Friedman, Joshua I; Xia, Ding; Regatte, Ravinder R; Jerschow, Alexej
2015-07-01
Chemical Exchange Saturation Transfer (CEST) magnetic resonance experiments have become valuable tools in magnetic resonance for the detection of low concentration solutes with far greater sensitivity than direct detection methods. Accurate measures of rates of chemical exchange provided by CEST are of particular interest to biomedical imaging communities where variations in chemical exchange can be related to subtle variations in biomarker concentration, temperature and pH within tissues using MRI. Despite their name, however, traditional CEST methods are not truly selective for chemical exchange and instead detect all forms of magnetization transfer including through-space NOE. This ambiguity crowds CEST spectra and greatly complicates subsequent data analysis. We have developed a Transfer Rate Edited CEST experiment (TRE-CEST) that uses two different types of solute labeling in order to selectively amplify signals of rapidly exchanging proton species while simultaneously suppressing 'slower' NOE-dominated magnetization transfer processes. This approach is demonstrated in the context of both NMR and MRI, where it is used to detect the labile amide protons of proteins undergoing chemical exchange (at rates⩾30s(-1)) while simultaneously eliminating signals originating from slower (∼5s(-1)) NOE-mediated magnetization transfer processes. TRE-CEST greatly expands the utility of CEST experiments in complex systems, and in-vivo, in particular, where it is expected to improve the quantification of chemical exchange and magnetization transfer rates while enabling new forms of imaging contrast. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Friedman, Joshua I.; Xia, Ding; Regatte, Ravinder R.; Jerschow, Alexej
2015-07-01
Chemical Exchange Saturation Transfer (CEST) magnetic resonance experiments have become valuable tools in magnetic resonance for the detection of low concentration solutes with far greater sensitivity than direct detection methods. Accurate measures of rates of chemical exchange provided by CEST are of particular interest to biomedical imaging communities where variations in chemical exchange can be related to subtle variations in biomarker concentration, temperature and pH within tissues using MRI. Despite their name, however, traditional CEST methods are not truly selective for chemical exchange and instead detect all forms of magnetization transfer including through-space NOE. This ambiguity crowds CEST spectra and greatly complicates subsequent data analysis. We have developed a Transfer Rate Edited CEST experiment (TRE-CEST) that uses two different types of solute labeling in order to selectively amplify signals of rapidly exchanging proton species while simultaneously suppressing 'slower' NOE-dominated magnetization transfer processes. This approach is demonstrated in the context of both NMR and MRI, where it is used to detect the labile amide protons of proteins undergoing chemical exchange (at rates ⩾ 30 s-1) while simultaneously eliminating signals originating from slower (∼5 s-1) NOE-mediated magnetization transfer processes. TRE-CEST greatly expands the utility of CEST experiments in complex systems, and in-vivo, in particular, where it is expected to improve the quantification of chemical exchange and magnetization transfer rates while enabling new forms of imaging contrast.
NASA Astrophysics Data System (ADS)
Zhang, Huiming; Xie, Yang
2007-02-01
The simple method for measuring the rotational correlation time of paramagnetic ion chelates via off-resonance rotating frame technique is challenged in vivo by the magnetization transfer effect. A theoretical model for the spin relaxation of water protons in the presence of paramagnetic ion chelates and magnetization transfer effect is described. This model considers the competitive relaxations of water protons by the paramagnetic relaxation pathway and the magnetization transfer pathway. The influence of magnetization transfer on the total residual z-magnetization has been quantitatively evaluated in the context of the magnetization map and various difference magnetization profiles for the macromolecule conjugated Gd-DTPA in cross-linked protein gels. The numerical simulations and experimental validations confirm that the rotational correlation time for the paramagnetic ion chelates can be measured even in the presence of strong magnetization transfer. This spin relaxation model also provides novel approaches to enhance the detection sensitivity for paramagnetic labeling by suppressing the spin relaxations caused by the magnetization transfer. The inclusion of the magnetization transfer effect allows us to use the magnetization map as a simulation tool to design efficient paramagnetic labeling targeting at specific tissues, to design experiments running at low RF power depositions, and to optimize the sensitivity for detecting paramagnetic labeling. Thus, the presented method will be a very useful tool for the in vivo applications such as molecular imaging via paramagnetic labeling.
Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence
NASA Astrophysics Data System (ADS)
Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin
2015-03-01
We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet --> singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature.
RF-SABRE: A Way to Continuous Spin Hyperpolarization at High Magnetic Fields.
Pravdivtsev, Andrey N; Yurkovskaya, Alexandra V; Vieth, Hans-Martin; Ivanov, Konstantin L
2015-10-29
A new technique is developed that allows one to carry out the signal amplification by reversible exchange (SABRE) experiments at high magnetic field. SABRE is a hyperpolarization method, which utilizes transfer of spin order from para-hydrogen to the spins of a substrate in transient iridium complexes. Previously, it has been thought that such a transfer of spin order is only efficient at low magnetic fields, notably, at level anti-crossing (LAC) regions. Here it is demonstrated that LAC conditions can also be fulfilled at high fields under the action of a RF field. The high-field RF-SABRE experiment can be implemented using commercially available nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) machines and does not require technically demanding field-cycling. The achievable NMR enhancements are around 100 for several substrates as compared to their NMR signals at thermal equilibrium conditions at 4.7 T. The frequency dependence of RF-SABRE is comprised of well pronounced peaks and dips, whose position and amplitude are conditioned solely by the magnetic resonance parameters such as chemical shifts and scalar coupling of the spin system involved in the polarization transfer and by the amplitude of the RF field. Thus, the proposed method can serve as a new sensitive tool for probing transient complexes. Simulations of the dependence of magnetization transfer (i.e., NMR signal amplifications) on the frequency and amplitude of the RF field are in good agreement with the developed theoretical approach. Furthermore, the method enables continuous re-hyperpolarization of the SABRE substrate over a long period of time, giving a straightforward way to repetitive NMR experiments.
NASA Astrophysics Data System (ADS)
Joubert, J. C.; Sharifpur, M.; Solomon, A. Brusly; Meyer, J. P.
2017-12-01
The natural convection heat transfer of a magnetic nanofluid in a differentially heated cavity is investigated with and without an applied external magnetic field. The effects of volume fraction, magnetic field configuration, and magnetic field strength are investigated. Spherical Fe2O3 nanoparticles with a diameter of 15-20 nm are used in the nanofluids. Volume fractions ranging between 0.05% and 0.3% are tested for the case with no magnetic field, while only a volume fraction of 0.1% was tested in an externally applied magnetic field. The experiments were conducted for a range of Rayleigh numbers in 1.7 × 108 < Ra < 4.2 × 108. The viscosity of the nanofluid was determined experimentally. An empirical correlation for the viscosity was determined, and the stability of various nanofluids was investigated. Using heat transfer data obtained from the cavity, the average heat transfer coefficient and average Nusselt number for the nanofluids are determined. It was found that a volume fraction of 0.1% showed a maximum increase of 5.63% to the Nu at the maximum Ra. For the magnetic field study, it was found that the best-performing magnetic field enhanced the heat transfer behaviour by an additional 2.81% in Nu at Ra = 3.8 × 108.
Iterative optimization method for design of quantitative magnetization transfer imaging experiments.
Levesque, Ives R; Sled, John G; Pike, G Bruce
2011-09-01
Quantitative magnetization transfer imaging (QMTI) using spoiled gradient echo sequences with pulsed off-resonance saturation can be a time-consuming technique. A method is presented for selection of an optimum experimental design for quantitative magnetization transfer imaging based on the iterative reduction of a discrete sampling of the Z-spectrum. The applicability of the technique is demonstrated for human brain white matter imaging at 1.5 T and 3 T, and optimal designs are produced to target specific model parameters. The optimal number of measurements and the signal-to-noise ratio required for stable parameter estimation are also investigated. In vivo imaging results demonstrate that this optimal design approach substantially improves parameter map quality. The iterative method presented here provides an advantage over free form optimal design methods, in that pragmatic design constraints are readily incorporated. In particular, the presented method avoids clustering and repeated measures in the final experimental design, an attractive feature for the purpose of magnetization transfer model validation. The iterative optimal design technique is general and can be applied to any method of quantitative magnetization transfer imaging. Copyright © 2011 Wiley-Liss, Inc.
Zhukov, Ivan V; Kiryutin, Alexey S; Yurkovskaya, Alexandra V; Grishin, Yuri A; Vieth, Hans-Martin; Ivanov, Konstantin L
2018-05-09
An experimental method is described allowing fast field-cycling Nuclear Magnetic Resonance (NMR) experiments over a wide range of magnetic fields from 5 nT to 10 T. The method makes use of a hybrid technique: the high field range is covered by positioning the sample in the inhomogeneous stray field of the NMR spectrometer magnet. For fields below 2 mT a magnetic shield is mounted on top of the spectrometer; inside the shield the magnetic field is controlled by a specially designed coil system. This combination allows us to measure T1-relaxation times and nuclear Overhauser effect parameters over the full range in a routine way. For coupled proton-carbon spin systems relaxation with a common T1 is found at low fields, where the spins are "strongly coupled". In some cases, experiments at ultralow fields provide access to heteronuclear long-lived spin states. Efficient coherent polarization transfer is seen for proton-carbon spin systems at ultralow fields as follows from the observation of quantum oscillations in the polarization evolution. Applications to analysis and the manipulation of heteronuclear spin systems are discussed.
Rydzy, M; Deslauriers, R; Smith, I C; Saunders, J K
1990-08-01
A systematic study was performed to optimize the accuracy of kinetic parameters derived from magnetization transfer measurements. Three techniques were investigated: time-dependent saturation transfer (TDST), saturation recovery (SRS), and inversion recovery (IRS). In the last two methods, one of the resonances undergoing exchange is saturated throughout the experiment. The three techniques were compared with respect to the accuracy of the kinetic parameters derived from experiments performed in a given, fixed, amount of time. Stochastic simulation of magnetization transfer experiments was performed to optimize experimental design. General formulas for the relative accuracies of the unidirectional rate constant (k) were derived for each of the three experimental methods. It was calculated that for k values between 0.1 and 1.0 s-1, T1 values between 1 and 10 s, and relaxation delays appropriate for the creatine kinase reaction, the SRS method yields more accurate values of k than does the IRS method. The TDST method is more accurate than the SRS method for reactions where T1 is long and k is large, within the range of k and T1 values examined. Experimental verification of the method was carried out on a solution in which the forward (PCr----ATP) rate constant (kf) of the creatine kinase reaction was measured.
Mulkern, Robert V; Vajapeyam, Sridhar; Haker, Steven J; Maier, Stephan E
2005-05-01
Magnetization transfer (MT) properties of the fast and slow diffusion components recently observed in the human brain were assessed experimentally. One set of experiments, performed at 1.5 T in healthy volunteers, was designed to determine whether the amplitudes of fast and slow diffusion components, differentiated on the basis of biexponential fits to signal decays over a wide range of b-factors, demonstrated a different or similar magnetization transfer ratio (MTR). Another set of experiments, performed at 3 T in healthy volunteers, was designed to determine whether MTRs differed when measured from high signal-to-noise images acquired with b-factor weightings of 350 vs 3500 s/mm2. The 3 T studies included measurements of MTR as a function of off-resonance frequency for the MT pulse at both low and high b-factors. The primary conclusion drawn from all the studies is that there appears to be no significant difference between the magnetization transfer properties of the fast and slow tissue water diffusion components. The conclusions do not lend support to a direct interpretation of the 'components' of the biexponential diffusion decay in terms of the 'compartments' associated with intra- and extracellular water. Copyright 2004 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Wang, Xiufang; Nie, Xinyi; Liang, Yilang; Lu, Falong; Yan, Zhongming; Wang, Yu
2017-01-01
Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.
You, Xiaoxiao; Gao, Lei; Qin, Dongli; Chen, Ligang
2017-01-01
A novel and highly efficient approach to obtain magnetic molecularly imprinted polymers is described to detect avermectin in fish samples. The magnetic molecularly imprinted polymers were synthesized by surface imprinting polymerization using magnetic multiwalled carbon nanotubes as the support materials, atom transfer radical polymerization as the polymerization method, avermectin as template, acrylamide as functional monomer, and ethylene glycol dimethacrylate as crosslinker. The characteristics of the magnetic molecularly imprinted polymers were assessed by using transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, vibrating sample magnetometry, X-ray diffraction, and thermogravimetric analysis. The binding characteristics of magnetic molecularly imprinted polymers were researched through isothermal adsorption experiment, kinetics adsorption experiment, and the selectivity experiment. Coupled with ultra high performance liquid chromatography and tandem mass spectrometry, the extraction conditions of the magnetic molecularly imprinted polymers as adsorbents for avermectin were investigated in detail. The recovery of avermectin was 84.2-97.0%, and the limit of detection was 0.075 μg/kg. Relative standard deviations of intra- and inter-day precisions were in the range of 1.7-2.9% and 3.4-5.6%, respectively. The results demonstrated that the extraction method not only has high selectivity and accuracy, but also is convenient for the determination of avermectin in fish samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nonlinear Magnetic Dynamics and The Switching Phase Diagrams in Spintronic Devices
NASA Astrophysics Data System (ADS)
Yan, Shu
Spin-transfer torque induced magnetic switching, by which the spin-polarized current transfers its magnetic moment to the ferromagnetic layer and changes its magnetization, holds great promise towards faster and smaller magnetic bits in data-storage applications due to the lower power consumption and better scalability. We propose an analytic approach which can be used to calculate the switching phase diagram of a nanomagnetic system in the presence of both magnetic field and spin-transfer torque in an exact fashion. This method is applied to the study of switching conditions for the uniaxial, single domain magnetic layers in different spin-transfer devices. In a spin valve with spin polarization collinear with the easy axis, we get a modified Stoner-Wohlfarth astroid which represents many of the features that have been found in experiment. It also shows a self-crossing boundary and demonstrates a region with three stable equilibria. We demonstrate that the region of stable equilibria with energy near the maximum can be reached only through a narrow bottleneck in the field space, which sets a stringent requirement for magnetic field alignment in the experiments. Switching diagrams are then calculated for the setups with magnetic field not perfectly aligned with the easy axis. In a ferromagnet-heavy-metal bilayer device with strong spin Hall effect, the in plane current becomes spin-polarized and transfers its magnetic moment to the ferromagnetic layer by diffusion. The three-dimensional asymmetric phase diagram is calculated. In the case that the external field is confined in the vertical plane defined by the direction of the current and the easy axis, the spin-transfer torque shifts the conventional in-plane (IP) equilibria within the same plane, and also creates two out-of-plane (OOP) equilibria, one of which can be stable. The threshold switching currents for IP switching and OOP switching are discussed. We also address the magnetic switching processes. Damping switching and precessional switching are two different switching types that are typically considered in recent studies. In the damping mode the switching is slow and heavily depends on the initial deviation, while in the precessional mode the accurate manipulation of the field or current pulse is required. We propose a switching scenario for a fast and reliable switching by taking advantage of the out-of-plane stable equilibrium in the SHE induced magnetic switching. The magnetization is first driven by a pulse of field and current towards the OOP equilibrium without precession. Since it is in the lower half of the unit sphere, no backwards pulse is required for a complete switching. This indicates a potentially feasible method of reliable ultra-fast magnetic control.
Prajapat, C L; Singh, Surendra; Bhattacharya, D; Ravikumar, G; Basu, S; Mattauch, S; Zheng, Jian-Guo; Aoki, T; Paul, Amitesh
2018-02-27
A case study of electron tunneling or charge-transfer-driven orbital ordering in superconductor (SC)-ferromagnet (FM) interfaces has been conducted in heteroepitaxial YBa 2 Cu 3 O 7 (YBCO)/La 0.67 Sr 0.33 MnO 3 (LSMO) multilayers interleaved with and without an insulating SrTiO 3 (STO) layer between YBCO and LSMO. X-ray magnetic circular dichroism experiments revealed anti-parallel alignment of Mn magnetic moments and induced Cu magnetic moments in a YBCO/LSMO multilayer. As compared to an isolated LSMO layer, the YBCO/LSMO multilayer displayed a (50%) weaker Mn magnetic signal, which is related to the usual proximity effect. It was a surprise that a similar proximity effect was also observed in a YBCO/STO/LSMO multilayer, however, the Mn signal was reduced by 20%. This reduced magnetic moment of Mn was further verified by depth sensitive polarized neutron reflectivity. Electron energy loss spectroscopy experiment showed the evidence of Ti magnetic polarization at the interfaces of the YBCO/STO/LSMO multilayer. This crossover magnetization is due to a transfer of interface electrons that migrate from Ti (4+)-δ to Mn at the STO/LSMO interface and to Cu 2+ at the STO/YBCO interface, with hybridization via O 2p orbitals. So charge-transfer driven orbital ordering is the mechanism responsible for the observed proximity effect and Mn-Cu anti-parallel coupling in YBCO/STO/LSMO. This work provides an effective pathway in understanding the aspect of long range proximity effect and consequent orbital degeneracy parameter in magnetic coupling.
NASA Astrophysics Data System (ADS)
Sugiyama, Atsushi; Morisaki, Shigeyoshi; Aogaki, Ryoichi
2003-08-01
When an external magnetic field is vertically imposed on a solid-liquid interface, the mass transfer process of a solute dissolving from or depositing on the interface was theoretically examined. In a heterogeneous vertical magnetic field, a material receives a magnetic force in proportion to the product of the magnetic susceptibility, the magnetic flux density B and its gradient (dB/dz). As the reaction proceeds, a diffusion layer of the solute with changing susceptibility is formed at the interface because of the difference of the the magnetic susceptibility on the concentration of the solute. In the case of an unstable condition where the dimensionless number of magneto-convection S takes a positive value, the magnetic force is applied to the layer and induces numerous minute convection cells. The mass transfer of the solute is thus accelerated, so that it is predicted that the mass flux increases with the 1/3rd order of B(dB/dz) and the 4/3rd order of the concentration. The experiment was then performed by measuring the rate of the dissolution of copper sulfate pentahydrate crystal in water.
Richardson, Peter M; Jackson, Scott; Parrott, Andrew J; Nordon, Alison; Duckett, Simon B; Halse, Meghan E
2018-07-01
Signal amplification by reversible exchange (SABRE) is a hyperpolarisation technique that catalytically transfers nuclear polarisation from parahydrogen, the singlet nuclear isomer of H 2 , to a substrate in solution. The SABRE exchange reaction is carried out in a polarisation transfer field (PTF) of tens of gauss before transfer to a stronger magnetic field for nuclear magnetic resonance (NMR) detection. In the simplest implementation, polarisation transfer is achieved by shaking the sample in the stray field of a superconducting NMR magnet. Although convenient, this method suffers from limited reproducibility and cannot be used with NMR spectrometers that do not have appreciable stray fields, such as benchtop instruments. Here, we use a simple hand-held permanent magnet array to provide the necessary PTF during sample shaking. We find that the use of this array provides a 25% increase in SABRE enhancement over the stray field approach, while also providing improved reproducibility. Arrays with a range of PTFs were tested, and the PTF-dependent SABRE enhancements were found to be in excellent agreement with comparable experiments carried out using an automated flow system where an electromagnet is used to generate the PTF. We anticipate that this approach will improve the efficiency and reproducibility of SABRE experiments carried out using manual shaking and will be particularly useful for benchtop NMR, where a suitable stray field is not readily accessible. The ability to construct arrays with a range of PTFs will also enable the rapid optimisation of SABRE enhancement as function of PTF for new substrate and catalyst systems. © 2017 The Authors Magnetic Resonance in Chemistry Published by John Wiley & Sons Ltd.
Richardson, Peter M.; Jackson, Scott; Parrott, Andrew J.; Nordon, Alison; Duckett, Simon B.
2018-01-01
Signal amplification by reversible exchange (SABRE) is a hyperpolarisation technique that catalytically transfers nuclear polarisation from parahydrogen, the singlet nuclear isomer of H2, to a substrate in solution. The SABRE exchange reaction is carried out in a polarisation transfer field (PTF) of tens of gauss before transfer to a stronger magnetic field for nuclear magnetic resonance (NMR) detection. In the simplest implementation, polarisation transfer is achieved by shaking the sample in the stray field of a superconducting NMR magnet. Although convenient, this method suffers from limited reproducibility and cannot be used with NMR spectrometers that do not have appreciable stray fields, such as benchtop instruments. Here, we use a simple hand‐held permanent magnet array to provide the necessary PTF during sample shaking. We find that the use of this array provides a 25% increase in SABRE enhancement over the stray field approach, while also providing improved reproducibility. Arrays with a range of PTFs were tested, and the PTF‐dependent SABRE enhancements were found to be in excellent agreement with comparable experiments carried out using an automated flow system where an electromagnet is used to generate the PTF. We anticipate that this approach will improve the efficiency and reproducibility of SABRE experiments carried out using manual shaking and will be particularly useful for benchtop NMR, where a suitable stray field is not readily accessible. The ability to construct arrays with a range of PTFs will also enable the rapid optimisation of SABRE enhancement as function of PTF for new substrate and catalyst systems. PMID:29193324
Alfvén wave dynamics at the neighborhood of a 2.5D magnetic null-point
NASA Astrophysics Data System (ADS)
Sabri, S.; Vasheghani Farahani, S.; Ebadi, H.; Hosseinpour, M.; Fazel, Z.
2018-05-01
The aim of the present study is to highlight the energy transfer via the interaction of magnetohydrodynamic waves with a 2.5D magnetic null-point in a finite plasma-β regime of the solar corona. An initially symmetric Alfvén pulse at a specific distance from a magnetic null-point is kicked towards the isothermal null-point. A shock-capturing Godunov-type PLUTO code is used to solve the ideal magnetohydrodynamic set equations in the context of wave-plasma energy transfer. As the Alfvén wave propagates towards the magnetic null-point it experiences speed lowering which ends up in releasing energy along the separatrices. In this line owing to the Alfvén wave, a series of events take place that contribute towards coronal heating. Nonlinear induced waves are by products of the torsional Alfvén interaction with magnetic null-points. The energy of these induced waves which are fast magnetoacoustic (transverse) and slow magnetoacoustic (longitudinal) waves are supplied by the Alfvén wave. The nonlinearly induced density perturbations are proportional to the Alfvén wave energy loss. This supplies energy for the propagation of fast and slow magnetoacoustic waves, where in contrast to the fast wave the slow wave experiences a continuous energy increase. As such, the slow wave may transfer its energy to the medium at later times, maintaining a continuous heating mechanism at the neighborhood of a magnetic null-point.
NASA Astrophysics Data System (ADS)
Cansever, H.; Narkowicz, R.; Lenz, K.; Fowley, C.; Ramasubramanian, L.; Yildirim, O.; Niesen, A.; Huebner, T.; Reiss, G.; Lindner, J.; Fassbender, J.; Deac, A. M.
2018-06-01
Similar to electrical currents flowing through magnetic multilayers, thermal gradients applied across the barrier of a magnetic tunnel junction may induce pure spin-currents and generate ‘thermal’ spin-transfer torques large enough to induce magnetization dynamics in the free layer. In this study, we describe a novel experimental approach to observe spin-transfer torques induced by thermal gradients in magnetic multilayers by studying their ferromagnetic resonance response in microwave cavities. Utilizing this approach allows for measuring the magnetization dynamics on micron/nano-sized samples in open-circuit conditions, i.e. without the need of electrical contacts. We performed first experiments on magnetic tunnel junctions patterned into 6 × 9 µm2 ellipses from Co2FeAl/MgO/CoFeB stacks. We conducted microresonator ferromagnetic resonance (FMR) under focused laser illumination to induce thermal gradients in the layer stack and compared them to measurements in which the sample was globally heated from the backside of the substrate. Moreover, we carried out broadband FMR measurements under global heating conditions on the same extended films the microstructures were later on prepared from. The results clearly demonstrate the effect of thermal spin-torque on the FMR response and thus show that the microresonator approach is well suited to investigate thermal spin-transfer-driven processes for small temperatures gradients, far below the gradients required for magnetic switching.
NASA Astrophysics Data System (ADS)
Azimi, Neda; Rahimi, Masoud
2017-01-01
Rotating magnetic field (RMF) was applied on a micromixer to break the laminar flow and induce chaotic flow to enhance mass transfer between two-immiscible organic and aqueous phases. The results of RMF were compared to those of static magnetic field (SMF). For this purpose, experiments were carried out in a T-micromixer at equal volumetric flow rates of organic and aqueous phases. Fe3O4 nanoparticles were synthesized by co-precipitation technique and they were dissolved in organic phase. Results obtained from RMF and SMF were compared in terms of overall volumetric mass transfer coefficient (KLa) and extraction efficiency (E) at various Reynolds numbers. Generally, RMF showed higher effect in mass transfer characteristics enhancement compared with SMF. The influence of rotational speeds of magnets (ω) in RMF was investigated, and measurable enhancements of KLa and E were observed. In RMF, the effect of magnetic field induction (B) was investigated. The results reveal that at constant concentration of nanoparticles, by increasing of B, mass transfer characteristics will be enhanced. The effect of various nanoparticles concentrations (ϕ) within 0.002-0.01 (w/v) on KLa and E at maximum induction of RMF (B=76 mT) was evaluated. Maximum values of KLa (2.1±0.001) and E (0.884±0.001) were achieved for the layout of RMF (B=76 mT), ω=16 rad/s and MNPs concentration of 0.008-0.01 (w/v).
A Novel Method Of Gradient Forming and Fluid Manipulation in Reduced Gravity Environments
NASA Technical Reports Server (NTRS)
Ramachandran N.; Leslie, F.
1999-01-01
The use of magnetic fields to control the motion and position of non-conducting liquids has received growing interest in recent times. The possibility of using the forces exerted by a nonuniform magnetic field on a ferrofluid to not only achieve fluid manipulation but also to actively control fluid motion makes it an attractive candidate for applications such as heat transfer in space systems. Terrestrial heat transfer equipment often relies on the normal gravitational force to hold liquid in a desired position or to provide a buoyant force to enhance the heat transfer rate. The residual gravitational force present in a space environment may no longer serve these useful functions and other forces, such as surface tension, can play a significant role in determining heat transfer rates. Although typically overwhelmed by gravitational forces in terrestrial applications, the body force induced in a ferrofluid by a nonuniform magnetic field can help to achieve these objectives in a microgravity environment. This paper will address the fluid manipulation aspect and will comprise of results from model fluid experiments and numerical modeling of the problem. Results from a novel method of forming concentration gradients that are applicable to low gravity applications will be presented. The ground based experiments are specifically tailored to demonstrate the magnetic manipulation capability of a ferrofluid and show that gravitational effects can be countered in carefully designed systems. The development of governing equations for the system will be presented along with a sampling of numerical results.
Dipole-quadrupole dynamics during magnetic field reversals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gissinger, Christophe
The shape and the dynamics of reversals of the magnetic field in a turbulent dynamo experiment are investigated. We report the evolution of the dipolar and the quadrupolar parts of the magnetic field in the VKS experiment, and show that the experimental results are in good agreement with the predictions of a recent model of reversals: when the dipole reverses, part of the magnetic energy is transferred to the quadrupole, reversals begin with a slow decay of the dipole and are followed by a fast recovery, together with an overshoot of the dipole. Random reversals are observed at the borderlinemore » between stationary and oscillatory dynamos.« less
Lee, Jong-Chul; Lee, Sangyoup
2013-09-01
Magnetic fluid is a stable colloidal mixture contained magnetic nanoparticles coated with a surfactant. Recently, it was found that the fluid has properties to increase heat transfer and dielectric characteristics due to the added magnetic nanoparticles in transformer oils. The magnetic nanoparticles in the fluid experience an electrical force directed toward the place of maximum electric field strength when the electric field is applied. And when the external magnetic field is applied, the magnetic nanoparticles form long chains oriented along the direction of the field. The behaviors of magnetic nanoparticles in both the fields must play an important role in changing the heat transfer and dielectric characteristics of the fluids. In this study, we visualized the movement of magnetic nanoparticles influenced by both the fields applied in-situ. It was found that the magnetic nanoparticles travel in the region near the electrode by the electric field and form long chains along the field direction by the magnetic field. It can be inferred that the movement of magnetic nanoparticles appears by both the fields, and the breakdown voltage of transformer oil based magnetic fluids might be influenced according to the dispersion of magnetic nanoparticles.
Spin-Transfer Studies in Magnetic Multilayer Nanostructures
NASA Astrophysics Data System (ADS)
Emley, N. C.; Albert, F. J.; Ryan, E. M.; Krivorotov, I. N.; Ralph, D. C.; Buhrman, R. A.
2003-03-01
Numerous experiments have demonstrated current-induced magnetization reversal in ferromagnet/paramagnet/ferromagnet nanostructures with the current in the CPP geometry. The primary mechanism for this reversal is the transfer of angular momentum from the spin-polarized conduction electrons to the nanomagnet moment the spin transfer effect. This phenomenon has potential application in nanoscale, current-controlled non-volatile memory elements, but several challenges must be overcome for realistic device implementation. Typical Co/Cu/Co nanopillar devices, although effective for fundamental studies, are not advantageous for technological applications because of their large switching currents Ic ( 3-10 mA) and small R·A (< 1 mΩ·µm^2). Here we report initial results testing some possible approaches for enhancing spin-transfer device performance which involve the addition of more layers, and hence, more complexity, to the simple Co/Cu/Co trilayer structure. These additions include synthetic antiferromagnet layers (SAF), exchange biased layers, nano-oxide layers (NOL), and additional magnetic layers. Research supported by NSF and DARPA
Heat and momentum transfer for magnetoconvection in a vertical external magnetic field
NASA Astrophysics Data System (ADS)
Zürner, Till; Liu, Wenjun; Krasnov, Dmitry; Schumacher, Jörg
2016-11-01
The scaling theory of Grossmann and Lohse for the turbulent heat and momentum transfer is extended to the magnetoconvection case in the presence of a (strong) vertical magnetic field. The comparison with existing laboratory experiments and direct numerical simulations in the quasistatic limit allows to restrict the parameter space to very low Prandtl and magnetic Prandtl numbers and thus to reduce the number of unknown parameters in the model. Also included is the Chandrasekhar limit for which the outer magnetic induction field B is large enough such that convective motion is suppressed and heat is transported by diffusion. Our theory identifies four distinct regimes of magnetoconvection which are distinguished by the strength of the outer magnetic field and the level of turbulence in the flow, respectively. LIMTECH Research Alliance and Research Training Group GK 1567 on Lorentz Force Velocimetry, funded by the Deutsche Forschungsgemeinschaft.
An Inversion Recovery NMR Kinetics Experiment
ERIC Educational Resources Information Center
Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping
2011-01-01
A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this…
Magnetic Nozzle and Plasma Detachment Experiment
NASA Technical Reports Server (NTRS)
Chavers, Gregory; Dobson, Chris; Jones, Jonathan; Martin, Adam; Bengtson, Roger D.; Briezman, Boris; Arefiev, Alexey; Cassibry, Jason; Shuttpelz, Branwen; Deline, Christopher
2006-01-01
High power plasma propulsion can move large payloads for orbit transfer (such as the ISS), lunar missions, and beyond with large savings in fuel consumption owing to the high specific impulse. At high power, lifetime of the thruster becomes an issue. Electrodeless devices with magnetically guided plasma offer the advantage of long life since magnetic fields confine the plasma radially and keep it from impacting the material surfaces. For decades, concerns have been raised about the plasma remaining attached to the magnetic field and returning to the vehicle along the closed magnetic field lines. Recent analysis suggests that this may not be an issue of the magnetic field is properly shaped in the nozzle region and the plasma has sufficient energy density to stretch the magnetic field downstream. An experiment was performed to test the theory regarding the Magneto-hydrodynamic (MHD) detachment scenario. Data from this experiment will be presented. The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) being developed by the Ad Astra Rocket Company uses a magnetic nozzle as described above. The VASIMR is also a leading candidate for exploiting an electric propulsion test platform being considered for the ISS.
NASA Astrophysics Data System (ADS)
Tahari, M.; Ghorbanian, A.; Hatami, M.; Jing, D.
2017-12-01
In this paper, the physical effect of a variable magnetic field on a nanofluid-based concentrating parabolic solar collector (NCPSC) is demonstrated. A section of reservoir is modeled as a semi-circular cavity under the solar radiation with the magnetic source located in the center or out of the cavity and the governing equations were solved by the FlexPDE numerical software. The effect of four physical parameters, i.e., Hartmann Number (Ha), nanoparticles volume fraction ( φ, magnetic field strength ( γ and magnetic source location ( b, on the Nusselt number is discussed. To find the interaction of these parameters and its effect on the heat transfer, a central composite design (CCD) is used and analysis is performed on the 25 experiments proposed by CCD. Analysis of variance (ANOVA) of the results reveals that increasing the Hartmann number decreases the Nusselt number due to the Lorentz force resulting from the presence of stronger magnetic field.
Spin-transfer torque in spin filter tunnel junctions
NASA Astrophysics Data System (ADS)
Ortiz Pauyac, Christian; Kalitsov, Alan; Manchon, Aurelien; Chshiev, Mairbek
2014-12-01
Spin-transfer torque in a class of magnetic tunnel junctions with noncollinear magnetizations, referred to as spin filter tunnel junctions, is studied within the tight-binding model using the nonequilibrium Green's function technique within Keldysh formalism. These junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator (MI) or two FM separated by a MI. We find that the presence of the magnetic insulator dramatically enhances the magnitude of the spin-torque components compared to conventional magnetic tunnel junctions. The fieldlike torque is driven by the spin-dependent reflection at the MI/FM interface, which results in a small reduction of its amplitude when an insulating spacer (S) is inserted to decouple MI and FM layers. Meanwhile, the dampinglike torque is dominated by the tunneling electrons that experience the lowest barrier height. We propose a device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics and allows for tuning the spin-torque magnitudes over a wide range just by rotation of the magnetization of the insulating layer.
DC-magnetic field vector measurement
NASA Technical Reports Server (NTRS)
Schmidt, R.
1981-01-01
A magnetometer experiment was designed to determine the local magnetic field by measuring the total of the Earth's magnetic field and that of an unknown spacecraft. The measured field vector components are available to all onboard experiments via the Spacelab command and data management system. The experiment consists of two parts, an electronic box and the magnetic field sensor. The sensor includes three independent measuring flux-gate magnetometers, each measuring one component. The physical background is the nonlinearity of the B-H curve of a ferrite material. Two coils wound around a ferrite rod are necessary. One of them, a tank coil, pumps the ferrite rod at approximately 20 kilohertz. As a consequence of the nonlinearity, many harmonics can be produced. The second coil (i.e., the detection coil) resonates to the first harmonic. If an unknown dc or low-frequency magnetic field exists, the amplitude of the first harmonic is a measure for the unknown magnetic field. The voltages detected by the sensors are to be digitized and transferred to the command and data management system.
Krause, S; Herzog, G; Schlenhoff, A; Sonntag, A; Wiesendanger, R
2011-10-28
The influence of a high spin-polarized tunnel current onto the switching behavior of a superparamagnetic nanoisland on a nonmagnetic substrate is investigated by means of spin-polarized scanning tunneling microscopy. A detailed lifetime analysis allows for a quantification of the effective temperature rise of the nanoisland and the modification of the activation energy barrier for magnetization reversal, thereby using the nanoisland as a local thermometer and spin-transfer torque analyzer. Both the Joule heating and spin-transfer torque are found to scale linearly with the tunnel current. The results are compared to experiments performed on lithographically fabricated magneto-tunnel junctions, revealing a very high spin-transfer torque switching efficiency in our experiments.
Graphene-ferromagnet interfaces: hybridization, magnetization and charge transfer.
Abtew, Tesfaye; Shih, Bi-Ching; Banerjee, Sarbajit; Zhang, Peihong
2013-03-07
Electronic and magnetic properties of graphene-ferromagnet interfaces are investigated using first-principles electronic structure methods in which a single layer graphene is adsorbed on Ni(111) and Co(111) surfaces. Due to the symmetry matching and orbital overlap, the hybridization between graphene pπ and Ni (or Co) d(z(2)) states is very strong. This pd hybridization, which is both spin and k dependent, greatly affects the electronic and magnetic properties of the interface, resulting in a significantly reduced (by about 20% for Ni and 10% for Co) local magnetic moment of the top ferromagnetic layer at the interface and an induced spin polarization on the graphene layer. The calculated induced magnetic moment on the graphene layer agrees well with a recent experiment. In addition, a substantial charge transfer across the graphene-ferromagnet interfaces is observed. We also investigate the effects of thickness of the ferromagnet slab on the calculated electronic and magnetic properties of the interface. The strength of the pd hybridization and the thickness-dependent interfacial properties may be exploited to design structures with desirable magnetic and transport properties for spintronic applications.
Magnetic force and work: an accessible example
NASA Astrophysics Data System (ADS)
Gates, Joshua
2014-05-01
Despite their physics instructors’ arguments to the contrary, introductory students can observe situations in which there seems to be compelling evidence for magnetic force doing work. The counterarguments are often highly technical and require physics knowledge beyond the experience of novice students, however. A simple example is presented which can illustrate that all may not be what it seems when energy transfer and the magnetic force are involved. Excel and Python simulations of the process are also provided.
NASA Astrophysics Data System (ADS)
Ballarino, A.; Giannelli, S.; Jacquemod, A.; Leclercq, Y.; Ortiz Ferrer, C.; Parma, V.
2017-12-01
The High Luminosity LHC (HL-LHC) is a project aiming to upgrade the Large Hadron Collider (LHC) after 2020-2025 in order to increase the integrated luminosity by about one order of magnitude and extend the operational capabilities until 2035. The upgrade of the focusing triplet insertions for the Atlas and CMS experiments foresees using superconducting magnets operating in a pressurised superfluid helium bath at 1.9 K. The increased radiation levels from the particle debris produced by particle collisions in the experiments require that the power converters are placed in radiation shielded zones located in a service gallery adjacent to the main tunnel. The powering of the magnets from the gallery is achieved by means of MgB2 superconducting cables in a 100-m long flexible cryostat transfer line, actively cooled by 4.5 K to 20 K gaseous helium generated close to the magnets. At the highest temperature end, the helium flow cools the High Temperature Superconducting (HTS) current leads before being recovered at room temperature. At the magnet connection side, a dedicated connection box allows connection to the magnets and a controlled boil-off production of helium for the cooling needs of the powering system. This paper presents the overall concept of the cryostat system from the magnet connection boxes, through the flexible cryostat transfer line, to the connection box of the current leads.
Coherent manipulation of non-thermal spin order in optical nuclear polarization experiments
NASA Astrophysics Data System (ADS)
Buntkowsky, Gerd; Ivanov, Konstantin L.; Zimmermann, Herbert; Vieth, Hans-Martin
2017-03-01
Time resolved measurements of Optical Nuclear Polarization (ONP) have been performed on hyperpolarized triplet states in molecular crystals created by light excitation. Transfer of the initial electron polarization to nuclear spins has been studied in the presence of radiofrequency excitation; the experiments have been performed with different pulse sequences using different doped molecular systems. The experimental results clearly demonstrate the dominant role of coherent mechanisms of spin order transfer, which manifest themselves in well pronounced oscillations. These oscillations are of two types, precessions and nutations, having characteristic frequencies, which are the same for the different molecular systems and the pulse sequences applied. Hence, precessions and nutations constitute a general feature of polarization transfer in ONP experiments. In general, coherent manipulation of spin order transfer creates a powerful resource for improving the performance of the ONP method, which paves the way to strong signal enhancement in nuclear magnetic resonance.
Magnetic to magnetic and kinetic to magnetic energy transfers at the top of the Earth's core
NASA Astrophysics Data System (ADS)
Huguet, Ludovic; Amit, Hagay; Alboussière, Thierry
2016-11-01
We develop the theory for the magnetic to magnetic and kinetic to magnetic energy transfer between different spherical harmonic degrees due to the interaction of fluid flow and radial magnetic field at the top of the Earth's core. We show that non-zero secular variation of the total magnetic energy could be significant and may provide evidence for the existence of stretching secular variation, which suggests the existence of radial motions at the top of the Earth's core-whole core convection or MAC waves. However, the uncertainties of the small scales of the geomagnetic field prevent a definite conclusion. Combining core field and flow models we calculate the detailed magnetic to magnetic and kinetic to magnetic energy transfer matrices. The magnetic to magnetic energy transfer shows a complex behaviour with local and non-local transfers. The spectra of magnetic to magnetic energy transfers show clear maxima and minima, suggesting an energy cascade. The kinetic to magnetic energy transfers, which are much weaker due to the weak poloidal flow, are either local or non-local between degree one and higher degrees. The patterns observed in the matrices resemble energy transfer patterns that are typically found in 3-D MHD numerical simulations.
NASA Astrophysics Data System (ADS)
Huang, Shun-Yu; Chong, Cheong-Wei; Chen, Pin-Hui; Li, Hong-Lin; Li, Min-Kai; Huang, J. C. Andrew
2017-11-01
In this work, Cobalt-Ferrite (CFO) films were grown on silicon substrates with 300 nm amorphous silicon dioxide by Pulsed Laser Deposition (PLD) with different annealing conditions. The results of structural analysis prove that the CFO films have high crystalline quality with (1 1 1) preferred orientation. The Raman spectra and X-ray absorption spectra (XAS) indicate that the Co ions can transfer from tetrahedral sites to octahedral sites with increasing the annealing pressure. The site exchange of Co and Fe ions leads to the change of saturation magnetization in the CFO films. Our experiments provide not only a way to control the magnetism of CFO films, but also a suitable magnetic layer to develop silicon and semiconductor based spintronic devices.
NASA Astrophysics Data System (ADS)
Lippens, R. M.; Cerf, C.; Hallenga, K.
The theory of the transferred nuclear Overhauser effect is presented in the framework of an extended relaxation matrix representation. This matrix representation allows a coherent description of all one- and two-dimensional experiments. We present analytical solutions for the buildup of magnetization in the 2D transfer-NOE experiment, for all ratios of the off rate k to the cross-relaxation rates R involved. We show that systematic deviations in distance determination occur when the off rate becomes comparable to or smaller than the relaxation rates. Experimental results on the peptide/protein system oxytocin/neurophysin confirming this analysis are presented. The importance of residual mobility in the bound ligand, as demonstrated by the experimental data, is also discussed.
Methods for Dichoptic Stimulus Presentation in Functional Magnetic Resonance Imaging - A Review
Choubey, Bhaskar; Jurcoane, Alina; Muckli, Lars; Sireteanu, Ruxandra
2009-01-01
Dichoptic stimuli (different stimuli displayed to each eye) are increasingly being used in functional brain imaging experiments using visual stimulation. These studies include investigation into binocular rivalry, interocular information transfer, three-dimensional depth perception as well as impairments of the visual system like amblyopia and stereodeficiency. In this paper, we review various approaches of displaying dichoptic stimulus used in functional magnetic resonance imaging experiments. These include traditional approaches of using filters (red-green, red-blue, polarizing) with optical assemblies as well as newer approaches of using bi-screen goggles. PMID:19526076
ERIC Educational Resources Information Center
Talbot, Chris; And Others
1991-01-01
Twenty science experiments are presented. Topics include recombinant DNA, physiology, nucleophiles, reactivity series, molar volume of gases, spreadsheets in chemistry, hydrogen bonding, composite materials, radioactive decay, magnetism, speed, charged particles, compression waves, heat transfer, Ursa Major, balloons, current, and expansion of…
NASA Astrophysics Data System (ADS)
Kenjeres, S.
2016-09-01
In the present paper we give a concise review of some recent highlights of our research dealing with electromagnetic control of flow, mixing and heat transfer of electrically conductive or magnetized fluids. We apply a combination of state-of-art numerical (DNS and LES) and experimental (PIV and LIF) techniques to provide fundamental insights into the complex phenomena of interactions between imposed (or induced) electromagnetic fields and underlying fluid flow. Our analysis covers an extensive range of working fluids, i.e. weakly- and highly-electrically-conductive, as well as magnetized fluids. These interactions are defined through the presence of different types of body forces acting per volume of fluid. A fully closed system of governing equations containing an extended set of the Navier-Stokes and a simplified set of the Maxwell equations is presented. The four characteristic examples are selected: the electromagnetic control of self-sustained jet oscillations, the electromagnetic enhancement of heat transfer in thermal convection, the wake interactions behind magnetic obstacles and finally, the thermo-magnetic convection in differentially heated cubical enclosure. The comparative assessment between experimental and numerical results is presented. It is concluded that generally good agreement between simulations and experiments is obtained for all cases considered, proving the concept of electromagnetic modulation, which can be used in numerous technological applications.
Design of the Madison Dynamo Experiment
NASA Astrophysics Data System (ADS)
Kendrick, R. D.; Forest, C. B.; O'Connell, R.; Nornberg, M. D.; Spence, E. J.
2004-11-01
A spherical dynamo experiment has been constructed at the University of Wisconsin's liquid-sodium facility. The goals of the experiment are to observe and understand magnetic instabilities driven by flow shear in MHD systems, investigate MHD turbulence for magnetic Reynolds numbers of 100, and understand the role of fluid turbulence in current generation. Magnetic field generation is possible for only specific flow geometries. The experiment consists of a 1 m diameter, spherical stainless steel vessel filled with liquid sodium at 110 Celsius. The temperature of the vessel is maintained through an actively-heated-and-cooled oil heat-exchange system. Two 100 Hp motors with impellers drive flows in the liquid sodium with flow velocities near 15 m/s. Each shaft is sealed with an oil-buffered dual mechanical cartridge seal. The experiment is automated for remote operation and data logging. The melting and transfer of one metric ton of sodium to a storage vessel is discussed. Operating parameters and performance of the experiment are presented.
Active Magnetic Regenerative Liquefier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barclay, John A.; Oseen-Send, Kathryn; Ferguson, Luke
2016-01-12
This final report for the DOE Project entitled Active Magnetic Regenerative Liquefier (AMRL) funded under Grant DE-FG36-08GO18064 to Heracles Energy Corporation d.b.a. Prometheus Energy (Heracles/Prometheus) describes an active magnetic regenerative refrigerator (AMRR) prototype designed and built during the period from July 2008 through May 2011. The primary goal of this project was to make significant technical advances toward highly efficient liquefaction of hydrogen. Conventional hydrogen liquefiers at any scale have a maximum FOM of ~0.35 due primarily to the intrinsic difficulty of rapid, efficient compression of either hydrogen or helium working gases. Numerical simulation modeling of high performance AMRL designsmore » indicates certain designs have promise to increase thermodynamic efficiency from a FOM of ~0.35 toward ~0.5 to ~0.6. The technical approach was the use of solid magnetic working refrigerants cycled in and out of high magnetic fields to build an efficient active regenerative magnetic refrigeration module providing cooling power for AMRL. A single-stage reciprocating AMRR with a design temperature span from ~290 K to ~120 K was built and tested with dual magnetic regenerators moving in and out of the conductively-cooled superconducting magnet subsystem. The heat transfer fluid (helium) was coupled to the process stream (refrigeration/liquefaction load) via high performance heat exchangers. In order to maximize AMRR efficiency a helium bypass loop with adjustable flow was incorporated in the design because the thermal mass of magnetic refrigerants is higher in low magnetic field than in high magnetic field. Heracles/Prometheus designed experiments to measure AMRR performance under a variety of different operational parameters such as cycle frequency, magnetic field strength, heat transfer fluid flow rate, amount of bypass flow of the heat transfer fluid while measuring work input, temperature span, cooling capability as a function of cold temperature as a function of the amount of bypass flow of the heat transfer fluid. The operational AMRR prototype can be used to answer key questions such as the best recipe for multiple layers of different magnetic refrigerants in one or more integrated regenerators with varying amounts of bypass flow of the heat transfer fluid. Layered regenerators are necessary to span the AMRR range from 290 K to 120K. Our AMRR performance simulation model predicts that ~10-15 % of bypass flow should significantly improve the thermodynamic performance. Initial results obtained with regenerators made of gadolinium spheres were very encouraging; a temperature span of ~ 50 K (between 295K and 245 K) across both regenerators was achieved with zero bypass flow of the heat transfer fluid and with the magnetic field strength of ~4 T.« less
Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodson, Boyd McLean
1999-12-01
Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permitmore » a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI.« less
Maglev Facility for Simulating Variable Gravity
NASA Technical Reports Server (NTRS)
Liu, Yuanming; Strayer, Donald M.; Israelsson, Ulf E.
2010-01-01
An improved magnetic levitation apparatus ("Maglev Facility") has been built for use in experiments in which there are requirements to impose variable gravity (including zero gravity) in order to assess the effects of gravity or the absence thereof on physical and physiological processes. The apparatus is expected to be especially useful for experiments on the effects of gravity on convection, boiling, and heat transfer in fluids and for experiments on mice to gain understanding of bone loss induced in human astronauts by prolonged exposure to reduced gravity in space flight. The maglev principle employed by the apparatus is well established. Diamagnetic cryogenic fluids such as liquid helium have been magnetically levitated for studying their phase transitions and critical behaviors. Biological entities consist mostly of diamagnetic molecules (e.g., water molecules) and thus can be levitated by use of sufficiently strong magnetic fields having sufficiently strong vertical gradients. The heart of the present maglev apparatus is a vertically oriented superconducting solenoid electromagnet (see figure) that generates a static magnetic field of about 16 T with a vertical gradient sufficient for levitation of water in normal Earth gravity. The electromagnet is enclosed in a Dewar flask having a volume of 100 L that contains liquid helium to maintain superconductivity. The Dewar flask features a 66-mm-diameter warm bore, lying within the bore of the magnet, wherein experiments can be performed at room temperature. The warm bore is accessible from its top and bottom ends. The superconducting electromagnet is run in the persistent mode, in which the supercurrent and the magnetic field can be maintained for weeks with little decay, making this apparatus extremely cost and energy efficient to operate. In addition to water, this apparatus can levitate several common fluids: liquid hydrogen, liquid oxygen, methane, ammonia, sodium, and lithium, all of which are useful, variously, as rocket fuels or as working fluids for heat transfer devices. A drop of water 45 mm in diameter and a small laboratory mouse have been levitated in this apparatus.
NASA Astrophysics Data System (ADS)
Glazebrook, R. T.
2016-10-01
1. Electrostatics: fundamental facts; 2. Electricity as a measurable quantity; 3. Measurement of electric force and potential; 4. Condensers; 5. Electrical machines; 6. Measurement of potential and electric force; 7. Magnetic attraction and repulsion; 8. Laws of magnetic force; 9. Experiments with magnets; 10. Magnetic calculations; 11. Magnetic measurements; 12. Terrestrial magnetism; 13. The electric current; 14. Relation between electromagnetic force and current; 15. Measurement of current; 16. Measurement of resistance and electromotive force; 17. Measurement of quantity of electricity, condensers; 18. Thermal activity of a current; 19. The voltaic cell (theory); 20. Electromagnetism; 21. Magnetisation of iron; 22. Electromagnetic instruments; 23. Electromagnetic induction; 24. Applications of electromagnetic induction; 25. Telegraphy and telephony; 26. Electric waves; 27. Transference of electricity through gases: corpuscles and electrons; Answers to examples; Index.
Controlled enhancement of spin-current emission by three-magnon splitting.
Kurebayashi, Hidekazu; Dzyapko, Oleksandr; Demidov, Vladislav E; Fang, Dong; Ferguson, A J; Demokritov, Sergej O
2011-07-03
Spin currents--the flow of angular momentum without the simultaneous transfer of electrical charge--play an enabling role in the field of spintronics. Unlike the charge current, the spin current is not a conservative quantity within the conduction carrier system. This is due to the presence of the spin-orbit interaction that couples the spin of the carriers to angular momentum in the lattice. This spin-lattice coupling acts also as the source of damping in magnetic materials, where the precessing magnetic moment experiences a torque towards its equilibrium orientation; the excess angular momentum in the magnetic subsystem flows into the lattice. Here we show that this flow can be reversed by the three-magnon splitting process and experimentally achieve the enhancement of the spin current emitted by the interacting spin waves. This mechanism triggers angular momentum transfer from the lattice to the magnetic subsystem and modifies the spin-current emission. The finding illustrates the importance of magnon-magnon interactions for developing spin-current based electronics.
Studies on Plasmoid Merging using Compact Toroid Injectors
NASA Astrophysics Data System (ADS)
Allfrey, Ian; Matsumoto, Tadafumi; Roche, Thomas; Gota, Hiroshi; Edo, Takahiro; Asai, Tomohiko; Sheftman, Daniel; Osin Team; Dima Team
2017-10-01
C-2 and C-2U experiments have used magnetized coaxial plasma guns (MCPG) to inject compact toroids (CTs) for refueling the long-lived advanced beam-driven field-reversed configuration (FRC) plasma. This refueling method will also be used for the C-2W experiment. To minimize momentum transfer from the CT to the FRC two CTs are injected radially, diametrically opposed and coincident in time. To improve understanding of the CT characteristics TAE has a dedicated test bed for the development of CT injectors (CTI), where plasmoid merging experiments are performed. The test bed has two CTIs on axis with both axial and transverse magnetic fields. The 1 kG magnetic fields, intended to approximate the magnetic field strength and injection angle on C-2W, allow studies of cross-field transport and merging. Both CTIs are capable of injecting multiple CTs at up to 1 kHz. The resulting merged CT lives >100 μs with a radius of 25 cm. More detailed results of CT parameters will be presented.
Wang, Kangkang; Lin, Wenzhi; Chinchore, Abhijit V; Liu, Yinghao; Smith, Arthur R
2011-05-01
A room-temperature ultra-high-vacuum scanning tunneling microscope for in situ scanning freshly grown epitaxial films has been developed. The core unit of the microscope, which consists of critical components including scanner and approach motors, is modular designed. This enables easy adaptation of the same microscope units to new growth systems with different sample-transfer geometries. Furthermore the core unit is designed to be fully compatible with cryogenic temperatures and high magnetic field operations. A double-stage spring suspension system with eddy current damping has been implemented to achieve ≤5 pm z stability in a noisy environment and in the presence of an interconnected growth chamber. Both tips and samples can be quickly exchanged in situ; also a tunable external magnetic field can be introduced using a transferable permanent magnet shuttle. This allows spin-polarized tunneling with magnetically coated tips. The performance of this microscope is demonstrated by atomic-resolution imaging of surface reconstructions on wide band-gap GaN surfaces and spin-resolved experiments on antiferromagnetic Mn(3)N(2)(010) surfaces.
Wireless Power Transfer for Space Applications
NASA Technical Reports Server (NTRS)
Ramos, Gabriel Vazquez; Yuan, Jiann-Shiun
2011-01-01
This paper introduces an implementation for magnetic resonance wireless power transfer for space applications. The analysis includes an equivalent impedance study, loop material characterization, source/load resonance coupling technique, and system response behavior due to loads variability. System characterization is accomplished by executing circuit design from analytical equations and simulations using Matlab and SPICE. The theory was validated by a combination of different experiments that includes loop material consideration, resonance coupling circuits considerations, electric loads considerations and a small scale proof-of-concept prototype. Experiment results shows successful wireless power transfer for all the cases studied. The prototype provided about 4.5 W of power to the load at a separation of -5 cm from the source using a power amplifier rated for 7 W.
Energy transfers in large-scale and small-scale dynamos
NASA Astrophysics Data System (ADS)
Samtaney, Ravi; Kumar, Rohit; Verma, Mahendra
2015-11-01
We present the energy transfers, mainly energy fluxes and shell-to-shell energy transfers in small-scale dynamo (SSD) and large-scale dynamo (LSD) using numerical simulations of MHD turbulence for Pm = 20 (SSD) and for Pm = 0.2 on 10243 grid. For SSD, we demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers move towards lower wavenumbers as dynamo evolves, which is the reason for the growth of the magnetic fields at the large scales. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. For LSD, we show that the magnetic energy growth takes place via energy transfers from large-scale velocity field to large-scale magnetic field. We observe forward U2U and B2B energy flux, similar to SSD.
Dynamic nuclear polarization in a magnetic resonance force microscope experiment.
Issac, Corinne E; Gleave, Christine M; Nasr, Paméla T; Nguyen, Hoang L; Curley, Elizabeth A; Yoder, Jonilyn L; Moore, Eric W; Chen, Lei; Marohn, John A
2016-04-07
We report achieving enhanced nuclear magnetization in a magnetic resonance force microscope experiment at 0.6 tesla and 4.2 kelvin using the dynamic nuclear polarization (DNP) effect. In our experiments a microwire coplanar waveguide delivered radiowaves to excite nuclear spins and microwaves to excite electron spins in a 250 nm thick nitroxide-doped polystyrene sample. Both electron and proton spin resonance were observed as a change in the mechanical resonance frequency of a nearby cantilever having a micron-scale nickel tip. NMR signal, not observable from Curie-law magnetization at 0.6 T, became observable when microwave irradiation was applied to saturate the electron spins. The resulting NMR signal's size, buildup time, dependence on microwave power, and dependence on irradiation frequency was consistent with a transfer of magnetization from electron spins to nuclear spins. Due to the presence of an inhomogeneous magnetic field introduced by the cantilever's magnetic tip, the electron spins in the sample were saturated in a microwave-resonant slice 10's of nm thick. The spatial distribution of the nuclear polarization enhancement factor ε was mapped by varying the frequency of the applied radiowaves. The observed enhancement factor was zero for spins in the center of the resonant slice, was ε = +10 to +20 for spins proximal to the magnet, and was ε = -10 to -20 for spins distal to the magnet. We show that this bipolar nuclear magnetization profile is consistent with cross-effect DNP in a ∼10(5) T m(-1) magnetic field gradient. Potential challenges associated with generating and using DNP-enhanced nuclear magnetization in a nanometer-resolution magnetic resonance imaging experiment are elucidated and discussed.
Müller, Dirk K; Pampel, André; Möller, Harald E
2013-05-01
Quantification of magnetization-transfer (MT) experiments are typically based on the assumption of the binary spin-bath model. This model allows for the extraction of up to six parameters (relative pool sizes, relaxation times, and exchange rate constants) for the characterization of macromolecules, which are coupled via exchange processes to the water in tissues. Here, an approach is presented for estimating MT parameters acquired with arbitrary saturation schemes and imaging pulse sequences. It uses matrix algebra to solve the Bloch-McConnell equations without unwarranted simplifications, such as assuming steady-state conditions for pulsed saturation schemes or neglecting imaging pulses. The algorithm achieves sufficient efficiency for voxel-by-voxel MT parameter estimations by using a polynomial interpolation technique. Simulations, as well as experiments in agar gels with continuous-wave and pulsed MT preparation, were performed for validation and for assessing approximations in previous modeling approaches. In vivo experiments in the normal human brain yielded results that were consistent with published data. Copyright © 2013 Elsevier Inc. All rights reserved.
Wireless tamper detection sensor and sensing system
NASA Technical Reports Server (NTRS)
Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)
2011-01-01
A wireless tamper detection sensor is defined by a perforated electrical conductor. The conductor is shaped to form a geometric pattern between first and second ends thereof such that the conductor defines an open-circuit that can store and transfer electrical and magnetic energy. The conductor resonates in the presence of a time-varying magnetic field to generate a harmonic response. The harmonic response changes when the conductor experiences a change in its geometric pattern due to severing of the conductor along at least a portion of the perforations. A magnetic field response recorder is used to wirelessly transmit the time-varying magnetic field and wirelessly detecting the conductor's harmonic response.
Domain wall remote pinning in magnetic nano wires
NASA Astrophysics Data System (ADS)
Read, Dan; Miguel, Jorge; Maccherozzi, Francesco; Cavill, Stuart; Dhesi, Sarnjeet; Cardiff University Collaboration; Diamond Light Source Collaboration
2013-03-01
In the current race for information storage media with ever increasing density the position of magnetic domain walls, the region in a magnetic system where the local magnetization continually rotates its direction between adjacent magnetic domains, is one of the most promising routes for future storage media devices. Information storage requires ultrafast read-out and writing operations, but domain walls need to be pinned so that the information is safely stored in the long term. Here we investigate the use of remote magnetostatic charges to trap domain walls. By using X-ray photoelectron emission microscopy we have followed the position of domain walls of opposite charge being pinned or repelled by pinning potentials of increasing strength. Micromagnetic simulations show an excellent agreement with the experimental results. We demonstrate the attractive or repulsive character of the interaction between domain wall and trap depending upon the sign of their magnetic charges. These quasi-static experiments are the antecedent to ultrafast time-resolved XMCD-PEEM experiments where the spin-transfer torque effect will be studied dynamically by applying picosecond-long current pulses across the magnetic nanowire.
Technological inductive power transfer systems
NASA Astrophysics Data System (ADS)
Madzharov, Nikolay D.; Nemkov, Valentin S.
2017-05-01
Inductive power transfer is a very fast expanding technology with multiple design principles and practical implementations ranging from charging phones and computers to bionic systems, car chargers and continuous power transfer in technological lines. Only a group of devices working in near magnetic field is considered. This article is devoted to overview of different inductive power transfer (IPT) devices. The review of literature in this area showed that industrial IPT are not much discussed and examined. The authors have experience in design and implementation of several types of IPTs belonging to wireless automotive chargers and to industrial application group. Main attention in the article is paid to principles and design of technological IPTs
NASA Astrophysics Data System (ADS)
Smirnov, Alex I.; Smirnova, Tatyana I.; MacArthur, Ryan L.; Good, Jeremy A.; Hall, Renny
2006-03-01
Multifrequency and high field/high frequency (HF) electron paramagnetic resonance (EPR) is a powerful spectroscopy for studying paramagnetic spin systems ranging from organic-free radicals to catalytic paramagnetic metal ion centers in metalloproteins. Typically, HF EPR experiments are carried out at resonant frequencies ν =95-300GHz and this requires magnetic fields of 3.4-10.7T for electronic spins with g ≈2.0. Such fields could be easily achieved with superconducting magnets, but, unlike NMR, these magnets cannot operate in a persistent mode in order to satisfy a wide range of resonant fields required by the experiment. Operating and maintaining conventional passively cooled superconducting magnets in EPR laboratories require frequent transfer of cryogens by trained personnel. Here we describe and characterize a versatile cryogen-free magnet system for HF EPR at magnetic fields up to 12.1T that is suitable for ramping the magnetic field over the entire range, precision scans around the target field, and/or holding the field at the target value. We also demonstrate that in a nonpersistent mode of operation the magnetic field can be stabilized to better than 0.3ppm/h over 15h period by employing a transducer-controlled power supply. Such stability is sufficient for many HF EPR experiments. An important feature of the system is that it is virtually maintenance-free because it is based on a cryogen-free technology and therefore does not require any liquid cryogens (liquid helium or nitrogen) for operation. We believe that actively cooled superconducting magnets are ideally suited for a wide range of HF EPR experiments including studies of spin-labeled nucleic acids and proteins, single-molecule magnets, and metalloproteins.
Mascalchi, M; Ginestroni, A; Bessi, V; Toschi, N; Padiglioni, S; Ciulli, S; Tessa, C; Giannelli, M; Bracco, L; Diciotti, S
2013-01-01
Manually drawn VOI-based analysis shows a decrease in magnetization transfer ratio in the hippocampus of patients with Alzheimer disease. We investigated with whole-brain voxelwise analysis the regional changes of the magnetization transfer ratio in patients with mild Alzheimer disease and patients with amnestic mild cognitive impairment. Twenty patients with mild Alzheimer disease, 27 patients with amnestic mild cognitive impairment, and 30 healthy elderly control subjects were examined with high-resolution T1WI and 3-mm-thick magnetization transfer images. Whole-brain voxelwise analysis of magnetization transfer ratio maps was performed by use of Statistical Parametric Mapping 8 software and was supplemented by the analysis of the magnetization transfer ratio in FreeSurfer parcellation-derived VOIs. Voxelwise analysis showed 2 clusters of significantly decreased magnetization transfer ratio in the left hippocampus and amygdala and in the left posterior mesial temporal cortex (fusiform gyrus) of patients with Alzheimer disease as compared with control subjects but no difference between patients with amnestic mild cognitive impairment and either patients with Alzheimer disease or control subjects. VOI analysis showed that the magnetization transfer ratio in the hippocampus and amygdala was significantly lower (bilaterally) in patients with Alzheimer disease when compared with control subjects (ANOVA with Bonferroni correction, at P < .05). Mean magnetization transfer ratio values in the hippocampus and amygdala in patients with amnestic mild cognitive impairment were between those of healthy control subjects and those of patients with mild Alzheimer disease. Support vector machine-based classification demonstrated improved classification performance after inclusion of magnetization transfer ratio-related features, especially between patients with Alzheimer disease versus healthy subjects. Bilateral but asymmetric decrease of magnetization transfer ratio reflecting microstructural changes of the residual GM is present not only in the hippocampus but also in the amygdala in patients with mild Alzheimer disease.
Nonhelical inverse transfer of a decaying turbulent magnetic field.
Brandenburg, Axel; Kahniashvili, Tina; Tevzadze, Alexander G
2015-02-20
In the presence of magnetic helicity, inverse transfer from small to large scales is well known in magnetohydrodynamic (MHD) turbulence and has applications in astrophysics, cosmology, and fusion plasmas. Using high resolution direct numerical simulations of magnetically dominated self-similarly decaying MHD turbulence, we report a similar inverse transfer even in the absence of magnetic helicity. We compute for the first time spectral energy transfer rates to show that this inverse transfer is about half as strong as with helicity, but in both cases the magnetic gain at large scales results from velocity at similar scales interacting with smaller-scale magnetic fields. This suggests that both inverse transfers are a consequence of universal mechanisms for magnetically dominated turbulence. Possible explanations include inverse cascading of the mean squared vector potential associated with local near two dimensionality and the shallower k^{2} subinertial range spectrum of kinetic energy forcing the magnetic field with a k^{4} subinertial range to attain larger-scale coherence. The inertial range shows a clear k^{-2} spectrum and is the first example of fully isotropic magnetically dominated MHD turbulence exhibiting weak turbulence scaling.
2017-06-01
other documentation. TITLE: Development and Technology Transfer of the Syncro Blue Tube (Gabriel) Magnetically Guided Feeding Tube REPORT DOCUMENTATION...TITLE AND SUBTITLE Development and Technology Transfer of the Syncro Blue Tube (Gabriel) Magnetically Guided Feeding Tube 5a. CONTRACT NUMBER W81XWH-09-2...Technical Abstract: Further Development and Technology Transfer of the Syncro BLUETUBE™ (Gabriel) Magnetically Guided Feeding Tube. New Primary
Yadav, Nirbhay N; Jones, Craig K; Hua, Jun; Xu, Jiadi; van Zijl, Peter C M
2013-04-01
To image endogenous exchangeable proton signals in the human brain using a recently reported method called frequency labeled exchange transfer (FLEX) MRI. As opposed to labeling exchangeable protons using saturation (i.e., chemical exchange saturation transfer, or CEST), FLEX labels exchangeable protons with their chemical shift evolution. The use of short high-power frequency pulses allows more efficient labeling of rapidly exchanging protons, while time domain acquisition allows removal of contamination from semi-solid magnetization transfer effects. FLEX-based exchangeable proton signals were detected in human brain over the 1-5 ppm frequency range from water. Conventional magnetization transfer contrast and the bulk water signal did not interfere in the FLEX spectrum. The information content of these signals differed from in vivo CEST data in that the average exchange rate of these signals was 350-400 s(-1) , much faster than the amide signal usually detected using direct saturation (∼30 s(-1) ). Similarly, fast exchanging protons could be detected in egg white in the same frequency range where amide and amine protons of mobile proteins and peptides are known to resonate. FLEX MRI in the human brain preferentially detects more rapidly exchanging amide/amine protons compared to traditional CEST experiments, thereby changing the information content of the exchangeable proton spectrum. This has the potential to open up different types of endogenous applications as well as more easy detection of rapidly exchanging protons in diaCEST agents or fast exchanging units such as water molecules in paracest agents without interference of conventional magnetization transfer contrast. Copyright © 2013 Wiley Periodicals, Inc.
Das, Doyel; Nath, Deb Narayan
2008-11-20
The photoinduced reaction of thioxanthone (TX) with various indolic and phenolic derivatives and amino acids like tryptophan and tyrosine has been monitored in sodium dodecyl sulfate micellar medium. Laser flash photolysis and magnetic field effect (MFE) experiments have been used to study the dynamics of the radical pairs. The quenching rate constant with different quenchers in SDS micellar solution has been measured. For indoles the electron-transfer reaction has been found to be followed by proton transfer from the donor molecule, which gives rise to the TX ketyl radical. On the other hand, the electron-transfer reaction in the case of phenols is preceded with formation of a hydrogen-bonded exciplex. The extent of the MFE and magnitude of the magnetic field corresponding to one-half of the saturation value of MFE ( B 1/2) support the fact that hyperfine mechanism plays the primary role. Quenching of MFE in the presence of gadolinium ions confirms that the radical pair is located near the micellar interface. MFE study has been further extended to protein-like bovine serum albumin in micellar solution. The results indicate loss in mobililty of radical pairs in the protein surfactant complex.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, G.D.; Sykes, B.D.
The coat protein of the filamentous coliphage M13 is a 50-residue polypeptide which spans the inner membrane of the Escherichia coli host upon infection. Amide hydrogen exchange kinetics have been used to probe the structure and dynamics of M13 coat protein which has been solubilized in sodium dodecyl sulfate (SDS) micelles. In a previous {sup 1}H nuclear magnetic resonance (NMR) study, multiple exponential analysis of the unresolved amide proton envelope revealed the existence of two slow kinetic sets containing a total of about 30 protons. The slower set (15-20 amides) originates from the hydrophobic membrane-spanning region and exchanges at leastmore » 10{sup 5}-fold slower than the unstructured, non-H-bonded model polypeptide poly(DL-alanine). Herein the authors use {sup 15}N NMR spectroscopy of biosynthetically labeled coat protein to follow individual, assigned, slowly exchanging amides in or near the hydrophobic segment. The INEPT (insensitive nucleus enhancement by polarization transfer) experiments can be used to transfer magnetization to the {sup 15}N nucleus from a coupled proton; when {sup 15}N-labeled protonated protein is dissolved in {sup 2}H{sub 2}O, the INEPT signal disappears with time as the amide protons are replaced by solvent deuterons. Amide hydrogen exchange is catalyzed by both H{sup +} and OH{sup {minus}} ions. The time-dependent exchange-out experiment is suitable for slow exchange rates (k{sub ex}). The INEPT experiment was also adapted to measure some of the more rapidly exchanging amides in the coat protein using either saturation transfer from water or exchange effects on the polarization transfer step itself. The results of all of these experiments are consistent with previous models of the coat protein in which a stable segment extends from the hydrophobic membrane-spanning region through to the C-terminus, whereas the N-terminal region is undergoing more extensive dynamic fluctuations.« less
They can interact, but can they learn? Toddlers' transfer learning from touchscreens and television.
Moser, Alecia; Zimmermann, Laura; Dickerson, Kelly; Grenell, Amanda; Barr, Rachel; Gerhardstein, Peter
2015-09-01
Despite the ubiquity of touchscreen applications and television programs for young children, developmental research suggests that learning in this context is degraded relative to face-to-face interactions. Most previous research has been limited to transfer of learning from videos, making it difficult to isolate the relative perceptual and social influences for transfer difficulty, and has not examined whether the transfer deficit persists across early childhood when task complexity increases. The current study examined whether the transfer deficit persists in older children using a complex puzzle imitation task constructed to investigate transfer from video demonstrations. The current test adapted this task to permit bidirectional transfer from touchscreens as well. To test for bidirectional transfer deficits, 2.5- and 3-year-olds were shown how to assemble a three-piece puzzle on either a three-dimensional magnetic board or a two-dimensional touchscreen (Experiment 1). Unidirectional transfer from video was also tested (Experiment 2). Results indicate that a bidirectional transfer deficit persists through 3 years, with younger children showing a greater transfer deficit; despite high perceptual similarities and social engagement, children learned less in transfer tasks, supporting the memory flexibility account of the transfer deficit. Implications of these findings for use of screen media (e.g., video, tablets) in early education are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.
Magnetothermal Convection in Nonconducting Diamagnetic and Paramagnetic Fluids
NASA Technical Reports Server (NTRS)
Edwards, Boyd F.; Gray, Donald D.; Huang, Jie
1996-01-01
Nonuniform magnetic fields exert a magnetic body force on electrically nonconducting classical fluids. These include paramagnetic fluids such as gaseous and liquid oxygen and diamagnetic fluids such as helium. Recent experiments show that this force can overwhelm the force of gravity even at the surface of the earth; it can levitate liquids and gases, quench candle flames, block gas flows, and suppress heat transport. Thermal gradients render the magnetic force nonuniform through the temperature-dependent magnetic susceptibility. These thermal gradients can therefore drive magnetic convection analogous to buoyancy-driven convection. This magnetothermal convection can overwhelm convection driven by gravitational buoyancy in terrestrial experiments. The objectives of the proposed ground-based theoretical study are (a) to supply the magnetothermohydrodynamic theory necessary to understand these recent experiments and (b) to explore the consequences of nonuniform magnetic fields in microgravity. Even the linear theory for the onset of magnetothermal convection is lacking in the literature. We intend to supply the linear and nonlinear theory based on the thermohydrodynamic equations supplemented by the magnetic body force. We intend to investigate the effect of magnetic fields on gas blockage and heat transport in microgravity. Since magnetic fields provide a means of creating arbitrary, controllable body force distributions, we intend to investigate the possibility of using magnetic fields to position and control fluids in microgravity. We also intend to investigate the possibility of creating stationary terrestrial microgravity environments by using the magnetic force to effectively cancel gravity. These investigations may aid in the design of space-based heat-transfer, combustion, and human-life-support equipment.
Radially Magnetized Protoplanetary Disk: Vertical Profile
NASA Astrophysics Data System (ADS)
Russo, Matthew; Thompson, Christopher
2015-11-01
This paper studies the response of a thin accretion disk to an external radial magnetic field. Our focus is on protoplanetary disks (PPDs), which are exposed during their later evolution to an intense, magnetized wind from the central star. A radial magnetic field is mixed into a thin surface layer, wound up by the disk shear, and pushed downward by a combination of turbulent mixing and ambipolar and ohmic drift. The toroidal field reaches much greater strengths than the seed vertical field that is usually invoked in PPD models, even becoming superthermal. Linear stability analysis indicates that the disk experiences the magnetorotational instability (MRI) at a higher magnetization than a vertically magnetized disk when both the effects of ambipolar and Hall drift are taken into account. Steady vertical profiles of density and magnetic field are obtained at several radii between 0.06 and 1 AU in response to a wind magnetic field Br ˜ (10-4-10-2)(r/ AU)-2 G. Careful attention is given to the radial and vertical ionization structure resulting from irradiation by stellar X-rays. The disk is more strongly magnetized closer to the star, where it can support a higher rate of mass transfer. As a result, the inner ˜1 AU of a PPD is found to evolve toward lower surface density. Mass transfer rates around 10-8 M⊙ yr-1 are obtained under conservative assumptions about the MRI-generated stress. The evolution of the disk and the implications for planet migration are investigated in the accompanying paper.
Modulation of spin transfer torque amplitude in double barrier magnetic tunnel junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clément, P.-Y.; Baraduc, C., E-mail: claire.baraduc@cea.fr; Chshiev, M.
2015-09-07
Magnetization switching induced by spin transfer torque is used to write magnetic memories (Magnetic Random Access Memory, MRAM) but can be detrimental to the reading process. It would be quite convenient therefore to modulate the efficiency of spin transfer torque. A solution is adding an extra degree of freedom by using double barrier magnetic tunnel junctions with two spin-polarizers, with controllable relative magnetic alignment. We demonstrate, for these structures, that the amplitude of in-plane spin transfer torque on the middle free layer can be efficiently tuned via the magnetic configuration of the electrodes. Using the proposed design could thus pavemore » the way towards more reliable read/write schemes for MRAM. Moreover, our results suggest an intriguing effect associated with the out-of-plane (field-like) spin transfer torque, which has to be further investigated.« less
Yamanoi, Takashi; Oda, Yoshiki; Katsuraya, Kaname; Inazu, Toshiyuki; Yamamoto, Kenji
2016-06-02
This study describes the complete nuclear magnetic resonance (NMR) spectral assignment of a bisecting hybrid-type oligosaccharide 1, transferred by Mucor hiemalis endo-β-N-acetylglucosaminidase (Endo-M). Through (1)H- and (13)C-NMR, DQF-COSY, HSQC, HMBC, TOCSY, and NOESY experiments, we determine the structure of the glycoside linkage formed by the Endo-M transglycosylation, i.e., the connection between GlcNAc and GlcNAc in oligosaccharide 1. Copyright © 2016 Elsevier Ltd. All rights reserved.
Investigation of bypass fluid flow in an active magnetic regenerative liquefier
Holladay, Jamelyn; Teyber, Reed; Meinhardt, Kerry; ...
2018-05-19
Active magnetic regenerators (AMR) with second order magnetocaloric materials operating below the Curie temperature have a unique property where the magnetized specific heat is lower than the demagnetized specific heat. The associated thermal mass imbalance allows a fraction of heat transfer fluid in the cold heat exchanger to bypass the magnetized regenerator. This cold bypassed fluid can precool a process stream as it returns to the hot side, thereby increasing the efficiency of liquefaction and reducing the cost of liquid cryogens. In the present work, the net cooling power of an active magnetic regenerative liquefier is investigated as a functionmore » of the bypass flow fraction. In conclusion, experiments are performed at a fixed temperature span yielding a 30% improvement in net cooling power, affirming the potential of bypass flow in active magnetic regenerative liquefiers.« less
Investigation of bypass fluid flow in an active magnetic regenerative liquefier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holladay, Jamelyn; Teyber, Reed; Meinhardt, Kerry
Active magnetic regenerators (AMR) with second order magnetocaloric materials operating below the Curie temperature have a unique property where the magnetized specific heat is lower than the demagnetized specific heat. The associated thermal mass imbalance allows a fraction of heat transfer fluid in the cold heat exchanger to bypass the magnetized regenerator. This cold bypassed fluid can precool a process stream as it returns to the hot side, thereby increasing the efficiency of liquefaction and reducing the cost of liquid cryogens. In the present work, the net cooling power of an active magnetic regenerative liquefier is investigated as a functionmore » of the bypass flow fraction. Experiments are performed at a fixed temperature span yielding a 30% improvement in net cooling power, affirming the potential of bypass flow in active magnetic regenerative liquefiers.« less
Investigation of bypass fluid flow in an active magnetic regenerative liquefier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holladay, Jamelyn; Teyber, Reed; Meinhardt, Kerry
Active magnetic regenerators (AMR) with second order magnetocaloric materials operating below the Curie temperature have a unique property where the magnetized specific heat is lower than the demagnetized specific heat. The associated thermal mass imbalance allows a fraction of heat transfer fluid in the cold heat exchanger to bypass the magnetized regenerator. This cold bypassed fluid can precool a process stream as it returns to the hot side, thereby increasing the efficiency of liquefaction and reducing the cost of liquid cryogens. In the present work, the net cooling power of an active magnetic regenerative liquefier is investigated as a functionmore » of the bypass flow fraction. In conclusion, experiments are performed at a fixed temperature span yielding a 30% improvement in net cooling power, affirming the potential of bypass flow in active magnetic regenerative liquefiers.« less
NASA Astrophysics Data System (ADS)
Jang, J. Y.; Hwang, Y. J.; Ahn, M. C.; Choi, Y. S.
2018-07-01
This paper represents a numerical calculation method that enables highly-accurate simulations on temperature analysis of superconducting magnets considering the heat flow between the magnet and liquid helium during a quench. A three-dimensional (3D) superconducting magnet space was divided into many cells and the finite-difference method (FDM) was adopted to calculate the superconducting magnet temperatures governed by the heat transfer and joule heating of the each cell during a quench. To enhance the accuracy of the temperature calculations during a quench, the heat flow between the superconducting magnet surface and liquid helium, which lowers the magnet temperatures, was considered in this work. The electrical equation coupled with the governing thermal equation was also applied to calculate the change of the decay of the magnet current related to the joule heating. The proposed FDM method for temperatures calculation of a superconducting magnet during a quench process achieved results that were in good agreement with those obtained from an experiment.
Development of a Novel Wireless Electric Power Transfer System for Space Applications
NASA Technical Reports Server (NTRS)
VazquezRamos, Gabriel; Yuan, Jiann-Shiun
2011-01-01
This paper will introduce a new implementation for wireless electric power transfer systems: space applications. Due to the risks that constitute the use of electrical connector for some space missions/applications, a simple wireless power system design approach will be evaluated as an alternative for the use of electrical connectors. This approach takes into consideration the overall system performance by designing the magnetic resonance elements and by verifying the overall system electrical behavior. System characterization is accomplished by executing circuit and analytical simulations using Matlab(TradeMark) and LTSpiceIV(TradeMark) software packages. The design methodology was validated by two different experiments: frequency consideration (design of three magnetic elements) and a small scale proof-ofconcept prototype. Experiment results shows successful wireless power transfer for all the cases studied. The proof-of-concept prototype provided approx.4 W of wireless power to the load (light bulb) at a separation of 3 cm from the source. In addition. a resonant circuit was designed and installed to the battery terminals of a handheld radio without batteries, making it tum on at a separation of approx.5 cm or less from the source. It was also demonstrated by prototype experimentation that multiple loads can be powered wirelessly at the same time with a single electric power source.
Oxygen transport enhancement by functionalized magnetic nanoparticles (FMP) in bioprocesses
NASA Astrophysics Data System (ADS)
Ataide, Filipe Andre Prata
The enhancement of fluid properties, namely thermal conductivity and mass diffusivity for a wide range of applications, through the use of nanosized particles' suspensions has been gathering increasing interest in the scientific community. In previous studies, Olle et al. (2006) showed an enhancement in oxygen absorption to aqueous solutions of up to 6-fold through the use of functionalized nanosized magnetic particles with oleic acid coating. Krishnamurthy et al. (2006) showed a remarkable 26-fold enhancement in dye diffusion in water. These two publications are landmarks in mass transfer enhancement in chemical systems through the use of nanoparticles. The central goal of this Ph.D. thesis was to develop functionalized magnetic nanoparticles to enhance oxygen transport in bioprocesses. The experimental protocol for magnetic nanoparticles synthesis and purification adopted in this thesis is a modification of that reported by Olle et al. (2006). This is facilitated by employing twice the quantity of ammonia, added at a slower rate, and by filtering the final nanoparticle solution in a cross-flow filtration modulus against 55 volumes of distilled water. This modification in the protocol resulted in improved magnetic nanoparticles with measurably higher mass transfer enhancement. Magnetic nanoparticles with oleic acid and Hitenol-BC coating were screened for oxygen transfer enhancement, since these particles are relatively inexpensive and easy to synthesize. A glass 0.5-liter reactor was custom manufactured specifically for oxygen transport studies in magnetic nanoparticles suspensions. The reactor geometry, baffles and Rushton impeller are of standard dimensions. Mass transfer tests were conducted through the use of the sulphite oxidation method, applying iodometric back-titration. A 3-factor central composite circumscribed design (CCD) was adopted for design of experiments in order to generate sufficiently informative data to model the effect of magnetic nanoparticles on interfacial area and mass transfer coefficient. The parameters ranges used were: 250-750 rpm for stirring speed, 0-2 vvm for aeration and 0-0.00120 g g?1 magnetic nanoparticles mass fraction. It was found that 36 nm-sized nanoparticles produced during the course of this dissertation enhanced the volumetric mass transfer coefficient up to 3.3-fold and the interfacial area up to 3.3-fold in relation to gas-liquid dispersions without nanoparticles. These results are concordant with previously published enhancement data (kLa enhancement by 7.1-fold and a enhancement by 4.1-fold) (Olle et al. 2006). The magnetic nanoparticles synthesized in this thesis were stable (constant diameter) over a 1wide pH range (2-9). Statistical regression models showed that both kLa and a have high sensitivity to the nanoparticles loading. Empirical correlation models were derived for kLa and for interfacial area, a, as function of physical properties and nanoparticles loading. These correlations lay out a methodology that can help the scientific community to design and scale-up oxygen transfer systems that are based on nanoparticle suspensions. None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None None
Processing abstract language modulates motor system activity.
Glenberg, Arthur M; Sato, Marc; Cattaneo, Luigi; Riggio, Lucia; Palumbo, Daniele; Buccino, Giovanni
2008-06-01
Embodiment theory proposes that neural systems for perception and action are also engaged during language comprehension. Previous neuroimaging and neurophysiological studies have only been able to demonstrate modulation of action systems during comprehension of concrete language. We provide neurophysiological evidence for modulation of motor system activity during the comprehension of both concrete and abstract language. In Experiment 1, when the described direction of object transfer or information transfer (e.g., away from the reader to another) matched the literal direction of a hand movement used to make a response, speed of responding was faster than when the two directions mismatched (an action-sentence compatibility effect). In Experiment 2, we used single-pulse transcranial magnetic stimulation to study changes in the corticospinal motor pathways to hand muscles while reading the same sentences. Relative to sentences that do not describe transfer, there is greater modulation of activity in the hand muscles when reading sentences describing transfer of both concrete objects and abstract information. These findings are discussed in relation to the human mirror neuron system.
High-resolution NMR in magnetic fields with unknown spatiotemporal variations.
Pelupessy, Philippe; Rennella, Enrico; Bodenhausen, Geoffrey
2009-06-26
Nuclear magnetic resonance (NMR) experiments are usually carried out in homogeneous magnetic fields. In many cases, however, high-resolution spectra are virtually impossible to obtain because of the inherent heterogeneity of the samples or living organisms under investigation, as well as the poor homogeneity of the magnets (particularly when bulky samples must be placed outside their bores). Unstable power supplies and vibrations arising from cooling can lead to field fluctuations in time as well as space. We show how high-resolution NMR spectra can be obtained in inhomogeneous fields with unknown spatiotemporal variations. Our method, based on coherence transfer between spins, can accommodate spatial inhomogeneities of at least 11 gauss per centimeter and temporal fluctuations slower than 2 hertz.
Brown, J William L; Pardini, Matteo; Brownlee, Wallace J; Fernando, Kryshani; Samson, Rebecca S; Prados Carrasco, Ferran; Ourselin, Sebastien; Gandini Wheeler-Kingshott, Claudia A M; Miller, David H; Chard, Declan T
2017-02-01
In established multiple sclerosis, tissue abnormality-as assessed using magnetization transfer ratio-increases close to the lateral ventricles. We aimed to determine whether or not (i) these changes are present from the earliest clinical stages of multiple sclerosis; (ii) they occur independent of white matter lesions; and (iii) they are associated with subsequent conversion to clinically definite multiple sclerosis and disability. Seventy-one subjects had MRI scanning a median of 4.6 months after a clinically isolated optic neuritis (49 females, mean age 33.5 years) and were followed up clinically 2 and 5 years later. Thirty-seven healthy controls (25 females, mean age 34.4 years) were also scanned. In normal-appearing white matter, magnetization transfer ratio gradients were measured 1-5 mm and 6-10 mm from the lateral ventricles. In control subjects, magnetization transfer ratio was highest adjacent to the ventricles and decreased with distance from them; in optic neuritis, normal-appearing white matter magnetization transfer ratio was lowest adjacent to the ventricles, increased over the first 5 mm, and then paralleled control values. The magnetization transfer ratio gradient over 1-5 mm differed significantly between the optic neuritis and control groups [+0.059 percentage units/mm (pu/mm) versus -0.033 pu/mm, P = 0.010], and was significantly steeper in those developing clinically definite multiple sclerosis within 2 years compared to those who did not (0.132 pu/mm versus 0.016 pu/mm, P = 0.020). In multivariate binary logistic regression the magnetization transfer ratio gradient was independently associated with the development of clinically definite multiple sclerosis within 2 years (magnetization transfer ratio gradient odds ratio 61.708, P = 0.023; presence of T 2 lesions odds ratio 8.500, P = 0.071). At 5 years, lesional measures overtook magnetization transfer ratio gradients as significant predictors of conversion to multiple sclerosis. The magnetization transfer ratio gradient was not significantly affected by the presence of brain lesions [T 2 lesions (P = 0.918), periventricular T 2 lesions (P = 0.580) or gadolinium-enhancing T 1 lesions (P = 0.724)]. The magnetization transfer ratio gradient also correlated with Expanded Disability Status Scale score 5 years later (Spearman r = 0.313, P = 0.027). An abnormal periventricular magnetization transfer ratio gradient occurs early in multiple sclerosis, is clinically relevant, and may arise from one or more mechanisms that are at least partly independent of lesion formation. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
An abnormal periventricular magnetization transfer ratio gradient occurs early in multiple sclerosis
Brown, J William L; Pardini, Matteo; Brownlee, Wallace J; Fernando, Kryshani; Samson, Rebecca S; Prados Carrasco, Ferran; Ourselin, Sebastien; Gandini Wheeler-Kingshott, Claudia A M; Miller, David H; Chard, Declan T
2017-01-01
Abstract In established multiple sclerosis, tissue abnormality—as assessed using magnetization transfer ratio—increases close to the lateral ventricles. We aimed to determine whether or not (i) these changes are present from the earliest clinical stages of multiple sclerosis; (ii) they occur independent of white matter lesions; and (iii) they are associated with subsequent conversion to clinically definite multiple sclerosis and disability. Seventy-one subjects had MRI scanning a median of 4.6 months after a clinically isolated optic neuritis (49 females, mean age 33.5 years) and were followed up clinically 2 and 5 years later. Thirty-seven healthy controls (25 females, mean age 34.4 years) were also scanned. In normal-appearing white matter, magnetization transfer ratio gradients were measured 1–5 mm and 6–10 mm from the lateral ventricles. In control subjects, magnetization transfer ratio was highest adjacent to the ventricles and decreased with distance from them; in optic neuritis, normal-appearing white matter magnetization transfer ratio was lowest adjacent to the ventricles, increased over the first 5 mm, and then paralleled control values. The magnetization transfer ratio gradient over 1–5 mm differed significantly between the optic neuritis and control groups [+0.059 percentage units/mm (pu/mm) versus −0.033 pu/mm, P = 0.010], and was significantly steeper in those developing clinically definite multiple sclerosis within 2 years compared to those who did not (0.132 pu/mm versus 0.016 pu/mm, P = 0.020). In multivariate binary logistic regression the magnetization transfer ratio gradient was independently associated with the development of clinically definite multiple sclerosis within 2 years (magnetization transfer ratio gradient odds ratio 61.708, P = 0.023; presence of T2 lesions odds ratio 8.500, P = 0.071). At 5 years, lesional measures overtook magnetization transfer ratio gradients as significant predictors of conversion to multiple sclerosis. The magnetization transfer ratio gradient was not significantly affected by the presence of brain lesions [T2 lesions (P = 0.918), periventricular T2 lesions (P = 0.580) or gadolinium-enhancing T1 lesions (P = 0.724)]. The magnetization transfer ratio gradient also correlated with Expanded Disability Status Scale score 5 years later (Spearman r = 0.313, P = 0.027). An abnormal periventricular magnetization transfer ratio gradient occurs early in multiple sclerosis, is clinically relevant, and may arise from one or more mechanisms that are at least partly independent of lesion formation. PMID:28043954
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jia, E-mail: lijia@wipm.ac.cn
2014-10-07
We theoretically investigate the dynamics of magnetization in ferromagnetic thin films induced by spin-orbit interaction with Slonczewski-like spin transfer torque. We reproduce the experimental results of perpendicular magnetic anisotropy films by micromagnetic simulation. Due to the spin-orbit interaction, the magnetization can be switched by changing the direction of the current with the assistant of magnetic field. By increasing the current amplitude, wider range of switching events can be achieved. Time evolution of magnetization has provided us a clear view of the process, and explained the role of minimum external field. Slonczewski-like spin transfer torque modifies the magnetization when current ismore » present. The magnitude of the minimum external field is determined by the strength of the Slonczewski-like spin transfer torque. The investigations may provide potential applications in magnetic memories.« less
The Use of a Gain Monitoring System in the G0 Experiment
NASA Astrophysics Data System (ADS)
Nakos, Melissa T.
2001-11-01
The main goal of the G0 experiment is to find the contributions of the three light quark flavors to the electromagnetic properties of the nucleon by comparing the electromagnetic and neutral weak form factors, measured through the observation of parity-violating asymmetries in elastic electron-nucleon scattering. The experiment will measure the time of flight and the momentum transfer of protons (at forward scattering angles) and electrons (at backward scattering angles). The detectors used in this experiment are plastic scintillators placed in the focal plane of a magnetic spectrometer such that the momentum transfer is directly measured. A gain monitoring system has been designed to track the timing and gain of the photomultiplier tubes at the end of each scintillator. The system is made of a pulsed ultraviolet laser, pure silica fiber optic cables, and a masking system to mimic a real event.
Correcting reaction rates measured by saturation-transfer magnetic resonance spectroscopy
NASA Astrophysics Data System (ADS)
Gabr, Refaat E.; Weiss, Robert G.; Bottomley, Paul A.
2008-04-01
Off-resonance or spillover irradiation and incomplete saturation can introduce significant errors in the estimates of chemical rate constants measured by saturation-transfer magnetic resonance spectroscopy (MRS). Existing methods of correction are effective only over a limited parameter range. Here, a general approach of numerically solving the Bloch-McConnell equations to calculate exchange rates, relaxation times and concentrations for the saturation-transfer experiment is investigated, but found to require more measurements and higher signal-to-noise ratios than in vivo studies can practically afford. As an alternative, correction formulae for the reaction rate are provided which account for the expected parameter ranges and limited measurements available in vivo. The correction term is a quadratic function of experimental measurements. In computer simulations, the new formulae showed negligible bias and reduced the maximum error in the rate constants by about 3-fold compared to traditional formulae, and the error scatter by about 4-fold, over a wide range of parameters for conventional saturation transfer employing progressive saturation, and for the four-angle saturation-transfer method applied to the creatine kinase (CK) reaction in the human heart at 1.5 T. In normal in vivo spectra affected by spillover, the correction increases the mean calculated forward CK reaction rate by 6-16% over traditional and prior correction formulae.
NASA Astrophysics Data System (ADS)
Eichhorn, T. R.; van den Brandt, B.; Hautle, P.; Henstra, A.; Wenckebach, W. Th.
2014-07-01
In dynamic nuclear polarisation (DNP), also called hyperpolarisation, a small amount of unpaired electron spins is added to the sample containing the nuclear spins, and the polarisation of these unpaired electron spins is transferred to the nuclear spins by means of a microwave field. Traditional DNP polarises the electron spin of stable paramagnetic centres by cooling down to low temperature and applying a strong magnetic field. Then weak continuous wave microwave fields are used to induce the polarisation transfer. Complicated cryogenic equipment and strong magnets can be avoided using short-lived photo-excited triplet states that are strongly aligned in the optical excitation process. However, a much faster transfer of the electron spin polarisation is needed and pulsed DNP methods like nuclear orientation via electron spin locking (NOVEL) and the integrated solid effect (ISE) are used. To describe the polarisation transfer with the strong microwave fields in NOVEL and ISE, the usual perturbation methods cannot be used anymore. In the previous paper, we presented a theoretical approach to calculate the polarisation transfer in ISE. In the present paper, the theory is applied to the system naphthalene-h8 doped with pentacene-d14 yielding the photo-excited triplet states and compared with experimental results.
NASA Astrophysics Data System (ADS)
Swanson, Ryan David
The advection-dispersion equation (ADE) fails to describe non-Fickian solute transport breakthrough curves (BTCs) in saturated porous media in both laboratory and field experiments, necessitating the use of other models. The dual-domain mass transfer (DDMT) model partitions the total porosity into mobile and less-mobile domains with an exchange of mass between the two domains, and this model can reproduce better fits to BTCs in many systems than ADE-based models. However, direct experimental estimation of DDMT model parameters remains elusive and model parameters are often calculated a posteriori by an optimization procedure. Here, we investigate the use of geophysical tools (direct-current resistivity, nuclear magnetic resonance, and complex conductivity) to estimate these model parameters directly. We use two different samples of the zeolite clinoptilolite, a material shown to demonstrate solute mass transfer due to a significant internal porosity, and provide the first evidence that direct-current electrical methods can track solute movement into and out of a less-mobile pore space in controlled laboratory experiments. We quantify the effects of assuming single-rate DDMT for multirate mass transfer systems. We analyze pore structures using material characterization methods (mercury porosimetry, scanning electron microscopy, and X-ray computer tomography), and compare these observations to geophysical measurements. Nuclear magnetic resonance in conjunction with direct-current resistivity measurements can constrain mobile and less-mobile porosities, but complex conductivity may have little value in relation to mass transfer despite the hypothesis that mass transfer and complex conductivity lengths scales are related. Finally, we conduct a geoelectrical monitored tracer test at the Macrodispersion Experiment (MADE) site in Columbus, MS. We relate hydraulic and electrical conductivity measurements to generate a 3D hydraulic conductivity field, and compare to hydraulic conductivity fields estimated through ordinary kriging and sequential Gaussian simulation. Time-lapse electrical measurements are used to verify or dismiss aspects of breakthrough curves for different hydraulic conductivity fields. Our results quantify the potential for geophysical measurements to infer on single-rate DDMT parameters, show site-specific relations between hydraulic and electrical conductivity, and track solute exchange into and out of less-mobile domains.
Bai, Yan; Lin, Yusong; Zhang, Wei; Kong, Lingfei; Wang, Lifu; Zuo, Panli; Vallines, Ignacio; Schmitt, Benjamin; Tian, Jie; Song, Xiaolei; Zhou, Jinyuan; Wang, Meiyun
2017-01-24
Using noninvasive magnetic resonance imaging techniques to accurately evaluate the grading and cellularity of gliomas is beneficial for improving the patient outcomes. Amide proton transfer imaging is a noninvasive molecular magnetic resonance imaging technique based on chemical exchange saturation transfer mechanism that detects endogenous mobile proteins and peptides in biological tissues. Between August 2012 and November 2015, a total number of 44 patients with pathologically proven gliomas were included in this study. We compared the capability of amide proton transfer magnetic resonance imaging with that of noninvasive diffusion-weighted imaging and noninvasive 3-dimensional pseudo-continuous arterial spin imaging in evaluating the grading and cellularity of gliomas. Our results reveal that amide proton transfer magnetic resonance imaging is a superior imaging technique to diffusion-weighted imaging and 3-dimensional pseudo-continuous arterial spin imaging in the grading of gliomas. In addition, our results showed that the Ki-67 index correlated better with the amide proton transfer-weighted signal intensity than with the apparent diffusion coefficient value or the cerebral blood flow value in the gliomas. Amide proton transfer magnetic resonance imaging is a promising method for predicting the grading and cellularity of gliomas.
Xu, Jiadi; Yadav, Nirbhay N.; Bar-Shir, Amnon; Jones, Craig K.; Chan, Kannie W. Y.; Zhang, Jiangyang; Walczak, P.; McMahon, Michael T.; van Zijl, Peter C. M.
2013-01-01
Purpose Chemical exchange saturation transfer (CEST) imaging is a new MRI technology allowing the detection of low concentration endogenous cellular proteins and metabolites indirectly through their exchangeable protons. A new technique, variable delay multi-pulse CEST (VDMP-CEST), is proposed to eliminate the need for recording full Z-spectra and performing asymmetry analysis to obtain CEST contrast. Methods The VDMP-CEST scheme involves acquiring images with two (or more) delays between radiofrequency saturation pulses in pulsed CEST, producing a series of CEST images sensitive to the speed of saturation transfer. Subtracting two images or fitting a time series produces CEST and relayed-nuclear Overhauser enhancement CEST maps without effects of direct water saturation and, when using low radiofrequency power, minimal magnetization transfer contrast interference. Results When applied to several model systems (bovine serum albumin, crosslinked bovine serum albumin, l-glutamic acid) and in vivo on healthy rat brain, VDMP-CEST showed sensitivity to slow to intermediate range magnetization transfer processes (rate < 100–150 Hz), such as amide proton transfer and relayed nuclear Overhauser enhancement-CEST. Images for these contrasts could be acquired in short scan times by using a single radiofrequency frequency. Conclusions VDMP-CEST provides an approach to detect CEST effect by sensitizing saturation experiments to slower exchange processes without interference of direct water saturation and without need to acquire Z-spectra and perform asymmetry analysis. PMID:23813483
31P-Magnetization Transfer Magnetic Resonance Spectroscopy Measurements of In Vivo Metabolism
Befroy, Douglas E.; Rothman, Douglas L.; Petersen, Kitt Falk; Shulman, Gerald I.
2012-01-01
Magnetic resonance spectroscopy offers a broad range of noninvasive analytical methods for investigating metabolism in vivo. Of these, the magnetization-transfer (MT) techniques permit the estimation of the unidirectional fluxes associated with metabolic exchange reactions. Phosphorus (31P) MT measurements can be used to examine the bioenergetic reactions of the creatine-kinase system and the ATP synthesis/hydrolysis cycle. Observations from our group and others suggest that the inorganic phosphate (Pi) → ATP flux in skeletal muscle may be modulated by certain conditions, including aging, insulin resistance, and diabetes, and may reflect inherent alterations in mitochondrial metabolism. However, such effects on the Pi → ATP flux are not universally observed under conditions in which mitochondrial function, assessed by other techniques, is impaired, and recent articles have raised concerns about the absolute magnitude of the measured reaction rates. As the application of 31P-MT techniques becomes more widespread, this article reviews the methodology and outlines our experience with its implementation in a variety of models in vivo. Also discussed are potential limitations of the technique, complementary methods for assessing oxidative metabolism, and whether the Pi → ATP flux is a viable biomarker of metabolic function in vivo. PMID:23093656
NASA Astrophysics Data System (ADS)
Barnak, D. H.; Davies, J. R.; Fiksel, G.; Chang, P.-Y.; Zabir, E.; Betti, R.
2018-03-01
Magnetized high energy density physics (HEDP) is a very active and relatively unexplored field that has applications in inertial confinement fusion, astrophysical plasma science, and basic plasma physics. A self-contained device, the Magneto-Inertial Fusion Electrical Discharge System, MIFEDS [G. Fiksel et al., Rev. Sci. Instrum. 86, 016105 (2015)], was developed at the Laboratory for Laser Energetics to conduct magnetized HEDP experiments on both the OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495-506 (1997)] and OMEGA EP [J. H. Kelly et al., J. Phys. IV France 133, 75 (2006) and L. J. Waxer et al., Opt. Photonics News 16, 30 (2005)] laser systems. Extremely high magnetic fields are a necessity for magnetized HEDP, and the need for stronger magnetic fields continues to drive the redevelopment of the MIFEDS device. It is proposed in this paper that a magnetic coil that is inductively coupled rather than directly connecting to the MIFEDS device can increase the overall strength of the magnetic field for HEDP experiments by increasing the efficiency of energy transfer while decreasing the effective magnetized volume. A brief explanation of the energy delivery of the MIFEDS device illustrates the benefit of inductive coupling and is compared to that of direct connection for varying coil size and geometry. A prototype was then constructed to demonstrate a 7-fold increase in energy delivery using inductive coupling.
Mechanism of spontaneous polarization transfer in high-field SABRE experiments
NASA Astrophysics Data System (ADS)
Knecht, Stephan; Kiryutin, Alexey S.; Yurkovskaya, Alexandra V.; Ivanov, Konstantin L.
2018-02-01
We propose an explanation of the previously reported SABRE (Signal Amplification By Reversible Exchange) effect at high magnetic fields, observed in the absence of RF-excitation and relying only on "spontaneous" polarization transfer from parahydrogen (pH2, the H2 molecule in its nuclear singlet spin state) to a SABRE substrate. We propose a detailed mechanism for spontaneous polarization transfer and show that it is comprised of three steps: (i) Generation of the anti-phase Î1zÎ2z spin order of catalyst-bound H2; (ii) spin order conversion Î1zÎ2z → (Î1z +Î2z) due to cross-correlated relaxation, leading to net polarization of H2; (iii) polarization transfer to the SABRE substrate, occurring due to NOE. Formation of anti-phase polarization is due to singlet-to-T0 mixing in the catalyst-bound form of H2, while cross-correlated relaxation originates from fluctuations of dipole-dipole interactions and chemical shift anisotropy. The proposed mechanism is supported by a theoretical treatment, magnetic field-dependent studies and high-field NMR measurements with both pH2 and thermally polarized H2.
Mechanism of spontaneous polarization transfer in high-field SABRE experiments.
Knecht, Stephan; Kiryutin, Alexey S; Yurkovskaya, Alexandra V; Ivanov, Konstantin L
2018-02-01
We propose an explanation of the previously reported SABRE (Signal Amplification By Reversible Exchange) effect at high magnetic fields, observed in the absence of RF-excitation and relying only on "spontaneous" polarization transfer from parahydrogen (pH 2 , the H 2 molecule in its nuclear singlet spin state) to a SABRE substrate. We propose a detailed mechanism for spontaneous polarization transfer and show that it is comprised of three steps: (i) Generation of the anti-phase Î 1z Î 2z spin order of catalyst-bound H 2 ; (ii) spin order conversion Î 1z Î 2z →(Î 1z +Î 2z ) due to cross-correlated relaxation, leading to net polarization of H 2 ; (iii) polarization transfer to the SABRE substrate, occurring due to NOE. Formation of anti-phase polarization is due to singlet-to-T 0 mixing in the catalyst-bound form of H 2 , while cross-correlated relaxation originates from fluctuations of dipole-dipole interactions and chemical shift anisotropy. The proposed mechanism is supported by a theoretical treatment, magnetic field-dependent studies and high-field NMR measurements with both pH 2 and thermally polarized H 2 . Copyright © 2017 Elsevier Inc. All rights reserved.
Kalman Filtered Bio Heat Transfer Model Based Self-adaptive Hybrid Magnetic Resonance Thermometry.
Zhang, Yuxin; Chen, Shuo; Deng, Kexin; Chen, Bingyao; Wei, Xing; Yang, Jiafei; Wang, Shi; Ying, Kui
2017-01-01
To develop a self-adaptive and fast thermometry method by combining the original hybrid magnetic resonance thermometry method and the bio heat transfer equation (BHTE) model. The proposed Kalman filtered Bio Heat Transfer Model Based Self-adaptive Hybrid Magnetic Resonance Thermometry, abbreviated as KalBHT hybrid method, introduced the BHTE model to synthesize a window on the regularization term of the hybrid algorithm, which leads to a self-adaptive regularization both spatially and temporally with change of temperature. Further, to decrease the sensitivity to accuracy of the BHTE model, Kalman filter is utilized to update the window at each iteration time. To investigate the effect of the proposed model, computer heating simulation, phantom microwave heating experiment and dynamic in-vivo model validation of liver and thoracic tumor were conducted in this study. The heating simulation indicates that the KalBHT hybrid algorithm achieves more accurate results without adjusting λ to a proper value in comparison to the hybrid algorithm. The results of the phantom heating experiment illustrate that the proposed model is able to follow temperature changes in the presence of motion and the temperature estimated also shows less noise in the background and surrounding the hot spot. The dynamic in-vivo model validation with heating simulation demonstrates that the proposed model has a higher convergence rate, more robustness to susceptibility problem surrounding the hot spot and more accuracy of temperature estimation. In the healthy liver experiment with heating simulation, the RMSE of the hot spot of the proposed model is reduced to about 50% compared to the RMSE of the original hybrid model and the convergence time becomes only about one fifth of the hybrid model. The proposed model is able to improve the accuracy of the original hybrid algorithm and accelerate the convergence rate of MR temperature estimation.
NASA Astrophysics Data System (ADS)
Park, Kiwan
2017-12-01
In our conventional understanding, large-scale magnetic fields are thought to originate from an inverse cascade in the presence of magnetic helicity, differential rotation or a magneto-rotational instability. However, as recent simulations have given strong indications that an inverse cascade (transfer) may occur even in the absence of magnetic helicity, the physical origin of this inverse cascade is still not fully understood. We here present two simulations of freely decaying helical and non-helical magnetohydrodynamic (MHD) turbulence. We verified the inverse transfer of helical and non-helical magnetic fields in both cases, but we found the underlying physical principles to be fundamentally different. In the former case, the helical magnetic component leads to an inverse cascade of magnetic energy. We derived a semi-analytic formula for the evolution of large-scale magnetic field using α coefficient and compared it with the simulation data. But in the latter case, the α effect, including other conventional dynamo theories, is not suitable to describe the inverse transfer of non-helical magnetic energy. To obtain a better understanding of the physics at work here, we introduced a 'field structure model' based on the magnetic induction equation in the presence of inhomogeneities. This model illustrates how the curl of the electromotive force leads to the build up of a large-scale magnetic field without the requirement of magnetic helicity. And we applied a quasi-normal approximation to the inverse transfer of magnetic energy.
NASA Astrophysics Data System (ADS)
Sheikhnejad, Yahya; Hosseini, Reza; Saffar Avval, Majid
2017-02-01
In this study, steady state laminar ferroconvection through circular horizontal tube partially filled with porous media under constant heat flux is experimentally investigated. Transverse magnetic fields were applied on ferrofluid flow by two fixed parallel magnet bar positioned on a certain distance from beginning of the test section. The results show promising notable enhancement in heat transfer as a consequence of partially filled porous media and magnetic field, up to 2.2 and 1.4 fold enhancement were observed in heat transfer coefficient respectively. It was found that presence of both porous media and magnetic field simultaneously can highly improve heat transfer up to 2.4 fold. Porous media of course plays a major role in this configuration. Virtually, application of Magnetic field and porous media also insert higher pressure loss along the pipe which again porous media contribution is higher that magnetic field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weidl, Martin S.; Winske, Dan; Jenko, Frank
We present two-dimensional hybrid kinetic/magnetohydrodynamic simulations of planned laser-ablation experiments in the Large Plasma Device (LAPD). Our results, based on parameters which have been validated in previous experiments, show that a parallel collisionless shock can begin forming within the available space. Carbon-debris ions that stream along the magnetic- eld direction with a blow-o speed of four times the Alfv en velocity excite strong magnetic uctuations, eventually transfering part of their kinetic energy to the surrounding hydrogen ions. This acceleration and compression of the background plasma creates a shock front, which satis es the Rankine{Hugoniot conditions and can therefore propagate onmore » its own. Furthermore, we analyze the upstream turbulence and show that it is dominated by the right-hand resonant instability.« less
Amplification of large scale magnetic fields in a decaying MHD system
NASA Astrophysics Data System (ADS)
Park, Kiwan
2017-10-01
Dynamo theory explains the amplification of magnetic fields in the conducting fluids (plasmas) driven by the continuous external energy. It is known that the nonhelical continuous kinetic or magnetic energy amplifies the small scale magnetic field; and the helical energy, the instability, or the shear with rotation effect amplifies the large scale magnetic field. However, recently it was reported that the decaying magnetic energy independent of helicity or instability could generate the large scale magnetic field. This phenomenon may look somewhat contradictory to the conventional dynamo theory. But it gives us some clues to the fundamental mechanism of energy transfer in the magnetized conducting fluids. It also implies that an ephemeral astrophysical event emitting the magnetic and kinetic energy can be a direct cause of the large scale magnetic field observed in space. As of now the exact physical mechanism is not yet understood in spite of several numerical results. The plasma motion coupled with a nearly conserved vector potential in the magnetohydrodynamic (MHD) system may transfer magnetic energy to the large scale. Also the intrinsic property of the scaling invariant MHD equation may decide the direction of energy transfer. In this paper we present the simulation results of inversely transferred helical and nonhelical energy in a decaying MHD system. We introduce a field structure model based on the MHD equation to show that the transfer of magnetic energy is essentially bidirectional depending on the plasma motion and initial energy distribution. And then we derive α coefficient algebraically in line with the field structure model to explain how the large scale magnetic field is induced by the helical energy in the system regardless of an external forcing source. And for the algebraic analysis of nonhelical magnetic energy, we use the eddy damped quasinormalized Markovian approximation to show the inverse transfer of magnetic energy.
The use of magnetic fields in vertical Bridgman/Gradient Freeze-type crystal growth
NASA Astrophysics Data System (ADS)
Pätzold, Olf; Niemietz, Kathrin; Lantzsch, Ronny; Galindo, Vladimir; Grants, Ilmars; Bellmann, Martin; Gerbeth, Gunter
2013-03-01
This paper outlines advanced vertical Bridgman/Gradient Freeze techniques with flow control using magnetic fields developed for the growth of semiconductor crystals. Low-temperature flow modelling, as well as laboratory-scaled crystal growth under the influence of rotating, travelling, and static magnetic fields are presented. Experimental and numerical flow modelling demonstrate the potential of the magnetic fields to establish a well-defined flow for tailoring heat and mass transfer in the melt during growth. The results of the growth experiments are discussed with a focus on the influence of a rotating field on the segregation of dopants, the influence of a travelling field on the temperature field and thermal stresses, and the potential of rotating and static fields for a stabilization of the melt flow.
Goodrich, K C; Blatter, D D; Parker, D L; Du, Y P; Meyer, K J; Bernstein, M A
1996-06-01
The authors compare the effectiveness of various magnetic resonance (MR) angiography acquisition strategies in enhancing the visibility of small intracranial vessels. Blood vessel contrast-to-noise ratio (CNR) in time-of-flight MR angiography was studied as a function of vessel size and several selectable imaging parameters. Contrast-to-noise measurements were made on 257 vessel segments ranging in size from 0.3 mm to 4.2 mm in patients who recently had undergone intraarterial cerebral angiography. Imaging parameters studied included magnetization transfer, spatially variable radio frequency (RF) pulse profile (ramped RF), and imaging slab thickness. The combination of thin slabs (16 slices/slab), ramped RF, and magnetization transfer resulted in the highest CNR for all but the smallest vessel sizes. The smallest vessels (< 0.5 mm) had the highest CNR, using the thick slab (64 slices/slab) with ramped RF and magnetization transfer. Magnetization transfer always improved vessel CNR, but the improvement diminished as the slab thickness was reduced. The CNR increased with a decrease in slab thickness for all but the smallest vessel sizes. Overall, the results provide a quantitative demonstration that inflow enhancement of blood is reduced for small vessels. Thus, whereas magnetization transfer is important at all vessel sizes, it becomes the primary factor in improving the visibility of the smallest vessels.
The precession dynamo experiment at HZDR
NASA Astrophysics Data System (ADS)
Giesecke, A.; Albrecht, T.; Gerbeth, G.; Gundrum, T.; Nore, C.; Stefani, F.; Steglich, C.
2013-12-01
Most planets of the solar system are accompanied by a magnetic field with a large scale structure. These fields are generated by the dynamo effect, the process that provides for the transfer of kinetic energy from a flow of a conducting fluid into magnetic energy. In case of planetary dynamos it is generally assumed that these flows are driven by thermal and/or chemical convection but other driving sources like libration, tidal forcing or precession are possible as well. Precessional forcing, in particular, has been discussed since long as an at least additional power source for the geodynamo. A fluid flow of liquid sodium, solely driven by precession, will be the source for magnetic field generation in the next generation dynamo experiment currently under development at the Helmholz-Zentrum Dresden-Rossendorf (HZDR). In contrast to previous dynamo experiments no internal blades, propellers or complex systems of guiding tubes will be used for the optimization of the flow properties. However, in order to reach sufficiently high magnetic Reynolds numbers required for the onset of dynamo action rather large dimensions of the container are necessary making the construction of the experiment a challenge. At present state a small scale water experiment is running in order to estimate the hydrodynamic flow properties in dependence of precession angle and precession rate. The measurements are utilized in combination with numerical simulations of the hydrodynamic case as input data for kinematic simulations of the induction equation. The resulting growth rates and the corresponding critical magnetic Reynolds numbers will provide a restriction of the useful parameter regime and will allow an optimization of the experimental configuration.
Heat Transfer Affected by Transverse Magnetic Field using 3D Modeling of Arc Plasma
NASA Astrophysics Data System (ADS)
Maeda, Yoshifumi; Tanaka, Tatsuro; Yamamoto, Shinji; Iwao, Toru
2016-10-01
Gas shielded metal arc welding is used to join the various metal because this is the high quality joining technology. Thus, this welding is used for a welding of large buildings such as bridges and LNG tanks. However, the welding defect caused by the heat transfer decrement may occur with increasing the wind velocity. This is because that the convection loss increases because the arc deflects to leeward side with increasing the wind velocity. In order to prevent from the arc deflection, it is used that the transverse magnetic field is applied to the arc. However, the arc deflection occurs with increasing the transverse magnetic field excessively. The energy balance of the arc is changed with increasing the convection loss caused by the arc deflection, and the heat transfer to the anode decreases. Therefore, the analysis including the arc and anode is necessary to elucidate the heat transfer to the anode. In this paper, the heat transfer affected by the transverse magnetic field using 3D modeling of the arc plasma is elucidated. The heat transfer to the anode is calculated by using the EMTF(electromagnetic thermal fluid) simulation with increasing the transverse magnetic field. As a result, the heat transfer decreased with increasing the transverse magnetic field.
Design of Current Leads for the MICE Coupling Magnet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Li; Li, L.K.; Wu, Hong
2008-04-02
A pair of superconducting coupling magnets will be part of the Muon Ionization Cooling Experiment (MICE). They were designed and will be constructed by the Institute of Cryogenics and Superconductivity Technology, Harbin Institute of Technology, in collaboration with Lawrence Berkeley National Laboratory. The coupling magnet is to be cooled by using cryocoolers at 4.2K. In order to reduce the heat leak to the 4.2K cold mass from 300 K, a pair of current leads composed of conventional copper leads and high temperature superconductor (HTS) leads will be used to supply current to the magnet. This paper presents the optimization ofmore » the conventional conduction-cooled metal leads for the coupling magnet. Analyses on heat transfer down the leads using theoretical method and numerical simulation were carried out. The stray magnetic field around the HTS leads has been calculated and effects of the magnetic field on the performance of the HTS leads has also been analyzed.« less
Wang, Qisi; Shen, Yao; Pan, Bingying; Zhang, Xiaowen; Ikeuchi, K.; Iida, K.; Christianson, A. D.; Walker, H. C.; Adroja, D. T.; Abdel-Hafiez, M.; Chen, Xiaojia; Chareev, D. A.; Vasiliev, A. N.; Zhao, Jun
2016-01-01
Elucidating the nature of the magnetism of a high-temperature superconductor is crucial for establishing its pairing mechanism. The parent compounds of the cuprate and iron-pnictide superconductors exhibit Néel and stripe magnetic order, respectively. However, FeSe, the structurally simplest iron-based superconductor, shows nematic order (Ts=90 K), but not magnetic order in the parent phase, and its magnetic ground state is intensely debated. Here we report inelastic neutron-scattering experiments that reveal both stripe and Néel spin fluctuations over a wide energy range at 110 K. On entering the nematic phase, a substantial amount of spectral weight is transferred from the Néel to the stripe spin fluctuations. Moreover, the total fluctuating magnetic moment of FeSe is ∼60% larger than that in the iron pnictide BaFe2As2. Our results suggest that FeSe is a novel S=1 nematic quantum-disordered paramagnet interpolating between the Néel and stripe magnetic instabilities. PMID:27431986
Magnetic ground state of FeSe.
Wang, Qisi; Shen, Yao; Pan, Bingying; Zhang, Xiaowen; Ikeuchi, K; Iida, K; Christianson, A D; Walker, H C; Adroja, D T; Abdel-Hafiez, M; Chen, Xiaojia; Chareev, D A; Vasiliev, A N; Zhao, Jun
2016-07-19
Elucidating the nature of the magnetism of a high-temperature superconductor is crucial for establishing its pairing mechanism. The parent compounds of the cuprate and iron-pnictide superconductors exhibit Néel and stripe magnetic order, respectively. However, FeSe, the structurally simplest iron-based superconductor, shows nematic order (Ts=90 K), but not magnetic order in the parent phase, and its magnetic ground state is intensely debated. Here we report inelastic neutron-scattering experiments that reveal both stripe and Néel spin fluctuations over a wide energy range at 110 K. On entering the nematic phase, a substantial amount of spectral weight is transferred from the Néel to the stripe spin fluctuations. Moreover, the total fluctuating magnetic moment of FeSe is ∼60% larger than that in the iron pnictide BaFe2As2. Our results suggest that FeSe is a novel S=1 nematic quantum-disordered paramagnet interpolating between the Néel and stripe magnetic instabilities.
Computational Studies of Magnetic Nozzle Performance
NASA Technical Reports Server (NTRS)
Ebersohn, Frans H.; Longmier, Benjamin W.; Sheehan, John P.; Shebalin, John B.; Raja, Laxminarayan
2013-01-01
An extensive literature review of magnetic nozzle research has been performed, examining previous work, as well as a review of fundamental principles. This has allow us to catalog all basic physical mechanisms which we believe underlie the thrust generation process. Energy conversion mechanisms include the approximate conservation of the magnetic moment adiabatic invariant, generalized hall and thermoelectric acceleration, swirl acceleration, thermal energy transformation into directed kinetic energy, and Joule heating. Momentum transfer results from the interaction of the applied magnetic field with currents induced in the plasma plume., while plasma detachment mechanisms include resistive diffusion, recombination and charge exchange collisions, magnetic reconnection, loss of adiabaticity, inertial forces, current closure, and self-field detachment. We have performed a preliminary study of Hall effects on magnetic nozzle jets with weak guiding magnetic fields and weak expansions (p(sub jet) approx. = P(sub background)). The conclusion from this study is that the Hall effect creates an azimuthal rotation of the plasma jet and, more generally, creates helical structures in the induced current, velocity field, and magnetic fields. We have studied plasma jet expansion to near vacuum without a guiding magnetic field, and are presently including a guiding magnetic field using a resistive MHD solver. This research is progressing toward the implementation of a full generalized Ohm's law solver. In our paper, we will summarize the basic principle, as well as the literature survey and briefly review our previous results. Our most recent results at the time of submittal will also be included. Efforts are currently underway to construct an experiment at the University of Michigan Plasmadynamics and Electric Propulsion Laboratory (PEPL) to study magnetic nozzle physics for a RF-thruster. Our computational study will work directly with this experiment to validate the numerical model, in order to study magnetic nozzle physics and optimize magnetic nozzle design. Preliminary results from the PEPL experiment will also be presented.
Development of modular scalable pulsed power systems for high power magnetized plasma experiments
NASA Astrophysics Data System (ADS)
Bean, I. A.; Weber, T. E.; Adams, C. S.; Henderson, B. R.; Klim, A. J.
2017-10-01
New pulsed power switches and trigger drivers are being developed in order to explore higher energy regimes in the Magnetic Shock Experiment (MSX) at Los Alamos National Laboratory. To achieve the required plasma velocities, high-power (approx. 100 kV, 100s of kA), high charge transfer (approx. 1 C), low-jitter (few ns) gas switches are needed. A study has been conducted on the effects of various electrode geometries and materials, dielectric media, and triggering strategies; resulting in the design of a low-inductance annular field-distortion switch, optimized for use with dry air at 90 psig, and triggered by a low-jitter, rapid rise-time solid-state Linear Transformer Driver. The switch geometry and electrical characteristics are designed to be compatible with Syllac style capacitors, and are intended to be deployed in modular configurations. The scalable nature of this approach will enable the rapid design and implementation of a wide variety of high-power magnetized plasma experiments. This work is supported by the U.S. Department of Energy, National Nuclear Security Administration. Approved for unlimited release, LA-UR-17-2578.
Jin, Tao; Kim, Seong-Gi
2014-01-01
The chemical exchange (CE) rate of endogenous hydroxyl and amine protons with water is often comparable to the difference in their chemical shifts. These intermediate exchange (IMEX) processes have been imaged by the CE saturation transfer (CEST) approach with low-power and long-duration irradiation. However, its sensitivity is not optimal, and more importantly, the signal is contaminated by slow magnetization transfer processes. Here, the property of CEST signals is compared to a CE-sensitive spin-locking (CESL) technique irradiating at the labile proton frequency. Firstly, using a higher power and shorter irradiation in CE-MRI yields i) increasing selectivity to faster chemical exchange rates by higher sensitivity to faster exchanges and less sensitivity to slower CE and magnetization transfer processes, and ii) decreasing in vivo asymmetric magnetization transfer contrast measured at ±15 ppm. The sensitivity gain of CESL over CEST is higher for a higher-power and shorter irradiation. Unlike CESL, CEST signals oscillate at a very high power and short irradiation. Secondly, time-dependent CEST and CESL signals are well modeled by analytical solutions of CE-MRI with asymmetric population approximation (CEAPA), which can be used for quantitative CE-MRI, and validated by simulations of Bloch-McConnell equations and phantom experiments. Lastly, in vivo amine-water proton exchange contrast measured at 2.5 ppm with ω1 of 500 Hz is 18% higher in sensitivity for CESL than CEST at 9.4 T. Overall, CESL provides better exchange rate selectivity and sensitivity than CEST; therefore, CESL is more suitable for CE-MRI of IMEX protons. PMID:25199631
Present understanding of MHD and heat transfer phenomena for liquid metal blankets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirillov, I.R.; Barleon, L.; Reed, C.B.
1994-07-01
A review of experimental work on magnetohydrodynamic (MHD) and heat transfer (HT) characteristics of liquid metal flows in fusion relevant conditions is presented. Experimental data on MHD flow pressure drop in straight channels of round and rectangular cross-section with electroconducting walls in a transverse magnetic field show good agreement with theoretical predictions, and simple engineering formulas are confirmed. Less data are available on velocity distribution and HT characteristics, and even less data are available for channels with electroinsulating walls or artificially made self-heating electroinsulating coatings. Some experiments show an interesting phenomena of HT increase in the presence of a transversemore » or axial magnetic field. For channels of complex geometry -- expansions, contractions, bends, and manifolds -- few experimental data are available. Future efforts should be directed toward investigation of MHD/HT in straight channels with perfect and nonperfect electroinsulated walls, including walls with controlled imperfections, and in channels of complex geometry. International cooperation in manufacturing and operating experimental facilities with magnetic fields at, or even higher than, 5--7 T with comparatively large volumes may be of great help.« less
2013-05-01
Magnetization transfer MRI in multiple sclerosis . J Neuroimaging. 2007;17 Suppl 1:S22–S26. 82. Filippi M, Rocca MA. Magnetization transfer magnetic resonance... multiple sclerosis . Neuroimaging Clin N Am. 2009;19(1):27–36. 84. Lundbom N. Determination of magnetization transfer contrast in tissue: an MR... multiple RF coils intended for optimal direct and indirect detection of hyperpolarized contrast agents in vivo. 4.b. Y1Q3-Y1Q4. Low field MRI: pre
Evidence for Coherent Transfer of para-Hydrogen-Induced Polarization at Low Magnetic Fields.
Kiryutin, Alexey S; Yurkovskaya, Alexandra V; Kaptein, Robert; Vieth, Hans-Martin; Ivanov, Konstantin L
2013-08-01
We have investigated the mechanism of para-hydrogen-induced polarization (PHIP) transfer from the original strongly aligned protons to other nuclei at low external magnetic fields. Although it is known that PHIP is efficiently transferred at low fields, the nature of the transfer mechanism, that is, coherent spin mixing or cross-relaxation, is not well established. Polarization transfer kinetics for individual protons of styrene was, for the first time, measured and modeled theoretically. Pronounced oscillations were observed indicating a coherent transfer mechanism. Spin coherences were excited by passing through an avoided level crossing of the nuclear spin energy levels. Transfer at avoided level crossings is selective with respect to spin order. Our work provides evidence that the coherent PHIP transfer mechanism is dominant at low magnetic fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beeck, T., E-mail: torben.beeck@desy.de; Baev, I.; Gieschen, S.
2016-04-15
A new ultra-low temperature experiment including a superconducting vector magnet has been developed for soft x-ray absorption spectroscopy experiments at third generation synchrotron light sources. The sample is cooled below 50 mK by a cryogen free {sup 3}He-{sup 4}He dilution refrigerator. At the same time, magnetic fields of up to ±7 T in the horizontal direction and ±0.5 T in the vertical direction can be applied by a superconducting vector magnet. The setup allows to study ex situ and in situ prepared samples, offered by an attached UHV preparation chamber with load lock. The transfer of the prepared samples betweenmore » the preparation section and the dilution refrigerator is carried out under cryogenic temperatures. First commissioning studies have been carried out at the Variable Polarization XUV Beamline P04 at PETRA III and the influence of the incident photon beam to the sample temperature has been studied.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dieterich, Sonja
2002-05-01
There has been a longstanding issue concerning possible nucleon modifications in a (dense) nuclear medium. Polarization transfer data for exclusive quasielastic electron scattering are a sensitive to the ratio of the electric and magnetic nucleon form factors in the medium. Although proper interpretation of the results requires accounting for such effects as final state interactions and meson exchange currents, their effect on polarization transfer is predicted to be small. Studies of model dependencies, e.g., the off-shell current operator and spinor distortions, have been done. Final results of a measurement of polarization transfer in the 4He(more » $$\\vec{v}$$,e'$$\\vec{p}$$) 3H reaction will be discussed. The experiments were carried out at MAMI, Mainz at a Q 2 of 0.4 GeV 2 and at the Thomas Jefferson Lab, Newport News, Virginia at the Q 2 values 0.5, 1.0, 1.6 and 2.6 GeV 2. Measured values of the transferred and induced polarization are compared with various theoretical calculations. The experiment showed a difference between the fully relativistic model with may indicate medium modifications of the form factor.« less
Theory and Experimental Program for p-B11 Fusion with the Dense Plasma Focus
NASA Astrophysics Data System (ADS)
Lerner, Eric J.; Krupakar Murali, S.; Haboub, A.
2011-10-01
Lawrenceville Plasma Physics Inc. has initiated a 2-year-long experimental project to test the scientific feasibility of achieving controlled fusion using the dense plasma focus (DPF) device with hydrogen-boron (p-B11) fuel. The goals of the experiment are: first, to confirm the achievement of high ion and electron energies observed in previous experiments from 2001; second, to greatly increase the efficiency of energy transfer into the plasmoid where the fusion reactions take place; third, to achieve the high magnetic fields (>1 GG) needed for the quantum magnetic field effect, which will reduce cooling of the plasma by X-ray emission; and finally, to use p-B11 fuel to demonstrate net energy gain. The experiments are being conducted with a newly constructed dense plasma focus in Middlesex, NJ which is expected to generate peak currents in excess of 2 MA. Some preliminary results are reported.
Preliminary results in the NASA Lewis H2-O2 combustion MHD experiment
NASA Technical Reports Server (NTRS)
Smith, J. M.
1979-01-01
MHD (magnetohydrodynamic) power generation experiments were carried out in the NASA Lewis Research Center cesium-seeded H2-O2 combustion facility. This facility uses a neon-cooled cryomagnet capable of producing magnetic fields in excess of 5 tesla. The effects of power takeoff location, generator loading, B-field strength, and electrode breakdown on generator performance are discussed. The experimental data is compared to a theory based on one-dimensional flow with heat transfer, friction, and voltage drops.
NASA Astrophysics Data System (ADS)
Matteucci, Jack; Moissard, Clément; Fox, Will; Bhattacharjee, Amitava
2016-10-01
The advent of high-energy-density physics facilities has introduced the opportunity to experimentally investigate magnetic field dynamics relevant to both ICF and astrophysical plasmas. Recent experiments have demonstrated magnetic reconnection between colliding plasma plumes, where the reconnecting magnetic fields were self-generated in the plasma by the Biermann battery effect. In this study, we simulate these experiments from first principles using 2-D and 3-D particle-in-cell simulations. Simulations self-consistently demonstrate magnetic field generation by the Biermann battery effect, followed by advection by the Hall effect and ion flow. In 2-D simulations, we find in both the collisionless case and the semi-collisional case, defined by eVi × B >> Rei /ne (where Rei is the electron ion momentum transfer) that quantitative agreement with the generalized Ohm's law is only obtained with the inclusion of the pressure tensor. Finally, we document that significant field is destroyed at the reconnection site by the Biermann term, an inverse, `anti-Biermann' effect, which has not been considered previously in analysis of the experiment. The role of the anti-Biermann effect will be compared to standard reconnection mechanisms in 3-D reconnection simulations. This research used resources of the ORLC Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. DoE under Contract No. DE-AC05-00OR22725.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granroth, Garrett E
2011-01-01
Neutron Spectroscopy has provided critical information on the magnetism in correlated electron systems. Specifically quantum magnets, superconductors, and multi-ferroics are areas of productive research. A discussion of recent measurements on the SEQUOIA spectrometer will provide examples of how novel instrumentation concepts are used on the latest generation of spectrometers to extend our knowledge in such systems. The now ubiquitous function of sample rotation allows for full mapping of volumes ofmore » $Q$ and $$\\omega$$ space. An instrument focused on low angles could extend these maps to cover more of the first Brillioun zone. Innovative chopper cascades allow two unique modes of operation. Multiplexed measurements allow the simultaneous measurement of high and low energy features in an excitation spectrum. Alternatively by limiting the neutron bandwidth incident on the Fermi Chopper, background from subsequent time frames is removed, enabling the observation of weak, large energy transfer features. Finally the implementation of event-based detection for neutron experiments is time correlated experiments. Diffraction studies of the high field spin states in MnWO$$_4$$ using magnetic fields up to 30 T, provided by a pulsed magnet, illustrate this method. Expanding the high field studies to spectroscopy will require a novel instrument, focused around a world class DC magnet, like Zeemans proposed for the SNS.« less
Structural and electronic evolution of Cr[subscript 2]O[subscript 3] on compression to 55 GPa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dera, Przemyslaw; Lavina, Barbara; Meng, Yue
2016-08-15
Synchrotron single-crystal x-ray diffraction experiments have been performed on corundum-type Cr{sub 2}O{sub 3} up to a pressure of 55 GPa in Ne and He pressure transmitting media. Diffraction experiments were complemented by measurements of optical absorption spectra with single crystal samples up to 60 GPa. Results of the diffraction data analysis rule out the earlier reported monoclinic distortion at 15-30 GPa, but indicate evidence of two discontinuous transitions of electronic or magnetic nature, most likely associated with a change in magnetic ordering and charge transfer. The compression mechanism established from single crystal refinements indicates much smaller distortion of the Cr{supmore » 3+} coordination environment than was previously assumed.« less
Hybrid simulations of a parallel collisionless shock in the large plasma device
Weidl, Martin S.; Winske, Dan; Jenko, Frank; ...
2016-12-01
We present two-dimensional hybrid kinetic/magnetohydrodynamic simulations of planned laser-ablation experiments in the Large Plasma Device (LAPD). Our results, based on parameters which have been validated in previous experiments, show that a parallel collisionless shock can begin forming within the available space. Carbon-debris ions that stream along the magnetic- eld direction with a blow-o speed of four times the Alfv en velocity excite strong magnetic uctuations, eventually transfering part of their kinetic energy to the surrounding hydrogen ions. This acceleration and compression of the background plasma creates a shock front, which satis es the Rankine{Hugoniot conditions and can therefore propagate onmore » its own. Furthermore, we analyze the upstream turbulence and show that it is dominated by the right-hand resonant instability.« less
Electric fields measured by ISEE-1 within and near the neutral sheet during quiet and active times
NASA Technical Reports Server (NTRS)
Cattell, C. A.; Mozer, F. S.
1982-01-01
An understanding of the physical processes occurring in the magnetotail and plasmasheet during different interplanetary magnetic field orientations and differing levels of ground magnetic activity is crucial for the development of a theory of energy transfer from the solar wind to the particles which produce auroral arcs. In the present investigation, the first observations of electric fields during neutral sheet crossings are presented, taking into account the statistical correlations of the interplanetary magnetic field direction and ground activity with the character of the electric field. The electric field data used in the study were obtained from a double probe experiment on the ISEE-1 satellite. The observations suggest that turbulent electric and magnetic fields are intimately related to plasma acceleration in the neutral sheet and to the processes which create auroral particles.
NASA Astrophysics Data System (ADS)
Dalmasse, K.; Pariat, É.; Valori, G.; Jing, J.; Démoulin, P.
2018-01-01
In the solar corona, magnetic helicity slowly and continuously accumulates in response to plasma flows tangential to the photosphere and magnetic flux emergence through it. Analyzing this transfer of magnetic helicity is key for identifying its role in the dynamics of active regions (ARs). The connectivity-based helicity flux density method was recently developed for studying the 2D and 3D transfer of magnetic helicity in ARs. The method takes into account the 3D nature of magnetic helicity by explicitly using knowledge of the magnetic field connectivity, which allows it to faithfully track the photospheric flux of magnetic helicity. Because the magnetic field is not measured in the solar corona, modeled 3D solutions obtained from force-free magnetic field extrapolations must be used to derive the magnetic connectivity. Different extrapolation methods can lead to markedly different 3D magnetic field connectivities, thus questioning the reliability of the connectivity-based approach in observational applications. We address these concerns by applying this method to the isolated and internally complex AR 11158 with different magnetic field extrapolation models. We show that the connectivity-based calculations are robust to different extrapolation methods, in particular with regard to identifying regions of opposite magnetic helicity flux. We conclude that the connectivity-based approach can be reliably used in observational analyses and is a promising tool for studying the transfer of magnetic helicity in ARs and relating it to their flaring activity.
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Ludovisis, D.; Cha, S. S.
2006-01-01
Heat transfer of a two-layer fluid system has been of great importance in a variety of industrial applications. For example, the phenomena of immiscible fluids can be found in materials processing and heat exchangers. Typically in solidification from a melt, the convective motion is the dominant factor that affects the uniformity of material properties. In the layered flow, thermocapillary forces can come into an important play, which was first emphasized by a previous investigator in 1958. Under extraterrestrial environments without gravity, thermocapillary effects can be a more dominant factor, which alters material properties in processing. Control and optimization of heat transfer in an immiscible fluid system need complete understanding of the flow phenomena that can be induced by surface tension at a fluid interface. The present work is focused on understanding of the magnetic field effects on thermocapillary convection, in order to optimize material processing. That is, it involves the study of the complicated phenomena to alter the flow motion in crystal growth. In this effort, the Marangoni convection in a cavity with differentially heated sidewalls is investigated with and without the influence of a magnetic field. As a first step, numerical analyses are performed, by thoroughly investigating influences of all pertinent physical parameters. Experiments are then conducted, with preliminary results, for comparison with the numerical analyses.
Gutt, C; Sant, T; Ksenzov, D; Capotondi, F; Pedersoli, E; Raimondi, L; Nikolov, I P; Kiskinova, M; Jaiswal, S; Jakob, G; Kläui, M; Zabel, H; Pietsch, U
2017-09-01
We report the results of resonant magnetic XUV reflectivity experiments performed at the XUV free-electron laser FERMI. Circularly polarized XUV light with the photon energy tuned to the Fe M 2,3 edge is used to measure resonant magnetic reflectivities and the corresponding Q -resolved asymmetry of a Permalloy/Ta/Permalloy trilayer film. The asymmetry exhibits ultrafast changes on 240 fs time scales upon pumping with ultrashort IR laser pulses. Depending on the value of the wavevector transfer Q z , we observe both decreasing and increasing values of the asymmetry parameter, which is attributed to ultrafast changes in the vertical spin and charge density profiles of the trilayer film.
Low Power Consumption Design and Fabrication of Thin Film Core for Micro Fluxgate.
Lv, Hui; Liu, Shibin
2016-03-01
The soft magnetic characteristic of core is a critical factor to performance of the micro fluxgate. Porous thin film core can be effectively used to decrease the value of saturation magnetic field strength (H(s)) and improve soft magnetic behavior. It is conducive to impelling the micro fluxgate toward the direction of low power consumption. In this work, negative photoresist is used to fabricate a porous core by MEMS technology. Through the processes of ultraviolet-lithography, the porous pattern transfer from the mask to the microstructure on silicon substrate. The experiment result complies with the anticipation and indicates that this MEMS technique can be applied to improve the characteristic of thin film core and decrease power consumption of fluxgate sensor.
Unusual negative permeability of single magnetic nanowire excited by the spin transfer torque effect
NASA Astrophysics Data System (ADS)
Han, Mangui; Zhou, Wu
2018-07-01
Due to the effect of spin transfer torque, negative imaginary parts of permeability (μ″ < 0) are reported in a ferromagnetic nanowire. It is found that negative μ″ values are resulted from the interaction of spin polarized conduction electrons with the spatially non-uniform distributed magnetic moments at both ends of nanowires. The results are well explained from the effect of spin transfer torque on the precession of magnetization under the excitation of both the pulsed magnetic field and static electric field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Peng; Liu, Tao; Chang, Houchen
As an in-plane charge current flows in a heavy metal film with spin-orbit coupling, it produces a torque on and thereby switches the magnetization in a neighbouring ferromagnetic metal film. Such spin-orbit torque (SOT)-induced switching has been studied extensively in recent years and has shown higher efficiency than switching using conventional spin-transfer torque. Here we report the SOT-assisted switching in heavy metal/magnetic insulator systems. The experiments used a Pt/BaFe 12O 19 bilayer where the BaFe 12O 19 layer exhibits perpendicular magnetic anisotropy. As a charge current is passed through the Pt film, it produces a SOT that can control themore » up and down states of the remnant magnetization in the BaFe 12O 19 film when the film is magnetized by an in-plane magnetic field. Furthermore, it can reduce or increase the switching field of the BaFe 12O 19 film by as much as about 500 Oe when the film is switched with an out-of-plane field.« less
ERIC Educational Resources Information Center
Guegan, Jean-Paul; Daniellou, Richard
2012-01-01
NMR spectroscopy is a powerful tool for characterizing and identifying molecules and nowadays is even used to characterize complex systems in biology. In the experiment presented here, students learned how to apply this modern technique to probe interactions between small molecules and proteins. With the use of simple organic synthesis, students…
NASA Astrophysics Data System (ADS)
Armstrong, Geoffrey S.; Bendiak, Brad
2006-07-01
Four-dimensional nuclear magnetic resonance spectroscopy of oligosaccharides that correlates 1H-1H ROESY cross peaks to two additional 13C frequency dimensions is reported. The 13C frequencies were introduced by derivatization of all free hydroxyl groups with doubly 13C-labeled acetyl isotags. Pulse sequences were optimized for processing with the filter diagonalization method. The extensive overlap typically observed in 2D ROESY 1H-1H planes was alleviated by resolution of ROESY cross peaks in the two added dimensions associated with the carbon frequencies of the isotags. This enabled the interresidue 1H-1H ROESY cross peaks to be unambiguously assigned hence spatially proximate sugar spin systems across glycosidic bonds could be effectively ascertained. An experiment that selectively amplifies interresidue ROESY 1H-1H cross peaks is also reported. It moves the magnetization of an intraresidue proton normally correlated to a sugar H-1 signal orthogonally along the z axis prior to a Tr-ROESY mixing sequence. This virtually eliminates the incoherent intraresidue ROESY transfer, suppresses coherent TOCSY transfer, and markedly enhances the intensity of interresidue ROESY cross peaks.
Armstrong, Geoffrey S; Bendiak, Brad
2006-07-01
Four-dimensional nuclear magnetic resonance spectroscopy of oligosaccharides that correlates 1H-1H ROESY cross peaks to two additional 13C frequency dimensions is reported. The 13C frequencies were introduced by derivatization of all free hydroxyl groups with doubly 13C-labeled acetyl isotags. Pulse sequences were optimized for processing with the filter diagonalization method. The extensive overlap typically observed in 2D ROESY 1H-1H planes was alleviated by resolution of ROESY cross peaks in the two added dimensions associated with the carbon frequencies of the isotags. This enabled the interresidue 1H-1H ROESY cross peaks to be unambiguously assigned hence spatially proximate sugar spin systems across glycosidic bonds could be effectively ascertained. An experiment that selectively amplifies interresidue ROESY 1H-1H cross peaks is also reported. It moves the magnetization of an intraresidue proton normally correlated to a sugar H-1 signal orthogonally along the z axis prior to a Tr-ROESY mixing sequence. This virtually eliminates the incoherent intraresidue ROESY transfer, suppresses coherent TOCSY transfer, and markedly enhances the intensity of interresidue ROESY cross peaks.
Smith, Seth A; Farrell, Jonathan A D; Jones, Craig K; Reich, Daniel S; Calabresi, Peter A; van Zijl, Peter C M
2006-10-01
Pulsed magnetization transfer (MT) imaging has been applied to quantitatively assess brain pathology in several diseases, especially multiple sclerosis (MS). To date, however, because of the high power deposition associated with the use of short, rapidly repeating MT prepulses, clinical application has been limited to lower field strengths. The contrast-to-noise ratio (CNR) of MT is limited, and this method would greatly benefit from the use of higher magnetic fields and phased-array coil reception. However, power deposition is proportional to the square of the magnetic field and scales with coil size, and MT experiments are already close to the SAR limit at 1.5T even when smaller transmit coils are used instead of the body coil. Here we show that these seemingly great obstacles can be ameliorated by the increased T(1) of tissue water at higher field, which allows for longer maintenance of sufficiently high saturation levels while using a reduced duty cycle. This enables a fast (5-6 min) high-resolution (1.5 mm isotropic) whole-brain MT acquisition with excellent anatomical visualization of gray matter (GM) and white matter (WM) structures, and even substructures. The method is demonstrated in nine normal volunteers and five patients with relapsing remitting MS (RRMS), and the results show a clear delineation of heterogeneous lesions.
Li, Peng; Liu, Tao; Chang, Houchen; ...
2016-09-01
As an in-plane charge current flows in a heavy metal film with spin-orbit coupling, it produces a torque on and thereby switches the magnetization in a neighbouring ferromagnetic metal film. Such spin-orbit torque (SOT)-induced switching has been studied extensively in recent years and has shown higher efficiency than switching using conventional spin-transfer torque. Here we report the SOT-assisted switching in heavy metal/magnetic insulator systems. The experiments used a Pt/BaFe 12O 19 bilayer where the BaFe 12O 19 layer exhibits perpendicular magnetic anisotropy. As a charge current is passed through the Pt film, it produces a SOT that can control themore » up and down states of the remnant magnetization in the BaFe 12O 19 film when the film is magnetized by an in-plane magnetic field. Furthermore, it can reduce or increase the switching field of the BaFe 12O 19 film by as much as about 500 Oe when the film is switched with an out-of-plane field.« less
NASA Astrophysics Data System (ADS)
Li, Peng; Liu, Tao; Chang, Houchen; Kalitsov, Alan; Zhang, Wei; Csaba, Gyorgy; Li, Wei; Richardson, Daniel; Demann, August; Rimal, Gaurab; Dey, Himadri; Jiang, J. S.; Porod, Wolfgang; Field, Stuart B.; Tang, Jinke; Marconi, Mario C.; Hoffmann, Axel; Mryasov, Oleg; Wu, Mingzhong
2016-09-01
As an in-plane charge current flows in a heavy metal film with spin-orbit coupling, it produces a torque on and thereby switches the magnetization in a neighbouring ferromagnetic metal film. Such spin-orbit torque (SOT)-induced switching has been studied extensively in recent years and has shown higher efficiency than switching using conventional spin-transfer torque. Here we report the SOT-assisted switching in heavy metal/magnetic insulator systems. The experiments used a Pt/BaFe12O19 bilayer where the BaFe12O19 layer exhibits perpendicular magnetic anisotropy. As a charge current is passed through the Pt film, it produces a SOT that can control the up and down states of the remnant magnetization in the BaFe12O19 film when the film is magnetized by an in-plane magnetic field. It can reduce or increase the switching field of the BaFe12O19 film by as much as about 500 Oe when the film is switched with an out-of-plane field.
Zhou, Jinyuan; Wilson, David A; Sun, Phillip Zhe; Klaus, Judith A; Van Zijl, Peter C M
2004-05-01
The proton exchange processes between water and solutes containing exchangeable protons have recently become of interest for monitoring pH effects, detecting cellular mobile proteins and peptides, and enhancing the detection sensitivity of various low-concentration endogenous and exogenous species. In this work, the analytic expressions for water exchange (WEX) filter spectroscopy, chemical exchange-dependent saturation transfer (CEST), and amide proton transfer (APT) experiments are derived by the use of Bloch equations with exchange terms. The effects of the initial states for the system, the difference between a steady state and a saturation state, and the relative contributions of the forward and backward exchange processes are discussed. The theory, in combination with numerical calculations, provides a useful tool for designing experimental schemes and assessing magnetization transfer (MT) processes between water protons and solvent-exchangeable protons. As an example, the case of endogenous amide proton exchange in the rat brain at 4.7 T is analyzed in detail. Copyright 2004 Wiley-Liss, Inc.
Investigation of Readout RF Pulse Impact on the Chemical Exchange Saturation Transfer Spectrum
Huang, Sheng-Min; Jan, Meei-Ling; Liang, Hsin-Chin; Chang, Chia-Hao; Wu, Yi-Chun; Tsai, Shang-Yueh; Wang, Fu-Nien
2015-01-01
Chemical exchange saturation transfer magnetic resonance imaging (CEST-MRI) is capable of both microenvironment and molecular imaging. The optimization of scanning parameters is important since the CEST effect is sensitive to factors such as saturation power and field homogeneity. The aim of this study was to determine if the CEST effect would be altered by changing the length of readout RF pulses. Both theoretical computer simulation and phantom experiments were performed to examine the influence of readout RF pulses. Our results showed that the length of readout RF pulses has unremarkable impact on the Z-spectrum and CEST effect in both computer simulation and phantom experiment. Moreover, we demonstrated that multiple refocusing RF pulses used in rapid acquisition with relaxation enhancement (RARE) sequence induced no obvious saturation transfer contrast. Therefore, readout RF pulse has negligible effect on CEST Z-spectrum and the optimization of readout RF pulse length can be disregarded in CEST imaging protocol. PMID:26455576
Heat transfer enhancement of Fe3O4 ferrofluids in the presence of magnetic field
NASA Astrophysics Data System (ADS)
Fadaei, Farzad; Shahrokhi, Mohammad; Molaei Dehkordi, Asghar; Abbasi, Zeinab
2017-05-01
In this article, three-dimensional (3D) forced-convection heat transfer of magnetic nanofluids in a pipe subject to constant wall heat flux in the presence of single or double permanent magnet(s) or current-carrying wire has been investigated and compared. In this regard, laminar fluid flow and equilibrium magnetization for the ferrofluid were considered. In addition, variations of magnetic field in different media were taken into account and the assumption of having a linear relationship of magnetization with applied magnetic field intensity was also relaxed. Effects of magnetic field intensity, nanoparticle volume fraction, Reynolds number value, and the type of magnetic field source (i.e., a permanent magnet or current-carrying wire) on the forced-convection heat transfer of magnetic nanofluids were carefully investigated. It was found that by applying the magnetic field, the fluid mixing could be intensified that leads to an increase in the Nusselt number value along the pipe length. Moreover, the obtained simulation results indicate that applying the magnetic field induced by two permanent magnets with a magnetization of 3×105 (A/m) (for each one), the fully developed Nusselt number value can be increased by 196%.
Buehler, Tania; Kreis, Roland; Boesch, Chris
2015-02-01
(31)P MRS magnetization transfer ((31)P-MT) experiments allow the estimation of exchange rates of biochemical reactions, such as the creatine kinase equilibrium and adenosine triphosphate (ATP) synthesis. Although various (31)P-MT methods have been successfully used on isolated organs or animals, their application on humans in clinical scanners poses specific challenges. This study compared two major (31)P-MT methods on a clinical MR system using heteronuclear surface coils. Although saturation transfer (ST) is the most commonly used (31)P-MT method, sequences such as inversion transfer (IT) with short pulses might be better suited for the specific hardware and software limitations of a clinical scanner. In addition, small NMR-undetectable metabolite pools can transfer MT to NMR-visible pools during long saturation pulses, which is prevented with short pulses. (31)P-MT sequences were adapted for limited pulse length, for heteronuclear transmit-receive surface coils with inhomogeneous B1 , for the need for volume selection and for the inherently low signal-to-noise ratio (SNR) on a clinical 3-T MR system. The ST and IT sequences were applied to skeletal muscle and liver in 10 healthy volunteers. Monte-Carlo simulations were used to evaluate the behavior of the IT measurements with increasing imperfections. In skeletal muscle of the thigh, ATP synthesis resulted in forward reaction constants (k) of 0.074 ± 0.022 s(-1) (ST) and 0.137 ± 0.042 s(-1) (IT), whereas the creatine kinase reaction yielded 0.459 ± 0.089 s(-1) (IT). In the liver, ATP synthesis resulted in k = 0.267 ± 0.106 s(-1) (ST), whereas the IT experiment yielded no consistent results. ST results were close to literature values; however, the IT results were either much larger than the corresponding ST values and/or were widely scattered. To summarize, ST and IT experiments can both be implemented on a clinical body scanner with heteronuclear transmit-receive surface coils; however, ST results are much more robust against experimental imperfections than the current implementation of IT. Copyright © 2014 John Wiley & Sons, Ltd.
Magnetic field transfer device and method
Wipf, S.L.
1990-02-13
A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180[degree] from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180[degree] from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils. 16 figs.
Magnetic field transfer device and method
Wipf, Stefan L.
1990-01-01
A magnetic field transfer device includes a pair of oppositely wound inner coils which each include at least one winding around an inner coil axis, and an outer coil which includes at least one winding around an outer coil axis. The windings may be formed of superconductors. The axes of the two inner coils are parallel and laterally spaced from each other so that the inner coils are positioned in side-by-side relation. The outer coil is outwardly positioned from the inner coils and rotatable relative to the inner coils about a rotational axis substantially perpendicular to the inner coil axes to generate a hypothetical surface which substantially encloses the inner coils. The outer coil rotates relative to the inner coils between a first position in which the outer coil axis is substantially parallel to the inner coil axes and the outer coil augments the magnetic field formed in one of the inner coils, and a second position 180.degree. from the first position, in which the augmented magnetic field is transferred into the other inner coil and reoriented 180.degree. from the original magnetic field. The magnetic field transfer device allows a magnetic field to be transferred between volumes with negligible work being required to rotate the outer coil with respect to the inner coils.
The Qweak experimental apparatus
NASA Astrophysics Data System (ADS)
Allison, T.; Anderson, M.; Androić, D.; Armstrong, D. S.; Asaturyan, A.; Averett, T.; Averill, R.; Balewski, J.; Beaufait, J.; Beminiwattha, R. S.; Benesch, J.; Benmokhtar, F.; Bessuille, J.; Birchall, J.; Bonnell, E.; Bowman, J. D.; Brindza, P.; Brown, D. B.; Carlini, R. D.; Cates, G. D.; Cavness, B.; Clark, G.; Cornejo, J. C.; Dusa, S. Covrig; Dalton, M. M.; Davis, C. A.; Dean, D. C.; Deconinck, W.; Diefenbach, J.; Dow, K.; Dowd, J. F.; Dunne, J. A.; Dutta, D.; Duvall, W. S.; Echols, J. R.; Elaasar, M.; Falk, W. R.; Finelli, K. D.; Finn, J. M.; Gaskell, D.; Gericke, M. T. W.; Grames, J.; Gray, V. M.; Grimm, K.; Guo, F.; Hansknecht, J.; Harrison, D. J.; Henderson, E.; Hoskins, J. R.; Ihloff, E.; Johnston, K.; Jones, D.; Jones, M.; Jones, R.; Kargiantoulakis, M.; Kelsey, J.; Khan, N.; King, P. M.; Korkmaz, E.; Kowalski, S.; Kubera, A.; Leacock, J.; Leckey, J. P.; Lee, A. R.; Lee, J. H.; Lee, L.; Liang, Y.; MacEwan, S.; Mack, D.; Magee, J. A.; Mahurin, R.; Mammei, J.; Martin, J. W.; McCreary, A.; McDonald, M. H.; McHugh, M. J.; Medeiros, P.; Meekins, D.; Mei, J.; Michaels, R.; Micherdzinska, A.; Mkrtchyan, A.; Mkrtchyan, H.; Morgan, N.; Musson, J.; Mesick, K. E.; Narayan, A.; Ndukum, L. Z.; Nelyubin, V.; Nuruzzaman; van Oers, W. T. H.; Opper, A. K.; Page, S. A.; Pan, J.; Paschke, K. D.; Phillips, S. K.; Pitt, M. L.; Poelker, M.; Rajotte, J. F.; Ramsay, W. D.; Roberts, W. R.; Roche, J.; Rose, P. W.; Sawatzky, B.; Seva, T.; Shabestari, M. H.; Silwal, R.; Simicevic, N.; Smith, G. R.; Sobczynski, S.; Solvignon, P.; Spayde, D. T.; Stokes, B.; Storey, D. W.; Subedi, A.; Subedi, R.; Suleiman, R.; Tadevosyan, V.; Tobias, W. A.; Tvaskis, V.; Urban, E.; Waidyawansa, B.; Wang, P.; Wells, S. P.; Wood, S. A.; Yang, S.; Zhamkochyan, S.; Zielinski, R. B.
2015-05-01
The Jefferson Lab Qweak experiment determined the weak charge of the proton by measuring the parity-violating elastic scattering asymmetry of longitudinally polarized electrons from an unpolarized liquid hydrogen target at small momentum transfer. A custom apparatus was designed for this experiment to meet the technical challenges presented by the smallest and most precise e → p asymmetry ever measured. Technical milestones were achieved at Jefferson Lab in target power, beam current, beam helicity reversal rate, polarimetry, detected rates, and control of helicity-correlated beam properties. The experiment employed 180 μA of 89% longitudinally polarized electrons whose helicity was reversed 960 times per second. The electrons were accelerated to 1.16 GeV and directed to a beamline with extensive instrumentation to measure helicity-correlated beam properties that can induce false asymmetries. Møller and Compton polarimetry were used to measure the electron beam polarization to better than 1%. The electron beam was incident on a 34.4 cm liquid hydrogen target. After passing through a triple collimator system, scattered electrons between 5.8° and 11.6° were bent in the toroidal magnetic field of a resistive copper-coil magnet. The electrons inside this acceptance were focused onto eight fused silica Cherenkov detectors arrayed symmetrically around the beam axis. A total scattered electron rate of about 7 GHz was incident on the detector array. The detectors were read out in integrating mode by custom-built low-noise pre-amplifiers and 18-bit sampling ADC modules. The momentum transfer Q2=0.025 GeV2 was determined using dedicated low-current (~ 100 pA) measurements with a set of drift chambers before (and a set of drift chambers and trigger scintillation counters after) the toroidal magnet.
Heat Transfer to Anode of Arc as Function of Transverse Magnetic Field and Lateral Gas Flow Velocity
NASA Astrophysics Data System (ADS)
Zama, Yoshiyuki; Shiino, Toru; Ishii, Yoko; Maeda, Yoshifumi; Yamamoto, Shinji; Iwao, Toru
2016-10-01
Gas tungsten arc welding has useful joining technology because of high-energy and high-current characteristics. It can be flexible from the transverse magnetic field and lateral gas flow velocity. In this case, the weld defect occurs. In this research, the heat transfer to the anode of the arc as a function of the transverse magnetic field and lateral gas flow velocity is elucidated. That magnetic flux density and lateral gas velocity were varied from 0 to 3 mT and 0 to 50?m?s -1, respectively. The axial plasma gas argon flow rates were 3?slm. A transverse magnetic field is applied to the arc using Helmholtz coil. The anode is used by a water-cooled copper plate, and the heat transfer is measured by temperature of cooled water. As a result, the arc is deflected by the Lorentz force and lateral gas convection. Thus, the heat transfer to the anode of the arc decreases with increasing the transverse magnetic field and lateral gas flow velocity. In addition, the heat transfer to the anode changes with different attachments modes. The lateral gas flow causes a convective heat loss from the arc to the chamber walls.
NASA Astrophysics Data System (ADS)
Perminov, A. V.; Nikulin, I. L.
2016-03-01
We propose a mathematical model describing the motion of a metal melt in a variable inhomogeneous magnetic field of a short solenoid. In formulating the problem, we made estimates and showed the possibility of splitting the complete magnetohydrodynamical problem into two subproblems: a magnetic field diffusion problem where the distributions of the external and induced magnetic fields and currents are determined, and a heat and mass transfer problem with known distributions of volume sources of heat and forces. The dimensionless form of the heat and mass transfer equation was obtained with the use of averaging and multiscale methods, which permitted writing and solving separately the equations for averaged flows and temperature fields and their oscillations. For the heat and mass transfer problem, the boundary conditions for a real technological facility are discussed. The dimensionless form of the magnetic field diffusion equation is presented, and the experimental computational procedure and results of the numerical simulation of the magnetic field structure in the melt for various magnetic Reynolds numbers are described. The extreme dependence of heat release on the magnetic Reynolds number has been interpreted.
Perceptual learning modifies the functional specializations of visual cortical areas.
Chen, Nihong; Cai, Peng; Zhou, Tiangang; Thompson, Benjamin; Fang, Fang
2016-05-17
Training can improve performance of perceptual tasks. This phenomenon, known as perceptual learning, is strongest for the trained task and stimulus, leading to a widely accepted assumption that the associated neuronal plasticity is restricted to brain circuits that mediate performance of the trained task. Nevertheless, learning does transfer to other tasks and stimuli, implying the presence of more widespread plasticity. Here, we trained human subjects to discriminate the direction of coherent motion stimuli. The behavioral learning effect substantially transferred to noisy motion stimuli. We used transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) to investigate the neural mechanisms underlying the transfer of learning. The TMS experiment revealed dissociable, causal contributions of V3A (one of the visual areas in the extrastriate visual cortex) and MT+ (middle temporal/medial superior temporal cortex) to coherent and noisy motion processing. Surprisingly, the contribution of MT+ to noisy motion processing was replaced by V3A after perceptual training. The fMRI experiment complemented and corroborated the TMS finding. Multivariate pattern analysis showed that, before training, among visual cortical areas, coherent and noisy motion was decoded most accurately in V3A and MT+, respectively. After training, both kinds of motion were decoded most accurately in V3A. Our findings demonstrate that the effects of perceptual learning extend far beyond the retuning of specific neural populations for the trained stimuli. Learning could dramatically modify the inherent functional specializations of visual cortical areas and dynamically reweight their contributions to perceptual decisions based on their representational qualities. These neural changes might serve as the neural substrate for the transfer of perceptual learning.
Oscillation characteristics of zero-field spin transfer oscillators with field-like torque
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Yuan-Yuan; Xue, Hai-Bin, E-mail: xuehaibin@tyut.edu.cn; Department of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024
2015-05-15
We theoretically investigate the influence of the field-like spin torque term on the oscillation characteristics of spin transfer oscillators, which are based on MgO magnetic tunnel junctions (MTJs) consisting of a perpendicular magnetized free layer and an in-plane magnetized pinned layer. It is demonstrated that the field-like torque has a strong impact on the steady-state precession current region and the oscillation frequency. In particular, the steady-state precession can occur at zero applied magnetic field when the ratio between the field-like torque and the spin transfer torque takes up a negative value. In addition, the dependence of the oscillation properties onmore » the junction sizes has also been analyzed. The results indicate that this compact structure of spin transfer oscillator without the applied magnetic field is practicable under certain conditions, and it may be a promising configuration for the new generation of on-chip oscillators.« less
NASA Astrophysics Data System (ADS)
Ye, L.; Qi, B.; Lawton, T. G.; Mefford, O. T.; Rinaldi, C.; Garzon, S.; Crawford, T. M.
2013-03-01
Using the enormous magnetic field gradients (100 MT/m @ z =20 nm) present near the surface of magnetic recording media, we demonstrate the fabrication of diffraction gratings with lines consisting entirely of magnetic nanoparticles assembled from a colloidal fluid onto a disk drive medium, followed by transfer to a flexible and transparent polymer thin film. These nanomanufactured gratings have line spacings programmed with commercial magnetic recording and are inherently concave with radii of curvature controlled by varying the polymer film thickness. The diffracted intensity increases non-monotonically with the length of time the colloidal fluid remains on the disk surface. In addition to comparing longitudinal and perpendicular magnetic recording, a combination of spectral diffraction efficiency measurements, magnetometry, scanning electron microscopy and inductively coupled plasma atomic emmission spectroscopy of these gratings are employed to understand colloidal nanoparticle dynamics in this extreme gradient limit. Such experiments are necessary to optimize nanoparticle assembly and obtain uniform patterned features. This low-cost and sustainable approach to nanomanufacturing could enable low-cost, high-quality diffraction gratings as well as more complex polymer nanocomposite materials assembled with single-nanometer precision.
Sensory augmentation: integration of an auditory compass signal into human perception of space
Schumann, Frank; O’Regan, J. Kevin
2017-01-01
Bio-mimetic approaches to restoring sensory function show great promise in that they rapidly produce perceptual experience, but have the disadvantage of being invasive. In contrast, sensory substitution approaches are non-invasive, but may lead to cognitive rather than perceptual experience. Here we introduce a new non-invasive approach that leads to fast and truly perceptual experience like bio-mimetic techniques. Instead of building on existing circuits at the neural level as done in bio-mimetics, we piggy-back on sensorimotor contingencies at the stimulus level. We convey head orientation to geomagnetic North, a reliable spatial relation not normally sensed by humans, by mimicking sensorimotor contingencies of distal sounds via head-related transfer functions. We demonstrate rapid and long-lasting integration into the perception of self-rotation. Short training with amplified or reduced rotation gain in the magnetic signal can expand or compress the perceived extent of vestibular self-rotation, even with the magnetic signal absent in the test. We argue that it is the reliability of the magnetic signal that allows vestibular spatial recalibration, and the coding scheme mimicking sensorimotor contingencies of distal sounds that permits fast integration. Hence we propose that contingency-mimetic feedback has great potential for creating sensory augmentation devices that achieve fast and genuinely perceptual experiences. PMID:28195187
Uniaxial stress control of skyrmion phase
Nii, Y.; Nakajima, T.; Kikkawa, A.; Yamasaki, Y.; Ohishi, K.; Suzuki, J.; Taguchi, Y.; Arima, T.; Tokura, Y.; Iwasa, Y.
2015-01-01
Magnetic skyrmions, swirling nanometric spin textures, have been attracting increasing attention by virtue of their potential applications for future memory technology and their emergent electromagnetism. Despite a variety of theoretical proposals oriented towards skyrmion-based electronics (that is, skyrmionics), few experiments have succeeded in creating, deleting and transferring skyrmions, and the manipulation methodologies have thus far remained limited to electric, magnetic and thermal stimuli. Here, we demonstrate a new approach for skyrmion phase control based on a mechanical stress. By continuously scanning uniaxial stress at low temperatures, we can create and annihilate a skyrmion crystal in a prototypical chiral magnet MnSi. The critical stress is merely several tens of MPa, which is easily accessible using the tip of a conventional cantilever. The present results offer a new guideline even for single skyrmion control that requires neither electric nor magnetic biases and consumes extremely little energy. PMID:26460119
P dopants induced ferromagnetism in g-C3N4 nanosheets: Experiments and calculations
NASA Astrophysics Data System (ADS)
Liu, Yonggang; Liu, Peitao; Sun, Changqi; Wang, Tongtong; Tao, Kun; Gao, Daqiang
2017-05-01
Outstanding magnetic properties are highly desired for two-dimensional (2D) semiconductor nanosheets due to their potential applications in spintronics. Metal-free ferromagnetic 2D materials whose magnetism originated from the pure s/p electron configuration could give a long spin relaxation time, which plays the vital role in spin information transfer. Here, we synthesize 2D g-C3N4 nanosheets with room temperature ferromagnetism induced by P doping. In our case, the Curie temperature of P doped g-C3N4 nanosheets reaches as high as 911 K and the precise control of the P concentration can further adjust the saturation magnetization of the samples. First principles calculation results indicate that the magnetic moment is primarily due to strong hybridization between p bonds of P, N, and C atoms, giving the theoretical evidence of the ferromagnetism. This work opens another door to engineer a future generation of spintronic devices.
Uniaxial stress control of skyrmion phase.
Nii, Y; Nakajima, T; Kikkawa, A; Yamasaki, Y; Ohishi, K; Suzuki, J; Taguchi, Y; Arima, T; Tokura, Y; Iwasa, Y
2015-10-13
Magnetic skyrmions, swirling nanometric spin textures, have been attracting increasing attention by virtue of their potential applications for future memory technology and their emergent electromagnetism. Despite a variety of theoretical proposals oriented towards skyrmion-based electronics (that is, skyrmionics), few experiments have succeeded in creating, deleting and transferring skyrmions, and the manipulation methodologies have thus far remained limited to electric, magnetic and thermal stimuli. Here, we demonstrate a new approach for skyrmion phase control based on a mechanical stress. By continuously scanning uniaxial stress at low temperatures, we can create and annihilate a skyrmion crystal in a prototypical chiral magnet MnSi. The critical stress is merely several tens of MPa, which is easily accessible using the tip of a conventional cantilever. The present results offer a new guideline even for single skyrmion control that requires neither electric nor magnetic biases and consumes extremely little energy.
One-pot synthesis of ruthenium nanoparticles on magnetic silica is described which involve the in situ generation of magnetic silica (Fe3O4@ SiO2) and ruthenium nano particles immobilization; the hydration of nitriles and transfer hydrogenation of carbonyl compounds occurs in hi...
Method to Eliminate Flux Linkage DC Component in Load Transformer for Static Transfer Switch
2014-01-01
Many industrial and commercial sensitive loads are subject to the voltage sags and interruptions. The static transfer switch (STS) based on the thyristors is applied to improve the power quality and reliability. However, the transfer will result in severe inrush current in the load transformer, because of the DC component in the magnetic flux generated in the transfer process. The inrush current which is always 2~30 p.u. can cause the disoperation of relay protective devices and bring potential damage to the transformer. The way to eliminate the DC component is to transfer the related phases when the residual flux linkage of the load transformer and the prospective flux linkage of the alternate source are equal. This paper analyzes how the flux linkage of each winding in the load transformer changes in the transfer process. Based on the residual flux linkage when the preferred source is completely disconnected, the method to calculate the proper time point to close each phase of the alternate source is developed. Simulation and laboratory experiments results are presented to show the effectiveness of the transfer method. PMID:25133255
Method to eliminate flux linkage DC component in load transformer for static transfer switch.
He, Yu; Mao, Chengxiong; Lu, Jiming; Wang, Dan; Tian, Bing
2014-01-01
Many industrial and commercial sensitive loads are subject to the voltage sags and interruptions. The static transfer switch (STS) based on the thyristors is applied to improve the power quality and reliability. However, the transfer will result in severe inrush current in the load transformer, because of the DC component in the magnetic flux generated in the transfer process. The inrush current which is always 2 ~ 30 p.u. can cause the disoperation of relay protective devices and bring potential damage to the transformer. The way to eliminate the DC component is to transfer the related phases when the residual flux linkage of the load transformer and the prospective flux linkage of the alternate source are equal. This paper analyzes how the flux linkage of each winding in the load transformer changes in the transfer process. Based on the residual flux linkage when the preferred source is completely disconnected, the method to calculate the proper time point to close each phase of the alternate source is developed. Simulation and laboratory experiments results are presented to show the effectiveness of the transfer method.
From mean-field localized magnetism to itinerant spin fluctuations in the "nonmetallic metal" FeCrAs
NASA Astrophysics Data System (ADS)
Plumb, K. W.; Stock, C.; Rodriguez-Rivera, J. A.; Castellan, J.-P.; Taylor, J. W.; Lau, B.; Wu, W.; Julian, S. R.; Kim, Young-June
2018-05-01
FeCrAs displays an unusual electrical response that is neither metallic in character nor divergent at low temperatures, as expected for an insulating response, and therefore it has been termed a "nonmetal metal." The anomalous resistivity occurs for temperatures below ˜900 K. We have carried out neutron scattering experiments on powder and single crystal samples to study the magnetic dynamics and critical fluctuations in FeCrAs. Magnetic neutron diffraction measurements find Cr3 + magnetic order setting in at TN=115 K ˜10 meV with a mean-field critical exponent. Using neutron spectroscopy we observe gapless, high velocity, magnetic fluctuations emanating from magnetic positions with propagation wave vector q⃗0=(1/3 ,1/3 ) , which persists up to at least 80 meV ˜927 K, an energy scale much larger than TN. Despite the mean-field magnetic order at low temperatures, the magnetism in FeCrAs therefore displays a response which resembles that of itinerant magnets at high energy transfers. We suggest that the presence of stiff high-energy spin fluctuations extending up to a temperature scale of ˜900 K is the origin of the unusual temperature dependence of the resistivity.
NASA Technical Reports Server (NTRS)
Croell, Arne; Dold, P.; Kaiser, Th.; Szofran, Frank; Benz, K. W.
1999-01-01
Hear and mass transfer in float-zone processing are strongly influenced by convective flows in the zone. They are caused by buoyancy convection, thermocapillary (Marangoni) convection, or artificial sources such as rotation and radio frequency heating. Flows in conducting melts can be controlled by the use of magnetic fields, either by damping fluid motion with static fields or by generating a def@ned flow with rotating fields. The possibilities of using static and rotating magnetic fields in silicon floating-zone growth have been investigated by experiments in axial static fields up to ST and in transverse rotating magnetic fields up to 7.S mT. Static fields of a few 100 MT already suppress most striations but are detrimental to the radial segregation by introducing a coring effect. A complete suppression of dopant striations caused by time-dependent thermocapillary convection and a reduction of the coring to insignificant values, combined with a shift of the axial segregation profile towards a more diffusion-limited case, is possible with static fields ? 1T. However, under certain conditions the use of high axial magnetic fields can lead to the appearance of a new type of pronounced dopant striations, caused by thermoelec:romagnetic convection. The use of a transverse rotating magnetic field influences the microscopic segregation at quite low inductions, of the order of a few mT. The field shifts time-dependent flows and the resulting striation patterns from a broad range of low frequencies at high amplitudes to a few high frequencies at low amplitudes
NASA Technical Reports Server (NTRS)
Croll, A.; Dold, P.; Kaiser, Th.; Szofran, F. R.; Benz, K. W.
1999-01-01
Heat and mass transfer in float-zone processing are strongly influenced by convective flows in the zone. They are caused by buoyancy convection, thermocapillary (Marangoni) convection, or artificial sources such as rotation and radio-frequency heating. Flows in conducting melts can be controlled by the use of magnetic fields, either by damping fluid motion with static fields or by generating a defined flow with rotating fields. The possibilities of using static and rotating magnetic fields in silicon floating-zone growth have been investigated by experiments in axial static fields up to 5 T and in transverse rotating magnetic fields up to 7.5 mT. Static fields of a few 100 mT already suppress most striations but are detrimental to the radial segregation by introducing a coring effect. A complete suppression of dopant striations caused by time-dependent thermocapillary convection and a reduction of the coring to insignificant values, combined with a shift of the axial segregation profile toward a more diffusion-limited case, is possible with static fields greater than or equal to 1 T. However, under certain conditions the use of high axial magnetic fields can lead to the appearance of a new type of pronounced dopant striations, caused by thermoelectromagnetic convection. The use of a transverse rotating magnetic field influences the microscopic segregation at quite low inductions, of the order of a few millitesla. The field shifts time- dependent flows and the resulting striation patterns from a broad range of low frequencies at high amplitudes to a few high frequencies at low amplitudes.
Modeling and simulation of multi-physics multi-scale transport phenomenain bio-medical applications
NASA Astrophysics Data System (ADS)
Kenjereš, Saša
2014-08-01
We present a short overview of some of our most recent work that combines the mathematical modeling, advanced computer simulations and state-of-the-art experimental techniques of physical transport phenomena in various bio-medical applications. In the first example, we tackle predictions of complex blood flow patterns in the patient-specific vascular system (carotid artery bifurcation) and transfer of the so-called "bad" cholesterol (low-density lipoprotein, LDL) within the multi-layered artery wall. This two-way coupling between the blood flow and corresponding mass transfer of LDL within the artery wall is essential for predictions of regions where atherosclerosis can develop. It is demonstrated that a recently developed mathematical model, which takes into account the complex multi-layer arterial-wall structure, produced LDL profiles within the artery wall in good agreement with in-vivo experiments in rabbits, and it can be used for predictions of locations where the initial stage of development of atherosclerosis may take place. The second example includes a combination of pulsating blood flow and medical drug delivery and deposition controlled by external magnetic field gradients in the patient specific carotid artery bifurcation. The results of numerical simulations are compared with own PIV (Particle Image Velocimetry) and MRI (Magnetic Resonance Imaging) in the PDMS (silicon-based organic polymer) phantom. A very good agreement between simulations and experiments is obtained for different stages of the pulsating cycle. Application of the magnetic drug targeting resulted in an increase of up to ten fold in the efficiency of local deposition of the medical drug at desired locations. Finally, the LES (Large Eddy Simulation) of the aerosol distribution within the human respiratory system that includes up to eight bronchial generations is performed. A very good agreement between simulations and MRV (Magnetic Resonance Velocimetry) measurements is obtained. Magnetic steering of aerosols towards the left or right part of lungs proved to be possible, which can open new strategies for medical treatment of respiratory diseases.
Numerical Study of Magnetic Damping During Unidirectional Solidification
NASA Technical Reports Server (NTRS)
Li, Ben Q.
1997-01-01
A fully 3-D numerical model is developed to represent magnetic damping of complex fluid flow, heat transfer and electromagnetic field distributions in a melt cavity. The model is developed based on our in-house finite element code for the fluid flow, heat transfer and electromagnetic field calculations. The computer code has been tested against benchmark test problems that are solved by other commercial codes as well as analytical solutions whenever available. The numerical model is tested against numerical and experimental results for water reported in literature. With the model so tested, various numerical simulations are carried out for the Sn-35.5% Pb melt convection and temperature distribution in a cylindrical cavity with and without the presence of a transverse magnetic field. Numerical results show that magnetic damping can be effectively applied to reduce turbulence and flow levels in the melt undergoing solidification and over a certain threshold value a higher magnetic field resulted in a higher velocity reduction. It is found also that for a fully 3-D representation of the magnetic damping effects, the electric field induced in the melt by the applied DC magnetic field does not vanish, as some researchers suggested, and must be included even for molten metal and semiconductors. Also, for the study of the melt flow instability, a long enough time has to be applied to ensure the final fluid flow recirculation pattern. Moreover, our numerical results suggested that there seems to exist a threshold value of applied magnetic field, above which magnetic damping becomes possible and below which the convection in the melt is actually enhanced. Because of the limited financial resource allocated for the project, we are unable to carry out extensive study on this effect, which should warrant further theoretical and experimental study. In that endeavor, the developed numerical model should be very useful; and the model should serve as a useful tool for exploring necessary design parameters for planning magnetic damping experiments and interpreting the experimental results.
Designing a Spin-one Mott Insulator: Complete Charge Transfer in Nickelate-Titanate Heterostructures
NASA Astrophysics Data System (ADS)
Chen, Hanghui; Marianetti, Chris; Millis, Andrew
2013-03-01
Ab initio calculations are performed to show that complete charge transfer may occur from the TiO2 to the NiO2 layers in (LaTiO3)1/(LaNiO3)1 superlattices. Although the two component materials are an S = 1 / 2 Mott insulator and a weakly correlated paramagnetic metal, strong correlation effects on Ni d states can render the superlattice an unusual S = 1 charge transfer insulator, with the Ti- d band empty, the Ni in the d8 state and the oxygen bands filled. The charge transfer gap is set by the Ti/Ni d level splitting. Magnetic, photoemission and x-ray scattering experiments are suggested to test the theory. The results show that heterostructuring can lead to very high levels of electron doping of oxides. This research was supported by the Army Research Office under ARO-Ph 56032 and DOE-ER-046169.
PRESTO polarization transfer to quadrupolar nuclei: Implications for dynamic nuclear polarization
Perras, Frederic A.; Kobayashi, Takeshi; Pruski, Marek
2015-08-04
In this study, we show both experimentally and numerically on a series of model systems that in experiments involving transfer of magnetization from 1H to the quadrupolar nuclei under magic-angle-spinning (MAS), the PRESTO technique consistently outperforms traditionally used cross polarization (CP), affording more quantitative intensities, improved lineshapes, better overall sensitivity, and straightforward optimization. This advantage derives from the fact that PRESTO circumvents the convoluted and uncooperative spin dynamics during the CP transfer under MAS, by replacing the spin-locking of quadrupolar nuclei with a single central transition selective 90° pulse and using a symmetry-based recoupling sequence in the 1H channel. Thismore » is important in the context of dynamic nuclear polarization (DNP) NMR of quadrupolar nuclei, where the efficient transfer of enhanced 1H polarization is desired to obtain the highest sensitivity.« less
Behavioral Model of Spin-Transfer Torque Driven Oscillation in a Nanomagnet
NASA Astrophysics Data System (ADS)
Buford, Benjamin; Jander, Albrecht; Dhagat, Pallavi
2011-10-01
We present a model written in Verilog-A, a behavioral description language, for spin-torque driven oscillations in a nanomagnet. Recent experiments have shown that spin-polarized current passing through a nanomagnet can cause magnetic dynamics from transfer of spin angular momentum. This can result in steady state oscillation of the magnetization at microwave frequencies [1]. Such spin torque oscillators are of interest due to the ability to rapidly tune their operating frequency by adjusting the applied magnetic field and their compatibility with existing CMOS fabrication methods. Our model is based upon the Landau-Lifshitz-Gilbert dynamics of a single- domain nanomagnet [2] and includes thermal agitation. We demonstrate the ability to model small angle, large angle, and out-of-plane precession. Additionally, we characterize the field and current boundaries between these regimes. Our Verilog-A model can be used in industry standard simulation tools alongside CMOS device models to simulate circuits that combine spintronic devices with CMOS control and processing circuitry. [4pt] [1] S. I. Kiselev et al., Nature, Vol. 425, pp. 380(3), (2003). [0pt] [2] L. Engelbrecht, Ph.D. Dissertation, Dept. Elect. Eng., Oregon State Univ., Corvallis, OR, (2011).
NASA Astrophysics Data System (ADS)
Torres, L.; Finocchio, G.; Lopez-Diaz, L.; Martinez, E.; Carpentieri, M.; Consolo, G.; Azzerboni, B.
2007-05-01
In a recent investigation Sankey et al. [Phys. Rev. Lett. 96, 227601 (2006)] demonstrated a technique for measuring spin-transfer-driven ferromagnetic resonance in individual ellipsoidal PyCu nanomagnets as small as 30×90×5.5nm3. In the present work, these experiments are analyzed by means of full micromagnetic modeling finding quantitative agreement and enlightening the spatial distribution of the normal modes found in the experiment. The magnetic parameter set used in the computations is obtained by fitting static magnetoresistance measurements. The temperature effect is also included together with all the nonuniform contributions to the effective field as the magnetostatic coupling and the Ampere field. The polarization function of Slonczewski [J. Magn. Magn. Mater. 159, L1 (1996)] is used including its spatial and angular dependences. Experimental spin-transfer-driven ferromagnetic resonance spectra are reproduced using the same currents as in the experiment. The use of full micromagnetic modeling allows us to further investigate the spatial dependence of the modes. The dependence of the normal mode frequency on the dc and the external field together with a comparison to the normal modes induced by a microwave current is also addressed.
NASA Astrophysics Data System (ADS)
Liu, Wei; He, Jianhong; Guo, Huazhong; Gao, Jie
2018-04-01
We report experiments on the dynamic response of an interacting mesoscopic capacitor consisting of a quantum dot with two confined spin-split levels of the lowest Landau level. In high magnetic fields, states inside the dot are regulated by a mixture of Coulomb interaction and Landau-level quantization, and electrons distribute on two spatially separated regions. Quantum point contact voltage and magnetic field are employed to manipulate the number and distribution of electrons inside the quantum dot. We find that the periodicity of the electrochemical capacitance oscillations is dominated by the charging energy, and their amplitudes, due to internal charge transfer and strong internal capacitive coupling, show rich variations of modulations. Magnetocapacitance displays a sawtoothlike manner and may differ in tooth directions for different voltages, which, we demonstrate, result from a sawtoothlike electrochemical potential change induced by internal charge transfer and field-sensitive electrostatic potential. We further build a charge stability diagram, which, together with all other capacitance properties, is consistently interpreted in terms of a double-dot model. The demonstrated technique is of interest as a tool for fast and sensitive charge state readout of a double-quantum-dot qubit in the gigahertz frequency quantum electronics.
Temperature gradients due to adiabatic plasma expansion in a magnetic nozzle
NASA Astrophysics Data System (ADS)
Sheehan, J. P.; Longmier, B. W.; Bering, E. A.; Olsen, C. S.; Squire, J. P.; Ballenger, M. G.; Carter, M. D.; Cassady, L. D.; Díaz, F. R. Chang; Glover, T. W.; Ilin, A. V.
2014-08-01
A mechanism for ambipolar ion acceleration in a magnetic nozzle is proposed. The plasma is adiabatic (i.e., does not exchange energy with its surroundings) in the diverging section of a magnetic nozzle so any energy lost by the electrons must be transferred to the ions via the electric field. Fluid theory indicates that the change in plasma potential is proportional to the change in average electron energy. These predictions were compared to measurements in the VX-200 experiment which has conditions conducive to ambipolar ion acceleration. A planar Langmuir probe was used to measure the plasma potential, electron density, and electron temperature for a range of mass flow rates and power levels. Axial profiles of those parameters were also measured, showing consistency with the adiabatic ambipolar fluid theory.
The Hall D solenoid helium refrigeration system at JLab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laverdure, Nathaniel A.; Creel, Jonathan D.; Dixon, Kelly d.
Hall D, the new Jefferson Lab experimental facility built for the 12GeV upgrade, features a LASS 1.85 m bore solenoid magnet supported by a 4.5 K helium refrigerator system. This system consists of a CTI 2800 4.5 K refrigerator cold box, three 150 hp screw compressors, helium gas management and storage, and liquid helium and nitrogen storage for stand-alone operation. The magnet interfaces with the cryo refrigeration system through an LN2-shielded distribution box and transfer line system, both designed and fabricated by JLab. The distribution box uses a thermo siphon design to respectively cool four magnet coils and shields withmore » liquid helium and nitrogen. We describe the salient design features of the cryo system and discuss our recent commissioning experience.« less
NASA Astrophysics Data System (ADS)
Su, Yang; Peng, Hui; Feng, Kui; Li, Yu-quan
2009-11-01
In this paper the characteristics of grating structure in magnetic field measurements based on differential group delay of fiber gratings are analyzed. Theoretical simulations are realized using the coupled-mode theory and transfer matrix method. The effects of grating parameters of uniform Bragg grating on measurement range and sensitivity are analyzed. The impacts of chirped, phase-shifted and apodized gratings on DGD peak values are also monitored. FBG transmitted spectrums and DGD spectrums are recorded by means of an optical vector analyzer (OVA). Both the simulations and experiments demonstrate that the phase-shifted gratings can obviously improve the sensitivity.
Theory of atomistic simulation of spin-transfer torque in nanomagnets
NASA Astrophysics Data System (ADS)
Tay, Tiamhock; Sham, L. J.
2013-05-01
In spin-transfer torque (STT) for technological applications, the miniaturization of the magnet may reach the stage of requiring a fully quantum-mechanical treatment. We present an STT theory which uses the quantum macrospin ground and excited (magnon) states of the nanomagnet. This allows for energy and angular momentum exchanges between the current electron and the nano-magnet. We develop a method of magnetization dynamics simulation which captures the heating effect on the magnet by the spin-polarized current and the temperature dependence in STT. We also discuss the magnetostatics effect on magnon scattering for ferromagnetic relaxation in a thin film. Our work demonstrates a realistic step towards simulation of quantum spin-transfer torque physics in nanoscale magnets.
NASA Astrophysics Data System (ADS)
Shi, Xiaoning; Zhu, Minggang; Zhou, Dong; Song, Liwei; Guo, Zhaohui; Li, Jia; Li, Wei
2018-05-01
The sintered (Ce, Nd)-Fe-B magnets were produced widely by Double Main Phase (DMP) method in China as the magnetic properties of the DMP magnets are superior to those of single main phase (SMP) magnets with the same nominal composition. In this work, the microstructure and corrosion mechanism of the sintered (Ce0.2Nd0.8)30FebalB (wt.%) magnets prepared by DMP and SMP method were studied in detail. Compared to SMP magnets, the DMP magnets have more positive corrosion potential, lower corrosion current density, larger electron transfer resistance, and lower mass loss of the free corrosion experiment in 0.5mol/l Na2SO4 aqueous solution. All of the results show that the DMP magnets have better corrosion resistance than SMP magnets. The back scattered electron images show that the crystalline grains of the DMP magnets are sphericity with a smooth surface while the SMP ones have plenty of edges and corners. Besides, the distribution of Ce/Nd is much more uneven in both magnetic phase and rare earth (Re)-rich phase of the DMP magnets than those of SMP magnets. After corrosion, DMP magnets show eroded magnetic phase and intact Re-rich phase, which indicate that galvanic corrosion of the Re-rich phase acting as the cathode appears.
Skeist, S. Merrill; Baker, Richard H.
2006-01-10
An electro-mechanical energy conversion system coupled between an energy source and an energy load comprising an energy converter device including a permanent magnet induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer to control the flow of power or energy through the permanent magnetic induction machine.
Proton transfer pathways, energy landscape, and kinetics in creatine-water systems.
Ivchenko, Olga; Whittleston, Chris S; Carr, Joanne M; Imhof, Petra; Goerke, Steffen; Bachert, Peter; Wales, David J
2014-02-27
We study the exchange processes of the metabolite creatine, which is present in both tumorous and normal tissues and has NH2 and NH groups that can transfer protons to water. Creatine produces chemical exchange saturation transfer (CEST) contrast in magnetic resonance imaging (MRI). The proton transfer pathway from zwitterionic creatine to water is examined using a kinetic transition network constructed from the discrete path sampling approach and an approximate quantum-chemical energy function, employing the self-consistent-charge density-functional tight-binding (SCC-DFTB) method. The resulting potential energy surface is visualized by constructing disconnectivity graphs. The energy landscape consists of two distinct regions corresponding to the zwitterionic creatine structures and deprotonated creatine. The activation energy that characterizes the proton transfer from the creatine NH2 group to water was determined from an Arrhenius fit of rate constants as a function of temperature, obtained from harmonic transition state theory. The result is in reasonable agreement with values obtained in water exchange spectroscopy (WEX) experiments.
Silva, Amanda K Andriola; Wilhelm, Claire; Kolosnjaj-Tabi, Jelena; Luciani, Nathalie; Gazeau, Florence
2012-05-01
Cell labeling with magnetic nanoparticles can be used to monitor the fate of transplanted cells in vivo by magnetic resonance imaging. However, nanoparticles initially internalized in administered cells might end up in other cells of the host organism. We investigated a mechanism of intercellular cross-transfer of magnetic nanoparticles to different types of recipient cells via cell microvesicles released under cellular stress. Three cell types (mesenchymal stem cells, endothelial cells and macrophages) were labeled with 8-nm iron oxide nanoparticles. Then cells underwent starvation stress, during which they produced microvesicles that were subsequently transferred to unlabeled recipient cells. The analysis of the magnetophoretic mobility of donor cells indicated that magnetic load was partially lost under cell stress. Microvesicles shed by stressed cells participated in the release of magnetic label. Moreover, such microvesicles were uptaken by naïve cells, resulting in cellular redistribution of nanoparticles. Iron load of recipient cells allowed their detection by MRI. Cell microvesicles released under stress may be disseminated throughout the organism, where they can be uptaken by host cells. The transferred cargo may be sufficient to allow MRI detection of these secondarily labeled cells, leading to misinterpretations of the effectiveness of transplanted cells.
Wireless power transfer magnetic couplers
Wu, Hunter; Gilchrist, Aaron; Sealy, Kylee
2016-01-19
A magnetic coupler is disclosed for wireless power transfer systems. A ferrimagnetic component is capable of guiding a magnetic field. A wire coil is wrapped around at least a portion of the ferrimagnetic component. A screen is capable of blocking leakage magnetic fields. The screen may be positioned to cover at least one side of the ferrimagnetic component and the coil. A distance across the screen may be at least six times an air gap distance between the ferrimagnetic component and a receiving magnetic coupler.
NASA Astrophysics Data System (ADS)
Hariri, Saman; Mokhtari, Mojtaba; Gerdroodbary, M. Barzegar; Fallah, Keivan
2017-02-01
In this article, a three-dimensional numerical investigation is performed to study the effect of a magnetic field on a ferrofluid inside a tube. This study comprehensively analyzes the influence of a non-uniform magnetic field in the heat transfer of a tube while a ferrofluid (water with 0.86 vol% nanoparticles (Fe3O4) is let flow. The SIMPLEC algorithm is used for obtaining the flow and heat transfer inside the tube. The influence of various parameters, such as concentration of nanoparticles, intensity of the magnetic field, wire distance and Reynolds number, on the heat transfer is investigated. According to the obtained results, the presence of a non-uniform magnetic field significantly increases the Nusselt number (more than 300%) inside the tube. Also, the magnetic field induced by the parallel wire affects the average velocity of the ferrofluid and forms two strong eddies in the tube. Our findings show that the diffusion also raises as the concentration of the nanoparticle is increased.
Heat transfer in turbulent magneto-fluid-mechanic pipe flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andelman, M.P.
1975-12-01
The ability to predict heat transfer in Magneto-Fluid-Mechanic flow is of importance in light of the development of MHD generators and the proposed development of thermonuclear reactors. In both cases heat transfer from (or to) a conducting fluid in the presence of a magnetic field plays an important part in the overall economics of the system. A semi-empirical analytical method is given for obtaining heat transfer coefficients in turbulent liquid metal pipe flow in the presence of a magnetic field aligned to the flow. The analysis was based on the Lykoudis turbulent transport model with the influence of a longitudinalmore » magnetic field included. The results are shown to be in agreement with available experimental values. Experimental velocity profiles in mercury for pipe flow in a transverse magnetic field were made at a Reynolds number of 315,000; for Hartmann numbers of 0, 92, 184, 369, and 1198; and at orientations of 0 degrees, 45 degrees, and 90 degrees from the magnetic field. These results provide a basis for the determination of the effect of a transverse magnetic field on turbulent diffusivities.« less
Spin mixing at level anti-crossings in the rotating frame makes high-field SABRE feasible.
Pravdivtsev, Andrey N; Yurkovskaya, Alexandra V; Vieth, Hans-Martin; Ivanov, Konstantin L
2014-12-07
A new technique is proposed to carry out Signal Amplification By Reversible Exchange (SABRE) experiments at high magnetic fields. SABRE is a method, which utilizes spin order transfer from para-hydrogen to the spins of a substrate in transient complexes using suitable catalysts. Such a transfer of spin order is efficient at low magnetic fields, notably, in the Level Anti-Crossing (LAC) regions. Here it is demonstrated that LAC conditions can also be fulfilled at high fields in the rotating reference frame under the action of an RF-field. Spin mixing at LACs allows one to polarize substrates at high fields as well; the achievable NMR enhancements are around 360 for the ortho-protons of partially deuterated pyridine used as a substrate and around 700 for H2 and substrate in the active complex with the catalyst. High-field SABRE effects have also been found for several other molecules containing a nitrogen atom in the aromatic ring.
Solid-state dynamic nuclear polarization at 263 GHz: spectrometer design and experimental results†
Rosay, Melanie; Tometich, Leo; Pawsey, Shane; Bader, Reto; Schauwecker, Robert; Blank, Monica; Borchard, Philipp M.; Cauffman, Stephen R.; Felch, Kevin L.; Weber, Ralph T.; Temkin, Richard J.; Griffin, Robert G.; Maas, Werner E.
2015-01-01
Dynamic Nuclear Polarization (DNP) experiments transfer polarization from electron spins to nuclear spins with microwave irradiation of the electron spins for enhanced sensitivity in nuclear magnetic resonance (NMR) spectroscopy. Design and testing of a spectrometer for magic angle spinning (MAS) DNP experiments at 263 GHz microwave frequency, 400 MHz 1H frequency is described. Microwaves are generated by a novel continuous-wave gyrotron, transmitted to the NMR probe via a transmission line, and irradiated on a 3.2 mm rotor for MAS DNP experiments. DNP signal enhancements of up to 80 have been measured at 95 K on urea and proline in water–glycerol with the biradical polarizing agent TOTAPOL. We characterize the experimental parameters affecting the DNP efficiency: the magnetic field dependence, temperature dependence and polarization build-up times, microwave power dependence, sample heating effects, and spinning frequency dependence of the DNP signal enhancement. Stable system operation, including DNP performance, is also demonstrated over a 36 h period. PMID:20449524
NASA Astrophysics Data System (ADS)
Munira, Kamaram; Pandey, Sumeet C.; Kula, Witold; Sandhu, Gurtej S.
2016-11-01
Voltage-controlled magnetic anisotropy (VCMA) effect has attracted a significant amount of attention in recent years because of its low cell power consumption during the anisotropy modulation of a thin ferromagnetic film. However, the applied voltage or electric field alone is not enough to completely and reliably reverse the magnetization of the free layer of a magnetic random access memory (MRAM) cell from anti-parallel to parallel configuration or vice versa. An additional symmetry-breaking mechanism needs to be employed to ensure the deterministic writing process. Combinations of voltage-controlled magnetic anisotropy together with spin-transfer torque (STT) and with an applied magnetic field (Happ) were evaluated for switching reliability, time taken to switch with low error rate, and energy consumption during the switching process. In order to get a low write error rate in the MRAM cell with VCMA switching mechanism, a spin-transfer torque current or an applied magnetic field comparable to the critical current and field of the free layer is necessary. In the hybrid processes, the VCMA effect lowers the duration during which the higher power hungry secondary mechanism is in place. Therefore, the total energy consumed during the hybrid writing processes, VCMA + STT or VCMA + Happ, is less than the energy consumed during pure spin-transfer torque or applied magnetic field switching.
Evaporation heat transfer of carbon dioxide at low temperature inside a horizontal smooth tube
NASA Astrophysics Data System (ADS)
Yoon, Jung-In; Son, Chang-Hyo; Jung, Suk-Ho; Jeon, Min-Ju; Yang, Dong-Il
2017-05-01
In this paper, the evaporation heat transfer coefficient of carbon dioxide at low temperature of -30 to -20 °C in a horizontal smooth tube was investigated experimentally. The test devices consist of mass flowmeter, pre-heater, magnetic gear pump, test section (evaporator), condenser and liquid receiver. Test section is made of cooper tube. Inner and outer diameter of the test section is 8 and 9.52 mm, respectively. The experiment is conducted at mass fluxes from 100 to 300 kg/m2 s, saturation temperature from -30 to -20 °C. The main results are summarized as follows: In case that the mass flux of carbon dioxide is 100 kg/m2 s, the evaporation heat transfer coefficient is almost constant regardless of vapor quality. In case of 200 and 300 kg/m2 s, the evaporation heat transfer coefficient increases steadily with increasing vapor quality. For the same mass flux, the evaporation heat transfer coefficient increases as the evaporation temperature of the refrigerant decreases. In comparison of heat transfer correlations with the experimental result, the evaporation heat transfer correlations do not predict them exactly. Therefore, more accurate heat transfer correlation than the previous one is required.
Undergraduate Laboratory on a Turbulent Impinging Jet
NASA Astrophysics Data System (ADS)
Ivanosky, Arnaud; Brezzard, Etienne; van Poppel, Bret; Benson, Michael
2017-11-01
An undergraduate thermal sciences laboratory exercise that includes both experimental fluid mechanics and heat transfer measurements of an impinging jet is presented. The flow field is measured using magnetic resonance velocimetry (MRV) of a water flow, while IR thermography is used in the heat transfer testing. Flow Reynolds numbers for both the heat transfer and fluid mechanics tests range from 20,000-50,000 based on the jet diameter for a fully turbulent flow condition, with target surface temperatures in the heat transfer test reaching a maximum of approximately 50 Kelvin. The heat transfer target surface is subject to a measured uniform Joule heat flux, a well-defined boundary condition that allows comparison to existing correlations. The MRV generates a 3-component 3-dimensional data set, while the IR thermography provides a 2-dimensional heat transfer coefficient (or Nusselt number) map. These data sets can be post-processed and compared to existing correlations to verify data quality, and the sets can be juxtaposed to understand how flow features drive heat transfer. The laboratory setup, data acquisition, and analysis procedures are described for the laboratory experience, which can be incorporated as fluid mechanics, experimental methods, and heat transfer courses
NASA Technical Reports Server (NTRS)
Lee, L. C.; Ma, Z. W.; Fu, Z. F.; Otto, A.
1993-01-01
A mechanism for the formation of fossil flux transfer events and the low-level boundary layer within the framework of multiple X-line reconnection is proposed. Attention is given to conditions for which the bulk of magnetic flux in a flux rope of finite extent has a simple magnetic topology, where the four possible connections of magnetic field lines are: IMF to MSP, MSP to IMF, IMF to IMF, and MSP to MSP. For a sufficient relative shift of the X lines, magnetic flux may enter a flux rope from the magnetosphere and exit into the magnetosphere. This process leads to the formation of magnetic flux ropes which contain a considerable amount of magnetosheath plasma on closed magnetospheric field lines. This process is discussed as a possible explanation for the formation of fossil flux transfer events in the magnetosphere and the formation of the low-latitude boundary layer.
Quantized spin-momentum transfer in atom-sized magnetic systems
NASA Astrophysics Data System (ADS)
Loth, Sebastian
2010-03-01
Our ability to quickly access the vast amounts of information linked in the internet is owed to the miniaturization of magnetic data storage. In modern disk drives the tunnel magnetoresistance effect (TMR) serves as sensitive reading mechanism for the nanoscopic magnetic bits [1]. At its core lies the ability to control the flow of electrons with a material's magnetization. The inverse effect, spin transfer torque (STT), allows one to influence a magnetic layer by high current densities of spin-polarized electrons and carries high hopes for applications in non-volatile magnetic memory [2]. We show that equivalent processes are active in quantum spin systems. We use a scanning tunneling microscope (STM) operating at low temperature and high magnetic field to address individual magnetic structures and probe their spin excitations by inelastic electron tunneling [3]. As model system we investigate transition metal atoms adsorbed to a copper nitride layer grown on a Cu crystal. The magnetic atoms on the surface possess well-defined spin states [4]. Transfer of one magnetic atom to the STM tip's apex creates spin-polarization in the probe tip. The combination of functionalized tip and surface adsorbed atom resembles a TMR structure where the magnetic layers now consist of one magnetic atom each. Spin-polarized current emitted from the probe tip not only senses the magnetic orientation of the atomic spin system, it efficiently transfers spin angular momentum and pumps the quantum spin system between the different spin states. This enables further exploration of the microscopic mechanisms for spin-relaxation and stability of quantum spin systems. [4pt] [1] Zhu and Park, Mater. Today 9, 36 (2006).[0pt] [2] Huai, AAPPS Bulletin 18, 33 (2008).[0pt] [3] Heinrich et al., Science 306, 466 (2004).[0pt] [4] Hirjibehedin et al., Science 317, 1199 (2007).
Efficient Energy Transfer from Near-Infrared Emitting Gold Nanoparticles to Pendant Ytterbium(III).
Crawford, Scott E; Andolina, Christopher M; Kaseman, Derrick C; Ryoo, Bo Hyung; Smith, Ashley M; Johnston, Kathryn A; Millstone, Jill E
2017-12-13
Here, we demonstrate efficient energy transfer from near-infrared-emitting ortho-mercaptobenzoic acid-capped gold nanoparticles (AuNPs) to pendant ytterbium(III) cations. These functional materials combine the high molar absorptivity (1.21 × 10 6 M -1 cm -1 ) and broad excitation features (throughout the UV and visible regions) of AuNPs with the narrow emissive properties of lanthanides. Interaction between the AuNP ligand shell and ytterbium is determined using both nuclear magnetic resonance and electron microscopy measurements. In order to identify the mechanism of this energy transfer process, the distance of the ytterbium(III) from the surface of the AuNPs is systematically modulated by changing the size of the ligand appended to the AuNP. By studying the energy transfer efficiency from the various AuNP conjugates to pendant ytterbium(III) cations, a Dexter-type energy transfer mechanism is suggested, which is an important consideration for applications ranging from catalysis to energy harvesting. Taken together, these experiments lay a foundation for the incorporation of emissive AuNPs in energy transfer systems.
Dynamics of magnetization in ferromagnet with spin-transfer torque
NASA Astrophysics Data System (ADS)
Li, Zai-Dong; He, Peng-Bin; Liu, Wu-Ming
2014-11-01
We review our recent works on dynamics of magnetization in ferromagnet with spin-transfer torque. Driven by constant spin-polarized current, the spin-transfer torque counteracts both the precession driven by the effective field and the Gilbert damping term different from the common understanding. When the spin current exceeds the critical value, the conjunctive action of Gilbert damping and spin-transfer torque leads naturally the novel screw-pitch effect characterized by the temporal oscillation of domain wall velocity and width. Driven by space- and time-dependent spin-polarized current and magnetic field, we expatiate the formation of domain wall velocity in ferromagnetic nanowire. We discuss the properties of dynamic magnetic soliton in uniaxial anisotropic ferromagnetic nanowire driven by spin-transfer torque, and analyze the modulation instability and dark soliton on the spin wave background, which shows the characteristic breather behavior of the soliton as it propagates along the ferromagnetic nanowire. With stronger breather character, we get the novel magnetic rogue wave and clarify its formation mechanism. The generation of magnetic rogue wave mainly arises from the accumulation of energy and magnons toward to its central part. We also observe that the spin-polarized current can control the exchange rate of magnons between the envelope soliton and the background, and the critical current condition is obtained analytically. At last, we have theoretically investigated the current-excited and frequency-adjusted ferromagnetic resonance in magnetic trilayers. A particular case of the perpendicular analyzer reveals that the ferromagnetic resonance curves, including the resonant location and the resonant linewidth, can be adjusted by changing the pinned magnetization direction and the direct current. Under the control of the current and external magnetic field, several magnetic states, such as quasi-parallel and quasi-antiparallel stable states, out-of-plane precession, and bistable states can be realized. The precession frequency can be expressed as a function of the current and external magnetic field.
NASA Technical Reports Server (NTRS)
Wei, C. Q.; Lee, L. C.; Wang, S.; Akasofu, S.-I.
1991-01-01
Spacecraft observations suggest that flux transfer events and interplanetary magnetic clouds may be associated with magnetic flux ropes which are magnetic flux tubes containing helical magnetic field lines. In the magnetic flux ropes, the azimuthal magnetic field is superposed on the axial field. The time evolution of a localized magnetic flux rope is studied. A two-dimensional compressible MHD simulation code with a cylindrical symmetry is developed to study the wave modes associated with the evolution of flux ropes. It is found that in the initial phase both the fast magnetosonic wave and the Alfven wave are developed in the flux rope. After this initial phase, the Alfven wave becomes the dominant wave mode for the evolution of the magnetic flux rope and the radial expansion velocity of the flux rope is found to be negligible. Numerical results further show that even for a large initial azimuthal component of the magnetic field, the propagation velocity along the axial direction of the flux rope remains the Alfven velocity. It is also found that the localized magnetic flux rope tends to evolve into two separate magnetic ropes propagating in opposite directions. The simulation results are used to study the evolution of magnetic flux ropes associated with flux transfer events observed at the earth's dayside magnetopause and magnetic clouds in the interplanetary space.
Sherman, David M.
1990-01-01
Metal-metal charge-transfer and magnetic exchange interactions have important effects on the optical spectra, crystal chemistry, and physics of minerals. Previous molecular orbital calculations have provided insight on the nature of Fe2+-Fe3+ and Fe2+-Ti4+ charge-transfer transitions in oxides and silicates. In this work, spin-unrestricted molecular orbital calculations on (FeMnO10) clusters are used to study the nature of magnetic exchange and electron delocalization (charge transfer) associated with Fe3+-Mn2+, Fe3+-Mn3+, and Fe2+-Mn3+ interactions in oxides and silicates.
QUESP and QUEST revisited - fast and accurate quantitative CEST experiments.
Zaiss, Moritz; Angelovski, Goran; Demetriou, Eleni; McMahon, Michael T; Golay, Xavier; Scheffler, Klaus
2018-03-01
Chemical exchange saturation transfer (CEST) NMR or MRI experiments allow detection of low concentrated molecules with enhanced sensitivity via their proton exchange with the abundant water pool. Be it endogenous metabolites or exogenous contrast agents, an exact quantification of the actual exchange rate is required to design optimal pulse sequences and/or specific sensitive agents. Refined analytical expressions allow deeper insight and improvement of accuracy for common quantification techniques. The accuracy of standard quantification methodologies, such as quantification of exchange rate using varying saturation power or varying saturation time, is improved especially for the case of nonequilibrium initial conditions and weak labeling conditions, meaning the saturation amplitude is smaller than the exchange rate (γB 1 < k). The improved analytical 'quantification of exchange rate using varying saturation power/time' (QUESP/QUEST) equations allow for more accurate exchange rate determination, and provide clear insights on the general principles to execute the experiments and to perform numerical evaluation. The proposed methodology was evaluated on the large-shift regime of paramagnetic chemical-exchange-saturation-transfer agents using simulated data and data of the paramagnetic Eu(III) complex of DOTA-tetraglycineamide. The refined formulas yield improved exchange rate estimation. General convergence intervals of the methods that would apply for smaller shift agents are also discussed. Magn Reson Med 79:1708-1721, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Interferometric study on the mass transfer in cryogenic distillation under magnetic field
NASA Astrophysics Data System (ADS)
Bao, S. R.; Zhang, R. P.; Y Rong, Y.; Zhi, X. Q.; Qiu, L. M.
2017-12-01
Cryogenic distillation has long been used for the mass production of industrial gases because of its features of high efficiency, high purity, and capability to produce noble gases. It is of great theoretical and practical significance to explore methods to improve the mass transfer efficiency in cryogenic distillation. The negative correlation between the susceptibility of paramagnetic oxygen and temperature provides a new possibility of comprehensive utilization of boiling point and susceptibility differences in cryogenic distillation. Starting from this concept, we proposed a novel distillation intensifying method by using gradient magnetic field, in which the magnetic forces enhance the transport of the oxygen molecules to the liquid phase in the distillation. In this study, a cryogenic testbed was designed and fabricated to study the diffusion between oxygen and nitrogen under magnetic field. A Mach-Zehnder interferometer was used to visualize the concentration distribution during the diffusion process. The mass transfer characteristics with and without magnetic field, in the chamber filled with the magnetized medium, were systematically studied. The concentration redistribution of oxygen was observed, and the stable stratified diffusion between liquid oxygen and nitrogen was prolonged by the non-uniform magnetic field. The experimental results show that the magnetic field can efficiently influence the mass transfer in cryogenic distillation, which can provide a new mechanism for the optimization of air separation process.
NASA Astrophysics Data System (ADS)
Sugawara, Hirotake; Yamamoto, Tappei
2016-09-01
In order to quantitatively evaluate the electron confinement effect of the confronting divergent magnetic fields (CDMFs) applied to an inductively coupled plasma, we analyzed the electron transfer between two regions divided by the separatrix of the CDMFs in Ar at 0.67 Pa at 300 K using a Monte Carlo method. A conventional transfer judgement was simply based on the electron passage across the separatrix from the upstream source region to the downstream diffusion region. An issue was an overestimation of the transfer due to temporary stay of electrons in the downstream region. Electrons may pass the downstream region during their gyration even in case they are effectively bound to the upstream region, where their guiding magnetic flux lines run. More than half of the transfers were temporary ones and such seeming transfers were relevantly excluded from the statistics by introducing a newly chosen criterion based on the passage of electron gyrocenters across the separatrix and collisional events in the downstream region. Simulation results showed a tendency that the ratio of the temporary transfers excluded was higher under stronger magnetic fields because of higher cyclotron frequency. Work supported by JSPS Kakenhi Grant Number 16K05626.
Spin Transfer Torque in Graphene
NASA Astrophysics Data System (ADS)
Lin, Chia-Ching; Chen, Zhihong
2014-03-01
Graphene is an idea channel material for spin transport due to its long spin diffusion length. To develop graphene based spin logic, it is important to demonstrate spin transfer torque in graphene. Here, we report the experimental measurement of spin transfer torque in graphene nonlocal spin valve devices. Assisted by a small external in-plane magnetic field, the magnetization reversal of the receiving magnet is induced by pure spin diffusion currents from the injector magnet. The magnetization switching is reversible between parallel and antiparallel configurations by controlling the polarity of the applied charged currents. Current induced heating and Oersted field from the nonlocal charge flow have also been excluded in this study. Next, we further enhance the spin angular momentum absorption at the interface of the receiving magnet and graphene channel by removing the tunneling barrier in the receiving magnet. The device with a tunneling barrier only at the injector magnet shows a comparable nonlocal spin valve signal but lower electrical noise. Moreover, in the same preset condition, the critical charge current density for spin torque in the single tunneling barrier device shows a substantial reduction if compared to the double tunneling barrier device.
NASA Astrophysics Data System (ADS)
Valiallah Mousavi, S.; Barzegar Gerdroodbary, M.; Sheikholeslami, Mohsen; Ganji, D. D.
2016-09-01
In this study, two dimensional numerical simulations are performed to investigate the influence of the magnetic field on the nanofluid flow inside a sinusoidal channel. This work reveals the influence of variable magnetic field in the heat transfer of heat exchanger while the mixture is in a single phase. In this heat exchanger, the inner tube is sinusoidal and the outer tube is considered smooth. The magnetic field is applied orthogonal to the axis of the sinusoidal tube. In our study, the ferrofluid (water with 4 vol% nanoparticles (Fe3O4)) flows in a channel with sinusoidal bottom. The finite volume method with the SIMPLEC algorithm is used for handling the pressure-velocity coupling. The numerical results present validated data with experimentally measured data and show good agreement with measurement. The influence of different parameters, like the intensity of magnetic field and Reynolds number, on the heat transfer is investigated. According to the obtained results, the sinusoidal formation of the internal tube significantly increases the Nusselt number inside the channel. Our findings show that the magnetic field increases the probability of eddy formation inside the cavities and consequently enhances the heat transfer (more than 200%) in the vicinity of the magnetic field at low Reynolds number ( Re=50). In addition, the variation of the skin friction shows that the magnetic field increases the skin friction (more than 600%) inside the sinusoidal channel.
NASA Astrophysics Data System (ADS)
Amani, Mohammad; Ameri, Mohammad; Kasaeian, Alibakhsh
2017-06-01
In the present experimental study, the influence of permanent and alternating magnetic fields on the flow and thermal behavior of MnFe2O4 magnetic nanofluid flowing through a circular open-cell metal foam tube is investigated under homogeneous heat flux conditions. The experiments are performed at various nanoparticle concentrations, Reynolds numbers and magnetic fields with different strengths and frequencies. According to the observations, the heat transfer rate enhances directly relative to nanoparticle concentration and Reynolds number in attendance of magnetic field, whereas its maximum value of 16.4% is found for 2 wt% nanoparticles at Re = 200 under alternating field with 400 G strength and 20 Hz frequency. Moreover, it is observed that the influence of strength and frequency of magnetic field is insignificant for the pressure drop. Hydrothermal efficiency as the ratio of the Nusselt number to the ratio of the pressure drop is defined in order to evaluate the privilege of using MnFe2O4 nanofluids in practical applications. The maximum efficiency of 1.25 is observed at 2 wt% under magnetic field with 400 G and 20 Hz at Re = 1000.
Magnetohydrodynamic Heat Transfer Research Related to the Design of Fusion Blankets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barleon, Leopold; Burr, Ulrich; Mack, Klaus Juergen
2001-03-15
Lithium or any lithium alloy like the lithium lead alloy Pb-17Li is an attractive breeder material used in blankets of fusion power reactors because it allows the breeding of tritium and, in the case of self-cooled blankets, the transfer of the heat generated within the liquid metal and the walls of the cooling ducts to an external heat exchanger. Nevertheless, this type of liquid-metal-cooled blanket, called a self-cooled blanket, requires specific design of the coolant ducts, because the interaction of the circulating fluid and the plasma-confining magnetic fields causes magnetohydrodynamic (MHD) effects, yielding completely different flow patterns compared to ordinarymore » hydrodynamics (OHD) and pressure drops significantly higher than there. In contrast to OHD, MHD flows depend strongly on the electrical properties of the wall. Also, MHD flows reveal anisotropic turbulence behavior and are quite sensitive to obstacles exposed to the fluid flow.A comprehensive study of the heat transfer characteristics of free and forced convective MHD flows at fusion-relevant conditions is conducted. The general ideas of the analytical and numerical models to describe MHD heat transfer phenomena in this parameter regime are discussed. The MHD laboratory being installed, the experimental program established, and the experiments on heat transfer of free and forced convective flow being conducted are described. The theoretical results are compared to the results of a series of experiments in forced and free convective MHD flows with different wall properties, such as electrically insulating as well as electric conducting ducts. Based on this knowledge, methods to improve the heat transfer by means of electromagnetic/mechanic turbulence promoters (TPs) or sophisticated, arranged electrically conducting walls are discussed, experimental results are shown, and a cost-benefit analysis related to these methods is performed. Nevertheless, a few experimental results obtained should be highlighted:1. The heat flux removable in rectangular electrically conducting ducts at walls parallel to the magnetic field is by a factor of 2 higher than in the slug flow model previously used in design calculations. Conditions for which this heat transfer enhancement is attainable are presented. The measured dimensionless pressure gradient coincides with the theoretical one and is constant throughout the whole Reynolds number regime investigated (Re = 10{sup 3} {yields} 10{sup 5}), although the flow turns from laminar to turbulent. The use of electromagnetic TPs close to the heated wall leads to nonmeasurable increase of the heat transfer in the same Re regime as long as they do not lead to an interaction with the wall adjacent boundary layers.2. Mechanical TPs used in an electrically insulated rectangular duct improved the heat transfer up to seven times compared to slug flow, but the pressure drop can increase also up to 300%. In a cost-benefit analysis, the advantageous parameter regime for applying this method is determined.3. Experiments performed in a flat box both in a vertical and a horizontal arrangement within a horizontal magnetic field show the expected increase of damping of the fluid motion with increasing Hartmann number M. At high M, buoyant convection will be completely suppressed in the horizontal case. In the vertical setup, the fluid motion is reduced to one large vortex leading to a decreasing heat transfer between heated and cooled plate to pure heat conduction.From an analysis of the experimental and theoretical results, general design criteria are derived for the orientation and shape of the first wall coolant ducts of self-cooled liquid metal blankets. Methods to generate additional turbulence within the flow, which can improve the heat transfer further are elaborated.« less
Current driven dynamics of magnetic domain walls in permalloy nanowires
NASA Astrophysics Data System (ADS)
Hayashi, Masamitsu
The significant advances in micro-fabrication techniques opened the door to access interesting properties in solid state physics. With regard to magnetic materials, geometrical confinement of magnetic structures alters the defining parameters that govern magnetism. For example, development of single domain nano-pillars made from magnetic multilayers led to the discovery of electrical current controlled magnetization switching, which revealed the existence of spin transfer torque. Magnetic domain walls (DWs) are boundaries in magnetic materials that divide regions with distinct magnetization directions. DWs play an important role in the magnetization reversal processes of both bulk and thin film magnetic materials. The motion of DW is conventionally controlled by magnetic fields. Recently, it has been proposed that spin polarized current passed across the DW can also control the motion of DWs. Current in most magnetic materials is spin-polarized, due to spin-dependent scattering of the electrons, and thus can deliver spin angular momentum to the DW, providing a "spin transfer" torque on the DW which leads to DW motion. In addition, owing to the development of micro-fabrication techniques, geometrical confinement of magnetic materials enables creation and manipulation of a "single" DW in magnetic nanostructures. New paradigms for DW-based devices are made possible by the direct manipulation of DWs using spin polarized electrical current via spin transfer torque. This dissertation covers research on current induced DW motion in magnetic nanowires. Fascinating effects arising from the interplay between DWs with spin polarized current will be revealed.
NASA Astrophysics Data System (ADS)
Lang, Hans-Dieter; Sarris, Costas D.
2017-09-01
In magnetically mediated hyperthermia (MMH), an externally applied alternating magnetic field interacts with a mediator (such as a magnetic nanoparticle or an implant) inside the body to heat up the tissue in its proximity. Producing heat via induced currents in this manner is strikingly similar to wireless power transfer (WPT) for implants, where power is transferred from a transmitter outside of the body to an implanted receiver, in most cases via magnetic fields as well. Leveraging this analogy, a systematic method to design MMH implants for optimal heating efficiency is introduced, akin to the design of WPT systems for optimal power transfer efficiency. This paper provides analytical formulas for the achievable heating efficiency bounds as well as the optimal operating frequency and the implant material. Multiphysics simulations validate the approach and further demonstrate that optimization with respect to maximum heating efficiency is accompanied by minimizing heat delivery to healthy tissue. This is a property that is highly desirable when considering MMH as a key component or complementary method of cancer treatment and other applications.
NASA Astrophysics Data System (ADS)
Kim, Dongwook; Park, Bumjin; Park, Jaehyoung; Park, Hyun Ho; Ahn, Seungyoung
2018-05-01
In this paper, we propose a novel coil structure, using a ferromagnetic material which concentrates the magnetic field, as the propulsion system of a wireless power transfer (WPT) based micro-robot. This structure uses an incident magnetic field to induce current during wireless power transfer, to generate a Lorentz force. To prevent net cancelation of the Lorentz force in the load coil, ferrite films were applied to one side of the coil segment. The demonstrated simplicity and effectiveness of the proposed micro-robot showed its suitability for applications. Simulation and experimental results confirmed a velocity of 1.02 mm/s with 6 mW power transfer capacity for the 3 mm sized micro-robot.
Developing Bridges from Earth Magnetism Research to Pre-College Physics Education
NASA Astrophysics Data System (ADS)
Anderson, K.; Smirnov, A. V.; Bluth, G. J.; Schepke, C.; Piispa, E. J.
2012-12-01
We present a 5-year NSF CAREER project incorporating educational outreach for high school science teachers. Teachers are integrated into field and research components of this project in order to provide the most meaningful and classroom-translatable experience. The associated research project is aimed at quantifying the strength and morphology of the Precambrian geomagnetic field via detailed paleomagnetic analyses of reliably dated mafic sequences known to contain pristine paleomagnetic records. Investigation of the geomagnetic field behavior is crucial for understanding the mechanisms of field generation, has important implications for the development of the Earth's atmosphere and biosphere, and can serve as a focus for connecting high-level Earth science research with a standard physics curriculum. Educational outreach objectives include developing effective methods for pre-college physics teachers to gain the experience and expertise to (1) use paleomagnetic research to motivate and help students understand the physics of magnetism, from microscopic to planetary scales; (2) transfer key experiences of scientific processes to classroom activities, specifically the skills of patience, innovation, flexibility, and collaboration; and (3) help students integrate mathematics and physics into logical problem-solving approaches. Because the teacher participants are directly involved with our research, they are able to provide significant contributions to project outreach and dissemination efforts. This year's work focused on sampling and analyzing mafic dikes from northern Wisconsin and Michigan. The summer phase featured a 3-week field/lab/classroom session. In week one, a 4-person field team (including two teacher participants) conducted field work - the small size of the team ensured that every participant gained skills on aspects of site location, rock identification, and paleomagnetic field procedures. During week two, participants gained proficiency at processing samples, magnetic characterization, and demagnetization experiments in an effort to characterize the orientation and strength of the Earth's magnetic field at the time of rock formation. In week three, the team analyzed data and developed classroom activities to transfer experiences to the pre-college physics classroom. Teacher researchers will work throughout the project's duration to apply and monitor the effectiveness of these efforts. During the next several years, new teams of teacher researchers will help advance this project with work in Arizona, Canada, and Minnesota, ending with a reunion of all participants back to Michigan Tech during the final year for an exchange of outcomes, both from the classroom and the university. Close collaboration with all cohorts will be maintained by participation at scientific and educational meetings, publication in research and education journals, etc. Outcomes from this outreach program will be made available to the scientific and education communities with the hope of creating an accessible and meaningful vehicle by which the intricacies of Earth magnetism can be conveyed to the next generation.
Parella, Teodor; Espinosa, Juan Félix
2008-05-01
An out-and-stay 2D proton-proton NMR correlation experiment is proposed to detect long-range proton-proton connectivities up to six and seven bonds away. The magnetization flow pathway is based on a consecutive, dual-step J(CH)-transfer mechanism and it allows one to trace out (1)H-(1)H connectivities between protons belonging to different spin systems. This novel experimental scheme will be particularly useful in cases when carbon resonances overlap, providing connectivity information that could not be obtained in a HMBC experiment. The success of the experiment is demonstrated in the structural studies of a wide variety of chemical compounds. 2008 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Razuvanov, N. G.; Poddubnyi, I. I.; Kostychev, P. V.
2017-11-01
The research of hydrodynamics and heat transfer at the liquid metal (LM) downward flow and upflow in a vertical duct of a rectangular cross section with a ratio of sides ˜1/3 in a coplanar magnetic field (MF) under conditions of bilateral symmetrical heating is performed. The problem simulates the LM flow in the heat exchange channels for cooling the liquid metal module of the blanket of the thermonuclear reactor (TNR) of the TOKAMAK type. The experiments were carried out on the basis of the mercury magnetohydrodynamic test-bed (MHD) Moscow Power Engineering Institute (MPEI) - Joint Institute for High Temperatures of the Russian Academy of Sciences (JIHT RAS). The probe measurement technique was used in the flow. Profiles of averaged velocity and averaged temperature, as well as profiles of temperature pulsations in the axial planes of the channel cross-section, are obtained; the distribution of the dimensionless wall temperature along the perimeter unfolding of the channel in the section and along the length of the channel. A significant effect of thermogravitational convection (TGC), which leads to unexpected effects, is found. At the downflow in a magnetic field, in some modes, low-frequency pulsations of anomalously high intensity occur.
Novel NMR tools to study structure and dynamics of biomembranes.
Gawrisch, Klaus; Eldho, Nadukkudy V; Polozov, Ivan V
2002-06-01
Nuclear magnetic resonance (NMR) studies on biomembranes have benefited greatly from introduction of magic angle spinning (MAS) NMR techniques. Improvements in MAS probe technology, combined with the higher magnetic field strength of modern instruments, enables almost liquid-like resolution of lipid resonances. The cross-relaxation rates measured by nuclear Overhauser enhancement spectroscopy (NOESY) provide new insights into conformation and dynamics of lipids with atomic-scale resolution. The data reflect the tremendous motional disorder in the lipid matrix. Transfer of magnetization by spin diffusion along the proton network of lipids is of secondary relevance, even at a long NOESY mixing time of 300 ms. MAS experiments with re-coupling of anisotropic interactions, like the 13C-(1)H dipolar couplings, benefit from the excellent resolution of 13C shifts that enables assignment of the couplings to specific carbon atoms. The traditional 2H NMR experiments on deuterated lipids have higher sensitivity when conducted on oriented samples at higher magnetic field strength. A very large number of NMR parameters from lipid bilayers is now accessible, providing information about conformation and dynamics for every lipid segment. The NMR methods have the sensitivity and resolution to study lipid-protein interaction, lateral lipid organization, and the location of solvents and drugs in the lipid matrix.
NASA Astrophysics Data System (ADS)
Gao, Pengfei; Tian, Zijian; Wang, Xuqi; Wu, Jun; Gui, Weifeng
2018-03-01
Wireless power transfer (WPT) via coupled magnetic resonance is a promising technology to be applied in many fields. In general, there will be a radial gap in practical application, and some special application environments need to limit the radius of the coils. Therefore, in this paper, considering the comprehensive analysis of the radial gap and the radius of the coils, the concept of the ratio of radial gap to the radius of the coils was proposed. Based on the circuit theory, the formula between the ratio and transmission efficiency of WPT was deduced, and the effects of the ratio on the transmission efficiency were studied respectively at different axial distances. Simulation experiments were carried out and the results not only demonstrate the influence law of the ratio on transmission efficiency, but also validate the value of the ratio which the axial distance has the greatest effect on the transmission efficiency. Besides, the results shows the relationship between the effect of the ratio on the efficiency and the effect of the axial distance on the efficiency. The experimental results show that the theoretical analysis is correct, thus providing an useful theoretical reference for the design and further research on the wireless power transfer system in complicated environment.
Pulsed Magnetic Resonance to Signal-Enhance Metabolites within Seconds by utilizing para-Hydrogen.
Korchak, Sergey; Yang, Shengjun; Mamone, Salvatore; Glöggler, Stefan
2018-05-01
Diseases such as Alzheimer's and cancer have been linked to metabolic dysfunctions, and further understanding of metabolic pathways raises hope to develop cures for such diseases. To broaden the knowledge of metabolisms in vitro and in vivo, methods are desirable for direct probing of metabolic function. Here, we are introducing a pulsed nuclear magnetic resonance (NMR) approach to generate hyperpolarized metabolites within seconds, which act as metabolism probes. Hyperpolarization represents a magnetic resonance technique to enhance signals by over 10 000-fold. We accomplished an efficient metabolite hyperpolarization by developing an isotopic labeling strategy for generating precursors containing a favorable nuclear spin system to add para -hydrogen and convert its two-spin longitudinal order into enhanced metabolite signals. The transfer is performed by an invented NMR experiment and 20 000-fold signal enhancements are achieved. Our technique provides a fast way of generating hyperpolarized metabolites by using para -hydrogen directly in a high magnetic field without the need for field cycling.
Critical Current Test of Liquid Hydrogen Cooled HTC Superconductors under External Magnetic Field
NASA Astrophysics Data System (ADS)
Shirai, Yasuyuki; Shiotsu, Masahiro; Tatsumoto, Hideki; Kobayashi, Hiroaki; Naruo, Yoshihiro; Nonaka, Satoshi; Inatani, Yoshifumi
High-Tc (HTC) superconductors including MgB2 will show excellent properties under temperature of Liquid Hydrogen (LH2:20K), which has large latent heat and low viscosity coefficient. In order to design and fabricate the LH2 cooled superconducting energy devices, we must clear the cooling property of LH2 for superconductors, the cooling system and safety design of LH2 cooled superconducting devices and electro-magnetic property evaluation of superconductors (BSCCO, REBCO and MgB2) and their magnets cooled by LH2. As the first step of the study, an experimental setup which can be used for investigating heat transfer characteristics of LH2 in a pool and also in forced flow (circulation loop with a pump), and also for evaluation of electro-magnetic properties of LH2 cooled superconductors under external magnetic field (up to 7 T). In this paper, we will show a short sketch of the experimental set-up, practical experiences in safety operation of liquid hydrogen cooling system and example test results of critical current evaluation of HTC superconductors cooled by LH2.
Stress analysis in high-temperature superconductors under pulsed field magnetization
NASA Astrophysics Data System (ADS)
Wu, Haowei; Yong, Huadong; Zhou, Youhe
2018-04-01
Bulk high-temperature superconductors (HTSs) have a high critical current density and can trap a large magnetic field. When bulk superconductors are magnetized by the pulsed field magnetization (PFM) technique, they are also subjected to a large electromagnetic stress, and the resulting thermal stress may cause cracking of the superconductor due to the brittle nature of the sample. In this paper, based on the H-formulation and the law of heat transfer, we can obtain the distributions of electromagnetic field and temperature, which are in qualitative agreement with experiment. After that, based on the dynamic equilibrium equations, the mechanical response of the bulk superconductor is determined. During the PFM process, the change in temperature has a dramatic effect on the radial and hoop stresses, and the maximum radial and hoop stress are 24.2 {{MPa}} and 22.6 {{MPa}}, respectively. The mechanical responses of a superconductor for different cases are also studied, such as the peak value of the applied field and the size of bulk superconductors. Finally, the stresses are also presented for different magnetization methods.
Magnetic resonance imaging using chemical exchange saturation transfer
NASA Astrophysics Data System (ADS)
Park, Jaeseok
2012-10-01
Magnetic resonance imaging (MRI) has been widely used as a valuable diagnostic imaging modality that exploits water content and water relaxation properties to provide both structural and functional information with high resolution. Chemical exchange saturation transfer (CEST) in MRI has been recently introduced as a new mechanism of image contrast, wherein exchangeable protons from mobile proteins and peptides are indirectly detected through saturation transfer and are not observable using conventional MRI. It has been demonstrated that CEST MRI can detect important tissue metabolites and byproducts such as glucose, glycogen, and lactate. Additionally, CEST MRI is sensitive to pH or temperature and can calibrate microenvironment dependent on pH or temperature. In this work, we provide an overview on recent trends in CEST MRI, introducing general principles of CEST mechanism, quantitative description of proton transfer process between water pool and exchangeable solute pool in the presence or absence of conventional magnetization transfer effect, and its applications
NASA Astrophysics Data System (ADS)
Koppán, András; Kis, Márta; Merényi, László; Papp, Gábor; Benedek, Judit; Meurers, Bruno
2017-04-01
In this presentation authors propose a method for the determination of transfer characteristics and fine calibration of LCR relative gravimeters used for earth-tide recordings, by means of the moving-mass gravimeter calibration device of Budapest-Mátyáshegy Gravity and Geodynamical Observatory. Beam-position dependent transfer functions of four relative LCR G type gravimeters were determined and compared. In order to make these instruments applicable for observatory tidal recordings, there is a need for examining the unique characteristics of equipments and adequately correcting these inherent distorting effects. Thus, the sensitivity for the tilting, temporal changes of scale factors and beam-position dependent transfer characteristics are necessary to be determined for observatory use of these instruments. During the calibration a cylindrical ring of 3200 kg mass is vertically moving around the equipment, generating gravity variations. The effect of the moving mass can be precisely calculated from the known mass and geometrical parameters. The maximum theoretical gravity variation produced by the vertical movement of the mass is ab. 110 microGal, so it provides excellent possibility for the fine calibration of gravimeters in the tidal range. Magnetic experiments were also carried out on the pillar of the calibration device as well, in order to analyse the magnetic effect of the moving stainless steel-mass. According to the magnetic measurements, a correction for the magnetic effect was applied on the measured gravimetric data series. The calibration process is aided by intelligent controller electronics. A PLC-based system has been developed to allow easy control of the movement of the calibrating mass and to measure the mass position. It enables also programmed steps of movements (waiting positions and waiting times) for refined gravity changes. All parameters (position of the mass, CPI data, X/Y leveling positions) are recorded with 1/sec. sampling rate. The system can be controlled remotely through the internet. Authors wish to express their thanks to OTKA (Hungarian Scientific Research Fund) for their support (OTKA-K101603, OTKA K109060).
FRIB Cryogenic Distribution System and Status
NASA Astrophysics Data System (ADS)
Ganni, V.; Dixon, K.; Laverdure, N.; Yang, S.; Nellis, T.; Jones, S.; Casagrande, F.
2015-12-01
The MSU-FRIB cryogenic distribution system supports the 2 K primary, 4 K primary, and 35 - 55 K shield operation of more than 70 loads in the accelerator and the experimental areas. It is based on JLab and SNS experience with bayonet-type disconnects between the loads and the distribution system for phased commissioning and maintenance. The linac transfer line, which features three separate transfer line segments for additional independence during phased commissioning at 4 K and 2 K, connects the folded arrangement of 49 cryomodules and 4 superconducting dipole magnets and a fourth transfer line supports the separator area cryo loads. The pressure reliefs for the transfer line process lines, located in the refrigeration room outside the tunnel/accelerator area, are piped to be vented outdoors. The transfer line designs integrate supply and return flow paths into a combined vacuum space. The main linac distribution segments are produced in a small number of standard configurations; a prototype of one such configuration has been fabricated at Jefferson Lab and has been installed at MSU to support testing of a prototype FRIB cryomodule.
Uddin, Md. Jashim; Khan, Waqar A.; Ismail, A. I. Md.
2013-01-01
A two-dimensional steady forced convective flow of a Newtonian fluid past a convectively heated permeable vertically moving plate in the presence of a variable magnetic field and radiation effect has been investigated numerically. The plate moves either in assisting or opposing direction to the free stream. The plate and free stream velocities are considered to be proportional to whilst the magnetic field and mass transfer velocity are taken to be proportional to where is the distance along the plate from the leading edge of the plate. Instead of using existing similarity transformations, we use a linear group of transformations to transform the governing equations into similarity equations with relevant boundary conditions. Numerical solutions of the similarity equations are presented to show the effects of the controlling parameters on the dimensionless velocity, temperature and concentration profiles as well as on the friction factor, rate of heat and mass transfer. It is found that the rate of heat transfer elevates with the mass transfer velocity, convective heat transfer, Prandtl number, velocity ratio and the magnetic field parameters. It is also found that the rate of mass transfer enhances with the mass transfer velocity, velocity ratio, power law index and the Schmidt number, whilst it suppresses with the magnetic field parameter. Our results are compared with the results existing in the open literature. The comparisons are satisfactory. PMID:23741295
NASA Astrophysics Data System (ADS)
Kalscheuer, Thomas; Juhojuntti, Niklas; Vaittinen, Katri
2017-12-01
A combination of magnetotelluric (MT) measurements on the surface and in boreholes (without metal casing) can be expected to enhance resolution and reduce the ambiguity in models of electrical resistivity derived from MT surface measurements alone. In order to quantify potential improvement in inversion models and to aid design of electromagnetic (EM) borehole sensors, we considered two synthetic 2D models containing ore bodies down to 3000 m depth (the first with two dipping conductors in resistive crystalline host rock and the second with three mineralisation zones in a sedimentary succession exhibiting only moderate resistivity contrasts). We computed 2D inversion models from the forward responses based on combinations of surface impedance measurements and borehole measurements such as (1) skin-effect transfer functions relating horizontal magnetic fields at depth to those on the surface, (2) vertical magnetic transfer functions relating vertical magnetic fields at depth to horizontal magnetic fields on the surface and (3) vertical electric transfer functions relating vertical electric fields at depth to horizontal magnetic fields on the surface. Whereas skin-effect transfer functions are sensitive to the resistivity of the background medium and 2D anomalies, the vertical magnetic and electric field transfer functions have the disadvantage that they are comparatively insensitive to the resistivity of the layered background medium. This insensitivity introduces convergence problems in the inversion of data from structures with strong 2D resistivity contrasts. Hence, we adjusted the inversion approach to a three-step procedure, where (1) an initial inversion model is computed from surface impedance measurements, (2) this inversion model from surface impedances is used as the initial model for a joint inversion of surface impedances and skin-effect transfer functions and (3) the joint inversion model derived from the surface impedances and skin-effect transfer functions is used as the initial model for the inversion of the surface impedances, skin-effect transfer functions and vertical magnetic and electric transfer functions. For both synthetic examples, the inversion models resulting from surface and borehole measurements have higher similarity to the true models than models computed exclusively from surface measurements. However, the most prominent improvements were obtained for the first example, in which a deep small-sized ore body is more easily distinguished from a shallow main ore body penetrated by a borehole and the extent of the shadow zone (a conductive artefact) underneath the main conductor is strongly reduced. Formal model error and resolution analysis demonstrated that predominantly the skin-effect transfer functions improve model resolution at depth below the sensors and at distance of ˜ 300-1000 m laterally off a borehole, whereas the vertical electric and magnetic transfer functions improve resolution along the borehole and in its immediate vicinity. Furthermore, we studied the signal levels at depth and provided specifications of borehole magnetic and electric field sensors to be developed in a future project. Our results suggest that three-component SQUID and fluxgate magnetometers should be developed to facilitate borehole MT measurements at signal frequencies above and below 1 Hz, respectively.
NASA Astrophysics Data System (ADS)
Zhang, Qi; Gui, Keting; Wang, Xiaobo
2016-02-01
The effects of magnetic fields on improving the mass transfer in flue gas desulfurization using a fluidized bed are investigated in the paper. In this research, the magnetically fluidized bed (MFB) is used as the reactor in which ferromagnetic particles are fluidized with simulated flue gas under the influence of an external magnetic field. Lime slurry is continuously sprayed into the reactor. As a consequence, the desulfurization reaction and the slurry drying process take place simultaneously in the MFB. In this paper, the effects of ferromagnetic particles and external magnetic fields on the desulphurization efficiency are studied and compared with that of quartz particles as the fluidized particles. Experimental results show that the ferromagnetic particles not only act as a platform for lime slurry to precipitate on like quartz particles, but also take part in the desulfurization reaction. The results also show that the specific surface area of ferromagnetic particles after reaction is enlarged as the magnetic intensity increases, and the external magnetic field promotes the oxidation of S(IV), improving the mass transfer between sulphur and its sorbent. Hence, the efficiency of desulphurization under the effects of external magnetic fields is higher than that in general fluidized beds.
Spin-transfer torque switched magnetic tunnel junctions in magnetic random access memory
NASA Astrophysics Data System (ADS)
Sun, Jonathan Z.
2016-10-01
Spin-transfer torque (or spin-torque, or STT) based magnetic tunnel junction (MTJ) is at the heart of a new generation of magnetism-based solid-state memory, the so-called spin-transfer-torque magnetic random access memory, or STT-MRAM. Over the past decades, STT-based switchable magnetic tunnel junction has seen progress on many fronts, including the discovery of (001) MgO as the most favored tunnel barrier, which together with (bcc) Fe or FeCo alloy are yielding best demonstrated tunnel magneto-resistance (TMR); the development of perpendicularly magnetized ultrathin CoFeB-type of thin films sufficient to support high density memories with junction sizes demonstrated down to 11nm in diameter; and record-low spin-torque switching threshold current, giving best reported switching efficiency over 5 kBT/μA. Here we review the basic device properties focusing on the perpendicularly magnetized MTJs, both in terms of switching efficiency as measured by sub-threshold, quasi-static methods, and of switching speed at super-threshold, forced switching. We focus on device behaviors important for memory applications that are rooted in fundamental device physics, which highlights the trade-off of device parameters for best suitable system integration.
Experimental investigation on thermo-magnetic convection inside cavities.
Gontijo, R G; Cunha, F R
2012-12-01
This paper presents experimental results on thermo-magnetic convection inside cavities. We examine the flow induced by convective currents inside a cavity with aspect ratio near the unity and the heat transfer rates measurements inside a thin cavity with aspect ratio equal to twelve. The convective unstable currents are formed when a magnetic suspension is subjected to a temperature gradient combined with a gradient of an externally imposed magnetic field. Under these conditions, stratifications in the suspension density and susceptibility are both important effects to the convective motion. We show a comparison between flow patterns of magnetic and gravitational convections. The impact of the presence of a magnetic field on the amount of heat extracted from the system when magnetic and gravitational effects are combined inside the test cell is evaluated. The convection state is largely affected by new instability modes produced by stratification in susceptibility. The experiments reveal that magnetic field enhances the instability in the convective flow leading to a more effective mixing and consequently to a more statistically homogenous temperature distribution inside the test cell. The experimental results allow the validation of the scaling law proposed in a previous theoretical work that has predicted that the Nusselt number scales with the magnetic Rayleigh number to the power of 1/3, in the limit in which magnetic force balances viscous force in the convective flow.
Magnetic induced heating of nanoparticle solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murph, S. Hunyadi; Brown, M.; Coopersmith, K.
2016-12-02
Magnetic induced heating of nanoparticles (NP) provides a useful advantage for many energy transfer applications. This study aims to gain an understanding of the key parameters responsible for maximizing the energy transfer leading to nanoparticle heating through the use of simulations and experimental results. It was found that magnetic field strength, NP concentration, NP composition, and coil size can be controlled to generate accurate temperature profiles in NP aqueous solutions.
Energy transport in cooling device by magnetic fluid
NASA Astrophysics Data System (ADS)
Yamaguchi, Hiroshi; Iwamoto, Yuhiro
2017-06-01
Temperature sensitive magnetic fluid has a great potential with high performance heat transport ability as well as long distance energy (heat) transporting. In the present study experimental set-up was newly designed and constructed in order to measure basic heat transport characteristics under various magnetic field conditions. Angular dependence for the device (heat transfer section) was also taken into consideration for a sake of practical applications. The energy transfer characteristic (heat transport capability) in the magnetically-driven heat transport (cooling) device using the binary TSMF was fully investigated with the set-up. The obtained results indicate that boiling of the organic mixture (before the magnetic fluid itself reaching boiling point) effectively enhances the heat transfer as well as boosting the flow to circulate in the closed loop by itself. A long-distance heat transport of 5 m is experimentally confirmed, transferring the thermal energy of 35.8 W, even when the device (circulation loop) is horizontally placed. The highlighted results reveal that the proposed cooling device is innovative in a sense of transporting substantial amount of thermal energy (heat) as well as a long distance heat transport. The development of the magnetically-driven heat transport device has a great potential to be replaced for the conventional heat pipe in application of thermal engineering.
2016-07-27
ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Wireless Power Transfer , Structural Health Monitoring...efficient strongly coupled magnetic resonant systems, Wireless Power Transfer , (03 2014): 0. doi: 10.1017/wpt.2014.3 TOTAL: 1 Received Paper TOTAL...2016 Received Paper . Miniaturized Strongly Coupled Magnetic Resonant Systems for Wireless Power Transfer , 2016 IEEE Antennas Propagat. Society
Souza-Neto, N. M.; Haskel, D.; dos Reis, R. D.; ...
2016-07-26
Here, we describe how first principle calculations can play a key role in the interpretation of X-ray absorption near-edge structure (XANES) and X-ray magnetic circular dichroism (XMCD) spectra for a better understanding of emergent phenomena in condensed matter physics at high applied pressure. Eu compounds are used as case study to illustrate the advantages of this methodology, ranging from studies of electronic charge transfer probed by quadrupolar and dipolar contributions, to accurately determining electronic valence, and to inform about the influence of pressure on RKKY interactions and magnetism. This description should help advance studies where the pressure dependence of XANESmore » and XMCD data must be tackled with the support of theoretical calculations for a proper understanding of the electronic properties of materials.« less
NASA Astrophysics Data System (ADS)
Buhl, M.; Erbe, A.; Grebing, J.; Wintz, S.; Raabe, J.; Fassbender, J.
2013-10-01
Changing and detecting the orientation of nanomagnetic structures, which can be used for durable information storage, needs to be developed towards true nanoscale dimensions for keeping up the miniaturization speed of modern nanoelectronic components. Therefore, new concepts for controlling the state of nanomagnets are currently in the focus of research in the field of nanoelectronics. Here, we demonstrate reproducible switching of a purely metallic nanopillar placed on a lead that conducts a spin-polarized current at room temperature. Spin diffusion across the metal-metal (Cu to CoFe) interface between the pillar and the lead causes spin accumulation in the pillar, which may then be used to set the magnetic orientation of the pillar. In our experiments, the detection of the magnetic state of the nanopillar is performed by direct imaging via scanning transmission x-ray microscopy (STXM).
Spin-orbit torque-induced switching in ferrimagnetic alloys: Experiments and modeling
NASA Astrophysics Data System (ADS)
Je, Soong-Geun; Rojas-Sánchez, Juan-Carlos; Pham, Thai Ha; Vallobra, Pierre; Malinowski, Gregory; Lacour, Daniel; Fache, Thibaud; Cyrille, Marie-Claire; Kim, Dae-Yun; Choe, Sug-Bong; Belmeguenai, Mohamed; Hehn, Michel; Mangin, Stéphane; Gaudin, Gilles; Boulle, Olivier
2018-02-01
We investigate spin-orbit torque (SOT)-induced switching in rare-earth-transition metal ferrimagnetic alloys using W/CoTb bilayers. The switching current is found to vary continuously with the alloy concentration, and no reduction in the switching current is observed at the magnetic compensation point despite a very large SOT efficiency. A model based on coupled Landau-Lifschitz-Gilbert (LLG) equations shows that the switching current density scales with the effective perpendicular anisotropy which does not exhibit strong reduction at the magnetic compensation, explaining the behavior of the switching current density. This model also suggests that conventional SOT effective field measurements do not allow one to conclude whether the spins are transferred to one sublattice or just simply to the net magnetization. The effective spin Hall angle measurement shows an enhancement of the spin Hall angle with the Tb concentration which suggests an additional SOT contribution from the rare earth Tb atoms.
Qasim, Muhammad; Khan, Zafar Hayat; Khan, Waqar Ahmad; Ali Shah, Inayat
2014-01-01
This study investigates the magnetohydrodynamic (MHD) flow of ferrofluid along a stretching cylinder. The velocity slip and prescribed surface heat flux boundary conditions are employed on the cylinder surface. Water as conventional base fluid containing nanoparticles of magnetite (Fe3O4) is used. Comparison between magnetic (Fe3O4) and non-magnetic (Al2O3) nanoparticles is also made. The governing non-linear partial differential equations are reduced to non-linear ordinary differential equations and then solved numerically using shooting method. Present results are compared with the available data in the limiting cases. The present results are found to be in an excellent agreement. It is observed that with an increase in the magnetic field strength, the percent difference in the heat transfer rate of magnetic nanoparticles with Al2O3 decreases. Surface shear stress and the heat transfer rate at the surface increase as the curvature parameter increases, i.e curvature helps to enhance the heat transfer.
Magnetic metamaterial superlens for increased range wireless power transfer.
Lipworth, Guy; Ensworth, Joshua; Seetharam, Kushal; Huang, Da; Lee, Jae Seung; Schmalenberg, Paul; Nomura, Tsuyoshi; Reynolds, Matthew S; Smith, David R; Urzhumov, Yaroslav
2014-01-10
The ability to wirelessly power electrical devices is becoming of greater urgency as a component of energy conservation and sustainability efforts. Due to health and safety concerns, most wireless power transfer (WPT) schemes utilize very low frequency, quasi-static, magnetic fields; power transfer occurs via magneto-inductive (MI) coupling between conducting loops serving as transmitter and receiver. At the "long range" regime - referring to distances larger than the diameter of the largest loop - WPT efficiency in free space falls off as (1/d)(6); power loss quickly approaches 100% and limits practical implementations of WPT to relatively tight distances between power source and device. A "superlens", however, can concentrate the magnetic near fields of a source. Here, we demonstrate the impact of a magnetic metamaterial (MM) superlens on long-range near-field WPT, quantitatively confirming in simulation and measurement at 13-16 MHz the conditions under which the superlens can enhance power transfer efficiency compared to the lens-less free-space system.
Quantum approach of mesoscopic magnet dynamics with spin transfer torque
NASA Astrophysics Data System (ADS)
Wang, Yong; Sham, L. J.
2013-05-01
We present a theory of magnetization dynamics driven by spin-polarized current in terms of the quantum master equation. In the spin coherent state representation, the master equation becomes a Fokker-Planck equation, which naturally includes the spin transfer and quantum fluctuation. The current electron scattering state is correlated to the magnet quantum states, giving rise to quantum correction to the electron transport properties in the usual semiclassical theory. In the large-spin limit, the magnetization dynamics is shown to obey the Hamilton-Jacobi equation or the Hamiltonian canonical equations.
Tunable magnetotransport in Fe/hBN/graphene/hBN/Pt(Fe) epitaxial multilayers
NASA Astrophysics Data System (ADS)
Magnus Ukpong, Aniekan
2018-03-01
Theoretical and computational analysis of the magnetotransport properties and spin-transfer torque field-induced switching of magnetization density in vertically-stacked multilayers is presented. Using epitaxially-capped free layers of Pt and Fe, atom-resolved magnetic moments and spin-transfer torques are computed at finite bias. The calculations are performed within linear response approximation to the spin-density reformulation of the van der Waals density functional theory. Dynamical spin excitations are computed as a function of a spin-transfer torque induced magnetic field along the magnetic easy axis, and the corresponding spin polarization perpendicular to the easy axis is obtained. Bias-dependent giant anisotropic magnetoresistance of up to 3200% is obtained in the nonmagnetic-metal-capped Fe/hBN/graphene/hBN/Pt multilayer architecture. Since this specific heterostructure is not yet fabricated and characterized, the predicted high performance has not been demonstrated experimentally. Nevertheless, similar calculations performed on the Fe/hBN/Co stack show that the tunneling magnetoresistance obtained at the Fermi-level is in excellent agreement with results of recent magnetotransport measurements on magnetic tunnel junctions that contain the monolayer hBN tunnel region. The magnitude of the spin-transfer torque is found to increase as the tunneling spin current increases, and this activates the magnetization switching process due to increased charge accumulation. This mechanism causes substantial spin backflow, which manifests as rapid undulations in the bias-dependent tunneling spin currents. The implication of these findings on the design of nanoscale spintronic devices with spin-transfer torque tunable magnetization density is discussed. Insights derived from this study are expected to enhance the prospects for developing and integrating artificially assembled van der Waals multilayer heterostructures as the preferred material platform for efficient engineering of spin switches for spintronic applications.
Turbulent energy transfer in electromagnetic turbulence: hints from a Reversed Field Pinch plasma
NASA Astrophysics Data System (ADS)
Vianello, N.; Bergsaker, H.
2005-10-01
The relationship between electromagnetic turbulence and sheared plasma flow in a Reversed Field Pinch is addressed. ExB sheared flows and turbulence at the edge tends to organize themeselves near marginal stability, suggesting an underlying energy exchange process between turbulence and mean flow. In MHD this process is well described through the quantity P which represents the energy transfer (per mass and time unit) from turbulence to mean fields. In the edge region of RFP configuration, where magnetic field is mainly poloidal and the mean ExB is consequently toroidal, the quantity P results: P =[ -
On the reversibility of the Meissner effect and the angular momentum puzzle
NASA Astrophysics Data System (ADS)
Hirsch, J. E.
2016-10-01
It is generally believed that the laws of thermodynamics govern superconductivity as an equilibrium state of matter, and hence that the normal-superconductor transition in a magnetic field is reversible under ideal conditions. Because eddy currents are generated during the transition as the magnetic flux changes, the transition has to proceed infinitely slowly to generate no entropy. Experiments showed that to a high degree of accuracy no entropy was generated in these transitions. However, in this paper we point out that for the length of times over which these experiments extended, a much higher degree of irreversibility due to decay of eddy currents should have been detected than was actually observed. We also point out that within the conventional theory of superconductivity no explanation exists for why no Joule heat is generated in the superconductor to normal transition when the supercurrent stops. In addition we point out that within the conventional theory of superconductivity no mechanism exists for the transfer of momentum between the supercurrent and the body as a whole, which is necessary to ensure that the transition in the presence of a magnetic field respects momentum conservation. We propose a solution to all these questions based on the alternative theory of hole superconductivity. The theory proposes that in the normal-superconductor transition there is a flow and backflow of charge in direction perpendicular to the phase boundary when the phase boundary moves. We show that this flow and backflow explains the absence of Joule heat generated by Faraday eddy currents, the absence of Joule heat generated in the process of the supercurrent stopping, and the reversible transfer of momentum between the supercurrent and the body, provided the current carriers in the normal state are holes.
Transfer learning improves supervised image segmentation across imaging protocols.
van Opbroek, Annegreet; Ikram, M Arfan; Vernooij, Meike W; de Bruijne, Marleen
2015-05-01
The variation between images obtained with different scanners or different imaging protocols presents a major challenge in automatic segmentation of biomedical images. This variation especially hampers the application of otherwise successful supervised-learning techniques which, in order to perform well, often require a large amount of labeled training data that is exactly representative of the target data. We therefore propose to use transfer learning for image segmentation. Transfer-learning techniques can cope with differences in distributions between training and target data, and therefore may improve performance over supervised learning for segmentation across scanners and scan protocols. We present four transfer classifiers that can train a classification scheme with only a small amount of representative training data, in addition to a larger amount of other training data with slightly different characteristics. The performance of the four transfer classifiers was compared to that of standard supervised classification on two magnetic resonance imaging brain-segmentation tasks with multi-site data: white matter, gray matter, and cerebrospinal fluid segmentation; and white-matter-/MS-lesion segmentation. The experiments showed that when there is only a small amount of representative training data available, transfer learning can greatly outperform common supervised-learning approaches, minimizing classification errors by up to 60%.
On the topology of flux transfer events
NASA Technical Reports Server (NTRS)
Hesse, Michael; Birn, Joachim; Schindler, Karl
1990-01-01
A topological analysis is made of a simple model magnetic field of a perturbation at the magnetopause that shares magnetic properties with flux transfer events. The aim is to clarify a number of topological aspects that arise in the case of fully three-dimensional magnetic fields. It is shown that a localized perturbation at the magnetopause can in principle open a closed magnetosphere by establishing magnetic connections across the magnetopause by the formation of a ropelike magnetic field structure. For this purpose a global topological model of a closed magnetosphere is considered as the unperturbed state. The topological substructure of the model flux rope is discussed in detail.
MHD effects on heat transfer and entropy generation of nanofluid flow in an open cavity
NASA Astrophysics Data System (ADS)
Mehrez, Zouhaier; El Cafsi, Afif; Belghith, Ali; Le Quéré, Patrick
2015-01-01
The present numerical work investigates the effect of an external oriented magnetic field on heat transfer and entropy generation of Cu-water nanofluid flow in an open cavity heated from below. The governing equations are solved numerically by the finite-volume method. The study has been carried out for a wide range of solid volume fraction 0≤φ≤0.06, Hartmann number 0≤Ha≤100, Reynolds number 100≤Re≤500 and Richardson number 0.001≤Ri≤1 at three inclination angles of magnetic field γ: 0°, 45° and 90°. The numerical results are given by streamlines, isotherms, average Nusselt number, average entropy generation and Bejan number. The results show that flow behavior, temperature distribution, heat transfer and entropy generation are strongly affected by the presence of a magnetic field. The average Nusselt number and entropy generation, which increase by increasing volume fraction of nanoparticles, depend mainly on the Hartmann number and inclination angle of the magnetic field. The variation rates of heat transfer and entropy generation while adding nanoparticles or applying a magnetic field depend on the Richardson and Reynolds numbers.
Double proton transfer in the complex of acetic acid with methanol: Theory versus experiment
NASA Astrophysics Data System (ADS)
Fernández-Ramos, Antonio; Smedarchina, Zorka; Rodríguez-Otero, Jesús
2001-01-01
To test the approximate instanton approach to intermolecular proton-transfer dynamics, we report multidimensional ab initio bimolecular rate constants of HH, HD, and DD exchange in the complex of acetic acid with methanol in tetrahydrofuran-d8, and compare them with the NMR (nuclear magnetic resonance) experiments of Gerritzen and Limbach. The bimolecular rate constants are evaluated as products of the exchange rates and the equilibrium rate constants of complex formation in solution. The two molecules form hydrogen-bond bridges and the exchange occurs via concerted transfer of two protons. The dynamics of this transfer is evaluated in the complete space of 36 vibrational degrees of freedom. The geometries of the two isolated molecules, the complex, and the transition states corresponding to double proton transfer are fully optimized at QCISD (quadratic configuration interaction including single and double substitutions) level of theory, and the normal-mode frequencies are calculated at MP2 (Møller-Plesset perturbation theory of second order) level with the 6-31G (d,p) basis set. The presence of the solvent is taken into account via single-point calculations over the gas phase geometries with the PCM (polarized continuum model). The proton exchange rate constants, calculated with the instanton method, show the effect of the structure and strength of the hydrogen bonds, reflected in the coupling between the tunneling motion and the other vibrations of the complex. Comparison with experiment, which shows substantial kinetic isotopic effects (KIE), indicates that tunneling prevails over classic exchange for the whole temperature range of observation. The unusual behavior of the experimental KIE upon single and double deuterium substitution is well reproduced and is related to the synchronicity of two-atom tunneling.
Preparation, characteristics, convection and applications of magnetic nanofluids: A review
NASA Astrophysics Data System (ADS)
Kumar, Aditya; Subudhi, Sudhakar
2018-02-01
Magnetic nanofluids (MNfs), the colloidal suspension of ferromagnetic nanomaterial, have been taken into research fascinatingly. After contemplating its distinctive interesting properties and unique eximious features it offers innumerous application not only in heat transfer field but also immensely prevalent in medical, biological, aerospace, electronics and solar sciences. This review paper epitomizes and perusing the research work done on heat transfer application of MNfs and encapsulate it for the future research support. Moreover, numerical and experimental, both the approaches has been included for the insightful analysis of phenomenon to apprehend augmentation in heat transfer by MNfs. This article first underlines the importance of appropriate methods of preparation of MNfs as well as its effects on the thermophysical properties of MNfs. Subsequently, the paper comprehended the descriptive analysis of augmentation of convection heat transfer and the effect of magnetic field on the behavior MNfs. Additionally, the effect of magnetic field intensity has been taken as a pertinent parameter and correlations have been developed for thermal conductivity, viscosity and heat transfer coefficient based on the reviewed data. The paper concluded with the tremendous applications of the MNfs and the futuristic plan to support the potential areas for future research.
Brownian diffusion and thermophoresis mechanisms in Casson fluid over a moving wedge
NASA Astrophysics Data System (ADS)
Ullah, Imran; Shafie, Sharidan; Khan, Ilyas; Hsiao, Kai Long
2018-06-01
The effect of Brownian diffusion and thermophoresis on electrically conducting mixed convection flow of Casson fluid induced by moving wedge is investigated in this paper. It is assumed that the wedge is saturated in a porous medium and experiences the thermal radiation and chemical reaction effects. The transformed nonlinear governing equations are solved numerically by Keller box scheme. Findings reveal that increase in Casson and magnetic parameters reduced the boundary layer thickness. The effect of Brownian motion and thermophoresis parameters are more pronounced on temperature profile as compared to nanoparticles concentration. The presence of thermal radiation assisted the heat transfer rate significantly. The influence of magnetic parameter is observed less significant on temperature and nanoparticles concentration.
Ultra-low field MRI food inspection system prototype
NASA Astrophysics Data System (ADS)
Kawagoe, Satoshi; Toyota, Hirotomo; Hatta, Junichi; Ariyoshi, Seiichiro; Tanaka, Saburo
2016-11-01
We develop an ultra-low field (ULF) magnetic resonance imaging (MRI) system using a high-temperature superconducting quantum interference device (HTS-SQUID) for food inspection. A two-dimensional (2D)-MR image is reconstructed from the grid processing raw data using the 2D fast Fourier transform method. In a previous study, we combined an LC resonator with the ULF-MRI system to improve the detection area of the HTS-SQUID. The sensitivity was improved, but since the experiments were performed in a semi-open magnetically shielded room (MSR), external noise was a problem. In this study, we develop a compact magnetically shielded box (CMSB), which has a small open window for transfer of a pre-polarized sample. Experiments were performed in the CMSB and 2D-MR images were compared with images taken in the semi-open MSR. A clear image of a disk-shaped water sample is obtained, with an outer dimension closer to that of the real sample than in the image taken in the semi-open MSR. Furthermore, the 2D-MR image of a multiple cell water sample is clearly reconstructed. These results show the applicability of the ULF-MRI system in food inspection.
NASA Astrophysics Data System (ADS)
Wang, H.; Cheng, J.
2017-12-01
A method to Synthesis natural electric and magnetic Time series is proposed whereby the time series of local site are derived using an Impulse Response and a reference (STIR). The method is based on the assumption that the external source of magnetic fields are uniform, and the electric and magnetic fields acquired at the surface satisfy a time-independent linear relation in frequency domain.According to the convolution theorem, we can synthesize natural electric and magnetic time series using the impulse responses of inter-station transfer functions with a reference. Applying this method, two impulse responses need to be estimated: the quasi-MT impulse response tensor and the horizontal magnetic impulse response tensor. These impulse response tensors relate the local horizontal electric and magnetic components with the horizontal magnetic components at a reference site, respectively. Some clean segments of times series are selected to estimate impulse responses by using least-square (LS) method. STIR is similar with STIN (Wang, 2017), but STIR does not need to estimate the inter-station transfer functions, and the synthesized data are more accurate in high frequency, where STIN fails when the inter-station transfer functions are contaminated severely. A test with good quality of MT data shows that synthetic time-series are similar to natural electric and magnetic time series. For contaminated AMT example, when this method is used to remove noise present at the local site, the scatter of MT sounding curves are clear reduced, and the data quality are improved. *This work is funded by National Key R&D Program of China(2017YFC0804105),National Natural Science Foundation of China (41604064, 51574250), State Key Laboratory of Coal Resources and Safe Mining ,China University of Mining & Technology,(SKLCRSM16DC09)
A ruthenium (Ru) catalyst supported on magnetic nanoparticles (NiFe2O4) has been successfully synthesized and used for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The cata...
Karasawa, Masanobu; Ishii, Kazuyuki
2018-05-03
We have investigated the demagnetization of a ferrimagnetic substrate, Bi, Al-substituted dysprosium iron garnet (Bi0.8Dy2.2Fe4.3Al0.7O12), based on selective pulsed laser irradiation of a molecular thin film consisting of μ-oxo-bis[hydroxyl{2,9(or 10),16(or 17),23(or 24)-tetra-tert-butylphthalocyanato}silicon] ((SiPc)2) and poly(vinylidene fluoride), and succeeded in reproducing photothermal energy transfer from a molecular thin film to an inorganic magnetic substrate in a submicrometer-order and a submicrosecond time scale using numerical analysis. After the instant temperature rise due to nanosecond pulsed laser irradiation of the (SiPc)2-based film, followed by heat transfer from the film to the neighboring magnetic substrate, demagnetization of the magnetic substrate was spectroscopically monitored by the decrease in its magnetic circular dichroism (MCD) intensity. The MCD intensity decreased with increasing pulsed laser energy, which reflects the fact that the submicrometer-order region of the substrate was demagnetized as a result of temperature rise reaching high Curie temperature. This heat transfer phenomenon resulting in the demagnetization of the magnetic substrate was numerically analyzed in a submicrometer-order and a submicrosecond time scale using the finite difference method: the demagnetized regions were calculated to be the same order of magnitude as those experimentally evaluated. These results would provide a more detailed understanding of photothermal energy transfer in organic-inorganic hybrid materials, which would be useful for developing photofunctional materials.
Magnetically Suspended Linear Pulse Motor for Semiconductor Wafer Transfer in Vacuum Chamber
NASA Technical Reports Server (NTRS)
Moriyama, Shin-Ichi; Hiraki, Naoji; Watanabe, Katsuhide; Kanemitsu, Yoichi
1996-01-01
This paper describes a magnetically suspended linear pulse motor for a semiconductor wafer transfer robot in a vacuum chamber. The motor can drive a wafer transfer arm horizontally without mechanical contact. In the construction of the magnetic suspension system, four pairs of linear magnetic bearings for the lift control are used for the guidance control as well. This approach allows us to make the whole motor compact in size and light in weight. The tested motor consists of a double-sided stator and a transfer arm with a width of 50 mm and a total length of 700 mm. The arm, like a ladder in shape, is designed as the floating element with a tooth width of 4 mm (a tooth pitch of 8 mm). The mover mass is limited to about 1.6 kg by adopting such an arm structure, and the ratio of thrust to mover mass reaches to 3.2 N/kg under a broad air gap (1 mm) between the stator teeth and the mover teeth. The performance testing was carried out with a transfer distance less than 450 mm and a transfer speed less than 560 mm/s. The attitude of the arm was well controlled by the linear magnetic bearings with a combined use, and consequently the repeatability on the positioning of the arm reached to about 2 micron. In addition, the positioning accuracy was improved up to about 30 micron through a compensation of the 128-step wave current which was used for the micro-step drive with a step increment of 62.5 micron.
MESSENGER observations of magnetic reconnection in Mercury's magnetosphere.
Slavin, James A; Acuña, Mario H; Anderson, Brian J; Baker, Daniel N; Benna, Mehdi; Boardsen, Scott A; Gloeckler, George; Gold, Robert E; Ho, George C; Korth, Haje; Krimigis, Stamatios M; McNutt, Ralph L; Raines, Jim M; Sarantos, Menelaos; Schriver, David; Solomon, Sean C; Trávnícek, Pavel; Zurbuchen, Thomas H
2009-05-01
Solar wind energy transfer to planetary magnetospheres and ionospheres is controlled by magnetic reconnection, a process that determines the degree of connectivity between the interplanetary magnetic field (IMF) and a planet's magnetic field. During MESSENGER's second flyby of Mercury, a steady southward IMF was observed and the magnetopause was threaded by a strong magnetic field, indicating a reconnection rate ~10 times that typical at Earth. Moreover, a large flux transfer event was observed in the magnetosheath, and a plasmoid and multiple traveling compression regions were observed in Mercury's magnetotail, all products of reconnection. These observations indicate that Mercury's magnetosphere is much more responsive to IMF direction and dominated by the effects of reconnection than that of Earth or the other magnetized planets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Emily; Ramirez, Emilio; Ruggles, Art E.
The modeling capability for tubes with twisted tape inserts is reviewed with reference to the application of cooling plasma facing components in magnetic confinement fusion devices. The history of experiments examining the cooling performance of tubes with twisted tape inserts is reviewed with emphasis on the manner of heating, flow stability limits and the details of the test section and fluid delivery system. Models for heat transfer, burnout, and onset of net vapor generation in straight tube flows and tube with twisted tape are compared. As a result, the gaps in knowledge required to establish performance limits of the plasmamore » facing components are identified and attributes of an experiment to close those gaps are presented.« less
Clark, Emily; Ramirez, Emilio; Ruggles, Art E.; ...
2015-08-18
The modeling capability for tubes with twisted tape inserts is reviewed with reference to the application of cooling plasma facing components in magnetic confinement fusion devices. The history of experiments examining the cooling performance of tubes with twisted tape inserts is reviewed with emphasis on the manner of heating, flow stability limits and the details of the test section and fluid delivery system. Models for heat transfer, burnout, and onset of net vapor generation in straight tube flows and tube with twisted tape are compared. As a result, the gaps in knowledge required to establish performance limits of the plasmamore » facing components are identified and attributes of an experiment to close those gaps are presented.« less
Ben Dor, Oren; Yochelis, Shira; Radko, Anna; Vankayala, Kiran; Capua, Eyal; Capua, Amir; Yang, See-Hun; Baczewski, Lech Tomasz; Parkin, Stuart Stephen Papworth; Naaman, Ron; Paltiel, Yossi
2017-02-23
Ferromagnets are commonly magnetized by either external magnetic fields or spin polarized currents. The manipulation of magnetization by spin-current occurs through the spin-transfer-torque effect, which is applied, for example, in modern magnetoresistive random access memory. However, the current density required for the spin-transfer torque is of the order of 1 × 10 6 A·cm -2 , or about 1 × 10 25 electrons s -1 cm -2 . This relatively high current density significantly affects the devices' structure and performance. Here we demonstrate magnetization switching of ferromagnetic thin layers that is induced solely by adsorption of chiral molecules. In this case, about 10 13 electrons per cm 2 are sufficient to induce magnetization reversal. The direction of the magnetization depends on the handedness of the adsorbed chiral molecules. Local magnetization switching is achieved by adsorbing a chiral self-assembled molecular monolayer on a gold-coated ferromagnetic layer with perpendicular magnetic anisotropy. These results present a simple low-power magnetization mechanism when operating at ambient conditions.
Ben Dor, Oren; Yochelis, Shira; Radko, Anna; Vankayala, Kiran; Capua, Eyal; Capua, Amir; Yang, See-Hun; Baczewski, Lech Tomasz; Parkin, Stuart Stephen Papworth; Naaman, Ron; Paltiel, Yossi
2017-01-01
Ferromagnets are commonly magnetized by either external magnetic fields or spin polarized currents. The manipulation of magnetization by spin-current occurs through the spin-transfer-torque effect, which is applied, for example, in modern magnetoresistive random access memory. However, the current density required for the spin-transfer torque is of the order of 1 × 106 A·cm−2, or about 1 × 1025 electrons s−1 cm−2. This relatively high current density significantly affects the devices' structure and performance. Here we demonstrate magnetization switching of ferromagnetic thin layers that is induced solely by adsorption of chiral molecules. In this case, about 1013 electrons per cm2 are sufficient to induce magnetization reversal. The direction of the magnetization depends on the handedness of the adsorbed chiral molecules. Local magnetization switching is achieved by adsorbing a chiral self-assembled molecular monolayer on a gold-coated ferromagnetic layer with perpendicular magnetic anisotropy. These results present a simple low-power magnetization mechanism when operating at ambient conditions. PMID:28230054
Nanofluid flow and heat transfer due to a stretching cylinder in the presence of magnetic field
NASA Astrophysics Data System (ADS)
Ashorynejad, H. R.; Sheikholeslami, M.; Pop, I.; Ganji, D. D.
2013-03-01
In this paper, flow and heat transfer of a nanofluid over a stretching cylinder in the presence of magnetic field has been investigated. The governing partial differential equations with the corresponding boundary conditions are reduced to a set of ordinary differential equations with the appropriate boundary conditions using similarity transformation, which is then solved numerically by the fourth order Runge-Kutta integration scheme featuring a shooting technique. Different types of nanoparticles as copper (Cu), silver (Ag), alumina (Al2O3) and titanium oxide (TiO2) with water as their base fluid has been considered. The influence of significant parameters such as nanoparticle volume fraction, nanofluids type, magnetic parameter and Reynolds number on the flow and heat transfer characteristics is discussed. It was found that the Nusselt number increases as each of Reynolds number or nanoparticles volume fraction increase, but it decreases as magnetic parameter increase. Also it can be found that choosing copper (for small of magnetic parameter) and alumina (for large values of magnetic parameter) leads to the highest cooling performance for this problem.
Guo, Yunsheng; Li, Jiansheng; Hou, Xiaojuan; Lv, Xiaolong; Liang, Hao; Zhou, Ji; Wu, Hongya
2017-04-07
Wireless power transfer is a nonradiative type of transmission that is performed in the near-field region. In this region, the electromagnetic fields that are produced by both the transmitting and receiving coils are evanescent fields, which should not transmit energy. This then raises the question of how the energy can be transferred. Here we describe a theoretical study of the two evanescent field distributions at different terminal loads. It is shown that the essential principle of wireless energy transfer is the superposition of the two evanescent fields, and the resulting superimposed field is mediated through the terminal load. If the terminal load is either capacitive or inductive, then the superimposed field cannot transfer the energy because its Poynting vector is zero; in contrast, if the load is resistive, energy can then be conveyed from the transmitting coil to the receiving coil. The simulation results for the magnetic field distributions and the time-domain current waveforms agree very well with the results of the theoretical analysis. This work thus provides a comprehensive understanding of the energy transfer mechanism involved in the magnetic resonant coupling system.
Review of heat transfer problems associated with magnetically-confined fusion reactor concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, M.A.; Werner, R.W.; Carlson, G.A.
1976-04-01
Conceptual design studies of possible fusion reactor configurations have revealed a host of interesting and sometimes extremely difficult heat transfer problems. The general requirements imposed on the coolant system for heat removal of the thermonuclear power from the reactor are discussed. In particular, the constraints imposed by the fusion plasma, neutronics, structure and magnetic field environment are described with emphasis on those aspects which are unusual or unique to fusion reactors. Then the particular heat transfer characteristics of various possible coolants including lithium, flibe, boiling alkali metals, and helium are discussed in the context of these general fusion reactor requirements.more » Some specific areas where further experimental and/or theoretical work is necessary are listed for each coolant along with references to the pertinent research already accomplished. Specialized heat transfer problems of the plasma injection and removal systems are also described. Finally, the challenging heat transfer problems associated with the superconducting magnets are reviewed, and once again some of the key unsolved heat transfer problems are enumerated.« less
NASA Astrophysics Data System (ADS)
Limbach, Hans-Heinrich; Meschede, Ludger; Scherer, Gerd
1989-05-01
Stratagems are presented for the determination of kinetic isotope effects of proton exchange reactions by dynamic NMR spectroscopy. In such experiments, lineshape analyses and/or polarization transfer experiments are performed on the exchanging protons or deuterons as well as on remote spins, as a function of the deuterium fraction in the mobile proton sites. These methods are NMR analogs of previous proton inventory techniques involving classical kinetic methods. A theory is developed in order to derive the kinetic isotope effects as well as the number of transferred protons from the experimental NMR spectra. The technique is then applied to the problem of proton exchange in the system 15N,15N'-di-p-fluorophenylibrmamidine, a nitrogen analog of formic acid, dissolved in tetrahydrofuran-d8 (THF). DFFA forms two conformers in THF to which s-trans and s-cis structures have been assigned. Only the s-trans conformer is able to dimerize and exchange protons. Lineshape simulations and magnetization transfer experiments were carried out at 189,2 K, at a concentration of 0.02 mol l-1, as a function of the deuterium fraction D in the 1H-15N sites. Using 1H NMR spectroscopy, a linear dependence of the inverse proton lifetimes on D was observed. From this it was concluded that two protons are transported in the rate limiting step of the proton exchange. This result is expected for a double proton transfer in an s-trans dimer with a cyclic structure. The full kinetic HH/HD/DD isotope effects of 233:11:1 at 189 K were determined through 19F NMR experiments on the same samples. The deviation from the rule of geometric mean, although substantial, is much smaller than found in previous studies of intramolecular HH transfer reactions. Possible causes of this effect are discussed.
Laakso, Ilkka; Hirata, Akimasa
2013-11-07
In this study, an induced electric field in a human body is evaluated for the magnetic field leaked from a wireless power transfer system for charging an electrical vehicle. The magnetic field from the wireless power transfer system is modelled computationally, and its effectiveness is confirmed by comparison with the field measured in a previous study. The induced electric field in a human standing around the vehicle is smaller than the allowable limit prescribed in international guidelines, although the magnetic field strength in the human body is locally higher than the allowable external field strength. Correlation between the external magnetic field and the induced electric field is confirmed to be reasonable at least in the standing posture, which is the case discussed in the international standard. Based on this finding, we discussed and confirmed the applicability of a three-point magnetic field measurement at heights of 0.5, 1.0, and 1.5 m for safety compliance.
Spin Transfer torques in Antiferromagnets
NASA Astrophysics Data System (ADS)
Saidaoui, Hamed; Waintal, Xavier; Manchon, Aurelien; Spsms, Cea, Grenoble France Collaboration
2013-03-01
Spin Transfer Torque (STT) has attracted tremendously growing interest in the past two decades. Consisting on the transfer of spin angular momentum of a spin polarized current to local magnetic moments, the STT gives rise to a complex dynamics of the magnetization. Depending on the the structure, the STT shows a dominated In plane component for spin valves, whereas both components coexist for magnetic tunneling junctions (MTJ). For latter case the symmetry of the structure is considered to be decisive in identifying the nature and behavior of the torque. In the present study we are interested in magnetic structures where we substitute either one or both of the magnetic layers by antiferromagnets (AF). We use Non-equilibrium Green's function formalism applied on a tight-binding model to investigate the nature of the spin torque. We notice the presence of two types of torque exerted on (AF), a torque which tends to rotate the order parameter and another one that competes with the exchange interaction. We conclude by comparison with previous works.
Resonant-cavity antenna for plasma heating
Perkins, F.W. Jr.; Chiu, S.C.; Parks, P.; Rawls, J.M.
1984-01-10
This invention relates generally to a method and apparatus for transferring energy to a plasma immersed in a magnetic field, and relates particularly to an apparatus for heating a plasma of low atomic number ions to high temperatures by transfer of energy to plasma resonances, particularly the fundamental and harmonics of the ion cyclotron frequency of the plasma ions. This invention transfers energy from an oscillating radio-frequency field to a plasma resonance of a plasma immersed in a magnetic field.
Solis, Kyle Jameson; Martin, James E.
2012-11-01
Isothermal magnetic advection is a recently discovered method of inducing highly organized, non-contact flow lattices in suspensions of magnetic particles, using only uniform ac magnetic fields of modest strength. The initiation of these vigorous flows requires neither a thermal gradient nor a gravitational field and so can be used to transfer heat and mass in circumstances where natural convection does not occur. These advection lattices are comprised of a square lattice of antiparallel flow columns. If the column spacing is sufficiently large compared to the column length, and the flow rate within the columns is sufficiently large, then one wouldmore » expect efficient transfer of both heat and mass. Otherwise, the flow lattice could act as a countercurrent heat exchanger and only mass will be efficiently transferred. Although this latter case might be useful for feeding a reaction front without extracting heat, it is likely that most interest will be focused on using IMA for heat transfer. In this paper we explore the various experimental parameters of IMA to determine which of these can be used to control the column spacing. These parameters include the field frequency, strength, and phase relation between the two field components, the liquid viscosity and particle volume fraction. We find that the column spacing can easily be tuned over a wide range, to enable the careful control of heat and mass transfer.« less
Low-current-density spin-transfer switching in Gd{sub 22}Fe{sub 78}-MgO magnetic tunnel junction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinjo, Hidekazu, E-mail: kinjou.h-lk@nhk.or.jp; Machida, Kenji; Aoshima, Ken-ichi
2014-05-28
Magnetization switching of a relatively thick (9 nm) Gd-Fe free layer was achieved with a low spin injection current density of 1.0 × 10{sup 6} A/cm{sup 2} using MgO based magnetic tunnel junction devices, fabricated for light modulators. At about 560 × 560 nm{sup 2} in size, the devices exhibited a tunneling magnetoresistance ratio of 7%. This low-current switching is mainly attributed to thermally assisted spin-transfer switching in consequence of its thermal magnetic behavior arising from Joule heating.
Magnetic and optoelectronic properties of gold nanocluster-thiophene assembly.
Qin, Wei; Lohrman, Jessica; Ren, Shenqiang
2014-07-07
Nanohybrids consisting of Au nanocluster and polythiophene nanowire assemblies exhibit unique thermal-responsive optical behaviors and charge-transfer controlled magnetic and optoelectronic properties. The ultrasmall Au nanocluster enhanced photoabsorption and conductivity effectively improves the photocurrent of nanohybrid based photovoltaics, leading to an increase of power conversion efficiency by 14 % under AM 1.5 illumination. In addition, nanohybrids exhibit electric field controlled spin resonance and magnetic field sensing behaviors, which open up the potential of charge-transfer complex system where the magnetism and optoelectronics interact. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
IS VOYAGER 1 INSIDE AN INTERSTELLAR FLUX TRANSFER EVENT?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwadron, N. A.; McComas, D. J., E-mail: n.schwadron@unh.edu
Plasma wave observations from Voyager 1 have recently shown large increases in plasma density, to about 0.1 cm{sup –3}, consistent with the density of the local interstellar medium. However, corresponding magnetic field observations continue to show the spiral magnetic field direction observed throughout the inner heliosheath. These apparently contradictory observations may be reconciled if Voyager 1 is inside an interstellar flux transfer event—similar to flux transfer events routinely seen at the Earth's magnetopause. If this were the case, Voyager 1 remains inside the heliopause and based on the Voyager 1 observations we can determine the polarity of the interstellar magnetic field for the first time.
Wireless power transfer based on dielectric resonators with colossal permittivity
NASA Astrophysics Data System (ADS)
Song, Mingzhao; Belov, Pavel; Kapitanova, Polina
2016-11-01
Magnetic resonant wireless power transfer system based on dielectric disk resonators made of colossal permittivity (ɛ = 1000) and low loss (tan δ = 2.5 × 10-4) microwave ceramic is experimentally investigated. The system operates at the magnetic dipole mode excited in the resonators providing maximal power transfer efficiency of 90% at the frequency 232 MHz. By applying an impedance matching technique, the efficiency of 50% is achieved within the separation between the resonators d = 16 cm (3.8 radii of the resonator). The separation, misalignment and rotation dependencies of wireless power transfer efficiency are experimentally studied.
Chakraborty, Brotati; Roy, Atanu Singha; Dasgupta, Swagata; Basu, Samita
2010-12-30
Conventional spectroscopic tools such as absorption, fluorescence, and circular dichroism spectroscopy used in the study of photoinduced drug-protein interactions can yield useful information about ground-state and excited-state phenomena. However, photoinduced electron transfer (PET) may be a possible phenomenon in the drug-protein interaction, which may go unnoticed if only conventional spectroscopic observations are taken into account. Laser flash photolysis coupled with an external magnetic field can be utilized to confirm the occurrence of PET and authenticate the spin states of the radicals/radical ions formed. In the study of interaction of the model protein human serum albumin (HSA) with acridine derivatives, acridine yellow (AY) and proflavin (PF(+)), conventional spectroscopic tools along with docking study have been used to decipher the binding mechanism, and laser flash photolysis technique with an associated magnetic field (MF) has been used to explore PET. The results of fluorescence study indicate that fluorescence resonance energy transfer takes place from the protein to the acridine-based drugs. Docking study unveils the crucial role of Ser 232 residue of HSA in explaining the differential behavior of the two drugs towards the model protein. Laser flash photolysis experiments help to identify the radicals/radical ions formed in the due course of PET (PF(•), AY(•-), TrpH(•+), Trp(•)), and the application of an external MF has been used to characterize their initial spin-state. Owing to its distance dependence, MF effect gives an idea about the proximity of the radicals/radical ions during interaction in the system and also helps to elucidate the reaction mechanisms. A prominent MF effect is observed in homogeneous buffer medium owing to the pseudoconfinement of the radicals/radical ions provided by the complex structure of the protein.
Theory of ionizing neutrino-atom collisions: The role of atomic recoil
NASA Astrophysics Data System (ADS)
Kouzakov, Konstantin A.; Studenikin, Alexander I.
2016-04-01
We consider theoretically ionization of an atom by neutrino impact taking into account electromagnetic interactions predicted for massive neutrinos by theories beyond the Standard Model. The effects of atomic recoil in this process are estimated using the one-electron and semiclassical approximations and are found to be unimportant unless the energy transfer is very close to the ionization threshold. We show that the energy scale where these effects become important is insignificant for current experiments searching for magnetic moments of reactor antineutrinos.
Advanced Radiation Theory Support Annual Report 2003, Final Report
2004-04-19
diameter wires would lose a higher mass fraction. Table 2. Energy Transfers for Ti Loads Dia. & Case H 2 H13 Mass -a-m Z,DE kJ kJ Pg 1000 - Z 428.2...issues covered are (1) issues and directions for future research, (2) zero- and one-dimensional modeling of DQ experiments, (3) enhanced energy ...coupling and x-ray emission in z-pinch implosions, (4) confinement and compression of magnetic flux by plasma shells, and (6) flashover and energy coupling
A chiral-based magnetic memory device without a permanent magnet
Dor, Oren Ben; Yochelis, Shira; Mathew, Shinto P.; Naaman, Ron; Paltiel, Yossi
2013-01-01
Several technologies are currently in use for computer memory devices. However, there is a need for a universal memory device that has high density, high speed and low power requirements. To this end, various types of magnetic-based technologies with a permanent magnet have been proposed. Recent charge-transfer studies indicate that chiral molecules act as an efficient spin filter. Here we utilize this effect to achieve a proof of concept for a new type of chiral-based magnetic-based Si-compatible universal memory device without a permanent magnet. More specifically, we use spin-selective charge transfer through a self-assembled monolayer of polyalanine to magnetize a Ni layer. This magnitude of magnetization corresponds to applying an external magnetic field of 0.4 T to the Ni layer. The readout is achieved using low currents. The presented technology has the potential to overcome the limitations of other magnetic-based memory technologies to allow fabricating inexpensive, high-density universal memory-on-chip devices. PMID:23922081
A chiral-based magnetic memory device without a permanent magnet.
Ben Dor, Oren; Yochelis, Shira; Mathew, Shinto P; Naaman, Ron; Paltiel, Yossi
2013-01-01
Several technologies are currently in use for computer memory devices. However, there is a need for a universal memory device that has high density, high speed and low power requirements. To this end, various types of magnetic-based technologies with a permanent magnet have been proposed. Recent charge-transfer studies indicate that chiral molecules act as an efficient spin filter. Here we utilize this effect to achieve a proof of concept for a new type of chiral-based magnetic-based Si-compatible universal memory device without a permanent magnet. More specifically, we use spin-selective charge transfer through a self-assembled monolayer of polyalanine to magnetize a Ni layer. This magnitude of magnetization corresponds to applying an external magnetic field of 0.4 T to the Ni layer. The readout is achieved using low currents. The presented technology has the potential to overcome the limitations of other magnetic-based memory technologies to allow fabricating inexpensive, high-density universal memory-on-chip devices.
NASA Astrophysics Data System (ADS)
Ye, Qimiao; Chen, Lin; Qiu, Wenqi; Lin, Liangjie; Sun, Huijun; Cai, Shuhui; Wei, Zhiliang; Chen, Zhong
2017-01-01
Nuclear magnetic resonance (NMR) spectroscopy serves as an important tool for both qualitative and quantitative analyses of various systems in chemistry, biology, and medicine. However, applications of one-dimensional 1H NMR are often restrained by the presence of severe overlap among different resonances. The advent of two-dimensional (2D) 1H NMR constitutes a promising alternative by extending the crowded resonances into a plane and thereby alleviating the spectral congestions. However, the enhanced ability in discriminating resonances is achieved at the cost of extended experimental duration due to necessity of various scans with progressive delays to construct the indirect dimension. Therefore, in this study, we propose a selective coherence transfer (SECOT) method to accelerate acquisitions of 2D correlation spectroscopy by converting chemical shifts into spatial positions within the effective sample length and then performing an echo planar spectroscopic imaging module to record the spatial and spectral information, which generates 2D correlation spectrum after 2D Fourier transformation. The feasibility and effectiveness of SECOT have been verified by a set of experiments under both homogeneous and inhomogeneous magnetic fields. Moreover, evaluations of SECOT for quantitative analyses are carried out on samples with a series of different concentrations. Based on these experimental results, the SECOT may open important perspectives for fast, accurate, and stable investigations of various chemical systems both qualitatively and quantitatively.
Ruthenium supported on surface modified magnetic nanoparticles (NiFe2O4) has been successfully synthesized and applied for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The ...
Serial Magnetization Transfer Imaging in Acute Optic Neuritis
ERIC Educational Resources Information Center
Hickman, S. J.; Toosy, A. T.; Jones, S. J.; Altmann, D. R.; Miszkiel, K. A.; MacManus, D. G.; Barker, G. J.; Plant, G. T.; Thompson, A. J.; Miller, D.H.
2004-01-01
In serial studies of multiple sclerosis lesions, reductions in magnetization transfer ratio (MTR) are thought to be due to demyelination and axonal loss, with later rises due to remyelination. This study followed serial changes in MTR in acute optic neuritis in combination with clinical and electrophysiological measurements to determine if the MTR…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Rongchun; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu; Nishiyama, Yusuke
2015-10-28
A proton-detected 3D {sup 1}H/{sup 13}C/{sup 1}H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of {sup 13}C-{sup 1}H connectivities, and proximities of {sup 13}C-{sup 1}H and {sup 1}H-{sup 1}H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including {sup 1}H-{sup 1}H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protonsmore » and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) {sup 1}H/{sup 1}H and 2D {sup 13}C/{sup 1}H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of {sup 1}H-{sup 1}H proximity and {sup 13}C-{sup 1}H connectivity. In addition, the 2D (F1/F2) {sup 1}H/{sup 13}C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of {sup 1}H-{sup 1}H dipolar couplings, enables the measurement of proximities between {sup 13}C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of {sup 1}H-{sup 1}H-{sup 13}C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ⋅ H{sub 2}O ⋅ HCl demonstrate the efficiency of the 3D experiment.« less
Shimamoto, Takuya; Laakso, Ilkka; Hirata, Akimasa
2015-01-07
The in-situ electric field of an adult male model in different postures is evaluated for exposure to the magnetic field leaked from a wireless power transfer system in an electrical vehicle. The transfer system is located below the centre of the vehicle body and the transferred power and frequency are 7 kW and 85 kHz, respectively. The in-situ electric field is evaluated for a human model (i) crouching near the vehicle, (ii) lying on the ground with or without his arm stretched, (iii) sitting in the driver's seat, and (iv) standing on a transmitting coil without a receiving coil. In each scenario, the maximum in-situ electric fields are lower than the allowable limit prescribed by international guidelines, although the local magnetic field strength in regions of the human body is higher than the allowable external magnetic field strength. The highest in-situ electric field is observed when the human body model is placed on the ground with his arm extended toward the coils, because of a higher magnetic field around the arm.
Ning, Xingkun; Wang, Zhanjie; Zhang, Zhidong
2015-01-01
A large magnetic coupling has been observed at the La0.7Ca0.3MnO3/LaNiO3 (LCMO/LNO) interface. The x-ray photoelectron spectroscopy (XPS) study results show that Fermi level continuously shifted across the LCMO/LNO interface in the interface region. In addition, the charge transfer between Mn and Ni ions of the type Mn3+ − Ni3+ → Mn4+ − Ni2+ with the oxygen vacancies are observed in the interface region. The intrinsic interfacial charge transfer can give rise to itinerant electrons, which results in a “shoulder feature” observed at the low binding energy in the Mn 2p core level spectra. Meanwhile, the orbital reconstruction can be mapped according to the Fermi level position and the charge transfer mode. It can be considered that the ferromagnetic interaction between Ni2+ and Mn4+ gives rise to magnetic regions that pin the ferromagnetic LCMO and cause magnetic coupling at the LCMO/LNO interface. PMID:25676088
Lupulescu, Adonis; Frydman, Lucio
2011-10-07
Recent years have witnessed efforts geared at increasing the sensitivity of NMR experiments, by relying on the suitable tailoring and exploitation of relaxation phenomena. These efforts have included the use of paramagnetic agents, enhanced (1)H-(1)H incoherent and coherent transfers processes in 2D liquid state spectroscopy, and homonuclear (13)C-(13)C spin diffusion effects in labeled solids. The present study examines some of the opportunities that could open when exploiting spontaneous (1)H-(1)H spin-diffusion processes, to enhance relaxation and to improve the sensitivity of dilute nuclei in solid state NMR measurements. It is shown that polarization transfer experiments executed under sufficiently fast magic-angle-spinning conditions, enable a selective polarization of the dilute low-γ spins by their immediate neighboring protons. Repolarization of the latter can then occur during the time involved in monitoring the signal emitted by the low-γ nuclei. The basic features involved in the resulting approach, and its potential to improve the effective sensitivity of solid state NMR measurements on dilute nuclei, are analyzed. Experimental tests witness the advantages that could reside from utilizing this kind of approach over conventional cross-polarization processes. These measurements also highlight a number of limitations that will have to be overcome for transforming selective polarization transfers of this kind into analytical methods of choice. © 2011 American Institute of Physics
NASA Astrophysics Data System (ADS)
Park, Inmyong; Jeong, Sangkwon
2017-12-01
The experimental investigation of an active magnetic regenerative refrigerator (AMRR) operating between 77 K and 20 K is discussed in this paper, with detailed energy transfer analysis. A multi-layered active magnetic regenerator (AMR) is used, which consists of four different rare earth intermetallic compounds in the form of irregular powder. Numerical simulation confirms that the AMR can attain its target operating temperature range. Magnetic field alternation throughout the AMR is generated by a high temperature superconducting (HTS) magnet. The HTS magnet is cooled by a two stage Gifford-McMahon (GM) cryocooler. Helium gas was employed as a working fluid and its oscillating flow in the AMR is controlled in accordance with the magnetic field variation. The AMR is divided into two stages and each stage has a different mass flow rate as needed to achieve the desired cooling performance. The temperature variation of the AMR during the experiment is monitored by temperature sensors installed inside the AMR. The experimental results show that the AMRR is capable of achieving no-load temperature of 25.4 K while the warm end temperature is 77 K. The performance of the AMRR is analyzed by observing internal temperature variations at cyclic steady state. Furthermore, numerical estimation of the cooling capacity and the temperature variation of the AMR are examined and compared with the experimental results.
Facilitation of transscleral drug delivery by drug loaded magnetic polymeric particles.
Mousavikhamene, Zeynab; Abdekhodaie, Mohammad J; Ahmadieh, Hamid
2017-10-01
A unique method was used to facilitate ocular drug delivery from periocular route by drug loaded magnetic sensitive particles. Injection of particles in periocular space along the eye axis followed by application of magnetic field in front of the eye would trigger the magnetic polymeric particles to move along the direction of magnetic force and reside against the outer surface of the sclera. This technique prevents removal of drug in the periocular space, observed in conventional transscleral drug delivery systems and hence higher amount of drug can enter the eye in a longer period of time. The experiments were performed by fresh human sclera and an experimental setup. Experimental setup was designed by side by side diffusion cell and hydrodynamic and thermal simulation of the posterior segment of the eye were applied. Magnetic polymeric particles were synthesized by alginate as a model polymer, iron oxide nanoparticles as a magnetic agent and diclofenac sodium as a model drug and characterized by SEM, TEM, DLS and FT-IR techniques. According to the SEM images, the size range of particles is around 60 to 800nm. The results revealed that the cumulative drug transfer from magnetic sensitive particles across the sclera improves by 70% in the presence of magnetic field. The results of this research show promising method of drug delivery to use magnetic properties to facilitate drug delivery to the back of the eye. Copyright © 2017. Published by Elsevier B.V.
Mchinda, Samira; Varma, Gopal; Prevost, Valentin H; Le Troter, Arnaud; Rapacchi, Stanislas; Guye, Maxime; Pelletier, Jean; Ranjeva, Jean-Philippe; Alsop, David C; Duhamel, Guillaume; Girard, Olivier M
2018-05-01
To implement, characterize, and optimize an interleaved inhomogeneous magnetization transfer (ihMT) gradient echo sequence allowing for whole-brain imaging within a clinically compatible scan time. A general framework for ihMT modelling was developed based on the Provotorov theory of radiofrequency saturation, which accounts for the dipolar order underpinning the ihMT effect. Experimental studies and numerical simulations were performed to characterize and optimize the ihMT-gradient echo dependency with sequence timings, saturation power, and offset frequency. The protocol was optimized in terms of maximum signal intensity and the reproducibility assessed for a nominal resolution of 1.5 mm isotropic. All experiments were performed on healthy volunteers at 1.5T. An important mechanism driving signal optimization and leading to strong ihMT signal enhancement that relies on the dynamics of radiofrequency energy deposition has been identified. By taking advantage of the delay allowed for readout between ihMT pulse bursts, it was possible to boost the ihMT signal by almost 2-fold compared to previous implementation. Reproducibility of the optimal protocol was very good, with an intra-individual error < 2%. The proposed sensitivity-boosted and time-efficient steady-state ihMT-gradient echo sequence, implemented and optimized at 1.5T, allowed robust high-resolution 3D ihMT imaging of the whole brain within a clinically compatible scan time. Magn Reson Med 79:2607-2619, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Direct enhancement of nitrogen-15 targets at high-field by fast ADAPT-SABRE
NASA Astrophysics Data System (ADS)
Roy, Soumya S.; Stevanato, Gabriele; Rayner, Peter J.; Duckett, Simon B.
2017-12-01
Signal Amplification by Reversible Exchange (SABRE) is an attractive nuclear spin hyperpolarization technique capable of huge sensitivity enhancement in nuclear magnetic resonance (NMR) detection. The resonance condition of SABRE hyperpolarization depends on coherent spin mixing, which can be achieved naturally at a low magnetic field. The optimum transfer field to spin-1/2 heteronuclei is technically demanding, as it requires field strengths weaker than the earth's magnetic field for efficient spin mixing. In this paper, we illustrate an approach to achieve strong 15N SABRE hyperpolarization at high magnetic field by a radio frequency (RF) driven coherent transfer mechanism based on alternate pulsing and delay to achieve polarization transfer. The presented scheme is found to be highly robust and much faster than existing related methods, producing ∼ 3 orders of magnitude 15N signal enhancement within 2 s of RF pulsing.
Direct enhancement of nitrogen-15 targets at high-field by fast ADAPT-SABRE.
Roy, Soumya S; Stevanato, Gabriele; Rayner, Peter J; Duckett, Simon B
2017-12-01
Signal Amplification by Reversible Exchange (SABRE) is an attractive nuclear spin hyperpolarization technique capable of huge sensitivity enhancement in nuclear magnetic resonance (NMR) detection. The resonance condition of SABRE hyperpolarization depends on coherent spin mixing, which can be achieved naturally at a low magnetic field. The optimum transfer field to spin-1/2 heteronuclei is technically demanding, as it requires field strengths weaker than the earth's magnetic field for efficient spin mixing. In this paper, we illustrate an approach to achieve strong 15 N SABRE hyperpolarization at high magnetic field by a radio frequency (RF) driven coherent transfer mechanism based on alternate pulsing and delay to achieve polarization transfer. The presented scheme is found to be highly robust and much faster than existing related methods, producing ∼3 orders of magnitude 15 N signal enhancement within 2 s of RF pulsing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Enhancement of Spin-transfer torque switching via resonant tunneling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterji, Niladri; Tulapurkar, Ashwin A.; Muralidharan, Bhaskaran
We propose the use of resonant tunneling as a route to enhance the spin-transfer torque switching characteristics of magnetic tunnel junctions. The proposed device structure is a resonant tunneling magnetic tunnel junction based on a MgO-semiconductor heterostructure sandwiched between a fixed magnet and a free magnet. Using the non-equilibrium Green's function formalism coupled self consistently with the Landau-Lifshitz-Gilbert-Slonczewski equation, we demonstrate enhanced tunnel magneto-resistance characteristics as well as lower switching voltages in comparison with traditional trilayer devices. Two device designs based on MgO based heterostructures are presented, where the physics of resonant tunneling leads to an enhanced spin transfer torquemore » thereby reducing the critical switching voltage by up to 44%. It is envisioned that the proof-of-concept presented here may lead to practical device designs via rigorous materials and interface studies.« less
Liquid neon heat transfer as applied to a 30 tesla cryomagnet
NASA Technical Reports Server (NTRS)
Papell, S. S.; Hendricks, R. C.
1975-01-01
Since superconducting magnets cooled by liquid helium are limited to magnetic fields of about 18 teslas, the design of a 30 tesla cryomagnet necessitates forced convection liquid neon heat transfer in small coolant channels. As these channels are too small to handle the vapor flow if the coolant were to boil, the design philosophy calls for suppressing boiling by subjecting the fluid to high pressures. Forced convection heat transfer data are obtained by using a blowdown technique to force the fluid vertically through a resistance-heated instrumented tube. The data are obtained at inlet temperatures between 28 and 34 K and system pressures between 28 to 29 bars. Data correlation is limited to a very narrow range of test conditions, since the tests were designed to simulate the heat transfer characteristics in the coolant channels of the 30 tesla cryomagnet concerned. The results can therefore be applied directly to the design of the magnet system.-
NASA Technical Reports Server (NTRS)
Fast, R. W. (Editor)
1982-01-01
Applications of superconductivity are considered, taking into account MHD and fusion, generators, transformers, transmission lines, magnets for physics, cryogenic techniques, electrtronics, and aspects of magnet stability. Advances related to heat transfer in He I are discussed along with subjects related to theat transfer in He II, refrigeration of superconducting systems, refrigeration and liquefaction, dilution and magnetic refrigerators, refrigerators for space applications, mass transfer and flow phenomena, and the properties of fluids. Developments related to cryogenic applications are also explored, giving attention to bulk storage and transfer of cryogenic fluids, liquefied natural gas operations, space science and technology, and cryopumping. Topics related to cryogenic instrumentation and controls include the production and use of high grade silicon diode temperature sensors, the choice of strain gages for use in a large superconducting alternator, microprocessor control of cryogenic pressure, and instrumentation, data acquisition and reduction for a large spaceborne helium dewar.
Wireless power using magnetic resonance coupling for neural sensing applications
NASA Astrophysics Data System (ADS)
Yoon, Hargsoon; Kim, Hyunjung; Choi, Sang H.; Sanford, Larry D.; Geddis, Demetris; Lee, Kunik; Kim, Jaehwan; Song, Kyo D.
2012-04-01
Various wireless power transfer systems based on electromagnetic coupling have been investigated and applied in many biomedical applications including functional electrical stimulation systems and physiological sensing in humans and animals. By integrating wireless power transfer modules with wireless communication devices, electronic systems can deliver data and control system operation in untethered freely-moving conditions without requiring access through the skin, a potential source of infection. In this presentation, we will discuss a wireless power transfer module using magnetic resonance coupling that is specifically designed for neural sensing systems and in-vivo animal models. This research presents simple experimental set-ups and circuit models of magnetic resonance coupling modules and discusses advantages and concerns involved in positioning and sizing of source and receiver coils compared to conventional inductive coupling devices. Furthermore, the potential concern of tissue heating in the brain during operation of the wireless power transfer systems will also be addressed.
Magnetic MIMO Signal Processing and Optimization for Wireless Power Transfer
NASA Astrophysics Data System (ADS)
Yang, Gang; Moghadam, Mohammad R. Vedady; Zhang, Rui
2017-06-01
In magnetic resonant coupling (MRC) enabled multiple-input multiple-output (MIMO) wireless power transfer (WPT) systems, multiple transmitters (TXs) each with one single coil are used to enhance the efficiency of simultaneous power transfer to multiple single-coil receivers (RXs) by constructively combining their induced magnetic fields at the RXs, a technique termed "magnetic beamforming". In this paper, we study the optimal magnetic beamforming design in a multi-user MIMO MRC-WPT system. We introduce the multi-user power region that constitutes all the achievable power tuples for all RXs, subject to the given total power constraint over all TXs as well as their individual peak voltage and current constraints. We characterize each boundary point of the power region by maximizing the sum-power deliverable to all RXs subject to their minimum harvested power constraints. For the special case without the TX peak voltage and current constraints, we derive the optimal TX current allocation for the single-RX setup in closed-form as well as that for the multi-RX setup. In general, the problem is a non-convex quadratically constrained quadratic programming (QCQP), which is difficult to solve. For the case of one single RX, we show that the semidefinite relaxation (SDR) of the problem is tight. For the general case with multiple RXs, based on SDR we obtain two approximate solutions by applying time-sharing and randomization, respectively. Moreover, for practical implementation of magnetic beamforming, we propose a novel signal processing method to estimate the magnetic MIMO channel due to the mutual inductances between TXs and RXs. Numerical results show that our proposed magnetic channel estimation and adaptive beamforming schemes are practically effective, and can significantly improve the power transfer efficiency and multi-user performance trade-off in MIMO MRC-WPT systems.
NASA Astrophysics Data System (ADS)
Strychalski, M.; Chorowski, M.; Polinski, J.
2014-05-01
Future accelerator magnets will be exposed to heat loads that exceed even by an order of magnitude presently observed heat fluxes transferred to superconducting magnet coils. To avoid the resistive transition of the superconducting cables, the efficiency of heat transfer between the magnet structure and the helium must be significantly increased. This can be achieved through the use of novel concepts of the cable’s electrical insulation wrapping, characterized by an enhanced permeability to helium while retaining sufficient electrical resistivity. This paper presents measurement results of the heat transfer through Rutherford NbTi cable samples immersed in a He II bath and subjected to the pressure loads simulating the counteracting of the Lorentz forces observed in powered magnets. The Rutherford cable samples that were tested used different electrical insulation wrapping schemes, including the scheme that is presently used and the proposed scheme for future LHC magnets. A new porous polyimide cable insulation with enhanced helium permeability was proposed in order to improve the evacuation of heat form the NbTi coil to He II bath. These tests were performed in a dedicated Claudet-type cryostat in pressurized He II at 1.9 K and 1 bar.
Radiative heat transfer in the extreme near field.
Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M T Homer; García-Vidal, Francisco J; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod
2015-12-17
Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer.
Testing of Prototype Magnetic Suspension Cryogenic Transfer Line
NASA Astrophysics Data System (ADS)
Fesmire, J. E.; Augustynowicz, S. D.; Nagy, Z. F.; Sojourner, S. J.; Shu, Q. S.; Cheng, G.; Susta, J. T.
2006-04-01
A 6-meter prototype cryogenic transfer line with magnetic suspension was tested for its mechanical and thermal performance at the Cryogenics Test Laboratory of NASA Kennedy Space Center (KSC). A test facility with two cryogenic end-boxes was designed and commissioned for the testing. Suspension mechanisms were verified through a series of tests with liquid nitrogen. The thermal performance of the prototype was determined using the new test apparatus. The tested prototype has incorporated temperature and vacuum pressure data acquisition ports, customized interfaces to cryogenic end-boxes, and instrumentation. All tests were conducted under simulated onsite transfer line working conditions. A static (boiloff rate measurement) testing method was employed to demonstrate the gross heat leak in the tested article. The real-time temperature distribution, vacuum level, levitation distance, and mass flow rate were measured. The main purpose of this paper is to summarize the testing facility design and preparation, test procedure, and primary test results. Special arrangements (such as turning on/off mechanical support units, observing levitation gap, and setting up the flowmeter) in testing of such a magnetically levitated transfer line are also discussed. Preliminary results show that the heat leak reduction of approximately one-third to one-half is achievable through such transfer lines with a magnetic suspension system.
Night-Migratory Songbirds Possess a Magnetic Compass in Both Eyes
Lefeldt, Nele; Prior, Helmut; Mouritsen, Henrik
2012-01-01
Previous studies on European robins, Erithacus rubecula, and Australian silvereyes, Zosterops lateralis, had suggested that magnetic compass information is being processed only in the right eye and left brain hemisphere of migratory birds. However, recently it was demonstrated that both garden warblers, Sylvia borin, and European robins have a magnetic compass in both eyes. These results raise the question if the strong lateralization effect observed in earlier experiments might have arisen from artifacts or from differences in experimental conditions rather than reflecting a true all-or-none lateralization of the magnetic compass in European robins. Here we show that (1) European robins having only their left eye open can orient in their seasonally appropriate direction both during autumn and spring, i.e. there are no strong lateralization differences between the outward journey and the way home, that (2) their directional choices are based on the standard inclination compass as they are turned 180° when the inclination is reversed, and that (3) the capability to use the magnetic compass does not depend on monocular learning or intraocular transfer as it is already present in the first tests of the birds with only one eye open. PMID:22984416
Turbulence-driven anisotropic electron tail generation during magnetic reconnection
NASA Astrophysics Data System (ADS)
DuBois, A. M.; Scherer, A.; Almagri, A. F.; Anderson, J. K.; Pandya, M. D.; Sarff, J. S.
2018-05-01
Magnetic reconnection (MR) plays an important role in particle transport, energization, and acceleration in space, astrophysical, and laboratory plasmas. In the Madison Symmetric Torus reversed field pinch, discrete MR events release large amounts of energy from the equilibrium magnetic field, a fraction of which is transferred to electrons and ions. Previous experiments revealed an anisotropic electron tail that favors the perpendicular direction and is symmetric in the parallel. New profile measurements of x-ray emission show that the tail distribution is localized near the magnetic axis, consistent modeling of the bremsstrahlung emission. The tail appears first near the magnetic axis and then spreads radially, and the dynamics in the anisotropy and diffusion are discussed. The data presented imply that the electron tail formation likely results from a turbulent wave-particle interaction and provides evidence that high energy electrons are escaping the core-localized region through pitch angle scattering into the parallel direction, followed by stochastic parallel transport to the plasma edge. New measurements also show a strong correlation between high energy x-ray measurements and tearing mode dynamics, suggesting that the coupling between core and edge tearing modes is essential for energetic electron tail formation.
Rashba spin-orbit coupling and orbital chirality in magnetic bilayers
NASA Astrophysics Data System (ADS)
Lee, Hyun-Woo
2013-03-01
The phenomenon of the Rashba spin-orbit coupling is examined theoretically for an ultrathin magnetic layer in contact with a non-magnetic heavy metal layer. From first-principles calculation, large Rashba parameter of order 1 eV .Å is obtained, which is strong enough to generate large spin transfer torque of spin-orbit coupling origin. Large Rashba parameter is attributed to the orbital mixing of 3 d magnetic atoms and non-magnetic heavy elements with significant atomic spin-orbit coupling. Interestingly the magnitude and sign of the parameter vary from energy bands to bands, which we attribute to band-specific chiral ordering of orbital angular momentum. Through a simple tight-binding model analysis, we demonstrate that d-orbital hybridization allowed by the breaking of structural inversion symmetry generates band-specific chiral ordering of orbital angular momentum, which combines with atomic spin-orbit coupling to give rise to band-specific Rashba parameter. The band-dependence of the Rashba parameter is discussed in connection with recent experiments and we argue that the dependence may be utilized to enhance device application potentials. This work is supported by NRF grant (2010-0008529, 2011-0015631, 2010-0014109, 2011-0030789).
Li, Lei; Wang, Feijun; Shao, Ziqiang
2018-03-15
A biomass-based magnetic fluorescent nanoparticle (MFNPs) was successively in situ synthesized via a one-step high-gravity approach, which constructed by a magnetic core of Fe 3 O 4 nanoparticles, the fluorescent marker of carbon dots (CDs), and shells of chitosan (CS). The obtained MFNPs had a 10 nm average diameter and narrow particle size distribution, low cytotoxicity, superior fluorescent emission and superparamagnetic properties. The encapsulating and release 5-fluorouracil experiments confirmed that the introduction of CS/CDs effectively improved the drug loading capacity. Mechanism and kinetic studies proved that: (i) the monolayer adsorption was the main sorption mode under the studied conditions; (ii) the whole adsorption process was controlled by intra-liquid diffusion mass transfer and governed by chemisorption; and (iii) the release process was controlled by Fickian diffusion. These results demonstrated this method to one-step continuously produce MFNPs and the construction of non-toxic nanostructure possessed great superiority in currently Nano-delivery systems, which would show high application value in targeted drug delivery, magnetic fluid hyperthermia treatment, magnetic resonance imaging (MRI), in vitro testing and relative research. Copyright © 2017 Elsevier Ltd. All rights reserved.
Current-induced spin wave Doppler shift
NASA Astrophysics Data System (ADS)
Bailleul, Matthieu
2010-03-01
In metal ferromagnets -namely Fe, Co and Ni and their alloys- magnetism and electrical transport are strongly entangled (itinerant magnetism). This results in a number of properties such as the tunnel and giant magnetoresistance (i.e. the dependence of the electrical resistance on the magnetic state) and the more recently addressed spin transfer (i.e. the ability to manipulate the magnetic state with the help of an electrical current). The spin waves, being the low-energy elementary excitations of any ferromagnet, also exist in itinerant magnets, but they are expected to exhibit some peculiar properties due the itinerant character of the carriers. Accessing these specific properties experimentally could shed a new light on the microscopic mechanism governing itinerant magnetism, which -in turn- could help in optimizing material properties for spintronics applications. As a simple example of these specific properties, it was predicted theoretically that forcing a DC current through a ferromagnetic metal should induce a shift of the frequency of the spin waves [1,2]. This shift can be identified to a Doppler shift undergone by the electron system when it is put in motion by the electrical current. We will show how detailed spin wave measurements allow one to access this current-induced Doppler shift [3]. From an experimental point of view, we will discuss the peculiarities of propagating spin wave spectroscopy experiments carried out at a sub-micrometer length-scale and with MHz frequency resolution. Then, we will discuss the measured value of the Doppler shift in the context of both the old two-current model of spin-polarized transport and the more recent model of adiabatic spin transfer torque. [4pt] [1] P.Lederer and D.L. Mills, Phys.Rev. 148, 542 (1966).[0pt] [2] J. Fernandez-Rossier et al., Phys. Rev. B 69, 174412 (2004)[0pt] [3] V. Vlaminck and M. Bailleul, Science 322, 410 (2008).
EDITORIAL: Spin-transfer-torque-induced phenomena Spin-transfer-torque-induced phenomena
NASA Astrophysics Data System (ADS)
Hirohata, Atsufumi
2011-09-01
This cluster, consisting of five invited articles on spin-transfer torque, offers the very first review covering both magnetization reversal and domain-wall displacement induced by a spin-polarized current. Since the first theoretical proposal on spin-transfer torque—reported by Berger and Slonczewski independently—spin-transfer torque has been experimentally demonstrated in both vertical magnetoresistive nano-pillars and lateral ferromagnetic nano-wires. In the former structures, an electrical current flowing vertically in the nano-pillar exerts spin torque onto the thinner ferromagnetic layer and reverses its magnetization, i.e., current-induced magnetization switching. In the latter structures, an electrical current flowing laterally in the nano-wire exerts torque onto a domain wall and moves its position by rotating local magnetic moments within the wall, i.e., domain wall displacement. Even though both phenomena are induced by spin-transfer torque, each phenomenon has been investigated separately. In order to understand the physical meaning of spin torque in a broader context, this cluster overviews both cases from theoretical modellings to experimental demonstrations. The earlier articles in this cluster focus on current-induced magnetization switching. The magnetization dynamics during the reversal has been calculated by Kim et al using the conventional Landau--Lifshitz-Gilbert (LLG) equation, adding a spin-torque term. This model can explain the dynamics in both spin-valves and magnetic tunnel junctions in a nano-pillar form. This phenomenon has been experimentally measured in these junctions consisting of conventional ferromagnets. In the following experimental part, the nano-pillar junctions with perpendicularly magnetized FePt and half-metallic Heusler alloys are discussed from the viewpoint of efficient magnetization reversal due to a high degree of spin polarization of the current induced by the intrinsic nature of these alloys. Such switching can be further operated at high frequency resulting in an oscillator, as shown in the article by Sulka et al. These results provide fundamental elements for magnetic random access memories. The later articles discuss domain-wall displacement. Again this phenomenon is also described by Shibata et al based on the LLG equation with spin-torque terms. This analytical model can explain the details of the depinning mechanism and a critical current for the displacement. Experimental observation is presented in the subsequent article by Malinowski et al, showing the depinning processes for the cases of intrinsic and extrinsic pinning sites. Here, the detailed magnetic moment configurations within the wall hold the dominant control over the critical current. These results can be used for future 3-dimensional magnetic memories, such as racetrack memory proposed by IBM. We sincerely hope this cluster offers an up-to-date understanding of macroscopic behaviour induced by spin-transfer torque and contributes to further advancement in this exciting research field. We are grateful to all the authors for spending their precious time and knowledge submitting to this cluster. We would also like to thank Professor Kevin O'Grady for his kind offer of the opportunity to make this review accessible to a general audience.
Development of New Cooling System Using Gm/jt Cryocoolers for the SKS Magnet
NASA Astrophysics Data System (ADS)
Aoki, K.; Haruyama, T.; Makida, Y.; Araoka, O.; Kasami, K.; Takahashi, T.; Nagae, T.; Kakiguchi, Y.; Sekimoto, M.; Tosaka, T.; Miyazaki, H.; Kuriyama, T.; Ono, M.; Orikasa, T.; Tsuchihashi, T.; Hirata, Y.
2008-03-01
We plan to develop a new improved cooling system for the Superconducting Kaon Spectrometer (SKS) magnet and transfer the magnet to the K1.8 beamline of the Hadron Hall of the Japan Proton Accelerator Research Complex (J-PARC) for further use in nuclear physics experiments. To replace the present 300 W cryogenic system, we will adopt a new cooling method that uses 4 K Gifford-McMahon/Joule-Thomson (GM/JT) cryocoolers. In order to decide a practical design for the new liquid helium reservoir of the magnet, which will be equipped with GM/JT cryocoolers, cooling tests on a GM/JT cryocooler were performed from February to March 2007. We constructed a new cooling test stand with a GM/JT cryocooler and measured the cooling capacities under several thermal shield temperatures with or without a baffle, which helped prevent convection. Based on the test results, we have finally decided to adopt three GM/JT cryocoolers for the new SKS along with a baffle and an additional dedicated GM cooler to cool the thermal shield of the GM/JT ports.
Magnetic field effects of photocarrier generation in bulk heterojunctions at low temperature.
Tajima, H; Nishioka, Y; Sato, S; Suzuki, T; Kimata, M
2016-11-14
We report an experimental investigation of the magnetic field effect (MFE) in polymer bulk heterojunction devices at temperatures below 10 K using photocarrier extraction by linearly increasing voltages. The examined devices were composed of an active layer of poly(3-hexylthiophene) and [6,6]-phenyl-C 61 -butyric acid methyl ester. In the experiments, the delay time (t d ) dependence of the MFE was investigated in detail. For t d < 80 μs, a positive MFE was observed in the field region B < 0.1 T and a negative MFE was observed for B > 0.2 T. For t d > 8 ms, only a positive MFE proportional to B 2 was observed. For the photocurrent pulse detected immediately after light irradiation, the MFE was negligibly small. In a high magnetic field of 15 T, a significant MFE exceeding 80% was observed at 1.8 K for t d = 800 ms. We discuss the results based on a model of triplet-singlet (or singlet-triplet) conversion in the magnetic field and estimate the exchange integral for the charge-transfer exciton in this photovoltaic cell.
Bacillus thuringiensis Conjugation in Simulated Microgravity
NASA Astrophysics Data System (ADS)
Beuls, Elise; van Houdt, Rob; Leys, Natalie; Dijkstra, Camelia; Larkin, Oliver; Mahillon, Jacques
2009-10-01
Spaceflight experiments have suggested a possible effect of microgravity on the plasmid transfer among strains of the Gram-positive Bacillus thuringiensis, as opposed to no effect recorded for Gram-negative conjugation. To investigate these potential effects in a more affordable experimental setup, three ground-based microgravity simulators were tested: the Rotating Wall Vessel (RWV), the Random Positioning Machine (RPM), and a superconducting magnet. The bacterial conjugative system consisted in biparental matings between two B. thuringiensis strains, where the transfer frequencies of the conjugative plasmid pAW63 and its ability to mobilize the nonconjugative plasmid pUB110 were assessed. Specifically, potential plasmid transfers in a 0-g position (simulated microgravity) were compared to those obtained under 1-g (normal gravity) condition in each device. Statistical analyses revealed no significant difference in the conjugative and mobilizable transfer frequencies between the three different simulated microgravitational conditions and our standard laboratory condition. These important ground-based observations emphasize the fact that, though no stimulation of plasmid transfer was observed, no inhibition was observed either. In the case of Gram-positive bacteria, this ability to exchange plasmids in weightlessness, as occurs under Earth's conditions, should be seen as particularly relevant in the scope of spread of antibiotic resistances and bacterial virulence.
Bacillus thuringiensis conjugation in simulated microgravity.
Beuls, Elise; Van Houdt, Rob; Leys, Natalie; Dijkstra, Camelia; Larkin, Oliver; Mahillon, Jacques
2009-10-01
Spaceflight experiments have suggested a possible effect of microgravity on the plasmid transfer among strains of the Gram-positive Bacillus thuringiensis, as opposed to no effect recorded for Gram-negative conjugation. To investigate these potential effects in a more affordable experimental setup, three ground-based microgravity simulators were tested: the Rotating Wall Vessel (RWV), the Random Positioning Machine (RPM), and a superconducting magnet. The bacterial conjugative system consisted in biparental matings between two B. thuringiensis strains, where the transfer frequencies of the conjugative plasmid pAW63 and its ability to mobilize the nonconjugative plasmid pUB110 were assessed. Specifically, potential plasmid transfers in a 0 g position (simulated microgravity) were compared to those obtained under 1 g (normal gravity) condition in each device. Statistical analyses revealed no significant difference in the conjugative and mobilizable transfer frequencies between the three different simulated microgravitational conditions and our standard laboratory condition. These important ground-based observations emphasize the fact that, though no stimulation of plasmid transfer was observed, no inhibition was observed either. In the case of Gram-positive bacteria, this ability to exchange plasmids in weightlessness, as occurs under Earth's conditions, should be seen as particularly relevant in the scope of spread of antibiotic resistances and bacterial virulence.
Modelling mass and heat transfer in nano-based cancer hyperthermia.
Nabil, M; Decuzzi, P; Zunino, P
2015-10-01
We derive a sophisticated mathematical model for coupled heat and mass transport in the tumour microenvironment and we apply it to study nanoparticle delivery and hyperthermic treatment of cancer. The model has the unique ability of combining the following features: (i) realistic vasculature; (ii) coupled capillary and interstitial flow; (iii) coupled capillary and interstitial mass transfer applied to nanoparticles; and (iv) coupled capillary and interstitial heat transfer, which are the fundamental mechanisms governing nano-based hyperthermic treatment. This is an improvement with respect to previous modelling approaches, where the effect of blood perfusion on heat transfer is modelled in a spatially averaged form. We analyse the time evolution and the spatial distribution of particles and temperature in a tumour mass treated with superparamagnetic nanoparticles excited by an alternating magnetic field. By means of numerical experiments, we synthesize scaling laws that illustrate how nano-based hyperthermia depends on tumour size and vascularity. In particular, we identify two distinct mechanisms that regulate the distribution of particle and temperature, which are characterized by perfusion and diffusion, respectively.
Giansiracusa, Marcus J; Moreno-Pineda, Eufemio; Hussain, Riaz; Marx, Raphael; Martínez Prada, María; Neugebauer, Petr; Al-Badran, Susan; Collison, David; Tuna, Floriana; van Slageren, Joris; Carretta, Stefano; Guidi, Tatiana; McInnes, Eric J L; Winpenny, Richard E P; Chilton, Nicholas F
2018-02-21
Magnetic exchange interactions within the asymmetric dimetallic compounds [hqH 2 ][Ln 2 (hq) 4 (NO 3 ) 3 ]·MeOH, (Ln = Er(III) and Yb(III), hqH = 8-hydroxyquinoline) have been directly probed with EPR spectroscopy and accurately modeled by spin Hamiltonian techniques. Exploitation of site selectivity via doping experiments in Y(III) and Lu(III) matrices yields simple EPR spectra corresponding to isolated Kramers doublets, allowing determination of the local magnetic properties of the individual sites within the dimetallic compounds. CASSCF-SO calculations and INS and far-IR measurements are all employed to further support the identification and modeling of the local electronic structure for each site. EPR spectra of the pure dimetallic compounds are highly featured and correspond to transitions within the lowest-lying exchange-coupled manifold, permitting determination of the highly anisotropic magnetic exchange between the lanthanide ions. We find a unique orientation for the exchange interaction, corresponding to a common elongated oxygen bridge for both isostructural analogs. This suggests a microscopic physical connection to the magnetic superexchange. These results are of fundamental importance for building and validating model microscopic Hamiltonians to understand the origins of magnetic interactions between lanthanides and how they may be controlled with chemistry.
Basic theory for polarized, astrophysical maser radiation in a magnetic field
NASA Technical Reports Server (NTRS)
Watson, William D.
1994-01-01
Fundamental alterations in the theory and resulting behavior of polarized, astrophysical maser radiation in the presence of a magnetic field have been asserted based on a calculation of instabilities in the radiative transfer. I reconsider the radiative transfer and find that the relevant instabilities do not occur. Calculational errors in the previous investigation are identified. In addition, such instabilities would have appeared -- but did not -- in the numerous numerical solutions to the same radiative transfer equations that have been presented in the literature. As a result, all modifications that have been presented in a recent series of papers (Elitzur 1991, 1993) to the theory for polarized maser radiation in the presence of a magnetic field are invalid. The basic theory is thus clarified.
Coherent population transfer in multilevel systems with magnetic sublevels. II. Algebraic analysis
NASA Astrophysics Data System (ADS)
Martin, J.; Shore, B. W.; Bergmann, K.
1995-07-01
We extend previous theoretical work on coherent population transfer by stimulated Raman adiabatic passage for states involving nonzero angular momentum. The pump and Stokes fields are either copropagating or counterpropagating with the corresponding linearly polarized electric-field vectors lying in a common plane with the magnetic-field direction. Zeeman splitting lifts the magnetic sublevel degeneracy. We present an algebraic analysis of dressed-state properties to explain the behavior noted in numerical studies. In particular, we discuss conditions which are likely to lead to a failure of complete population transfer. The applied strategy, based on simple methods of linear algebra, will also be successful for other types of discrete multilevel systems, provided the rotating-wave and adiabatic approximation are valid.
Magnetic Proximity Effect in a Transferred Topological Insulator Thin Film on a Magnetic Insulator
NASA Astrophysics Data System (ADS)
Che, Xiaoyu; Murata, Koichi; Pan, Lei; He, Qinglin; Yin, Gen; Fan, Yabin; Bi, Lei; Wang, Kang Lung
Exotic physical phenomena such as the quantum anomalous Hall effect (QAHE) arise by breaking the time-reversal symmetry (TRS) in topological insulators. However, substantial efforts have been made in improving the temperature for realizing the QAHE via magnetically doping, while the proximity coupling is another approach to develop the magnetic order without the introduction of additional carriers or the presence of local Fermi level fluctuation. Here we demonstrate the experimental signature of magnetic proximity effect in a molecular beam epitaxy-grown TI thin film of Bi2Se3 transferred to a magnetic substrate of yttrium iron garnet using a wet transfer technique. Comparing to the TI/GaAs control sample, the magnetic order is manifested by the anomalous Hall effect in magneto-transport characterization. Furthermore, due to TRS breaking by the proximity effect we observed a constituent weak localization component accompanied with the weak antilocalization behavior. The present work takes a step further toward realizing QAHE at higher temperature and opens up a new path in TI device designs for applications. We acknowledge the support from the ARO program under contract 15-1-10561, the SHINES Center under Award # S000686, NSF DMR-1350122, and the FAME Center, one of six centers of STARnet, sponsored by MARCO and DARPA.
Layer and doping tunable ferromagnetic order in two-dimensional Cr S2 layers
NASA Astrophysics Data System (ADS)
Wang, Cong; Zhou, Xieyu; Pan, Yuhao; Qiao, Jingsi; Kong, Xianghua; Kaun, Chao-Cheng; Ji, Wei
2018-06-01
Interlayer coupling is of vital importance for manipulating physical properties, e.g., electronic band gap, in two-dimensional materials. However, tuning magnetic properties in these materials is yet to be addressed. Here, we found the in-plane magnetic orders of Cr S2 mono and few layers are tunable between striped antiferromagnetic (sAFM) and ferromagnetic (FM) orders by manipulating charge transfer between Cr t2 g and eg orbitals. Such charge transfer is realizable through interlayer coupling, direct charge doping, or substituting S with Cl atoms. In particular, the transferred charge effectively reduces a portion of Cr4 + to Cr3 +, which, together with delocalized S p orbitals and their resulting direct S-S interlayer hopping, enhances the double-exchange mechanism favoring the FM rather than sAFM order. An exceptional interlayer spin-exchange parameter was revealed over -10 meV , an order of magnitude stronger than available results of interlayer magnetic coupling. It addition, the charge doping could tune Cr S2 between p - and n -doped magnetic semiconductors. Given these results, several prototype devices were proposed for manipulating magnetic orders using external electric fields or mechanical motion. These results manifest the role of interlayer coupling in modifying magnetic properties of layered materials and shed considerable light on manipulating magnetism in these materials.
NASA Technical Reports Server (NTRS)
Rossow, Vernon J
1958-01-01
The use of a magnetic field to control the motion of electrically conducting fluids is studied. The incompressible boundary-layer solutions are found for flow over a flat plate when the magnetic field is fixed relative to the plate or to the fluid. The equations are integrated numerically for the effect of the transverse magnetic field on the velocity and temperature profiles, and hence, the skin friction and rate of heat transfer. It is concluded that the skin friction and the heat-transfer rate are reduced when the transverse magnetic field is fixed relative to the plate and increased when fixed relative to the fluid. The total drag is increased in all of the areas.
Hoffman, Jason D.; Kirby, Brian J.; Kwon, Jihwan; ...
2016-11-22
Interfaces between correlated complex oxides are promising avenues to realize new forms of magnetism that arise as a result of charge transfer, proximity effects, and locally broken symmetries. We report on the discovery of a noncollinear magnetic structure in superlattices of the ferromagnetic metallic oxide La 2/3Sr 1/3MnO 3 (LSMO) and the correlated metal LaNiO 3 (LNO). The exchange interaction between LSMO layers is mediated by the intervening LNO, such that the angle between the magnetization of neighboring LSMO layers varies in an oscillatory manner with the thickness of the LNO layer. The magnetic field, temperature, and spacer thickness dependencemore » of the noncollinear structure are inconsistent with the bilinear and biquadratic interactions that are used to model the magnetic structure in conventional metallic multilayers. A model that couples the LSMO layers to a helical spin state within the LNO fits the observed behavior. We propose that the spin-helix results from the interaction between a spatially varying spin susceptibility within the LNO and interfacial charge transfer that creates localized Ni 2+ states. In conclusion, our work suggests a new approach to engineering noncollinear spin textures in metallic oxide heterostructures.« less
NASA Astrophysics Data System (ADS)
D'Souza, Noel Michael
Nanomagnetic logic, incorporating logic bits in the magnetization orientations of single-domain nanomagnets, has garnered attention as an alternative to transistor-based logic due to its non-volatility and unprecedented energy-efficiency. The energy efficiency of this scheme is determined by the method used to flip the magnetization orientations of the nanomagnets in response to one or more inputs and produce the desired output. Unfortunately, the large dissipative losses that occur when nanomagnets are switched with a magnetic field or spin-transfer-torque inhibit the promised energy-efficiency. Another technique offering superior energy efficiency, "straintronics", involves the application of a voltage to a piezoelectric layer to generate a strain which is transferred to an elastically coupled magnetrostrictive layer, causing magnetization rotation. The functionality of this scheme can be enhanced further by introducing magnetocrystalline anisotropy in the magnetostrictive layer, thereby generating four stable magnetization states (instead of the two stable directions produced by shape anisotropy in ellipsoidal nanomagnets). Numerical simulations were performed to implement a low-power universal logic gate (NOR) using such 4-state magnetostrictive/piezoelectric nanomagnets (Ni/PZT) by clocking the piezoelectric layer with a small electrostatic potential (˜0.2 V) to switch the magnetization of the magnetic layer. Unidirectional and reliable logic propagation in this system was also demonstrated theoretically. Besides doubling the logic density (4-state versus 2-state) for logic applications, these four-state nanomagnets can be exploited for higher order applications such as image reconstruction and recognition in the presence of noise, associative memory and neuromorphic computing. Experimental work in strain-based switching has been limited to magnets that are multi-domain or magnets where strain moves domain walls. In this work, we also demonstrate strain-based switching in 2-state single-domain ellipsoidal magnetostrictive nanomagnets of lateral dimensions ˜200 nm fabricated on a piezoelectric substrate (PMN-PT) and studied using Magnetic Force Microscopy (MFM). A nanomagnetic Boolean NOT gate and unidirectional bit information propagation through a finite chain of dipole-coupled nanomagnets are also shown through strain-based "clocking". This is the first experimental demonstration of strain-based switching in nanomagnets and clocking of nanomagnetic logic (Boolean NOT gate), as well as logic propagation in an array of nanomagnets.
Spin Hall effects in metallic antiferromagnets – perspectives for future spin-orbitronics
Sklenar, Joseph; Zhang, Wei; Jungfleisch, Matthias B.; ...
2016-03-07
In this paper, we investigate angular dependent spin-orbit torques from the spin Hall effect in a metallic antiferromagnet using the spin-torque ferromagnetic resonance technique. The large spin Hall effect exists in PtMn, a prototypical CuAu-I-type metallic antiferromagnet. By applying epitaxial growth, we previously reported an appreciable difference in spin-orbit torques for c- and a-axis orientated samples, implying anisotropic effects in magnetically ordered materials. In this work we demonstrate through bipolar-magnetic-field experiments a small but noticeable asymmetric behavior in the spin-transfer-torque that appears as a hysteresis effect. Finally, we also suggest that metallic antiferromagnets may be good candidates for the investigationmore » of various unidirectional effects related to novel spin-orbitronics phenomena.« less
NASA Astrophysics Data System (ADS)
Fonvieille, H.; Laveissière, G.; Degrande, N.; Jaminion, S.; Jutier, C.; Todor, L.; Di Salvo, R.; Van Hoorebeke, L.; Alexa, L. C.; Anderson, B. D.; Aniol, K. A.; Arundell, K.; Audit, G.; Auerbach, L.; Baker, F. T.; Baylac, M.; Berthot, J.; Bertin, P. Y.; Bertozzi, W.; Bimbot, L.; Boeglin, W. U.; Brash, E. J.; Breton, V.; Breuer, H.; Burtin, E.; Calarco, J. R.; Cardman, L. S.; Cavata, C.; Chang, C.-C.; Chen, J.-P.; Chudakov, E.; Cisbani, E.; Dale, D. S.; de Jager, C. W.; De Leo, R.; Deur, A.; d'Hose, N.; Dodge, G. E.; Domingo, J. J.; Elouadrhiri, L.; Epstein, M. B.; Ewell, L. A.; Finn, J. M.; Fissum, K. G.; Fournier, G.; Frois, B.; Frullani, S.; Furget, C.; Gao, H.; Gao, J.; Garibaldi, F.; Gasparian, A.; Gilad, S.; Gilman, R.; Glamazdin, A.; Glashausser, C.; Gomez, J.; Gorbenko, V.; Grenier, P.; Guichon, P. A. M.; Hansen, J. O.; Holmes, R.; Holtrop, M.; Howell, C.; Huber, G. M.; Hyde, C. E.; Incerti, S.; Iodice, M.; Jardillier, J.; Jones, M. K.; Kahl, W.; Kato, S.; Katramatou, A. T.; Kelly, J. J.; Kerhoas, S.; Ketikyan, A.; Khayat, M.; Kino, K.; Kox, S.; Kramer, L. H.; Kumar, K. S.; Kumbartzki, G.; Kuss, M.; Leone, A.; LeRose, J. J.; Liang, M.; Lindgren, R. A.; Liyanage, N.; Lolos, G. J.; Lourie, R. W.; Madey, R.; Maeda, K.; Malov, S.; Manley, D. M.; Marchand, C.; Marchand, D.; Margaziotis, D. J.; Markowitz, P.; Marroncle, J.; Martino, J.; McCormick, K.; McIntyre, J.; Mehrabyan, S.; Merchez, F.; Meziani, Z. E.; Michaels, R.; Miller, G. W.; Mougey, J. Y.; Nanda, S. K.; Neyret, D.; Offermann, E. A. J. M.; Papandreou, Z.; Pasquini, B.; Perdrisat, C. F.; Perrino, R.; Petratos, G. G.; Platchkov, S.; Pomatsalyuk, R.; Prout, D. L.; Punjabi, V. A.; Pussieux, T.; Quémenér, G.; Ransome, R. D.; Ravel, O.; Real, J. S.; Renard, F.; Roblin, Y.; Rowntree, D.; Rutledge, G.; Rutt, P. M.; Saha, A.; Saito, T.; Sarty, A. J.; Serdarevic, A.; Smith, T.; Smirnov, G.; Soldi, K.; Sorokin, P.; Souder, P. A.; Suleiman, R.; Templon, J. A.; Terasawa, T.; Tieulent, R.; Tomasi-Gustaffson, E.; Tsubota, H.; Ueno, H.; Ulmer, P. E.; Urciuoli, G. M.; Vanderhaeghen, M.; Van der Meer, R. L. J.; Van De Vyver, R.; Vernin, P.; Vlahovic, B.; Voskanyan, H.; Voutier, E.; Watson, J. W.; Weinstein, L. B.; Wijesooriya, K.; Wilson, R.; Wojtsekhowski, B. B.; Zainea, D. G.; Zhang, W.-M.; Zhao, J.; Zhou, Z.-L.
2012-07-01
Virtual Compton scattering (VCS) on the proton has been studied at the Jefferson Laboratory using the exclusive photon electroproduction reaction ep→epγ. This paper gives a detailed account of the analysis which has led to the determination of the structure functions PLL-PTT/ɛ and PLT and the electric and magnetic generalized polarizabilities (GPs) αE(Q2) and βM(Q2) at values of the four-momentum transfer squared Q2=0.92 and 1.76 GeV2. These data, together with the results of VCS experiments at lower momenta, help building a coherent picture of the electric and magnetic GPs of the proton over the full measured Q2 range and point to their nontrivial behavior.
Energy coupling during the August 2011 magnetic storm
NASA Astrophysics Data System (ADS)
Huang, C. Y.; Su, Y.; Sutton, E. K.; Weimer, D. R.; Davidson, R.
2013-12-01
We present results from an analysis of high-latitude ionosphere-thermosphere (IT) coupling to the solar wind during a moderate magnetic storm which occurred on 5-6 August 2011. During the storm, a multi-point set of observations of the ionosphere and thermosphere was available. We make use of ionospheric measurements of electromagnetic and particle energy made by the Defense Meteorological Satellite Program (DMSP), and neutral densities measured by the Gravity Recovery and Climate Experiment (GRACE) satellite to infer: (1) the energy budget and (2) timing of the energy transfer process during the storm. We conclude that the primary location for energy input to the IT system is the extremely high latitude region. We suggest that the total energy available to the IT system is not completely captured either by observation or empirical models.
2015-10-01
with fMRI , and CEST acquisitions. Analysis hurdles were noted in the qMT, which we discuss here. Recruitment continues in the MS cohort (all healthy...Saturation Transfer (CEST) • Magnetization Transfer (MT) • Brain • Cortical Gray Matter (cGM) • Multiple Sclerosis (MS) • Functional MRI ( fMRI ) • Pool Size...MPRAGE Anatomical – 2:12 • fMRI Resting State – 8:34 • fMRI N-Back task – 8:30 • fMRI Trailmaking task – 4:14 The current scan time for all scans is
Helium Transfer System for the Superconducting Devices at NSRRC
NASA Astrophysics Data System (ADS)
Li, H. C.; Hsiao, F. Z.; Chang, S. H.; Chiou, W. S.
2006-04-01
A helium cryogenic plant with a maximum cooling power of 450 W at 4.5K was installed at the end of the year 2003. This plant has provide the cooling power for the test of one superconducting cavity and the commission of one superconducting magnet for nine months. In November 2004, we installed one helium transfer system in NSRRC's storage ring to fulfill the cooling requirement for the operation of one superconducting cavity and two superconducting magnets. This helium transfer system consists of a switch valve box and the nitrogen-shielding multi-channel transfer lines. The averaged heat leak to the helium process line (including the straight section, the joint, the elbow, the coupling) at liquid helium temperature is specified to be less than 0.1 W/m at 4.2K; the total heat leak of the switching valve box to helium process lines is less than 16 W at 4.2K. In this paper we present the function, design parameters and test result of the helium transfer system. Commissioning results of both the cavity and the magnets using this helium transfer system will be shown as well.
Control over Janus micromotors by the strength of a magnetic field
NASA Astrophysics Data System (ADS)
Baraban, Larysa; Makarov, Denys; Schmidt, Oliver G.; Cuniberti, Gianaurelio; Leiderer, Paul; Erbe, Artur
2013-01-01
For transportation of molecules or biological cells using artificial motors, the control over their motion, i.e. direction and speed of transfer, is important. Here, we demonstrate that modification of the velocity and orientation of a magnetic Janus particle can be efficiently controlled by tuning the strength of an applied homogeneous magnetic field. Interestingly, by keeping the same orientation of the magnetic field but changing its magnitude not only the velocity of capped particles can be altered but even their direction of motion can be reversed. We put forth a simple qualitative model, which allows us to explain this intriguing observation.For transportation of molecules or biological cells using artificial motors, the control over their motion, i.e. direction and speed of transfer, is important. Here, we demonstrate that modification of the velocity and orientation of a magnetic Janus particle can be efficiently controlled by tuning the strength of an applied homogeneous magnetic field. Interestingly, by keeping the same orientation of the magnetic field but changing its magnitude not only the velocity of capped particles can be altered but even their direction of motion can be reversed. We put forth a simple qualitative model, which allows us to explain this intriguing observation. Electronic supplementary information (ESI) available: Videos (1-3) describe the behavior of the magnetic Janus micromotors at different magnetic fields applied. The magnetic field is always applied along the positive direction of the y-axis. All the movies are recorded at the same frame rate of 21 images per second. Experiments were performed at 30 wt% of hydrogen peroxide in aqueous solution. Video 1 shows the motion of the Janus micromotors when a small magnetic field is applied (B = 0.2 mT). The particle is propelled in the direction ``opposite to the cap'' with a velocity of about 6 μm s-1. Video 2 displays the motion of the same Janus bead when an intermediately strong magnetic field is applied (B = 1.5 mT). The particle still moves in the direction ``opposite to the cap'', but with a much smaller velocity of about 1 μm s-1. Video 3 shows the behavior of the Janus micromotor, exposed to the high magnetic field B = 2.2 mT. The particle moves in the direction ``towards the cap'' with the speed of about 4 μm s-1. See DOI: 10.1039/c2nr32662k
New Possibilities for Magnetic Control of Chemical and Biochemical Reactions.
Buchachenko, Anatoly; Lawler, Ronald G
2017-04-18
Chemistry is controlled by Coulomb energy; magnetic energy is lower by many orders of magnitude and may be confidently ignored in the energy balance of chemical reactions. The situation becomes less clear, however, when reaction rates are considered. In this case, magnetic perturbations of nearly degenerate energy surface crossings may produce observable, and sometimes even dramatic, effects on reactions rates, product yields, and spectroscopic transitions. A case in point that has been studied for nearly five decades is electron spin-selective chemistry via the intermediacy of radical pairs. Magnetic fields, external (permanent or oscillating) and the internal magnetic fields of magnetic nuclei, have been shown to overcome electron spin selection rules for pairs of reactive paramagnetic intermediates, catalyzing or inhibiting chemical reaction pathways. The accelerating effects of magnetic stimulation may therefore be considered to be magnetic catalysis. This type of catalysis is most commonly observed for reactions of a relatively long-lived radical pair containing two weakly interacting electron spins formed by dissociation of molecules or by electron transfer. The pair may exist in singlet (total electron spin is zero) or triplet (total spin is unity) spin states. In virtually all cases, only the singlet state yields stable reaction products. Magnetic interactions with nuclear spins or applied fields may therefore affect the reactivity of radical pairs by changing the angular momentum of the pairs. Magnetic catalysis, first detected via its effect on spin state populations in nuclear and electron spin resonance, has been shown to function in a great variety of well-characterized reactions of organic free radicals. Considerably less well studied are examples suggesting that the basic mechanism may also explain magnetic effects that stimulate ATP synthesis, eliminating ATP deficiency in cardiac diseases, control cell proliferation, killing cancer cells, and control transcranial magnetic stimulation against cognitive deceases. Magnetic control has also been observed for some processes of importance in materials science and earth and environmental science and may play a role in animal navigation. In this Account, the radical pair mechanism is applied as a consistent explanation for several intriguing new magnetic phenomena. Specific examples include acceleration of solid state reactions of silicon by the magnetic isotope 29 Si, enrichment of 17 O during thermal decomposition of metal carbonates and magnetic effects on crystal plasticity. In each of these cases, the results are consistent with an initial one-electron transfer to generate a radical pair. Similar processes can account for mass-independent fractionation of isotopes of mercury, sulfur, germanium, tin, iron, and uranium in both naturally occurring samples and laboratory experiments. In the area of biochemistry, catalysis by magnetic isotopes has now been reported in several reactions of DNA and high energy phosphate. Possible medical applications of these observations are pointed out.
Wireless power transfer electric vehicle supply equipment installation and validation tool
Jones, Perry T.; Miller, John M.
2015-05-19
A transmit pad inspection device includes a magnetic coupling device, which includes an inductive circuit that is configured to magnetically couple to a primary circuit of a charging device in a transmit pad through an alternating current (AC) magnetic field. The inductive circuit functions as a secondary circuit for a set of magnetically coupled coils. The magnetic coupling device further includes a rectification circuit, and includes a controllable load bank or is configured to be connected to an external controllable load back. The transmit pad inspection device is configured to determine the efficiency of power transfer under various coupling conditions. In addition, the transmit pad inspection device can be configured to measure residual magnetic field and the frequency of the input current, and to determine whether the charging device has been installed properly.
Extend of magnetic field interference in the natural convection of diamagnetic nanofluid
NASA Astrophysics Data System (ADS)
Roszko, Aleksandra; Fornalik-Wajs, Elzbieta
2017-10-01
Main objective of the paper was to experimentally investigate the thermo-magnetic convection of diamagnetic fluids in the Rayleigh-Benard configuration. For better understanding of the magnetic field influence on the phenomena occurring in cubical enclosure the following parameters were studied: absence or presence of nanoparticles (single and two-phase fluids), thermal conditions (temperature difference range of 5-25 K) and magnetic field strength (magnetic induction range of 0-10 T). A multi-stage approach was undertaken to achieve the aim. The multi-stage approach means that the forces system, flow structure and heat transfer were considered. Without understanding the reasons (forces) and the fluid behaviour it would be impossible to analyse the exchanged heat rates through the Nusselt number distribution. The forces were determined at the starting moment, so the inertia force was not considered. The flow structure was identified due to the FFT analysis and it proved that magnetic field application changed the diamagnetic fluid behaviour, either single or two-phase. Going further, the heat transfer analysis revealed dependence of the Nusselt number on the flow structure and at the same time on the magnetic field. It can be said that imposed magnetic field changed the energy transfer within the system. In the paper, it was shown that each of presented steps were linked together and that only a comprehensive approach could lead to better understanding of magnetic field interference in the convection phenomenon.
The MAVEN Magnetic Field Investigation
NASA Technical Reports Server (NTRS)
Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.
2014-01-01
The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.
The MAVEN Magnetic Field Investigation
NASA Astrophysics Data System (ADS)
Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.
2015-12-01
The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.
Kurz, Ricardo; Cobo, Marcio Fernando; de Azevedo, Eduardo Ribeiro; Sommer, Michael; Wicklein, André; Thelakkat, Mukundan; Hempel, Günter; Saalwächter, Kay
2013-09-16
Carbon-proton dipole-dipole couplings between bonded atoms represent a popular probe of molecular dynamics in soft materials or biomolecules. Their site-resolved determination, for example, by using the popular DIPSHIFT experiment, can be challenged by spectral overlap with nonbonded carbon atoms. The problem can be solved by using very short cross-polarization (CP) contact times, however, the measured modulation curves then deviate strongly from the theoretically predicted shape, which is caused by the dependence of the CP efficiency on the orientation of the CH vector, leading to an anisotropic magnetization distribution even for isotropic samples. Herein, we present a detailed demonstration and explanation of this problem, as well as providing a solution. We combine DIPSHIFT experiments with the rotor-directed exchange of orientations (RODEO) method, and modifications of it, to redistribute the magnetization and obtain undistorted modulation curves. Our strategy is general in that it can also be applied to other types of experiments for heteronuclear dipole-dipole coupling determinations that rely on dipolar polarization transfer. It is demonstrated with perylene-bisimide-based organic semiconductor materials, as an example, in which measurements of dynamic order parameters reveal correlations of the molecular dynamics with the phase structure and functional properties. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Near-Field Magneto-Optical Microscope
Vlasko-Vlasov, Vitalii; Welp, Ulrich; and Crabtree, George W.
2005-12-06
A device and method for mapping magnetic fields of a sample at a resolution less than the wavelength of light without altering the magnetic field of the sample is disclosed. A device having a tapered end portion with a magneto-optically active particle positioned at the distal end thereof in communication with a fiber optic for transferring incoming linearly polarized light from a source thereof to the particle and for transferring reflected light from the particle is provided. The fiber optic has a reflective material trapping light within the fiber optic and in communication with a light detector for determining the polarization of light reflected from the particle as a function of the strength and direction of the magnetic field of the sample. Linearly polarized light from the source thereof transferred to the particle positioned proximate the sample is affected by the magnetic field of the sample sensed by the particle such that the difference in polarization of light entering and leaving the particle is due to the magnetic field of the sample. Relative movement between the particle and sample enables mapping.
NASA Astrophysics Data System (ADS)
Mohseni, S. Morteza; Yazdi, H. F.; Hamdi, M.; Brächer, T.; Mohseni, S. Majid
2018-03-01
Current induced spin wave excitations in spin transfer torque nano-contacts are known as a promising way to generate exchange-dominated spin waves at the nano-scale. It has been shown that when these systems are magnetized in the film plane, broken spatial symmetry of the field around the nano-contact induced by the Oersted field opens the possibility for spin wave mode co-existence including a non-linear self-localized spin-wave bullet and a propagating mode. By means of micromagnetic simulations, here we show that in systems with strong perpendicular magnetic anisotropy (PMA) in the free layer, two propagating spin wave modes with different frequency and spatial distribution can be excited simultaneously. Our results indicate that in-plane magnetized spin transfer nano-contacts in PMA materials do not host a solitonic self-localized spin-wave bullet, which is different from previous studies for systems with in plane magnetic anisotropy. This feature renders them interesting for nano-scale magnonic waveguides and crystals since magnon transport can be configured by tuning the applied current.
Near Field Magneto-Optical Microscope
Vlasko-Vlasov, Vitalii K.; Welp, Ulrich; Crabtree, George W.
2005-12-06
A device and method for mapping magnetic fields of a sample at a resolution less than the wavelength of light without altering the magnetic field of the sample is disclosed. A device having a tapered end portion with a magneto-optically active particle positioned at the distal end thereof in communication with a fiber optic for transferring incoming linearly polarized light from a source thereof to the particle and for transferring reflected light from the particle is provided. The fiber optic has a reflective material trapping light within the fiber optic and in communication with a light detector for determining the polarization of light reflected from the particle as a function of the strength and direction of the magnetic field of the sample. Linearly polarized light from the source thereof transferred to the particle positioned proximate the sample is affected by the magnetic field of the sample sensed by the particle such that the difference in polarization of light entering and leaving the particle is due to the magnetic field of the sample. Relative movement between the particle and sample enables mapping.
NASA Astrophysics Data System (ADS)
Cheng, Ye; Guo, Yuhang; Zhang, Zhenya; Dong, Songtao; Liu, Suwei; Wang, Hongying
2018-03-01
Magnetic absorber has been regarded as the advanced electromagnetic energy transfer material to solve the increasingly high frequency electromagnetic interference issue. Even so, the pure magnetic material, in particular magnetic metal nanoparticle, suffering from the poor chemical stability and strong eddy current effect, thus limits it further application. To overcome this shortage, surrounded the magnetic metal nanoparticle (MPs) with insulated oxide shell has been considered to be an efficient route to suppress such an eddy current effect. Meanwhile, the combined insulated shell with good impedance matching feature, shows a positive role on the electromagnetic energy transfer intensity. In this regard, the binary Fe@α-Fe2O3 composite with the average size of ∼ 20 nm was prepared by a facile self-oxidation reaction. Interestingly, both the core diameter and shell thickness is controllable by controlling the oxide degree. The electromagnetic energy transfer performance revealed the maximum absorption frequency bandwidth of the optimal Fe@α-Fe2O3 composite is up to 5.3 G(8.2-13.5 GHz)under a small coating thickness of 1.5 mm.
LeBrun, Alexander; Joglekar, Tejashree; Bieberich, Charles; Ma, Ronghui; Zhu, Liang
2016-01-01
The objective of this study was to identify an injection strategy leading to repeatable nanoparticle deposition patterns in tumours and to quantify volumetric heat generation rate distribution based on micro-CT Hounsfield unit (HU) in magnetic nanoparticle hyperthermia. In vivo animal experiments were performed on graft prostatic cancer (PC3) tumours in immunodeficient mice to investigate whether lowering ferrofluid infusion rate improves control of the distribution of magnetic nanoparticles in tumour tissue. Nanoparticle distribution volume obtained from micro-CT scan was used to evaluate spreading of the nanoparticles from the injection site in tumours. Heating experiments were performed to quantify relationships among micro-CT HU values, local nanoparticle concentrations in the tumours, and the ferrofluid-induced volumetric heat generation rate (q(MNH)) when nanoparticles were subject to an alternating magnetic field. An infusion rate of 3 µL/min was identified to result in the most repeatable nanoparticle distribution in PC3 tumours. Linear relationships have been obtained to first convert micro-CT greyscale values to HU values, then to local nanoparticle concentrations, and finally to nanoparticle-induced q(MNH) values. The total energy deposition rate in tumours was calculated and the observed similarity in total energy deposition rates in all three infusion rate groups suggests improvement in minimising nanoparticle leakage from the tumours. The results of this study demonstrate that micro-CT generated q(MNH) distribution and tumour physical models improve predicting capability of heat transfer simulation for designing reliable treatment protocols using magnetic nanoparticle hyperthermia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kar, Durga P.; Nayak, Praveen P.; Bhuyan, Satyanarayan
In order to power or charge electronic devices wirelessly, a bi-directional wireless power transfer method has been proposed and experimentally investigated. In the proposed design, two receiving coils are used on both sides of a transmitting coil along its central axis to receive the power wirelessly from the generated magnetic fields through strongly coupled magnetic resonance. It has been observed experimentally that the maximum power transfer occurs at the operating resonant frequency for optimum electric load connected across the receiving coils on both side. The optimum wireless power transfer efficiency is 88% for the bi-directional power transfer technique compared 84%more » in the one side receiver system. By adopting the developed bi-directional power transfer method, two electronic devices can be powered up or charged simultaneously instead of a single device through usual one side receiver system without affecting the optimum power transfer efficiency.« less
NASA Astrophysics Data System (ADS)
Kitahara, M.; Katoh, Y.; Hikishima, M.; Kasahara, Y.; Matsuda, S.; Kojima, H.; Ozaki, M.; Yagitani, S.
2017-12-01
The Plasma Wave Experiment (PWE) is installed on board the ARASE satellite to measure the electric field in the frequency range from DC to 10 MHz, and the magnetic field in the frequency range from a few Hz to 100 kHz using two dipole wire-probe antennas (WPT) and three magnetic search coils (MSC), respectively. In particular, the Waveform Capture (WFC), one of the receivers of the PWE, can detect electromagnetic field waveform in the frequency range from a few Hz to 20 kHz. The Software-type Wave Particle Interaction Analyzer (S-WPIA) is installed on the ARASE satellite to measure the energy exchange between plasma waves and particles. Since S-WPIA uses the waveform data measured by WFC to calculate the relative phase angle between the wave magnetic field and velocity of energetic electrons, the high-accuracy is required to calibration of both amplitude and phase of the waveform data. Generally, the calibration procedure of the signal passed through a receiver consists of three steps; the transformation into spectra, the calibration by the transfer function of a receiver, and the inverse transformation of the calibrated spectra into the time domain. Practically, in order to reduce the side robe effect, a raw data is filtered by a window function in the time domain before applying Fourier transform. However, for the case that a first order differential coefficient of the phase transfer function of the system is not negligible, the phase of the window function convoluted into the calibrated spectra is shifted differently at each frequency, resulting in a discontinuity in the time domain of the calibrated waveform data. To eliminate the effect of the phase shift of a window function, we suggest several methods to calibrate a waveform data accurately and carry out simulations assuming simple sinusoidal waves as an input signal and using transfer functions of WPT, MSC, and WFC obtained in pre-flight tests. In consequence, we conclude that the following two methods can reduce an error contaminated through the calibration to less than 0.1 % of amplitude of input waves; (1) a Turkey-type window function with a flat top region of one-third of the window length and (2) modification of the window function for each frequency by referring the estimation of the phase shift due to the first order differential coefficient from the transfer functions.
Takeuchi, Koh; Gal, Maayan; Takahashi, Hideo; Shimada, Ichio
2011-01-01
Described here is a set of three-dimensional (3D) NMR experiments that rely on CACA-TOCSY magnetization transfer via the weak 3JCαCα coupling. These pulse sequences, which resemble recently described 13C detected CACA-TOCSY (Takeuchi et al. 2010) experiments, are recorded in 1H2O, and use 1H excitation and detection. These experiments require alternate 13C-12C labeling together with perdeuteration, which allows utilizing the small 3JCαCα scalar coupling that is otherwise masked by the stronger 1JCC couplings in uniformly 13C labeled samples. These new experiments provide a unique assignment ladder-mark that yields bidirectional supra-sequential information and can readily straddle proline residues. Unlike the conventional HNCA experiment, which contains only sequential information to the 13Cα of the preceding residue, the 3D hnCA-TOCSY-caNH experiment can yield sequential correlations to alpha carbons in positions i−1, i + 1 and i−2. Furthermore, the 3D hNca-TOCSY-caNH and Hnca-TOC-SY-caNH experiments, which share the same magnetization pathway but use a different chemical shift encoding, directly couple the 15N-1H spin pair of residue i to adjacent amide protons and nitrogens at positions i−2, i−1, i + 1 and i + 2, respectively. These new experimental features make protein backbone assignments more robust by reducing the degeneracy problem associated with the conventional 3D NMR experiments. PMID:21110064
NASA Astrophysics Data System (ADS)
Slonczewski, John
2013-03-01
Consider two nanoscopic monodomain magnets connected by a spacer that is composed of a non-magnetic metal or a tunnel barrier. Any externally applied electric current flowing through these three layers contributes tiny pseudo-torques to both magnetic moments (J . S . 1989). Such a weak spin-transfer torque (STT) may counteract and overcome a comparably small torque caused by viscous dissipation (L. Berger1996; J . S . 1996). Any initial motion (e. g. excited by ambient temperature) of one moment (or both), may grow in amplitude and culminate in steady precession or a transient switch to a new direction of static equilibrium. In a memory element, the STT effect writes 0 or 1 in a magnetic-tunnel junction. Indeed, world-wide developments of memory arrays and radio-frequency oscillators utilizing current-driven STT today enjoy a nine-digit dollar commitment. But the fact that transfer of each half-unit of spin momentum h/4 π through a barrier requires the transfer of at least one unit of electric charge limits its efficiency. Arguably, STT should also arise from the flow of external heat, in either direction, between an insulating magnet, of ferrite or garnet (e. g. YIG) composition, and a metallic spacer (J . S . 2010). Whenever s-d exchange annihilates a hot magnon at the insulator/metal-spacer interface, it transfers one unit h/2 π of spin momentum to the spacer. Conduction electrons within the spacer will transport this spin momentum to the second magnet without requiring an electric current. Such a thermagnonicmethod, modestly powered by a Joule-effect heater, can substantially increase the efficiency of STT. Support for this prediction comes from (1) an estimate of the sd-exchange coefficient from data on spin relaxation in magnetically dilute (Cu,Ag,Au):Mn alloys; (2) a DFT computation (J. Xiao et al 2010); and (3) most persuasively, data from spin pumping driven across a YIG/Au interface by ferromagnetic resonance (B. Heinrich et al 2011; C. Burrowes et al 2012).
2004-01-05
KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences Lab, Lanfang Levine, with Dynamac Corp., transfers material into a sample bottle for analysis. She is standing in front of new equipment in the lab that will provide gas chromatography and mass spectrometry. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
Warbrick, Tracy; Reske, Martina; Shah, N Jon
2014-09-22
As cognitive neuroscience methods develop, established experimental tasks are used with emerging brain imaging modalities. Here transferring a paradigm (the visual oddball task) with a long history of behavioral and electroencephalography (EEG) experiments to a functional magnetic resonance imaging (fMRI) experiment is considered. The aims of this paper are to briefly describe fMRI and when its use is appropriate in cognitive neuroscience; illustrate how task design can influence the results of an fMRI experiment, particularly when that task is borrowed from another imaging modality; explain the practical aspects of performing an fMRI experiment. It is demonstrated that manipulating the task demands in the visual oddball task results in different patterns of blood oxygen level dependent (BOLD) activation. The nature of the fMRI BOLD measure means that many brain regions are found to be active in a particular task. Determining the functions of these areas of activation is very much dependent on task design and analysis. The complex nature of many fMRI tasks means that the details of the task and its requirements need careful consideration when interpreting data. The data show that this is particularly important in those tasks relying on a motor response as well as cognitive elements and that covert and overt responses should be considered where possible. Furthermore, the data show that transferring an EEG paradigm to an fMRI experiment needs careful consideration and it cannot be assumed that the same paradigm will work equally well across imaging modalities. It is therefore recommended that the design of an fMRI study is pilot tested behaviorally to establish the effects of interest and then pilot tested in the fMRI environment to ensure appropriate design, implementation and analysis for the effects of interest.
NASA Technical Reports Server (NTRS)
Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)
1966-01-01
A magnetic flux pump is described for increasing the intensity of a magnetic field by transferring flux from one location to the magnetic field. The device includes a pair of communicating cavities formed in a block of superconducting material, and a piston for displacing the trapped magnetic flux into the secondary cavity producing a field having an intense flux density.
Present understanding of MHD and heat transfer phenomena for liquid metal blankets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirillov, I.R.; Barleon, L.; Reed, C.B.
1994-12-31
Liquid metals (Li, Li17Pb83, Pb) are considered as coolants in many designs of fusion reactor blankets. To estimate their potential and to make an optimal design, one has to know the magnetohydrodynamic (MHD) and heat transfer characteristics of liquid metal flow in the magnetic field. Such flows with high characteristic parameter values (Hartmann number M and interaction parameter N) open up a relatively new field in Magnetohydrodynamics requiring both theoretical and experimental efforts. A review of experimental work done for the last ten years in different countries shows that there are some data on MHD/HT characteristics in straight channels ofmore » simple geometry under fusion reactor relevant conditions (M>>1, N>>1) and not enough data for complex flow geometries. Future efforts should be directed to investigation of MHD/HT in straight channels with perfect and imperfect electroinsulated walls, including those with controlled imperfections, and in channels of complex geometry. The experiments are not simple, since the fusion relevant conditions require facilities with magnetic fields at, or even higher than, 5-7 T in comparatively large volumes. International cooperation in constructing and operating these facilities may be of great help.« less
Theillet, François-Xavier; Frank, Martin; Vulliez-Le Normand, Brigitte; Simenel, Catherine; Hoos, Sylviane; Chaffotte, Alain; Bélot, Frédéric; Guerreiro, Catherine; Nato, Farida; Phalipon, Armelle; Mulard, Laurence A; Delepierre, Muriel
2011-12-01
Carbohydrates are likely to maintain significant conformational flexibility in antibody (Ab):carbohydrate complexes. As demonstrated herein for the protective monoclonal Ab (mAb) F22-4 recognizing the Shigella flexneri 2a O-antigen (O-Ag) and numerous synthetic oligosaccharide fragments thereof, the combination of molecular dynamics simulations and nuclear magnetic resonance saturation transfer difference experiments, supported by physicochemical analysis, allows us to determine the binding epitope and its various contributions to affinity without using any modified oligosaccharides. Moreover, the methods used provide insights into ligand flexibility in the complex, thus enabling a better understanding of the Ab affinities observed for a representative set of synthetic O-Ag fragments. Additionally, these complementary pieces of information give evidence to the ability of the studied mAb to recognize internal as well as terminal epitopes of its cognate polysaccharide antigen. Hence, we show that an appropriate combination of computational and experimental methods provides a basis to explore carbohydrate functional mimicry and receptor binding. The strategy may facilitate the design of either ligands or carbohydrate recognition domains, according to needed improvements of the natural carbohydrate:receptor properties. © The Author 2011. Published by Oxford University Press. All rights reserved.
NASA Astrophysics Data System (ADS)
Miyawaki, Jun; Suga, Shigemasa; Fujiwara, Hidenori; Urasaki, Masato; Ikeno, Hidekazu; Niwa, Hideharu; Kiuchi, Hisao; Harada, Yoshihisa
2017-12-01
Fe L2 ,3-edge x-ray absorption spectra (XAS) and magnetic circular dichroism (MCD) in resonant inelastic x-ray scattering (RIXS) of α -Fe2O3 were measured to identify the electronic structure responsible for its weak ferromagnetism caused by the Dzyaloshinskii-Moriya interaction (DMI) at room temperature. In contrast to negligible MCD in XAS, MCD in RIXS (RIXS-MCD) was clearly observed in the d d excitation at 1.8 eV via excitation to charge-transfer states. Furthermore, RIXS-MCD showed a crystal orientation dependence, indicating that the observed RIXS-MCD originated from DMI. The observed RIXS-MCD is well described by ab initio charge-transfer multiplet calculations, revealing that the RIXS-MCD derives from spin flip excitations at delocalized eg orbitals. By the combination of the experiments and calculations, RIXS-MCD has unraveled that the origin of DMI in α -Fe2O3 is the eg orbitals, which are strongly hybridized with the 2 p orbitals of oxygen atoms. The results demonstrate the importance of RIXS-MCD for identifying the electronic structure related to DMI.
Commissioning the cryogenic system of the first LHC sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Millet, F.; Claudet, S.; Ferlin, G.
2007-12-01
The LHC machine, composed of eight sectors with superconducting magnets and accelerating cavities, requires a complex cryogenic system providing high cooling capacities (18 kW equivalent at 4.5 K and 2.4 W at 1.8 K per sector produced in large cold boxes and distributed via 3.3-km cryogenic transfer lines). After individual reception tests of the cryogenic subsystems (cryogen storages, refrigerators, cryogenic transfer lines and distribution boxes) performed since 2000, the commissioning of the cryogenic system of the first LHC sector has been under way since November 2006. After a brief introduction to the LHC cryogenic system and its specificities, the commissioningmore » is reported detailing the preparation phase (pressure and leak tests, circuit conditioning and flushing), the cool-down sequences including the handling of cryogenic fluids, the magnet powering phase and finally the warm-up. Preliminary conclusions on the commissioning of the first LHC sector will be drawn with the review of the critical points already solved or still pending. The last part of the paper reports on the first operational experience of the LHC cryogenic system in the perspective of the commissioning of the remaining LHC sectors and the beam injection test.« less
Magnon drag thermopower and thermomagnetic properties of single-crystal iron
NASA Astrophysics Data System (ADS)
Watzman, Sarah; Jin, Hyungyu; Heremans, Joseph
2015-03-01
Lucassen et al. demonstrate that magnon drag involves a spin-transfer mechanism closely related to the recently discovered spin-Seebeck effect. This talk will first present results of experiments mapping out the thermopower and magnetothermopower of single-crystal iron and prove that its thermopower is indeed dominated by magnon drag, as suggested by Blatt et al. in 1967. Measurements will then be presented on the magnetic field and temperature dependence of the full thermomagnetic tensor of iron's thermopower in the xxx, xyx, and xyz geometries (the first index gives the direction of the heat flux, the second the measured electric field, the third the applied magnetic field). Results of magneto-thermopower and Nernst coefficients will be reported for single-crystal samples oriented with x =[100]. The Nernst coefficients of elemental iron contain a contribution of a direct spin-transfer mechanism, which should be present in the absence of an interface between a ferromagnet and a normal metal. This mechanism could be put to use in high temperature ferromagnetic metallic thermoelectric alloys. This work is supported by the NSF GRFP under Grant No. DGE-0822215 and the ARO MURI under Grant No. W911NF-14-1-0016.
Spin-Orbit Torques in ferrimagnetic GdFeCo
NASA Astrophysics Data System (ADS)
Roschewsky, Niklas; Lambert, Charles-Henri; Salahuddin, Sayeef
Recently spin-orbit torques in antiferromagnets received a lot of attention due to intrinsic high frequency dynamics as well as robustness against perturbations from external magnetic fields. Here, we report on spin-orbit torque (SOT) switching in ferrimagnetic Gdx (Fe90Co10)100-x films on both sides of the magnetic compensation point. In addition to current driven switching experiments we performed harmonic Hall measurements of the effective SOT fields. We find that both the Slonczewski torque as well as the field-like torque diverge at the magnetization compensation point. However, the effective spin Hall angle ξ = (2 | e | / ℏ) MStFM (Heff / | jHM |) is found to be roughly constant across the investigated composition range. This provides important insight into the the angular momentum transfer process in ferrimagnets. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering Division of the U.S. Department of Energy under Contract No. DE-AC02-05-CH11231 within the NEMM program (KC2204).
Magnetic Flux Circulation During Dawn-Dusk Oriented Interplanetary Magnetic Field
NASA Technical Reports Server (NTRS)
Mitchell, E. J.; Lopez, R. E.; Fok, M.-C.; Deng, Y.; Wiltberger, M.; Lyon, J.
2010-01-01
Magnetic flux circulation is a primary mode of energy transfer from the solar wind into the ionosphere and inner magnetosphere. For southward interplanetary magnetic field (IMF), magnetic flux circulation is described by the Dungey cycle (dayside merging, night side reconnection, and magnetospheric convection), and both the ionosphere and inner magnetosphere receive energy. For dawn-dusk oriented IMF, magnetic flux circulation is not well understood, and the inner magnetosphere does not receive energy. Several models have been suggested for possible reconnection patterns; the general pattern is: dayside merging; reconnection on the dayside or along the dawn/dusk regions; and, return flow on dayside only. These models are consistent with the lack of energy in the inner magnetosphere. We will present evidence that the Dungey cycle does not explain the energy transfer during dawn-dusk oriented IMF. We will also present evidence of how magnetic flux does circulate during dawn-dusk oriented IMF, specifically how the magnetic flux reconnects and circulates back.
Powering the High-Luminosity Triplets
NASA Astrophysics Data System (ADS)
Ballarino, A.; Burnet, J. P.
The powering of the magnets in the LHC High-Luminosity Triplets requires production and transfer of more than 150 kA of DC current. High precision power converters will be adopted, and novel High Temperature Superconducting (HTS) current leads and MgB2 based transfer lines will provide the electrical link between the power converters and the magnets. This chapter gives an overview of the systems conceived in the framework of the LHC High-Luminosity upgrade for feeding the superconducting magnet circuits. The focus is on requirements, challenges and novel developments.
NASA Technical Reports Server (NTRS)
Fast, R. W. (Editor)
1988-01-01
Papers are presented on superconductivity applications including magnets, electronics, rectifiers, magnet stability, coil protection, and cryogenic techniques. Also considered are insulation, heat transfer to liquid helium and nitrogen, heat and mass transfer in He II, superfluid pumps, and refrigeration for superconducting systems. Other topics include cold compressors, refrigeration and liquefaction, magnetic refrigeration, and refrigeration for space applications. Papers are also presented on cryogenic applications, commercial cryogenic plants, the properties of cryogenic fluids, and cryogenic instrumentation and data acquisition.
Assisted Writing in Spin Transfer Torque Magnetic Tunnel Junctions
NASA Astrophysics Data System (ADS)
Ganguly, Samiran; Ahmed, Zeeshan; Datta, Supriyo; Marinero, Ernesto E.
2015-03-01
Spin transfer torque driven MRAM devices are now in an advanced state of development, and the importance of reducing the current requirement for writing information is well recognized. Different approaches to assist the writing process have been proposed such as spin orbit torque, spin Hall effect, voltage controlled magnetic anisotropy and thermal excitation. In this work,we report on our comparative study using the Spin-Circuit Approach regarding the total energy, the switching speed and energy-delay products for different assisted writing approaches in STT-MTJ devices using PMA magnets.
Automated observatory in Antarctica: real-time data transfer on constrained networks in practice
NASA Astrophysics Data System (ADS)
Bracke, Stephan; Gonsette, Alexandre; Rasson, Jean; Poncelet, Antoine; Hendrickx, Olivier
2017-08-01
In 2013 a project was started by the geophysical centre in Dourbes to install a fully automated magnetic observatory in Antarctica. This isolated place comes with specific requirements: unmanned station during 6 months, low temperatures with extreme values down to -50 °C, minimum power consumption and satellite bandwidth limited to 56 Kbit s-1. The ultimate aim is to transfer real-time magnetic data every second: vector data from a LEMI-25 vector magnetometer, absolute F measurements from a GEM Systems scalar proton magnetometer and absolute magnetic inclination-declination (DI) measurements (five times a day) with an automated DI-fluxgate magnetometer. Traditional file transfer protocols (for instance File Transfer Protocol (FTP), email, rsync) show severe limitations when it comes to real-time capability. After evaluation of pro and cons of the available real-time Internet of things (IoT) protocols and seismic software solutions, we chose to use Message Queuing Telemetry Transport (MQTT) and receive the 1 s data with a negligible latency cost and no loss of data. Each individual instrument sends the magnetic data immediately after capturing, and the data arrive approximately 300 ms after being sent, which corresponds with the normal satellite latency.
Magnetic field enhancement of organic photovoltaic cells performance.
Oviedo-Casado, S; Urbina, A; Prior, J
2017-06-27
Charge separation is a critical process for achieving high efficiencies in organic photovoltaic cells. The initial tightly bound excitonic electron-hole pair has to dissociate fast enough in order to avoid photocurrent generation and thus power conversion efficiency loss via geminate recombination. Such process takes place assisted by transitional states that lie between the initial exciton and the free charge state. Due to spin conservation rules these intermediate charge transfer states typically have singlet character. Here we propose a donor-acceptor model for a generic organic photovoltaic cell in which the process of charge separation is modulated by a magnetic field which tunes the energy levels. The impact of a magnetic field is to intensify the generation of charge transfer states with triplet character via inter-system crossing. As the ground state of the system has singlet character, triplet states are recombination-protected, thus leading to a higher probability of successful charge separation. Using the open quantum systems formalism we demonstrate that the population of triplet charge transfer states grows in the presence of a magnetic field, and discuss the impact on carrier population and hence photocurrent, highlighting its potential as a tool for research on charge transfer kinetics in this complex systems.
Super-Eddington radiation transfer in soft gamma repeaters
NASA Technical Reports Server (NTRS)
Ulmer, Andrew
1994-01-01
Bursts from soft gamma repeaters (SGRs) have been shown to be super-Eddington by a factor of 1000 and have been persuasively associated with compact objects. Super-Eddington radiation transfer on the surface of a strongly magnetic (greater than or equal to 10(exp 13) G) neutron star is studied and related to the observational constraints on SGRs. In strong magnetic fields, Thompson scattering is suppressed in one polarization state, so super-Eddington fluxes can be radiated while the plasma remains in hydrostatic equilibrium. We discuss a model which offers a somewhat natural explanation for the observation that the energy spectra of bursts with varying intensity are similar. The radiation produced is found to be linearly polarized to one part in 1000 in a direction determined by the local magnetic field, and intensity variations between bursts are understood as a change in the radiating area on the source. The net polarization is inversely correlated with burst intensity. Further, it is shown that for radiation transfer calculations in limit of superstrong magnetic fields, it is sufficient to solve the radiation transfer for the low opacity state rather than the coupled equations for both. With this approximation, standard stellar atmosphere techniques are utilized to calculate the model energy spectrum.
Selective Injection of Magnetization by Slow Chemical Exchange in NMR
NASA Astrophysics Data System (ADS)
Boulat, Benoit; Epstein, David M.; Rance, Mark
1999-06-01
In a system in slow dynamic equilibrium two NMR methods are shown to be suitable for injecting magnetization from one resonance to another by means of slow chemical exchange. The combined outputs of the methods may be employed to measure the value of the off-rate constant κoff in the complex. The methods are implemented experimentally using the complex of molecules composed of the enzyme Esherichia coli dihydrofolate reductase (DHFR) and the ligand folate. In an equilibrium solution with DHFR, folate is known to undergo chemical exchange between a free state and a bound state. The modified synchronous nutation method is applied to a spin of the folate molecule in the free and bound states; magnetization transfer occurs between the two sites due to the underlying exchange process. As a preliminary step for the application of the synchronous nutation method, a new one-dimensional 1H NMR technique is proposed which facilitates the assignment of the resonance of a spin in the bound state, provided the resonance of its exchange partner in the free state is known. This experiment is also used to obtain quantitative estimates of the transverse relaxation rate constant of the bound resonance. The numerical procedure necessary to analyze the experimental results of the synchronous nutation experiment is presented.
NASA Astrophysics Data System (ADS)
Hermkens, Niels K. J.; Feiters, Martin C.; Rutjes, Floris P. J. T.; Wijmenga, Sybren S.; Tessari, Marco
2017-03-01
SABRE (Signal Amplification By Reversible Exchange) is a nuclear spin hyperpolarization technique based on the reversible concurrent binding of small molecules and para-hydrogen (p-H2) to an iridium metal complex in solution. At low magnetic field, spontaneous conversion of p-H2 spin order to enhanced longitudinal magnetization of the nuclear spins of the other ligands occurs. Subsequent complex dissociation results in hyperpolarized substrate molecules in solution. The lifetime of this complex plays a crucial role in attained SABRE NMR signal enhancements. Depending on the ligands, vastly different dissociation rates have been previously measured using EXSY or selective inversion experiments. However, both these approaches are generally time-consuming due to the long recycle delays (up to 2 min) necessary to reach thermal equilibrium for the nuclear spins of interest. In the cases of dilute solutions, signal averaging aggravates the problem, further extending the experimental time. Here, a new approach is proposed based on coherent hyperpolarization transfer to substrate protons in asymmetric complexes at high magnetic field. We have previously shown that such asymmetric complexes are important for application of SABRE to dilute substrates. Our results demonstrate that a series of high sensitivity EXSY spectra can be collected in a short experimental time thanks to the NMR signal enhancement and much shorter recycle delay.
Development of 1D Liner Compression Code for IDL
NASA Astrophysics Data System (ADS)
Shimazu, Akihisa; Slough, John; Pancotti, Anthony
2015-11-01
A 1D liner compression code is developed to model liner implosion dynamics in the Inductively Driven Liner Experiment (IDL) where FRC plasmoid is compressed via inductively-driven metal liners. The driver circuit, magnetic field, joule heating, and liner dynamics calculations are performed at each time step in sequence to couple these effects in the code. To obtain more realistic magnetic field results for a given drive coil geometry, 2D and 3D effects are incorporated into the 1D field calculation through use of correction factor table lookup approach. Commercial low-frequency electromagnetic fields solver, ANSYS Maxwell 3D, is used to solve the magnetic field profile for static liner condition at various liner radius in order to derive correction factors for the 1D field calculation in the code. The liner dynamics results from the code is verified to be in good agreement with the results from commercial explicit dynamics solver, ANSYS Explicit Dynamics, and previous liner experiment. The developed code is used to optimize the capacitor bank and driver coil design for better energy transfer and coupling. FRC gain calculations are also performed using the liner compression data from the code for the conceptual design of the reactor sized system for fusion energy gains.
Magnetization transfer proportion: a simplified measure of dose response for polymer gel dosimetry.
Whitney, Heather M; Gochberg, Daniel F; Gore, John C
2008-12-21
The response to radiation of polymer gel dosimeters has most often been described by measuring the nuclear magnetic resonance transverse relaxation rate as a function of dose. This approach is highly dependent upon the choice of experimental parameters, such as the echo spacing time for Carr-Purcell-Meiboom-Gill-type pulse sequences, and is difficult to optimize in imaging applications where a range of doses are applied to a single gel, as is typical for practical uses of polymer gel dosimetry. Moreover, errors in computing dose can arise when there are substantial variations in the radiofrequency (B1) field or resonant frequency, as may occur for large samples. Here we consider the advantages of using magnetization transfer imaging as an alternative approach and propose the use of a simplified quantity, the magnetization transfer proportion (MTP), to assess doses. This measure can be estimated through two simple acquisitions and is more robust in the presence of some sources of system imperfections. It also has a dependence upon experimental parameters that is independent of dose, allowing simultaneous optimization at all dose levels. The MTP is shown to be less susceptible to B1 errors than are CPMG measurements of R2. The dose response can be optimized through appropriate choices of the power and offset frequency of the pulses used in magnetization transfer imaging.
Scheidegger, Rachel; Vinogradov, Elena; Alsop, David C
2011-01-01
Amide proton transfer (APT) imaging has shown promise as an indicator of tissue pH and as a marker for brain tumors. Sources of error in APT measurements include direct water saturation, and magnetization transfer (MT) from membranes and macromolecules. These are typically suppressed by post-processing asymmetry analysis. However, this approach is strongly dependent on B0 homogeneity and can introduce additional errors due to intrinsic MT asymmetry, aliphatic proton features opposite the amide peak, and radiation damping-induced asymmetry. Although several methods exist to correct for B0 inhomogeneity, they tremendously increase scan times and do not address errors induced by asymmetry of the z-spectrum. In this paper, a novel saturation scheme - saturation with frequency alternating RF irradiation (SAFARI) - is proposed in combination with a new magnetization transfer ratio (MTR) parameter designed to generate APT images insensitive to direct water saturation and MT, even in the presence of B0 inhomogeneity. The feasibility of the SAFARI technique is demonstrated in phantoms and in the human brain. Experimental results show that SAFARI successfully removes direct water saturation and MT contamination from APT images. It is insensitive to B0 offsets up to 180Hz without using additional B0 correction, thereby dramatically reducing scanning time. PMID:21608029
Jin, Tao; Autio, Joonas; Obata, Takayuki; Kim, Seong-Gi
2010-01-01
Chemical exchange saturation transfer (CEST) and spin-locking (SL) experiments were both able to probe the exchange process between protons of non-equivalent chemical environments. To compare the characteristics of the CEST and SL approaches in the study of chemical exchange effects, we performed CEST and SL experiments at varied pH and concentrated metabolites with exchangeable amide, amine, and hydroxyl protons at 9.4 T. Our results show that: i) On-resonance SL is most sensitive to chemical exchanges in the intermediate exchange regime and is able to detect hydroxyl and amine protons on a millimolar concentration scale. Off-resonance SL and CEST approaches are sensitive to slow-exchanging protons when an optimal SL or saturation pulse power matches the exchanging rate, respectively. ii) Offset frequency-dependent SL and CEST spectra are very similar, and can be explained well with an SL model recently developed by Trott and Palmer. iii) The exchange rate and population of metabolite protons can be determined from offset-dependent SL or CEST spectra or from on-resonance SL relaxation dispersion measurements. iv) The asymmetry of the magnetization transfer ratio (MTRasym) is highly dependent on the choice of saturation pulse power. In the intermediate exchange regime, MTRasym becomes complicated and should be interpreted with care. PMID:21500270
Collaborative Research: Polymeric Multiferroics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Shenqiang
2017-04-20
The goal of this project is to investigate room temperature magnetism and magnetoelectric coupling of polymeric multiferroics. A new family of molecular charge-transfer crystals has been emerged as a fascinating opportunity for the development of all-organic electrics and spintronics due to its weak hyperfine interaction and low spin-orbit coupling; nevertheless, direct observations of room temperature magnetic spin ordering have yet to be accomplished in organic charge-transfer solids. Furthermore, room temperature magnetoelectric coupling effect hitherto known multiferroics, is anticipated in organic donor-acceptor complexes because of magnetic field effects on charge-transfer dipoles, yet this is also unexplored. The PI seeks to fundamentalmore » understanding of the control of organic crystals to demonstrate and explore room temperature multiferroicity. The experimental results have been verified through the theoretical modeling.« less
NASA Astrophysics Data System (ADS)
Even, J.; Ballof, J.; Brüchle, W.; Buda, R. A.; Düllmann, Ch. E.; Eberhardt, K.; Gorshkov, A.; Gromm, E.; Hild, D.; Jäger, E.; Khuyagbaatar, J.; Kratz, J. V.; Krier, J.; Liebe, D.; Mendel, M.; Nayak, D.; Opel, K.; Omtvedt, J. P.; Reichert, P.; Runke, J.; Sabelnikov, A.; Samadani, F.; Schädel, M.; Schausten, B.; Scheid, N.; Schimpf, E.; Semchenkov, A.; Thörle-Pospiech, P.; Toyoshima, A.; Türler, A.; Vicente Vilas, V.; Wiehl, N.; Wunderlich, T.; Yakushev, A.
2011-05-01
Performing experiments with transactinide elements demands highly sensitive detection methods due to the extremely low production rates (one -atom -at -a -time conditions). Preseparation with a physical recoil separator is a powerful method to significantly reduce the background in experiments with sufficiently long-lived isotopes ( t1/2≥0.5 s). In the last years, the new gas-filled TransActinide Separator and Chemistry Apparatus (TASCA) was installed and successfully commissioned at GSI. Here, we report on the design and performance of a Recoil Transfer Chamber (RTC) for TASCA—an interface to connect various chemistry and counting setups with the separator. Nuclear reaction products recoiling out of the target are separated according to their magnetic rigidity within TASCA, and the wanted products are guided to the focal plane of TASCA. In the focal plane, they pass a thin Mylar window that separates the ˜1 mbar atmosphere in TASCA from the RTC kept at ˜1 bar. The ions are stopped in the RTC and transported by a continuous gas flow from the RTC to the ancillary setup. In this paper, we report on measurements of the transportation yields under various conditions and on the first chemistry experiments at TASCA—an electrochemistry experiment with osmium and an ion exchange experiment with the transactinide element rutherfordium.
Flux transfer events: Reconnection without separators. [magnetopause
NASA Technical Reports Server (NTRS)
Hesse, M.; Birn, J.; Schindler, K.
1989-01-01
A topological analysis of a simple model magnetic field of a perturbation at the magnetopause modeling an apparent flux transfer event is presented. It is shown that a localized perturbation at the magnetopause can in principle open a closed magnetosphere by establishing magnetic connections across the magnetopause. Although the model field exhibits neutral points, these are not involved in the magnetic connection of the flux tubes. The topological substructure of a localized perturbation is analyzed in a simpler configuration. The presence of both signs of the magnetic field component normal to the magnetopause leads to a linkage of topologically different flux tubes, described as a flux knot, and a filamentary substructure of field lines of different topological types which becomes increasingly complicated for decreasing magnetic shear at the magnetopause.
NASA Astrophysics Data System (ADS)
Poojary, Umanath R.; Hegde, Sriharsha; Gangadharan, K. V.
2016-11-01
Magneto rheological elastomer (MRE) is a potential resilient element for the semi active vibration isolator. MRE based isolators adapt to different frequency of vibrations arising from the source to isolate the structure over wider frequency range. The performance of MRE isolator depends on the magnetic field and frequency dependent characteristics of MRE. Present study is focused on experimentally evaluating the dynamic stiffness and loss factor of MRE through dynamic blocked transfer stiffness method. The dynamic stiffness variations of MRE exhibit strong magnetic field and mild frequency dependency. Enhancements in dynamic stiffness saturate with the increase in magnetic field and the frequency. The inconsistent variations of loss factor with the magnetic field substantiate the inability of MRE to have independent control over its damping characteristics.
ON THE NATURE OF RECONNECTION AT A SOLAR CORONAL NULL POINT ABOVE A SEPARATRIX DOME
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pontin, D. I.; Priest, E. R.; Galsgaard, K., E-mail: dpontin@maths.dundee.ac.uk
2013-09-10
Three-dimensional magnetic null points are ubiquitous in the solar corona and in any generic mixed-polarity magnetic field. We consider magnetic reconnection at an isolated coronal null point whose fan field lines form a dome structure. Using analytical and computational models, we demonstrate several features of spine-fan reconnection at such a null, including the fact that substantial magnetic flux transfer from one region of field line connectivity to another can occur. The flux transfer occurs across the current sheet that forms around the null point during spine-fan reconnection, and there is no separator present. Also, flipping of magnetic field lines takesmore » place in a manner similar to that observed in the quasi-separatrix layer or slip-running reconnection.« less
NASA Astrophysics Data System (ADS)
Burke, M. G.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Reusch, J. A.; Schlossberg, D. J.
2017-07-01
Plasmas in the Pegasus spherical tokamak are initiated and grown by the non-solenoidal local helicity injection (LHI) current drive technique. The LHI system consists of three adjacent electron current sources that inject multiple helical current filaments that can reconnect with each other. Anomalously high impurity ion temperatures are observed during LHI with T i,OV ⩽ 650 eV, which is in contrast to T i,OV ⩽ 70 eV from Ohmic heating alone. Spatial profiles of T i,OV indicate an edge localized heating source, with T i,OV ~ 650 eV near the outboard major radius of the injectors and dropping to ~150 eV near the plasma magnetic axis. Experiments without a background tokamak plasma indicate the ion heating results from magnetic reconnection between adjacent injected current filaments. In these experiments, the HeII T i perpendicular to the magnetic field is found to scale with the reconnecting field strength, local density, and guide field, while {{T}\\text{i,\\parallel}} experiences little change, in agreement with two-fluid reconnection theory. This ion heating is not expected to significantly impact the LHI plasma performance in Pegasus, as it does not contribute significantly to the electron heating. However, estimates of the power transfer to the bulk ion are quite large, and thus LHI current drive provides an auxiliary ion heating mechanism to the tokamak plasma.
Burke, Marcus G.; Barr, Jayson L.; Bongard, Michael W.; ...
2017-05-16
Plasmas in the Pegasus spherical tokamak are initiated and grown by the non-solenoidal local helicity injection (LHI) current drive technique. The LHI system consists of three adjacent electron current sources that inject multiple helical current filaments that can reconnect with each other. Anomalously high impurity ion temperatures are observed during LHI with T i,OV ≤ 650 eV, which is in contrast to T i,OV ≤ 70 eV from Ohmic heating alone. Spatial profiles of T i,OV indicate an edge localized heating source, with T i,OV ~ 650 eV near the outboard major radius of the injectors and dropping to ~150 eV near the plasma magnetic axis. Experiments without a background tokamak plasma indicate the ion heating results from magnetic reconnection between adjacent injected current filaments. In these experiments, the HeII T i perpendicular to the magnetic field is found to scale with the reconnecting field strength, local density, and guide field, whilemore » $${{T}_{\\text{i},\\parallel}}$$ experiences little change, in agreement with two-fluid reconnection theory. In conclusion, this ion heating is not expected to significantly impact the LHI plasma performance in Pegasus, as it does not contribute significantly to the electron heating. However, estimates of the power transfer to the bulk ion are quite large, and thus LHI current drive provides an auxiliary ion heating mechanism to the tokamak plasma.« less
Su, C; Liu, C; Zhao, L; Jiang, J; Zhang, J; Li, S; Zhu, W; Wang, J
2017-09-01
Prognosis in glioma depends strongly on tumor grade and proliferation. In this prospective study of patients with untreated primary cerebral gliomas, we investigated whether amide proton transfer-weighted imaging could reveal tumor proliferation and reliably distinguish low-grade from high-grade gliomas compared with Ki-67 expression and proton MR spectroscopy imaging. This study included 42 patients with low-grade ( n = 28) or high-grade ( n = 14) glioma, all of whom underwent conventional MR imaging, proton MR spectroscopy imaging, and amide proton transfer-weighted imaging on the same 3T scanner within 2 weeks before surgery. We assessed metabolites of choline and N -acetylaspartate from proton MR spectroscopy imaging and the asymmetric magnetization transfer ratio at 3.5 ppm from amide proton transfer-weighted imaging and compared them with histopathologic grade and immunohistochemical expression of the proliferation marker Ki-67 in the resected specimens. The asymmetric magnetization transfer ratio at 3.5 ppm values measured by different readers showed good concordance and were significantly higher in high-grade gliomas than in low-grade gliomas (3.61% ± 0.155 versus 2.64% ± 0.185, P = .0016), with sensitivity and specificity values of 92.9% and 71.4%, respectively, at a cutoff value of 2.93%. The asymmetric magnetization transfer ratio at 3.5 ppm values correlated with tumor grade ( r = 0.506, P = .0006) and Ki-67 labeling index ( r = 0.502, P = .002). For all patients, the asymmetric magnetization transfer ratio at 3.5 ppm correlated positively with choline ( r = 0.43, P = .009) and choline/ N -acetylaspartate ratio ( r = 0.42, P = .01) and negatively with N -acetylaspartate ( r = -0.455, P = .005). These correlations held for patients with low-grade gliomas versus those with high-grade gliomas, but the correlation coefficients were higher in high-grade gliomas (choline: r = 0.547, P = .053; N -acetylaspartate: r = -0.644, P = .017; choline/ N -acetylaspartate: r = 0.583, P = .036). The asymmetric magnetization transfer ratio at 3.5 ppm may serve as a potential biomarker not only for assessing proliferation, but also for predicting histopathologic grades in gliomas. © 2017 by American Journal of Neuroradiology.
NASA Astrophysics Data System (ADS)
Nakamura, Yuichi; Takagi, Hiroyuki; Lim, Pang Boey; Inoue, Mitsuteru
2014-09-01
A holographic memory has been attracting attention as recording media with high recording density and high data transfer rate. We have studied the magnetic garnets as a rewritable and long life media for magnetic holography. However, since the signal intensity of reconstructed image was relatively low, the effects of recording conditions on the diffraction efficiency of magnetic hologram were investigated with experiments and the numerical simulation using COMSOL multi-physics. The diffraction efficiency tends to decrease as increasing the spatial frequency, and the use of short pulse laser with the pulse width of 50 ps was found to be effective to achieve high diffraction efficiency. This suggests that the formation of clear magnetic fringe similar to interference pattern can be obtained by the use of short pulse laser since undesirable heat diffusion during radiation does not occur. On the other hand, the diffraction efficiency increased as increasing the film thickness up to 3.1 μm but was saturated in the garnet film thicker than 3.1 μm in the case of spatial frequency of 1500 line pair/mm. The numerical simulation showed that the effective depth of magnetic fringe was limited about 1.8 μm irrespective of the garnet film thickness because the fringes were connected by thermal diffusion near the surface of the film, and the effective depth is limited due to this connection of the magnetic fringe. Avoiding this fringe connection, much higher diffraction efficiency will be achieved.
Dynamic Nuclear Polarization and other magnetic ideas at EPFL.
Bornet, Aurélien; Milani, Jonas; Wang, Shutao; Mammoli, Daniele; Buratto, Roberto; Salvi, Nicola; Segaw, Takuya F; Vitzthum, Veronika; Miéville, Pascal; Chinthalapalli, Srinivas; Perez-Linde, Angel J; Carnevale, Diego; Jannin, Sami; Caporinia, Marc; Ulzega, Simone; Rey, Martial; Bodenhausen, Geoffrey
2012-01-01
Although nuclear magnetic resonance (NMR) can provide a wealth of information, it often suffers from a lack of sensitivity. Dynamic Nuclear Polarization (DNP) provides a way to increase the polarization and hence the signal intensities in NMR spectra by transferring the favourable electron spin polarization of paramagnetic centres to the surrounding nuclear spins through appropriate microwave irradiation. In our group at EPFL, two complementary DNP techniques are under investigation: the combination of DNP with magic angle spinning at temperatures near 100 K ('MAS-DNP'), and the combination of DNP at 1.2 K with rapid heating followed by the transfer of the sample to a high-resolution magnet ('dissolution DNP'). Recent applications of MAS-DNP to surfaces, as well as new developments of magnetization transfer of (1)H to (13)C at 1.2 K prior to dissolution will illustrate the work performed in our group. A second part of the paper will give an overview of some 'non-enhanced' activities of our laboratory in liquid- and solid-state NMR.
Design and prototype fabrication of a 30 tesla cryogenic magnet
NASA Technical Reports Server (NTRS)
Prok, G. M.; Swanson, M. C.; Brown, G. V.
1977-01-01
A liquid neon cooled magnet was designed to produce 30 teslas in steady operation. To ensure the correctness of the heat transfer relationships used, supercritical neon heat transfer tests were made. Other tests made before the final design included tests on the effect of the magnetic field on pump motors, tensile shear tests on the cryogenic adhesives, and simulated flow studies for the coolant. The magnet will consist of two pairs of coils, cooled by forced convection of supercritical neon. Heat from the supercritical neon will be rejected through heat exchangers which are made of roll bonded copper panels and are submerged in a pool of saturated liquid neon. A partial mock up coil was wound to identify the tooling required to wind the magnet. This was followed by winding a prototype pair of coils. The prototype winding established procedures for fabricating the final magnet and revealed slight changes needed in the final design.
NASA Astrophysics Data System (ADS)
Fast, R. W.
Applications of superconductivity are considered, taking into account MHD and fusion, generators, transformers, transmission lines, magnets for physics, cryogenic techniques, electrtronics, and aspects of magnet stability. Advances related to heat transfer in He I are discussed along with subjects related to theat transfer in He II, refrigeration of superconducting systems, refrigeration and liquefaction, dilution and magnetic refrigerators, refrigerators for space applications, mass transfer and flow phenomena, and the properties of fluids. Developments related to cryogenic applications are also explored, giving attention to bulk storage and transfer of cryogenic fluids, liquefied natural gas operations, space science and technology, and cryopumping. Topics related to cryogenic instrumentation and controls include the production and use of high grade silicon diode temperature sensors, the choice of strain gages for use in a large superconducting alternator, microprocessor control of cryogenic pressure, and instrumentation, data acquisition and reduction for a large spaceborne helium dewar. For individual items see A83-43221 to A83-43250
Rendon-Nava, Adrian E; Díaz-Méndez, J Alejandro; Nino-de-Rivera, Luis; Calleja-Arriaga, Wilfrido; Gil-Carrasco, Felix; Díaz-Alonso, Daniela
2014-01-01
An analysis of the effect of distance and alignment between two magnetically coupled coils for wireless power transfer in intraocular pressure measurement is presented. For measurement purposes, a system was fabricated consisting of an external device, which is a Maxwell-Wien bridge circuit variation, in charge of transferring energy to a biomedical implant and reading data from it. The biomedical implant is an RLC tank circuit, encapsulated by a polyimide coating. Power transfer was done by magnetic induction coupling method, by placing one of the inductors of the Maxwell-Wien bridge circuit and the inductor of the implant in close proximity. The Maxwell-Wien bridge circuit was biased with a 10 MHz sinusoidal signal. The analysis presented in this paper proves that wireless transmission of power for intraocular pressure measurement is feasible with the measurement system proposed. In order to have a proper inductive coupling link, special care must be taken when placing the two coils in proximity to avoid misalignment between them.
Review of magnetic refrigeration system as alternative to conventional refrigeration system
NASA Astrophysics Data System (ADS)
Mezaal, N. A.; Osintsev, K. V.; Zhirgalova, T. B.
2017-10-01
The refrigeration system is one of the most important systems in industry. Developers are constantly seeking for how to avoid the damage to the environment. Magnetic refrigeration is an emerging, environment-friendly technology based on a magnetic solid that acts as a refrigerant by magneto-caloric effect (MCE). In the case of ferromagnetic materials, MCE warms as the magnetic moments of the atom are aligned by the application of a magnetic field. There are two types of magnetic phase changes that may occur at the Curie point: first order magnetic transition (FOMT) and second order magnetic transition (SOMT). The reference cycle for magnetic refrigeration is AMR (Active Magnetic Regenerative cycle), where the magnetic material matrix works both as a refrigerating medium and as a heat regenerating medium, while the fluid flowing in the porous matrix works as a heat transfer medium. Regeneration can be accomplished by blowing a heat transfer fluid in a reciprocating fashion through the regenerator made of magnetocaloric material that is alternately magnetized and demagnetized. Many magnetic refrigeration prototypes with different designs and software models have been built in different parts of the world. In this paper, the authors try to shed light on the magnetic refrigeration and show its effectiveness compared with conventional refrigeration methods.
Interface-induced phenomena in magnetism
Hellman, Frances; Hoffmann, Axel; Tserkovnyak, Yaroslav; ...
2017-06-05
Our article reviews static and dynamic interfacial effects in magnetism, focusing on interfacially-driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking at interfaces. It provides a historical background and literature survey, but focuses on recent progress, identifying the most exciting new scientific results and pointing to promising future research directions. It starts with an introduction and overview of how basic magnetic properties are affected by interfaces, then turns to a discussion of charge and spin transport through and near interfaces and how these can be used to control the properties of the magnetic layer. Important conceptsmore » include spin accumulation, spin currents, spin transfer torque, and spin pumping. We provide an overview for the current state of knowledge and existing review literature on interfacial effects such as exchange bias, exchange spring magnets, spin Hall effect, oxide heterostructures, and topological insulators. Our article highlights recent discoveries of interface-induced magnetism and non-collinear spin textures, non-linear dynamics including spin torque transfer and magnetization reversal induced by interfaces, and interfacial effects in ultrafast magnetization processes.« less
Interface-Induced Phenomena in Magnetism
Hoffmann, Axel; Tserkovnyak, Yaroslav; Beach, Geoffrey S. D.; Fullerton, Eric E.; Leighton, Chris; MacDonald, Allan H.; Ralph, Daniel C.; Arena, Dario A.; Dürr, Hermann A.; Fischer, Peter; Grollier, Julie; Heremans, Joseph P.; Jungwirth, Tomas; Kimel, Alexey V.; Koopmans, Bert; Krivorotov, Ilya N.; May, Steven J.; Petford-Long, Amanda K.; Rondinelli, James M.; Samarth, Nitin; Schuller, Ivan K.; Slavin, Andrei N.; Stiles, Mark D.; Tchernyshyov, Oleg; Thiaville, André; Zink, Barry L.
2017-01-01
This article reviews static and dynamic interfacial effects in magnetism, focusing on interfacially-driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking at interfaces. It provides a historical background and literature survey, but focuses on recent progress, identifying the most exciting new scientific results and pointing to promising future research directions. It starts with an introduction and overview of how basic magnetic properties are affected by interfaces, then turns to a discussion of charge and spin transport through and near interfaces and how these can be used to control the properties of the magnetic layer. Important concepts include spin accumulation, spin currents, spin transfer torque, and spin pumping. An overview is provided to the current state of knowledge and existing review literature on interfacial effects such as exchange bias, exchange spring magnets, spin Hall effect, oxide heterostructures, and topological insulators. The article highlights recent discoveries of interface-induced magnetism and non-collinear spin textures, non-linear dynamics including spin torque transfer and magnetization reversal induced by interfaces, and interfacial effects in ultrafast magnetization processes. PMID:28890576
Mazerolle, Erin L; D'Arcy, Ryan CN; Beyea, Steven D
2008-01-01
Background It is generally believed that activation in functional magnetic resonance imaging (fMRI) is restricted to gray matter. Despite this, a number of studies have reported white matter activation, particularly when the corpus callosum is targeted using interhemispheric transfer tasks. These findings suggest that fMRI signals may not be neatly confined to gray matter tissue. In the current experiment, 4 T fMRI was employed to evaluate whether it is possible to detect white matter activation. We used an interhemispheric transfer task modelled after neurological studies of callosal disconnection. It was hypothesized that white matter activation could be detected using fMRI. Results Both group and individual data were considered. At liberal statistical thresholds (p < 0.005, uncorrected), group level activation was detected in the isthmus of the corpus callosum. This region connects the superior parietal cortices, which have been implicated previously in interhemispheric transfer. At the individual level, five of the 24 subjects (21%) had activation clusters that were located primarily within the corpus callosum. Consistent with the group results, the clusters of all five subjects were located in posterior callosal regions. The signal time courses for these clusters were comparable to those observed for task related gray matter activation. Conclusion The findings support the idea that, despite the inherent challenges, fMRI activation can be detected in the corpus callosum at the individual level. Future work is needed to determine whether the detection of this activation can be improved by utilizing higher spatial resolution, optimizing acquisition parameters, and analyzing the data with tissue specific models of the hemodynamic response. The ability to detect white matter fMRI activation expands the scope of basic and clinical brain mapping research, and provides a new approach for understanding brain connectivity. PMID:18789154
Back-Hopping in Spin-Transfer-Torque Devices: Possible Origin and Countermeasures
NASA Astrophysics Data System (ADS)
Abert, Claas; Sepehri-Amin, Hossein; Bruckner, Florian; Vogler, Christoph; Hayashi, Masamitsu; Suess, Dieter
2018-05-01
The effect of undesirable high-frequency free-layer switching in magnetic multilayer systems, referred to as back-hopping, is investigated by means of the spin-diffusion model. A possible origin of the back-hopping effect is found to be the destabilization of the pinned layer, which leads to the perpetual switching of both layers. While the presented mechanism is not claimed to be the only possible reason for back-hopping, we show that it is a fundamental effect that will occur in any spin-transfer-torque device when exceeding a critical current. The influence of different material parameters on the critical switching currents for the free and pinned layer is obtained by micromagnetic simulations. The spin-diffusion model enables an accurate description of the torque on both layers, depending on various material parameters. It is found that the choice of a free-layer material with low polarization β and saturation magnetization Ms and a pinned-layer material with high β and Ms leads to a low free-layer critical current and a high pinned-layer critical current and hence reduces the likelihood of back-hopping. While back-hopping has been observed in various types of devices, there are only a few experiments that exhibit this effect in perpendicularly magnetized systems. However, our simulations suggest that the described effect will also gain importance in perpendicular systems due to the loss of pinned-layer anisotropy for decreasing device sizes.
NASA Astrophysics Data System (ADS)
Guo, Na; Li, Haiyan; Xu, Xingjian; Yu, Hongwen
2016-12-01
Novel hierarchical Fe3O4@MoS2/Ag3PO4 magnetic nanophotocatalyst with remarkable photocatalytic capability were prepared by simply depositing the Ag3PO4 onto the surface of crumpled Fe3O4@MoS2 nanosphere. The nanocomposites were characterized by XRD, TEM, HRTEM, XPS, BET, and UV-vis DRS. The outcome of the photocatalytic experiments demonstrated that Fe3O4@MoS2/Ag3PO4 with 6 wt% content of Ag3PO4 (FM/A-6%) showed the highest photocatalytic activity upon the degradation Congo red (CR) and Rhodamine B (RhB) under both visible light and simulated sunlight irradiation. In addition, FM/A-6% possessed larger specific surface area (76.56 m2/g) and excellent optical property. The possible Z-scheme charge carriers transfer mechanism for the enhanced photocatalytic properties of the FM/A-6% was also discussed. The Z-scheme charge carriers transfer mechanism established between MoS2 and Ag3PO4 facilitate the charge separation efficiency. Moreover, FM/A-6% can be separated and collected easily by external magnetic field and maintain high activity after five times photoreaction cycles. Given the remarkable photocatalytic performance and high stability of FM/A-6% nanocomposite, it is looking forward to exhibit great potential for applications in water purification.
The characteristic of evaporative cooling magnet for ECRIS
NASA Astrophysics Data System (ADS)
Xiong, B.; Ruan, L.; Gu, G. B.; Lu, W.; Zhang, X. Z.; Zhan, W. L.
2016-02-01
Compared with traditional de-ionized pressurized-water cooled magnet of ECRIS, evaporative cooling magnet has some special characteristics, such as high cooling efficiency, simple maintenance, and operation. The analysis is carried out according to the design and operation of LECR4 (Lanzhou Electron Cyclotron Resonance ion source No. 4, since July 2013), whose magnet is cooled by evaporative cooling technology. The insulation coolant replaces the de-ionized pressurized-water to absorb the heat of coils, and the physical and chemical properties of coolant remain stable for a long time with no need for purification or filtration. The coils of magnet are immersed in the liquid coolant. For the higher cooling efficiency of coolant, the current density of coils can be greatly improved. The heat transfer process executes under atmospheric pressure, and the temperature of coils is lower than 70 °C when the current density of coils is 12 A/mm2. On the other hand, the heat transfer temperature of coolant is about 50 °C, and the heat can be transferred to fresh air which can save cost of water cooling system. Two years of LECR4 stable operation show that evaporative cooling technology can be used on magnet of ECRIS, and the application advantages are very obvious.
The characteristic of evaporative cooling magnet for ECRIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, B., E-mail: xiongbin@mail.iee.ac.cn; University of Chinese Academy of Sciences, Beijing 100049; Ruan, L.
2016-02-15
Compared with traditional de-ionized pressurized-water cooled magnet of ECRIS, evaporative cooling magnet has some special characteristics, such as high cooling efficiency, simple maintenance, and operation. The analysis is carried out according to the design and operation of LECR4 (Lanzhou Electron Cyclotron Resonance ion source No. 4, since July 2013), whose magnet is cooled by evaporative cooling technology. The insulation coolant replaces the de-ionized pressurized-water to absorb the heat of coils, and the physical and chemical properties of coolant remain stable for a long time with no need for purification or filtration. The coils of magnet are immersed in the liquidmore » coolant. For the higher cooling efficiency of coolant, the current density of coils can be greatly improved. The heat transfer process executes under atmospheric pressure, and the temperature of coils is lower than 70 °C when the current density of coils is 12 A/mm{sup 2}. On the other hand, the heat transfer temperature of coolant is about 50 °C, and the heat can be transferred to fresh air which can save cost of water cooling system. Two years of LECR4 stable operation show that evaporative cooling technology can be used on magnet of ECRIS, and the application advantages are very obvious.« less
Unsteady Magnetized Flow and Heat Transfer of a Viscoelastic fluid over a Stretching Surface
NASA Astrophysics Data System (ADS)
Ghosh, Sushil Kumar
2017-12-01
This paper is to study the flow of heated ferro-fluid over a stretching sheet under the influence of magnetic field. The fluid considered in the present investigation is a mixture of blood as well as fluid-dispersed magnetic nano particles and under this context blood is found to be the appropriate choice of viscoelastic, Walter's B fluid. The objective of the present work is to study the effect of various parameters found in the mathematical analysis. Taking into account the blood has zero electrical conductivity, magnetization effect has been considered in the governing equation of the present study with the use of ferro-fluid dynamics principle. By introducing appropriate non-dimensional variables into the governing equations of unsteady two-dimensional flow of viscoelastic fluid with heat transfer are converted to a set of ordinary differential equations with appropriate boundary conditions. Newton's linearization technique has been employed for the solution of non-linear ordinary differential equations. Important results found in the present investigation are the substantial influence of ferro-magnetic parameter, Prandlt number and the parameter associated with the thermal conductivity on the flow and heat transfer. It is observed that the presence of magnetic dipole essentially reduces the flow velocity in the vertical direction and that helps to damage the cancer cells in the tumor region.
Chemical Exchange Saturation Transfer (CEST): what is in a name and what isn’t?
van Zijl, Peter C.M.; Yadav, Nirbhay N.
2011-01-01
Chemical exchange saturation transfer (CEST) imaging is a relatively new MRI contrast approach in which exogenous or endogenous compounds containing either exchangeable protons or exchangeable molecules are selectively saturated and, after transfer of this saturation, detected indirectly through the water signal with enhanced sensitivity. The focus of this review is on basic MR principles underlying CEST and similarities to and differences with conventional magnetization transfer contrast (MTC). In CEST MRI, transfer of magnetization is studied in mobile compounds instead of semisolids. Similar to MTC, CEST has contributions of both chemical exchange and dipolar cross-relaxation, but the latter can often be neglected if exchange is fast. Contrary to MTC, CEST imaging requires sufficiently slow exchange on the MR time scale to allow selective irradiation of the protons of interest. As a consequence, magnetic labeling is not limited to radio-frequency saturation but can be expanded with slower frequency-selective approaches such as inversion, gradient dephasing and frequency labeling. The basic theory, design criteria, and experimental issues for exchange transfer imaging are discussed. A new classification for CEST agents based on exchange type is proposed. The potential of this young field is discussed, especially with respect to in vivo application and translation to humans. PMID:21337419
Das, Vijay Kumar; Mazhar, Sumaira; Gregor, Lennon; Stein, Barry D; Morgan, David Gene; Maciulis, Nicholas A; Pink, Maren; Losovyj, Yaroslav; Bronstein, Lyudmila M
2018-06-14
Here, we report transfer hydrogenation of nitroarenes to aminoarenes using 2-propanol as a hydrogen source and Ag-containing magnetically recoverable catalysts based on partially reduced graphene oxide (pRGO) sheets. X-ray diffraction and X-ray photoelectron spectroscopy data demonstrated that, during the one-pot catalyst synthesis, formation of magnetite nanoparticles (NPs) is accompanied by the reduction of graphene oxide (GO) to pRGO. The formation of Ag 0 NPs on top of magnetite nanoparticles does not change the pRGO structure. At the same time, the catalyst structure is further modified during the transfer hydrogenation, leading to a noticeable increase of sp 2 carbons. These carbons are responsible for the adsorption of substrate and intermediates, facilitating a hydrogen transfer from Ag NPs and creating synergy between the components of the catalyst. The nitroarenes with electron withdrawing and electron donating substituents allow for excellent yields of aniline derivatives with high regio and chemoselectivity, indicating that the reaction is not disfavored by these functionalities. The versatility of the catalyst synthetic protocol was demonstrated by a synthesis of an Ru-containing graphene derivative based catalyst, also allowing for efficient transfer hydrogenation. Easy magnetic separation and stable catalyst performance in the transfer hydrogenation make this catalyst promising for future applications.
Numerical simulation of magnetic convection ferrofluid flow in a permanent magnet-inserted cavity
NASA Astrophysics Data System (ADS)
Ashouri, Majid; Behshad Shafii, Mohammad
2017-11-01
The magnetic convection heat transfer in an obstructed two-dimensional square cavity is investigated numerically. The walls of the cavity are heated with different constant temperatures at two sides, and isolated at two other sides. The cavity is filled with a high Prandtl number ferrofluid. The convective force is induced by a magnetic field gradient of a thermally insulated square permanent magnet located at the center of the cavity. The results are presented in the forms of streamlines, isotherms, and Nusselt number for various values of magnetic Rayleigh numbers and permanent magnet size. Two major circulations are generated in the cavity, clockwise flow in the upper half and counterclockwise in the lower half. In addition, strong circulations are observed around the edges of the permanent magnet surface. The strength of the circulations increase monotonically with the magnetic Rayleigh number. The circulations also increase with the permanent magnet size, but eventually, are suppressed for larger sizes. It is found that there is an optimum size for the permanent magnet due to the contrary effects of the increase in magnetic force and the increase in flow resistance by increasing the size. By increasing the magnetic Rayleigh number or isothermal walls temperature ratio, the heat transfer rate increases.
"Magnetic" termite mound surfaces are oriented to suit wind and shade conditions.
Jacklyn, Peter M
1992-09-01
The termites Amitermes meridionalis and A. laurensis construct remarkable meridional or "magnetic" mounds in northern Australia. These mounds vary geographically in mean orientation in a manner that suggests such variation is an adaptive response to local environmental conditions. Theoretical modelling of solar irradiance and mound rotation experiments show that maintenance of an eastern face temperature plateau during the dry season is the most likely physical basis for the mound orientation response. Subsequent heat transfer analysis shows that habitat wind speed and shading conditions also affect face temperature gradients such as the rate of eastern face temperature change. It is then demonstrated that the geographic variation in mean mound orientation follows the geographic variation in long-term wind speed and shading conditions across northern Australia such that an eastern face temperature plateau is maintained in all locations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nettesheim, D.G.; Klevit, R.E.; Drobny, G.
1989-02-21
The authors report the sequential assignment of resonances to specific residues in the proton nuclear magnetic resonance spectrum of the variant-3 neurotoxin from the scorpion Centruroides sculpturatus Ewing (range southwestern U.S.A.). A combination of two-dimensional NMR experiments such as 2D-COSY, 2D-NOESY, and single- and double-RELAY coherence transfer spectroscopy has been employed on samples of the protein dissolved in D{sub 2}O and in H{sub 2}O for assignment purposes. These studies provide a basis for the determination of the solution-phase conformation of this protein and for undertaking detailed structure-function studies of these neurotoxins that modulate the flow of sodium current by bindingmore » to the sodium channels of excitable membranes.« less
Casting technology for ODS steels - dispersion of nanoparticles in liquid metals
NASA Astrophysics Data System (ADS)
Sarma, M.; Grants, I.; Kaldre, I.; Bojarevics, A.; Gerbeth, G.
2017-07-01
Dispersion of particles to produce metal matrix nanocomposites (MMNC) can be achieved by means of ultrasonic vibration of the melt using ultrasound transducers. However, a direct transfer of this method to produce steel composites is not feasible because of the much higher working temperature. Therefore, an inductive technology for contactless treatment by acoustic cavitation was developed. This report describes the samples produced to assess the feasibility of the proposed method for nano-particle separation in steel. Stainless steel samples with inclusions of TiB2, TiO2, Y2O3, CeO2, Al2O3 and TiN have been created and analyzed. Additional experiments have been performed using light metals with an increased value of the steady magnetic field using a superconducting magnet with a field strength of up to 5 T.
MESSENGER Observations of Mercury's Dynamic Magnetosphere During Three Flybys
NASA Astrophysics Data System (ADS)
Slavin, James; Krimigis, Stamatios; Anderson, Brian J.; Benna, Mehdi; Gold, Robert E.; Ho, George; McNutt, Ralph; Raines, James; Schriver, David; Solomon, Sean C.
MESSENGER's 14 January and 6 October 2008 and 29 September 2009 encounters with Mer-cury have provided new measurements of dynamic variations in the planet's coupled atmo-sphere-magnetosphere system. The three flybys took place under very different interplanetary magnetic field (IMF) conditions. Consistent with predictions of magnetospheric models for northward IMF, the neutral atmosphere was observed to have its strongest sources in the high latitude northern hemisphere for the first flyby. The southward IMF for the second encounter revealed a highly dynamic magnetosphere. Reconnection between the interplanetary and plan-etary magnetic fields is known to control the rate of energy transfer from the solar wind and to drive magnetospheric convection. The MESSENGER magnetic field measurements revealed that the rate at which interplanetary magnetic fields were reconnecting to the planetary fields was a factor of 10 greater than is usually observed at Earth. This extremely high reconnection rate results in a large magnetic field component normal to the magnetopause and the formation of flux transfer events that are much larger relative to the size of the forward magnetosphere than is observed at Earth. The resulting magnetospheric configuration allows the solar wind access to much of the dayside surface of Mercury. During MESSENGER's third Mercury flyby, a variable interplanetary magnetic field produced a series of several-minute-long enhancements of the tail magnetic field by factors of 2 to 3.5. The magnetic field flaring during these intervals indicates that they resulted from loading of the tail with magnetic flux transferred from the dayside magnetosphere. The unloading intervals were associated with plasmoids and traveling compression regions, signatures of tail reconnection. The peak tail magnetic flux during the smallest loading events equaled 30
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumann, K; Weber, U; Simeonov, Y
Purpose: Aim of this study was to optimize the magnetic field strengths of two quadrupole magnets in a particle therapy facility in order to obtain a beam quality suitable for spot beam scanning. Methods: The particle transport through an ion-optic system of a particle therapy facility consisting of the beam tube, two quadrupole magnets and a beam monitor system was calculated with the help of Matlab by using matrices that solve the equation of motion of a charged particle in a magnetic field and field-free region, respectively. The magnetic field strengths were optimized in order to obtain a circular andmore » thin beam spot at the iso-center of the therapy facility. These optimized field strengths were subsequently transferred to the Monte-Carlo code FLUKA and the transport of 80 MeV/u C12-ions through this ion-optic system was calculated by using a user-routine to implement magnetic fields. The fluence along the beam-axis and at the iso-center was evaluated. Results: The magnetic field strengths could be optimized by using Matlab and transferred to the Monte-Carlo code FLUKA. The implementation via a user-routine was successful. Analyzing the fluence-pattern along the beam-axis the characteristic focusing and de-focusing effects of the quadrupole magnets could be reproduced. Furthermore the beam spot at the iso-center was circular and significantly thinner compared to an unfocused beam. Conclusion: In this study a Matlab tool was developed to optimize magnetic field strengths for an ion-optic system consisting of two quadrupole magnets as part of a particle therapy facility. These magnetic field strengths could subsequently be transferred to and implemented in the Monte-Carlo code FLUKA to simulate the particle transport through this optimized ion-optic system.« less
Testing signal enhancement mechanisms in the dissolution NMR of acetone
NASA Astrophysics Data System (ADS)
Alonso-Valdesueiro, Javier; Elliott, Stuart J.; Bengs, Christian; Meier, Benno; Levitt, Malcolm H.
2018-01-01
In cryogenic dissolution NMR experiments, a substance of interest is allowed to rest in a strong magnetic field at cryogenic temperature, before dissolving the substance in a warm solvent, transferring it to a high-resolution NMR spectrometer, and observing the solution-state NMR spectrum. In some cases, negative enhancements of the 13C NMR signals are observed, which have been attributed to quantum-rotor-induced polarization. We show that in the case of acetone (propan-2-one) the negative signal enhancements of the methyl 13C sites may be understood by invoking conventional cross-relaxation within the methyl groups. The 1H nuclei acquire a relative large net polarization through thermal equilibration in a magnetic field at low temperature, facilitated by the methyl rotation which acts as a relaxation sink; after dissolution, the 1H magnetization slowly returns to thermal equilibrium at high temperature, in part by cross-relaxation processes, which induce a transient negative polarization of nearby 13C nuclei. We provide evidence for this mechanism experimentally and theoretically by saturating the 1H magnetization using a radiofrequency field pulse sequence before dissolution and comparing the 13 C magnetization evolution after dissolution with the results obtained from a conventional 1 H-13 C cross relaxation model of the CH3 moieties in acetone.
Kövér, Katalin E; Wéber, Edit; Martinek, Tamás A; Monostori, Eva; Batta, Gyula
2010-10-18
Saturation transfer difference (STD) is a valuable tool for studying the binding of small molecules to large biomolecules and for obtaining detailed information on the binding epitopes. Here, we demonstrate that the proposed (15)N/(13)C variants of group-selective, "GS-STD" experiments provide a powerful approach to mapping the binding epitope of a ligand even in the absence of efficient spin diffusion within the target protein. Therefore, these experimental variants broaden the scope of STD studies to smaller and/or more-dynamic targets. The STD spectra obtained in four different experimental setups (selective (1)H STD, (15)N GS-STD, (13)C(Ar) and (13)C(aliphatic) GS-STD approaches) revealed that the signal-intensity pattern of the difference spectra is affected by both the type and the spatial distribution of the excited "transmitter" atoms, as well as by the efficiency of the spin-diffusion-mediated magnetization transfer. The performance of the experiments is demonstrated on a system by using the lectin, galectin-1 and its carbohydrate ligand, lactose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elyasi, Mehrdad; Bhatia, Charanjit S.; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg
2015-02-14
We have proposed a method to synchronize multiple spin-transfer torque oscillators based on spin pumping, inverse spin Hall, and spin Hall effects. The proposed oscillator system consists of a series of nano-magnets in junction with a normal metal with high spin-orbit coupling, and an accumulative feedback loop. We conduct simulations to demonstrate the effect of modulated charge currents in the normal metal due to spin pumping from each nano-magnet. We show that the interplay between the spin Hall effect and inverse spin Hall effect results in synchronization of the nano-magnets.
NASA Technical Reports Server (NTRS)
Jacob, Jamey D.; Carrell, Cynthia
1993-01-01
We present preliminary results of a study of upstream magnetic field and plasma conditions measured by IRM during flux transfer events observed at the Earth's magnetopause by CCE. This study was designed to determine the importance of various upstream factors in the formation of bipolar magnetic field signatures called flux transfer events (FTEs). Six FTE encounters were examined. In three cases, the two satellites were on similar magnetic field lines. Preliminary investigation showed that fluctuations occurred in the Bz component of the interplanetary magnetic field (IMF) resulting in a southward field preceding the FTE in all three of these cases. In two of these cases, the changes were characterized by a distinct rotation from a strong southward to a strong northward field. There were also accompanying changes in the dynamic and thermal pressure in the solar wind immediately before the FTE was encountered. Examination of the 3D plasma distributions showed that these pulses were due to the addition of energetic upstreaming foreshock particles. There were no consistent changes in either Bz or the plasma pressure at IRM for the three events when the satellites were not connected by the IMF.
Note: A calibration method to determine the lumped-circuit parameters of a magnetic probe.
Li, Fuming; Chen, Zhipeng; Zhu, Lizhi; Liu, Hai; Wang, Zhijiang; Zhuang, Ge
2016-06-01
This paper describes a novel method to determine the lumped-circuit parameters of a magnetic inductive probe for calibration by using Helmholtz coils with high frequency power supply (frequency range: 10 kHz-400 kHz). The whole calibration circuit system can be separated into two parts: "generator" circuit and "receiver" circuit. By implementing the Fourier transform, two analytical lumped-circuit models, with respect to these separated circuits, are constructed to obtain the transfer function between each other. Herein, the precise lumped-circuit parameters (including the resistance, inductance, and capacitance) of the magnetic probe can be determined by fitting the experimental data to the transfer function. Regarding the fitting results, the finite impedance of magnetic probe can be used to analyze the transmission of a high-frequency signal between magnetic probes, cables, and acquisition system.
Frequency-Swept Integrated Solid Effect.
Can, Thach V; Weber, Ralph T; Walish, Joseph J; Swager, Timothy M; Griffin, Robert G
2017-06-06
The efficiency of continuous wave dynamic nuclear polarization (DNP) experiments decreases at the high magnetic fields used in contemporary high-resolution NMR applications. To recover the expected signal enhancements from DNP, we explored time domain experiments such as NOVEL which matches the electron Rabi frequency to the nuclear Larmor frequency to mediate polarization transfer. However, satisfying this matching condition at high frequencies is technically demanding. As an alternative we report here frequency-swept integrated solid effect (FS-ISE) experiments that allow low power sweeps of the exciting microwave frequencies to constructively integrate the negative and positive polarizations of the solid effect, thereby producing a polarization efficiency comparable to (±10 % difference) NOVEL. Finally, the microwave frequency modulation results in field profiles that exhibit new features that we coin the "stretched" solid effect. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-frequency flux transfer events detected near Mercury
NASA Astrophysics Data System (ADS)
Schultz, Colin
2013-01-01
The physical process that creates connections between the magnetic fields emanating from the Sun and a planet—a process known as magnetic reconnection—creates a portal through which solar plasma can penetrate the planetary magnetic field. The opening of these portals, known as flux transfer events (FTEs), takes place roughly every 8 minutes at Earth and spawns a rope of streaming plasma that is typically about half of the radius of the Earth. As early as 1985, scientists analyzing the Mariner 10 observations, collected during their 1974-1975 flybys, have known that FTEs also occur at Mercury. However, using the measurements returned from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft now orbiting Mercury, Slavin et al. found that Mercurial flux transfer events are proportionally much larger, stronger, and more frequent than those at Earth.
Interfacial spin-filter assisted spin transfer torque effect in Co/BeO/Co magnetic tunnel junction
NASA Astrophysics Data System (ADS)
Tang, Y.-H.; Chu, F.-C.
2015-03-01
The first-principles calculation is employed to demonstrate the spin-selective transport properties and the non-collinear spin-transfer torque (STT) effect in the newly proposed Co/BeO/Co magnetic tunnel junction. The subtle spin-polarized charge transfer solely at O/Co interface gives rise to the interfacial spin-filter (ISF) effect, which can be simulated within the tight binding model to verify the general expression of STT. This allows us to predict the asymmetric bias behavior of non-collinear STT directly via the interplay between the first-principles calculated spin current densities in collinear magnetic configurations. We believe that the ISF effect, introduced by the combination between wurtzite-BeO barrier and the fcc-Co electrode, may open a new and promising route in semiconductor-based spintronics applications.
Liquid neon heat transfer as applied to a 30 tesla cryomagnet
NASA Technical Reports Server (NTRS)
Papell, S. S.; Hendricks, R. C.
1975-01-01
A 30-tesla magnet design is studied which calls for forced convection liquid neon heat transfer in small coolant channels. The design also requires suppressing boiling by subjecting the fluid to high pressures through use of magnet coils enclosed in a pressure vessel which is maintained at the critical pressure of liquid neon. This high pressure reduces the possibility of the system flow instabilities which may occur at low pressures. The forced convection heat transfer data presented were obtained by using a blowdown technique to force the fluid to flow vertically through a resistance heated, instrumented tube.
NASA Astrophysics Data System (ADS)
Belyaev, I. A.; Sviridov, V. G.; Batenin, V. M.; Biryukov, D. A.; Nikitina, I. S.; Manchkha, S. P.; Pyatnitskaya, N. Yu.; Razuvanov, N. G.; Sviridov, E. V.
2017-11-01
The results are presented of experimental investigations into liquid metal heat transfer performed by the joint research group consisting of specialist in heat transfer and hydrodynamics from NIU MPEI and JIHT RAS. The program of experiments has been prepared considering the concept of development of the nuclear power industry in Russia. This concept calls for, in addition to extensive application of water-cooled, water-moderated (VVER-type) power reactors and BN-type sodium cooled fast reactors, development of the new generation of BREST-type reactors, fusion power reactors, and thermonuclear neutron sources. The basic coolants for these nuclear power installations will be heavy liquid metals, such as lead and lithium-lead alloy. The team of specialists from NRU MPEI and JIHT RAS commissioned a new RK-3 mercury MHD-test facility. The major components of this test facility are a unique electrical magnet constructed at Budker Nuclear Physics Institute and a pressurized liquid metal circuit. The test facility is designed for investigating upward and downward liquid metal flows in channels of various cross-sections in a transverse magnetic field. A probe procedure will be used for experimental investigation into heat transfer and hydrodynamics as well as for measuring temperature, velocity, and flow parameter fluctuations. It is generally adopted that liquid metals are the best coolants for the Tokamak reactors. However, alternative coolants should be sought for. As an alternative to liquid metal coolants, molten salts, such as fluorides of lithium and beryllium (so-called FLiBes) or fluorides of alkali metals (so-called FLiNaK) doped with uranium fluoride, can be used. That is why the team of specialists from NRU MPEI and JIHT RAS, in parallel with development of a mercury MHD test facility, is designing a test facility for simulating molten salt heat transfer and hydrodynamics. Since development of this test facility requires numerical predictions and verification of numerical codes, all examined configurations of the MHD flow are also investigated numerically.
Multiple-Scale Physics During Magnetic Reconnection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jara-Almonte, Jonathan
Magnetic reconnection is a key fundamental process in magnetized plasmas wherein the global magnetic topology is modified and stored energy is transferred from fields to particles. Reconnection is an inherently local process, and mechanisms to couple global-scale dynamics are not well understood. This dissertation explores two different mechanisms for cross-scale coupling during magnetic reconnection. As one example, we theoretically examine reconnection in a collisionless plasma using particle-in-cell simulations and demonstrate that large scale reconnection physics can couple to and drive microscopic instabilities, even in two-dimensional systems if significant scale separation exists between the Debye length and the electron skin depth.more » The physics underlying these instabilities is explained using simple theoretical models, and their potential connection to existing discrepancies between laboratory experiments and numerical simulations is explored. In three-dimensional systems, these instabilities are shown to generate anomalous resistivity that balances a substantial fraction of the electric field. In contrast, we also use experiments to investigate cross-scale couplings during reconnection in a collisional plasma. A leading candidate for coupling global and local scales is the hierarchical breakdown of elongated, reconnecting current sheets into numerous smaller current sheets -– the plasmoid instability. In the Magnetic Reconnection Experiment (MRX), recent hardware improvements have extended the accessible parameter space allowing for the study of long-lived, elongated current sheets. Moreover, by using Argon, reproducible and collisional plasmas are produced, which allow for a detailed statistical study of collisional reconnection. As a result, we have conclusively measured the onset of sub-ion-scale plasmoids during resistive, anti-parallel reconnection for the first time. The current sheet thickness is intermediate between ion and electron kinetic scales such that the plasma is in the Hall-MHD regime. Surprisingly, plasmoids are observed at Lundquist numbers < 100 well below theoretical predictions (> 10,000). The number of plasmoids scales with both Lundquist number and current sheet aspect ratio. The Hall quadrupolar fields are shown to suppress plasmoids. Finally, plasmoids are shown to couple local and global physics by enhancing the reconnection rate. These results are compared with prior studies of tearing and plasmoid instability, and implications for astrophysical plasmas, laboratory experiments, and theoretical studies of reconnection are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batra, T., E-mail: tba@et.aau.dk; Schaltz, E.
2015-05-07
Magnetic fields emitted by wireless power transfer systems are of high importance with respect to human safety and health. Aluminum and ferrite are used in the system to reduce the fields and are termed as passive shielding. In this paper, the influence of these materials on the space profile has been investigated with the help of simulations on Comsol for the four possible geometries—no shielding, ferrite, aluminum, and full shielding. As the reflected impedance varies for the four geometries, the primary current is varied accordingly to maintain constant power transfer to the secondary side. Surrounding magnetic field plots in themore » vertical direction show that maxima's of the two coils for the no shielding geometry are centered at the respective coils and for the remaining three are displaced closer to each other. This closeness would lead to more effective addition of the two coil fields and an increase in the resultant field from space point of view. This closeness varies with distance in the horizontal direction and vertical gap between the coils and is explained in the paper. This paper provides a better understanding of effect of the passive shielding materials on the space nature of magnetic fields for wireless power transfer for vehicle applications.« less
Petr, Jan; Schramm, Georg; Hofheinz, Frank; Langner, Jens; van den Hoff, Jörg
2014-10-01
To estimate the relaxation time changes during Q2TIPS bolus saturation caused by magnetization transfer effects and to propose and evaluate an extended model for perfusion quantification which takes this into account. Three multi inversion-time pulsed arterial spin labeling sequences with different bolus saturation duration were acquired for five healthy volunteers. Magnetization transfer exchange rates in tissue and blood were obtained from control image saturation recovery. Cerebral blood flow (CBF) obtained using the extended model and the standard model was compared. A decrease of obtained CBF of 6% (10%) was observed in grey matter when the duration of bolus saturation increased from 600 to 900 ms (1200 ms). This decrease was reduced to 1.6% (2.8%) when the extended quantification model was used. Compared with the extended model, the standard model underestimated CBF in grey matter by 9.7, 15.0, and 18.7% for saturation durations 600, 900, and 1200 ms, respectively. Results for simulated single inversion-time data showed 5-16% CBF underestimation depending on blood arrival time and bolus saturation duration. Magnetization transfer effects caused by bolus saturation pulses should not be ignored when performing quantification as they can cause appreciable underestimation of the CBF. Copyright © 2013 Wiley Periodicals, Inc.
Ding, Ke; Jing, Lihong; Liu, Chunyan; Hou, Yi; Gao, Mingyuan
2014-02-01
Magnetically engineered Cd-free CuInS2@ZnS:Mn quantum dots (QDs) were designed, synthesized, and evaluated as potential dual-modality probes for fluorescence and magnetic resonance imaging (MRI) of tumors in vivo. The synthesis of Mn-doped core-shell structured CuInS2@ZnS mainly comprised three steps, i.e., the preparation of fluorescent CuInS2 seeds, the particle surface coating of ZnS, and the Mn-doping of the ZnS shells. Systematic spectroscopy studies were carried out to illustrate the impacts of ZnS coating and the following Mn-doping on the optical properties of the QDs. In combination with conventional fluorescence, fluorescence excitation, and time-resolved fluorescence measurements, the structure of CuInS2@ZnS:Mn QDs prepared under optimized conditions presented a Zn gradient CuInS2 core and a ZnS outer shell, while Mn ions were mainly located in the ZnS shell, which well balanced the optical and magnetic properties of the resultant QDs. For the following in vivo imaging experiments, the hydrophobic CuInS2@ZnS:Mn QDs were transferred into water upon ligand exchange reactions by replacing the 1-dodecanethiol ligand with dihydrolipoic acid-poly(ethylene glycol) (DHLA-PEG) ligand. The MTT assays based on HeLa cells were carried out to evaluate the cytotoxicity of the current Cd-free CuInS2@ZnS:Mn QDs for comparing with that of water soluble CdTe QDs. Further in vivo fluorescence and MR imaging experiments suggested that the PEGylated CuInS2@ZnS:Mn QDs could well target both subcutaneous and intraperitoneal tumors in vivo. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raftery, M. Daniel
1991-11-01
Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping 129Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to highmore » magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the 131Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raftery, M.D.
1991-11-01
Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping [sup 129]Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas tomore » high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the [sup 131]Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.« less
High-efficiency resonant coupled wireless power transfer via tunable impedance matching
NASA Astrophysics Data System (ADS)
Anowar, Tanbir Ibne; Barman, Surajit Das; Wasif Reza, Ahmed; Kumar, Narendra
2017-10-01
For magnetic resonant coupled wireless power transfer (WPT), the axial movement of near-field coupled coils adversely degrades the power transfer efficiency (PTE) of the system and often creates sub-resonance. This paper presents a tunable impedance matching technique based on optimum coupling tuning to enhance the efficiency of resonant coupled WPT system. The optimum power transfer model is analysed from equivalent circuit model via reflected load principle, and the adequate matching are achieved through the optimum tuning of coupling coefficients at both the transmitting and receiving end of the system. Both simulations and experiments are performed to evaluate the theoretical model of the proposed matching technique, and results in a PTE over 80% at close coil proximity without shifting the original resonant frequency. Compared to the fixed coupled WPT, the extracted efficiency shows 15.1% and 19.9% improvements at the centre-to-centre misalignment of 10 and 70 cm, respectively. Applying this technique, the extracted S21 parameter shows more than 10 dB improvements at both strong and weak couplings. Through the developed model, the optimum coupling tuning also significantly improves the performance over matching techniques using frequency tracking and tunable matching circuits.
NASA Astrophysics Data System (ADS)
Eichhorn, T. R.; Haag, M.; van den Brandt, B.; Hautle, P.; Wenckebach, W. Th.; Jannin, S.; van der Klink, J. J.; Comment, A.
2013-09-01
In standard Dynamic Nuclear Polarization (DNP) electron spins are polarized at low temperatures in a strong magnetic field and this polarization is transferred to the nuclear spins by means of a microwave field. To obtain high nuclear polarizations cryogenic equipment reaching temperatures of 1 K or below and superconducting magnets delivering several Tesla are required. This equipment strongly limits applications in nuclear and particle physics where beams of particles interact with the polarized nuclei, as well as in neutron scattering science. The problem can be solved using short-lived optically excited triplet states delivering the electron spin. The spin is polarized in the optical excitation process and both the cryogenic equipment and magnet can be simplified significantly. A versatile apparatus is described that allows to perform pulsed dynamic nuclear polarization experiments at X-band using short-lived optically excited triplet sates. The efficient 4He flow cryostat that cools the sample to temperatures between 4 K and 300 K has an optical access with a coupling stage for a fiber transporting the light from a dedicated laser system. It is further designed to be operated on a neutron beam. A combined pulse ESR/DNP spectrometer has been developed to observe and characterize the triplet states and to perform pulse DNP experiments. The ESR probe is based on a dielectric ring resonator of 7 mm inner diameter that can accommodate cubic samples of 5 mm length needed for neutron experiments. NMR measurements can be performed during DNP with a coil integrated in the cavity. With the presented apparatus a proton polarization of 0.5 has been achieved at 0.3 T.
Antiproton powered propulsion with magnetically confined plasma engines
NASA Technical Reports Server (NTRS)
Lapointe, Michael R.
1989-01-01
Matter-antimatter annihilation releases more energy per unit mass than any other method of energy production, making it an attractive energy source for spacecraft propulsion. In the magnetically confined plasma engine, antiproton beams are injected axially into a pulsed magnetic mirror system, where they annihilate with an initially neutral hydrogen gas. The resulting charged annihilation products transfer energy to the hydrogen propellant, which is then exhausted through one end of the pulsed mirror system to provide thrust. The calculated energy transfer efficiencies for a low number density (10(14)/cu cm) hydrogen propellant are insufficient to warrant operating the engine in this mode. Efficiencies are improved using moderate propellant number densities (10(16)/cu cm), but the energy transferred to the plasma in a realistic magnetic mirror system is generally limited to less than 2 percent of the initial proton-antiproton annihilation energy. The energy transfer efficiencies are highest for high number density (10(18)/cu cm) propellants, but plasma temperatures are reduced by excessive radiation losses. Low to moderate thrust over a wide range of specific impulse can be generated with moderate propellant number densities, while higher thrust but lower specific impulse may be generated using high propellant number densities. Significant mass will be required to shield the superconducting magnet coils from the high energy gamma radiation emitted by neutral pion decay. The mass of such a radiation shield may dominate the total engine mass, and could severely diminish the performance of antiproton powered engines which utilize magnetic confinement. The problem is compounded in the antiproton powered plasma engine, where lower energy plasma bremsstrahlung radiation may cause shield surface ablation and degradation.
1984-04-01
The Long Duration Exposure Facility (LDEF) was designed by the Marshall Space Flight Center (MSFC) to test the performance of spacecraft materials, components, and systems that have been exposed to the environment of micrometeoroids and space debris for an extended period of time. The LDEF proved invaluable to the development of future spacecraft and the International Space Station (ISS). The LDEF carried 57 science and technology experiments, the work of more than 200 investigators. MSFC`s experiments included: Trapped Proton Energy Determination to determine protons trapped in the Earth's magnetic field and the impact of radiation particles; Linear Energy Transfer Spectrum Measurement Experiment which measures the linear energy transfer spectrum behind different shielding configurations; Atomic oxygen-Simulated Out-gassing, an experiment that exposes thermal control surfaces to atomic oxygen to measure the damaging out-gassed products; Thermal Control Surfaces Experiment to determine the effects of the near-Earth orbital environment and the shuttle induced environment on spacecraft thermal control surfaces; Transverse Flat-Plate Heat Pipe Experiment, to evaluate the zero-gravity performance of a number of transverse flat plate heat pipe modules and their ability to transport large quantities of heat; Solar Array Materials Passive LDEF Experiment to examine the effects of space on mechanical, electrical, and optical properties of lightweight solar array materials; and the Effects of Solar Radiation on Glasses. Launched aboard the Space Shuttle Orbiter Challenger's STS-41C mission April 6, 1984, the LDEF remained in orbit for five years until January 1990 when it was retrieved by the Space Shuttle Orbiter Columbia STS-32 mission and brought back to Earth for close examination and analysis.
Long Duration Exposure Facility (LDEF)
NASA Technical Reports Server (NTRS)
1984-01-01
The Long Duration Exposure Facility (LDEF) was designed by the Marshall Space Flight Center (MSFC) to test the performance of spacecraft materials, components, and systems that have been exposed to the environment of micrometeoroids and space debris for an extended period of time. The LDEF proved invaluable to the development of future spacecraft and the International Space Station (ISS). The LDEF carried 57 science and technology experiments, the work of more than 200 investigators. MSFC`s experiments included: Trapped Proton Energy Determination to determine protons trapped in the Earth's magnetic field and the impact of radiation particles; Linear Energy Transfer Spectrum Measurement Experiment which measures the linear energy transfer spectrum behind different shielding configurations; Atomic oxygen-Simulated Out-gassing, an experiment that exposes thermal control surfaces to atomic oxygen to measure the damaging out-gassed products; Thermal Control Surfaces Experiment to determine the effects of the near-Earth orbital environment and the shuttle induced environment on spacecraft thermal control surfaces; Transverse Flat-Plate Heat Pipe Experiment, to evaluate the zero-gravity performance of a number of transverse flat plate heat pipe modules and their ability to transport large quantities of heat; Solar Array Materials Passive LDEF Experiment to examine the effects of space on mechanical, electrical, and optical properties of lightweight solar array materials; and the Effects of Solar Radiation on Glasses. Launched aboard the Space Shuttle Orbiter Challenger's STS-41C mission April 6, 1984, the LDEF remained in orbit for five years until January 1990 when it was retrieved by the Space Shuttle Orbiter Columbia STS-32 mission and brought back to Earth for close examination and analysis.
The magnetic nature of disk accretion onto black holes.
Miller, Jon M; Raymond, John; Fabian, Andy; Steeghs, Danny; Homan, Jeroen; Reynolds, Chris; van der Klis, Michiel; Wijnands, Rudy
2006-06-22
Although disk accretion onto compact objects-white dwarfs, neutron stars and black holes-is central to much of high-energy astrophysics, the mechanisms that enable this process have remained observationally difficult to determine. Accretion disks must transfer angular momentum in order for matter to travel radially inward onto the compact object. Internal viscosity from magnetic processes and disk winds can both in principle transfer angular momentum, but hitherto we lacked evidence that either occurs. Here we report that an X-ray-absorbing wind discovered in an observation of the stellar-mass black hole binary GRO J1655 - 40 (ref. 6) must be powered by a magnetic process that can also drive accretion through the disk. Detailed spectral analysis and modelling of the wind shows that it can only be powered by pressure generated by magnetic viscosity internal to the disk or magnetocentrifugal forces. This result demonstrates that disk accretion onto black holes is a fundamentally magnetic process.
NASA Astrophysics Data System (ADS)
Hao, Qiang; Xiao, Gang
2015-03-01
We obtain robust perpendicular magnetic anisotropy in a β -W /Co40Fe40B20/MgO structure without the need of any insertion layer between W and Co40Fe40B20 . This is achieved within a broad range of W thicknesses (3.0-9.0 nm), using a simple fabrication technique. We determine the spin Hall angle (0.40) and spin-diffusion length for the bulk β form of tungsten with a large spin-orbit coupling. As a result of the giant spin Hall effect in β -W and careful magnetic annealing, we significantly reduce the critical current density for the spin-transfer-torque-induced magnetic switching in Co40Fe40B20 . The elemental β -W is a superior candidate for magnetic memory and spin-logic applications.
Electronic and magnetic properties of transition metal doped graphyne
NASA Astrophysics Data System (ADS)
Gangan, Abhijeet Sadashiv; Yadav, Asha S.; Chakraborty, Brahmananda; Ramaniah, Lavanya M.
2017-05-01
We have theoretically investigated the interaction of few 3d (V,Mn) and 4d (Y,Zr) transition metals with the γ-graphyne structure using the spin-polarized density functional theory for its potentials application in Hydrogen storage, spintronics and nano-electronics. By doping different TMs we have observed that the system can be either metallic(Y), semi-conducting or half metallic. The system for Y and Zr doped graphyne becomes non-magnetic while V and Mn doped graphyne have a magnetic moments of l μB and 3 μB respectively From bader charge analysis it is seen that there is a charge transfer from the TM atom to the graphyne. Zr and Y have a net charge transfer of 2.15e and 1.73e respectively. Charge density analysis also shows the polarization on the carbon skeleton which becomes larger as the charge transfer for the TM atom increases. Thus we see Y and Zr are better candidates for hydrogen storage devices since they are non-magnetic and have less d electrons which is ideal for kubas-type interactions between hydrogen molecule and TM.
Prai-In, Yingrak; Boonthip, Chatchai; Rutnakornpituk, Boonjira; Wichai, Uthai; Montembault, Véronique; Pascual, Sagrario; Fontaine, Laurent; Rutnakornpituk, Metha
2016-10-01
Surface modification of magnetic nanoparticle (MNP) with poly(ethylene oxide)-block-poly(2-vinyl-4,4-dimethylazlactone) (PEO-b-PVDM) diblock copolymers and its application as recyclable magnetic nano-support for adsorption with antibody were reported herein. PEO-b-PVDM copolymers were first synthesized via a reversible addition-fragmentation chain-transfer (RAFT) polymerization using poly(ethylene oxide) chain-transfer agent as a macromolecular chain transfer agent to mediate the RAFT polymerization of VDM. They were then grafted on amino-functionalized MNP by coupling with some azlactone rings of the PVDM block to form magnetic nanoclusters with tunable cluster size. The nanocluster size could be tuned by adjusting the chain length of the PVDM block. The nanoclusters were successfully used as efficient and recyclable nano-supports for adsorption with anti-rabbit IgG antibody. They retained higher than 95% adsorption of the antibody during eight adsorption-separation-desorption cycles, indicating the potential feasibility in using this novel hybrid nanocluster as recyclable support in cell separation applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Self-consistent models for Coulomb heated X-ray pulsar atmospheres
NASA Technical Reports Server (NTRS)
Harding, A.; Meszaros, S. P.; Kirk, J.; Galloway, D.
1983-01-01
Calculations of accreting magnetized neutron star atmospheres heated by the gradual deceleration of protons via Coulomb collisions are presented. Self consistent determinations of the temperature and density structure for different accretion rates are made by assuming hydrostatic equilibrium and energy balance, coupled with radiative transfer. The full radiative transfer in two polarizations, using magnetic cross sections but with cyclotron resonance effects treated approximately, is carried out in the inhomogeneous atmospheres.
MMS Observations of the Evolution of Ion-Scale Flux Transfer Events
NASA Astrophysics Data System (ADS)
Zhao, C.; Russell, C. T.; Strangeway, R. J.; Paterson, W.; Petrinec, S.; Zhou, M.; Anderson, B. J.; Baumjohann, W.; Bromund, K. R.; Chutter, M.; Fischer, D.; Gershman, D. J.; Giles, B. L.; Le, G.; Nakamura, R.; Plaschke, F.; Slavin, J. A.; Torbert, R. B.
2017-12-01
Flux transfer events are key processes in the solar wind-magnetosphere interaction. Previously, the observed flux transfer events have had scale sizes of 10,000 km radius in the cross-section and connect about 2 MWb magnetic flux from solar wind to the terrestrial magnetosphere. Recently, from the high-temporal resolution MMS magnetic field data, many ion-scale FTEs have been found. These FTEs contains only about 2 kWb magnetic flux and are believed to be in an early stage of FTE evolution. With the help of the well-calibrated MMS data, we are also able to determine the velocity profile and forces within the FTE events. We find that some ion-scale FTEs are expanding as we expect, but there are also contracting FTEs. We examine the differences between the two classes of FTEs and their differences with the larger previously studied class of FTE.
Ultralow-current-density and bias-field-free spin-transfer nano-oscillator
Zeng, Zhongming; Finocchio, Giovanni; Zhang, Baoshun; Amiri, Pedram Khalili; Katine, Jordan A.; Krivorotov, Ilya N.; Huai, Yiming; Langer, Juergen; Azzerboni, Bruno; Wang, Kang L.; Jiang, Hongwen
2013-01-01
The spin-transfer nano-oscillator (STNO) offers the possibility of using the transfer of spin angular momentum via spin-polarized currents to generate microwave signals. However, at present STNO microwave emission mainly relies on both large drive currents and external magnetic fields. These issues hinder the implementation of STNOs for practical applications in terms of power dissipation and size. Here, we report microwave measurements on STNOs built with MgO-based magnetic tunnel junctions having a planar polarizer and a perpendicular free layer, where microwave emission with large output power, excited at ultralow current densities, and in the absence of any bias magnetic fields is observed. The measured critical current density is over one order of magnitude smaller than previously reported. These results suggest the possibility of improved integration of STNOs with complementary metal-oxide-semiconductor technology, and could represent a new route for the development of the next-generation of on-chip oscillators. PMID:23478390
Ultralow-current-density and bias-field-free spin-transfer nano-oscillator.
Zeng, Zhongming; Finocchio, Giovanni; Zhang, Baoshun; Khalili Amiri, Pedram; Katine, Jordan A; Krivorotov, Ilya N; Huai, Yiming; Langer, Juergen; Azzerboni, Bruno; Wang, Kang L; Jiang, Hongwen
2013-01-01
The spin-transfer nano-oscillator (STNO) offers the possibility of using the transfer of spin angular momentum via spin-polarized currents to generate microwave signals. However, at present STNO microwave emission mainly relies on both large drive currents and external magnetic fields. These issues hinder the implementation of STNOs for practical applications in terms of power dissipation and size. Here, we report microwave measurements on STNOs built with MgO-based magnetic tunnel junctions having a planar polarizer and a perpendicular free layer, where microwave emission with large output power, excited at ultralow current densities, and in the absence of any bias magnetic fields is observed. The measured critical current density is over one order of magnitude smaller than previously reported. These results suggest the possibility of improved integration of STNOs with complementary metal-oxide-semiconductor technology, and could represent a new route for the development of the next-generation of on-chip oscillators.
Hydromagnetic flow of a Cu-water nanofluid past a moving wedge with viscous dissipation
NASA Astrophysics Data System (ADS)
M. Salem, A.; Galal, Ismail; Rania, Fathy
2014-04-01
A numerical study is performed to investigate the flow and heat transfer at the surface of a permeable wedge immersed in a copper (Cu)-water-based nanofluid in the presence of magnetic field and viscous dissipation using a nanofluid model proposed by Tiwari and Das (Tiwari I K and Das M K 2007 Int. J. Heat Mass Transfer 50 2002). A similarity solution for the transformed governing equation is obtained, and those equations are solved by employing a numerical shooting technique with a fourth-order Runge-Kutta integration scheme. A comparison with previously published work is carried out and shows that they are in good agreement with each other. The effects of velocity ratio parameter λ, solid volume fraction φ, magnetic field M, viscous dissipation Ec, and suction parameter Fw on the fluid flow and heat transfer characteristics are discussed. The unique and dual solutions for self-similar equations of the flow and heat transfer are analyzed numerically. Moreover, the range of the velocity ratio parameter for which the solution exists increases in the presence of magnetic field and suction parameter.
Transferable ordered ni hollow sphere arrays induced by electrodeposition on colloidal monolayer.
Duan, Guotao; Cai, Weiping; Li, Yue; Li, Zhigang; Cao, Bingqiang; Luo, Yuanyuan
2006-04-13
We report an electrochemical synthesis of two-dimensionally ordered porous Ni arrays based on polystyrene sphere (PS) colloidal monolayer. The morphology can be controlled from bowl-like to hollow sphere-like structure by changing deposition time under a constant current. Importantly, such ordered Ni arrays on a conducting substrate can be transferred integrally to any other desired substrates, especially onto an insulting substrate or curved surface. The magnetic measurements of the two-dimensional hollow sphere array show the coercivity values of 104 Oe for the applied field parallel to the film, and 87 Oe for the applied field perpendicular to the film, which is larger than those of bulk Ni and hollow Ni submicrometer-sized spheres. The formation of hollow sphere arrays is attributed to preferential nucleation on the interstitial sites between PS in the colloidal monolayer and substrate, and growth along PSs' surface. The transferability of the arrays originates from partial contact between the Ni hollow spheres and substrate. Such novel Ni ordered nanostructured arrays with transferability and high magnetic properties should be useful in applications such as data storage, catalysis, and magnetics.
Design and prototype fabrication of a 30 tesla cryogenic magnet
NASA Technical Reports Server (NTRS)
Prok, G. M.; Swanson, M. C.; Brown, G. V.
1977-01-01
A liquid-neon-cooled magnet has been designed to produce 30 teslas in steady operation. Its feasibility was established by a previously reported parametric study. To ensure the correctness of the heat transfer relationships used, supercritical neon heat transfer tests were made. Other tests made before the final design included tests on the effect of the magnetic field on pump motors; tensile-shear tests on the cryogenic adhesives; and simulated flow studies for the coolant. The magnet will be made of two pairs of coils, cooled by forced convection of supercritical neon. Heat from the supercritical neon will be rejected through heat exchangers which are made of roll-bonded copper panels and are submerged in a pool of saturated liquid neon. A partial mock-up coil was wound to identify the tooling required to wind the magnet. This was followed by winding a prototype pair of coils. The prototype winding established procedures for fabricating the final magnet and revealed slight changes needed in the final design.
Interaction mechanisms and biological effects of static magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tenforde, T.S.
1994-06-01
Mechanisms through which static magnetic fields interact with living systems are described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving, ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecules structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary is also presented of the biological effects of static magnetic fields. There is convincing experimental evidence for magnetoreception mechanisms in several classes of lower organisms, including bacteria and marine organisms. However, in more highly evolved species of animals,more » there is no evidence that the interactions of static magnetic fields with flux densities up to 2 Tesla (1 Tesla [T] = 10{sup 4} Gauss) produce either behavioral or physiolocical alterations. These results, based on controlled studies with laboratory animals, are consistent with the outcome of recent epidemiological surveys on human populations exposed occupationally to static magnetic fields.« less
NASA Astrophysics Data System (ADS)
Kothe, Stefan; Güttler, Carsten; Blum, Jürgen
2010-12-01
In recent years, a number of new experiments have advanced our knowledge on the early growth phases of protoplanetary dust aggregates. Some of these experiments have shown that collisions between porous and compacted agglomerates at velocities above the fragmentation threshold velocity can lead to growth of the compact body, when the porous collision partner fragments upon impact and transfers mass to the compact agglomerate. To obtain a deeper understanding of this potentially important growth process, we performed laboratory and drop tower experiments to study multiple impacts of small, highly porous dust-aggregate projectiles onto sintered dust targets. The projectile and target consisted of 1.5 μm monodisperse, spherical SiO2 monomers with volume filling factors of 0.15 ± 0.01 and 0.45 ± 0.05, respectively. The fragile projectiles were accelerated by a solenoid magnet and combined with a projectile magazine with which 25 impacts onto the same spot on the target could be performed in vacuum. We measured the mass-accretion efficiency and the volume filling factor for different impact velocities between 1.5 and 6.0 m s^{-1}. The experiments at the lowest impact speeds were performed in the Bremen drop tower under microgravity conditions to allow partial mass transfer also for the lowest adhesion case. Within this velocity range, we found a linear increase of the accretion efficiency with increasing velocity. In the laboratory experiments, the accretion efficiency increases from 0.12 to 0.21 in units of the projectile mass. The recorded images of the impacts showed that the mass transfer from the projectile to the target leads to the growth of a conical structure on the target after less than 100 impacts. From the images, we also measured the volume filling factors of the grown structures, which ranged from 0.15 (uncompacted) to 0.40 (significantly compacted) with increasing impact speed. The velocity dependency of the mass-transfer efficiency and the packing density of the resulting aggregates augment our knowledge of the aggregate growth in protoplanetary disks and should be taken into account for future models of protoplanetary dust growth.
A low temperature transfer of ALH84001 from Mars to Earth.
Weiss, B P; Kirschvink, J L; Baudenbacher, F J; Vali, H; Peters, N T; Macdonald, F A; Wikswo, J P
2000-10-27
The ejection of material from Mars is thought to be caused by large impacts that would heat much of the ejecta to high temperatures. Images of the magnetic field of martian meteorite ALH84001 reveal a spatially heterogeneous pattern of magnetization associated with fractures and rock fragments. Heating the meteorite to 40 degrees C reduces the intensity of some magnetic features, indicating that the interior of the rock has not been above this temperature since before its ejection from the surface of Mars. Because this temperature cannot sterilize most bacteria or eukarya, these data support the hypothesis that meteorites could transfer life between planets in the solar system.
Design study of steady-state 30-tesla liquid-neon-cooled magnet
NASA Technical Reports Server (NTRS)
Prok, G. M.; Brown, G. V.
1976-01-01
A design for a 30-tesla, liquid-neon-cooled magnet was reported which is capable of continuous operation. Cooled by nonboiling, forced-convection heat transfer to liquid neon flowing at 2.8 cu m/min in a closed, pressurized heat-transfer loop and structurally supported by a tapered structural ribbon, the tape-wound coils with a high-purity-aluminum conductor will produce over 30 teslas for 1 minute at 850 kilowatts. The magnet will have an inside diameter of 7.5 centimeters and an outside diameter of 54 centimeters. The minimum current density at design field will be 15.7 kA/sq cm.
Hermkens, Niels K J; Feiters, Martin C; Rutjes, Floris P J T; Wijmenga, Sybren S; Tessari, Marco
2017-03-01
SABRE (Signal Amplification By Reversible Exchange) is a nuclear spin hyperpolarization technique based on the reversible concurrent binding of small molecules and para-hydrogen (p-H 2 ) to an iridium metal complex in solution. At low magnetic field, spontaneous conversion of p-H 2 spin order to enhanced longitudinal magnetization of the nuclear spins of the other ligands occurs. Subsequent complex dissociation results in hyperpolarized substrate molecules in solution. The lifetime of this complex plays a crucial role in attained SABRE NMR signal enhancements. Depending on the ligands, vastly different dissociation rates have been previously measured using EXSY or selective inversion experiments. However, both these approaches are generally time-consuming due to the long recycle delays (up to 2min) necessary to reach thermal equilibrium for the nuclear spins of interest. In the cases of dilute solutions, signal averaging aggravates the problem, further extending the experimental time. Here, a new approach is proposed based on coherent hyperpolarization transfer to substrate protons in asymmetric complexes at high magnetic field. We have previously shown that such asymmetric complexes are important for application of SABRE to dilute substrates. Our results demonstrate that a series of high sensitivity EXSY spectra can be collected in a short experimental time thanks to the NMR signal enhancement and much shorter recycle delay. Copyright © 2017 Elsevier Inc. All rights reserved.
Inter-Slice Blood Flow and Magnetization Transfer Effects as A New Simultaneous Imaging Strategy.
Han, Paul Kyu; Barker, Jeffrey W; Kim, Ki Hwan; Choi, Seung Hong; Bae, Kyongtae Ty; Park, Sung-Hong
2015-01-01
The recent blood flow and magnetization transfer (MT) technique termed alternate ascending/descending directional navigation (ALADDIN) achieves the contrast using interslice blood flow and MT effects with no separate preparation RF pulse, thereby potentially overcoming limitations of conventional methods. In this study, we examined the signal characteristics of ALADDIN as a simultaneous blood flow and MT imaging strategy, by comparing it with pseudo-continuous ASL (pCASL) and conventional MT asymmetry (MTA) methods, all of which had the same bSSFP readout. Bloch-equation simulations and experiments showed ALADDIN perfusion signals increased with flip angle, whereas MTA signals peaked at flip angle around 45°-60°. ALADDIN provided signals comparable to those of pCASL and conventional MTA methods emulating the first, second, and third prior slices of ALADDIN under the same scan conditions, suggesting ALADDIN signals to be superposition of signals from multiple labeling planes. The quantitative cerebral blood flow signals from a modified continuous ASL model overestimated the perfusion signals compared to those measured with a pulsed ASL method. Simultaneous mapping of blood flow, MTA, and MT ratio in the whole brain is feasible with ALADDIN within a clinically reasonable time, which can potentially help diagnosis of various diseases.
NASA Technical Reports Server (NTRS)
Thompson, S. M.; Kivelson, M. G.; Khurana, K. K.; Balogh, A.; Reme, H.; Fazakerley, A. N.; Kistler, L. M.
2004-01-01
We report on a series of quasi-periodic reversals in GSM B(sub Z) observed by the four Cluster spacecraft in the northern dayside lobe poleward of the cusp on 23 February 2001. During an interval of about 35 min, multiple reversals (negative to positive) in B(sub Z) of approximately 1-min duration with an approximate 8-min recurrence time were observed. The individual structures do not resemble low-latitude flux transfer events (FTE) [Russell and Elphic, 1979] but the 8-min recurrence frequency suggests that intermittent reconnection may be occurring .Measurements (appropriately lagged) of the solar wind at ACE show that the IMF was southward-oriented with a strong B(sub X) and that a modest dynamic pressure increased as the events started. The multi-point observations afforded by the Cluster spacecraft were used to infer the motion (direction and speed) of the observed magnetic field reversals. The associated currents were also calculated and they are consistent with the spatial confinement of the observed magnetic field reversals. We propose that the observed reversals are due to flux tubes reconnecting with closed field lines on the dayside. Ancillary data from the Cluster Ion Spectrometry (CIS) and Plasma Electron And Current Experiment (PEACE) instruments were used to develop a physical picture of the reversals.
First-order particle acceleration in magnetically driven flows
Beresnyak, Andrey; Li, Hui
2016-03-02
In this study, we demonstrate that particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. Some examples of such flows include spontaneous turbulent reconnection and decaying magnetohydrodynamic turbulence, where a magnetic field relaxes to a lower-energy configuration and transfers part of its energy to kinetic motions of the fluid. We show that this energy transfer, which normally causes turbulent cascade and heating of the fluid, also results in a first-order acceleration of non-thermal particles. Since it is generic, this acceleration mechanism is likely to play a role in the production of non-thermal particle distribution inmore » magnetically dominant environments such as the solar chromosphere, pulsar magnetospheres, jets from supermassive black holes, and γ-ray bursts.« less
Current control of time-averaged magnetization in superparamagnetic tunnel junctions
NASA Astrophysics Data System (ADS)
Bapna, Mukund; Majetich, Sara A.
2017-12-01
This work investigates spin transfer torque control of time-averaged magnetization in a small 20 nm × 60 nm nanomagnet with a low thermal stability factor, Δ ˜ 11. Here, the nanomagnet is a part of a magnetic tunnel junction and fluctuates between parallel and anti-parallel magnetization states with respect to the magnetization of the reference layer generating a telegraph signal in the current versus time measurements. The response of the nanomagnet to an external field is first analyzed to characterize the magnetic properties. We then show that the time-averaged magnetization in the telegraph signal can be fully controlled between +1 and -1 by voltage over a small range of 0.25 V. NIST Statistical Test Suite analysis is performed for testing true randomness of the telegraph signal that the device generates when operated at near critical current values for spin transfer torque. Utilizing the probabilistic nature of the telegraph signal generated at two different voltages, a prototype demonstration is shown for multiplication of two numbers using an artificial AND logic gate.
Jin, Tao; Autio, Joonas; Obata, Takayuki; Kim, Seong-Gi
2011-05-01
Chemical exchange saturation transfer (CEST) and spin-locking (SL) experiments were both able to probe the exchange process between protons of nonequivalent chemical environments. To compare the characteristics of the CEST and SL approaches in the study of chemical exchange effects, we performed CEST and SL experiments at varied pH and concentrated metabolite phantoms with exchangeable amide, amine, and hydroxyl protons at 9.4 T. Our results show that: (i) on-resonance SL is most sensitive to chemical exchanges in the intermediate-exchange regime and is able to detect hydroxyl and amine protons on a millimolar concentration scale. Off-resonance SL and CEST approaches are sensitive to slow-exchanging protons when an optimal SL or saturation pulse power matches the exchanging rate, respectively. (ii) Offset frequency-dependent SL and CEST spectra are very similar and can be explained well with an SL model recently developed by Trott and Palmer (J Magn Reson 2002;154:157-160). (iii) The exchange rate and population of metabolite protons can be determined from offset-dependent SL or CEST spectra or from on-resonance SL relaxation dispersion measurements. (iv) The asymmetry of the magnetization transfer ratio (MTR(asym)) is highly dependent on the choice of saturation pulse power. In the intermediate-exchange regime, MTR(asym) becomes complicated and should be interpreted with care. Copyright © 2010 Wiley-Liss, Inc.
NASA Technical Reports Server (NTRS)
Gonzalez, Dora E.; Karr, Gerald R.
1990-01-01
The purpose of this paper is to review the status of knowledge of the basic concepts needed to establish design parameters for effective magnetic insulation. The objective is to estimate the effectiveness of the magnetic field in insulating the plasma, to calculate the magnitude of the magnetic field necessary to reduce the heat transfer to the walls sufficiently enough to demonstrate the potential of magnetically driven plasma rockets.
Universal current-velocity relation of skyrmion motion in chiral magnets
NASA Astrophysics Data System (ADS)
Iwasaki, Junichi; Mochizuki, Masahito; Nagaosa, Naoto
2013-03-01
Current-driven motion of the magnetic domain wall requires large critical current density jc ~109 -1012 A/m2, at which the joule heating is a serious problem. The skyrmions recently discovered in chiral magnets, on the other hand, have much smaller critical current of jc ~105 -106 A/m2. We present a numerical simulation of the Landau-Lifshitz-Gilbert equation, which reveals a remarkably robust and universal current-velocity relation of the slyrmion motion driven by the spin transfer torque unaffected by either impurities or nonadiabatic effect in sharp contrast to the case of domain wall or spin helix (HL). Simulation results are analyzed using a theory based on Thiele's equation, and it is concluded that this surprising behavior is due to the Magnus force and flexible shape-deformation of individual skyrmions and skyrmion crystal (SkX), which enable them to avoid pinning centers and then weaken the net pinning force. Dynamical deformation of SkX leads to the fluctuation of Bragg peak with large amplitude, which can be detected by the recent neutron-scattering experiment.
Magnetic plucking of piezoelectric bimorphs for a wearable energy harvester
NASA Astrophysics Data System (ADS)
Pozzi, Michele
2016-04-01
A compact and low-profile energy harvester designed to be worn on the outside of the knee-joint is presented. Frequency up-conversion has been widely adopted in recent times to exploit the high frequency response of piezoelectric transducers within environments where only low frequencies are present. Contactless magnetic plucking is here introduced, in a variable reluctance framework, with the aim of improving the mechanical energy transfer into the transducers, which is sub-optimal with contact plucking. FEA and experiments were used to design an optimal arrangement of ferromagnetic teeth to interact with the magnets fixed to the piezoelectric beams. A prototype was made and extensively tested in a knee-joint simulator controlled with gait data available in the literature. Energy and power produced were measured for walking and running steps. A power management unit was developed using off-the-shelf components, permitting the generation of a stable and regulated supply of 26 mW at 3.3 V during walking. Record levels of rectified (unregulated) electrical power of over 50 and 70 mW per walking and running steps, respectively, were measured.
Nonlinear cross-field coupling on the route to broadband turbulence
NASA Astrophysics Data System (ADS)
Brandt, Christian; Thakur, Saikat C.; Cui, Lang; Gosselin, Jordan J.; Negrete, Jose, Jr.; Holland, Chris; Tynan, George R.
2013-10-01
In the linear magnetized plasma device CSDX (Controlled Shear De-correlation eXperiment) drift interchange modes are studied coexisting on top of a weak turbulence driven azimuthally symmetric, radially sheared plasma flow. In helicon discharges (helicon antenna diameter 15 cm) with increasing magnetic field (B <= 0 . 24 T) the system can be driven to fully developed broadband turbulence. Fast imaging using a refractive telescope setup is applied to study the dynamics in the azimuthal-radial cross-section. The image data is supported by Langmuir probe measurements. In the present study we examine the development of nonlinear transfer as the fully developed turbulence emerges. Nonlinear cross-field coupling between eigenmodes at different radial positions is investigated using Fourier decomposition of azimuthal eigenmodes. The coupling strength between waves at different radial positions is inferred to radial profiles and cross-field transport between adjacent magnetic flux surfaces. Nonlinear effects like synchronization, phase slippages, phase pulling and periodic pulling are observed. The effects of mode coupling and the stability of modes is compared to the dynamics of a coupled chain of Kuramoto oscillators.
JLab Measurements of the He 3 Form Factors at Large Momentum Transfers
Camsonne, A.; Katramatou, A. T.; Olson, M.; ...
2017-10-19
The charge and magnetic form factors, F C and F M, respectively, of 3He are extracted in the kinematic range 25 fm –2 ≤ Q 2 ≤ 61 fm –2 from elastic electron scattering by detecting 3He recoil nuclei and scattered electrons in coincidence with the two High Resolution Spectrometers of the Hall A Facility at Jefferson Lab. The measurements find evidence for the existence of a second diffraction minimum for the magnetic form factor at Q 2 = 49.3 fm –2 and for the charge form factor at Q 2 = 62.0 fm –2. Both minima are predicted tomore » exist in the Q 2 range accessible by this Jefferson Lab experiment. Here, the data are in qualitative agreement with theoretical calculations based on realistic interactions and accurate methods to solve the three-body nuclear problem.« less
Magnetic Resonance Velocimetry analysis of an angled impinging jet
NASA Astrophysics Data System (ADS)
Irhoud, Alexandre; Benson, Michael; Verhulst, Claire; van Poppel, Bret; Elkins, Chris; Helmer, David
2016-11-01
Impinging jets are used to achieve high heat transfer rates in applications ranging from gas turbine engines to electronics. Despite the importance and relative simplicity of the geometry, simulations historically fail to accurately predict the flow behavior in the vicinity of the flow impingement. In this work, we present results from a novel experimental technique, Magnetic Resonance Velocimetry (MRV), which measures three-dimensional time-averaged velocity without the need for optical access. The geometry considered in this study is a circular jet angled at 45 degrees and impinging on a flat plate, with a separation of approximately seven jet diameters between the jet exit and the impingement location. Two flow conditions are considered, with Reynolds numbers of roughly 800 and 14,000. Measurements from the MRV experiment are compared to predictions from Reynolds Averaged Navier Stokes (RANS) simulations, thus demonstrating the utility of MRV for validation of numerical analyses of impinging jet flow.
JLab Measurements of the He 3 Form Factors at Large Momentum Transfers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camsonne, A.; Katramatou, A. T.; Olson, M.
The charge and magnetic form factors, F C and F M, respectively, of 3He are extracted in the kinematic range 25 fm –2 ≤ Q 2 ≤ 61 fm –2 from elastic electron scattering by detecting 3He recoil nuclei and scattered electrons in coincidence with the two High Resolution Spectrometers of the Hall A Facility at Jefferson Lab. The measurements find evidence for the existence of a second diffraction minimum for the magnetic form factor at Q 2 = 49.3 fm –2 and for the charge form factor at Q 2 = 62.0 fm –2. Both minima are predicted tomore » exist in the Q 2 range accessible by this Jefferson Lab experiment. Here, the data are in qualitative agreement with theoretical calculations based on realistic interactions and accurate methods to solve the three-body nuclear problem.« less
NASA Technical Reports Server (NTRS)
Cartier, S. L.; Dangelo, N.; Merlino, R. L.
1986-01-01
A laboratory study related to energetic upstreaming ions in the ionosphere-magnetosphere system is described. The experiment was carried out in a cesium Q machine plasma with a region of nonuniform magnetic field. Electrostatic ion cyclotron waves were excited by drawing an electron current to a small biased exciter electrode. In the presence of the instability, ions are heated in the direction perpendicular to B. Using a gridded retarding potential ion energy analyzer, the evolution of the ion velocity distribution was followed as the ions passed through the heating region and subsequently flowed out along the diverging B field lines. As expected, the heated ions transfer their energy from perpendicular to parallel motion as they move through the region of diverging B field. Both their parallel thermal energy and the parallel drift energy increase at the expense of the perpendicular energy.
Zhang, BiTao; Pi, YouGuo; Luo, Ying
2012-09-01
A fractional order sliding mode control (FROSMC) scheme based on parameters auto-tuning for the velocity control of permanent magnet synchronous motor (PMSM) is proposed in this paper. The control law of the proposed F(R)OSMC scheme is designed according to Lyapunov stability theorem. Based on the property of transferring energy with adjustable type in F(R)OSMC, this paper analyzes the chattering phenomenon in classic sliding mode control (SMC) is attenuated with F(R)OSMC system. A fuzzy logic inference scheme (FLIS) is utilized to obtain the gain of switching control. Simulations and experiments demonstrate that the proposed FROSMC not only achieve better control performance with smaller chatting than that with integer order sliding mode control, but also is robust to external load disturbance and parameter variations. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Zeeman Effect in Ruby at High Pressures
NASA Astrophysics Data System (ADS)
Dan, Ioana
2012-02-01
We have developed a versatile fiber-coupled system for magneto-optical spectroscopy measurements at high pressure. The system is based on a miniature Cu-alloy Diamond Anvil Cell (from D'Anvils, Ltd) fitted with a custom-designed He gas-actuated membrane for in-situ pressure control, and coupled with a He transfer cryostat incorporating a superconducting magnet (from Quantum Designs). This system allows optical measurements (Raman, photoluminescence, reflectivity) within wide ranges of pressures (up to 100GPa), temperatures (4.2-300K) and magnetic fields (0-9T). We employ this system to examine the effect of pressure and non-hydrostatic stress on the Zeeman split d-d transitions of Cr^3+ in ruby (Al2O3: Cr^3+). We determine the effect of pressure and non-hydrostaticity on the trigonal crystal field in this material, and discuss the use of the Zeman-split ruby fluorescence as a possible probe for deviatoric stresses in diamond anvil cell experiments.
NASA Astrophysics Data System (ADS)
Poncet, A.; Struik, M.; Trigo, J.; Parma, V.
2008-03-01
The about 1700 LHC main ring super-conducting magnets are supported within their cryostats on 4700 low heat in leak column-type supports. The supports were designed to ensure a precise and stable positioning of the heavy dipole and quadrupole magnets while keeping thermal conduction heat loads within budget. A trade-off between mechanical and thermal properties, as well as cost considerations, led to the choice of glass fibre reinforced epoxy (GFRE). Resin Transfer Moulding (RTM), featuring a high level of automation and control, was the manufacturing process retained to ensure the reproducibility of the performance of the supports throughout the large production. The Spanish aerospace company EADS-CASA Espacio developed the specific RTM process, and produced the total quantity of supports between 2001 and 2004. This paper describes the development and the production of the supports, and presents the production experience and the achieved performance.
Swanson, Scott D; Malyarenko, Dariya I; Fabiilli, Mario L; Welsh, Robert C; Nielsen, Jon-Fredrik; Srinivasan, Ashok
2017-03-01
To elucidate the dynamic, structural, and molecular properties that create inhomogeneous magnetization transfer (ihMT) contrast. Amphiphilic lipids, lamellar phospholipids with cholesterol, and bovine spinal cord (BSC) specimens were examined along with nonlipid systems. Magnetization transfer (MT), enhanced MT (eMT, obtained with double-sided radiofrequency saturation), ihMT (MT - eMT), and dipolar relaxation, T 1D , were measured at 2.0 and 11.7 T. The amplitude of ihMT ratio (ihMTR) is positively correlated with T 1D values. Both ihMTR and T 1D increase with increasing temperature in BSC white matter and in phospholipids and decrease with temperature in other lipids. Changes in ihMTR with temperature arise primarily from alterations in MT rather than eMT. Spectral width of MT, eMT, and ihMT increases with increasing carbon chain length. Concerted motions of phospholipids in white matter decrease proton spin diffusion leading to increased proton T 1D times and increased ihMT amplitudes, consistent with decoupling of Zeeman and dipolar spin reservoirs. Molecular specificity and dynamic sensitivity of ihMT contrast make it a suitable candidate for probing myelin membrane disorders. Magn Reson Med 77:1318-1328, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Engineering Topological Surface State of Cr-doped Bi2Se3 under external electric field
NASA Astrophysics Data System (ADS)
Zhang, Jian-Min; Lian, Ruqian; Yang, Yanmin; Xu, Guigui; Zhong, Kehua; Huang, Zhigao
2017-03-01
External electric field control of topological surface states (SSs) is significant for the next generation of condensed matter research and topological quantum devices. Here, we present a first-principles study of the SSs in the magnetic topological insulator (MTI) Cr-doped Bi2Se3 under external electric field. The charge transfer, electric potential, band structure and magnetism of the pure and Cr doped Bi2Se3 film have been investigated. It is found that the competition between charge transfer and spin-orbit coupling (SOC) will lead to an electrically tunable band gap in Bi2Se3 film under external electric field. As Cr atom doped, the charge transfer of Bi2Se3 film under external electric field obviously decreases. Remarkably, the band gap of Cr doped Bi2Se3 film can be greatly engineered by the external electric field due to its special band structure. Furthermore, magnetic coupling of Cr-doped Bi2Se3 could be even mediated via the control of electric field. It is demonstrated that external electric field plays an important role on the electronic and magnetic properties of Cr-doped Bi2Se3 film. Our results may promote the development of electronic and spintronic applications of magnetic topological insulator.
A wireless magnetic resonance energy transfer system for micro implantable medical sensors.
Li, Xiuhan; Zhang, Hanru; Peng, Fei; Li, Yang; Yang, Tianyang; Wang, Bo; Fang, Dongming
2012-01-01
Based on the magnetic resonance coupling principle, in this paper a wireless energy transfer system is designed and implemented for the power supply of micro-implantable medical sensors. The entire system is composed of the in vitro part, including the energy transmitting circuit and resonant transmitter coils, and in vivo part, including the micro resonant receiver coils and signal shaping chip which includes the rectifier module and LDO voltage regulator module. Transmitter and receiver coils are wound by Litz wire, and the diameter of the receiver coils is just 1.9 cm. The energy transfer efficiency of the four-coil system is greatly improved compared to the conventional two-coil system. When the distance between the transmitter coils and the receiver coils is 1.5 cm, the transfer efficiency is 85% at the frequency of 742 kHz. The power transfer efficiency can be optimized by adding magnetic enhanced resonators. The receiving voltage signal is converted to a stable output voltage of 3.3 V and a current of 10 mA at the distance of 2 cm. In addition, the output current varies with changes in the distance. The whole implanted part is packaged with PDMS of excellent biocompatibility and the volume of it is about 1 cm(3).
Theory of unidirectional spin heat conveyer
NASA Astrophysics Data System (ADS)
Adachi, Hiroto; Maekawa, Sadamichi
2015-05-01
We theoretically investigate the unidirectional spin heat conveyer effect recently reported in the literature that emerges from the Damon-Eshbach spin wave on the surface of a magnetic material. We develop a simple phenomenological theory for heat transfer dynamics in a coupled system of phonons and the Damon-Eshbach spin wave, and demonstrate that there arises a direction-selective heat flow as a result of the competition between an isotropic heat diffusion by phonons and a unidirectional heat drift by the spin wave. The phenomenological approach can account for the asymmetric local temperature distribution observed in the experiment.
Theory of unidirectional spin heat conveyer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adachi, Hiroto, E-mail: adachi.hiroto@jaea.go.jp; Maekawa, Sadamichi
2015-05-07
We theoretically investigate the unidirectional spin heat conveyer effect recently reported in the literature that emerges from the Damon-Eshbach spin wave on the surface of a magnetic material. We develop a simple phenomenological theory for heat transfer dynamics in a coupled system of phonons and the Damon-Eshbach spin wave, and demonstrate that there arises a direction-selective heat flow as a result of the competition between an isotropic heat diffusion by phonons and a unidirectional heat drift by the spin wave. The phenomenological approach can account for the asymmetric local temperature distribution observed in the experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guevara, Z. E., E-mail: zjguevaram@unal.edu.co; Torres, D. A., E-mail: datorresg@unal.edu.co
2016-07-07
In this contribution the challenges in the use of a setup to simultaneously measure lifetimes and g-factor values will be presented. The simultaneous use of the transient field technique and the Doppler Shift Attenuation Method, to measure magnetic moments and lifetimes respectively, allows to obtain a complete characterization of the currents of nucleons and the deformation in excited states close to the ground state. The technique is at the moment limited to Coulomb excitation and alpha-transfer reactions, what opens an interesting perspective to consider this type of experiments with radioactive beams. The use of deep-inelastic and fusion-evaporation reactions will bemore » discussed. An example of a setup that makes use of a beam of {sup 106}Cd to study excited states of {sup 110}Sn and the beam nuclei itself will be presented.« less
Neural field theory of perceptual echo and implications for estimating brain connectivity
NASA Astrophysics Data System (ADS)
Robinson, P. A.; Pagès, J. C.; Gabay, N. C.; Babaie, T.; Mukta, K. N.
2018-04-01
Neural field theory is used to predict and analyze the phenomenon of perceptual echo in which random input stimuli at one location are correlated with electroencephalographic responses at other locations. It is shown that this echo correlation (EC) yields an estimate of the transfer function from the stimulated point to other locations. Modal analysis then explains the observed spatiotemporal structure of visually driven EC and the dominance of the alpha frequency; two eigenmodes of similar amplitude dominate the response, leading to temporal beating and a line of low correlation that runs from the crown of the head toward the ears. These effects result from mode splitting and symmetry breaking caused by interhemispheric coupling and cortical folding. It is shown how eigenmodes obtained from functional magnetic resonance imaging experiments can be combined with temporal dynamics from EC or other evoked responses to estimate the spatiotemporal transfer function between any two points and hence their effective connectivity.
Analyzing Small Signal Stability of Power System based on Online Data by Use of SMES
NASA Astrophysics Data System (ADS)
Ishikawa, Hiroyuki; Shirai, Yasuyuki; Nitta, Tanzo; Shibata, Katsuhiko
The purpose of this study is to estimate eigen-values and eigen-vectors of a power system from on-line data to evaluate the power system stability. Power system responses due to the small power modulation of known pattern from SMES (Superconducting Magnetic Energy Storage) were analyzed, and the transfer functions between the power modulation and power oscillations of generators were obtained. Eigen-values and eigen-vectors were estimated from the transfer functions. Experiments were carried out by use of a model SMES and Advanced Power System Analyzer (APSA), which is an analogue type power system simulator of Kansai Electric Power Company Inc., Japan. Changes in system condition were observed by the estimated eigen-values and eigen-vectors. Result agreed well with the resent report and digital simulation. This method gives a new application for SMES, which will be installed for improving electric power quality.
Magnetic Reconnection: Theoretical and Observational Perspectives: Preface
NASA Technical Reports Server (NTRS)
Lewis, W. S.; Antiochos, S. K,; Drake, J. F.
2011-01-01
Magnetic reconnection is a fundamental plasma-physical process by which energy stored in a magnetic field is converted, often explosively, into heat and the kinetic energy of the charged particles that constitute the plasma. It occurs in a variety of astrophysical settings, ranging from the solar corona to pulsar magnetospheres and winds, as well as in laboratory fusion experiments, where it is responsible for sawtooth crashes. First proposed by R.G. Giovanelli in the late I 940s as the mechanism responsible for solar flares, magnetic reconnection was invoked at the beginning of the space age to explain not just solar flares but also the transfer of energy, mass, and momentum from the solar wind to Earth's magnetosphere and the subsequent storage and release of the transferred energy in the magnetotai\\. During the half century or so that has followed the seminal theoretical works by J.W. Dungey, P.A. Sweet, E.N. Parker, and H.E. Petschek, in-situ measurements by Earth-orbiting satellites and remote-sensing observations of the solar corona have provided a growing body of evidence for the occurrence of reconnection at the Sun, in the solar wind, and in the near-Earth space environment. The last thirty years have also seen the development of laboratory reconnection experiments at a number of institutions. In parallel with the efforts of experimentalists in both space and laboratory plasma physics, theorists have investigated, analytically and with the help of increasingly powerful MHD, hybrid, and kinetic numerical simulations, the structure of the diffusion region, the factors controlling the rate, onset, and cessation of reconnection, and the detailed physics that enables the demagnetization of the ions and electrons and the topological reconfiguration of the magnetic field. Moreover, the scope of theoretical reconnection studies has been extended well beyond solar system and laboratory plasmas to include more exotic astrophysical plasma systems whose strong (10(exp 14)-10(exp 15) G) magnetic fields require that models of reconnection in these systems incorporate quantum electrodynamical, special relativistic, and radiative effects. The papers collected in this topical issue of Space Science Reviews cover different aspects of recent theoretical and observational work on magnetic reconnection in solar and space physics, astrophysics, and laboratory plasma physics. They derive from presentations given at a workshop on magnetic reconnection held in the Yosemite National Park, February 8-12,2010. The intent of the workshop was to stimulate, through a combination of tutorial talks, shorter focused talks, and extensive informal discussions, an interdisciplinary dialogue among members of the different research communities working on the problem of magnetic reconnection. One of the motivating considerations for holding the workshop was its relevance to NASA's Magnetospheric Multiscale (MMS) mission, scheduled for launch in 2014. The four identically instrumented MMS spacecraft are designed to study reconnect ion in Earth's magnetosphere and, specifically, to probe the electron diffusion region in order to determine the microphysical processes that enable the change in the topology of the magnetic field. Building on the achievements of the multi spacecraft Cluster and THEMIS missions, MMS will use the magnetosphere as an astrophysical plasma laboratory in which to test, through in-situ measurement of the plasma, energetic particles, and electric and magnetic fields, various models and theories that have emerged during the past twenty years, a period of extraordinarily productive theoretical and observational work.
The tracking analysis in the Q-weak experiment
NASA Astrophysics Data System (ADS)
Pan, J.; Androic, D.; Armstrong, D. S.; Asaturyan, A.; Averett, T.; Balewski, J.; Beaufait, J.; Beminiwattha, R. S.; Benesch, J.; Benmokhtar, F.; Birchall, J.; Carlini, R. D.; Cates, G. D.; Cornejo, J. C.; Covrig, S.; Dalton, M. M.; Davis, C. A.; Deconinck, W.; Diefenbach, J.; Dowd, J. F.; Dunne, J. A.; Dutta, D.; Duvall, W. S.; Elaasar, M.; Falk, W. R.; Finn, J. M.; Forest, T.; Gaskell, D.; Gericke, M. T. W.; Grames, J.; Gray, V. M.; Grimm, K.; Guo, F.; Hoskins, J. R.; Johnston, K.; Jones, D.; Jones, M.; Jones, R.; Kargiantoulakis, M.; King, P. M.; Korkmaz, E.; Kowalski, S.; Leacock, J.; Leckey, J.; Lee, A. R.; Lee, J. H.; Lee, L.; MacEwan, S.; Mack, D.; Magee, J. A.; Mahurin, R.; Mammei, J.; Martin, J. W.; McHugh, M. J.; Meekins, D.; Mei, J.; Michaels, R.; Micherdzinska, A.; Mkrtchyan, A.; Mkrtchyan, H.; Morgan, N.; Myers, K. E.; Narayan, A.; Ndukum, L. Z.; Nelyubin, V.; Nuruzzaman; van Oers, W. T. H.; Opper, A. K.; Page, S. A.; Pan, J.; Paschke, K. D.; Phillips, S. K.; Pitt, M. L.; Poelker, M.; Rajotte, J. F.; Ramsay, W. D.; Roche, J.; Sawatzky, B.; Seva, T.; Shabestari, M. H.; Silwal, R.; Simicevic, N.; Smith, G. R.; Solvignon, P.; Spayde, D. T.; Subedi, A.; Subedi, R.; Suleiman, R.; Tadevosyan, V.; Tobias, W. A.; Tvaskis, V.; Waidyawansa, B.; Wang, P.; Wells, S. P.; Wood, S. A.; Yang, S.; Young, R. D.; Zhamkochyan, S.
2016-12-01
The Q-weak experiment at Jefferson Laboratory measured the parity violating asymmetry ( A P V ) in elastic electron-proton scattering at small momentum transfer squared ( Q 2=0.025 ( G e V/ c)2), with the aim of extracting the proton's weak charge ({Q^p_W}) to an accuracy of 5 %. As one of the major uncertainty contribution sources to {Q^p_W}, Q 2 needs to be determined to ˜1 % so as to reach the proposed experimental precision. For this purpose, two sets of high resolution tracking chambers were employed in the experiment, to measure tracks before and after the magnetic spectrometer. Data collected by the tracking system were then reconstructed with dedicated software into individual electron trajectories for experimental kinematics determination. The Q-weak kinematics and the analysis scheme for tracking data are briefly described here. The sources that contribute to the uncertainty of Q 2 are discussed, and the current analysis status is reported.
Design and performance of the spin asymmetries of the nucleon experiment
NASA Astrophysics Data System (ADS)
Maxwell, J. D.; Armstrong, W. R.; Choi, S.; Jones, M. K.; Kang, H.; Liyanage, A.; Meziani, Z.-E.; Mulholland, J.; Ndukum, L.; Rondón, O. A.; Ahmidouch, A.; Albayrak, I.; Asaturyan, A.; Ates, O.; Baghdasaryan, H.; Boeglin, W.; Bosted, P.; Brash, E.; Brock, J.; Butuceanu, C.; Bychkov, M.; Carlin, C.; Carter, P.; Chen, C.; Chen, J.-P.; Christy, M. E.; Covrig, S.; Crabb, D.; Danagoulian, S.; Daniel, A.; Davidenko, A. M.; Davis, B.; Day, D.; Deconinck, W.; Deur, A.; Dunne, J.; Dutta, D.; El Fassi, L.; Elaasar, M.; Ellis, C.; Ent, R.; Flay, D.; Frlez, E.; Gaskell, D.; Geagla, O.; German, J.; Gilman, R.; Gogami, T.; Gomez, J.; Goncharenko, Y. M.; Hashimoto, O.; Higinbotham, D. W.; Horn, T.; Huber, G. M.; Jones, M.; Kalantarians, N.; Kang, H. K.; Kawama, D.; Keith, C.; Keppel, C.; Khandaker, M.; Kim, Y.; King, P. M.; Kohl, M.; Kovacs, K.; Kubarovsky, V.; Li, Y.; Liyanage, N.; Luo, W.; Mamyan, V.; Markowitz, P.; Maruta, T.; Meekins, D.; Melnik, Y. M.; Mkrtchyan, A.; Mkrtchyan, H.; Mochalov, V. V.; Monaghan, P.; Narayan, A.; Nakamura, S. N.; Nuruzzaman; Pentchev, L.; Pocanic, D.; Posik, M.; Puckett, A.; Qiu, X.; Reinhold, J.; Riordan, S.; Roche, J.; Sawatzky, B.; Shabestari, M.; Slifer, K.; Smith, G.; Soloviev, L.; Solvignon, P.; Tadevosyan, V.; Tang, L.; Vasiliev, A. N.; Veilleux, M.; Walton, T.; Wesselmann, F.; Wood, S. A.; Yao, H.; Ye, Z.; Zhu, L.
2018-03-01
The Spin Asymmetries of the Nucleon Experiment (SANE) performed inclusive, double-polarized electron scattering measurements of the proton at the Continuous Electron Beam Accelerator Facility at Jefferson Lab. A novel detector array observed scattered electrons of four-momentum transfer 2 . 5
Mechanisms of Dynamic Nuclear Polarization in Insulating Solids
Can, T.V.; Ni, Q.Z.; Griffin, R.G.
2015-01-01
Dynamic nuclear polarization (DNP) is a technique used to enhance signal intensities in NMR experiments by transferring the high polarization of electrons to their surrounding nuclei. The past decade has witnessed a renaissance in the development of DNP, especially at high magnetic fields, and its application in several areas including biophysics, chemistry, structural biology and materials science. Recent technical and theoretical advances have expanded our understanding of established experiments: for example, the cross effect DNP in samples spinning at the magic angle. Furthermore, new experiments suggest that our understanding of the Overhauser effect and its applicability to insulating solids needs to be re-examined. In this article, we summarize important results of the past few years and provide quantum mechanical explanations underlying these results. We also discuss future directions of DNP and current limitations, including the problem of resolution in protein spectra recorded at 80–100 K. PMID:25797002
Chen, Hongwei; Wu, Xinying; Duan, Hongwei; Wang, Y. Andrew; Wang, Liya; Zhang, Minming; Mao, Hui
2009-01-01
We report a biocompatible polysiloxane containing amphiphilic diblock copolymer, poly(ethylene oxide)-block-poly(γ-methacryloxypropyltrimethoxysilane) (PEO-b-PγMPS), for coating and stabilizing nanoparticles for biomedical applications. Such amphiphilic diblock copolymer which comprises both a hydrophobic segment with “surface anchoring moiety” (silane group) and a hydrophilic segment with PEO (Mn=5000 g/mol) was obtained by the reversible addition fragmentation chain transfer (RAFT) polymerization using the PEO macromolecular chain transfer agent. When used for coating paramagnetic iron oxide nanoparticles (IONPs), copolymers were mixed with hydrophobic oleic acid coated core size uniformed IONPs (D=13 nm) in co-solvent tetrahydrofuran. After being aged over a period of time, resulting monodispersed IONPs can be transferred into aqueous medium. With proper PγMPS block length (Mn=10,000 g/mol), polysiloxane containing diblock copolymers formed a thin layer of coating (~3 nm) around monocrystalline nanoparticles as measured by transmission electron microscopy (TEM). Magnetic resonance imaging (MRI) experiments showed excellent T2 weighted contrast effect from coated IONPs with a transverse relaxivity r2=98.6 mM−1s−1 (at 1.5 Tesla). Such thin coating layer has little effect on the relaxivity when compared to that of IONPs coated with conventional amphiphilic copolymer. Polysiloxane containing diblock copolymer coated IONPs are stable without aggregation or binding to proteins in serum when incubated for 24 h in culture medium containing 10% serum. Furthermore, much lower level of intracellular uptake by macrophage cells was observed with polysiloxane containing diblock copolymers coated IONPs, suggesting the reduction of non-specific cell uptakes and antibiofouling effect. PMID:20161520
Studies of the Impact of Magnetic Field Uncertainties on Physics Parameters of the Mu2e Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradascio, Federica
The Mu2e experiment at Fermilab will search for a signature of charged lepton flavor violation, an effect prohibitively too small to be observed within the Standard Model of particle physics. Therefore, its observation is a signal of new physics. The signature that Mu2e will search for is the ratio of the rate of neutrinoless coherent conversion of muons into electrons in the field of a nucleus, relative to the muon capture rate by the nucleus. The conversion process is an example of charged lepton flavor violation. This experiment aims at a sensitivity of four orders of magnitude higher than previousmore » related experiments. The desired sensitivity implies highly demanding requirements of accuracy in the design and conduct of the experiment. It is therefore important to investigate the tolerance of the experiment to instrumental uncertainties and provide specifications that the design and construction must meet. This is the core of the work reported in this thesis. The design of the experiment is based on three superconducting solenoid magnets. The most important uncertainties in the magnetic field of the solenoids can arise from misalignments of the Transport Solenoid, which transfers the beam from the muon production area to the detector area and eliminates beam-originating backgrounds. In this thesis, the field uncertainties induced by possible misalignments and their impact on the physics parameters of the experiment are examined. The physics parameters include the muon and pion stopping rates and the scattering of beam electrons off the capture target, which determine the signal, intrinsic background and late-arriving background yields, respectively. Additionally, a possible test of the Transport Solenoid alignment with low momentum electrons is examined, as an alternative option to measure its field with conventional probes, which is technically difficult due to mechanical interference. Misalignments of the Transport Solenoid were simulated using standard magnetic field cal- culation tools. Particle transport was simulated using the Mu2e Offline software, which includes realistic models of particle interactions with materials in the full Mu2e geometry. The physics parameters were found tolerant within the precision requirements of the experiment for rigid-body type of misalignments, which are the most dangerous, up to a maximum coil displacement of nearly 10 mm. With the appropriate choice of low momentum electron detector, the proposed Transport Solenoid test is found to be sensitive to such misalignments.« less
Roeth, Anjali A; Slabu, Ioana; Baumann, Martin; Alizai, Patrick H; Schmeding, Maximilian; Guentherodt, Gernot; Schmitz-Rode, Thomas; Neumann, Ulf P
2017-01-01
Superparamagnetic iron oxide nanoparticles (SPION) may be used for local tumor treatment by coupling them to a drug and accumulating them locally with magnetic field traps, that is, a combination of permanent magnets and coils. Thereafter, an alternating magnetic field generates heat which may be used to release the thermosensitively bound drug and for hyperthermia. Until today, only superficial tumors can be treated with this method. Our aim was to transfer this method into an endoscopic setting to also reach the majority of tumors located inside the body. To find the ideal endoscopic magnetic field trap, which accumulates the most SPION, we first developed a biophysical model considering anatomical as well as physical conditions. Entities of choice were esophageal and prostate cancer. The magnetic susceptibilities of different porcine and rat tissues were measured with a superconducting quantum interference device. All tissues showed diamagnetic behavior. The evaluation of clinical data (computed tomography scan, endosonography, surgical reports, pathological evaluation) of patients gave insight into the topographical relationship between the tumor and its surroundings. Both were used to establish the biophysical model of the tumors and their surroundings, closely mirroring the clinical situation, in which we could virtually design, place and evaluate different electromagnetic coil configurations to find optimized magnetic field traps for each tumor entity. By simulation, we could show that the efficiency of the magnetic field traps can be enhanced by 38-fold for prostate and 8-fold for esophageal cancer. Therefore, our approach of endoscopic targeting is an improvement of the magnetic drug-targeting setups for SPION tumor therapy as it holds the possibility of reaching tumors inside the body in a minimal-invasive way. Future animal experiments must prove these findings in vivo.
Battiston, Marco; Grussu, Francesco; Ianus, Andrada; Schneider, Torben; Prados, Ferran; Fairney, James; Ourselin, Sebastien; Alexander, Daniel C; Cercignani, Mara; Gandini Wheeler-Kingshott, Claudia A M; Samson, Rebecca S
2018-05-01
To develop a framework to fully characterize quantitative magnetization transfer indices in the human cervical cord in vivo within a clinically feasible time. A dedicated spinal cord imaging protocol for quantitative magnetization transfer was developed using a reduced field-of-view approach with echo planar imaging (EPI) readout. Sequence parameters were optimized based in the Cramer-Rao-lower bound. Quantitative model parameters (i.e., bound pool fraction, free and bound pool transverse relaxation times [ T2F, T2B], and forward exchange rate [k FB ]) were estimated implementing a numerical model capable of dealing with the novelties of the sequence adopted. The framework was tested on five healthy subjects. Cramer-Rao-lower bound minimization produces optimal sampling schemes without requiring the establishment of a steady-state MT effect. The proposed framework allows quantitative voxel-wise estimation of model parameters at the resolution typically used for spinal cord imaging (i.e. 0.75 × 0.75 × 5 mm 3 ), with a protocol duration of ∼35 min. Quantitative magnetization transfer parametric maps agree with literature values. Whole-cord mean values are: bound pool fraction = 0.11(±0.01), T2F = 46.5(±1.6) ms, T2B = 11.0(±0.2) µs, and k FB = 1.95(±0.06) Hz. Protocol optimization has a beneficial effect on reproducibility, especially for T2B and k FB . The framework developed enables robust characterization of spinal cord microstructure in vivo using qMT. Magn Reson Med 79:2576-2588, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Energy release and transfer in guide field reconnection
NASA Astrophysics Data System (ADS)
Birn, J.; Hesse, M.
2010-01-01
Properties of energy release and transfer by magnetic reconnection in the presence of a guide field are investigated on the basis of 2.5-dimensional magnetohydrodynamic (MHD) and particle-in-cell (PIC) simulations. Two initial configurations are considered: a plane current sheet with a uniform guide field of 80% of the reconnecting magnetic field component and a force-free current sheet in which the magnetic field strength is constant but the field direction rotates by 180° through the current sheet. The onset of reconnection is stimulated by localized, temporally limited compression. Both MHD and PIC simulations consistently show that the outgoing energy fluxes are dominated by (redirected) Poynting flux and enthalpy flux, whereas bulk kinetic energy flux and heat flux (in the PIC simulation) are small. The Poynting flux is mainly associated with the magnetic energy of the guide field which is carried from inflow to outflow without much alteration. The conversion of annihilated magnetic energy to enthalpy flux (that is, thermal energy) stems mainly from the fact that the outflow occurs into a closed field region governed by approximate force balance between Lorentz and pressure gradient forces. Therefore, the energy converted from magnetic to kinetic energy by Lorentz force acceleration becomes immediately transferred to thermal energy by the work done by the pressure gradient force. Strong similarities between late stages of MHD and PIC simulations result from the fact that conservation of mass and entropy content and footpoint displacement of magnetic flux tubes, imposed in MHD, are also approximately satisfied in the PIC simulations.
Kristian Birkeland - The man and the scientist
NASA Technical Reports Server (NTRS)
Egeland, A.
1984-01-01
A review is presented of Birkeland's outstanding contributions to auroral theory and, in particular, to the foundation of modern magnetospheric physics. Birkeland's first years in research, after a study of mathematics and theoretical physics at the university, were concerned with Maxwell's theory, the investigation of electromagnetic waves in conductors, wave propagation in space, an energy transfer by means of electromagnetic waves, and a general expression for the Poynting vector. Experiments with cathode rays near a magnet in 1895, led Birkeland to the development of an auroral theory. This theory represented the first detailed, realistic explanation of the creation of an aurora. Attention is given to experiments conducted to verify the theory, the discovery of the polar elementary storm, and the deduction of auroral electric currents. Birkeland's background and education is also considered along with his personality.
Nucleon Form Factors above 6 GeV
DOE R&D Accomplishments Database
Taylor, R. E.
1967-09-01
This report describes the results from a preliminary analysis of an elastic electron-proton scattering experiment... . We have measured cross sections for e-p scattering in the range of q{sup 2} from 0.7 to 25.0 (GeV/c){sup 2}, providing a large region of overlap with previous measurements. In this experiment we measure the cross section by observing electrons scattered from a beam passing through a liquid hydrogen target. The scattered particles are momentum analyzed by a magnetic spectrometer and identified as electrons in a total absorption shower counter. Data have been obtained with primary electron energies from 4.0 to 17.9 GeV and at scattering angles from 12.5 to 35.0 degrees. In general, only one measurement of a cross section has been made at each momentum transfer.
Batch extracting process using magneticparticle held solvents
Nunez, Luis; Vandergrift, George F.
1995-01-01
A process for selectively removing metal values which may include catalytic values from a mixture containing same, wherein a magnetic particle is contacted with a liquid solvent which selectively dissolves the metal values to absorb the liquid solvent onto the magnetic particle. Thereafter the solvent-containing magnetic particles are contacted with a mixture containing the heavy metal values to transfer metal values into the solvent carried by the magnetic particles, and then magnetically separating the magnetic particles. Ion exchange resins may be used for selective solvents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Yuichi, E-mail: nakamura@ee.tut.ac.jp; Takagi, Hiroyuki; Lim, Pang Boey
A holographic memory has been attracting attention as recording media with high recording density and high data transfer rate. We have studied the magnetic garnets as a rewritable and long life media for magnetic holography. However, since the signal intensity of reconstructed image was relatively low, the effects of recording conditions on the diffraction efficiency of magnetic hologram were investigated with experiments and the numerical simulation using COMSOL multi-physics. The diffraction efficiency tends to decrease as increasing the spatial frequency, and the use of short pulse laser with the pulse width of 50 ps was found to be effective tomore » achieve high diffraction efficiency. This suggests that the formation of clear magnetic fringe similar to interference pattern can be obtained by the use of short pulse laser since undesirable heat diffusion during radiation does not occur. On the other hand, the diffraction efficiency increased as increasing the film thickness up to 3.1 μm but was saturated in the garnet film thicker than 3.1 μm in the case of spatial frequency of 1500 line pair/mm. The numerical simulation showed that the effective depth of magnetic fringe was limited about 1.8 μm irrespective of the garnet film thickness because the fringes were connected by thermal diffusion near the surface of the film, and the effective depth is limited due to this connection of the magnetic fringe. Avoiding this fringe connection, much higher diffraction efficiency will be achieved.« less
New Soft Magnetic Composites for electromagnetic applications with improved mechanical properties
NASA Astrophysics Data System (ADS)
Ferraris, Luca; Pošković, Emir; Franchini, Fausto
2016-05-01
The chance to move from 2D to 3D approach in the design of the electrical machines is made possible by the availability of Soft Magnetic Composites (SMC), iron based powders, insulated and pressed to realize shapes otherwise impossible with the traditional lamination sheets technology. Some commercial products are available on the market as "ready to press" powders, which presents good magnetic and energetic properties but are sometimes weak under the mechanical point of view; other products aim at improving this aspect but with considerable process complications and relative cost. The experience of the Authors in the realization of bonded magnets with the adoption of selected organic resins has been partly transferred in the research field of the SMC in order to investigate the possibility to obtain good mechanical properties maintaining the magnetic characteristics of the Insulated Iron Powder Compounds (I.I.P.C.) taken as reference. The paper presents the activity that has been carried out in the realization of SMC mixing iron powders and phenolic resin, in different weight percentages and mold pressures. The obtained results are considered satisfactory under the point of view of the compromise between magnetic and mechanical properties, considering also that the required productive process is simpler. The comparison of the obtained results with those related to commercial products encourages to carry on the research, also because of the reduced cost of the proposed SMC at parity (or better) performance.
Local Heating of Discrete Droplets Using Magnetic Porous Silicon-Based Photonic Crystals
Park, Ji-Ho; Derfus, Austin M.; Segal, Ester; Vecchio, Kenneth S.; Bhatia, Sangeeta N.; Sailor, Michael J.
2012-01-01
This paper describes a method for local heating of discrete micro-liter scale liquid droplets. The droplets are covered with magnetic porous Si microparticles, and heating is achieved by application of an external alternating electromagnetic field. The magnetic porous Si microparticles consist of two layers: the top layer contains a photonic code and it is hydrophobic, with surface-grafted dodecyl moieties. The bottom layer consists of a hydrophilic Si oxide host layer that is infused with Fe3O4 nanoparticles. The amphiphilic microparticles spontaneously align at the interface of a water droplet immersed in mineral oil, allowing manipulation of the droplets by application of a magnetic field. Application of an oscillating magnetic field (338 kHz, 18A RMS current in a coil surrounding the experiment) generates heat in the superparamagnetic particles that can raise the temperature of the enclosed water droplet to >80 °C within 5 min. A simple microfluidics application is demonstrated: combining complementary DNA strands contained in separate droplets and then thermally inducing dehybridization of the conjugate. The complementary oligonucleotides were conjugated with the cyanine dye fluorophores Cy3 and Cy5 to quantify the melting/re-binding reaction by fluorescence resonance energy transfer (FRET). The magnetic porous Si microparticles were prepared as photonic crystals, containing spectral codes that allowed the identification of the droplets by reflectivity spectroscopy. The technique demonstrates the feasibility of tagging, manipulating, and heating small volumes of liquids without the use of conventional microfluidic channel and heating systems. PMID:16771508
NASA Astrophysics Data System (ADS)
Seino, Hiroshi; Nagashima, Ken; Tanaka, Yoshichika; Nakauchi, Masahiko
2010-06-01
The Railway Technical Research Institute conducted a study to develop a superconducting magnetic bearing applicable to the flywheel energy-storage system for railways. In the first step of the study, the thrust rolling bearing was selected for application, and adopted liquid-nitrogen-cooled HTS-bulk as a rotor, and adopted superconducting coil as a stator for the superconducting magnetic bearing. Load capacity of superconducting magnetic bearing was verified up to 10 kN in the static load test. After that, rotation test of that approximately 5 kN thrust load added was performed with maximum rotation of 3000rpm. In the results of bearing rotation test, it was confirmed that position in levitation is able to maintain with stability during the rotation. Heat transfer properties by radiation in vacuum and conductivity by tenuous gas were basically studied by experiment by the reason of confirmation of rotor cooling method. The experimental result demonstrates that the optimal gas pressure is able to obtain without generating windage drag. In the second stage of the development, thrust load capacity of the bearing will be improved aiming at the achievement of the energy capacity of a practical scale. In the static load test of the new superconducting magnetic bearing, stable 20kN-levitation force was obtained.
NASA Astrophysics Data System (ADS)
Honkura, Y.; Watanabe, N.; Kaneko, Y.; Oshima, S.
1989-03-01
Two-dimensional analyses of magnetotelluric data provide information on anisotropic response for two different polarization cases; the so-called B-polarization and E-polarization cases. Similar anisotropy should also be observed in the horizontal components of magnetic field variations. On the assumption that a reference station provides the normal magnetic field, transfer functions for the horizontal magnetic fields can be derived in a fashion similar to the impedance analysis for magnetotelluric data. We applied this method to magnetic data obtained at some observation sites in a geothermal area in Japan. Transfer functions for the horizontal magnetic fields exhibit a strong anisotropy with the preferred direction nearly perpendicular to that for the electric field. This result implies the existence of strong electric currents flowing in the direction perpendicular to the above preferred direction for the magnetic field. The present method was also applied to the horizontal components of magnetic field variations observed at the seafloor. In this case, a magnetic observatory on land was taken as the reference station, and attenuation of the amplitude of horizontal magnetic field variation was examined. Anisotropy in attenuation was then found with the preferred direction perpendicular to the axis of the Okinawa trough where the seafloor measurement was undertaken.
NASA Astrophysics Data System (ADS)
Fast, R. W.
The book presents a review of literature on superfluid helium, together with papers under the topics on heat and mass transfer in He II; applications of He II for cooling superconducting devices in space; heat transfer to liquid helium and liquid nitrogen; multilayer insulation; applications of superconductivity, including topics on magnets and other devices, magnet stability and coil protection, and cryogenic techniques; and refrigeration for electronics. Other topics discussed include refrigeration of superconducting systems; the expanders, cold compressors, and pumps for liquid helium; dilution refrigerators; magnetic refrigerators; pulse tube refrigerators; cryocoolers for space applications; properties of cryogenic fluids; cryogenic instrumentation; hyperconducting devices (cryogenic magnets); cryogenic applications in space science and technology and in transportation; and miscellaneous cryogenic techniques and applications.
A study of flux transfer events at different planets
NASA Technical Reports Server (NTRS)
Russell, C. T.
1995-01-01
Flux transfer events (FTEs) are disturbances in and near the magnetopause current layer that cause a characteristic signature in the component of the magnetic field parallel to the average boundary normal. These disturbances have been observed at Mercury, Earth and Jupiter but not at Saturn, Uranus or Neptune. At Earth, FTEs last about 1 minute and repeat about every 8 but at Mercury, a much smaller magnetosphere, the events last seconds and are tens of seconds apart. These features have been interpreted in terms of magnetospheric flux ropes connected to the interplanetary magnetic field, arising as the result of reconnection. An analogous phenomenon occurs at Venus where magnetic flux ropes arise at the ionosphere, a boundary between a very strongly magnetized one. However, here the flux ropes do not appear to be due to reconnection.
Modeled ground magnetic signatures of flux transfer events
NASA Technical Reports Server (NTRS)
Mchenry, Mark A.; Clauer, C. Robert
1987-01-01
The magnetic field on the ground due to a small (not greater than 200 km scale size) localized field-aligned current (FAC) system interacting with the ionosphere is calculated in terms of an integral over the ionospheric distribution of FAC. Two different candidate current systems for flux transfer events (FTEs) are considered: (1) a system which has current flowing down the center of a cylindrical flux tube with a return current uniformly distributed along the outside edge; and (2) a system which has upward current on one half of the perimeter of a cylindrical flux tube with downward current on the opposite half. The peak magnetic field on the ground is found to differ by a factor of 2 between the two systems, and the magnetic perturbations are in different directions depending on the observer's position.
A small scale remote cooling system for a superconducting cyclotron magnet
NASA Astrophysics Data System (ADS)
Haug, F.; Berkowitz Zamorra, D.; Michels, M.; Gomez Bosch, R.; Schmid, J.; Striebel, A.; Krueger, A.; Diez, M.; Jakob, M.; Keh, M.; Herberger, W.; Oesterle, D.
2017-02-01
Through a technology transfer program CERN is involved in the R&D of a compact superconducting cyclotron for future clinical radioisotope production, a project led by the Spanish research institute CIEMAT. For the remote cooling of the LTc superconducting magnet operating at 4.5 K, CERN has designed a small scale refrigeration system, the Cryogenic Supply System (CSS). This refrigeration system consists of a commercial two-stage 1.5 W @ 4.2 K GM cryocooler and a separate forced flow circuit. The forced flow circuit extracts the cooling power of the first and the second stage cold tips, respectively. Both units are installed in a common vacuum vessel and, at the final configuration, a low loss transfer line will provide the link to the magnet cryostat for the cooling of the thermal shield with helium at 40 K and the two superconducting coils with two-phase helium at 4.5 K. Currently the CSS is in the testing phase at CERN in stand-alone mode without the magnet and the transfer line. We have added a “validation unit” housed in the vacuum vessel of the CSS representing the thermo-hydraulic part of the cyclotron magnet. It is equipped with electrical heaters which allow the simulation of the thermal loads of the magnet cryostat. A cooling power of 1.4 W at 4.5 K and 25 W at the thermal shield temperature level has been measured. The data produced confirm the design principle of the CSS which could be validated.
Batch extracting process using magnetic particle held solvents
Nunez, L.; Vandergrift, G.F.
1995-11-21
A process is described for selectively removing metal values which may include catalytic values from a mixture containing same, wherein a magnetic particle is contacted with a liquid solvent which selectively dissolves the metal values to absorb the liquid solvent onto the magnetic particle. Thereafter the solvent-containing magnetic particles are contacted with a mixture containing the heavy metal values to transfer metal values into the solvent carried by the magnetic particles, and then magnetically separating the magnetic particles. Ion exchange resins may be used for selective solvents. 5 figs.
NASA Astrophysics Data System (ADS)
Chakraborty, Brotati; Basu, Samita
2010-02-01
Photoinduced electron transfer (PET) between proflavin (PF +) and two aromatic amines viz., dimethylaniline (DMA) and 4,4'-bis(dimethylamino)diphenylmethane (DMDPM) is studied in homogeneous and heterogeneous media using steady-state as well as time-resolved fluorescence spectroscopy and laser flash photolysis with an associated magnetic field. Ionic micelles have been used to study the effect of charge of proflavin on PET with amines. Magnetic field effect on PET reactions reveals that the parent spin-state of precursors of PET for DMA-PF + system is singlet while for DMDPM-PF + system is triplet, implying that the dynamics of PET is influenced by the structure of the donor.
Tiret, Brice; Brouillet, Emmanuel; Valette, Julien
2016-09-01
With the increased spectral resolution made possible at high fields, a second, smaller inorganic phosphate resonance can be resolved on (31)P magnetic resonance spectra in the rat brain. Saturation transfer was used to estimate de novo adenosine triphosphate synthesis reaction rate. While the main inorganic phosphate pool is used by adenosine triphosphate synthase, the second pool is inactive for this reaction. Accounting for this new pool may not only help us understand (31)P magnetic resonance spectroscopy metabolic profiles better but also better quantify adenosine triphosphate synthesis. © The Author(s) 2016.
Smith, Mark L; Molina, Bianca J; Dayan, Erez; Saint-Victor, Diane S; Kim, Julie N; Kahn, Eugene S; Kagen, Alexander; Dayan, Joseph H
2017-01-01
The use of heterotopic vascularized lymph node transfer (HVLNT) for the treatment of lower extremity lymphedema is still evolving. Current techniques, either place the lymph nodes in the thigh without a skin paddle or at the ankle requiring an unsightly and often bulky skin paddle for closure. We explored the feasibility of doing a below-knee transfer without a skin paddle using the medial sural vessels as recipient vessels and report our experience in 21 patients. A retrospective review of all patients who underwent HVLNT to the medial calf was performed. Postoperative magnetic resonance angiography (MRA) and lymphoscintigraphy (LS) were analyzed to assess lymph node viability and function after transfer. Twenty-one patients underwent HVLNT to the medial calf. Postoperative imaging was performed at an average of 11 months after surgery. Thirteen patients had postoperative MRA, of whom 12 demonstrated viable lymph nodes. Seven patients underwent postoperative LS, of whom three demonstrated uptake in the transferred nodes. In the other four patients, the injectate failed to reach the level of the proximal calf. We provide proof of concept that HVLNT to the lower leg using the medial sural vessels without a skin paddle can result in viable and functional lymph nodes in the setting of lower extremity lymphedema. J. Surg. Oncol. 2017;115:90-95. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
HDice, Highly-Polarized Low-Background Frozen-Spin HD Targets for CLAS experiments at Jefferson Lab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Xiangdong; Bass, Christopher; D'Angelo, Annalisa
2012-12-01
Large, portable frozen-spin HD (Deuterium-Hydride) targets have been developed for studying nucleon spin properties with low backgrounds. Protons and Deuterons in HD are polarized at low temperatures (~10mK) inside a vertical dilution refrigerator (Oxford Kelvinox-1000) containing a high magnetic field (up to 17T). The targets reach a frozen-spin state within a few months, after which they can be cold transferred to an In-Beam Cryostat (IBC). The IBC, a thin-walled dilution refrigerator operating either horizontally or vertically, is use with quasi-4{pi} detector systems in open geometries with minimal energy loss for exiting reaction products in nucleon structure experiments. The first applicationmore » of this advanced target system has been used for Spin Sum Rule experiments at the LEGS facility in Brookhaven National Laboratory. An improved target production and handling system has been developed at Jefferson Lab for experiments with the CEBAF Large Acceptance Spectrometer, CLAS.« less
Enhancing NMR of insensitive nuclei by transfer of SABRE spin hyperpolarization
NASA Astrophysics Data System (ADS)
Pravdivtsev, Andrey N.; Yurkovskaya, Alexandra V.; Zimmermann, Herbert; Vieth, Hans-Martin; Ivanov, Konstantin L.
2016-09-01
We describe the performance of methods for enhancing NMR (Nuclear Magnetic Resonance) signals of "insensitive", but important NMR nuclei, which are based on the SABRE (Signal Amplification By Reversible Exchange) technique, i.e., on spin order transfer from parahydrogen (H2 molecule in its nuclear singlet spin state) to a substrate in a transient organometallic complex. Here such transfer is performed at high magnetic fields by INEPT-type NMR pulse sequences, modified for SABRE. Signal enhancements up to three orders of magnitude are obtained for 15N nuclei; the possibility of sensitive detection of 2D-NMR 1H-15N spectra of SABRE complexes and substrates is demonstrated.
Self-consistent models for Coulomb-heated X-ray pulsar atmospheres
NASA Technical Reports Server (NTRS)
Harding, A. K.; Kirk, J. G.; Galloway, D. J.; Meszaros, P.
1984-01-01
Calculations of accreting magnetized neutron star atmospheres heated by the gradual deceleration of Protons via Coulomb collisions are presented. Self consistent determinations of the temperature and density structure for different accretion rates are made by assuming hydrostatic equilibrium and energy balance, coupled with radiative transfer. The full radiative transfer in two polarizations, using magnetic cross sections but with cyclotron resonance effects treated approximately, is carried out in the inhomogeneous atmospheres. Previously announced in STAR as N84-12012
Spin-transfer torque induced spin waves in antiferromagnetic insulators
Daniels, Matthew W.; Guo, Wei; Stocks, George Malcolm; ...
2015-01-01
We explore the possibility of exciting spin waves in insulating antiferromagnetic films by injecting spin current at the surface. We analyze both magnetically compensated and uncompensated interfaces. We find that the spin current induced spin-transfer torque can excite spin waves in insulating antiferromagnetic materials and that the chirality of the excited spin wave is determined by the polarization of the injected spin current. Furthermore, the presence of magnetic surface anisotropy can greatly increase the accessibility of these excitations.
High Efficiency Electron-Laser Interactions in Tapered Helical Undulators
NASA Astrophysics Data System (ADS)
Duris, Joseph Patrick
Efficient coupling of relativistic electron beams with high power radiation lies at the heart of advanced accelerator and light source research and development. The inverse free electron laser is a stable accelerator capable of harnessing very high intensity laser electric fields to efficiently transfer large powers from lasers to electron beams. In this dissertation, we first present the theoretical framework to describe the interaction, and then apply our improved understanding of the IFEL to the design and numerical study of meter-long, GeV IFELs for compact light sources. The central experimental work of the dissertation is the UCLA BNL helical inverse free electron laser experiment at the Accelerator Test Facility in Brookhaven National Laboratory which used a strongly tapered 54cm long, helical, permanent magnet undulator and a several hundred GW CO2 laser to accelerate electrons from 52 to 106MeV, setting new records for inverse free electron laser energy gain (54MeV) and average accelerating gradient (100MeV/m). The undulator design and fabrication as well as experimental diagnostics are presented. In order to improve the stability and quality of the accelerated electron beam, we redesigned the undulator for a slightly reduced output energy by modifying the magnet gap throughout the undulator, and we used this modified undulator to demonstrated capture of >25% of the injected beam without prebunching. In the study of heavily loaded GeV inverse free electron lasers, we show that a majority of the power may be transferred from a laser to the accelerated electron beam. Reversing the process to decelerate high power electron beams, a mechanism we refer to as tapering enhanced stimulated superradiant amplification, offers a clear path to high power light sources. We present studies of radiation production for a wide range of wavelengths (10mum, 13nm, and 0.3nm) using this method and discuss the design for a deceleration experiment using the same undulator used for acceleration in this experiment. By accounting for the evolving radiation field in the design of the undulator tapering, a large fraction of energy may be transferred between the electrons and laser, enabling compact, high-current GeV accelerators and various wavelength light-sources of unprecedented peak powers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Inmyong; Park, Jiho; Jeong, Sangkwon
2014-01-29
An active magnetic regenerative refrigerator (AMRR) is expected to be useful for hydrogen liquefaction due to its inherent high thermodynamic efficiency. Because the temperature of the cold end of the refrigerator has to be approximately liquid temperature, a large temperature span of the active magnetic regenerator (AMR) is indispensable when the heat sink temperature is liquid nitrogen temperature or higher. Since magnetic refrigerants are only effective in the vicinity of their own transition temperatures, which limit the temperature span of the AMR, an innovative structure is needed to increase the temperature span. The AMR must be a layered structure andmore » the thermophysical matching of magnetic field and flow convection effects is very important. In order to design an AMR for liquefaction of hydrogen, the implementation of multi-layered AMR with different magnetic refrigerants is explored with multi-staging. In this paper, the performance of the multi-layered AMR using four rare-earth compounds (GdNi{sub 2}, Gd{sub 0.1}Dy{sub 0.9}Ni{sub 2}, Dy{sub 0.85}Er{sub 0.15}Al{sub 2}, Dy{sub 0.5}Er{sub 0.5}Al{sub 2}) is investigated. The experimental apparatus includes two-stage active magnetic regenerator containing two different magnetic refrigerants each. A liquid nitrogen reservoir connected to the warm end of the AMR maintains the temperature of the warm end around 77 K. High-pressure helium gas is employed as a heat transfer fluid in the AMR and the maximum magnetic field of 4 T is supplied by the low temperature superconducting (LTS) magnet. The temperature span with the variation of parameters such as phase difference between magnetic field and mass flow rate of magnetic refrigerants in AMR is investigated. The maximum temperature span in the experiment is recorded as 50 K and several performance issues have been discussed in this paper.« less
Studies of porous anodic alumina using spin echo scattering angle measurement
NASA Astrophysics Data System (ADS)
Stonaha, Paul
The properties of a neutron make it a useful tool for use in scattering experiments. We have developed a method, dubbed SESAME, in which specially designed magnetic fields encode the scattering signal of a neutron beam into the beam's average Larmor phase. A geometry is presented that delivers the correct Larmor phase (to first order), and it is shown that reasonable variations of the geometry do not significantly affect the net Larmor phase. The solenoids are designed using an analytic approximation. Comparison of this approximate function with finite element calculations and Hall probe measurements confirm its validity, allowing for fast computation of the magnetic fields. The coils were built and tested in-house on the NBL-4 instrument, a polarized neutron reflectometer whose construction is another major portion of this work. Neutron scattering experiments using the solenoids are presented, and the scattering signal from porous anodic alumina is investigated in detail. A model using the Born Approximation is developed and compared against the scattering measurements. Using the model, we define the necessary degree of alignment of such samples in a SESAME measurement, and we show how the signal retrieved using SESAME is sensitive to range of detectable momentum transfer.
Measuring GE^n at High Momentum Transfer
NASA Astrophysics Data System (ADS)
Feuerbach, Robert
2006-11-01
A precision measurement of the electric form-factor of the neutron, GE^n, at Q^2 up to 3.5 GeV^2 was recently completed in Hall A at the Thomas Jefferson National Accelerator Facility(Jefferson Lab). The ratio of the electric to magnetic form-factors of the neutron, GE^n/GM^n, was measured through the beam-target asymmetry A of electrons quasi-elastically scattered off neutrons in the reaction ^3He(e,e' n). The experiment took advantage of recent developments of the electron beam and target, as well as two detectors new to Jefferson Lab. The measurement used the accelerator's 100% duty-cycle high-polarization (typically 84%) electron beam and a new, hybrid optically-pumped polarized ^3He target which achieved in-beam polarizations in excess of 50%. A medium acceptance (80msr) open-geometry magnetic spectrometer (BigBite) detected the scattered electron, while a newly contructed neutron detector observed the released neutron. An overview of the experiment and the experimental motivation will be discussed, in particular the large range of predictions from modern calculations for GE^n at this relatively high Q^2. Finally, the analysis progress and preliminary results will be presented.
Critical speeds and forced response solutions for active magnetic bearing turbomachinery, part 2
NASA Technical Reports Server (NTRS)
Rawal, D.; Keesee, J.; Kirk, R. Gordon
1991-01-01
The need for better performance of turbomachinery with active magnetic bearings has necessitated a study of such systems for accurate prediction of their vibrational characteristics. A modification of existing transfer matrix methods for rotor analysis is presented to predict the response of rotor systems with active magnetic bearings. The position of the magnetic bearing sensors is taken into account and the effect of changing sensor position on the vibrational characteristics of the rotor system is studied. The modified algorithm is validated using a simpler Jeffcott model described previously. The effect of changing from a rotating unbalance excitation to a constant excitation in a single plane is also studied. A typical eight stage centrifugal compressor rotor is analyzed using the modified transfer matrix code. The results for a two mass Jeffcott model were presented previously. The results obtained by running this model with the transfer matrix method were compared with the results of the Jeffcott analysis for the purposes of verification. Also included are plots of amplitude versus frequency for the eight stage centrifugal compressor rotor. These plots demonstrate the significant influence that sensor location has on the amplitude and critical frequencies of the rotor system.
Schröder, Leif
2007-01-01
The hyperfine interaction of two spins is a well studied effect in atomic systems. Magnetic resonance experiments demonstrate that the detectable dipole transitions are determined by the magnetic moments of the constituents and the external magnetic field. Transferring the corresponding quantum mechanics to molecular bound nuclear spins allows for precise prediction of NMR spectra obtained from metabolites in human tissue. This molecular hyperfine structure has been neglected so far in in vivo NMR spectroscopy but contains useful information, especially when studying molecular dynamics. This contribution represents a review of the concept of applying the Breit-Rabi formalism to coupled nuclear spins and discusses the immobilization of different metabolites in anisotropic tissue revealed by 1H NMR spectra of carnosine, phosphocreatine and taurine. Comparison of atomic and molecular spin systems allows for statements on the biological constraints for direct spin-spin interactions. Moreover, the relevance of hyperfine effects on the line shapes of multiplets of indirectly-coupled spin systems with more than two constituents can be predicted by analyzing quantum mechanical parameters. As an example, the superposition of eigenstates of the A MX system of adenosine 5'-triphosphate and its application for better quantification of 31P-NMR spectra will be discussed.
Morello, A; Millán, A; de Jongh, L J
2014-03-21
A single-molecule magnet placed in a magnetic field perpendicular to its anisotropy axis can be truncated to an effective two-level system, with easily tunable energy splitting. The quantum coherence of the molecular spin is largely determined by the dynamics of the surrounding nuclear spin bath. Here we report the measurement of the nuclear spin-lattice relaxation rate 1/T1n in a single crystal of the single-molecule magnet Mn12-ac, at T ≈ 30 mK in perpendicular fields B⊥ up to 9 T. The relaxation channel at B ≈ 0 is dominated by incoherent quantum tunneling of the Mn12-ac spin S, aided by the nuclear bath itself. However for B⊥>5 T we observe an increase of 1/T1n by several orders of magnitude up to the highest field, despite the fact that the molecular spin is in its quantum mechanical ground state. This striking observation is a consequence of the zero-point quantum fluctuations of S, which allow it to mediate the transfer of energy from the excited nuclear spin bath to the crystal lattice at much higher rates. Our experiment highlights the importance of quantum fluctuations in the interaction between an "effective two-level system" and its surrounding spin bath.
Exactly solved mixed spin-(1,1/2) Ising-Heisenberg diamond chain with a single-ion anisotropy
NASA Astrophysics Data System (ADS)
Lisnyi, Bohdan; Strečka, Jozef
2015-03-01
The mixed spin-(1,1/2) Ising-Heisenberg diamond chain with a single-ion anisotropy is exactly solved through the generalized decoration-iteration transformation and the transfer-matrix method. The decoration-iteration transformation is first used for establishing a rigorous mapping equivalence with the corresponding spin-1 Blume-Emery-Griffiths chain, which is subsequently exactly treated within the transfer-matrix technique. Apart from three classical ground states the model exhibits three striking quantum ground states in which a singlet-dimer state of the interstitial Heisenberg spins is accompanied either with a frustrated state or a polarized state or a non-magnetic state of the nodal Ising spins. It is evidenced that two magnetization plateaus at zero and/or one-half of the saturation magnetization may appear in low-temperature magnetization curves. The specific heat may display remarkable temperature dependences with up to three and four distinct round maxima in a zero and non-zero magnetic field, respectively.
NASA Astrophysics Data System (ADS)
Mahanthesh, B.; Gireesha, B. J.; Athira, P. R.
Impact of induced magnetic field over a flat porous plate by utilizing incompressible water-copper nanoliquid is examined analytically. Flow is supposed to be laminar, steady and two-dimensional. The plate is subjected to a regular free stream velocity as well as suction velocity. Flow formulation is developed by considering Maxwell-Garnetts (MG) and Brinkman models of nanoliquid. Impacts of thermal radiation, viscous dissipation, temperature dependent heat source/sink and first order chemical reaction are also retained. The subjected non-linear problems are non-dimensionalized and analytic solutions are presented via series expansion method. The graphs are plotted to analyze the influence of pertinent parameters on flow, magnetism, heat and mass transfer fields as well as friction factor, current density, Nusselt and Sherwood numbers. It is found that friction factor at the plate is more for larger magnetic Prandtl number. Also the rate of heat transfer decayed with increasing nanoparticles volume fraction and the strength of magnetism.
An In-Rush Current Suppression Technique for the Solid-State Transfer Switch System
NASA Astrophysics Data System (ADS)
Cheng, Po-Tai; Chen, Yu-Hsing
More and more utility companies provide dual power feeders as a premier service of high power quality and reliability. To take advantage of this, the solid-state transfer switch (STS) is adopted to protect the sensitive load against the voltage sag. However, the fast transfer process may cause in-rush current on the load-side transformer due to the resulting DC-offset in its magnetic flux as the load-transfer is completed. The in-rush current can reach 2∼6 p.u. and it may trigger the over-current protections on the power feeder. This paper develops a flux estimation scheme and a thyristor gating scheme based on the impulse commutation bridge STS (ICBSTS) to minimize the DC-offset on the magnetic flux. By sensing the line voltages of both feeders, the flux estimator can predict the peak transient flux linkage at the moment of load-transfer and evaluate a suitable moment for the transfer to minimize the in-rush current. Laboratory test results are presented to validate the performance of the proposed system.
Transfluxor circuit amplifies sensing current for computer memories
NASA Technical Reports Server (NTRS)
Milligan, G. C.
1964-01-01
To transfer data from the magnetic memory core to an independent core, a reliable sensing amplifier has been developed. Later the data in the independent core is transferred to the arithmetical section of the computer.
Cryogenic system for COMET experiment at J-PARC
NASA Astrophysics Data System (ADS)
Ki, Taekyung; Yoshida, Makoto; Yang, Ye; Ogitsu, Toru; Iio, Masami; Makida, Yasuhiro; Okamura, Takahiro; Mihara, Satoshi; Nakamoto, Tatsushi; Sugano, Michinaka; Sasaki, Ken-ichi
2016-07-01
Superconducting conductors and cryogenic refrigeration are key factors in the accelerator science because they enable the production of magnets needed to control and detect the particles under study. In Japan, a system for COMET (Coherent Muon to Electron Transition), which will produce muon beam lines, is under the construction at J-PARC (Japan Proton Accelerator Research Complex). The system consists of three superconducting magnets; the first is a pion-capture solenoid, the second is a muon-transport solenoid, and the third is a detector solenoid. It is necessary to cool down the magnets efficiently using two-phase helium and maintain them securely at 4.5 K. For stable cryogenic refrigeration of the magnets, a suitable cooling method, structures, and the irradiation effect on materials should be investigated. In this paper, we focus on the development of an overall cryogenic system for cooling the capture and transport solenoids. A conduction-cooling method is considered for cooling the capture and transport solenoids because of the advantages such as the reduction of total heat load, fewer components, and simplified structure. To supply cryogenic fluids (4.5 K liquid helium and 58 K gas helium) and currents to the conduction-cooled magnets subjected to high irradiation, cryogenic components (cooling paths in the magnets, transfer tubes, and a current lead box) are developed. Based on the environment of high irradiation, the conditions (temperature and pressure) of helium in cooling paths are estimated, as well as the temperature of the capture magnet. We develop a dynamic model for quench simulation and estimate the maximum pressure in the cooling pipe when the capture magnet quenches. We conclude with a discussion of the next steps and estimated challenges for the cryogenic system.
Compensated second-order recoupling: application to third spin assisted recoupling†
Giffard, Mathilde; Hediger, Sabine; Lewandowski, Józef R.; Bardet, Michel; Simorre, Jean-Pierre; Griffin, Robert G.; De Paëpe, Gaël
2015-01-01
We consider the effect of phase shifts in the context of second-order recoupling techniques in solid-state NMR. Notably we highlight conditions leading to significant improvements for the Third Spin Assisted Recoupling (TSAR) mechanism and demonstrate the benefits of resulting techniques for detecting long-distance transfer in biomolecular systems. The modified pulse sequences of PAR and PAIN-CP, Phase-Shifted Proton Assisted Recoupling (AH-PS-PAR) and Phase-Shifted Proton-Assisted Insensitive Nuclei Cross Polarization (ABH-PS-PAIN-CP), still rely on cross terms between heteronuclear dipolar couplings involving assisting protons that mediate zero-quantum polarization transfer between low-γ nuclei (13C–13C, 15N–15N, 15N–13C polarization transfer). Using Average Hamiltonian Theory we show that phase inversion compensates off-resonance contributions and yields improved polarization transfer as well as substantial broadening of the matching conditions. PS-TSAR greatly improves on the standard TSAR based methods because it alleviates their sensitivity to precise RF settings which significantly enhances robustness of the experiments. We demonstrate these new methods on a 19.6 kDa protein (U–[15N, 13C]-YajG) at high magnetic fields (up to 900 MHz 1H frequency) and fast sample spinning (up to 65 kHz MAS frequency). PMID:22513727
Finite Element Modeling of Magnetically-Damped Convection during Solidification
NASA Technical Reports Server (NTRS)
deGroh, H. C.; Li, B. Q.; Lu, X.
1998-01-01
A fully 3-D, transient finite element model is developed to represent the magnetic damping effects on complex fluid flow, heat transfer and electromagnetic field distributions in a Sn- 35.5%Pb melt undergoing unidirectional solidification. The model is developed based on our in- house finite element code for the fluid flow, heat transfer and electromagnetic field calculations. The numerical model is tested against numerical and experimental results for water as reported in literature. Various numerical simulations are carried out for the melt convection and temperature distribution with and without the presence of a transverse magnetic field. Numerical results show that magnetic damping can be effectively applied to stabilize melt flow, reduce turbulence and flow levels in the melt and over a certain threshold value a higher magnetic field resulted in a greater reduction in velocity. Also, for the study of melt flow instability, a long enough running time is needed to ensure the final fluid flow recirculation pattern. Moreover, numerical results suggest that there seems to exist a threshold value of applied magnetic field, above which magnetic damping becomes possible and below which the 0 convection in the melt is actually enhanced.
Irradiation and Enhanced Magnetic Braking in Cataclysmic Variables
NASA Astrophysics Data System (ADS)
McCormick, P. J.; Frank, J.
1998-12-01
In previous work we have shown that irradiation driven mass transfer cycles can occur in cataclysmic variables at all orbital periods if an additional angular momentum loss mechanism is assumed. Earlier models simply postulated that the enhanced angular momentum loss was proportional to the mass transfer rate without any specific physical model. In this paper we present a simple modification of magnetic braking which seems to have the right properties to sustain irradiation driven cycles at all orbital periods. We assume that the wind mass loss from the irradiated companion consists of two parts: an intrinsic stellar wind term plus an enhancement that is proportional to the irradiation. The increase in mass flow reduces the specific angular momentum carried away by the flow but nevertheless yields an enhanced rate of magnetic braking. The secular evolution of the binary is then computed numerically with a suitably modified double polytropic code (McCormick & Frank 1998). With the above model and under certain conditions, mass transfer oscillations occur at all orbital periods.
Magnetization Transfer Ratio Relates to Cognitive Impairment in Normal Elderly
Seiler, Stephan; Pirpamer, Lukas; Hofer, Edith; Duering, Marco; Jouvent, Eric; Fazekas, Franz; Mangin, Jean-Francois; Chabriat, Hugues; Dichgans, Martin; Ropele, Stefan; Schmidt, Reinhold
2014-01-01
Magnetization transfer imaging (MTI) can detect microstructural brain tissue changes and may be helpful in determining age-related cerebral damage. We investigated the association between the magnetization transfer ratio (MTR) in gray and white matter (WM) and cognitive functioning in 355 participants of the Austrian stroke prevention family study (ASPS-Fam) aged 38–86 years. MTR maps were generated for the neocortex, deep gray matter structures, WM hyperintensities, and normal appearing WM (NAWM). Adjusted mixed models determined whole brain and lobar cortical MTR to be directly and significantly related to performance on tests of memory, executive function, and motor skills. There existed an almost linear dose-effect relationship. MTR of deep gray matter structures and NAWM correlated to executive functioning. All associations were independent of demographics, vascular risk factors, focal brain lesions, and cortex volume. Further research is needed to understand the basis of this association at the tissue level, and to determine the role of MTR in predicting cognitive decline and dementia. PMID:25309438
Metamaterial-enhanced coupling between magnetic dipoles for efficient wireless power transfer
NASA Astrophysics Data System (ADS)
Urzhumov, Yaroslav; Smith, David R.
2011-05-01
Nonradiative coupling between conductive coils is a candidate mechanism for wireless energy transfer applications. In this paper we propose a power relay system based on a near-field metamaterial superlens and present a thorough theoretical analysis of this system. We use time-harmonic circuit formalism to describe all interactions between two coils attached to external circuits and a slab of anisotropic medium with homogeneous permittivity and permeability. The fields of the coils are found in the point-dipole approximation using Sommerfeld integrals which are reduced to standard special functions in the long-wavelength limit. We show that, even with a realistic magnetic loss tangent of order 0.1, the power transfer efficiency with the slab can be an order of magnitude greater than free-space efficiency when the load resistance exceeds a certain threshold value. We also find that the volume occupied by the metamaterial between the coils can be greatly compressed by employing magnetic permeability with a large anisotropy ratio.
Evidence for Neutron Star Formation from Accretion Induced Collapse of a White Dwarf
NASA Technical Reports Server (NTRS)
Paradijis, J. Van; VanDenHeuvel, E. P. J.; Kouveliotou, C.; Fishman, G. J.; Finger, M. H.; Lewin, W. H. G.
1997-01-01
The orbital parameters of the recently discovered transient burster/pulsar GRO J1744-28 indicate that this system is a low-mass X-ray binary in an advanced stage of its mass transfer, with several tenths of a solar mass already transferred from the donor to the compact star. All neutron stars known to have accreted such an amount have very weak magnetic fields, and this has led to the idea that the magnetic fields of neutron stars decay as a result of accretion. The observation of a strongly magnetized neutron star in GRO J1744-28 then suggests that this neutron star was formed recently as a result of the collapse of a white dwarf during an earlier stage of the current phase of mass transfer. It is shown that this model can consistently explain the observed characteristics of GRO J1744-28. Attractive progenitors for such an evolution are the luminous supersoft X-ray sources detected with ROSAT.
Grussu, Francesco; Ianus, Andrada; Schneider, Torben; Prados, Ferran; Fairney, James; Ourselin, Sebastien; Alexander, Daniel C.; Cercignani, Mara; Gandini Wheeler‐Kingshott, Claudia A.M.; Samson, Rebecca S.
2017-01-01
Purpose To develop a framework to fully characterize quantitative magnetization transfer indices in the human cervical cord in vivo within a clinically feasible time. Methods A dedicated spinal cord imaging protocol for quantitative magnetization transfer was developed using a reduced field‐of‐view approach with echo planar imaging (EPI) readout. Sequence parameters were optimized based in the Cramer‐Rao‐lower bound. Quantitative model parameters (i.e., bound pool fraction, free and bound pool transverse relaxation times [ T2F, T2B], and forward exchange rate [k FB]) were estimated implementing a numerical model capable of dealing with the novelties of the sequence adopted. The framework was tested on five healthy subjects. Results Cramer‐Rao‐lower bound minimization produces optimal sampling schemes without requiring the establishment of a steady‐state MT effect. The proposed framework allows quantitative voxel‐wise estimation of model parameters at the resolution typically used for spinal cord imaging (i.e. 0.75 × 0.75 × 5 mm3), with a protocol duration of ∼35 min. Quantitative magnetization transfer parametric maps agree with literature values. Whole‐cord mean values are: bound pool fraction = 0.11(±0.01), T2F = 46.5(±1.6) ms, T2B = 11.0(±0.2) µs, and k FB = 1.95(±0.06) Hz. Protocol optimization has a beneficial effect on reproducibility, especially for T2B and k FB. Conclusion The framework developed enables robust characterization of spinal cord microstructure in vivo using qMT. Magn Reson Med 79:2576–2588, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:28921614
Stability phase diagram of a perpendicular magnetic tunnel junction in noncollinear geometry
NASA Astrophysics Data System (ADS)
Strelkov, N.; Timopheev, A.; Sousa, R. C.; Chshiev, M.; Buda-Prejbeanu, L. D.; Dieny, B.
2017-05-01
Experimental measurements performed on MgO-based perpendicular magnetic tunnel junctions show a strong dependence of the stability voltage-field diagrams as a function of the direction of the magnetic field with respect to the plane of the sample. When the magnetic field is applied in-plane, systematic nonlinear phase boundaries are observed for various lateral sizes. The simulation results based on the phenomenological Landau-Lifshitz-Gilbert equation including the in-plane and out-of-plane spin transfer torques are consistent with the measurements if a second-order anisotropy contribution is considered. Furthermore, performing the stability analysis in linear approximation allowed us to analytically extract the critical switching voltage at zero temperature in the presence of an in-plane field. This study indicates that in the noncollinear geometry investigations are suitable to detect the presence of the second-order term in the anisotropy. Such higher order anisotropy term can yield an easy-cone anisotropy which reduces the thermal stability factor but allows for more reproducible spin transfer torque switching due to a reduced stochasticity of the switching. As a result, the energy per write event decreases much faster than the thermal stability factor as the second-order anisotropy becomes more negative. Easy-cone anisotropy can be useful for fast-switching spin transfer torque magnetic random access memories provided the thermal stability can be maintained above the required value for a given memory specification.
Hyperpolarized xenon magnetic resonance of the lung and the brain
NASA Astrophysics Data System (ADS)
Venkatesh, Arvind Krishnamachari
2001-04-01
Hyperpolarized noble gas Magnetic Resonance Imaging (MRI) is a new diagnostic modality that has been used successfully for lung imaging. Xenon is soluble in blood and inhaled xenon is transported to the brain via circulating blood. Xenon also accumulates in the lipid rich white matter of the brain. Hyperpolarized xenon can hence be used as a tissue- sensitive probe of brain function. The goals of this study were to identify the NMR resonances of xenon in the rat brain and evaluate the role of hyperpolarized xenon for brain MRI. We have developed systems to produce sufficient volumes of hyperpolarized xenon for in vivo brain experiments. The specialized instrumentation developed include an apparatus for optical pump-cell manufacture and high purity gas manifolds for filling cells. A hyperpolarized gas delivery system was designed to ventilate small animals with hyperpolarized xenon for transport to the brain. The T1 of xenon dissolved in blood indicates that the lifetime of xenon in the blood is sufficient for significant magnetization to be transferred to distal tissues. A variety of carrier agents for intravenous delivery of hyperpolarized xenon were tested for transport to distal tissues. Using our new gas delivery system, high SNR 129Xe images of rat lungs were obtained. Spectroscopy with hyperpolarized xenon indicated that xenon was transported from the lungs to the blood and tissues with intact magnetization. After preliminary studies that indicated the feasibility for in vivo rat brain studies, experiments were performed with adult rats and young rats with different stages of white matter development. Both in vivo and in vitro experiments showed the prominence of one peak from xenon in the rat brain, which was assigned to brain lipids. Cerebral brain perfusion was calculated from the wash-out of the hyperpolarized xenon signal in the brain. An increase in brain perfusion during maturation was observed. These experiments showed that hyperpolarized xenon MRI can be used to develop unique approaches to studying white matter and gray matter in the brain. Some of the possible applications of hyperpolarized xenon MRI in the brain are clinical diagnosis of white matter diseases, functional MRI (fMRI) and measurement of cerebral blood perfusion.
NASA Astrophysics Data System (ADS)
Raju, C. S. K.; Sandeep, N.
2016-11-01
Nowadays, many theoretical models are available for analyzing the heat and mass transfer of flows through different geometries. Nevertheless, it is challenging for researchers to choose among these models, the most suitable for a particular geometry. In addition to this, the extrinsic magnetic field is capable to set the thermal and physical properties of magnetic fluids and regulate the flow and heat transfer characteristics. The strength of the applied magnetic field affects the thermal conductivity of the fluids and makes it anisotropic. With this incentive, we attempt to study the thermophoresis and Brownian motion effects on the magnetohydrodynamic radiative Casson fluid flow over a wedge filled with gyrotactic microorganisms by considering the Blasius and Falkner-Skan models. Numerical solutions are offered graphically as well as in tabular form with the aid of Runge-Kutta and Newton's methods. Results for Blasius and Falkner-Skan flow cases are exhibited through plots for the parameters of concern. For real life applications, we also calculated the heat and mass transfer rates. It is observed that thermal and concentration boundary layers are not uniform for Falkner-Skan and Blasius flow cases. It is also observed that the heat and mass transfer rate is high in Falkner-Skan flow when compared with Blasius flow.
Study of Magnetic Damping Effect on Convection and Solidification Under G-Jitter Conditions
NASA Technical Reports Server (NTRS)
Li, Ben Q.; deGroh, H. C., III
1999-01-01
As shown by NASA resources dedicated to measuring residual gravity (SAMS and OARE systems), g-jitter is a critical issue affecting space experiments on solidification processing of materials. This study aims to provide, through extensive numerical simulations and ground based experiments, an assessment of the use of magnetic fields in combination with microgravity to reduce the g-jitter induced convective flows in space processing systems. We have so far completed asymptotic analyses based on the analytical solutions for g-jitter driven flow and magnetic field damping effects for a simple one-dimensional parallel plate configuration, and developed both 2-D and 3-D numerical models for g-jitter driven flows in simple solidification systems with and without presence of an applied magnetic field. Numerical models have been checked with the analytical solutions and have been applied to simulate the convective flows and mass transfer using both synthetic g-jitter functions and the g-jitter data taken from space flight. Some useful findings have been obtained from the analyses and the modeling results. Some key points may be summarized as follows: (1) the amplitude of the oscillating velocity decreases at a rate inversely proportional to the g-jitter frequency and with an increase in the applied magnetic field; (2) the induced flow approximately oscillates at the same frequency as the affecting g-jitter, but out of a phase angle; (3) the phase angle is a complicated function of geometry, applied magnetic field, temperature gradient and frequency; (4) g-jitter driven flows exhibit a complex fluid flow pattern evolving in time; (5) the damping effect is more effective for low frequency flows; and (6) the applied magnetic field helps to reduce the variation of solutal distribution along the solid-liquid interface. Work in progress includes numerical simulations and ground-based measurements. Both 2-D and 3-D numerical simulations are being continued to obtain further information on g-jitter driven flows and magnetic field effects. A physical model for ground-based measurements is completed and some measurements of the oscillating convection are being taken on the physical model. The comparison of the measurements with numerical simulations is in progress. Additional work planned in the project will also involve extending the 2-D numerical model to include the solidification phenomena with the presence of both g-jitter and magnetic fields.
Magnetic Field Gradient Calibration as an Experiment to Illustrate Magnetic Resonance Imaging
ERIC Educational Resources Information Center
Seedhouse, Steven J.; Hoffmann, Markus M.
2008-01-01
A nuclear magnetic resonance (NMR) spectroscopy experiment for the undergraduate physical chemistry laboratory is described that encompasses both qualitative and quantitative pedagogical goals. Qualitatively, the experiment illustrates how images are obtained in magnetic resonance imaging (MRI). Quantitatively, students experience the…
Marts, Donna J.; Richardson, John G.; Albano, Richard K.; Morrison, Jr., John L.
1995-01-01
This invention discloses a D.C. magnetic latching solenoid that retains a moving armature in a first or second position by means of a pair of magnets, thereby having a zero-power requirement after actuation. The first or second position is selected by reversing the polarity of the D.C. voltage which is enough to overcome the holding power of either magnet and transfer the armature to an opposite position. The coil is then de-energized.
NASA Astrophysics Data System (ADS)
Katebi, Samira; Esmaeili, Abolghasem; Ghaedi, Kamran
2016-03-01
Spermatozoa could introduce exogenous oligonucleotides of interest to the oocyte. The most important reason of low efficiency of sperm mediated gene transfer (SMGT) is low uptake of exogenous DNA by spermatozoa. The aim of this study was to evaluate the effects of static magnetic field on exogenous oligonucleotide uptake of spermatozoa using magnetofection method. Magnetic nanoparticles (MNPs) associated with the labeled oligonucleotides were used to increase the efficiency of exogenous oligonucleotide uptake by rooster spermatozoa. We used high-field/high-gradient magnet (NdFeB) to enhance and accelerate exogenous DNA sedimentation at the spermatozoa surface. Flow cytometry analysis was performed to measure viability and percentage of exogenous oligonucleotide uptake by sperm. Flow cytometry analysis showed a significant increase in exogenous oligonucleotide uptake by rooster spermatozoa (P<0.001) when spermatozoa were incubated in exogenous oligonucleotide solution and MNPs. However, by applying static magnetic field during magnetofection method, a significant decrease in exogenous oligonucleotide uptake was observed (P<0.05). Findings of this study showed that MNPs were effective to increase exogenous oligonucleotide uptake by rooster spermatozoa; however unlike others studies, static magnetic field, was not only ineffective to enhance exogenous oligonucleotide uptake by rooster spermatozoa but also led to reduction in efficiency of magnetic nanoparticles in gene transfer.
NASA Astrophysics Data System (ADS)
Huang, Haihong; Han, Gang; Qian, Zhengchun; Liu, Zhifeng
2017-12-01
The metal magnetic memory signals were measured during dynamic tension tests on the surfaces of the cladding coatings by plasma transferred arc (PTA) welding and the 0.45% C steel. Results showed that the slope of the normal component Hp(y) of magnetic signal and the average value of the tangential component Hp(x) reflect the magnetization of the specimens. The signals increased sharply in the few initial cycles; and then fluctuated around a constant value during fatigue process until fracture. For the PTA cladding coating, the slope of Hp(y) was steeper and the average of Hp(x) was smaller, compared with the 0.45% C steel. The hysteresis curves of cladding layer, bonding layer and substrate were measured by vibrating sample magnetometer testing, and then saturation magnetization, initial susceptibility and coercivity were further calculated. The stress-magnetization curves were also plotted based on the J-A model, which showed that the PTA cladding coating has smaller remanence and coercivity compared with the 0.45% C steel. The microstructures of cladding coating confirmed that the dendritic structure and second-phase of alloy hinder the magnetic domain motion, which was the main factor influencing the variation of magnetic signal during the fatigue tests.
Chorny, Michael; Fishbein, Ilia; Tengood, Jillian E.; Adamo, Richard F.; Alferiev, Ivan S.; Levy, Robert J.
2013-01-01
Gene therapeutic strategies have shown promise in treating vascular disease. However, their translation into clinical use requires pharmaceutical carriers enabling effective, site-specific delivery as well as providing sustained transgene expression in blood vessels. While replication-deficient adenovirus (Ad) offers several important advantages as a vector for vascular gene therapy, its clinical applicability is limited by rapid inactivation, suboptimal transduction efficiency in vascular cells, and serious systemic adverse effects. We hypothesized that novel zinc oleate-based magnetic nanoparticles (MNPs) loaded with Ad would enable effective arterial cell transduction by shifting vector processing to an alternative pathway, protect Ad from inactivation by neutralizing factors, and allow site-specific gene transfer to arteries treated with stent angioplasty using a 2-source magnetic guidance strategy. Ad-loaded MNPs effectively transduced cultured endothelial and smooth muscle cells under magnetic conditions compared to controls and retained capacity for gene transfer after exposure to neutralizing antibodies and lithium iodide, a lytic agent causing disruption of free Ad. Localized arterial gene expression significantly stronger than in control animal groups was demonstrated after magnetically guided MNP delivery in a rat stenting model 2 and 9 d post-treatment, confirming feasibility of using Ad-loaded MNPs to achieve site-specific transduction in stented blood vessels. In conclusion, Ad-loaded MNPs formed by controlled precipitation of zinc oleate represent a novel delivery system, well-suited for efficient, magnetically targeted vascular gene transfer.—Chorny, M., Fishbein, I., Tengood, J. E., Adamo, R. F., Alferiev, I. S., Levy, R. J. Site-specific gene delivery to stented arteries using magnetically guided zinc oleate-based nanoparticles loaded with adenoviral vectors. PMID:23407712
Zhang, Rongchun; Ramamoorthy, Ayyalusamy
2015-07-21
Remarkable developments in ultrafast magic angle spinning (MAS) solid-state NMR spectroscopy enabled proton-based high-resolution multidimensional experiments on solids. To fully utilize the benefits rendered by proton-based ultrafast MAS experiments, assignment of (1)H resonances becomes absolutely necessary. Herein, we propose an approach to identify different proton peaks by using dipolar-coupled heteronuclei such as (13)C or (15)N. In this method, after the initial preparation of proton magnetization and cross-polarization to (13)C nuclei, transverse magnetization of desired (13)C nuclei is selectively prepared by using DANTE (Delays Alternating with Nutations for Tailored Excitation) sequence and then, it is transferred to bonded protons with a short-contact-time cross polarization. Our experimental results demonstrate that protons bonded to specific (13)C atoms can be identified and overlapping proton peaks can also be assigned. In contrast to the regular 2D HETCOR experiment, only a few 1D experiments are required for the complete assignment of peaks in the proton spectrum. Furthermore, the finite-pulse radio frequency driven recoupling sequence could be incorporated right after the selection of specific proton signals to monitor the intensity buildup for other proton signals. This enables the extraction of (1)H-(1)H distances between different pairs of protons. Therefore, we believe that the proposed method will greatly aid in fast assignment of peaks in proton spectra and will be useful in the development of proton-based multi-dimensional solid-state NMR experiments to study atomic-level resolution structure and dynamics of solids.
NASA Astrophysics Data System (ADS)
Al-Rashed, Abdullah A. A. A.; Kolsi, Lioua; Oztop, Hakan F.; Aydi, Abdelkarim; Malekshah, Emad Hasani; Abu-Hamdeh, Nidal; Borjini, Mohamed Naceur
2018-05-01
A computational study has been performed to investigate the effects of partially active magnetic field on natural convection heat transfer in CNT-nanofluid filled and three-dimensional differentially heated closed space. Two cases are considered to see this effect as magnetic field is applied to upper half (Case I) and lower half (Case II) while remaining walls are insulated. The finite volume method is used to solve governing equations and results are obtained for different governing parameters as Hartmann number (0 ≤ Ha ≤ 100), nanoparticle volume fraction (0 ≤ φ ≤ 0.05) and height of the active zone (0 ≤ LB ≤ 1). It is found that location of magnetic field plays an important role even at the same Hartmann number. Thus, it can be a good parameter to control heat and fluid flow inside the closed space.
Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel.
Gul, Aaiza; Khan, Ilyas; Shafie, Sharidan; Khalid, Asma; Khan, Arshad
2015-01-01
This study investigated heat transfer in magnetohydrodynamic (MHD) mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe3O4) was selected as a conventional base fluid. In addition, non-magnetic (Al2O3) aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work.
Heat Transfer in MHD Mixed Convection Flow of a Ferrofluid along a Vertical Channel
Gul, Aaiza; Khan, Ilyas; Shafie, Sharidan; Khalid, Asma; Khan, Arshad
2015-01-01
This study investigated heat transfer in magnetohydrodynamic (MHD) mixed convection flow of ferrofluid along a vertical channel. The channel with non-uniform wall temperatures was taken in a vertical direction with transverse magnetic field. Water with nanoparticles of magnetite (Fe 3 O 4) was selected as a conventional base fluid. In addition, non-magnetic (Al 2 O 3) aluminium oxide nanoparticles were also used. Comparison between magnetic and magnetite nanoparticles were also conducted. Fluid motion was originated due to buoyancy force together with applied pressure gradient. The problem was modelled in terms of partial differential equations with physical boundary conditions. Analytical solutions were obtained for velocity and temperature. Graphical results were plotted and discussed. It was found that temperature and velocity of ferrofluids depend strongly on viscosity and thermal conductivity together with magnetic field. The results of the present study when compared concurred with published work. PMID:26550837
The Substructure of a Flux Transfer Event Observed by the MMS Spacecraft
NASA Technical Reports Server (NTRS)
Hwang, K.-J.; Sibeck, D. G.; Giles, B. L.; Pollock, C. J.; Gershman, D.; Avanov, L.; Paterson, W. R.; Dorelli, J. C.; Ergun, R. E.; Russel, C. T.;
2016-01-01
On 15 August 2015, MMS (Magnetospheric Multiscale mission), skimming the dusk magnetopause, detected an isolated region of an increased magnetic strength and bipolar Bn, indicating a flux transfer event (FTE). The four spacecraft in a tetrahedron allowed for investigations of the shape and motion of the FTE. In particular, high-resolution particle data facilitated our exploration of FTE substructures and their magnetic connectivity inside and surrounding the FTE. Combined field and plasma observations suggest that the core fields are open, magnetically connected to the northern magnetosphere from which high-energy particles leak; ion "D" distributions characterize the axis of flux ropes that carry old-opened field lines; counter streaming electrons superposed by parallel-heated components populate the periphery surrounding the FTE; and the interface between the core and draped regions contains a separatrix of newlyopened magnetic field lines that emanate from the X line above the FTE.
2010-05-11
convective heat transfer , researchers have been drawn to the high heat flux potentials of microfluidic devices. Microchannel flows, with hydraulic...novel heat transfer enhancement technique proven on the conventional scale to the mini and microchannel scales. 1.3 Background: Conventional...S.G., 2004, “Single-Phase Heat Transfer Enhancement Techniques in Microchannel and Minichannel Flows,” International Conference on Microchannels
RIE-based Pattern Transfer Using Nanoparticle Arrays as Etch Masks
NASA Astrophysics Data System (ADS)
Hogg, Chip; Majetich, Sara A.; Bain, James A.
2009-03-01
Nanomasking is used to transfer the pattern of a self-assembled array of nanoparticles into an underlying thin film, for potential use as bit-patterned media. We have used this process to investigate the limits of pattern transfer, as a function of gap size in the pattern. Reactive Ion Etching (RIE) is our chosen process, since the gaseous reaction products and high chemical selectivity are ideal features for etching very small gaps. Interstitial surfactant is removed with an O2 plasma, allowing the etchants to penetrate between the particles. Their pattern is transferred into an intermediate SiO2 mask using a CH4-based RIE. This patterned SiO2 layer is finally used as a mask for the MeOH-based RIE which patterns the magnetic film. We present cross-sectional TEM characterization of the etch profiles, as well as magnetic characterization of the film before and after patterning.
Landon, Céline; Berthault, Patrick; Vovelle, Françoise; Desvaux, Hervé
2001-01-01
Nonspecific lipid transfer protein from wheat is studied by liquid-state NMR in the presence of xenon. The gas–protein interaction is indicated by the dependence of the protein proton chemical shifts on the xenon pressure and formally confirmed by the first observation of magnetization transfer from laser-polarized xenon to the protein protons. Twenty-six heteronuclear nOes have allowed the characterization of four interaction sites inside the wheat ns-LTP cavity. Their locations are in agreement with the variations of the chemical shifts under xenon pressure and with solvation simulations. The richness of the information obtained by the noble gas with a nuclear polarization multiplied by ∼12,000 makes this approach based on dipolar cross-relaxation with laser-polarized xenon promising for probing protein hydrophobic pockets at ambient pressure. PMID:11274467
A wireless energy transfer platform, integrated at the bedside.
De Clercq, Hans; Puers, Robert
2013-01-01
This paper presents the design of a wireless energy transfer platform, integrated at the bedside. The system contains a matrix of identical inductive power transmitters, which are optimised to provide power to a wearable sensor network, with the purpose of wirelessly recording vital signals over an extended period of time. The magnetic link, operates at a transfer frequency of 6.78MHz and is able to transfer a power of 3.3mW to the remote side at an inter-coil distance of 100mm. The total efficiency of the power link is 26%. Moreover, the platform is able to dynamically determine the position of freely moving sensor nodes and selectively induce a magnetic field in the area where the sensor nodes are positioned. As a result, the patient will not be subjected to unnecessary radiation and the specific absorption rate standards are met more easily.
Extended phase graph formalism for systems with magnetization transfer and exchange
Teixeira, Rui Pedro A.G.; Hajnal, Joseph V.
2017-01-01
Purpose An extended phase graph framework (EPG‐X) for modeling systems with exchange or magnetization transfer (MT) is proposed. Theory EPG‐X models coupled two‐compartment systems by describing each compartment with separate phase graphs that exchange during evolution periods. There are two variants: EPG‐X(BM) for systems governed by the Bloch‐McConnell equations, and EPG‐X(MT) for the pulsed MT formalism. For the MT case, the “bound” protons have no transverse components, so their phase graph consists of only longitudinal states. Methods The EPG‐X model was validated against steady‐state solutions and isochromat‐based simulation of gradient‐echo sequences. Three additional test cases were investigated: (i) MT effects in multislice turbo spin‐echo; (ii) variable flip angle gradient‐echo imaging of the type used for MR fingerprinting; and (iii) water exchange in multi‐echo spin‐echo T2 relaxometry. Results EPG‐X was validated successfully against isochromat based transient simulations and known steady‐state solutions. EPG‐X(MT) simulations matched in‐vivo measurements of signal attenuation in white matter in multislice turbo spin‐echo images. Magnetic resonance fingerprinting–style experiments with a bovine serum albumin (MT) phantom showed that the data were not consistent with a single‐pool model, but EPG‐X(MT) could be used to fit the data well. The EPG‐X(BM) simulations of multi‐echo spin‐echo T2 relaxometry suggest that exchange could lead to an underestimation of the myelin‐water fraction. Conclusions The EPG‐X framework can be used for modeling both steady‐state and transient signal response of systems exhibiting exchange or MT. This may be particularly beneficial for relaxometry approaches that rely on characterizing transient rather than steady‐state sequences. Magn Reson Med 80:767–779, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:29243295
Proton assisted recoupling and protein structure determination
NASA Astrophysics Data System (ADS)
de Paëpe, Gaël; Lewandowski, Józef R.; Loquet, Antoine; Böckmann, Anja; Griffin, Robert G.
2008-12-01
We introduce a homonuclear version of third spin assisted recoupling, a second-order mechanism that can be used for polarization transfer between 13C or 15N spins in magic angle spinning (MAS) NMR experiments, particularly at high spinning frequencies employed in contemporary high field MAS experiments. The resulting sequence, which we refer to as proton assisted recoupling (PAR), relies on a cross-term between 1H-13C (or 1H-15N) couplings to mediate zero quantum 13C-13C (or 15N-15N recoupling). In particular, using average Hamiltonian theory we derive an effective Hamiltonian for PAR and show that the transfer is mediated by trilinear terms of the form C1+/-C2-/+HZ for 13C-13C recoupling experiments (or N1+/-N2-/+HZ for 15N-15N). We use analytical and numerical simulations to explain the structure of the PAR optimization maps and to delineate the PAR matching conditions. We also detail the PAR polarization transfer dependence with respect to the local molecular geometry and explain the observed reduction in dipolar truncation. Finally, we demonstrate the utility of PAR in structural studies of proteins with 13C-13C spectra of uniformly 13C, 15N labeled microcrystalline Crh, a 85 amino acid model protein that forms a domain swapped dimer (MW=2×10.4 kDa). The spectra, which were acquired at high MAS frequencies (ωr2π>20 kHz) and magnetic fields (750-900 MHz 1H frequencies) using moderate rf fields, exhibit numerous cross peaks corresponding to long (up to 6-7 A˚) 13C-13C distances which are particularly useful in protein structure determination. Using results from PAR spectra we calculate the structure of the Crh protein.
EnerCage: A Smart Experimental Arena With Scalable Architecture for Behavioral Experiments
Uei-Ming Jow; Peter McMenamin; Mehdi Kiani; Manns, Joseph R.; Ghovanloo, Maysam
2014-01-01
Wireless power, when coupled with miniaturized implantable electronics, has the potential to provide a solution to several challenges facing neuroscientists during basic and preclinical studies with freely behaving animals. The EnerCage system is one such solution as it allows for uninterrupted electrophysiology experiments over extended periods of time and vast experimental arenas, while eliminating the need for bulky battery payloads or tethering. It has a scalable array of overlapping planar spiral coils (PSCs) and three-axis magnetic sensors for focused wireless power transmission to devices on freely moving subjects. In this paper, we present the first fully functional EnerCage system, in which the number of PSC drivers and magnetic sensors was reduced to one-third of the number used in our previous design via multicoil coupling. The power transfer efficiency (PTE) has been improved to 5.6% at a 120 mm coupling distance and a 48.5 mm lateral misalignment (worst case) between the transmitter (Tx) array and receiver (Rx) coils. The new EnerCage system is equipped with an Ethernet backbone, further supporting its modular/scalable architecture, which, in turn, allows experimental arenas with arbitrary shapes and dimensions. A set of experiments on a freely behaving rat were conducted by continuously delivering 20 mW to the electronics in the animal headstage for more than one hour in a powered 3538 cm2 experimental area. PMID:23955695
EnerCage: a smart experimental arena with scalable architecture for behavioral experiments.
Uei-Ming Jow; McMenamin, Peter; Kiani, Mehdi; Manns, Joseph R; Ghovanloo, Maysam
2014-01-01
Wireless power, when coupled with miniaturized implantable electronics, has the potential to provide a solution to several challenges facing neuroscientists during basic and preclinical studies with freely behaving animals. The EnerCage system is one such solution as it allows for uninterrupted electrophysiology experiments over extended periods of time and vast experimental arenas, while eliminating the need for bulky battery payloads or tethering. It has a scalable array of overlapping planar spiral coils (PSCs) and three-axis magnetic sensors for focused wireless power transmission to devices on freely moving subjects. In this paper, we present the first fully functional EnerCage system, in which the number of PSC drivers and magnetic sensors was reduced to one-third of the number used in our previous design via multicoil coupling. The power transfer efficiency (PTE) has been improved to 5.6% at a 120 mm coupling distance and a 48.5 mm lateral misalignment (worst case) between the transmitter (Tx) array and receiver (Rx) coils. The new EnerCage system is equipped with an Ethernet backbone, further supporting its modular/scalable architecture, which, in turn, allows experimental arenas with arbitrary shapes and dimensions. A set of experiments on a freely behaving rat were conducted by continuously delivering 20 mW to the electronics in the animal headstage for more than one hour in a powered 3538 cm(2) experimental area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, H. B., E-mail: houbinghuang@gmail.com; Department of Physics, University of Science and Technology Beijing, Beijing 100083; Hu, J. M.
2014-09-22
Effect of substrate misfit strain on current-induced in-plane magnetization reversal in CoFeB-MgO based magnetic tunnel junctions is investigated by combining micromagnetic simulations with phase-field microelasticity theory. It is found that the critical current density for in-plane magnetization reversal decreases dramatically with an increasing substrate strain, since the effective elastic field can drag the magnetization to one of the four in-plane diagonal directions. A potential strain-assisted multilevel bit spin transfer magnetization switching device using substrate misfit strain is also proposed.
Magnetic refrigeration apparatus with heat pipes
Barclay, John A.; Prenger, Jr., F. Coyne
1987-01-01
A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe of pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.
Magnetic refrigeration apparatus with heat pipes
Barclay, J.A.; Prenger, F.C. Jr.
1985-10-25
A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe or pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.
Study of wave form compensation at CSNS/RCS magnets
NASA Astrophysics Data System (ADS)
Xu, S. Y.; Fu, S. N.; Wang, S.; Kang, W.; Qi, X.; Li, L.; Deng, C. D.; Zhou, J. X.
2018-07-01
A method of wave form compensation for magnets of the Rapid Cycling Synchrotron (RCS), which is based on transfer function between magnetic field and exciting current, was investigated on the magnets of RCS of Chinese Spallation Neutron Source (CSNS). By performing wave form compensation, the magnetic field ramping function for RCS magnets can be accurately controlled to the given wave form, which is not limited to sine function. The method of wave form compensation introduced in this paper can be used to reduce the magnetic field tracking errors, and can also be used to accurately control the betatron tune for RCS.
TOPPE: A framework for rapid prototyping of MR pulse sequences.
Nielsen, Jon-Fredrik; Noll, Douglas C
2018-06-01
To introduce a framework for rapid prototyping of MR pulse sequences. We propose a simple file format, called "TOPPE", for specifying all details of an MR imaging experiment, such as gradient and radiofrequency waveforms and the complete scan loop. In addition, we provide a TOPPE file "interpreter" for GE scanners, which is a binary executable that loads TOPPE files and executes the sequence on the scanner. We also provide MATLAB scripts for reading and writing TOPPE files and previewing the sequence prior to hardware execution. With this setup, the task of the pulse sequence programmer is reduced to creating TOPPE files, eliminating the need for hardware-specific programming. No sequence-specific compilation is necessary; the interpreter only needs to be compiled once (for every scanner software upgrade). We demonstrate TOPPE in three different applications: k-space mapping, non-Cartesian PRESTO whole-brain dynamic imaging, and myelin mapping in the brain using inhomogeneous magnetization transfer. We successfully implemented and executed the three example sequences. By simply changing the various TOPPE sequence files, a single binary executable (interpreter) was used to execute several different sequences. The TOPPE file format is a complete specification of an MR imaging experiment, based on arbitrary sequences of a (typically small) number of unique modules. Along with the GE interpreter, TOPPE comprises a modular and flexible platform for rapid prototyping of new pulse sequences. Magn Reson Med 79:3128-3134, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Teng, L.C.
1960-01-19
ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Kyungmi; Lee, Kyung-Jin, E-mail: kj-lee@korea.ac.kr; Department of Materials Science and Engineering, Korea University, Seoul 136-713
2015-08-07
We numerically investigate the effect of magnetic and electrical damages at the edge of a perpendicular magnetic random access memory (MRAM) cell on the spin-transfer-torque (STT) efficiency that is defined by the ratio of thermal stability factor to switching current. We find that the switching mode of an edge-damaged cell is different from that of an undamaged cell, which results in a sizable reduction in the switching current. Together with a marginal reduction of the thermal stability factor of an edge-damaged cell, this feature makes the STT efficiency large. Our results suggest that a precise edge control is viable formore » the optimization of STT-MRAM.« less