduction of phosphate-buffered saline to the channel. In an additional experiment, single gold particles were internalized by HeLa cells and were subsequently observed undergoing PRET as the cell hosts underwent morphological changes brought about by ethanol-induced apoptosis.

  12. Endoluminal contrast for abdomen and pelvis magnetic resonance imaging.

    PubMed

    Gupta, Mohit K; Khatri, Gaurav; Bailey, April; Pinho, Daniella F; Costa, Daniel; Pedrosa, Ivan

    2016-07-01

    Magnetic resonance (MR) imaging of the abdomen and pelvis can be limited for assessment of different conditions when imaging inadequately distended hollow organs. Endoluminal contrast agents may provide improved anatomic definition and detection of subtle pathology in such scenarios. The available routes of administration for endoluminal contrast agents include oral, endorectal, endovaginal, intravesicular, and through non-physiologic accesses. Appropriate use of endoluminal contrast agents requires a thorough understanding of the clinical indications, available contrast agents, patient preparation, and interaction of the contrast agent with the desired MR imaging protocol. For example, biphasic oral enteric contrast agents are preferred in MR enterography as their signal properties on T1- and T2-weighted imaging allow for evaluation of both intraluminal and bowel wall pathology. In specific situations such as with MR enterography, MR defecography, and accurate local staging of certain pelvic tumors, the use of an endoluminal contrast agent is imperative in providing adequate diagnostic imaging. In other clinical scenarios, the use of an endoluminal contrast agent may serve as an indispensable problem-solving tool.

  13. Magsat magnetic anomaly contrast across Labrador Sea passive margins

    NASA Technical Reports Server (NTRS)

    Bradley, Lauren M.; Frey, Herbert

    1991-01-01

    Many passive margins not complicated by nearby anomalous crustal structure have satellite elevation crustal magnetic anomaly contrasts across them that are recognizable in reduced-to-pole versions of the Magsat and POGO data. In the Labrador Sea region this contrast is particularly well developed with strong positive anomalies overlying the continental crust of Greenland and eastern Canada and prominent negative anomalies situated over the Labrador Sea and Baffin Bay. In this work, forward modeling of the large-scale crustal bodies in this region (continental, oceanic, passive margin, several anomalous structures) was used to show that the Magsat anomaly contrast is due simply to the change in crustal susceptibility and thickness at the continental/oceanic crustal transition. Because the thickness varies more than the average susceptibility from continental to oceanic crust, the strong anomaly contrast is essentially an edge effect due mostly to the change in crustal structure.

  14. [Contrast agents in magnetic resonance imaging: development and problems].

    PubMed

    Xu, Yi-kai

    2002-09-01

    In spite of the inherent versatility of magnetic resonance imaging (MRI), researchers and clinicians from both home and aboard have made great achievements in developing safe and effective contrast agents. Many new agents are expected to be available for clinical use in the near future. It is of clinical importance that the agents should expand the diagnostic utility of MRI, improve the detection of tiny lesions and help evaluate specific tissue or organ functions. This article aims to examine current status of contrast agents for MRI and the problems waiting for solutions.

  15. Magnetic to magnetic and kinetic to magnetic energy transfers at the top of the Earth's core

    NASA Astrophysics Data System (ADS)

    Huguet, Ludovic; Amit, Hagay; Alboussière, Thierry

    2016-11-01

    We develop the theory for the magnetic to magnetic and kinetic to magnetic energy transfer between different spherical harmonic degrees due to the interaction of fluid flow and radial magnetic field at the top of the Earth's core. We show that non-zero secular variation of the total magnetic energy could be significant and may provide evidence for the existence of stretching secular variation, which suggests the existence of radial motions at the top of the Earth's core-whole core convection or MAC waves. However, the uncertainties of the small scales of the geomagnetic field prevent a definite conclusion. Combining core field and flow models we calculate the detailed magnetic to magnetic and kinetic to magnetic energy transfer matrices. The magnetic to magnetic energy transfer shows a complex behaviour with local and non-local transfers. The spectra of magnetic to magnetic energy transfers show clear maxima and minima, suggesting an energy cascade. The kinetic to magnetic energy transfers, which are much weaker due to the weak poloidal flow, are either local or non-local between degree one and higher degrees. The patterns observed in the matrices resemble energy transfer patterns that are typically found in 3-D MHD numerical simulations.

  16. Blood pool contrast agents for venous magnetic resonance imaging

    PubMed Central

    Oliveira, Irai S.; Li, Weier; Ganguli, Suvranu; Prabhakar, Anand M.

    2016-01-01

    Imaging of the venous system plays a vital role in the diagnosis and management of a wide range of clinically significant disorders. There have been great advances in venous imaging techniques, culminating in the use of magnetic resonance venography (MRV). Although MRV has distinct advantages in anatomic and quantitative cross sectional imaging without ionizing radiation, there are well-known challenges in acquisition timing and contrast administration in patients with renal impairment. The latest advancement involves the addition of new contrast media agents, which have emerged as valuable alternatives in these difficult scenarios. In this review, we will focus on a group of specific contrast agents called blood pool agents and discuss their salient features and clinical applications. PMID:28123972

  17. [Gadolinium-based contrast agents for magnetic resonance imaging].

    PubMed

    Carrasco Muñoz, S; Calles Blanco, C; Marcin, Javier; Fernández Álvarez, C; Lafuente Martínez, J

    2014-06-01

    Gadolinium-based contrast agents are increasingly being used in magnetic resonance imaging. These agents can improve the contrast in images and provide information about function and metabolism, increasing both sensitivity and specificity. We describe the gadolinium-based contrast agents that have been approved for clinical use, detailing their main characteristics based on their chemical structure, stability, and safety. In general terms, these compounds are safe. Nevertheless, adverse reactions, the possibility of nephrotoxicity from these compounds, and the possibility of developing nephrogenic systemic fibrosis will be covered in this article. Lastly, the article will discuss the current guidelines, recommendations, and contraindications for their clinical use, including the management of pregnant and breast-feeding patients.

  18. Mn12 single-molecule magnet aggregates as magnetic resonance imaging contrast agents.

    PubMed

    Wang, Yinglin; Li, Wen; Zhou, Shengyan; Kong, Daliang; Yang, Haishan; Wu, Lixin

    2011-03-28

    Mn(12) single-molecule magnets have been dispersed in water through an emulsion-assisted self-assembly method with an improved stability in water, in order to investigate the use of Mn(12) as MRI contrast agents.

  19. ON THE THEORY OF POLARIZATION TRANSFER IN INHOMOGENEOUS MAGNETIZED PLASMAS,

    DTIC Science & Technology

    PLASMA MEDIUM, ELECTROMAGNETIC RADIATION ), (* ELECTROMAGNETIC RADIATION , POLARIZATION), TRANSFER FUNCTIONS, ASTROPHYSICS, WAVE FUNCTIONS, MAGNETIC FIELDS, MAGNETOOPTICS, PHASE SHIFT CIRCUITS, DIFFERENTIAL EQUATIONS

  20. Hyperpolarized water as an authentic magnetic resonance imaging contrast agent

    PubMed Central

    McCarney, Evan R.; Armstrong, Brandon D.; Lingwood, Mark D.; Han, Songi

    2007-01-01

    Pure water in a highly 1H spin-polarized state is proposed as a contrast-agent-free contrast agent to visualize its macroscopic evolution in aqueous media by MRI. Remotely enhanced liquids for image contrast (RELIC) utilizes a 1H signal of water that is enhanced outside the sample in continuous-flow mode and immediately delivered to the sample to obtain maximum contrast between entering and bulk fluids. Hyperpolarization suggests an ideal contrast mechanism to highlight the ubiquitous and specific function of water in physiology, biology, and materials because the physiological, chemical, and macroscopic function of water is not altered by the degree of magnetization. We present an approach that is capable of instantaneously enhancing the 1H MRI signal by up to 2 orders of magnitude through the Overhauser effect under ambient conditions at 0.35 tesla by using highly spin-polarized unpaired electrons that are covalently immobilized onto a porous, water-saturated gel matrix. The continuous polarization of radical-free flowing water allowed us to distinctively visualize vortices in model reactors and dispersion patterns through porous media. A 1H signal enhancement of water by a factor of −10 and −100 provides for an observation time of >4 and 7 s, respectively, upon its injection into fluids with a T1 relaxation time of >1.5 s. The implications for chemical engineering or biomedical applications of using hyperpolarized solvents or physiological fluids to visualize mass transport and perfusion with high and authentic MRI contrast originating from water itself, and not from foreign contrast agents, are immediate. PMID:17264210

  1. Contrast-enhanced magnetic resonance imaging of hypoperfused myocardium.

    PubMed

    Schaefer, S; Lange, R A; Gutekunst, D P; Parkey, R W; Willerson, J T; Peshock, R M

    1991-06-01

    Contrast-enhanced magnetic resonance (MR) imaging can define myocardial perfusion defects due to acute coronary occlusion. However, since most clinically important diagnostic examinations involve coronary arteries with subtotal stenoses, we investigated the ability of MR imaging with a manganese contrast agent to detect perfusion abnormalities in a canine model of partial coronary artery stenosis. The contrast agent was administered after the creation of a partial coronary artery stenosis with the addition of the coronary vasodilator dipyridamole in six of 12 animals. The hearts were imaged ex situ using gradient reversal and spin-echo sequences, and images were analyzed to determine differences in signal intensity between hypoperfused and normally perfused myocardium. Comparison of MR images with regional blood flow and thallium-201 measurements showed good concordance of hypoperfused segments in those animals given dipyridamole, with 75% of the abnormal segments correctly identified. In those animals not given dipyridamole, 48% of segments were correctly identified. Thus, ex vivo MR imaging with a paramagnetic contrast enhancement can be used to detect acute regional myocardial perfusion abnormalities due to severe partial coronary artery stenoses.

  2. Target-specific contrast agents for magnetic resonance microscopy.

    PubMed

    Blackwell, Megan L; Farrar, Christian T; Fischl, Bruce; Rosen, Bruce R

    2009-06-01

    High-resolution ex vivo magnetic resonance (MR) imaging can be used to delineate prominent architectonic features in the human brain, but increased contrast is required to visualize more subtle distinctions. To aid MR sensitivity to cell density and myelination, we have begun the development of target-specific paramagnetic contrast agents. This work details the first application of luxol fast blue (LFB), an optical stain for myelin, as a white matter-selective MR contrast agent for human ex vivo brain tissue. Formalin-fixed human visual cortex was imaged with an isotropic resolution between 80 and 150 microm at 4.7 and 14 T before and after en bloc staining with LFB. Longitudinal (R1) and transverse (R2) relaxation rates in LFB-stained tissue increased proportionally with myelination at both field strengths. Changes in R1 resulted in larger contrast-to-noise ratios (CNR), per unit time, on T1-weighted images between more myelinated cortical layers (IV-VI) and adjacent, superficial layers (I-III) at both field strengths. Specifically, CNR for LFB-treated samples increased by 229 +/- 13% at 4.7 T and 269 +/- 25% at 14 T when compared to controls. Also, additional cortical layers (IVca, IVd, and Va) were resolvable in 14 T-MR images of LFB-treated samples but not in control samples. After imaging, samples were sliced in 40-micron sections, mounted, and photographed. Both the macroscopic and microscopic distributions of LFB were found to mimic those of traditional histological preparations. Our results suggest target-specific contrast agents will enable more detailed MR images with applications in imaging pathological ex vivo samples and constructing better MR atlases from ex vivo brains.

  3. Image fusion for dynamic contrast enhanced magnetic resonance imaging

    PubMed Central

    Twellmann, Thorsten; Saalbach, Axel; Gerstung, Olaf; Leach, Martin O; Nattkemper, Tim W

    2004-01-01

    Background Multivariate imaging techniques such as dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) have been shown to provide valuable information for medical diagnosis. Even though these techniques provide new information, integrating and evaluating the much wider range of information is a challenging task for the human observer. This task may be assisted with the use of image fusion algorithms. Methods In this paper, image fusion based on Kernel Principal Component Analysis (KPCA) is proposed for the first time. It is demonstrated that a priori knowledge about the data domain can be easily incorporated into the parametrisation of the KPCA, leading to task-oriented visualisations of the multivariate data. The results of the fusion process are compared with those of the well-known and established standard linear Principal Component Analysis (PCA) by means of temporal sequences of 3D MRI volumes from six patients who took part in a breast cancer screening study. Results The PCA and KPCA algorithms are able to integrate information from a sequence of MRI volumes into informative gray value or colour images. By incorporating a priori knowledge, the fusion process can be automated and optimised in order to visualise suspicious lesions with high contrast to normal tissue. Conclusion Our machine learning based image fusion approach maps the full signal space of a temporal DCE-MRI sequence to a single meaningful visualisation with good tissue/lesion contrast and thus supports the radiologist during manual image evaluation. PMID:15494072

  4. Research into europium complexes as magnetic resonance imaging contrast agents (Review)

    PubMed Central

    HAN, GUOCAN; DENG, YANGWEI; SUN, JIHONG; LING, JUN; SHEN, ZHIQUAN

    2015-01-01

    Europium (Eu) is a paramagnetic lanthanide element that possesses an outstanding luminescent property. Eu complexes are ideal fluorescence imaging (FI) agents. Eu2+ has satisfactory relaxivity and optical properties, and can realize magnetic resonance (MRI)-FI dual imaging applications when used with appropriate cryptands that render it oxidatively stable. By contrast, based on the chemical exchange saturation transfer (CEST) mechanism, Eu3+ complexes can provide enhanced MRI sensitivity when used with optimal cryptands, incorporated into polymeric CEST agents or blended with Gd3+. Eu complexes are promising in MRI-FI dual imaging applications and have a bright future. PMID:26136858

  5. Characterization of nanoparticle-based contrast agents for molecular magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Shan, Liang; Chopra, Arvind; Leung, Kam; Eckelman, William C.; Menkens, Anne E.

    2012-09-01

    The development of molecular imaging agents is currently undergoing a dramatic expansion. As of October 2011, 4,800 newly developed agents have been synthesized and characterized in vitro and in animal models of human disease. Despite this rapid progress, the transfer of these agents to clinical practice is rather slow. To address this issue, the National Institutes of Health launched the Molecular Imaging and Contrast Agents Database (MICAD) in 2005 to provide freely accessible online information regarding molecular imaging probes and contrast agents for the imaging community. While compiling information regarding imaging agents published in peer-reviewed journals, the MICAD editors have observed that some important information regarding the characterization of a contrast agent is not consistently reported. This makes it difficult for investigators to evaluate and meta-analyze data generated from different studies of imaging agents, especially for the agents based on nanoparticles. This article is intended to serve as a guideline for new investigators for the characterization of preclinical studies performed with nanoparticle-based MRI contrast agents. The common characterization parameters are summarized into seven categories: contrast agent designation, physicochemical properties, magnetic properties, in vitro studies, animal studies, MRI studies, and toxicity. Although no single set of parameters is suitable to define the properties of the various types of contrast agents, it is essential to ensure that these agents meet certain quality control parameters at the preclinical stage, so that they can be used without delay for clinical studies.

  6. Environmentally sensitive paramagnetic and diamagnetic contrast agents for nuclear magnetic resonance imaging and spectroscopy.

    PubMed

    Pacheco-Torres, Jesus; Calle, Daniel; Lizarbe, Blanca; Negri, Viviana; Ubide, Carmen; Fayos, Rosa; Larrubia, Pilar López; Ballesteros, Paloma; Cerdan, Sebastian

    2011-01-01

    Even though alterations in the microenvironmental properties of tissues underlie the development of the most prevalent and morbid pathologies, they are not directly observable in vivo by Magnetic Resonance Imaging (MRI) or Spectroscopy (MRS) methods. This circumstance has lead to the development of a wide variety of exogenous paramagnetic and diamagnetic MRI and MRS probes able to inform non invasively on microenvironmental variables such as pH, pO(2), ion concentration o even temperature. This review covers the fundamentals of environmental contrast and the current arsenal of endogenous and exogenous MRI and MRS contrast enhancing agents available to visualize it. We begin describing the physicochemical background necessary to understand paramagnetic and diamagnetic contrast enhancement with a special reference to novel magnetization transfer and (13)C hyperpolarization strategies. We describe then the main macrocyclic structures used to support the environmentally sensitive paramagnetic sensors, including CEST and PARACEST pH sensitive probes, temperature probes and enzyme activity or gene expression activatable probes. Finally we address the most commonly used diamagnetic contrast agents including imidazolic derivatives to reveal extracellular pH and tissue pO(2) values by MRS. The potential applications of these agents in multimodal and molecular imaging approaches are discussed.

  7. Photo-magnetic Imaging: Resolving Optical Contrast at MRI resolution

    PubMed Central

    Lin, Yuting; Gao, Hao; Thayer, David; Luk, Alex L.; Gulsen, Gultekin

    2014-01-01

    In this paper, we establish the mathematical framework of a novel imaging technique, namely Photo-magnetic Imaging (PMI). PMI uses laser to illuminate biological tissues and measure the induced temperature variations using magnetic resonance imaging (MRI). PMI overcomes the limitation of conventional optical imaging and allows imaging of optical contrast at MRI spatial resolution. The image reconstruction for PMI, using a finite element-based algorithm with iterative approach, is presented in this paper. The quantitative accuracy of PMI is investigated for various inclusion sizes, depths and absorption values. Then, a comparison between conventional Diffuse Optical Tomography (DOT) and PMI is carried out to illustrate the superior performance of PMI. An example is presented showing that two 2 mm diameter inclusions embedded 4.5 mm deep and located side by side in a 25 mm diameter circular geometry medium is recovered as a single 6 mm diameter object with DOT. However, these two objects are not only effectively resolved with PMI, but their true concentration are also recovered successfully. PMID:23640084

  8. Magnetic resonance imaging and contrast enhancement. Scientific report

    SciTech Connect

    Swenberg, C.E.; Movius, E.G.

    1988-01-01

    Chapters II through VI of this report discuss: Relaxation of Nuclear Spins; Echo Techniques; Basic Imaging Pulse Sequences; Partial Saturation Recovery; Inversion Recovery; Spin Echo; Effects of Pulse Sequence on Image Contrast; Contrast Agents; Theoretical Aspects; Pharmacokinetics and Toxicity; and Physiological Rationale for Agent Selection. One of the major goals in all medical imaging techniques is to maximize one's ability to visualize and differentiate adjacent tissue regions in the body on the basis of differences in anatomy, physiology, or various pathological processes. Magnetic resonance (MR) imaging offers distinct advantages over conventional x-ray imaging because of the possibility of selecting specific pulse sequences that can differentiate adjacent structures on the basis of differences in proton density, T/sub 1/ or T/sub 2/ relaxation rates, or flow. As a result of applying these various pulse sequences, numerous images have been obtained of the brain and other organs that demonstrate considerably more-detailed anatomical structure than had previously been available with computerized tomography, ultrasound, or nuclear medicine techniques. In some situations it is clearly superior, such as in the diagnosis of multiple sclerosis.

  9. Functional magnetic resonance imaging: imaging techniques and contrast mechanisms.

    PubMed Central

    Howseman, A M; Bowtell, R W

    1999-01-01

    Functional magnetic resonance imaging (fMRI) is a widely used technique for generating images or maps of human brain activity. The applications of the technique are widespread in cognitive neuroscience and it is hoped they will eventually extend into clinical practice. The activation signal measured with fMRI is predicated on indirectly measuring changes in the concentration of deoxyhaemoglobin which arise from an increase in blood oxygenation in the vicinity of neuronal firing. The exact mechanisms of this blood oxygenation level dependent (BOLD) contrast are highly complex. The signal measured is dependent on both the underlying physiological events and the imaging physics. BOLD contrast, although sensitive, is not a quantifiable measure of neuronal activity. A number of different imaging techniques and parameters can be used for fMRI, the choice of which depends on the particular requirements of each functional imaging experiment. The high-speed MRI technique, echo-planar imaging provides the basis for most fMRI experiments. The problems inherent to this method and the ways in which these may be overcome are particularly important in the move towards performing functional studies on higher field MRI systems. Future developments in techniques and hardware are also likely to enhance the measurement of brain activity using MRI. PMID:10466145

  10. Spin transfer torque effects in magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Chen, Tingyong

    Spin transfer torque (STT) effects have been studied using a point-contact spin injection technique in (1) magnetic trilayers, (2) a single exchange-biased ferromagnetic layer, and (3) magnetic granular solids. In the point-contact spin injection, a sharp metallic tip is in contact with a thin film structure. The high current density (e.g. 10 8 A/cm²) required for the STT effects is achieved by concentrating a current of a few milli-amperes into a point contact with a cross section less than 100 nanometers. Spin (polarized electrons) is injected into the contact region via a spin polarizer, a ferromagnetic film underneath the film structure. Resistance and differential resistance of the contact as a function of the current in the contact are measured at the same time using a lock-in technique. Steps in the resistance and spikes in the differential resistance indicate non-collinear spin structures are induced by the STT effect. The non-collinear spin structures are verified by the magnetoresistance of the contact with a small current without causing any STT effect. The experiments are carried out at cryogenic temperatures obtained by a liquid helium dewar and in magnetic fields up to 9 Tesla provided by a superconductor magnet. In magnetic trilayers such as Co/Cu/Co film where the STT effect is an inverse effect of the giant magnetoresistance (GMR) effect, a magnetic bit can be reversibly written by a spin polarized current injected through a point contact into the continuous film. The magnetic states written depend on the polarity of the injection currents, and remain stable at room temperature. The reversible writing can be achieved for a wide range of contact resistances with a well-defined voltage for the reversal. With the assistance of the exchange coupling of an antiferromagnetic CoO layer, a nanodomain has been created and manipulated by the inhomogeneous current density within a ferromagnetic Co layer, showing hysteretic switching loops at low fields. At

  11. Ex vivo differential phase contrast and magnetic resonance imaging for characterization of human carotid atherosclerotic plaques.

    PubMed

    Meletta, Romana; Borel, Nicole; Stolzmann, Paul; Astolfo, Alberto; Klohs, Jan; Stampanoni, Marco; Rudin, Markus; Schibli, Roger; Krämer, Stefanie D; Herde, Adrienne Müller

    2015-10-01

    Non-invasive detection of specific atherosclerotic plaque components related to vulnerability is of high clinical relevance to prevent cerebrovascular events. The feasibility of magnetic resonance imaging (MRI) for characterization of plaque components was already demonstrated. We aimed to evaluate the potential of ex vivo differential phase contrast X-ray tomography (DPC) to accurately characterize human carotid plaque components in comparison to high field multicontrast MRI and histopathology. Two human plaque segments, obtained from carotid endarterectomy, classified according to criteria of the American Heart Association as stable and unstable plaque, were examined by ex vivo DPC tomography and multicontrast MRI (T1-, T2-, and proton density-weighted imaging, magnetization transfer contrast, diffusion-weighted imaging). To identify specific plaque components, the plaques were subsequently sectioned and stained for fibrous and cellular components, smooth muscle cells, hemosiderin, and fibrin. Histological data were then matched with DPC and MR images to define signal criteria for atherosclerotic plaque components. Characteristic structures, such as the lipid and necrotic core covered by a fibrous cap, calcification and hemosiderin deposits were delineated by histology and found with excellent sensitivity, resolution and accuracy in both imaging modalities. DPC tomography was superior to MRI regarding resolution and soft tissue contrast. Ex vivo DPC tomography allowed accurate identification of structures and components of atherosclerotic plaques at different lesion stages, in good correlation with histopathological findings.

  12. Structural and Magnetic Characterization of Superparamagnetic Iron Platinum Nanoparticle Contrast Agents for Magnetic Resonance Imaging

    PubMed Central

    Taylor, Robert M.; Huber, Dale L.; Monson, Todd C.; Esch, Victor; Sillerud, Laurel O.

    2012-01-01

    We report the synthesis, from simple salts, and the physical characterization of superparamagnetic iron platinum nanoparticles (SIPPs) suitable for use as contrast agents in magnetic resonance imaging. The properties of these particles were determined by means of transmission electron microscopy (TEM), thermogravimetric analysis (TGA), inductively coupled plasma-optical emission spectroscopy (ICP-OES), superconducting quantum interference device (SQUID) magnetometry, and nuclear magnetic resonance (NMR) relaxivity at 4.7 Tesla. TEM showed that the diameters of the particles ranged from 9.3 nm to 10 nm, depending on the mole ratio of iron to platinum precursors, and on the concentration of Octadecylamine (ODA) used in their preparation. The iron to platinum stoichiometry determined by ICP-OES varied from 1.4:1 to 3.7:1 and was similarly dependant on the initial mole ratios of iron and platinum salts, as well as on the concentration of ODA in the reaction. SQUID magnetometry showed that the SIPPs were superparamagnetic and had magnetic moments that increased with increasing iron content from 62 to 72 A•m2/kg Fe. The measured relaxivities of the SIPPs at 4.7 Tesla were higher than commercially available superparamagnetic iron oxide nanoparticles (SPIONs), suggesting that these particles may be superior contrast agents in T2-weighted magnetic resonance imaging (MRI). PMID:22872817

  13. Structural and magnetic characterization of superparamagnetic iron platinum nanoparticle contrast agents for magnetic resonance imaging

    PubMed Central

    Taylor, Robert M.; Huber, Dale L.; Monson, Todd C.; Esch, Victor; Sillerud, Laurel O.

    2012-01-01

    The authors report the synthesis, from simple salts, and the physical characterization of superparamagnetic iron platinum nanoparticles (SIPPs) suitable for use as contrast agents in magnetic resonance imaging. The properties of these particles were determined by means of transmission electron microscopy (TEM), thermogravimetric analysis, inductively coupled plasma-optical emission spectroscopy (ICP-OES), superconducting quantum interference device (SQUID) magnetometry, and nuclear magnetic resonance relaxivity at 4.7 T. TEM showed that the diameters of the particles ranged from 9.3 to 10 nm, depending on the mole ratio of iron to platinum precursors, and on the concentration of octadecylamine (ODA) used in their preparation. The iron to platinum stoichiometry determined by ICP-OES varied from 1.4:1 to 3.7:1 and was similarly dependent on the initial mole ratios of iron and platinum salts, as well as on the concentration of ODA in the reaction. SQUID magnetometry showed that the SIPPs were superparamagnetic and had magnetic moments that increased with increasing iron content from 62 to 72 A·m2/kg Fe. The measured relaxivities of the SIPPs at 4.7 T were higher than commercially available superparamagnetic iron oxide nanoparticles, suggesting that these particles may be superior contrast agents in T2-weighted magnetic resonance imaging. PMID:25317380

  14. New oil-in-water magnetic emulsion as contrast agent for in vivo magnetic resonance imaging (MRI).

    PubMed

    Ahmed, Naveed; Jaafar-Maalej, Chiraz; Eissa, Mohamed Mahmoud; Fessi, Hatem; Elaissari, Abdelhamid

    2013-09-01

    Nowadays, bio-imaging techniques are widely applied for the diagnosis of various diseased/tumoral tissues in the body using different contrast agents. Accordingly, the advancement in bionanotechnology research is enhanced in this regard. Among contrast agents used, superparamagnetic iron oxide nanoparticles were developed by many researchers and applied for in vive magnetic resonance imaging (MRI). In this study, a new oil-in-water magnetic emulsion was used as contrast agent in MRI, after being characterized in terms of particle size, iron oxide content, magnetic properties and colloidal stability using dynamic light scattering (DLS), thermal gravimetric analysis (TGA), vibrating sample magnetometer (VSM) and zeta potential measurement techniques, respectively. The hydrodynamic size and magnetic content of the magnetic colloidal particles were found to be 250 nm and 75 wt%, respectively. In addition, the used magnetic emulsion possesses superparamagentic properties and high colloidal stability in aqueous medium. Then, the magnetic emulsion was highly diluted and administered intravenously to the Sprague dawley rats to be tested as contrast agent for in vivo MRI. In this preliminary study, MRI images showed significant enhancement in contrast, especially for T2 (relaxation time) contrast enhancement, indicating the distribution of magnetic colloidal nanoparticles within organs, like liver, spleen and kidneys of the Sprague dawley rats. In addition, it was found that 500 microL of the highly diluted magnetic emulsion (0.05 wt%) was found adequate for MRI analysis. This seems to be useful for further investigations especially in theranostic applications of magnetic emulsion.

  15. In vivo detection of cucurbit[6]uril, a hyperpolarized xenon contrast agent for a xenon magnetic resonance imaging biosensor

    NASA Astrophysics Data System (ADS)

    Hane, Francis T.; Li, Tao; Smylie, Peter; Pellizzari, Raiili M.; Plata, Jennifer A.; Deboef, Brenton; Albert, Mitchell S.

    2017-01-01

    The Hyperpolarized gas Chemical Exchange Saturation Transfer (HyperCEST) Magnetic Resonance (MR) technique has the potential to increase the sensitivity of a hyperpolarized xenon-129 MRI contrast agent. Signal enhancement is accomplished by selectively depolarizing the xenon within a cage molecule which, upon exchange, reduces the signal in the dissolved phase pool. Herein we demonstrate the in vivo detection of the cucurbit[6]uril (CB6) contrast agent within the vasculature of a living rat. Our work may be used as a stepping stone towards using the HyperCEST technique as a molecular imaging modality.

  16. In vivo detection of cucurbit[6]uril, a hyperpolarized xenon contrast agent for a xenon magnetic resonance imaging biosensor

    PubMed Central

    Hane, Francis T.; Li, Tao; Smylie, Peter; Pellizzari, Raiili M.; Plata, Jennifer A.; DeBoef, Brenton; Albert, Mitchell S.

    2017-01-01

    The Hyperpolarized gas Chemical Exchange Saturation Transfer (HyperCEST) Magnetic Resonance (MR) technique has the potential to increase the sensitivity of a hyperpolarized xenon-129 MRI contrast agent. Signal enhancement is accomplished by selectively depolarizing the xenon within a cage molecule which, upon exchange, reduces the signal in the dissolved phase pool. Herein we demonstrate the in vivo detection of the cucurbit[6]uril (CB6) contrast agent within the vasculature of a living rat. Our work may be used as a stepping stone towards using the HyperCEST technique as a molecular imaging modality. PMID:28106110

  17. Is nitrogen transfer among plants enhanced by contrasting nutrient-acquisition strategies?

    PubMed

    Teste, François P; Veneklaas, Erik J; Dixon, Kingsley W; Lambers, Hans

    2015-01-01

    Nitrogen (N) transfer among plants has been found where at least one plant can fix N2 . In nutrient-poor soils, where plants with contrasting nutrient-acquisition strategies (without N2 fixation) co-occur, it is unclear if N transfer exists and what promotes it. A novel multi-species microcosm pot experiment was conducted to quantify N transfer between arbuscular mycorrhizal (AM), ectomycorrhizal (EM), dual AM/EM, and non-mycorrhizal cluster-rooted plants in nutrient-poor soils with mycorrhizal mesh barriers. We foliar-fed plants with a K(15) NO3 solution to quantify one-way N transfer from 'donor' to 'receiver' plants. We also quantified mycorrhizal colonization and root intermingling. Transfer of N between plants with contrasting nutrient-acquisition strategies occurred at both low and high soil nutrient levels with or without root intermingling. The magnitude of N transfer was relatively high (representing 4% of donor plant N) given the lack of N2 fixation. Receiver plants forming ectomycorrhizas or cluster roots were more enriched compared with AM-only plants. We demonstrate N transfer between plants of contrasting nutrient-acquisition strategies, and a preferential enrichment of cluster-rooted and EM plants compared with AM plants. Nutrient exchanges among plants are potentially important in promoting plant coexistence in nutrient-poor soils.

  18. Observation Technique of Surface Magnetic Structure Using Type-I Magnetic Contrast in the Scanning Electron Microscope

    NASA Astrophysics Data System (ADS)

    Kotera, Masatoshi; Katoh, Misao; Suga, Hiroshi

    1995-12-01

    The type-I magnetic contrast in the scanning electron microscope is simulated. The magnetic flux that leaked from the surface magnetic domain is calculated based on the Maxwell equation. Trajectories of secondary electrons emitted from the surface are traced considering this magnetic field and the electric field generated by the secondary electron detector. On the basis of the characteristic variation of the spatial deviation of electrons arriving at the detector, the original domain structure at the specimen surface is estimated.

  19. A combined analytical solution for Chemical Exchange Saturation Transfer and semi-solid Magnetization Transfer

    PubMed Central

    Zaiss, Moritz; Zu, Zhongliang; Xu, Junzhong; Schuenke, Patrick; Gochberg, Daniel F.; Gore, John C.; Ladd, Mark E.; Bachert, Peter

    2015-01-01

    Off-resonant radiofrequency irradiation in tissue indirectly lowers the water signal by saturation transfer processes: On the one hand, there are selective chemical exchange saturation transfer (CEST) effects originating from exchanging endogenous protons resonating a few ppm from water; on the other hand, there is the broad semi-solid magnetization transfer (MT) originating from immobile protons associated with the tissue matrix with kHz line-widths. Recently it was shown that endogenous CEST contrasts can be strongly affected by the MT background so that corrections are needed to derive accurate estimates of CEST effects. Herein we show that a full analytical solution of the underlying Bloch-McConnell equations for both MT and CEST provides insights into their interaction and suggests a simple means to isolate their effects. The presented analytical solution, based on the eigenspace solution of the Bloch-McConnell equations, extends previous treatments by allowing arbitrary line-shapes for the semi-solid MT effects and simultaneously describing multiple CEST pools in the presence of a large MT pool for arbitrary irradiation. The structure of the model indicates that semi-solid MT and CEST effects basically add up inversely in determining the steady-state Z-spectrum, as previously shown for direct saturation and CEST effects. Implications for existing previous CEST analyses in the presence of a semi-solid MT are studied and discussed. It turns out that to accurately quantify CEST contrast, a good reference Z-value, the observed longitudinal relaxation rate of water, and the semi-solid MT pool size fraction, must all be known. PMID:25504828

  20. Zero-loss image formation and modified contrast transfer theory in EFTEM.

    PubMed

    Angert, I; Majorovits, E; Schröder, R R

    2000-04-01

    For a weak phase/weak amplitude object the information transfer in the imaging process of TEM is described by the common formalism of the contrast transfer function (CTF). So far the effects of inelastic scattering were not accounted for in this formalism. In conventional imaging they were simply neglected. In energy filtering TEM (EFTEM), where removal of inelastic electrons leads to higher specimen contrast, they were modelled by a global increase of the elastic amplitude contrast. Thus, the description of inelastic and elastic scattering was mixed. Here a new ansatz is proposed which treats elastic and inelastic contrast transfer separately by adding an inelastic contribution to the scattering potentials. In EFTEM this has the effect of adding a filter contrast which depends on the characteristics of the inelastic scattering. For samples with dominant plasmon loss the additional filter contrast is restricted to low resolution. Because of its strong dependence on the nature of the inelastic scattering process, the filter contrast cannot in general be unified with the conventional elastic amplitude contrast. The modified CTF theory for EFTEM was tested experimentally on a variety of samples. Images of amorphous layers of copper, aluminium, and carbon films, as well as zero-loss images of proteins embedded in amorphous ice were evaluated. The values of the parameters of the additional filter contrast were determined for carbon film and proteins embedded in vitrified ice. Comparison of different CTF models used to reconstruct 3D volumes from zero-loss images confirmed that best agreement with the atomic model is attained with the new, modified CTF theory.

  1. Back-illuminated CCD imager adapted for contrast transfer function measurements thereon

    NASA Technical Reports Server (NTRS)

    Levine, Peter A. (Inventor)

    1987-01-01

    Stripe patterns of varying spatial frequency, formed in the top-metalization of a back-illuminated solid-state imager, facilitate on-line measurement of contrast transfer function during wafer-probe testing. The imager may be packaged to allow front-illumination during in-the-field testing after its manufacture.

  2. Momentum transfer Monte Carlo model for the simulation of laser speckle contrast imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Regan, Caitlin; Hayakawa, Carole K.; Choi, Bernard

    2016-03-01

    Laser speckle imaging (LSI) enables measurement of relative blood flow in microvasculature and perfusion in tissues. To determine the impact of tissue optical properties and perfusion dynamics on speckle contrast, we developed a computational simulation of laser speckle contrast imaging. We used a discrete absorption-weighted Monte Carlo simulation to model the transport of light in tissue. We simulated optical excitation of a uniform flat light source and tracked the momentum transfer of photons as they propagated through a simulated tissue geometry. With knowledge of the probability distribution of momentum transfer occurring in various layers of the tissue, we calculated the expected laser speckle contrast arising with coherent excitation using both reflectance and transmission geometries. We simulated light transport in a single homogeneous tissue while independently varying either absorption (.001-100mm^-1), reduced scattering (.1-10mm^-1), or anisotropy (0.05-0.99) over a range of values relevant to blood and commonly imaged tissues. We observed that contrast decreased by 49% with an increase in optical scattering, and observed a 130% increase with absorption (exposure time = 1ms). We also explored how speckle contrast was affected by the depth (0-1mm) and flow speed (0-10mm/s) of a dynamic vascular inclusion. This model of speckle contrast is important to increase our understanding of how parameters such as perfusion dynamics, vessel depth, and tissue optical properties affect laser speckle imaging.

  3. Comparison Between Perfusion Computed Tomography and Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Rectal Cancer

    SciTech Connect

    Kierkels, Roel G.J.; Backes, Walter H.; Janssen, Marco H.M.; Buijsen, Jeroen; Beets-Tan, Regina G.H.; Lambin, Philippe; Lammering, Guido; Oellers, Michel C.; Aerts, Hugo J.W.L.

    2010-06-01

    Purpose: To compare pretreatment scans with perfusion computed tomography (pCT) vs. dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in rectal tumors. Methods and Materials: Nineteen patients diagnosed with rectal cancer were included in this prospective study. All patients underwent both pCT and DCE-MRI. Imaging was performed on a dedicated 40-slice CT-positron emission tomography system and a 3-T MRI system. Dynamic contrast enhancement was measured in tumor tissue and the external iliac artery. Tumor perfusion was quantified in terms of pharmacokinetic parameters: transfer constant K{sup trans}, fractional extravascular-extracellular space v{sub e}, and fractional plasma volume v{sub p}. Pharmacokinetic parameter values and their heterogeneity (by 80% quantile value) were compared between pCT and DCE-MRI. Results: Tumor K{sup trans} values correlated significantly for the voxel-by-voxel-derived median (Kendall's tau correlation, tau = 0.81, p < 0.001) and 80% quantile (tau = 0.54, p = 0.04), as well as for the averaged uptake (tau = 0.58, p = 0.03). However, no significant correlations were found for v{sub e} and v{sub p} derived from the voxel-by-voxel-derived median and 80% quantile and derived from the averaged uptake curves. Conclusions: This study demonstrated for the first time that pCT provides K{sup trans} values comparable to those of DCE-MRI. However, no correlation was found for the v{sub e} and v{sub p} parameters between CT and MRI. Computed tomography can serve as an alternative modality to MRI for the in vivo evaluation of tumor angiogenesis in terms of the transfer constant K{sup trans}.

  4. Aptamer-conjugated Magnetic Nanoparticles as Targeted Magnetic Resonance Imaging Contrast Agent for Breast Cancer

    PubMed Central

    Keshtkar, Mohammad; Shahbazi-Gahrouei, Daryoush; Khoshfetrat, Seyyed Mehdi; Mehrgardi, Masoud A.; Aghaei, Mahmoud

    2016-01-01

    Early detection of breast cancer is the most effective way to improve the survival rate in women. Magnetic resonance imaging (MRI) offers high spatial resolution and good anatomic details, and its lower sensitivity can be improved by using targeted molecular imaging. In this study, AS1411 aptamer was conjugated to Fe3O4@Au nanoparticles for specific targeting of mouse mammary carcinoma (4T1) cells that overexpress nucleolin. In vitro cytotoxicity of aptamer-conjugated nanoparticles was assessed on 4T1 and HFFF-PI6 (control) cells. The ability of the synthesized nanoprobe to target specifically the nucleolin overexpressed cells was assessed with the MRI technique. Results show that the synthesized nanoprobe produced strongly darkened T2-weighted magnetic resonance (MR) images with 4T1 cells, whereas the MR images of HFFF-PI6 cells incubated with the nanoprobe are brighter, showing small changes compared to water. The results demonstrate that in a Fe concentration of 45 μg/mL, the nanoprobe reduced by 90% MR image intensity in 4T1 cells compared with the 27% reduction in HFFF-PI6 cells. Analysis of MR signal intensity showed statistically significant signal intensity difference between 4T1 and HFFF-PI6 cells treated with the nanoprobe. MRI experiments demonstrate the high potential of the synthesized nanoprobe as a specific MRI contrast agent for detection of nucleolin-expressing breast cancer cells. PMID:28028501

  5. Fe-based nanoparticulate metallic alloys as contrast agents for magnetic resonance imaging.

    PubMed

    Bomatí-Miguel, Oscar; Morales, María P; Tartaj, Pedro; Ruiz-Cabello, Jesús; Bonville, Pierre; Santos, Martín; Zhao, Xinqing; Veintemillas-Verdaguer, Sabino

    2005-10-01

    Pharmaceutical grade magnetic colloidal dispersions have been prepared from iron alloys synthesized by laser pyrolysis. The colloids were obtained by simultaneous dispersion and coating of the particles with dextran in a strong alkaline solution. Both powders and dispersions have been analyzed in terms of microstructural characteristics, chemical composition and magnetic properties. The powders consist of uniform spherical nanoparticles (12 nm of diameter) showing a metallic core encapsulated into an iron-oxide shell. On the other hand, the colloidal dispersions consist of magnetic particles-aggregates with hydrodynamic sizes of approximately 75 nm. Magnetic resonance images of rats were taken after the intravenously administration of the Fe colloidal dispersions, and compared with those obtained using a commercial iron oxide magnetic resonance imaging contrast agent. The results showed a contrast improvement of 60% in the liver with respect to the commercial sample, which suggests that this product could be a suitable contrast agent for NMR imaging of liver and spleen.

  6. Combining hard and soft magnetism into a single core-shell nanoparticle to achieve both hyperthermia and image contrast

    PubMed Central

    Yang, Qiuhong; Gong, Maogang; Cai, Shuang; Zhang, Ti; Douglas, Justin T; Chikan, Viktor; Davies, Neal M; Lee, Phil; Choi, In-Young; Ren, Shenqiang; Forrest, M Laird

    2015-01-01

    Background A biocompatible core/shell structured magnetic nanoparticles (MNPs) was developed to mediate simultaneous cancer therapy and imaging. Methods & results A 22-nm MNP was first synthesized via magnetically coupling hard (FePt) and soft (Fe3O4) materials to produce high relative energy transfer. Colloidal stability of the FePt@Fe3O4 MNPs was achieved through surface modification with silane-polyethylene glycol (PEG). Intravenous administration of PEG-MNPs into tumor-bearing mice resulted in a sustained particle accumulation in the tumor region, and the tumor burden of treated mice was a third that of the mice in control groups 2 weeks after a local hyperthermia treatment. In vivo magnetic resonance imaging exhibited enhanced T2 contrast in the tumor region. Conclusion This work has demonstrated the feasibility of cancer theranostics with PEG-MNPs. PMID:26606855

  7. Dynamics of magnetization in ferromagnet with spin-transfer torque

    NASA Astrophysics Data System (ADS)

    Li, Zai-Dong; He, Peng-Bin; Liu, Wu-Ming

    2014-11-01

    We review our recent works on dynamics of magnetization in ferromagnet with spin-transfer torque. Driven by constant spin-polarized current, the spin-transfer torque counteracts both the precession driven by the effective field and the Gilbert damping term different from the common understanding. When the spin current exceeds the critical value, the conjunctive action of Gilbert damping and spin-transfer torque leads naturally the novel screw-pitch effect characterized by the temporal oscillation of domain wall velocity and width. Driven by space- and time-dependent spin-polarized current and magnetic field, we expatiate the formation of domain wall velocity in ferromagnetic nanowire. We discuss the properties of dynamic magnetic soliton in uniaxial anisotropic ferromagnetic nanowire driven by spin-transfer torque, and analyze the modulation instability and dark soliton on the spin wave background, which shows the characteristic breather behavior of the soliton as it propagates along the ferromagnetic nanowire. With stronger breather character, we get the novel magnetic rogue wave and clarify its formation mechanism. The generation of magnetic rogue wave mainly arises from the accumulation of energy and magnons toward to its central part. We also observe that the spin-polarized current can control the exchange rate of magnons between the envelope soliton and the background, and the critical current condition is obtained analytically. At last, we have theoretically investigated the current-excited and frequency-adjusted ferromagnetic resonance in magnetic trilayers. A particular case of the perpendicular analyzer reveals that the ferromagnetic resonance curves, including the resonant location and the resonant linewidth, can be adjusted by changing the pinned magnetization direction and the direct current. Under the control of the current and external magnetic field, several magnetic states, such as quasi-parallel and quasi-antiparallel stable states, out

  8. High accuracy and contrast resolution in ultra-low field magnetic resonance imaging.

    PubMed

    Agartz, I; Sääf, J; Wahlund, B; Wahlund, L O; Wetterberg, L

    1986-01-01

    Magnetic resonance imaging (MRI) at low magnetic field strengths is known to have a comparatively high contrast resolution. Current techniques increasing the signal to noise ratio 3 to 4 times allow for an improvement in the spatial resolution still maintaining the high contrast resolution. The contributing features to this advancement are improvements in software, development of new radiofrequency coils and image processing computors. The subsequent improvement in image evaluation and the access to added information make for a high accuracy in clinical diagnosis and research. The present potential of imaging at ultra-low (0.02 tesla) magnetic field strengths is illustrated with examples from clinical practice and research.

  9. Characterization of Magnetic Tunnel Junctions For Spin Transfer Torque Magnetic Random Access Memory

    NASA Astrophysics Data System (ADS)

    Dill, Joshua Luchay

    This thesis details two experimental methods for quantifying magnetic tunnel junction behavior, namely write error rates and field modulated spin-torque ferromagnetic resonance. The former examines how reliably an applied spin-transfer torque can excite magnetization dynamics that lead to a reversal of magnetization direction while the latter studies steady state dynamics provided by an oscillating spin-transfer torque. These characterization techniques reveal write error rate behavior for a particular composition magnetic tunnel junction that qualitatively deviates from theoretical predictions. Possible origins of this phenomenon are also investigated with the field modulated spin-torque ferromagnetic resonance technique. By understanding the dynamics of magnetic moments predicted by theory, one can experimentally confirm or disprove these theories in order to accurately model and predict tunnel junction behavior. By having a better model for what factors are important in magnetization dynamics, one can optimize these factors in terms of improving magnetic tunnel junctions for their use as computer memory.

  10. Liposomes loaded with hydrophilic magnetite nanoparticles: Preparation and application as contrast agents for magnetic resonance imaging.

    PubMed

    German, S V; Navolokin, N A; Kuznetsova, N R; Zuev, V V; Inozemtseva, O A; Anis'kov, A A; Volkova, E K; Bucharskaya, A B; Maslyakova, G N; Fakhrullin, R F; Terentyuk, G S; Vodovozova, E L; Gorin, D A

    2015-11-01

    Magnetic fluid-loaded liposomes (MFLs) were fabricated using magnetite nanoparticles (MNPs) and natural phospholipids via the thin film hydration method followed by extrusion. The size distribution and composition of MFLs were studied using dynamic light scattering and spectrophotometry. The effective ranges of magnetite concentration in MNPs hydrosol and MFLs for contrasting at both T2 and T1 relaxation were determined. On T2 weighted images, the MFLs effectively increased the contrast if compared with MNPs hydrosol, while on T1 weighted images, MNPs hydrosol contrasting was more efficient than that of MFLs. In vivo magnetic resonance imaging (MRI) contrasting properties of MFLs and their effects on tumor and normal tissues morphology, were investigated in rats with transplanted renal cell carcinoma upon intratumoral administration of MFLs. No significant morphological changes in rat internal organs upon intratumoral injection of MFLs were detected, suggesting that the liposomes are relatively safe and can be used as the potential contrasting agents for MRI.

  11. Octreotide Functionalized Nano-Contrast Agent for Targeted Magnetic Resonance Imaging.

    PubMed

    Jackson, Alexander W; Chandrasekharan, Prashant; Ramasamy, Boominathan; Goggi, Julian; Chuang, Kai-Hsiang; He, Tao; Robins, Edward G

    2016-12-12

    Reversible addition-fragmentation chain transfer (RAFT) polymerization has been employed to synthesize branched block copolymer nanoparticles possessing 1,4,7,10-tetraazacyclododecane-N,N,'N,″N,‴-tetraacetic acid (DO3A) macrocycles within their cores and octreotide (somatostatin mimic) cyclic peptides at their periphery. These polymeric nanoparticles have been chelated with Gd(3+) and applied as magnetic resonance imaging (MRI) nanocontrast agents. This nanoparticle system has an r1 relaxivity of 8.3 mM(-1) s(-1), which is 3 times the r1 of commercial gadolinium-based contrast agents (GBCAs). The in vitro targeted binding efficiency of these nanoparticles shows 5 times greater affinity to somatostatin receptor type 2 (SSTR2) with Ki = 77 pM (compared to somatostatin with Ki = 0.385 nM). We have also evaluated the tumor targeting molecular imaging ability of these branched copolymer nanoparticle in vivo using nude/NCr mice bearing AR42J rat pancreatic tumor (SSTR2 positive) and A549 human lung carcinoma tumor (SSTR2 negative) xenografts.

  12. Contrast Media Extravasation of Computed Tomography and Magnetic Resonance Imaging: Management Guidelines for the Radiologist.

    PubMed

    Nicola, Refky; Shaqdan, Khalid Wael; Aran, Shima; Prabhakar, Anand M; Singh, Ajay Kumar; Abujudeh, Hani H

    2016-01-01

    Intravenous contrast administration has been of great importance in diagnostic radiology, but it is not without risks either due to the local, systemic allergic reactions or due to subcutaneous extravasation of contrast media. Subcutaneous contrast medium extravasationis an infrequent, yet a well-recognized complication. However, most incidents are minor and can be managed conservatively, but there are a few cases that require immediate surgical intervention. This article discusses the risks factors, clinical manifestations, and conservative and surgical approaches of subcutaneous contrast media extravasation for both computed tomography and magnetic resonance imaging.

  13. Characterization of magnetic nanoparticles as contrast agents in magnetic resonance imaging using high-Tc superconducting quantum interference devices in microtesla magnetic fields

    NASA Astrophysics Data System (ADS)

    Liao, Shu-Hsien; Yang, Hong-Chang; Horng, Herng-Er; Yang, S. Y.

    2009-02-01

    In this paper, we characterize the spin-lattice relaxation T1, spin-spin relaxation T2, and effective relaxation rate ΓMF of magnetic fluids for magnetic resonance imaging using a high-Tc superconducting quantum interference device (SQUID) in microtesla magnetic fields. When the magnetic susceptibility of the magnetic fluid was increased, a broadening of proton nuclear magnetic resonance spectra and a growing spin-lattice relaxation T1 as well as spin-spin relaxation T2 were observed. The effective relaxation rate ΓMF increased monotonically from 0 to 13 s-1 when the magnetic susceptibility of the magnetic fluids, relative to tap water, was increased from 0 to 0.0015 emu g-1. We demonstrate the magnetic fluid as an image contrast via a high-Tc SQUID in microtesla magnetic fields.

  14. Highly magnetic iron carbide nanoparticles as effective T2 contrast agents

    NASA Astrophysics Data System (ADS)

    Huang, Guoming; Hu, Juan; Zhang, Hui; Zhou, Zijian; Chi, Xiaoqin; Gao, Jinhao

    2013-12-01

    This paper reports that iron carbide nanoparticles with high air-stability and strong saturation magnetization can serve as effective T2 contrast agents for magnetic resonance imaging. Fe5C2 nanoparticles (~20 nm in diameter) exhibit strong contrast enhancement with an r2 value of 283.2 mM-1 S-1, which is about twice as high as that of spherical Fe3O4 nanoparticles (~140.9 mM-1 S-1). In vivo experiments demonstrate that Fe5C2 nanoparticles are able to produce much more significant MRI contrast enhancement than conventional Fe3O4 nanoparticles in living subjects, which holds great promise in biomedical applications.This paper reports that iron carbide nanoparticles with high air-stability and strong saturation magnetization can serve as effective T2 contrast agents for magnetic resonance imaging. Fe5C2 nanoparticles (~20 nm in diameter) exhibit strong contrast enhancement with an r2 value of 283.2 mM-1 S-1, which is about twice as high as that of spherical Fe3O4 nanoparticles (~140.9 mM-1 S-1). In vivo experiments demonstrate that Fe5C2 nanoparticles are able to produce much more significant MRI contrast enhancement than conventional Fe3O4 nanoparticles in living subjects, which holds great promise in biomedical applications. Electronic supplementary information (ESI) available: Supplementary figures and experimental details. See DOI: 10.1039/c3nr04691e

  15. Resist-based measurement of contrast transfer function in a 0.3-NAmicrofield optic

    SciTech Connect

    Cain, Jason P.; Naulleau, Patrick; Spanos, Costas J.

    2005-01-11

    Although extreme ultraviolet (EUV) lithography offers the possibility of very high-resolution patterning, the projection optics must be of extremely high quality in order to meet this potential. One key metric of the projection optic quality is the contrast transfer function (CTF), which is a measure of the aerial image contrast as a function of pitch. A static microfield exposure tool based on the 0.3-NA MET optic and operating at a wavelength of 13.5 nm has been installed at the Advanced Light Source, a synchrotron facility at the Lawrence Berkeley National Laboratory. This tool provides a platform for a wide variety of research into EUV lithography. In this work we present resist-based measurements of the contrast transfer function for the MET optic. These measurements are based upon line/space patterns printed in several different EUV photoresists. The experimental results are compared with the CTF in aerial-image simulations using the aberrations measured in the projection optic using interferometry. In addition, the CTF measurements are conducted for both bright-field and dark-field mask patterns. Finally, the orientation dependence of the CTF is measured in order to evaluate the effect of non-rotationally symmetric lens aberrations. These measurements provide valuable information in interpreting the results of other experiments performed using the MET and similar systems.

  16. Serial Magnetization Transfer Imaging in Acute Optic Neuritis

    ERIC Educational Resources Information Center

    Hickman, S. J.; Toosy, A. T.; Jones, S. J.; Altmann, D. R.; Miszkiel, K. A.; MacManus, D. G.; Barker, G. J.; Plant, G. T.; Thompson, A. J.; Miller, D.H.

    2004-01-01

    In serial studies of multiple sclerosis lesions, reductions in magnetization transfer ratio (MTR) are thought to be due to demyelination and axonal loss, with later rises due to remyelination. This study followed serial changes in MTR in acute optic neuritis in combination with clinical and electrophysiological measurements to determine if the MTR…

  17. Switching current density reduction in perpendicular magnetic anisotropy spin transfer torque magnetic tunneling junctions

    SciTech Connect

    You, Chun-Yeol

    2014-01-28

    We investigate the switching current density reduction of perpendicular magnetic anisotropy spin transfer torque magnetic tunneling junctions using micromagnetic simulations. We find that the switching current density can be reduced with elongated lateral shapes of the magnetic tunnel junctions, and additional reduction can be achieved by using a noncollinear polarizer layer. The reduction is closely related to the details of spin configurations during switching processes with the additional in-plane anisotropy.

  18. Thermal spin-transfer torque in magnetic tunnel junctions (invited)

    SciTech Connect

    Heiliger, Christian Franz, C.; Czerner, Michael

    2014-05-07

    The thermal spin-transfer torque (TSTT) is an effect to switch the magnetic free layer in a magnetic tunnel junction by a temperature gradient only. We present ab initio calculations of the TSTT. In particular, we discuss the influence of magnetic layer composition by considering Fe{sub x}Co{sub 1–x} alloys. Further, we compare the TSTT to the bias voltage driven STT and discuss the requirements for a possible thermal switching. For example, only for very thin barriers of 3 monolayers MgO, a thermal switching is imaginable. However, even for such a thin barrier, the TSTT is still too small for switching at the moment and further optimization is needed. In particular, the TSTT strongly depends on the composition of the ferromagnetic layer. In our current study, it turns out that at the chosen thickness of the ferromagnetic layer, pure Fe gives the highest thermal spin-transfer torque.

  19. Contrast-enhanced magnetic resonance tomoangiography: a new imaging technique for studying thoracic great vessels.

    PubMed

    Revel, D; Loubeyre, P; Delignette, A; Douek, P; Amiel, M

    1993-01-01

    The authors propose a new imaging approach for studying thoracic great vessels, using high-speed MR imaging combined with intravenous rapid bolus injection of a paramagnetic contrast media. The decrease of the T1 relaxation time of flowing blood induced by the contrast agent (Gd-DOTA) caused an increased signal intensity within the vessel lumen for a time period allowing multiplanar imaging of various vascular structures. The intraluminal signal enhancement is mainly related to the blood concentration of the contrast agent as in conventional X-ray angiography. Information on the aorta and pulmonary arteries obtained by the so-called contrast-enhanced magnetic resonance tomoangiography appears complementary to that obtained with other vascular MR imaging procedures such as cine-MRI and magnetic resonance angiography (MRA).

  20. Infrared and color visible image fusion system based on luminance-contrast transfer technique

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Gong, Wenfeng; Wang, Chensheng

    2012-12-01

    In this paper, an infrared and color image fusion algorithm based on luminance-contrast transfer technique is presented. This algorithm shall operate YCbCr transform on color visible image, and obtain the luminance component. Then, the grey-scale image fusion methods are utilized to fuse the luminance component of visible and infrared images to acquire grey-scale fusion image. After that, the grey-scale fusion image and visible image are fused to form color fusion image based on inversed YCbCr transform. To acquire better details appearance, a natural-sense color transfer fusion algorithm based on reference image is proposed. Furthermore, a real-time infrared/visible image fusion system based on FPGA is realized. Finally, this design and achievement is verified experimentally, and the experimental results show that the system can produce a color fusion image with good image quality and real-time performance.

  1. Web-based Simulation for Contrast Transfer Function and Envelope Functions.

    PubMed

    Jiang, Wen; Chiu, Wah

    2001-07-01

    We have implemented a Web-based simulation program for the contrast transfer function and envelope functions in Java and JavaScript. The simulation provides interactive controls of all the parameters in those functions. In addition to the predefined functions, users can easily define new functions that use any of the parameters in the preset functions. The most useful feature of this new simulation program is the convenient, universal accessibility through Web browsers on any computer platform that supports Java, such as Netscape and Internet Explorer.

  2. Estimating Contrast Transfer Function and Associated Parameters by Constrained Nonlinear Optimization

    SciTech Connect

    Yang, Chao; Jiang, Wen; Chen, Dong-Hua; Adiga, Umesh; Ng, Esmond G.; Chiu, Wah

    2008-07-28

    The three-dimensional reconstruction of macromolecules from two-dimensional single-particle electron images requires determination and correction of the contrast transfer function (CTF) and envelope function. A computational algorithm based on constrained non-linear optimization is developed to estimate the essential parameters in the CTF and envelope function model simultaneously and automatically. The application of this estimation method is demonstrated with focal series images of amorphous carbon film as well as images of ice-embedded icosahedral virus particles suspended across holes.

  3. Gd-Si Oxide Nanoparticles as Contrast Agents in Magnetic Resonance Imaging

    PubMed Central

    Cabrera-García, Alejandro; Vidal-Moya, Alejandro; Bernabeu, Ángela; Pacheco-Torres, Jesús; Checa-Chavarria, Elisa; Fernández, Eduardo; Botella, Pablo

    2016-01-01

    We describe the synthesis, characterization and application as contrast agents in magnetic resonance imaging of a novel type of magnetic nanoparticle based on Gd-Si oxide, which presents high Gd3+ atom density. For this purpose, we have used a Prussian Blue analogue as the sacrificial template by reacting with soluble silicate, obtaining particles with nanorod morphology and of small size (75 nm). These nanoparticles present good biocompatibility and higher longitudinal and transversal relaxivity values than commercial Gd3+ solutions, which significantly improves the sensitivity of in vivo magnetic resonance images. PMID:28335240

  4. Contrast enhanced-magnetic resonance imaging as a surrogate to map verteporfin delivery in photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Samkoe, Kimberley S.; Bryant, Amber; Gunn, Jason R.; Pereira, Stephen P.; Hasan, Tayyaba; Pogue, Brian W.

    2013-12-01

    The use of in vivo contrast-enhanced magnetic resonance (MR) imaging as a surrogate for photosensitizer (verteporfin) dosimetry in photodynamic therapy of pancreas cancer is demonstrated by correlating MR contrast uptake to ex vivo fluorescence images on excised tissue. An orthotopic pancreatic xenograft mouse model was used for the study. A strong correlation (r=0.57) was found for bulk intensity measurements of T1-weighted gadolinium enhancement and verteporfin fluorescence in the tumor region of interest. The use of contrast-enhanced MR imaging shows promise as a method for treatment planning and photosensitizer dosimetry in human photodynamic therapy (PDT) of pancreas cancer.

  5. Simultaneous topographic and elemental chemical and magnetic contrast in scanning tunneling microscopy

    SciTech Connect

    Rose, Volker; Preissner, Curt A; Hla, Saw-Wai; Wang, Kangkang; Rosenmann, Daniel

    2014-09-30

    A method and system for performing simultaneous topographic and elemental chemical and magnetic contrast analysis in a scanning, tunneling microscope. The method and system also includes nanofabricated coaxial multilayer tips with a nanoscale conducting apex and a programmable in-situ nanomanipulator to fabricate these tips and also to rotate tips controllably.

  6. Transferability of hydrological models and ensemble averaging methods between contrasting climatic periods

    NASA Astrophysics Data System (ADS)

    Broderick, Ciaran; Matthews, Tom; Wilby, Robert L.; Bastola, Satish; Murphy, Conor

    2016-10-01

    Understanding hydrological model predictive capabilities under contrasting climate conditions enables more robust decision making. Using Differential Split Sample Testing (DSST), we analyze the performance of six hydrological models for 37 Irish catchments under climate conditions unlike those used for model training. Additionally, we consider four ensemble averaging techniques when examining interperiod transferability. DSST is conducted using 2/3 year noncontinuous blocks of (i) the wettest/driest years on record based on precipitation totals and (ii) years with a more/less pronounced seasonal precipitation regime. Model transferability between contrasting regimes was found to vary depending on the testing scenario, catchment, and evaluation criteria considered. As expected, the ensemble average outperformed most individual ensemble members. However, averaging techniques differed considerably in the number of times they surpassed the best individual model member. Bayesian Model Averaging (BMA) and the Granger-Ramanathan Averaging (GRA) method were found to outperform the simple arithmetic mean (SAM) and Akaike Information Criteria Averaging (AICA). Here GRA performed better than the best individual model in 51%-86% of cases (according to the Nash-Sutcliffe criterion). When assessing model predictive skill under climate change conditions we recommend (i) setting up DSST to select the best available analogues of expected annual mean and seasonal climate conditions; (ii) applying multiple performance criteria; (iii) testing transferability using a diverse set of catchments; and (iv) using a multimodel ensemble in conjunction with an appropriate averaging technique. Given the computational efficiency and performance of GRA relative to BMA, the former is recommended as the preferred ensemble averaging technique for climate assessment.

  7. Thermal spin-transfer torques on magnetic domain walls

    NASA Astrophysics Data System (ADS)

    Yuan, Zhe; Wang, Shuai; Xia, Ke

    2010-04-01

    We studied the spin-transfer torques acting on magnetic domain walls in the presence of a nonequilibrium thermal distribution using a generalized Landauer-Büttiker formalism, where the energy flow is described on the same footing as the electric current. First-principles transport calculations have been performed in Ni and Co domain walls as typical examples. The temperature difference between two sides of the domain wall can induce remarkable spin- transfer torques, which are comparable with the current-induced torques required for the domain wall motion.

  8. Assessment of Hypoxia in Human Cervical Carcinoma Xenografts by Dynamic Contrast-Enhanced Magnetic Resonance Imaging

    SciTech Connect

    Ellingsen, Christine; Egeland, Tormod A.M.; Gulliksrud, Kristine M.Sc.; Gaustad, Jon-Vidar; Mathiesen, Berit; Rofstad, Einar K.

    2009-03-01

    Purpose: Patients with advanced cervical cancer and highly hypoxic primary tumors show increased frequency of locoregional treatment failure and poor disease-free and overall survival rates. The potential usefulness of gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA)-based dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in assessing tumor hypoxia noninvasively was investigated in the present preclinical study. Methods and Materials: CK-160 and TS-415 human cervical carcinoma xenografts transplanted intramuscularly (i.m.) or subcutaneously (s.c.) in BALB/c nu/nu mice were subjected to DCE-MRI and measurement of fraction of radiobiologically hypoxic cells. Tumor images of K{sup trans} (the volume transfer constant of Gd-DTPA) and v{sub e} (the extracellular volume fraction of the imaged tissue) were produced by pharmacokinetic analysis of the DCE-MRI data. Fraction of radiobiologically hypoxic cells was measured by using the paired survival curve method. Results: Fraction of radiobiologically hypoxic cells differed significantly among the four tumor groups. The mean values {+-} SE were determined to be 44% {+-} 7% (i.m. CK-160), 77% {+-} 10% (s.c. CK-160), 23% {+-} 5% (i.m. TS-415), and 52% {+-} 6% (s.c. TS-415). The four tumor groups differed significantly also in K{sup trans}, and there was an unambiguous inverse relationship between K{sup trans} and fraction of radiobiologically hypoxic cells. On the other hand, significant differences among the groups in v{sub e} could not be detected. Conclusions: The study supports the clinical development of DCE-MRI as a method for assessing the extent of hypoxia in carcinoma of the cervix.

  9. Dynamic Contrast-Enhanced Magnetic Resonance Imaging of the Metastatic Potential of Melanoma Xenografts

    SciTech Connect

    Ovrebo, Kirsti Marie; Ellingsen, Christine; Galappathi, Kanthi; Rofstad, Einar K.

    2012-05-01

    Purpose: Gadolinium diethylene-triamine penta-acetic acid (Gd-DTPA)-based dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has been suggested as a useful noninvasive method for characterizing the physiologic microenvironment of tumors. In the present study, we investigated whether Gd-DTPA-based DCE-MRI has the potential to provide biomarkers for hypoxia-associated metastatic dissemination. Methods and Materials: C-10 and D-12 melanoma xenografts were used as experimental tumor models. Pimonidazole was used as a hypoxia marker. A total of 60 tumors were imaged, and parametric images of K{sup trans} (volume transfer constant of Gd-DTPA) and v{sub e} (fractional distribution volume of Gd-DTPA) were produced by pharmacokinetic analysis of the DCE-MRI series. The host mice were killed immediately after DCE-MRI, and the primary tumor and the lungs were resected and prepared for histologic assessment of the fraction of pimonidazole-positive hypoxic tissue and the presence of lung metastases, respectively. Results: Metastases were found in 11 of 26 mice with C-10 tumors and 14 of 34 mice with D-12 tumors. The primary tumors of the metastatic-positive mice had a greater fraction of hypoxic tissue (p = 0.00031, C-10; p < 0.00001, D-12), a lower median K{sup trans} (p = 0.0011, C-10; p < 0.00001, D-12), and a lower median v{sub e} (p = 0.014, C-10; p = 0.016, D-12) than the primary tumors of the metastatic-negative mice. Conclusions: These findings support the clinical attempts to establish DCE-MRI as a method for providing biomarkers for tumor aggressiveness and suggests that primary tumors characterized by low K{sup trans} and low v{sub e} values could have a high probability of hypoxia-associated metastatic spread.

  10. Optical transfer function in corneal topography for clinical contrast sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Bende, Thomas; Jean, Benedikt J.; Oltrup, Theo

    2000-06-01

    Customized ablation aiming to optimize visual acuity in refractive surgery requires objective data on corneal surface, like the contrast sensitivity. Fast ray tracing, using the high resolution 3-D elevation data in conjunction with Snell's law describe the diffraction of the incident rays and the resulting image on a 'virtual retina.' A retroprojection leads to a 'surface quality map.' For objective contrast sensitivity measurement a sinus (or cos) wave of different frequencies is used for a calculated projection in analogy to the clinical contrast sensitivity charts. The projection on the individual cornea surface is analyzed for the Modular Transfer Function (MTF) and the Phase Shift Function (PSF) as a function of frequencies. PSF, not yet clinically used, is a parameter to determine even minimal corneal tilt. The resulting corneal aberration map (CAM) as described here and applied to a 4.5 D PRK (OZD equals 6.5 mm) reveals that the area of minimal aberration measures only 4.2 mm. The CAM can likewise be used to describe the 'quality' of a laser system's ablation pattern based upon the area of minimal optical aberrations. The CAM only describes surface aberration with high resolution, an advantage over wave front sensing which measures all accumulated optical aberrations including the changing ones of the lens during accommodation and the transient ones due to lens aging and early cataract formation.

  11. Highly magnetic iron carbide nanoparticles as effective T(2) contrast agents.

    PubMed

    Huang, Guoming; Hu, Juan; Zhang, Hui; Zhou, Zijian; Chi, Xiaoqin; Gao, Jinhao

    2014-01-21

    This paper reports that iron carbide nanoparticles with high air-stability and strong saturation magnetization can serve as effective T2 contrast agents for magnetic resonance imaging. Fe5C2 nanoparticles (~20 nm in diameter) exhibit strong contrast enhancement with an r2 value of 283.2 mM(-1) S(-1), which is about twice as high as that of spherical Fe3O4 nanoparticles (~140.9 mM(-1) S(-1)). In vivo experiments demonstrate that Fe5C2 nanoparticles are able to produce much more significant MRI contrast enhancement than conventional Fe3O4 nanoparticles in living subjects, which holds great promise in biomedical applications.

  12. Diagnosis of Popliteal Venous Entrapment Syndrome by Magnetic Resonance Imaging Using Blood-Pool Contrast Agents

    SciTech Connect

    Beitzke, Dietrich Wolf, Florian; Juelg, Gregor; Lammer, Johannes; Loewe, Christian

    2011-02-15

    Popliteal vascular entrapment syndrome is caused by aberrations or hypertrophy of the gastrocnemius muscles, which compress the neurovascular structures of the popliteal fossa, leading to symptoms of vascular and degeneration as well as aneurysm formation. Imaging of popliteal vascular entrapment may be performed with ultrasound, magnetic resonance imaging (MRI), computed tomography angiography, and conventional angiography. The use of blood-pool contrast agents in MRI when popliteal vascular entrapment is suspected offers the possibility to perform vascular imaging with first-pass magnetic resonance angiographic, high-resolution, steady-state imaging and allows functional tests all within one examination with a single dose of contrast agent. We present imaging findings in a case of symptomatic popliteal vein entrapment diagnosed by the use of blood pool contrast-enhanced MRI.

  13. RGD-conjugated iron oxide magnetic nanoparticles for magnetic resonance imaging contrast enhancement and hyperthermia.

    PubMed

    Zheng, S W; Huang, M; Hong, R Y; Deng, S M; Cheng, L F; Gao, B; Badami, D

    2014-03-01

    The purpose of this study was to develop a specific targeting magnetic nanoparticle probe for magnetic resonance imaging and therapy in the form of local hyperthermia. Carboxymethyl dextran-coated ultrasmall superparamagnetic iron oxide nanoparticles with carboxyl groups were coupled to cyclic arginine-glycine-aspartic peptides for integrin α(v)β₃ targeting. The particle size, magnetic properties, heating effect, and stability of the arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide were measured. The arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide demonstrates excellent stability and fast magneto-temperature response. Magnetic resonance imaging signal intensity of Bcap37 cells incubated with arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide was significantly decreased compared with that incubated with plain ultrasmall superparamagnetic iron oxide. The preferential uptake of arginine-glycine-aspartic-ultrasmall superparamagnetic iron oxide by target cells was further confirmed by Prussian blue staining and confocal laser scanning microscopy.

  14. Magnetic Metamaterial Superlens for Increased Range Wireless Power Transfer

    NASA Astrophysics Data System (ADS)

    Lipworth, Guy; Ensworth, Joshua; Seetharam, Kushal; da Huang; Lee, Jae Seung; Schmalenberg, Paul; Nomura, Tsuyoshi; Reynolds, Matthew S.; Smith, David R.; Urzhumov, Yaroslav

    2014-01-01

    The ability to wirelessly power electrical devices is becoming of greater urgency as a component of energy conservation and sustainability efforts. Due to health and safety concerns, most wireless power transfer (WPT) schemes utilize very low frequency, quasi-static, magnetic fields; power transfer occurs via magneto-inductive (MI) coupling between conducting loops serving as transmitter and receiver. At the ``long range'' regime - referring to distances larger than the diameter of the largest loop - WPT efficiency in free space falls off as (1/d)6; power loss quickly approaches 100% and limits practical implementations of WPT to relatively tight distances between power source and device. A ``superlens'', however, can concentrate the magnetic near fields of a source. Here, we demonstrate the impact of a magnetic metamaterial (MM) superlens on long-range near-field WPT, quantitatively confirming in simulation and measurement at 13-16 MHz the conditions under which the superlens can enhance power transfer efficiency compared to the lens-less free-space system.

  15. Magnetic Metamaterial Superlens for Increased Range Wireless Power Transfer

    PubMed Central

    Lipworth, Guy; Ensworth, Joshua; Seetharam, Kushal; Da Huang; Lee, Jae Seung; Schmalenberg, Paul; Nomura, Tsuyoshi; Reynolds, Matthew S.; Smith, David R.; Urzhumov, Yaroslav

    2014-01-01

    The ability to wirelessly power electrical devices is becoming of greater urgency as a component of energy conservation and sustainability efforts. Due to health and safety concerns, most wireless power transfer (WPT) schemes utilize very low frequency, quasi-static, magnetic fields; power transfer occurs via magneto-inductive (MI) coupling between conducting loops serving as transmitter and receiver. At the “long range” regime – referring to distances larger than the diameter of the largest loop – WPT efficiency in free space falls off as (1/d)6; power loss quickly approaches 100% and limits practical implementations of WPT to relatively tight distances between power source and device. A “superlens”, however, can concentrate the magnetic near fields of a source. Here, we demonstrate the impact of a magnetic metamaterial (MM) superlens on long-range near-field WPT, quantitatively confirming in simulation and measurement at 13–16 MHz the conditions under which the superlens can enhance power transfer efficiency compared to the lens-less free-space system. PMID:24407490

  16. Magnetic metamaterial superlens for increased range wireless power transfer.

    PubMed

    Lipworth, Guy; Ensworth, Joshua; Seetharam, Kushal; Huang, Da; Lee, Jae Seung; Schmalenberg, Paul; Nomura, Tsuyoshi; Reynolds, Matthew S; Smith, David R; Urzhumov, Yaroslav

    2014-01-10

    The ability to wirelessly power electrical devices is becoming of greater urgency as a component of energy conservation and sustainability efforts. Due to health and safety concerns, most wireless power transfer (WPT) schemes utilize very low frequency, quasi-static, magnetic fields; power transfer occurs via magneto-inductive (MI) coupling between conducting loops serving as transmitter and receiver. At the "long range" regime - referring to distances larger than the diameter of the largest loop - WPT efficiency in free space falls off as (1/d)(6); power loss quickly approaches 100% and limits practical implementations of WPT to relatively tight distances between power source and device. A "superlens", however, can concentrate the magnetic near fields of a source. Here, we demonstrate the impact of a magnetic metamaterial (MM) superlens on long-range near-field WPT, quantitatively confirming in simulation and measurement at 13-16 MHz the conditions under which the superlens can enhance power transfer efficiency compared to the lens-less free-space system.

  17. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents.

    PubMed

    Estelrich, Joan; Sánchez-Martín, María Jesús; Busquets, Maria Antònia

    2015-01-01

    Magnetic resonance imaging (MRI) has become one of the most widely used and powerful tools for noninvasive clinical diagnosis owing to its high degree of soft tissue contrast, spatial resolution, and depth of penetration. MRI signal intensity is related to the relaxation times (T 1, spin-lattice relaxation and T 2, spin-spin relaxation) of in vivo water protons. To increase contrast, various inorganic nanoparticles and complexes (the so-called contrast agents) are administered prior to the scanning. Shortening T 1 and T 2 increases the corresponding relaxation rates, 1/T 1 and 1/T 2, producing hyperintense and hypointense signals respectively in shorter times. Moreover, the signal-to-noise ratio can be improved with the acquisition of a large number of measurements. The contrast agents used are generally based on either iron oxide nanoparticles or ferrites, providing negative contrast in T 2-weighted images; or complexes of lanthanide metals (mostly containing gadolinium ions), providing positive contrast in T 1-weighted images. Recently, lanthanide complexes have been immobilized in nanostructured materials in order to develop a new class of contrast agents with functions including blood-pool and organ (or tumor) targeting. Meanwhile, to overcome the limitations of individual imaging modalities, multimodal imaging techniques have been developed. An important challenge is to design all-in-one contrast agents that can be detected by multimodal techniques. Magnetoliposomes are efficient multimodal contrast agents. They can simultaneously bear both kinds of contrast and can, furthermore, incorporate targeting ligands and chains of polyethylene glycol to enhance the accumulation of nanoparticles at the site of interest and the bioavailability, respectively. Here, we review the most important characteristics of the nanoparticles or complexes used as MRI contrast agents.

  18. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents

    PubMed Central

    Estelrich, Joan; Sánchez-Martín, María Jesús; Busquets, Maria Antònia

    2015-01-01

    Magnetic resonance imaging (MRI) has become one of the most widely used and powerful tools for noninvasive clinical diagnosis owing to its high degree of soft tissue contrast, spatial resolution, and depth of penetration. MRI signal intensity is related to the relaxation times (T1, spin–lattice relaxation and T2, spin–spin relaxation) of in vivo water protons. To increase contrast, various inorganic nanoparticles and complexes (the so-called contrast agents) are administered prior to the scanning. Shortening T1 and T2 increases the corresponding relaxation rates, 1/T1 and 1/T2, producing hyperintense and hypointense signals respectively in shorter times. Moreover, the signal-to-noise ratio can be improved with the acquisition of a large number of measurements. The contrast agents used are generally based on either iron oxide nanoparticles or ferrites, providing negative contrast in T2-weighted images; or complexes of lanthanide metals (mostly containing gadolinium ions), providing positive contrast in T1-weighted images. Recently, lanthanide complexes have been immobilized in nanostructured materials in order to develop a new class of contrast agents with functions including blood-pool and organ (or tumor) targeting. Meanwhile, to overcome the limitations of individual imaging modalities, multimodal imaging techniques have been developed. An important challenge is to design all-in-one contrast agents that can be detected by multimodal techniques. Magnetoliposomes are efficient multimodal contrast agents. They can simultaneously bear both kinds of contrast and can, furthermore, incorporate targeting ligands and chains of polyethylene glycol to enhance the accumulation of nanoparticles at the site of interest and the bioavailability, respectively. Here, we review the most important characteristics of the nanoparticles or complexes used as MRI contrast agents. PMID:25834422

  19. Optimal control laws for heliocentric transfers with a magnetic sail

    NASA Astrophysics Data System (ADS)

    Quarta, Alessandro A.; Mengali, Giovanni; Aliasi, Generoso

    2013-08-01

    A magnetic sail is an advanced propellantless propulsion system that uses the interaction between the solar wind and an artificial magnetic field generated by the spacecraft, to produce a propulsive thrust in interplanetary space. The aim of this paper is to collect the available experimental data, and the simulation results, to develop a simplified mathematical model that describes the propulsive acceleration of a magnetic sail, in an analytical form, for mission analysis purposes. Such a mathematical model is then used for estimating the performance of a magnetic sail-based spacecraft in a two-dimensional, minimum time, deep space mission scenario. In particular, optimal and locally optimal steering laws are derived using an indirect approach. The obtained results are then applied to a mission analysis involving both an optimal Earth-Venus (circle-to-circle) interplanetary transfer, and a locally optimal Solar System escape trajectory. For example, assuming a characteristic acceleration of 1 mm/s2, an optimal Earth-Venus transfer may be completed within about 380 days.

  20. Design of water-based ferrofluids as contrast agents for magnetic resonance imaging.

    PubMed

    Casula, Maria F; Corrias, Anna; Arosio, Paolo; Lascialfari, Alessandro; Sen, Tapas; Floris, Patrizia; Bruce, Ian J

    2011-05-01

    We report the synthesis, characterization and relaxometric study of ferrofluids based on iron oxide, with potential for use as magnetic resonance imaging (MRI) contrast agents (CAs). The effect of different cost-effective, water-based surface modification approaches which can be easily scaled-up for the large scale synthesis of the ferrofluids has been investigated. Surface modification was achieved by silanization, and/or coating with non-toxic commercial dispersants (a lauric polysorbate and a block copolymer with pigment affinic groups, namely Tween 20 and Disperbyk 190) which were added after or during iron oxide nanoparticle synthesis. It was observed that all the materials synthesized functioned as negative contrast agents at physiological temperature and at frequencies covered by clinical imagers. The relaxometric properties of the magnetic nanoparticles were significantly improved after surface coating with stabilizers compared to the original iron oxide nanoparticles, with particular reference to the silica-coated magnetic nanoparticles. The results indicate that the optimization of the preparation of colloidal magnetic ferrofluids by surface modification is effective in the design of novel contrast agents for MRI by enabling better or more effective interaction between the coated iron oxide nanoparticles and protons present in their aqueous environment.

  1. Tumor characterization in small animals using magnetic resonance-guided dynamic contrast enhanced diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Lin, Yuting; Thayer, Dave; Nalcioglu, Orhan; Gulsen, Gultekin

    2011-10-01

    We present a magnetic resonance (MR)-guided near-infrared dynamic contrast enhanced diffuse optical tomography (DCE-DOT) system for characterization of tumors using an optical contrast agent (ICG) and a MR contrast agent [Gd-diethylenetriaminepentaacetic acid (DTPA)] in a rat model. Both ICG and Gd-DTPA are injected and monitored simultaneously using a combined MRI-DOT system, resulting in accurate co-registration between two imaging modalities. Fisher rats bearing R3230 breast tumor are imaged using this hybrid system. For the first time, enhancement kinetics of the exogenous contrast ICG is recovered from the DCE-DOT data using MR anatomical a priori information. As tumors grow, they undergo necrosis and the tissue transforms from viable to necrotic. The results show that the physiological changes between viable and necrotic tissue can be differentiated more accurately based on the ICG enhancement kinetics when MR anatomical information is utilized.

  2. Noninvasive assessment of pulmonary emphysema using dynamic contrast-enhanced magnetic resonance imaging.

    PubMed

    Morino, Shigeyuki; Toba, Toshinari; Araki, Masato; Azuma, Takashi; Tsutsumi, Sadami; Tao, Hiroyuki; Nakamura, Tatsuo; Nagayasu, Takeshi; Tagawa, Tsutomu

    2006-01-01

    Emphysema tends to be complicated by diffuse abnormalities in the pulmonary peripheral microvasculature. The aim of this study was to evaluate whether dynamic contrast-enhanced magnetic resonance imaging (MRI) could provide a valid assessment of pulmonary blood flow as an indicator of the severity of emphysema. To do this, the authors compared MRI data with the pathological findings in lung tissue. Dynamic contrast-enhanced MRI is a noninvasive method and can be used to repeatedly monitor clinicopathological severity. Using MRI clear pulmonary vascular information can be obtained easily, and the relative pulmonary blood flow in the lung parenchyma can be quantified.

  3. Magnetic nanoparticles as contrast agents in biomedical imaging: recent advances in iron- and manganese-based magnetic nanoparticles.

    PubMed

    Felton, Charlette; Karmakar, Alokita; Gartia, Yashraj; Ramidi, Punnamchandar; Biris, Alexandru S; Ghosh, Anindya

    2014-05-01

    Improvements in diagnostic measures for biomedical applications have been investigated in various studies for better interpretations of biological abnormalities and several medical conditions. The use of imaging techniques, such as magnetic resonance imaging (MRI), is widespread and becoming a standard procedure for such specialized applications. A major avenue being studied in MRI is the use of magnetic nanoparticles (NPs) as contrast agents (CAs). Among various approaches, current research also incorporates use of superparamagnetic iron oxide NPs and manganese-based NPs with biocompatible coatings for improved stability and reduced biodegradation when exposed to a biological environment. In this review, recent advances with these types of magnetic NPs and their potential use as CAs in MRI are reported, as well as new insights into the selectivity and cellular transport mechanism that occurs following injection.

  4. Spin transfer torque generated magnetic droplet solitons (invited)

    SciTech Connect

    Chung, S.; Mohseni, S. M.; Sani, S. R.; Iacocca, E.; Dumas, R. K.; Pogoryelov, Ye.; Anh Nguyen, T. N.; Muduli, P. K.; Eklund, A.; Hoefer, M.; Åkerman, J.

    2014-05-07

    We present recent experimental and numerical advancements in the understanding of spin transfer torque generated magnetic droplet solitons. The experimental work focuses on nano-contact spin torque oscillators (NC-STOs) based on orthogonal (pseudo) spin valves where the Co fixed layer has an easy-plane anisotropy, and the [Co/Ni] free layer has a strong perpendicular magnetic anisotropy. The NC-STO resistance and microwave signal generation are measured simultaneously as a function of drive current and applied perpendicular magnetic field. Both exhibit dramatic transitions at a certain current dependent critical field value, where the microwave frequency drops 10 GHz, modulation sidebands appear, and the resistance exhibits a jump, while the magnetoresistance changes sign. We interpret these observations as the nucleation of a magnetic droplet soliton with a large fraction of its magnetization processing with an angle greater than 90°, i.e., around a direction opposite that of the applied field. This interpretation is corroborated by numerical simulations. When the field is further increased, we find that the droplet eventually collapses under the pressure from the Zeeman energy.

  5. Porous silicon nanoparticles as biocompatible contrast agents for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Gongalsky, M. B.; Kargina, Yu. V.; Osminkina, L. A.; Perepukhov, A. M.; Gulyaev, M. V.; Vasiliev, A. N.; Pirogov, Yu. A.; Maximychev, A. V.; Timoshenko, V. Yu.

    2015-12-01

    We propose porous silicon nanoparticles (PSi NPs) with natural oxide coating as biocompatible and bioresorbable contrast agents for magnetic resonant imaging (MRI). A strong shortening of the transversal proton relaxation time (T2) was observed for aqueous suspensions of PSi NPs, whereas the longitudinal relaxation time (T1) changed moderately. The longitudinal and transversal relaxivities are estimated to be 0.03 and 0.4 l/(g.s), respectively, which are promising for biomedical studies. The proton relaxation is suggested to undergo via the magnetic dipole-dipole interaction with Si dangling bonds on surfaces of PSi NPs. MRI experiments with phantoms have revealed the remarkable contrasting properties of PSi NPs for medical diagnostics.

  6. Porous silicon nanoparticles as biocompatible contrast agents for magnetic resonance imaging

    SciTech Connect

    Gongalsky, M. B. Kargina, Yu. V.; Osminkina, L. A.; Perepukhov, A. M.; Maximychev, A. V.; Gulyaev, M. V.; Vasiliev, A. N.; Pirogov, Yu. A.; Timoshenko, V. Yu.

    2015-12-07

    We propose porous silicon nanoparticles (PSi NPs) with natural oxide coating as biocompatible and bioresorbable contrast agents for magnetic resonant imaging (MRI). A strong shortening of the transversal proton relaxation time (T{sub 2}) was observed for aqueous suspensions of PSi NPs, whereas the longitudinal relaxation time (T{sub 1}) changed moderately. The longitudinal and transversal relaxivities are estimated to be 0.03 and 0.4 l/(g·s), respectively, which are promising for biomedical studies. The proton relaxation is suggested to undergo via the magnetic dipole-dipole interaction with Si dangling bonds on surfaces of PSi NPs. MRI experiments with phantoms have revealed the remarkable contrasting properties of PSi NPs for medical diagnostics.

  7. Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent.

    PubMed

    Zhao, M; Beauregard, D A; Loizou, L; Davletov, B; Brindle, K M

    2001-11-01

    The C2 domain of synaptotagmin I, which binds to anionic phospholipids in cell membranes, was shown to bind to the plasma membrane of apoptotic cells by both flow cytometry and confocal microscopy. Conjugation of the protein to superparamagnetic iron oxide nanoparticles allowed detection of this binding using magnetic resonance imaging. Detection of apoptotic cells, using this novel contrast agent, was demonstrated both in vitro, with isolated apoptotic tumor cells, and in vivo, in a tumor treated with chemotherapeutic drugs.

  8. Application of phase-contrast cine magnetic resonance imaging in endoscopic aqueductoplasty.

    PubMed

    Chen, Guoqiang; Zheng, Jiaping; Xiao, Qing; Liu, Yunsheng

    2013-06-01

    The aim of this study was to evaluate the application of phase-contrast cine magnetic resonance imaging (MRI) in endoscopic aqueductoplasty (EA) for patients with obstructive hydrocephalus. The clinical diagnosis of hydrocephalus caused by aqueduct obstruction in 23 patients was confirmed by phase-contrast cine MRI examination. The patients were treated with EA and MRI was repeated during the follow-up. The cerebrospinal fluid (CSF) flow velocity in the aqueduct was measured to determine whether the aqueduct was obstructed. The results of phase-contrast cine MRI examinations indicated that there was no CSF flow in the aqueduct for all patients prior to surgery. Aqueductoplasty was successfully performed in all patients. The results of phase-contrast cine MRI examinations performed a week after surgery demonstrated an average CSF flow velocity of 4.74±1.77 cm/sec. During the follow-up, intracranial hypertension recurred in two patients in whom CSF flow was not observed in the aqueduct by the phase-contrast cine MRI scan. Aqueduct re-occlusion was revealed by an endoscopic exploration. By measuring the CSF flow velocity, phase-contrast cine MRI accurately identifies aqueduct obstruction. Cine MRI is a nontraumatic, simple and reliable method for determining whether the aqueduct is successfully opened following aqueductoplasty.

  9. MRI contrast agent for molecular imaging of the HER2/neu receptor using targeted magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Rasaneh, Samira; Rajabi, Hossein; Babaei, Mohammad Hossein; Akhlaghpoor, Shahram

    2011-06-01

    In this study, Trastuzumab modified Magnetic Nanoparticles (TMNs) were prepared as a new contrast agent for detecting HER2 (Human epidermal growth factor receptor-2) expression tumors by magnetic resonance imaging (MRI). TMNs were prepared based on iron oxide nanoparticles core and Trastuzumab modified dextran coating. The TMNs core and hydrodynamic size were determined by transmission electron microscopy and dynamic light scattering. TMNs stability and cytotoxicity were investigated. The ability of TMNs for HER2 detection were evaluated in breast carcinoma cell lines (SKBr3 and MCF7 cells) and tumor-bearing mice by MRI and iron uptake determination. The particles core and hydrodynamic size were 9 ± 2.5 and 41 ± 15 nm (size range: 15-87 nm), respectively. The molar antibody/nanoparticle ratio was 3.1-3.5. TMNs were non-toxic to the cells below the 30 μg (Fe)/mL concentration and good stable up to 8 weeks in PBS buffer. TMNs could detect HER2 oncogenes in the cells surface with imagable contrast by MRI. The invivo study in mice bearing tumors indicated that TMNs possessed a good diagnostic ability as HER2 specific contrast agent by MRI. TMNs were demonstrated to be able to selectively accumulate in the tumor cells, with a proper signal enhancement in MRI T2 images. So, the complex may be considered for further investigations as an MRI contrast agent for detection of HER2 expression tumors in human.

  10. Assessment of Tumor Radioresponsiveness and Metastatic Potential by Dynamic Contrast-Enhanced Magnetic Resonance Imaging

    SciTech Connect

    Ovrebo, Kirsti Marie; Gulliksrud, Kristine; Mathiesen, Berit; Rofstad, Einar K.

    2011-09-01

    Purpose: It has been suggested that gadolinium diethylene-triamine penta-acetic acid (Gd-DTPA)-based dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) may provide clinically useful biomarkers for personalized cancer treatment. In this preclinical study, we investigated the potential of DCE-MRI as a noninvasive method for assessing the radioresponsiveness and metastatic potential of tumors. Methods and Materials: R-18 melanoma xenografts growing in BALB/c nu/nu mice were used as experimental tumor models. Fifty tumors were subjected to DCE-MRI, and parametric images of K{sup trans} (the volume transfer constant of Gd-DTPA) and v{sub e} (the fractional distribution volume of Gd-DTPA) were produced by pharmacokinetic analysis of the DCE-MRI series. The tumors were irradiated after the DCE-MRI, either with a single dose of 10 Gy for detection of radiobiological hypoxia (30 tumors) or with five fractions of 4 Gy in 48 h for assessment of radioresponsiveness (20 tumors). The host mice were then euthanized and examined for lymph node metastases, and the primary tumors were resected for measurement of cell survival in vitro. Results: Tumors with hypoxic cells showed significantly lower K{sup trans} values than tumors without significant hypoxia (p < 0.0001, n = 30), and K{sup trans} decreased with increasing cell surviving fraction for tumors given fractionated radiation treatment (p < 0.0001, n = 20). Tumors in metastasis-positive mice had significantly lower K{sup trans} values than tumors in metastasis-negative mice (p < 0.0001, n = 50). Significant correlations between v{sub e} and tumor hypoxia, radioresponsiveness, or metastatic potential could not be detected. Conclusions: R-18 tumors with low K{sup trans} values are likely to be resistant to radiation treatment and have a high probability of developing lymph node metastases. The general validity of these observations should be investigated further by studying preclinical tumor models with biological

  11. Spin-transfer torque switched magnetic tunnel junctions in magnetic random access memory

    NASA Astrophysics Data System (ADS)

    Sun, Jonathan Z.

    2016-10-01

    Spin-transfer torque (or spin-torque, or STT) based magnetic tunnel junction (MTJ) is at the heart of a new generation of magnetism-based solid-state memory, the so-called spin-transfer-torque magnetic random access memory, or STT-MRAM. Over the past decades, STT-based switchable magnetic tunnel junction has seen progress on many fronts, including the discovery of (001) MgO as the most favored tunnel barrier, which together with (bcc) Fe or FeCo alloy are yielding best demonstrated tunnel magneto-resistance (TMR); the development of perpendicularly magnetized ultrathin CoFeB-type of thin films sufficient to support high density memories with junction sizes demonstrated down to 11nm in diameter; and record-low spin-torque switching threshold current, giving best reported switching efficiency over 5 kBT/μA. Here we review the basic device properties focusing on the perpendicularly magnetized MTJs, both in terms of switching efficiency as measured by sub-threshold, quasi-static methods, and of switching speed at super-threshold, forced switching. We focus on device behaviors important for memory applications that are rooted in fundamental device physics, which highlights the trade-off of device parameters for best suitable system integration.

  12. Metal-oxo containing polymer nanobeads as potential contrast agents for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Pablico, Michele Huelar

    Magnetic resonance imaging (MRI) has greatly revolutionized the way diseases are detected and treated, as it is a non-invasive imaging modality solely based on the interaction of radiowaves and hydrogen nuclei in the presence of an external magnetic field. It is widely used today for the diagnosis of diseases as it offers an efficient method of mapping structure and function of soft tissues in the body. Most MRI examinations utilize paramagnetic materials known as contrast agents, which enhance the MR signal by decreasing the longitudinal (T1) and transverse (T2) relaxation times of the surrounding water protons in biological systems. This results into increased signal intensity differences thereby allowing better interpretation and analysis of pathological tissues. Contrast agents function by lowering the T1 or lowering the T2, resulting into bright and dark contrasts, respectively. The most common MRI contrast agents that are in clinical use today are gadolinium chelates and superparamagnetic iron oxide nanoparticles, both of which have their own advantages in terms of contrast enhancement properties. In the past few years, however, there has been interest in utilizing metal-containing clusters for MRI contrast enhancement as these materials bridge the gap between the constrained structure and magnetic properties of the gadolinium chelates with the superparamagnetic behavior of the iron oxide nanoparticles. Recently, metallic clusters containing Mn and Fe metal centers have received increased attention mainly because of their potential for high spin states and benign nature. In the quest to further develop novel imaging agents, this research has focused on investigating the use of metal-oxo clusters as potential contrast agents for MRI. The primary goal of this project is to identify clusters that meet the following criteria: high paramagnetic susceptibility, water-soluble, stable, cheap, contain environmentally benign metals, and easily derivatized. This work is

  13. Energy transfer and dual cascade in kinetic magnetized plasma turbulence.

    PubMed

    Plunk, G G; Tatsuno, T

    2011-04-22

    The question of how nonlinear interactions redistribute the energy of fluctuations across available degrees of freedom is of fundamental importance in the study of turbulence and transport in magnetized weakly collisional plasmas, ranging from space settings to fusion devices. In this Letter, we present a theory for the dual cascade found in such plasmas, which predicts a range of new behavior that distinguishes this cascade from that of neutral fluid turbulence. These phenomena are explained in terms of the constrained nature of spectral transfer in nonlinear gyrokinetics. Accompanying this theory are the first observations of these phenomena, obtained via direct numerical simulations using the gyrokinetic code AstroGK. The basic mechanisms that are found provide a framework for understanding the turbulent energy transfer that couples scales both locally and nonlocally.

  14. Contrasting magnetism in dilute and supersaturated cobalt-fullerene mixture films

    NASA Astrophysics Data System (ADS)

    Lavrentiev, V.; Stupakov, A.; Pokorný, J.; Lavrentieva, I.; Vacik, J.; Dejneka, A.; Barchuk, M.; Čapková, P.

    2015-08-01

    The combination of cobalt with nanocarbons promises hybrid nanostructures that are ideal for the development of memory storage and spin-transfer electronics. Here, we report a dramatic effect of composition on the magnetic properties of the Co x C60 mixtures, whose nanostructure was organized upon simultaneous deposition and sequential exposure to air. We assert a critical change in the mixture’s organization yielding either the composite nanostructure as array of the Co/CoO core-shell nanoparticles (NPs) in the C60-based matrix at a high content of Co (a supersaturated mixture or SSM) or a coexistence of fcc-C60 and CoaC60 fulleride when the Co content x is lower than some critical value {{x}\\text{c}} (an ultradilute mixture or UDM). Magnetization of the SSM composite exhibits a superparamagnetic effect caused by the small Co/CoO NPs. Similar magnetization of the UDM with x=0.7 revealed a stable ferromagnetism and evidenced the formation of a magnetic Co2C60 fulleride. Phase composition in the UDM and SSM films was verified with the XRD and Raman spectra. The UDM and SSM films reveal great difference in content of the remaining oxygen which implies easy diffusion of O2 molecules within the C60-based phases and their splitting at the Co NP surface followed by formation of CoO shells. The results obtained indicate controlled access to a variety of promising Co-C60 magnetic nanostructures.

  15. 49 CFR 225.37 - Magnetic media transfer and electronic submission.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Magnetic media transfer and electronic submission..., AND INVESTIGATIONS § 225.37 Magnetic media transfer and electronic submission. (a) A railroad has the option of submitting the following reports, updates, and amendments by way of magnetic media...

  16. Credit Transfer amongst Students in Contrasting Disciplines: Examining Assumptions about Wastage, Mobility and Lifelong Learning

    ERIC Educational Resources Information Center

    Di Paolo, Terry; Pegg, Ann

    2013-01-01

    While arrangements for credit transfer exist across the UK higher education sector, little is known about credit-transfer students or why they re-engage with study. Policy makers have cited credit transfer as a mechanism for reducing wastage and drop-out, but this paper challenges this assumption and instead examines how credit transfer serves…

  17. Comparing Fourier optics and contrast transfer function modeling of image formation in low energy electron microscopy.

    PubMed

    Yu, K M; Locatelli, A; Altman, M S

    2017-03-24

    A theoretical understanding of image formation in cathode lens microscopy can facilitate image interpretation. We compare Fourier Optics (FO) and Contrast Transfer Function (CTF) approaches that were recently adapted from other realms of microscopy to model image formation in low energy electron microscopy (LEEM). Although these two approaches incorporate imaging errors from several sources similarly, they differ in the way that the image intensity is calculated. The simplification that is used in the CTF calculation advantageously leads to its computational efficiency. However, we find that lens aberrations, and spatial and temporal coherence may affect the validity of the CTF approach to model LEEM image formation under certain conditions. In particular, these effects depend strongly on the nature of the object being imaged and also become more pronounced with increasing defocus. While the use of the CTF approach appears to be justified for objects that are routinely imaged with LEEM, comparison of theory to experimental observations of a focal image series for rippled, suspended graphene reveals one example where FO works, but CTF does not. This work alerts us to potential pitfalls and guides the effective use of FO and CTF approaches. It also lays the foundation for quantitative image evaluation using these methods.

  18. Magnetic resonance imaging of microvascular leakage induced by myocardial contrast echocardiography in rats.

    PubMed

    Swanson, Scott D; Dou, Chunyan; Miller, Douglas L

    2006-06-01

    The extent and magnitude of microvascular leakage induced by myocardial contrast echocardiography (MCE) were characterized with contrast-aided magnetic resonance imaging (MRI). Evans blue dye, Definity ultrasound contrast agent and Omniscan magnetic resonance contrast agent were injected intravenously in anesthetized rats suspended in a water bath. Diagnostic ultrasound B mode scans with 1:4 end-systolic triggering were performed at 1.5 MHz using a cardiac phased array scanhead to provide a short axis view of the left ventricle. The in situ peak rarefactional pressure amplitude (PRPA) was 2.0 MPa. Microvascular leakage was characterized by extraction of the dye from tissue samples and by imaging the distribution and concentration of Omniscan within the myocardium. The extracted Evans blue was 2.3 times greater than in shams (P<.05) for heart samples perfused with heparin saline, and 1.6 times greater than shams (not significant) for unperfused samples. The MRI showed the penetration of the ultrasound-induced capillary leakage throughout much of the scan plane. The overall gadolinium content measured by MR showed the same trends as the extracted Evans blue, but was more variable. For pooled data (perfused and unperfused), the exposed samples were significantly increased (P<.05) relative to the sham samples for both Evans blue and gadolinium content. Omniscan leakage was also discernable in two of four MRIs from intact rats (after sacrifice). These results demonstrate a potential for MR mapping of capillary leakage induced by contrast-aided ultrasound, with a possible application to spatial characterization of local drug delivery.

  19. Contrast Induced by a Static Magnetic Field for Improved Detection in Nanodiamond Fluorescence Microscopy

    NASA Astrophysics Data System (ADS)

    Singam, Shashi K. R.; Motylewski, Jaroslaw; Monaco, Antonina; Gjorgievska, Elena; Bourgeois, Emilie; Nesládek, Milos; Giugliano, Michele; Goovaerts, Etienne

    2016-12-01

    Diamond nanoparticles with negatively charged nitrogen-vacancy (NV) centers are highly efficient nonblinking emitters that exhibit spin-dependent intensity. An attractive application of these emitters is background-free fluorescence microscopy exploiting the fluorescence quenching induced either by resonant microwaves (RMWs) or by an applied static magnetic field (SMF). Here, we compare RMW- and SMF-induced contrast measurements over a wide range of optical excitation rates for fluorescent nanodiamonds (FNDs) and for NV centers shallowly buried under the (100)-oriented surface of a diamond single crystal (SC). Contrast levels are found to be systematically lower in the FNDs than in the SC. At low excitation rates, the RMW contrast initially rises to a maximum (up to 7% in FNDs and 13% in the SC) but then decreases steadily at higher intensities. Conversely, the SMF contrast increases from approximately 12% at low excitation rates to high values of 20% and 38% for the FNDs and SC, respectively. These observations are well described in a rate-equations model for the charged NV defect using parameters in good agreement with the literature. The SMF approach yields higher induced contrast in image collection under commonly applied optical excitation. Unlike the RMW method, there is no thermal load exerted on the aqueous media in biological samples in the SMF approach. We demonstrate imaging by SMF-induced contrast in neuronal cultures incorporating FNDs (i) in a setup for patch-clamp experiments in parallel with differential-interference-contrast microscopy, (ii) after a commonly used staining procedure as an illustration of the high selectivity against background fluorescence, and (iii) in a confocal fluorescence microscope in combination with bright-field microscopy.

  20. Stimuli-Responsive Biodegradable Hyperbranched Polymer-Gadolinium Conjugates as Efficient and Biocompatible Nanoscale Magnetic Resonance Imaging Contrast Agents.

    PubMed

    Sun, Ling; Li, Xue; Wei, Xiaoli; Luo, Qiang; Guan, Pujun; Wu, Min; Zhu, Hongyan; Luo, Kui; Gong, Qiyong

    2016-04-27

    The efficacy and biocompatibility of nanoscale magnetic resonance imaging (MRI) contrast agents depend on optimal molecular structures and compositions. Gadolinium [Gd(III)] based dendritic macromolecules with well-defined and tunable nanoscale sizes are excellent candidates as multivalent MRI contrast agents. Here, we propose a novel alternate preparation of biodegradable hyperbranched polymer-gadolinium conjugates via a simple strategy and report potentially efficient and biocompatible nanoscale MRI contrast agents for cancer diagnosis. The enzyme-responsive hyperbranched poly(oligo-(ethylene glycol) methacrylate)-gadolinium conjugate (HB-POEGMA-Gd) was prepared via one-step reversible addition-fragmentation chain transfer (RAFT) polymerization and Gd(III) chelating, and the cRGDyK functionalized polymer (HB-POEGMA-cRGD-Gd) was obtained via click chemistry. By using an enzyme similar to lysosomal cathepsin B, hyperbranched conjugates of high molecular weights (MW) (180 and 210 kDa) and nanoscale sizes (38 and 42 nm) were degraded into low MW (25 and 30 kDa) and smaller products (4.8 and 5.2 nm) below the renal threshold. Conjugate-based nanoscale systems had three-fold more T1 relaxivity compared to clinical agent diethylenediaminepentaacetic acid (DTPA)-Gd. Animal studies with the nanoscale system offered greater tumor accumulation and enhanced signal intensity (SI) in mouse U87 tumors of which the greatest activity was conferred by the cRGDyK moiety functionalized hyperbranched conjugate. In vitro cytotoxicity, hemocompatibility and in vivo toxicity studies confirmed no adverse events. This design strategy for multifunctional Gd(III)-labeled biodegradable dendritic macromolecules may have significant potential as future efficient, biocompatible polymeric nanoscale MRI diagnostic contrast agents for cancer.

  1. Semiquantitative and Quantitative Dynamic Contrast-Enhanced Magnetic Resonance Imaging Measurements Predict Radiation Response in Cervix Cancer

    SciTech Connect

    Zahra, Mark A. Tan, Li Tee; Priest, Andrew N.; Graves, Martin J.; Arends, Mark; Crawford, Robin A.F.; Brenton, James D.; Lomas, David J.; Sala, Evis

    2009-07-01

    Purpose: To evaluate semiquantitative and quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) measurements in predicting the response to radiotherapy in cervix cancer. Methods and Materials: Patients with cervix cancer treated radically with chemoradiotherapy had DCE-MRI at three time points: before starting treatment, after 2 weeks of radiotherapy, and in the 5th week of radiotherapy. Semiquantitative measurements obtained from the signal intensity vs. time plots included arrival time of contrast, the slope and maximum slope of contrast uptake, time for peak enhancement, and the contrast enhancement ratio (CER). Pharmacokinetic modeling with a modeled vascular input function was used for the quantitative measurements volume transfer constant (K{sup trans}), rate constant (k{sub ep}), fraction plasma volume (fPV), and the initial area under gadolinium-time curve. The correlation of these measurements at each of the three time points with radiologic tumor response was investigated. Results: Thirteen patients had a total of 38 scans. There was no correlation between the DCE-MRI measurements and the corresponding tumor volumes. A statistically significant correlation with percentage tumor regression was shown with the pretreatment DCE-MRI semiquantitative parameters of peak time (p = 0.046), slope (p = 0.025), maximum slope (p = 0.046), and CER (p = 0.025) and the quantitative parameters K{sup trans} (p = 0.043) and k{sub ep} (p = 0.022). Second and third scan measurements did not show any correlation. Conclusions: This is the first study to show that pretreatment DCE-MRI quantitative parameters predict the radiation response in cervix cancer. These measurements may allow a more meaningful comparison of DCE-MRI studies from different centers.

  2. Magnetic superlens-enhanced inductive coupling for wireless power transfer

    NASA Astrophysics Data System (ADS)

    Huang, Da; Urzhumov, Yaroslav; Smith, David R.; Hoo Teo, Koon; Zhang, Jinyun

    2012-03-01

    We investigate numerically the use of a negative-permeability "perfect lens" for enhancing wireless power transfer between two current carrying coils. The negative permeability slab serves to focus the flux generated in the source coil to the receiver coil, thereby increasing the mutual inductive coupling between the coils. The numerical model is compared with an analytical theory that treats the coils as point dipoles separated by an infinite planar layer of magnetic material [Urzhumov et al., Phys. Rev. B 19, 8312 (2011)]. In the limit of vanishingly small radius of the coils, and large width of the metamaterial slab, the numerical simulations are in excellent agreement with the analytical model. Both the idealized analytical and realistic numerical models predict similar trends with respect to metamaterial loss and anisotropy. Applying the numerical models, we further analyze the impact of finite coil size and finite width of the slab. We find that, even for these less idealized geometries, the presence of the magnetic slab greatly enhances the coupling between the two coils, including cases where significant loss is present in the slab. We therefore conclude that the integration of a metamaterial slab into a wireless power transfer system holds promise for increasing the overall system performance.

  3. Magnetization transfer imaging of suicidal patients with major depressive disorder.

    PubMed

    Chen, Ziqi; Zhang, Huawei; Jia, Zhiyun; Zhong, Jingjie; Huang, Xiaoqi; Du, Mingying; Chen, Lizhou; Kuang, Weihong; Sweeney, John A; Gong, Qiyong

    2015-04-08

    Magnetization transfer imaging (MTI) provides a quantitative measure of the macromolecular structural integrity of brain tissue, as represented by magnetization transfer ratio (MTR). In this study, we utilized MTI to identify biophysical alterations in MDD patients with a history of suicide attempts relative to MDD patients without such history. The participants were 36 medication-free MDD patients, with (N = 17) and without (N = 19) a history of a suicide attempt, and 28 healthy controls matched for age and gender. Whole brain voxel-based analysis was used to compare MTR across three groups and to analyze correlations with symptom severity and illness duration. We identified decreased MTR in left inferior parietal lobule and right superior parietal lobule in suicide attempters relative to both non-attempters and controls. Non-attempters also showed significantly reduced MTR in left inferior parietal lobule relative to controls, as well as an MTR reduction in left cerebellum. These abnormalities were not correlated with symptom severity or illness duration. Depressed patients with a history of suicide attempt showed bilateral abnormalities in parietal cortex compared to nonsuicidal depressed patients and healthy controls. Parietal lobe abnormalities might cause attentional dysfunction and impaired decision making to increase risk for suicidal behavior in MDD.

  4. Equilibrium structure of solar magnetic flux tubes: Energy transport with multistream radiative transfer

    NASA Technical Reports Server (NTRS)

    Hasan, S. S.; Kalkofen, W.

    1994-01-01

    We examine the equilibrium structure of vertical intense magnetic flux tubes on the Sun. Assuming cylindrical geometry, we solve the magnetohydrostatic equations in the thin flux-tube approximation, allowing for energy transport by radiation and convection. The radiative transfer equation is solved in the six-stream approximation, assuming gray opacity and local thermodynamic equilibrium. This constitutes a significant improvement over a previous study, in which the transfer was solved using the multidimensional generalization of the Eddington approximation. Convection in the flux tube is treated using mixing-length theory, with an additional parameter alpha, characterizing the suppression of convective energy transport in the tube by the strong magnetic field. The equations are solved using the method of partial linearization. We present results for tubes with different values of the magnetic field strength and radius at a fixed depth in the atmosphere. In general, we find that, at equal geometric heights, the temperature on the tube axis, compared to the ambient medium, is higher in the photosphere and lower in the convection zone, with the difference becoming larger for thicker tubes. At equal optical depths the tubes are generally hotter than their surroundings. The results are comparatively insensitive to alpha but depend upon whether radiative and convective energy transport operate simultaneously or in separate layers. A comparison of our results with semiempirical models shows that the temperature and intensity contrast are in broad agreement. However, the field strengths of the flux-tube models are somewhat lower than the values inferred from observations.

  5. Thin chitosan films containing super-paramagnetic nanoparticles with contrasting capability in magnetic resonance imaging.

    PubMed

    Farjadian, Fatemeh; Moradi, Sahar; Hosseini, Majid

    2017-03-01

    Magnetic nanoparticles have found application as MRI contrasting agents. Herein, chitosan thin films containing super-paramagnetic iron oxide nanoparticles (SPIONs) are evaluated in magnetic resonance imaging (MRI). To determine their contrasting capability, super-paramagnetic nanoparticles coated with citrate (SPIONs-cit) were synthesized. Then, chitosan thin films with different concentrations of SPIONs-cit were prepared and their MRI data (i.e., r 2 and r 2*) was evaluated in an aqueous medium. The synthesized SPIONs-cit and chitosan/SPIONs-cit films were characterized by FTIR, EDX, XRD as well as VSM with the morphology evaluated by SEM and AFM. The nanoparticle sizes and distribution confirmed well-defined nanoparticles and thin films formation along with high contrasting capability in MRI. Images revealed well-dispersed uniform nanoparticles, averaging 10 nm in size. SPIONs-cit's hydrodynamic size averaged 23 nm in diameter. The crystallinity obeyed a chitosan and SPIONs pattern. The in vitro cellular assay of thin films with a novel route was performed within Hek293 cell lines showing that thin films can be biocompatible.

  6. Magnetic resonance and ultrasound contrast imaging of polymer-shelled microbubbles loaded with iron oxide nanoparticles

    PubMed Central

    Sciallero, Claudia; Balbi, Luca; Paradossi, Gaio; Trucco, Andrea

    2016-01-01

    Dual-mode contrast agents (CAs) have great potential for improving diagnostics. However, the effectiveness of CAs is strictly related to both the solution adopted to merge the two agents into a single probe unit, and the ratio between the two agents. In this study, two dual-mode CAs for simultaneous magnetic resonance imaging (MRI) and ultrasound imaging (UI) were assessed. For this purpose, different densities of superparamagnetic iron oxide nanoparticles (SPIONs) were anchored to the external surface of polymer-shelled microbubbles (MBs) or were physically entrapped into the shell. In vitro static and dynamic experiments were carried out with a limited concentration of modified MBs (106 bubbles ml−1) by avoiding destruction during UI (performed at a peak pressure lower than 320 kPa) and by using a low-field MRI system (with a magnetic flux density equal to 0.25 T). Under these conditions, different imaging techniques, set-up parameters and SPION densities were used to achieve satisfactory detection of the CAs by using both UI and MRI. However, when the SPION density was increased, the MRI contrast improved, whereas the UI contrast worsened due to the reduced elasticity of the MB shell. For both UI and MRI, MBs with externally anchored SPIONs provided better performance than MBs with SPIONs entrapped into the shell. In particular, a SPION density of 29% with respect to the mass of the MBs was successfully tested. PMID:27853587

  7. Ultrasmall Nanoplatforms as Calcium-Responsive Contrast Agents for Magnetic Resonance Imaging.

    PubMed

    Moussaron, Albert; Vibhute, Sandip; Bianchi, Andrea; Gündüz, Serhat; Kotb, Shady; Sancey, Lucie; Motto-Ros, Vincent; Rizzitelli, Silvia; Crémillieux, Yannick; Lux, Francois; Logothetis, Nikos K; Tillement, Olivier; Angelovski, Goran

    2015-10-07

    The preparation of ultrasmall and rigid platforms (USRPs) that are covalently coupled to macrocycle-based, calcium-responsive/smart contrast agents (SCAs), and the initial in vitro and in vivo validation of the resulting nanosized probes (SCA-USRPs) by means of magnetic resonance imaging (MRI) is reported. The synthetic procedure is robust, allowing preparation of the SCA-USRPs on a multigram scale. The resulting platforms display the desired MRI activity—i.e., longitudinal relaxivity increases almost twice at 7 T magnetic field strength upon saturation with Ca(2+). Cell viability is probed with the MTT assay using HEK-293 cells, which show good tolerance for lower contrast agent concentrations over longer periods of time. On intravenous administration of SCA-USRPs in living mice, MRI studies indicate their rapid accumulation in the renal pelvis and parenchyma. Importantly, the MRI signal increases in both kidney compartments when CaCl2 is also administrated. Laser-induced breakdown spectroscopy experiments confirm accumulation of SCA-USRPs in the renal cortex. To the best of our knowledge, these are the first studies which demonstrate calcium-sensitive MRI signal changes in vivo. Continuing contrast agent and MRI protocol optimizations should lead to wider application of these responsive probes and development of superior functional methods for monitoring calcium-dependent physiological and pathological processes in a dynamic manner.

  8. Mass transfer and magnetic braking in Sco X-1

    NASA Astrophysics Data System (ADS)

    Pavlovskii, K.; Ivanova, N.

    2016-02-01

    Sco X-1 is a low-mass X-ray binary (LMXB) that has one of the most precisely determined set of binary parameters such as the mass accretion rate, companions mass ratio and the orbital period. For this system, as well as for a large fraction of other well-studied LMXBs, the observationally-inferred mass accretion rate is known to strongly exceed the theoretically expected mass transfer (MT) rate. We suggest that this discrepancy can be solved by applying a modified magnetic braking prescription, which accounts for increased wind mass-loss in evolved stars compared to main sequence stars. Using our MT framework based on MESA, we explore a large range of binaries at the onset of the MT. We identify the subset of binaries for which the MT tracks cross the Sco X-1 values for the mass ratio and the orbital period. We confirm that no solution can be found for which the standard magnetic braking can provide the observed accretion rates, while wind-boosted magnetic braking can provide the observed accretion rates for many progenitor binaries that evolve to the observed orbital period and mass ratio.

  9. Improved power transfer to wearable systems through stretchable magnetic composites

    NASA Astrophysics Data System (ADS)

    Lazarus, N.; Bedair, S. S.

    2016-05-01

    The use of wireless power transfer is common in stretchable electronics since physical wiring can be easily destroyed as the system is stretched. This work presents the first demonstration of improved inductive power coupling to a stretchable system through the addition of a thin layer of ferroelastomeric material. A ferroelastomer, an elastomeric polymer loaded with magnetic particulates, has a permeability greater than one while retaining the ability to survive significant mechanical strains. A recently developed ferroelastomer composite based on sendust platelets within a soft silicone elastomer was incorporated into liquid metal stretchable inductors based on the liquid metal galinstan in fluidic channels. For a single-turn inductor, the maximum power transfer efficiency rises from 71 % with no backplane, to 81 % for a rigid ferrite backplane on the transmitter side alone, to 86 % with a ferroelastomer backplane on the receiver side as well. The coupling between a commercial wireless power transmitter coil with ferrite backplane to a five-turn liquid metal inductor was also investigated, finding an improvement in power transfer efficiency from 81 % with only a rigid backplane to 90 % with the addition of the ferroelastomer backplane. Both the single and multi-turn inductors were demonstrated surviving up to 50 % uniaxial applied strain.

  10. Hyperpolarized krypton-83 as a contrast agent for magnetic resonance imaging.

    PubMed

    Pavlovskaya, Galina E; Cleveland, Zackary I; Stupic, Karl F; Basaraba, Randall J; Meersmann, Thomas

    2005-12-20

    For the first time, magnetic resonance imaging (MRI) with hyperpolarized (hp) krypton-83 (83Kr) has become available. The relaxation of the nuclear spin of 83Kr atoms (I = 9/2) is driven by quadrupolar interactions during brief adsorption periods on surrounding material interfaces. Experiments in model systems reveal that the longitudinal relaxation of hp 83Kr gas strongly depends on the chemical composition of the materials. The relaxation-weighted contrast in hp 83Kr MRI allows for the distinction between hydrophobic and hydrophilic surfaces. The feasibility of hp 83Kr MRI of airways is tested in canine lung tissue by using krypton gas with natural abundance isotopic distribution. Additionally, the influence of magnetic field strength and the presence of a breathable concentration of molecular oxygen on longitudinal relaxation are investigated.

  11. Dynamics of Magnetic Nanoparticle-Based Contrast Agents in Tissues Tracked Using Magnetomotive Optical Coherence Tomography

    PubMed Central

    John, Renu; Chaney, Eric J.; Boppart, Stephen A.

    2014-01-01

    Magnetomotive optical coherence tomography (MM-OCT) is an important tool for the visualization and quantitative assessment of magnetic nanoparticles in tissues. In this study, we demonstrate the use of MM-OCT for quantitative measurement of magnetic iron oxide nanoparticle transport and concentration in ex vivo muscle, lung, and liver tissues. The effect of temperature on the dynamics of these nanoparticles is also analyzed. We observe that the rate of transport of nanoparticles in tissues is directly related to the elasticity of tissues, and describe how the origin of the MM-OCT signal is associated with nanoparticle binding. These results improve our understanding of how iron oxide nanoparticles behave dynamically in biological tissues, which has direct implications for medical and biological applications of targeted nanoparticles for contrast enhancement and therapy. PMID:25378895

  12. Three-dimensional contrast-enhanced magnetic resonance angiography of the thoracic vasculature.

    PubMed

    Leung, D A; Debatin, J F

    1997-01-01

    Magnetic resonance angiography (MRA) has become a useful non-invasive imaging technique for the assessment of vascular disease. Due to limitations such as respiratory motion artefacts, saturations problems, and long acquisition times, applications of MRA in the thorax have largely been restricted to imaging of the aorta. The recent introduction of breath-hold three-dimensional (3D) contrast-enhanced MRA promises not only to enhance conventional MR protocols for aortic imaging, but to extend the clinical indications of MRI to diseases affecting other vascular structures of the thorax, most notably the pulmonary arteries. This article describes the technical aspects of contrast-enhanced 3D MRA and reviews existing and potential future clinical applications.

  13. Concept of contrast transfer function for edge illumination x-ray phase-contrast imaging and its comparison with the free-space propagation technique.

    PubMed

    Diemoz, Paul C; Vittoria, Fabio A; Olivo, Alessandro

    2016-05-16

    Previous studies on edge illumination (EI) X-ray phase-contrast imaging (XPCi) have investigated the nature and amplitude of the signal provided by this technique. However, the response of the imaging system to different object spatial frequencies was never explicitly considered and studied. This is required in order to predict the performance of a given EI setup for different classes of objects. To this scope, in the present work we derive analytical expressions for the contrast transfer function of an EI imaging system, using the approximation of near-field regime, and study its dependence upon the main experimental parameters. We then exploit these results to compare the frequency response of an EI system with respect of that of a free-space propagation XPCi one. The results achieved in this work can be useful for predicting the signals obtainable for different types of objects and also as a basis for new retrieval methods.

  14. The developmental history of the gadolinium chelates as intravenous contrast media for magnetic resonance.

    PubMed

    Runge, Val M; Ai, Tao; Hao, Dapeng; Hu, Xuemei

    2011-12-01

    The developmental history of the gadolinium chelates, which spans 30 years, is described, focusing, in part, on the seminal work with each of the major agents in use today. By examining this history, insight is gained into important issues of efficacy and safety, with valuable lessons to be learned from the mistakes made during this period. An overview of physicochemical characteristics and chemical structures is also provided. The review concludes with a discussion of current research directions involving this field, which is that of the intravenous contrast media for magnetic resonance, in the past 5 years.

  15. Saturated pool-boiling heat transfer of toluene-solvent magnetic fluid on a horizontal surface

    SciTech Connect

    Takahashi, Minoru; Inoue, Akiro; Matsuzaki, Mitsuo; Ohkawa, Riichiro . Research Lab. for Nuclear Reactors)

    1994-07-01

    Saturated pool-boiling heat transfer of a toluene-solvent magnetic fluid containing magnetite particles of 0--36.5 wt% was investigated on a horizontal surface in a vertical magnetic field at pressures of 0.021--0.061 MPa. In the absence of a magnetic field gradient, the heat transfer was enhanced significantly using a magnetic fluid with dilute magnetite particles, while it was reduced for the case of dense particles. As the magnetic field gradient was increased up to 3.9 [times] 10[sup 5] A/m[sup 2], the heat transfer of the dense magnetic fluid was enhanced significantly in the heat flux region, although it slowly began to show a reduced heat-transfer curve again at a certain transition heat flux. The transition heat flux increased as the magnetic field gradient became larger, the magnetic concentration, lower, and the pressure, higher.

  16. Magnetic protein microspheres as dynamic contrast agents for magnetomotive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Nguyen, Freddy T.; Dibbern, Elizabeth M.; Chaney, Eric J.; Oldenburg, Amy L.; Suslick, Kenneth S.; Boppart, Stephen A.

    2008-02-01

    Optical coherence tomography (OCT) is an emerging biomedical imaging modality that has been developed over the last 15 years. More recently, OCT has been used for the intraoperative imaging of tumor margins in breast cancer and axillary lymph nodes providing a real time in-vivo assessment of the tissue morphology. Traditional OCT images are limited by only being able to observe morphological structures. As diagnostic medicine continues to push for earlier detection, one must develop functional imaging modalities that would detect molecular information in-vivo allowing a real-time microscopic analysis of the tissue specimen. A novel modality of OCT called magnetomotive-OCT (MMOCT) has been developed by our group, employing an induced modulated magnetic field with a magnetic contrast agent to create the added contrast to structural OCT images. Modified protein microspheres with a BSA protein shell functionalized with RGD peptide sequences for targeting and an oil core have been designed and synthesized. Magnetic nanoparticles (Fe3O4) and Nile Red dye have been encapsulated into its oil core. These microspheres have previously been demonstrated to target cancer cells by functionalizing them with a layer of RGD peptides and could be functionalized with monoclonal antibodies. Preliminary results show that these magnetic microspheres, which are 2.0- 5.0 microns in size, are readily detectable under MM-OCT when embedded in a 5% agarose gel, in a 3-D scaffold of macrophage cells previously incubated with the microspheres, and when injected in-vivo into a tumor from an NMUcarcinogen rat animal model for breast cancer.

  17. Non-contrast 3D time-of-flight magnetic resonance angiography for visualization of intracranial aneurysms in patients with absolute contraindications to CT or MRI contrast.

    PubMed

    Yanamadala, Vijay; Sheth, Sameer A; Walcott, Brian P; Buchbinder, Bradley R; Buckley, Deidre; Ogilvy, Christopher S

    2013-08-01

    The preoperative evaluation of patients with intracranial aneurysms typically includes a contrast-enhanced vascular study, such as computed tomography angiography (CTA), magnetic resonance angiography (MRA), or digital subtraction angiography. However, there are numerous absolute and relative contraindications to the administration of imaging contrast agents, including pregnancy, severe contrast allergy, and renal insufficiency. Evaluation of patients with contrast contraindications thus presents a unique challenge. We identified three patients with absolute contrast contraindications who presented with intracranial aneurysms. One patient was pregnant, while the other two had previous severe anaphylactic reactions to iodinated contrast. Because of these contraindications to intravenous contrast, we performed non-contrast time-of-flight MRA with 3D reconstruction (TOF MRA with 3DR) with maximum intensity projections and volume renderings as part of the preoperative evaluation prior to successful open surgical clipping of the aneurysms. In the case of one paraclinoid aneurysm, a high-resolution non-contrast CT scan was also performed to assess the relationship of the aneurysm to the anterior clinoid process. TOF MRA with 3DR successfully identified the intracranial aneurysms and adequately depicted the surrounding microanatomy. Intraoperative findings were as predicted by the preoperative imaging studies. The aneurysms were successfully clip-obliterated, and the patients had uneventful post-operative courses. These cases demonstrate that non-contrast imaging is a viable modality to assess intracranial aneurysms as part of the surgical planning process in patients with contrast contraindications. TOF MRA with 3DR, in conjunction with high-resolution non-contrast CT when indicated, provides adequate visualization of the microanatomy of the aneurysm and surrounding structures.

  18. Contrast enhancement in dense breast images using the modulation transfer function.

    PubMed

    Nunes, Fátima L S; Schiabel, Homero; Benatti, Rodrigo H

    2002-12-01

    This work proposes a method aimed at enhancing the contrast in dense breast images in mammography. It includes a new preprocessing technique, which uses information on the modulation transfer function (MTF) of the mammographic system in the whole radiation field. The method is applied to improve the efficiency of a computer-aided diagnosis (CAD) scheme. Seventy-five regions of interest (ROIs) from dense mammograms were acquired in two pieces of equipment (a CGR Senographe 500t and a Philips Mammodiagnost) and were digitized in a Lumiscan 50 laser scanner. A computational procedure determines the effective focal spot size in each region of interest from the measured focal spot in the center for a given mammographic equipment. Using computational simulation the MTF is then calculated for each field region. A procedure that enlarges the high-frequency portion of this function is applied and a convolution between the resulting new function and the original image is performed. Both original and enhanced images were submitted to a processing procedure for detecting clustered microcalcifications in order to compare the performance for dense breast images. ROIs were divided into four groups, two for each piece of equipment-one with clustered microcalcifications and another without microcalcifications. Our results show that in about 10% of the enhanced images more signals were detected when compared to the results for the original dense breast images. This is important because the usual processing techniques used in CAD schemes present poor results when applied to dense breast images. Since the MTF method is a well-recognized tool in the evaluation of radiographic systems, this new technique could be used to associate quality assurance procedures with the processing schemes employed in CAD for mammography.

  19. Engineered Theranostic Magnetic Nanostructures: Role of Composition and Surface Coating on Magnetic Resonance Imaging Contrast and Thermal Activation.

    PubMed

    Nandwana, Vikas; Ryoo, Soo-Ryoon; Kanthala, Shanthi; De, Mrinmoy; Chou, Stanley S; Prasad, Pottumarthi V; Dravid, Vinayak P

    2016-03-23

    Magnetic nanostructures (MNS) have emerged as promising functional probes for simultaneous diagnostics and therapeutics (theranostic) applications due to their ability to enhance localized contrast in magnetic resonance imaging (MRI) and heat under external radio frequency (RF) field, respectively. We show that the "theranostic" potential of the MNS can be significantly enhanced by tuning their core composition and architecture of surface coating. Metal ferrite (e.g., MFe2O4) nanoparticles of ∼8 nm size and nitrodopamine conjugated polyethylene glycol (NDOPA-PEG) were used as the core and surface coating of the MNS, respectively. The composition was controlled by tuning the stoichiometry of MFe2O4 nanoparticles (M = Fe, Mn, Zn, ZnxMn1-x) while the architecture of surface coating was tuned by changing the molecular weight of PEG, such that larger weight is expected to result in longer length extended away from the MNS surface. Our results suggest that both core as well as surface coating are important factors to take into consideration during the design of MNS as theranostic agents which is illustrated by relaxivity and thermal activation plots of MNS with different core composition and surface coating thickness. After optimization of these parameters, the r2 relaxivity and specific absorption rate (SAR) up to 552 mM(-1) s(-1) and 385 W/g were obtained, respectively, which are among the highest values reported for MNS with core magnetic nanoparticles of size below 10 nm. In addition, NDOPA-PEG coated MFe2O4 nanostructures showed enhanced biocompatibility (up to [Fe] = 200 μg/mL) and reduced nonspecific uptake in macrophage cells in comparison to other well established FDA approved Fe based MR contrast agents.

  20. Magnetic resonance knee arthrography. Enhanced contrast by gadolinium complex in the rabbit and in humans.

    PubMed

    Engel, A

    1990-01-01

    This study contains the fundamentals and the technique of the intraarticular application of an MRI contrast agent in connection with magnetic resonance imaging (MRI arthrography). It also presents the resulting clinical relevance for knee joint diagnostics. The significance of MRI arthrography is linked above all to the central question of whether or not it is possible to depict the hyaline cartilage, its surface and its thickness with the help of MRI arthrography. MRI arthrography was used for in vitro examinations of rabbit knee joint cartilage and human joint cartilage. The in vivo application was carried out in 73 patients. Apart from the metric evaluation and the assessment of the information content of the MRI image, the corresponding histologic sections were made in 20 knee joints in order to compare the cartilage surface and the thickness of the cartilage with the results in the MRI image. The optimum amount of contrast agent for visualization was determined, the uptake and clearance of the contrast agent from the cartilage were assessed, and trace elements from the cartilage were also analyzed. The examination showed that the molecular structure of the contrast agent (gadolinium-DTPA) does not prevent the uptake of the contrast agent into the matrix of the hyaline cartilage. But this process is reversible. Thus, 14 hours after the intraarticular application of the contrast agent no measurable traces of gadolinium-DTPA could be established. The intraarticular application of the contrast agent also made it possible to achieve a constant and reproducible visualization of all joint structures. This affected mainly the surface of the hyaline cartilage. The best imaging quality was achieved with intraarticular application of 30 to 40 mL of a 2 mmolar solution of gadolinium-DTPA. The technique used for the intraarticular application is the same as for the common procedures of knee joint aspiration. The clinical importance of MRI arthrography lies in the fact that

  1. Probing the Chemical Stability of Mixed Ferrites: Implications for Magnetic Resonance Contrast Agent Design

    SciTech Connect

    Schultz-Sikma, Elise A.; Joshi, Hrushikesh M.; Ma, Qing; MacRenaris, Keith W.; Eckermann, Amanda L.; Dravid, Vinayak P.; Meade, Thomas J.

    2011-09-16

    Nanomaterials with mixed composition, in particular magnetic spinel ferrites, are emerging as efficient contrast agents for magnetic resonance imaging. Many factors, including size, composition, atomic structure, and surface properties, are crucial in the design of such nanoparticle-based probes because of their influence on the magnetic properties. Silica-coated iron oxide (IO-SiO{sub 2}) and cobalt ferrite (CoIO-SiO{sub 2}) nanoparticles were synthesized using standard high-temperature thermal decomposition and base-catalyzed water-in-oil microemulsion techniques. Under neutral aqueous conditions, it was found that 50-75% of the cobalt content in the CoIO-SiO{sub 2} nanoparticles leached out of the core structure. Leaching caused a 7.2-fold increase in the longitudinal relaxivity and an increase in the saturation magnetization from {approx}48 to {approx}65 emu/g of the core. X-ray absorption fine structure studies confirmed that the atomic structure of the ferrite core was altered following leaching, while transmission electron microscopy and dynamic light scattering confirmed that the morphology and size of the nanoparticle remained unchanged. The CoIO-SiO{sub 2} nanoparticles converted from a partially inverted spinel cation arrangement (unleached state) to an inverse spinel arrangement (leached state). The control IO-SiO{sub 2} nanoparticles remained stable with no change in the structure and negligible changes in the magnetic behavior. This detailed analysis highlights how important understanding the properties of nanomaterials is in the development of reliable agents for diagnostic and therapeutic applications.

  2. Magnetic and contrast properties of labeled platelets for magnetomotive optical coherence tomography.

    PubMed

    Oldenburg, Amy L; Gallippi, Caterina M; Tsui, Frank; Nichols, Timothy C; Beicker, Kellie N; Chhetri, Raghav K; Spivak, Dmitry; Richardson, Aaron; Fischer, Thomas H

    2010-10-06

    This article introduces a new functional imaging paradigm that uses optical coherence tomography (OCT) to detect rehydrated, lyophilized platelets (RL platelets) that are in the preclinical trial stage and contain superparamagnetic iron oxides (SPIOs) approved by the U.S. Food and Drug Administration. Platelets are highly functional blood cells that detect and adhere to sites of vascular endothelial damage by forming primary hemostatic plugs. By applying magnetic gradient forces, induced nanoscale displacements (magnetomotion) of the SPIO-RL platelets are detected as optical phase shifts in OCT. In this article, we characterize the iron content and magnetic properties of SPIO-RL platelets, construct a model to predict their magnetomotion in a tissue medium, and demonstrate OCT imaging in tissue phantoms and ex vivo pig arteries. Tissue phantoms containing SPIO-RL platelets exhibited >3 dB contrast/noise ratio at ≥1.5 × 10(9) platelets/cm(3). OCT imaging was performed on ex vivo porcine arteries after infusion of SPIO-RL platelets, and specific contrast was obtained on an artery that was surface-damaged (P < 10(-6)). This may enable new technologies for in vivo monitoring of the adherence of SPIO-RL platelets to sites of bleeding and vascular damage, which is broadly applicable for assessing trauma and cardiovascular diseases.

  3. Design Principles of Nanoparticles as Contrast Agents for Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Shan, Liang; Gu, Xinbin; Wang, Paul

    2013-09-01

    Molecular imaging is an emerging field that introduces molecular agents into traditional imaging techniques, enabling visualization, characterization and measurement of biological processes at the molecular and cellular levels in humans and other living systems. The promise of molecular imaging lies in its potential for selective potency by targeting biomarkers or molecular targets and the imaging agents serve as reporters for the selectivity of targeting. Development of an efficient molecular imaging agent depends on well-controlled high-quality experiment design involving target selection, agent synthesis, in vitro characterization, and in vivo animal characterization before it is applied in humans. According to the analysis from the Molecular Imaging and Contrast Agent Database (MICAD, ), more than 6000 molecular imaging agents with sufficient preclinical evaluation have been reported to date in the literature and this number increases by 250-300 novel agents each year. The majority of these agents are radionuclides, which are developed for positron emission tomography (PET) and single photon emission computed tomography (SPECT). Contrast agents for magnetic resonance imaging (MRI) account for only a small part. This is largely due to the fact that MRI is currently not a fully quantitative imaging technique and is less sensitive than PET and SPECT. However, because of the superior ability to simultaneously extract molecular and anatomic information, molecular MRI is attracting significant interest and various targeted nanoparticle contrast agents have been synthesized for MRI. The first and one of the most critical steps in developing a targeted nanoparticle contrast agent is target selection, which plays the central role and forms the basis for success of molecular imaging. This chapter discusses the design principles of targeted contrast agents in the emerging frontiers of molecular MRI.

  4. Dynamic contrast-enhanced magnetic resonance imaging of radiation therapy-induced microcirculation changes in rectal cancer

    SciTech Connect

    Lussanet, Quido G. de . E-mail: qdlu@rdia.azm.nl; Backes, Walter H.; Griffioen, Arjan W.; Padhani, Anwar R.; Baeten, Coen I.; Baardwijk, Angela van; Lambin, Philippe; Beets, Geerard L.; Engelshoven, Jos van; Beets-Tan, Regina G.H.

    2005-12-01

    Purpose: Dynamic contrast-enhanced T1-weighted magnetic resonance imaging (DCE-MRI) allows noninvasive evaluation of tumor microvasculature characteristics. This study evaluated radiation therapy related microvascular changes in locally advanced rectal cancer by DCE-MRI and histology. Methods and Materials: Dynamic contrast-enhanced-MRI was performed in 17 patients with primary rectal cancer. Seven patients underwent 25 fractions of 1.8 Gy radiation therapy (RT) (long RT) before DCE-MRI and 10 did not. Of these 10, 3 patients underwent five fractions of 5 Gy RT (short RT) in the week before surgery. The RT treated and nontreated groups were compared in terms of endothelial transfer coefficient (K{sup PS}, measured by DCE-MRI), microvessel density (MVD) (scored by immunoreactivity to CD31 and CD34), and tumor cell and endothelial cell proliferation (scored by immunoreactivity to Ki67). Results: Tumor K{sup PS} was 77% (p = 0.03) lower in the RT-treated group. Histogram analyses showed that RT reduced both magnitude and intratumor heterogeneity of K{sup PS} (p = 0.01). MVD was significantly lower (37%, p 0.03) in tumors treated with long RT than in nonirradiated tumors, but this was not the case with short RT. Endothelial cell proliferation was reduced with short RT (81%, p = 0.02) just before surgery, but not with long RT (p > 0.8). Tumor cell proliferation was reduced with both long (57%, p < 0.001) and short RT (52%, p = 0.002). Conclusion: Dynamic contrast-enhanced-MRI-derived K{sup PS} values showed significant radiation therapy related reductions in microvessel blood flow in locally advanced rectal cancer. These findings may be useful in evaluating effects of radiation combination therapies (e.g., chemoradiation or RT combined with antiangiogenesis therapy), to account for effects of RT alone.

  5. Catalytic Transfer of Magnetism using a Neutral Iridium Phenoxide Complex

    PubMed Central

    Ruddlesden, Amy J.; Mewis, Ryan E.; Green, Gary G. R.; Whitwood, Adrian C.; Duckett, Simon B.

    2016-01-01

    A novel neutral iridium carbene complex Ir(κC,O-L1)(COD) (1) [where COD = cyclooctadiene and L1 = 3-(2-methylene-4-nitrophenolate)-1-(2,4,6-trimethylphenyl) imidazolylidene] with a pendant alkoxide ligand has been prepared and characterized. It contains a strong Ir-O bond and X-ray analysis reveals a distorted square planar structure. NMR spectroscopy reveals dynamic solution state behavior commensurate with rapid seven-membered ring flipping. In CD2Cl2 solution, under hydrogen at low temperature, this complex dominates although it exists in equilibrium with a reactive iridium dihydride cyclooctadiene complex. 1 reacts with pyridine and H2 to form neutral Ir(H)2(κC,O-L1)(py)2 which also exists in two conformers that differ according to the orientation of the seven-membered metallocycle and whilst its Ir-O bond remains intact, the complex undergoes both pyridine and H2 exchange. As a consequence, when placed under parahydrogen, efficient polarization transfer catalysis (PTC) is observed via the Signal Amplification By Reversible Exchange (SABRE) approach. Due to the neutral character of this catalyst, good hyperpolarization activity is shown in a wide range of solvents for a number of substrates. These observations reflect a dramatic improvement in solvent tolerance of SABRE over that reported for the best PTC precursor IrCl(IMes)(COD). For THF, the associated 1H NMR signal enhancement for the ortho proton signal of pyridine shows an increase of 600-fold at 298 K. The level of signal enhancement can be increased further through warming or varying the magnetic field experienced by the sample at the point of catalytic magnetization transfer.

  6. Using the magnetosome to model effective gene-based contrast for magnetic resonance imaging.

    PubMed

    Goldhawk, Donna E; Rohani, Roja; Sengupta, Anindita; Gelman, Neil; Prato, Frank S

    2012-01-01

    Formation of iron biominerals is a naturally occurring phenomenon, particularly among magnetotactic bacteria which produce magnetite (Fe(3) O(4) ) in a subcellular compartment termed the magnetosome. Under the control of numerous genes, the magnetosome serves as a model upon which to (1) develop gene-based contrast in mammalian cells and (2) provide a mechanism for reporter gene expression in magnetic resonance imaging (MRI). There are two main components to the magnetosome: the biomineral and the lipid bilayer that surrounds it. Both are essential for magnetotaxis in a variety of magnetotactic bacteria, but nonessential for cell survival. Through comparative genome analysis, a subset of genes characteristic of the magnetotactic phenotype has been found both within and outside a magnetosome genomic island. The functions of magnetosome-associated proteins reflect the complex nature of this intracellular structure and include vesicle formation, cytoskeletal attachment, iron transport, and crystallization. Examination of magnetosome genes and structure indicates a protein-directed and stepwise assembly of the magnetosome compartment. Attachment of magnetosomes along a cytoskeletal filament aligns the magnetic particles such that the cell may be propelled along an external magnetic field. Interest in this form of magnetotaxis has prompted research in several areas of medicine, including magnetotactic bacterial targeting of tumors, MR-guided movement of magnetosome-bearing cells through vessels and molecular imaging of mammalian cells using MRI, and its hybrid modalities. The potential adaptation of magnetosome genes for noninvasive medical imaging provides new opportunities for development of reporter gene expression for MRI.

  7. Momentum transfer to rotating magnetized plasma from gun plasma injection

    SciTech Connect

    Shamim, Imran; Hassam, A. B.; Ellis, R. F.; Witherspoon, F. D.; Phillips, M. W.

    2006-11-15

    Numerical simulations are carried out to investigate the penetration and momentum coupling of a gun-injected plasma slug into a rotating magnetized plasma. An experiment along these lines is envisioned for the Maryland Centrifugal Experiment (MCX) [R. F. Ellis et al., Phys. Plasmas 8, 2057 (2001)] using a coaxial plasma accelerator gun developed by HyperV Technologies Corp. [F. D. Witherspoon et al., Bull. Am. Phys. Soc. 50, LP1 87 (2005)]. The plasma gun would be located in the axial midplane and fired off-axis into the rotating MCX plasma annulus. The numerical simulation is set up so that the initial momentum in the injected plasma slug is of the order of the initial momentum of the target plasma. Several numerical firings are done into the cylindrical rotating plasma. Axial symmetry is assumed. The slug is seen to penetrate readily and deform into a mushroom, characteristic of interchange deformations. It is found that up to 25% of the momentum in the slug can be transferred to the background plasma in one pass across a cylindrical chord. For the same initial momentum, a high-speed low density slug gives more momentum transfer than a low-speed high density slug. Details of the numerical simulations and a scaling study are presented.

  8. Protein corona affects the relaxivity and MRI contrast efficiency of magnetic nanoparticles.

    PubMed

    Amiri, Houshang; Bordonali, Lorenzo; Lascialfari, Alessandro; Wan, Sha; Monopoli, Marco P; Lynch, Iseult; Laurent, Sophie; Mahmoudi, Morteza

    2013-09-21

    Magnetic nanoparticles (NPs) are increasingly being considered for use in biomedical applications such as biosensors, imaging contrast agents and drug delivery vehicles. In a biological fluid, proteins associate in a preferential manner with NPs. The small sizes and high curvature angles of NPs influence the types and amounts of proteins present on their surfaces. This differential display of proteins bound to the surface of NPs can influence the tissue distribution, cellular uptake and biological effects of NPs. To date, the effects of adsorption of a protein corona (PC) on the magnetic properties of NPs have not been considered, despite the fact that some of their potential applications require their use in human blood. Here, to investigate the effects of a PC (using fetal bovine serum) on the MRI contrast efficiency of superparamagnetic iron oxide NPs (SPIONs), we have synthesized two series of SPIONs with variation in the thickness and functional groups (i.e. surface charges) of the dextran surface coating. We have observed that different physico-chemical characteristics of the dextran coatings on the SPIONs lead to the formation of PCs of different compositions. (1)H relaxometry was used to obtain the longitudinal, r1, and transverse, r2, relaxivities of the SPIONs without and with a PC, as a function of the Larmor frequency. The transverse relaxivity, which determines the efficiency of negative contrast agents (CAs), is very much dependent on the functional group and the surface charge of the SPIONs' coating. The presence of the PC did not alter the relaxivity of plain SPIONs, while it slightly increased the relaxivity of the negatively charged SPIONs and dramatically decreased the relaxivity of the positively charged ones, which was coupled with particle agglomeration in the presence of the proteins. To confirm the effect of the PC on the MRI contrast efficiency, in vitro MRI experiments at ν = 8.5 MHz were performed using a low-field MRI scanner. The MRI

  9. Contrast-Enhanced Magnetic Resonance Cholangiography: Practical Tips and Clinical Indications for Biliary Disease Management.

    PubMed

    Palmucci, Stefano; Roccasalva, Federica; Piccoli, Marina; Fuccio Sanzà, Giovanni; Foti, Pietro Valerio; Ragozzino, Alfonso; Milone, Pietro; Ettorre, Giovanni Carlo

    2017-01-01

    Since its introduction, MRCP has been improved over the years due to the introduction of several technical advances and innovations. It consists of a noninvasive method for biliary tree representation, based on heavily T2-weighted images. Conventionally, its protocol includes two-dimensional single-shot fast spin-echo images, acquired with thin sections or with multiple thick slabs. In recent years, three-dimensional T2-weighted fast-recovery fast spin-echo images have been added to the conventional protocol, increasing the possibility of biliary anatomy demonstration and leading to a significant benefit over conventional 2D imaging. A significant innovation has been reached with the introduction of hepatobiliary contrasts, represented by gadoxetic acid and gadobenate dimeglumine: they are excreted into the bile canaliculi, allowing the opacification of the biliary tree. Recently, 3D interpolated T1-weighted spoiled gradient echo images have been proposed for the evaluation of the biliary tree, obtaining images after hepatobiliary contrast agent administration. Thus, the acquisition of these excretory phases improves the diagnostic capability of conventional MRCP-based on T2 acquisitions. In this paper, technical features of contrast-enhanced magnetic resonance cholangiography are briefly discussed; main diagnostic tips of hepatobiliary phase are showed, emphasizing the benefit of enhanced cholangiography in comparison with conventional MRCP.

  10. High-contrast in vivo visualization of microvessels using novel FeCo/GC magnetic nanocrystals.

    PubMed

    Lee, Jin Hyung; Sherlock, Sarah P; Terashima, Masahiro; Kosuge, Hisanori; Suzuki, Yoriyasu; Goodwin, Andrew; Robinson, Joshua; Seo, Won Seok; Liu, Zhuang; Luong, Richard; McConnell, Michael V; Nishimura, Dwight G; Dai, Hongjie

    2009-12-01

    FeCo-graphitic carbon shell nanocrystals are a novel MRI contrast agent with unprecedented high per-metal-atom-basis relaxivity (r(1) = 97 mM(-1) sec(-1), r(2) = 400 mM(-1) sec(-1)) and multifunctional capabilities. While the conventional gadolinium-based contrast-enhanced angiographic magnetic MRI has proven useful for diagnosis of vascular diseases, its short circulation time and relatively low sensitivity render high-resolution MRI of morphologically small vascular structures such as those involved in collateral, arteriogenic, and angiogenic vessel formation challenging. Here, by combining FeCo-graphitic carbon shell nanocrystals with high-resolution MRI technique, we demonstrate that such microvessels down to approximately 100 mum can be monitored in high contrast and noninvasively using a conventional 1.5-T clinical MRI system, achieving a diagnostic imaging standard approximating that of the more invasive X-ray angiography. Preliminary in vitro and in vivo toxicity study results also show no sign of toxicity.

  11. High-Contrast In Vivo Visualization of Microvessels Using Novel FeCo/GC Magnetic Nanocrystals

    PubMed Central

    Lee, Jin Hyung; Sherlock, Sarah P.; Terashima, Masahiro; Kosuge, Hisanori; Suzuki, Yoriyasu; Goodwin, Andrew; Robinson, Joshua; Seo, Won Seok; Liu, Zhuang; Luong, Richard; McConnell, Michael V.; Nishimura, Dwight G.; Dai, Hongjie

    2010-01-01

    FeCo-graphitic carbon shell nanocrystals are a novel MRI contrast agent with unprecedented high per-metal-atom-basis relaxivity (r1 = 97 mM−1 sec−1, r2 = 400 mM−1 sec−1) and multifunctional capabilities. While the conventional gadolinium-based contrast-enhanced angiographic magnetic MRI has proven useful for diagnosis of vascular diseases, its short circulation time and relatively low sensitivity render high-resolution MRI of morphologically small vascular structures such as those involved in collateral, arteriogenic, and angiogenic vessel formation challenging. Here, by combining FeCo-graphitic carbon shell nanocrystals with high-resolution MRI technique, we demonstrate that such microvessels down to ~100 μm can be monitored in high contrast and noninvasively using a conventional 1.5-T clinical MRI system, achieving a diagnostic imaging standard approximating that of the more invasive X-ray angiography. Preliminary in vitro and in vivo toxicity study results also show no sign of toxicity. PMID:19859938

  12. Contrast-Enhanced Magnetic Resonance Cholangiography: Practical Tips and Clinical Indications for Biliary Disease Management

    PubMed Central

    Roccasalva, Federica; Piccoli, Marina; Fuccio Sanzà, Giovanni; Foti, Pietro Valerio; Ragozzino, Alfonso; Milone, Pietro; Ettorre, Giovanni Carlo

    2017-01-01

    Since its introduction, MRCP has been improved over the years due to the introduction of several technical advances and innovations. It consists of a noninvasive method for biliary tree representation, based on heavily T2-weighted images. Conventionally, its protocol includes two-dimensional single-shot fast spin-echo images, acquired with thin sections or with multiple thick slabs. In recent years, three-dimensional T2-weighted fast-recovery fast spin-echo images have been added to the conventional protocol, increasing the possibility of biliary anatomy demonstration and leading to a significant benefit over conventional 2D imaging. A significant innovation has been reached with the introduction of hepatobiliary contrasts, represented by gadoxetic acid and gadobenate dimeglumine: they are excreted into the bile canaliculi, allowing the opacification of the biliary tree. Recently, 3D interpolated T1-weighted spoiled gradient echo images have been proposed for the evaluation of the biliary tree, obtaining images after hepatobiliary contrast agent administration. Thus, the acquisition of these excretory phases improves the diagnostic capability of conventional MRCP—based on T2 acquisitions. In this paper, technical features of contrast-enhanced magnetic resonance cholangiography are briefly discussed; main diagnostic tips of hepatobiliary phase are showed, emphasizing the benefit of enhanced cholangiography in comparison with conventional MRCP. PMID:28348578

  13. Low-Density Lipoprotein Nanoparticles as Magnetic Resonance Imaging Contrast Agents1

    PubMed Central

    Corbin, Ian R; Li, Hui; Chen, Juan; Lund-Katz, Sissel; Zhou, Rong; Glickson, Jerry D; Zheng, Gang

    2006-01-01

    Abstract Low-density lipoproteins (LDLs) are a naturally occurring endogenous nanoplatform in mammalian systems. These nanoparticles (22 nm) specifically transport cholesterol to cells expressing the LDL receptor (LDLR). Several tumors overexpress LDLRs presumably to provide cholesterol to sustain a high rate of membrane synthesis. Amphiphilic gadolinium (Gd)-diethylenetria-minepentaacetic acid chelates have been incorporated into the LDL to produce a novel LDLR-targeted magnetic resonance imaging (MRI) contrast agent. The number of Gd chelates per LDL particle ranged between 150 and 496 Gd(III). In vitro studies demonstrated that Gd-labeled LDL retained a similar diameter and surface charge as the native LDL particle. In addition, Gd-labeled LDL retained selective cellular binding and uptake through LDLR-mediated endocytosis. Finally, Gd-labeled LDLs exhibited significant contrast enhancement 24 hours after administration in nude mice with human hepatoblastoma G2 xenografts. Thus, Gd-labeled LDL demonstrates potential use as a targeted MRI contrast agent for in vivo tumor detection. PMID:16820095

  14. Dynamic Susceptibility Contrast Magnetic Resonance Imaging Protocol of the Normal Canine Brain

    PubMed Central

    Stadler, Krystina L.; Pease, Anthony P.; Ballegeer, Elizabeth A.

    2017-01-01

    Perfusion magnetic resonance imaging (MRI), specifically dynamic susceptibility MRI (DSC-MRI) is routinely performed as a supplement to conventional MRI in human medicine for patients with intracranial neoplasia and cerebrovascular events. There is minimal data on the use of DSC-MRI in veterinary patients and a DSC-MRI protocol in the veterinary patient has not been described. Sixteen normal dogs, 6 years or older were recruited for this study. The sample population included 11 large dogs (>11 kg) and 5 small dogs (<11 kg). DSC-MRI was performed on a 1.5-T MRI using an adjusted protocol inherent to the MRI. Contrast media was injected using an automatic power injector. Injections were made after five MR measurements were obtained. Following image acquisition, an arterial input function (AIF) graph mapping the transit time of contrast within the cerebral arteries was generated. The manually selected time points along this graph were used to compute perfusion maps. A dose and rate of 0.1 mmol/kg gadolinium-based contrast media at 3 ml/s followed by 10 ml saline flush at 3 ml/s was used in all dogs greater than 11 kg. In all dogs >11 kg, a useable AIF and perfusion map was generated. One dog less than 11 kg received the same contrast dose and rate. In this patient, the protocol did not generate a useable AIF. The remainder of the dogs less than 11 kg followed a protocol of 0.2 mmol/kg gadolinium-based contrast media at 1.5 ml/s with a 10 ml saline flush at 1.5 ml/s. A useable AIF and perfusion map was generated in the remaining dogs <11 kg using the higher contrast dose and slower rate protocol. This study establishes a contrast dose and administration rate for canine DSC-MRI imaging that is different in dogs greater than 11 kg compared to dogs less than 11 kg. These protocols may be used for future applications to evaluate hemodynamic disturbances in canine intracranial pathology. PMID:28377923

  15. Dynamic Susceptibility Contrast Magnetic Resonance Imaging Protocol of the Normal Canine Brain.

    PubMed

    Stadler, Krystina L; Pease, Anthony P; Ballegeer, Elizabeth A

    2017-01-01

    Perfusion magnetic resonance imaging (MRI), specifically dynamic susceptibility MRI (DSC-MRI) is routinely performed as a supplement to conventional MRI in human medicine for patients with intracranial neoplasia and cerebrovascular events. There is minimal data on the use of DSC-MRI in veterinary patients and a DSC-MRI protocol in the veterinary patient has not been described. Sixteen normal dogs, 6 years or older were recruited for this study. The sample population included 11 large dogs (>11 kg) and 5 small dogs (<11 kg). DSC-MRI was performed on a 1.5-T MRI using an adjusted protocol inherent to the MRI. Contrast media was injected using an automatic power injector. Injections were made after five MR measurements were obtained. Following image acquisition, an arterial input function (AIF) graph mapping the transit time of contrast within the cerebral arteries was generated. The manually selected time points along this graph were used to compute perfusion maps. A dose and rate of 0.1 mmol/kg gadolinium-based contrast media at 3 ml/s followed by 10 ml saline flush at 3 ml/s was used in all dogs greater than 11 kg. In all dogs >11 kg, a useable AIF and perfusion map was generated. One dog less than 11 kg received the same contrast dose and rate. In this patient, the protocol did not generate a useable AIF. The remainder of the dogs less than 11 kg followed a protocol of 0.2 mmol/kg gadolinium-based contrast media at 1.5 ml/s with a 10 ml saline flush at 1.5 ml/s. A useable AIF and perfusion map was generated in the remaining dogs <11 kg using the higher contrast dose and slower rate protocol. This study establishes a contrast dose and administration rate for canine DSC-MRI imaging that is different in dogs greater than 11 kg compared to dogs less than 11 kg. These protocols may be used for future applications to evaluate hemodynamic disturbances in canine intracranial pathology.

  16. A universal scaling law to predict the efficiency of magnetic nanoparticles as MRI T(2)-contrast agents.

    PubMed

    Vuong, Quoc L; Berret, Jean-François; Fresnais, Jérôme; Gossuin, Yves; Sandre, Olivier

    2012-07-01

    Magnetic particles are very efficient magnetic resonance imaging (MRI) contrast agents. In recent years, chemists have unleashed their imagination to design multi-functional nanoprobes for biomedical applications including MRI contrast enhancement. This study is focused on the direct relationship between the size and magnetization of the particles and their nuclear magnetic resonance relaxation properties, which condition their efficiency. Experimental relaxation results with maghemite particles exhibiting a wide range of sizes and magnetizations are compared to previously published data and to well-established relaxation theories with a good agreement. This allows deriving the experimental master curve of the transverse relaxivity versus particle size and to predict the MRI contrast efficiency of any type of magnetic nanoparticles. This prediction only requires the knowledge of the size of the particles impermeable to water protons and the saturation magnetization of the corresponding volume. To predict the T(2) relaxation efficiency of magnetic single crystals, the crystal size and magnetization - obtained through a single Langevin fit of a magnetization curve - is the only information needed. For contrast agents made of several magnetic cores assembled into various geometries (dilute fractal aggregates, dense spherical clusters, core-shell micelles, hollow vesicles…), one needs to know a third parameter, namely the intra-aggregate volume fraction occupied by the magnetic materials relatively to the whole (hydrodynamic) sphere. Finally a calculation of the maximum achievable relaxation effect - and the size needed to reach this maximum - is performed for different cases: maghemite single crystals and dense clusters, core-shell particles (oxide layer around a metallic core) and zinc-manganese ferrite crystals.

  17. Magnetic resonance imaging contrast of iron oxide nanoparticles developed for hyperthermia is dominated by iron content

    PubMed Central

    Wabler, Michele; Zhu, Wenlian; Hedayati, Mohammad; Attaluri, Anilchandra; Zhou, Haoming; Mihalic, Jana; Geyh, Alison; DeWeese, Theodore L.; Ivkov, Robert; Artemov, Dmitri

    2015-01-01

    Purpose Magnetic iron oxide nanoparticles (MNPs) are used as contrast agents for magnetic resonance imaging (MRI) and hyperthermia for cancer treatment. The relationship between MRI signal intensity and cellular iron concentration for many new formulations, particularly MNPs having magnetic properties designed for heating in hyperthermia, is lacking. In this study, we examine the correlation between MRI T2 relaxation time and iron content in cancer cells loaded with various MNP formulations. Materials and methods Human prostate carcinoma DU-145 cells were loaded with starch-coated bionised nanoferrite (BNF), iron oxide (Nanomag® D-SPIO), Feridex™, and dextran-coated Johns Hopkins University (JHU) particles at a target concentration of 50 pg Fe/cell using poly-D-lysine transfection reagent. T2-weighted MRI of serial dilutions of these labelled cells was performed at 9.4 T and iron content quantification was performed using inductively coupled plasma mass spectrometry (ICP-MS). Clonogenic assay was used to characterise cytotoxicity. Results No cytotoxicity was observed at twice the target intracellular iron concentration (~100 pg Fe/cell). ICP-MS revealed highest iron uptake efficiency with BNF and JHU particles, followed by Feridex and Nanomag-D-SPIO, respectively. Imaging data showed a linear correlation between increased intracellular iron concentration and decreased T2 times, with no apparent correlation among MNP magnetic properties. Conclusions This study demonstrates that for the range of nanoparticle concentrations internalised by cancer cells the signal intensity of T2-weighted MRI correlates closely with absolute iron concentration associated with the cells. This correlation may benefit applications for cell-based cancer imaging and therapy including nanoparticle-mediated drug delivery and hyperthermia. PMID:24773041

  18. Protein corona affects the relaxivity and MRI contrast efficiency of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Amiri, Houshang; Bordonali, Lorenzo; Lascialfari, Alessandro; Wan, Sha; Monopoli, Marco P.; Lynch, Iseult; Laurent, Sophie; Mahmoudi, Morteza

    2013-08-01

    Magnetic nanoparticles (NPs) are increasingly being considered for use in biomedical applications such as biosensors, imaging contrast agents and drug delivery vehicles. In a biological fluid, proteins associate in a preferential manner with NPs. The small sizes and high curvature angles of NPs influence the types and amounts of proteins present on their surfaces. This differential display of proteins bound to the surface of NPs can influence the tissue distribution, cellular uptake and biological effects of NPs. To date, the effects of adsorption of a protein corona (PC) on the magnetic properties of NPs have not been considered, despite the fact that some of their potential applications require their use in human blood. Here, to investigate the effects of a PC (using fetal bovine serum) on the MRI contrast efficiency of superparamagnetic iron oxide NPs (SPIONs), we have synthesized two series of SPIONs with variation in the thickness and functional groups (i.e. surface charges) of the dextran surface coating. We have observed that different physico-chemical characteristics of the dextran coatings on the SPIONs lead to the formation of PCs of different compositions. 1H relaxometry was used to obtain the longitudinal, r1, and transverse, r2, relaxivities of the SPIONs without and with a PC, as a function of the Larmor frequency. The transverse relaxivity, which determines the efficiency of negative contrast agents (CAs), is very much dependent on the functional group and the surface charge of the SPIONs' coating. The presence of the PC did not alter the relaxivity of plain SPIONs, while it slightly increased the relaxivity of the negatively charged SPIONs and dramatically decreased the relaxivity of the positively charged ones, which was coupled with particle agglomeration in the presence of the proteins. To confirm the effect of the PC on the MRI contrast efficiency, in vitro MRI experiments at ν = 8.5 MHz were performed using a low-field MRI scanner. The MRI

  19. In vivo long-term magnetic resonance imaging activity of ferritin-based magnetic nanoparticles versus a standard contrast agent.

    PubMed

    Valero, Elsa; Fiorini, Silvia; Tambalo, Stefano; Busquier, Heriberto; Callejas-Fernández, José; Marzola, Pasquina; Gálvez, Natividad; Domínguez-Vera, José M

    2014-07-10

    New long-circulating maghemite nanoparticles of 4 and 6 nm, coated with an apoferritin protein capsid, exhibit useful properties to act as magnetic resonance imaging (MRI) contrast agents. A full in vivo study of the so-called apomaghemites reveals that their long-term MRI properties are better than those of a standard superparamagnetic iron oxide (SPIO) widely used in biomedical applications. The biodistribution of apomaghemites and standard SPIO was investigated by MRI in mice at two different concentrations, 6 and 2.5 mg of Fe·kg(-1), over 60 days. Significant differences are found at low dose (2.5 mg of Fe·kg(-1)). Thus, whereas apomaghemites are active for MR bioimaging of liver for 45 days, standard SPIO is not effective beyond 7 days. On the basis of our data, we may concluded that apomaghemites can act as new long-term MRI liver contrast agents, allowing first the diagnosis of a liver pathology and then monitoring after treatment without the need for a second injection.

  20. Rational design of magnetic nanorattles as contrast agents for ultrasound/magnetic resonance dual-modality imaging.

    PubMed

    Yang, Peng; Wang, Fang; Luo, Xianfu; Zhang, Yuting; Guo, Jia; Shi, Weibin; Wang, Changchun

    2014-08-13

    Nanorattles, as promising functional hollow nanomaterials, show considerable advantages in a variety of applications for drug delivery, biosensors, and biomedical imaging because of their tailored ability in both the movable core and shell. In this study, we formulate a facile controllable route to synthesize a monodisperse magnetic nanorattle with an Fe3O4 superparticle as the core and poly(vinylsilane) (PVS) as the outer shell (Fe3O4@air@PVS) using the polymer-backbone-transition strategy. In the process of synthesis, besides acting as the precursor for the PVS shells of nanorattles, organosilica (o-SiO2) plays the role of template for the middle cavities. The structures of nanorattles can be easily formed via etching treatment of NaOH solution. Through encapsulating sensitive perfluorohexane (PFH) in the cavities of Fe3O4@air@PVS, the biocompatible magnetic nanosystem shows a relatively stable ultrasound signal intensity and a high r2 value of 62.19 mM(-1) s(-1) for magnetic resonance imaging (MRI). After intravenous administration of nanorattles to a healthy rat, dramatically positively enhanced ultrasound imaging and negatively enhanced T2-weighted MRI are detected in the liver. Furthermore, when the Fe3O4@PFH@PVS nanorattles are administered to tumor-bearing mice, a significant passive accumulation in the tumor via an electron paramagnetic resonance effect is detected by both ultrasound imaging and MRI. In vivo experiments indicate that the obtained Fe3O4@PFH@PVS nanorattles can be used as dual-modality contrast agents for simultaneous ultrasound and MRI detection.

  1. Protoporphyrin IX fluorescence contrast in invasive glioblastomas is linearly correlated with Gd enhanced magnetic resonance image contrast but has higher diagnostic accuracy

    NASA Astrophysics Data System (ADS)

    Samkoe, Kimberley S.; Gibbs-Strauss, Summer L.; Yang, Harold H.; Khan Hekmatyar, S.; Jack Hoopes, P.; O'Hara, Julia A.; Kauppinen, Risto A.; Pogue, Brian W.

    2011-09-01

    The sensitivity and specificity of in vivo magnetic resonance (MR) imaging is compared with production of protoporphyrin IX (PpIX), determined ex vivo, in a diffusely infiltrating glioma. A human glioma transfected with green fluorescent protein, displaying diffuse, infiltrative growth, was implanted intracranially in athymic nude mice. Image contrast from corresponding regions of interest (ROIs) in in vivo MR and ex vivo fluorescence images was quantified. It was found that all tumor groups had statistically significant PpIX fluorescence contrast and that PpIX contrast demonstrated the best predictive power for tumor presence. Contrast from gadolinium enhanced T1-weighted (T1W+Gd) and absolute T2 images positively predicted the presence of a tumor, confirmed by the GFP positive (GFP+) and hematoxylin and eosin positive (H&E+) ROIs. However, only the absolute T2 images had predictive power from controls in ROIs that were GFP+ but H&E negative. Additionally, PpIX fluorescence and T1W+Gd image contrast were linearly correlated in both the GFP+ (r = 0.79, p<1×10-8) and H&E+ (r = 0.74, p<0.003) ROIs. The trace diffusion images did not have predictive power or significance from controls. This study indicates that gadolinium contrast enhanced MR images can predict the presence of diffuse tumors, but PpIX fluorescence is a better predictor regardless of tumor vascularity.

  2. Exact transfer functions for the PEP storage ring magnets and some general characteristics and techniques

    SciTech Connect

    Spencer, J.E.

    1982-05-01

    The exact, ion-optical transfer functions for the dipoles, quadrupoles and sextupoles of the PEP standard PODC cell are calculated for any single particle with initial coordinates (r, p, s). Modifications resulting from radiative energy loss are also calculated and discussed. These functions allow one to characterize individual magnets or classes of magnets by their aberrations and thereby simplify their study and correction. In contrast to high-energy spectrometers where aberrations are often analyzed away, those in storage rings drive series of high order resonances, even for perfect magnets (2), that can produce stop bands and other effects which can seriously limit performance. Thus, one would like to eliminate them altogether or failing this to develop local and global correction schemes. Even then, one should expect higher order effects to influence injection, extraction or single-pass systems either because of orbit distortions or overly large phase spece distortions such as may occur in low-beta insertions or any final-focus optics. The term exact means that the results here are based on solving the relativistic Lorentz force equation with accurate representations of measured magnetostatic fields. Such fields satisfy Maxwell's equations and are the actual fields seen by a particle as it propagates around a real storage ring. This is discussed in detail and illustrated with examples that show that this is possible, practical and may even be useful.

  3. Modulation of spin transfer torque amplitude in double barrier magnetic tunnel junctions

    SciTech Connect

    Clément, P.-Y.; Baraduc, C. Chshiev, M.; Diény, B.; Ducruet, C.; Vila, L.

    2015-09-07

    Magnetization switching induced by spin transfer torque is used to write magnetic memories (Magnetic Random Access Memory, MRAM) but can be detrimental to the reading process. It would be quite convenient therefore to modulate the efficiency of spin transfer torque. A solution is adding an extra degree of freedom by using double barrier magnetic tunnel junctions with two spin-polarizers, with controllable relative magnetic alignment. We demonstrate, for these structures, that the amplitude of in-plane spin transfer torque on the middle free layer can be efficiently tuned via the magnetic configuration of the electrodes. Using the proposed design could thus pave the way towards more reliable read/write schemes for MRAM. Moreover, our results suggest an intriguing effect associated with the out-of-plane (field-like) spin transfer torque, which has to be further investigated.

  4. Hemodynamic analysis of intracranial aneurysms using phase-contrast magnetic resonance imaging and computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Zhao, Xuemei; Li, Rui; Chen, Yu; Sia, Sheau Fung; Li, Donghai; Zhang, Yu; Liu, Aihua

    2017-03-01

    Additional hemodynamic parameters are highly desirable in the clinical management of intracranial aneurysm rupture as static medical images cannot demonstrate the blood flow within aneurysms. There are two ways of obtaining the hemodynamic information—by phase-contrast magnetic resonance imaging (PCMRI) and computational fluid dynamics (CFD). In this paper, we compared PCMRI and CFD in the analysis of a stable patient's specific aneurysm. The results showed that PCMRI and CFD are in good agreement with each other. An additional CFD study of two stable and two ruptured aneurysms revealed that ruptured aneurysms have a higher statistical average blood velocity, wall shear stress, and oscillatory shear index (OSI) within the aneurysm sac compared to those of stable aneurysms. Furthermore, for ruptured aneurysms, the OSI divides the positive and negative wall shear stress divergence at the aneurysm sac.

  5. Phenomenological universalities: a novel tool for the analysis of dynamic contrast enhancement in magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Gliozzi, A. S.; Mazzetti, S.; Delsanto, P. P.; Regge, D.; Stasi, M.

    2011-02-01

    Dynamic contrast enhancement in magnetic resonance imaging (DCE-MRI) is a promising tool for the clinical diagnosis of tumors, whose implementation may be improved through the use of suitable hemodynamic models. If one prefers to avoid assumptions about the tumor physiology, empirical fitting functions may be adopted. For this purpose, in this paper we discuss the exploitation of a recently proposed phenomenological universalities (PUN) formalism. In fact, we show that a novel PUN class may be used to describe the time-signal intensity curves in both healthy and tumoral tissues, discriminating between the two cases and thus potentially providing a convenient diagnostic tool. The proposed approach is applied to analysis of the DCE-MRI data relative to a study group composed of ten patients with spine tumors.

  6. Automated quantification of myocardial infarction using graph cuts on contrast delayed enhanced magnetic resonance images

    PubMed Central

    Lu, Yingli; Yang, Yuesong; Connelly, Kim A.; Wright, Graham A.

    2012-01-01

    In this work, we propose a semi-automated myocardial infarction quantification method for cardiac contrast delayed enhancement magnetic resonance images (DE-MRI). Advantages of this method include that it reduces manual contouring of the left ventricle, obviates a remote myocardium region, and automatically distinguishes infarct, healthy and heterogeneous (“gray zone”) tissue despite variability in intensity and noise across images. Quantitative evaluation results showed that the automatically determined infarct core and gray zone size have high correlation with that derived from the averaged results of the manual full width at half maximum (FWHM) methods (R2=0.99 for infarct core and gray zone size). Compared with the manual method, a much better reproducibility was achieved with the proposed algorithm and it shortens the evaluation time to one second per image, compared with 2-5 min per image for the manual method. PMID:23256065

  7. Automated quantification of myocardial infarction using graph cuts on contrast delayed enhanced magnetic resonance images.

    PubMed

    Lu, Yingli; Yang, Yuesong; Connelly, Kim A; Wright, Graham A; Radau, Perry E

    2012-06-01

    In this work, we propose a semi-automated myocardial infarction quantification method for cardiac contrast delayed enhancement magnetic resonance images (DE-MRI). Advantages of this method include that it reduces manual contouring of the left ventricle, obviates a remote myocardium region, and automatically distinguishes infarct, healthy and heterogeneous ("gray zone") tissue despite variability in intensity and noise across images. Quantitative evaluation results showed that the automatically determined infarct core and gray zone size have high correlation with that derived from the averaged results of the manual full width at half maximum (FWHM) methods (R(2)=0.99 for infarct core and gray zone size). Compared with the manual method, a much better reproducibility was achieved with the proposed algorithm and it shortens the evaluation time to one second per image, compared with 2-5 min per image for the manual method.

  8. A method to implement the reservoir-wave hypothesis using phase-contrast magnetic resonance imaging.

    PubMed

    Gray, Robert D M; Parker, Kim H; Quail, Michael A; Taylor, Andrew M; Biglino, Giovanni

    2016-01-01

    The reservoir-wave hypothesis states that the blood pressure waveform can be usefully divided into a "reservoir pressure" related to the global compliance and resistance of the arterial system, and an "excess pressure" that depends on local conditions. The formulation of the reservoir-wave hypothesis applied to the area waveform is shown, and the analysis is applied to area and velocity data from high-resolution phase-contrast cardiovascular magnetic resonance (CMR) imaging. A validation study shows the success of the principle, with the method producing largely robust and physically reasonable parameters, and the linear relationship between flow and wave pressure seen in the traditional pressure formulation is retained. The method was successfully tested on a cohort of 20 subjects (age range: 20-74 years; 17 males). This paper: •Demonstrates the feasibility of deriving reservoir data non-invasively from CMR.•Includes a validation cohort (CMR data).•Suggests clinical applications of the method.

  9. Enhancement of the spin transfer torque efficiency in magnetic STM junctions

    NASA Astrophysics Data System (ADS)

    Palotás, Krisztián; Mándi, Gábor; Szunyogh, László

    2016-08-01

    We introduce a method for a combined calculation of charge and vector spin transport of elastically tunneling electrons in magnetic scanning tunneling microscopy (STM). The method is based on the three-dimensional Wentzel-Kramers-Brillouin (3D-WKB) approach combined with electronic structure calculations using first-principles density functional theory. As an application, we analyze the STM contrast inversion of the charge current above the Fe/W(110) surface depending on the bias voltage, tip-sample distance, and relative magnetization orientation between the sample and an iron tip. For the spin transfer torque (STT) vector we find that its in-plane component is generally larger than the out-of-plane component, and we identify a longitudinal spin current component, which, however, does not contribute to the torque. Our results suggest that the torque-current relationship in magnetic STM junctions follows the power law rather than a linear function. Consequently, we show that the ratio between the STT and the spin-polarized charge current is not constant, and more importantly, it can be tuned by the bias voltage, tip-sample distance, and magnetization rotation. We find that the STT efficiency can be enhanced by about a factor of seven by selecting a proper bias voltage. Thus, we demonstrate the possible enhancement of the STT efficiency in magnetic STM junctions, which can be exploited in technological applications. We discuss our results in view of the indirect measurement of the STT above the Fe/W(110) surface reported by S. Krause et al. [Phys. Rev. Lett. 107, 186601 (2011), 10.1103/PhysRevLett.107.186601].

  10. A Compressive Sensing Approach for 3D Breast Cancer Microwave Imaging With Magnetic Nanoparticles as Contrast Agent.

    PubMed

    Bevacqua, Martina T; Scapaticci, Rosa

    2016-02-01

    In microwave breast cancer imaging magnetic nanoparticles have been recently proposed as contrast agent. Due to the non-magnetic nature of human tissues, magnetic nanoparticles make possible the overcoming of some limitations of conventional microwave imaging techniques, thus providing reliable and specific diagnosis of breast cancer. In this paper, a Compressive Sensing inspired inversion technique is introduced for the reconstruction of the magnetic contrast induced within the tumor. The applicability of Compressive Sensing theory is guaranteed by the fact that the underlying inverse scattering problem is linear and the searched magnetic perturbation is sparse. From the numerical analysis, performed in realistic conditions in 3D geometry, it has been pointed out that the adoption of this new tool allows improving resolution and accuracy of the reconstructions, as well as reducing the number of required measurements.

  11. Frequent, independent transfers of a catabolic gene from bacteria to contrasted filamentous eukaryotes

    PubMed Central

    Bruto, Maxime; Prigent-Combaret, Claire; Luis, Patricia; Moënne-Loccoz, Yvan; Muller, Daniel

    2014-01-01

    Even genetically distant prokaryotes can exchange genes between them, and these horizontal gene transfer events play a central role in adaptation and evolution. While this was long thought to be restricted to prokaryotes, certain eukaryotes have acquired genes of bacterial origin. However, gene acquisitions in eukaryotes are thought to be much less important in magnitude than in prokaryotes. Here, we describe the complex evolutionary history of a bacterial catabolic gene that has been transferred repeatedly from different bacterial phyla to stramenopiles and fungi. Indeed, phylogenomic analysis pointed to multiple acquisitions of the gene in these filamentous eukaryotes—as many as 15 different events for 65 microeukaryotes. Furthermore, once transferred, this gene acquired introns and was found expressed in mRNA databases for most recipients. Our results show that effective inter-domain transfers and subsequent adaptation of a prokaryotic gene in eukaryotic cells can happen at an unprecedented magnitude. PMID:24990676

  12. Frequent, independent transfers of a catabolic gene from bacteria to contrasted filamentous eukaryotes.

    PubMed

    Bruto, Maxime; Prigent-Combaret, Claire; Luis, Patricia; Moënne-Loccoz, Yvan; Muller, Daniel

    2014-08-22

    Even genetically distant prokaryotes can exchange genes between them, and these horizontal gene transfer events play a central role in adaptation and evolution. While this was long thought to be restricted to prokaryotes, certain eukaryotes have acquired genes of bacterial origin. However, gene acquisitions in eukaryotes are thought to be much less important in magnitude than in prokaryotes. Here, we describe the complex evolutionary history of a bacterial catabolic gene that has been transferred repeatedly from different bacterial phyla to stramenopiles and fungi. Indeed, phylogenomic analysis pointed to multiple acquisitions of the gene in these filamentous eukaryotes-as many as 15 different events for 65 microeukaryotes. Furthermore, once transferred, this gene acquired introns and was found expressed in mRNA databases for most recipients. Our results show that effective inter-domain transfers and subsequent adaptation of a prokaryotic gene in eukaryotic cells can happen at an unprecedented magnitude.

  13. Biocompatible KMnF3 nanoparticular contrast agent with proper plasma retention time for in vivo magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-jun; Song, Xiao-xia; Xu, Xian-zhu; Tang, Qun

    2014-04-01

    Nanoparticular MRI contrast agents are rapidly becoming suitable for use in clinical diagnosis. An ideal nanoparticular contrast agent should be endowed with high relaxivity, biocompatibility, proper plasma retention time, and tissue-specific or tumor-targeting imaging. Herein we introduce PEGylated KMnF3 nanoparticles as a new type of T1 contrast agent. Studies showed that the nanoparticular contrast agent revealed high bio-stability with bovine serum albumin in PBS buffer solution, and presented excellent biocompatibility (low cytotoxicity, undetectable hemolysis and hemagglutination). Meanwhile the new contrast agent possessed proper plasma retention time (circulation half-life t1/2 is approximately 2 h) in the body of the administrated mice. It can be delivered into brain vessels and maintained there for hours, and is mostly cleared from the body within 48 h, as demonstrated by time-resolved MRI and Mn-biodistribution analysis. Those distinguishing features make it suitable to obtain contrast-enhanced brain magnetic resonance angiography. Moreover, through the process of passive targeting delivery, the T1 contrast agent clearly illuminates a brain tumor (glioma) with high contrast image and defined shape. This study demonstrates that PEGylated KMnF3 nanoparticles represent a promising biocompatible vascular contrast agent for magnetic resonance angiography and can potentially be further developed into an active targeted tumor MRI contrast agent.

  14. The effect of magnetic field on nanofluids heat transfer through a uniformly heated horizontal tube

    NASA Astrophysics Data System (ADS)

    Hatami, N.; Kazemnejad Banari, A.; Malekzadeh, A.; Pouranfard, A. R.

    2017-02-01

    In this study, the effects of magnetic field on forced convection heat transfer of Fe3O4-water nanofluid with laminar flow regime in a horizontal pipe under constant heat flux conditions were studied, experimentally. The convective heat transfer of magnetic fluid flow inside the heated pipe with uniform magnetic field was measured. Fe3O4 nanoparticles with diameters less than 100 nm dispersed in water with various volume concentrations are used as the test fluid. The effect of the external magnetic field (Ha = 33.4 ×10-4 to 136.6 ×10-4) and nanoparticle concentrations (φ = 0, 0.1, 0.5, 1%) on heat transfer characteristics were investigated. Results showed that by the presence of a magnetic field, increase in nanoparticle concentration caused reduction of convection heat transfer coefficient. In this condition, heat transfer decreased up to 25%. Where, in the absence of an external magnetic field, adding magnetic nanoparticles increased convection heat transfer more than 60%. It was observed that the Nusselt number decreased by increasing the Hartmann number at a specified concentration of magnetic nanofluids, that reduction about 25% in heat transfer rate could be found.

  15. Voltage-driven spin-transfer torque in a magnetic particle

    NASA Astrophysics Data System (ADS)

    Gartland, P.; Davidović, D.

    2015-10-01

    We discuss a spin-transfer torque device, where the role of the soft ferromagnetic layer is played by a magnetic particle or a magnetic molecule, in weak tunnel contact with two spin polarized leads. We investigate if the magnetization of the particle can be manipulated electronically, in the regime where the critical current for magnetization switching is negligibly weak, which could be due to the reduced particle dimensions. Using master equation simulations to evaluate the effects of spin-orbit anisotropy energy fluctuations on spin-transfer, we obtain reliable reading and writing of the magnetization state of such magnetic particle, and find that the device relies on a critical voltage rather than a critical current. The critical voltage is governed by the spin-orbit energy shifts of discrete levels in the particle. This finding opens a possibility to significantly reduce the power dissipation involved in spin-transfer torque switching, by using very small magnetic particles or molecules.

  16. Voltage-driven spin-transfer torque in a magnetic particle

    SciTech Connect

    Gartland, P. Davidović, D.

    2015-10-26

    We discuss a spin-transfer torque device, where the role of the soft ferromagnetic layer is played by a magnetic particle or a magnetic molecule, in weak tunnel contact with two spin polarized leads. We investigate if the magnetization of the particle can be manipulated electronically, in the regime where the critical current for magnetization switching is negligibly weak, which could be due to the reduced particle dimensions. Using master equation simulations to evaluate the effects of spin-orbit anisotropy energy fluctuations on spin-transfer, we obtain reliable reading and writing of the magnetization state of such magnetic particle, and find that the device relies on a critical voltage rather than a critical current. The critical voltage is governed by the spin-orbit energy shifts of discrete levels in the particle. This finding opens a possibility to significantly reduce the power dissipation involved in spin-transfer torque switching, by using very small magnetic particles or molecules.

  17. Enhanced magnetic resonance contrast of iron oxide nanoparticles embedded in a porous silicon nanoparticle host

    NASA Astrophysics Data System (ADS)

    Kinsella, Joseph; Ananda, Shalini; Andrew, Jennifer; Grondek, Joel; Chien, Miao-Ping; Scandeng, Miriam; Gianneschi, Nathan; Ruoslahti, Erkki; Sailor, Michael

    2013-02-01

    In this report, we prepared a porous Si nanoparticle with a pore morphology that facilitates the proximal loading and alignment of magnetite nanoparticles. We characterized the composite materials using superconducting quantum interference device magnetometry, dynamic light scattering, transmission electron microscopy, and MRI. The in vitro cytotoxicity of the composite materials was tested using cell viability assays on human liver cancer cells and rat hepatocytes. An in vivo analysis using a hepatocellular carcinoma (HCC) Sprague Dawley rat model was used to determine the biodistribution properties of the material, while naïve Sprague Dawley rats were used to determine the pharmocokinetic properties of the nanomaterials. The composite material reported here demonstrates an injectable nanomaterial that exploits the dipolar coupling of superparamagnetic nanoparticles trapped within a secondary inorganic matrix to yield significantly enhanced MRI contrast. This preparation successfully avoids agglomeration issues that plague larger ferromagnetic systems. A Fe3O4:pSi composite formulation consisting of 25% by mass Fe3O4 yields an maximal T2* value of 556 mM Fe-1 s-1. No cellular (HepG2 or rat hepatocyte cells) or in vivo (rat) toxicity was observed with the formulation, which degrades and is eliminated after 4-8 h in vivo. The ability to tailor the magnetic properties of such materials may be useful for in vivo imaging, magnetic hyperthermia, or drug-delivery applications.

  18. Diagnostic value of dynamic contrast-enhanced magnetic resonance imaging in rectal cancer and its correlation with tumor differentiation

    PubMed Central

    SHEN, FU; LU, JIANPING; CHEN, LUGUANG; WANG, ZHEN; CHEN, YUKUN

    2016-01-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a novel imaging modality that can be used to reflect the microcirculation, although its value in diagnosing rectal cancer is unknown. The present study aimed to explore the clinical application of DCE-MRI in the preoperative diagnosis of rectal cancer, and its correlation with tumor differentiation. To achieve this, 40 pathologically confirmed patients with rectal cancer and 15 controls were scanned using DCE-MRI. The Tofts model was applied to obtain the perfusion parameters, including the plasma to extravascular volume transfer (Ktrans), the extravascular to plasma volume transfer (Kep), the extravascular fluid volume (Ve) and the initial area under the enhancement curve (iAUC). Receiver-operating characteristic (ROC) curves were plotted to determine the diagnostic value. The results demonstrated that the time-signal intensity curve of the rectal cancer lesion exhibited an outflow pattern. The Ktrans, Kep, Ve, and iAUC values were higher in the cancer patients compared with controls (P<0.05). The intraclass correlation coefficients of Ktrans, Kep, Ve and iAUC, as measured by two independent radiologists, were 0.991, 0.988, 0.972 and 0.984, respectively (all P<0.001), indicating a good consistency. The areas under the ROC curves for Ktrans and iAUC were both >0.9, resulting in a sensitivity and specificity of 100% and 93.3% for Ktrans, and of 92.5%, and 93.3% or 100%, for iAUC, respectively. In the 40 rectal cancer cases, there was a moderate correlation between Ktrans and iAUC, and pathological differentiation (0.3

  19. Removal of magnetic resonance imaging contrast agents through advanced water treatment plants.

    PubMed

    Lawrence, Michael G; Keller, Jurg; Poussade, Yvan

    2010-01-01

    Stable gadolinium (Gd) complexes have been used as paramagnetic contrast agents for magnetic resonance imaging (MRI) for over 20 years, and have recently been identified as environmental contaminants. As the rare earth elements (REE), which include Gd, are able to be measured accurately at very low concentrations (e.g. Tb is measured at 7 fmol/kg in this study) using inductively coupled plasma mass spectrometry (ICP-MS), it is possible to determine the fate of this class of compounds during the production of purified recycled water from effluent. Coagulation and microfiltration have negligible removal, with the major removal step occurring across the reverse osmosis membrane where anthropogenic Gd (the amount of Gd attributable to MRI contrast agents) is reduced from 0.39 nmol/kg to 0.59 pmol/kg, a reduction of 99.85%. The RO concentrate has anthropogenic Gd concentrations of 2.6 nmol/kg, an increase in concentration in line with the design characteristics of the plant. The increased concentration in the RO concentrate may allow further development of anthropogenic Gd as a tracer of the fate of the RO concentrate in the environment.

  20. Magnetization Transfer and Amide Proton Transfer MRI of Neonatal Brain Development.

    PubMed

    Zheng, Yang; Wang, Xiaoming; Zhao, Xuna

    2016-01-01

    Purpose. This study aims to evaluate the process of brain development in neonates using combined amide proton transfer (APT) imaging and conventional magnetization transfer (MT) imaging. Materials and Methods. Case data were reviewed for all patients hospitalized in our institution's neonatal ward. Patients underwent APT and MT imaging (a single protocol) immediately following the routine MR examination. Single-slice APT/MT axial imaging was performed at the level of the basal ganglia. APT and MT ratio (MTR) measurements were performed in multiple brain regions of interest (ROIs). Data was statistically analyzed in order to assess for significant differences between the different regions of the brain or correlation with patient gestational age. Results. A total of 38 neonates were included in the study, with ages ranging from 27 to 41 weeks' corrected gestational age. There were statistically significant differences in both APT and MTR measurements between the frontal lobes, basal ganglia, and occipital lobes (APT: frontal lobe versus occipital lobe P = 0.031 and other groups P = 0.00; MTR: frontal lobe versus occipital lobe P = 0.034 and other groups P = 0.00). Furthermore, APT and MTR in above brain regions exhibited positive linear correlations with patient gestational age. Conclusions. APT/MT imaging can provide valuable information about the process of the neonatal brain development at the molecular level.

  1. Magnetization Transfer and Amide Proton Transfer MRI of Neonatal Brain Development

    PubMed Central

    Zhao, Xuna

    2016-01-01

    Purpose. This study aims to evaluate the process of brain development in neonates using combined amide proton transfer (APT) imaging and conventional magnetization transfer (MT) imaging. Materials and Methods. Case data were reviewed for all patients hospitalized in our institution's neonatal ward. Patients underwent APT and MT imaging (a single protocol) immediately following the routine MR examination. Single-slice APT/MT axial imaging was performed at the level of the basal ganglia. APT and MT ratio (MTR) measurements were performed in multiple brain regions of interest (ROIs). Data was statistically analyzed in order to assess for significant differences between the different regions of the brain or correlation with patient gestational age. Results. A total of 38 neonates were included in the study, with ages ranging from 27 to 41 weeks' corrected gestational age. There were statistically significant differences in both APT and MTR measurements between the frontal lobes, basal ganglia, and occipital lobes (APT: frontal lobe versus occipital lobe P = 0.031 and other groups P = 0.00; MTR: frontal lobe versus occipital lobe P = 0.034 and other groups P = 0.00). Furthermore, APT and MTR in above brain regions exhibited positive linear correlations with patient gestational age. Conclusions. APT/MT imaging can provide valuable information about the process of the neonatal brain development at the molecular level. PMID:27885356

  2. Evaluation of Soft Tissue Sarcoma Response to Preoperative Chemoradiotherapy Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging

    PubMed Central

    Huang, Wei; Beckett, Brooke R.; Tudorica, Alina; Meyer, Janelle M.; Afzal, Aneela; Chen, Yiyi; Mansoor, Atiya; Hayden, James B.; Doung, Yee-Cheen; Hung, Arthur Y.; Holtorf, Megan L.; Aston, Torrie J.; Ryan, Christopher W.

    2016-01-01

    This study aims to assess the utility of quantitative dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) parameters in comparison with imaging tumor size for early prediction and evaluation of soft tissue sarcoma response to preoperative chemoradiotherapy. In total, 20 patients with intermediate- to high-grade soft tissue sarcomas received either a phase I trial regimen of sorafenib + chemoradiotherapy (n = 8) or chemoradiotherapy only (n = 12), and underwent DCE-MRI at baseline, after 2 weeks of treatment with sorafenib or after the first chemotherapy cycle, and after therapy completion. MRI tumor size in the longest diameter (LD) was measured according to the RECIST (Response Evaluation Criteria In Solid Tumors) guidelines. Pharmacokinetic analyses of DCE-MRI data were performed using the Shutter-Speed model. After only 2 weeks of treatment with sorafenib or after 1 chemotherapy cycle, Ktrans (rate constant for plasma/interstitium contrast agent transfer) and its percent change were good early predictors of optimal versus suboptimal pathological response with univariate logistic regression C statistics values of 0.90 and 0.80, respectively, whereas RECIST LD percent change was only a fair predictor (C = 0.72). Post-therapy Ktrans, ve (extravascular and extracellular volume fraction), and kep (intravasation rate constant), not RECIST LD, were excellent (C > 0.90) markers of therapy response. Several DCE-MRI parameters before, during, and after therapy showed significant (P < .05) correlations with percent necrosis of resected tumor specimens. In conclusion, absolute values and percent changes of quantitative DCE-MRI parameters provide better early prediction and evaluation of the pathological response of soft tissue sarcoma to preoperative chemoradiotherapy than the conventional measurement of imaging tumor size change. PMID:28066805

  3. Magnetic red blood cells as new contrast agents for MRI applications

    NASA Astrophysics Data System (ADS)

    Antonelli, Antonella; Sfara, Carla; Manuali, Elisabetta; Salamida, Sonia; Louin, Gaëlle; Magnani, Mauro

    2013-03-01

    Superparamagnetic iron oxide (SPIO) nanoparticles have been produced and used successfully as potent contrast agents for Magnetic Resonance Imaging (MRI). However, a significant challenge associated with the biological application of SPIO-tracer agents is their behavior in vivo since their efficacy is often compromised due to a rapid recognition and clearance by the reticuloendothelial system (RES) which limits the applicability of such compounds in MRI. The advances in nanotechnology and molecular cell biology had lead to improve stability and biocompatibility of these nanoparticles, but despite a number of efforts, the SPIO half-life in blood circulation is very short. In this contest, the potential of red blood cells (RBCs) loaded with SPIO nanoparticles as a tracer material for MRI has been investigated in order to realize a blood pool tracer with longer blood retention time. Previously, we have proposed the encapsulation into RBCs of superparamagnetic iron oxide nanoparticles carboxydextran coated, such as Resovist contrast agent. This approach led to a nanoparticle reduction in uptake by the RES, increasing the blood circulation half-life of nanoparticles. Recently, the loading procedure was applied to a new contrast agent, the P904 ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles coated by hydrophilic derivatives of glucose, recently developed by Guerbet Laboratories. The results evidenced that this nanomaterial can be efficiently loaded into human and murine RBCs at concentrations ranging from 1.5 to 12 mM Fe. In vivo experiments performed in mice have showed an increased survival in the mouse vascular system of P904 encapsulated into RBCs respect to free P904 sample intravenously injected at the equivalent amounts.

  4. High-Resolution Magnetic Resonance Angiography in the Mouse Using a Nanoparticle Blood-Pool Contrast Agent

    PubMed Central

    Howles, Gabriel P.; Ghaghada, Ketan B.; Qi, Yi; Mukundan, Srinivasan; Johnson, G. Allan

    2009-01-01

    High-resolution magnetic resonance angiography is already a useful tool for studying mouse models of human disease. Magnetic resonance angiography in the mouse is typically performed using time-of-flight) contrast. In this work, a new long-circulating blood-pool contrast agent—a liposomal nanoparticle with surface-conjugated gadolinium (SC-Gd liposomes)—was evaluated for use in mouse neurovascular magnetic resonance angiography. A total of 12 mice were imaged. Scan parameters were optimized for both time-of-flight and SC-Gd contrast. Compared to time-of-flight contrast, SC-Gd liposomes (0.08 mmol/kg) enabled improved small-vessel contrast-to-noise ratio, larger field of view, shorter scan time, and imaging of venous structures. For a limited field of view, time-of-flight and SC-Gd were not significantly different; however, SC-Gd provided better contrast-to-noise ratio when the field of view encompassed the whole brain (P < 0.001) or the whole neurovascular axis (P < 0.001). SC-Gd allowed acquisition of high-resolution magnetic resonance angiography (52 × 52 × 100 micrometer3 or 0.27 nL), with 123% higher (P < 0.001) contrast-to-noise ratio in comparable scan time (~45 min). Alternatively, SC-Gd liposomes could be used to acquire high-resolution magnetic resonance angiography (0.27 nL) with 32% higher contrast-to-noise ratio (P < 0.001) in 75% shorter scan time (12 min). PMID:19902507

  5. Trapping and dynamic manipulation of polystyrene beads mimicking circulating tumor cells using targeted magnetic/photoacoustic contrast agents

    NASA Astrophysics Data System (ADS)

    Wei, Chen-Wei; Xia, Jinjun; Pelivanov, Ivan; Hu, Xiaoge; Gao, Xiaohu; O'Donnell, Matthew

    2012-10-01

    Results on magnetically trapping and manipulating micro-scale beads circulating in a flow field mimicking metastatic cancer cells in human peripheral vessels are presented. Composite contrast agents combining magneto-sensitive nanospheres and highly optical absorptive gold nanorods were conjugated to micro-scale polystyrene beads. To efficiently trap the targeted objects in a fast stream, a dual magnet system consisting of two flat magnets to magnetize (polarize) the contrast agent and an array of cone magnets producing a sharp gradient field to trap the magnetized contrast agent was designed and constructed. A water-ink solution with an optical absorption coefficient of 10 cm-1 was used to mimic the optical absorption of blood. Magnetomotive photoacoustic imaging helped visualize bead trapping, dynamic manipulation of trapped beads in a flow field, and the subtraction of stationary background signals insensitive to the magnetic field. The results show that trafficking micro-scale objects can be effectively trapped in a stream with a flow rate up to 12 ml/min and the background can be significantly (greater than 15 dB) suppressed. It makes the proposed method very promising for sensitive detection of rare circulating tumor cells within high flow vessels with a highly absorptive optical background.

  6. Trapping and dynamic manipulation of polystyrene beads mimicking circulating tumor cells using targeted magnetic/photoacoustic contrast agents.

    PubMed

    Wei, Chen-Wei; Xia, Jinjun; Pelivanov, Ivan; Hu, Xiaoge; Gao, Xiaohu; O'Donnell, Matthew

    2012-10-01

    Results on magnetically trapping and manipulating micro-scale beads circulating in a flow field mimicking metastatic cancer cells in human peripheral vessels are presented. Composite contrast agents combining magneto-sensitive nanospheres and highly optical absorptive gold nanorods were conjugated to micro-scale polystyrene beads. To efficiently trap the targeted objects in a fast stream, a dual magnet system consisting of two flat magnets to magnetize (polarize) the contrast agent and an array of cone magnets producing a sharp gradient field to trap the magnetized contrast agent was designed and constructed. A water-ink solution with an optical absorption coefficient of 10  cm⁻¹ was used to mimic the optical absorption of blood. Magnetomotive photoacoustic imaging helped visualize bead trapping, dynamic manipulation of trapped beads in a flow field, and the subtraction of stationary background signals insensitive to the magnetic field. The results show that trafficking micro-scale objects can be effectively trapped in a stream with a flow rate up to 12  ml/min and the background can be significantly (greater than 15 dB) suppressed. It makes the proposed method very promising for sensitive detection of rare circulating tumor cells within high flow vessels with a highly absorptive optical background.

  7. Effect of the magnetic field direction on forced convection heat transfer enhancements in ferrofluids

    NASA Astrophysics Data System (ADS)

    Cherief, Wahid; Avenas, Yvan; Ferrouillat, Sébastien; Kedous-Lebouc, Afef; Jossic, Laurent; Berard, Jean; Petit, Mickael

    2015-07-01

    Applying a magnetic field on a ferrofluid flow induces a large increase of the convective heat transfer coefficient. In this paper, the thermal-hydraulic behaviors of two commercial ferrofluids are compared. The variations of both the pressure drop and the heat transfer coefficient due to the magnetic field are measured in the following conditions: square duct, laminar flow and uniform wall heat flux. The square section with two insulated walls allows for the characterization of the effect of the magnetic field direction. The experimental results show that the heat transfer is better enhanced when the magnetic field is perpendicular to the heat flux. In the best case, the local heat transfer coefficient increase is about 75%. On the contrary, another experimental setup shows no enhancement of thermal conductivity when the magnetic field is perpendicular to the heat flux. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2014) - Elected submissions", edited by Adel Razek

  8. Novel Imaging Contrast Methods for Hyperpolarized 13 C Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Reed, Galen Durant

    Magnetic resonance imaging using hyperpolarized 13C-labeled small molecules has emerged as an extremely powerful tool for the in vivo monitoring of perfusion and metabolism. This work presents methods for improved imaging, parameter mapping, and image contrast generation for in vivo hyperpolarized 13C MRI. Angiography using hyperpolarized urea was greatly improved with a highly T2-weighted acquisition in combination with 15N labeling of the urea amide groups. This is due to the fact that the T2 of [13C]urea is strongly limited by the scalar coupling to the neighboring quadrupolar 14N. The long in vivo T2 values of [13C, 15N2]urea were utilized for sub-millimeter projection angiography using a contrast agent that could be safely injected in concentrations of 10-100 mM while still tolerated in patients with renal insufficiency. This study also presented the first method for in vivo T2 mapping of hyperpolarized 13C compounds. The in vivo T2 of urea was short in the blood and long within the kidneys. This persistent signal component was isolated to the renal filtrate, thus enabling for the first time direct detection of an imaging contrast agent undergoing glomerular filtration. While highly T2-weighted acquisitions select for molecules with short rotational correlation times, high diffusion weighting selects for those with the long translational correlation times. A specialized spin-echo EPI sequence was developed in order to generate highly diffusion-weighted hyperpolarized 13C images on a clinical MRI system operating within clinical peak- RF and gradient amplitude constraints. Low power adiabatic spin echo pulses were developed in order to generate a sufficiently large refocused bandwidth while maintaining low nominal power. This diffusion weighted acquisition gave enhanced tumor contrast-to-noise ratio when imaging [1-13C]lactate after infusion of [1-13C]pyruvate. Finally, the first in-man hyperpolarized 13C MRI clinical trial is discussed.

  9. Inversion recovery measurements in the presence of radiation damping and implications for evaluating contrast agents in magnetic resonance.

    PubMed

    Eykyn, Thomas R; Payne, Geoffrey S; Leach, Martin O

    2005-11-21

    Relaxation measurements performed at high magnetic field in magnetic resonance (MR) may be adversely affected by the influence of radiation damping in concentrated samples such as water. We consider how the measured value of T1 is affected by this phenomenon for a gadolinium-doped water sample and for an undoped water sample and consider the implications for evaluating contrast agents. A simple method involving the application of a pulsed field gradient to de-phase residual transverse components of the magnetization is shown to be an effective method for suppressing this effect. Given the central role that measurement of the T1 of water plays in the assessment of contrast agents as well as a host of other MR applications, care should always be employed when measuring and interpreting T1 measurements at high magnetic fields.

  10. Transfer matrix of a Glaser magnet to study the dynamics of non-axisymmetric beam

    NASA Astrophysics Data System (ADS)

    Goswami, A.; Sing Babu, P.; Pandit, V. S.

    2012-06-01

    A Glaser magnet, having bell-shaped distribution of axial field, is often used to focus charged particle beams in the low energy section of accelerators and in many other devices. The transfer matrix of a Glaser magnet available in the literature is only for a rotationally axisymmetric beam. The objective of this paper is to obtain the 4D transfer matrix of a Glaser magnet for a non-axisymmetric beam having different emittances in the two transverse planes. Starting from the Hamiltonian of a single particle motion we have obtained the 4×4 linear transfer matrix of the Glaser magnet in symplectic form. The matrix so derived has been used to estimate the beam envelope through a Glaser magnet using the well known sigma matrix method. We have also studied the emittance growth that results from the coupling between the two transverse planes as the beam passes through the Glaser magnet.

  11. Using frequency-labeled exchange transfer to separate out conventional magnetization transfer effects from exchange transfer effects when detecting ParaCEST agents.

    PubMed

    Lin, Chien-Yuan; Yadav, Nirbhay N; Friedman, Joshua I; Ratnakar, James; Sherry, A Dean; van Zijl, Peter C M

    2012-04-01

    Paramagnetic chemical exchange saturation transfer agents combine the benefits of a large chemical shift difference and a fast exchange rate for sensitive MRI detection. However, the in vivo detection of these agents is hampered by the need for high B(1) fields to allow sufficiently fast saturation before exchange occurs, thus causing interference of large magnetization transfer effects from semisolid macromolecules. A recently developed approach named frequency-labeled exchange transfer utilizes excitation pulses instead of saturation pulses for detecting the exchanging protons. Using solutions and gel phantoms containing the europium (III) complex of DOTA tetraglycinate (EuDOTA-(gly)(-) (4) ), it is shown that frequency-labeled exchange transfer allows the separation of chemical exchange effects and magnetization transfer (MT) effects in the time domain, therefore allowing the study of the individual resonance of rapidly exchanging water molecules (k(ex) >10(4) s(-1) ) without interference from conventional broad-band MT.

  12. Experimental investigation on heat transfer characteristics of magnetic fluid flow around a fine wire under the influence of an external magnetic field

    SciTech Connect

    Li, Qiang; Xuan, Yimin

    2009-04-15

    Experimental investigation is conducted to get insight into convective heat transfer features of the aqueous magnetic fluid flow over a fine wire under the influence of an external magnetic field. The convective heat transfer coefficient of the aqueous magnetic fluid flow around the heated wire is measured in both the uniform magnetic field and the magnetic field gradient. The effects of the external magnetic field strength and its orientation on the thermal behaviors of the magnetic fluids are analyzed. The experimental results show that the external magnetic field is a vital factor that affects the convective heat transfer performances of the magnetic fluids and the control of heat transfer processes of a magnetic fluid flow can be possible by applying an external magnetic field. (author)

  13. Effects of iodinated contrast agent, xylocaine and gadolinium concentration on the signal emitted in magnetic resonance arthrography: a samples study*

    PubMed Central

    da Silva, Yvana Lopes Pinheiro; Costa, Rita Zanlorensi Visneck; Pinho, Kátia Elisa Prus; Ferreira, Ricardo Rabello; Schuindt, Sueliton Miyamoto

    2015-01-01

    Objective To investigate the effects of dilution of paramagnetic contrast agent with iodinated contrast and xylocaine on the signal intensity during magnetic resonance arthrography, and to improve the paramagnetic contrast agent concentration utilized in this imaging modality. Materials and Methods Samples specially prepared for the study with three different concentrations of paramagnetic contrast agent diluted in saline, iodinated contrast agent and xylocaine were imaged with fast spin echo T1-weighted sequences with fat saturation. The samples were placed into flasks and graphical analysis of the signal intensity was performed as a function of the paramagnetic contrast concentration. Results As compared with samples of equal concentrations diluted only with saline, the authors have observed an average signal intensity decrease of 20.67% for iodinated contrast agent, and of 28.34% for xylocaine. However, the increased gadolinium concentration in the samples caused decrease in signal intensity with all the dilutions. Conclusion Minimizing the use of iodinated contrast media and xylocaine and/or the use of a gadolinium concentration of 2.5 mmol/L diluted in saline will improve the sensitivity of magnetic resonance arthrography. PMID:25987746

  14. Biologically-compatible gadolinium(at)(carbon nanostructures) as advanced contrast agents for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Sitharaman, Balaji

    2005-11-01

    Paramagnetic gadolinium-based carbon nanostructures are introduced as a new paradigm in high-performance magnetic resonance imaging (MRI) contrast agent (CA) design. Two Gd C60-based nanomaterials, Gd C60 [C(COOH)2]10 and Gd C60(OH)x are shown to have MRI efficacies (relaxivities) 5 to 20 times larger than any current Gd3+-based CA in clinical use. The first detailed and systematic physicochemical characterization was performed on these materials using the same experimental techniques usually applied to traditional Gd 3+-based CAs. Water-proton relaxivities were measured for the first time on these materials, as a function of magnetic field (5 x 10-4--9.4 T) to elucidate the different interaction mechanisms and dynamic processes influencing the relaxation behavior. These studies attribute the observed enhanced relaxivities completely to the "outer sphere" proton relaxation mechanism. These "outer sphere" relaxation effects are the largest reported for any Gd3+-based agent without inner-sphere water molecules. The proton relaxivities displayed a remarkable pH-dependency, increasing dramatically with decreasing pH (pH: 3--12). The increase in relaxivity resulted mainly from aggregation and subsequent three-order-of-magnitude increase in tauR, the rotational correlation time. Water-soluble fullerene materials (such as the neuroprotective fullerene drug, C3) readily cross cell membranes, suggesting an application for these gadofullerenes as the first intracellular, as well as pH-responsive MRI CAs. Studies performed at 60 MHz in the presence of phosphate-buffered saline (PBS, mice serum pH: 7.4) to mimic physiological conditions demonstrated that the aggregates can be disrupted by addition of salts, leading to a decrease in relaxivity. Biological fluids present a high salt concentration and should strongly modify the behavior of any fullerenes/metallofullerene-based drug in vivo. Gd C60[C(COOH)2]10 also showed enhanced relaxivity (23% increase) in the presence of the

  15. New calcium-selective smart contrast agents for magnetic resonance imaging.

    PubMed

    Verma, Kirti Dhingra; Forgács, Attila; Uh, Hyounsoo; Beyerlein, Michael; Maier, Martin E; Petoud, Stéphane; Botta, Mauro; Logothetis, Nikos K

    2013-12-23

    Calcium plays a vital role in the human body and especially in the central nervous system. Precise maintenance of Ca(2+) levels is very crucial for normal cell physiology and health. The deregulation of calcium homeostasis can lead to neuronal cell death and brain damage. To study this functional role played by Ca(2+) in the brain noninvasively by using magnetic resonance imaging, we have synthesized a new set of Ca(2+) -sensitive smart contrast agents (CAs). The agents were found to be highly selective to Ca(2+) in the presence of other competitive anions and cations in buffer and in physiological fluids. The structure of CAs comprises Gd(3+)-DO3A (DO3A=1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane) coupled to a Ca(2+) chelator o-amino phenol-N,N,O-triacetate (APTRA). The agents are designed to sense Ca(2+) present in extracellular fluid of the brain where its concentration is relatively high, that is, 1.2-0.8 mM. The determined dissociation constant of the CAs to Ca(2+) falls in the range required to sense and report changes in extracellular Ca(2+) levels followed by an increase in neural activity. In buffer, with the addition of Ca(2+) the increase in relaxivity ranged from 100-157%, the highest ever known for any T1-based Ca(2+)-sensitive smart CA. The CAs were analyzed extensively by the measurement of luminescence lifetime measurement on Tb(3+) analogues, nuclear magnetic relaxation dispersion (NMRD), and (17)O NMR transverse relaxation and shift experiments. The results obtained confirmed that the large relaxivity enhancement observed upon Ca(2+) addition is due to the increase of the hydration state of the complexes together with the slowing down of the molecular rotation and the retention of a significant contribution of the water molecules of the second sphere of hydration.

  16. Breast mass segmentation on dynamic contrast-enhanced magnetic resonance scans using the level set method

    NASA Astrophysics Data System (ADS)

    Shi, Jiazheng; Sahiner, Berkman; Chan, Heang-Ping; Paramagul, Chintana; Hadjiiski, Lubomir M.; Helvie, Mark; Wu, Yi-Ta; Ge, Jun; Zhang, Yiheng; Zhou, Chuan; Wei, Jun

    2008-03-01

    The goal of this study was to develop an automated method to segment breast masses on dynamic contrast-enhanced (DCE) magnetic resonance (MR) scans that were performed to monitor breast cancer response to neoadjuvant chemotherapy. A radiologist experienced in interpreting breast MR scans defined the mass using a cuboid volume of interest (VOI). Our method then used the K-means clustering algorithm followed by morphological operations for initial mass segmentation on the VOI. The initial segmentation was then refined by a three-dimensional level set (LS) method. The velocity field of the LS method was formulated in terms of the mean curvature which guaranteed the smoothness of the surface and the Sobel edge information which attracted the zero LS to the desired mass margin. We also designed a method to reduce segmentation leak by adapting a region growing technique. Our method was evaluated on twenty DCE-MR scans of ten patients who underwent neoadjuvant chemotherapy. Each patient had pre- and post-chemotherapy DCE-MR scans on a 1.5 Tesla magnet. Computer segmentation was applied to coronal T1-weighted images. The in-plane pixel size ranged from 0.546 to 0.703 mm and the slice thickness ranged from 2.5 to 4.0 mm. The flip angle was 15 degrees, repetition time ranged from 5.98 to 6.7 ms, and echo time ranged from 1.2 to 1.3 ms. The computer segmentation results were compared to the radiologist's manual segmentation in terms of the overlap measure defined as the ratio of the intersection of the computer and the radiologist's segmentations to the radiologist's segmentation. Pre- and post-chemotherapy masses had overlap measures of 0.81+/-0.11 (mean+/-s.d.) and 0.70+/-0.21, respectively.

  17. Gd2O3 nanoparticles stabilized by hydrothermally modified dextrose for positive contrast magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Babić-Stojić, Branka; Jokanović, Vukoman; Milivojević, Dušan; Požek, Miroslav; Jagličić, Zvonko; Makovec, Darko; Arsikin, Katarina; Paunović, Verica

    2016-04-01

    Gd2O3 nanoparticles of a few nm in size and their agglomerates dispersed in dextrose derived polymer template were synthesized by hydrothermal treatment. The produced nanosized material was investigated by TEM, FTIR spectroscopy, SQUID measurements and NMR relaxometry. Biological evaluation of this material was done by crystal violet and MTT assays to determine the cell viability. Longitudinal and transverse NMR relaxivities of water diluted Gd2O3 nanoparticle dispersions measured at the magnetic field of 1.5 T, estimated to be r1(Gd2O3)=9.6 s-1 mM-1 in the Gd concentration range 0.1-30 mM and r2(Gd2O3)=17.7 s-1 mM-1 in the lower concentration range 0.1-0.8 mM, are significantly higher than the corresponding relaxivities measured for the standard contrast agent r1(Gd-DTPA)=4.1 s-1 mM-1 and r2(Gd-DTPA)=5.1 s-1 mM-1. The ratio of the two relaxivities for Gd2O3 nanoparticles r2/r1=1.8 is suitable for T1-weighted imaging. Good MRI signal intensities of the water diluted Gd2O3 nanoparticle dispersions were recorded at lower Gd concentrations 0.2-0.8 mM. The Gd2O3 samples did not exert any significant cytotoxic effects at Gd concentrations of 0.2 mM and below. These properties of the produced Gd2O3 nanoparticles in hydrothermally modified dextrose make them promising for potential application in MRI for the design of a positive MRI contrast agent.

  18. Evaluation of diamagnetic nanofluid ability to heat transfer in the strong magnetic field

    NASA Astrophysics Data System (ADS)

    Roszko, A.; Fornalik-Wajs, E.

    2016-09-01

    The main goal of this paper was to analyze the strong magnetic field influence on the diamagnetic fluids. The experimental analysis of thermo-magnetic convection of silver nanofluid and distilled water were presented. The effect of various magnetic induction values and various temperature differences on the transport processes were checked. Estimation of the heat transfer was able due to the thermoelement signal analysis. The results revealed changes in the convection due to the nanoparticles addition in some ranges stronger, in other weaker, under applied conditions. It was proven, that heat transfer of diamagnetic fluid (single and two- phase) could be influenced by the strong magnetic field application.

  19. Heat transfer enhancement with actuation of magnetic nanoparticles suspended in a base fluid

    NASA Astrophysics Data System (ADS)

    Şeşen, Muhsincan; Tekşen, Yiǧit; Şendur, Kürşat; Pınar Mengüç, M.; Öztürk, Hande; Yaǧcı Acar, H. F.; Koşar, Ali

    2012-09-01

    In this study, we have experimentally demonstrated that heat transfer can be substantially increased by actuating magnetic nanoparticles inside a nanofluid. In order to materialize this, we have utilized a miniature heat transfer enhancement system based on the actuation of magnetic nanoparticles dispersed in a base fluid (water). This compact system consists of a pool filled with a nanofluid containing ferromagnetic nanoparticles, a heater, and two magnetic stirrers. The ferromagnetic particles within the pool were actuated with the magnetic stirrers. Single-phase heat transfer characteristics of the system were investigated at various fixed heat fluxes and were compared to those of stationary nanofluid (without magnetic stirring). The heat transfer enhancement realized by the circulation of ferromagnetic nanoparticles dispersed in a nanofluid was studied using the experimental setup. The temperatures were recorded from the readings of thin thermocouples, which were integrated to the heater surface. The surface temperatures were monitored against the input heat flux and data were processed to compare the heat transfer results of the configuration with magnetic stirrers to the heat transfer of the configuration without the magnetic stirrers.

  20. Estrogen Receptor-Targeted Contrast Agents for Molecular Magnetic Resonance Imaging of Breast Cancer Hormonal Status

    PubMed Central

    Pais, Adi; Degani, Hadassa

    2016-01-01

    The estrogen receptor (ER) α is overexpressed in most breast cancers, and its level serves as a major prognostic factor. It is important to develop quantitative molecular imaging methods that specifically detect ER in vivo and assess its function throughout the entire primary breast cancer and in metastatic breast cancer lesions. This study presents the biochemical and molecular features, as well as the magnetic resonance imaging (MRI) effects of two novel ER-targeted contrast agents (CAs), based on pyridine-tetra-acetate-Gd(III) chelate conjugated to 17β-estradiol (EPTA-Gd) or to tamoxifen (TPTA-Gd). The experiments were conducted in solution, in human breast cancer cells, and in severe combined immunodeficient mice implanted with transfected ER-positive and ER-negative MDA-MB-231 human breast cancer xenografts. Binding studies with ER in solution and in human breast cancer cells indicated affinities in the micromolar range of both CAs. Biochemical and molecular studies in breast cancer cell cultures showed that both CAs exhibit estrogen-like agonistic activity, enhancing cell proliferation, as well as upregulating cMyc oncogene and downregulating ER expression levels. The MRI longitudinal relaxivity was significantly augmented by EPTA-Gd in ER-positive cells as compared to ER-negative cells. Dynamic contrast-enhanced studies with EPTA-Gd in vivo indicated specific augmentation of the MRI water signal in the ER-positive versus ER-negative xenografts, confirming EPTA-Gd-specific interaction with ER. In contrast, TPTA-Gd did not show increased enhancement in ER-positive tumors and did not appear to interact in vivo with the tumors’ ER. However, TPTA-Gd was found to interact strongly with muscle tissue, enhancing muscle signal intensity in a mechanism independent of the presence of ER. The specificity of EPTA-Gd interaction with ER in vivo was further verified by acute and chronic competition with tamoxifen. The chronic tamoxifen treatment also revealed that this

  1. Magnetic Particle Imaging tracks the long-term fate of in vivo neural cell implants with high image contrast.

    PubMed

    Zheng, Bo; Vazin, Tandis; Goodwill, Patrick W; Conway, Anthony; Verma, Aradhana; Saritas, Emine Ulku; Schaffer, David; Conolly, Steven M

    2015-09-11

    We demonstrate that Magnetic Particle Imaging (MPI) enables monitoring of cellular grafts with high contrast, sensitivity, and quantitativeness. MPI directly detects the intense magnetization of iron-oxide tracers using low-frequency magnetic fields. MPI is safe, noninvasive and offers superb sensitivity, with great promise for clinical translation and quantitative single-cell tracking. Here we report the first MPI cell tracking study, showing 200-cell detection in vitro and in vivo monitoring of human neural graft clearance over 87 days in rat brain.

  2. Automatic detection of larynx cancer from contrast-enhanced magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Doshi, Trushali; Soraghan, John; Grose, Derek; MacKenzie, Kenneth; Petropoulakis, Lykourgos

    2015-03-01

    Detection of larynx cancer from medical imaging is important for the quantification and for the definition of target volumes in radiotherapy treatment planning (RTP). Magnetic resonance imaging (MRI) is being increasingly used in RTP due to its high resolution and excellent soft tissue contrast. Manually detecting larynx cancer from sequential MRI is time consuming and subjective. The large diversity of cancer in terms of geometry, non-distinct boundaries combined with the presence of normal anatomical regions close to the cancer regions necessitates the development of automatic and robust algorithms for this task. A new automatic algorithm for the detection of larynx cancer from 2D gadoliniumenhanced T1-weighted (T1+Gd) MRI to assist clinicians in RTP is presented. The algorithm employs edge detection using spatial neighborhood information of pixels and incorporates this information in a fuzzy c-means clustering process to robustly separate different tissues types. Furthermore, it utilizes the information of the expected cancerous location for cancer regions labeling. Comparison of this automatic detection system with manual clinical detection on real T1+Gd axial MRI slices of 2 patients (24 MRI slices) with visible larynx cancer yields an average dice similarity coefficient of 0.78+/-0.04 and average root mean square error of 1.82+/-0.28 mm. Preliminary results show that this fully automatic system can assist clinicians in RTP by obtaining quantifiable and non-subjective repeatable detection results in a particular time-efficient and unbiased fashion.

  3. Physicochemical characterization of a novel graphene-based magnetic resonance imaging contrast agent

    PubMed Central

    Kanakia, Shruti; Toussaint, Jimmy D; Chowdhury, Sayan Mullick; Lalwani, Gaurav; Tembulkar, Tanuf; Button, Terry; Shroyer, Kenneth R; Moore, William; Sitharaman, Balaji

    2013-01-01

    We report the synthesis and characterization of a novel carbon nanostructure-based magnetic resonance imaging contrast agent (MRI CA); graphene nanoplatelets intercalated with manganese (Mn2+) ions, functionalized with dextran (GNP-Dex); and the in vitro assessment of its essential preclinical physicochemical properties: osmolality, viscosity, partition coefficient, protein binding, thermostability, histamine release, and relaxivity. The results indicate that, at concentrations between 0.1 and 100.0 mg/mL, the GNP-Dex formulations are hydrophilic, highly soluble, and stable in deionized water, as well as iso-osmolar (upon addition of mannitol) and iso-viscous to blood. At potential steady-state equilibrium concentrations in blood (0.1–10.0 mg/mL), the thermostability, protein-binding, and histamine-release studies indicate that the GNP-Dex formulations are thermally stable (with no Mn2+ ion dissociation), do not allow non-specific protein adsorption, and elicit negligible allergic response. The r1 relaxivity of GNP-Dex was 92 mM−1s−1 (per-Mn2+ ion, 22 MHz proton Larmor frequency); ~20- to 30-fold greater than that of clinical gadolinium (Gd3+)- and Mn2+-based MRI CAs. The results open avenues for preclinical in vivo safety and efficacy studies with GNP-Dex toward its development as a clinical MRI CA. PMID:23946653

  4. Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents.

    PubMed

    Xi, Lei; Grobmyer, Stephen R; Zhou, Guangyin; Qian, Weiping; Yang, Lily; Jiang, Huabei

    2014-06-01

    In this report, we present a breast imaging technique combining high-resolution near-infrared (NIR) light induced photoacoustic tomography (PAT) with NIR dye-labeled amino-terminal fragments of urokinase plasminogen activator receptor (uPAR) targeted magnetic iron oxide nanoparticles (NIR830-ATF-IONP) for breast cancer imaging using an orthotopic mouse mammary tumor model. We show that accumulation of the targeted nanoparticles in the tumor led to photoacoustic contrast enhancement due to the high absorption of iron oxide nanoparticles (IONP). NIR fluorescence images were used to validate specific delivery of NIR830-ATF-IONP to mouse mammary tumors. We found that systemic delivery of the targeted IONP produced 4- and 10-fold enhancement in photoacoustic signals in the tumor, compared to the tumor of the mice that received non-targeted IONP or control mice. The use of targeted nanoparticles allowed imaging of tumors located as deep as 3.1 cm beneath the normal tissues. Our study indicates the potential of the combination of photoacoustic tomography and receptor-targeted NIR830-ATF-IONP as a clinical tool that can provide improved specificity and sensitivity for breast cancer detection.

  5. 1,2-hydroxypyridonates as contrast agents for magnetic resonance imaging: TREN-1,2-HOPO.

    PubMed

    Jocher, Christoph J; Moore, Evan G; Xu, Jide; Avedano, Stefano; Botta, Mauro; Aime, Silvio; Raymond, Kenneth N

    2007-10-29

    1,2-Hydroxypyridinones (1,2-HOPO) form very stable lanthanide complexes that may be useful as contrast agents for magnetic resonance imaging (MRI). X-ray diffraction of single crystals established that the solid-state structures of the Eu(III) and the previously reported [Inorg. Chem. 2004, 43, 5452] Gd(III) complex are identical. The recently discovered sensitizing properties of 1,2-HOPO chelates for Eu(III) luminescence [J. Am. Chem. Soc. 2006, 128, 10 067] allow for direct measurement of the number of water molecules coordinated to the metal center. Fluorescence measurements of the Eu(III) complex corroborate that, in solution, two water molecules coordinate the lanthanide (q = 2) as proposed from the analysis of NMRD profiles. In addition, fluorescence measurements have verified the anion binding interactions of lanthanide TREN-1,2-HOPO complexes in solution, studied by relaxivity, revealing only very weak oxalate binding (KA = 82.7 +/- 6.5 M-1). Solution thermodynamic studies of the metal complex and free ligand have been carried out using potentiometry, spectrophotometry, and fluorescence spectroscopy. The metal ion selectivity of TREN-1,2-HOPO supports the feasibility of using 1,2-HOPO ligands for selective lanthanide binding [pGd = 19.3 (2), pZn = 15.2 (2), pCa = 8.8 (3)].

  6. [Physico-chemical and toxicological profile of gadolinium chelates as contrast agents for magnetic resonance imaging].

    PubMed

    Idée, J-M; Fretellier, N; Thurnher, M M; Bonnemain, B; Corot, C

    2015-07-01

    Gadolinium chelates (GC) are contrast agents widely used to facilitate or to enable diagnosis using magnetic resonance imaging (MRI). From a regulatory viewpoint, GC are drugs. GC have largely contributed to the success of MRI, which has become a major component of clinician's diagnostic armamentarium. GC are not metabolised and are excreted by the kidneys. They distribute into the extracellular compartment. Because of its high intrinsic toxicity, gadolinium must be administered as a chelate. GC can be classified according to two key molecular features: (a) nature of the chelating moiety: either macrocyclic molecules in which gadolinium is caged in the pre-organized cavity of the ligand, or linear, open-chain molecules, (b) ionicity: Gd chelates can be ionic (meglumine or sodium salts) or non-ionic. The thermodynamic and kinetic stabilities of the various GCs differ according to these structural characteristics. The kinetic stability of macrocyclic GCs is much higher than that of linear GCs and the thermodynamic stability of ionic GCs is generally higher than that of non-ionic GC, thus leading to a lower risk of gadolinium dissociation. This class of drugs has enjoyed an excellent reputation in terms of safety for a long time, until a causal link with a recently-described serious disease, nephrogenic systemic fibrosis (NSF), was evidenced. It is acknowledged that the vast majority of NSF cases are related to the administration of some linear CG in renally-impaired patients. Health authorities, worldwide, released recommendations which drastically reduced the occurrence of new cases.

  7. Contrast-enhanced magnetic resonance lymphography in the assessment of lower limb lymphoedema.

    PubMed

    White, R D; Weir-McCall, J R; Budak, M J; Waugh, S A; Munnoch, D A; Sudarshan, T A P

    2014-11-01

    Chronic lower limb lymphoedema is a debilitating condition that may occur as a primary disorder or secondary to other conditions. Satisfactory visualization of the lymphatic vessels to aid diagnosis and surgical planning has been problematic. Historically, direct lymphography was used to visualize lymphatic vessels, although the significant surgical risks involved led to this being largely abandoned as a technique. Technetium-99m lymphoscintigraphy has been the mainstay of diagnosis for over two decades, but is hampered by inherently poor temporal and spatial resolution and limited anatomical detail. Contrast-enhanced magnetic resonance lymphography (MRL) is a relatively new technique that shows early promise in the evaluation of chronic lymphoedema. This article provides the procedural technique for lower limb MRL at both 1.5 and 3 T, discusses pathophysiology and classifications of lymphoedema, provides an overview of relevant lower limb lymphatic anatomy using MRL imaging, compares the various techniques used in the diagnosis of lower limb lymphoedema, shows common pathological MRL imaging findings, and describes alternative uses of MRL. Utilization of this technique will allow more accurate diagnosis and classification of patients suffering from lymphoedema.

  8. Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images.

    PubMed

    Chen, Weijie; Giger, Maryellen L; Li, Hui; Bick, Ulrich; Newstead, Gillian M

    2007-09-01

    Automated image analysis aims to extract relevant information from contrast-enhanced magnetic resonance images (CE-MRI) of the breast and improve the accuracy and consistency of image interpretation. In this work, we extend the traditional 2D gray-level co-occurrence matrix (GLCM) method to investigate a volumetric texture analysis approach and apply it for the characterization of breast MR lesions. Our database of breast MR images was obtained using a T1-weighted 3D spoiled gradient echo sequence and consists of 121 biopsy-proven lesions (77 malignant and 44 benign). A fuzzy c-means clustering (FCM) based method is employed to automatically segment 3D breast lesions on CE-MR images. For each 3D lesion, a nondirectional GLCM is then computed on the first postcontrast frame by summing 13 directional GLCMs. Texture features are extracted from the nondirectional GLCMs and the performance of each texture feature in the task of distinguishing between malignant and benign breast lesions is assessed by receiver operating characteristics (ROC) analysis. Our results show that the classification performance of volumetric texture features is significantly better than that based on 2D analysis. Our investigations of the effects of various of parameters on the diagnostic accuracy provided means for the optimal use of the approach.

  9. Importance of Contrast-Enhanced Fluid-Attenuated Inversion Recovery Magnetic Resonance Imaging in Various Intracranial Pathologic Conditions

    PubMed Central

    Lee, Eun Kyoung; Kim, Sungwon; Lee, Yong Seok

    2016-01-01

    Intracranial lesions may show contrast enhancement through various mechanisms that are closely associated with the disease process. The preferred magnetic resonance sequence in contrast imaging is T1-weighted imaging (T1WI) at most institutions. However, lesion enhancement is occasionally inconspicuous on T1WI. Although fluid-attenuated inversion recovery (FLAIR) sequences are commonly considered as T2-weighted imaging with dark cerebrospinal fluid, they also show mild T1-weighted contrast, which is responsible for the contrast enhancement. For several years, FLAIR imaging has been successfully incorporated as a routine sequence at our institution for contrast-enhanced (CE) brain imaging in detecting various intracranial diseases. In this pictorial essay, we describe and illustrate the diagnostic importance of CE-FLAIR imaging in various intracranial pathologic conditions. PMID:26798225

  10. An abnormal periventricular magnetization transfer ratio gradient occurs early in multiple sclerosis.

    PubMed

    Brown, J William L; Pardini, Matteo; Brownlee, Wallace J; Fernando, Kryshani; Samson, Rebecca S; Prados Carrasco, Ferran; Ourselin, Sebastien; Gandini Wheeler-Kingshott, Claudia A M; Miller, David H; Chard, Declan T

    2017-02-01

    In established multiple sclerosis, tissue abnormality-as assessed using magnetization transfer ratio-increases close to the lateral ventricles. We aimed to determine whether or not (i) these changes are present from the earliest clinical stages of multiple sclerosis; (ii) they occur independent of white matter lesions; and (iii) they are associated with subsequent conversion to clinically definite multiple sclerosis and disability. Seventy-one subjects had MRI scanning a median of 4.6 months after a clinically isolated optic neuritis (49 females, mean age 33.5 years) and were followed up clinically 2 and 5 years later. Thirty-seven healthy controls (25 females, mean age 34.4 years) were also scanned. In normal-appearing white matter, magnetization transfer ratio gradients were measured 1-5 mm and 6-10 mm from the lateral ventricles. In control subjects, magnetization transfer ratio was highest adjacent to the ventricles and decreased with distance from them; in optic neuritis, normal-appearing white matter magnetization transfer ratio was lowest adjacent to the ventricles, increased over the first 5 mm, and then paralleled control values. The magnetization transfer ratio gradient over 1-5 mm differed significantly between the optic neuritis and control groups [+0.059 percentage units/mm (pu/mm) versus -0.033 pu/mm, P = 0.010], and was significantly steeper in those developing clinically definite multiple sclerosis within 2 years compared to those who did not (0.132 pu/mm versus 0.016 pu/mm, P = 0.020). In multivariate binary logistic regression the magnetization transfer ratio gradient was independently associated with the development of clinically definite multiple sclerosis within 2 years (magnetization transfer ratio gradient odds ratio 61.708, P = 0.023; presence of T2 lesions odds ratio 8.500, P = 0.071). At 5 years, lesional measures overtook magnetization transfer ratio gradients as significant predictors of conversion to multiple sclerosis. The

  11. Voltage-controlled magnetization switching in MRAMs in conjunction with spin-transfer torque and applied magnetic field

    NASA Astrophysics Data System (ADS)

    Munira, Kamaram; Pandey, Sumeet C.; Kula, Witold; Sandhu, Gurtej S.

    2016-11-01

    Voltage-controlled magnetic anisotropy (VCMA) effect has attracted a significant amount of attention in recent years because of its low cell power consumption during the anisotropy modulation of a thin ferromagnetic film. However, the applied voltage or electric field alone is not enough to completely and reliably reverse the magnetization of the free layer of a magnetic random access memory (MRAM) cell from anti-parallel to parallel configuration or vice versa. An additional symmetry-breaking mechanism needs to be employed to ensure the deterministic writing process. Combinations of voltage-controlled magnetic anisotropy together with spin-transfer torque (STT) and with an applied magnetic field (Happ) were evaluated for switching reliability, time taken to switch with low error rate, and energy consumption during the switching process. In order to get a low write error rate in the MRAM cell with VCMA switching mechanism, a spin-transfer torque current or an applied magnetic field comparable to the critical current and field of the free layer is necessary. In the hybrid processes, the VCMA effect lowers the duration during which the higher power hungry secondary mechanism is in place. Therefore, the total energy consumed during the hybrid writing processes, VCMA + STT or VCMA + Happ, is less than the energy consumed during pure spin-transfer torque or applied magnetic field switching.

  12. Thermomagnonic spin transfer and Peltier effects in insulating magnets

    NASA Astrophysics Data System (ADS)

    Kovalev, Alexey A.; Tserkovnyak, Yaroslav

    2012-03-01

    We study the coupled magnon energy transport and collective magnetization dynamics in ferromagnets with magnetic textures. By constructing a phenomenological theory based on irreversible thermodynamics, we describe the motion of domain walls by thermal gradients and the generation of heat flows by magnetization dynamics. From a microscopic description based on magnon kinetics, we estimate the transport coefficients and analyze the feasibility of energy-related applications in insulating ferromagnets, such as yttrium iron garnet and europium oxide.

  13. Multifunctional calcium phosphate nano-contrast agent for combined nuclear, magnetic and near-infrared in vivo imaging.

    PubMed

    Ashokan, Anusha; Gowd, Genekehal S; Somasundaram, Vijay H; Bhupathi, Arun; Peethambaran, Reshmi; Unni, A K K; Palaniswamy, Shanmugasundaram; Nair, Shantikumar V; Koyakutty, Manzoor

    2013-09-01

    Combination of three imaging techniques such as nuclear, magnetic and near-infrared fluorescence can aid in improved diagnosis of disease by synergizing specific advantages of each of these techniques such as deep tissue penetration of radiation signals, anatomical and functional details provided by magnetic contrast and better spatial resolution of optical signals. In the present work, we report the development of a multimodal contrast agent based on calcium phosphate nanoparticles (nCP), doped with both indocyanine green (ICG) and Gadolinium (Gd(3+)), and labeled with 99m-Technetium-methylene diphosphonate ((99m)Tc-MDP) for combined optical, magnetic and nuclear imaging. In order to obtain the desired tri-modal contrast properties, the concentrations of ICG, Gd(3+) and (99m)Tc were optimized at ∼0.15wt%, 3.38at% and ∼0.002ng/mg of nCP, respectively. The leaching-out of ICG was protected by an additional coating of polyethyleneimine (PEI). Toxicological evaluation of the final construct carried out on healthy human mononuclear cells, red-blood cells and platelets, showed excellent hemocompatibility. In vivo multimodal imaging using mice models revealed the ability to provide near-infrared, magnetic and nuclear contrast simultaneously. The nanoparticles also showed the potential for improved MR based angio-imaging of liver. Retention of intravenously administrated nanoparticles in the liver was reduced with PEGylation and the clearance was observed within 48h without causing any major histological changes in vital organs. Thus, we developed a non-toxic tri-modal nano-contrast agent using calcium phosphate nanoparticles and demonstrated its potential for combined nuclear, magnetic and near-infrared imaging in vivo.

  14. Intra-individual comparison of different gadolinium-based contrast agents in the quantitative evaluation of C6 glioma with dynamic contrast-enhanced magnetic resonance imaging.

    PubMed

    Li, Ying; Liu, Gang; Lou, Xin; Chen, Zhiye; Ma, Lin

    2017-01-01

    This experiment aimed to compare the ionic (Gadodiamide, Gd-DTPA-BMA) and non-ionic (Gadopentetate dimeglumine, Gd-DTPA) gadolinium-based contrast agents (GBCA) in the quantitative evaluation of C6 glioma with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). A C6 glioma model was established in 12 Wistar rats, and magnetic resonance (MR) scans were performed six days after tumor implantation. Imaging was performed using a 3.0-T MR scanner with a 7-inch handmade circular coil. Pre-contrast T1 mapping and dynamic contrast-enhanced T1WI after a bolus injection (0.2 mL s(-1)) of GBCA at 0.4 mmol kg(-1) were performed. Each rat received two DCE-MRI scans, 24 h apart. The first and second scans were performed using Gd-DTPA-BMA and Gd-DTPA, respectively. Image data were processed using the Patlak model. Both K (trans) and V p maps were generated. Tumors were manually segmented on all 3D K (trans) and V p maps. Pixel counts and mean values were recorded for use in a paired t-test. Three radiologists independently performed the tumor segmentation and value calculation. The agreements from different observers were subjective to the intra-class correlation coefficient (ICC). Readers demonstrated that the pixel counts of tumors in K (trans) maps were higher with Gd-DTPA-BMA than with Gd-DTPA (P<0.001, all readers). Although the K (trans) values were higher with Gd-DTPA-BMA than with Gd-DTPA, there was no statistical significance (P>0.05, all readers). The pixel counts of tumors in V p maps, as well as V p values, showed no obvious difference between the two agents (P>0.05, all readers). Excellent interobserver measurement reproducibility and reliability were demonstrated in the ICC tests. The Gd-DTPA-BMA contrast agent had significantly higher pixel counts of glioma in the K (trans) maps, and an increased tendency for average K (trans) values, indicating that DCE-MRI with Gd-DTPA-BMA may be more suitable and sensitive for the evaluation of glioma.

  15. Simulation of electric-field and spin-transfer-torque induced magnetization switching in perpendicular magnetic tunnel junctions

    SciTech Connect

    Zhang, Xiangli; Zhang, Zongzhi; Liu, Yaowen; Jin, Q. Y.

    2015-05-07

    Macrospin simulations are performed to model the magnetization switching driven by the combined action of electric-field and spin-polarized electric current (spin-transfer torque; STT) in MgO/CoFeB based magnetic tunnel junctions with interfacial perpendicular magnetic anisotropy. The results indicate that at low current case, the free layer magnetization shows a fast toggle-like switching, the final parallel or antiparallel magnetization state is determined by the electric-field effect, and the STT just helps or resists it to reach the final state depending on the current direction. However, with the increase of current strength, the contribution of STT effect gradually increases, which eventually achieves a deterministic magnetization switching state. Simulations further demonstrate that by appropriately tuning the parameters of applied electric-field and current the power consumption can be easily reduced by two orders of magnitude.

  16. Low Reynolds number flow's heat transfer influenced by strong magnetic field

    NASA Astrophysics Data System (ADS)

    Pleskacz, L.; Fornalik-Wajs, E.

    2016-09-01

    For the last 20 years research concerning the strong magnetic field influence on the weakly magnetic substances has been dynamically developing. The published papers refer mainly to natural convection problems connected with the impact of strong magnetic field. This paper follows previous Authors’ approach to forced convection modification by the additional magnetic force. Presently, attention was paid to the heat transfer processes and their quality assessment done in the basis of Nusselt number for low Reynolds number flow. The analysis was done for the geometry from Graetz-Brinkman problem with the magnetic coil located at the position of adiabatic-thermal boundary condition change. The numerical analysis was performed with Ansys software and application of the user-defined functions. Presented results revealed the influence of magnetic field on the flow structure and heat transfer.

  17. Bi-directional magnetic resonance based wireless power transfer for electronic devices

    SciTech Connect

    Kar, Durga P.; Nayak, Praveen P.; Bhuyan, Satyanarayan; Mishra, Debasish

    2015-09-28

    In order to power or charge electronic devices wirelessly, a bi-directional wireless power transfer method has been proposed and experimentally investigated. In the proposed design, two receiving coils are used on both sides of a transmitting coil along its central axis to receive the power wirelessly from the generated magnetic fields through strongly coupled magnetic resonance. It has been observed experimentally that the maximum power transfer occurs at the operating resonant frequency for optimum electric load connected across the receiving coils on both side. The optimum wireless power transfer efficiency is 88% for the bi-directional power transfer technique compared 84% in the one side receiver system. By adopting the developed bi-directional power transfer method, two electronic devices can be powered up or charged simultaneously instead of a single device through usual one side receiver system without affecting the optimum power transfer efficiency.

  18. Magnetic Silica-Supported Ruthenium Nanoparticles: An Efficient Catalyst for Transfer Hydrogenation of Carbonyl Compounds

    EPA Science Inventory

    One-pot synthesis of ruthenium nanoparticles on magnetic silica is described which involve the in situ generation of magnetic silica (Fe3O4@ SiO2) and ruthenium nano particles immobilization; the hydration of nitriles and transfer hydrogenation of carbonyl compounds occurs in hi...

  19. Four-dimensional phase contrast magnetic resonance angiography: potential clinical applications.

    PubMed

    Frydrychowicz, Alex; François, Christopher J; Turski, Patrick A

    2011-10-01

    Unlike other magnetic resonance angiographic techniques, phase contrast imaging (PC-MRI) offers co-registered morphologic images and velocity data within a single acquisition. While the basic principle of PC-MRI dates back almost 3 decades, novel time-resolved three-dimensional PC-MRI (4D PC-MRI) approaches have become increasingly researched over the past years. So-called 4D PC-MRI includes three-directional velocity encoding in a three-dimensional imaging volume over time, thereby providing the opportunity to comprehensively analyze human hemodynamics in vivo. Moreover, its large volume coverage offers the option to study systemic hemodynamic effects. Additionally, this offers the possibility to re-visit flow in any location of interest without being limited to predetermined two-dimensional slices. The attention received for hemodynamic research is partially based on flow-based theories of atherogenesis and arterial remodeling. 4D PC-MRI can be used to calculate flow-related vessel wall parameters and may hence serve as a diagnostic tool in preemptive medicine. Furthermore, technical improvements including the availability of sufficient computing power, data storage capabilities, and optimized acceleration schemes for data acquisition as well as comprehensive image processing algorithms have largely facilitated recent research progresses. We will present an overview of the potential of this relatively young imaging paradigm. After acquisition and processing the data in morphological and phase difference images, various visualization strategies permit the qualitative analysis of hemodynamics. A multitude of quantitative parameters such as pulse wave velocities and estimates of wall shear stress which might serve as future biomarkers can be extracted. Thereby, exciting new opportunities for vascular imaging and diagnosis are available.

  20. Saturation Power Dependence of Amide Proton Transfer (APT) Image Contrasts in Human Brain Tumors and Strokes at 3T

    PubMed Central

    Zhao, Xuna; Wen, Zhibo; Huang, Fanheng; Lu, Shilong; Wang, Xianlong; Hu, Shuguang; Zu, Donglin; Zhou, Jinyuan

    2011-01-01

    Amide proton transfer (APT) imaging is capable of detecting mobile cellular proteins and peptides in tumor and monitoring pH effects in stroke, through the saturation transfer between irradiated amide protons and water protons. In this work, four healthy subjects, eight brain tumor patients (four with high-grade glioma; one with lung cancer metastasis; three with meningioma), and four stroke patients (average 4.3 ± 2.5 days after the onset of the stroke) were scanned at 3T, using different radiofrequency saturation powers. The APT effect was quantified using the magnetization-transfer-ratio (MTR) asymmetry at 3.5 ppm with respect to the water resonance. At a saturation power of 2 μT, the measured APT-MRI signal of the normal brain tissue was almost zero, due to the contamination of the negative conventional MTR asymmetry. This irradiation power caused an optimal hyperintense APT-MRI signal in the tumor and an optimal hypointense signal in the stroke, compared to the normal brain tissue. The results suggest that the saturation power of 2 μT is ideal for APT imaging of these two pathologies at 3T with the existing clinical hardware. PMID:21394783

  1. Skyrmion-number dependence of spin-transfer torque on magnetic bubbles

    NASA Astrophysics Data System (ADS)

    Yamane, Yuta; Sinova, Jairo

    2016-12-01

    We theoretically study the skyrmion-number dependence of spin-transfer torque acting on magnetic bubbles. The skymrion number of magnetic bubbles can take any integer value depending on the magnetic profile on its circumference and the size of the bubble. We find that the transverse motion of a bubble with respect to the charge current is greatly suppressed as the absolute value of the skyrmion number departs from unity, whereas the longitudinal motion is less sensitive.

  2. Spin-transfer torque and specific features of magnetic-state switching in vacuum tunnel nanostructures

    SciTech Connect

    Demin, G. D. Popkov, A. F.; Dyuzhev, N. A.

    2015-12-15

    The specific features of spin-transfer torque in vacuum tunnel structures with magnetic electrodes are investigated using the quasi-classical Sommerfeld model of electron conductivity, which takes into account the exchange splitting of the spin energy subbands of free electrons. Using the calculated voltage dependences of the transferred torques for a tunnel structure with cobalt electrodes and noncollinear magnetic moments in the electrodes, diagrams of stable spin states on the current–field parameter plane in the in-plane geometry of the initial magnetization are obtained.

  3. Formulation of radiographically detectable gastrointestinal contrast agents for magnetic resonance imaging: effects of a barium sulfate additive on MR contrast agent effectiveness.

    PubMed

    Rubin, D L; Muller, H H; Young, S W

    1992-01-01

    Complete and homogeneous distribution of gastrointestinal (GI) contrast media are important factors for their effective use in computed tomography as well as in magnetic resonance (MR) imaging. A radiographic method (using fluoroscopy or spot films) could be effective for monitoring intestinal filling with GI contrast agents for MR imaging (GICMR), but it would require the addition of a radiopaque agent to most GICMR. This study was conducted to determine the minimum amount of barium additive necessary to be radiographically visible and to evaluate whether this additive influences the signal characteristics of the GICMR. A variety of barium sulfate preparations (3-12% wt/vol) were tested in dogs to determine the minimum quantity needed to make the administered agent visible during fluoroscopy and on abdominal radiographs. Solutions of 10 different potential GI contrast agents (Gd-DTPA, ferric ammonium citrate, Mn-DPDP, chromium-EDTA, gadolinium-oxalate, ferrite particles, water, mineral oil, lipid emulsion, and methylcellulose) were prepared without ("nondoped") and with ("doped") the barium sulfate additive. MR images of the solutions in tubes were obtained at 0.38 T using 10 different spin-echo pulse sequences. Region of interest (ROI) measurements of contrast agent signal intensity (SI) were made. In addition, for the paramagnetic contrast media, the longitudinal and transverse relaxivity (R1 and R2) were measured. A 6% wt/vol suspension of barium was the smallest concentration yielding adequate radiopacity in the GI tract. Except for gadolinium-oxalate, there was no statistically significant difference in SI for doped and non-doped solutions with most pulse sequences used. In addition, the doped and nondoped solutions yielded R1 and R2 values which were comparable. We conclude that barium sulfate 6% wt/vol added to MR contrast agents produces a suspension with sufficient radiodensity to be viewed radiographically, and it does not cause significant alteration in

  4. Ultrasmall cationic superparamagnetic iron oxide nanoparticles as nontoxic and efficient MRI contrast agent and magnetic-targeting tool

    PubMed Central

    Uchiyama, Mayara Klimuk; Toma, Sergio Hiroshi; Rodrigues, Stephen Fernandes; Shimada, Ana Lucia Borges; Loiola, Rodrigo Azevedo; Cervantes Rodríguez, Hernán Joel; Oliveira, Pedro Vitoriano; Luz, Maciel Santos; Rabbani, Said Rahnamaye; Toma, Henrique Eisi; Poliselli Farsky, Sandra Helena; Araki, Koiti

    2015-01-01

    Fully dispersible, cationic ultrasmall (7 nm diameter) superparamagnetic iron oxide nanoparticles, exhibiting high relaxivity (178 mM−1s−1 in 0.47 T) and no acute or subchronic toxicity in Wistar rats, were studied and their suitability as contrast agents for magnetic resonance imaging and material for development of new diagnostic and treatment tools demonstrated. After intravenous injection (10 mg/kg body weight), they circulated throughout the vascular system causing no microhemorrhage or thrombus, neither inflammatory processes at the mesentery vascular bed and hepatic sinusoids (leukocyte rolling, adhesion, or migration as evaluated by intravital microscopy), but having been spontaneously concentrated in the liver, spleen, and kidneys, they caused strong negative contrast. The nanoparticles are cleared from kidneys and bladder in few days, whereas the complete elimination from liver and spleen occurred only after 4 weeks. Ex vivo studies demonstrated that cationic ultrasmall superparamagnetic iron oxide nanoparticles caused no effects on hepatic and renal enzymes dosage as well as on leukocyte count. In addition, they were readily concentrated in rat thigh by a magnet showing its potential as magnetically targeted carriers of therapeutic and diagnostic agents. Summarizing, cationic ultrasmall superparamagnetic iron oxide nanoparticles are nontoxic and efficient magnetic resonance imaging contrast agents useful as platform for the development of new materials for application in theranostics. PMID:26251595

  5. Noninvasive amide proton transfer magnetic resonance imaging in evaluating the grading and cellularity of gliomas

    PubMed Central

    Zhang, Wei; Kong, Lingfei; Wang, Lifu; Zuo, Panli; Vallines, Ignacio; Schmitt, Benjamin; Tian, Jie; Song, Xiaolei; Zhou, Jinyuan; Wang, Meiyun

    2017-01-01

    Using noninvasive magnetic resonance imaging techniques to accurately evaluate the grading and cellularity of gliomas is beneficial for improving the patient outcomes. Amide proton transfer imaging is a noninvasive molecular magnetic resonance imaging technique based on chemical exchange saturation transfer mechanism that detects endogenous mobile proteins and peptides in biological tissues. Between August 2012 and November 2015, a total number of 44 patients with pathologically proven gliomas were included in this study. We compared the capability of amide proton transfer magnetic resonance imaging with that of noninvasive diffusion-weighted imaging and noninvasive 3-dimensional pseudo-continuous arterial spin imaging in evaluating the grading and cellularity of gliomas. Our results reveal that amide proton transfer magnetic resonance imaging is a superior imaging technique to diffusion-weighted imaging and 3-dimensional pseudo-continuous arterial spin imaging in the grading of gliomas. In addition, our results showed that the Ki-67 index correlated better with the amide proton transfer-weighted signal intensity than with the apparent diffusion coefficient value or the cerebral blood flow value in the gliomas. Amide proton transfer magnetic resonance imaging is a promising method for predicting the grading and cellularity of gliomas. PMID:27992380

  6. Noninvasive amide proton transfer magnetic resonance imaging in evaluating the grading and cellularity of gliomas.

    PubMed

    Bai, Yan; Lin, Yusong; Zhang, Wei; Kong, Lingfei; Wang, Lifu; Zuo, Panli; Vallines, Ignacio; Schmitt, Benjamin; Tian, Jie; Song, Xiaolei; Zhou, Jinyuan; Wang, Meiyun

    2017-01-24

    Using noninvasive magnetic resonance imaging techniques to accurately evaluate the grading and cellularity of gliomas is beneficial for improving the patient outcomes. Amide proton transfer imaging is a noninvasive molecular magnetic resonance imaging technique based on chemical exchange saturation transfer mechanism that detects endogenous mobile proteins and peptides in biological tissues. Between August 2012 and November 2015, a total number of 44 patients with pathologically proven gliomas were included in this study. We compared the capability of amide proton transfer magnetic resonance imaging with that of noninvasive diffusion-weighted imaging and noninvasive 3-dimensional pseudo-continuous arterial spin imaging in evaluating the grading and cellularity of gliomas. Our results reveal that amide proton transfer magnetic resonance imaging is a superior imaging technique to diffusion-weighted imaging and 3-dimensional pseudo-continuous arterial spin imaging in the grading of gliomas. In addition, our results showed that the Ki-67 index correlated better with the amide proton transfer-weighted signal intensity than with the apparent diffusion coefficient value or the cerebral blood flow value in the gliomas. Amide proton transfer magnetic resonance imaging is a promising method for predicting the grading and cellularity of gliomas.

  7. Heat Transfer Affected by Transverse Magnetic Field using 3D Modeling of Arc Plasma

    NASA Astrophysics Data System (ADS)

    Maeda, Yoshifumi; Tanaka, Tatsuro; Yamamoto, Shinji; Iwao, Toru

    2016-10-01

    Gas shielded metal arc welding is used to join the various metal because this is the high quality joining technology. Thus, this welding is used for a welding of large buildings such as bridges and LNG tanks. However, the welding defect caused by the heat transfer decrement may occur with increasing the wind velocity. This is because that the convection loss increases because the arc deflects to leeward side with increasing the wind velocity. In order to prevent from the arc deflection, it is used that the transverse magnetic field is applied to the arc. However, the arc deflection occurs with increasing the transverse magnetic field excessively. The energy balance of the arc is changed with increasing the convection loss caused by the arc deflection, and the heat transfer to the anode decreases. Therefore, the analysis including the arc and anode is necessary to elucidate the heat transfer to the anode. In this paper, the heat transfer affected by the transverse magnetic field using 3D modeling of the arc plasma is elucidated. The heat transfer to the anode is calculated by using the EMTF(electromagnetic thermal fluid) simulation with increasing the transverse magnetic field. As a result, the heat transfer decreased with increasing the transverse magnetic field.

  8. Radiative heat transfer in many-body systems: Coupled electric and magnetic dipole approach

    NASA Astrophysics Data System (ADS)

    Dong, Jian; Zhao, Junming; Liu, Linhua

    2017-03-01

    The many-body radiative heat transfer theory [P. Ben-Abdallah, S.-A. Biehs, and K. Joulain, Phys. Rev. Lett. 107, 114301 (2011), 10.1103/PhysRevLett.107.114301] considered only the contribution from the electric dipole moment. For metal particles, however, the magnetic dipole moment due to eddy current plays an important role, which can further couple with the electric dipole moment to introduce crossed terms. In this paper, we develop the coupled electric and magnetic dipole (CEMD) approach for the radiative heat transfer in a collection of objects in mutual interaction. Due to the coupled electric and magnetic interactions, four terms, namely the electric-electric, the electric-magnetic, the magnetic-electric, and the magnetic-magnetic terms, contribute to the radiative heat flux and the local energy density. The CEMD is applied to study the radiative heat transfer between various dimers of nanoparticles. It is found that each of the four terms can dominate the radiative heat transfer depending on the position and composition of particles. Moreover, near-field many-body interactions are studied by CEMD considering both dielectric and metallic nanoparticles. The near-field radiative heat flux and local energy density can be greatly increased when the particles are in coupled resonances. Surface plasmon polariton and surface phonon polariton can be coupled to enhance the radiative heat flux.

  9. Informatics in Radiology (infoRAD): Magnetic Resonance Imaging Workbench: analysis and visualization of dynamic contrast-enhanced MR imaging data.

    PubMed

    d'Arcy, James A; Collins, David J; Padhani, Anwar R; Walker-Samuel, Simon; Suckling, John; Leach, Martin O

    2006-01-01

    Magnetic Resonance Imaging Workbench (MRIW) allows analysis of T1- and T2*-weighted dynamic contrast-enhanced magnetic resonance imaging data sets to extract tissue permeability and perfusion characteristics by using standard pharmacokinetic models. Parametric maps are calculated from individual pixel enhancement curves in regions of interest (ROIs) and displayed as color overlays on the anatomic images. User-defined ROIs can be saved to ensure consistency of later reanalysis. Individual parametric maps are visualized together with user-selected parameter time-series plots. The following selections are available: overall ROI enhancement curve and fit, histogram, and individual pixel enhancement curve and fit. Summary data (transfer constant, leakage space, rate constant, integrated area under the gadolinium curve after 60 seconds, relative blood volume, relative blood flow, and mean transit time) may be exported to permanent storage along with per-pixel results for statistical analysis. Numerical values for parameters are displayed below the plot for easy reference. The dynamic range of plots and parametric map overlays is interactively adjustable. Viewing individual enhancement curves and parametric maps allows radiologists to investigate the heterogeneity of contrast agent kinetics for lesion characterization and to scrutinize serial changes in response to therapy. MRIW is written in IDL, enabling it to be used on a variety of computer systems.

  10. Thermomagnonic spin transfer and Peltier effects in insulating magnets

    NASA Astrophysics Data System (ADS)

    Kovalev, Alexey A.

    2012-02-01

    The recent discovery of the spin Seebeck effect [1] in metals, insulators and semiconductors stimulated development of spincaloritronics [2]. The possibility of measuring the Onsager reciprocal spin Peltier effect has been investigated recently as well. In our theoretical work [3], we study the fictitious electromagnetic fields induced by magnetic textures which may offer an alternative route for observing the spin Peltier effect. Particularly, in an insulating ferromagnet a moving magnetic texture should effectively drive the spin (wave) current which in turn should lead to the heat current by the spin Peltier effect. We further study the coupled magnon energy transport and collective magnetization dynamics in ferromagnets with magnetic textures. We conclude that the analogy between the fictitious electromagnetic fields and real fields should lead to magnonic counterparts of such effects as the Hall effect, the Ettingshausen effect, the Nernst effect, and the Righi-Leduc effect. By constructing a phenomenological theory based on irreversible thermodynamics, we describe motion of domain walls by thermal gradients and generation of heat flows by magnetization dynamics. From microscopic description based on magnon kinetics, we estimate the transport coefficients and analyze the feasibility of energy-related applications (e.g. nanoscale heat pumps [4]) in insulating ferromagnets, such as yttrium iron garnet and europium oxide. Our estimates show that the viscous coupling effects between magnetization dynamics and magnon flows can be strong in materials with low spin densities (e.g. dilute magnetic systems) and narrow domain walls, which can allow the magnonic manipulation of magnetization dynamics and heat pumping.[4pt] [1] K. Uchida et al. Nature 455, 778 (2008).[0pt] [2] G. E. W. Bauer, A. H. MacDonald, S. Maekawa, Solid State Commun. 150, 459 (2010).[0pt] [3] A. A. Kovalev and Y. Tserkovnayk, arXiv:1106.3135.[0pt] [4] A. A. Kovalev and Y. Tserkovnyak, Solid State

  11. Contrast Media for X-ray and Magnetic Resonance Imaging: Development, Current Status and Future Perspectives.

    PubMed

    Frenzel, Thomas; Lawaczeck, Rüdiger; Taupitz, Matthias; Jost, Gregor; Lohrke, Jessica; Sieber, Martin A; Pietsch, Hubertus

    2015-09-01

    Over the last 120 years, the extensive advances in medical imaging allowed enhanced diagnosis and therapy of many diseases and thereby improved the quality of life of many patient generations. From the beginning, all technical solutions and imaging procedures were combined with dedicated pharmaceutical developments of contrast media, to further enhance the visualization of morphology and physiology. This symbiosis of imaging hardware and contrast media development was of high importance for the development of modern clinical radiology. Today, all available clinically approved contrast media fulfill the highest requirements for clinical safety and efficacy. All new concepts to increase the efficacy of contrast media have also to consider the high clinical safety standards and cost of goods of current marketed contrast media. Nevertheless, diagnostic imaging will contribute significantly to the progresses in medicine, and new contrast media developments are mandatory to address the medical needs of the future.

  12. Topology of magnetic flux ropes and formation of fossil flux transfer events and boundary layer plasmas

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Ma, Z. W.; Fu, Z. F.; Otto, A.

    1993-01-01

    A mechanism for the formation of fossil flux transfer events and the low-level boundary layer within the framework of multiple X-line reconnection is proposed. Attention is given to conditions for which the bulk of magnetic flux in a flux rope of finite extent has a simple magnetic topology, where the four possible connections of magnetic field lines are: IMF to MSP, MSP to IMF, IMF to IMF, and MSP to MSP. For a sufficient relative shift of the X lines, magnetic flux may enter a flux rope from the magnetosphere and exit into the magnetosphere. This process leads to the formation of magnetic flux ropes which contain a considerable amount of magnetosheath plasma on closed magnetospheric field lines. This process is discussed as a possible explanation for the formation of fossil flux transfer events in the magnetosphere and the formation of the low-latitude boundary layer.

  13. Improved dosimetry in prostate brachytherapy using high resolution contrast enhanced magnetic resonance imaging: a feasibility study

    PubMed Central

    Morancy, Tye; Kaplan, Irving; Qureshi, Muhammad M.; Hirsch, Ariel E.; Rofksy, Neil M.; Holupka, Edward; Oismueller, Renee; Hawliczek, Robert; Helbich, Thomas H.; Bloch, B. Nicolas

    2014-01-01

    Purpose To assess detailed dosimetry data for prostate and clinical relevant intra- and peri-prostatic structures including neurovascular bundles (NVB), urethra, and penile bulb (PB) from postbrachytherapy computed tomography (CT) versus high resolution contrast enhanced magnetic resonance imaging (HR-CEMRI). Material and methods Eleven postbrachytherapy prostate cancer patients underwent HR-CEMRI and CT imaging. Computed tomography and HR-CEMRI images were randomized and 2 independent expert readers created contours of prostate, intra- and peri-prostatic structures on each CT and HR-CEMRI scan for all 11 patients. Dosimetry data including V100, D90, and D100 was calculated from these contours. Results Mean V100 values from CT and HR-CEMRI contours were as follows: prostate (98.5% and 96.2%, p = 0.003), urethra (81.0% and 88.7%, p = 0.027), anterior rectal wall (ARW) (8.9% and 2.8%, p < 0.001), left NVB (77.9% and 51.5%, p = 0.002), right NVB (69.2% and 43.1%, p = 0.001), and PB (0.09% and 11.4%, p = 0.005). Mean D90 (Gy) derived from CT and HR-CEMRI contours were: prostate (167.6 and 150.3, p = 0.012), urethra (81.6 and 109.4, p = 0.041), ARW (2.5 and 0.11, p = 0.003), left NVB (98.2 and 58.6, p = 0.001), right NVB (87.5 and 55.5, p = 0.001), and PB (11.2 and 12.4, p = 0.554). Conclusions Findings of this study suggest that HR-CEMRI facilitates accurate and meaningful dosimetric assessment of prostate and clinically relevant structures, which is not possible with CT. Significant differences were seen between CT and HR-CEMRI, with volume overestimation of CT derived contours compared to HR-CEMRI. PMID:25834576

  14. Measurement of cerebral blood flow using phase contrast magnetic resonance imaging and duplex ultrasonography.

    PubMed

    Khan, Muhammad Ayaz; Liu, Jie; Tarumi, Takashi; Lawley, Justin Stevan; Liu, Peiying; Zhu, David C; Lu, Hanzhang; Zhang, Rong

    2017-02-01

    Phase contrast magnetic resonance imaging (PC-MRI) and color-coded duplex ultrasonography (CDUS) are commonly used for measuring cerebral blood flow in the internal carotid (ICA) and vertebral arteries. However, agreement between the two methods has been controversial. Recent development of high spatial and temporal resolution blood vessel wall edge-detection and wall-tracking methods with CDUS increased the accuracy and reliability of blood vessel diameter, hence cerebral blood flow measurement. The aim of this study was to compare the improved CDUS method with 3 T PC-MRI for cerebral blood flow measurements. We found that cerebral blood flow velocity measured in the ICA was lower using PC-MRI than CDUS (left ICA: PC-MRI, 18.0 ± 4.2 vs. CDUS, 25.6 ± 8.6 cm/s; right ICA: PC-MRI, 18.5 ± 4.8 vs. CDUS, 26.6 ± 6.7 cm/s, both p < 0.01). However, ICA diameters measured using PC-MRI were larger (left ICA: PC-MRI, 4.7 ± 0.50 vs. CDUS, 4.1 ± 0.46 mm; right ICA: PC-MRI, 4.5 ± 0.49 vs. CDUS, 4.0 ± 0.45 mm, both p < 0.01). Cerebral blood flow velocity measured in the left vertebral artery with PC-MRI was also lower than CDUS, but no differences in vertebral artery diameter were observed between the methods. Dynamic changes and/or intrinsic physiological fluctuations may have caused these differences in vessel diameter and velocity measurements between the methods. However, estimation of volumetric cerebral blood flow was similar and correlated between the methods despite the presence of large individual differences. These findings support the use of CDUS for cerebral blood flow measurements in the ICA and vertebral artery.

  15. Quantized spin-momentum transfer in atom-sized magnetic systems

    NASA Astrophysics Data System (ADS)

    Loth, Sebastian

    2010-03-01

    Our ability to quickly access the vast amounts of information linked in the internet is owed to the miniaturization of magnetic data storage. In modern disk drives the tunnel magnetoresistance effect (TMR) serves as sensitive reading mechanism for the nanoscopic magnetic bits [1]. At its core lies the ability to control the flow of electrons with a material's magnetization. The inverse effect, spin transfer torque (STT), allows one to influence a magnetic layer by high current densities of spin-polarized electrons and carries high hopes for applications in non-volatile magnetic memory [2]. We show that equivalent processes are active in quantum spin systems. We use a scanning tunneling microscope (STM) operating at low temperature and high magnetic field to address individual magnetic structures and probe their spin excitations by inelastic electron tunneling [3]. As model system we investigate transition metal atoms adsorbed to a copper nitride layer grown on a Cu crystal. The magnetic atoms on the surface possess well-defined spin states [4]. Transfer of one magnetic atom to the STM tip's apex creates spin-polarization in the probe tip. The combination of functionalized tip and surface adsorbed atom resembles a TMR structure where the magnetic layers now consist of one magnetic atom each. Spin-polarized current emitted from the probe tip not only senses the magnetic orientation of the atomic spin system, it efficiently transfers spin angular momentum and pumps the quantum spin system between the different spin states. This enables further exploration of the microscopic mechanisms for spin-relaxation and stability of quantum spin systems. [4pt] [1] Zhu and Park, Mater. Today 9, 36 (2006).[0pt] [2] Huai, AAPPS Bulletin 18, 33 (2008).[0pt] [3] Heinrich et al., Science 306, 466 (2004).[0pt] [4] Hirjibehedin et al., Science 317, 1199 (2007).

  16. Magnetic nanoparticles stimulation to enhance liquid-liquid two-phase mass transfer under static and rotating magnetic fields

    NASA Astrophysics Data System (ADS)

    Azimi, Neda; Rahimi, Masoud

    2017-01-01

    Rotating magnetic field (RMF) was applied on a micromixer to break the laminar flow and induce chaotic flow to enhance mass transfer between two-immiscible organic and aqueous phases. The results of RMF were compared to those of static magnetic field (SMF). For this purpose, experiments were carried out in a T-micromixer at equal volumetric flow rates of organic and aqueous phases. Fe3O4 nanoparticles were synthesized by co-precipitation technique and they were dissolved in organic phase. Results obtained from RMF and SMF were compared in terms of overall volumetric mass transfer coefficient (KLa) and extraction efficiency (E) at various Reynolds numbers. Generally, RMF showed higher effect in mass transfer characteristics enhancement compared with SMF. The influence of rotational speeds of magnets (ω) in RMF was investigated, and measurable enhancements of KLa and E were observed. In RMF, the effect of magnetic field induction (B) was investigated. The results reveal that at constant concentration of nanoparticles, by increasing of B, mass transfer characteristics will be enhanced. The effect of various nanoparticles concentrations (ϕ) within 0.002-0.01 (w/v) on KLa and E at maximum induction of RMF (B=76 mT) was evaluated. Maximum values of KLa (2.1±0.001) and E (0.884±0.001) were achieved for the layout of RMF (B=76 mT), ω=16 rad/s and MNPs concentration of 0.008-0.01 (w/v).

  17. Magnetization switching in a CoFeB/MgO magnetic tunnel junction by combining spin-transfer torque and electric field-effect

    SciTech Connect

    Kanai, S.; Nakatani, Y.; Yamanouchi, M.; Ikeda, S.; Sato, H.; Matsukura, F.; Ohno, H.

    2014-05-26

    We propose and demonstrate a scheme for magnetization switching in magnetic tunnel junctions, in which two successive voltage pulses are applied to utilize both spin-transfer torque and electric field effect. Under this switching scheme, a CoFeB/MgO magnetic tunnel junction with perpendicular magnetic easy axis is shown to switch faster than by spin-transfer torque alone and more reliably than that by electric fields alone.

  18. Reference layer exchange in spin transfer torque experiment using magnetic-coated nanometric point contacts

    NASA Astrophysics Data System (ADS)

    Cunha, R. O.; Baptista, D. L.; Heinemann, M.; Kuhn, M. F.; Schmidt, J. E.; Pereira, L. G.

    2012-09-01

    We investigate the importance of using nanotips on a point contact spin-transfer torque (STT) experiment. A systematic analysis comparing the STT in a magnetic thin film in current-perpendicular-to-plane (CPP) geometry sample for magnetic coated and uncoated tungsten nanotips is shown. The STT effect presents a reverse resistance to current behavior when using a magnetic coating layer on the nanotips. We demonstrate that the magnetic layer on the tip may assume the role of a polarizer layer. This effect opens up the possibility of exploiting simpler architectures in STT-based devices, such as STT-random access memory (STT-RAM).

  19. Two types of impact melts with contrasting magnetic mineralogy from Jänisjärvi impact structure, Russian Karelia

    NASA Astrophysics Data System (ADS)

    Sergienko, Elena S.; Kosterov, Andrei; Kharitonskii, Petr V.

    2017-02-01

    Paleomagnetic and rock magnetic studies of impact-related rocks can provide important constraints for deciphering geophysical records from suspected impact structures, their geochronology, and, in the case of very large impacts, their effect on the Earth as a whole. However, the paleomagnetic record in impact-related rocks may be ambiguous because of the uncertain origin of their natural remanent magnetization (NRM). Towards this end, we carried out a comprehensive rock magnetic and mineralogical study of tagamites (impact melts) from the Jänisjärvi astrobleme, Russian Karelia. Chemical composition of magnetic minerals and non-magnetic matrix was evaluated by SEM and X-ray analysis. Magnetic minerals were identified using thermomagnetic analysis at high and low temperatures, whereas their domain state was evaluated from hysteresis measurements and magnetic force microscopy. Jänisjärvi tagamites appear to belong to two essentially different types arising from the differences in the impact melt crystallization conditions. Type I tagamites were likely formed by an extremely rapid cooling of a super-hot melt with initial temperatures well above 2000°C. Type II tagamites originate from cooler and more iron-enriched melt. Common to the two types is that they both contain a substantial amount of fine inclusions in silicate matrix tens of nm to few μm in size, which appear to be a major, in some cases dominant, magnetic mineral carrying a significant part of rocks NRM. Structurally, these inclusions are heterogeneous objects consisting of two phases showing both chemical and magnetic contrast.

  20. Accuracy and uncertainty of asymmetric magnetization transfer ratio quantification for amide proton transfer (APT) imaging at 3T: a Monte Carlo study.

    PubMed

    Yuan, Jing; Zhang, Qinwei; Wang, Yi-Xiang; Wei, Juan; Zhou, Jinyuan

    2013-01-01

    Amide proton transfer (APT) imaging offers a novel and powerful MRI contrast mechanism for quantitative molecular imaging based on the principle of chemical exchange saturation transfer (CEST). Asymmetric magnetization transfer ratio (MTR(asym)) quantification is crucial for Z-spectrum analysis of APT imaging, but is still challenging, particularly at clinical field strength. This paper studies the accuracy and uncertainty in the quantification of MTR(asym) for APT imaging at 3T, by using high-order polynomial fitting of Z-spectrum through Monte Carlo simulation. Results show that polynomial fitting is a biased estimator that consistently underestimates MTR(asym). For a fixed polynomial order, the accuracy of MTR(asym) is almost constant with regard to signal-to-noise ratio (SNR) while the uncertainty decreases exponentially with SNR. The higher order polynomial fitting increases both the accuracy and the uncertainty of MTR(asym). For different APT signal intensity levels, the relative accuracy and the absolute uncertainty keep constant for a fixed polynomial order. These results indicate the limitations and pitfalls of polynomial fitting for MTR(asym) quantification so better quantification technique for MTR(asym) estimation is warranted.

  1. Inter-Slice Blood Flow and Magnetization Transfer Effects as A New Simultaneous Imaging Strategy.

    PubMed

    Han, Paul Kyu; Barker, Jeffrey W; Kim, Ki Hwan; Choi, Seung Hong; Bae, Kyongtae Ty; Park, Sung-Hong

    2015-01-01

    The recent blood flow and magnetization transfer (MT) technique termed alternate ascending/descending directional navigation (ALADDIN) achieves the contrast using interslice blood flow and MT effects with no separate preparation RF pulse, thereby potentially overcoming limitations of conventional methods. In this study, we examined the signal characteristics of ALADDIN as a simultaneous blood flow and MT imaging strategy, by comparing it with pseudo-continuous ASL (pCASL) and conventional MT asymmetry (MTA) methods, all of which had the same bSSFP readout. Bloch-equation simulations and experiments showed ALADDIN perfusion signals increased with flip angle, whereas MTA signals peaked at flip angle around 45°-60°. ALADDIN provided signals comparable to those of pCASL and conventional MTA methods emulating the first, second, and third prior slices of ALADDIN under the same scan conditions, suggesting ALADDIN signals to be superposition of signals from multiple labeling planes. The quantitative cerebral blood flow signals from a modified continuous ASL model overestimated the perfusion signals compared to those measured with a pulsed ASL method. Simultaneous mapping of blood flow, MTA, and MT ratio in the whole brain is feasible with ALADDIN within a clinically reasonable time, which can potentially help diagnosis of various diseases.

  2. Low toxicity and long circulation time of Polyampholyte-coated magnetic nanoparticles for blood pool contrast agents

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Shen, Ming; Zhao, Tao; Xu, Yuanyuan; Lin, Jiang; Duan, Yourong; Gu, Hongchen

    2015-01-01

    Polyampholyte-coated (poly(acrylic acid) (PAA)-co-3-(diethylamino)-propylamine (DEAPA)) magnetite nanoparticles (PAMNPs) have been prepared as contrasting agent used in magnetic resonance imaging (MRI). Excellent biocompatibility is required for contrasting agents used in high-resolution magnetic resonance angiography. To evaluate the biocompatibility of PAMNPs, some experiments have been conducted. The hemolysis, plasma recalcification, dynamic blood clotting, prothrombin time, inflammatory cytokine release and complement system activation assays were carried out to investigate the hemocompatibility. To evaluate the toxicity to vessel, MTT test and vascular irritation tests were conducted. Tissue toxicity test was also performed to investigate the biocompability in vivo. We also looked into the biodistribution. The results showed that PAMNPs at the working concentration (0.138 mM) present similar hemocompatibility with negative control, thus have no significant effect to vessels. PAMNPs were mainly distributed in the liver and the blood. The circulation time in blood was considerably long, with the half-time of 3.77 h in plasma. This property is advantageous for PAMNPs' use in angiography. PAMNPs could be metabolized rapidly in mice and were not observed to cause any toxic or adverse effect. In short, these results suggest that the PAMNPs have great potential to serve as safe contrast agents in magnetic resonance imaging (MRI).

  3. Peak flow velocities in the ascending aorta-real-time phase-contrast magnetic resonance imaging vs. cine magnetic resonance imaging and echocardiography.

    PubMed

    Sohns, Jan M; Kowallick, Johannes T; Joseph, Arun A; Merboldt, K Dietmar; Voit, Dirk; Fasshauer, Martin; Staab, Wieland; Frahm, Jens; Lotz, Joachim; Unterberg-Buchwald, Christina

    2015-10-01

    This prospective study of eight healthy volunteers evaluates peak flow velocities (PFV) in the ascending aorta using real-time phase-contrast magnetic resonance imaging (MRI) in comparison to cine phase-contrast MRI and echocardiography. Flow measurements by echocardiography and cine phase-contrast MRI with breath-holding were performed according to clinical standards. Real-time phase-contrast MRI at 40 ms temporal resolution and 1.3 mm in-plane resolution was based on highly undersampled radial fast low-angle shot (FLASH) sequences with image reconstruction by regularized nonlinear inversion (NLINV). Evaluations focused on the determination of PFV. Linear regressions and Bland-Altman plots were used for comparisons of methods. When averaged across subjects, real-time phase-contrast MRI resulted in PFV of 120±20 cm s(-1) (mean ± SD) in comparison to 122±16 cm s(-1) for cine MRI and 124±20 cm s(-1) for echocardiography. The maximum deviations between real-time phase-contrast MRI and echocardiography ranged from -20 to +14 cm s(-1) (cine MRI: -10 to +12 cm s(-1)). Thus, in general, real-time phase-contrast MRI of cardiac outflow revealed quantitative agreement with cine MRI and echocardiography. The advantages of real-time MRI are measurements during free breathing and access to individual cardiac cycles.

  4. Magnetic resonance contrast media sensing in vivo molecular imaging agents: an overview.

    PubMed

    Amanlou, Massoud; Siadat, Seyed Davar; Norouzian, Dariush; Ebrahimi, Seyed Esmaeil Sadat; Aghasadeghi, Mohammad Reza; Ghorbani, Masoud; Alavidjeh, Mohammad Shafiee; Inanlou, Davoud Nouri; Arabzadeh, Ali Jabbari; Ardestani, Mehdi Shafiee

    2011-01-01

    Metabolic imaging is commonly performed by nuclear medicine facilities such as PET or SPECT, etc. The production and biomedical applications of bio-molecular sensing in vivo MRI metabolic contrast agents has recently become of great universal research interest, which follows its great success as a potential cost effective, less radioactive, nuclear medicine alternative. Temperature, redox potential, enzyme activity, free radial/metal ion responsive and/or pH sensitive molecular metabolic MR contrast agents are among the famous instances exemplified, which basically promote MR image contrast enhancement ability to distinguish molecular metabolic/gene expression features. Overall, these MRI contrast agents provide a framework to achieve a greater degree of accuracy from MRI as a low cost, more available facility, non radioactive radiation producing and highly sensitive biomedical tool to propound as a new suggesting opponent for PET nuclear medicine imaging. In the present review, the design, development, examination and future of the above agents will be discussed in detail.

  5. Analytical Method of Correction of B 1 Errors in Mapping of Magnetization Transfer Ratio in Highfield Magnetic Resonance Tomography

    NASA Astrophysics Data System (ADS)

    Yarnykh, V. L.; Khodanovich, M. Yu.

    2015-04-01

    Magnetization Transfer Ratio (MTR) is a widely used parameter for quantitative estimation of tissues in magnetic resonance tomography (MRT). At the same time, MTR is rather sensitive to errors caused by the nonideal characteristics of magnetic resonance tomographs. In particular, MTR depends strongly on the local inhomogeneities of the radio-frequency field B 1 that limits the MTR application for high magnetic field strengths. In the present research, a simple analytical model of the MTR dependence on B 1 is derived. Based on this model, a correction algorithm is developed using a set of parameters independent of tissue. This algorithm is tested for MTR mapping of the human brain in the field with induction of 3 T. The MTR correction demonstrates high accuracy for a wide range of B 1 inhomogeneities. Combination of the analytical algorithm with fast B 1 mapping enables high-precision MTR brain mapping for neuroimaging applications and analysis of histograms on high-field scanners.

  6. Development of an Energy Efficient Cryogenic Transfer Line with Magnetic Suspension

    NASA Astrophysics Data System (ADS)

    Shu, Quan-Sheng; Cheng, Guangfeng; Susta, Joseph T.; Hull, John R.; Demko, Jonathan A.; Britcher, Colin P.; Fesmire, James E.; Augustynowicz, Stan D.; Werfel, Frank; Bonnema, Edward C.

    2006-04-01

    In a conventional vacuum-jacketed cryogen transfer line, the major heat transfer is dominated by two modes: i) radiation between the warm outer pipe and the cold inner pipe and ii) thermal conduction through support members and penetrations. Magnetic levitation makes it possible to eliminate the conduction portion by use of non-contact support, consisting of high temperature superconductor (HTS) and permanent magnet (PM). Several transfer line prototypes (including a 6-meter prototype) have been designed and constructed to optimized the levitation and thermal performance. This paper reviews the key design/fabrication issues, such as levitation configuration, levitation force measurement, warm-support design using smart materials, fabrication process, and technical milestones throughout a 3-year period. This novel transfer line offers the potential of significant savings of cryogens and hence reduces the cost of crygon use.

  7. Dynamic Contrast-Enhanced Magnetic Resonance Enterography and Dynamic Contrast-Enhanced Ultrasonography in Crohn’s Disease: An Observational Comparison Study

    PubMed Central

    Wilkens, Rune; Peters, David A.; Nielsen, Agnete H.; Hovgaard, Valeriya P.; Glerup, Henning; Krogh, Klaus

    2017-01-01

    Purpose e Cross-sectional imaging methods are important for objective evaluationof small intestinal inflammationinCrohn’sdisease(CD).The primary aim was to compare relative parameters of intestinal perfusion between contrast-enhanced ultrasonography (CEUS) and dynamic contrast-enhanced magnetic resonance enterography (DCE-MRE) in CD. Furthermore, we aimed at testing the repeatability of regions of interest (ROIs) for CEUS. Methods This prospective study included 25 patients: 12 females (age: 37, range: 19–66) with moderate to severe CD and a bowel wall thickness>3mm evaluated with DCE-MRE and CEUS. CEUS bolus injection was performed twice for repeatability and analyzed in VueBox®. Correlations between modalities were described with Spearman’s rho, limits of agreement(LoA) and intraclass correlation coefficient(ICC). ROIrepeatability for CEUS was assessed. Results s The correlation between modalities was good and very good for bowel wall thickness (ICC=0.71, P<0.001) and length of the inflamed segment (ICC=0.89, P<0.001). Moderate-weak correlations were found for the time-intensity curve parameters: peak intensity (r=0.59, P=0.006), maximum wash-in-rate (r=0.62, P=0.004), and wash-in perfusion index (r=0.47, P=0.036). Best CEUS repeatability for peak enhancement was a mean difference of 0.73 dB (95% CI: 0.17 to 1.28, P=0.01) and 95% LoA from −3.8 to 5.3 dB. Good quality of curve fit improved LoA to −2.3 to 2.8 dB. Conclusion The relative perfusion of small intestinal CD assessed with DCE-MRE and CEUS shows only a moderate correlation. Applying strict criteria for ROIs is important and allows for good CEUS repeatability PMID:28286879

  8. A comparative study of contrast enhanced ultrasound and contrast enhanced magnetic resonance imaging for the detection and characterization of hepatic hemangiomas.

    PubMed

    Fang, Liang; Zhu, Zheng; Huang, Beijian; Ding, Hong; Mao, Feng; Li, Chaolun; Zeng, Mengsu; Zhou, Jianjun; Wang, Ling; Wang, Wenping; Chen, Yue

    2015-04-01

    This study aims to compare contrast enhanced ultrasound (CEUS) and contrast enhanced magnetic resonance imaging (CEMRI) for the detection and characterization of hepatic hemangiomas. Included in this retrospective study were 83 histopathologically confirmed lesions of hemangioma in 66 hospitalized patients who underwent both CEUS and CEMRI and received surgery. The enhancement patterns on CEUS and CEMRI in each lesion were compared and analyzed. In addition, data obtained by the two modalities were then compared with the pathological findings to determine their value in differential diagnosis of hepatic hemangiomas. CEUS diagnosed 78 lesions of hemangioma against 80 by CEMRI. There were no statistical significant differences in the diagnostic value between CEUS and CEMRI in terms of sensitivity (88.0% vs. 92.8%), specificity (99.0% vs. 99.4%), accuracy (97.3% vs. 98.4%), positive predictive value (93.6% vs. 96.3%), and negative predictive value (98.0% vs. 98.8%) (p > 0.05, all). In the arterial phase, the main enhancement pattern on both CEUS and CEMRI was peripheral nodular enhancement (73 vs. 76), but lesions with diffuse enhancement on CEUS outnumbered those on CEMRI (3 vs. 1) and lesions with circular enhancement on CEMRI outnumbered those on CEUS (3 vs. 2). In the portal venous phase and delayed phase, the main enhancement pattern was hyperechoic change on CEUS and hyperintense on CEMRI (66 vs. 65), some lesions presented isoechoic change (12 vs. 15). These results suggested CEUS, an equivalent to CEMRI, may have an added diagnostic value in hemangiomas.

  9. Low Thermal Loss Cryogenic Transfer Line with Magnetic Suspension

    NASA Astrophysics Data System (ADS)

    Shu, Quan-Sheng; Cheng, Guangfeng; Yu, Kun; Hull, John R.; Demko, Jonathan A.; Britcher, Colin P.; Fesmire, James E.; Augustynowicz, Stan D.

    2004-06-01

    An energy efficient, cost effective cryogenic distribution system (up to several miles) is crucial for spaceport and in-space cryogenic systems. The conduction heat loss from the supports that connect the cold inner lines to the warm support structure is ultimately the most serious heat leak after thermal radiation has been minimized. The use of magnetic levitation by permanent magnets and high temperature superconductors provides support without mechanical contact and thus, the conduction part of the heat leak can be reduced to zero. A stop structure is carefully designed to hold the center tube when the system is warm. The novel design will provide the potential of extending many missions by saving cryogens, or reducing the overall launch mass.

  10. Energy Efficient Cryogenic Transfer Line with Magnetic Suspension

    NASA Astrophysics Data System (ADS)

    Shu, Quan-Sheng; Cheng, Guangfeng; Yu, Kun; Hull, John R.; Demko, Jonathan A.; Britcher, Colin P.; Fesmire, James E.; Augustynowicz, Stan D.

    2003-07-01

    An energy efficient, cost effective cryogenic distribution system (up to several miles) has been identified as important for spaceport and in-space cryogenic systems. The conduction heat loss from the supports that connect the lines cold mass to the warm support structure is ultimately the most serious heat leak after thermal radiation has been minimized. The use of magnetic levitation by permanent magnets and high temperature superconductors provides support without mechanical contact and thus, the conduction part of the heat leak can be reduced to zero. A stop structure is carefully designed to hold the center tube when the system is warm. The novel design will provide the potential of extending many missions by saving cryogens, or reducing the overall launch mass to accomplish a given mission.

  11. Transfer from classical mechanics context to electricity and magnetism context

    NASA Astrophysics Data System (ADS)

    Gonzalez, Maria D.; Kanim, Stephen

    2008-10-01

    Some classical mechanics concepts, like density, vectors use, conservative fields, 3^rd Newton Law, velocity and acceleration physical and mathematical relations, are the basis for the development of related concepts that are central to the subsequent electricity and magnetism course. We believe that if students and instructors involved recognize the underlying features that are common to the two contexts, a better understanding and performance will be achieved. We are developing a pre- and post-test that is intended to measure the extent to which (1) students enter the electricity and magnetism course with a sufficient mechanics foundation; (2) there is a correlation between student responses to similar questions in mechanics and electrostatics contexts; and (3) mechanics understanding is strengthened through reintroduction of physics principles in a second context. We will give examples of ``paired'' questions and give data from administrations of the pre- and post-tests.

  12. Effect of different magnetic field distributions on laminar ferroconvection heat transfer in horizontal tube

    NASA Astrophysics Data System (ADS)

    Sheikhnejad, Yahya; Hosseini, Reza; Saffar-avval, Majid

    2015-09-01

    The forced convection heat transfer of ferrofluid steady state laminar flow through a circular axisymmetric horizontal pipe under different magnetic field is the focus of this study. The pipe is under constant heat flux while different linear axial magnetic fields were applied on the ferrofluid with equal magnetic energy. In this scenario, viscosity of ferrofluid is temperature dependent, to capture ferrofluid real behavior a nonlinear Langevin equation was considered for equilibrium magnetization. For this purpose, the set of nonlinear governing PDEs was solved using proper CFD techniques: the finite volume method and SIMPLE algorithm were used to discretize and numerically solve the governing equation in order to obtain thermohydrodynamic flow characteristics. The numerical results show a promising enhancement of up to 135.7% in heat transfer as a consequence of the application of magnetic field. The magnetic field also increases pressure loss of up to 77% along the pipe; but effectiveness (favorable to unfavorable effect ratio) of the magnetic field as a performance index economically justifies its application such that higher magnetic field intensity causes higher effectiveness of up to 1.364.

  13. Voxel-based analyses of magnetization transfer imaging of the brain in hepatic encephalopathy

    PubMed Central

    Miese, Falk R; Wittsack, Hans-Jörg; Kircheis, Gerald; Holstein, Arne; Mathys, Christian; Mödder, Ulrich; Cohnen, Mathias

    2009-01-01

    AIM: To evaluate the spatial distribution of cerebral abnormalities in cirrhotic subjects with and without hepatic encephalopathy (HE) found with magnetization transfer imaging (MTI). METHODS: Nineteen cirrhotic patients graded from neurologically normal to HE grade 2 and 18 healthy control subjects underwent magnetic resonance imaging. They gave institutional-review-board-approved written consent. Magnetization transfer ratio (MTR) maps were generated from MTI. We tested for significant differences compared to the control group using statistical non-parametric mapping (SnPM) for a voxel-based evaluation. RESULTS: The MTR of grey and white matter was lower in subjects with more severe HE. Changes were found in patients with cirrhosis without neurological deficits in the basal ganglia and bilateral white matter. The loss in magnetization transfer increased in severity and spatial extent in patients with overt HE. Patients with HE grade 2 showed an MTR decrease in white and grey matter: the maximum loss of magnetization transfer effect was located in the basal ganglia [SnPM (pseudo-)t = 17.98, P = 0.0001]. CONCLUSION: The distribution of MTR changes in HE points to an early involvement of basal ganglia and white matter in HE. PMID:19891014

  14. Frequency-dependent conductivity contrast for tissue characterization using a dual-frequency range conductivity mapping magnetic resonance method.

    PubMed

    Kim, Dong-Hyun; Chauhan, Munish; Kim, Min-Oh; Jeong, Woo Chul; Kim, Hyung Joong; Sersa, Igor; Kwon, Oh In; Woo, Eung Je

    2015-02-01

    Electrical conductivities of biological tissues show frequency-dependent behaviors, and these values at different frequencies may provide clinically useful diagnostic information. MR-based tissue property mapping techniques such as magnetic resonance electrical impedance tomography (MREIT) and magnetic resonance electrical property tomography (MREPT) are widely used and provide unique conductivity contrast information over different frequency ranges. Recently, a new method for data acquisition and reconstruction for low- and high-frequency conductivity images from a single MR scan was proposed. In this study, we applied this simultaneous dual-frequency range conductivity mapping MR method to evaluate its utility in a designed phantom and two in vivo animal disease models. Magnetic flux density and B(1)(+) phase map for dual-frequency conductivity images were acquired using a modified spin-echo pulse sequence. Low-frequency conductivity was reconstructed from MREIT data by the projected current density method, while high-frequency conductivity was reconstructed from MREPT data by B(1)(+) mapping. Two different conductivity phantoms comprising varying ion concentrations separated by insulating films with or without holes were used to study the contrast mechanism of the frequency-dependent conductivities related to ion concentration and mobility. Canine brain abscess and ischemia were used as in vivo models to evaluate the capability of the proposed method to identify new electrical properties-based contrast at two different frequencies. The simultaneous dual-frequency range conductivity mapping MR method provides unique contrast information related to the concentration and mobility of ions inside tissues. This method has potential to monitor dynamic changes of the state of disease.

  15. Non-Newtonian behavior of magnetized ferrofluids as revealed by high speed x-ray phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Prescod, Joy A.; Cali, A.; Nunez, S.; Smith, R.; Vieira, M.; Trubatch, A. D.; Yecko, P.; Lee, W.-K.

    2011-11-01

    Objects moving through a magnetized ferrofluid experience enhanced drag as a result of the presence of magnetic particles and magnetic particle agglomerations which form due to magnetic attractive forces. The precise impact of an agglomeration on an object depends on the characteristics of the agglomeration, the relative sizes of the object and agglomeration, as well as other control parameters. In this study, high speed phase contrast imaging was used to directly image the impact of long thread-like magnetic particle agglomerations on the rheological properties of ferrofluids. Particularly, numerous types of interactions between these threads and translating objects, including free-falling 500 micron sized solid glass spheres and intermittently rising vapor bubbles were quantified. At these scales, objects may bind to particle threads resulting in momentary re-direction or arrest of the object's trajectory, alluding to a form of yield stress. Therefore, there is a macro-viscosity property in flows of this type, which has a potentially significant impact of the use of ferrofluids in micro-fluidics and drug delivery. Supported by NSF grant no. MPS-1016383.

  16. Fabrication of contrast agents for magnetic resonance imaging from polymer-brush-afforded iron oxide magnetic nanoparticles prepared by surface-initiated living radical polymerization.

    PubMed

    Ohno, Kohji; Mori, Chizuru; Akashi, Tatsuki; Yoshida, Shinichi; Tago, Yoshiyuki; Tsujii, Yoshinobu; Tabata, Yasuhiko

    2013-10-14

    The aim of this study is to fabricate a contrast agent for magnetic resonance imaging (MRI) by using hybrid particles composed of a core of iron oxide magnetite (Fe3O4) nanoparticles and a shell of hydrophilic polymer brush synthesized by surface-initiated (SI) living radical polymerization. To achieve this, Fe3O4 nanoparticles were surface-modified with initiating groups for atom transfer radical polymerization (ATRP) via a ligand-exchange reaction in the presence of a triethoxysilane derivative having an ATRP initiation site. The ATRP-initiator-functionalized Fe3O4 nanoparticles were used for performing the SI-ATRP of methyl methacrylate to demonstrate the ability of the synthesized nanoparticles to produce well-defined polymer brushes on their surfaces. The polymerization proceeded in a living fashion so as to produce graft polymers with targeted molecular weights and narrow molecular weight distribution. The average graft density was estimated to be as high as 0.7 chains/nm(2), which indicates the formation of so-called concentrated polymer brushes on the Fe3O4 nanoparticles. Dynamic light scattering and transmission electron microscope observations of the hybrid nanoparticles revealed their uniformity and dispersibility in solvents to be excellent. A similar polymerization process was conducted using a hydrophilic monomer, poly(ethylene glycol) methyl ether methacrylate (PEGMA), to prepare Fe3O4 nanoparticles grafted with poly(PEGMA) brushes. The resultant hybrid nanoparticles showed excellent dispersibility in aqueous media including physiological conditions without causing any aggregations. The blood clearance and biodistribution of the hybrid particles were investigated by intravenously injecting particles labeled with a radio isotope, (125)I, into mice. It was found that some hybrid particles exhibited an excellently prolonged circulation lifetime in the blood with a half-life of about 24 h. When such hybrid particles were injected intravenously into a

  17. Magnetization switching by combining electric field and spin-transfer torque effects in a perpendicular magnetic tunnel junction

    PubMed Central

    Zhang, Xiangli; Wang, Chengjie; Liu, Yaowen; Zhang, Zongzhi; Jin, Q. Y.; Duan, Chun-Gang

    2016-01-01

    Effective manipulation of magnetization orientation driven by electric field in a perpendicularly magnetized tunnel junction introduces technologically relevant possibility for developing low power magnetic memories. However, the bipolar orientation characteristic of toggle-like magnetization switching possesses intrinsic difficulties for practical applications. By including both the in-plane (T//) and field-like (T⊥) spin-transfer torque terms in the Landau-Lifshitz-Gilbert simulation, reliable and deterministic magnetization reversal can be achieved at a significantly reduced current density of 5×109 A/m2 under the co-action of electric field and spin-polarized current, provided that the electric-field pulse duration exceeds a certain critical value τc. The required critical τc decreases with the increase of T⊥ strength because stronger T⊥ can make the finally stabilized out-of-plane component of magnetization stay in a larger negative value. The power consumption for such kind of deterministic magnetization switching is found to be two orders of magnitude lower than that of the switching driven by current only. PMID:26732287

  18. Large magnetic to electric field contrast in azimuthally polarized vortex beams generated by a metasurface (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Veysi, Mehdi; Guclu, Caner; Capolino, Filippo

    2015-09-01

    We investigate azimuthally E-polarized vortex beams with enhanced longitudinal magnetic field. Ideally, such beams possess strong longitudinal magnetic field on the beam axis where there is no electric field. First we formulate the electric field vector and the longitudinal magnetic field of an azimuthally E-polarized beam as an interference of right- and left-hand circularly polarized Laguerre Gaussian (LG) beams carrying the orbital angular momentum (OAM) states of -1 and +1, respectively. Then we propose a metasurface design that is capable of converting a linearly polarized Gaussian beam into an azimuthally E-polarized vortex beam with longitudinal magnetic field. The metasurface is composed of a rectangular array of double-layer double split-ring slot elements, though other geometries could be adopted as well. The element is specifically designed to have nearly a 180° transmission phase difference between the two polarization components along two orthogonal axes, similar to the optical axes of a half-wave plate. By locally rotating the optical axes of each metasurface element, the transmission phase profile of the circularly polarized waves over the metasurface can be tailored. Upon focusing of the generated vortex beam through a lens with a numerical aperture of 0.7, a 41-fold enhancement of the magnetic to electric field ratio is achieved on the beam axis with respect to that of a plane wave. Generation of beams with large magnetic field to electric field contrast can find applications in future spectroscopy systems based on magnetic dipole transitions, which are usually much weaker than electric dipole transitions.

  19. Near-infrared dye-loaded magnetic nanoparticles as photoacoustic contrast agent for enhanced tumor imaging

    PubMed Central

    Gao, Chuang; Deng, Zi-Jian; Peng, Dong; Jin, Yu-Shen; Ma, Yan; Li, Yan-Yan; Zhu, Yu-Kun; Xi, Jian-Zhong; Tian, Jie; Dai, Zhi-Fei; Li, Chang-Hui; Liang, Xiao-Long

    2016-01-01

    Objective: Photoacoustic (PA) tomography (PAT) has attracted extensive interest because of its optical absorption contrast and ultrasonic detection. This study aims to develop a biocompatible and biodegradable PA contrast agent particularly promising for clinical applications in human body. Methods: In this study, we presented a PA contrast agent: 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine- N-[methoxy (polyethylene glycol)] (DSPE-PEG)-coated superparamagnetic iron oxide (SPIO) nanoparticles (NPs) loaded with indocyanine green (ICG). We used ICG and SPIO NPs because both drugs are approved by the U.S. Food and Drug Administration. Given the strong absorption of near-infrared laser pulses, SPIO@DSPE-PEG/ICG NPs with a uniform diameter of ~28 nm could significantly enhance PA signals. Results: We demonstrated the contrast enhancement of these NPs in phantom and animal experiments, in which the in vivo circulation time of SPIO@DSPE-PEG/ICG NPs was considerably longer than that of free ICG. These novel NPs also displayed a high efficiency of tumor targeting. Conclusions: SPIO@DSPE-PEG/ICG NPs are promising PAT contrast agents for clinical applications. PMID:27807502

  20. BOLD contrast on a 3 T magnet: detectability of the motor areas.

    PubMed

    Nakai, T; Matsuo, K; Kato, C; Okada, T; Moriya, T; Isoda, H; Takehara, Y; Sakahara, H

    2001-01-01

    To predict the potential and the limitations of functional MRI (fMRI) with a very high field magnet, the detectability and reproducibility of activation were evaluated by comparing the activation induced by a sequential finger movement task at 1.5 T with that at 3 T. The detectability of the premotor area, supplementary motor area (SMA), and ipsilateral sensorimotor area (SM1) showed significant improvement at 3 T. On the other hand, the detectability of contralateral SM1 was not significantly different between 1.5 and 3 T. The degree of activation was proportional to task demand in the ipsilateral SM1 and SMA, whereas that in the contralateral SM1 and SMA was not. FMRI with a 3 T magnet has greater potential for detection of neuronal activation as a functional network. These observations indicated that task demand and static magnetic field strength should be considered in interpretation of fMRI data for clinical usage.

  1. Acoustic characterization and contrast imaging of microbubbles encapsulated by polymeric shells coated or filled with magnetic nanoparticles.

    PubMed

    Sciallero, Claudia; Grishenkov, Dmitry; Kothapalli, Satya V V N; Oddo, Letizia; Trucco, Andrea

    2013-11-01

    The combination of superparamagnetic iron oxide nanoparticles with polymeric air-filled microbubbles is used to produce two types of multimodal contrast agents to enhance medical ultrasound and magnetic resonance imaging. The nanoparticles are either covalently linked to the shell or physically entrapped into the shell. In this paper, the characterization of the acoustic properties (backscattered power, fracturing pressure, attenuation and dispersion of the ultrasonic wave) and ultrasound imaging of the two types of magnetic microbubbles are presented. In vitro B-mode images are generated using a medical ultrasound scanner by applying a nonconventional signal processing technique that is suitable to detect polymeric bubbles and based on the combination of multipulse excitation and chirp coding. Even if both types of microbubbles can be considered to be effective ultrasound contrast agents, the different structure of the shell loaded with nanoparticles has a pronounced effect on the echogenicity and the detection sensitivity of the imaging technique. The best results are obtained using microbubbles that are externally coated with nanoparticles. A backscattered power of 20 dB was achieved at lower concentration, and an increment of 8 dB in the contrast-to-tissue ratio was observed with respect to the more rigid microbubbles with particles entrapped into the shell.

  2. Liver-specific magnetic resonance contrast medium in the evaluation of chronic liver disease

    PubMed Central

    dos Reis, Marcio Augusto Correia Rodrigues; Baroni, Ronaldo Hueb

    2015-01-01

    ABSTRACT The hepatobiliary-specific contrast medium (gadoxetic acid – Primovist®) is primarily used to improve detection and characterization of focal hepatic lesions, such as in chronic liver disease patients with suspected hepatocellular carcinoma. Since the contrast medium is selectively taken up by functioning hepatocytes in the late hepatobiliary phase, it helps to detect typical hepatocellular carcinoma, which show low signal intensity on this phase. This imaging feature also assists in differentiating regenerative/dysplastic nodules from early hepatocellular carcinomas (with over 90% accuracy), as well as hypervascular hepatocellular carcinomas from arterial pseudo-enhancement foci. Future perspectives include its use in quantification of hepatic function and fibrosis. PMID:26154554

  3. Preclinical evaluation of biodegradable macromolecular contrast agents for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Feng, Yi

    Macromolecular contrast agents have been shown to be superior to small molecular weight contrast agents for MRI in blood pool imaging, tumor diagnosis and grading. However, none has been approved by the FDA because they circulate in the bloodstream much longer than small molecular weight contrast agents and result in high tissue accumulation of toxic Gd(III) ions. Biodegradable macromolecular contrast agents (BMCA) were invented to alleviate the toxic accumulation. They have a cleavable disulfide bond based backbone that can be degraded in vivo and excreted out of the body via renal filtration. Furthermore, the side chain of the backbone can be modified to achieve various degradation rates. Three BMCA, (Gd-DTPA)-cystamine copolymers (GDCC), Gd-DTPA cystine copolymers (GDCP), and Gd-DTPA cystine diethyl ester copolymers (GDCEP), were evaluated as blood pool contrast agents in a rat model. They have excellent blood pool enhancement, preferred pharmacokinetics, and only minimal long-term tissue retention of toxic Gd(III) ions. GDCC and GDCP, the lead agents with desired degradation rates, with molecular weights of 20 KDa and 70 KDa, were chosen for dynamic contrast enhanced MRI (DCE-MRI) to differentiate human prostate tumor models of different malignancy and growth rates. GDCC and GDCP could differentiate these tumor models, providing more accurate estimations of plasma volume, flow leakage rate, and permeability surface area product than a small molecular weight contrast agent Gd-DTPA-BMA when compared to the prototype macromolecular contrast agent albumin-Gd-DTPA. GDCC was favored for its neutral charge side chain and reasonable uptake rate by the tumors. GDCC with a molecular weight of 40 KDa (GDCC-40, above the renal filtration cutoff size) was used to assess the efficacy of two photothermal therapies (interstitial and indocyanine green enhanced). GDCC-40 provided excellent tumor enhancement shortly after its injection. Acute tumor response (4 hr) after therapies

  4. Numerical analysis of thermally assisted spin-transfer torque magnetization reversal in synthetic ferrimagnetic free layers

    SciTech Connect

    Shen, J.; Shi, M.; Tanaka, T. Matsuyama, K.

    2015-05-07

    The spin transfer torque magnetization reversal of synthetic ferrimagnetic free layers under pulsed temperature rise was numerically studied by solving the Landau–Lifshitz–Gilbert equation, taking into account the stochastic random fields, the temperature dependence of magnetic parameters, and the spin torque terms. The anti-parallel magnetization configuration was retained at the elevated temperature, due to interlayer dipole coupling. A significant thermal assistance effect, resulting in a 40% reduction in the switching current, was demonstrated during a nanosecond pulsed temperature rise up to 77% of the Curie temperature.

  5. Charge transfer-induced magnetic exchange bias and electron localization in (111)- and (001)-oriented LaNiO3/LaMnO3 superlattices

    NASA Astrophysics Data System (ADS)

    Wei, Haoming; Barzola-Quiquia, Jose Luis; Yang, Chang; Patzig, Christian; Höche, Thomas; Esquinazi, Pablo; Grundmann, Marius; Lorenz, Michael

    2017-03-01

    High-quality lattice-matched LaNiO3/LaMnO3 superlattices with monolayer terrace structure have been grown on both (111)- and (001)-oriented SrTiO3 substrates by pulsed laser deposition. In contrast to the previously reported experiments, a magnetic exchange bias is observed that reproducibly occurs in both (111)- and (001)-oriented superlattices with the thin single layers of 5 and 7 unit cells, respectively. The exchange bias is theoretically explained by charge transfer-induced magnetic moments at Ni atoms. Furthermore, magnetization data at low temperature suggest two magnetic phases in the superlattices, with Néel temperature around 10 K. Electrical transport measurements reveal a metal-insulator transition with strong localization of electrons in the superlattices with the thin LaNiO3 layers of 4 unit cells, in which the electrical transport is dominated by two-dimensional variable range hopping.

  6. Contrasting the Forrest City School District's Magnet Program Operating with Federal Funding and without Federal Funding.

    ERIC Educational Resources Information Center

    Barnes, Alice; Wesson, Linda

    This paper presents findings of a study that examined the effect of termination of funding on a magnet-school program. The federally funded program was implemented in Forrest City, Arkansas, to eliminate racial imbalance in the elementary schools. The program was based on the assumption that with enough time and financial assistance, racial…

  7. The physical mechanism of "inhomogeneous" magnetization transfer MRI

    NASA Astrophysics Data System (ADS)

    Manning, Alan P.; Chang, Kimberley L.; MacKay, Alex L.; Michal, Carl A.

    2017-01-01

    Inhomogeneous MT (ihMT) is a new magnetic resonance imaging technique that shows promise for myelin selectivity. Materials with a high proportion of lipids, such as white matter tissue, show a reduced intensity in magnetic resonance images acquired with selective prepulses at positive and negative offsets simultaneously compared to images with a single positive or negative offset prepulse of the same power. This effect was initially explained on the basis of hole-burning in inhomogeneously broadened lines of the lipid proton spin system. Our results contradict this explanation. ihMT in lipids can be understood with a simple spin-1 model of a coupled methylene proton pair. More generally, Provotorov theory can be used to consider the evolution of dipolar order in the non-aqueous spins during the prepulses. We show that the flip-angle dependence of the proton spectrum of a model lipid system (Prolipid-161) following dipolar order generation is in quantitative agreement with the model. In addition, we directly observe dipolar order and ihMT signals in the non-aqueous components of Prolipid-161 and homogeneously-broadened systems (hair, wood, and tendon) following ihMT prepulses. The observation of ihMT signals in tendon suggests that the technique may not be as specific to myelin as previously thought. Our work shows that ihMT occurs because of dipolar couplings alone, not from a specific type of spectral line broadening as its name suggests.

  8. 2D Radiative Transfer in Magnetically Confined Structures

    NASA Astrophysics Data System (ADS)

    Heinzel, P.; Anzer, U.

    2003-01-01

    Magnetically confined structures in the solar atmosphere exhibit a large complexity in their shapes and physical conditions. As an example, we show the case of so-called magnetic dips in prominences which are in magnetohydrostatic equilibria. For such models we solve 2D non-LTE multilevel problem for hydrogen with PRD in Lyman resonance lines. The iterative technique used is based on the MALI approach with simple diagonal ALO and SC formal solver. To compute the hydrogen ionization balance, the preconditioned MALI equations are linearized with respect to atomic level populations and electron density and solved iteratively using the Newton-Raphson scheme. Two additional problems are addressed: (i) an adequate iteration method for cases when the column-mass scale is used in one of the two dimensions but varies along the other dimension (which has a geometrical scaling); and (ii) a possibility of using AMR (Adaptive Mesh Refinement) algorithms to account for steep 2D gradients of selected variables (temperature, density, etc.).

  9. Spin transfer torque in magnetic tunnel junctions with a perpendicularly magnetized polarizer

    NASA Astrophysics Data System (ADS)

    Moriyama, Takahiro; Gudmundsen, Theodore; Liu, Luqiao; Buhrman, R. A.; Ralph, D. C.

    2011-03-01

    Spin-torque devices containing magnetic layers with perpendicular magnetic anisotropy are of interest for strategies to reduce the switching currents in memory applications. We report spin-torque-driven ferromagnetic resonance (ST-FMR) measurements of the bias-dependent torque in magnetic tunnel junctions containing [Co/Ni]x multilayers possessing perpendicular anisotropy, acting as the polarizer layer providing spin-polarized current. We observe unusual dependence of the bias-dependent torque as a function of the magnetic orientation of the [Co/Ni]x multilayer. We speculate that this sensitivity to the magnetic orientation may originate from changes in the occupation of spin-polarized states at the Co/Ni interfaces associated with the perpendicular magnetic anisotropy.

  10. Effects of magnetic fields on improving mass transfer in flue gas desulfurization using a fluidized bed

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Gui, Keting; Wang, Xiaobo

    2016-02-01

    The effects of magnetic fields on improving the mass transfer in flue gas desulfurization using a fluidized bed are investigated in the paper. In this research, the magnetically fluidized bed (MFB) is used as the reactor in which ferromagnetic particles are fluidized with simulated flue gas under the influence of an external magnetic field. Lime slurry is continuously sprayed into the reactor. As a consequence, the desulfurization reaction and the slurry drying process take place simultaneously in the MFB. In this paper, the effects of ferromagnetic particles and external magnetic fields on the desulphurization efficiency are studied and compared with that of quartz particles as the fluidized particles. Experimental results show that the ferromagnetic particles not only act as a platform for lime slurry to precipitate on like quartz particles, but also take part in the desulfurization reaction. The results also show that the specific surface area of ferromagnetic particles after reaction is enlarged as the magnetic intensity increases, and the external magnetic field promotes the oxidation of S(IV), improving the mass transfer between sulphur and its sorbent. Hence, the efficiency of desulphurization under the effects of external magnetic fields is higher than that in general fluidized beds.

  11. Ni-Fe2O4 nanoparticles as contrast agents for magnetic resonance imaging.

    PubMed

    Ahmad, Tanveer; Rhee, Ilsu; Hong, Sungwook; Chang, Yongmin; Lee, Jaejun

    2011-07-01

    Reported herein is the synthesis of a dextran coating on nickel ferrite (Ni-Fe2O4) nanoparticles via chemical coprecipitation. The aqueous solution of the synthesized nanoparticles showed good colloidal stability, and no precipitate was observed 20 months after the synthesis. The coated nanoparticles were found to be cylindrical in shape in the TEM images, and showed a uniform size distribution with an average length and diameter of 17 and 4 nm, respectively. The coated particles were evaluated as potential T1 and T2 contrast agents for MRI. The T1 and T2 relaxations of the hydrogen protons in the water molecules in an aqueous solution of dextran-coated Ni-Fe2O4 nanoparticles were studied. It was found that the T1 relaxivity for the aqueous solution of dextran-coated nanoparticles was slightly greater than that of a commercial Gd-DTPA-BMA contrast agent. The T2 relaxivity, however, was almost twice that of the commercial Gd-DTPA-BMA contrast agent. Animal experimentation also demonstrated that the dextran-coated Ni-Fe2O4 nanoparticles are suitable for use as either T1 or T2 contrast agents in MRI.

  12. Anomalous Tunnel Magnetoresistance and Spin Transfer Torque in Magnetic Tunnel Junctions with Embedded Nanoparticles

    PubMed Central

    Useinov, Arthur; Ye, Lin-Xiu; Useinov, Niazbeck; Wu, Te-Ho; Lai, Chih-Huang

    2015-01-01

    The tunnel magnetoresistance (TMR) in the magnetic tunnel junction (MTJ) with embedded nanoparticles (NPs) was calculated in range of the quantum-ballistic model. The simulation was performed for electron tunneling through the insulating layer with embedded magnetic and non-magnetic NPs within the approach of the double barrier subsystem connected in parallel to the single barrier one. This model can be applied for both MTJs with in-plane magnetization and perpendicular one. We also calculated the in-plane component of the spin transfer torque (STT) versus the applied voltage in MTJs with magnetic NPs and determined that its value can be much larger than in single barrier system (SBS) for the same tunneling thickness. The reported simulation reproduces experimental data of the TMR suppression and peak-like TMR anomalies at low voltages available in leterature. PMID:26681336

  13. Power modulation contrast enhanced ultrasound for postoperative perfusion monitoring following free tissue transfer in head and neck surgery.

    PubMed

    Sharma, S; Anand, R; Hickman, M; Senior, R; Walji, S; Ramchandani, P L; Culliford, D; Ilankovan, V; Greaves, K

    2010-12-01

    This feasibility study evaluated whether contrast enhanced ultrasound (CEU) was able to assess free flap perfusion following free tissue transfer in the head and neck region. Thirty-six patients underwent standard clinical monitoring (SCM) and CEU postoperatively. The time taken for each technique to detect flap failure was recorded. Qualitative CEU analysis by visual assessment predicted survival in 30/30 (100%) and failure in 5/6 (83%) flaps with sensitivity, specificity, positive (PPV) and negative (NPV) predictive values of 100, 86, 97 and 100%, respectively. Quantitative CEU measurement of blood volume (α) values within healthy perfused flaps was over 60 times higher than in failing flaps (8.25±2.82dB vs. 0.12±0.17dB, respectively, P<0.0001). If a cut-off α value of <1.5dB was used to predict future flap failure, the accuracy of the test was 100% (sensitivity, specificity, PPV, NPV). If a cut-off α value of >1.9dB indicated flap success, the PPV and NPV are 100%. Following surgery, SCM took 76 (±15) h to detect flap failure compared with 18 (±38) h with CEU (P<0.05). CEU is highly accurate in its ability to distinguish between perfused and failing flaps. The technique is quick (<10min) and capable of imaging all flap types.

  14. Contrast-enhanced magnetic resonance imaging of tumor-bearing mice treated with human recombinant tumor necrosis factor alpha.

    PubMed

    Aicher, K P; Dupon, J W; White, D L; Aukerman, S L; Moseley, M E; Juster, R; Rosenau, W; Winkelhake, J L; Brasch, R C

    1990-11-15

    Pharmacological effects of recombinant human tumor necrosis factor alpha (TNF) were studied in a mouse fibrosarcoma model using magnetic resonance imaging enhanced with a macromolecular contrast agent, albumin(gadolinium-diethylenetriamine pentaacetic acid)35. TNF was administered i.v. in a dose of 150 micrograms/kg, 60 to 80 min prior to imaging. Contrast-enhanced and nonenhanced magnetic resonance images of TNF-treated (n = 10) and untreated (n = 8) Meth A fibrosarcomas were obtained at 2.0 Tesla using T1-weighted spin-echo pulse sequences. Serial images spanning an interval of 60 to 120 min after TNF administration showed that the TNF-treated tumors enhanced significantly more overall than did untreated tumors (43% versus 31%). The most marked differential tumor enhancement was observed in the tumor rim (59% versus 40%). Nontumorous tissue, including muscle and brain, revealed no significant enhancement differences between TNF-treated animals and controls. The observed tumor enhancement corresponded strongly with Evans blue staining; the TNF-treated tumors stained deep blue, while untreated tumors and normal tissues observed did not stain. The different enhancement and Evans blue staining patterns between TNF-treated tumors and untreated tumors are attributed to TNF-induced changes in tumor capillary integrity. The data indicate that TNF effects on tumors include an increased capillary permeability for macromolecules at early times after administration. The ability to detect changes in capillary permeability in vivo using contrast-enhanced magnetic resonance imaging may prove to be clinically useful to monitor tumor response to TNF.

  15. Electric-field control of magnetism via strain transfer across ferromagnetic/ferroelectric interfaces.

    PubMed

    Taniyama, Tomoyasu

    2015-12-23

    By taking advantage of the coupling between magnetism and ferroelectricity, ferromagnetic (FM)/ferroelectric (FE) multiferroic interfaces play a pivotal role in manipulating magnetism by electric fields. Integrating the multiferroic heterostructures into spintronic devices significantly reduces energy dissipation from Joule heating because only an electric field is required to switch the magnetic element. New concepts of storage and processing of information thus can be envisioned when the electric-field control of magnetism is a viable alternative to the traditional current based means of controlling magnetism. This article reviews some salient aspects of the electric-field effects on magnetism, providing a short overview of the mechanisms of magneto-electric (ME) coupling at the FM/FE interfaces. A particular emphasis is placed on the ME effect via interfacial magneto-elastic coupling arising from strain transfer from the FE to FM layer. Recent results that demonstrate the electric-field control of magnetic anisotropy, magnetic order, magnetic domain wall motion, and etc are described. Obstacles that need to be overcome are also discussed for making this a reality for future device applications.

  16. Magnetically Recoverable Supported Ruthenium Catalyst for Hydrogenation of Alkynes and Transfer Hydrogenation of Carbonyl Compounds

    EPA Science Inventory

    A ruthenium (Ru) catalyst supported on magnetic nanoparticles (NiFe2O4) has been successfully synthesized and used for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The cata...

  17. A magnetic mechanism for halting inward protoplanet migration: I. Necessary conditions and angular momentum transfer timescales

    NASA Astrophysics Data System (ADS)

    Fleck, Robert C.

    2008-02-01

    A magnetic torque associated with the magnetic field linking a giant, gaseous protoplanet to its host pre-main-sequence star can halt inward protoplanet migration. This torque results from a toroidal magnetic field generated from the star’s poloidal (dipole) field by the twisting differential motion between the star’s rotation and the protoplanet’s revolution. Outside the corotation radius, where a protoplanet orbits slower than its host star spins, this torque transfers angular momentum from the star to the protoplanet, halting inward migration. Necessary conditions for angular momentum transfer include the requirement that the Alfvén speed v A in the region magnetically linking a protoplanet to its host star exceeds the protoplanet’s orbital speed v K . In addition, the timescale for Ohmic dissipation τ D must exceed the protoplanet’s orbital period P to ensure that the protoplanet is magnetically coupled to its host star. For a Jupiter-mass protoplanet orbiting a solar-mass pre-main-sequence star, v A > v K and τ D > P only when the migrating protoplanet approaches within about 0.1 AU of its host star, primarily because of the rapid drop in the strength of the magnetic field with increasing distance from the central star. Because of this restricted reach, inwardly migrating gaseous protoplanets can be expected to “pile up” very close to their central stars, as is indeed observed for extrasolar planets. The characteristic timescale required for a magnetic torque to transfer angular momentum outward from a more rapidly spinning central star to a magnetically coupled protoplanet is found to be comparable to planet-forming disk lifetimes and protoplanet migration timescales.

  18. In vivo imaging of melanoma-implanted magnetic nanoparticles using contrast-enhanced magneto-motive optical Doppler tomography

    NASA Astrophysics Data System (ADS)

    Wijesinghe, Ruchire Eranga; Park, Kibeom; Kim, Dong-Hyeon; Jeon, Mansik; Kim, Jeehyun

    2016-06-01

    We conducted an initial feasibility study using real-time magneto-motive optical Doppler tomography (MM-ODT) with enhanced contrast to investigate the detection of superparamagnetic iron oxide (SPIO) magnetic nanoparticles implanted into in vivo melanoma tissue. The MM-ODT signals were detected owing to the phase shift of the implanted magnetic nanoparticles, which occurred due to the action of an applied magnetic field. An amplifier circuit-based solenoid was utilized for generating high-intensity oscillating magnetic fields. The MM-ODT system was confirmed as an effective in vivo imaging method for detecting melanoma tissue, with the performance comparable to those of conventional optical coherence tomography and optical Doppler tomography methods. Moreover, the optimal values of the SPIO nanoparticles concentration and solenoid voltage for obtaining the uppermost Doppler velocity were derived as well. To improve the signal processing speed for real-time imaging, we adopted multithread programming techniques and optimized the signal path. The results suggest that this imaging modality can be used as a powerful tool to identify the intracellular and extracellular SPIO nanoparticles in melanoma tissues in vivo.

  19. Size analysis of carboxydextran coated superparamagnetic iron oxide particles used as contrast agents of magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Chen, D.-X.; Sun, N.; Gu, H.-C.

    2009-09-01

    Superparamagnetic iron oxide particles in commercial products Resovist and SH U555C, used as magnetic resonance imaging contrast agents, are polydispersed and covered with a thick organic coating so that the average particle sizes were reported between 3 and 62nm with different definitions. It is unclear which size determines the transverse relaxation rate 1/T2 of water suspensions of such particles. Comparing the measured 1/T2 and average sizes of different definitions determined from magnetization curve, transmission electron microscopy image, x-ray diffraction, and dynamic light scattering, it is found that the 1/T2 behavior is basically determined by the diameter of bare single-crystal magnetic particles having the particle-volume-weighted average volume (about 14 or 9nm for Resovist or SH U555C) and is slightly influenced by their thick organic coating. This is explained by the low partial density of the coating substance and the overwhelming water occupation adjacent to magnetic particles.

  20. Severe Acute Cardiopulmonary Failure Related to Gadobutrol Magnetic Resonance Imaging Contrast Reaction: Successful Resuscitation With Extracorporeal Membrane Oxygenation.

    PubMed

    Guru, Pramod K; Bohman, J Kyle; Fleming, Chad J; Tan, Hon L; Sanghavi, Devang K; De Moraes, Alice Gallo; Barsness, Gregory W; Wittwer, Erica D; King, Bernard F; Arteaga, Grace M; Flick, Randall; Schears, Gregory J

    2016-03-01

    Nonanaphylactic noncardiogenic pulmonary edema leading to cardiorespiratory arrest related to the magnetic resonance imaging contrast agent gadobutrol has rarely been reported in the literature. Rarer is the association of hypokalemia with acidosis. We report 2 patients who had severe pulmonary edema associated with the use of gadobutrol contrast in the absence of other inciting agents or events. These cases were unique not only for their rare and severe presentations but also because they exemplified the increasing role of extracorporeal membrane oxygenation in resuscitation. Emergency extracorporeal membrane oxygenation resuscitation can be rapidly initiated and successful in the setting of a well-organized workflow, and it is a viable alternative and helps improve patient outcome in cases refractory to conventional resuscitative measures.

  1. The influence of the magnetic field on the heat transfer rate in rotating spherical shells

    NASA Astrophysics Data System (ADS)

    Cabello, Ares; Avila, Ruben

    2016-11-01

    Studies of the relationship between natural convection and magnetic field generation in spherical annular geometries with rotation are essential to understand the internal dynamics of the terrestrial planets. In such studies it is important to calculate and analyze the heat transfer rate at the inner and the outer spheres that confine the spherical gap. Previous investigations indicate that the magnetic field has a stabilizing effect on the onset of the natural convection, reduces the intensity of convection and modifies the flow patterns. However so far it is still unclear how the magnetic field change the heat transfer rate behaviour. We investigate the heat transfer rate (Nu) in a rotating spherical gap with a self gravity field varying linearly with radius, and its relation with the intensity of the magnetic field induced by the geodynamo effect. The Boussinesq fluid equations are solved by using a spectral element method (SEM). To avoid the singularity at the poles, the cubed-sphere algorithm is used to generate the spherical mesh. Several cases are simulated in which the Rayleigh number, the magnetic Reynolds number and the Taylor number are the variable parameters. The flow patterns, the temperature distribution and the Nusselt numbers at both spheres are calculated. Special thanks to DGAPA-UNAM Project PAPIIT IN11731, sponsor of this investigation.

  2. Controlling the column spacing in isothermal magnetic advection to enable tunable heat and mass transfer.

    DOE PAGES

    Solis, Kyle Jameson; Martin, James E.

    2012-11-01

    Isothermal magnetic advection is a recently discovered method of inducing highly organized, non-contact flow lattices in suspensions of magnetic particles, using only uniform ac magnetic fields of modest strength. The initiation of these vigorous flows requires neither a thermal gradient nor a gravitational field and so can be used to transfer heat and mass in circumstances where natural convection does not occur. These advection lattices are comprised of a square lattice of antiparallel flow columns. If the column spacing is sufficiently large compared to the column length, and the flow rate within the columns is sufficiently large, then one wouldmore » expect efficient transfer of both heat and mass. Otherwise, the flow lattice could act as a countercurrent heat exchanger and only mass will be efficiently transferred. Although this latter case might be useful for feeding a reaction front without extracting heat, it is likely that most interest will be focused on using IMA for heat transfer. In this paper we explore the various experimental parameters of IMA to determine which of these can be used to control the column spacing. These parameters include the field frequency, strength, and phase relation between the two field components, the liquid viscosity and particle volume fraction. We find that the column spacing can easily be tuned over a wide range, to enable the careful control of heat and mass transfer.« less

  3. Controlling the column spacing in isothermal magnetic advection to enable tunable heat and mass transfer.

    SciTech Connect

    Solis, Kyle Jameson; Martin, James E.

    2012-11-01

    Isothermal magnetic advection is a recently discovered method of inducing highly organized, non-contact flow lattices in suspensions of magnetic particles, using only uniform ac magnetic fields of modest strength. The initiation of these vigorous flows requires neither a thermal gradient nor a gravitational field and so can be used to transfer heat and mass in circumstances where natural convection does not occur. These advection lattices are comprised of a square lattice of antiparallel flow columns. If the column spacing is sufficiently large compared to the column length, and the flow rate within the columns is sufficiently large, then one would expect efficient transfer of both heat and mass. Otherwise, the flow lattice could act as a countercurrent heat exchanger and only mass will be efficiently transferred. Although this latter case might be useful for feeding a reaction front without extracting heat, it is likely that most interest will be focused on using IMA for heat transfer. In this paper we explore the various experimental parameters of IMA to determine which of these can be used to control the column spacing. These parameters include the field frequency, strength, and phase relation between the two field components, the liquid viscosity and particle volume fraction. We find that the column spacing can easily be tuned over a wide range, to enable the careful control of heat and mass transfer.

  4. Characterization of the biocompatible magnetic colloid on the basis of Fe3O4 nanoparticles coated with dextran, used as contrast agent in magnetic resonance imaging.

    PubMed

    Gamarra, L F; Amaro, E; Alves, S; Soga, D; Pontuschka, W M; Mamani, J B; Carneiro, S M; Brito, G E S; Figueiredo Neto, A M

    2010-07-01

    The magnetic resonance imaging contrast agent, the so-called Endorem colloidal suspension on the basis of superparamagnetic iron oxide nanoparticles (mean diameter of 5.5 nm) coated with dextran, were characterized on the basis of several measurement techniques to determine the parameters of their most important physical and chemical properties. It is assumed that each nanoparticle is consisted of Fe3O4 monodomain and it was observed that its oxidation to gamma-Fe2O3 occurs at 253.1 degrees C. The Mössbauer spectroscopy have shown a superparamagnetic behavior of the magnetic nanoparticles. The Magnetic Resonance results show an increase of the relaxation times T1, T2, and T2* with decreasing concentration of iron oxide nanoparticles. The relaxation effects of SPIONs contrast agents are influenced by their local concentration as well as the applied field strength and the environment in which these agents interact with surrounding protons. The proton relaxation rates presented a linear behavior with concentration. The measured values of thermo-optic coefficient dn/dT, thermal conductivity kappa, optical birefringence delta n0, nonlinear refractive index n2, nonlinear absorption beta' and third-order nonlinear susceptibility |chi(3)| are also reported.

  5. Click Chemistry in the Development of Contrast Agents for Magnetic Resonance Imaging.

    PubMed

    Hapuarachchige, Sudath; Artemov, Dmitri

    2016-10-01

    Click chemistry provides fast, convenient, versatile, and reliable chemical reactions that take place between pairs of functional groups of small molecules that can be purified without chromatographic methods. Due to the fast kinetics and low or no elimination of byproducts, click chemistry is a promising approach that is rapidly gaining acceptance in drug discovery, radiochemistry, bioconjugation, and nanoscience applications. Increasing use of click chemistry in synthetic procedures or as a bioconjugation technique in diagnostic imaging is occurring because click reactions are fast, provide a quantitative yield, and produce a minimal amount of nontoxic byproducts. This review summarizes the recent application of click chemistry in magnetic resonance imaging and discusses the directions for applying novel click reactions and strategies for further improving magnetic resonance imaging performance.

  6. Detecting the topographic, chemical and magnetic contrast at surfaces with nanometer spatial resolution

    NASA Astrophysics Data System (ADS)

    Cabrera, H.; Zanin, D. A.; de Pietro, L. G.; Vindigni, A.; Ramsperger, U.; Pescia, D.; Microstructure Research Team

    2015-03-01

    Since the mid of the 1980s and over the past few decades various conventional electron spectroscopies were combined with electron spin sensitivity to investigate the magnetic properties of surfaces and thin films, evolving into the Scanning-Electron-Microscopy with Polarization Analysis (SEMPA) technique, which made it possible to directly observe the re-entrant transitions of magnetic-domain patterns in thin films of Fe on Cu(001) with several tens of nm resolution. The possibility of resolving magnetic-textures in direct space at atomic scale may trigger both fundamental perspectives and novel applications. Inspired by the Russell Young topografiner we redesigned the SEMPA setup by replacing the primary electron beam source and the probing method. We dubbed this new technique Near Field-Emission Scanning Electron Microscopy (NFESEM). Recently, we have used NFESEM to map the surface of some metals and semiconductors with nanometer lateral resolution. We report here on the latest results showing energy-resolved surface images and the first attempt to endowing this technique with the polarisation analysis of the detected secondary electrons by using of a Mott-detector, emphasizing the true potential of this new technique.

  7. Layered Black Phosphorus: Strongly Anisotropic Magnetic, Electronic, and Electron-Transfer Properties.

    PubMed

    Sofer, Zdeněk; Sedmidubský, David; Huber, Štěpán; Luxa, Jan; Bouša, Daniel; Boothroyd, Chris; Pumera, Martin

    2016-03-01

    Layered elemental materials, such as black phosphorus, exhibit unique properties originating from their highly anisotropic layered structure. The results presented herein demonstrate an anomalous anisotropy for the electrical, magnetic, and electrochemical properties of black phosphorus. It is shown that heterogeneous electron transfer from black phosphorus to outer- and inner-sphere molecular probes is highly anisotropic. The electron-transfer rates differ at the basal and edge planes. These unusual properties were interpreted by means of calculations, manifesting the metallic character of the edge planes as compared to the semiconducting properties of the basal plane. This indicates that black phosphorus belongs to a group of materials known as topological insulators. Consequently, these effects render the magnetic properties highly anisotropic, as both diamagnetic and paramagnetic behavior can be observed depending on the orientation in the magnetic field.

  8. Observation of thermal spin-transfer torque via ferromagnetic resonance in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaohui; Bai, Lihui; Chen, Xiaobin; Guo, Hong; Fan, X. L.; Xue, D. S.; Houssameddine, D.; Hu, C.-M.

    2016-08-01

    The thermal spin-transfer torque (TSTT) in magnetic tunneling junctions (MTJs) was systematically studied using electrical detection of ferromagnetic resonance (FMR). Evidence for the existence of TSTT in MTJs is observed. A temperature difference was applied across an MTJ acting as a TSTT on the free layer of the MTJ. The FMR of the free layer was then excited by a microwave current and electrically detected as a dc voltage. We found that the FMR line shape was changed by the TSTT, indicated by the ratio of dispersive and Lorentz components of the FMR spectra (D /L ). D /L increases by increasing the temperature difference. In addition, we analyze the magnetization orientation dependence of TSTT and provide solid evidence that this dependence differs from the magnetization orientation dependence of spin-transfer torque driven by a dc bias.

  9. A contrast and registration template for magnetic resonance image data guided dental implant placement

    NASA Astrophysics Data System (ADS)

    Eggers, Georg; Cosgarea, Raluca; Rieker, Marcus; Kress, Bodo; Dickhaus, Hartmut; Mühling, Joachim

    2009-02-01

    An oral imaging template was developed to address the shortcomings of MR image data for image guided dental implant planning and placement. The template was conctructed as a gadolinium filled plastic shell to give contrast to the dentition and also to be accurately re-attachable for use in image guided dental implant placement. The result of segmentation and modelling of the dentition from MR Image data with the template was compared to plaster casts of the dentition. In a phantom study dental implant placement was performed based on MR image data. MR imaging with the contrast template allowed complete representation of the existing dentition. In the phantom study, a commercially available system for image guided dental implant placement was used. Transformation of the imaging contrast template into a surgical drill guide based on the MR image data resulted in pilot burr hole placement with an accuracy of 2 mm. MRI based imaging of the existing dentition for proper image guided planning is possible with the proposed template. Using the image data and the template resulted in less accurate pilot burr hole placement in comparison to CT-based image guided implant placement.

  10. Prognostic significance of infarct core pathology revealed by quantitative non-contrast in comparison with contrast cardiac magnetic resonance imaging in reperfused ST-elevation myocardial infarction survivors

    PubMed Central

    Carrick, David; Haig, Caroline; Rauhalammi, Sam; Ahmed, Nadeem; Mordi, Ify; McEntegart, Margaret; Petrie, Mark C.; Eteiba, Hany; Hood, Stuart; Watkins, Stuart; Lindsay, Mitchell; Mahrous, Ahmed; Ford, Ian; Tzemos, Niko; Sattar, Naveed; Welsh, Paul; Radjenovic, Aleksandra; Oldroyd, Keith G.; Berry, Colin

    2016-01-01

    Aims To assess the prognostic significance of infarct core tissue characteristics using cardiac magnetic resonance (CMR) imaging in survivors of acute ST-elevation myocardial infarction (STEMI). Methods and results We performed an observational prospective single centre cohort study in 300 reperfused STEMI patients (mean ± SD age 59 ± 12 years, 74% male) who underwent CMR 2 days and 6 months post-myocardial infarction (n = 267). Native T1 was measured in myocardial regions of interest (n = 288). Adverse remodelling was defined as an increase in left ventricular (LV) end-diastolic volume ≥20% at 6 months. All-cause death or first heart failure hospitalization was a pre-specified outcome that was assessed during follow-up (median duration 845 days). One hundred and sixty (56%) patients had a hypo-intense infarct core disclosed by native T1. In multivariable regression, infarct core native T1 was inversely associated with adverse remodelling [odds ratio (95% confidence interval (CI)] per 10 ms reduction in native T1: 0.91 (0.82, 0.00); P = 0.061). Thirty (10.4%) of 288 patients died or experienced a heart failure event and 13 of these events occurred post-discharge. Native T1 values (ms) within the hypo-intense infarct core (n = 160 STEMI patients) were inversely associated with the risk of all-cause death or first hospitalization for heart failure post-discharge (for a 10 ms increase in native T1: hazard ratio 0.730, 95% CI 0.617, 0.863; P < 0.001) including after adjustment for left ventricular ejection fraction, infarct core T2 and myocardial haemorrhage. The prognostic results for microvascular obstruction were similar. Conclusion Infarct core native T1 represents a novel non-contrast CMR biomarker with potential for infarct characterization and prognostication in STEMI survivors. Confirmatory studies are warranted. ClinicalTrials.gov identifier NCT02072850. PMID:26261290

  11. The transfer between electron bulk kinetic energy and thermal energy in collisionless magnetic reconnection

    SciTech Connect

    Lu, San; Lu, Quanming; Huang, Can; Wang, Shui

    2013-06-15

    By performing two-dimensional particle-in-cell simulations, we investigate the transfer between electron bulk kinetic and electron thermal energy in collisionless magnetic reconnection. In the vicinity of the X line, the electron bulk kinetic energy density is much larger than the electron thermal energy density. The evolution of the electron bulk kinetic energy is mainly determined by the work done by the electric field force and electron pressure gradient force. The work done by the electron gradient pressure force in the vicinity of the X line is changed to the electron enthalpy flux. In the magnetic island, the electron enthalpy flux is transferred to the electron thermal energy due to the compressibility of the plasma in the magnetic island. The compression of the plasma in the magnetic island is the consequence of the electromagnetic force acting on the plasma as the magnetic field lines release their tension after being reconnected. Therefore, we can observe that in the magnetic island the electron thermal energy density is much larger than the electron bulk kinetic energy density.

  12. Efficient method for calculating kinetic parameters using T1-weighted dynamic contrast-enhanced magnetic resonance imaging.

    PubMed

    Murase, Kenya

    2004-04-01

    It has become increasingly important to quantitatively estimate tissue physiological parameters such as perfusion, capillary permeability, and the volume of extravascular-extracellular space (EES) using T(1)-weighted dynamic contrast-enhanced MRI (DCE-MRI). A linear equation was derived by integrating the differential equation describing the kinetic behavior of contrast agent (CA) in tissue, from which K(1) (rate constant for the transfer of CA from plasma to EES), k(2) (rate constant for the transfer from EES to plasma), and V(p) (plasma volume) can be easily obtained by the linear least-squares (LLSQ) method. The usefulness of this method was investigated by means of computer simulations, in comparison with the nonlinear least-squares (NLSQ) method. The new method calculated the above parameters faster than the NLSQ method by a factor of approximately 6, and estimated them more accurately than the NLSQ method at a signal-to-noise ratio (SNR) of < approximately 10. This method will be useful for generating functional images of K(1), k(2), and V(p) from DCE-MRI data.

  13. Magnetization reversal in ferromagnetic thin films induced by spin-orbit interaction with Slonczewski-like spin transfer torque

    SciTech Connect

    Li, Jia

    2014-10-07

    We theoretically investigate the dynamics of magnetization in ferromagnetic thin films induced by spin-orbit interaction with Slonczewski-like spin transfer torque. We reproduce the experimental results of perpendicular magnetic anisotropy films by micromagnetic simulation. Due to the spin-orbit interaction, the magnetization can be switched by changing the direction of the current with the assistant of magnetic field. By increasing the current amplitude, wider range of switching events can be achieved. Time evolution of magnetization has provided us a clear view of the process, and explained the role of minimum external field. Slonczewski-like spin transfer torque modifies the magnetization when current is present. The magnitude of the minimum external field is determined by the strength of the Slonczewski-like spin transfer torque. The investigations may provide potential applications in magnetic memories.

  14. Paramagnetic lanthanide(III) complexes as pH-sensitive chemical exchange saturation transfer (CEST) contrast agents for MRI applications.

    PubMed

    Aime, Silvio; Barge, Alessandro; Delli Castelli, Daniela; Fedeli, Franco; Mortillaro, Armando; Nielsen, Flemming U; Terreno, Enzo

    2002-04-01

    The recently introduced new class of contrast agents (CAs) based on chemical exchange saturation transfer (CEST) may have a huge potential for the development of novel applications in the field of MRI. In this work we explored the CEST properties of a series of Lanthanide(III) complexes (Ln = Eu, Dy, Ho, Er, Tm, Yb) with the macrocyclic DOTAM-Gly ligand, which is the tetraglycineamide derivative of DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid). These complexes possess two pools of exchangeable protons represented by the coordinated water and the amide protons. Yb-DOTAM-Gly displays the most interesting CEST properties when its amide N-H resonance (16 ppm upfield H2O signal) is irradiated. Up to 70% suppression of the water signal is obtained at pH 8. As the exchange rate of amide protons is base-catalyzed, Yb-DOTAM-Gly results to be an efficient pH-responsive probe in the 5.5-8.1 pH range. Moreover, a ratiometric method has been set up in order to remove the dependence of the observed pH responsiveness from the absolute concentration of the paramagnetic agent. In fact, the use of a mixture of Eu-DOTAM-Gly and Yb-DOTAM-Gly, whose exchangeable proton pools are represented by the coordinated water (ca. 40 ppm downfield H2O signal at 312K) and amide protons, respectively, produces a pH-dependent CEST effect which is the function of the concentration ratio of the two complexes.

  15. A targeted contrast agent for magnetic resonance imaging of thrombus: implications of spatial resolution.

    PubMed

    Johansson, L O; Bjørnerud, A; Ahlström, H K; Ladd, D L; Fujii, D K

    2001-04-01

    A preparation of ultra-small superparamagnetic iron oxide (USPIO) particles coupled to an RGD peptide (RGD-USPIO) was investigated as an MR contrast agent, targeted to activated platelets, in both ex vivo and in vivo thrombus models. Thrombus visualization ex vivo was compared using RGD-USPIO and a non-targeted UPSIO. The influence of thrombus visualization on thrombus exposure time to RGD-USPIO (ex vivo) and on the spatial resolution of the MR image (ex vivo and in vivo) was assessed. RGD-USPIO resulted in better thrombus visualization than non-targeted USPIO ex vivo, and maximum enhancement was achieved after approximately one hour exposure time of the thrombus to RGD-USPIO. The ability to visualize the clots was highly dependent on the spatial resolution of the image. In vivo, an in-plane resolution of less than 0.2 x 0.2 mm(2) was required for good clot visualization after contrast enhancement. It is concluded that the achievable resolution and sensitivity is a potential limitation to the usefulness of active vascular targeting in MRI.

  16. Response of current phosphorus mitigation measures across the nutrient transfer continuum in two hydrological contrasting agricultural catchments

    NASA Astrophysics Data System (ADS)

    McDonald, Noeleen; Shore, Mairead; Mellander, Per-Erik; Shortle, Ger; Jordan, Phil

    2015-04-01

    Effective assessment of National Action Programme (NAP) measures introduced under the EU Nitrates Directive (ND), to manage nutrient use and risk of loss to waters from agriculture, is best achieved when examined across the nutrient transfer continuum at catchment scale. The Irish NAP measures are implemented on a whole-territory basis for both nitrogen (N) and phosphorus (P), with P being the key trophic pressure. The aim of this research was to observe the efficacy of P regulation measures and P source management across the transfer continuum and resultant water quality status (i.e. source to impact), in two contrasting agricultural catchments over a four year period. The catchments are ca. 11 km2 and are located in the south-east of Ireland. One is well-drained and arable dominated, while the other is mostly poorly-drained and grassland dominated. In 2009 and 2013 soil surveys for plant-available P were carried out (<2 ha sample areas) in both catchments. Concurrently, high temporal resolution monitoring of water discharge and P concentration was conducted at each catchment outlet across four hydrological years (April to March). Ecological impact surveys were carried out at four sites within each catchment in May and September across the observed four year period (2009-2013). Importantly, the proportion of farmland with excessive soil P concentrations decreased in both the arable (20% to 11.8%) and grassland catchments (5.9 to 3.6%). However, soil P concentrations also declined critically in both catchments, as proportional areas below the national crop agronomic optimum thresholds (grassland; <5 mg P l-1, arable; <6 mg P l-1) increased from 57% to 68% in the arable catchment and 75% to 87% in the grassland catchment. This decline in plant available P strongly indicates a reduced or sustained level of P inputs in both catchments. Indications of responses to soil P change in the surface waters of these catchments appeared to be highly influenced by their

  17. Heat and momentum transfer for magnetoconvection in a vertical external magnetic field

    NASA Astrophysics Data System (ADS)

    Zürner, Till; Liu, Wenjun; Krasnov, Dmitry; Schumacher, Jörg

    2016-11-01

    The scaling theory of Grossmann and Lohse for the turbulent heat and momentum transfer is extended to the magnetoconvection case in the presence of a (strong) vertical magnetic field. The comparison with existing laboratory experiments and direct numerical simulations in the quasistatic limit allows to restrict the parameter space to very low Prandtl and magnetic Prandtl numbers and thus to reduce the number of unknown parameters in the model. Also included is the Chandrasekhar limit for which the outer magnetic induction field B is large enough such that convective motion is suppressed and heat is transported by diffusion. Our theory identifies four distinct regimes of magnetoconvection which are distinguished by the strength of the outer magnetic field and the level of turbulence in the flow, respectively. LIMTECH Research Alliance and Research Training Group GK 1567 on Lorentz Force Velocimetry, funded by the Deutsche Forschungsgemeinschaft.

  18. Heat and momentum transfer for magnetoconvection in a vertical external magnetic field

    NASA Astrophysics Data System (ADS)

    Zürner, Till; Liu, Wenjun; Krasnov, Dmitry; Schumacher, Jörg

    2016-10-01

    The scaling theory of Grossmann and Lohse [J. Fluid Mech. 407, 27 (2000), 10.1017/S0022112099007545] for turbulent heat and momentum transfer is extended to the magnetoconvection case in the presence of a (strong) vertical magnetic field. A comparison with existing laboratory experiments and direct numerical simulations in the quasistatic limit allows us to restrict the parameter space to very low Prandtl and magnetic Prandtl numbers and thus to reduce the number of unknown parameters in the model. Also included is the Chandrasekhar limit, for which the outer magnetic induction field B is large enough such that convective motion is suppressed and heat is transported by diffusion. Our theory identifies four distinct regimes of magnetoconvection that are distinguished by the strength of the outer magnetic field and the level of turbulence in the flow, respectively.

  19. Flow Structure Determined Enhancing and Inhibiting Convective Heat Transfers in Quasi 1D Magnetic Fluid

    NASA Astrophysics Data System (ADS)

    Luo, Weili; Huang, Jun; Liu, Tianshu

    2016-11-01

    We have found previously that the convective flow in magnetic fluid responds to applied magnetic fields differently, depending on the relative direction of the gradient of temperature to that of the field. In this work we report the velocity profiles from these flows obtained from optical flow method. The peculiar magnetic driving force as well as the special configurations give rise to unique flow patterns, distinctly depends on the specific relative orientation of the temperature to that of field. The streamline plots indicate formation of local or global flow structures that explain the different effects of field on the heat transfer in the sample. For one configuration, the magneto-thermo convection causing the "heat" to be localized, stopping the equilibration process in the system. We will discuss the different responses to the applied magnetic fields for two different sample configurations in terms of relative orientation of the temperature and field gradients.

  20. The meso-structured magnetic atmosphere. A stochastic polarized radiative transfer approach

    NASA Astrophysics Data System (ADS)

    Carroll, T. A.; Kopf, M.

    2007-06-01

    We present a general radiative transfer model which allows the Zeeman diagnostics of complex and unresolved solar magnetic fields. Present modeling techniques still rely to a large extent on a-priori assumptions about the geometry of the underlying magnetic field. In an effort to obtain a more flexible and unbiased approach we pursue a rigorous statistical description of the underlying atmosphere. Based on a Markov random field model the atmospheric structures are characterized in terms of probability densities and spatial correlations. This approach allows us to derive a stochastic transport equation for polarized light valid in a regime with an arbitrary fluctuating magnetic field on finite scales. One of the key ingredients of the derived stochastic transfer equation is the correlation length which provides an additional degree of freedom to the transport equation and can be used as a diagnostic parameter to estimate the characteristic length scale of the underlying magnetic field. It is shown that the stochastic transfer equation represents a natural extension of the (polarized) line formation under the micro- and macroturbulent assumption and contains both approaches as limiting cases. In particular, we show how in an inhomogeneous atmosphere asymmetric Stokes profiles develop and that the correlation length directly controls the degree of asymmetry and net circular polarization (NCP). In a number of simple numerical model calculations we demonstrate the importance of a finite correlation length for the polarized line formation and its impact on the resulting Stokes line profiles. Appendices are only available in electronic form at http://www.aanda.org

  1. Magnetization transfer proportion: a simplified measure of dose response for polymer gel dosimetry

    NASA Astrophysics Data System (ADS)

    Whitney, Heather M.; Gochberg, Daniel F.; Gore, John C.

    2008-12-01

    The response to radiation of polymer gel dosimeters has most often been described by measuring the nuclear magnetic resonance transverse relaxation rate as a function of dose. This approach is highly dependent upon the choice of experimental parameters, such as the echo spacing time for Carr-Purcell-Meiboom-Gill-type pulse sequences, and is difficult to optimize in imaging applications where a range of doses are applied to a single gel, as is typical for practical uses of polymer gel dosimetry. Moreover, errors in computing dose can arise when there are substantial variations in the radiofrequency (B1) field or resonant frequency, as may occur for large samples. Here we consider the advantages of using magnetization transfer imaging as an alternative approach and propose the use of a simplified quantity, the magnetization transfer proportion (MTP), to assess doses. This measure can be estimated through two simple acquisitions and is more robust in the presence of some sources of system imperfections. It also has a dependence upon experimental parameters that is independent of dose, allowing simultaneous optimization at all dose levels. The MTP is shown to be less susceptible to B1 errors than are CPMG measurements of R2. The dose response can be optimized through appropriate choices of the power and offset frequency of the pulses used in magnetization transfer imaging.

  2. 2D-ELDOR detection of magnetization transfer of nitroxides in disordered solid polymers

    NASA Astrophysics Data System (ADS)

    Maresch, G. G.; Weber, M.; Dubinskii, A. A.; Spiess, H. W.

    1992-05-01

    Two-dimensional electron—electron double resonance (2D-ELDOR) experiments on nitroxide spin labels in solid liquid-crystalline side-group polymers have been performed employing narrow-band microwave excitation pulses followed by a rapid magnetic field step during a mixing time and detection at the new selected point of the EPR spectrum. Information about magnetization transfer throughout the full EPR spectrum is obtained by sweeping both pumping and detecting fields. In the two-dimensional representation of experimental ELDOR data, the different processes causing magnetization transfer through the EPR spectrum, i.e. electron spin diffusion, nuclear relaxation, and slow rotational motions lead to different patterns and can be distinguished by recording 2D-ELDOR spectra as a function of temperature. In the specific system studied, the 2D-ELDOR spectra show the dominance of magnetization transfer between states with close molecular orientations but different nitrogen nuclear spin projections caused by flips of nuclear spins. The results are discussed in terms of dynamic processes in glasses.

  3. THE RADIATIVE TRANSFER OF SYNCHROTRON RADIATION THROUGH A COMPRESSED RANDOM MAGNETIC FIELD

    SciTech Connect

    Cawthorne, T. V.; Hughes, P. A.

    2013-07-01

    This paper examines the radiative transfer of synchrotron radiation in the presence of a magnetic field configuration resulting from the compression of a highly disordered magnetic field. It is shown that, provided Faraday rotation and circular polarization can be neglected, the radiative transfer equations for synchrotron radiation separate for this configuration, and the intensities and polarization values for sources that are uniform on large scales can be found straightforwardly in the case where opacity is significant. Although the emission and absorption coefficients must, in general, be obtained numerically, the process is much simpler than a full numerical solution to the transfer equations. Some illustrative results are given and an interesting effect, whereby the polarization increases while the magnetic field distribution becomes less strongly confined to the plane of compression, is discussed. The results are of importance for the interpretation of polarization near the edges of lobes in radio galaxies and of bright features in the parsec-scale jets of active galactic nuclei, where such magnetic field configurations are believed to exist.

  4. Scaling Laws at the Nano Size: The Effect of Particle Size and Shape on the Magnetism and Relaxivity of Iron Oxide Nanoparticle Contrast Agents

    PubMed Central

    Smolensky, Eric D.; Park, Hee-Yun E.; Zhou, Yue; Rolla, Gabriele A.; Marjańska, Małgorzata; Botta, Mauro; Pierre, Valérie C.

    2013-01-01

    The magnetic properties of iron oxide nanoparticles govern their relaxivities and efficacy as contrast agents for MRI. These properties are in turn determined by their composition, size and morphology. Herein we present a systematic study of the effect of particle size and shape of magnetite nanocrystals synthesized by thermal decompositions of iron salts on both their magnetism and their longitudinal and transverse relaxivities, r1 and r2, respectively. Faceted nanoparticles demonstrate superior magnetism and relaxivities than spherical nanoparticles of similar size. For faceted nanoparticles, but not for spherical ones, r1 and r2 further increase with increasing particle size up to a size of 18 nm. This observation is in accordance with increasing saturation magnetization for nanoparticles increasing in size up to 12 nm, above which a plateau is observed. The NMRD (Nuclear Magnetic Resonance Dispersion) profiles of MIONs (Magnetic Iron Oxide Nanoparticles) display an increase in longitudinal relaxivity with decreasing magnetic field strength with a plateau below 1 MHz. The transverse relaxivity shows no dependence on the magnetic field strength between 20 MHz and 500 MHz. These observations translate to phantom MR images: in T1-weighted SWIFT (SWeep imaging with Fourier Transform) images MIONs have a positive contrast with little dependence on particle size, whereas in T2-weighted gradient-echo images MIONs create a negative contrast which increases in magnitude with increasing particle size. Altogether, these results will enable the development of particulate MRI contrast agents with enhanced efficacy for biomedical and clinical applications. PMID:23819021

  5. Magnetically Suspended Linear Pulse Motor for Semiconductor Wafer Transfer in Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Moriyama, Shin-Ichi; Hiraki, Naoji; Watanabe, Katsuhide; Kanemitsu, Yoichi

    1996-01-01

    This paper describes a magnetically suspended linear pulse motor for a semiconductor wafer transfer robot in a vacuum chamber. The motor can drive a wafer transfer arm horizontally without mechanical contact. In the construction of the magnetic suspension system, four pairs of linear magnetic bearings for the lift control are used for the guidance control as well. This approach allows us to make the whole motor compact in size and light in weight. The tested motor consists of a double-sided stator and a transfer arm with a width of 50 mm and a total length of 700 mm. The arm, like a ladder in shape, is designed as the floating element with a tooth width of 4 mm (a tooth pitch of 8 mm). The mover mass is limited to about 1.6 kg by adopting such an arm structure, and the ratio of thrust to mover mass reaches to 3.2 N/kg under a broad air gap (1 mm) between the stator teeth and the mover teeth. The performance testing was carried out with a transfer distance less than 450 mm and a transfer speed less than 560 mm/s. The attitude of the arm was well controlled by the linear magnetic bearings with a combined use, and consequently the repeatability on the positioning of the arm reached to about 2 micron. In addition, the positioning accuracy was improved up to about 30 micron through a compensation of the 128-step wave current which was used for the micro-step drive with a step increment of 62.5 micron.

  6. Dynamic Contrast-Enhanced Magnetic Resonance Imaging Reveals Stress-Induced Angiogenesis in MCF7 Human Breast Tumors

    NASA Astrophysics Data System (ADS)

    Furman-Haran, Edna; Margalit, Raanan; Grobgeld, Dov; Degani, Hadassa

    1996-06-01

    The mechanism of contrast enhancement of tumors using magnetic resonance imaging was investigated in MCF7 human breast cancer implanted in nude mice. Dynamic contrast-enhanced images recorded at high spatial resolution were analyzed by an image analysis method based on a physiological model, which included the blood circulation, the tumor, the remaining tissues, and clearance via the kidneys. This analysis enabled us to map in rapidly enhancing regions within the tumor, the capillary permeability factor (capillary permeability times surface area per voxel volume) and the fraction of leakage space. Correlation of these maps with T2-weighted spin echo images, with histopathology, and with immunohistochemical staining of endothelial cells demonstrated the presence of dense permeable microcapillaries in the tumor periphery and in intratumoral regions that surrounded necrotic loci. The high leakage from the intratumoral permeable capillaries indicated an induction of a specific angiogenic process associated with stress conditions that cause necrosis. This induction was augmented in tumors responding to tamoxifen treatment. Determination of the distribution and extent of this stress-induced angiogenic activity by contrast-enhanced MRI might be of diagnostic and of prognostic value.

  7. Effects of the Magnetic Resonance Imaging Contrast Agent Gd-DTPA on Plant Growth and Root Imaging in Rice

    PubMed Central

    Liu, Binmei; Wang, Qi; Ni, Xiaoyu; Dong, Yaling; Zhong, Kai; Wu, Yuejin

    2014-01-01

    Although paramagnetic contrast agents have a wide range of applications in medical studies involving magnetic resonance imaging (MRI), these agents are seldom used to enhance MRI images of plant root systems. To extend the application of MRI contrast agents to plant research and to develop related techniques to study root systems, we examined the applicability of the MRI contrast agent Gd-DTPA to the imaging of rice roots. Specifically, we examined the biological effects of various concentrations of Gd-DTPA on rice growth and MRI images. Analysis of electrical conductivity and plant height demonstrated that 5 mmol Gd-DTPA had little impact on rice in the short-term. The results of signal intensity and spin-lattice relaxation time (T1) analysis suggested that 5 mmol Gd-DTPA was the appropriate concentration for enhancing MRI signals. In addition, examination of the long-term effects of Gd-DTPA on plant height showed that levels of this compound up to 5 mmol had little impact on rice growth and (to some extent) increased the biomass of rice. PMID:24945975

  8. Effects of the magnetic resonance imaging contrast agent Gd-DTPA on plant growth and root imaging in rice.

    PubMed

    Liu, Zan; Qian, Junchao; Liu, Binmei; Wang, Qi; Ni, Xiaoyu; Dong, Yaling; Zhong, Kai; Wu, Yuejin

    2014-01-01

    Although paramagnetic contrast agents have a wide range of applications in medical studies involving magnetic resonance imaging (MRI), these agents are seldom used to enhance MRI images of plant root systems. To extend the application of MRI contrast agents to plant research and to develop related techniques to study root systems, we examined the applicability of the MRI contrast agent Gd-DTPA to the imaging of rice roots. Specifically, we examined the biological effects of various concentrations of Gd-DTPA on rice growth and MRI images. Analysis of electrical conductivity and plant height demonstrated that 5 mmol Gd-DTPA had little impact on rice in the short-term. The results of signal intensity and spin-lattice relaxation time (T1) analysis suggested that 5 mmol Gd-DTPA was the appropriate concentration for enhancing MRI signals. In addition, examination of the long-term effects of Gd-DTPA on plant height showed that levels of this compound up to 5 mmol had little impact on rice growth and (to some extent) increased the biomass of rice.

  9. Evaluation of left ventricular scar identification from contrast enhanced magnetic resonance imaging for guidance of ventricular catheter ablation therapy

    NASA Astrophysics Data System (ADS)

    Rettmann, M. E.; Lehmann, H. I.; Johnson, S. B.; Packer, D. L.

    2016-03-01

    Patients with ventricular arrhythmias typically exhibit myocardial scarring, which is believed to be an important anatomic substrate for reentrant circuits, thereby making these regions a key target in catheter ablation therapy. In ablation therapy, a catheter is guided into the left ventricle and radiofrequency energy is delivered into the tissue to interrupt arrhythmic electrical pathways. Low bipolar voltage regions are typically localized during the procedure through point-by-point construction of an electroanatomic map by sampling the endocardial surface with the ablation catheter and are used as a surrogate for myocardial scar. This process is time consuming, requires significant skill, and has the potential to miss low voltage sites. This has led to efforts to quantify myocardial scar preoperatively using delayed, contrast-enhanced MRI. In this paper, we evaluate the utility of left ventricular scar identification from delayed contrast enhanced magnetic resonance imaging for guidance of catheter ablation of ventricular arrhythmias. Myocardial infarcts were created in three canines followed by a delayed, contrast enhanced MRI scan and electroanatomic mapping. The left ventricle and myocardial scar is segmented from preoperative MRI images and sampled points from the procedural electroanatomical map are registered to the segmented endocardial surface. Sampled points with low bipolar voltage points visually align with the segmented scar regions. This work demonstrates the potential utility of using preoperative delayed, enhanced MRI to identify myocardial scarring for guidance of ventricular catheter ablation therapy.

  10. Usefulness of contrast-enhanced magnetic resonance imaging for evaluating solitary pulmonary nodules

    PubMed Central

    2008-01-01

    Abstract Evaluation of solitary pulmonary nodules (SPNs) poses a challenge to radiologists. Chest computed tomography (CT) is considered the standard technique for assessing morphologic findings and intrathoracic spread of an SPN. Although the clinical role of magnetic resonance imaging (MRI) for SPNs remains limited, considerable experience has been gained with MRI of thoracic diseases. Dynamic MRI and dynamic CT are useful for differentiating between malignant and benign SPNs (especially tuberculomas and hamartomas). Furthermore, dynamic MRI is useful for assessing tumor vascularity, interstitium, and vascular endothelial growth factor expression, and for predicting survival outcome among patients with peripheral pulmonary carcinoma. These advantages make dynamic MRI a promising method and a potential biomarker for characterizing tumor response to anti-angiogenic treatment as well as for predicting survival outcomes after treatment. PMID:18331971

  11. In vivo multimodal magnetic particle imaging (MPI) with tailored magneto/optical contrast agents

    PubMed Central

    Arami, Hamed; Khandhar, Amit; Tomitaka, Asahi; Yu, Elaine; Goodwill, Patrick; Conolly, Steven; Krishnan, Kannan M.

    2015-01-01

    Magnetic Particle Imaging (MPI) is a novel non-invasive biomedical imaging modality that uses safe magnetite nanoparticles as tracers. Controlled synthesis of iron oxide nanoparticles (NPs) with tuned size-dependent magnetic relaxation properties is critical for the development of MPI. Additional functionalization of these NPs for other imaging modalities (e.g. MRI and fluorescent imaging) would accelerate screening of the MPI tracers based on their in vitro and in vivo performance in pre-clinical trials. Here, we conjugated two different types of poly-ethylene-glycols (NH2-PEG-NH2 and NH2-PEG FMOC) to monodisperse carboxylated 19.7nm NPs by amide bonding. Further, we labeled these NPs with Cy5.5 near infra-red fluorescent (NIRF) molecules. Bi-functional PEG (NH2-PEG-NH2) resulted in larger hydrodynamic size (~98nm vs. ~43nm) of the tracers, due to interparticle crosslinking. Formation of such clusters impacted the multimodal imaging performance and pharmacokinetics of these tracers. We found that MPI signal intensity of the tracers in blood depends on their plasmatic clearance pharmacokinetics. Whole body mice MPI/MRI/NIRF, used to study the biodistribution of the injected NPs, showed primary distribution in liver and spleen. Biodistribution of tracers and their clearance pathway was further confirmed by MPI and NIRF signals from the excised organs where the Cy5.5 labeling enabled detailed anatomical mapping of the tracers.in tissue sections. These multimodal MPI tracers, combining the strengths of each imaging modality (e.g. resolution, tracer sensitivity and clinical use feasibility) pave the way for various in vitro and in vivo MPI applications. PMID:25818431

  12. In vivo multimodal magnetic particle imaging (MPI) with tailored magneto/optical contrast agents.

    PubMed

    Arami, Hamed; Khandhar, Amit P; Tomitaka, Asahi; Yu, Elaine; Goodwill, Patrick W; Conolly, Steven M; Krishnan, Kannan M

    2015-06-01

    Magnetic Particle Imaging (MPI) is a novel non-invasive biomedical imaging modality that uses safe magnetite nanoparticles as tracers. Controlled synthesis of iron oxide nanoparticles (NPs) with tuned size-dependent magnetic relaxation properties is critical for the development of MPI. Additional functionalization of these NPs for other imaging modalities (e.g. MRI and fluorescent imaging) would accelerate screening of the MPI tracers based on their in vitro and in vivo performance in pre-clinical trials. Here, we conjugated two different types of poly-ethylene-glycols (NH2-PEG-NH2 and NH2-PEG-FMOC) to monodisperse carboxylated 19.7 nm NPs by amide bonding. Further, we labeled these NPs with Cy5.5 near infra-red fluorescent (NIRF) molecules. Bi-functional PEG (NH2-PEG-NH2) resulted in larger hydrodynamic size (∼98 nm vs. ∼43 nm) of the tracers, due to inter-particle crosslinking. Formation of such clusters impacted the multimodal imaging performance and pharmacokinetics of these tracers. We found that MPI signal intensity of the tracers in blood depends on their plasmatic clearance pharmacokinetics. Whole body mice MPI/MRI/NIRF, used to study the biodistribution of the injected NPs, showed primary distribution in liver and spleen. Biodistribution of tracers and their clearance pathway was further confirmed by MPI and NIRF signals from the excised organs where the Cy5.5 labeling enabled detailed anatomical mapping of the tracers.in tissue sections. These multimodal MPI tracers, combining the strengths of each imaging modality (e.g. resolution, tracer sensitivity and clinical use feasibility) pave the way for various in vitro and in vivo MPI applications.

  13. Image-guided thermal therapy with a dual-contrast magnetic nanoparticle formulation: A feasibility study

    PubMed Central

    Attaluri, Anilchandra; Seshadri, Madhav; Mirpour, Sahar; Wabler, Michele; Marinho, Thomas; Furqan, Muhammad; Zhou, Haoming; De Paoli, Silvia; Gruettner, Cordula; Gilson, Wesley; DeWeese, Theodore; Garcia, Monica; Ivkov, Robert; Liapi, Eleni

    2016-01-01

    Purpose/objective The aim of this study was to develop and investigate the properties of a magnetic iron oxide nanoparticle–ethiodised oil formulation for image-guided thermal therapy of liver cancer. Materials and methods The formulation comprises bionised nano-ferrite (BNF) nanoparticles suspended in ethiodised oil, emulsified with polysorbate 20 (BNF-lip). Nanoparticle size was measured via photon correlation spectroscopy and transmission electron microscopy. In vivo thermal therapy capability was tested in two groups of male Foxn1nu mice bearing subcutaneous HepG2 xenograft tumours. Group I (n =12) was used to screen conditions for group II (n =48). In group II, mice received one of BNF-lip (n =18), BNF alone (n =16), or PBS (n =14), followed by alternating magnetic field (AMF) hyperthermia, with either varied duration (15 or 20 min) or amplitude (0, 16, 20, or 24 kA/m). Image-guided fluoroscopic intra-arterial injection of BNF-lip was tested in New Zealand white rabbits (n =10), bearing liver VX2 tumours. The animals were subsequently imaged with CT and 3 T MRI, up to 7 days post-injection. The tumours were histopathologically evaluated for distribution of BNF-lip. Results The BNF showed larger aggregate diameters when suspended in BNF-lip, compared to clear solution. The BNF-lip formulation produced maximum tumour temperatures with AMF >20 kA/m and showed positive X-ray visibility and substantial shortening of T1 and T2 relaxation time, with sustained intratumoural retention up to 7 days post-injection. On pathology, intratumoural BNF-lip distribution correlated well with CT imaging of intratumoural BNF-lip distribution. Conclusion The BNF-lip formulation has favourable thermal and dual imaging capabilities for image-guided thermal therapy of liver cancer, suggesting further exploration for clinical applications. PMID:27151045

  14. Contrasting vortex-gyration dispersions for different lattice bases in one-dimensional magnetic vortex arrays

    NASA Astrophysics Data System (ADS)

    Han, Dong-Soo; Jeong, Han-Byeol; Kim, Sang-Koog

    2013-09-01

    We performed micromagnetic numerical and analytical calculations in studying the effects of change in the primitive unit cells of one-dimensional (1D) vortex arrays on collective vortex-gyration dispersion. As the primitive basis, we consider alternating constituent materials (NiMnSb vs. Permalloy) and alternating dimensions including constituent disk diameter and thickness. In the simplest case, that of one vortex-state disk of given dimensions and single material in the primitive cell, only a single branch of collective vortex-gyration dispersion appears. By contrast, two constituent disks' different alternating materials, thicknesses, and diameters yield characteristic two-branch dispersions, the band widths and gaps of which differ in each case. This work offers not only an efficient means of manipulating collective vortex-gyration band structures but also a foundation for the development of a rich variety of 1D or 2D magnonic crystals and their band structures based on dipolar-coupled-vortex arrays.

  15. Oscillatory Noncollinear Magnetism Induced by Interfacial Charge Transfer in Superlattices Composed of Metallic Oxides

    NASA Astrophysics Data System (ADS)

    Hoffman, Jason D.; Kirby, Brian J.; Kwon, Jihwan; Fabbris, Gilberto; Meyers, D.; Freeland, John W.; Martin, Ivar; Heinonen, Olle G.; Steadman, Paul; Zhou, Hua; Schlepütz, Christian M.; Dean, Mark P. M.; te Velthuis, Suzanne G. E.; Zuo, Jian-Min; Bhattacharya, Anand

    2016-10-01

    Interfaces between correlated complex oxides are promising avenues to realize new forms of magnetism that arise as a result of charge transfer, proximity effects, and locally broken symmetries. We report on the discovery of a noncollinear magnetic structure in superlattices of the ferromagnetic metallic oxide La2 /3Sr1 /3MnO3 (LSMO) and the correlated metal LaNiO3 (LNO). The exchange interaction between LSMO layers is mediated by the intervening LNO, such that the angle between the magnetization of neighboring LSMO layers varies in an oscillatory manner with the thickness of the LNO layer. The magnetic field, temperature, and spacer thickness dependence of the noncollinear structure are inconsistent with the bilinear and biquadratic interactions that are used to model the magnetic structure in conventional metallic multilayers. A model that couples the LSMO layers to a helical spin state within the LNO fits the observed behavior. We propose that the spin-helix results from the interaction between a spatially varying spin susceptibility within the LNO and interfacial charge transfer that creates localized Ni2 + states. Our work suggests a new approach to engineering noncollinear spin textures in metallic oxide heterostructures.

  16. Magnetic rogue wave in a perpendicular anisotropic ferromagnetic nanowire with spin-transfer torque

    NASA Astrophysics Data System (ADS)

    Zhao, Fei; Li, Zai-Dong; Li, Qiu-Yan; Wen, Lin; Fu, Guangsheng; Liu, W. M.

    2012-09-01

    We present the current controlled motion of a dynamic soliton embedded in spin wave background in ferromagnetic nanowire. With the stronger breather character we get the novel magnetic rogue wave and clarify its formation mechanism. The generation of magnetic rogue wave mainly arises from the accumulation of energy and magnons toward to its central part. We also observe that the spin-polarized current can control the exchange rate of magnons between the envelope soliton and the background, and the critical current condition is obtained analytically. Even more interesting is that the spin-transfer torque plays the completely opposite role for the cases below and above the critical value.

  17. Nonadiabatic spin transfer torque in high anisotropy magnetic nanowires with narrow domain walls.

    PubMed

    Boulle, O; Kimling, J; Warnicke, P; Kläui, M; Rüdiger, U; Malinowski, G; Swagten, H J M; Koopmans, B; Ulysse, C; Faini, G

    2008-11-21

    Current induced domain wall (DW) depinning of a narrow DW in out-of-plane magnetized (Pt/Co)_{3}/Pt multilayer elements is studied by magnetotransport. We find that for conventional measurements Joule heating effects conceal the real spin torque efficiency and so we use a measurement scheme at a constant sample temperature to unambiguously extract the spin torque contribution. From the variation of the depinning magnetic field with the current pulse amplitude we directly deduce the large nonadiabaticity factor in this material and we find that its amplitude is consistent with a momentum transfer mechanism.

  18. Spin-transfer-torque efficiency enhanced by edge-damage of perpendicular magnetic random access memories

    SciTech Connect

    Song, Kyungmi; Lee, Kyung-Jin

    2015-08-07

    We numerically investigate the effect of magnetic and electrical damages at the edge of a perpendicular magnetic random access memory (MRAM) cell on the spin-transfer-torque (STT) efficiency that is defined by the ratio of thermal stability factor to switching current. We find that the switching mode of an edge-damaged cell is different from that of an undamaged cell, which results in a sizable reduction in the switching current. Together with a marginal reduction of the thermal stability factor of an edge-damaged cell, this feature makes the STT efficiency large. Our results suggest that a precise edge control is viable for the optimization of STT-MRAM.

  19. Analysis of Pharmacokinetics of Gd-DTPA for Dynamic Contrast-enhanced Magnetic Resonance Imaging

    PubMed Central

    Taheri, Saeid; Jon Shah, N.; Rosenberg, Gary A.

    2016-01-01

    The pharmacokinetics (PK) of the contrast agent Gd-DTPA administered intravenously (i.v.) for contrast-enhanced MR imaging (DCE-MRI) is an important factor for quantitative data acquisition. We studied the effect of various initial bolus doses on the PK of Gd-DTPA and analyzed population PK of a lower dose for intra-subject variations in DCE-MRI. First, fifteen subjects (23–85 years, M/F) were randomly divided into four groups for DCE-MRI with different Gd-DTPA dose: group-I, 0.1mmol/kg, n=4; group-II, 0.05 mmol/kg, n=4; group-III, 0.025mmol/kg, n=4; and group-IV, 0.0125 mmol/kg, n=3. Sequential fast T1 mapping sequence, after a bolus i.v. Gd-DTPA administered, and a linear T1-[Gd-DTPA] relationship were used to estimate the PK of Gd-DTPA. Secondly, MR-acquired PK of Gd-DTPA from 58 subjects (28–80 years, M/F) were collected retrospectively, from an ongoing study of the brain using DCE-MRI with Gd-DTPA at 0.025 mmol/kg, to statistically analyze population PK of Gd-DTPA. We found that the PK of Gd-DTPA (i.v. 0.025 mmol/kg) had a half-life of 37.3 ± 6.6 mins, and was a better fit into a linear T1-[Gd-DTPA] relationship than higher doses (up to 0.1 mmol/kg). The area under the curve (AUC) for 0.025 mmol/kg was 3.37± 0.46, which was a quarter of AUC of 0.1 mmol/kg. In population analysis, a dose of 0.025 mmol/kg of Gd-DTPA provided less than 5% subject-dependent variation in the PK of Gd-DTPA. Administration of 0.025 mmol/kg Gd-DTPA enable us to estimate [Gd-DTPA] from T1 by using a linear relationship that has a lower estimation error compared to a non-linear relationship. DCE-MRI with a quarter dose of Gd-DTPA is more sensitive to detect changes in [Gd-DTPA]. PMID:27109487

  20. Muscle Velocity and Inertial Force from Phase Contrast Magnetic Resonance Imaging

    PubMed Central

    Wentland, Andrew L.; McWalter, Emily J.; Pal, Saikat; Delp, Scott L.; Gold, Garry E.

    2014-01-01

    Purpose To evaluate velocity waveforms in muscle and to create a tool and algorithm for computing and analyzing muscle inertial forces derived from 2D phase contrast (PC) MRI. Materials and Methods PC MRI was performed in the forearm of four healthy volunteers during 1 Hz cycles of wrist flexion-extension as well as in the lower leg of six healthy volunteers during 1 Hz cycles of plantarflexion-dorsiflexion. Inertial forces (F) were derived via the equation F = ma. The mass, m, was derived by multiplying voxel volume by voxel-by-voxel estimates of density via fat-water separation techniques. Acceleration, a, was obtained via the derivative of the PC MRI velocity waveform. Results Mean velocities in the flexors of the forearm and lower leg were 1.94 ± 0.97 cm/s and 5.57 ± 2.72 cm/s, respectively, as averaged across all subjects; the inertial forces in the flexors of the forearm and lower leg were 1.9 × 10-3 ± 1.3 × 10-3 N and 1.1 × 10-2 ± 6.1 × 10-3 N, respectively, as averaged across all subjects. Conclusion PC MRI provided a promising means of computing muscle velocities and inertial forces—providing the first method for quantifying inertial forces. PMID:25425185

  1. Bit error rate investigation of spin-transfer-switched magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Wang, Zihui; Zhou, Yuchen; Zhang, Jing; Huai, Yiming

    2012-10-01

    A method is developed to enable a fast bit error rate (BER) characterization of spin-transfer-torque magnetic random access memory magnetic tunnel junction (MTJ) cells without integrating with complementary metal-oxide semiconductor circuit. By utilizing the reflected signal from the devices under test, the measurement setup allows a fast measurement of bit error rates at >106, writing events per second. It is further shown that this method provides a time domain capability to examine the MTJ resistance states during a switching event, which can assist write error analysis in great detail. BER of a set of spin-transfer-torque MTJ cells has been evaluated by using this method, and bit error free operation (down to 10-8) for optimized in-plane MTJ cells has been demonstrated.

  2. Coherent population transfer in multilevel systems with magnetic sublevels. II. Algebraic analysis

    NASA Astrophysics Data System (ADS)

    Martin, J.; Shore, B. W.; Bergmann, K.

    1995-07-01

    We extend previous theoretical work on coherent population transfer by stimulated Raman adiabatic passage for states involving nonzero angular momentum. The pump and Stokes fields are either copropagating or counterpropagating with the corresponding linearly polarized electric-field vectors lying in a common plane with the magnetic-field direction. Zeeman splitting lifts the magnetic sublevel degeneracy. We present an algebraic analysis of dressed-state properties to explain the behavior noted in numerical studies. In particular, we discuss conditions which are likely to lead to a failure of complete population transfer. The applied strategy, based on simple methods of linear algebra, will also be successful for other types of discrete multilevel systems, provided the rotating-wave and adiabatic approximation are valid.

  3. Spectral Energy Transfer and Dissipation of Magnetic Energy from Fluid to Kinetic Scales

    SciTech Connect

    Bowers, K.; Li, H.

    2007-01-19

    We investigate the magnetic energy transfer from the fluid to kinetic scales and dissipation processes using three-dimensional fully kinetic particle-in-cell plasma simulations. The nonlinear evolution of a sheet pinch is studied where we show that it exhibits both fluid scale global relaxation and kinetic scale collisionless reconnection at multiple resonant surfaces. The interactions among collisionless tearing modes destroy the original flux surfaces and produce stochastic fields, along with generating sheets and filaments of intensified currents. In addition, the magnetic energy is transferred from the original shear length scale both to the large scales due to the global relaxation and to the smaller, kinetic scales for dissipation. The dissipation is dominated by the thermal or pressure effect in the generalized Ohm's law, and electrons are preferentially accelerated.

  4. A voxel based comparative analysis using magnetization transfer imaging and T1-weighted magnetic resonance imaging in progressive supranuclear palsy

    PubMed Central

    Sandhya, Mangalore; Saini, Jitender; Pasha, Shaik Afsar; Yadav, Ravi; Pal, Pramod Kumar

    2014-01-01

    Aims: In progressive supranuclear palsy (PSP) tissue damage occurs in specific cortical and subcortical regions. Voxel based analysis using T1-weighted images depict quantitative gray matter (GM) atrophy changes. Magnetization transfer (MT) imaging depicts qualitative changes in the brain parenchyma. The purpose of our study was to investigate whether MT imaging could indicate abnormalities in PSP. Settings and Design: A total of 10 patients with PSP (9 men and 1 woman) and 8 controls (5 men and 3 women) were studied with T1-weighted magnetic resonance imaging (MRI) and 3DMT imaging. Voxel based analysis of T1-weighted MRI was performed to investigate brain atrophy while MT was used to study qualitative abnormalities in the brain tissue. We used SPM8 to investigate group differences (with two sample t-test) using the GM and white matter (WM) segmented data. Results: T1-weighted imaging and MT are equally sensitive to detect changes in GM and WM in PSP. Magnetization transfer ratio images and magnetization-prepared rapid acquisition of gradient echo revealed extensive bilateral volume and qualitative changes in the orbitofrontal, prefrontal cortex and limbic lobe and sub cortical GM. The prefrontal structures involved were the rectal gyrus, medial, inferior frontal gyrus (IFG) and middle frontal gyrus (MFG). The anterior cingulate, cingulate gyrus and lingual gyrus of limbic lobe and subcortical structures such as caudate, thalamus, insula and claustrum were also involved. Cerebellar involvement mainly of anterior lobe was also noted. Conclusions: The findings suggest that voxel based MT imaging permits a whole brain unbiased investigation of central nervous system structural integrity in PSP. PMID:25024571

  5. Reconstruction of dynamic contrast enhanced magnetic resonance imaging of the breast with temporal constraints

    PubMed Central

    Chen, Liyong; Schabel, Matthias C.; DiBella, Edward V.R.

    2010-01-01

    A number of methods using temporal and spatial constraints have been proposed for reconstruction of undersampled dynamic magnetic resonance imaging (MRI) data. The complex data can be constrained or regularized in a number of different ways, for example, the time derivative of the magnitude and phase image voxels can be constrained separately or jointly. Intuitively, the performance of different regularizations will depend on both the data and the chosen temporal constraints. Here, a complex temporal total variation (TV) constraint was compared to the use of separate real and imaginary constraints, and to a magnitude constraint alone. Projection onto Convex Sets (POCS) with a gradient descent method was used to implement the diverse temporal constraints in reconstructions of DCE MRI data. For breast DCE data, serial POCS with separate real and imaginary TV constraints was found to give relatively poor results while serial/parallel POCS with a complex temporal TV constraint and serial POCS with a magnitude-only temporal TV constraint performed well with an acceleration factor as large as R=6. In the tumor area, the best method was found to be parallel POCS with complex temporal TV constraint. This method resulted in estimates for the pharmacokinetic parameters that were linearly correlated to those estimated from the fully-sampled data, with Ktrans,R=6=0.97 Ktrans,R=1+0.00 with correlation coefficient r=0.98, kep,R=6=0.95 kep,R=1+0.00 (r=0.85). These results suggest that it is possible to acquire highly undersampled breast DCE-MRI data with improved spatial and/or temporal resolution with minimal loss of image quality. PMID:20392585

  6. In vivo nuclear magnetic resonance imaging of myocardial perfusion using the paramagnetic contrast agent manganese gluconate.

    PubMed

    Schaefer, S; Lange, R A; Kulkarni, P V; Katz, J; Parkey, R W; Willerson, J T; Peshock, R M

    1989-08-01

    Previous nuclear magnetic resonance (NMR) imaging studies have indicated that coronary occlusion does not produce sufficient changes in standard tissue relaxation times to allow the detection of acute ischemia. To identify acute myocardial perfusion abnormalities, the use of the paramagnetic agent manganese gluconate combined with calcium gluconate (MnGlu/CaGlu) was investigated in canine models of acute coronary artery occlusion. In vitro studies showed that MnGlu/CaGlu was a more efficient relaxing agent than gadolinium-DTPA (relaxivity of 7.8 versus 5.1 s-1 mM-1) and demonstrated affinity for normal myocardium. The distribution of MnGlu/CaGlu as measured by manganese-54 tracer studies was proportional to myocardial blood flow in both normal and ischemic tissue. Hearts excised from dogs after coronary artery occlusion and administration of 0.035 mM/kg MnGlu/CaGlu were imaged ex vivo using a relatively spin-lattice relaxation time (T1)-weighted gradient reversal technique (repetition time [TR] 50 ms and echo time [TE] 9 ms). These images showed increased signal intensity in the normally perfused myocardium with a mean signal intensity ratio of hypoperfused to normal myocardium of 0.55 +/- 0.12 (mean +/- SD). In vivo images obtained in nine dogs after coronary artery occlusion and administration of the same dose of MnGlu/CaGlu demonstrated the region of hypoperfused myocardium in six dogs with a signal intensity ratio of hypoperfused to normal myocardium of 0.64 +/- 0.23 (p less than 0.05 versus control). When a higher dose of 0.1 mM/kg MnGlu/CaGlu was utilized and in vivo imaging was performed using a relatively spin-spin relaxation time (T2)-weighted (TR gated, TE 60 ms) spin-echo sequence in six dogs, the signal intensity of normal myocardium was decreased.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Magnet power supply control of the NSLS VUV and x-ray storage rings transfer lines

    SciTech Connect

    Klein, J.D.; Ramamoorthy, S.; Singh, O.; Smith, J.D.

    1985-01-01

    The transfer lines for NSLS VUV and x-ray storage rings have been split. New power supplies have been incorporated with existing ones. The existing microprocessor system has been upgraded in order to control the additional functions. This system expands the input/output port of the microprocessor to an addressable serial/parallel link to each magnet power supply. The implementation of this system will be discussed.

  8. Numerical Simulation of Steady and Pulsatile Flow Through Vascular Stenoses and Comparisons with Experiments Using Phase Contrast Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Behrens, Geoffrey; Agarwal, Ramesh; Moghaddam, Abbas N.; Choi, Eric T.; Amini, Amir A.

    2003-11-01

    A commercially available numerical flow solver "FLUENT" is employed in simulation of blood flow through vascular stenoses. Fluid properties are set to match those of the blood mimicking fluid used in flow phantom experiments at the Washington University School of Medicine. Computational results are compared for steady flow through axisymmetric and three-dimensional phantoms modeling mild to severe stenonses with the data collected using Phase Contrast Magnetic Resonance Imaging (PC-MRI) technique by colleagues in the CVIA laboratory at Washington University School of Medicine. Computations are also performed for pulsatile flow through vascular stenoses. Comparisons of PC-MRI and FLUENT output data show qualitative agreement in streamline patterns and good quantitative agreement for pressure drop across the stenoses.

  9. In vivo detection of copper ions by magnetic resonance imaging using a prion-based contrast agent.

    PubMed

    Makino, Satoshi; Umemoto, Tomohiro; Yamada, Hiroshi; Yezdimer, Eric M; Tooyama, Ikuo

    2012-10-01

    Abnormal distributions of transition metals inside the body are potential diagnostic markers for several diseases, including Alzheimer's disease, Parkinson's disease, Wilson's disease, and cancer. In this article, we demonstrate that P57/Gd, a novel prion-based contrast agent, can selectively image tissues with excessive copper accumulation using magnetic resonance imaging (MRI). P57/Gd selectivity binds copper(II) over other physiologically relevant cations such as zinc, iron, manganese, and calcium. To simulate a metabolic copper disorder, we treated mice with an intraperitoneal injection of a CuSO(4) solution to induce a renal copper overload. The MRI signal intensities from the renal cortex and medulla of copper spiked animals that were administered P57/Gd were found to correlate with the ex vivo copper concentrations determined by inductively coupled plasma mass spectrometry.

  10. Revision of the theory of tracer transport and the convolution model of dynamic contrast enhanced magnetic resonance imaging

    PubMed Central

    Bammer, Roland; Stollberger, Rudolf

    2012-01-01

    Counterexamples are used to motivate the revision of the established theory of tracer transport. Then dynamic contrast enhanced magnetic resonance imaging in particular is conceptualized in terms of a fully distributed convection–diffusion model from which a widely used convolution model is derived using, alternatively, compartmental discretizations or semigroup theory. On this basis, applications and limitations of the convolution model are identified. For instance, it is proved that perfusion and tissue exchange states cannot be identified on the basis of a single convolution equation alone. Yet under certain assumptions, particularly that flux is purely convective at the boundary of a tissue region, physiological parameters such as mean transit time, effective volume fraction, and volumetric flow rate per unit tissue volume can be deduced from the kernel. PMID:17429633

  11. Heat transfer through cable insulation of Nb-Ti superconducting magnets operating in He II

    NASA Astrophysics Data System (ADS)

    Granieri, P. P.

    2013-01-01

    The operation of Nb-Ti superconducting magnets in He II relies on superfluidity to overcome the severe thermal barrier represented by the cable electrical insulation. In wrapped cable insulations, like those used for the main magnets of the Large Hadron Collider (LHC) particle accelerator, the micro-channels network created by the insulation wrappings allows to efficiently transfer the heat deposited or generated in the cable to the He bath. In this paper, available experimental data of heat transfer through polyimide electrical insulation schemes are analyzed. A steady-state thermal model is developed to describe the insulation of the LHC main dipole magnets and the Enhanced Insulation proposed for the High Luminosity LHC upgrade (HL-LHC), according to the relevant geometric parameters. The model is based on the coupled mechanisms of heat transfer through the bulk of the dielectric insulation and through micro-channels between the insulation tapes. A good agreement is found between calculations and tests performed at different applied pressures and heating configurations. The model allows identifying the heat fluxes in the cable cross-section as well as the dimensions of the micro-channels. These dimensions are confirmed by microscope images of the two insulations schemes.

  12. Passive shielding effect on space profile of magnetic field emissions for wireless power transfer to vehicles

    SciTech Connect

    Batra, T. Schaltz, E.

    2015-05-07

    Magnetic fields emitted by wireless power transfer systems are of high importance with respect to human safety and health. Aluminum and ferrite are used in the system to reduce the fields and are termed as passive shielding. In this paper, the influence of these materials on the space profile has been investigated with the help of simulations on Comsol for the four possible geometries—no shielding, ferrite, aluminum, and full shielding. As the reflected impedance varies for the four geometries, the primary current is varied accordingly to maintain constant power transfer to the secondary side. Surrounding magnetic field plots in the vertical direction show that maxima's of the two coils for the no shielding geometry are centered at the respective coils and for the remaining three are displaced closer to each other. This closeness would lead to more effective addition of the two coil fields and an increase in the resultant field from space point of view. This closeness varies with distance in the horizontal direction and vertical gap between the coils and is explained in the paper. This paper provides a better understanding of effect of the passive shielding materials on the space nature of magnetic fields for wireless power transfer for vehicle applications.

  13. Influence of spin-transfer torque on thermally activated ferromagnetic resonance excitations in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Petit, S.; de Mestier, N.; Baraduc, C.; Thirion, C.; Liu, Y.; Li, M.; Wang, P.; Dieny, B.

    2008-11-01

    Voltage noise measurements on magnetic tunnel junctions show that thermal fluctuations of the magnetization are either amplified or quenched by subcritical spin-transfer torque depending on the current direction. We present an analytical model that describes the dependence of thermally activated ferromagnetic resonance on bias current. The evolution of the peak amplitude and linewidth with the applied current is directly related to the longitudinal torque, whereas the shift of the resonance frequency is sensitive to the transverse torque. Both spin torque terms are independently extracted from the measured noise spectra. Our results support the general idea that it is more pertinent to describe spin torque in terms of voltage rather than current in magnetic tunnel junctions.

  14. Magnetic rogue wave in a perpendicular anisotropic ferromagnetic nanowire with spin-transfer torque

    SciTech Connect

    Zhao, Fei; Li, Zai-Dong; Li, Qiu-Yan; Wen, Lin; Fu, Guangsheng; Liu, W.M.

    2012-09-15

    We present the current controlled motion of a dynamic soliton embedded in spin wave background in ferromagnetic nanowire. With the stronger breather character we get the novel magnetic rogue wave and clarify its formation mechanism. The generation of magnetic rogue wave mainly arises from the accumulation of energy and magnons toward to its central part. We also observe that the spin-polarized current can control the exchange rate of magnons between the envelope soliton and the background, and the critical current condition is obtained analytically. Even more interesting is that the spin-transfer torque plays the completely opposite role for the cases below and above the critical value. - Highlights: Black-Right-Pointing-Pointer We get the current controlled motion of a dynamic soliton embedded in spin wave background. Black-Right-Pointing-Pointer We get the novel magnetic rogue wave and clarify its formation mechanism. Black-Right-Pointing-Pointer The generation of magnetic rogue wave arises from the accumulation of energy and magnons. Black-Right-Pointing-Pointer The spin-polarized current controls exchange rate of magnons between the envelope soliton and the background. Black-Right-Pointing-Pointer The spin-transfer torque plays the completely opposite role below and above the critical value.

  15. Optimization of magnetic refrigerators by tuning the heat transfer medium and operating conditions

    NASA Astrophysics Data System (ADS)

    Ghahremani, Mohammadreza; Aslani, Amir; Bennett, Lawrence; Della Torre, Edward

    A new reciprocating Active Magnetic Regenerator (AMR) experimental device has been designed, built and tested to evaluate the effect of the system's parameters on a reciprocating Active Magnetic Regenerator (AMR) near room temperature. Gadolinium turnings were used as the refrigerant, silicon oil as the heat transfer medium, and a magnetic field of 1.3 T was cycled. This study focuses on the methodology of single stage AMR operation conditions to get a higher temperature span near room temperature. Herein, the main objective is not to report the absolute maximum attainable temperature span seen in an AMR system, but rather to find the system's optimal operating conditions to reach that maximum span. The results of this work show that there is an optimal operating frequency, heat transfer fluid flow rate, flow duration, and displaced volume ratio in an AMR system. It is expected that such optimization and the results provided herein will permit the future design and development of more efficient room-temperature magnetic refrigeration systems.

  16. On Electromagnetic Modulation of Flow Instabilities, Mixing and Heat Transfer in Conducting and Magnetized Fluids

    NASA Astrophysics Data System (ADS)

    Kenjeres, S.

    2016-09-01

    In the present paper we give a concise review of some recent highlights of our research dealing with electromagnetic control of flow, mixing and heat transfer of electrically conductive or magnetized fluids. We apply a combination of state-of-art numerical (DNS and LES) and experimental (PIV and LIF) techniques to provide fundamental insights into the complex phenomena of interactions between imposed (or induced) electromagnetic fields and underlying fluid flow. Our analysis covers an extensive range of working fluids, i.e. weakly- and highly-electrically-conductive, as well as magnetized fluids. These interactions are defined through the presence of different types of body forces acting per volume of fluid. A fully closed system of governing equations containing an extended set of the Navier-Stokes and a simplified set of the Maxwell equations is presented. The four characteristic examples are selected: the electromagnetic control of self-sustained jet oscillations, the electromagnetic enhancement of heat transfer in thermal convection, the wake interactions behind magnetic obstacles and finally, the thermo-magnetic convection in differentially heated cubical enclosure. The comparative assessment between experimental and numerical results is presented. It is concluded that generally good agreement between simulations and experiments is obtained for all cases considered, proving the concept of electromagnetic modulation, which can be used in numerous technological applications.

  17. Use of an embedded contact sensor to study nanoscale heat transfer in heat assisted magnetic recording

    NASA Astrophysics Data System (ADS)

    Wu, Haoyu; Bogy, David

    2017-01-01

    A near field transducer is employed in the heat assisted magnetic recording technology in order to focus the light energy into a nanoscale spot on the disk. This is necessary to heat the high coercivity magnetic media to their Curie temperature, so the write transducer can record the data. However, the heat transfer mechanism across the head disk interface (HDI) is still not well understood. The current perpendicular media recording systems have a thermal fly-height control means in the air bearing slider near the read/write transducers for placing the transducers within 1 to 2 nm of the rotating disk. In order to monitor this near contact spacing, this system also uses an embedded contact sensor (ECS). Here, we investigate how this ECS can be used to study the heat transfer across the nanoscale gap between the read/write transducer and the disk. This study shows that the self heating effect of the ECS is strong when its current bias is too high. But this self heating effect can be isolated from other heat sources, which allows us to use the ECS for the desired heat transfer measurements. The experiments show that the heat transfer across the HDI is a strong function of the head-disk spacing.

  18. Nanoscale memory elements based on the superconductor-ferromagnet proximity effect and spin-transfer torque magnetization switching

    NASA Astrophysics Data System (ADS)

    Baek, Burm

    Superconducting-ferromagnetic hybrid devices have potential for a practical memory technology compatible with superconducting logic circuits and may help realize energy-efficient, high-performance superconducting computers. We have developed Josephson junction devices with pseudo-spin-valve barriers. We observed changes in Josephson critical current depending on the magnetization state of the barrier (parallel or anti-parallel) through the superconductor-ferromagnet proximity effect. This effect persists to nanoscale devices in contrast to the remanent field effect. In nanopillar devices, the magnetization states of the pseudo-spin-valve barriers could also be switched with applied bias currents at 4 K, which is consistent with the spin-transfer torque effect in analogous room-temperature spin valve devices. These results demonstrate devices that combine major superconducting and spintronic effects for scalable read and write of memory states, respectively. Further challenges and proposals towards practical devices will also be discussed.In collaboration with: William Rippard, NIST - Boulder, Matthew Pufall, NIST - Boulder, Stephen Russek, NIST-Boulder, Michael Schneider, NIST - Boulder, Samuel Benz, NIST - Boulder, Horst Rogalla, NIST-Boulder, Paul Dresselhaus, NIST - Boulder

  19. Computed tomography and magnetic resonance imaging contrast media injectors: technical feature review – what is really needed?

    PubMed Central

    Friebe, Michael

    2016-01-01

    There has been little technical innovation over the last few years for contrast media (CM) injectors that are used for diagnostic imaging (computed tomography [CT], magnetic resonance imaging [MRI], and hybrid imaging systems, such as positron emission tomography–CT or magnetic resonance–positron emission tomography) examinations. The medical need of CM for the enhancement of diagnostic images has been around for a long time, but the application of the CM into the blood stream comes with potential medical complications for the patient and requires a lot of operator experience and training. Most power injector systems that are currently used can do significantly more than what is typically required; this complexity however, adds error potential and cost. This paper focuses on the main features that CM injector systems should have and highlights the technical developments that are useful to have but which add complexity and cost, increase setup time, and require intensive training for safe use. CM injection protocols are very different between CT and MRI, with CT requiring many more variances, has a need for multiphase protocols, and requires a higher timing accuracy. A CM injector used in the MRI suite, on the other-hand, could only need a relatively time insensitive injection with a standard injection flow rate and a volume that is dependent on the patients’ weight. This would make easy and lightweight systems possible, which are able to safely and accurately perform the injection task, while allowing full MRI compatibility with relatively low cost investment and consumable costs. PMID:27486345

  20. Magnetic resonance imaging findings of remnants of an intradural oil-based contrast agent: report of a case

    PubMed Central

    Oo, Myint; Wang, Zhuo; Sakakibara, Toshihiko; Kasai, Yuichi

    2012-01-01

    Background Myodil (iophendylate), an oil-based positive contrast media, now discontinued, was widely used for performing myelography 30–70 years ago. We identified this agent as the explanation for uncommon magnetic resonance imaging (MRI) findings in a patient with thoracic spinal fracture. Design Case report and literature review. Findings An 81-year-old man complained of back pain after falling down stairs. Anamnesis revealed that he had undergone myelography with an oil-based contrast agent about 60 years previously as a part of the diagnostic workup for back pain and sudden onset of gait difficulty. Plain radiography of the thoraco-lumbar spine showed a fracture of the eleventh thoracic vertebra and a radio-opaque, oval shadow at the level of the T9–T10 vertebrae. Many small radio-opaque dots with the appearance of a string of pearls were seen from T8 to L3 vertebrae. MRI revealed a sharply demarcated intradural extramedullary mass, of approximately 5 mm in diameter on the left side of the dura in the region of the T9–T10. The mass showed high signal intensity on T1-weighted MRI, and low signal intensity on T2-weighted MRI. Conclusions Increased awareness of this rare presentation of procedures performed in the past is essential when atypical radiographic images are encountered. This case illustrates rare sequelae of Myodil use manifesting decades after administration. PMID:22333888

  1. Magnetic resonance imaging of cells overexpressing MagA, an endogenous contrast agent for live cell imaging.

    PubMed

    Goldhawk, Donna E; Lemaire, Claude; McCreary, Cheryl R; McGirr, Rebecca; Dhanvantari, Savita; Thompson, R Terry; Figueredo, Rene; Koropatnick, Jim; Foster, Paula; Prato, Frank S

    2009-01-01

    Molecular imaging with magnetic resonance imaging (MRI) may benefit from the ferrimagnetic properties of magnetosomes, membrane-enclosed iron biominerals whose formation in magnetotactic bacteria is encoded by multiple genes. One such gene is MagA, a putative iron transporter. We have examined expression of MagA in mouse neuroblastoma N2A cells and characterized their response to iron loading and cellular imaging by MRI. MagA expression augmented both Prussian blue staining and the elemental iron content of N2A cells, without altering cell proliferation, in cultures grown in the presence of iron supplements. Despite evidence for iron incorporation in both MagA and a variant, MagAE137V, only MagA expression produced intracellular contrast detectable by MRI at 11 Tesla. We used this stable expression system to model a new sequence for cellular imaging with MRI, using the difference between gradient and spin echo images to distinguish cells from artifacts in the field of view. Our results show that MagA activity in mammalian cells responds to iron supplementation and functions as a contrast agent that can be deactivated by a single point mutation. We conclude that MagA is a candidate MRI reporter gene that can exploit more fully the superior resolution of MRI in noninvasive medical imaging.

  2. Biodegradable human serum albumin nanoparticles as contrast agents for the detection of hepatocellular carcinoma by magnetic resonance imaging.

    PubMed

    Watcharin, Waralee; Schmithals, Christian; Pleli, Thomas; Köberle, Verena; Korkusuz, Hüdayi; Huebner, Frank; Zeuzem, Stefan; Korf, Hans W; Vogl, Thomas J; Rittmeyer, Claudia; Terfort, Andreas; Piiper, Albrecht; Gelperina, Svetlana; Kreuter, Jörg

    2014-05-01

    Tumor visualization by magnetic resonance imaging (MRI) and nanoparticle-based contrast agents may improve the imaging of solid tumors such as hepatocellular carcinoma (HCC). In particular, human serum albumin (HSA) nanoparticles appear to be a suitable carrier due to their safety and feasibility of functionalization. In the present study HSA nanoparticles were conjugated with gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) using carbodiimide chemistry. The nanoparticles had a uniform spherical shape and a diameter of 235±19nm. For better optical visualization in vitro and in vivo, the HSA-Gd nanoparticles were additionally labeled with rhodamine 123. As shown by confocal microscopy and flow cytometry analysis, the fluorescent nanoparticles were readily taken up by Huh-7 hepatocellular carcinoma cells. After 24h incubation in blood serum, less than 5% of the Gd(III) was released from the particles, which suggests that this nanoparticulate system may be stable in vivo and, therefore, may serve as potentially safe T1 MRI contrast agent for MRI of hepatocellular carcinoma.

  3. Self-assembled polymeric nanoparticles as new, smart contrast agents for cancer early detection using magnetic resonance imaging.

    PubMed

    Mouffouk, Fouzi; Simão, Teresa; Dornelles, Daniel F; Lopes, André D; Sau, Pablo; Martins, Jorge; Abu-Salah, Khalid M; Alrokayan, Salman A; Rosa da Costa, Ana M; dos Santos, Nuno R

    2015-01-01

    Early cancer detection is a major factor in the reduction of mortality and cancer management cost. Here we developed a smart and targeted micelle-based contrast agent for magnetic resonance imaging (MRI), able to turn on its imaging capability in the presence of acidic cancer tissues. This smart contrast agent consists of pH-sensitive polymeric micelles formed by self-assembly of a diblock copolymer (poly(ethyleneglycol-b-trimethylsilyl methacrylate)), loaded with a gadolinium hydrophobic complex ((t)BuBipyGd) and exploits the acidic pH in cancer tissues. In vitro MRI experiments showed that (t)BuBipyGd-loaded micelles were pH-sensitive, as they turned on their imaging capability only in an acidic microenvironment. The micelle-targeting ability toward cancer cells was enhanced by conjugation with an antibody against the MUC1 protein. The ability of our antibody-decorated micelles to be switched on in acidic microenvironments and to target cancer cells expressing specific antigens, together with its high Gd(III) content and its small size (35-40 nm) reveals their potential use for early cancer detection by MRI.

  4. Facile Preparation of a New Gadofullerene-Based Magnetic Resonance Imaging Contrast Agent with High 1H Relaxivity

    PubMed Central

    Shu, Chunying; Corwin, Frank D.; Zhang, Jianfei; Chen, Zhijian; Reid, Jonathan E.; Sun, Minghao; Xu, Wei; Sim, Jae Hyun; Wang, Chunru; Fatouros, Panos P.; Esker, Alan R.; Gibson, Harry W.; Dorn, Harry C.

    2009-01-01

    A new magnetic resonance imaging (MRI) contrast agent based on the trimetallic nitride templated (TNT) metallofullerene, Gd3N@C80, was synthesized by a facile method in high yield. The observed longitudinal and transverse relaxivities, r1 and r2, for water hydrogens in the presence of the water-soluble gadofullerene 2, Gd3N@C80(OH)~26(CH2CH2COOM)~16 (M = Na or H), are 207 and 282 mM-1s-1 (per C80 cage) at 2.4 T, respectively; these values are 50 times larger than those of Gd3+ poly(aminocarboxylate) complexes, such as commercial Omniscan® and Magnevist®. This high 1H relaxivity for this new hydroxylated and carboxylated gadofullerene derivative provides high signal enhancement at significantly lower Gd concentration as demonstrated by in vitro and in vivo MRI studies. Dynamic light scattering data reveal a unimodal size distribution with an average hydrodynamic radius of ca. 78 nm in pure water (pH = 7), which is significantly different from other hydroxylated or carboxylated fullerene and metallofullerene derivatives reported to date. Agarose gel infusion results indicate that the gadofullerene 2 displayed diffusion properties different from that of commercial Omniscan® and those of PEG5000 modified Gd3N@C80. The reactive carboxyl functionality present on this highly efficient contrast agent may also serve as a precursor for biomarker tissue-targeting purposes. PMID:19445504

  5. Cerebral ischemia during carotid artery cross-clamping: predictive value of phase-contrast magnetic resonance imaging.

    PubMed

    Bagan, Patrick; Vidal, Renaud; Martinod, Emmanuel; Destable, Marie-Dominique; Tremblay, Bruno; Dumas, Jean Luc; Azorin, Jacques F

    2006-11-01

    The goal of this prospective study was to determine the utility of preoperative cerebral magnetic resonance imaging (MRI) in predicting cerebral ischemia during carotid artery cross-clamping for endarterectomy. Between January 2000 and December 2003, a total of 121 patients (95 men, 26 women) underwent three-dimensional phase-contrast MRI to assess collateral function prior to carotid endarterectomy. During regional anesthesia, patients were monitored to detect ischemic events and their timing in relation to cross-clamping and to determine mean intraoperative arterial pressure. These findings were then correlated with the collateral variations observed in the circle of Willis on preoperative MRI. Patients were classified into three groups according to neurological tolerance: normal tolerance (n = 106), immediate severe deficit (n = 9), and late deficit associated with arterial hypotension (n = 6). In the second group, a significant correlation was found between the absence of collateral circulation and neurological deficit (p < .0001). These results indicated that three-dimensional phase-contrast MRI is useful for predicting cerebral ischemia during carotid cross-clamping and selecting indications for shunting. Absence of visible collaterals of the circle of Willis on MRI is significantly predictive of early ischemia and an indication for systematic shunt placement.

  6. Dynamics and structure of self-generated magnetics fields on solids following high contrast, high intensity laser irradiation

    SciTech Connect

    Albertazzi, B.; Chen, S. N.; Fuchs, J.; Antici, P.; Böker, J.; Swantusch, M.; Willi, O.; Borghesi, M.; Breil, J.; Feugeas, J. L.; Nicolaï, Ph.; Tikhonchuk, V. T.; D'Humières, E.; Dervieux, V.; Nakatsutsumi, M.; Romagnagni, L.; Lancia, L.; Shepherd, R.; Sentoku, Y.; Starodubtsev, M.; and others

    2015-12-15

    The dynamics of self-generated magnetic B-fields produced following the interaction of a high contrast, high intensity (I > 10{sup 19 }W cm{sup −2}) laser beam with thin (3 μm thick) solid (Al or Au) targets is investigated experimentally and numerically. Two main sources drive the growth of B-fields on the target surfaces. B-fields are first driven by laser-generated hot electron currents that relax over ∼10–20 ps. Over longer timescales, the hydrodynamic expansion of the bulk of the target into vacuum also generates B-field induced by non-collinear gradients of density and temperature. The laser irradiation of the target front side strongly localizes the energy deposition at the target front, in contrast to the target rear side, which is heated by fast electrons over a much larger area. This induces an asymmetry in the hydrodynamic expansion between the front and rear target surfaces, and consequently the associated B-fields are found strongly asymmetric. The sole long-lasting (>30 ps) B-fields are the ones growing on the target front surface, where they remain of extremely high strength (∼8–10 MG). These B-fields have been recently put by us in practical use for focusing laser-accelerated protons [B. Albertazzi et al., Rev. Sci. Instrum. 86, 043502 (2015)]; here we analyze in detail their dynamics and structure.

  7. Self-assembled polymeric nanoparticles as new, smart contrast agents for cancer early detection using magnetic resonance imaging

    PubMed Central

    Mouffouk, Fouzi; Simão, Teresa; Dornelles, Daniel F; Lopes, André D; Sau, Pablo; Martins, Jorge; Abu-Salah, Khalid M; Alrokayan, Salman A; Rosa da Costa, Ana M; dos Santos, Nuno R

    2015-01-01

    Early cancer detection is a major factor in the reduction of mortality and cancer management cost. Here we developed a smart and targeted micelle-based contrast agent for magnetic resonance imaging (MRI), able to turn on its imaging capability in the presence of acidic cancer tissues. This smart contrast agent consists of pH-sensitive polymeric micelles formed by self-assembly of a diblock copolymer (poly(ethyleneglycol-b-trimethylsilyl methacrylate)), loaded with a gadolinium hydrophobic complex (tBuBipyGd) and exploits the acidic pH in cancer tissues. In vitro MRI experiments showed that tBuBipyGd-loaded micelles were pH-sensitive, as they turned on their imaging capability only in an acidic microenvironment. The micelle-targeting ability toward cancer cells was enhanced by conjugation with an antibody against the MUC1 protein. The ability of our antibody-decorated micelles to be switched on in acidic microenvironments and to target cancer cells expressing specific antigens, together with its high Gd(III) content and its small size (35–40 nm) reveals their potential use for early cancer detection by MRI. PMID:25565804

  8. Evaluation of Neoadjuvant Chemotherapy Response with Dynamic Contrast Enhanced Breast Magnetic Resonance Imaging in Locally Advanced Invasive Breast Cancer

    PubMed Central

    Gezer, Naciye Sinem; Orbay, Özge; Balcı, Pınar; Durak, Merih Guray; Demirkan, Binnaz; Saydam, Serdar

    2014-01-01

    Objective The reliability of traditional methods such as physical examination, ultrasonography (US) and mammography is limited in determining the type of treatment response in patients with neoadjuvant chemotherapy (NAC) application for locally advanced breast cancer (LABC). Dynamic contrast-enhanced magnetic resonance imaging (MRI) is gaining popularity in the evaluation of NAC response. This study aimed to compare NAC response as determined by dynamic contrast-enhanced breast MRI in patients with LABC to histopathology that is the gold standard; and evaluate the compatibility of MRI, mammography and US with response types. Materials and Methods The US, mammography and MRI findings of 38 patients who received NAC with a diagnosis of locally advanced breast cancer and surgical treatment were retrospectively analyzed and compared to histopathology results. Type of response to treatment was determined according to the “Criteria in Solid Tumors Response Evolution 1.1” by mammography, US and MRI criteria. The relationship between response types as defined by all three imaging modalities and histopathology were evaluated, and the correlation of response type as detected by MRI and pathological response and histopathological type of breast cancer was further determined. For statistical analysis, the chi-square, paired t test, correlation and kappa tests were used. Results There is a statistical moderate positive correlation between response type according to pathology and MRI (kappa: 0.63). There was a weak correlation between response type according to mammography or US and according to pathology (kappa: 0.2). When the distribution of treatment response by MRI is stratified according to histopathological types, partial response was higher in all histopathological types similar to the type of pathologic response. When compared with pathology MRI detected treatment response accurately in 84.2% of the patients. Conclusion Dynamic contrast-enhanced breast MRI appears to

  9. Dynamic Contrast-Enhanced Magnetic Resonance Imaging for Localization of Recurrent Prostate Cancer After External Beam Radiotherapy

    SciTech Connect

    Haider, Masoom A. Chung, Peter; Sweet, Joan; Toi, Ants; Jhaveri, Kartik; Menard, Cynthia; Warde, Padraig; Trachtenberg, John; Lockwood, Gina M.Math.; Milosevic, Michael

    2008-02-01

    Purpose: To compare the performance of T2-weighted (T2w) imaging and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) of the prostate gland in the localization of recurrent prostate cancer in patients with biochemical failure after external beam radiotherapy (EBRT). Methods and Materials: T2-weighted imaging and DCE MRI were performed in 33 patients with suspected relapse after EBRT. Dynamic contrast-enhanced MRI was performed with a temporal resolution of 95 s. Voxels enhancing at 46 s after injection to a greater degree than the mean signal intensity of the prostate at 618 s were considered malignant. Results from MRI were correlated with biopsies from six regions in the peripheral zone (PZ) (base, mid, and apex). The percentage of biopsy core positive for malignancy from each region was correlated with the maximum diameter of the tumor on DCE MRI with a linear regression model. Results: On a sextant basis, DCE MRI had significantly better sensitivity (72% [21of 29] vs. 38% [11 of 29]), positive predictive value (46% [21 of 46] vs. 24% [11 of 45]) and negative predictive value (95% [144 of 152] vs. 88% [135 of 153] than T2w imaging. Specificities were high for both DCE MRI and T2w imaging (85% [144 of 169] vs. 80% [135 of 169]). There was a linear relationship between tumor diameters on DCE MRI and the percentage of cancer tissue in the corresponding biopsy core (r = 0.9, p < 0.001), with a slope of 1.2. Conclusions: Dynamic contrast-enhanced MRI performs better than T2w imaging in the detection and localization of prostate cancer in the peripheral zone after EBRT. This may be helpful in the planning of salvage therapy.

  10. Electro-mechanical energy conversion system having a permanent magnet machine with stator, resonant transfer link and energy converter controls

    DOEpatents

    Skeist, S. Merrill; Baker, Richard H.

    2006-01-10

    An electro-mechanical energy conversion system coupled between an energy source and an energy load comprising an energy converter device including a permanent magnet induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer to control the flow of power or energy through the permanent magnetic induction machine.

  11. Importance of polarization transfer in reaction products for interpreting and analyzing CIDNP at low magnetic fields.

    PubMed

    Pravdivtsev, Andrey N; Yurkovskaya, Alexandra V; Ivanov, Konstantin L; Vieth, Hans-Martin

    2015-05-01

    The magnetic field dependence of Chemically Induced Dynamic Nuclear Polarization (CIDNP) was studied for the amino acids N-acetyl histidine, N-acetyl tryptophan and N-acetyl tyrosine. It is demonstrated that at low field CIDNP is strongly affected by polarization redistribution in the diamagnetic molecules. Such a polarization transfer is of coherent nature and is due to spin coherences formed together with non-equilibrium population of the spin states. These coherences clearly manifest themselves in an oscillatory time dependence of polarization. Polarization transfer effects are most pronounced at nuclear spin Level Anti-Crossings (LACs), which also result in sharp features in the CIDNP field dependence. Thus, polarization transfer is an important factor, which has to be taken into account in order to interpret low-field CIDNP data on both qualitative and quantitative level. Possible applications of polarization transfer phenomena are also discussed in the paper. In particular, the role of LACs in spin order transfer is highlighted: LACs provide a new tool for precise manipulation of spin hyperpolarization and NMR enhancement of selected target spins.

  12. Spin polarization transfer mechanisms of SABRE: A magnetic field dependent study.

    PubMed

    Pravdivtsev, Andrey N; Ivanov, Konstantin L; Yurkovskaya, Alexandra V; Petrov, Pavel A; Limbach, Hans-Heinrich; Kaptein, Robert; Vieth, Hans-Martin

    2015-12-01

    We have investigated the magnetic field dependence of Signal Amplification By Reversible Exchange (SABRE) arising from binding of para-hydrogen (p-H2) and a substrate to a suitable transition metal complex. The magnetic field dependence of the amplification of the (1)H Nuclear Magnetic Resonance (NMR) signals of the released substrates and dihydrogen, and the transient transition metal dihydride species shows characteristic patterns, which is explained using the theory presented here. The generation of SABRE is most efficient at low magnetic fields due to coherent spin mixing at nuclear spin Level Anti-Crossings (LACs) in the SABRE complexes. We studied two Ir-complexes and have shown that the presence of a (31)P atom in the SABRE complex doubles the number of LACs and, consequently, the number of peaks in the SABRE field dependence. Interestingly, the polarization of SABRE substrates is always accompanied by the para-to-ortho conversion in dihydride species that results in enhancement of the NMR signal of free (H2) and catalyst-bound H2 (Ir-HH). The field dependences of hyperpolarized H2 and Ir-HH by means of SABRE are studied here, for the first time, in detail. The field dependences depend on the chemical shifts and coupling constants of Ir-HH, in which the polarization transfer takes place. A negative coupling constant of -7Hz between the two chemically equivalent but magnetically inequivalent hydride nuclei is determined, which indicates that Ir-HH is a dihydride with an HH distance larger than 2Å. Finally, the field dependence of SABRE at high fields as found earlier has been investigated and attributed to polarization transfer to the substrate by cross-relaxation. The present study provides further evidence for the key role of LACs in the formation of SABRE-derived polarization. Understanding the spin dynamics behind the SABRE method opens the way to optimizing its performance and overcoming the main limitation of NMR, its notoriously low sensitivity.

  13. Quantitative Magnetization Transfer Imaging of the Breast at 3.0 T: Reproducibility in Healthy Volunteers

    PubMed Central

    Arlinghaus, Lori R.; Dortch, Richard D.; Whisenant, Jennifer G.; Kang, Hakmook; Abramson, Richard G.; Yankeelov, Thomas E.

    2017-01-01

    Quantitative magnetization transfer magnetic resonance imaging provides a means for indirectly detecting changes in the macromolecular content of tissue noninvasively. A potential application is the diagnosis and assessment of treatment response in breast cancer; however, before quantitative magnetization transfer imaging can be reliably used in such settings, the technique’s reproducibility in healthy breast tissue must be established. Thus, this study aims to establish the reproducibility of the measurement of the macromolecular-to-free water proton pool size ratio (PSR) in healthy fibroglandular (FG) breast tissue. Thirteen women with no history of breast disease were scanned twice within a single scanning session, with repositioning between scans. Eleven women had appreciable FG tissue for test–retest measurements. Mean PSR values for the FG tissue ranged from 9.5% to 16.7%. The absolute value of the difference between 2 mean PSR measurements for each volunteer ranged from 0.1% to 2.1%. The 95% confidence interval for the mean difference was ±0.75%, and the repeatability value was 2.39%. These results indicate that the expected measurement variability would be ±0.75% for a cohort of a similar size and would be ±2.39% for an individual, suggesting that future studies of change in PSR in patients with breast cancer are feasible. PMID:28090588

  14. Magnetization transfer imaging reveals geniculocalcarine and striate area degeneration in primary glaucoma: a preliminary study

    PubMed Central

    Zhang, Yan; Liang, Wenwen; Wu, Guijun; Zhang, Xuelin

    2016-01-01

    Background Glaucoma is a neurodegenerative disease that affects both the retina and central visual pathway. Magnetization transfer imaging (MTI) is a sensitive magnetic resonance imaging (MRI) technique that can detect degenerative changes in the brain. Purpose To investigate the geniculocalcarine (GCT) and striate areas in primary glaucoma patients using region of interest (ROI) analysis of magnetization transfer ratio (MTR). Material and Methods Twenty patients with primary glaucoma in both eyes were compared with 31 healthy control patients. All of the participants were examined on a 3.0 T scanner using a three-dimensional T1-weighted spoiled gradient recalled acquisition (SPGR) with and without a MT saturation pulse. A two-sample t-test was used to evaluate the MTR difference between the groups. P < 0.05 was used to determine statistical significance. Results The MTR of the glaucoma group was lower than the healthy controls in both the bilateral GCT (t = 3.781, P = 0.001) and striate areas (t = 4.177, P = 0.000). Conclusion The MTR reductions in the bilateral GCT and striate areas suggest that there is GCT demyelination and striate area degeneration in primary glaucoma. These neurodegenerative effects may be induced as a direct effect of retrograde axonal degeneration along with the indirect effect of anterograde trans-synaptic degeneration. PMID:27651931

  15. The magnetization transfer characteristics of human breast tissues: an in vitro NMR study

    NASA Astrophysics Data System (ADS)

    Callicott, C.; Thomas, J. M.; Goode, A. W.

    1999-05-01

    A series of freshly excised human breast tissues was analysed using a nuclear magnetic resonance spectrometer and then subjected to routine histopathology examination. Tissues comprised normal parenchymal, adipose, fibrocystic, fibroadenoma and malignant types. An inversion-recovery sequence performed both with and without magnetization transfer allowed T1, T1, and values to be obtained. From this information, the magnetization transfer rate constant, K, was calculated for each tissue sample. These data show that T1 provided greater discrimination between neoplasic and normal tissues than did T1. However, neither T1 nor K values provided a means of discriminating between benign and malignant disease.

  16. Tuning the heat transfer medium and operating conditions in magnetic refrigeration

    NASA Astrophysics Data System (ADS)

    Ghahremani, Mohammadreza; Aslani, Amir; Siddique, Abid; Bennett, Lawrence H.; Della Torre, Edward

    2016-07-01

    A new experimental test bed has been designed, built, and tested to evaluate the effect of the system's parameters on a reciprocating Active Magnetic Regenerator (AMR) near room temperature. Bulk gadolinium was used as the refrigerant, silicon oil as the heat transfer medium, and a magnetic field of 1.3 T was cycled. This study focuses on the methodology of single stage AMR operation conditions to get a high temperature span near room temperature. Herein, the main objective is not to report the absolute maximum attainable temperature span seen in an AMR system, but rather to find the system's optimal operating conditions to reach that maximum span. The results of this research show that there is a optimal operating frequency, heat transfer fluid flow rate, flow duration, and displaced volume ratio in any AMR system. By optimizing these parameters in our AMR apparatus the temperature span between the hot and cold ends increased by 24%. The optimized values are system dependent and need to be determined and measured for any AMR system by following the procedures that are introduced in this research. It is expected that such optimization will permit the design of a more efficient magnetic refrigeration system.

  17. Experimental investigation on the boiling heat transfer of nanofluids on a flat plate in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Abdollahi, Ali; Reza Salimpour, Mohammad

    2016-11-01

    In this paper, the pool boiling heat transfer of Fe3O4 -deionized (DI) water as a magnetic nanofluid has been experimentally analyzed in the atmospheric pressure. The applied nanofluid within this research has been synthesized through a single step to retain a high stability. The repeatability and precision of the testing device with deionized water show a good agreement with the equations introduced in previous studies. Parametric studies on magnetic field, surface roughness, and magnetic nanofluid concentration are performed to reveal various aspects of the boiling heat transfer. In order to study the surface roughness, two surfaces with high average roughness (480nm) and low average roughness (7.3nm) were used. The obtained results indicate that the boiling heat transfer on the rough surface increases when raising the nanofluid concentration up to 0.1% volume concentration. In addition, it is observed that there is an optimum 0.1% volume concentration for the nanofluid which makes the boiling heat transfer coefficient increase up to 43%. Moreover, the heat transfer of a nanofluid with volume concentration of 0.1% is greater for the rough surface compared with the smooth one. The results of the experiments indicate that adding nanoparticles would not necessarily increase the boiling heat transfer coefficient. In fact, the surface roughness and the magnetic field gradient on the boiling surface were the main factors that could affect the boiling heat transfer coefficient significantly. The simultaneous analysis of magnetic field, surface roughness, and nanofluid concentration reveals that the boiling heat transfer coefficient of the magnetic nanofluid with 0.1% volume concentration in the presence of a magnetic field on the rough surface is higher than on the smooth surface. Our findings show that this increase is associated to the increase of nucleation sites concentration and bubble formation sites for the rough surface.

  18. Comparison of 1.5 and 3.0 T for Contrast-Enhanced Pulmonary Magnetic Resonance Angiography

    PubMed Central

    Londy, Frank Joseph; Lowe, Suzan; Stein, Paul D.; Weg, John G.; Eisner, Robert L.; Leeper, Kenneth V.; Woodard, Pamela K.; Sostman, H. Dirk; Jablonski, Kathleen A.; Fowler, Sarah E.; Hales, Charles A.; Hull, Russell D.; Gottschalk, Alexander; Naidich, David P.; Chenevert, Thomas L.

    2013-01-01

    Objective In a recent multi-center trial of gadolinium contrast-enhanced magnetic resonance angiography (Gd-MRA) for diagnosis of acute pulmonary embolism (PE), two centers utilized a common MRI platform though at different field strengths (1.5T and 3T) and realized a signal-to-noise gain with the 3T platform. This retrospective analysis investigates this gain in signal-to-noise of pulmonary vascular targets. Methods Thirty consecutive pulmonary MRA examinations acquired on a 1.5T system at one institution were compared to 30 consecutive pulmonary MRA examinations acquired on a 3T system at a different institution. Both systems were from the same MRI manufacturer and both used the same Gd-MRA pulse sequence, although there were some protocol adjustments made due to field strength differences. Region-of-interests were manually defined on the main pulmonary artery, 4 pulmonary veins, thoracic aorta, and background lung for objective measurement of signal-to-noise, contrast-to-noise, and bolus timing bias between centers. Results The 3T pulmonary MRA protocol achieved higher spatial resolution yet maintained significantly higher signal-to-noise ratio (≥ 13%, p = 0.03) in the main pulmonary vessels relative to 1.5T. There was no evidence of operator bias in bolus timing or patient hemodynamic differences between groups. Conclusion Relative to 1.5T, higher spatial resolution Gd-MRA can be achieved at 3T with a sustained or greater signal-to-noise ratio of enhanced vasculature. PMID:21993980

  19. Dynamic contrast-enhanced magnetic resonance imaging for prediction of response to neoadjuvant chemotherapy in breast cancer

    NASA Astrophysics Data System (ADS)

    Fu, Juzhong; Fan, Ming; Zheng, Bin; Shao, Guoliang; Zhang, Juan; Li, Lihua

    2016-03-01

    Breast cancer is the second leading cause of women death in the United States. Currently, Neoadjuvant Chemotherapy (NAC) has become standard treatment paradigms for breast cancer patients. Therefore, it is important to find a reliable non-invasive assessment and prediction method which can evaluate and predict the response of NAC on breast cancer. The Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) approach can reflect dynamic distribution of contrast agent in tumor vessels, providing important basis for clinical diagnosis. In this study, the efficacy of DCE-MRI on evaluation and prediction of response to NAC in breast cancer was investigated. To this end, fifty-seven cases of malignant breast cancers with MRI examination both before and after two cycle of NAC were analyzed. After pre-processing approach for segmenting breast lesions and background regions, 126-dimensional imaging features were extracted from DCE-MRI. Statistical analyses were then performed to evaluate the associations between the extracted DCE-MRI features and the response to NAC. Specifically, pairwise t test was used to calculate differences of imaging features between MRI examinations before-and-after NAC. Moreover, the associations of these image features with response to NAC were assessed using logistic regression. Significant association are found between response to NAC and the features of lesion morphology and background parenchymal enhancement, especially the feature of background enhancement in normal side of breast (P=0.011). Our study indicate that DCE-MRI features can provide candidate imaging markers to predict response of NAC in breast cancer.

  20. Pretreatment Evaluation of Microcirculation by Dynamic Contrast-Enhanced Magnetic Resonance Imaging Predicts Survival in Primary Rectal Cancer Patients

    SciTech Connect

    DeVries, Alexander Friedrich; Piringer, Gudrun; Kremser, Christian; Judmaier, Werner; Saely, Christoph Hubert; Lukas, Peter; Öfner, Dietmar

    2014-12-01

    Purpose: To investigate the prognostic value of the perfusion index (PI), a microcirculatory parameter estimated from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), which integrates information on both flow and permeability, to predict overall survival and disease-free survival in patients with primary rectal cancer. Methods and Materials: A total of 83 patients with stage cT3 rectal cancer requiring neoadjuvant chemoradiation were investigated with DCE-MRI before start of therapy. Contrast-enhanced dynamic T{sub 1} mapping was obtained, and a simple data analysis strategy based on the calculation of the maximum slope of the tissue concentration–time curve divided by the maximum of the arterial input function was used as a measure of tumor microcirculation (PI), which integrates information on both flow and permeability. Results: In 39 patients (47.0%), T downstaging (ypT0-2) was observed. During a mean (±SD) follow-up period of 71 ± 29 months, 58 patients (69.9%) survived, and disease-free survival was achieved in 45 patients (54.2%). The mean PI (PImean) averaged over the group of nonresponders was significantly higher than for responders. Additionally, higher PImean in age- and gender-adjusted analyses was strongly predictive of therapy nonresponse. Most importantly, PImean strongly and significantly predicted disease-free survival (unadjusted hazard ratio [HR], 1.85 [ 95% confidence interval, 1.35-2.54; P<.001)]; HR adjusted for age and sex, 1.81 [1.30-2.51]; P<.001) as well as overall survival (unadjusted HR 1.42 [1.02-1.99], P=.040; HR adjusted for age and sex, 1.43 [1.03-1.98]; P=.034). Conclusions: This analysis identifies PImean as a novel biomarker that is predictive for therapy response, disease-free survival, and overall survival in patients with primary locally advanced rectal cancer.

  1. Correlations of Dynamic Contrast-Enhanced Magnetic Resonance Imaging with Morphologic, Angiogenic, and Molecular Prognostic Factors in Rectal Cancer

    PubMed Central

    Hong, Hye-Suk; Kim, Se Hoon; Park, Hae-Jeong; Park, Mi-Suk; Kim, Won Ho; Kim, Nam Kyu; Lee, Jae Mun; Cho, Hyeon Je

    2013-01-01

    Purpose To investigate the correlations between parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and prognostic factors in rectal cancer. Materials and Methods We studied 29 patients with rectal cancer who underwent gadolinium contrast-enhanced, T1-weighted DCE-MRI with a three Tesla scanner prior to surgery. Signal intensity on DCE-MRI was independently measured by two observers to examine reproducibility. A time-signal intensity curve was generated, from which four semiquantitative parameters were calculated: steepest slope (SLP), time to peak (Tp), relative enhancement during a rapid rise (Erise), and maximal enhancement (Emax). Morphologic prognostic factors including T stage, N stage, and histologic grade were identified. Tumor angiogenesis was evaluated in terms of microvessel count (MVC) and microvessel area (MVA) by morphometric study. As molecular factors, the mutation status of the K-ras oncogene and microsatellite instability were assessed. DCE-MRI parameters were correlated with each prognostic factor using bivariate correlation analysis. A p-value of <0.05 was considered significant. Results Erise was significantly correlated with N stage (r=-0.387 and -0.393, respectively, for two independent data), and Tp was significantly correlated with histologic grade (r=0.466 and 0.489, respectively). MVA was significantly correlated with SLP (r=-0.532 and -0.535, respectively) and Erise (r=-0.511 and -0.446, respectively). MVC was significantly correlated with Emax (r=-0.435 and -0.386, respectively). No significant correlations were found between DCE-MRI parameters and T stage, K-ras mutation, or microsatellite instability. Conclusion DCE-MRI may provide useful prognostic information in terms of histologic differentiation and angiogenesis in rectal cancer. PMID:23225808

  2. Heat transfer characteristics of Fe3O4 ferrofluid flowing in a mini channel under constant and alternating magnetic fields

    NASA Astrophysics Data System (ADS)

    Ghasemian, M.; Najafian Ashrafi, Z.; Goharkhah, M.; Ashjaee, M.

    2015-05-01

    Laminar forced convection heat transfer of water based Fe3O4 ferrofluid in a mini channel in the presence of constant and alternating magnetic fields is studied numerically. The hot ferrofluid flows into the 20 mm (l)×2 mm (h) mini channel with isothermal top and bottom cold surfaces and is subjected to a transverse non-uniform magnetic field produced by current carrying wires. Two-phase mixture model is implemented and the governing equations are solved using the finite volume approach. Primarily, the effects of the constant magnetic field location and intensity on the convective heat transfer are investigated. Simulation results show that the heat transfer is enhanced due to the disruption of the thermal boundary layer. However, this effect is more pronounced when the magnetic field source is placed in the fully developed region. In the next section, an alternating magnetic field with frequencies ranging from 0 to 10 Hz is imposed to the ferrofluid at different Reynolds numbers of Re=10, 25 and 50. A 16.48% heat transfer enhancement is obtained with a constant magnetic field at Re=25 and magnetic field intensity, Mn=1.07×108. This value is increased up to 27.72% by applying an alternating magnetic field with the same intensity at f=4 Hz. Results also indicate that the heat transfer enhancement due to the magnetic field is more significant at lower Reynolds numbers. The optimum frequency for heat transfer enhancement has been obtained for all the cases which shows that it has an increasing trend with the Reynolds number.

  3. Enhancement of thermal spin transfer torque by double-barrier magnetic tunnel junctions with a nonmagnetic metal spacer

    NASA Astrophysics Data System (ADS)

    Chen, C. H.; Tseng, P.; Yang, Y. Y.; Hsueh, W. J.

    2017-01-01

    Enhancement of thermal spin transfer torque in a double-barrier magnetic tunnel junction with a nonmagnetic-metal spacer is proposed in this study. The results indicate that, given the same temperature difference, thermal spin transfer torque and charge current density for the proposed double barrier magnetic tunnel junction configuration can be approximately twice as much as that of the traditional single-barrier magnetic tunnel junctions. This enhancement can be attributed to the resonant tunneling mechanism in the double-barrier structure.

  4. Effects of magnetic field and Hall current to the blood velocity and LDL transfer

    NASA Astrophysics Data System (ADS)

    Abdullah, I.; Naser, N.; Talib, A. H.; Mahali, S.

    2015-09-01

    The magnetic field and Hall current effects have been considered on blood velocity and concentration of low-density lipoprotein (LDL). It is important to observe those effects to the flowing blood in a stenosed artery. The analysis from the obtained results may be useful to some clinical procedures, such as MRI, where the radiologists may have more information in the investigations before cardiac operations could be done. In this study, the uniform magnetic field and Hall current are applied to the Newtonian blood flow through an artery having a cosine-shaped stenosis. The governing equations are coupled with mass transfer and solved employing a finite difference Marker and Cell (MAC) method with an appropriate initial and boundary conditions. The graphical results of velocity profiles and LDL concentration are presented in this paper and the results show that the velocity increases and concentration decreases as Hall parameter increased.

  5. Simulations on shifting medium and its application in wireless power transfer system to enhance magnetic coupling

    NASA Astrophysics Data System (ADS)

    Li, Wenwen; Zhang, Yingyi; Yao, Chen; Tang, Houjun

    2016-05-01

    Shifting medium is a kind of an anisotropic but homogeneous metamaterial designed by transformation optics. An object or free space enclosed by the shifting medium could be moved to a certain distance away from the original position. In this paper, we propose a cone-shaped shifting medium shell to move an internal coil to the given position. In this way, the two coils in a wireless power transfer system could be equivalently moved closer; thus, their magnetic coupling is enhanced. The theoretical models and numerical simulations are presented and analyzed to validate the effects of the shifting medium shell. Both ohmic loss and magnetic loss are also considered for practical concerns. Finally, we discuss the simplification of such a shifting medium to facilitate its fabrication.

  6. Sensitivity Enhancement by Exchange Mediated MagnetizationTransfer of the Xenon Biosensor Signal

    SciTech Connect

    Garcia, Sandra; Chavez, Lana; Lowery, Thomas J.; Han, Song-I.; Wemmer, David E.; Pines, Alexander

    2006-08-31

    Hyperpolarized xenon associated with ligand derivitized cryptophane-A cages has been developed as a NMR based biosensor. To optimize the detection sensitivity we describe use of xenon exchange between the caged and bulk dissolved xenon as an effective signal amplifier. This approach, somewhat analogous to 'remote detection' described recently, uses the chemical exchange to repeatedly transfer spectroscopic information from caged to bulk xenon, effectively integrating the caged signal. After an optimized integration period, the signal is read out by observation of the bulk magnetization. The spectrum of the caged xenon is reconstructed through use of a variable evolution period before transfer and Fourier analysis of the bulk signal as a function of the evolution time.

  7. In Vivo Magnetization Transfer and Diffusion-Weighted Magnetic Resonance Imaging Detects Thrombus Composition in a Mouse Model of Deep Vein Thrombosis

    PubMed Central

    Saha, Prakash; Modarai, Bijan; Smith, Alberto; Botnar, René M.

    2014-01-01

    Background Deep vein thrombosis remains a major health problem necessitating accurate diagnosis. Thrombolysis is associated with significant morbidity and is effective only for the treatment of unorganized thrombus. We tested the feasibility of in vivo magnetization transfer (MT) and diffusion-weighted magnetic resonance imaging to detect thrombus organization in a murine model of deep vein thrombosis. Methods and Results Deep vein thrombosis was induced in the inferior vena cava of male BALB/C mice. Magnetic resonance imaging was performed at days 1, 7, 14, 21, and 28 after thrombus induction using MT, diffusion-weighted, inversion-recovery, and T1-mapping protocols. Delayed enhancement and T1 mapping were repeated 2 hours after injection of a fibrin contrast agent. Finally, excised thrombi were used for histology. We found that MT and diffusion-weighted imaging can detect histological changes associated with thrombus aging. MT rate (MTR) maps and percentage of MT rate (%MTR) allowed visualization and quantification of the thrombus protein content, respectively. The %MTR increased with thrombus organization and was significantly higher at days 14, 21, and 28 after thrombus induction (days 1, 7, 14, 21, 28: %MTR=2483±451, 2079±1210, 7029±2490, 10 295±4356, 32 994±25 449; Panova<0.05). There was a significant positive correlation between the %MTR and the histological protein content of the thrombus (r=0.70; P<0.05). The apparent diffusion coefficient was lower in erythrocyte-rich and collagen-rich thrombus (0.72±0.10 and 0.69±0.05 [×10−3 mm2/s]). Thrombus at days 7 and 14 had the highest apparent diffusion coefficient values (0.95±0.09 and 1.10±0.18 [×10−3 mm2/s]). Conclusions MT and diffusion-weighted magnetic resonance imaging sequences are promising for the staging of thrombus composition and could be useful in guiding medical intervention. PMID:23564561

  8. Polarization Factors and Spin-Transfer Torque in Magnetic Tunneling Junctions

    NASA Astrophysics Data System (ADS)

    Slonczewski, John

    2004-03-01

    Recent advances in fabrication of magnetic tunnel junctions having small RA enhance the prospect of 2-terminal memory elements using spin transfer for writing and TMR for reading. Using Bardeen theory, I find a sufficient condition for the existence of the tunnel-effective polarization factors which I-V experiments support. The mere presence of an ideal crystalline slab within the barrier suffices, regardless of electron structure and atomic disorder within the magnets and interface regions. I find the moment-coplanar torque density L_R=(h/4π e)P_LJ_0sin θ acting on a right magnet with applied voltage V. Here, P_L(V) and P_R(V) are the polarization factors of the left and right magnets, and J_0(V) is the mean current density in the conventional expression J=J_0(1+P_LP_Rs θ ). This connection between LR and J may aid laboratory exploration of junction technology for current-driven switching by study of J(V,θ ) prior to the difficult fabrication of pillars having submicron dimensions.

  9. Design of Novel FBG-Based Sensor of Differential Pressure with Magnetic Transfer.

    PubMed

    Lyu, Guohui; Che, Guohang; Li, Junqing; Jiang, Xu; Wang, Keda; Han, Yueqiang; Gao, Laixu

    2017-02-15

    In this paper, a differential pressure sensor with magnetic transfer is proposed, in which the non-electric measurement based on the fiber Bragg grating (FBG) with the position limiting mechanism is implemented without the direct contact of the sensing unit with the measuring fluid. The test shows that the designed sensor is effective for measuring differential pressure in the range of 0~10 kPa with a sensitivity of 0.0112 nm/kPa, which can be used in environments with high temperature, strong corrosion and high overload measurements.

  10. Streaming potential and heat transfer of nanofluids in microchannels in the presence of magnetic field

    NASA Astrophysics Data System (ADS)

    Zhao, Guangpu; Jian, Yongjun; Li, Fengqin

    2016-06-01

    In this work, we investigate the heat transfer characteristics of thermally developed nanofluid flow through a parallel plate microchannel under the combined influences of externally applied axial pressure gradient and transverse magnetic fields. The analytical solutions for electromagnetohydrodynamic (EMHD) flow in microchannels are obtained under the Debye-Hückel linearization. The classical boundary condition of uniform wall heat flux is considered in the analysis, and the effect of viscous dissipation as well as Joule heating is also taken into account. In addition, in virtue of the velocity field and temperature field, the Nusselt number variations are induced. The results for pertinent dimensionless parameters are presented graphically and discussed in briefly.

  11. Design of Novel FBG-Based Sensor of Differential Pressure with Magnetic Transfer

    PubMed Central

    Lyu, Guohui; Che, Guohang; Li, Junqing; Jiang, Xu; Wang, Keda; Han, Yueqiang; Gao, Laixu

    2017-01-01

    In this paper, a differential pressure sensor with magnetic transfer is proposed, in which the non-electric measurement based on the fiber Bragg grating (FBG) with the position limiting mechanism is implemented without the direct contact of the sensing unit with the measuring fluid. The test shows that the designed sensor is effective for measuring differential pressure in the range of 0~10 kPa with a sensitivity of 0.0112 nm/kPa, which can be used in environments with high temperature, strong corrosion and high overload measurements. PMID:28212272

  12. Correcting reaction rates measured by saturation-transfer magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Gabr, Refaat E.; Weiss, Robert G.; Bottomley, Paul A.

    2008-04-01

    Off-resonance or spillover irradiation and incomplete saturation can introduce significant errors in the estimates of chemical rate constants measured by saturation-transfer magnetic resonance spectroscopy (MRS). Existing methods of correction are effective only over a limited parameter range. Here, a general approach of numerically solving the Bloch-McConnell equations to calculate exchange rates, relaxation times and concentrations for the saturation-transfer experiment is investigated, but found to require more measurements and higher signal-to-noise ratios than in vivo studies can practically afford. As an alternative, correction formulae for the reaction rate are provided which account for the expected parameter ranges and limited measurements available in vivo. The correction term is a quadratic function of experimental measurements. In computer simulations, the new formulae showed negligible bias and reduced the maximum error in the rate constants by about 3-fold compared to traditional formulae, and the error scatter by about 4-fold, over a wide range of parameters for conventional saturation transfer employing progressive saturation, and for the four-angle saturation-transfer method applied to the creatine kinase (CK) reaction in the human heart at 1.5 T. In normal in vivo spectra affected by spillover, the correction increases the mean calculated forward CK reaction rate by 6-16% over traditional and prior correction formulae.

  13. In vitro neurotoxicity of magnetic resonance imaging (MRI) contrast agents: influence of the molecular structure and paramagnetic ion.

    PubMed

    Bertin, Annabelle; Michou-Gallani, Anne-Isabelle; Gallani, Jean-Louis; Felder-Flesch, Delphine

    2010-08-01

    Interest in contrast agent's (CA) neurotoxicity has greatly increased due to the growing need of new compounds dedicated to brain imaging. Magnetic resonance imaging (MRI) CA have been evaluated by means of different toxicological assays with cultured rat primary neurons (evaluation of neurite specific parameters via immunostaining of the cells and LDH leakage). To determine the potential neurotoxicity of a precise paramagnetic ion in a defined structure (architecture and molecular weight), novel hydrosoluble dendritic Manganese (II) and Gadolinium (III) complexes derived from diethylenetriamine pentaacetic acid (DTPA) have been studied and compared to a linear homologue (same molecular weight) and commercially available low molecular weight MRI CA like Mn-DPDP (Teslascan, GE Healthcare) and Gd-DTPA (Magnevist, Schering). The range of CA concentrations studied was 0.1-10mM, suitable for MRI examinations. This set of experiments allows a toxicity ranking of these reagents as a function of molecular structure and nature of the paramagnetic ion. We could determine that the architecture (linear vs. dendritic) does not play an important role in the in vitro neurotoxicity, whereas the structure of the chelating cage is of greater importance.

  14. 1,2-Hydroxypyridonates as Contrast Agents for Magnetic ResonanceImaging: TREN-1,2-HOPO

    SciTech Connect

    Jocher, Christoph J.; Moore, Evan G.; Xu, Jide; Avedano, Stefano; Botta, Mauro; Aime, Silvio; Raymond, Kenneth N.

    2007-05-08

    1,2-Hydroxypyridinones (1,2-HOPO) form very stable lanthanide complexes that may be useful as contrast agents for Magnetic Resonance Imaging (MRI). X-ray diffraction of single crystals established that the solid state structures of the Eu(III) and the previously reported [Inorg. Chem. 2004, 43, 5452] Gd(III) complex are identical. The recently discovered sensitizing properties of 1,2-HOPO chelates for Eu(III) luminescence allow direct measurement of the number if water molecules in the metal complex. Fluorescence measurements of the Eu(III) complex corroborate that in solution two water molecules coordinate the lanthanide (q = 2) as proposed from the analysis of NMRD profiles. In addition, fluorescence measurements have verified the anion binding interactions of lanthanide TREN-1,2-HOPO complexes in solution, studied by relaxivity, revealing only very weak oxalate binding (K{sub A} = 82.7 {+-} 6.5 M{sup -1}). Solution thermodynamic studies of the metal complex and free ligand have been carried out using potentiometry, spectrophotometry and fluorescence spectroscopy. The metal ion selectivity of TREN-1,2-HOPO supports the feasibility of using 1,2-HOPO ligands for selective lanthanide binding [pGd = 19.3 (2); pZn = 15.2 (2), pCa = 8.8 (3)].

  15. Neural correlates of the perception of contrastive prosodic focus in French: a functional magnetic resonance imaging study.

    PubMed

    Perrone-Bertolotti, Marcela; Dohen, Marion; Lœvenbruck, Hélène; Sato, Marc; Pichat, Cédric; Baciu, Monica

    2013-10-01

    This functional magnetic resonance imaging (fMRI) study aimed at examining the cerebral regions involved in the auditory perception of prosodic focus using a natural focus detection task. Two conditions testing the processing of simple utterances in French were explored, narrow-focused versus broad-focused. Participants performed a correction detection task. The utterances in both conditions had exactly the same segmental, lexical, and syntactic contents, and only differed in their prosodic realization. The comparison between the two conditions therefore allowed us to examine processes strictly associated with prosodic focus processing. To assess the specific effect of pitch on hemispheric specialization, a parametric analysis was conducted using a parameter reflecting pitch variations specifically related to focus. The comparison between the two conditions reveals that brain regions recruited during the detection of contrastive prosodic focus can be described as a right-hemisphere dominant dual network consisting of (a) ventral regions which include the right posterosuperior temporal and bilateral middle temporal gyri and (b) dorsal regions including the bilateral inferior frontal, inferior parietal and left superior parietal gyri. Our results argue for a dual stream model of focus perception compatible with the asymmetric sampling in time hypothesis. They suggest that the detection of prosodic focus involves an interplay between the right and left hemispheres, in which the computation of slowly changing prosodic cues in the right hemisphere dynamically feeds an internal model concurrently used by the left hemisphere, which carries out computations over shorter temporal windows.

  16. Characterization of a custom-built RF coil for a high-resolution phase-contrast magnetic resonance velocimeter

    NASA Astrophysics Data System (ADS)

    Yang, Byungkuen; Cho, Jee-Hyun; Song, Simon

    2016-11-01

    For the use of clinical purpose magnetic resonance velocimeter (MRV) is a versatile flow visualization technique in that it allows opaque flow, complex geometry, no use of tracer particles and facile fast non-invasive measurements of 3 dimensional and 3 component velocity vectors. However, the spatial resolution of a commercial MR machine is lower than optics-based techniques like PIV. On the other hand, the use of MRV for clinical purposes like cardiovascular flow visualization requires accurate measurements or estimations on wall shear stress (WSS) with a high spatial resolution. We developed a custom-built solenoid RF coil for phase-contrast (PC) MRV to improve its resolution. We compared signal-to-noise ratio, WSS estimations, partial volume effects near wall between the custom RF coil and a commercial coil. Also, a Hagen-Poiseuille flow was analyzed with the custom RF coil. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2016R1A2B3009541).

  17. Thigh muscle function in stroke patients revealed by velocity-encoded cine phase-contrast magnetic resonance imaging.

    PubMed

    Wen, Hongmei; Dou, Zulin; Finni, Taija; Havu, Marko; Kang, Zhuang; Cheng, Shumei; Sipilä, Sarianna; Sinha, Shantanu; Usenius, Jussi-Pekka; Cheng, Sulin

    2008-06-01

    Current methods of clinical assessment of muscle coordination and function after stroke do not provide information on deep muscles. The objective of this study was to examine how stroke affects both superficial and deep muscles' coordination and whether muscle function improves after rehabilitation. Muscle function, coordination, and activity of quadriceps femoris (QF) and hamstrings were evaluated in 10 stroke patients with mild hemiparesis and in 6 controls using velocity-encoded cine phase-contrast magnetic resonance imaging (VE-PC MRI), surface electromyography (sEMG), and maximal voluntary isometric contraction torque (MVC). At baseline, the peak muscle velocity of the rectus femoris (RF) and the ratio between the peak velocities of the RF and vasti were lower in the affected limb (AL) of stroke patients than in controls. Co-contraction of agonists and antagonists was higher in the AL than in controls. Muscle activity measured by sEMG showed similar behavior. After rehabilitation, the activity ratio of hamstrings and adductors to QF decreased slightly toward normal so there were no significant differences between the AL and controls. Impaired biarticular RF muscle function in stroke patients is the limiting factor during knee extension-flexion movements. After rehabilitation, improved functional performance was partly explained by the fact that the activities of the RF and vasti became more synchronized. VE-PC MRI can provide quantitative in vivo measurements of both superficial and deep muscles, and the information acquired after stroke can be utilized to render therapy more efficient and individually tailored.

  18. Increased microcirculation detected by dynamic contrast-enhanced magnetic resonance imaging is of prognostic significance in asymptomatic myeloma.

    PubMed

    Hillengass, Jens; Ritsch, Judith; Merz, Maximilian; Wagner, Barbara; Kunz, Christina; Hielscher, Thomas; Laue, Hendrik; Bäuerle, Tobias; Zechmann, Christian M; Ho, Anthony D; Schlemmer, Heinz-Peter; Goldschmidt, Hartmut; Moehler, Thomas M; Delorme, Stefan

    2016-07-01

    This prospective study aimed to investigate the prognostic significance of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) as a non-invasive imaging technique delivering the quantitative parameters amplitude A (reflecting blood volume) and exchange rate constant kep (reflecting vascular permeability) in patients with asymptomatic monoclonal plasma cell diseases. We analysed DCE-MRI parameters in 33 healthy controls and 148 patients with monoclonal gammopathy of undetermined significance (MGUS) or smouldering multiple myeloma (SMM) according to the 2003 IMWG guidelines. All individuals underwent standardized DCE-MRI of the lumbar spine. Regions of interest were drawn manually on T1-weighted images encompassing the bone marrow of each of the 5 lumbar vertebrae sparing the vertebral vessel. Prognostic significance for median of amplitude A (univariate: P < 0·001, hazard ratio (HR) 2·42, multivariate P = 0·02, HR 2·7) and exchange rate constant kep (univariate P = 0·03, HR 1·92, multivariate P = 0·46, HR 1·5) for time to progression of 79 patients with SMM was found. Patients with amplitude A above the optimal cut-off point of 0·89 arbitrary units had a 2-year progression rate into symptomatic disease of 80%. In conclusion, DCE-MRI parameters are of prognostic significance for time to progression in patients with SMM but not in individuals with MGUS.

  19. Gd(DOTAlaP): Exploring the Boundaries of Fast Water Exchange in Gadolinium-Based Magnetic Resonance Imaging Contrast Agents

    PubMed Central

    2015-01-01

    Here, we describe the synthesis of the single amino acid chelator DOTAlaP and four of its derivatives. The corresponding gadolinium(III) complexes were investigated for their kinetic inertness, relaxometric properties at a range of fields and temperatures, water exchange rate, and interaction with human serum albumin (HSA). Derivatives with one inner-sphere water (q = 1) were determined to have a mean water residency time between 8 and 6 ns in phoshate-buffered saline at 37 °C. The corresponding europium complexes were also formed and used to obtain information on the hydration number of the corresponding coordination complexes. Two complexes capable of binding HSA were also synthesized, of which one, Gd(5b), contains no inner-sphere water, while the other derivative, Gd(4b), is a mixture of ca. 15% q =1 and 85% q = 0. In the presence of HSA, the latter displayed a very short mean water residency time (τM310 = 2.4 ns) and enhanced relaxivity at intermediate and high fields. The kinetic inertness of Gd(4b) with respect to complex dissociation was decreased compared to its DOTAla analogue but still 100-fold more inert than [Gd(BOPTA)(H2O)]2–. Magnetic resonance imaging in mice showed that Gd(4b) was able to provide 38% better vessel to muscle contrast compared to the clinically used HSA binding agent MS-325. PMID:24922178

  20. Hepatic Phospholipidosis Is Associated with Altered Hepatobiliary Function as Assessed by Gadoxetate Dynamic Contrast-enhanced Magnetic Resonance Imaging.

    PubMed

    Lenhard, Stephen C; Lev, Mally; Webster, Lindsey O; Peterson, Richard A; Goulbourne, Christopher N; Miller, Richard T; Jucker, Beat M

    2016-01-01

    To determine if amiodarone induces hepatic phospholipidosis (PLD) sufficient to detect changes in hepatobiliary transporter function as assessed by gadoxetate dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), rats were orally dosed with vehicle (1% methyl cellulose) or amiodarone (300 mg/kg/day) for 7 consecutive days. Gadoxetate DCE-MRI occurred at baseline, day 7, and following a 2-week washout of amiodarone. At day 7, the gadoxetate washout rate was significantly decreased compared to the vehicle group. Blood chemistry analysis revealed no significant changes in liver enzymes (alanine aminotransferase [ALT]/aspartate aminotransferase [AST]/alkaline phosphatase [ALP]), bilirubin, or bile acids between vehicle or amiodarone groups. Hepatic PLD was confirmed in all rats treated with amiodarone at day 7 by transmission electron microscopy. Following the 2-week washout, there was no ultrastructural evidence of hepatic PLD in rats and the gadoxetate washout rate returned to baseline levels. This is the first study to show the application of gadoxetate DCE-MRI to detect hepatobiliary functional changes associated with PLD and offer a potential new technique with clinical utility in patients suspected of having PLD. These results also suggest PLD itself has functional consequences on hepatobiliary function in the absence of biomarkers of toxicity, given the cause/effect relationship between PLD and function has not been fully established.

  1. Comptonization in Ultra-Strong Magnetic Fields: Numerical Solution to the Radiative Transfer Problem

    NASA Technical Reports Server (NTRS)

    Ceccobello, C.; Farinelli, R.; Titarchuk, L.

    2014-01-01

    We consider the radiative transfer problem in a plane-parallel slab of thermal electrons in the presence of an ultra-strong magnetic field (B approximately greater than B(sub c) approx. = 4.4 x 10(exp 13) G). Under these conditions, the magnetic field behaves like a birefringent medium for the propagating photons, and the electromagnetic radiation is split into two polarization modes, ordinary and extraordinary, that have different cross-sections. When the optical depth of the slab is large, the ordinary-mode photons are strongly Comptonized and the photon field is dominated by an isotropic component. Aims. The radiative transfer problem in strong magnetic fields presents many mathematical issues and analytical or numerical solutions can be obtained only under some given approximations. We investigate this problem both from the analytical and numerical point of view, provide a test of the previous analytical estimates, and extend these results with numerical techniques. Methods. We consider here the case of low temperature black-body photons propagating in a sub-relativistic temperature plasma, which allows us to deal with a semi-Fokker-Planck approximation of the radiative transfer equation. The problem can then be treated with the variable separation method, and we use a numerical technique to find solutions to the eigenvalue problem in the case of a singular kernel of the space operator. The singularity of the space kernel is the result of the strong angular dependence of the electron cross-section in the presence of a strong magnetic field. Results. We provide the numerical solution obtained for eigenvalues and eigenfunctions of the space operator, and the emerging Comptonization spectrum of the ordinary-mode photons for any eigenvalue of the space equation and for energies significantly lesser than the cyclotron energy, which is on the order of MeV for the intensity of the magnetic field here considered. Conclusions. We derived the specific intensity of the

  2. GADOLINIUM(Gd)-BASED and Ion Oxide Nanoparticle Contrast Agents for Pre-Clinical and Clinical Magnetic Resonance Imaging (mri) Research

    NASA Astrophysics Data System (ADS)

    Ng, Thian C.

    2012-06-01

    It is known that one strength of MRI is its excellent soft tissue discrimination. It naturally provides sufficient contrast between the structural differences of normal and pathological tissues, their spatial extent and progression. However, to further extend its applications and enhance even more contrast for clinical studies, various Gadolinium (Gd)-based contrast agents have been developed for different organs (brain strokes, cancer, cardio-MRI, etc). These Gd-based contrast agents are paramagnetic compounds that have strong T1-effect for enhancing the contrast between tissue types. Gd-contrast can also enhance magnetic resonance angiography (CE-MRA) for studying stenosis and for measuring perfusion, vascular susceptibility, interstitial space, etc. Another class of contrast agents makes use of ferrite iron oxide nanoparticles (including Superparamagnetic Ion Oxide (SPIO) and Ultrasmall Superparamagnetic Iron Oxide (USPIO)). These nanoparticles have superior magnetic susceptibility effect and produce a drop in signal, namely in T2*-weighted images, useful for the determination of lymph nodes metastases, angiogenesis and arteriosclerosis plaques.

  3. Using a Commercial Ultrasound Contrast Agent for Viral-Mediated Gene Transfer In Vitro and In Vivo

    NASA Astrophysics Data System (ADS)

    Howard, Candace M.; Forsberg, Flemming; Liu, Ji-Bin; Merton, Daniel A.; Minimo, Corrado; Claudio, Pier P.

    2007-05-01

    This study evaluated the feasibility of site-specific gene delivery mediated by diagnostic ultrasound using genes encapsulated in commercially available ultrasound contrast agents in vitro and in vivo. Five different commercially available contrast agents were tested in vitro for their ability to enclose an adenoviral vector carrying GFP. Prostate cancer cells (DU 145) or non small cell lung cancer cells (H23) were plated in 80 culture wells and insonified at 207 or 535 kPa peak negative pressure for 1 min after administration of 0.1 ml of bubbles reconstituted with the viral vector. Experiments were repeated with the delivery vehicle incubated with complement to inactivate unenclosed Adeno-GFP and with controls. After 24 hours transduction efficiency was demonstrated by fluorescent microscopy. In vivo 15 nude mice with 21 melanoma tumors (DB-1) implanted received 0.1 ml injections of contrast. Mice were split into 3 control and 4 active groups and ultrasound was performed for 4 min at 4 MHz using an Aplio scanner (Toshiba America Medical Systems, Tustin, CA). Tumors, heart, lungs and liver were harvested 48 hours later. Specimens underwent regular and fluorescent microscopy and were stained using an antibody against GFP. In vitro all contrast agents produced more fluorescence at 207 kPa than at 535 kPa. However, only Imagent (IMCOR Pharmaceuticals, San Diego, CA) was able to induce marked gene transduction with the inactivating agent. In vivo systemic delivery of Adeno-GFP carrying microbubbles following pre-treatment with the inactivating agent resulted in specific transduction of the tumor cells only with no uptake in heart, lungs or liver (unlike the controls). In conclusion, specific viral gene transduction has been obtained in vitro and in vivo through the use of ultrasound and Imagent microbubbles as delivery vehicles.

  4. Targeted Fe-filled carbon nanotube as a multifunctional contrast agent for thermoacoustic and magnetic resonance imaging of tumor in living mice.

    PubMed

    Ding, Wenzheng; Lou, Cunguang; Qiu, Jieshan; Zhao, Zongbin; Zhou, Quan; Liang, Minjie; Ji, Zhong; Yang, Sihua; Xing, Da

    2016-01-01

    Microwave-induced thermoacoustic imaging (TAI) can map the microwave absorption distribution of targets, which depends on the electrical and magnetic properties. Although carbon nanotubes (CNTs) with good electrical properties have been used as TAI contrast agents, the negligible magnetic absorption hinders its application for sensitive detection. In order to exploit CNTs with electrical and magnetic absorption properties as agent of TAI, the ferromagnetic material-filled multi-walled CNTs (MMWCNTs) are investigated. In this study, the folic acid conjugated plain multiwalled CNTs (MWCNTs) and MMWCNTs were injected through the tail-vein of mice separately, and TAI and magnetic resonance imaging (MRI) were performed. The results show the MMWCNTs can clearly image the size and edge of the tumor with the TAI contrast enhancement of 67% and T2 signal intensity decrease of four fifths compared to MWCNTs. This study demonstrated the hybrid particles have the potential to be a high-sensitive contrast agent for accurate tumor detection. From the Clinical Editor: Novel imaging modalities are emerging. Microwave-induced thermoacoustic imaging (TAI) relies on the absorption distribution of microwave of targets. In this article the authors investigate the use of ferromagnetic material-filled multi-walled CNTs as contrast agents for both TAI and MRI in an in-vivo model for tumors. The positive findings would imply that the application of dual-modality probe could provide more accurate imaging for the clinical setting.

  5. Noninvasive Monitoring of Microvascular Changes With Partial Irradiation Using Dynamic Contrast-Enhanced and Blood Oxygen Level-Dependent Magnetic Resonance Imaging

    SciTech Connect

    Lin, Yu-Chun; Wang, Jiun-Jie; Hong, Ji-Hong; Lin, Yi-Ping; Lee, Chung-Chi; Wai, Yau-Yau; Ng, Shu-Hang; Wu, Yi-Ming; Wang, Chun-Chieh

    2013-04-01

    Purpose: The microvasculature of a tumor plays an important role in its response to radiation therapy. Dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) and blood oxygen level-dependent (BOLD) MRI are both sensitive to vascular characteristics. The present study proposed a partial irradiation approach to a xenograft tumor to investigate the intratumoral response to radiation therapy using DCE and BOLD MRI. Methods and Materials: TRAMP-C1 tumors were grown in C57BL/6J mice. Partial irradiation was performed on the distal half of the tumor with a single dose of 15 Gy. DCE MRI was performed to derive the endothelium transfer constant, K{sup trans}, using pharmacokinetic analysis. BOLD MRI was performed using quantitative R2* measurements with carbogen breathing. The histology of the tumor was analyzed using hematoxylin and eosin staining and CD31 staining to detect endothelial cells. The differences between the irradiated and nonirradiated regions of the tumor were assessed using K{sup trans} values, ΔR2* values in response to carbogen and microvascular density (MVD) measurements. Results: A significantly increased K{sup trans} and reduced BOLD response to carbogen were found in the irradiated region of the tumor compared with the nonirradiated region (P<.05). Histologic analysis showed a significant aggregation of giant cells and a reduced MVD in the irradiated region of the tumor. The radiation-induced difference in the BOLD response was associated with differences in MVD and K{sup trans}. Conclusions: We demonstrated that DCE MRI and carbogen-challenge BOLD MRI can detect differential responses within a tumor that may potentially serve as noninvasive imaging biomarkers to detect microvascular changes in response to radiation therapy.

  6. One-pot synthesis of pegylated ultrasmall iron-oxide nanoparticles and their in vivo evaluation as magnetic resonance imaging contrast agents.

    PubMed

    Lutz, Jean-François; Stiller, Sabrina; Hoth, Ann; Kaufner, Lutz; Pison, Ulrich; Cartier, Régis

    2006-11-01

    A well-defined copolymer poly(oligo(ethylene glycol) methacrylate-co-methacrylic acid) P(OEGMA-co-MAA) was studied as a novel water-soluble biocompatible coating for superparamagnetic iron oxide nanoparticles. This copolymer was prepared via a two-step procedure: a well-defined precursor poly(oligo(ethylene glycol) methacrylate-co-tert-butyl methacrylate), P(OEGMA-co-tBMA) (M(n) = 17300 g mol(-1); M(w)/M(n) = 1.22), was first synthesized by atom-transfer radical polymerization in the presence of the catalyst system copper(I) chloride/2,2'-bipyridyl and subsequently selectively hydrolyzed in acidic conditions. The resulting P(OEGMA-co-MAA) was directly utilized as a polymeric stabilizer in the nanoparticle synthesis. Four batches of ultrasmall PEGylated magnetite nanoparticles (i.e., with an average diameter below 30 nm) were prepared via aqueous coprecipitation of iron salts in the presence of variable amounts of P(OEGMA-co-MAA). The diameter of the nanoparticles could be easily tuned in the range 10-25 nm by varying the initial copolymer concentration. Moreover, the formed PEGylated ferrofluids exhibited a long-term colloidal stability in physiological buffer and could therefore be studied in vivo by magnetic resonance (MR) imaging. Intravenous injection into rats showed no detectable signal in the liver within the first 2 h. Maximum liver accumulation was found after 6 h, suggesting a prolongated circulation of the nanoparticles in the bloodstream as compared to conventional MR imaging contrast agents.

  7. Exploration of perpendicular magnetic anisotropy material system for application in spin transfer torque - Random access memory

    NASA Astrophysics Data System (ADS)

    Natarajarathinam, Anusha

    Perpendicular magnetic anisotropy (PMA) materials have unique advantages when used in magnetic tunnel junctions (MTJ) which are the most critical part of spin-torque transfer random access memory devices (STT-RAMs) that are being researched intensively as future non-volatile memory technology. They have high magnetoresistance which improves their sensitivity. The STT-RAM has several advantages over competing technologies, for instance, low power consumption, non-volatility, ultra-fast read and write speed and high endurance. In personal computers, it can replace SRAM for high-speed applications, Flash for non-volatility, and PSRAM and DRAM for high-speed program execution. The main aim of this research is to identify and optimize the best perpendicular magnetic anisotropy (PMA) material system for application to STT-RAM technology. Preliminary search for perpendicular magnetic anisotropy (PMA) materials for pinned layer for MTJs started with the exploration and optimization of crystalline alloys such as Co50Pd50 alloy, Mn50Al50 and amorphous alloys such as Tb21Fe72Co7 and are first presented in this work. Further optimization includes the study of Co/[Pd/Pt]x multilayers (ML), and the development of perpendicular synthetic antiferromagnets (SAF) utilizing these multilayers. Focused work on capping and seed layers to evaluate interfacial perpendicular anisotropy in free layers for pMTJs is then discussed. Optimization of the full perpendicular magnetic tunnel junction (pMTJ) includes the CoFeB/MgO/CoFeB trilayer coupled to a pinned/pinning layer with perpendicular Co/[Pd/Pt]x SAF and a thin Ta seeded CoFeB free layer. Magnetometry, simulations, annealing studies, transport measurements and TEM analysis on these samples will then be presented.

  8. Composite dipolar recoupling: anisotropy compensated coherence transfer in solid-state nuclear magnetic resonance.

    PubMed

    Khaneja, Navin; Kehlet, Cindie; Glaser, Steffen J; Nielsen, Niels Chr

    2006-03-21

    The efficiency of dipole-dipole coupling driven coherence transfer experiments in solid-state nuclear magnetic resonance (NMR) spectroscopy of powder samples is limited by dispersion of the orientation of the internuclear vectors relative to the external magnetic field. Here we introduce general design principles and resulting pulse sequences that approach full polarization transfer efficiency for all crystallite orientations in a powder in magic-angle-spinning experiments. The methods compensate for the defocusing of coherence due to orientation dependent dipolar coupling interactions and inhomogeneous radio-frequency fields. The compensation scheme is very simple to implement as a scaffold (comb) of compensating pulses in which the pulse sequence to be improved may be inserted. The degree of compensation can be adjusted and should be balanced as a compromise between efficiency and length of the overall pulse sequence. We show by numerical and experimental data that the presented compensation protocol significantly improves the efficiency of known dipolar recoupling solid-state NMR experiments.

  9. In vitro evaluation of genotoxic effects under magnetic resonant coupling wireless power transfer.

    PubMed

    Mizuno, Kohei; Shinohara, Naoki; Miyakoshi, Junji

    2015-04-07

    Wireless power transfer (WPT) technology using the resonant coupling phenomenon has been widely studied, but there are very few studies concerning the possible relationship between WPT exposure and human health. In this study, we investigated whether exposure to magnetic resonant coupling WPT has genotoxic effects on WI38VA13 subcloned 2RA human fibroblast cells. WPT exposure was performed using a helical coil-based exposure system designed to transfer power with 85.4% efficiency at a 12.5-MHz resonant frequency. The magnetic field at the positions of the cell culture dishes is approximately twice the reference level for occupational exposure as stated in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. The specific absorption rate at the positions of the cell culture dishes matches the respective reference levels stated in the ICNIRP guidelines. For assessment of genotoxicity, we studied cell growth, cell cycle distribution, DNA strand breaks using the comet assay, micronucleus formation, and hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene mutation, and did not detect any significant effects between the WPT-exposed cells and control cells. Our results suggest that WPT exposure under the conditions of the ICNIRP guidelines does not cause detectable cellular genotoxicity.

  10. Characteristics analysis of a high speed permanent magnet synchronous generator using the transfer relations theorem and equivalent circuit method

    NASA Astrophysics Data System (ADS)

    Jang, Seok-Myeong; Ko, Kyoung-Jin; Park, Ji-Hoon; Cho, Han-Wook; Hong, Jung-Pyo

    2008-04-01

    This paper presents analytical methods to predict the magnetic field distribution, electrical parameters, and output characteristics of a high speed synchronous generator equipped with surface-mounted permanent magnet. In order to analyze the magnetic field distribution and to estimate the electrical parameters, electromagnetic transfer relation (TR) theorem is employed. Moreover, output characteristics for variable resistive load and the operating speed are also obtained by solving the permanent magnet machine's equivalent circuit equation. The analytical results are validated extensively by nonlinear finite element analysis and experimental results.

  11. In vitro stability analyses as a model for metabolism of ferromagnetic particles (Clariscan), a contrast agent for magnetic resonance imaging.

    PubMed

    Skotland, Tore; Sontum, Per Christian; Oulie, Inger

    2002-04-15

    Clariscan is a new contrast agent for magnetic resonance imaging. It is an aqueous suspension of ferromagnetic particles injected for blood pool and liver imaging. Previous experiments showed that particles made of 59Fe were taken up by the mononuclear phagocytic system and then solubilised. The present work aims at explaining a possible mechanism for the dissolution of these ferromagnetic particles in the body. The particles were diluted in 10-mM citrate or 10-mM acetate buffers at pH 4.5, 5.0 and 5.5 and incubated at 37 degrees C for up to 22 days, protected from light. The mixtures were analysed at different times during this incubation period using photon correlation spectroscopy, magnetic relaxation, visible spectroscopy and reactivity of the iron with the chelator, bathophenanthroline disulphonic acid. The data obtained with these techniques showed that the particles were almost completely solubilised within 4-7 days when incubated in 10 mM citrate, pH 4.5. Incubation in 10 mM citrate buffer, pH 5.0 revealed a slower solubilisation of the particles, as the changes observed after 72 h of incubation at pH 5.0 were 43-71% of the changes observed at pH 4.5. Incubation in 10 mM citrate, pH 5.5 revealed an even slower solubilisation of the particles, as the changes observed after 72 h of incubation at pH 5.5 were 12-34% of those observed at pH 4.5. Incubation of the particles in 10 mM acetate at pH 4.5, 5.0 and 5.5, as well as incubation of the particles in water pH adjusted to pH 5.1, resulted in only minor or no solubilisation of the particles. The results indicate that the low pH of endosomes and lysosomes, as well as endogenous iron-complexing substances, may be important for the solubilisation of these ferromagnetic particles following i.v. injection of Clariscan.

  12. Lanthanide(III) complexes that contain a self-immolative arm: potential enzyme responsive contrast agents for magnetic resonance imaging.

    PubMed

    Chauvin, Thomas; Torres, Susana; Rosseto, Renato; Kotek, Jan; Badet, Bernard; Durand, Philippe; Tóth, Eva

    2012-01-27

    Enzyme-responsive MRI-contrast agents containing a "self-immolative" benzylcarbamate moiety that links the MRI-reporter lanthanide complex to a specific enzyme substrate have been developed. The enzymatic cleavage initiates an electronic cascade reaction that leads to a structural change in the Ln(III) complex, with a concomitant response in its MRI-contrast-enhancing properties. We synthesized and investigated a series of Gd(3+) and Yb(3+) complexes, including those bearing a self-immolative arm and a sugar unit as selective substrates for β-galactosidase; we synthesized complex LnL(1), its NH(2) amine derivatives formed after enzymatic cleavage, LnL(2), and two model compounds, LnL(3) and LnL(4). All of the Gd(3+) complexes synthesized have a single inner-sphere water molecule. The relaxivity change upon enzymatic cleavage is limited (3.68 vs. 3.15 mM(-1) s(-1) for complexes GdL(1) and GdL(2), respectively; 37 °C, 60 MHz), which prevents application of this system as an enzyme-responsive T(1) relaxation agent. Variable-temperature (17)O NMR spectroscopy and (1)H NMRD (nuclear magnetic relaxation dispersion) analysis were used to assess the parameters that determine proton relaxivity for the Gd(3+) complexes, including the water-exchange rate (k(ex)(298), varies in the range 1.5-3.9×10(6) s(-1)). Following the enzymatic reaction, the chelates contain an exocyclic amine that is not protonated at physiological pH, as deduced from pH-potentiometric measurements (log K(H)=5.12(±0.01) and 5.99(±0.01) for GdL(2) and GdL(3), respectively). The Yb(3+) analogues show a PARACEST effect after enzymatic cleavage that can be exploited for the specific detection of enzymatic activity. The proton-exchange rates were determined at various pH values for the amine derivatives by using the dependency of the CEST effect on concentration, saturation time, and saturation power. A concentration-independent analysis of the saturation-power-dependency data was also applied. All these

  13. Investigation of inter-slice magnetization transfer effects as a new method for MTR imaging of the human brain.

    PubMed

    Barker, Jeffrey W; Han, Paul Kyu; Choi, Seung Hong; Bae, Kyongtae Ty; Park, Sung-Hong

    2015-01-01

    We present a new method for magnetization transfer (MT) ratio imaging in the brain that requires no separate saturation pulse. Interslice MT effects that are inherent to multi-slice balanced steady-state free precession (bSSFP) imaging were controlled via an interslice delay time to generate MT-weighted (0 s delay) and reference images (5-8 s delay) for MT ratio (MTR) imaging of the brain. The effects of varying flip angle and phase encoding (PE) order were investigated experimentally in normal, healthy subjects. Values of up to ∼50% and ∼40% were observed for white and gray matter MTR. Centric PE showed larger MTR, higher SNR, and better contrast between white and gray matter than linear PE. Simulations of a two-pool model of MT agreed well with in vivo MTR values. Simulations were also used to investigate the effects of varying acquisition parameters, and the effects of varying flip angle, PE steps, and interslice delay are discussed. Lastly, we demonstrated reduced banding with a non-balanced SSFP-FID sequence and showed preliminary results of interslice MTR imaging of meningioma.

  14. Perfusion of subchondral bone marrow in knee osteoarthritis: A dynamic contrast-enhanced magnetic resonance imaging preliminary study.

    PubMed

    Budzik, Jean-François; Ding, Juliette; Norberciak, Laurène; Pascart, Tristan; Toumi, Hechmi; Verclytte, Sébastien; Coursier, Raphaël

    2017-03-01

    The role of inflammation in the pathogenesis of osteoarthritis is being given major interest, and inflammation is closely linked with vascularization. It was recently demonstrated that dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) could identify the subchondral bone marrow vascularization changes occurring in osteoarthritis in animals. These changes appeared before cartilage lesions were visible and were correlated with osteoarthritis severity. Thus the opportunity to obtain an objective assessment of bone vascularization in non-invasive conditions in humans might help better understanding osteoarthritis pathophysiology and finding new biomarkers. We hypothesized that, as in animals, DCE-MRI has the ability to identify subchondral bone marrow vascularization changes in human osteoarthritis. We performed knee MRI in 19 patients with advanced knee osteoarthritis. We assessed subchondral bone marrow vascularization in medial and lateral femorotibial compartments with DCE-MRI and graded osteoarthritis lesions on MR images. Statistical analysis assessed intra- and inter-observer agreement, compared DCE-MRI values between the different subchondral zones, and sought for an influence of age, sex, body mass index, and osteoarthritis garde on these values. The intra- and inter-observer agreement for DCE-MRI values were excellent. These values were significantly higher in the femorotibial compartment the most affected by osteoarthritis, both in femur and tibia (p<0.0001) and were significantly and positively correlated with cartilage lesions (p=0.02) and bone marrow oedema grade (p<0.0001) after adjustment. We concluded that, as in animals, subchondral bone marrow vascularization changes assessed with DCE-MRI were correlated with osteoarthritis severity in humans.

  15. Atlas-based method for segmentation of cerebral vascular trees from phase-contrast magnetic resonance angiography

    NASA Astrophysics Data System (ADS)

    Passat, Nicolas; Ronse, Christian; Baruthio, Joseph; Armspach, Jean-Paul; Maillot, Claude; Jahn, Christine

    2004-05-01

    Phase-contrast magnetic resonance angiography (PC-MRA) can produce phase images which are 3-dimensional pictures of vascular structures. However, it also provides magnitude images, containing anatomical - but no vascular - data. Classically, algorithms dedicated to PC-MRA segmentation detect the cerebral vascular tree by only working on phase images. We propose here a new approach for segmentation of cerebral blood vessels in PC-MRA using both types of images. This approach is based on the hypothesis that a magnitude image contains anatomical information useful for vascular structures detection. That information can then be transposed from a normal case to any patient image by image registration. An atlas of the whole head has been developed in order to store such anatomical knowledge. It divides a magnitude image into several "vascular areas", each one having specific vessel properties. The atlas can be applied on any magnitude image of an entire or nearly entire head by deformable matching, thus helping to segment blood vessels from the associated phase image. The segmentation method used afterwards is composed of a topology-conserving region growing algorithm using adaptative threshold values depending on the current region of the atlas. This algorithm builds the arterial and venous trees by iteratively adding voxels which are selected according to their greyscale value and the variation of values in their neighborhood. The topology conservation is guaranteed by only selecting simple points during the growing process. The method has been performed on 15 PC-MRA's of the brain. The results have been validated using MIP and 3D surface rendering visualization; a comparison to other results obtained without an atlas proves that atlas-based methods are an effective way to optimize vascular segmentation strategies.

  16. Detection of bone erosion in early rheumatoid arthritis: ultrasonography and conventional radiography versus non-contrast magnetic resonance imaging.

    PubMed

    Rahmani, Maryam; Chegini, Hosein; Najafizadeh, Seyed Reza; Azimi, Mohammad; Habibollahi, Peiman; Shakiba, Madjid

    2010-08-01

    Nowadays, there is a trend toward early diagnosis and treatment of rheumatoid arthritis (RA) especially in patients with early signs of bone erosion which can be detected by magnetic resonance imaging (MRI). The aim of following study is to compare the sensitivity and specificity of ultrasonography (US) and conventional radiography (CR) compared to MRI for early detection of bone erosion in RA patients. In 12 patients with RA diagnosis, 120 first to fifth metacarpophalangeal joints and 96 second to fifth proximal interphalangeal joints were examined. Non-contrast MRI, US and CR were performed for bone erosion evaluation. For further analysis, the patients were divided in two equal groups according to disease activity score (DAS28). The overall sensitivity and specificity of US compared to MRI in detecting bone erosion were 0.63 and 0.98, respectively with a considerable agreement (kappa = 0.68, p < 0.001). Sensitivity and specificity of CR compared to MRI in detecting bone erosion were 0.13 and 1.00, respectively (kappa = 0.20, p < 0.001). In patients with more active disease, the sensitivity and specificity were 0.67 and 0.99 (kappa = 0.74, p < 0.001) compared to 0.59 and 0.97 (kappa = 0.61, p < 0.001) for the rest of patients according to DAS28. Conclusively, these findings reveal an acceptable agreement between US and MRI for detection of bone erosion in patients with early RA but not CR. US might be considered as a valuable tool for early detection of bone erosion especially when MRI is not available or affordable. Besides, it seems the US could be more reliable when the disease is more active.

  17. Radiogenomic analysis of breast cancer: dynamic contrast enhanced - magnetic resonance imaging based features are associated with molecular subtypes

    NASA Astrophysics Data System (ADS)

    Wang, Shijian; Fan, Ming; Zhang, Juan; Zheng, Bin; Wang, Xiaojia; Li, Lihua

    2016-03-01

    Breast cancer is one of the most common malignant tumor with upgrading incidence in females. The key to decrease the mortality is early diagnosis and reasonable treatment. Molecular classification could provide better insights into patient-directed therapy and prognosis prediction of breast cancer. It is known that different molecular subtypes have different characteristics in magnetic resonance imaging (MRI) examination. Therefore, we assumed that imaging features can reflect molecular information in breast cancer. In this study, we investigated associations between dynamic contrasts enhanced MRI (DCE-MRI) features and molecular subtypes in breast cancer. Sixty patients with breast cancer were enrolled and the MR images were pre-processed for noise reduction, registration and segmentation. Sixty-five dimensional imaging features including statistical characteristics, morphology, texture and dynamic enhancement in breast lesion and background regions were semiautomatically extracted. The associations between imaging features and molecular subtypes were assessed by using statistical analyses, including univariate logistic regression and multivariate logistic regression. The results of multivariate regression showed that imaging features are significantly associated with molecular subtypes of Luminal A (p=0.00473), HER2-enriched (p=0.00277) and Basal like (p=0.0117), respectively. The results indicated that three molecular subtypes are correlated with DCE-MRI features in breast cancer. Specifically, patients with a higher level of compactness or lower level of skewness in breast lesion are more likely to be Luminal A subtype. Besides, the higher value of the dynamic enhancement at T1 time in normal side reflect higher possibility of HER2-enriched subtype in breast cancer.

  18. Effects of two different anesthetic protocols on cardiac flow measured by two dimensional phase contrast magnetic resonance imaging.

    PubMed

    Drees, Randi; Johnson, Rebecca A; Stepien, Rebecca L; Munoz Del Rio, Alejandro; François, Christopher J

    2015-01-01

    Companion animals are routinely anesthetized or heavily sedated for cardiac MRI studies, however effects of varying anesthetic protocols on cardiac function measurements are incompletely understood. The purpose of this prospective study was to compare effects of two anesthetic protocols (Protocol A: Midazolam, fentanyl; Protocol B: Dexmedetomidine) on quantitative and qualitative blood flow values measured through the aortic, pulmonic, mitral, and tricuspid valves using two-dimensional phase contrast magnetic resonance imaging (2D PC MRI) in healthy dogs. Mean flow per heartbeat values through the pulmonary artery (Qp) and aorta (Qs) were compared to right and left ventricular stroke volumes (RVSV, LVSV) measured using a reference standard of 2D Cine balanced steady-state free precession MRI. Pulmonary to systemic flow ratio (Qp/Qs) was also calculated. Differences in flow and Qp/Qs values generated using 2D PC MRI did not differ between the two anesthetic protocols (P = 1). Mean differences between Qp and RVSV were 3.82 ml/beat (95% limits of agreement: 3.62, -11.26) and 1.9 ml/beat (-7.86, 11.66) for anesthesia protocols A and B, respectively. Mean differences between Qs and LVSV were 1.65 ml/beat (-5.04, 8.34) and 0.03 ml/beat (-4.65, 4.72) for anesthesia protocols A and B, respectively. Mild tricuspid or mitral reflux was seen in 2/10 dogs using 2D PC MRI. No aortic or pulmonic insufficiency was observed. Findings from the current study indicated that these two anesthetic protocols yield similar functional measures of cardiac blood flow using 2D PC MRI in healthy dogs. Future studies in clinically affected patients are needed.

  19. Dry-cured ham tissue characterization by fast field cycling NMR relaxometry and quantitative magnetization transfer.

    PubMed

    Bajd, Franci; Gradišek, Anton; Apih, Tomaž; Serša, Igor

    2016-05-31

    Fast field cycling (FFC) and quantitative magnetization transfer (qMT) NMR methods are two powerful tools in NMR analysis of biological tissues. The qMT method is well established in biomedical NMR applications, while the FFC method is often used in investigations of molecular dynamics on which longitudinal NMR relaxation times of the investigated material critically depend. Despite their proven analytical potential, these two methods were rarely used in NMR studies of food, especially when combined together. In our study, we demonstrate the feasibility of a combined FFC/qMT-NMR approach for the fast and nondestructive characterization of dry-curing ham tissues differing by protein content. The characterization is based on quantifying the pure quadrupolar peak area (area under the quadrupolar contribution of dispersion curve obtained by FFC-NMR) and the restricted magnetization pool size (obtained by qMT-NMR). Both quantities correlate well with concentration of partially immobilized, nitrogen-containing and proton magnetization exchanging muscle proteins. Therefore, these two quantities could serve as potential markers for dry-curing process monitoring. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Resonant spin-transfer torque in asymmetric double barrier magnetic tunnel junctions (MTJs)

    NASA Astrophysics Data System (ADS)

    Daqiq, Reza; Ghobadi, Nader

    2017-02-01

    The substitution effect of a Ferro-magnet (FM) electrode by a half-metallic FM material La0.7Sr0.3MnO3 (LSMO) on charge current and spin-transfer torque (STT) components is studied in MgO-based double barrier magnetic tunnel junctions (DBMTJs) with a middle non-magnetic metal (NM) layer. Using non-equilibrium Green's function (NEGF) formalism, it is observed that the current and STT components show oscillatory behavior due to quantum well states in the middle NM layer and resonant tunneling effect. We also study effect of difference in the thickness of the MgO insulators. Bias dependence demonstrate the magnitude enhancement of the current and in-plane STT in new asymmetric DBMTJs (A-DBMTJs) compared with symmetric DBMTJs (S-DBMTJs), however, perpendicular STT decreases in the A-DBMTJs. Results also show different behavior compared with conventional asymmetric MTJs and spin valves (SVs). Therefore, one can design new memory devices by means of suitable insulator and FM electrodes with proper thicknesses.

  1. Radiative transfer with POLARIS. I. Analysis of magnetic fields through synthetic dust continuum polarization measurements

    NASA Astrophysics Data System (ADS)

    Reissl, S.; Wolf, S.; Brauer, R.

    2016-09-01

    Aims: We present POLARIS (POLArized RadIation Simulator), a newly developed three-dimensional Monte-Carlo radiative transfer code. POLARIS was designed to calculate dust temperature, polarization maps, and spectral energy distributions. It is optimized to handle data that results from sophisticated magneto-hydrodynamic simulations. The main purpose of the code is to prepare and analyze multi-wavelength continuum polarization measurements in the context of magnetic field studies in the interstellar medium. An exemplary application is the investigation of the role of magnetic fields in star formation processes. Methods: We combine currently discussed state-of-the-art grain alignment theories with existing dust heating and polarization algorithms. We test the POLARIS code on multiple scales in complex astrophysical systems that are associated with different stages of star formation. POLARIS uses the full spectrum of dust polarization mechanisms to trace the underlying magnetic field morphology. Results: Resulting temperature distributions are consistent with the density and position of radiation sources resulting from magneto-hydrodynamic (MHD) - collapse simulations. The calculated layers of aligned dust grains in the considered cirumstellar disk models are in excellent agreement with theoretical predictions. Finally, we compute unique patterns in synthetic multi-wavelength polarization maps that are dependent on applied dust-model and grain-alignment theory in analytical cloud models.

  2. Poor Transferability of Species Distribution Models for a Pelagic Predator, the Grey Petrel, Indicates Contrasting Habitat Preferences across Ocean Basins

    PubMed Central

    Torres, Leigh G.; Sutton, Philip J. H.; Thompson, David R.; Delord, Karine; Weimerskirch, Henri; Sagar, Paul M.; Sommer, Erica; Dilley, Ben J.; Ryan, Peter G.; Phillips, Richard A.

    2015-01-01

    Species distribution models (SDMs) are increasingly applied in conservation management to predict suitable habitat for poorly known populations. High predictive performance of SDMs is evident in validations performed within the model calibration area (interpolation), but few studies have assessed SDM transferability to novel areas (extrapolation), particularly across large spatial scales or pelagic ecosystems. We performed rigorous SDM validation tests on distribution data from three populations of a long-ranging marine predator, the grey petrel Procellaria cinerea, to assess model transferability across the Southern Hemisphere (25-65°S). Oceanographic data were combined with tracks of grey petrels from two remote sub-Antarctic islands (Antipodes and Kerguelen) using boosted regression trees to generate three SDMs: one for each island population, and a combined model. The predictive performance of these models was assessed using withheld tracking data from within the model calibration areas (interpolation), and from a third population, Marion Island (extrapolation). Predictive performance was assessed using k-fold cross validation and point biserial correlation. The two population-specific SDMs included the same predictor variables and suggested birds responded to the same broad-scale oceanographic influences. However, all model validation tests, including of the combined model, determined strong interpolation but weak extrapolation capabilities. These results indicate that habitat use reflects both its availability and bird preferences, such that the realized distribution patterns differ for each population. The spatial predictions by the three SDMs were compared with tracking data and fishing effort to demonstrate the conservation pitfalls of extrapolating SDMs outside calibration regions. This exercise revealed that SDM predictions would have led to an underestimate of overlap with fishing effort and potentially misinformed bycatch mitigation efforts. Although

  3. High-contrast fluorescence sensing of aqueous Cu(I) with triarylpyrazoline probes: dissecting the roles of ligand donor strength and excited state proton transfer.

    PubMed

    Morgan, M Thomas; Bagchi, Pritha; Fahrni, Christoph J

    2013-03-07

    Cu(I)-responsive fluorescent probes based on a photoinduced electron transfer (PET) mechanism generally show incomplete fluorescence recovery relative to the intrinsic quantum yield of the fluorescence reporter. Previous studies on probes with an N-aryl thiazacrown Cu(I)-receptor revealed that the recovery is compromised by incomplete Cu(I)-N coordination and resultant ternary complex formation with solvent molecules. Building upon a strategy that successfully increased the fluorescence contrast and quantum yield of Cu(I) probes in methanol, we integrated the arylamine PET donor into the backbone of a hydrophilic thiazacrown ligand with a sulfonated triarylpyrazoline as a water-soluble fluorescence reporter. This approach was not only expected to disfavor ternary complex formation in aqueous solution but also to maximize PET switching through a synergistic Cu(I)-induced conformational change. The resulting water-soluble probe 1 gave a strong 57-fold fluorescence enhancement upon saturation with Cu(I) with high selectivity over other cations, including Cu(II), Hg(II), and Cd(II); however, the recovery quantum yield did not improve over probes with the original N-aryl thiazacrown design. Concluding from detailed photophysical data, including responses to acidification, solvent isotope effects, quantum yields, and time-resolved fluorescence decay profiles, the fluorescence contrast of 1 is compromised by inadequate coordination of Cu(I) to the weakly basic arylamine nitrogen of the PET donor and by fluorescence quenching via two distinct excited state proton transfer pathways operating under neutral and acidic conditions.

  4. Application of radiative image transfer theory to the assessment of the overall OTF and contrast degradation of an image in an inhomogeneous turbulent and turbid atmosphere

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    1992-01-01

    A perturbation-theoretic approximation of the radiative transfer equation which neglects photon dispersion is used as a modeling basis for the propagation of the image of a self-luminous target through a turbulent atmosphere which also possesses inhomogeneously distributed turbidity along the propagation path. A contrast ratio is then introduced which provides an indicator of the relative contribution of the unscattered or coherent image component to that of the scattered or incoherent image component. Analytical expressions are then derived for the contrast ratio from the approximate form of the radiative transfer equation in the case of an inhomogeneously dispersed Joss thunderstorm rain distribution in the presence of turbulence. The case is clearly demonstrated for the need to consider a measure of the points of demarcation at which the dominant roles of the scattering processes due to turbidity and turbulence are exchanged. Such a measure can provide a performance parameter for the application of adaptive optics methods that are specific to the particular dominant scattering mechanism given the prevailing target size, total propagation length and overall propagation parameters.

  5. Iopamidol as a responsive MRI-chemical exchange saturation transfer contrast agent for pH mapping of kidneys: In vivo studies in mice at 7 T.

    PubMed

    Longo, Dario Livio; Dastrù, Walter; Digilio, Giuseppe; Keupp, Jochen; Langereis, Sander; Lanzardo, Stefania; Prestigio, Simone; Steinbach, Oliver; Terreno, Enzo; Uggeri, Fulvio; Aime, Silvio

    2011-01-01

    Iopamidol (Isovue®-Bracco Diagnostic Inc.) is a clinically approved X-Ray contrast agent used in the last 30 years for a wide variety of diagnostic applications with a very good clinical acceptance. Iopamidol contains two types of amide functionalities that can be exploited for the generation of chemical exchange saturation transfer effect. The exchange rate of the two amide proton pools is markedly pH-dependent. Thus, a ratiometric method for pH assessment has been set-up based on the comparison of the saturation transfer effects induced by selective irradiation of the two resonances. This ratiometric approach allows to rule out the concentration effect of the contrast agent and provides accurate pH measurements in the 5.5-7.4 range. Upon injection of Iopamidol into healthy mice, it has been possible to acquire pH maps of kidney regions. Furthermore, it has been also shown that the proposed method is able to report about pH-changes induced in control mice fed with acidified or basified water for a period of a week before image acquisition.

  6. Transfer of the magnetic axis of an undulator to mechanical fiducial marks of a laser tracker system

    NASA Astrophysics Data System (ADS)

    Ketenoğlu, Bora; Englisch, Uwe; Li, Yuhui; Wolff-Fabris, Frederik; Benecke, Wolf; Noak, Martin; Prenting, Johannes; Schloesser, Markus; Pflueger, Joachim

    2016-02-01

    The exact geometric location of the magnetic centers of sensors or sensor systems using Hall probes or pick-up coils is usually not known with high precision. In order to transfer the high spatial accuracy of magnetic measurements to external mechanic fiducials a device called "Magnetic Landmark" was developed and is described in this report. Its purpose is to establish the exact relation between "magnetic" coordinates used on magnetic measurement systems and "mechanic" coordinates used for alignment. The landmark consists of a permanent magnet configuration, which generates a field distribution with well-defined zero crossings in two orthogonal directions, which can be exactly localized with micrometer precision using magnetic measurement systems. For the "mechanic" measurements several redundant monuments for laser fiducials can be used. Using flip tests for the magnetic as well as mechanic measurements the center positions are determined in magnetic and mechanic coordinates. Using them the relation between the magnetic and surveying coordinates can be established with high accuracy. This report concentrates on the description of the landmark. A thorough analysis on achievable accuracy is presented. The method was developed for the alignment of the 91 undulator segments needed for the European XFEL but can be applied to other magnet systems as well.

  7. Analysis of self-heating of thermally assisted spin-transfer torque magnetic random access memory.

    PubMed

    Deschenes, Austin; Muneer, Sadid; Akbulut, Mustafa; Gokirmak, Ali; Silva, Helena

    2016-01-01

    Thermal assistance has been shown to significantly reduce the required operation power for spin torque transfer magnetic random access memory (STT-MRAM). Proposed heating methods include modified material stack compositions that result in increased self-heating or external heat sources. In this work we analyze the self-heating process of a standard perpendicular magnetic anisotropy STT-MRAM device through numerical simulations in order to understand the relative contributions of Joule, thermoelectric Peltier and Thomson, and tunneling junction heating. A 2D rotationally symmetric numerical model is used to solve the coupled electro-thermal equations including thermoelectric effects and heat absorbed or released at the tunneling junction. We compare self-heating for different common passivation materials, positive and negative electrical current polarity, and different device thermal anchoring and boundaries resistance configurations. The variations considered are found to result in significant differences in maximum temperatures reached. Average increases of 3 K, 10 K, and 100 K for different passivation materials, positive and negative polarity, and different thermal anchoring configurations, respectively, are observed. The highest temperatures, up to 424 K, are obtained for silicon dioxide as the passivation material, positive polarity, and low thermal anchoring with thermal boundary resistance configurations. Interestingly it is also found that due to the tunneling heat, Peltier effect, device geometry, and numerous interfacial layers around the magnetic tunnel junction (MTJ), most of the heat is dissipated on the lower potential side of the magnetic junction. This asymmetry in heating, which has also been observed experimentally, is important as thermally assisted switching requires heating of the free layer specifically and this will be significantly different for the two polarity operations, set and reset.

  8. Analysis of self-heating of thermally assisted spin-transfer torque magnetic random access memory

    PubMed Central

    Muneer, Sadid; Akbulut, Mustafa; Gokirmak, Ali; Silva, Helena

    2016-01-01

    Thermal assistance has been shown to significantly reduce the required operation power for spin torque transfer magnetic random access memory (STT-MRAM). Proposed heating methods include modified material stack compositions that result in increased self-heating or external heat sources. In this work we analyze the self-heating process of a standard perpendicular magnetic anisotropy STT-MRAM device through numerical simulations in order to understand the relative contributions of Joule, thermoelectric Peltier and Thomson, and tunneling junction heating. A 2D rotationally symmetric numerical model is used to solve the coupled electro-thermal equations including thermoelectric effects and heat absorbed or released at the tunneling junction. We compare self-heating for different common passivation materials, positive and negative electrical current polarity, and different device thermal anchoring and boundaries resistance configurations. The variations considered are found to result in significant differences in maximum temperatures reached. Average increases of 3 K, 10 K, and 100 K for different passivation materials, positive and negative polarity, and different thermal anchoring configurations, respectively, are observed. The highest temperatures, up to 424 K, are obtained for silicon dioxide as the passivation material, positive polarity, and low thermal anchoring with thermal boundary resistance configurations. Interestingly it is also found that due to the tunneling heat, Peltier effect, device geometry, and numerous interfacial layers around the magnetic tunnel junction (MTJ), most of the heat is dissipated on the lower potential side of the magnetic junction. This asymmetry in heating, which has also been observed experimentally, is important as thermally assisted switching requires heating of the free layer specifically and this will be significantly different for the two polarity operations, set and reset. PMID:28144517

  9. Magnetic PEGylated Pt3Co nanoparticles as a novel MR contrast agent: in vivo MR imaging and long-term toxicity study

    NASA Astrophysics Data System (ADS)

    Yin, Shengnan; Li, Zhiwei; Cheng, Liang; Wang, Chao; Liu, Yumeng; Chen, Qian; Gong, Hua; Guo, Liang; Li, Yonggang; Liu, Zhuang

    2013-11-01

    Magnetic resonance (MR) imaging using magnetic nanoparticles as the contrast agent has been extensively explored in biomedical imaging and disease diagnosis. Herein, we develop biocompatible polymer coated ultra-small Pt3Co magnetic nanoparticles as a new T2-weighted MR imaging contrast agent. A unique class of alloy Pt3Co nanoparticles is synthesized through a thermal decomposition method. After being modified with polyethylene glycol (PEG), the obtained Pt3Co-PEG nanoparticles exhibit an extremely high T2-weighted relaxivity rate (r2) up to 451.2 mM s-1, which is much higher than that of Resovist®, a commercial T2-MR contrast agent used in the clinic. In vitro experiments indicate no obvious cytotoxicity of Pt3Co-PEG nanoparticles to various cell lines. After intravenous injection of Pt3Co-PEG nanoparticles, in vivo T2-weighted MR imaging of tumor-bearing mice reveals strong tumor contrast, which is much higher than that offered by injecting Resovist®. We further study the long-term biodistribution and toxicology of this new type of MR contrast nanoparticles after intravenous injection into healthy mice. Despite the significant retention of Pt3Co-PEG nanoparticles in the mouse liver and spleen, no appreciable toxicity of these nanoparticles to the treated animals has been noted in our detailed histological and hematological analysis over a course of 60 days. Our work demonstrates that functionalized Pt3Co nanoparticles may be a promising new type of T2-weighted MR contrast agent potentially useful in biomedical imaging and diagnosis.Magnetic resonance (MR) imaging using magnetic nanoparticles as the contrast agent has been extensively explored in biomedical imaging and disease diagnosis. Herein, we develop biocompatible polymer coated ultra-small Pt3Co magnetic nanoparticles as a new T2-weighted MR imaging contrast agent. A unique class of alloy Pt3Co nanoparticles is synthesized through a thermal decomposition method. After being modified with polyethylene

  10. Integrating Horizontal Gene Transfer and Common Descent to Depict Evolution and Contrast It with “Common Design”1

    PubMed Central

    GUILLERMO PAZ-Y-MIÑO-C; ESPINOSA, AVELINA

    2016-01-01

    Horizontal gene transfer (HGT) and common descent interact in space and time. Because events of HGT co-occur with phylogenetic evolution, it is difficult to depict evolutionary patterns graphically. Tree-like representations of life’s diversification are useful, but they ignore the significance of HGT in evolutionary history, particularly of unicellular organisms, ancestors of multicellular life. Here we integrate the reticulated-tree model, ring of life, symbiogenesis whole-organism model, and eliminative pattern pluralism to represent evolution. Using Entamoeba histolytica alcohol dehydrogenase 2 (EhADH2), a bifunctional enzyme in the glycolytic pathway of amoeba, we illustrate how EhADH2 could be the product of both horizontally acquired features from ancestral prokaryotes (i.e. aldehyde dehydrogenase [ALDH] and alcohol dehydrogenase [ADH]), and subsequent functional integration of these enzymes into EhADH2, which is now inherited by amoeba via common descent. Natural selection has driven the evolution of EhADH2 active sites, which require specific amino acids (cysteine 252 in the ALDH domain; histidine 754 in the ADH domain), iron- and NAD+ as cofactors, and the substrates acetyl-CoA for ALDH and acetaldehyde for ADH. Alternative views invoking “common design” (i.e. the non-naturalistic emergence of major taxa independent from ancestry) to explain the interaction between horizontal and vertical evolution are unfounded. PMID:20021546

  11. Heat Transfer to Anode of Arc as Function of Transverse Magnetic Field and Lateral Gas Flow Velocity

    NASA Astrophysics Data System (ADS)

    Zama, Yoshiyuki; Shiino, Toru; Ishii, Yoko; Maeda, Yoshifumi; Yamamoto, Shinji; Iwao, Toru

    2016-10-01

    Gas tungsten arc welding has useful joining technology because of high-energy and high-current characteristics. It can be flexible from the transverse magnetic field and lateral gas flow velocity. In this case, the weld defect occurs. In this research, the heat transfer to the anode of the arc as a function of the transverse magnetic field and lateral gas flow velocity is elucidated. That magnetic flux density and lateral gas velocity were varied from 0 to 3 mT and 0 to 50?m?s -1, respectively. The axial plasma gas argon flow rates were 3?slm. A transverse magnetic field is applied to the arc using Helmholtz coil. The anode is used by a water-cooled copper plate, and the heat transfer is measured by temperature of cooled water. As a result, the arc is deflected by the Lorentz force and lateral gas convection. Thus, the heat transfer to the anode of the arc decreases with increasing the transverse magnetic field and lateral gas flow velocity. In addition, the heat transfer to the anode changes with different attachments modes. The lateral gas flow causes a convective heat loss from the arc to the chamber walls.

  12. Transverse magnetization transfer under planar mixing conditions in spin systems consisting of three coupled spins 1/2.

    PubMed

    Luy, Burkhard; Glaser, Steffen J

    2003-10-01

    Polarization transfer under planar mixing conditions is a widely used tool in modern NMR-experiments. In the case of two coupled spins 1/2 or a chain of three or more spins 1/2 with only nearest neighbor couplings, it is only possible to transfer a single magnetization component (longitudinal magnetization in the principle axis system of the planar coupling tensors). However, if all couplings in a three-spin system are non-zero, it turns out that all magnetization components can be efficiently transferred even under strictly planar mixing conditions. In this article a detailed theoretical analysis is presented based on analytical transverse coherence transfer functions and on the underlying commutator algebra. In addition, transverse magnetization transfer is demonstrated experimentally. The results show that in highly coupled spin systems, as for example in the case of partially aligned samples with many residual dipolar couplings, special care has to be taken to avoid phase distortions if planar mixing steps are used.

  13. Magnetic PEGylated Pt3Co nanoparticles as a novel MR contrast agent: in vivo MR imaging and long-term toxicity study.

    PubMed

    Yin, Shengnan; Li, Zhiwei; Cheng, Liang; Wang, Chao; Liu, Yumeng; Chen, Qian; Gong, Hua; Guo, Liang; Li, Yonggang; Liu, Zhuang

    2013-12-21

    Magnetic resonance (MR) imaging using magnetic nanoparticles as the contrast agent has been extensively explored in biomedical imaging and disease diagnosis. Herein, we develop biocompatible polymer coated ultra-small Pt3Co magnetic nanoparticles as a new T2-weighted MR imaging contrast agent. A unique class of alloy Pt3Co nanoparticles is synthesized through a thermal decomposition method. After being modified with polyethylene glycol (PEG), the obtained Pt3Co-PEG nanoparticles exhibit an extremely high T2-weighted relaxivity rate (r2) up to 451.2 mM s(-1), which is much higher than that of Resovist®, a commercial T2-MR contrast agent used in the clinic. In vitro experiments indicate no obvious cytotoxicity of Pt3Co-PEG nanoparticles to various cell lines. After intravenous injection of Pt3Co-PEG nanoparticles, in vivo T2-weighted MR imaging of tumor-bearing mice reveals strong tumor contrast, which is much higher than that offered by injecting Resovist®. We further study the long-term biodistribution and toxicology of this new type of MR contrast nanoparticles after intravenous injection into healthy mice. Despite the significant retention of Pt3Co-PEG nanoparticles in the mouse liver and spleen, no appreciable toxicity of these nanoparticles to the treated animals has been noted in our detailed histological and hematological analysis over a course of 60 days. Our work demonstrates that functionalized Pt3Co nanoparticles may be a promising new type of T2-weighted MR contrast agent potentially useful in biomedical imaging and diagnosis.

  14. Localization to atherosclerotic plaque and biodistribution of biochemically derivatized superparamagnetic iron oxide nanoparticles (SPIONs) contrast particles for magnetic resonance imaging (MRI).

    PubMed

    Smith, Bryan R; Heverhagen, Johannes; Knopp, Michael; Schmalbrock, Petra; Shapiro, John; Shiomi, Masashi; Moldovan, Nicanor I; Ferrari, Mauro; Lee, Stephen C

    2007-10-01

    Annexin V recognizes apoptotic cells by specific molecular interaction with phosphatidyl serine, a lipid that is normally sequestered in the inner leaflet of the cell membrane, but is translocated to the outer leaflet in apoptotic cells, such as foam cells of atherosclerotic plaque. Annexin V could potentially deliver carried materials (such as superparamagnetic contrast agents for magnetic resonance imaging) to sites containing apoptotic cells, such as high grade atherosclerotic lesions, so we administered biochemically-derivatized (annexin V) superparmagnetic iron oxide particles (SPIONs) parenterally to two related rabbit models of human atherosclerosis. We observe development of negative magnetic resonance imaging (MRI) contrast in atheromatous lesions and but not in healthy artery. Vascular targeting by annexin V SPIONs is atheroma-specific (i.e., does not occur in healthy control rabbits) and requires active annexin V decorating the SPION surface. Targeted SPIONs produce negative contrast at doses that are 2,000-fold lower than reported for non-specific atheroma uptake of untargeted superparamagnetic nanoparticles in plaque in the same animal model. Occlusive and mural plaques are differentiable. While most of the dose accumulates in liver, spleen, kidneys and bladder, annexin V SPIONs also partition rapidly and deeply into early apoptotic foamy macrophages in plaque. Contrast in plaque decays within 2 months, allowing MRI images to be replicated with a subsequent, identical dose of annexin V SPIONs. Thus, biologically targeted superparamagnetic contrast agents can contribute to non-invasive evaluation of cardiovascular lesions by simultaneously extracting morphological and biochemical data from them.

  15. Experimental Studies on Flexible Forming of Sheet Metals Assisted by Magnetic Force Transfer Medium

    NASA Astrophysics Data System (ADS)

    Li, Feng; Zhou, Fu Jian; Wang, Mo Nan; Xu, Peng; Jin, Cheng Chuang

    2016-08-01

    To improve the thickness uniformity and increase the forming limit of sheets to enhance their overall quality, a magnetorheological fluid (MRF) was injected into the punch cavity to act as the force transfer medium and fulfill the function of flexible pressing during the sheet bulging process. The rheological properties of the MRF were changed under the influence of a magnetic field produced by loading different currents, which allowed variation of stress states and deformation modes in the 0.75-mm-thick 304 stainless steel sheets. With increasing current (up to 3.5 A), the sheet-forming limit increased by 16.13% at most, and the fracture morphology experienced a certain change. Additionally, both the bulge height and the wall thickness distribution had obvious changes with a punch stroke of 10 mm. According to the experimental analysis, the MRF can be used successfully as a pressure-carrying medium in the sheet forming process.

  16. Role of spin-transfer torques on synchronization and resonance phenomena in stochastic magnetic oscillators

    NASA Astrophysics Data System (ADS)

    Accioly, Artur; Locatelli, Nicolas; Mizrahi, Alice; Querlioz, Damien; Pereira, Luis G.; Grollier, Julie; Kim, Joo-Von

    2016-09-01

    A theoretical study on how synchronization and resonance-like phenomena in superparamagnetic tunnel junctions can be driven by spin-transfer torques is presented. We examine the magnetization of a superparamagnetic free layer that reverses randomly between two well-defined orientations due to thermal fluctuations, acting as a stochastic oscillator. When subject to an external ac forcing, this system can present stochastic resonance and noise-enhanced synchronization. We focus on the roles of the mutually perpendicular damping-like and field-like torques, showing that the response of the system is very different at low and high frequencies. We also demonstrate that the field-like torque can increase the efficiency of the current-driven forcing, especially at sub-threshold electric currents. These results can be useful for possible low-power, more energy efficient applications.

  17. Magnetic resonant wireless power transfer for propulsion of implantable micro-robot

    NASA Astrophysics Data System (ADS)

    Kim, D.; Kim, M.; Yoo, J.; Park, H.-H.; Ahn, S.

    2015-05-01

    Recently, various types of mobile micro-robots have been proposed for medical and industrial applications. Especially in medical applications, a motor system for propulsion cannot easily be used in a micro-robot due to their small size. Therefore, micro-robots are usually actuated by controlling the magnitude and direction of an external magnetic field. However, for micro-robots, these methods in general are only applicable for moving and drilling operations, but not for the undertaking of various missions. In this paper, we propose a new micro-robot concept, which uses wireless power transfer to deliver the propulsion force and electric power simultaneously. The mechanism of Lorentz force generation and the coil design methodologies are explained, and validation of the proposed propulsion system for a micro-robot is discussed thorough a simulation and with actual measurements with up-scaled test vehicles.

  18. Kalman Filtered Bio Heat Transfer Model Based Self-adaptive Hybrid Magnetic Resonance Thermometry.

    PubMed

    Zhang, Yuxin; Chen, Shuo; Deng, Kexin; Chen, Bingyao; Wei, Xing; Yang, Jiafei; Wang, Shi; Ying, Kui

    2017-01-01

    To develop a self-adaptive and fast thermometry method by combining the original hybrid magnetic resonance thermometry method and the bio heat transfer equation (BHTE) model. The proposed Kalman filtered Bio Heat Transfer Model Based Self-adaptive Hybrid Magnetic Resonance Thermometry, abbreviated as KalBHT hybrid method, introduced the BHTE model to synthesize a window on the regularization term of the hybrid algorithm, which leads to a self-adaptive regularization both spatially and temporally with change of temperature. Further, to decrease the sensitivity to accuracy of the BHTE model, Kalman filter is utilized to update the window at each iteration time. To investigate the effect of the proposed model, computer heating simulation, phantom microwave heating experiment and dynamic in-vivo model validation of liver and thoracic tumor were conducted in this study. The heating simulation indicates that the KalBHT hybrid algorithm achieves more accurate results without adjusting λ to a proper value in comparison to the hybrid algorithm. The results of the phantom heating experiment illustrate that the proposed model is able to follow temperature changes in the presence of motion and the temperature estimated also shows less noise in the background and surrounding the hot spot. The dynamic in-vivo model validation with heating simulation demonstrates that the proposed model has a higher convergence rate, more robustness to susceptibility problem surrounding the hot spot and more accuracy of temperature estimation. In the healthy liver experiment with heating simulation, the RMSE of the hot spot of the proposed model is reduced to about 50% compared to the RMSE of the original hybrid model and the convergence time becomes only about one fifth of the hybrid model. The proposed model is able to improve the accuracy of the original hybrid algorithm and accelerate the convergence rate of MR temperature estimation.

  19. Safety and Efficacy of Gadobutrol for Contrast-enhanced Magnetic Resonance Imaging of the Central Nervous System: Results from a Multicenter, Double-blind, Randomized, Comparator Study

    PubMed Central

    Gutierrez, Juan E; Rosenberg, Martin; Seemann, Jörg; Breuer, Josy; Haverstock, Daniel; Agris, Jacob; Balzer, Thomas; Anzalone, Nicoletta

    2015-01-01

    PURPOSE Contrast-enhanced magnetic resonance imaging (MRI) of the central nervous system (CNS) with gadolinium-based contrast agents (GBCAs) is standard of care for CNS imaging and diagnosis because of the visualization of lesions that cause blood–brain barrier breakdown. Gadobutrol is a macrocyclic GBCA with high concentration and high relaxivity. The objective of this study was to compare the safety and efficacy of gadobutrol 1.0 M vs unenhanced imaging and vs the approved macrocyclic agent gadoteridol 0.5 M at a dose of 0.1 mmol/kg bodyweight. MATERIALS AND METHODS Prospective, multicenter, double-blind, crossover trial in patients who underwent unenhanced MRI followed by enhanced imaging with gadobutrol or gadoteridol. Three blinded readers assessed the magnetic resonance images. The primary efficacy variables included number of lesions detected, degree of lesion contrast-enhancement, lesion border delineation, and lesion internal morphology. RESULTS Of the 402 treated patients, 390 patients received study drugs. Lesion contrast-enhancement, lesion border delineation, and lesion internal morphology were superior for combined unenhanced/gadobutrol-enhanced imaging vs unenhanced imaging (P < 0.0001 for all). Compared with gadoteridol, gadobutrol was non-inferior for all primary variables and superior for lesion contrast-enhancement, as well as sensitivity and accuracy for detection of malignant disease. The percentage of patients with at least one drug-related adverse event was similar for gadobutrol (10.0%) and gadoteridol (9.7%). CONCLUSION Gadobutrol is an effective and well-tolerated macrocyclic contrast agent for MRI of the CNS. Gadobutrol demonstrates greater contrast-enhancement and improved sensitivity and accuracy for detection of malignant disease than gadoteridol, likely because of its higher relaxivity. PMID:25922578

  20. Effects of phase transfer ligands on monodisperse iron oxide magnetic nanoparticles.

    PubMed

    Palma, Susana I C J; Marciello, Marzia; Carvalho, Alexandra; Veintemillas-Verdaguer, Sabino; Morales, Maria del Puerto; Roque, Ana C A

    2015-01-01

    Oleic acid coated iron oxide nanoparticles synthesized by thermal decomposition in organic medium are highly monodisperse but at the same time are unsuitable for biological applications. Ligand-exchange reactions are useful to make their surface hydrophilic. However, these could alter some structural and magnetic properties of the modified particles. Here we present a comprehensive study and comparison of the effects of employing either citric acid (CA) or meso-2,3-dimercaptosuccinic acid (DMSA) ligand-exchange protocols for phase transfer of monodisperse hydrophobic iron oxide nanoparticles produced by thermal decomposition of Fe(acac)3 in benzyl ether. We show the excellent hydrodynamic size distribution and colloidal stability of the hydrophilic particles obtained by the two protocols and confirm that there is a certain degree of oxidation caused by the ligand-exchange. CA revealed to be more aggressive towards the iron oxide surface than DMSA and greatly reduced the saturation magnetization values and initial susceptibility of the resulting particles compared to the native ones. Besides being milder and more straightforward to perform, the DMSA ligand exchange protocol produces MNP chemically more versatile for further functionalization possibilities. This versatility is shown through the covalent linkage of gum Arabic onto MNP-DMSA using carboxyl and thiol based chemical routes and yielding particles with comparable properties.

  1. Enhancing the spin transfer torque in magnetic tunnel junctions by ac modulation

    NASA Astrophysics Data System (ADS)

    Chen, Xiaobin; Zhou, Chenyi; Zhang, Zhaohui; Chen, Jingzhe; Zheng, Xiaohong; Zhang, Lei; Hu, Can-Ming; Guo, Hong

    2017-03-01

    The phenomenon of spin transfer torque (STT) has attracted a great deal of interest due to its promising prospects in practical spintronic devices. In this paper, we report a theoretical investigation of STT in a noncollinear magnetic tunnel junction under ac modulation based on the nonequilibrium Green's-function formalism, and we derive a closed formulation for predicting the time-averaged STT. Using this formulation, the ac STT of a carbon-nanotube-based magnetic tunnel junction is analyzed. Under ac modulation, the low-bias linear (quadratic) dependence of the in-plane (out-of-plane) torque on bias still holds, and the sinθ dependence on the noncollinear angle is maintained. By photon-assisted tunneling, the bias-induced components of the in-plane and out-of-plane torques can be enhanced significantly, about 12 and 75 times, respectively. Our analysis reveals the condition for achieving optimized STT enhancement and suggests that ac modulation is a very effective way for electrical manipulation of STT.

  2. Charge transfer of He2 + with H in a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Lei; Zou, Shi-Yang; He, Bin; Wang, Jian-Guo

    2015-09-01

    By solving a time-dependent Schrödinger equation (TDSE), we studied the electron capture process in the He2 + +H collision system under a strong magnetic field in a wide projectile energy range. The strong enhancement of the total charge transfer cross section is observed for the projectile energy below 2.0 keV/u. With the projectile energy increasing, the cross sections will reduce a little and then increase again, compared with those in the field-free case. The cross sections to the states with different magnetic quantum numbers are presented and analyzed where the influence due to Zeeman splitting is obviously found, especially in the low projectile energy region. The comparison with other models is made and the tendency of the cross section varying with the projectile energy is found closer to that from other close coupling models. Project supported by the National Natural Science Foundation of China (Grants Nos. 11104017, 11025417, 11275029, and 11474032), the National Basic Research Programm of China (Grant No. 2013CB922200), and the Foundation for the Development of Science and Technology of the Chinese Academy of Engineering Physics (Grant Nos. 2014B09036 and 2013A0102005).

  3. Correlation between charge transfer and exchange coupling in carbon-based magnetic materials

    SciTech Connect

    Nguyen, Anh Tuan; Nguyen, Van Thanh; Nguyen, Huy Sinh; Pham, Thi Tuan Anh; Do, Viet Thang; Dam, Hieu Chi

    2015-10-15

    Several forms of carbon-based magnetic materials, i.e. single radicals, radical dimers, and alternating stacks of radicals and diamagnetic molecules, have been investigated using density-functional theory with dispersion correction and full geometry optimization. Our calculated results demonstrate that the C{sub 31}H{sub 15} (R{sub 4}) radical has a spin of ½. However, in its [R{sub 4}]{sub 2} dimer structure, the net spin becomes zero due to antiferromagnetic spin-exchange between radicals. To avoid antiferromagnetic spin-exchange of identical face-to-face radicals, eight alternating stacks, R{sub 4}/D{sub 2m}/R{sub 4} (with m = 3-10), were designed. Our calculated results show that charge transfer (Δn) between R{sub 4} radicals and the diamagnetic molecule D{sub 2m} occurs with a mechanism of spin exchange (J) in stacks. The more electrons that transfer from R{sub 4} to D{sub 2m}, the stronger the ferromagnetic spin-exchange in stacks. In addition, our calculated results show that Δn can be tailored by adjusting the electron affinity (E{sub a}) of D{sub 2m}. The correlation between Δn, E{sub a}, m, and J is discussed. These results give some hints for the design of new ferromagnetic carbon-based materials.

  4. Pulsatile flow of blood and heat transfer with variable viscosity under magnetic and vibration environment

    NASA Astrophysics Data System (ADS)

    Shit, G. C.; Majee, Sreeparna

    2015-08-01

    Unsteady flow of blood and heat transfer characteristics in the neighborhood of an overlapping constricted artery have been investigated in the presence of magnetic field and whole body vibration. The laminar flow of blood is taken to be incompressible and Newtonian fluid with variable viscosity depending upon temperature with an aim to provide resemblance to the real situation in the physiological system. The unsteady flow mechanism in the constricted artery is subjected to a pulsatile pressure gradient arising from systematic functioning of the heart and from the periodic body acceleration. The numerical computation has been performed using finite difference method by developing Crank-Nicolson scheme. The results show that the volumetric flow rate, skin-friction and the rate of heat transfer at the wall are significantly altered in the downstream of the constricted region. The axial velocity profile, temperature and flow rate increases with increase in temperature dependent viscosity, while the opposite trend is observed in the case of skin-friction and flow impedance.

  5. Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy.

    PubMed

    Dutz, Silvio; Hergt, Rudolf

    2013-12-01

    In this review article we present basic principles of magnetically induced heat generation of magnetic nanoparticles for application in magnetic particle hyperthermia. After explanation of heating mechanisms, the role of particle-particle as well as particle-tissue interactions is discussed with respect to achievable heating power of the particles inside the tumour. On the basis of heat transfer theory at the micro-scale, the balance between generated and dissipated heat inside the tumour and the resulting damaging effects for biological tissue is examined. The heating behaviour as a function of tumour size is examined in combination with feasible field strength and frequency. Numerical calculations and experimental investigations are used to show the lower tumour size limit for tumour heating to therapeutically suitable temperatures. In summary, this article illuminates practical aspects, limitations, and the state of the art for the application of magnetic heating in magnetic particle hyperthermia as thermal treatment of small tumours.

  6. Continuous flow Overhauser dynamic nuclear polarization of water in the fringe field of a clinical magnetic resonance imaging system for authentic image contrast

    PubMed Central

    Lingwood, Mark D.; Siaw, Ting Ann; Sailasuta, Napapon; Ross, Brian D.; Bhattacharya, Pratip; Han, Songi

    2016-01-01

    We describe and demonstrate a system to generate hyperpolarized water in the 0.35 T fringe field of a clinical 1.5 T whole-body magnetic resonance imaging (MRI) magnet. Once generated, the hyperpolarized water is quickly and continuously transferred from the 0.35 T fringe to the 1.5 T center field of the same magnet for image acquisition using standard MRI equipment. The hyperpolarization is based on Overhauser dynamic nuclear polarization (DNP), which effectively and quickly transfers the higher spin polarization of free radicals to nuclear spins at ambient temperatures. We visualize the dispersion of hyperpolarized water as it flows through water-saturated systems by utilizing an observed −15 fold DNP signal enhancement with respect to the unenhanced 1H MRI signal of water at 1.5 T. The experimental DNP apparatus presented here is readily portable and can be brought to and used with any conventional unshielded MRI system. A new method of immobilizing radicals to gel beads via polyelectrolyte linker arms is described, which led to superior flow Overhauser DNP performance compared to previously presented gels. We discuss the general applicability of Overhauser DNP hyperpolarization of water and aqueous solutions in the fringe field of commercially available magnets with central fields up to 4.7 Tesla. PMID:20541445

  7. Ruthenium supported on magnetic nanoparticles: An efficient and recoverable catalyst for hydrogenation of alkynes and transfer hydrogenation of carbonyl compounds

    EPA Science Inventory

    Ruthenium supported on surface modified magnetic nanoparticles (NiFe2O4) has been successfully synthesized and applied for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The ...

  8. An auto-tuning method for focusing and astigmatism correction in HAADF-STEM, based on the image contrast transfer function.

    PubMed

    Baba, N; Terayama, K; Yoshimizu, T; Ichise, N; Tanaka, N

    2001-01-01

    An auto-tuning method for high-angle annular detector dark field scanning transmission electron microscopy (HAADF-STEM) is proposed which corrects the defocus to the optimum Scherzer focus and compensates the astigmatism. Because the method is based on the image contrast transfer function formulated for the HAADF-STEM, the defocus and the astigmatism are accurately measured from input of two different defocus images. The method is designed to work independent of object function in the linear imaging model by analysing the spectral ratio between two Fourier spectra of their images, which is useful for cases where the spectrum of object function is not uniformly spread out over the reciprocal space. The method was preliminarily tested in a Hitachi HD-2000 STEM, and successful results of the auto-tunings from the viewpoint of verification of the algorithm were obtained using general specimens of Au fine particles and a thin section of a semiconductor device.

  9. Superparamagnetic maghemite nanoparticles from solid-state synthesis - their functionalization towards peroral MRI contrast agent and magnetic carrier for trypsin immobilization.

    PubMed

    Kluchova, Katerina; Zboril, Radek; Tucek, Jiri; Pecova, Michaela; Zajoncova, Ludmila; Safarik, Ivo; Mashlan, Miroslav; Markova, Ingrid; Jancik, Dalibor; Sebela, Marek; Bartonkova, Helena; Bellesi, Vassiliki; Novak, Pavel; Petridis, Dimitris

    2009-05-01

    Nearly monodispersed superparamagnetic maghemite nanoparticles (15-20nm) were prepared by a one-step thermal decomposition of iron(II) acetate in air at 400 degrees C. The presented synthetic route is simple, cost effective and allows to prepare the high-quality superparamagnetic particles in a large scale. The as-prepared particles were exploited for the development of magnetic nanocomposites with the possible applicability in medicine and biochemistry. For the purposes of the MRI diagnostics, the maghemite particles were simply dispersed in the bentonite matrix. The resulting nanocomposite represents very effective and cheap oral negative contrast agent for MRI of the gastrointestinal tract and reveals excellent contrast properties, fully comparable with those obtained for commercial contrast material. The results of the clinical research of this maghemite-bentonite contrast agent for imaging of the small bowel are discussed. For biochemical applications, the primary functionalization of the prepared maghemite nanoparticles with chitosan was performed. In this way, a highly efficient magnetic carrier for protein immobilization was obtained as demonstrated by conjugating thermostable raffinose-modified trypsin (RMT) using glutaraldehyde. The covalent conjugation resulted in a further increase in trypsin thermostability (T(50)=61 degrees C) and elimination of its autolysis. Consequently, the immobilization of RMT allowed fast in-solution digestion of proteins and their identification by MALDI-TOF mass spectrometry.

  10. Poly(acrylic acid) Bridged Gadolinium Metal-Organic Framework-Gold Nanoparticle Composites as Contrast Agents for Computed Tomography and Magnetic Resonance Bimodal Imaging

    PubMed Central

    Tian, Chixia; Zhu, Liping; Lin, Feng; Boyes, Stephen G.

    2015-01-01

    Imaging contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT) have received significant attention in the development of techniques for early-stage cancer diagnosis. Gadolinium (Gd) (III), which has seven unpaired electrons and a large magnetic moment, can dramatically influence the water proton relaxation and hence exhibits excellent MRI contrast. On the other hand, gold (Au), which has a high atomic number and high x-ray attenuation coefficient, is an ideal contrast agent candidate for x-ray based CT imaging. Gd metal organic framework (MOF) nanoparticles with tunable size, high Gd (III) loading and multivalency can potentially overcome the limitations of clinically utilized Gd chelate contrast agents. In this work, we report for the first time the integration of GdMOF nanoparticles with gold nanoparticles (AuNPs) for the preparation of a MRI/CT bimodal imaging agent. Highly stable hybrid GdMOF/AuNPs composites have been prepared by using poly(acrylic acid) as a bridge between the GdMOF nanoparticles and AuNPs. The hybrid nanocomposites were then evaluated in MRI and CT imaging. The results revealed high longitudinal relaxivity in MRI and excellent CT imaging performance. Therefore, these GdMOF/AuNPs hybrid nanocomposites potentially provide a new platform for the development of multi-modal imaging probes. PMID:26147906

  11. PEGylated NaHoF4 nanoparticles as contrast agents for both X-ray computed tomography and ultra-high field magnetic resonance imaging.

    PubMed

    Ni, Dalong; Zhang, Jiawen; Bu, Wenbo; Zhang, Chen; Yao, Zhenwei; Xing, Huaiyong; Wang, Jing; Duan, Fei; Liu, Yanyan; Fan, Wenpei; Feng, Xiaoyuan; Shi, Jianlin

    2016-01-01

    It is well-known that multimodal imaging can integrate the advantages of different imaging modalities by overcoming their individual limitations. As ultra-high field magnetic resonance imaging (MRI) will be inevitably used in future MRI/X-ray computed tomography (CT) scanner, it is highly expected to develop high-performance nano-contrast agents for ultra-high field MR and CT dual-modality imaging, which has not been reported yet. Moreover, specific behavior of nano-contrast agents for ultra-high field MRI is a challenging work and still remains unknown. Herein, a novel type of NaHoF4 nanoparticles (NPs) with varied particle sizes were synthesized and explored as high-performance dual-modality contrast agents for ultra-high field MR and CT imaging. The specific X-ray absorption and MR relaxivity enhancements with varied nanoparticle diameters (3 nm, 7 nm, 13 nm and 29 nm) under different magnetic field (1.5/3.0/7.0 T) are investigated. Based on experimental results and theoretical analysis, the Curie and dipolar relaxation mechanisms of NaHoF4 NPs are firstly separated. Our results will greatly promote the future medical translational development of the NaHoF4 nano-contrast agents for ultra-high field MR/CT dual-modality imaging applications.

  12. Indirect magnetic resonance lymphography of the head and neck of dogs using Gadofluorine M and a conventional gadolinium contrast agent: a pilot study.

    PubMed

    Mayer, Monique N; Kraft, Susan L; Bucy, Daniel S; Waldner, Cheryl L; Elliot, Kirsten M; Wiebe, Sheldon

    2012-10-01

    The purpose of this pilot study was to evaluate lymph node enhancement with an indirect magnetic resonance (MR) lymphography technique using 2 different contrast agents in the head and neck region of healthy dogs. Five dogs were imaged at various times after intradermal injection of gadoversetamide and Gadofluorine M (minimum of 1 week apart) in the right and left mandibular, temporal, and lateral neck regions. We observed consistent progressive enhancement with time in the mandibular, retropharyngeal, and superficial cervical lymph nodes. The node enhancement was comparable for both contrast agents. Contrast enhancement of the parotid lymph nodes was not seen. We conclude that this technique of indirect MR lymphography using either agent could be used to identify those lymph nodes at highest risk of metastatic disease in dogs with cancer, and to guide staging and treatment.

  13. Metal-containing components in medicinal plants. III. Manganese-containing components in Theae folium as oral magnetic resonance imaging contrast materials.

    PubMed

    Mino, Y; Yamada, K; Takeda, T; Nagasawa, O

    1996-12-01

    A manganese-containing component from the water-extract of Theae folium (green tea) was found to exert an augmentative effect in magnetic resonance imaging (MRI) contrast and may possibly be a manganese(II) complex with a pectin-like polysaccharide capable of shortening the spin-lattice relaxation time (T1) of water protons. Even though only the manganese(II) ion with S = 5/2 is active in T1-shortening ability, which should enhance contrast, complexation of this ion with the polysaccharide causes a marked increase in its activity. This manganese-containing pectin-like polysaccharides should prove useful as a low-toxic oral gastrointestinal contrast material in MRI.

  14. Functional imaging of the angiogenic switch in a transgenic mouse model of human breast cancer by dynamic contrast enhanced magnetic resonance imaging.

    PubMed

    Consolino, Lorena; Longo, Dario Livio; Dastrù, Walter; Cutrin, Juan Carlos; Dettori, Daniela; Lanzardo, Stefania; Oliviero, Salvatore; Cavallo, Federica; Aime, Silvio

    2016-07-15

    Tumour progression depends on several sequential events that include the microenvironment remodelling processes and the switch to the angiogenic phenotype, leading to new blood vessels recruitment. Non-invasive imaging techniques allow the monitoring of functional alterations in tumour vascularity and cellularity. The aim of this work was to detect functional changes in vascularisation and cellularity through Dynamic Contrast Enhanced (DCE) and Diffusion Weighted (DW) Magnetic Resonance Imaging (MRI) modalities during breast cancer initiation and progression of a transgenic mouse model (BALB-neuT mice). Histological examination showed that BALB-neuT mammary glands undergo a slow neoplastic progression from simple hyperplasia to invasive carcinoma, still preserving normal parts of mammary glands. DCE-MRI results highlighted marked functional changes in terms of vessel permeability (K(trans) , volume transfer constant) and vascularisation (vp , vascular volume fraction) in BALB-neuT hyperplastic mammary glands if compared to BALB/c ones. When breast tissue progressed from simple to atypical hyperplasia, a strong increase in DCE-MRI biomarkers was observed in BALB-neuT in comparison to BALB/c mice (K(trans)  = 5.3 ± 0.7E-4 and 3.1 ± 0.5E-4; vp  = 7.4 ± 0.8E-2 and 4.7 ± 0.6E-2 for BALB-neuT and BALB/c, respectively) that remained constant during the successive steps of the neoplastic transformation. Consistent with DCE-MRI observations, microvessel counting revealed a significant increase in tumour vessels. Our study showed that DCE-MRI estimates can accurately detect the angiogenic switch at early step of breast cancer carcinogenesis. These results support the view that this imaging approach is an excellent tool to characterize microvasculature changes, despite only small portions of the mammary glands developed neoplastic lesions in a transgenic mouse model.

  15. A trench study to assess transfer of pesticides in subsurface lateral flow for a soil with contrasting texture on a sloping vineyard in Beaujolais.

    PubMed

    Peyrard, X; Liger, L; Guillemain, C; Gouy, V

    2016-01-01

    Subsurface lateral flow in both texture-contrast soils and catchments with shallow bedrock is suspected to be a non-point source of contamination of watercourses by pesticides used in agriculture. As a case study, the north of the Beaujolais region (eastern France) provides a favorable environment for such contamination due to its agro-pedo-climatic conditions. Environments seen in the Beaujolais region include intense viticulture, permeable and shallow soils, steep hillslopes, and storms that occur during the periods of pesticide application. Watercourse contamination by pesticides has been widely observed in this region, and offsite pesticide transport by subsurface lateral flow is suspected to be involved in diffuse and chronic presence of pesticides in surface water. In order to confirm and quantify the potential role of such processes in pesticide transfer, an automated trench system has been designed. The trench was set up on a steep farmed hillslope in a texture-contrast soil. It was equipped with a tipping bucket flow meter and an automatic sampler to monitor pesticide concentrations in lateral flow at fine resolution, by means of a flow-dependent sampling strategy. Four pesticides currently used in vine growing were studied to provide a range of mobility properties: one insecticide (chlorpyrifos-methyl) and three fungicides (spiroxamine, tebuconazole, and dimethomorph). With this system, it was possible to study pesticide concentration dynamics in the subsurface lateral flow, generated by substantial rainfall events following pesticide applications. The experimental design ascertained to be a suitable method in which to monitor subsurface lateral flow and related transfer of pesticides.

  16. Spectral embedding based active contour (SEAC) for lesion segmentation on breast dynamic contrast enhanced magnetic resonance imaging

    PubMed Central

    Agner, Shannon C.; Xu, Jun; Madabhushi, Anant

    2013-01-01

    Purpose: Segmentation of breast lesions on dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) is the first step in lesion diagnosis in a computer-aided diagnosis framework. Because manual segmentation of such lesions is both time consuming and highly susceptible to human error and issues of reproducibility, an automated lesion segmentation method is highly desirable. Traditional automated image segmentation methods such as boundary-based active contour (AC) models require a strong gradient at the lesion boundary. Even when region-based terms are introduced to an AC model, grayscale image intensities often do not allow for clear definition of foreground and background region statistics. Thus, there is a need to find alternative image representations that might provide (1) strong gradients at the margin of the object of interest (OOI); and (2) larger separation between intensity distributions and region statistics for the foreground and background, which are necessary to halt evolution of the AC model upon reaching the border of the OOI. Methods: In this paper, the authors introduce a spectral embedding (SE) based AC (SEAC) for lesion segmentation on breast DCE-MRI. SE, a nonlinear dimensionality reduction scheme, is applied to the DCE time series in a voxelwise fashion to reduce several time point images to a single parametric image where every voxel is characterized by the three dominant eigenvectors. This parametric eigenvector image (PrEIm) representation allows for better capture of image region statistics and stronger gradients for use with a hybrid AC model, which is driven by both boundary and region information. They compare SEAC to ACs that employ fuzzy c-means (FCM) and principal component analysis (PCA) as alternative image representations. Segmentation performance was evaluated by boundary and region metrics as well as comparing lesion classification using morphological features from SEAC, PCA+AC, and FCM+AC. Results: On a cohort of 50

  17. Catechin tuned magnetism of Gd-doped orthovanadate through morphology as T1-T2 MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Vairapperumal, Tamilmani; Saraswathy, Ariya; Ramapurath, Jayasree S.; Kalarical Janardhanan, Sreeram; Balachandran Unni, Nair

    2016-10-01

    Tetragonal (t)-LaVO4 has turned out to be a potential host for luminescent materials. Synthesis of t-LaVO4 till date has been based on chelating effect of EDTA making it not ideal for bioimaging applications. An alternative was proposed by us through the use of catechin. In recent times there is interest for new MRI contrast agents that can through appropriate doping function both as MRI contrast and optical/upconversion materials. It is generally believed that under appropriate doping, t-LaVO4 would be a better upconversion material than monoclinic (m)-LaVO4. Based on these postulations, this work explores the use of gadolinium doped t-LaVO4 as an MRI contrast agent. From literature, gadolinium oxide is a good T1 contrast agent. Through this work, using catechin as a template for the synthesis of Gd doped t-LaVO4, we demonstrate the possible use as a T1 contrast agent. Interestingly, as the catechin concentration changes, morphology changes from nanorods to square nanoplates and spheres. In this process, a switch from T1 to T2 contrast agent was also observed. Under optimal concentration of catechin, with a rod shaped Gd doped t-LaVO4 an r2/r1 value of 21.30 was observed. Similarly, with a spherical shape had an r2/r1 value of 1.48 was observed.

  18. Catechin tuned magnetism of Gd-doped orthovanadate through morphology as T1-T2 MRI contrast agents

    PubMed Central

    Vairapperumal, Tamilmani; Saraswathy, Ariya; Ramapurath, Jayasree S.; Kalarical Janardhanan, Sreeram; Balachandran Unni, Nair

    2016-01-01

    Tetragonal (t)-LaVO4 has turned out to be a potential host for luminescent materials. Synthesis of t-LaVO4 till date has been based on chelating effect of EDTA making it not ideal for bioimaging applications. An alternative was proposed by us through the use of catechin. In recent times there is interest for new MRI contrast agents that can through appropriate doping function both as MRI contrast and optical/upconversion materials. It is generally believed that under appropriate doping, t-LaVO4 would be a better upconversion material than monoclinic (m)-LaVO4. Based on these postulations, this work explores the use of gadolinium doped t-LaVO4 as an MRI contrast agent. From literature, gadolinium oxide is a good T1 contrast agent. Through this work, using catechin as a template for the synthesis of Gd doped t-LaVO4, we demonstrate the possible use as a T1 contrast agent. Interestingly, as the catechin concentration changes, morphology changes from nanorods to square nanoplates and spheres. In this process, a switch from T1 to T2 contrast agent was also observed. Under optimal concentration of catechin, with a rod shaped Gd doped t-LaVO4 an r2/r1 value of 21.30 was observed. Similarly, with a spherical shape had an r2/r1 value of 1.48 was observed. PMID:27752038

  19. Current-induced switching of magnetic tunnel junctions: Effects of field-like spin-transfer torque, pinned-layer magnetization orientation, and temperature

    SciTech Connect

    Tiwari, R. K.; Jhon, M. H.; Ng, N.; Gan, C. K.; Srolovitz, D. J.

    2014-01-13

    We study current-induced switching in magnetic tunnel junctions in the presence of a field-like spin-transfer torque and titled pinned-layer magnetization in the high current limit at finite temperature. We consider both the Slonczewski and field-like torques with coefficients a{sub J} and b{sub J}, respectively. At finite temperatures, σ=b{sub J}/a{sub J}=±1 leads to a smaller mean switching time compared that with σ=0. The reduction of switching time in the presence of the field-like term is due to the alignment effect (for σ>0) and the initial torque effect.

  20. Regional and voxel-wise comparisons of blood flow measurements between dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) and arterial spin labeling (ASL) in brain tumors.

    PubMed

    White, Carissa M; Pope, Whitney B; Zaw, Taryar; Qiao, Joe; Naeini, Kourosh M; Lai, Albert; Nghiemphu, Phioanh L; Wang, J J; Cloughesy, Timothy F; Ellingson, Benjamin M

    2014-01-01

    The objective of the current study was to evaluate the regional and voxel-wise correlation between dynamic susceptibility contrast (DSC) and arterial spin labeling (ASL) perfusion magnetic resonance imaging (MRI) measurement of cerebral blood flow (CBF) in patients with brain tumors. Thirty patients with histologically verified brain tumors were evaluated in the current study. DSC-MRI was performed by first using a preload dose of gadolinium contrast, then collecting a dynamic image acquisition during a bolus of contrast, followed by posthoc contrast agent leakage correction. Pseudocontinuous ASL was collected using 30 pairs of tag and control acquisition using a 3-dimensional gradient-echo spin-echo (GRASE) acquisition. All images were registered to a high-resolution anatomical atlas. Average CBF measurements within regions of contrast-enhancement and T2 hyperintensity were evaluated between the two modalities. Additionally, voxel-wise correlation between CBF measurements obtained with DSC and ASL were assessed. Results demonstrated a positive linear correlation between DSC and ASL measurements of CBF when regional average values were compared; however, a statistically significant voxel-wise correlation was only observed in around 30-40% of patients. These results suggest DSC and ASL may provide regionally similar, but spatially different measurements of CBF.

  1. 3-D joint inversion of the magnetotelluric phase tensor and vertical magnetic transfer functions

    NASA Astrophysics Data System (ADS)

    Tietze, Kristina; Ritter, Oliver; Egbert, Gary D.

    2015-11-01

    With advancing computational resources, 3-D inversion techniques have become feasible in recent years and are now a more widely used tool for magnetotelluric (MT) data interpretation. Galvanic distortion caused by small-scale near-surface inhomogeneities remains an obstacle for 3-D MT inversion which so far has experienced little attention. If not considered properly, the effect on 3-D inversion can be immense and result in erroneous subsurface models and interpretations. To tackle the problem we implemented inversion of the distortion-free phase tensor into the ModEM inversion package. The dimensionless phase tensor components describe only variations of the conductivity structure. When inverting these data, particular care has to be taken of the conductivity structure in the a priori model, which provides the reference frame when transferring the information from phase tensors into absolute conductivity values. Our results obtained with synthetic data show that phase tensor inversion can recover the regional conductivity structure in presence of galvanic distortion if the a priori model provides a reasonable assumption for the regional resistivity average. Joint inversion of phase tensor data and vertical magnetic transfer functions improves recovery of the absolute resistivity structure and is less dependent on the prior model. We also used phase tensor inversion for a data set of more than 250 MT sites from the central San Andreas fault, California, where a number of sites showed significant galvanic distortion. We find the regional structure of the phase tensor inversion results compatible with previously obtained models from impedance inversion. In the vicinity of distorted sites, phase tensor inversion models exhibit more homogeneous/smoother conductivity structures.

  2. Dynamic blocked transfer stiffness method of characterizing the magnetic field and frequency dependent dynamic viscoelastic properties of MRE

    NASA Astrophysics Data System (ADS)

    Poojary, Umanath R.; Hegde, Sriharsha; Gangadharan, K. V.

    2016-11-01

    Magneto rheological elastomer (MRE) is a potential resilient element for the semi active vibration isolator. MRE based isolators adapt to different frequency of vibrations arising from the source to isolate the structure over wider frequency range. The performance of MRE isolator depends on the magnetic field and frequency dependent characteristics of MRE. Present study is focused on experimentally evaluating the dynamic stiffness and loss factor of MRE through dynamic blocked transfer stiffness method. The dynamic stiffness variations of MRE exhibit strong magnetic field and mild frequency dependency. Enhancements in dynamic stiffness saturate with the increase in magnetic field and the frequency. The inconsistent variations of loss factor with the magnetic field substantiate the inability of MRE to have independent control over its damping characteristics.

  3. Eu(3+) doped α-sodium gadolinium fluoride luminomagnetic nanophosphor as a bimodal nanoprobe for high-contrast in vitro bioimaging and external magnetic field tracking applications.

    PubMed

    Singh, Satbir; Kumar, Pawan; Kaipparettu, Benny Abraham; Gupta, Bipin Kumar

    Herein, we introduce a novel strategy for the synthesis of Eu(3+) doped α-sodium gadolinium fluoride (α-NaGd0.88F4:Eu0.12(3+)) based luminomagnetic nanophosphors using hydrothermal route. The synthesized nanophosphor has exceptional luminescent and paramagnetic properties in a single host lattice, which is highly desirable for biomedical applications. This highly luminescent nanophosphor with an average particle size ∼ 5±3 nm enables high-contrast fluorescent imaging with decreased light scattering. In vitro cellular uptake is shown by fluorescent microscopy that envisages the characteristic hypersensitive red emission of Eu(3+) doped α-sodium gadolinium fluoride centered at 608 nm ((5)D0-(7)F2) upon 465 nm excitation wavelength. No apparent cytotoxicity is observed. Furthermore, time- resolved emission spectroscopy and SQUID magnetic measurements successfully demonstrate a photoluminescence decay time in microseconds and enhanced paramagnetic behavior respectively, which promises the applications of nanophosphors in biomedical studies. Hence, the obtained results strongly suggest that this nanophosphor could be potentially used as a bimodal nanoprobe for high-contrast in vitro bio-imaging of HeLa cells and external magnetic field tracking applications of luminomagnetic nanophosphors using permanent magnet.

  4. State diagram of a perpendicular magnetic tunnel junction driven by spin transfer torque: A power dissipation approach

    NASA Astrophysics Data System (ADS)

    Lavanant, M.; Petit-Watelot, S.; Kent, A. D.; Mangin, S.

    2017-04-01

    The state diagram of a magnetic tunnel junction with perpendicularly magnetized electrodes in the presence of spin-transfer torques is computed in a macrospin approximation using a power dissipation model. Starting from the macrospin's energy we determine the stability of energy extremum in terms of power received and dissipated, allowing the consideration of non-conservative torques associated with spin transfer and damping. The results are shown to be in agreement with those obtained by direct integration of the Landau-Lifshitz-Gilbert-Slonczewski equation. However, the power dissipation model approach is faster and shows the reason certain magnetic states are stable, such as states that are energy maxima but are stabilized by spin transfer torque. Breaking the axial system, such as by a tilted applied field or tilted anisotropy, is shown to dramatically affect the state diagrams. Finally, the influence of a higher order uniaxial anisotropy that can stabilize a canted magnetization state is considered and the results are compared to experimental data.

  5. Optimization of wireless power transfer via magnetic resonance in different media

    NASA Astrophysics Data System (ADS)

    Jonah, Olutola

    A wide range of non-destructive testing (NDT) methods for the monitoring the health of concrete structure has been studied for several years. The recent rapid evolution of wireless sensor network (WSN) technologies has resulted in the development of sensing elements that can be embedded in concrete, to monitor the health of infrastructure, collect and report valuable related data. The monitoring system can potentially decrease the high installation time and reduce maintenance cost associated with wired monitoring systems. The monitoring sensors need to operate for a long period of time, but sensors batteries have a finite life span. Hence, novel wireless powering methods must be devised. The optimization of wireless power transfer via Strongly Coupled Magnetic Resonance (SCMR) to sensors embedded in concrete is studied here. First, we analytically derive the optimal geometric parameters for transmission of power in the air. This specifically leads to the identification of the local and global optimization parameters and conditions, it was validated through electromagnetic simulations. Second, the optimum conditions were employed in the model for propagation of energy through plain and reinforced concrete at different humidity conditions, and frequencies with extended Debye's model. This analysis leads to the conclusion that SCMR can be used to efficiently power sensors in plain and reinforced concrete at different humidity levels and depth, also validated through electromagnetic simulations. The optimization of wireless power transmission via SMCR to Wearable and Implantable Medical Device (WIMD) are also explored. The optimum conditions from the analytics were used in the model for propagation of energy through different human tissues. This analysis shows that SCMR can be used to efficiently transfer power to sensors in human tissue without overheating through electromagnetic simulations, as excessive power might result in overheating of the tissue. Standard SCMR

  6. Towards An Advanced Graphene-Based Magnetic Resonance Imaging Contrast Agent: Sub-acute Toxicity and Efficacy Studies in Small Animals

    PubMed Central

    Kanakia, Shruti; Toussaint, Jimmy; Hoang, Dung Minh; Mullick Chowdhury, Sayan; Lee, Stephen; Shroyer, Kenneth R.; Moore, William; Wadghiri, Youssef Z.; Sitharaman, Balaji

    2015-01-01

    Current clinical Gd3+-based T1 magnetic resonance imaging (MRI) contrast agents (CAs) are suboptimal or unsuitable, especially at higher magnetic fields (>1.5 Tesla) for advanced MRI applications such as blood pool, cellular and molecular imaging. Herein, towards the goal of developing a safe and more efficacious high field T1 MRI CA for these applications, we report the sub-acute toxicity and contrast enhancing capabilities of a novel nanoparticle MRI CA comprising of manganese (Mn2+) intercalated graphene nanoparticles functionalized with dextran (hereafter, Mangradex) in rodents. Sub-acute toxicology performed on rats intravenously injected with Mangradex at 1, 50 or 100 mg/kg dosages 3 times per week for three weeks indicated that dosages ≤50 mg/kg could serve as potential diagnostic doses. Whole body 7 Tesla MRI performed on mice injected with Mangradex at a potential diagnostic dose (25 mg/kg or 455 nanomoles Mn2+/kg; ~2 orders of magnitude lower than the paramagnetic ion concentration in a typical clinical dose) showed persistent (up to at least 2 hours) contrast enhancement in the vascular branches (Mn2+ concentration in blood at steady state = 300 ppb, per voxel = 45 femtomoles). The results lay the foundations for further development of Mangradex as a vascular and cellular/ molecular MRI probe. PMID:26625867

  7. A longitudinal study of patients with cirrhosis treated with L-ornithine L-aspartate, examined with magnetization transfer, diffusion-weighted imaging and magnetic resonance spectroscopy.

    PubMed

    Grover, Vijay P B; McPhail, Mark J W; Wylezinska-Arridge, Marzena; Crossey, Mary M E; Fitzpatrick, Julie A; Southern, Louise; Saxby, Brian K; Cook, Nicola A; Cox, I Jane; Waldman, Adam D; Dhanjal, Novraj S; Bak-Bol, Aluel; Williams, Roger; Morgan, Marsha Y; Taylor-Robinson, Simon D

    2017-02-01

    The presence of overt hepatic encephalopathy (HE) is associated with structural, metabolic and functional changes in the brain discernible by use of a variety of magnetic resonance (MR) techniques. The changes in patients with minimal HE are less well documented. Twenty-two patients with well-compensated cirrhosis, seven of whom had minimal HE, were examined with cerebral 3 Tesla MR techniques, including T1- and T2-weighted, magnetization transfer and diffusion-weighted imaging and proton magnetic resonance spectroscopy sequences. Studies were repeated after a 4-week course of oral L-ornithine L-aspartate (LOLA). Results were compared with data obtained from 22 aged-matched healthy controls. There was no difference in mean total brain volume between patients and controls at baseline. Mean cerebral magnetization transfer ratios were significantly reduced in the globus pallidus and thalamus in the patients with cirrhosis irrespective of neuropsychiatric status; the mean ratio was significantly reduced in the frontal white matter in patients with minimal HE compared with healthy controls but not when compared with their unimpaired counterparts. There were no significant differences in either the median apparent diffusion coefficients or the mean fractional anisotropy, calculated from the diffusion-weighted imaging, or in the mean basal ganglia metabolite ratios between patients and controls. Psychometric performance improved in 50 % of patients with minimal HE following LOLA, but no significant changes were observed in brain volumes, cerebral magnetization transfer ratios, the diffusion weighted imaging variables or the cerebral metabolite ratios. MR variables, as applied in this study, do not identify patients with minimal HE, nor do they reflect changes in psychometric performance following LOLA.

  8. A rapid approach for quantitative magnetization transfer imaging in thigh muscles using the pulsed saturation method.

    PubMed

    Li, Ke; Dortch, Richard D; Kroop, Susan F; Huston, Joseph W; Gochberg, Daniel F; Park, Jane H; Damon, Bruce M

    2015-07-01

    Quantitative magnetization transfer (qMT) imaging in skeletal muscle may be confounded by intramuscular adipose components, low signal-to-noise ratios (SNRs), and voluntary and involuntary motion artifacts. Collectively, these issues could create bias and error in parameter fitting. In this study, technical considerations related to these factors were systematically investigated, and solutions were proposed. First, numerical simulations indicate that the presence of an additional fat component significantly underestimates the pool size ratio (F). Therefore, fat-signal suppression (or water-selective excitation) is recommended for qMT imaging of skeletal muscle. Second, to minimize the effect of motion and muscle contraction artifacts in datasets collected with a conventional 14-point sampling scheme, a rapid two-parameter model was adapted from previous studies in the brain and spinal cord. The consecutive pair of sampling points with highest accuracy and precision for estimating F was determined with numerical simulations. Its performance with respect to SNR and incorrect parameter assumptions was systematically evaluated. QMT data fitting was performed in healthy control subjects and polymyositis patients, using both the two- and five-parameter models. The experimental results were consistent with the predictions from the numerical simulations. These data support the use of the two-parameter modeling approach for qMT imaging of skeletal muscle as a means to reduce total imaging time and/or permit additional signal averaging.

  9. Transverse Relaxation and Magnetization Transfer in Skeletal Muscle: Effect of pH

    PubMed Central

    Louie, Elizabeth A.; Gochberg, Daniel F.; Does, Mark D.; Damon, Bruce M.

    2008-01-01

    Exercise increases the intracellular T2 (T2,i) of contracting muscles. The mechanism(s) for the T2,i increase have not been fully described, and may include increased intracellular free water and acidification. These changes may alter chemical exchange processes between intracellular free water and proteins. In this study, the hypotheses were tested that 1) pH changes T2,i by affecting the rate of magnetization transfer (MT) between free intracellular water and intracellular proteins and 2) the magnitude of the T2,i effect depends on acquisition mode (localized or non-localized) and echo spacing. Frog gastrocnemius muscles were excised and their intracellular pH was either kept at physiological pH (7.0) or modified to model exercising muscle (pH 6.5). The intracellular transverse relaxation rate (R2,i =1/T2,i) always decreased in the acidic muscles, but the changes were greater when measured using more rapid refocusing rates. The MT rate from the macromolecular proton pool to the free water proton pool, its reverse rate, and the spin-lattice relaxation rate of water decreased in acidic muscles. It is concluded that intracellular acidification alters the R2,i of muscle water in a refocusing rate-dependent manner and that the R2,i changes are correlated with changes in the MT rate between macromolecules and free intracellular water. PMID:19097244

  10. Lateral Domain Transfer In a Magnetic Nanowire With Perpendicular-to-Plane-Anisotropy For Three-Dimensional Memory Applications

    NASA Astrophysics Data System (ADS)

    Gokce, Aisha; Ozatay, Ozhan; Bulut, Bugra; Rainey, Coleman; Katine, Jordan A.; Hauet, Thomas; Giordano, Anna; Finocchio, Giovanni

    2015-03-01

    Spin torque driven magnetic domain transport has been of great interest with potential applications in three dimensional magnetic race track memory and also for domain wall logic. Here we report on experimental and micromagnetic modelling results of spin torque driven magnetic domain transport in CoNi/Pd multilayers with perpendicular-to-plane anisotropy patterned to form magnetic nanowires with double constrictions where domains can be moved with spin polarized current pulses in between constricted sites. The domain nucleation was triggered by joule heating in the presence of a magnetic tip a few nm above the surface which was otherwise in the remanent state. We show that with low or high amplitude nanosecond current pulses two different types of domain transfer behavior is possible: a replicated or partially displaced domain in the neighboring constriction, or an expansion of the domain into the spacer region and the neighboring pinning site. Micromagnetic modelling of the domain transport in such devices suggests that in addition to the experimentally observed behavior a third regime where the full transfer of a single domain is also attainable. Our study shows that CoNi/Pd nanowires can be of potential practical use in a three dimensional memory structure.

  11. Magnetization transfer ratio measures in normal-appearing white matter show periventricular gradient abnormalities in multiple sclerosis.

    PubMed

    Liu, Zheng; Pardini, Matteo; Yaldizli, Özgür; Sethi, Varun; Muhlert, Nils; Wheeler-Kingshott, Claudia A M; Samson, Rebecca S; Miller, David H; Chard, Declan T

    2015-05-01

    In multiple sclerosis, there is increasing evidence that demyelination, and neuronal damage occurs preferentially in cortical grey matter next to the outer surface of the brain. It has been suggested that this may be due to the effects of pathology outside the brain parenchyma, in particular meningeal inflammation or through cerebrospinal fluid mediated factors. White matter lesions are often located adjacent to the ventricles of the brain, suggesting the possibility of a similar outside-in pathogenesis, but an investigation of the relationship of periventricular normal-appearing white matter abnormalities with distance from the ventricles has not previously been undertaken. The present study investigates this relationship in vivo using quantitative magnetic resonance imaging and compares the abnormalities between secondary progressive and relapsing remitting multiple sclerosis. Forty-three patients with relapsing remitting and 28 with secondary progressive multiple sclerosis, and 38 healthy control subjects were included in this study. T1-weighted volumetric, magnetization transfer and proton density/T2-weighted scans were acquired for all subjects. From the magnetization transfer data, magnetization transfer ratio maps were prepared. White matter tissue masks were derived from SPM8 segmentations of the T1-weighted images. Normal-appearing white matter masks were generated by subtracting white matter lesions identified on the proton density/T2 scan, and a two-voxel perilesional ring, from the SPM8 derived white matter masks. White matter was divided in concentric bands, each ∼1-mm thick, radiating from the ventricles toward the cortex. The first periventricular band was excluded from analysis to mitigate partial volume effects, and normal-appearing white matter and lesion magnetization transfer ratio values were then computed for the 10 bands nearest to the ventricles. Compared with controls, magnetization transfer ratio in the normal-appearing white matter

  12. Convective heat and mass transfer on MHD peristaltic flow of Williamson fluid with the effect of inclined magnetic field

    NASA Astrophysics Data System (ADS)

    Veera Krishna, M.; Swarnalathamma, B. V.

    2016-05-01

    In this paper, we discussed the peristaltic MHD flow of an incompressible and electrically conducting Williamson fluid in a symmetric planar channel with heat and mass transfer under the effect of inclined magnetic field. Viscous dissipation and Joule heating are also taken into consideration. Mathematical model is presented by using the long wavelength and low Reynolds number approximations. The differential equations governing the flow are highly nonlinear and thus perturbation solution for small Weissenberg number (We < 1) is presented. Effects of the heat and mass transfer on the longitudinal velocity, temperature and concentration are studied in detail. Main observations are presented in the concluding section. The streamlines pattern is also given due attention.

  13. Changes in systemic and pulmonary blood flow distribution in normal adult volunteers in response to posture and exercise: a phase contrast magnetic resonance imaging study.

    PubMed

    Wong, Derek T H; Lee, Kyong-Jin; Yoo, Shi-Joon; Tomlinson, George; Grosse-Wortmann, Lars

    2014-03-01

    Hemodynamics are usually evaluated in the supine position at rest. This is only a snapshot of an individual's daily activities. This study describes circulatory adaptation, as assessed by magnetic resonance imaging, to changes in position and exercise. Phase contrast magnetic resonance imaging of blood flow within systemic and pulmonary arteries and veins was performed in 24 healthy volunteers at rest in the prone and supine position and with bicycle exercise in the supine position. No change was seen in systemic blood flow when moving from prone to supine. Exercise resulted in an increased percentage of cardiac output towards the lower body. Changes in position resulted in a redistribution of blood flow within the left lung--supine positioning resulted in decreased blood flow to the left lower pulmonary vein. With exercise, both the right and left lower lobes received increased blood flow, while the upper lobes received less.

  14. Effect of ionic interaction between a hyperpolarized magnetic resonance chemical probe and a gadolinium contrast agent for the hyperpolarized lifetime after dissolution

    NASA Astrophysics Data System (ADS)

    Takakusagi, Yoichi; Inoue, Kaori; Naganuma, Tatsuya; Hyodo, Fuminori; Ichikawa, Kazuhiro

    2016-09-01

    In hyperpolarization of 13C-enriched magnetic resonance chemical probes in the solid-state, a trace amount of gadolinium (Gd) contrast agent can be used to maximize polarization of the 13C nuclear spins. Here, we report systematic measurement of the spin-lattice relaxation time (T1) and enhancement level of 13C-enriched chemical probes in the presence of various Gd contrast agents in the liquid-state after dissolution. Using two different 13C probes having opposite electric charges at neutral pH, we clearly show the T1 of hyperpolarized 13C was barely affected by the use of a Gd complex that displays repulsive interaction with the 13C probe in solution, whilst T1 was drastically shortened when there was ionic attraction between probe and complex.

  15. Self-assembled dual-modality contrast agents for non-invasive stem cell tracking via near-infrared fluorescence and magnetic resonance imaging.

    PubMed

    Liu, Hong; Tan, Yan; Xie, Lisi; Yang, Lei; Zhao, Jing; Bai, Jingxuan; Huang, Ping; Zhan, Wugen; Wan, Qian; Zou, Chao; Han, Yali; Wang, Zhiyong

    2016-09-15

    Stem cells hold great promise for treating various diseases. However, one of the main drawbacks of stem cell therapy is the lack of non-invasive image-tracking technologies. Although magnetic resonance imaging (MRI) and near-infrared fluorescence (NIRF) imaging have been employed to analyse cellular and subcellular events via the assistance of contrast agents, the sensitivity and temporal resolution of MRI and the spatial resolution of NIRF are still shortcomings. In this study, superparamagnetic iron oxide nanocrystals and IR-780 dyes were co-encapsulated in stearic acid-modified polyethylenimine to form a dual-modality contrast agent with nano-size and positive charge. These resulting agents efficiently labelled stem cells and did not influence the cellular viability and differentiation. Moreover, the labelled cells showed the advantages of dual-modality imaging in vivo.

  16. Efficient labeling in vitro with non-ionic gadolinium magnetic resonance imaging contrast agent and fluorescent transfection agent in bone marrow stromal cells of neonatal rats

    PubMed Central

    LI, YING-QIN; TANG, YING; FU, RAO; MENG, QIU-HUA; ZHOU, XUE; LING, ZE-MIN; CHENG, XIAO; TIAN, SU-WEI; WANG, GUO-JIE; LIU, XUE-GUO; ZHOU, LI-HUA

    2015-01-01

    Although studies have been undertaken on gadolinium labeling-based molecular imaging in magnetic resonance imaging (MRI), the use of non-ionic gadolinium in the tracking of stem cells remains uncommon. To investigate the efficiency in tracking of stem cells with non-ionic gadolinium as an MRI contrast agent, a rhodamine-conjugated fluorescent reagent was used to label bone marrow stromal cells (BMSCs) of neonatal rats in vitro, and MRI scanning was undertaken. The fluorescent-conjugated cell uptake reagents were able to deliver gadodiamide into BMSCs, and cell uptake was verified using flow cytometry. In addition, the labeled stem cells with paramagnetic contrast medium remained detectable by an MRI monitor for a minimum of 28 days. The present study suggested that this method can be applied efficiently and safely for the labeling and tracking of bone marrow stromal cells in neonatal rats. PMID:25816076

  17. Mechanostereoselective One-Pot Synthesis of Functionalized Head-to-Head Cyclodextrin [3]Rotaxanes and Their Application as Magnetic Resonance Imaging Contrast Agents.

    PubMed

    Fredy, Jean Wilfried; Scelle, Jérémy; Ramniceanu, Gregory; Doan, Bich-Thuy; Bonnet, Célia S; Tóth, Éva; Ménand, Mickaël; Sollogoub, Matthieu; Vives, Guillaume; Hasenknopf, Bernold

    2017-02-21

    A versatile, five-component, one-pot synthesis of cyclodextrin (CD) [3]rotaxanes using copper-catalyzed azide-alkyne cycloaddition has been developed. Head-to-head [3]rotaxanes of α-CD selectively functionalized by one or two gadolinium 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid monoamide complexes were obtained mechanostereoselectively. The magnetic resonance imaging efficiency, expressed by the longitudinal proton relaxivity of the rotaxanes, was significantly improved as compared to the functionalized CD. In vitro and in vivo preclinical studies showed a higher contrast and retention in the kidney than gadolinium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid complex, demonstrating the potential of these rotaxanes as MRI contrast agent.

  18. Synthesis and Evaluation of GdIII-Based Magnetic Resonance Contrast Agents for Molecular Imaging of Prostate-Specific Membrane Antigen**

    PubMed Central

    Ngen, Ethel J.; Rotz, Matthew W.; Kakkad, Samata; Lisok, Ala; Pracitto, Richard; Pullambhatla, Mrudula; Chen, Zhengping; Shah, Tariq; Artemov, Dmitri; Meade, Thomas J.; Bhujwalla, Zaver M.; Pomper, Martin G.

    2016-01-01

    Magnetic resonance (MR) imaging is advantageous because it concurrently provides anatomic, functional, and molecular information. MR molecular imaging can combine the high spatial resolution of this established clinical modality with molecular profiling in vivo. However, as a result of the intrinsically low sensitivity of MR imaging, high local concentrations of biological targets are required to generate discernable MR contrast. We hypothesize that the prostate-specific membrane antigen (PSMA), an attractive target for imaging and therapy of prostate cancer, could serve as a suitable biomarker for MR-based molecular imaging. We have synthesized three new high-affinity, low-molecular-weight GdIII-based PSMA-targeted contrast agents containing one to three GdIII chelates per molecule. We evaluated the relaxometric properties of these agents in solution, in prostate cancer cells, and in an in vivo experimental model to demonstrate the feasibility of PSMA-based MR molecular imaging. PMID:26212031

  19. Encapsulation of Gadolinium Oxide Nanoparticle (Gd2O3) Contrasting Agents in PAMAM Dendrimer Templates for Enhanced Magnetic Resonance Imaging in Vivo.

    PubMed

    Mekuria, Shewaye Lakew; Debele, Tilahun Ayane; Tsai, Hsieh-Chih

    2017-03-01

    There has been growing interest in the research of nanomaterials for biomedical applications in recent decades. Herein, a simple approach to synthesize the G4.5-Gd2O3-poly(ethylene glycol) (G4.5-Gd2O3-PEG) nanoparticles (NPs) that demonstrate potential as dual (T1 and T2) contrasting agents in magnetic resonance imaging (MRI) has been reported in this study. Compared to the clinically popular Gd-DTPA contrasting agents, G4.5-Gd2O3-PEG NPs exhibited a longer longitudinal relaxation time (T1) and better biocompatibility when incubated with macrophage cell line RAW264.7 in vitro. Furthermore, the longitudinal relaxivity (r1) of G4.5-Gd2O3-PEG NPs was 53.9 s(-1) mM(-1) at 7T, which is equivalent to 4.8 times greater than to the Gd-DTPA contrasting agents. An in vivo T1-weighted MRI results revealed that G4.5-Gd2O3-PEG NPs significantly enhanced signals in the intestines, kidney, liver, bladder, and spleen. In addition, the T2-weighted MRI results revealed darker contrast in the kidney, which proves that G4.5-Gd2O3-PEG NPs can be exploited as T1 and T2 contrasting agents. In summary, these findings suggest that the G4.5-Gd2O3-PEG NPs synthesized by an alternative approach can be used as dual MRI contrasting agents.

  20. 3-Aminopropylsilane-modified iron oxide nanoparticles for contrast-enhanced magnetic resonance imaging of liver lesions induced by Opisthorchis felineus

    PubMed Central

    Demin, Alexander M; Pershina, Alexandra G; Ivanov, Vladimir V; Nevskaya, Kseniya V; Shevelev, Oleg B; Minin, Artyom S; Byzov, Iliya V; Sazonov, Alexey E; Krasnov, Victor P; Ogorodova, Ludmila M

    2016-01-01

    Purpose Liver fluke causes severe liver damage in an infected human. However, the infection often remains neglected due to the lack of pathognomonic signs. Nanoparticle-enhanced magnetic resonance imaging (MRI) offers a promising technique for detecting liver lesions induced by parasites. Materials and methods Surface modification of iron oxide nanoparticles produced by coprecipitation from a solution of Fe3+ and Fe2+ salts using 3-aminopropylsilane (APS) was carried out. The APS-modified nanoparticles were characterized by transmission electron microscopy, fourier transform infrared spectroscopy, and thermogravimetric analysis. Magnetic resonance properties of MNPs were investigated in vitro and in vivo. Results The amount of APS grafted on the surface of nanoparticles (0.60±0.06 mmol g−1) was calculated based on elemental analysis and infrared spectroscopy data. According to transmission electron microscopy data, there were no essential changes in the structure of nanoparticles during the modification. The APS-modified nanoparticles exhibit high magnetic properties; the calculated relaxivity r2 was 271 mmol−1 s−1. To obtain suspension with optimal hydrodynamic characteristics, amino groups on the surface of nanoparticles were converted into an ionic form with HCl. Cellular uptake of modified nanoparticles by rat hepatoma cells and human monocytes in vitro was 74.1±4.5 and 10.0±3.7 pg [Fe] per cell, respectively. Low cytotoxicity of the nanoparticles was confirmed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Annexin V/7-aminoactinomycin D flow cytometry assays. For the first time, magnetic nanoparticles were applied for contrast-enhanced MRI of liver lesions induced by Opisthorchis felineus. Conclusion The synthesized APS-modified iron oxide nanoparticles showed high efficiency as an MRI contrast agent for the evaluation of opisthorchiasis-related liver damage. PMID:27660439

  1. Evaluation of the Iron(iii) Complex of the 3,5 - Derivative of Catechol as AN Organ-Selective Magnetic Resonance Imaging Contrast Agent.

    NASA Astrophysics Data System (ADS)

    Sayed, M. Gary

    The iron (III) diethylsulfonamide derivative of catechol (Fe(III)-DESAC) is a new target selective magnetic resonance imaging contrast agent based on the second-sphere interaction mechanism. It is a highly stable tris-complex that was chemically characterized for potential use as a magnetopharmaceutical. The contrast agent was evaluated for gross toxicity and biodistribution in a Fisher 344 rat model. The agent showed no significant acute toxicity at low doses. At a higher dose, 0.15 mmol/kg, the contrast agent exhibited toxic effects in test animals. No signs of abnormal behavior or chronic toxicity was noted. Biodistribution studies revealed increased uptake by the liver parenchyma and the kidneys suggesting combined hepatobiliary and renal excretion. Its potential as a magnetopharmaceutical was evaluated using a GE Signa MRI scanner at 0.1 mmol/kg doses in phantom and an animal model. Relaxivity measurements resulted in R_1 and R_2 relaxivity values of 2.47 mM^{ -1} sec^{-1} and 3.16 mM^{-1} sec ^{-1}, respectively. T _1-weighted MR images showed 63% increase in the liver image values and 99% increase in the kidney values. This contrast enhancement was approximately 75% greater in the healthy parenchyma compared to the imbedded mammary adenocarcinoma.

  2. Chronic Graft-versus-host Disease Presenting with Multiple Punctate Intracranial Lesions on Contrast-enhanced Magnetic Resonance Imaging

    PubMed Central

    Terada, Makoto; Nakamagoe, Kiyotaka; Obara, Naoshi; Ogawa, Shinichi; Sakamoto, Noriaki; Sato, Taiki; Nohara, Seitaro; Chiba, Shigeru; Tamaoka, Akira

    2017-01-01

    Central nervous system graft-versus-host disease can present quite a diagnostic challenge. We herein present a case of histologically-confirmed chronic graft versus host disease (GVHD) involving the central nervous system that occurred at 19 months after peripheral blood stem cell transplantation. Cranial magnetic resonance imaging showed areas of confluent hyperintensity in the deep/subcortical white matter with multiple punctate and curvilinear gadolinium enhancements, suggesting the disruption of the blood-brain barrier. A brain biopsy revealed perivascular CD3-positive T cell infiltration around the small vessels. We propose that the detection of punctate-enhanced lesions by magnetic resonance imaging may be a useful finding that facilitates the early diagnosis of chronic GVHD involving the central nervous system. PMID:28154284

  3. Comparison of two- and three-dimensional unenhanced and contrast-enhanced echocardiographies versus cineventriculography versus cardiac magnetic resonance for determination of left ventricular function.

    PubMed

    Hoffmann, Rainer; von Bardeleben, Stephan; Barletta, Giuseppe; Pasques, Agnes; Kasprzak, Jaroslaw; Greis, Christian; Becher, Harald

    2014-01-15

    Contrast enhancement has been shown to improve detection of regional wall motion abnormalities (RWMA) in 2-dimensional (2D) echocardiography. This study determined the use of contrast enhancement in the setting of 3-dimensional (3D) echocardiography for definition of left ventricular RWMA compared with 2D echocardiography, cineventriculography, and cardiac magnetic resonance (CMR). In 63 patients, unenhanced and contrast-enhanced (SonoVue; Bracco Imaging S.p.A., Milan, Italy) 2D and 3D echocardiographies, CMR, and cineventriculography were performed. Hypokinesia in ≥1 segment defined the presence of RWMA. Interreader agreement (IRA) between 2 blinded off-site readers on presence of RWMA was determined within each imaging technique. Intermethod agreement among imaging techniques was analyzed. A standard of truth for the presence of RWMA was obtained by an independent expert panel decision. IRA on presence of RWMA expressed as Cohen's κ coefficient was 0.27 for unenhanced 3D echocardiography, 0.40 for unenhanced 2D echocardiography, 0.57 for CMR, and 0.51 for cineventriculography. The use of contrast increased IRA on RWMA to 0.42 for 3D echocardiography and to 0.56 for 2D echocardiography. Agreement with CMR on RWMA increased for 3D echocardiography when contrast enhancement was used (κ 0.40 vs 0.22 for unenhanced 3D echocardiography). Similarly, agreement of 2D echocardiography with CMR on RWMA increased with contrast enhancement (κ 0.50 vs 0.32). Accuracy to detect expert panel-defined RWMA was highest for CMR (84%) followed by 2D contrast echocardiography (78%) and 3D contrast echocardiography (76%). It was lesser for 2D and 3D unenhanced echocardiographies. In conclusion, analysis of RWMA is characterized by considerable interreader variability even using high-quality imaging techniques. IRA on RWMA is lower with 3D echocardiography compared with 2D echocardiography. IRA on RWMA and accuracy to detect panel-defined RWMA improve with contrast enhancement

  4. [Study of optimal flip angle for inversion-recovery gradient echo method in delayed contrast-enhanced cardiac magnetic resonance imaging].

    PubMed

    Ogawa, Masashi; Matsumura, Yoshio; Tsuchihashi, Toshio

    2013-04-01

    Delayed contrast-enhanced cardiac magnetic resonance imaging (MRI) is a valuable tool for detecting myocardial infarction and assessing myocardial viability. The standard viability MRI technique is the inversion-recovery gradient echo (IR-GRE) method. Several previous studies have demonstrated that this imaging technique provides superior image quality at high magnetic field strengths, e.g., 3.0 T. However, there are numerous possible flip angles. We investigated the optimal flip angle of IR-GRE in delayed contrast-enhanced cardiac MRI. Phantoms were made that modeled infarcted myocardium and normal myocardium after administration of contrast agent. To determine optimal flip angle, we compared the contrast-to-noise ratio (CNR) among these phantoms and evaluated the degree of artifacts induced by increased flip angle. The flip angle that showed the highest CNR for 2D IR-GRE and 3D IR-GRE was 30°/15° at 1.5 T and 25°/15° at 3.0 T. The flip angle that showed the highest CNR was independent of R-R interval. Streak artifacts induced by increased flip angle tended to occur more readily at 3.0 T than 1.5 T. The optimal flip angle for 2D IR-GRE and 3D IR-GRE at 1.5 T was 30° and 15°, respectively. At 3.0 T, taking into account the results for both CNR and streak artifacts, we concluded the optimal flip angle of 2D IR-GRE to be 15-20°.

  5. Effects of magnetic fields of up to 9.4 T on resolution and contrast of PET images as measured with an MR-BrainPET.

    PubMed

    Shah, N Jon; Herzog, Hans; Weirich, Christoph; Tellmann, Lutz; Kaffanke, Joachim; Caldeira, Liliana; Kops, Elena Rota; Qaim, Syed M; Coenen, Heinz H; Iida, Hidehiro

    2014-01-01

    Simultaneous, hybrid MR-PET is expected to improve PET image resolution in the plane perpendicular to the static magnetic field of the scanner. Previous papers have reported this either by simulation or experiment with simple sources and detector arrangements. Here, we extend those studies using a realistic brain phantom in a recently installed MR-PET system comprising a 9.4 T MRI-scanner and an APD-based BrainPET insert in the magnet bore. Point and line sources and a 3D brain phantom were filled with 18F (low-energy positron emitter), 68Ga (medium energy positron emitter) or 120I, a non-standard positron emitter (high positron energies of up to 4.6 MeV). Using the BrainPET insert, emission scans of the phantoms were recorded at different positions inside and outside the magnet bore such that the magnetic field was 0 T, 3 T, 7 T or 9.4 T. Brain phantom images, with the 'grey matter' compartment filled with 18F, showed no obvious resolution improvement with increasing field. This is confirmed by practically unchanged transaxial FWHM and 'grey/white matter' ratio values between at 0T and 9.4T. Field-dependent improvements in the resolution and contrast of transaxial PET images were clearly evident when the brain phantom was filled with 68Ga or 120I. The grey/white matter ratio increased by 7.3% and 16.3%, respectively. The greater reduction of the FWTM compared to FWHM in 68Ga or 120I line-spread images was in agreement with the improved contrast of 68Ga or 120I images. Notwithstanding elongations seen in the z-direction of 68Ga or 120I point source images acquired in foam, brain phantom images show no comparable extension. Our experimental study confirms that integrated MR-PET delivers improved PET image resolution and contrast for medium- and high-energy positron emitters even though the positron range is reduced only in directions perpendicular to the magnetic field.

  6. Effects of Magnetic Fields of up to 9.4 T on Resolution and Contrast of PET Images as Measured with an MR-BrainPET

    PubMed Central

    Shah, N. Jon; Herzog, Hans; Weirich, Christoph; Tellmann, Lutz; Kaffanke, Joachim; Caldeira, Liliana; Kops, Elena Rota; Qaim, Syed M.; Coenen, Heinz H.; Iida, Hidehiro

    2014-01-01

    Simultaneous, hybrid MR-PET is expected to improve PET image resolution in the plane perpendicular to the static magnetic field of the scanner. Previous papers have reported this either by simulation or experiment with simple sources and detector arrangements. Here, we extend those studies using a realistic brain phantom in a recently installed MR-PET system comprising a 9.4 T MRI-scanner and an APD-based BrainPET insert in the magnet bore. Point and line sources and a 3D brain phantom were filled with 18F (low-energy positron emitter), 68Ga (medium energy positron emitter) or 120I, a non-standard positron emitter (high positron energies of up to 4.6 MeV). Using the BrainPET insert, emission scans of the phantoms were recorded at different positions inside and outside the magnet bore such that the magnetic field was 0 T, 3 T, 7 T or 9.4 T. Brain phantom images, with the ‘grey matter’ compartment filled with 18F, showed no obvious resolution improvement with increasing field. This is confirmed by practically unchanged transaxial FWHM and ‘grey/white matter’ ratio values between at 0T and 9.4T. Field-dependent improvements in the resolution and contrast of transaxial PET images were clearly evident when the brain phantom was filled with 68Ga or 120I. The grey/white matter ratio increased by 7.3% and 16.3%, respectively. The greater reduction of the FWTM compared to FWHM in 68Ga or 120I line-spread images was in agreement with the improved contrast of 68Ga or 120I images. Notwithstanding elongations seen in the z-direction of 68Ga or 120I point source images acquired in foam, brain phantom images show no comparable extension. Our experimental study confirms that integrated MR-PET delivers improved PET image resolution and contrast for medium- and high-energy positron emitters even though the positron range is reduced only in directions perpendicular to the magnetic field. PMID:24755872

  7. Experimental study on heat transfer enhancement of laminar ferrofluid flow in horizontal tube partially filled porous media under fixed parallel magnet bars

    NASA Astrophysics Data System (ADS)

    Sheikhnejad, Yahya; Hosseini, Reza; Saffar Avval, Majid

    2017-02-01

    In this study, steady state laminar ferroconvection through circular horizontal tube partially filled with porous media under constant heat flux is experimentally investigated. Transverse magnetic fields were applied on ferrofluid flow by two fixed parallel magnet bar positioned on a certain distance from beginning of the test section. The results show promising notable enhancement in heat transfer as a consequence of partially filled porous media and magnetic field, up to 2.2 and 1.4 fold enhancement were observed in heat transfer coefficient respectively. It was found that presence of both porous media and magnetic field simultaneously can highly improve heat transfer up to 2.4 fold. Porous media of course plays a major role in this configuration. Virtually, application of Magnetic field and porous media also insert higher pressure loss along the pipe which again porous media contribution is higher that magnetic field.

  8. Cage-to-cage migration rates of Xe atoms in zeolite NaA from magnetization transfer experiments and simulations

    NASA Astrophysics Data System (ADS)

    Jameson, A. Keith; Jameson, Cynthia J.; Gerald, Rex E., II

    1994-08-01

    Xenon trapped in the alpha cages of zeolite NaA exhibits distinct NMR signals for clusters Xe1, Xe2, Xe3,..., up to Xe8. Using multisite magnetization transfer experiments, we have measured the rate constants kmn for the elementary processes that are involved in the cage-to-cage transfer of Xe atoms in the zeolite NaA, that is, for a single Xe atom leaving a cage containing Xen to appear in a neighboring cage containing Xem-1, thereby forming Xem. In a random walk simulation, these rate constants reproduce over a hundred magnetization decay/recovery curves that we have measured in four samples of Xe in zeolite NaA at room temperature, in selective inversion, and complementary experiments for all the significantly populated clusters. The simulations also lead to the correct experimental equilibrium distributions, that is, the fractions of the alpha cages containing Xe1,Xe2,...,Xe8.

  9. Preliminary Observations on Sensitivity and Specificity of Magnetization Transfer Asymmetry for Imaging Myelin of Rat Brain at High Field

    PubMed Central

    Kim, Jae-Woong; Choi, Jiye; Cho, Janggeun; Lee, Chulhyun; Jeon, Daejong; Park, Sung-Hong

    2015-01-01

    Magnetization transfer ratio (MTR) has been often used for imaging myelination. Despite its high sensitivity, the specificity of MTR to myelination is not high because tissues with no myelin such as muscle can also show high MTR. In this study, we propose a new magnetization transfer (MT) indicator, MT asymmetry (MTA), as a new method of myelin imaging. The experiments were performed on rat brain at 9.4 T. MTA revealed high signals in white matter and significantly low signals in gray matter and muscle, indicating that MTA has higher specificity than MTR. Demyelination and remyelination studies demonstrated that the sensitivity of MTA to myelination was as high as that of MTR. These experimental results indicate that MTA can be a good biomarker for imaging myelination. In addition, MTA images can be efficiently acquired with an interslice MTA method, which may accelerate clinical application of myelin imaging. PMID:26413534

  10. Preliminary Observations on Sensitivity and Specificity of Magnetization Transfer Asymmetry for Imaging Myelin of Rat Brain at High Field.

    PubMed

    Kim, Jae-Woong; Choi, Jiye; Cho, Janggeun; Lee, Chulhyun; Jeon, Daejong; Park, Sung-Hong

    2015-01-01

    Magnetization transfer ratio (MTR) has been often used for imaging myelination. Despite its high sensitivity, the specificity of MTR to myelination is not high because tissues with no myelin such as muscle can also show high MTR. In this study, we propose a new magnetization transfer (MT) indicator, MT asymmetry (MTA), as a new method of myelin imaging. The experiments were performed on rat brain at 9.4 T. MTA revealed high signals in white matter and significantly low signals in gray matter and muscle, indicating that MTA has higher specificity than MTR. Demyelination and remyelination studies demonstrated that the sensitivity of MTA to myelination was as high as that of MTR. These experimental results indicate that MTA can be a good biomarker for imaging myelination. In addition, MTA images can be efficiently acquired with an interslice MTA method, which may accelerate clinical application of myelin imaging.

  11. Interfacial spin-filter assisted spin transfer torque effect in Co/BeO/Co magnetic tunnel junction

    SciTech Connect

    Tang, Y.-H. Chu, F.-C.

    2015-03-07

    The first-principles calculation is employed to demonstrate the spin-selective transport properties and the non-collinear spin-transfer torque (STT) effect in the newly proposed Co/BeO/Co magnetic tunnel junction. The subtle spin-polarized charge transfer solely at O/Co interface gives rise to the interfacial spin-filter (ISF) effect, which can be simulated within the tight binding model to verify the general expression of STT. This allows us to predict the asymmetric bias behavior of non-collinear STT directly via the interplay between the first-principles calculated spin current densities in collinear magnetic configurations. We believe that the ISF effect, introduced by the combination between wurtzite-BeO barrier and the fcc-Co electrode, may open a new and promising route in semiconductor-based spintronics applications.

  12. A fast iterative convolution weighting approach for gridding-based direct Fourier three-dimensional reconstruction with correction for the contrast transfer function.

    PubMed

    Abrishami, V; Bilbao-Castro, J R; Vargas, J; Marabini, R; Carazo, J M; Sorzano, C O S

    2015-10-01

    We describe a fast and accurate method for the reconstruction of macromolecular complexes from a set of projections. Direct Fourier inversion (in which the Fourier Slice Theorem plays a central role) is a solution for dealing with this inverse problem. Unfortunately, the set of projections provides a non-equidistantly sampled version of the macromolecule Fourier transform in the single particle field (and, therefore, a direct Fourier inversion) may not be an optimal solution. In this paper, we introduce a gridding-based direct Fourier method for the three-dimensional reconstruction approach that uses a weighting technique to compute a uniform sampled Fourier transform. Moreover, the contrast transfer function of the microscope, which is a limiting factor in pursuing a high resolution reconstruction, is corrected by the algorithm. Parallelization of this algorithm, both on threads and on multiple CPU's, makes the process of three-dimensional reconstruction even faster. The experimental results show that our proposed gridding-based direct Fourier reconstruction is slightly more accurate than similar existing methods and presents a lower computational complexity both in terms of time and memory, thereby allowing its use on larger volumes. The algorithm is fully implemented in the open-source Xmipp package and is downloadable from http://xmipp.cnb.csic.es.

  13. Oliver E. Buckley Condensed Matter Prize Lecture: Transfer of spin momentum between magnets: its genesis and prospect

    NASA Astrophysics Data System (ADS)

    Slonczewski, John

    2013-03-01

    Consider two nanoscopic monodomain magnets connected by a spacer that is composed of a non-magnetic metal or a tunnel barrier. Any externally applied electric current flowing through these three layers contributes tiny pseudo-torques to both magnetic moments (J . S . 1989). Such a weak spin-transfer torque (STT) may counteract and overcome a comparably small torque caused by viscous dissipation (L. Berger1996; J . S . 1996). Any initial motion (e. g. excited by ambient temperature) of one moment (or both), may grow in amplitude and culminate in steady precession or a transient switch to a new direction of static equilibrium. In a memory element, the STT effect writes 0 or 1 in a magnetic-tunnel junction. Indeed, world-wide developments of memory arrays and radio-frequency oscillators utilizing current-driven STT today enjoy a nine-digit dollar commitment. But the fact that transfer of each half-unit of spin momentum h/4 π through a barrier requires the transfer of at least one unit of electric charge limits its efficiency. Arguably, STT should also arise from the flow of external heat, in either direction, between an insulating magnet, of ferrite or garnet (e. g. YIG) composition, and a metallic spacer (J . S . 2010). Whenever s-d exchange annihilates a hot magnon at the insulator/metal-spacer interface, it transfers one unit h/2 π of spin momentum to the spacer. Conduction electrons within the spacer will transport this spin momentum to the second magnet without requiring an electric current. Such a thermagnonicmethod, modestly powered by a Joule-effect heater, can substantially increase the efficiency of STT. Support for this prediction comes from (1) an estimate of the sd-exchange coefficient from data on spin relaxation in magnetically dilute (Cu,Ag,Au):Mn alloys; (2) a DFT computation (J. Xiao et al 2010); and (3) most persuasively, data from spin pumping driven across a YIG/Au interface by ferromagnetic resonance (B. Heinrich et al 2011; C. Burrowes et al

  14. Combining Satellite and Ground Magnetic Measurements to Improve Estimates of Electromagnetic Induction Transfer Functions

    NASA Astrophysics Data System (ADS)

    Balasis, G.; Egbert, G. D.

    2005-12-01

    Electromagnetic (EM) induction studies using satellite and ground-based magnetic data may ultimately provide critical new constraints on the electrical conductivity of Earth's mantle. Unlike ground-based observatories, which leave large areas of the Earth (especially the ocean basins) unsampled, satellites have the potential for nearly complete global coverage. However, because the number of operating satellites is limited, spatially complex (especially non-zonal) external current sources are sampled relatively poorly by satellites at any fixed time. The comparatively much larger number of ground-based observatories provides more complete synoptic sampling of external source structure. By combining data from both satellites and observatories models of external sources can be improved, leading to more reliable global mapping of Earth conductivity. For example, estimates of EM induction transfer functions estimated from night-side CHAMP data have been previously shown to have biases which depend systematically on local time (LT). This pattern of biases suggests that a purely zonal model does not adequately describe magnetospheric sources. As a first step toward improved modeling of spatial complexity in sources, we have applied empirical orthogonal function (EOF) methods to exploratory analysis of night-side observatory data. After subtraction of the predictions of the CM4 comprehensive model, which includes a zonally symmetric storm-time correction based on Dst, we find significant non-axisymmetric, but large scale coherent variability in the mid-latitude night-side observatory residuals. Over the restricted range of local times (18:00-6:00) and latitudes (50°S to 50°N) considered, the dominant spatial mode of variability is reasonably approximated by a q21 quadrupole spherical harmonic. Temporal variability of this leading EOF mode is well correlated with Dst. Strategies for moving beyond this initial exploratory EOF analysis to combine observatory data with

  15. Estimating nanoparticle optical absorption with magnetic resonance temperature imaging and bioheat transfer simulation

    PubMed Central

    MacLellan, Christopher J.; Fuentes, David T.; Elliott, Andrew M.; Schwartz, Jon; Hazle, John D.; Stafford, R. Jason

    2014-01-01

    Purpose Optically activated nanoparticle-mediated heating for thermal therapy applications is an area of intense research. The ability to characterize the spatiotemporal heating potential of these particles for use in modeling under various exposure conditions can aid in the exploration of new approaches for therapy as well as more quantitative prospective approaches to treatment planning. The purpose of this research was to investigate an inverse solution to the heat equation, using magnetic resonance temperature imaging (MRTI) feedback, for providing optical characterization of two types of nanoparticles (gold-silica nanoshells and gold nanorods). Methods The optical absorption of homogeneous nanoparticle-agar mixtures was measured during exposure to an 808nm laser using real-time MRTI. A coupled finite element solution of heat transfer was registered with the data and used to solve the inverse problem. The L2 norm of the difference between the temperature increase in the model and MRTI was minimized using a pattern search algorithm by varying the absorption coefficient of the mixture. Results Absorption fractions were within 10% of literature values for similar nanoparticles. Comparison of temporal and spatial profiles demonstrated good qualitative agreement between the model and the MRTI. The weighted root mean square error was <1.5 σMRTI and the average Dice similarity coefficient for ΔT = 5°C isotherms was > 0.9 over the measured time interval. Conclusion This research demonstrates the feasibility of using an indirect method for making minimally invasive estimates of nanoparticle absorption that might be expanded to analyze a variety of geometries and particles of interest. PMID:24350668

  16. Ultrasound-Triggered Phase Transition Sensitive Magnetic Fluorescent Nanodroplets as a Multimodal Imaging Contrast Agent in Rat and Mouse Model

    PubMed Central

    Chen, Yunchao; Luo, Binhua; Liu, Xuhan; Liu, Wei; Xu, Haibo; Yang, Xiangliang

    2013-01-01

    Ultrasound-triggered phase transition sensitive nanodroplets with multimodal imaging functionality were prepared via premix Shirasu porous glass (SPG) membrane emulsification method. The nanodroplets with fluorescence dye DiR and SPIO nanoparticles (DiR-SPIO-NDs) had a polymer shell and a liquid perfluoropentane (PFP) core. The as-formed DiR-SPIO-NDs have a uniform size of 385±5.0 nm with PDI of 0.169±0.011. The TEM and microscopy imaging showed that the DiR-SPIO-NDs existed as core-shell spheres, and DiR and SPIO nanoparticles dispersed in the shell or core. The MTT and hemolysis studies demonstrated that the nanodroplets were biocompatible and safe. Moreover, the proposed nanodroplets exhibited significant ultrasound-triggered phase transition property under clinical diagnostic ultrasound irradiation due to the vaporization of PFP inside. Meanwhile, the high stability and R2 relaxivity of the DiR-SPIO-NDs suggested its applicability in MRI. The in vivo T2-weighted images of MRI and fluorescence images both showed that the image contrast in liver and spleen of rats and mice model were enhanced after the intravenous injection of DiR-SPIO-NDs. Furthermore, the ultrasound imaging (US) in mice tumor as well as MRI and fluorescence imaging in liver of rats and mice showed that the DiR-SPIO-NDs had long-lasting contrast ability in vivo. These in vitro and in vivo findings suggested that DiR-SPIO-NDs could potentially be a great MRI/US/fluorescence multimodal imaging contrast agent in the diagnosis of liver tissue diseases. PMID:24391983

  17. 99mTc-Labeled Iron Oxide Nanoparticles for Dual-Contrast (T1/T2) Magnetic Resonance and Dual-Modality Imaging of Tumor Angiogenesis.

    PubMed

    Xue, Sihan; Zhang, Chunfu; Yang, Yi; Zhang, Lu; Cheng, Dengfeng; Zhang, Jianping; Shi, Hongcheng; Zhang, Yingjian

    2015-06-01

    Multi functional probes possessing magnetic resonance imaging and single-photon emission computed tomography properties are favorable for the molecular imaging of cancers. In this study, ultra small super paramagnetic iron oxide nanoparticles, about 3.5 nm in size, were synthesized by the polyol method. The particles were functionalized using c(RGDyC) peptides and labeled with 99mTc to prepare molecular imaging probes for detecting tumor angiogenesis. The probes demonstrated good T1 (r1 = 8.2 s(-1) mM(-1)) and reasonable T2 contrast effects (r2 = 20.1 s(-1) mM(-1)) and could specifically target avβ3-positive cells, inducing more cell ingestion, unlike that in case of the control probes [functionalized with scrambled c(RADyC) peptides]. After the probes were injected into the mice bearing H1299 lung tumors, T1/T2-weighted magnetic resonance imaging and single-photon emission computed tomography revealed that they addressed tumor angiogenic vessels, which were distributed mainly in the peripheral region of tumors. Biodistribution studies indicated that tumor accumulation of the probes was significant [13.8 ± 9.6%ID/g (p < 0.01), which is more than that of the control probes, 4.5 ± 1.9%ID/g], and could be inhibited by free RGD peptides (6.0 ± 2.8%ID/g, p < 0.01). Our study demonstrated that the dual-contrast (T1/T2) magnetic resonance and dual-modal imaging probe based on ultra small superparamagnetic iron oxide nanoparticles is very promising for the molecular imaging of tumor angiogenesis.

  18. Contrast agent Gd-EOB-DTPA (EOB·Primovist®) for low-field magnetic resonance imaging of canine focal liver lesions.

    PubMed

    Yonetomi, Daisuke; Kadosawa, Tsuyoshi; Miyoshi, Kenjirou; Nakao, Yukie; Homma, Emi; Hanazono, Kiwamu; Yamada, Eriko; Nakamura, Kozo; Ijiri, Atsuki; Minegishi, Noriyuki; Maetani, Shigeki; Hirayama, Kazuko; Taniyama, Hiroyuki; Nakade, Tetsuya

    2012-01-01

    Contrast-enhanced magnetic resonance (MR) imaging with a new liver-specific contrast agent gadolinium-ethoxybenzyl-diethylenetriamine penta-acetic acid (Gd-EOB-DTPA; EOB·Primovist®) was studied in 14 normal beagles and 9 dogs with focal liver lesions. Gd-EOB-DTPA accumulates in normally functioning hepatocytes 20 min after injection. As with Gd-DTPA, it is also possible to perform a dynamic multiphasic examination of the liver with Gd-EOB-DTPA, including an arterial phase and a portal venous phase. First, a reliable protocol was developed and the appropriate timings for the dynamic study and the parenchymal phase in normal dogs using Gd-EOB-DTPA were determined. Second, the patterns of these images were evaluated in patient dogs with hepatic masses. The optimal time of arterial imaging was from 15 s after injection, and the optimal time for portal venous imaging was from 40 s after injection. Meanwhile, the optimal time to observe changes during the hepatobiliary phase was from 20 min after injection. In patient dogs, 11 lesions were diagnosed as malignant tumors; all were hypointense to the surrounding normal liver parenchyma during the hepatobiliary phase. Even with a low-field MR imaging unit, the sequences afforded images adequate to visualize the liver parenchyma and to detect tumors within an appropriate scan time. Contrast-enhanced MR imaging with Gd-EOB-DTPA provides good demarcation on low-field MR imaging for diagnosing canine focal liver lesions.

  19. Planar gradiometer for magnetic induction tomography (MIT): theoretical and experimental sensitivity maps for a low-contrast phantom.

    PubMed

    Scharfetter, Hermann; Rauchenzauner, Stephan; Merwa, Robert; Biró, O; Hollaus, Karl

    2004-02-01

    Planar gradiometers (PGRAD) have particular advantages compared to solenoid receiver coils in magnetic induction tomography (MIT) for biological objects. A careful analysis of the sensitivity maps has to be carried out for perturbations within conducting objects in order to understand the performance of a PGRAD system and the corresponding implications for the inverse problem of MIT. We calculated and measured sensitivity maps for a single MIT-channel and a cylindrical tank (diameter 200 mm) with a spherical perturbation (diameter 50 mm) and with conductivities in the physiological range (0.4-0.8 S m(-1)). The excitation coil (EXC) was a solenoid (diameter 100 mm) with its axis perpendicular to the cylinder axis. As receiver a PGRAD was used. Calculations were carried out with a finite element model comparing the PGRAD and a solenoid receiver coil with its axis perpendicular to the excitation coil axis (SC90). The measured and simulated sensitivity maps agree satisfactorily within the limits of unavoidable systematic errors. In PGRAD the sensitivity is zero on the coil axis, exhibiting two local extrema near the receiver and a strong increase of the sensitivity with the distance from the coil axis. In SC90 the sensitivity map is morphologically very similar to that of the PGRAD. The maps are completely different from those known in EIT and may thus cause different implications for the inverse problem. The SC90 can, in principle, replace the mechanically and electrically more complicated PGRAD, however, the immunity to far sources of electromagnetic interference is worse, thus requiring magnetic shielding of the system.

  20. Pre- and postshunting magnetization transfer ratios are in accordance with neurological and behavioral changes in hydrocephalic immature rats.

    PubMed

    Rocha Catalão, Carlos Henrique; Leme Correa, Diego Augusto; Bernardino Garcia, Camila Araújo; dos Santos, Antonio Carlos; Garrido Salmon, Carlos Ernesto; Alves Rocha, Maria José; da Silva Lopes, Luiza

    2014-01-01

    Hydrocephalus is a common neurological condition in children characterized by an imbalance between the production and absorption of cerebrospinal fluid (CSF), causing abnormal fluid accumulation in the brain cavities. Shunt systems have been used to drain excess CSF and to prevent progressive ventricular enlargement. However, despite improvements in these systems, neurological and structural changes cannot always be reversed. Our aim was to evaluate the magnetization transfer ratio as a biomarker for the effectiveness of a CSF shunt system to treat neurological and behavioral disorders observed in experimental hydrocephalus. Seven-day-old Wistar rats were used in this study. The pups were subjected to hydrocephalus induction via 20% kaolin intracisternal injection. After confirmation of ventriculomegaly by magnetic resonance imaging (MRI), a group of animals underwent placement of a ventriculosubcutaneous shunt (VSS). The reduction in ventricular size in hydrocephalic rats operated with functional VSS was observed as a decrease in ventricular ratio values and preservation of the corpus callosum thickness. Magnetization transfer values were significantly increased and matched to the recovery process of axonal myelination observed based on more-intense blue staining by solochrome cyanin. The histopathological analysis revealed a reduction in reactive astrocytes by means of GFAP immunostaining. The hydrocephalic rats operated with functional VSS also showed significant progress in motor and exploratory activities, similar to the control animals, at the end of the experiment. In conclusion, the VSS system employed 7 days after hydrocephalus induction was able to prevent structural damage and restore the axonal myelination process in periventricular structures by stabilizing and reducing the ventricular enlargement, and the results are in accordance with the magnetization transfer ratio in MRI.

  1. Observations at Low Latitudes of Magnetic Merging Signatures Within a Flux Transfer Event During a Northward IMF

    NASA Technical Reports Server (NTRS)

    Chandler, M. O.; Avanov, L. A.

    2003-01-01

    Flux transfer events (FTE) have been postulated to result from transient magnetic merging. If so, the ion distributions within an event should exhibit features known to result from merging. Observations of a FTE by instruments on the Polar spacecraft revealed classical merging signatures that included: 1) D-shaped, accelerated, magnetosheath ion distributions, 2) a well defined de Hoffman-Teller frame, 3) local stress balance, and 4) a P-N magnetic field signature. This FTE was observed near the magnetic equator at approx. 13 MLT under conditions of a moderately northward interplanetary magnetic field (IMF) (clock angle of less than 10 deg). The nature of the ion distributions and the consistency of the measured cutoff speed with that calculated from the measured local magnetic field and the derived de Hoffman-Teller speed show the ion injection to be local. Coupled with the northward IMF these results lead to the conclusion that component merging in the low latitude region was responsible for the FTE.

  2. Probing the Magnetic Field Structure in Sgr A* on Black Hole Horizon Scales with Polarized Radiative Transfer Simulations

    NASA Astrophysics Data System (ADS)

    Gold, Roman; McKinney, Jonathan C.; Johnson, Michael D.; Doeleman, Sheperd S.

    2017-03-01

    Magnetic fields are believed to drive accretion and relativistic jets in black hole accretion systems, but the magnetic field structure that controls these phenomena remains uncertain. We perform general relativistic (GR) polarized radiative transfer of time-dependent three-dimensional GR magnetohydrodynamical simulations to model thermal synchrotron emission from the Galactic Center source Sagittarius A* (Sgr A*). We compare our results to new polarimetry measurements by the Event Horizon Telescope (EHT) and show how polarization in the visibility (Fourier) domain distinguishes and constrains accretion flow models with different magnetic field structures. These include models with small-scale fields in disks driven by the magnetorotational instability as well as models with large-scale ordered fields in magnetically arrested disks. We also consider different electron temperature and jet mass-loading prescriptions that control the brightness of t