Variations in the magnetopause current layer
NASA Astrophysics Data System (ADS)
Laakso, H. E.; Middleton, H. R.
2017-12-01
We use multi-point observations from the Cluster spacecraft to investigate the variations in the magnetopause current layer. With help of the curlometer technique one can determine the magnetopause current and its variability. Most of the time the magnetopause location is moving back and forth, so during any given pass the current layer is crossed several times. We use such crossings to investigate the characteristics of the current layer as the solar wind pressure varies (and the magnetopause moves accordingly). In addition we take an advantage of the ambient electron measurements from the EDI experiment which have been calibrated against the PEACE electron spectrometer data. These data can be used to detect fast variations of 1 keV electrons at resolution of 1-100 ms. Overall, Cluster observations are highly complimentary to the MMS observations due to the polar orbit of the Cluster spacecraft which provide fast vertical profiles of the magnetopause current layer.
NASA Technical Reports Server (NTRS)
Eastman, Timothy E.
1995-01-01
Evidence for the probable existence of magnetospheric boundary layers was first presented by Hones, et al. (1972), based on VELA satellite plasma observations (no magnetic field measurements were obtained). This magnetotail boundary layer is now known to be the tailward extension of the high-latitude boundary layer or plasma mantle (first uniquely identified using HEOS 2 plasma and field observations by Rosenbauer et al., 1975) and the low-latitude boundary layer (first uniquely identified using IMP 6 plasma and field observations by Eastman et al., 1976). The magnetospheric boundary layer is the region of magnetosheath-like plasma located Earthward of, but generally contiguous with the magnetopause. This boundary layer is typically identified by comparing low-energy (less than 10 keV) ion spectra across the magnetopause. Low-energy electron measurements are also useful for identifying the boundary layer because the shocked solar wind or magnetosheath has a characteristic spectral signature for electrons as well. However, there are magnetopause crossings where low-energy electrons might suggest a depletion layer outside the magnetopause even though the traditional field-rotation signature indicates that this same region is a boundary layer Earthward of the current layer. Our analyses avoided crossings which exhibit such ambiguities. Pristine magnetopause crossings are magnetopause crossings for which the current layer is well defined and for which there is no adjoining magnetospheric boundary layer as defined above. Although most magnetopause models to date apply to such crossings, few comparisons between such theory and observations of pristine magnetopause crossings have been made because most crossings have an associated magnetospheric boundary layer which significantly affects the applicable boundary conditions for the magnetopause current layer. Furthermore, almost no observational studies of magnetopause microstructure have been done even though key theoretical issues have been discussed for over two decades. This is because plasma instruments deployed prior to the ISEE and AMPTE missions did not have the required time resolution and most ISEE investigations to-date have focused on tests of MHD plasma models, especially reconnection. More recently, many phenomenological and theoretical models have been developed to explain the existence and characteristics of the magnetospheric boundary layers with only limited success to date. The cases with no boundary layer treated in this study provide a contrary set of conditions to those observed with a boundary layer. For the measured parameters of such cases, a successful boundary layer model should predict no plasma penetration across the magnetopause. Thus, this research project provides the first direct observational tests of magnetopause models using pristine magnetopause crossings and provides important new results on magnetopause microstructure and associated kinetic processes.
NASA Astrophysics Data System (ADS)
Teh, W.-L.; Hau, L.-N.
2007-08-01
There have been a number of reports on the existence of pearl-like magnetic island structures at the magnetopause current layer based on the analyses of single spacecraft data and two-dimensional reconstruction method of solving the Grad-Shafranov equation as a spatial initial value problem. This paper presents an unusual event of multiple magnetopause crossings encountered by AMPTE/IRM satellite at the duskside equatorial plane on 8 August, 1985. In a total of 11 magnetopause crossings spanning for nearly 2 hours, crossing 3, 4, and 9 display similar features of a string of magnetic islands imbedded within the overall tangential discontinuity-like current layers. In these crossings, the deHoffmann-Teller velocities form approximately 90° from the magnetopause normal that the in-and-out magnetopause motion becomes subsiding for the satellite to pick up the pearl-like plasmoids with island width of about 6-12 ion inertial length. In particular, crossing 3 and 9 are 1 hour apart but have almost the same magnetopause normal and deHoffmann-Teller velocity as well as similar invariant axis. A region of cold plasma adjacent to the magnetopause within the magnetosphere, the low-latitude boundary layer, is seen in all three crossings.
Magnetopause reconnection under various space weather conditions
NASA Astrophysics Data System (ADS)
Chen, L.; Argall, M. R.; Shuster, J. R.; Li, G.; Karimabadi, H.; Daughton, W. S.; Germaschewski, K.; Torbert, R. B.; Bhattacharjee, A.
2013-12-01
In order to develop predictive capabilities for the Sun-Earth connection, the question of how various reconnection upstream conditions influence particle energization and the stability of the reconnection current layer needs to be answered. Using magnetopause reconnection events observed by the Cluster spacecraft, we address this question by comparing the observed plasma and field features in the vicinity of the magnetopause current layer for a wide range of geomagnetic conditions including nominal times and the most severe magnetic storms. Outstanding features include: 1. Plasmoid-like structures, when observed, tend to appear in series and more frequently on the magnetosheath side of the magnetopause current layer. These plasmoids contain accelerated electrons and ions up to ~100 keV, and can prevail in guide fields ranging from nearly zero to a strength approximately equal to the reconnecting field. Associated with each of these plasmoids are a bipolar DC component and intense fluctuations in the electric fields. 2. The fastest ion outflow jets occur in the magnetospheric side of the magnetopause. 3. The plasma density transition is in general removed from the magnetopause current layer to the magnetospheric side, in contrast to the predictions of a PIC simulation and THEMIS observations [1]. Feature 1 suggests that the current layer is unstable to plasmoid formation, and that the plasmoids are effective energization sites for plasmas. The above features are not sensitive functions of the degrees of upstream asymmetries. The observation results will be compared with PIC, global hybrid as well as global Hall MHD simulations to achieve fundamental understanding of asymmetric reconnection, separating two-fluid, ion kinetic and electron kinetic effects. [1] Mozer and Pritchett, JGR, 2008
Anomalous plasma diffusion and the magnetopause boundary layer
NASA Technical Reports Server (NTRS)
Treumann, Rudolf A.; Labelle, James; Haerendel, Gerhard; Pottelette, Raymond
1992-01-01
An overview of the current state of anomalous diffusion research at the magnetopause and its role in the formation of the magnetopause boundary layer is presented. Plasma wave measurements in the boundary layer indicate that most of the relevant unstable wave modes contribute negligibly to the diffusion process at the magnetopause under magnetically undisturbed northward IMF conditions. The most promising instability is the lower hybrid drift instability, which may yield diffusion coefficients of the right order if the highest measured wave intensities are assumed. It is concluded that global stationary diffusion due to wave-particle interactions does not take place at the magnetopause. Microscopic wave-particle interaction and anomalous diffusion may contribute to locally break the MD frozen-in conditions and help in transporting large amounts of magnetosheath plasma across the magnetospheric boundary.
Magnetic Reconnection and Modification of the Hall Physics Due to Cold Ions at the Magnetopause
NASA Technical Reports Server (NTRS)
Andre, M.; Li, W.; Toldeo-Redondo, S.; Khotyaintsev, Yu. V.; Vaivads, A.; Graham, D. B.; Norgren, C.; Burch, J.; Lindqvist, P.-A.; Marklund, G.;
2016-01-01
Observations by the four Magnetospheric Multiscale spacecraft are used to investigate the Hall physics of a magnetopause magnetic reconnection separatrix layer. Inside this layer of currents and strong normal electric fields, cold (eV) ions of ionospheric origin can remain frozen-in together with the electrons. The cold ions reduce the Hall current. Using a generalized Ohms law, the electric field is balanced by the sum of the terms corresponding to the Hall current, the v x B drifting cold ions, and the divergence of the electron pressure tensor. A mixture of hot and cold ions is common at the subsolar magnetopause. A mixture of length scales caused by a mixture of ion temperatures has significant effects on the Hall physics of magnetic reconnection.
Particle signatures of magnetic topology at the magnetopause: AMPTE/CCE observations
NASA Technical Reports Server (NTRS)
Fuselier, S. A.; Anderson, B. J.; Onsager, T. G.
1995-01-01
Electron distributions at energies above 50 eV have been found to be a sensitive indicator of magnetic topology for magnetopause crossings of the AMPTE/CCE spacecraft. Progressing from the magnetosheath to the magnetosphere two abrupt transitions occur. First, the magnetosheath electron population directed either parallel or antiparallel to the magnetic field is replaced by a streaming, heated magnetosheath electron population. The other half of the distribution is unchanged. The region with unidirectional, heated magnetosheath electrons is identified as the magnetosheath boundary layer (MSBL). Second, the unheated magnetosheath electron population is replaced by a heated population nearly identical to the population encountered in the MSBL, resulting in a symmetric counterstreaming distribution. The region populated by the bidirectional heated magnetosheath electrons is identified as the low-latitude boundary layer (LLBL). The MSBL and LLBL identified by the electron transitions are the same as the regions identified using ion composition measurements. The magnetosheath-MSBL transition reflects a change in magnetic topology from a solar wind field line to one that threads the magnetopause, and the existence of a magnetosheath-MSBL transition implies that the magnetopause is open. When the current layer is easily identified, the MSBL-LLBL transition coincides with the magnetopause current layer, indicating that the magnetosheath electrons are heated in the current layer. Both magnetosheath-MSBL and MSBL-LLBL transitions are observed for low as well as high magnetic shears. Moreover, the transitions are particularly clear for low shear implying that magnetic topology boundaries are sharp even when abrupt changes in the field and other plasma parameters are absent. Furthermore, for low magnetic shear, solar wind ions with low parallel drift speeds make up the majority of the LLBL population indicating that the magnetosheath plasma has convected directly across the magnetosheath plasma has converted directly across the magnetopause. These observations are consistent with quasi-steady, high-latitude reconnection and indicate that the signatures of this reconnection geometry are commonly present in the subpolar region.
Reconnection at the earth's magnetopause - Magnetic field observations and flux transfer events
NASA Technical Reports Server (NTRS)
Russell, C. T.
1984-01-01
Theoretical models of plasma acceleration by magnetic-field-line reconnection at the earth magnetopause and the high-resolution three-dimensional plasma measurements obtained with the ISEE satellites are compared and illustrated with diagrams, graphs, drawings, and histograms. The history of reconnection theory and the results of early satellite observations are summarized; the thickness of the magnetopause current layer is discussed; problems in analyzing the polarization of current-layer rotation are considered; and the flux-transfer events responsible for periods of patchy reconnection are characterized in detail. The need for further observations and refinements of the theory to explain the initiation of reconnection and identify the mechanism determining whether it is patchy or steady-state is indicated.
Saturn's magnetosheath transition layer
NASA Astrophysics Data System (ADS)
Masters, A.; Hasegawa, H.; Phan, T. D.; Badman, S. V.; Fujimoto, M.; Coates, A. J.; Dougherty, M. K.
2012-09-01
The interaction between the solar wind and a magnetised planet produces a cavity around the planet known as a magnetosphere. Although this cavity effectively shields near-planet space from the solar wind, the occurrence of magnetic reconnection at the manetopause boundary of the magnetosphere allows solar wind energy to enter the system. In the case of Earth's magnetosphere a region of reduced plasma pressure and enhanced magnetic pressure can form in the solar wind immediately adjacent to the magnetopause (which also can form around other planetary magnetospheres). This layer is often referred to as the Magnetosheath Transition Layer (MTL), and Earth's MTL responds strongly to magnetopause reconnection. The nature of magnetopause reconnection at Saturn is unclear. We study Saturn's MTL using data taken by the Cassini spacecraft. We examine the reponse of the layer to local magnetised plasma conditions, compare this response to that of Earth's MTL, and assess whether our results are in agreement with current, limited understanding of magnetopause reconnection at Saturn.
Coupling of magnetopause-boundary layer to the polar ionosphere
NASA Technical Reports Server (NTRS)
Wei, C. Q.; Lee, L. C.
1993-01-01
The plasma dynamics in the low-latitude boundary layer and its coupling to the polar ionosphere under boundary conditions at the magnetopause are investigated. In the presence of a driven plasma flow along the magnetopause, the Kelvin-Helmholtz instability can develop, leading to the formation and growth of plasma vortices in the boundary layer. The finite ionospheric conductivity leads to the decay of these vortices. The competing effect of the formation and decay of vortices leads to the formation of strong vortices only in a limited region. Several enhanced field-aligned power density regions associated with the boundary layer vortices and the upward field-aligned current (FAC) filaments can be found along the postnoon auroral oval. These enhanced field-aligned power density regions may account for the observed auroral bright spots.
NASA Technical Reports Server (NTRS)
Lee, L. C.; Wei, C. Q.
1993-01-01
The transport of mass, momentum, energy and waves from the solar wind to the Earth's magnetosphere takes place in the magnetopause-boundary layer region. Various plasma processes that may occur in this region have been proposed and studied. In this paper, we present a brief review of the plasma processes in the dayside magnetopause-boundary layer. These processes include (1) flux transfer events at the dayside magnetopause, (2) formation of plasma vortices in the low-latitude boundary layer by the Kelvin-Helmholtz instability and coupling to the polar ionosphere, (3) the response of the magnetopause to the solar wind dynamic pressure pulses, and (4) the impulsive penetration of solar wind plasma filaments through the dayside magnetopause into the magnetospheric boundary layer. Through the coupling of the magnetopause-boundary layer to the polar ionosphere, those above processes may lead to occurrence of magnetic impulse events observed in the high-latitude stations.
NASA Astrophysics Data System (ADS)
Lin, Y.; Perez, J. D.
A 2-D global hybrid simulation is carried out to study the structure of the dayside mag- netopause in the noon-midnight meridian plane associated with magnetic reconnec- tion. In the simulation the bow shock, magnetosheath, and magnetopause are formed self-consistently by supersonic solar wind passing the geomagnetic field. The recon- nection events at high- and low-latitudes are simulated for various IMF conditions. The following results will be presented. (1) Large-amplitude rotational discontinuities and Alfvén waves are present in the quasi-steady reconnection layer. (2) The rotational discontinuity possesses an electron sense, or right-hand polarization in the magnetic field as the discontinuity forms from the X line. Later, however, the rotational dis- continuity tends to evolve to a structure with a smallest field rotational angle and thus may reverse its sense of the field rotation. The Walén relation is tested for elec- tron and ion flows in the magnetopause rotational discontinuities with left-hand and right-hand polarizations. (3) The structure of the magnetopause discontinuities and that of the accelerated/decelerated flows are modified significantly by the presence of the local magnetosheath flow. (4) Field-aligned currents are generated in the magne- topause rotational discontinuities. Part of the magnetopause currents propagate with Alfvén waves along the field lines into the polar ionosphere, contributing to the field- aligned current system in the high latitudes. The generation of the parallel currents under northward and southward IMF conditions is investigated. (5) Finally, typical ion velocity distributions will be shown at various locations across the magnetopause northward and southward of the X lines. The ion distributions associated with single or multiple X lines will be discussed.
NASA Technical Reports Server (NTRS)
Sonnerup, B. U. O; Guo, M.
1996-01-01
A novel method is described for reconstruction of two-dimensional current-layer structures from measurements taken by a single spacecraft traversing the layer. In its present form, the method is applicable only to 2D magnetohydrostatic structures that are passively convected past the observing spacecraft. It is tested on a magnetopause crossing of the tangential-discontinuity type by the spacecraft AMPTE/IRM. The magnetic structures recovered include a magnetic island located between two X-type nulls as well as a magnetic 'worm hole' through which a bundle of weak magnetic flux appears to connect the magnetosphere and the magnetosheath.
NASA Astrophysics Data System (ADS)
Sonnerup, B. U. Ö.; Guo, M.
A novel method is described for reconstruction of two-dimensional current-layer structures from measurements taken by a single spacecraft traversing the layer. In its present form, the method is applicable only to 2D magneto-hydrostatic structures that are passively convected past the observing spacecraft. It is tested on a magnetopause crossing of the tangential-discontinuity type by the spacecraft AMPTE/IRM. The magnetic structures recovered include a magnetic island located between two X-type nulls as well as a magnetic ‘worm hole’ through which a bundle of weak magnetic flux appears to connect the magnetosphere and the magnetosheath.
Magnetopause structure from satellite observations
NASA Technical Reports Server (NTRS)
Sonnerup, B. U. O.
1979-01-01
Observations on magnetopause structure are reported. Major topics covered include: classical reconnection, transport mechanisms, magnetospheric boundary layers, tearing modes, and Jupiter's magnetopause.
Structure of the low-latitude boundary layer. [in magnetopause
NASA Technical Reports Server (NTRS)
Sckopke, N.; Paschmann, G.; Haerendel, G.; Sonnerup, B. U. OE.; Bame, S. J.; Forbes, T. G.; Hones, E. W., Jr.; Russell, C. T.
1981-01-01
High temporal resolution observations of the frontside magnetopause and plasma boundary layer made with the fast plasma analyzer aboard the ISEE 1 and 2 spacecraft are reported. The data are found to be compatible with a boundary layer that is always attached to the magnetopause but where the layer thickness has a large-scale spatial modulation pattern which travels tailward past the spacecraft. Periods are included when the thickness is essentially zero and others when it is of the order of 1 earth radius. The duration of these periods is highly variable but is typically in the range of 2-5 min corresponding to a distance along the magnetopuase of approximately 3-8 earth radii. The observed boundary layer features include a steep density gradient at the magnetopause with an approximately constant boundary layer plasma density amounting to about 25% of the magnetosheath density, and a second abrupt density decrease at the inner edge of the layer.
NASA Technical Reports Server (NTRS)
Phan, T. D.; Eastwood, J. P.; Cassak, P. A.; Oieroset, M.; Gosling, J. T.; Gershman, D. J.; Mozer, F. S.; Shay, M. A.; Fujimoto, M.; Daughton, W.;
2016-01-01
We report Magnetospheric Multiscale observations of macroscopic and electron-scale current layers in asymmetric reconnection. By intercomparing plasma, magnetic, and electric field data at multiple crossings of a reconnecting magnetopause on 22 October 2015, when the average interspacecraft separation was approximately 10 km, we demonstrate that the ion and electron moments are sufficiently accurate to provide reliable current density measurements at 30ms cadence. These measurements, which resolve current layers narrower than the interspacecraft separation, reveal electron-scale filamentary Hall currents and electron vorticity within the reconnection exhaust far downstream of the X line and even in the magnetosheath. Slightly downstream of the X line, intense (up to 3 µA/m2) electron currents, a super-Alfvenic outflowing electron jet, and nongyrotropic crescent shape electron distributions were observed deep inside the ion-scale magnetopause current sheet and embedded in the ion diffusion region. These characteristics are similar to those attributed to the electron dissipation/diffusion region around the X line.
Theory and observations of upward field-aligned currents at the magnetopause boundary layer.
Wing, Simon; Johnson, Jay R
2015-11-16
The dependence of the upward field-aligned current density ( J ‖ ) at the dayside magnetopause boundary layer is well described by a simple analytic model based on a velocity shear generator. A previous observational survey confirmed that the scaling properties predicted by the analytical model are applicable between 11 and 17 MLT. We utilize the analytic model to predict field-aligned currents using solar wind and ionospheric parameters and compare with direct observations. The calculated and observed parallel currents are in excellent agreement, suggesting that the model may be useful to infer boundary layer structures. However, near noon, where velocity shear is small, the kinetic pressure gradients and thermal currents, which are not included in the model, could make a small but significant contribution to J ‖ . Excluding data from noon, our least squares fit returns log( J ‖,max_cal ) = (0.96 ± 0.04) log( J ‖_obs ) + (0.03 ± 0.01) where J ‖,max_cal = calculated J ‖,max and J ‖_obs = observed J ‖ .
Mercury's magnetosphere after MESSENGER's first flyby.
Slavin, James A; Acuña, Mario H; Anderson, Brian J; Baker, Daniel N; Benna, Mehdi; Gloeckler, George; Gold, Robert E; Ho, George C; Killen, Rosemary M; Korth, Haje; Krimigis, Stamatios M; McNutt, Ralph L; Nittler, Larry R; Raines, Jim M; Schriver, David; Solomon, Sean C; Starr, Richard D; Trávnícek, Pavel; Zurbuchen, Thomas H
2008-07-04
Observations by MESSENGER show that Mercury's magnetosphere is immersed in a comet-like cloud of planetary ions. The most abundant, Na+, is broadly distributed but exhibits flux maxima in the magnetosheath, where the local plasma flow speed is high, and near the spacecraft's closest approach, where atmospheric density should peak. The magnetic field showed reconnection signatures in the form of flux transfer events, azimuthal rotations consistent with Kelvin-Helmholtz waves along the magnetopause, and extensive ultralow-frequency wave activity. Two outbound current sheet boundaries were observed, across which the magnetic field decreased in a manner suggestive of a double magnetopause. The separation of these current layers, comparable to the gyro-radius of a Na+ pickup ion entering the magnetosphere after being accelerated in the magnetosheath, may indicate a planetary ion boundary layer.
A filament of energetic particles near the high-latitude dawn magnetopause
NASA Technical Reports Server (NTRS)
Lui, A. T. Y.; Williams, D. J.; Mcentire, R. W.; Christon, S. P.; Jacquey, C.; Angelopoulos, V.; Yamamoto, T.; Kokubun, S.; Frank, L. A.; Ackerson, K. L.
1994-01-01
The Geotail satelite detected a filament of tailward-streaming energetic particles spatially separated from the boundary layer of energetic particles at the high-latitude dawn magnetopause at a downstream distance of approximately 80 R(sub E) on October 27, 1992. During this event, the composition and charge states of energetic ions at energies above approximately 10 keV show significant intermix of ions from solar wind and ionospheric sources. Detailed analysis leads to the deduction that the filament was moving southward towards the neutral sheet at an average speed of approximately 80 km/s, implying an average duskward electric field of approximately 1 mV/m. Its north-south dimension was approximately 1 R(sub E) and it was associated with an earthward directed field-aligned current of approximately 5 mA/m. The filament was separated from the energetic particle boundary layer straddling the magnetopause by approximately 0.8 R(sub E) and was inferred to be detached from the boundary layer at downstream distance beyond approximately 70 R(sub E) in the distant tail.
NASA Technical Reports Server (NTRS)
Le, G.; Chen, S.; Zheng, Y.; Russell, C. T.; Slavin, J. A.; Huang, C.-S.; Petrinec, S. S.; Moore, T. E.; Samson, J.; Singer, H. J.
2005-01-01
In this paper, we present in situ observations of surface waves at the magnetopause and oscillatory magnetospheric field lines, and coordinated observations Pc5 waves at geosynchronous orbit by the GOES spacecraft, and on the ground by CANOPUS and 210 Degree Magnetic Meridian (210MMJ magnetometer arrays. On February 7,2002 during a highspeed solar wind stream, the Polar spacecraft was skimming the magnetopause in a post-noon meridian plane for approximately 3 hours. During this interval, it made two short excursions and a few partial crossings into the magnetosheath and observed quasi-periodic cold ion bursts in the region adjacent to the magnetopause current layer. The multiple magnetopause crossings as well as the velocity of the cold ion bursts indicate that the magnetopause was oscillating with about 6 minute period. Simultaneous observations of Pc5 waves at geosynchronous orbit by the GOES spacecraft and on the ground by the CANOPUS magnetometer array reveal that these magnetospheric pulsations were forced oscillations of magnetic field lines directly driven by the magnetopause oscillations. The magnetospheric pulsations occurred only in a limited longitudinal region in the post-noon dayside sector, and were not a global phenomenon as one would expect for global field line resonance. Thus, the magnetopause oscillations at the source were also limited to a localized region spanning about 4 hours in local time.
NASA Technical Reports Server (NTRS)
Ergun, R. E.; Goodrich, K. A.; Wilder, F. D.; Holmes, J. C.; Stawarz, J. E.; Eriksson, S.; Sturner, A. P.; Malaspina, D. M.; Usanova, M. E.; Torbert, R. B.;
2016-01-01
We report observations from the Magnetospheric Multiscale satellites of parallel electric fields (E (sub parallel)) associated with magnetic reconnection in the subsolar region of the Earth's magnetopause. E (sub parallel) events near the electron diffusion region have amplitudes on the order of 100 millivolts per meter, which are significantly larger than those predicted for an antiparallel reconnection electric field. This Letter addresses specific types of E (sub parallel) events, which appear as large-amplitude, near unipolar spikes that are associated with tangled, reconnected magnetic fields. These E (sub parallel) events are primarily in or near a current layer near the separatrix and are interpreted to be double layers that may be responsible for secondary reconnection in tangled magnetic fields or flux ropes. These results are telling of the three-dimensional nature of magnetopause reconnection and indicate that magnetopause reconnection may be often patchy and/or drive turbulence along the separatrix that results in flux ropes and/or tangled magnetic fields.
Ergun, R E; Goodrich, K A; Wilder, F D; Holmes, J C; Stawarz, J E; Eriksson, S; Sturner, A P; Malaspina, D M; Usanova, M E; Torbert, R B; Lindqvist, P-A; Khotyaintsev, Y; Burch, J L; Strangeway, R J; Russell, C T; Pollock, C J; Giles, B L; Hesse, M; Chen, L J; Lapenta, G; Goldman, M V; Newman, D L; Schwartz, S J; Eastwood, J P; Phan, T D; Mozer, F S; Drake, J; Shay, M A; Cassak, P A; Nakamura, R; Marklund, G
2016-06-10
We report observations from the Magnetospheric Multiscale satellites of parallel electric fields (E_{∥}) associated with magnetic reconnection in the subsolar region of the Earth's magnetopause. E_{∥} events near the electron diffusion region have amplitudes on the order of 100 mV/m, which are significantly larger than those predicted for an antiparallel reconnection electric field. This Letter addresses specific types of E_{∥} events, which appear as large-amplitude, near unipolar spikes that are associated with tangled, reconnected magnetic fields. These E_{∥} events are primarily in or near a current layer near the separatrix and are interpreted to be double layers that may be responsible for secondary reconnection in tangled magnetic fields or flux ropes. These results are telling of the three-dimensional nature of magnetopause reconnection and indicate that magnetopause reconnection may be often patchy and/or drive turbulence along the separatrix that results in flux ropes and/or tangled magnetic fields.
Reconnection in Planetary Magnetospheres
NASA Technical Reports Server (NTRS)
Russell, C. T.
2000-01-01
Current sheets in planetary magnetospheres that lie between regions of "oppositely-directed" magnetic field are either magnetopause-like, separating plasmas with different properties, or tail-like, separating plasmas of rather similar properties. The magnetopause current sheets generally have a nearly limitless supply of magnetized plasma that can reconnect, possibly setting up steady-state reconnection. In contrast, the plasma on either side of a tail current sheet is stratified so that, as reconnection occurs, the plasma properties, in particular the Alfven velocity, change. If the density drops and the magnetic field increases markedly perpendicular to the sheet, explosive reconnection can occur. Even though steady state reconnection can take place at magnetopause current sheets, the process often appears to be periodic as if a certain low average rate was demanded by the conditions but only a rapid rate was available. Reconnection of sheared fields has been postulated to create magnetic ropes in the solar corona, at the Earth's magnetopause, and in the magnetotail. However, this is not the only way to produce magnetic ropes as the Venus ionosphere shows. The geometry of the reconnecting regions and the plasma conditions both can affect the rate of reconnection. Sorting out the various controlling factors can be assisted through the examination of reconnection in planetary settings. In particular we observe similar small-scale tearing in the magnetopause current layers of the Earth, Saturn. Uranus and Neptune and the magnetodisk current sheet at Jupiter. These sites may be seeds for rapid reconnection if the reconnection site reaches a high Alfven velocity region. In the Jupiter magnetosphere this appears to be achieved with resultant substorm activity. Similar seeds may be present in the Earth's magnetotail with the first one to reach explosive growth dominating the dynamics of the tail.
Inner Plasma Structure of the Low-Latitude Reconnection Layer
NASA Technical Reports Server (NTRS)
Zhang, Q.-H.; Dunlop, M. W.; Lockwood, M.; Lavraud, B.; Bogdanova, Y. V.; Hasegawa, H.; Yang, H. -G.; Liu, R. -Y.; Hu, H. -Q.; Zhang, B. -C.;
2012-01-01
We report a clear transition through a reconnection layer at the low-latitude magnetopause which shows a complete traversal across all reconnected field lines during northwestward interplanetary magnetic field (IMF) conditions. The associated plasma populations confirm details of the electron and ion mixing and the time history and acceleration through the current layer. This case has low magnetic shear with a strong guide field and the reconnection layer contains a single density depletion layer on the magnetosheath side which we suggest results from nearly field-aligned magnetosheath flows. Within the reconnection boundary layer, there are two plasma boundaries, close to the inferred separatrices on the magnetosphere and magnetosheath sides (Ssp and Ssh) and two boundaries associated with the Alfvén waves (or Rotational Discontinuities, RDsp and RDsh). The data are consistent with these being launched from the reconnection site and the plasma distributions are well ordered and suggestive of the time elapsed since reconnection of the field lines observed. In each sub-layer between the boundaries the plasma distribution is different and is centered around the current sheet, responsible for magnetosheath acceleration. We show evidence for a velocity dispersion effect in the electron anisotropy that is consistent with the time elapsed since reconnection. In addition, new evidence is presented for the occurrence of partial reflection of magnetosheath electrons at the magnetopause current layer.
Forced three-dimensional magnetic reconnection due to linkage of magnetic flux tubes
NASA Technical Reports Server (NTRS)
Otto, A.
1995-01-01
During periods of southward interplanetary magnetic field (IMF) orientation the magnetic field geometry at the dayside magnetopause is susceptible to magnetic reconnection. It has been suggested that reconnection may occur in a localized manner at several patches on the magnetopause. A major problem with this picture is the interaction of magnetic flux ropes which are generated by different reconnection processes. An individual flux rope is bent elbowlike where it intersects the magnetopause and the magnetic field changes from magnetospheric to interplanetary magnetic field orientation. Multiple patches of reconnection can lead to the formation of interlinked magnetic flux tubes. Although the corresponding flux is connected to the IMF the northward and southward connected branches are hooked into each other and cannot develop independently. We have studied this problem in the framework of three-dimensional magnetohydrodynamic simulations. The results indicate that a singular current sheet forms at the interface of two interlinked flux tubes if no resistivity is present in the simulation. This current sheet is strongly tilted compared to the original current sheet. In the presence of resistivity the interaction of the two flux tubes forces a fast reconnection process which generates helically twisted closed magnetospheric flux. This linkage induced reconnection generates a boundary layer with layers of open and closed magnetospheric flux and may account for the brightening of auroral arcs poleward of the boundary between open and closed magnetic flux.
Statistical survey of day-side magnetospheric current flow using Cluster observations: magnetopause
NASA Astrophysics Data System (ADS)
Liebert, Evelyn; Nabert, Christian; Perschke, Christopher; Fornaçon, Karl-Heinz; Glassmeier, Karl-Heinz
2017-05-01
We present a statistical survey of current structures observed by the Cluster spacecraft at high-latitude day-side magnetopause encounters in the close vicinity of the polar cusps. Making use of the curlometer technique and the fluxgate magnetometer data, we calculate the 3-D current densities and investigate the magnetopause current direction, location, and magnitude during varying solar wind conditions. We find that the orientation of the day-side current structures is in accordance with existing magnetopause current models. Based on the ambient plasma properties, we distinguish five different transition regions at the magnetopause surface and observe distinctive current properties for each region. Additionally, we find that the location of currents varies with respect to the onset of the changes in the plasma environment during magnetopause crossings.
A dual-satellite study of the spatial properties of FTEs. [flux transfer events
NASA Technical Reports Server (NTRS)
Saunders, M. A.; Russell, C. T.; Sckopke, N.
1984-01-01
Reconnection at the earth's dayside magnetopause may manifest itself primarily as a localized and transient process called a flux-transfer event (FTE). The spatial properties of FTEs are investigated directly by examining data from the ISEE satellite pair when the satellites were separated by more than 1000 km in the vicinity of the magnetopause. Examples of magnetosheath and boundary layer FTEs, each having a dimension normal to the magnetopause of order an earth radius, R(E), are shown, and this scale-size result is substantiated statistically for magnetosheath FTEs. When combined with other information, a 1-R(E) normal dimension implies that the voltage associated with the FTE process at one magnetopause location is at least 10 kV. These findings strengthen the view that the magnetic field comprising an FTE is twisted, this twisting appearing to be continuous in sense across the magnetopause and corresponding to a core field-aligned current of magnitude a few hundred kA. Changes in plasma flow speed and direction are found to be associated with FTEs. The transverse field and flow perturbations accompanying the three magnetosheath FTEs studied here satisfy approximately the Walen relation, the relation which describes a propagating Alfven wave.
Plasma waves near the magnetopause
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, R.R.; Haravey, C.C.; Hoppe, M.M.
1982-04-01
Plasma waves associated with the magnetopause, from the magnetosheath to the outer magnetosphere, are examined with an emphasis on high time resolution data and the comparison between measurements by using different antenna systems. An early ISEE crossing of the magnetopause region, including passage through two well-defined flux transfer events, the magentopause current layer, and boundary plasma, is studied in detail. The waves in these regions are compared and contrasted with the waves in the adjoining magnetosheath and outer magnetosphere. Four types of plamsa wave emissions are characteristic of the nominal magnetosheat: (1) a very low frequency continuum, (2) short wavelengthmore » spikes, (3) 'festoon-shaped' emissions below about 2 kHz, and (4) 'lion roars'. The latter two emissions are well correlated with ultra-low frequency magnetic field fluctuations. The dominant plasma wave features during flux transfer events are (1) an intense low-frequency continuum, which includes a substantial electromagnetic component, (2) a dramatic increase in the frequency of occurrence of the spikes, (3) quasi-periodic electron cyclotron harmonics correlated with approx.1-Hz magnetic field fluctuations, and (4) enhanced electron plasma oscillations. The plasma wave characteristics in the current layer and in the boundary layer are quite similar to the features in the flux transfer events. Upon entry into the outer magnetosphere, the plasma wave spectra are dominated by intense electromagnetic chorus bursts and electrosatic (n+1/2)f/sup -//sub g/ emissions. Wavelength determinations made by comparing the various antenna responses and polarization measurements for the different waves are also presented.« less
Plasma diffusion at the magnetopause? The case of lower hybrid drift waves
NASA Technical Reports Server (NTRS)
Treumann, R. A.; Labelle, J.; Pottelette, R.; Gary, S. P.
1990-01-01
The diffusion expected from the quasilinear theory of the lower hybrid drift instability at the Earth's magnetopause is recalculated. The resulting diffusion coefficient is in principle just marginally large enough to explain the thickness of the boundary layer under quiet conditions, based on observational upper limits for the wave intensities. Thus, one possible model for the boundary layer could involve equilibrium between the diffusion arising from lower hybrid waves and various low processes. However, some recent data and simulations seems to indicate that the magnetopause is not consistent with such a soft diffusive equilibrium model. Furthermore, investigation of the nonlinear equations for the lower hybrid waves for magnetopause parameters indicates that the quasilinear state may never arise because coalescence to large wavelengths, followed by collapse once a critical wavelengths is reached, occur on a time scale faster than the quasilinear diffusion. In this case, an inhomogeneous boundary layer is to be expected. More simulations are required over longer time periods to explore whether this nonlinear evolution really takes place at the magnetopause.
NASA Technical Reports Server (NTRS)
Song, P.; Russell, C. T.; Fitzenreiter, R. J.; Gosling, J. T.; Thomsen, M. F.; Mitchell, D. G.; Fuselier, S. A.; Parks, G. K.; Anderson, R. R.; Hubert, D.
1993-01-01
The paper examines the structure and properties of the subsolar magnetopause for northward IMF on the basis of measurements from 10 different instrument for three ISEE crossings. It is shown that the overall structure and properties are similar for the three crossings, indicating that the magnetopause is relatively well determined in the subsolar region for strongly northward IMF. The combined data set suggests that the magnetopause region is best organized by defining a sheath transition layer and steplike boundary layers. The electron flux enhancements in the lowest energies in the boundary layers and magnetosphere are found to be ionospheric electrons and not photoelectrons from the spacecraft. For northward IMF, they are photoelectrons, but for southward IMF they may be secondary electrons. The density measurements from differential and integral techniques are similar, leaving no room for a significant 'invisible' population.
Formation of the Dayside Magnetopause and Its Boundary Layers Under the Radial IMF
NASA Astrophysics Data System (ADS)
Pi, Gilbert; Němeček, Zdeněk.; Å afránková, Jana; Grygorov, Kostiantyn; Shue, Jih-Hong
2018-05-01
The global structure of magnetopause boundary layers under the radial interplanetary magnetic field (IMF) conditions is studied by a comparison of experimental and simulation results. In magnetohydrodynamic simulations, the hemispherical asymmetry of the reconnection locations was found. The draped field adjacent to the magnetopause points northward in the Northern Hemisphere, but it is oriented southward in the Southern Hemisphere at the beginning of the simulation for negative IMF Bx. The magnetopause region affected by the positive IMF Bz component enlarges over time, and the density profile exhibit a north-south asymmetry near the magnetopause. The experimental part of the study uses the Time History of Events and Macroscale Interactions during Substorm data. We analyze profiles of the plasma parameters and magnetic field as well as the ion pitch-angle distributions. The nonsimultaneous appearance of parallel and antiparallel aligned flows suggests two spatially separated sources of these flows. We have identified (1) the inner part of the low-latitude boundary layer (LLBL) on closed magnetic field lines; (2) the outer LLBL on open field lines; (3) the inner part of the magnetosheath boundary layer (MSBL) formed by dayside reconnection in the Southern Hemisphere; and (4) the outer MSBL resulting from lobe reconnection in the Northern Hemisphere.
NASA Astrophysics Data System (ADS)
Hasegawa, H.; Nakamura, T.; Kitamura, N.; Hoshi, Y.; Saito, Y.; Figueroa-Vinas, A.; Giles, B. L.; Lavraud, B.; Khotyaintsev, Y. V.; Ergun, R.
2017-12-01
The Kelvin-Helmholtz (KH) instability is known to grow along the Earth's magnetopause, but its role in transporting solar wind mass and energy into the magnetosphere is not fully understood. On 8 September 2015, the Magnetospheric Multiscale (MMS) spacecraft, located at the postnoon, southern-hemisphere magnetopause, encountered thin low-shear current sheets at the trailing edge of the KH waves, where KH-induced reconnection, one of the plasma transport processes, was occurring [Eriksson et al., GRL, 2016; Li et al., GRL, 2016]. The event was observed during a prolonged period of northward interplanetary magnetic field, and was characterized by an extended region of the low-latitude boundary layer (LLBL) immediately earthward of the KH unstable magnetopause, which appeared to have been formed through magnetopause reconnection poleward of the cusp. In this LLBL, MMS observed plasma turbulence, another agent for the plasma transport [Stawarz et al., JGR, 2016]. Key features are that (i) significant magnetic shears were seen only at the trailing edges of the KH surface waves, (ii) for both the leading and trailing edge traversals, both field-aligned and anti-field-aligned streaming D-shaped ion populations, which are consistent with reconnection on the southward and northward sides, respectively, of MMS, were observed on either the magnetosheath or LLBL side of the magnetopause, though not always simultaneously, and (iii) the field-aligned Poynting flux was positive in some parts of the LLBL but was negative in other parts. Based on these observations and further wave analysis, we address the questions of how the current sheets at the KH wave trailing edges were generated, and what could have been the driver of the turbulent fluctuations observed within the KH vortices.
Structure of magnetopause layers formed by a radial interplanetary magnetic field
NASA Astrophysics Data System (ADS)
Safrankova, Jana; Simunek, Jiri; Nemecek, Zdenek; Prech, Lubomir; Grygorov, Kostiantyn; Shue, Jih-Hong; Samsonov, Andrey; Pi, Gilbert
2016-07-01
The magnetopause location is generally believed to be determined by the solar wind dynamic pressure and by the sign and value of the interplanetary magnetic field (IMF) vertical (Bz) component. A contribution of other parameters is usually assumed to be minor or negligible near the equatorial plane. However, recent papers have shown a magnetopause expansion during intervals of a nearly radial IMF (large IMF Bx component). Under such conditions, the total pressure exerted on the subsolar magnetopause is significantly lower than the solar wind dynamic pressure as demonstrate both MHD simulations and statistical investigations. During a long-duration radial IMF, all parameters - the IMF magnitude, solar wind speed, density, and especially the temperature are depressed in comparison with their yearly averages. Moreover, in this case, the structures of the LLBL change; the LLBL shows different profiles at both hemispheres for negative and positive IMF Bx polarities. This asymmetry changes over time and influences the LLBL structures due to magnetic reconnection. We present an overview of important physical quantities controlling the magnetopause compression and new results that deal with the structure of the magnetopause and adjacent layers.
NASA Technical Reports Server (NTRS)
Tkachenko, O.; Safrankova, J.; Nemecek, Z.; Sibeck, D. G.
2011-01-01
The paper analyses one long-term pass (26 August 2007) of the THEMIS spacecraft across the dayside low-latitude magnetopause. THEMIS B, serving partly as a magnetosheath monitor, observed several changes of the magnetic field that were accompanied by dynamic changes of the magnetopause location and/or the structure of magnetopause layers observed by THEMIS C, D, and E, whereas THEMIS A scanned the inner magnetosphere. We discuss the plasma and the magnetic field data with motivation to identify sources of observed quasiperiodic plasma transients. Such events at the magnetopause are usually attributed to pressure pulses coming from the solar wind, foreshock fluctuations, flux transfer events or surface waves. The presented transient events differ in nature (the magnetopause surface deformation, the low-latitude boundary layer thickening, the crossing of the reconnection site), but we found that all of them are associated with changes of the magnetosheath magnetic field orientation and with enhancements or depressions of the plasma density. Since these features are not observed in the data of upstream monitors, the study emphasizes the role of magnetosheath fluctuations in the solar wind-magnetosphere coupling.
A single spacecraft method to study the spatial profiles inside the magnetopause
NASA Astrophysics Data System (ADS)
Dorville, Nicolas; Belmont, Gerard; Rezeau, Laurence; Aunai, Nicolas; Retino, Alessandro
2013-04-01
Previous magnetopause observations have revealed that the tangential magnetic field often rotates over C-shaped hodograms during the boundary crossing. Using observations of magnetopause crossings by the ESA Cluster mission and a simulation developed at LPP by Nicolas Aunai, we developed a single spacecraft method using the temporal information on the magnetic field in such crossings, complemented by the ion data. We can so obtain a 1D spatial parameter to characterize the depth in the layer and study the structure of the magnetopause as a function of this parameter. This allows using one single spacecraft magnetic data, completed by ion data at large temporal scales, to study the spatial structure of the boundary, and access scales that the particle temporal measurements of the four spacecraft do not permit. To obtain the normal direction and position, we first initialize our computations thanks to the standard MVABC method. Then we use the magnetic field data in the current layer, and suppose it is 1D, rotating in the tangential plane along an ellipse, with an angle variation essentially linear in space, with small sinusoidal perturbations. Making the assumption that the normal velocity of ions is dominated by the motion of the boundary and that the internal structure of the magnetopause is stationary over the duration of a crossing, we can compute the best normal direction and parameters of the model with CIS velocity and FGM magnetic field data, and so derive the spatial position of the spacecraft in the boundary. This method, which has been tested on the simulation data, could be applied successfully on several magnetopause crossings observed by Cluster. It directly gives a thickness and a normal direction, and permits to establish spatial profiles of all the physical quantities inside the boundary. It can be used to better understand the internal structure of the boundary, its physical properties and behavior regarding the flux conservation equations. The obtained results are compared with the results of other methods.
Korth, Haje; Tsyganenko, Nikolai A; Johnson, Catherine L; Philpott, Lydia C; Anderson, Brian J; Al Asad, Manar M; Solomon, Sean C; McNutt, Ralph L
2015-06-01
Accurate knowledge of Mercury's magnetospheric magnetic field is required to understand the sources of the planet's internal field. We present the first model of Mercury's magnetospheric magnetic field confined within a magnetopause shape derived from Magnetometer observations by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft. The field of internal origin is approximated by a dipole of magnitude 190 nT R M 3 , where R M is Mercury's radius, offset northward by 479 km along the spin axis. External field sources include currents flowing on the magnetopause boundary and in the cross-tail current sheet. The cross-tail current is described by a disk-shaped current near the planet and a sheet current at larger (≳ 5 R M ) antisunward distances. The tail currents are constrained by minimizing the root-mean-square (RMS) residual between the model and the magnetic field observed within the magnetosphere. The magnetopause current contributions are derived by shielding the field of each module external to the magnetopause by minimizing the RMS normal component of the magnetic field at the magnetopause. The new model yields improvements over the previously developed paraboloid model in regions that are close to the magnetopause and the nightside magnetic equatorial plane. Magnetic field residuals remain that are distributed systematically over large areas and vary monotonically with magnetic activity. Further advances in empirical descriptions of Mercury's magnetospheric external field will need to account for the dependence of the tail and magnetopause currents on magnetic activity and additional sources within the magnetosphere associated with Birkeland currents and plasma distributions near the dayside magnetopause.
Tsyganenko, Nikolai A.; Johnson, Catherine L.; Philpott, Lydia C.; Anderson, Brian J.; Al Asad, Manar M.; Solomon, Sean C.; McNutt, Ralph L.
2015-01-01
Abstract Accurate knowledge of Mercury's magnetospheric magnetic field is required to understand the sources of the planet's internal field. We present the first model of Mercury's magnetospheric magnetic field confined within a magnetopause shape derived from Magnetometer observations by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft. The field of internal origin is approximated by a dipole of magnitude 190 nT RM 3, where RM is Mercury's radius, offset northward by 479 km along the spin axis. External field sources include currents flowing on the magnetopause boundary and in the cross‐tail current sheet. The cross‐tail current is described by a disk‐shaped current near the planet and a sheet current at larger (≳ 5 RM) antisunward distances. The tail currents are constrained by minimizing the root‐mean‐square (RMS) residual between the model and the magnetic field observed within the magnetosphere. The magnetopause current contributions are derived by shielding the field of each module external to the magnetopause by minimizing the RMS normal component of the magnetic field at the magnetopause. The new model yields improvements over the previously developed paraboloid model in regions that are close to the magnetopause and the nightside magnetic equatorial plane. Magnetic field residuals remain that are distributed systematically over large areas and vary monotonically with magnetic activity. Further advances in empirical descriptions of Mercury's magnetospheric external field will need to account for the dependence of the tail and magnetopause currents on magnetic activity and additional sources within the magnetosphere associated with Birkeland currents and plasma distributions near the dayside magnetopause. PMID:27656335
NASA Astrophysics Data System (ADS)
Ergun, R. E.; Holmes, J. C.; Goodrich, K. A.; Wilder, F. D.; Stawarz, J. E.; Eriksson, S.; Newman, D. L.; Schwartz, S. J.; Goldman, M. V.; Sturner, A. P.; Malaspina, D. M.; Usanova, M. E.; Torbert, R. B.; Argall, M.; Lindqvist, P.-A.; Khotyaintsev, Y.; Burch, J. L.; Strangeway, R. J.; Russell, C. T.; Pollock, C. J.; Giles, B. L.; Dorelli, J. J. C.; Avanov, L.; Hesse, M.; Chen, L. J.; Lavraud, B.; Le Contel, O.; Retino, A.; Phan, T. D.; Eastwood, J. P.; Oieroset, M.; Drake, J.; Shay, M. A.; Cassak, P. A.; Nakamura, R.; Zhou, M.; Ashour-Abdalla, M.; André, M.
2016-06-01
We report observations from the Magnetospheric Multiscale satellites of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the Earth's magnetopause. The observed waves have parallel electric fields (E||) with amplitudes on the order of 100 mV/m and display nonlinear characteristics that suggest a possible net E||. These waves are observed within the ion diffusion region and adjacent to (within several electron skin depths) the electron diffusion region. They are in or near the magnetosphere side current layer. Simulation results support that the strong electrostatic linear and nonlinear wave activities appear to be driven by a two stream instability, which is a consequence of mixing cold (<10 eV) plasma in the magnetosphere with warm (~100 eV) plasma from the magnetosheath on a freshly reconnected magnetic field line. The frequent observation of these waves suggests that cold plasma is often present near the magnetopause.
Ion Demagnetization in the Magnetopause Current Layer Observed by MMS
NASA Technical Reports Server (NTRS)
Wang, Shan; Chen, Li-Jen; Hesse, Michael; Gershman, Daniel J.; Dorelli, John; Giles, Barbara; Torbert, Roy B.; Pollock, Craig J.; Lavraud, Benoit; Strangeway, Robert;
2016-01-01
We report ion velocity distribution functions (VDfs) observed by Magnetospheric Multiscale Mission (MMS) and present evidence for demagnetized ion Speiser motion during magnetopause reconnection. The demagnetization is observed in the vicinity of the X llne, as well as near the current sheet midlplane about tens of ion skin depths (d(sub 1)) away from the X line. Close to the X line before the outflow is built up, the VDFs are elongated, and the elongated part of VDFs rotates from the out-of-plane current direction toward the outflow directions downstream from the X line. Farther downstream, demagnetized ions exhibit a characteristic half-ring structure in the VDFs, as a result of the mixture of ions that have experienced different amounts of cyclotron turning around the magnetic field normal to the current sheet. Signatures of acceleration by electric fields are more pronounced in the VDFs near the X line than downstream.
Ion demagnetization in the magnetopause current layer observed by MMS
NASA Astrophysics Data System (ADS)
Wang, Shan; Chen, Li-Jen; Hesse, Michael; Gershman, Daniel J.; Dorelli, John; Giles, Barbara; Torbert, Roy B.; Pollock, Craig J.; Lavraud, Benoit; Strangeway, Robert; Ergun, Robert E.; Burch, Jim; Avanov, Levon; Moore, Thomas E.; Saito, Yoshifumi
2016-05-01
We report ion velocity distribution functions (VDFs) observed by Magnetospheric Multiscale Mission (MMS) and present evidence for demagnetized ion Speiser motion during magnetopause reconnection. The demagnetization is observed in the vicinity of the X line, as well as near the current sheet midplane about tens of ion skin depths (di) away from the X line. Close to the X line before the outflow is built up, the VDFs are elongated, and the elongated part of VDFs rotates from the out-of-plane current direction toward the outflow directions downstream from the X line. Farther downstream, demagnetized ions exhibit a characteristic half-ring structure in the VDFs, as a result of the mixture of ions that have experienced different amounts of cyclotron turning around the magnetic field normal to the current sheet. Signatures of acceleration by electric fields are more pronounced in the VDFs near the X line than downstream.
Method for confining the magnetic field of the cross-tail current inside the magnetopause
NASA Technical Reports Server (NTRS)
Sotirelis, T.; Tsyganenko, N. A.; Stern, D. P.
1994-01-01
A method is presented for analytically representing the magnetic field due to the cross-tail current and its closure on the magnetopause. It is an extension of a method used by Tsyganenko (1989b) to confine the dipole field inside an ellipsoidal magnetopause using a scalar potential. Given a model of the cross-tail current, the implied net magnetic field is obtained by adding to the cross-tail current field a potential field B = - del gamma, which makes all field lines divide into two disjoint groups, separated by the magnetopause (i.e., the combined field is made to have zero normal component with the magnetopause). The magnetopause is assumed to be an ellipsoid of revolution (a prolate spheroid) as an approximation to observations (Sibeck et al., 1991). This assumption permits the potential gamma to be expressed in spheroidal coordinates, expanded in spheroidal harmonics and its terms evaluated by performing inversion integrals. Finally, the field outside the magnetopause is replaced by zero, resulting in a consistent current closure along the magnetopause. This procedure can also be used to confine the modeled field of any other interior magnetic source, though the model current must always flow in closed circuits. The method is demonstrated on the T87 cross-tail current, examples illustrate the effect of changing the size and shape of the prescribed magnetopause and a comparison is made to an independent numerical scheme based on the Biot-Savart equation.
A magnetic boundary layer at the magnetopause
NASA Astrophysics Data System (ADS)
Kartalev, M. D.; Simeonov, G.
A new approach in the boundary layer description of the magnetopause is proposed. The magnetopause is considered as a mixing region of two streams of plasma with different parameters. The assumption is made that wave-particle interactions cause the plasma to be resistive. Thus only the magnetic viscosity is supposed to be essential. Other dissipation effects are neglected. The plasma and magnetic field conditions at the outer boundary of the layer can be obtained from the solution of the nondissipative problem for the magnetosheath. The magnetic field is assumed to be known at the inner boundary. No further conditions are needed in our formulation of the problem. The variation of the flow parameters and the magnetic field can be obtained numerically.
NASA Technical Reports Server (NTRS)
Song, P.; Russell, C. T.; Strangeway, R. J.; Wygant, J. R.; Cattell, C. A.; Fitzenreiter, R. J.; Anderson, R. R.
1993-01-01
Strong slow mode waves in the Pc 3-4 frequency range are found in the magnetosheath close to the magnetopause. We have studied these waves at one of the ISEE subsolar magnetopause crossings using the magnetic field, electric field, and plasma measurements. We use the pressure balance at the magnetopause to calibrate the Fast Plasma Experiment data versus the magnetometer data. When we perform such a calibration and renormalization, we find that the slow mode structures are not in pressure balance and small scale fluctuations in the total pressure still remain in the Pc 3-4 range. Energy in the total pressure fluctuations can be transmitted through the magnetopause by boundary motions. The Poynting flux calculated from the electric and magnetic field measurements suggests that a net Poynting flux is transmitted into the magnetopause. The two independent measurements show a similar energy transmission coefficient. The transmitted energy flux is about 18 percent of the magnetic energy flux of the waves in the magnetosheath. Part of this transmitted energy is lost in the sheath transition layer before it enters the closed field line region. The waves reaching the boundary layer decay rapidly. Little wave power is transmitted into the magnetosphere.
The magnetopause at 5.2 R/E/ on August 4, 1972 - Magnetopause shape and structure
NASA Technical Reports Server (NTRS)
Kaufmann, R. L.; Cahill, L. J., Jr.
1977-01-01
The relatively large magnitude magnetopause field observed in several crossings associated with the ATS 5 and Explorer 45 satellites on August 4, 1972, is used to examine the structure of the magnetopause. The discussion covers magnetopause normals and their intepretation with respect to the shape of the magnetopause and to waves propagating in the magnetopause; magnetopause structure in terms of the field changes observed during magnetopause passages and of the associated magnetopause electric currents interred from the observations; and comparison of the observations with theoretical properties of open and close magnetopause models. Features necessary for comparison of magnetometer observations with pertinent theories are highlighted.
Evidence for magnetic field reconnection at the Earth's magnetopause
NASA Technical Reports Server (NTRS)
Sonnerup, B. U. O.; Paschmann, G.; Papamastorakis, I.; Sckopke, N.; Haerendel, G.; Bame, S. J.; Asbridge, J. R.; Gosling, J. T.; Russell, C. T.
1981-01-01
Eleven passes of the ISEE satellites through the frontside terrestrial magnetopause were identified, where the plasma velocity in the magnetopause and boundary layer was substantially larger than in the magnetosheath. The nature of the plasma flow, magnetic field, and energetic particle fluxes in these regions were examined, with a view to determining whether the velocity enhancements can be explained by magnetic field reconnection.
Magnetic field line draping in the plasma depletion layer
NASA Technical Reports Server (NTRS)
Sibeck, D. G.; Lepping, R. P.; Lazarus, A. J.
1990-01-01
Simultaneous IMP 8 solar wind and ISEE 1/2 observations for a northern dawn ISEE 1/2 magnetopause crossing on November 6, 1977. During this crossing, ISEE 1/2 observed quasi-periodic pulses of magnetosheathlike plasma on northward magnetic field lines. The ISEE 1/2 observations were originally interpreted as evidence for strong diffusion of magnetosheath plasma across the magnetopause and the Kelvin-Helmholtz instability at the inner edge of the low-latitude boundary layer. An alternate explanation, in terms of magnetic field merging and flux transfer events, has also been advocated. In this paper, a third interpretation is proposed in terms of quasi-periodic magnetopause motion which causes the satellites to repeatedly exit the magnetosphere and observe draped northward magnetosheath magnetic field lines in the plasma depletion layer.
NASA Technical Reports Server (NTRS)
Le, G.; Luehr, H.; Anderson, B. J.; Strangeway, R. J.; Russell, C. T.; Singer, H.; Slavin, J. A.; Zhang, Y.; Huang, T.; Bromund, K.;
2016-01-01
We present multimission observations of field-aligned currents, auroral oval, and magnetopause crossings during the 17 March 2015 magnetic storm. Dayside reconnection is expected to transport magnetic flux, strengthen field-aligned currents, lead to polar cap expansion and magnetopause erosion. Our multimission observations assemble evidence for all these manifestations. After a prolonged period of strongly southward interplanetary magnetic field, Swarm and AMPERE observe significant intensification of field-aligned currents .The dayside auroral oval, as seen by DMSP, appears as a thin arc associated with ongoing dayside reconnection. Both the field-aligned currents and the auroral arc move equatorward reaching as low as approx. 60 deg. magnetic latitude. Strong magnetopause erosion is evident in the in situ measurements of the magnetopause crossings by GOES 13/15 and MMS. The coordinated Swarm, AMPERE, DMSP, MMS and GOES observations, with both global and in situ coverage of the key regions, provide a clear demonstration of the effects of dayside reconnection on the entire magnetosphere.
NASA Astrophysics Data System (ADS)
Fermo, Raymond Luis Lachica
2011-12-01
Magnetic reconnection is a process responsible for the conversion of magnetic energy into plasma flows in laboratory, space, and astrophysical plasmas. A product of reconnection, magnetic islands have been observed in long current layers for various space plasmas, including the magnetopause, the magnetotail, and the solar corona. In this thesis, a statistical model is developed for the dynamics of magnetic islands in very large current layers, for which conventional plasma simulations prove inadequate. An island distribution function f characterizes islands by the flux they contain psi and the area they enclose A. An integro-differential evolution equation for f describes their creation at small scales, growth due to quasi-steady reconnection, convection along the current sheet, and their coalescence with one another. The steady-state solution of the evolution equation predicts a distribution of islands in which the signature of island merging is an asymmetry in psi-- r phase space. A Hall MHD (magnetohydrodynamic) simulation of a very long current sheet with large numbers of magnetic islands is used to explore their dynamics, specifically their growth via two distinct mechanisms: quasi-steady reconnection and merging. The results of the simulation enable validation of the statistical model and benchmarking of its parameters. A PIC (particle-in-cell) simulation investigates how secondary islands form in guide field reconnection, revealing that they are born at electron skin depth scales not as islands from the tearing instability but as vortices from a flow instability. A database of 1,098 flux transfer events (FTEs) observed by Cluster between 2001 and 2003 compares favorably with the model's predictions, and also suggests island merging plays a significant role in the magnetopause. Consequently, the magnetopause is likely populated by many FTEs too small to be recognized by spacecraft instrumentation. The results of this research suggest that a complete theory of reconnection in large current sheets should account for the disparate separation of scales---from the kinetic scales at which islands are produced to the macroscale objects observed in the systems in question.
The Sheath Transport Observer for the Redistribution of Mass (STORM) Image
NASA Technical Reports Server (NTRS)
Kuntz, Kip; Collier, Michael; Sibeck, David G.; Porter, F. Scott; Carter, J. A.; Cravens, Thomas; Omidi, N.; Robertson, Ina; Sembay, S.; Snowden, Steven L.
2008-01-01
All of the solar wind energy that powers magnetospheric processes passes through the magnetosheath and magnetopause. Global images of the magnetosheath and magnetopause boundary layers will resolve longstanding controversy surrounding fundamental phenomena that occur at the magnetopause and provide information needed to improve operational space weather models. Recent developments showing that soft X-rays (0.15-1 keV) result from high charge state solar wind ions undergoing charge exchange recombination through collisions with exospheric neutral atoms has led to the realization that soft X-ray imaging can provide global maps of the high-density shocked solar wind within the magnetosheath and cusps, regions lying between the lower density solar wind and magnetosphere. We discuss an instrument concept called the Sheath Transport Observer for the Redistribution of Mass (STORM), an X-ray imager suitable for simultaneously imaging the dayside magnetosheath, the magnetopause boundary layers, and the cusps.
The Sheath Transport Observer for the Redistribution of Mass (STORM) Imager
NASA Technical Reports Server (NTRS)
Collier, Michael R.; Sibeck, David G.; Porter, F. Scott; Burch, J.; Carter, J. A.; Cravens, Thomas; Kuntz, Kip; Omidi, N.; Read, A.; Robertson, Ina;
2010-01-01
All of the solar wind energy that powers magnetospheric processes passes through the magnetosheath and magnetopause. Global images of the magnetosheath and magnetopause boundary layers will resolve longstanding controversies surrounding fundamental phenomena that occur at the magnetopause and provide information needed to improve operational space weather models. Recent developments showing that soft X-rays (0.15-1 keV) result from high charge state solar wind ions undergoing charge exchange recombination through collisions with exospheric neutral atoms has led to the realization that soft X-ray imaging can provide global maps of the high-density shocked solar wind within the magnetosheath and cusps, regions lying between the lower density solar wind and magnetosphere. We discuss an instrument concept called the Sheath Transport Observer for the Redistribution of Mass (STORM), an X-ray imager suitable for simultaneously imaging the dayside magnetosheath, the magnetopause boundary layers, and the cusps.
Electrodynamic Context of Magnetopause Dynamics Observed by Magnetospheric Multiscale
NASA Technical Reports Server (NTRS)
Anderson, Brian J.; Russell, Christopher T.; Strangeway, Robert J.; Plaschke, Ferdinand; Magnes, Werner; Fischer, David; Korth, Haje; Merkin, Viacheslav G.; Barnes, Robin J.; Waters, Colin L.;
2016-01-01
Magnetopause observations by Magnetospheric Multiscale (MMS) and Birkeland currents observed by the Active Magnetosphere and Planetary Electrodynamics Response Experiment are used to relate magnetopause encounters to ionospheric electrodynamics. MMS magnetopause crossings on 15 August and 19 September 2015 occurred earthward of expectations due to solar wind ram pressure alone and coincided with equatorward expansion of the Birkeland currents. Magnetopause erosion, consistent with expansion of the polar cap, contributed to the magnetopause crossings. The ionospheric projections of MMS during the events and at times of the magnetopause crossings indicate that MMS observations are related to the main path of flux transport in one case but not in a second. The analysis provides a way to routinely relate in situ observations to the context of in situ convection and flux transport.
NASA Technical Reports Server (NTRS)
Ergun, R. E.; Holmes, J. C.; Goodrich, K. A.; Wilder, F. D.; Stawarz, J. E.; Eriksson, S.; Newman, D. L.; Schwartz, S. J.; Goldman, M. V.; Sturner, A. P.;
2016-01-01
We report observations from the Magnetospheric Multiscale satellites of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the Earth's magnetopause. The observed waves have parallel electric fields (E(sub parallel)) with amplitudes on the order of 100 mV/m and display nonlinear characteristics that suggest a possible net E(sub parallel). These waves are observed within the ion diffusion region and adjacent to (within several electron skin depths) the electron diffusion region. They are in or near the magnetosphere side current layer. Simulation results support that the strong electrostatic linear and nonlinear wave activities appear to be driven by a two stream instability, which is a consequence of mixing cold (less than 10eV) plasma in the magnetosphere with warm (approximately 100eV) plasma from the magnetosheath on a freshly reconnected magnetic field line. The frequent observation of these waves suggests that cold plasma is often present near the magnetopause.
What are the Causes of the Formation of the Sub-Alfvenic Flows at the High Latitude Magnetopause
NASA Technical Reports Server (NTRS)
Avanov, L. A.; Chandler, M. O.; Simov, V. N.; Vaisberg, O. L.
2003-01-01
We study magnetopause crossings made by the Interball Tail spacecraft at high latitudes under various interplanetary conditions. When the IMF mostly northward the Interball Tail observes quasi steady state reconnection signatures at the high latitude magnetopause, which include a well-defined de Hoffman-Teller frame, satisfaction of stress balance (Walen relations) and D-shaped ion velocity distributions. Under variable or southward IMF the high latitude magnetopause is a tangentional discontinuity. However, in certain conditions, just after the magnetopause crossing, irrespective of the IMF orientation, decelerate magnetosheath flows are observed in the magnetosheath region adjacent to the high latitude magnetopause. This leads to formation of the region where the sub-Alfvenic flow at high latitudes exists. We suggest that in some cases the dipole tilt plays an important role in the formation of the sub-Alfvenic flows, although in some cases formation the depletion layer is responsible for observation of the sub-Alfvenic flows at the high latitude magnetopause.
Evidence for magnetic field reconnection at the earth's magnetopause
NASA Technical Reports Server (NTRS)
Sonnerup, B. U. O.; Paschmann, G.; Papamastorakis, I.; Sckopke, N.; Haerendel, G.; Bame, S. J.; Asbridge, J. R.; Gosling, J. T.; Russell, C. T.
1981-01-01
Eleven Northern Hemisphere crossings of the dayside magnetopause by the ISEE spacecraft are examined to test the hypothesis that the large plasma flow speeds observed in the magnetopause and boundary layer are the result of the plasma acceleration intrinsic to the magnetic field reconnection process. In several cases energetic magnetospheric particles with the proper flow anisotropy, and in one case, reflected magnetosheath particles, were observed outside the magnetopause but adjacent to it. All results support the reconnection hypothesis. The energetic particles were also used to identify the outer separatrix surface, in one case of which is was possible to conclude from its location relative to the magnetopause that the reconnection site was in the vicinity of the equatorial plane rather than in the cusp. The electric field tangential to the magnetopause is inferred to be in the 0.4-2.8 mV/m range.
Plasma diffusion at the magnetopause - The case of lower hybrid drift waves
NASA Technical Reports Server (NTRS)
Treumann, R. A.; Labelle, J.; Pottelette, R.
1991-01-01
The diffusion expected from the quasi-linear theory of the lower hybrid drift instability at the earth's magnetopause is recalculated. The resulting diffusion coefficient is marginally large enough to explain the thickness of the boundary layer under quiet conditions, based on observational upper limits for the wave intensities. Thus, one possible model for the boundary layer could involve equilibrium between the diffusion arising from lower hybrid waves and various loss processes.
NASA Technical Reports Server (NTRS)
Hwang, K.-J.; Goldstein, M. L.; Kuznetsova, M. M.; Wang, Y.; Vinas, A. F.; Sibeck, D. G.
2012-01-01
We report the first in situ observation of high-latitude magnetopause (near the northern duskward cusp) Kelvin-Helmholtz waves (KHW) by Cluster on January 12, 2003, under strongly dawnward interplanetary magnetic field (IMF) conditions. The fluctuations unstable to Kelvin-Helmholtz instability (KHI) are found to propagate mostly tailward, i.e., along the direction almost 90 deg. to both the magnetosheath and geomagnetic fields, which lowers the threshold of the KHI. The magnetic configuration across the boundary layer near the northern duskward cusp region during dawnward IMF is similar to that in the low-latitude boundary layer under northward IMF, in that (1) both magnetosheath and magnetospheric fields across the local boundary layer constitute the lowest magnetic shear and (2) the tailward propagation of the KHW is perpendicular to both fields. Approximately 3-hour-long periods of the KHW during dawnward IMF are followed by the rapid expansion of the dayside magnetosphere associated with the passage of an IMF discontinuity that characterizes an abrupt change in IMF cone angle, Phi = acos (B(sub x) / absolute value of Beta), from approx. 90 to approx. 10. Cluster, which was on its outbound trajectory, continued observing the boundary waves at the northern evening-side magnetopause during sunward IMF conditions following the passage of the IMF discontinuity. By comparing the signatures of boundary fluctuations before and after the IMF discontinuity, we report that the frequencies of the most unstable KH modes increased after the discontinuity passed. This result demonstrates that differences in IMF orientations (especially in f) are associated with the properties of KHW at the high-latitude magnetopause due to variations in thickness of the boundary layer, and/or width of the KH-unstable band on the surface of the dayside magnetopause.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, T. K. M.; Eriksson, S.; Hasegawa, H.
When the interplanetary magnetic field (IMF) is strongly northward, a boundary layer that contains a considerable amount of plasma of magnetosheath origin is often observed along and earthward of the low-latitude magnetopause. Such a pre-existing boundary layer, with a higher density than observed in the adjacent magnetosphere, reduces the local Alfvén speed and allows the Kelvin-Helmholtz instability (KHI) to grow more strongly. We employ a three-dimensional fully kinetic simulation to model an event observed by the Magnetospheric Multiscale (MMS) mission in which the spacecraft detected substantial KH waves between a pre-existing boundary layer and the magnetosheath during strong northward IMF.more » Initial results of this simulation [Nakamura et al., 2017] have successfully demonstrated ion-scale signatures of magnetic reconnection induced by the non-linearly developed KH vortex, which are quantitatively consistent with MMS observations. Furthermore, we quantify the simulated mass and energy transfer processes driven by this vortex-induced reconnection (VIR) and show that during this particular MMS event (i) mass enters a new mixing layer formed by the VIR more efficiently from the pre-existing boundary layer side than from the magnetosheath side, (ii) mixed plasmas within the new mixing layer convect tailward along the magnetopause at more than half the magnetosheath flow speed, and (iii) energy dissipation in localized VIR dissipation regions results in a strong parallel electron heating within the mixing layer. Finally, the quantitative agreements between the simulation and MMS observations allow new predictions that elucidate how the mass and energy transfer processes occur near the magnetopause during strong northward IMF.« less
Nakamura, T. K. M.; Eriksson, S.; Hasegawa, H.; ...
2017-10-23
When the interplanetary magnetic field (IMF) is strongly northward, a boundary layer that contains a considerable amount of plasma of magnetosheath origin is often observed along and earthward of the low-latitude magnetopause. Such a pre-existing boundary layer, with a higher density than observed in the adjacent magnetosphere, reduces the local Alfvén speed and allows the Kelvin-Helmholtz instability (KHI) to grow more strongly. We employ a three-dimensional fully kinetic simulation to model an event observed by the Magnetospheric Multiscale (MMS) mission in which the spacecraft detected substantial KH waves between a pre-existing boundary layer and the magnetosheath during strong northward IMF.more » Initial results of this simulation [Nakamura et al., 2017] have successfully demonstrated ion-scale signatures of magnetic reconnection induced by the non-linearly developed KH vortex, which are quantitatively consistent with MMS observations. Furthermore, we quantify the simulated mass and energy transfer processes driven by this vortex-induced reconnection (VIR) and show that during this particular MMS event (i) mass enters a new mixing layer formed by the VIR more efficiently from the pre-existing boundary layer side than from the magnetosheath side, (ii) mixed plasmas within the new mixing layer convect tailward along the magnetopause at more than half the magnetosheath flow speed, and (iii) energy dissipation in localized VIR dissipation regions results in a strong parallel electron heating within the mixing layer. Finally, the quantitative agreements between the simulation and MMS observations allow new predictions that elucidate how the mass and energy transfer processes occur near the magnetopause during strong northward IMF.« less
Thick Escaping Magnetospheric Ion Layer in Magnetopause Reconnection with MMS Observations
NASA Technical Reports Server (NTRS)
Nagai, T.; Kitamura, N.; Hasagawa, H.; Shinohara, I.; Yokota, S.; Saito, Y.; Nakamura, R.; Giles, B. L.; Pollock, C.; Moore, T. E.;
2016-01-01
The structure of asymmetric magnetopause reconnection is explored with multiple point and high-time-resolution ion velocity distribution observations from the Magnetospheric Multiscale mission. On 9 September 2015, reconnection took place at the magnetopause, which separated the magnetosheath and the magnetosphere with a density ratio of 25:2. The magnetic field intensity was rather constant, even higher in the asymptotic magnetosheath. The reconnected field line region had a width of approximately 540 km. In this region, streaming and gyrating ions are discriminated. The large extension of the reconnected field line region toward the magnetosheath can be identified where a thick layer of escaping magnetospheric ions was formed. The scale of the magnetosheath side of the reconnected field line region relative to the scale of its magnetospheric side was 4.5:1.
Surface waves on the tailward flanks of the Earth's magnetopause
NASA Technical Reports Server (NTRS)
Seon, J.; Frank, L. A.; Lazarus, A. J.; Lepping, R. P.
1995-01-01
Forty-three examples of ISEE 1 tailward flank side magnetopause crossings are examined and directly compared with upstream solar wind parameters. The crossings are classified into two groups. In the first group, a few sudden magnetopause crossings are observed, whereas repeated magnetopause crossings and oscillatory motions, often with boundary layer signatures, are observed in the second group. These distinctive characteristics of the two groups are interpreted in terms of the surface waves due to the Kelvin-Helmholtz instability. It is found that low solar wind speed tends to favor characteristics of the first group, whereas high solar wind speed yields those of the second group. However, no evident correlations between the groups and the interplanetary magnetic field directions are found.
Do We Know the Actual Magnetopause Position for Typical Solar Wind Conditions?
NASA Technical Reports Server (NTRS)
Samsonov, A. A.; Gordeev, E.; Tsyganenko, N. A.; Safrankova, J.; Nemecek, Z.; Simunek, J.; Sibeck, D. G.; Toth, G.; Merkin, V. G.; Raeder, J.
2016-01-01
We compare predicted magnetopause positions at the subsolar point and four reference points in the terminator plane obtained from several empirical and numerical MHD (magnetohydrodynamics) models. Empirical models using various sets of magnetopause crossings and making different assumptions about the magnetopause shape predict significantly different magnetopause positions (with a scatter greater than 1 Earth radius (R (sub E)) even at the subsolar point. Axisymmetric magnetopause models cannot reproduce the cusp indentations or the changes related to the dipole tilt effect, and most of them predict the magnetopause closer to the Earth than non axisymmetric models for typical solar wind conditions and zero tilt angle. Predictions of two global non axisymmetric models do not match each other, and the models need additional verification. MHD models often predict the magnetopause closer to the Earth than the non axisymmetric empirical models, but the predictions of MHD simulations may need corrections for the ring current effect and decreases of the solar wind pressure that occur in the foreshock. Comparing MHD models in which the ring current magnetic field is taken into account with the empirical Lin et al. model, we find that the differences in the reference point positions predicted by these models are relatively small for B (sub z) equals 0 (note: B (sub z) is when the Earth's magnetic field points north versus Sun's magnetic field pointing south). Therefore, we assume that these predictions indicate the actual magnetopause position, but future investigations are still needed.
NASA Astrophysics Data System (ADS)
Russell, C. T.; Zhao, C.; Qi, Y.; Lai, H.; Strangeway, R. J.; Paterson, W. R.; Giles, B. L.; Baumjohann, W.; Torbert, R. B.; Burch, J.
2017-12-01
The nature of the solar wind interaction with the Earth's magnetic field depends on the balance between magnetic and plasma forces at the magnetopause. This balance is controlled by the magnetosonic Mach number of the bow shock standing in front of the magnetosphere. We have used measurements of the solar wind obtained in the near Earth solar wind to calculate this Mach number whenever MMS was near the magnetopause and in the subsolar region. In particular, we examine two intervals of magnetopause encounters when the solar wind Mach number was close to 2.0, one when the IMF was nearly due southward and one when it was due northward. The due southward magnetic field produced a rapidly oscillating boundary. The northward magnetic field produced a much more stable boundary but with a hot low density boundary layer between the magnetospheric and magnetosheath plasmas. These magnetopause crossings are quite different than those studied earlier under high solar wind Mach number conditions.
Cold Ionospheric Ions in the Magnetic Reconnection Outflow Region
NASA Astrophysics Data System (ADS)
Li, W. Y.; André, M.; Khotyaintsev, Yu. V.; Vaivads, A.; Fuselier, S. A.; Graham, D. B.; Toledo-Redondo, S.; Lavraud, B.; Turner, D. L.; Norgren, C.; Tang, B. B.; Wang, C.; Lindqvist, P.-A.; Young, D. T.; Chandler, M.; Giles, B.; Pollock, C.; Ergun, R.; Russell, C. T.; Torbert, R.; Moore, T.; Burch, J.
2017-10-01
Magnetosheath plasma usually determines properties of asymmetric magnetic reconnection at the subsolar region of Earth's magnetopause. However, cold plasma that originated from the ionosphere can also reach the magnetopause and modify the kinetic physics of asymmetric reconnection. We present a magnetopause crossing with high-density (10-60 cm-3) cold ions and ongoing reconnection from the observation of the Magnetospheric Multiscale (MMS) spacecraft. The magnetopause crossing is estimated to be 300 ion inertial lengths south of the X line. Two distinct ion populations are observed on the magnetosheath edge of the ion jet. One population with high parallel velocities (200-300 km/s) is identified to be cold ion beams, and the other population is the magnetosheath ions. In the deHoffman-Teller frame, the field-aligned magnetosheath ions are Alfvénic and move toward the jet region, while the field-aligned cold ion beams move toward the magnetosheath boundary layer, with much lower speeds. These cold ion beams are suggested to be from the cold ions entering the jet close to the X line. This is the first observation of the cold ionospheric ions in the reconnection outflow region, including the reconnection jet and the magnetosheath boundary layer.
Plasma jets and FTE Dayside Generation for Northward IMF on 8 June 2007: THEMIS Observations
NASA Astrophysics Data System (ADS)
Eriksson, S.; Cully, C. M.; Ergun, R. E.; Gosling, J. T.; Angelopoulos, V.; Bonnell, J. W.; McFadden, J. P.; Glassmeier, K.; Roux, A.; Auster, H.; Le Contel, O.
2007-12-01
Five-spacecraft THEMIS (TH) observations are presented for a 15.5 MLT equatorial magnetopause crossing on 8 June 2007 when the upstream IMF was predominantly northward with a negative IMF By component at Wind. During the 0650-0855 UT period on this day TH-B was the most tailward probe while TH-A was the most sunward probe. TH-E was closest to TH-A with a maximum separation of only 0.71 RE. The maximum TH-A to TH-B GSM separation was 1.85 RE. TH-B showed a clean magnetopause crossing into the magnetosphere as the magnetopause expanded over the probes while TH-A spent this 2-hour period within a boundary layer inside the magnetopause with frequent transitions between a magnetosheath-like and a magnetosphere-like plasma as previously seen by Cluster at high-latitudes for southward IMF [Wild et al., 2003]. TH-E observed similar activity for a shorter period of time. Many of the sheath-like transitions showed evidence of plasma jets at TH-A with enhanced speed in the tailward and/or duskward direction suggesting a subsolar component merging region. Some jets were related to frequent bipolar FTE signatures in the normal BN component with enhanced total pressure observed at their centers. The more common ±BN sequence suggests that TH-A observed tailward propagating FTEs on the sheath side of the magnetopause. We compare TH-E ExB velocities with the enhanced jet velocities observed by TH-A and discuss whether the jets observed within this boundary layer were caused by subsolar magnetopause reconnection. We also compare these low-latitude northward IMF observations with prior Cluster FTE observations at high-latitude for southward IMF.
NASA Technical Reports Server (NTRS)
Belen'kaia, Elena
1993-01-01
Comment is presented on the results of measurements, reported by Gosling et al. (1991), that were made on ISEE in the vicinity of the high-latitude dusk magnetopause near the terminator plane, at a time when the local magnetosheath and tail lobe magnetic fields were nearly oppositely directed. The character of the observed plasma flowing both tailward and sunward within the high-latitude magnetopause current layer presented real evidence for the local reconnection process. Gosling et al. argued that this process may be a manifestation of different global magnetospheric topology structures. In the comment, a global magnetospheric convection pattern is constructed for the northward IMF and for the case of a large azimuthal component of the IMF with small Bz, irrespective of its sign. The suggested scheme provides a simple explanation for the observed sunward convection in the polar caps both for the northward and for strong By with small Bz. According to the present model, for the magnetosheath field at 2300 UT on June 11, 1978, the reconnection between the open field lines appears at the northern neutral point.
NASA Astrophysics Data System (ADS)
Myers, Rachel; Egedal, Jan; Olson, Joseph; Greess, Samuel; Millet-Ayala, Alexander; Clark, Michael; Nonn, Paul; Wallace, John; Forest, Cary
2017-10-01
The NASA Magnetospheric Multiscale (MMS) Mission seeks to measure heating and motion of charged particles from reconnection events in the magnetotail and dayside magnetopause. MMS is paralleled by the Terrestrial Reconnection Experiment (TREX) at the Wisconsin Plasma Astrophysics Laboratory (WiPAL) in its study of collisionless magnetic reconnection. In the regimes seen by TREX and MMS, electron pressure anisotropy should develop, driving large-scale current layer formation. MMS has witnessed anisotropy, but the spatial coverage of the data is too limited to determine how the pressure anisotropy affects jet and current layer creation. Measurements of pressure anisotropy on TREX will be presented, and implications for reconnecting current layer structure in the magnetosphere, as measured by MMS, will be discussed. This research was conducted with support from a UW-Madison University Fellowship as well as the NSF/DOE award DE-SC0013032.
Science Objectives for a Soft X-ray Mission
NASA Astrophysics Data System (ADS)
Sibeck, D. G.; Connor, H. K.; Collier, M. R.; Collado-Vega, Y. M.; Walsh, B.
2016-12-01
When high charge state solar wind ions exchange electrons with exospheric neutrals, soft X-rays are emitted. In conjunction with flight- proven wide field-of-view soft X-ray imagers employing lobster-eye optics, recent simulations demonstrate the feasibility of imaging magnetospheric density structures such as the bow shock, magnetopause, and cusps. This presentation examines the Heliospheric scientific objectives that such imagers can address. Principal amongst these is the nature of reconnection at the dayside magnetopause: steady or transient, widespread or localized, component or antiparallel as a function of solar wind conditions. However, amongst many other objectives, soft X-ray imagers can provide crucial information concerning the structure of the bow shock as a function of solar wind Mach number and IMF orientation, the presence or absence of a depletion layer, the occurrence of Kelvin-Helmholtz or pressure-pulse driven magnetopause boundary waves, and the effects of radial IMF orientations and the foreshock upon bow shock and magnetopause location.
Observations of mirror waves and plasma depletion layer upstream of Saturn's magnetopause
NASA Technical Reports Server (NTRS)
Violante, L.; Cattaneo, M. B. Bavassano; Moreno, G.; Richardson, J. D.
1995-01-01
The two inbound traversals of the Saturn's magnetosheath by Voyagers 1 and 2 have been studied using plasma and magnetic field data. In a great portion of the subsolar magnetosheath, large-amplitude compressional waves are observed at low frequency (approximately 0.1 f(sub p)) in a high-beta plasma regime. The fluctuations of the magnetic field magnitude and ion density are anticorrelated, as are those of the magnetic and thermal pressures. The normals to the structures are almost orthogonal to the background field, and the Doppler ratio is on the average small. Even though the data do not allow the determination of the ion thermal anisotropy, the observations are consistent with values of T(sub perpendicular)/T(sub parallel) greater than 1, producing the onset of the mirror instability. All the above features indicate that the waves should be most probably identified with mirror modes. One of the two magnetopause crossings is of the high-shear type and the above described waves are seen until the magnetopause. The other crossing is of the low-shear type and, similarly to what has been observed at Earth, a plasma depletion occurs close to the magnetopause. In this layer, waves with smaller amplitude, presumably of the mirror mode, are present together with higher-frequency waves showing a transverse component.
Geospace Magnetospheric Dynamics Mission
NASA Technical Reports Server (NTRS)
Russell, C. T.; Kluever, C.; Burch, J. L.; Fennell, J. F.; Hack, K.; Hillard, G. B.; Kurth, W. S.; Lopez, R. E.; Luhmann, J. G.; Martin, J. B.;
1998-01-01
The Geospace Magnetospheric Dynamics (GMD) mission is designed to provide very closely spaced, multipoint measurements in the thin current sheets of the magnetosphere to determine the relation between small scale processes and the global dynamics of the magnetosphere. Its trajectory is specifically designed to optimize the time spent in the current layers and to minimize radiation damage to the spacecraft. Observations are concentrated in the region 8 to 40 R(sub E) The mission consists of three phases. After a launch into geostationary transfer orbit the orbits are circularized to probe the region between geostationary orbit and the magnetopause; next the orbit is elongated keeping perigee at the magnetopause while keeping the line of apsides down the tail. Finally, once apogee reaches 40 R(sub E) the inclination is changed so that the orbit will match the profile of the noon-midnight meridian of the magnetosphere. This mission consists of 4 solar electrically propelled vehicles, each with a single NSTAR thruster utilizing 100 kg of Xe to tour the magnetosphere in the course of a 4.4 year mission, the same thrusters that have been successfully tested on the Deep Space-1 mission.
Spreading Speed of Magnetopause Reconnection X-Lines Using Ground-Satellite Coordination
NASA Astrophysics Data System (ADS)
Zou, Ying; Walsh, Brian M.; Nishimura, Yukitoshi; Angelopoulos, Vassilis; Ruohoniemi, J. Michael; McWilliams, Kathryn A.; Nishitani, Nozomu
2018-01-01
Conceptual and numerical models predict that magnetic reconnection starts at a localized region and then spreads out of the reconnection plane. At the Earth's magnetopause this spreading would occur primarily in local time along the boundary. Different simulations have found the spreading to occur at different speeds such as the Alfvén speed and speed of the current carriers. We use conjugate Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft and Super Dual Auroral Radar Network (SuperDARN) radar measurements to observationally determine the X-line spreading speed at the magnetopause. THEMIS probes the reconnection parameters locally, and SuperDARN tracks the reconnection development remotely. Spreading speeds under different magnetopause boundary conditions are obtained and compared with model predictions. We find that while spreading under weak guide field could be explained by either the current carriers or the Alfvén waves, spreading under strong guide field is consistent only with the current carriers.
Enhanced electron mixing and heating in 3-D asymmetric reconnection at the Earth's magnetopause
Le, Ari Yitzchak; Daughton, William Scott; Chen, Li -Jen; ...
2017-03-01
Here, electron heating and mixing during asymmetric reconnection are studied with a 3-D kinetic simulation that matches plasma parameters from Magnetospheric Multiscale (MMS) spacecraft observations of a magnetopause diffusion region. The mixing and heating are strongly enhanced across the magnetospheric separatrix compared to a 2-D simulation. The transport of particles across the separatrix in 3-D is attributed to lower hybrid drift turbulence excited at the steep density gradient near the magnetopause. In the 3-D simulation (and not the 2-D simulation), the electron temperature parallel to the magnetic field within the mixing layer is significantly higher than its upstream value inmore » agreement with the MMS observations.« less
Can the ionosphere regulate magnetospheric convection?
NASA Technical Reports Server (NTRS)
Coroniti, F. V.; Kennel, C. F.
1972-01-01
Following a southward shift of the interplanetary magnetic field, which implies enhanced reconnection at the nose of the magnetosphere, the magnetopause shrinks from its Chapman-Ferraro equilibrium position. If the convective return of magnetic flux to the magnetopause equalled the reconnection rate, the magnetopause would not shrink. Consequently, there is a delay in the development of magnetospheric convection following the onset of reconnection, which is ascribed to line tying by the polar cusp ionosphere. A simple model relates the dayside magnetopause displacement to the currents feeding the polar cap ionosphere, from which the ionospheric electric field, and consequently, the flux return rate, may be estimated as a function of magnetopause displacement. Flux conservation arguments then permit an estimate of the time scale on which convection increases, which is not inconsistent with that of the substorm growth phase.
Speed and thickness of the magnetopause.
NASA Technical Reports Server (NTRS)
Kaufmann, R. L.; Konradi, A.
1973-01-01
We have used the finite gyroradius of protons with energies greater than 140 keV to determine the location of the magnetopause when the satellite is within the adjacent steep proton flux gradient. This steep gradient region is usually two to four 140-keV proton gyroradii, or about 1000 to 4000 km thick. The measurements described here were made within 45 deg of the earth-sun line on moderately disturbed days, when proton fluxes were unusually high. On these days, the magnetopause usually moves at a speed of less than 20 km/sec. The magnetopause velocity sometimes changes abruptly, while remaining below 20 km/sec. Very rapid (about 50 km/sec) radial motion appears to be associated with the propagation of single, isolated waves along the magnetopause. The thickness of the electric current sheet that produces the magnetic field rotation in the magnetopause is usually on the order of 10 times the gyroradius of a 1-keV proton, or about 1000 km.
Energetic Particle Sounding of the Magnetopause Deformed by Hot Flow Anomaly
NASA Astrophysics Data System (ADS)
Zhao, L.; Zong, Q.; Zhang, H.
2017-12-01
Hot flow anomalies (HFAs), which are frequently observed near Earth's bow shock, are phenomena resulting from the interaction between interplanetary discontinuities and Earth's bow shock. Such transient phenomena upstream the bow shock can cause significant deformation of the bow shock and the magnetosphere, generating traveling convection vortices, field-aligned currents, and ULF waves in the Earth's magnetosphere. A large HFA was observed by MMS on November 19, 2015, lasting about 16 minutes. In this study, energetic particle sounding method with high time resolution (150 ms) Fast Plasma Investigation (FPI) data is used to determine the deformed magnetopause distances, orientations, and structures in the interval when MMS pass through the deformed magnetopause. The energetic particle sounding result from single MMS satellite for every moment in the interval when the distance from the magnetopause to the satellite is less than two proton gyro radii shows the profile of the deformed magnetopause.
Topology and convection of a northward interplanetary magnetic field reconnection event
NASA Astrophysics Data System (ADS)
Wendel, Deirdre E.
>From observations and global MHD simulations, we deduce the local and global magnetic topology and current structure of a northward IMF reconnection event in the dayside magnetopause. The ESA four-satellite Cluster suite crossed the magnetopause at a location mapping along field lines to an ionospheric H-alpha emission observed by the IMAGE spacecraft. Therefore, we seek reconnection signatures in the Cluster data. From the four-point Cluster observations, we develop a superposed epoch method to find the instantaneous x-line, its associated current sheet, and the nature of the reconnecting particle flows. This method is unique in that it removes the motion of the hyperbolic structure and the magnetopause relative to the spacecraft. We detect singular field line reconnection--planar hyperbolic reconnecting fields superposed on an out-of- plane field. We also detect the non-ideal electric field that is required to certify reconnection at locations where the magnetic field does not vanish, and estimate a reconnection electric field of - 4 mV/m. The current sheet appears bifurcated, embedding a 30 km current sheet of opposite polarity within a broader current sheet about 130 km thick. Using a resistive MHD simulation and ionospheric satellite data, we examine the same event at global length scales. This gives a 3D picture of where reconnection occurs on the magnetopause for northward IMF with B x and B y components and a tilted dipole field. It also demonstrates that northward IMF 3D reconnection couples the reconnection electric field and field-aligned currents to the ionosphere, driving sunward convection in a manner that agrees with satellite measurements of sunward flows. We find singular field line reconnection of the IMF with both open and closed field lines near nulls in both hemispheres. The reconnection in turn produces both open and closed field lines. We discuss for the first time how line-tying in the ionosphere and draping of open and IMF field lines produce a torsion of the reconnecting singular magnetic field lines within the magnetopause. The simulation and data show that magnetopause reconnection topology is three-dimensional in a way that challenges accepted models of neutral lines and x-lines with guide fields.
Convective and diffusive ULF wave driven radiation belt electron transport
NASA Astrophysics Data System (ADS)
Degeling, A. W.; Rankin, R.; Elkington, S. R.
2011-12-01
The process of magnetospheric radiation belt electron transport driven by ULF waves is studied using a 2-D ideal MHD model for ULF waves in the equatorial plane including day/night asymmetry and a magnetopause boundary, and a test kinetic model for equatorially mirroring electrons. We find that ULF wave disturbances originating along the magnetopause flanks in the afternoon sector can act to periodically inject phase space density from these regions into the magnetosphere. Closely spaced drift-resonant surfaces for electrons with a given magnetic moment in the presence of the ULF waves create a layer of stochastic dynamics for L-shells above 6.5-7 in the cases examined, extending to the magnetopause. The phase decorrelation time scale for the stochastic region is estimated by the relaxation time for the diffusion coefficient to reach a steady value. This is found to be of the order of 10-15 wave periods, which is commensurate with the typical duration of observed ULF wave packets in the magnetosphere. For L-shells earthward of the stochastic layer, transport is limited to isolated drift-resonant islands in the case of narrowband ULF waves. We examine the effect of increasing the bandwidth of the ULF wave driver by summing together wave components produced by a set of independent runs of the ULF wave model. The wave source spectrum is given a flat-top amplitude of variable width (adjusted for constant power) and random phase. We find that increasing bandwidth can significantly enhance convective transport earthward of the stochastic layer and extend the stochastic layer to lower L-shells.
A predictive model of geosynchronous magnetopause crossings
NASA Astrophysics Data System (ADS)
Dmitriev, A.; Suvorova, A.; Chao, J.-K.
2011-05-01
We have developed a model predicting whether or not the magnetopause crosses geosynchronous orbit at a given location for given solar wind pressure Psw, Bz component of the interplanetary magnetic field (IMF), and geomagnetic conditions characterized by 1 min SYM-H index. The model is based on more than 300 geosynchronous magnetopause crossings (GMCs) and about 6000 min when geosynchronous satellites of GOES and Los Alamos National Laboratory (LANL) series are located in the magnetosheath (so-called MSh intervals) in 1994-2001. Minimizing of the Psw required for GMCs and MSh intervals at various locations, Bz, and SYM-H allows describing both an effect of magnetopause dawn-dusk asymmetry and saturation of Bz influence for very large southward IMF. The asymmetry is strong for large negative Bz and almost disappears when Bz is positive. We found that the larger the amplitude of negative SYM-H, the lower the solar wind pressure required for GMCs. We attribute this effect to a depletion of the dayside magnetic field by a storm time intensification of the cross-tail current. It is also found that the magnitude of threshold for Bz saturation increases with SYM-H index such that for small negative and positive SYM-H the effect of saturation diminishes. This supports an idea that enhanced thermal pressure of the magnetospheric plasma and ring current particles during magnetic storms results in the saturation of magnetic effect of the IMF Bz at the dayside magnetopause. A noticeable advantage of the model's prediction capabilities in comparison with other magnetopause models makes the model useful for space weather predictions.
Depletion of solar wind plasma near a planetary boundary
NASA Technical Reports Server (NTRS)
Zwan, B. J.; Wolf, R. A.
1976-01-01
A mathematical model is presented that describes the squeezing of solar wind plasma out along interplanetary magnetic field lines in the region between the bow shock and the effective planetary boundary (in the case of the earth, the magnetopause). In the absence of local magnetic merging the squeezing process should create a 'depletion layer', a region of very low plasma density just outside the magnetopause. Numerical solutions are obtained for the dimensionless magnetohydrodynamic equations describing this depletion process for the case where the solar wind magnetic field is perpendicular to the solar wind flow direction. For the case of the earth, the theory predicts that the density should be reduced by a factor exceeding 2 in a layer about 700-1300 km thick if the Alfven Mach number in the solar wind, is equal to 8. Scaling of the model calculations to Venus and Mars suggests layer thicknesses about 1/10 and 1/15 those of the earth, respectively, neglecting diffusion and ionospheric effects.
Can the ionosphere regulate magnetospheric convection.
NASA Technical Reports Server (NTRS)
Coroniti, F. V.; Kennel, C. F.
1973-01-01
A simple model is outlined that relates the dayside magnetopause displacement to the currents feeding the polar cap ionosphere, from which the ionospheric electric field and the flux return rate may be estimated as a function of magnetopause displacement. Then, flux conservation arguments make possible an estimate of the time scale on which convection increases.
Observations of ionospheric convection vortices - Signatures of momentum transfer
NASA Technical Reports Server (NTRS)
Mchenry, M. A.; Clauer, C. R.; Friis-Christensen, E.; Kelly, J. D.
1988-01-01
Several classes of traveling vortices in the dayside ionospheric flow have been detected and tracked using the Greenland magnetometer chain. One class observed during quiet times consists of a continuous series of vortices moving generally antisunward for several hours at a time. Assuming each vortex to be the convection pattern produced by a small field aligned current moving across the ionosphere, the amount of field aligned current was found by fitting a modeled ground magnetic signature to measurements from the chain of magnetometers. The calculated field aligned current is seen to be steady for each vortex and neighboring vortices have currents of opposite sign. Low altitude DMSP observations indicate the vortices are on field lines which map to the inner edge of the low latitude boundary layer. Because the vortices are conjugate to the boundary layer, repeat in a regular fashion and travel antisunward, it is argued that this class of vortices is caused by surface waves at the magnetopause. No strong correlations between field aligned current strength and solar wind density, velocity, or Bz is found.
NASA Technical Reports Server (NTRS)
Zhou, M.; Ashour-Abdalla, M.; Berchem, J.; Walker, R. J.; Liang, H.; El-Alaoui, M.; Goldstein, M. L.; Lindqvist, P.-A.; Marklund, G.; Khotyaintsev, Y. V.;
2016-01-01
We report Magnetospheric Multiscale observations of high-frequency electrostatic waves in the vicinity of the reconnection ion diffusion region on the dayside magnetopause. The ion diffusion region is identified during two magnetopause crossings by the Hall electromagnetic fields, the slippage of ions with respect to the magnetic field, and magnetic energy dissipation. In addition to electron beam modes that have been previously detected at the separatrix on the magnetospheric side of the magnetopause, we report, for the first time, the existence of electron cyclotron harmonic waves at the magnetosheath separatrix. Broadband waves between the electron cyclotron and electron plasma frequencies, which were probably generated by electron beams, were found within the magnetopause current sheet. Contributions by these high-frequency waves to the magnetic energy dissipation were negligible in the diffusion regions as compared to those of lower-frequency waves.
Impulsive penetration : a viable mechanism for plasma entry across the magnetopause ?
NASA Astrophysics Data System (ADS)
De Keyser, Johan; Echim, Marius; Darrouzet, Fabien; Gunell, Herbert
Density inhomogeneities in the solar wind may cross the bow shock, and retain an excess earthward momentum in the magnetosheath upon approaching the magnetopause. Also, the bow shock dynamics as well as the behaviour of the magnetopause itself may introduce spatial inhomogeneities in the magnetosheath density and/or flow. Plasma entities with excess momentum may penetrate across the magnetopause, by the impulsive penetration mechanism. This plasma entry mechanism requires the existence of a polarization electric field in the moving blob, that is sustained by charge separation layers in the interfaces at the flanks of the blob. Both direct observation and simulation of plasma entry across the magnetopause following the impulsive penetration mechanism are hard. It is difficult to prove that observed plasma entry is really due to the impulsive penetration mechanism since the required charge separation layers or the resulting polarization electric field are hard to measure directly. Simply assessing the geometry is not easy, although multi-spacecraft missions like Cluster have resolved many of the ambiguities inherent in single-spacecraft measurements. Impulsive penetration is difficult to simulate as it operates on the fluid, the ion, and the electron scales simultaneously. It requires not only a high spatial resolution, but also a high precision to properly represent the charge imbalance in the flank interfaces. We have modelled impulsive penetration with a kinetic model, by simplifying the problem. The fully kinetic model is 3-dimensional in velocity space, but we consider spatial structure only along a single spatial dimension, namely the coordinate transverse to the blob’s direction of motion. We thereby assume that the blob is elongated both along the magnetic field and in the direction of motion. The model is semi-analytic and is able to represent the charge imbalance in the blob edges very well. In a second modelling step, we consider a slow, quasi-static change of this structure as the blob penetrates deeper into the magnetosphere, resulting in a description of the evolution of the penetrating plasma blob as a consequence of both adiabatic and non-adiabatic deceleration. Although the simulation considers this a simplified geometry, it sheds some light on some fundamental aspects of this plasma entry mechanism.
Trapped particles at a magnetic discontinuity
NASA Technical Reports Server (NTRS)
Stern, D. P.
1972-01-01
At a tangential discontinuity between two constant magnetic fields a layer of trapped particles can exist, this work examines the conditions under which the current carried by such particles tends to maintain the discontinuity. Three cases are examined. If the discontinuity separates aligned vacuum fields, the only requirement is that they be antiparallel. With arbitrary relative orientations, the field must have equal intensities on both sides. Finally, with a guiding center plasma on both sides, the condition reduces to a relation which is also derivable from hydromagnetic theory. Arguments are presented for the occurrence of such trapped modes in the magnetopause and for the non-existence of specular particle reflection.
Extended Magnetic Reconnection Across the Dayside Magnetopause
NASA Technical Reports Server (NTRS)
Dunlop, M. W.; Zhang, Q.-H.; Bogdanova, Y. V.; Lockwood, M.; Pu, Z.; Hasegawa, H.; Wang, J.; Taylor, M. G. G. T.; Berchem, J.; Lavraund, B.;
2011-01-01
The extent of where magnetic reconnection (MR), the dominant process responsible for energy and plasma transport into the magnetosphere, operates across Earth's dayside magnetopause has previously been only indirectly shown by observations. We report the first direct evidence of X-line structure resulting from the operation of MR at each of two widely separated locations along the tilted, subsolar line of maximum current on Earth's magnetopause, confirming the operation of MR at two or more sites across the extended region where MR is expected to occur. The evidence results from in-situ observations of the associated ion and electron plasma distributions, present within each magnetic X-line structure, taken by two spacecraft passing through the active MR regions simultaneously.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrinec, S.M.; Russell, C.T.
1995-06-01
The shape of the dayside magnetopause has been studied from both a theoretical and an empirical perspective for several decades. Early theoretical studies of the magnetopause shape assumed an inviscid interaction and normal pressure balance along the entire boundary, with the interior magnetic field and magnetopause currents being solved self-consistently and iteratively, using the Biot-Savart Law. The derived shapes are complicated, due to asymmetries caused by the nature of the dipole field and the direction of flow of the solar wind. These models contain a weak field region or cusp through which the solar wind has direct access to themore » ionosphere. More recent MHD model results have indicated that the closed magnetic field lines of the dayside magnetosphere can be dragged tailward of the terminator plane, so that there is no direct access of the magnetosheath to the ionosphere. Most empirical studies have assumed that the magnetopause can be approximated by a simple conic section with a specified number of coefficients, which are determined by least squares fits to spacecraft crossing positions. Thus most empirical models resemble more the MHD models than the more complex shape of the Biot-Savart models. In this work, the authors examine empirically the effect of the cusp regions on the shape of the dayside magnetopause, and they test the accuracy of these models. They find that during periods of northward IMF, crossings of the magnetopause that are close to one of the cusp regions are observed at distances closer to Earth than crossings in the equatorial plane. This result is consistent with the results of the inviscid Biot-Savart models and suggests that the magnetopause is less viscous than is assumed in many MHD models. 28 refs., 4 figs., 1 tab.« less
NASA Technical Reports Server (NTRS)
Kitamura, N.; Hasegawa, H.; Saito, Y.; Shinohara, I.; Yokota, S.; Nagai, T.; Pollock, C. J.; Giles, B. L.; Moore, T. E.; Dorelli, J. C.;
2016-01-01
At 02:13 UT on 18 November 2015 when the geomagnetic dipole was tilted by -27deg, the MMS spacecraft observed southward reconnection jets near the subsolar magnetopause under southward and dawnward interplanetary magnetic field conditions. Based on four-spacecraft estimations of the magnetic field direction near the separatrix and the motion and direction of the current sheet, the location of the reconnection line was estimated to be approx.1.8 R(sub E) or further northward of MMS. The Geotail spacecraft at GSM Z approx. 1.4 R(sub E) also observed southward reconnection jets at the dawnside magnetopause 30-40 min later. The estimated reconnection line location was northward of GSM Z approx.2 R(sub E). This crossing occurred when MMS observed purely southward magnetic fields in the magnetosheath. The simultaneous observations are thus consistent with the hypothesis that the dayside magnetopause reconnection line shifts from the subsolar point toward the northem (winter) hemisphere due to the effect of geomagnetic dipole tilt.
NASA Technical Reports Server (NTRS)
Eriksson, S.; Lavraud, B.; Wilder, F. D.; Stawarz, J. E.; Giles, B. L.; Burch, J. L.; Baumjohann, W.; Ergun, R. E.; Lindqvist, P.-A.; Magnes, W.;
2016-01-01
The four Magnetospheric Multiscale (MMS) spacecraft recorded the first direct evidence of reconnection exhausts associated with Kelvln-Helmholtz (KH) waves at the duskside magnetopause on 8 September 2015 which allows for local mass and energy transport across the flank magnetopause. Pressure anisotropy-weighted Walen analyses confirmed in-plane exhausts across 22 of 42 KH-related trailing magnetopause current sheets (CSs). Twenty-one jets were observed by all spacecraft, with small variations in ion velocity, along the same sunward or antisunward direction with nearly equal probability. One exhaust was only observed by the MMS-1,2 pair, while MMS-3,4 traversed a narrow CS (1.5 ion inertial length) in the vicinity of an electron diffusion region. The exhausts were locally 2-D planar in nature as MMS-1, 2 observed almost identical signatures separated along the guide-field. Asymmetric magnetic and electric Hall fields are reported in agreement with a strong guide-field and a weak plasma density asymmetry across the magnetopause CS.
Modeling the Earth's magnetospheric magnetic field confined within a realistic magnetopause
NASA Technical Reports Server (NTRS)
Tsyganenko, N. A.
1995-01-01
Empirical data-based models of the magnetosphereic magnetic field have been widely used during recent years. However, the existing models (Tsyganenko, 1987, 1989a) have three serious deficiencies: (1) an unstable de facto magnetopause, (2) a crude parametrization by the K(sub p) index, and (3) inaccuracies in the equatorial magnetotail B(sub z) values. This paper describes a new approach to the problem; the essential new features are (1) a realistic shape and size of the magnetopause, based on fits to a large number of observed crossing (allowing a parametrization by the solar wind pressure), (2) fully controlled shielding of the magnetic field produced by all magnetospheric current systems, (3) new flexible representations for the tail and ring currents, and (4) a new directional criterion for fitting the model field to spacecraft data, providing improved accuracy for field line mapping. Results are presented from initial efforts to create models assembled from these modules and calibrated against spacecraft data sets.
Asymmetric Solar Wind driven substorms from ballooning-interchange and magnetic reconnection
NASA Astrophysics Data System (ADS)
Horton, W.
2013-12-01
For nonsymmetric currents closing in the northern and southern magnetopause, we find new onset conditions for the ballooning-interchange and magnetic reconnections modes. While these two eigenmodes have opposite symmetries in a classic symmetric geotail geometry as in Prichett-Coroniti-Pellat [GRL1997], this symmetry is broken for real solar winds and a tilted Earth magnetic dipole. Extending earlier work, we show a new model that includes distinct north I_[N] and south I_[S] magnetopause return currents and distinct N-S magnetopause boundary boundary conditions. These conditions drive asymmetric wave functions within the geotail. The wave functions in the high β magnetopause give new onset conditions for substorms. The nonlinear growth rates are estimated and nonlinear FLR-fluid simulations are performed. FLR fluid models with 5 to 7 pde's, are compared qualitatively with the PIC simulations of Prichett-Coroniti [ P-C 2013 and 2011] which used 4 billion particles on a Cray XT5 NSF computer. The P-C 2013 simulations capture some features of the THEMIS data and we look for the corresponding features in the FLR-fluid simulations. The classic reconnection parameter Delta^{'} has a complex generalization for the asymmetric solar wind and IMF on the magnetopause [Horton and Tajima, JGR 1988]. When the mid-tail B_z(x) is such as to give the ballooning-interchange instability we show that in the late stage of the evolutions the nonlinear convective derivatives in the pde-system change the symmetry of the structures producing large magnetic islands of the scale observed by CLUSTER substorm data [ Nakamura et al. 2006]. We conclude that asymmetric models are needed to give reliable forecasting of the onset of subtorms and storms.
NASA Astrophysics Data System (ADS)
Maynard, N. C.; Savin, S.; Erickson, G. M.; Kawano, H.; Němeček, Z.; Peterson, W. K.; Šafránoková, J.; Sandahl, I.; Scudder, J. D.; Siscoe, G. L.; Sonnerup, B. U. Ö.; Weimer, D. R.; White, W. W.; Wilson, G. R.
2001-04-01
Using a unique data set from the Wind, Polar, Interball 1, Magion 4, and Defense Meteorological Satellite Program (DMSP) F11 satellites, comparisons with the Integrated Space Weather Model (ISM) have provided validation of the global structure predicted by the ISM model, which in turn has allowed us to use the model to interpret the data to further understand boundary layers and magnetospheric processes. The comparisons have shown that the magnetospheric ``sash'' [White et al., 1998], a region of low magnetic field discovered by the MHD modeling which extends along the high-latitude flank of the magnetopause, is related to the turbulent boundary layer on the high-latitude magnetopause, recently mapped by Interball 1. The sash in the data and in the model has rotational discontinuity properties, expected for a reconnection site. At some point near or behind the terminator, the sash becomes a site for reconnection of open field lines, which were previously opened by merging on the dayside. This indicates that significant reconnection in the magnetotail occurs on the flanks. Polar mapped to the high-density extension of the sash into the tilted plasma sheet. The source of the magnetosheath plasma observed by Polar on closed field lines behind the terminator was plasma entry through the low field connection of the sash to the central plasma sheet. The Polar magnetic field line footprints in each hemisphere are moving in different directions. Above and below the tilted plasma sheet the flows in the model are consistent with the corresponding flows in the ionosphere. The turbulence in the plasma sheet allows the convection patterns from each hemisphere to adjust. The boundary layer in the equatorial plane on the flank for this interplanetary magnetic field BY condition, which is below the tilted central plasma sheet, is several RE thick and is on tailward flowing open field lines. This thick boundary layer shields the magnetopause from viscous forces and must be driven by magnetic tension. Above the plasma sheet the boundary layer is dominated by the sash, and the model indicates that the open region inside the sash is considerably thinner.
Particle Acceleration and Heating Processes at the Dayside Magnetopause
NASA Astrophysics Data System (ADS)
Berchem, J.; Lapenta, G.; Richard, R. L.; El-Alaoui, M.; Walker, R. J.; Schriver, D.
2017-12-01
It is well established that electrons and ions are accelerated and heated during magnetic reconnection at the dayside magnetopause. However, a detailed description of the actual physical mechanisms driving these processes and where they are operating is still incomplete. Many basic mechanisms are known to accelerate particles, including resonant wave-particle interactions as well as stochastic, Fermi, and betatron acceleration. In addition, acceleration and heating processes can occur over different scales. We have carried out kinetic simulations to investigate the mechanisms by which electrons and ions are accelerated and heated at the dayside magnetopause. The simulation model uses the results of global magnetohydrodynamic (MHD) simulations to set the initial state and the evolving boundary conditions of fully kinetic implicit particle-in-cell (iPic3D) simulations for different solar wind and interplanetary magnetic field conditions. This approach allows us to include large domains both in space and energy. In particular, some of these regional simulations include both the magnetopause and bow shock in the kinetic domain, encompassing range of particle energies from a few eV in the solar wind to keV in the magnetospheric boundary layer. We analyze the results of the iPic3D simulations by discussing wave spectra and particle velocity distribution functions observed in the different regions of the simulation domain, as well as using large-scale kinetic (LSK) computations to follow particles' time histories. We discuss the relevance of our results by comparing them with local observations by the MMS spacecraft.
NASA Astrophysics Data System (ADS)
Oieroset, M.; Phan, T.; Haggerty, C. C.; Shay, M.; Eastwood, J. P.; Gershman, D. J.; Drake, J. F.; Fujimoto, M.; Ergun, R.; Mozer, F.; Oka, M.; Torbert, R. B.; Burch, J. L.; Wang, S.; Chen, L. J.; Swisdak, M.; Pollock, C. J.; Dorelli, J.; Fuselier, S. A.; Lavraud, B.; Kacem, I.; Giles, B. L.; Moore, T. E.; Saito, Y.; Avanov, L. A.; Paterson, W. R.; Strangeway, R. J.; Schwartz, S. J.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Malakit, K.
2017-12-01
The formation and evolution of magnetic flux ropes is of critical importance for a number of collisionless plasma phenomena. At the dayside magnetopause flux rope-like structures can form between two X-lines. The two X-lines produce converging plasma jets. At the interface between the colliding jets a compressed current sheet can form, which in turn can undergo reconnection. We present MMS observations of the exhaust and diffusion region of such reconnection.
NASA Astrophysics Data System (ADS)
Kieokaew, Rungployphan; Foullon, Claire; Lavraud, Benoit
2018-01-01
Four-spacecraft missions are probing the Earth's magnetospheric environment with high potential for revealing spatial and temporal scales of a variety of in situ phenomena. The techniques allowed by these four spacecraft include the calculation of vorticity and the magnetic curvature analysis (MCA), both of which have been used in the study of various plasma structures. Motivated by curved magnetic field and vortical structures induced by Kelvin- Helmholtz (KH) waves, we investigate the robustness of the MCA and vorticity techniques when increasing (regular) tetrahedron sizes, to interpret real data. Here for the first time, we test both techniques on a 2.5-D MHD simulation of KH waves at the magnetopause. We investigate, in particular, the curvature and flow vorticity across KH vortices and produce time series for static spacecraft in the boundary layers. The combined results of magnetic curvature and vorticity further help us to understand the development of KH waves. In particular, first, in the trailing edge, the magnetic curvature across the magnetopause points in opposite directions, in the wave propagation direction on the magnetosheath side and against it on the magnetospheric side. Second, the existence of a "turnover layer" in the magnetospheric side, defined by negative vorticity for the duskside magnetopause, which persists in the saturation phase, is reminiscent of roll-up history. We found significant variations in the MCA measures depending on the size of the tetrahedron. This study lends support for cross-scale observations to better understand the nature of curvature and its role in plasma phenomena.
Magnetopause Losses of Radiation Belt Electrons During a Recent Magnetic Storm
NASA Astrophysics Data System (ADS)
Lemon, C. L.; Chen, M.; Roeder, J. L.; Fennell, J. F.; Mulligan, T. L.; Claudepierre, S. G.
2013-12-01
We present results from Van Allen Probes observations during the magnetic storm of June 1, 2013, and compare them with simulations of the same event using the RCM-E model. The RCM-E calculates ion and electron transport in self-consistently computed electric and magnetic fields. We examine the effect of the perturbed ring current magnetic field on the transport of energetic electrons, and the significance of this transport for explaining the observed evolution of radiation belt fluxes during this event. The event is notable because it is a relatively simple storm in which strong convection persists for approximately 7 hours, injecting a moderately strong ring current (minimum Dst of -120 nT); convection then quickly shuts off, leading to a long and smooth recovery phase. We use RCM-E simulations, constrained by Van Allen Probes data, to asses the rate of magnetopause losses of electrons (magnetopause shadowing), and to calculate electron drift times and the evolution of electron phase space densities during the storm event. We recently modified the RCM-E plasma drift calculations to include relativistic treatment of electrons and a more realistic electron loss model. The new electron loss model, although still somewhat simplistic, gives much more accurate loss rates in the inner magnetosphere (including the radiation belts), which significantly affects the resulting electron fluxes compared to previous simulations. This, in turn, modifies the transport of ions and electrons via feedback with both the electric and magnetic fields. Our results highlight the effect of the ring current on the evolution of the radiation belt electrons, with particular emphasis on the role that magnetopause losses play in the observed variation of radiation belt electron fluxes during the storm.
Evidence for Spiral Magnetic Structures at the Magnetopause: A Case for Multiple Reconnections
NASA Technical Reports Server (NTRS)
Vaisberg, O. L.; Smirnov, V. N.; Avanov, L. A.; Moore, T. E.
2003-01-01
We analyze plasma structures within the low latitude boundary layer (LLBL) observed by the lnterball Tail spacecraft under southward interplanetary magnetic field. Ion velocity distributions observed in the LLBL under these conditions fall into three categories: (a) D-shaped distributions, (b) ion velocity distributions consisting of two counterstreaming magnetosheath-type, and (c) distributions with three components where one of them has nearly zero velocity parallel to magnetic field (VlI), while the other two are counter-streaming components. D-shaped ion velocity distributions (a) correspond to magnetosheath plasma injections into reconnected flux tubes, as influenced by spacecraft location relative to the reconnection site. Simultaneous counter-streaming injections (b) suggest multiple reconnections. Three-component ion velocity distributions (c) and theii evolution with decreasing number density in the LLBL are consistent v behavior expected on long spiral flux tube islands at the magnetopaus as has been proposed and found to occur in magnetopause simulatior We interpret these distributions as a natural consequence of the formation of spiral magnetic flux tubes consisting of a mixture of alternating segments originating from the magnetosheath and magnetospheric plasmas. We suggest that multiple reconnections pla! an important role in the formation of the LLBL.
NASA Astrophysics Data System (ADS)
Kacem, I.; Jacquey, C.; Génot, V.; Lavraud, B.; Vernisse, Y.; Marchaudon, A.; Le Contel, O.; Breuillard, H.; Phan, T. D.; Hasegawa, H.; Oka, M.; Trattner, K. J.; Farrugia, C. J.; Paulson, K.; Eastwood, J. P.; Fuselier, S. A.; Turner, D.; Eriksson, S.; Wilder, F.; Russell, C. T.; Øieroset, M.; Burch, J.; Graham, D. B.; Sauvaud, J.-A.; Avanov, L.; Chandler, M.; Coffey, V.; Dorelli, J.; Gershman, D. J.; Giles, B. L.; Moore, T. E.; Saito, Y.; Chen, L.-J.; Penou, E.
2018-03-01
The occurrence of spatially and temporally variable reconnection at the Earth's magnetopause leads to the complex interaction of magnetic fields from the magnetosphere and magnetosheath. Flux transfer events (FTEs) constitute one such type of interaction. Their main characteristics are (1) an enhanced core magnetic field magnitude and (2) a bipolar magnetic field signature in the component normal to the magnetopause, reminiscent of a large-scale helicoidal flux tube magnetic configuration. However, other geometrical configurations which do not fit this classical picture have also been observed. Using high-resolution measurements from the Magnetospheric Multiscale mission, we investigate an event in the vicinity of the Earth's magnetopause on 7 November 2015. Despite signatures that, at first glance, appear consistent with a classic FTE, based on detailed geometrical and dynamical analyses as well as on topological signatures revealed by suprathermal electron properties, we demonstrate that this event is not consistent with a single, homogenous helicoidal structure. Our analysis rather suggests that it consists of the interaction of two separate sets of magnetic field lines with different connectivities. This complex three-dimensional interaction constructively conspires to produce signatures partially consistent with that of an FTE. We also show that, at the interface between the two sets of field lines, where the observed magnetic pileup occurs, a thin and strong current sheet forms with a large ion jet, which may be consistent with magnetic flux dissipation through magnetic reconnection in the interaction region.
A statistical study of magnetopause structures: Tangential versus rotational discontinuities
NASA Astrophysics Data System (ADS)
Chou, Y.-C.; Hau, L.-N.
2012-08-01
A statistical study of the structure of Earth's magnetopause is carried out by analyzing two-year AMPTE/IRM plasma and magnetic field data. The analyses are based on the minimum variance analysis (MVA), the deHoffmann-Teller (HT) frame analysis and the Walén relation. A total of 328 magnetopause crossings are identified and error estimates associated with MVA and HT frame analyses are performed for each case. In 142 out of 328 events both MVA and HT frame analyses yield high quality results which are classified as either tangential-discontinuity (TD) or rotational-discontinuity (RD) structures based only on the Walén relation: Events withSWA ≤ 0.4 (SWA ≥ 0.5) are classified as TD (RD), and rest (with 0.4 < SWA < 0.5) is classified as "uncertain," where SWA refers to the Walén slope. With this criterion, 84% of 142 events are TDs, 12% are RDs, and 4% are uncertain events. There are a large portion of TD events which exhibit a finite normal magnetic field component Bnbut have insignificant flow as compared to the Alfvén velocity in the HT frame. Two-dimensional Grad-Shafranov reconstruction of forty selected TD and RD events show that single or multiple X-line accompanied with magnetic islands are common feature of magnetopause current. A survey plot of the HT velocity associated with TD structures projected onto the magnetopause shows that the flow is diverted at the subsolar point and accelerated toward the dawn and dusk flanks.
Diurnal and Seasonal Variability of Uranus' Magnetopause under Different IMF
NASA Astrophysics Data System (ADS)
Cao, X.; Paty, C. S.
2017-12-01
In order to study the asymmetric structure of planetary magnetopause, we propose a quantitative form to measure the asymmetries of the magnetospheric boundaries. First, we use a numerical model to simulate the global magnetosphere of Uranus, which has an extreme dynamically asymmetric magnetosphere due to its large obliquity, its highly tilted and off centered dipole moment when interacting with the solar wind, under different IMF (interplanetary magnetic field) orientations. Based on the results of our model, we use the previous analytical model of planetary magnetopause to fit the magnetopause boundary of Uranus and analyze the characteristics of the magnetopause such as the variation of the flaring parameter and the cusp indentation, which give us an initial intuition of the asymmetric structure of the magnetopause. The result shows the asymmetry of the magnetopause is highly dependent on the seasons and the rotation of Uranus under different IMF orientations. The shape of the magnetopause also affected by the off-centered dipole moment. This study can be applicable for the prediction of the magnetopause boundary detection in future space missions.
Periodic magnetopause oscillations observed with the GOES satellites on March 24, 1991
NASA Technical Reports Server (NTRS)
Cahill, L. J., Jr.; Winckler, J. R.
1992-01-01
The GOES 6 and 7 satellites were in the dayside magnetosphere late on March 24, 1991, when the magnetopause moved in to geosynchronous orbit. Observations on GOES 6 near 1030 local time (LT) indicated six inward and outward periodic movements of the magnetopause past the satellite over a 30-min interval. Later the magnetopause moved farther in, placing GOES 6 (1100 LT) in the magnetosheath and then moving in past GOES 7, near 1245 LT. The periodic oscillations of the magnetopause at GOES 6 suggest surface waves propagating toward the dawn flank of the magnetopause.
NASA Technical Reports Server (NTRS)
Ogino, T.; Walker, R. J.; Ashour-Abdalla, M.; Dawson, J. M.
1986-01-01
The interaction between the solar wind and the earth's magnetosphere has been studied by using a time-dependent three-dimensional MHD model in which the IMF pointed in several directions between dawnward and southward. When the IMF is dawnward, the dayside cusp and the tail lobes shift toward the morningside in the northern magnetosphere. The plasma sheet rotates toward the north on the dawnside of the tail and toward the south on the duskside. For an increasing southward IMF component, the plasma sheet becomes thinner and subsequently wavy because of patchy or localized tail reconnection. At the same time, the tail field-aligned currents have a filamentary layered structure. When projected onto the northern polar cap, the filamentary field-aligned currents are located in the same area as the region 1 currents, with a pattern similar to that associated with auroral surges. Magnetic reconnection also occurs on the dayside magnetopause for southward IMF.
Diffusion region in magnetopause reconnection observed by the MMS mission
NASA Astrophysics Data System (ADS)
Chen, Li-Jen
2017-10-01
The diffusion region is the primary location where the plasmas are energized to dissipate the magnetic energy in reconnection. The NASA Magnetospheric Multiscale (MMS) mission, capable of resolving sub-gyroscales of both electrons and ions, has created new frontiers in the state-of-the-art understanding of the diffusion region. The MMS detection of reconnection at Earth's magnetopause will be discussed to highlight the roles of demagnetized particle orbits and wave fluctuations in the reconnection dynamics. When the guide field is significantly weaker than the reconnecting magnetic field, the reconnection current layer is gyro-resistive and the electron distribution functions exhibit strong finite-gyroradius effects with crescent and counterstreaming characteristics. When the guide field is comparable to the reconnecting component, the electron jets are mainly the E cross B drift due to the polarization electric field and the guide magnetic field, and the energy conversion at the jet reversal is dominated by the wave electric field near the lower hybrid frequency. Insensitive to the guide-field, the dense magnetosheath electrons in the reconnection exhaust are transported, by wave turbulence, across the magnetospheric separatrix to modify the plasma properties and field structures in the magnetosphere. The MMS results will be compared with available laboratory measurements from the Magnetic Reconnection Experiment in Princeton, and challenges in diffusion region physics will be discussed. The MMS and MRX teams are acknowledged. Work is supported by NASA, DOE, and NSF.
Turbulence in Three-Dimensional Simulations of Magnetopause Reconnection
NASA Astrophysics Data System (ADS)
Price, L.; Swisdak, M.; Drake, J. F.; Burch, J. L.; Cassak, P. A.; Ergun, R. E.
2017-11-01
We present detailed analysis of the turbulence observed in three-dimensional particle-in-cell simulations of magnetic reconnection at the magnetopause. The parameters are representative of an electron diffusion region encounter of the Magnetospheric Multiscale (MMS) mission. The turbulence is found to develop around both the magnetic X line and separatrices, is electromagnetic in nature, is characterized by a wave vector k given by kρe˜(meTe/miTi)0.25 with ρe the electron Larmor radius, and appears to have the ion pressure gradient as its source of free energy. Taken together, these results suggest the instability is a variant of the lower hybrid drift instability. The turbulence produces electric field fluctuations in the out-of-plane direction (the direction of the reconnection electric field) with an amplitude of around ±10 mV/m, which is much greater than the reconnection electric field of around 0.1 mV/m. Such large values of the out-of-plane electric field have been identified in the MMS data. The turbulence in the simulations controls the scale lengths of the density profile and current layers in asymmetric reconnection, driving them closer to √{ρeρi} than the ρe or de scalings seen in 2-D reconnection simulations, and produces significant anomalous resistivity and viscosity in the electron diffusion region.
Large-Scale Survey of the Structure of the Dayside Magnetopause by MMS
NASA Astrophysics Data System (ADS)
Paschmann, G.; Haaland, S. E.; Phan, T. D.; Sonnerup, B. U. Ö.; Burch, J. L.; Torbert, R. B.; Gershman, D. J.; Dorelli, J. C.; Giles, B. L.; Pollock, C.; Saito, Y.; Lavraud, B.; Russell, C. T.; Strangeway, R. J.; Baumjohann, W.; Fuselier, S. A.
2018-03-01
This paper describes the generation and initial utilization of a database containing 80 vector and scalar quantities, for a total of 8,670 magnetopause and magnetosheath current sheet crossings by MMS1, using plasma and magnetic field data from the Fast Plasma Investigation, Fluxgate Magnetometer, and Hot Plasma Composition Analyzer instruments, augmented by solar wind and interplanetary magnetic field data from CDAWeb. Based on a determination of the current sheet width, measured and calculated vector and scalar quantities are stored for the two sides of the current sheet and for selected times within the current sheet. The only manual operations were the classification of the current sheets according to the type of boundary, the character of the magnetic field transition, and the quality of the current sheet fit. To characterize the database, histograms of selected key quantities are presented. We then give the statistics for the duration, motion, and thicknesses of the magnetopause current sheet, using single-spacecraft techniques for the determination of the normal velocities, obtaining median results of 12.9 s, 38.5 km/s, and 705.4 km, respectively. When scaled to the ion inertial length, the median thickness became 12.6; there were no thicknesses less than one. Next, we apply the Walén relation to find crossings that are rotational discontinuities and thus may indicate ongoing magnetic reconnection. For crossings where the velocities in the outflow region exceed the velocity on the magnetosheath side by at least 250 km/s, 47% meet our rotational discontinuity criteria. If we require the outflow to exceed 250 km/s along the L direction, then the percentage rises to 68%.
Energetics of the terrestrial bow shock
NASA Astrophysics Data System (ADS)
Hamrin, Maria; Gunell, Herbert; Norqvist, Patrik
2017-04-01
The solar wind is the primary energy source for the magnetospheric energy budget. Energy can enter through the magnetopause both as kinetic energy (plasma entering via e.g. magnetic reconnection and impulsive penetration) and as electromagnetic energy (e.g. by the conversion of solar wind kinetic energy into electromagnetic energy in magnetopause generators). However, energy is extracted from the solar wind already at the bow shock, before it encounters the terrestrial magnetopause. At the bow shock the supersonic solar wind is slowed down and heated, and the region near the bow shock is known to host many complex processes, including the accelerating of particles and the generation of waves. The processes at and near the bow shock can be discussed in terms of energetics: In a generator (load) process kinetic energy is converted to (from) electromagnetic energy. Bow shock regions where the solar wind is decelerated correspond to generators, while regions where particles are energized (accelerated and heated) correspond to loads. Recently, it has been suggested that currents from the bow shock generator should flow across the magnetosheath and connect to the magnetospause current systems [Siebert and Siscoe, 2002; Lopez et al., 2011]. In this study we use data from the Magnetospheric MultiScale (MMS) mission to investigate the energetics of the bow shock and the current closure, and we compare with the MHD simulations of Lopez et al., 2011.
Plasmasphere Response: Tutorial and Review of Recent Imaging Results
NASA Astrophysics Data System (ADS)
Goldstein, J.
2006-06-01
The plasmasphere is the cold, dense innermost region of the magnetosphere that is populated by upflow of ionospheric plasma along geomagnetic field lines. Driven directly by dayside magnetopause reconnection, enhanced sunward convection erodes the outer layers of the plasmasphere. Erosion causes the plasmasphere outer boundary, the plasmapause, to move inward on the nightside and outward on the dayside to form plumes of dense plasma extending sunward into the outer magnetosphere. Coupling between the inner magnetosphere and ionosphere can significantly modify the convection field, either enhancing sunward flows near dusk or shielding them on the night side. The plasmaspheric configuration plays a crucial role in the inner magnetosphere; wave-particle interactions inside the plasmasphere can cause scattering and loss of warmer space plasmas such as the ring current and radiation belts.
NASA Astrophysics Data System (ADS)
Shue, J.; Jhuang, B.; Song, P.; Safrankova, J.; Nemecek, Z.; Russell, C. T.; Chen, S.
2008-12-01
The solar wind dynamic pressure is reduced when the solar wind flows around the magnetosphere due to the diversion of the flows. The magnetopause is the boundary where the reduced dynamic pressure is balanced with the magnetic pressure of the compressed magnetosphere by the solar wind. The size and shape of the magnetopause have long been considered among the most important parameters in Solar Terrestrial physics. Previous models of the size and shape of the magnetopause often assumed the axis- symmetry of the magnetopause with respect to the Sun-Earth line. With a large number of magnetopause crossings by ISEE-1 and -2, AMPTE/IRM, Hawkeye, Geotail, Interball-1, and Magion-4, we are able to consider the asymmetry of the magnetopuase. In the Shue et al. [1997] model, the magnetopause was modeled by two parameters, r0 and alpha, representing the subsolar standoff distance and the flaring level of the magnetopause, respectively. Parameter alpha was assumed to be independent of phi in the Shue et al. [1997] model, where phi is the angle between the Z axis and the mapping of the radial vector of the magnetopause on the YZ plane. In the present study we allow alpha to be a function of phi. We separate crossings with different phis and fit them in each bin to the new functional form proposed by Shue et al. [1997]. We find that the magnetopause is symmetric in the dawn-dusk direction for northward IMF. However, its size on the dawnside becomes larger when the IMF is southward. The function of alpha in terms of phi can be combined with the 2-D Shue et al. [1997] model into a 3-D magnetopause model. (Shue, J.-H., J. K. Chao, H. C. Fu, C. T. Russell, P. Song, K. K. Khurana, and H. J. Singer, A new functional form to study the solar wind control of the magnetopause size and shape, J. Geophys. Res., 102, 9497, 1997.)
Magnetospheric Multiscale Observations of Field-Aligned Currents in the Magnetotail
NASA Astrophysics Data System (ADS)
Strangeway, R. J.; Russell, C. T.; Zhao, C.; Plaschke, F.; Fischer, D.; Anderson, B. J.; Weygand, J. M.; Le, G.; Kepko, L.; Nakamura, R.; Baumjohann, W.; Slavin, J. A.; Paterson, W. R.; Giles, B. L.; Shuster, J. R.; Torbert, R. B.; Burch, J. L.
2017-12-01
Field-aligned currents (FACs) are frequently observed by Magnetospheric Multiscale (MMS) within the Earth's magnetotail. However, unlike the FACs observed by MMS at the dayside magnetopause, which are of the order 100s of nA/m2, the magnetotail FACs are relatively weak, of the order 10s of nA/m2. There appear to be a variety of sources for the FACs. FACs are observed in association with dipolarization fronts that are propagating both earthward and tailward, at the boundary of the current sheet, and in flux-ropes. FACs are also observed to be embedded in regions of high speed flow, both earthward and tailward, and not just at the dipolarization front frequently associated with high speed flows. As is the case for FACs observed at the dayside magnetopause, these observations raise questions as to how or where the FACs close.
Investigating the development of double-peak subauroral ion drift (DSAID)
NASA Astrophysics Data System (ADS)
Horvath, Ildiko; Lovell, Brian C.
2017-04-01
This study focuses on the newly described ionospheric feature, called double-peak subauroral ion drift (DSAID), which is a subclass of the well-known single-peak SAID. Double-layer Region 2 (R2) field aligned currents (FACs) could be the main driver of DSAID. Our aim is to gain new insights into the development of DSAID during its two-stage progression. Observational results are provided by five scenarios, each demonstrating a certain progression sequence of DSAID. Results show that SAID/DSAID occurred during flux transfer events and was accompanied by flow channels (FCs) associated with dayside magnetopause (FC-2) and nightside magnetotail (FC-3) reconnections, with westward electrojet (eastward FC), and with auroral streamers (FC-4). In the premidnight magnetic local time (MLT) sector of stage 2, DSAID development was due to the short-circuiting of the reconnection-injected plasma jets during substorms or pseudobreakups. Thus, the related ring current pressure buildup enhanced the downward R2 FACs leading to double/multiple circuits forming double-layer R2 FACs. During the midnight MLT hours of stage 2, DSAID development was closely related to the westward traveling surge (WTS)/substorm current wedge (SCW). WTS/SCW-related strong upward R1 FACs closed with meriodional currents producing eastward and downward (i.e., downward R2 FAC-style) return currents enhancing the downward R2 FACs and thus leading to double/multiple circuits forming double-layer R2 FACs. Auroral streamers/FC-4 represent a substorm substructure and their occurrence with DSAID after stage 2 demonstrates that this substructure occasionally includes DSAID. Our results demonstrate also that the short-circuited system underlying SAID/DSAID acted sometimes as a current generator and sometimes as a voltage generator.
Composition Measurements at the Magnetopause and in the Plasma Mantle
NASA Technical Reports Server (NTRS)
Gary, S. P.
1998-01-01
This final report describes activities under NASA grant NAGW-4049 to Lockheed Missiles and Space Company. The report covers the entire period of the grant from 15 August 1994 to 31 January 1998. The original grant was for 3 years ending in August 1997; however the grant was extended 6 months to accomodate additional data analysis that added significantly to the scientific results. This is a grant under the NASA Supporting Research and Technology Program for the analysis and interpretation of the combined scientific data from the ISEE-1 Plasma Composition Experiment and the AMPTE/CCE Hot Plasma Composition Experiment. These combined data sets were used in a study of the Earth's magnetopause to develop a fundamental understanding of plasma entry and dynamics at the boundary and formation and maintenance of the low latitude boundary layer under a variety of solar wind and magnetospheric conditions and at a wide range of local times.
NASA Technical Reports Server (NTRS)
Chen, Li-Jen; Hesse, Michael; Wang, Shan; Gershman, Daniel; Ergun, Robert; Pollock, Craig; Torbert, Roy; Bessho, Naoki; Daughton, William; Dorelli, John;
2016-01-01
Measurements from the Magnetospheric Multiscale (MMS) mission are reported to show distinct features of electron energization and mixing in the diffusion region of the terrestrial magnetopause reconnection. At the ion jet and magnetic field reversals, distribution functions exhibiting signatures of accelerated meandering electrons are observed at an electron out-of-plane flow peak. The meandering signatures manifested as triangular and crescent structures are established features of the electron diffusion region (EDR). Effects of meandering electrons on the electric field normal to the reconnection layer are detected. Parallel acceleration and mixing of the inflowing electrons with exhaust electrons shape the exhaust flow pattern. In the EDR vicinity, the measured distribution functions indicate that locally, the electron energization and mixing physics is captured by two-dimensional reconnection, yet to account for the simultaneous four-point measurements, translational invariant in the third dimension must be violated on the ion-skin-depth scale.
NASA Astrophysics Data System (ADS)
Chen, Li-Jen; Hesse, Michael; Wang, Shan; Gershman, Daniel; Ergun, Robert; Pollock, Craig; Torbert, Roy; Bessho, Naoki; Daughton, William; Dorelli, John; Giles, Barbara; Strangeway, Robert; Russell, Christopher; Khotyaintsev, Yuri; Burch, Jim; Moore, Thomas; Lavraud, Benoit; Phan, Tai; Avanov, Levon
2016-06-01
Measurements from the Magnetospheric Multiscale (MMS) mission are reported to show distinct features of electron energization and mixing in the diffusion region of the terrestrial magnetopause reconnection. At the ion jet and magnetic field reversals, distribution functions exhibiting signatures of accelerated meandering electrons are observed at an electron out-of-plane flow peak. The meandering signatures manifested as triangular and crescent structures are established features of the electron diffusion region (EDR). Effects of meandering electrons on the electric field normal to the reconnection layer are detected. Parallel acceleration and mixing of the inflowing electrons with exhaust electrons shape the exhaust flow pattern. In the EDR vicinity, the measured distribution functions indicate that locally, the electron energization and mixing physics is captured by two-dimensional reconnection, yet to account for the simultaneous four-point measurements, translational invariant in the third dimension must be violated on the ion-skin-depth scale.
Survival of Flux Transfer Event (FTE) Flux Ropes Far Along the Tail Magnetopause
NASA Technical Reports Server (NTRS)
Eastwood, J. P.; Phan, T. D.; Fear, R. C.; Sibeck, D. G.; Angelopoulos, V.; Oieroset, M.; Shay, M. A.
2012-01-01
During intervals of southward IMF, magnetic reconnection can result in the formation of flux transfer events (FTEs) on the dayside magnetopause which travel along the magnetopause in the anti-sunward direction. Of particular interest is their fate and the role they play transporting solar wind plasma into the magnetosphere. We present the discovery of FTEs far along the distant tail magnetopause (x = 67 Earth radii) using data from ARTEMIS on the dusk flank magnetopause under southward/duskward IMF conditions. The identification of several events is further supported by excellent fits to a force-free flux rope model. The axis of each structure is principally north-south, i.e., perpendicular to the Sun-Earth line. Simultaneous observations by THEMIS on the dayside magnetopause indicate that FTEs are being produced there, although perhaps 2-4 times smaller in size. The convection time from the dayside magnetopause to ARTEMIS is 30 min, and the FTEs have a flux content comparable to those typically observed on the dayside magnetopause, indicating that these features are in quasi-equilibrium as they are convected downtail. By considering the relative orientations of the FTEs observed by THEMIS and ARTEMIS, the magnetic field geometry is consistent with the FTEs being produced on the dayside magnetopause along an extended X-line in the presence of IMF By and bending as they are convected to the flanks.
NASA Technical Reports Server (NTRS)
Lavraud, B.; Zhang, Y. C.; Vernisse, Y.; Gershman, D. J.; Dorelli, J.; Cassak, P. A.; Dargent, J.; Pollock, C.; Giles, B.; Aunai, N.;
2016-01-01
Based on high-resolution measurements from NASA's Magnetospheric Multlscale mission, we present the dynamics of electrons associated with current systems observed near the diffusion region of magnetic reconnection at Earth's magnetopause. Using pitch angle distributions (PAD) and magnetic curvature analysis, we demonstrate the occurrence of electron scattering in the curved magnetic field of the diffusion region down to energies of 20eV. We show that scattering occurs closer to the current sheet as the electron energy decreases. The scattering of Inflowing electrons, associated with field-aligned electrostatic potentials and Hall currents, produces a new population of scattered electrons with broader PAD which bounce back and forth in the exhaust. Except at the center of the diffusion region the two populations are collocated and appear to behave adiabatically: the inflowing electron PAD focuses inward (toward lower magnetic field), while the bouncing population PAD gradually peaks at 90 degrees away from the center (where it mirrors owing to higher magnetic field and probable field-aligned potentials).
Flux transfer events: Reconnection without separators. [magnetopause
NASA Technical Reports Server (NTRS)
Hesse, M.; Birn, J.; Schindler, K.
1989-01-01
A topological analysis of a simple model magnetic field of a perturbation at the magnetopause modeling an apparent flux transfer event is presented. It is shown that a localized perturbation at the magnetopause can in principle open a closed magnetosphere by establishing magnetic connections across the magnetopause. Although the model field exhibits neutral points, these are not involved in the magnetic connection of the flux tubes. The topological substructure of a localized perturbation is analyzed in a simpler configuration. The presence of both signs of the magnetic field component normal to the magnetopause leads to a linkage of topologically different flux tubes, described as a flux knot, and a filamentary substructure of field lines of different topological types which becomes increasingly complicated for decreasing magnetic shear at the magnetopause.
Energy Dependence of Electron-Scale Currents and Dissipation During Magnetopause Reconnection
NASA Astrophysics Data System (ADS)
Shuster, J. R.; Gershman, D. J.; Giles, B. L.; Dorelli, J.; Avanov, L. A.; Chen, L. J.; Wang, S.; Bessho, N.; Torbert, R. B.; Farrugia, C. J.; Argall, M. R.; Strangeway, R. J.; Schwartz, S. J.
2017-12-01
We investigate the electron-scale physics of reconnecting current structures observed at the magnetopause during Phase 1B of the Magnetospheric Multiscale (MMS) mission when the spacecraft separation was less than 10 km. Using single-spacecraft measurements of the current density vector Jplasma = en(vi - ve) enabled by the accuracy of the Fast Plasma Investigation (FPI) electron moments as demonstrated by Phan et al. [2016], we consider perpendicular (J⊥1 and J⊥2) and parallel (J//) currents and their corresponding kinetic electron signatures. These currents can correspond to a variety of structures in the electron velocity distribution functions measured by FPI, including perpendicular and parallel crescents like those first reported by Burch et al. [2016], parallel electron beams, counter-streaming electron populations, or sometimes simply a bulk velocity shift. By integrating the distribution function over only its angular dimensions, we compute energy-dependent 'partial' moments and employ them to characterize the energy dependence of velocities, currents, and dissipation associated with magnetic reconnection diffusion regions caught by MMS. Our technique aids in visualizing and elucidating the plasma energization mechanisms that operate during collisionless reconnection.
Comparison between Magnetopause and Magnetotail Reconnection Processes
NASA Astrophysics Data System (ADS)
Walker, R. J.; Lapenta, G.; Berchem, J.; El-Alaoui, M.
2017-12-01
For the past two years the Magnetosphere Multiscale (MMS) mission has returned detailed observations of reconnection at Earth's dayside magnetopause and now apogee has moved into the magnetotail to enable investigations of reconnection in the plasma sheet. We have been using a combination of global magnetohydrodynamic (MHD) simulation and particle-in-cell (PIC) simulation to model the physics of the reconnection process in both regions. In these calculations, we first use the MHD simulation to model the overall magnetospheric configuration and then carry out a large implicit PIC simulation by using the resulting MHD state to set the initial and boundary conditions. In this presentation, we review the similarities and differences found between the physical processes involved in reconnection occurring in the two different regions. For instance, similar crescent shaped distribution functions have been both observed and found in simulations of reconnection at the magnetopause and in the tail current sheet. Likewise, kinetic simulations have shown that the agyrotropy (non-gyrotropy) of the electron distribution function is the cleanest indicator of the location of the electron diffusion region (EDR) of both regions. There are also significant differences between the two regions. These are mostly related to the fact that separatrices are different because the plasma density is asymmetric across the dayside magnetopause and that smaller electric and guide fields are present in the night side. For instance, the jetting plasmas from reconnection in the tail form dipolarization fronts where energy exchange occurs while flux transfer events (flux ropes) form on the magnetopause and then move away from the reconnection site without forming dipolarization fronts. However, many uncertainties remain. For example, strong waves associated with the reconnection are found in the EDR at both places but it is not understood whether the kinetic mechanisms leading to the waves are the same or different.
A comparative review of bow shocks and magnetopauses
NASA Technical Reports Server (NTRS)
Lepping, R. P.
1984-01-01
Bow shock and magnetopauses formation is discussed. Plasma and magnetic field environments of all the planets from Mercury to Saturn were measured. It was found that all the planets have bow shocks and almost all have a magnetopause. Venus is the only planet with no measurable intrinsic magnetic field and the solar wind interacts directly with Venus' ionosphere. The bow shock characteristics depend on the changing solar wind conditions. The shape of a magnetopause or any obstacle to flow depends on the three dimensional pressure profile that it presents to the solar wind. Jupiter is unusual because of the considerable amount of plasma which is contained in its magnetosphere. Magnetopause boundaries in ecliptic plane projection are modelled by segments of ellipses, matched to straight lines for the magnetotool boundaries or parabolas. Specific properties of known planetary bow shocks and magnetopauses are reviewed.
Physics of magnetic flux ropes
NASA Astrophysics Data System (ADS)
Russell, C. T.; Priest, E. R.; Lee, L. C.
The present work encompasses papers on the structure, waves, and instabilities of magnetic flux ropes (MFRs), photospheric flux tubes (PFTs), the structure and heating of coronal loops, solar prominences, coronal mass ejections and magnetic clouds, flux ropes in planetary ionospheres, the magnetopause, magnetospheric field-aligned currents and flux tubes, and the magnetotail. Attention is given to the equilibrium of MFRs, resistive instability, magnetic reconnection and turbulence in current sheets, dynamical effects and energy transport in intense flux tubes, waves in solar PFTs, twisted flux ropes in the solar corona, an electrodynamical model of solar flares, filament cooling and condensation in a sheared magnetic field, the magnetopause, the generation of twisted MFRs during magnetic reconnection, ionospheric flux ropes above the South Pole, substorms and MFR structures, evidence for flux ropes in the earth magnetotail, and MFRs in 3D MHD simulations.
NASA Astrophysics Data System (ADS)
Buzulukova, N.; Dorelli, J.; Glocer, A.
2017-12-01
We present the results of global high resolution resistive magnetohydrodynamics (MHD BATS-R-US) simulations of Earth's magnetosphere. We extract location of magnetic separators with RECONX tool and compare the results with observations from the Magnetospheric Multiscale (MMS). A few cases are analysed including a southward IMF magnetopause crossing during October 16, 2015 that was previously identified as an electron diffusion region (EDR) event. The simulation predicts a complex time-dependent magnetic topology consisting of multiple separators and flux ropes. Despite the topological complexity, the predicted distance between MMS and the primary separator is less than 0.5 Earth radii. The simulation shows that the existence of IMF Bx results in a duskward shift of the location of the topological separator. The results are explained by a combined effect of solar wind draping and pile-up effect that modify the current density across the magnetopause and affect the location of the separator. The RECONX tool also is used to extract the separator location in the geomagnetic tail, and relate transient tail structures (bursty bulk flows) to the location of separator. These results suggest that global magnetic topology, rather than local magnetic geometry alone, determines the location of the separator reconnection both at the dayside magnetopause and in the tail. We show that the resistive MHD model helps to understand the global context of local MMS observations.
Shape of the equatorial magnetopause affected by the radial interplanetary magnetic field
NASA Astrophysics Data System (ADS)
Grygorov, K.; Šafránková, J.; Němeček, Z.; Pi, G.; Přech, L.; Urbář, J.
2017-11-01
The ability of a prediction of the magnetopause location under various upstream conditions can be considered as a test of our understanding of the solar wind-magnetosphere interaction. The present magnetopause models are parametrized with the solar wind dynamic pressure and usually with the north-south interplanetary magnetic field (IMF) component. However, several studies pointed out an importance of the radial IMF component, but results of these studies are controversial up to now. The present study compares magnetopause observations by five THEMIS spacecraft during long lasting intervals of the radial IMF with two empirical magnetopause models. A comparison reveals that the magnetopause location is highly variable and that the average difference between the observed and predicted positions is ≈ + 0.7 RE under this condition. The difference does not depend on the local times and other parameters, like the upstream pressure, IMF north-south component, or tilt angle of the Earth dipole. We conclude that our results strongly support the suggestion on a global expansion of the equatorial magnetopause during intervals of the radial IMF.
Large-Amplitude High-Frequency Waves at Earth's Magnetopause
NASA Astrophysics Data System (ADS)
Graham, D. B.; Vaivads, A.; Khotyaintsev, Yu. V.; André, M.; Le Contel, O.; Malaspina, D. M.; Lindqvist, P.-A.; Wilder, F. D.; Ergun, R. E.; Gershman, D. J.; Giles, B. L.; Magnes, W.; Russell, C. T.; Burch, J. L.; Torbert, R. B.
2018-04-01
Large-amplitude waves near the electron plasma frequency are found by the Magnetospheric Multiscale (MMS) mission near Earth's magnetopause. The waves are identified as Langmuir and upper hybrid (UH) waves, with wave vectors either close to parallel or close to perpendicular to the background magnetic field. The waves are found all along the magnetopause equatorial plane, including both flanks and close to the subsolar point. The waves reach very large amplitudes, up to 1 V m-1, and are thus among the most intense electric fields observed at Earth's magnetopause. In the magnetosphere and on the magnetospheric side of the magnetopause the waves are predominantly UH waves although Langmuir waves are also found. When the plasma is very weakly magnetized only Langmuir waves are likely to be found. Both Langmuir and UH waves are shown to have electromagnetic components, which are consistent with predictions from kinetic wave theory. These results show that the magnetopause and magnetosphere are often unstable to intense wave activity near the electron plasma frequency. These waves provide a possible source of radio emission at the magnetopause.
The Shape of Mercury's Magnetopause: What Can BepiColombo Tell Us?
NASA Astrophysics Data System (ADS)
Philpott, L. C.; Johnson, C. L.; Anderson, B. J.; Winslow, R. M.
2018-05-01
We investigate how limitations in MESSENGER magnetic field data coverage affect our ability to establish asymmetries in Mercury’s magnetopause and examine how BepiColombo observations will improve our understanding of the magnetopause shape.
Magnetopause surface fluctuations observed by Voyager 1
NASA Technical Reports Server (NTRS)
Lepping, R. P.; Burlaga, L. F.
1979-01-01
Moving out of the dawnside of the earth's magnetosphere, Voyager 1 crossed the magnetopause apparently seven times, despite the high spacecraft speed of 11 km/sec. Normals to the magnetopause and their associated error cones were estimated for each of the crossings using a minimum variance analysis of the internal magnetic field. The oscillating nature of the ecliptic plane component of these normals indicates that most of the multiple crossings were due to a wave-like surface disturbance moving tailward along the magnetopause. The wave, which was aperiodic, was modeled as a sequence of sine waves. The amplitude, wavelength, and speed were determined for two pairs of intervals from the measured slopes, occurrence times, and relative positions of six magnetopause crossings. The magnetopause thickness was estimated to lie in the range 300 to 700 km with higher values possible. The estimated amplitude of these waves was obviously small compared to their wavelengths.
A study of flux transfer events at different planets
NASA Technical Reports Server (NTRS)
Russell, C. T.
1995-01-01
Flux transfer events (FTEs) are disturbances in and near the magnetopause current layer that cause a characteristic signature in the component of the magnetic field parallel to the average boundary normal. These disturbances have been observed at Mercury, Earth and Jupiter but not at Saturn, Uranus or Neptune. At Earth, FTEs last about 1 minute and repeat about every 8 but at Mercury, a much smaller magnetosphere, the events last seconds and are tens of seconds apart. These features have been interpreted in terms of magnetospheric flux ropes connected to the interplanetary magnetic field, arising as the result of reconnection. An analogous phenomenon occurs at Venus where magnetic flux ropes arise at the ionosphere, a boundary between a very strongly magnetized one. However, here the flux ropes do not appear to be due to reconnection.
A comparison of energetic ions in the plasma depletion layer and the quasi-parallel magnetosheath
NASA Technical Reports Server (NTRS)
Fuselier, Stephen A.
1994-01-01
Energetic ion spectra measured by the Active Magnetospheric Particle Tracer Explorers/Charge Composition Explorer (AMPTE/CCE) downstream from the Earth's quasi-parallel bow shock (in the quasi-parallel magnetosheath) and in the plasma depletion layer are compared. In the latter region, energetic ions are from a single source, leakage of magnetospheric ions across the magnetopause and into the plasma depletion layer. In the former region, both the magnetospheric source and shock acceleration of the thermal solar wind population at the quasi-parallel shock can contribute to the energetic ion spectra. The relative strengths of these two energetic ion sources are determined through the comparison of spectra from the two regions. It is found that magnetospheric leakage can provide an upper limit of 35% of the total energetic H(+) population in the quasi-parallel magnetosheath near the magnetopause in the energy range from approximately 10 to approximately 80 keV/e and substantially less than this limit for the energetic He(2+) population. The rest of the energetic H(+) population and nearly all of the energetic He(2+) population are accelerated out of the thermal solar wind population through shock acceleration processes. By comparing the energetic and thermal He(2+) and H(+) populations in the quasi-parallel magnetosheath, it is found that the quasi-parallel bow shock is 2 to 3 times more efficient at accelerating He(2+) than H(+). This result is consistent with previous estimates from shock acceleration theory and simulati ons.
Scaling of Electron Heating During Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Ohia, O.; Le, A.; Daughton, W. S.; Egedal, J.
2016-12-01
While magnetic reconnection plays a major role in accelerating and heating magnetospheric plasma, it remains poorly understood how the level of particle energization depends on the plasma conditions. Meanwhile, a recent survey of THEMIS magnetopause reconnection observations [Phan et al. GRL 2013] and a numerical study [Shay et al. PoP 2014] found empirically that the electron heating scales with the square of the upstream Alfven speed. Equivalently for weak guide fields, the fractional electron temperature increase is inversely proportional to the upstream electron beta (ratio of electron to magnetic pressure). We present models for symmetric reconnection with moderate [Ohia et al., GRL 2015] or zero guide field that predict the electron bulk heating. In the models, adiabatically trapped electrons gain energy from parallel electric fields in the inflowing region. For purely anti-parallel reconnection, meandering electrons receive additional energy from the reconnection electric field. The predicted scalings are in quantitative agreement with fluid and kinetic simulations, as well as spacecraft observations. Using kinetic simulations, we extend this work to explore how the layer dynamics and electron bulk heating vary as functions of the magnetic shear and plasma and magnetic pressure asymmetry across the reconnection layer. These results are pertinent to recent Magnetospheric Multiscale (MMS) Mission measurements of electron dynamics during dayside magnetopause reconnection.
On the generation of convection in the geomagnetosphere
NASA Astrophysics Data System (ADS)
Sedykh, Pavel
In this paper it has been done a re-examination the consequences of the fact of electric current generation at the bow shock front that we considered at the previous researches [Ponomarev, Sedykh. J. of Atm. Solar-Terr. Phys. Vol. 68. 2006; Ponomarev, Sedykh et al., Geomagn. and Aeron., 2009]. The magnetopause potential Fm is determined from the conditions of balance of the matter coming through the bow shock front and outgoing from the magnetosheath through the magnetopause and space between the bow shock front and magnetopause. This potential differs from the bow shock front potential only in a multiplier. If we assume that the flux tubes are equipotential, the motion of the plasma tube content completely depends on the motion of the tube equatorial trace. Thus, it is sufficient to determine the potential distribution in the equatorial plane within the boundaries, one of which (magnetopause) is represented by parabola with a parameter and the other, by a circle of some radius. The problem is solved in parabolic coordinates, where the Laplace operator seems to be the simplest. The solution is sought in the form of expansion into the series in terms of orthogonal functions in a standard way. The obtained result is also standard. The character of electric field distribution over the dawn-dusk meridian quite corresponds to the classical distribution obtained in [Heppner, 1977]. The significance of this result consists in that the convective electric field (taking into account corotation) was for the first time obtained from the main principles of physics. The power source for maintaining convection was specified, and the boundary conditions at the magnetopause were obtained from the solution of the general problem rather than were specified proceeding from intuitive considerations. The problem of determining the power coming in this case into the magnetosphere is solved as if automatically because vectors of the electric field intensity and density of the electric current are known. We should merely integrate the product of these quantities over the volume of the magnetosphere. Finally, one can note that the energy flux into the magnetosphere is closely related to the current through the magnetosphere by the well-known relationship. The problem of generation of convection in the magnetosphere proved to be the most advanced and independent of paradigm among all magnetospheric problems. The results obtained by us do not differ from the known results. The electric field along the bow shock front and the potential depend on the solar wind velocity normal component and on the IMF tangential component and may be defined by the formulas.
MMS Observations of a Hot Flow Anomaly in the Magnetosheath
NASA Astrophysics Data System (ADS)
Zhang, H.; Le, G.; Sibeck, D. G.
2017-12-01
Hot flow anomalies (HFAs) are events observed near planetary bow shocks that are characterized by greatly heated solar wind plasmas and substantial flow deflection. HFAs are universal phenomena that have been observed near the bow shock of Earth, Venus, Mars, and Saturn. The dynamic pressure inside HFAs is lower than the ambient solar wind due to the density depletion and flow deflection. The passage of HFAs will therefore result in local negative pressure impulses, which lead to a local sunward expansion of the magnetopause. NASA's MMS mission produce unprecedented high resolution data, which enable the observations of HFA structures in great details. We report MMS observations of an HFA in the post-noon magnetosheath which lasted 25 minutes. Sunward and dawnward plasma flow was observed in the core of the HFA, which is in the opposite direction of the plasma flow in the ambient magnetosheath. The plasma density in the HFA was about one order of magnitude lower than that in the ambient magnetosheath. Two magnetopause crossings were observed inside the HFA. Boundary normal analysis shows the normal direction of the magnetopause was along the GSE Y direction, indicating a strongly deformed magnetopause. The first in, first out crossing sequence of the magnetopause by multiple spacecraft also indicates that the two magnetopause crossings were due to a bulged-out magnetopause rather than the back and forth motion of the magnetopause.
NASA Technical Reports Server (NTRS)
Oieroset, M.; Phan, T. D.; Haggerty, C.; Shay, M. A.; Eastwood, J. P.; Gershman, D. J.; Drake, J. F.; Fujimoto, M.; Ergun, R. E.; Mozer, F. S.;
2016-01-01
We report evidence for reconnection between colliding reconnection jets in a compressed current sheet at the center of a magnetic flux rope at Earth's magnetopause. The reconnection involved nearly symmetric Inflow boundary conditions with a strong guide field of two. The thin (2.5 ion-skin depth (d(sub i) width) current sheet (at approximately 12 d(sub i) downstream of the X line) was well resolved by MMS, which revealed large asymmetries in plasma and field structures in the exhaust. Ion perpendicular heating, electron parallel heating, and density compression occurred on one side of the exhaust, while ion parallel heating and density depression were shifted to the other side. The normal electric field and double out-of-plane (bifurcated) currents spanned almost the entire exhaust. These observations are in good agreement with a kinetic simulation for similar boundary conditions, demonstrating in new detail that the structure of large guide field symmetric reconnection is distinctly different from antiparallel reconnection.
NASA Astrophysics Data System (ADS)
Øieroset, M.; Phan, T. D.; Haggerty, C.; Shay, M. A.; Eastwood, J. P.; Gershman, D. J.; Drake, J. F.; Fujimoto, M.; Ergun, R. E.; Mozer, F. S.; Oka, M.; Torbert, R. B.; Burch, J. L.; Wang, S.; Chen, L. J.; Swisdak, M.; Pollock, C.; Dorelli, J. C.; Fuselier, S. A.; Lavraud, B.; Giles, B. L.; Moore, T. E.; Saito, Y.; Avanov, L. A.; Paterson, W.; Strangeway, R. J.; Russell, C. T.; Khotyaintsev, Y.; Lindqvist, P. A.; Malakit, K.
2016-06-01
We report evidence for reconnection between colliding reconnection jets in a compressed current sheet at the center of a magnetic flux rope at Earth's magnetopause. The reconnection involved nearly symmetric inflow boundary conditions with a strong guide field of two. The thin (2.5 ion-skin depth (di) width) current sheet (at ~12 di downstream of the X line) was well resolved by MMS, which revealed large asymmetries in plasma and field structures in the exhaust. Ion perpendicular heating, electron parallel heating, and density compression occurred on one side of the exhaust, while ion parallel heating and density depression were shifted to the other side. The normal electric field and double out-of-plane (bifurcated) currents spanned almost the entire exhaust. These observations are in good agreement with a kinetic simulation for similar boundary conditions, demonstrating in new detail that the structure of large guide field symmetric reconnection is distinctly different from antiparallel reconnection.
NASA Astrophysics Data System (ADS)
Oieroset, M.; Phan, T.; Haggerty, C. C.; Shay, M. A.; Eastwood, J. P.; Gershman, D. J.; Drake, J. F.; Fujimoto, M.; Ergun, R.; Mozer, F.; Oka, M.; Torbert, R. B.; Burch, J. L.; Wang, S.; Chen, L. J.; Swisdak, M.; Pollock, C.; Dorelli, J.; Fuselier, S. A.; Lavraud, B.; Giles, B. L.; Moore, T. E.; Saito, Y.; Avanov, L. A.; Paterson, W. R.; Strangeway, R. J.; Russell, C. T.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Malakit, K.
2016-12-01
We report evidence for reconnection between colliding reconnection jets in a compressed current sheet at the center of a magnetic flux rope at Earth's magnetopause. The reconnection involved nearly symmetric inflow boundary conditions with a strong guide field of two. The thin (2.5 ion-skin depth (di) width) current sheet (at 12 di downstream of the X line) was well resolved by Magnetospheric Multiscale, which revealed large asymmetries in plasma and field structures in the exhaust. Ion perpendicular heating, electron parallel heating, and density compression occurred on one side of the exhaust, while ion parallel heating and density depression were shifted to the other side. The normal electric field and double out-of-plane (bifurcated) currents spanned almost the entire exhaust. These observations are in good agreement with a kinetic simulation for similar boundary conditions, demonstrating in new detail that the structure of large guide field symmetric reconnection is distinctly different from antiparallel reconnection.
In Situ Observations of a Magnetosheath High-Speed Jet Triggering Magnetopause Reconnection
NASA Astrophysics Data System (ADS)
Hietala, H.; Phan, T.; Angelopoulos, V.; Oieroset, M.; Archer, M. O.; Karlsson, T.; Plaschke, F.
2017-12-01
The dayside solar wind-magnetosphere interaction is mediated by the magnetosheath. Magnetosheath high-speed jets (HSJs) - dynamic pressure enhancements typically of 1 Earth radius (RE) in size - impact the magnetopause several times per hour, i.e., much more frequently than any other known dayside transient. When HSJs hit the magnetopause, they may cause large amplitude yet localized boundary indentations, inciting magnetospheric waves. Possible consequences of these impacts include dropouts and other variations in radiation belt electron populations, and diffuse `throat' aurora. There have also been various indirect observations suggesting that magnetopause reconnection may occur in association with HSJ impacts. Here we present the first in situ evidence suggesting that a magnetosheath high-speed jet triggered magnetopause reconnection. We consider a HSJ impact that was part of a series of jets observed by THEMIS in the string-of-pearls configuration on August 7, 2007. The inter-probe separations ranged from 2RE to 0.07RE, allowing us to investigate this multi-scale process. According to OMNI data, the IMF was northward during this impact, i.e., unfavorable for low latitude magnetopause reconnection. First the magnetopause moved inwards past THB (the outermost probe) to a location between THE and THA (the innermost probe). In the magnetosheath THB observed a HSJ with a large velocity directed towards the magnetopause (VN 300km/s). After the HSJ the magnetopause moved back out. Before the HSJ (outbound crossing), there is no evidence for reconnection at the four probes. After the HSJ (inbound crossing), there were clear reconnection outflows (VL -250km/s), implying that reconnection was triggered by the HSJ impact. We infer that this was likely due to the HSJ's high dynamic pressure ( 4 nPa, 8 times the ambient magnetosheath dynamic pressure) compressing the thick (60-70 di), high shear (140-160°) magnetopause until it was thin enough to reconnect.
Turbulence in Three Dimensional Simulations of Magnetopause Reconnection
NASA Astrophysics Data System (ADS)
Drake, J. F.; Price, L.; Swisdak, M.; Burch, J. L.; Cassak, P.; Dahlin, J. T.; Ergun, R.
2017-12-01
We present two- and three-dimensional particle-in-cell simulations of the 16 October 2015 MMS magnetopause reconnection event. While the two-dimensional simulation is laminar, turbulence develops at both the x-line and along the magnetic separatrices in the three-dimensional simulation. This turbulence is electromagnetic in nature, is characterized by a wavevector k given by kρ e ˜(m_e/m_i)0.25 with ρ e the electron Larmor radius, and appears to have the ion pressure gradient as its source of free energy. Taken together, these results suggest the instability is a variant of the lower-hybrid drift instability. The turbulence produces electric field fluctuations in the out-of-plane direction (the direction of the reconnection electric field) with an amplitude of around ± 10 mV/m, which is much greater than the reconnection electric field of around 0.1 mV/m. Such large values of the out-of-plane electric field have been identified in the MMS data. The turbulence in the simulation controls the scale lengths of the density profile and current layers in asymmetric reconnection, driving them closer to √ {ρ eρ_i } than the ρ e or de scalings seen in 2D reconnection simulations, where de is the electron inertial length. The turbulence is strong enough to make the magnetic field around the reconnection island chaotic and produces both anomalous resistivity and anomalous viscosity. Each contribute significantly to breaking the frozen-in condition in the electron diffusion region. The crescent-shaped features in velocity space seen both in MMS observations and in two-dimensional simulations survive, even in the turbulent environment of the three-dimensional system. We compare and contrast these results to a three-dimensional simulation of the 8 December 2015 MMS magnetopause reconnection event in which the reconnecting and out-of-plane guide fields are comparable. LHDI is still present in this event, although its appearance is modified by the presence of the guide field. The crescents also survive although, as is also observed by MMS, their intensity decreases. Nevertheless, the turbulence that develops remains strong.
Observations & modeling of solar-wind/magnetospheric interactions
NASA Astrophysics Data System (ADS)
Hoilijoki, Sanni; Von Alfthan, Sebastian; Pfau-Kempf, Yann; Palmroth, Minna; Ganse, Urs
2016-07-01
The majority of the global magnetospheric dynamics is driven by magnetic reconnection, indicating the need to understand and predict reconnection processes and their global consequences. So far, global magnetospheric dynamics has been simulated using mainly magnetohydrodynamic (MHD) models, which are approximate but fast enough to be executed in real time or near-real time. Due to their fast computation times, MHD models are currently the only possible frameworks for space weather predictions. However, in MHD models reconnection is not treated kinetically. In this presentation we will compare the results from global kinetic (hybrid-Vlasov) and global MHD simulations. Both simulations are compared with in-situ measurements. We will show that the kinetic processes at the bow shock, in the magnetosheath and at the magnetopause affect global dynamics even during steady solar wind conditions. Foreshock processes cause an asymmetry in the magnetosheath plasma, indicating that the plasma entering the magnetosphere is not symmetrical on different sides of the magnetosphere. Behind the bow shock in the magnetosheath kinetic wave modes appear. Some of these waves propagate to the magnetopause and have an effect on the magnetopause reconnection. Therefore we find that kinetic phenomena have a significant role in the interaction between the solar wind and the magnetosphere. While kinetic models cannot be executed in real time currently, they could be used to extract heuristics to be added in the faster MHD models.
Kinetic Evidence of Magnetic Reconnection Due to Kelvin-Helmholtz Waves
NASA Technical Reports Server (NTRS)
Li, W.; Andre, M.; Khotainstev, Yu. V.; Vaivads, A.; Graham, D. B.; Toledo-Redondo, S.; Norgren, C.; Henri, P.; Wang, C.; Tang, B. B.;
2016-01-01
The Kelvin-Helmholtz (ICH) instability at the Earth's magnetopause is predominantly excited during northward interplanetary magnetic field (IMF). Magnetic reconnection due to KH waves has been suggested as one of the mechanisms to transfer solar wind plasma into the magnetosphere. We investigate KH waves observed at the magnetopause by the Magnetospheric Multlscale (MMS) mission; in particular, we study the trailing edges of KH waves with Alfvenic ion jets. We observe gradual mixing of magnetospheric and magnetosheath ions at the boundary layer. The magnetospheric electrons with energy up to 80 keV are observed on the magnetosheath side of the jets, which indicates that they escape into the magnetosheath through reconnected magnetic field lines. At the same time, the low-energy (below 100eV) magnetosheath electrons enter the magnetosphere and are heated in the field-aligned direction at the high-density edge of the jets. Our observations provide unambiguous kinetic evidence for ongoing reconnection due to KH waves.
Magnetosphere of Mercury : Observations and Insights from MESSENGER
NASA Astrophysics Data System (ADS)
Krimigis, Stamatios
The MESSENGER spacecraft executed three flyby encounters with Mercury in 2008 and 2009, was inserted into orbit about Mercury on 18 March 2011, and has returned a wealth of data on the magnetic field, plasma, and energetic particle environment of Mercury. These observations reveal a profoundly dynamic and active solar wind interaction. In addition to establishing the average structures of the bow shock, magnetopause, northern cusp, and tail plasma sheet, MESSENGER measurements document magnetopause boundary processes (reconnection and surface waves), global convection and dynamics (tail loading and unloading, magnetic flux transport, and Birkeland currents), surface precipitation of particles (protons and electrons), particle heating and acceleration, and wave generation processes (ions and electrons). Mercury’s solar wind interaction presents new challenges to our understanding of the physics of magnetospheres. The offset of the planetary moment relative to the geographic equator creates a larger hemispheric asymmetry relative to magnetospheric dimensions than at any other planet. The prevalence, magnitude, and repetition rates of flux transfer events at the magnetopause as well as plasmoids in the magnetotail indicate that, unlike at Earth, episodic convection may dominate over steady-state convection. The magnetopause reconnection rate is not only an order of magnitude greater than at Earth, but reconnection occurs over a much broader range of interplanetary magnetic field orientations than at Earth. Finally, the planetary body itself plays a significant role in Mercury’s magnetosphere. Birkeland currents close through the planet, induction at the planetary core-mantle boundary modifies the magnetospheric response to solar wind pressure excursions, the surface in darkness exhibits sporadic X-ray fluorescence consistent with precipitation of 10 to 100 keV electrons, magnetospheric plasmas precipitate directly onto the planetary surface and contribute to sputtering, and planetary ions are often present with sufficient densities and energies to substantially modify the plasma pressures and hence magnetospheric dynamics.
Dependence of the dayside magnetopause reconnection rate on local conditions
NASA Astrophysics Data System (ADS)
Wang, Shan; Kistler, Lynn M.; Mouikis, Christopher G.; Petrinec, Steven M.
2015-08-01
We estimate the reconnection rates for eight dayside magnetopause reconnection events observed by the Cluster spacecraft and compare them with the predictions of the Cassak-Shay Formula (Rcs) Cassak and Shay (2007). The measured reconnection rate is determined by calculating the product of the inflow velocity and magnetic field in the magnetosheath inflow region. The predicted reconnection rate is calculated using the plasma parameters on both sides of the current layer, including the contributions of magnetosheath H+, magnetospheric hot H+ and O+, and magnetospheric cold ions. The measured reconnection rates show clear correlations with Rcs with an aspect ratio of 0.07. The O+ and cold ions can contribute up to ~30% of the mass density, which may reduce the reconnection rate for individual events. However, the variation of the reconnection rate is dominated by the variation of the magnetosheath parameters. In addition, we calculated the predicted reconnection rate using only magnetosheath parameters (Rsh). The correlation of the measured rate with Rsh was better than the correlation with Rcs, with an aspect ratio of 0.09. This might indicate deviations from the Cassak-Shay theory caused by the asymmetric reconnection structure and kinetic effects of different inflow populations. A better aspect ratio is expected to be between the ones determined using Rcs and Rsh. The aspect ratio does not show a clear dependence on the O+ concentration, likely because the O+ contribution is too small in these events. The aspect ratio also does not show a clear correlation with density asymmetry or guide field.
Flux transfer events - Scale size and interior structure
NASA Technical Reports Server (NTRS)
Saunders, M. A.; Russell, C. T.; Sckopke, N.
1984-01-01
The first direct investigation of the spatial properties of flux transfer events (FTEs) at the earth's dayside magnetopause are reported. Simultaneous magnetometer and plasma data from the ISEE 1 and 2 satellites are combined to show that magnetosheath FTEs can have a scale size of the order of an earth radius in the magnetopause normal direction. It is confirmed that the magnetic field within the events appears to be twisted, this twisting corresponding to a core field-aligned current of a magnitude of a few tens of thousands of A. Also shown is evidence for plasma vorticity in FTEs. The transverse flow and field perturbations accompanying the three events studied obey approximately the Walen relation for a propagating Alfven wave.
DC Electric Fields at the Magnetopause
NASA Astrophysics Data System (ADS)
Laakso, H. E.; Escoubet, C. P.; Masson, A.
2014-12-01
In order to understand the transfer of energy, momentum and mass through the magnetopause one needs to know several plasma and field parameters including the DC electric field which is known to be challenging to measure in tenuous plasma regions, e.g. in the inner side of the magnetopause where the density drops below 1/cc. However, each of the Cluster spacecraft carries five different experiments that can provide information about DC electric fields, i.e. double probe antenna (EFW) and electron drift meter (EDI) as well as electron and ion spectrometers (PEACE, CIS-HIA, CIS-CODIF). Each technique is very different and has its own strengths and limitations. Therefore it is important to compare all available measurements before making a judgement on DC electric field variation at the magnetopause; note that only very rarely all five measurements are available at the same time. Although the full-resolution observations in the Cluster archive are calibrated, they can still contain various errors. However, when two experiments show the same field, it is quite likely that this is the right field because the different measurements are based on so complimentary techniques and the field varies so much when the spacecraft moves from the magnetosheath through the magnetopause into the magnetosphere, or vice versa. In this presentation we present several cases of the magnetopause crossings and how the different measurements agree and disagree around the magnetopause region.
MESSENGER Observation of Mercury's Magnetopause: Structure and Dynamics
NASA Technical Reports Server (NTRS)
Slavin, J. A.; Acuna, M. H.; Anderson, B. J.; Baker, D. N.; Benna, M.; Boardsen, S. A.; Gloeckler, G.; Gold, R. E.; Ho, G. C.; Korth, H.;
2008-01-01
MESSENGER'S 14 January 2008 encounter with Mercury has provided new observations of the magnetopause of this small magnetosphere, particularly concerning the effect of the direction of the interplanetary magnetic field (IMF) on the structure and dynamics of this boundary. The IMF was northward immediately prior to and following the passage of the MESSENGER spacecraft through Mercury's magnetosphere. However, several-minute episodes of southward IMF were observed in the magnetosheath during the inbound portion of the encounter. Evidence for reconnection at the dayside magnetopause in the form of well-developed flux transfer events (FTEs) was observed in the magnetosheath following some of these southward-B, intervals. The inbound magnetopause crossing seen in the magnetic field measurements is consistent with a transition from the magnetosheath into the plasma sheet. Immediately following MESSENGER'S entry into the magnetosphere, rotational perturbations in the magnetic field similar to those seen at the Earth in association with large-scale plasma sheet vortices driven by Kelvin-Helmholtz waves along the magnetotail boundary at the Earth were observed. The outbound magnetopause occurred during northward IMF B(sub z) and had the characteristics of a tangential discontinuity. These new observations by MESSENGER may be combined and compared with the magnetopause measurements collected by Mariner 10 to derive new understanding of the response of Mercury's magnetopause to IMF direction and its effect on the rate of solar wind energy and mass input to this small magnetosphere.
NASA Technical Reports Server (NTRS)
Chandler, M.; Avanov, L.; Craven, P.; Mozer, F.; Moore, T. E.
2007-01-01
We have begun an investigation of the nature of the low-latitude boundary layer in the mid-altitude cusp region using data from the Polar spacecraft. Magnetosheath-like plasma is frequently observed deep (in terms of distance from the magnetopause and in invariant latitude) in the magnetosphere. One such case, taken during a long period of northward interplanetary magnetic field (IMP) on March 18, 2006, shows injected magnetosheath ions within the magnetosphere with velocity distributions resulting from two separate merging sites along the same field lines. Cold ionospheric ions were also observed counterstreaming along the field lines, evidence that these field lines were closed. Our results support the idea of double reconnection under northward IMP on the same group of field lines can provide a source for the LLBL. However, the flow direction of the accelerated magnetosheath ions antiparallel to the local magnetic field and given location of the spacecraft suggest that these two injection sites are located northward of the spacecraft position. Observed convection velocities of the magnetic field lines are inconsistent with those expected for double post-cusp reconnection in both hemispheres. These observations favor a scenario in which a group of newly closed field lines was created by a combination of high shear merging at high latitudes in the northern hemisphere and low shear merging at lower latitudes at the dayside magnetopause.
Evidence for impulsive solar wind plasma penetration through the dayside magnetopause
NASA Astrophysics Data System (ADS)
Lundin, R.; Sauvaud, J.-A.; Rème, H.; Balogh, A.; Dandouras, I.; Bosqued, J. M.; Carlson, C.; Parks, G. K.; Möbius, E.; Kistler, L. M.; Klecker, B.; Amata, E.; Formisano, V.; Dunlop, M.; Eliasson, L.; Korth, A.; Lavraud, B.; McCarthy, M.
2003-02-01
This paper presents in situ observational evidence from the Cluster Ion Spectrometer (CIS) on Cluster of injected solar wind "plasma clouds" protruding into the day-side high-latitude magnetopause. The plasma clouds, presumably injected by a transient process through the day-side magnetopause, show characteristics implying a generation mechanism denoted impulsive penetration (Lemaire and Roth, 1978).
NASA Astrophysics Data System (ADS)
Ergun, R. E.; Chen, L.-J.; Wilder, F. D.; Ahmadi, N.; Eriksson, S.; Usanova, M. E.; Goodrich, K. A.; Holmes, J. C.; Sturner, A. P.; Malaspina, D. M.; Newman, D. L.; Torbert, R. B.; Argall, M. R.; Lindqvist, P.-A.; Burch, J. L.; Webster, J. M.; Drake, J. F.; Price, L.; Cassak, P. A.; Swisdak, M.; Shay, M. A.; Graham, D. B.; Strangeway, R. J.; Russell, C. T.; Giles, B. L.; Dorelli, J. C.; Gershman, D.; Avanov, L.; Hesse, M.; Lavraud, B.; Le Contel, O.; Retino, A.; Phan, T. D.; Goldman, M. V.; Stawarz, J. E.; Schwartz, S. J.; Eastwood, J. P.; Hwang, K.-J.; Nakamura, R.; Wang, S.
2017-04-01
Observations of magnetic reconnection at Earth's magnetopause often display asymmetric structures that are accompanied by strong magnetic field (B) fluctuations and large-amplitude parallel electric fields (E||). The B turbulence is most intense at frequencies above the ion cyclotron frequency and below the lower hybrid frequency. The B fluctuations are consistent with a thin, oscillating current sheet that is corrugated along the electron flow direction (along the X line), which is a type of electromagnetic drift wave. Near the X line, electron flow is primarily due to a Hall electric field, which diverts ion flow in asymmetric reconnection and accompanies the instability. Importantly, the drift waves appear to drive strong parallel currents which, in turn, generate large-amplitude ( 100 mV/m) E|| in the form of nonlinear waves and structures. These observations suggest that turbulence may be common in asymmetric reconnection, penetrate into the electron diffusion region, and possibly influence the magnetic reconnection process.
Anti-parallel versus Component Reconnection at the Earth Magnetopause
NASA Astrophysics Data System (ADS)
Trattner, K. J.; Burch, J. L.; Ergun, R.; Eriksson, S.; Fuselier, S. A.; Gomez, R. G.; Giles, B. L.; Steven, P. M.; Strangeway, R. J.; Wilder, F. D.
2017-12-01
Magnetic reconnection at the Earth's magnetopause is discussed and has been observed as anti-parallel and component reconnection. While anti-parallel reconnection occurs between magnetic field lines of (ideally) exactly opposite polarity, component reconnection (also known as the tilted X-line model) predicts the location of the reconnection line to be anchored at the sub-solar point and extend continuously along the dayside magnetopause, while the ratio of the IMF By/Bz component determines the tilt of the X-line relative to the equatorial plane.A reconnection location prediction model known as the Maximum Magnetic Shear Model combines these two scenarios. The model predicts that during dominant IMF By conditions, magnetic reconnection occurs along an extended line across the dayside magnetopause but generally not through the sub-solar point (as predicted in the original tilted X-line model). Rather, the line follows the ridge of maximum magnetic shear across the dayside magnetopause. In contrast, for dominant IMF Bz (155° < tan-1(By/Bz) < 205°) or dominant Bx (|Bx|/B > 0.7) conditions, the reconnection location bifurcates and traces to high-latitudes, in close agreement with the anti-parallel reconnection scenario, and does not cross the dayside magnetopause as a single tilted reconnection line. Using observations from the Magnetospheric MultiScale missions during a magnetopause crossing when the IMF rotated from an dominate IMF BZ to a dominant IMF BY field we will investigate when the transition between the anti-parallel and tilted X-line scenarios occurs.
The Magnetopause Boundary Layer
1990-06-29
y.CL4 SSFICATION o UNCLASSIFIED/UNLIMITED 0 SAME AS RPT DTIC USERS i ncl assi le ,a NAME OF RE,ONSIBLE iNDIVIDUAL 22b T;LEPHONE (include Ar-a Cod...where A is the latitude of the foot of the field line in the cosity (finite vIand particle acceleration (finite K ionosphere and L is the radial...processes and inertial . k:; le 1 .410) range spectra have not been analyzed. To the extent that both S= llK. ) ’L. " + -- ". 1201 inertial ranges are a
Does the presence of cosmic dust influence the displacement of the Earth's Magnetopause?
NASA Astrophysics Data System (ADS)
Mann, I.; Hamrin, M.
2012-04-01
In a recent paper Treumann and Baumjohann propose that dust particles in interplanetary space occasionally cause large compressions of the magnetopause that, in the absence of coronal mass ejections, are difficult to explain by other mechanisms (R.A. Treumann and W. Baumjohann, Ann. Geophys. 30, 119-130, 2012). They suggest that enhanced dust number density raises the contribution of the dust component to the solar wind dynamical pressure and hence to the pressure balance that determines the extension of the magnetopause. They quantify the influence of the dust component in terms of a variation of the magnetopause stagnation point distance. As a possible event to trigger the compressions they propose the encounters with meteoroid dust streams along Earth's orbit. We investigate the conditions under which these compressions may occur. The estimate by Treumann and Baumjohann of the magnetopause variation presupposes that the dust particles have reached solar wind speed. Acceleration by electromagnetic forces is efficient in the solar wind for dust particles that have a sufficiently large ratio of surface charge to mass (Mann et al. Plasma Phys. Contr. Fusion, Vol. 52, 124012, 2010). This applies to small dust particles that contribute little to the total dust mass in meteoroid streams. The major fraction of dust particles that reach high speed in the solar wind are nanometer-sized dust particles that form and are accelerated in the inner solar system (Czechowski and Mann, ApJ, Vol. 714, 89, 2010). Observations suggest that the flux of these nanodust particles near 1 AU is highly time-variable (Meyer-Vernet, et al. Solar Physics, Vol. 256, 463, 2009). We estimate a possible variation of the magnetopause stagnation point distance caused by these nanodust fluxes and by the dust associated to meteoroid streams. We conclude that the Earth's encounters with meteoroid dust streams are not likely to strongly influence the magnetopause according to the proposed effect. We further use the expression for the magnetopause stagnation point distance used by Treumann and Baumjohann to investigate the possible influence of time-variable nanoddust fluxes on the magnetopause.
Nowcasting and forecasting of the magnetopause and bow shock—A status update
NASA Astrophysics Data System (ADS)
Petrinec, S. M.; Redmon, R. J.; Rastaetter, L.
2017-01-01
There has long been interest in knowing the shape and location of the Earth's magnetopause and of the standing fast-mode bow shock upstream of the Earth's magnetosphere. This quest for knowledge spans both the research and operations arenas. Pertinent to the latter, nowcasting and near-term forecasting are important for determining the extent to which the magnetosphere is compressed or expanded due to the influence of the solar wind bulk plasma and fields and the coupling to other magnetosphere-ionosphere processes with possible effects on assets. This article provides an update to a previous article on the same topic published 15 years earlier, with focus on studies that have been conducted, the current status of nowcasting and forecasting of geophysical boundaries, and future endeavors.
NASA Astrophysics Data System (ADS)
Collinson, Glyn; Paterson, William R.; Bard, Christopher; Dorelli, John; Glocer, Alex; Sarantos, Menelaos; Wilson, Rob
2018-04-01
On 27 June 1996, the NASA Galileo spacecraft made humanity's first flyby of Jupiter's largest moon, Ganymede, discovering that it is the only moon known to possess an internally generated magnetic field. Resurrecting the original Galileo Plasma Subsystem (PLS) data analysis software, we processed the raw PLS data from G01 and for the first time present the properties of plasmas encountered. Entry into the magnetosphere of Ganymede occurred near the confluence of the magnetopause and plasma sheet. Reconnection-driven plasma flows were observed (consistent with an Earth-like Dungey cycle), which may be a result of reconnection in the plasma sheet, magnetopause, or might be Ganymede's equivalent of a Low-Latitude Boundary Layer. Dropouts in plasma density combined with velocity perturbations afterward suggest that Galileo briefly crossed the cusps into closed magnetic field lines. Galileo then crossed the cusps, where field-aligned precipitating ions were observed flowing down into the surface, at a location consistent with observations by the Hubble Space Telescope. The density of plasma outflowing from Ganymede jumped an order of magnitude around closest approach over the north polar cap. The abrupt increase may be a result of crossing the cusp or may represent an altitude-dependent boundary such as an ionopause. More diffuse, warmer field-aligned outflows were observed in the lobes. Fluxes of particles near the moon on the nightside were significantly lower than on the dayside, possibly resulting from a diurnal cycle of the ionosphere and/or neutral atmosphere.
NASA Astrophysics Data System (ADS)
Moore, T. W.; Nykyri, K.; Dimmock, A. P.
2017-11-01
In the Earth's magnetosphere, the magnetotail plasma sheet ions are much hotter than in the shocked solar wind. On the dawn sector, the cold-component ions are more abundant and hotter by 30-40% when compared to the dusk sector. Recent statistical studies of the flank magnetopause and magnetosheath have shown that the level of temperature asymmetry of the magnetosheath is unable to account for this, so additional physical mechanisms must be at play, either at the magnetopause or plasma sheet that contributes to this asymmetry. In this study, we perform a statistical analysis on the ion-scale wave properties in the three main plasma regimes common to flank magnetopause boundary crossings when the boundary is unstable to Kelvin-Helmholtz instability (KHI): hot and tenuous magnetospheric, cold and dense magnetosheath, and mixed (Hasegawa et al., 2004). These statistics of ion-scale wave properties are compared to observations of fast magnetosonic wave modes that have recently been linked to Kelvin-Helmholtz (KH) vortex centered ion heating (Moore et al., 2016). The statistical analysis shows that during KH events there is enhanced nonadiabatic heating calculated during ion scale wave intervals when compared to non-KH events. This suggests that during KH events there is more free energy for ion-scale wave generation, which in turn can heat ions more effectively when compared to cases when KH waves are absent. This may contribute to the dawn favored temperature asymmetry of the plasma sheet; recent studies suggest KH waves favor the dawn flank during Parker-Spiral interplanetary magnetic field.
NASA Technical Reports Server (NTRS)
Lockwood, M.; Smith, M. F.
1994-01-01
We present predictions of the signatures of magnetosheath particle precipitation (in the regions classified as open low-latitude boundary layer, cusp, mantle and polar cap) for periods when the interplanetary magnetic field has a southward component. These are made using the 'pulsating cusp' model of the effects of time-varying magnetic reconnection at the dayside magnetopause. Predictions are made for both low-altitude satellites in the topside ionosphere and for midaltitude spacecraft in the magnetosphere. Low-altitude cusp signatures, which show a continuous ion dispersion signature, reveal 'quasi-steady reconnection' (one limit of the pulsating cusp model), which persists for a period of at least 10 min. We estimate that 'quasi-steady' in this context corresponds to fluctuations in the reconnection rate of a factor of 2 or less. The other limit of the pulsating cusp model explains the instantaneous jumps in the precipitating ion spectrum that have been observed at low altitudes. Such jumps are produced by isolated pulses of reconnection: that is, they are separated by intervals when the reconnection rate is zero. These also generate convecting patches on the magnetopause in which the field lines thread the boundary via a rotational discontinuity separated by more extensive regions of tangential discontinuity. Predictions of the corresponding ion precipitation signatures seen by midaltitude spacecraft are presented. We resolve the apparent contradiction between estimates of the width of the injection region from midaltitude data and the concept of continuous entry of solar wind plasma along open field lines. In addition, we reevaluate the use of pitch angle-energy dispersion to estimate the injection distance.
NASA Technical Reports Server (NTRS)
Hilmer, Robert V.; Voigt, Gerd-Hannes
1995-01-01
A tilt-dependent magnetic field model of the Earth's magnetosphere with variable magnetopause standoff distance is presented. Flexible analytic representations for the ring and cross-tail currents, each composed of the elements derived from the Tsyganenko and Usmanov (1982) model, are combined with the fully shielded vacuum dipole configurations of Voigt (1981). Although the current sheet does not warp in the y-z plane, changes in the shape and position of the neutral sheet with dipole tilt are consistent with both MHD equilibrium theory and observations. In addition, there is good agreement with observed Delta B profiles and the average equatorial contours of magnetic field magnitude. While the dipole field is rigorously shielded within the defined magnetopause, the ring and cross-tails currents are not similarly confined, consequently, the model's region of validity is limited to the inner magnetosphere. The model depends on four independent external parameters. We present a simple but limited method of simulating several substorm related magnetic field changes associated with the disrupion of the near-Earth cross-tail current sheet and collapse of the midnight magnetotail field region. This feature further facilitates the generation of magnetic field configuration time sequences useful in plasma convection simulations of real magnetospheric events.
Development of a Model for the Night Side Magnetopause using Global Simulations
NASA Technical Reports Server (NTRS)
Raeder, Joachim
1998-01-01
During the final year of this investigation we have finished several event studies that we considered necessary for the development of a tail magnetopause model and for the calibration of our simulation code. We have not reached the ultimate goal of the project, i.e., the development of an analytical tail magnetopause model. In the course of the investigation we have learned that such a model would be much more complex than we had anticipated. However, the investigations that we conducted towards this goal have led to significant results and discoveries that are of considerable value for understanding the tail magnetopause. These are summarized in the following sections.
NASA Technical Reports Server (NTRS)
Luhmann, J. G.; Walker, R. J.; Russell, C. T.; Spreiter, J. R.; Stahara, S. S.; Williams, D. J.
1984-01-01
An approximate picture of the volumes occupied by particles that originate in the vicinity of the magnetopause is obtained by mapping magnetosheath magnetic field lines which drape over the magnetopause through the bow shock. Subsets of these field lines that connect to potential sites of magnetic merging on the magnetopause are also traced in the event that the particle leakage occurs preferentially where normal components of the field are present across that boundary. The results of this modeling exercise suggest that energetic magnetospheric particles which are not scattered by magnetosheath magnetic fluctuations are likely to exit the magnetosheath in the region of the quasi-parallel shock.
NASA Astrophysics Data System (ADS)
Eriksson, S.; Cassak, P. A.; Retinò, A.; Mozer, F. S.
2016-04-01
The Polar satellite recorded two reconnection exhausts within 6 min on 1 April 2001 across a subsolar magnetopause that displayed a symmetric plasma density, but different out-of-plane magnetic field signatures for similar solar wind conditions. The first magnetopause crossing displayed a bipolar guide field variation in a weak external guide field consistent with a symmetric Hall field from a single X line. The subsequent crossing represents the first observation of a tripolar guide field perturbation at Earth's magnetopause in a strong guide field. This perturbation consists of a significant guide field enhancement between two narrow guide field depressions. A particle-in-cell simulation for the prevailing conditions across this second event resulted in a magnetic island between two simulated X lines across which a tripolar guide field developed consistent with the observation. The simulated island supports a scenario whereby Polar encountered the asymmetric quadrupole Hall magnetic fields between two X lines for symmetric conditions across the magnetopause.
Sub-solar Magnetopause Observation and Simulation of a Tripolar Guide-Magnetic Field Perturbation
NASA Astrophysics Data System (ADS)
Eriksson, S.; Cassak, P.; Retino, A.; Mozer, F.
2015-12-01
The Polar satellite recorded two reconnection exhausts within 6 min on 1 April 2001 at a rather symmetric sub-solar magnetopause that displayed different out-of-plane signatures for similar solar wind conditions. The first case was reported by Mozer et al. [2002] and displayed a bipolar guide field supporting a quadrupole Hall field consistent with a single X-line. The second case, however, shows the first known example of a tripolar guide-field perturbation at Earth's magnetopause reminiscent of the types of solar wind exhausts that Eriksson et al. [2014; 2015] have reported to be in agreement with multiple X-lines. A dedicated particle-in-cell simulation is performed for the prevailing conditions across the magnetopause. We propose an explanation in terms of asymmetric Hall magnetic fields due to a presence of a magnetic island between two X-lines, and discuss how higher resolution MMS observations can be used to further study this problem at the magnetopause.
NASA Technical Reports Server (NTRS)
Sibeck, D. G.; Lin, R.-Q.
2011-01-01
We employ the Cooling et al. (2001) model to predict the location, orientation, motion, and signatures of flux transfer events (FTEs) generated at the solstices and equinoxes along extended subsolar component and high ]latitude antiparallel reconnection curves for typical solar wind plasma conditions and various interplanetary magnetic field (IMF) strengths and directions. In general, events generated by the two mechanisms maintain the strikingly different orientations they begin with as they move toward the terminator in opposite pairs of magnetopause quadrants. The curves along which events generated by component reconnection form bow toward the winter cusp. Events generated by antiparallel reconnection form on the equatorial magnetopause during intervals of strongly southward IMF orientation during the equinoxes, form in the winter hemisphere and only reach the dayside equatorial magnetopause during the solstices when the IMF strength is very large and the IMF points strongly southward, never reach the equatorial dayside magnetopause when the IMF has a substantial dawnward or duskward component, and never reach the equatorial flank magnetopause during intervals of northward and dawnward or duskward IMF orientation. Magnetosheath magnetic fields typically have strong components transverse to events generated by component reconnection but only weak components transverse to the axes of events generated by antiparallel reconnection. As a result, much stronger bipolar magnetic field signatures normal to the nominal magnetopause should accompany events generated by component reconnection. The results presented in this paper suggest that events generated by component reconnection predominate on the dayside equatorial and flank magnetopause for most solar wind conditions.
NASA Technical Reports Server (NTRS)
Winglee, R. M.; Steinolfson, R. S.
1993-01-01
2D electromagnetic particle simulations are used to investigate the dynamics of the tail during development of substorms under the influence of the pressure in the magnetospheric boundary layer and the dawn-to-dusk electric field. It is shown that pressure pulses result in thinning of the tail current sheet as the magnetic field becomes pinched near the region where the pressure pulse is applied. The pinching leads to the tailward flow of the current sheet plasma and the eventual formation and injection of a plasmoid. Surges in the dawn-to-dusk electric field cause plasma on the flanks to convect into the center of the current sheet, thereby thinning the current sheet. The pressure in the magnetospheric boundary laser is coupled to the dawn-to-dusk electric field through the conductivity of the tail. Changes in the predicted evolution of the magnetosphere during substorms due to changes in the resistivity are investigated under the assumption that MHD theory provides a suitable representation of the global or large-scale evolution of the magnetotail to changes in the solar wind and to reconnection at the dayside magnetopause. It is shown that the overall evolution of the magnetosphere is about the same for three different resistivity distributions with plasmoid formation and ejection in each case.
MMS Examination of FTEs at the Earth's Subsolar Magnetopause
NASA Astrophysics Data System (ADS)
Akhavan-Tafti, M.; Slavin, J. A.; Le, G.; Eastwood, J. P.; Strangeway, R. J.; Russell, C. T.; Nakamura, R.; Baumjohann, W.; Torbert, R. B.; Giles, B. L.; Gershman, D. J.; Burch, J. L.
2018-02-01
Determining the magnetic field structure, electric currents, and plasma distributions within flux transfer event (FTE)-type flux ropes is critical to the understanding of their origin, evolution, and dynamics. Here the Magnetospheric Multiscale mission's high-resolution magnetic field and plasma measurements are used to identify FTEs in the vicinity of the subsolar magnetopause. The constant-α flux rope model is used to identify quasi-force free flux ropes and to infer the size, the core magnetic field strength, the magnetic flux content, and the spacecraft trajectories through these structures. Our statistical analysis determines a mean diameter of 1,700 ± 400 km ( 30 ± 9 di) and an average magnetic flux content of 100 ± 30 kWb for the quasi-force free FTEs at the Earth's subsolar magnetopause which are smaller than values reported by Cluster at high latitudes. These observed nonlinear size and magnetic flux content distributions of FTEs appear consistent with the plasmoid instability theory, which relies on the merging of neighboring, small-scale FTEs to generate larger structures. The ratio of the perpendicular to parallel components of current density, RJ, indicates that our FTEs are magnetically force-free, defined as RJ < 1, in their core regions (<0.6 Rflux rope). Plasma density is shown to be larger in smaller, newly formed FTEs and dropping with increasing FTE size. It is also shown that parallel ion velocity dominates inside FTEs with largest plasma density. Field-aligned flow facilitates the evacuation of plasma inside newly formed FTEs, while their core magnetic field strengthens with increasing FTE size.
Validation of Magnetospheric Magnetohydrodynamic Models
NASA Astrophysics Data System (ADS)
Curtis, Brian
Magnetospheric magnetohydrodynamic (MHD) models are commonly used for both prediction and modeling of Earth's magnetosphere. To date, very little validation has been performed to determine their limits, uncertainties, and differences. In this work, we performed a comprehensive analysis using several commonly used validation techniques in the atmospheric sciences to MHD-based models of Earth's magnetosphere for the first time. The validation techniques of parameter variability/sensitivity analysis and comparison to other models were used on the OpenGGCM, BATS-R-US, and SWMF magnetospheric MHD models to answer several questions about how these models compare. The questions include: (1) the difference between the model's predictions prior to and following to a reversal of Bz in the upstream interplanetary field (IMF) from positive to negative, (2) the influence of the preconditioning duration, and (3) the differences between models under extreme solar wind conditions. A differencing visualization tool was developed and used to address these three questions. We find: (1) For a reversal in IMF Bz from positive to negative, the OpenGGCM magnetopause is closest to Earth as it has the weakest magnetic pressure near-Earth. The differences in magnetopause positions between BATS-R-US and SWMF are explained by the influence of the ring current, which is included in SWMF. Densities are highest for SWMF and lowest for OpenGGCM. The OpenGGCM tail currents differ significantly from BATS-R-US and SWMF; (2) A longer preconditioning time allowed the magnetosphere to relax more, giving different positions for the magnetopause with all three models before the IMF Bz reversal. There were differences greater than 100% for all three models before the IMF Bz reversal. The differences in the current sheet region for the OpenGGCM were small after the IMF Bz reversal. The BATS-R-US and SWMF differences decreased after the IMF Bz reversal to near zero; (3) For extreme conditions in the solar wind, the OpenGGCM has a large region of Earthward flow velocity (Ux) in the current sheet region that grows as time progresses in a compressed environment. BATS-R-US Bz , rho and Ux stabilize to a near constant value approximately one hour into the run under high compression conditions. Under high compression, the SWMF parameters begin to oscillate approximately 100 minutes into the run. All three models have similar magnetopause positions under low pressure conditions. The OpenGGCM current sheet velocities along the Sun-Earth line are largest under low pressure conditions. The results of this analysis indicate the need for accounting for model uncertainties and differences when comparing model predictions with data, provide error bars on model prediction in various magnetospheric regions, and show that the magnetotail is sensitive to the preconditioning time.
NASA Technical Reports Server (NTRS)
Petrinec, S. M.; Burch, J. L.; Fuselier, S. A.; Gomez, R. G.; Lewis, W.; Trattner, K. J.; Ergun, R.; Mauk, B.; Pollock, C. J.; Schiff, C.;
2016-01-01
Magnetic reconnection at the Earths magnetopause is the primary process by which solar wind plasma and energy gains access to the magnetosphere. One indication that magnetic reconnection is occurring is the observation of accelerated plasma as a jet tangential to the magnetopause. The direction of ion jets along the magnetopause surface as observed by the Fast Plasma Instrument (FPI) and the Hot Plasma Composition Analyzer (HPCA) instrument on board the recently launched Magnetospheric Multiscale (MMS) set of spacecraft is examined. For those cases where ion jets are clearly discerned, the direction of origin compares well statistically with the predicted location of magnetic reconnection using convected solar wind observations in conjunction with the Maximum Magnetic Shear model.
A Dynamic Model of Mercury's Magnetospheric Magnetic Field
Johnson, Catherine L.; Philpott, Lydia; Tsyganenko, Nikolai A.; Anderson, Brian J.
2017-01-01
Abstract Mercury's solar wind and interplanetary magnetic field environment is highly dynamic, and variations in these external conditions directly control the current systems and magnetic fields inside the planetary magnetosphere. We update our previous static model of Mercury's magnetic field by incorporating variations in the magnetospheric current systems, parameterized as functions of Mercury's heliocentric distance and magnetic activity. The new, dynamic model reproduces the location of the magnetopause current system as a function of systematic pressure variations encountered during Mercury's eccentric orbit, as well as the increase in the cross‐tail current intensity with increasing magnetic activity. Despite the enhancements in the external field parameterization, the residuals between the observed and modeled magnetic field inside the magnetosphere indicate that the dynamic model achieves only a modest overall improvement over the previous static model. The spatial distribution of the residuals in the magnetic field components shows substantial improvement of the model accuracy near the dayside magnetopause. Elsewhere, the large‐scale distribution of the residuals is similar to those of the static model. This result implies either that magnetic activity varies much faster than can be determined from the spacecraft's passage through the magnetosphere or that the residual fields are due to additional external current systems not represented in the model or both. Birkeland currents flowing along magnetic field lines between the magnetosphere and planetary high‐latitude regions have been identified as one such contribution. PMID:29263560
NASA Astrophysics Data System (ADS)
Le, A.; Daughton, W. S.; Ohia, O.; Chen, L. J.; Liu, Y. H.
2017-12-01
We present 3D fully kinetic simulations of asymmetric reconnection with plasma parameters matching MMS magnetopause diffusion region crossings with varying guide fields of 0.1 [Burch et al., Science (2016)], 0.4 [Chen et al. JGR (2017)], and 1 [Burch and Phan, GRL (2016] of the reconnecting sheath field. Strong diamagnetic drifts across the magnetopause current sheet drive lower-hybrid drift instabilities (LHDI) over a range of wavelengths [Daughton, PoP (2003); Roytershteyn et al., PRL (2012)] that develop into a turbulent state. Magnetic field tracing diagnostics are employed to characterize the turbulent magnetic geometry and to evaluate the global reconnection rate. The contributions to Ohm's law are evaluated field line by field line, including time-averaged diagnostics that allow the quantification of anomalous resistivity and viscosity. We examine how fluctuating electric fields and chaotic magnetic field lines contribute to particle mixing across the separatrix, and we characterize the accelerated electron distributions that form under varying magnetic shear or guide field. The LHDI turbulence is found to strongly enhance transport and parallel electron heating in 3D compared to 2D, particularly along the magnetospheric separatrix [Le et al., GRL (2017)]. The PIC simulation results are compared to MMS observations.
NASA Astrophysics Data System (ADS)
Kim, Hyomin; Clauer, C. Robert; Gerrard, Andrew J.; Engebretson, Mark J.; Hartinger, Michael D.; Lessard, Marc R.; Matzka, Jürgen; Sibeck, David G.; Singer, Howard J.; Stolle, Claudia; Weimer, Daniel R.; Xu, Zhonghua
2017-07-01
We report on simultaneous observations of electromagnetic ion cyclotron (EMIC) waves associated with traveling convection vortex (TCV) events caused by transient solar wind dynamic pressure (Pd) impulse events. The Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft located near the magnetopause observed radial fluctuations of the magnetopause, and the GOES spacecraft measured sudden compressions of the magnetosphere in response to sudden increases in Pd. During the transient events, EMIC waves were observed by interhemispheric conjugate ground-based magnetometer arrays as well as the GOES spacecraft. The spectral structures of the waves appear to be well correlated with the fluctuating motion of the magnetopause, showing compression-associated wave generation. In addition, the wave features are remarkably similar in conjugate hemispheres in terms of bandwidth, quasiperiodic wave power modulation, and polarization. Proton precipitation was also observed by the DMSP spacecraft during the wave events, from which the wave source region is estimated to be 72°-74° in magnetic latitude, consistent with the TCV center. The confluence of space-borne and ground instruments including the interhemispheric, high-latitude, fluxgate/induction coil magnetometer array allows us to constrain the EMIC source region while also confirming the relationship between EMIC waves and the TCV current system.
NASA Astrophysics Data System (ADS)
Dmitriev, A. V.; Suvorova, A. V.
2012-08-01
Here, we present a case study of THEMIS and ground-based observations of the perturbed dayside magnetopause and the geomagnetic field in relation to the interaction of an interplanetary directional discontinuity (DD) with the magnetosphere on 16 June 2007. The interaction resulted in a large-scale local magnetopause distortion of an "expansion - compression - expansion" (ECE) sequence that lasted for ˜15 min. The compression was caused by a very dense, cold, and fast high-βmagnetosheath plasma flow, a so-called plasma jet, whose kinetic energy was approximately three times higher than the energy of the incident solar wind. The plasma jet resulted in the effective penetration of magnetosheath plasma inside the magnetosphere. A strong distortion of the Chapman-Ferraro current in the ECE sequence generated a tripolar magnetic pulse "decrease - peak- decrease" (DPD) that was observed at low and middle latitudes by some ground-based magnetometers of the INTERMAGNET network. The characteristics of the ECE sequence and the spatial-temporal dynamics of the DPD pulse were found to be very different from any reported patterns of DD interactions with the magnetosphere. The observed features only partially resembled structures such as FTE, hot flow anomalies, and transient density events. Thus, it is difficult to explain them in the context of existing models.
NASA Astrophysics Data System (ADS)
Chen, L.-J.; Hesse, M.; Wang, S.; Gershman, D.; Ergun, R. E.; Burch, J.; Bessho, N.; Torbert, R. B.; Giles, B.; Webster, J.; Pollock, C.; Dorelli, J.; Moore, T.; Paterson, W.; Lavraud, B.; Strangeway, R.; Russell, C.; Khotyaintsev, Y.; Lindqvist, P.-A.; Avanov, L.
2017-05-01
An electron diffusion region (EDR) in magnetic reconnection with a guide magnetic field approximately 0.2 times the reconnecting component is encountered by the four Magnetospheric Multiscale spacecraft at the Earth's magnetopause. The distinct substructures in the EDR on both sides of the reconnecting current sheet are visualized with electron distribution functions that are 2 orders of magnitude higher cadence than ever achieved to enable the following new findings: (1) Motion of the demagnetized electrons plays an important role to sustain the reconnection current and contributes to the dissipation due to the nonideal electric field, (2) the finite guide field dominates over the Hall magnetic field in an electron-scale region in the exhaust and modifies the electron flow dynamics in the EDR, (3) the reconnection current is in part carried by inflowing field-aligned electrons in the magnetosphere part of the EDR, and (4) the reconnection electric field measured by multiple spacecraft is uniform over at least eight electron skin depths and corresponds to a reconnection rate of approximately 0.1. The observations establish the first look at the structure of the EDR under a weak but not negligible guide field.
Magnetopause Standoff Position Changes and Geosynchronous Orbit Crossings: Models and Observations
NASA Astrophysics Data System (ADS)
Collado-Vega, Y. M.; Rastaetter, L.; Sibeck, D. G.
2017-12-01
The Earth's magnetopause is the boundary that mostly separates the solar wind with the Earth's magnetosphere. Its location has been studied and estimated via simulation models, observational data and empirical models. This research aims to study the changes of the magnetopause standoff location due to different solar wind conditions using a combination of all the different methods. We will use the Run-On-Request capabilities within the MHD models available from the Community Coordinated Modeling Center (CCMC) at NASA Goddard Space Flight Center, specifically BATS-R-US (SWMF), OpenGGCM, LFM and GUMICS models. The magnetopause standoff position prediction and response time to the solar wind changes will then be compared to results from available empirical models (e.g. Shue et al. 1998), and to THEMIS, Cluster, Geotail and MMS missions magnetopause crossing observations. We will also use times of extreme solar wind conditions where magnetopause crossings have been observed by the GOES satellites. Rigorous analysis/comparison of observations and empirical models is critical in determining magnetosphere dynamics for model validation. This research goes also hand in hand with the efforts of the working group at the CCMC/LWS International Forum for Space Weather Capabilities Assessment workshop that aims to analyze different events to define metrics for model-data comparison. Preliminary results of this particular research show that there are some discrepancies between the MHD models standoff positions of the dayside magnetopause for the same solar wind conditions that include an increase in solar wind dynamic pressure and a step function in the IMF Bz component. In cases of nominal solar wind conditions, it has been observed that the models do mostly agree with the observational data from the different satellite missions.
Magnetic Reconnection in Different Environments: Similarities and Differences
NASA Technical Reports Server (NTRS)
Hesse, Michael; Aunai, Nicolas; Kuznetsova, Masha; Zenitani, Seiji; Birn, Joachim
2014-01-01
Depending on the specific situation, magnetic reconnection may involve symmetric or asymmetric inflow regions. Asymmetric reconnection applies, for example, to reconnection at the Earth's magnetopause, whereas reconnection in the nightside magnetotail tends to involve more symmetric geometries. A combination of review and new results pertaining to magnetic reconnection is being presented. The focus is on three aspects: A basic, MHD-based, analysis of the role magnetic reconnection plays in the transport of energy, followed by an analysis of a kinetic model of time dependent reconnection in a symmetric current sheet, similar to what is typically being encountered in the magnetotail of the Earth. The third element is a review of recent results pertaining to the orientation of the reconnection line in asymmetric geometries, which are typical for the magnetopause of the Earth, as well as likely to occur at other planets.
NASA Astrophysics Data System (ADS)
Trattner, K. J.; Thresher, S.; Trenchi, L.; Fuselier, S. A.; Petrinec, S. M.; Peterson, W. K.; Marcucci, M. F.
2017-01-01
Magnetic reconnection changes the topology of magnetic field lines. This process is most readily observable with in situ instrumentation at the Earth's magnetopause as it creates open magnetic field lines to allow energy and momentum flux to flow from the solar wind to the magnetosphere. Most models use the direction of the interplanetary magnetic field (IMF) to determine the location of these magnetopause entry points, known as reconnection lines. Dayside locations of magnetic reconnection equatorward of the cusps are generally found during sustained intervals of southward IMF, while high-latitude region regions poleward of the cusps are observed for northward IMF conditions. In this study we discuss Double Star magnetopause crossings and a conjunction with a Polar cusp crossing during northward IMF conditions with a dominant IMF BY component. During all seven dayside magnetopause crossings, Double Star detected switching ion beams, a known signature for the presence of reconnection lines. In addition, Polar observed a cusp ion-energy dispersion profile typical for a dayside equatorial reconnection line. Using the cutoff velocities for the precipitating and mirrored ion beams in the cusp, the distance to the reconnection site is calculated, and this distance is traced back to the magnetopause, to the vicinity of the Double Star satellite locations. Our analysis shows that, for this case, the predicted line of maximum magnetic shear also coincides with that dayside reconnection location.
Determining the Thickness and the Sub-Structure Details of the Magnetopause from MMS Data
NASA Astrophysics Data System (ADS)
Manuzzo, R.; Belmont, G.; Rezeau, L.
2017-12-01
The magnetopause thickness, like its mean location, is a notion that can have different meanings depending which parameters are considered (magnetic field or plasma properties). In any case, all the determinations have been done, up to now, considering the magnetopause boundary as a structure strictly stationary and 1D (or with a simple curvature). These determinations have shown to be very sensitive to the accuracy of the normal direction, because it affects the projection of the quantities of interest in studying geometrical sensitive phenomena such as the magnetic reconnection. Furthermore, the 1D stationary assumptions are likely to be rarely verified at the real magnetopause. The high quality measurements of MMS and their high time resolution now allow investigating the magnetopause structure in its more delicate features and with an unequal spatio-temporal accuracy. We make use here of the MDD tool developed by [Shi et al., 2005], which gives the dimensionality of the gradients from the four-point measurements of MMS and allows estimating the direction of the local normal when defined. Extending this method to various quantities, we can draw their profiles as functions of a physical abscissa (length instead of time) along a sensible normal. This procedure allows answering quantitatively the questions concerning the locations and the thicknesses of the different sub-structures encountered inside the "global magnetopause" [Rezeau, 2017, paper submitted to JGR-Space Physics].
NASA Technical Reports Server (NTRS)
Taylor, M. G. G. T.; Hasegawa, H.; Lavraud, B.; Phan, T.; Escoubet, C. P.; Dunlop, M. W.; Bogdanova, Y. V.; Borg, A. L.; Volwerk, M.; Berchem, J.;
2012-01-01
The Kelvin-Helmholtz Instability (KHI) can drive waves at the magnetopause. These waves can grow to form rolled-up vortices and facilitate transfer of plasma into the magnetosphere. To investigate the persistence and frequency of such waves at the magnetopause we have carried out a survey of all Double Star 1 magnetopause crossings, using a combination of ion and magnetic field measurements. Using criteria originally used in a Geotail study made by Hasegawa et al. (2006) (forthwith referred to as H2006), 17 candidate events were identified from the entire TC-1 mission (covering 623 orbits where the magnetopause was sampled), a majority of which were on the dayside of the terminator. The relationship between density and shear velocity was then investigated, to identify the predicted signature of a rolled up vortex from H2006 and all 17 events exhibited some level of rolled up behavior. The location of the events had a clear dawn-dusk asymmetry, with 12 (71 %) on the post noon, dusk flank suggesting preferential growth in this region.
ISEE-1 data reduction and analysis plasma composition experiment
NASA Technical Reports Server (NTRS)
Lennartsson, W.; Sharp, R. D.
1985-01-01
The plasma composition experiment covers energies from OeV to 17 keV/e and has a mass-per-charge range from less than 1 to about 150 amu. Measurements were made from the inner ring current region to the plasma sheet, magnetotail lobes, and the magnetopause boundary layers and beyond. Possibly the most significant results from the experiment are those related to energetic (0+) ions of terrestrial origin. These ions are found in every region of the magnetosphere reached by the spacecraft and can have energy and pitch-angle distributions that are similar to those traditionally associated with protons of solar wind origin. The (0+) ions are commonly the most numerous ions in the 0.1 - 17 keV/e energy range and are often a substantial part of the ion population at large distances as well, especially during geomagnetically disturbed conditions. An overview of results obtained for the (0+) and other ions with energies in the 0.1 - 17 keV/e range in the magnetosphere is given.
NASA Astrophysics Data System (ADS)
Greess, S.; Egedal, J.; Olson, J.; Millet-Ayala, A.; Myers, R.; Wallace, J.; Clark, M.; Forest, C.
2017-12-01
Kinetic effects are expected to dominate the collisionless reconnection regime, where the mean free path is large enough that the anisotropic electron pressure can develop without being damped away by collisional pitch angle scattering. In simulations, the anisotropic pressure drives the formation of outflow jets [1]. These jets are expected to play a role in the reconnection layer at the Earth's magnetopause, which is currently being explored by Magnetospheric Multiscale Mission (MMS) [2]. Until recently, this regime of anisotropic pressure was inaccessible by laboratory experiments, but new data from the Terrestrial Reconnection Experiment (TREX) shows that fully collisionless reconnection can now be achieved in the laboratory. Future runs at TREX will delve deeper into this collisionless regime in both the antiparallel and guide-field cases. [1] Le, A. et al. JPP, 81(1). doi: 10.1017/S0022377814000907. [2] Burch, J. L. et al. Space Sci. Rev. 199,5. doi: 10.1007/s11214-015-0164-9 Supported in part by NSF/DOE award DE-SC0013032.
NASA Astrophysics Data System (ADS)
Erickson, P. J.; Foster, J. C.; Walsh, B.; Wygant, J. R.; Zhang, S.
2015-12-01
A number of studies over the past three decades have developed an increased understanding of the important redistribution of cold plasma from the ionosphere and inner magnetosphere to other elements of the near-Earth geospace system including the cusp, magnetopause, polar cap, and magnetotail. This redistribution process, especially prevalent during strong geomagnetic storm forcing, has been observed using a wide range of techniques encompassing ground-based and space-based imaging, modeling, and in-situ data. The large diversity of characteristics and location of these separate measurements and models has been reflected in a similarly large variety of nomenclature describing various aspects of the process, e.g. the plasmaspheric surge and drainage plume, storm enhanced density, sub-auroral polarization stream mass flow, and others. To emphasize the interconnections among these magnetosphere and ionosphere observations, we introduce the geospace plume as a unifying concept that recognizes cold plasma redistribution as a global coupling phenomenon, linking mid and sub-auroral ionospheric regions with high latitude cusp heavy ion outflow to the magnetopause and into the magnetotail. Cold redistributed plasma of ionospheric origin has many influences on reconnection, wave-particle interactions, and space weather effects. We will illustrate the continuity, morphology, and consequences of the geospace plume using observations from the March 2015 great geomagnetic storm. This interval has excellent coverage of the spatial extent and dynamics of the plume in the ionosphere (IS radar and GPS TEC mapping), plasmasphere boundary layer (Millstone Hill ISR, Van Allen Probes), and the magnetopause (THEMIS). Quantification of associated mass flows during the formation and evolution of plume structures is also possible at multiple space and time locations.
Structure of the Jovian Magnetodisk Current Sheet: Initial Galileo Observations
NASA Technical Reports Server (NTRS)
Russell, C. T.; Huddleston, D. E.; Khurana, K. K.; Kivelson, M. G.
2001-01-01
The ten-degree tilt of the Jovian magnetic dipole causes the magnetic equator to move back and forth across Jupiter's rotational equator and tile Galileo orbit that lies therein. Beyond about 24 Jovian radii, the equatorial current sheet thins and tile magnetic structure changes from quasi-dipolar into magnetodisk-like with two regions of nearly radial but antiparallel magnetic field separated by a strong current layer. The magnetic field at the center of the current sheet is very weak in this region. Herein we examine tile current sheet at radial distances from 24 55 Jovian radii. We find that the magnetic structure very much resembles tile structure seen at planetary magnetopause and tail current sheet crossings. Tile magnetic field variation is mainly linear with little rotation of the field direction, At times there is almost no small-scale structure present and the normal component of the magnetic field is almost constant through the current sheet. At other times there are strong small-scale structures present in both the southward and northward directions. This small-scale structure appears to grow with radial distance and may provide the seeds for tile explosive reconnection observed at even greater radial distances oil tile nightside. Beyond about 40 Jovian radii, the thin current sheet also appears to be almost constantly in oscillatory motion with periods of about 10 min. The amplitude of these oscillations also appears to grow with radial distance. The source of these fluctuations may be dynamical events in tile more distant magnetodisk.
NASA Astrophysics Data System (ADS)
Zhou, M.; Berchem, J.; Walker, R. J.; El-Alaoui, M.; Goldstein, M. L.; Lapenta, G.; Deng, X.; Li, J.; Le Contel, O.; Graham, D. B.; Lavraud, B.; Paterson, W. R.; Giles, B. L.; Burch, J. L.; Torbert, R. B.; Russell, C. T.; Strangeway, R. J.; Zhao, C.; Ergun, R. E.; Lindqvist, P.-A.; Marklund, G.
2018-03-01
We report Magnetospheric Multiscale (MMS) observations of a reconnecting current sheet in the presence of a weak density asymmetry with large guide field at the dayside magnetopause. An ion diffusion region (IDR) was detected associated with this current sheet. Parallel current dominated over the perpendicular current in the IDR, as found in previous studies of component reconnection. Electrons were preferentially heated parallel to the magnetic field within the IDR. The heating was manifested as a flattop distribution below 400 eV. Two types of electromagnetic electron whistler waves were observed within the regions where electrons were heated. One type of whistler wave was associated with nonlinear structures in E|| with amplitudes up to 20 mV/m. The other type was not associated with any structures in E||. Poynting fluxes of these two types of whistler waves were directed away from the X-line. We suggest that the nonlinear evolution of the oblique whistler waves gave rise to the solitary structures in E||. There was a perpendicular super-Alfvénic outflow jet that was carried by magnetized electrons. Intense electrostatic lower hybrid drift waves were localized in the current sheet center and were probably driven by the super-Alfvénic electron jet, the velocity of which was approximately equal to the diamagnetic drift of demagnetized ions. Our observations suggest that the guide field significantly modified the structures (Hall electromagnetic fields and current system) and wave properties in the IDR.
Fluid signatures of rotational discontinuities at Earth's magnetopause
NASA Technical Reports Server (NTRS)
Scudder, J. D.
1983-01-01
Fluid signatures in the MHD approximation at rotational discontinuities (RD) of finite width called rotational shear layers (RSL) are examined for general flow and magnetic geometries. Analytical and geometrical arguments illustrate that the fluid speed can either go up or down across an RSL for a fixed normal mass flux. The speed profile may or may not be monotonic depending on the boundary conditions. The flow velocity may or may not be field aligned or ""jetting'' as a result of traversing the RSL. In general, significant ""convection'' is expected in the layer. The observable signatures of (MHD) RSL's depend on 7 (boundary condition) parameters are (1) the mass density, (2 to 5) the incident normal and transverse components of the magnetic field and fluid velocity, (6) the angle epsilon between the incident tangential flow velocity and tangential magnetic field, and (7) the size of the magnetic angular rotation implemented by the layer delta phi.
Ganymede's magnetosphere: Magnetometer overview
NASA Astrophysics Data System (ADS)
Kivelson, M. G.; Warnecke, J.; Bennett, L.; Joy, S.; Khurana, K. K.; Linker, J. A.; Russell, C. T.; Walker, R. J.; Polanskey, C.
1998-09-01
Ganymede presents a unique example of an internally magnetized moon whose intrinsic magnetic field excludes the plasma present at its orbit, thereby forming a magnetospheric cavity. We describe some of the properties of this mini-magnetosphere, embedded in a sub-Alfvénic flow and formed within a planetary magnetosphere. A vacuum superposition model (obtained by adding the internal field of Ganymede to the field imposed by Jupiter) organizes the data acquired by the Galileo magnetometer on four close passes in a useful, intuitive fashion. The last field line that links to Ganymede at both ends extends to ~2 Ganymede radii, and the transverse scale of the magnetosphere is ~5.5 Ganymede radii. Departures from this simple model arise from currents flowing in the Alfvén wings and elsewhere on the magnetopause. The four passes give different cuts through the magnetosphere from which we develop a geometric model for the magnetopause surface as a function of the System III location of Ganymede. On one of the passes, Ganymede was located near the center of Jupiter's plasma disk. For this pass we identify probable Kelvin-Helmholtz surface waves on the magnetopause. After entering the relatively low-latitude upstream magnetosphere, Galileo apparently penetrated the region of closed field lines (ones that link to Ganymede at both ends), where we identify predominantly transverse fluctuations at frequencies reasonable for field line resonances. We argue that magnetic field measurements, when combined with flow measurements, show that reconnection is extremely efficient. Downstream reconnection, consequently, may account for heated plasma observed in a distant crossing of Ganymede's wake. We note some of the ways in which Ganymede's unusual magnetosphere corresponds to familiar planetary magnetospheres (viz., the magnetospheric topology and an electron ring current). We also comment on some of the ways in which it differs from familiar planetary magnetospheres (viz., relative stability and predictability of upstream plasma and field conditions, absence of a magnetotail plasma sheet and of a plasmasphere, and probable instability of the ring current).
The Plasmaspheric Plume and Magnetopause Reconnection
NASA Technical Reports Server (NTRS)
Walsh, B. M.; Phan, T. D.; Sibeck, D. G.; Souza, V. M.
2014-01-01
We present near-simultaneous measurements from two THEMIS spacecraft at the dayside magnetopause with a 1.5 h separation in local time. One spacecraft observes a high-density plasmaspheric plume while the other does not. Both spacecraft observe signatures of magnetic reconnection, providing a test for the changes to reconnection in local time along the magnetopause as well as the impact of high densities on the reconnection process. When the plume is present and the magnetospheric density exceeds that in the magnetosheath, the reconnection jet velocity decreases, the density within the jet increases, and the location of the faster jet is primarily on field lines with magnetosheath orientation. Slower jet velocities indicate that reconnection is occurring less efficiently. In the localized region where the plume contacts the magnetopause, the high-density plume may impede the solar wind-magnetosphere coupling by mass loading the reconnection site.
Locating dayside magnetopause reconnection with exhaust ion distributions
NASA Astrophysics Data System (ADS)
Broll, J. M.; Fuselier, S. A.; Trattner, K. J.
2017-05-01
Magnetic reconnection at Earth's dayside magnetopause is essential to magnetospheric dynamics. Determining where reconnection takes place is important to understanding the processes involved, and many questions about reconnection location remain unanswered. We present a method for locating the magnetic reconnection X line at Earth's dayside magnetopause under southward interplanetary magnetic field conditions using only ion velocity distribution measurements. Particle-in-cell simulations based on Cluster magnetopause crossings produce ion velocity distributions that we propagate through a model magnetosphere, allowing us to calculate the field-aligned distance between an exhaust observation and its associated reconnection line. We demonstrate this procedure for two events and compare our results with those of the Maximum Magnetic Shear Model; we find good agreement with its results and show that when our method is applicable, it produces more precise locations than the Maximum Shear Model.
Understanding the mechanisms of radiation belt dropouts observed by Van Allen Probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiang, Zheng; Tu, Weichao; Li, Xinlin
To achieve a better understanding of the dominant loss mechanisms for the rapid dropouts of radiation belt electrons, three distinct radiation belt dropout events observed by Van Allen Probes are comprehensively investigated. For each event, observations of the pitch angle distribution of electron fluxes and electromagnetic ion cyclotron (EMIC) waves are analyzed to determine the effects of atmospheric precipitation loss due to pitch angle scattering induced by EMIC waves. Last closed drift shells (LCDS) and magnetopause standoff position are obtained to evaluate the effects of magnetopause shadowing loss. Evolution of electron phase space density (PSD) versus L* profiles and themore » μ and K (first and second adiabatic invariants) dependence of the electron PSD drops are calculated to further analyze the dominant loss mechanisms at different L*. Here, our findings suggest that these radiation belt dropouts can be classified into distinct classes in terms of dominant loss mechanisms: magnetopause shadowing dominant, EMIC wave scattering dominant, and combination of both mechanisms. Different from previous understanding, our results show that magnetopause shadowing can deplete electrons at L* < 4, while EMIC waves can efficiently scatter electrons at L* > 4. Compared to the magnetopause standoff position, it is more reliable to use LCDS to evaluate the impact of magnetopause shadowing. Finally, the evolution of electron PSD versus L* profile and the μ, K dependence of electron PSD drops can provide critical and credible clues regarding the mechanisms responsible for electron losses at different L* over the outer radiation belt.« less
Xiang, Zheng; Ni, Binbin; Zhou, Chen; ...
2016-05-03
Radiation belt electron flux dropouts are a kind of drastic variation in the Earth's magnetosphere, understanding of which is of both scientific and societal importance. We report multi-satellite simultaneous observations of magnetopause and atmospheric losses of radiation belt electrons during an event of intense solar wind dynamic pressure pulse, using electron flux data from a group of 14 satellites. Moreover, when the pulse occurred, magnetopause and atmospheric loss could take effect concurrently contributing to the electron flux dropout. Losses through the magnetopause were observed to be efficient and significant at L ≳ 5, owing to the magnetopause intrusion into Lmore » ~6 and outward radial diffusion associated with sharp negative gradient in electron phase space density. Losses to the atmosphere were directly identified from the precipitating electron flux observations, for which pitch angle scattering by plasma waves could be mainly responsible. While the convection and substorm injections strongly enhanced the energetic electron fluxes up to hundreds of keV, they could delay other than avoid the occurrence of electron flux dropout at these energies. Finally, we demonstrate that the pulse-time radiation belt electron flux dropout depends strongly on the specific interplanetary and magnetospheric conditions and that losses through the magnetopause and to the atmosphere and enhancements of substorm injection play an essential role in combination, which should be incorporated as a whole into future simulations for comprehending the nature of radiation belt electron flux dropouts.« less
Understanding the Mechanisms of Radiation Belt Dropouts Observed by Van Allen Probes
NASA Astrophysics Data System (ADS)
Xiang, Zheng; Tu, Weichao; Li, Xinlin; Ni, Binbin; Morley, S. K.; Baker, D. N.
2017-10-01
To achieve a better understanding of the dominant loss mechanisms for the rapid dropouts of radiation belt electrons, three distinct radiation belt dropout events observed by Van Allen Probes are comprehensively investigated. For each event, observations of the pitch angle distribution of electron fluxes and electromagnetic ion cyclotron (EMIC) waves are analyzed to determine the effects of atmospheric precipitation loss due to pitch angle scattering induced by EMIC waves. Last closed drift shells (LCDS) and magnetopause standoff position are obtained to evaluate the effects of magnetopause shadowing loss. Evolution of electron phase space density (PSD) versus L* profiles and the μ and K (first and second adiabatic invariants) dependence of the electron PSD drops are calculated to further analyze the dominant loss mechanisms at different L*. Our findings suggest that these radiation belt dropouts can be classified into distinct classes in terms of dominant loss mechanisms: magnetopause shadowing dominant, EMIC wave scattering dominant, and combination of both mechanisms. Different from previous understanding, our results show that magnetopause shadowing can deplete electrons at L* < 4, while EMIC waves can efficiently scatter electrons at L* > 4. Compared to the magnetopause standoff position, it is more reliable to use LCDS to evaluate the impact of magnetopause shadowing. The evolution of electron PSD versus L* profile and the μ, K dependence of electron PSD drops can provide critical and credible clues regarding the mechanisms responsible for electron losses at different L* over the outer radiation belt.
A survey of flux transfer events observed in the dayside magnetopause
NASA Astrophysics Data System (ADS)
Silveira, M. D.; Sibeck, D. G.; Lee, S. H.; Gonzalez, W.; Koga, D.
2017-12-01
Flux transfer events (FTE) have been interpreted to be results from transient magnetic reconnection and can be observed in the vicinity of the Earth's magnetopause, as well in other planets. FTE acts as a flux tube connecting the magnetosheath to the magnetosphere allowing the transference of particles, energy and momentum in both sides magnetopause. Their main signatures in satellite data are bipolar variation in the magnetic field component normal to the magnetopause, centered in an enhanced magnetic field strength. Other signatures such as pressure imbalance, bulk flow jets, and particle anisotropy distribution can be observed inside the those structures. We surveyed FTEs observed by MMS on the vicinity of the magnetopause (from x = 0 to 13Re and y = -12 to 12Re). Taking advantage of the MMS tetrahedron configuration we will employed timing analysis to determine the FTEs direction of motion and scale lengths. We will present information about occurrence related with IMF clock angle and other parameters, amplitude of the perturbations induced by the FTEs in the environment magnetic field and plasma; characteristic time and structure scale size. Using data from ACE, Wind and Artemis we can evaluate which is the best solar wind monitor for each FTE observed and then employ the appropriated lag time corresponding to FTE location and magnetic field orientation. The objective is to investigate the mechanisms of generation of FTEs comparing characteristics of the events observed on the dayside region and on the magnetopause flanks determining the motion and speed of FTEs.
Understanding the mechanisms of radiation belt dropouts observed by Van Allen Probes
Xiang, Zheng; Tu, Weichao; Li, Xinlin; ...
2017-08-30
To achieve a better understanding of the dominant loss mechanisms for the rapid dropouts of radiation belt electrons, three distinct radiation belt dropout events observed by Van Allen Probes are comprehensively investigated. For each event, observations of the pitch angle distribution of electron fluxes and electromagnetic ion cyclotron (EMIC) waves are analyzed to determine the effects of atmospheric precipitation loss due to pitch angle scattering induced by EMIC waves. Last closed drift shells (LCDS) and magnetopause standoff position are obtained to evaluate the effects of magnetopause shadowing loss. Evolution of electron phase space density (PSD) versus L* profiles and themore » μ and K (first and second adiabatic invariants) dependence of the electron PSD drops are calculated to further analyze the dominant loss mechanisms at different L*. Here, our findings suggest that these radiation belt dropouts can be classified into distinct classes in terms of dominant loss mechanisms: magnetopause shadowing dominant, EMIC wave scattering dominant, and combination of both mechanisms. Different from previous understanding, our results show that magnetopause shadowing can deplete electrons at L* < 4, while EMIC waves can efficiently scatter electrons at L* > 4. Compared to the magnetopause standoff position, it is more reliable to use LCDS to evaluate the impact of magnetopause shadowing. Finally, the evolution of electron PSD versus L* profile and the μ, K dependence of electron PSD drops can provide critical and credible clues regarding the mechanisms responsible for electron losses at different L* over the outer radiation belt.« less
The source of the electric field in the nightside magnetosphere
NASA Technical Reports Server (NTRS)
Stern, D. P.
1975-01-01
In the open magnetosphere model magnetic field lines from the polar caps connect to the interplanetary magnetic field and conduct an electric field from interplanetary space to the polar ionosphere. By examining the magnetic flux involved it is concluded that only slightly more than half of the magnetic flux in the polar caps belongs to open field lines and that such field lines enter or leave the magnetosphere through narrow elongated windows stretching the tail. These window regions are identified with the tail's boundary region and shift their position with changes in the interplanetary magnetic field, in particular when a change of interplanetary magnetic sector occurs. The circuit providing electric current in the magnetopause and the plasma sheet is extended across those windows; thus energy is drained from the interplanetary electric field and an electric potential drop is produced across the plasma sheet. The polar cap receives its electric field from interplanetary space on the day side from open magnetic field lines and on the night side from closed field lines leading to the plasma sheet. The theory described provides improved understanding of magnetic flux bookkeeping, of the origin of Birkeland currents, and of the boundary layer of the geomagnetic tail.
NASA Astrophysics Data System (ADS)
Wilder, F. D.; Ergun, R. E.; Newman, D. L.; Goodrich, K. A.; Trattner, K. J.; Goldman, M. V.; Eriksson, S.; Jaynes, A. N.; Leonard, T.; Malaspina, D. M.; Ahmadi, N.; Schwartz, S. J.; Burch, J. L.; Torbert, R. B.; Argall, M. R.; Giles, B. L.; Phan, T. D.; Le Contel, O.; Graham, D. B.; Khotyaintsev, Yu V.; Strangeway, R. J.; Russell, C. T.; Magnes, W.; Plaschke, F.; Lindqvist, P.-A.
2017-05-01
We show observations of whistler mode waves in both the low-latitude boundary layer (LLBL) and on closed magnetospheric field lines during a crossing of the dayside reconnecting magnetopause by the Magnetospheric Multiscale (MMS) mission on 11 October 2015. The whistlers in the LLBL were on the electron edge of the magnetospheric separatrix and exhibited high propagation angles with respect to the background field, approaching 40°, with bursty and nonlinear parallel electric field signatures. The whistlers in the closed magnetosphere had Poynting flux that was more field aligned. Comparing the reduced electron distributions for each event, the magnetospheric whistlers appear to be consistent with anisotropy-driven waves, while the distribution in the LLBL case includes anisotropic backward resonant electrons and a forward resonant beam at near half the electron-Alfvén speed. Results are compared with the previously published observations by MMS on 19 September 2015 of LLBL whistler waves. The observations suggest that whistlers in the LLBL can be both beam and anisotropy driven, and the relative contribution of each might depend on the distance from the X line.
Investigation of Magnetic Reconnection Suppression at Saturn's Magnetopause
NASA Astrophysics Data System (ADS)
Sawyer, R.; Fuselier, S. A.; Mukherjee, J.; Steven, P. M.; Masters, A.
2017-12-01
At Earth, one of the fundamental processes that govern the interaction between the solar wind and the magnetosphere is magnetic reconnection. It remains to be seen how significant a role magnetic reconnection plays in the magnetospheric dynamics of the outer planets. In particular, there may be conditions that cause suppression of reconnection. For fast rotators, like Saturn, the strong co-rotation may be dominant throughout the magnetosphere, out to the magnetopause. These strong internal co-rotational flows may create a shear flow across the magnetopause that may act to suppress reconnection, especially on the dawn flank. Cassini has given us an extraordinary insight into the plasma environment around Saturn. The electron spectrometer (ELS) on the Cassini plasma spectrometer (CAPS) instrument provides data on the plasma density and temperatures as well as electron pitch angle distributions and their associated energies. In this study we examine magnetopause crossing events where heated electrons were observed in the magnetosheath. We use a modified empirical model for the location of the reconnection X-line to show where reconnection may be taking place at Saturn's magnetopause. From these results, we determine if any events considered fall in the predicted suppression region along the dawn flanks.
On the origin of the crescent-shaped distributions observed by MMS at the magnetopause
NASA Astrophysics Data System (ADS)
Lapenta, G.; Berchem, J.; Zhou, M.; Walker, R. J.; El-Alaoui, M.; Goldstein, M. L.; Paterson, W. R.; Giles, B. L.; Pollock, C. J.; Russell, C. T.; Strangeway, R. J.; Ergun, R. E.; Khotyaintsev, Y. V.; Torbert, R. B.; Burch, J. L.
2017-02-01
MMS observations recently confirmed that crescent-shaped electron velocity distributions in the plane perpendicular to the magnetic field occur in the electron diffusion region near reconnection sites at Earth's magnetopause. In this paper, we reexamine the origin of the crescent-shaped distributions in the light of our new finding that ions and electrons are drifting in opposite directions when displayed in magnetopause boundary-normal coordinates. Therefore, E × B drifts cannot cause the crescent shapes. We performed a high-resolution multiscale simulation capturing subelectron skin-depth scales. The results suggest that the crescent-shaped distributions are caused by meandering orbits without necessarily requiring any additional processes found at the magnetopause such as the highly asymmetric magnetopause ambipolar electric field. We use an adiabatic Hamiltonian model of particle motion to confirm that conservation of canonical momentum in the presence of magnetic field gradients causes the formation of crescent shapes without invoking asymmetries or the presence of an E × B drift. An important consequence of this finding is that we expect crescent-shaped distributions also to be observed in the magnetotail, a prediction that MMS will soon be able to test.
Paleointensity, solar wind and magnetopause 3.45 billion years ago (Invited)
NASA Astrophysics Data System (ADS)
Tarduno, J. A.; Cottrell, R. D.; Watkeys, M. K.; Hofmann, A.; Doubrovine, P. V.; Nelson, J.; Usui, Y.
2009-12-01
The standoff of the solar wind by the magnetic field produced by a core dynamo defines atmospheric shielding and prevention of volatile loss important for the evolution of a habitable planet. Yet little is known about magnetic field strength for the earliest Earth. Therefore, the potential for intense radiation from the young, rapidly rotating Sun modifying the atmosphere is uncertain. We report Thellier paleointensity results from single silicate crystals bearing magnetic inclusions that indicate the presence of a Paleoarchean geodynamo between 3.40 and 3.45 billion years ago. The field is somewhat weaker than the current field and when combined with the a greater solar wind pressure suggest steady-state Paleoarchean magnetopause standoff distances similar to those observed during recent solar storms. We will discuss efforts to further extend the paleointensity record, using single crystals with magnetic inclusions, such as zircons, eroded from older igneous rocks and now found within Archean sedimentary units.
Near real time determination of the magnetopause and bow shock shape and position
NASA Astrophysics Data System (ADS)
Kartalev, M. D.; Keremidarska, V. I.; Grigorov, K. G.; Romanov, D. K.
2002-03-01
We present a web based near real time (once in 90 minutes) automated running of our 3D magnetosheath gasdynamic numerical model. (http://geospace.nat.bg). The determination of the shape and position of the bow shock and the magnetopause is a part of the solution. This approach of the model is utilizing the realistic semi-empirical Tsyganenko magnetosphere model T96-01 for ensuring the pressure balance at the magnetopause. In this realization, we use a real time ACE data, averaged over a 6 minutes time interval.
One-month validation of the Space Weather Modeling Framework geospace model
NASA Astrophysics Data System (ADS)
Haiducek, J. D.; Welling, D. T.; Ganushkina, N. Y.; Morley, S.; Ozturk, D. S.
2017-12-01
The Space Weather Modeling Framework (SWMF) geospace model consists of a magnetohydrodynamic (MHD) simulation coupled to an inner magnetosphere model and an ionosphere model. This provides a predictive capability for magnetopsheric dynamics, including ground-based and space-based magnetic fields, geomagnetic indices, currents and densities throughout the magnetosphere, cross-polar cap potential, and magnetopause and bow shock locations. The only inputs are solar wind parameters and F10.7 radio flux. We have conducted a rigorous validation effort consisting of a continuous simulation covering the month of January, 2005 using three different model configurations. This provides a relatively large dataset for assessment of the model's predictive capabilities. We find that the model does an excellent job of predicting the Sym-H index, and performs well at predicting Kp and CPCP during active times. Dayside magnetopause and bow shock positions are also well predicted. The model tends to over-predict Kp and CPCP during quiet times and under-predicts the magnitude of AL during disturbances. The model under-predicts the magnitude of night-side geosynchronous Bz, and over-predicts the radial distance to the flank magnetopause and bow shock. This suggests that the model over-predicts stretching of the magnetotail and the overall size of the magnetotail. With the exception of the AL index and the nightside geosynchronous magnetic field, we find the results to be insensitive to grid resolution.
Numerical simulation of an experimental analogue of a planetary magnetosphere
NASA Astrophysics Data System (ADS)
Liao, Andy Sha; Li, Shule; Hartigan, Patrick; Graham, Peter; Fiksel, Gennady; Frank, Adam; Foster, John; Kuranz, Carolyn
2015-12-01
Recent improvements to the Omega Laser Facility's magneto-inertial fusion electrical discharge system (MIFEDS) have made it possible to generate strong enough magnetic fields in the laboratory to begin to address the physics of magnetized astrophysical flows. Here, we adapt the MHD code AstroBEAR to create 2D numerical models of an experimental analogue of a planetary magnetosphere. We track the secular evolution of the magnetosphere analogue and we show that the magnetospheric components such as the magnetopause, magnetosheath, and bow shock, should all be observable in experimental optical band thermal bremsstrahlung emissivity maps, assuming equilibrium charge state distributions of the plasma. When the magnetosphere analogue nears the steady state, the mid-plane altitude of the magnetopause from the wire surface scales as the one-half power of the ratio of the magnetic pressure at the surface of the free wire to the ram pressure of an unobstructed wind; the mid-plane thickness of the magnetosheath is directly related to the radius of the magnetopause. This behavior conforms to Chapman and Ferraro's theory of planetary magnetospheres. Although the radial dependence of the magnetic field strength differs between the case of a current-carrying wire and a typical planetary object, the major morphological features that develop when a supersonic flow passes either system are identical. Hence, this experimental concept is an attractive one for studying the dynamics of planetary magnetospheres in a controlled environment.
Drift turbulence, particle transport, and anomalous dissipation at the reconnecting magnetopause
NASA Astrophysics Data System (ADS)
Le, A.; Daughton, W.; Ohia, O.; Chen, L.-J.; Liu, Y.-H.; Wang, S.; Nystrom, W. D.; Bird, R.
2018-06-01
Using fully kinetic 3D simulations, the reconnection dynamics of asymmetric current sheets are examined at the Earth's magnetopause. The plasma parameters are selected to model MMS magnetopause diffusion region crossings with guide fields of 0.1, 0.4, and 1 of the reconnecting magnetosheath field. In each case, strong drift-wave fluctuations are observed in the lower-hybrid frequency range at the steep density gradient across the magnetospheric separatrix. These fluctuations give rise to cross-field electron particle transport. In addition, this turbulent mixing leads to significantly enhanced electron parallel heating in comparison to 2D simulations. We study three different methods of quantifying the anomalous dissipation produced by the drift fluctuations, based on spatial averaging, temporal averaging, and temporal averaging followed by integrating along magnetic field lines. A comparison of different methods reveals complications in identifying and measuring the anomalous dissipation. Nevertheless, the anomalous dissipation from short wavelength drift fluctuations appears weak for each case, and the reconnection rates observed in 3D are nearly the same as in 2D models. The 3D simulations feature a number of interesting new features that are consistent with recent MMS observations, including cold beams of magnetosheath electrons that penetrate into the hotter magnetospheric inflow, the related observation of decreasing temperature in regions of increasing total density, and an effective turbulent diffusion coefficient that agrees with predictions from quasi-linear theory.
Coupled Kelvin-Helmholtz and Tearing Mode Instabilities at the Mercury's Magnetopause
NASA Astrophysics Data System (ADS)
Ivanovski, S. L.; Milillo, A.; Kartalev, M.; Massetti, S.
2018-05-01
A MHD approach for numerical simulations of coupled Kelvin-Helmholtz and tearing mode instabilities has been applied to Mercury’s magnetopause and used to perform a physical parameters study constrained by the MESSENGER data.
Ubiquity of Kelvin–Helmholtz waves at Earth's magnetopause
Kavosi, Shiva; Raeder, Joachim
2015-01-01
Magnetic reconnection is believed to be the dominant process by which solar wind plasma enters the magnetosphere. However, for periods of northward interplanetary magnetic field (IMF) reconnection is less likely at the dayside magnetopause, and Kelvin–Helmholtz waves (KHWs) may be important agents for plasma entry and for the excitation of ultra-low-frequency (ULF) waves. The relative importance of KHWs is controversial because no statistical data on their occurrence frequency exist. Here we survey 7 years of in situ data from the NASA THEMIS (Time History of Events and Macro scale Interactions during Substorms) mission and find that KHWs occur at the magnetopause ∼19% of the time. The rate increases with solar wind speed, Alfven Mach number and number density, but is mostly independent of IMF magnitude. KHWs may thus be more important for plasma transport across the magnetopause than previously thought, and frequently drive magnetospheric ULF waves. PMID:25960122
Steepening of Waves at the Duskside Magnetopause
NASA Technical Reports Server (NTRS)
Plaschke, F.; Kahr, N.; Fischer, D.; Nakamura, R.; Baumjohann, W.; Magnes, W.; Burch, J. L.; Torbert, R.; Russell, C. T.; Giles, B. L.;
2016-01-01
Surface waves at the magnetopause flanks typically feature steeper, i.e., more inclined leading (antisunward facing) than trailing (sunward facing) edges. This is expected for Kelvin-Helmholtz instability (KHI) amplified waves. Very rarely, during northward interplanetary magnetic field (IMF) conditions, anomalous inverse steepening has been observed. The small-scale tetrahedral configuration of the Magnetospheric Multiscale spacecraft and their high time resolution measurements enable us to routinely ascertain magnetopause boundary inclinations during surface wave passage with high accuracy by four-spacecraft timing analysis. At the dusk flank magnetopause, 77%/23% of the analyzed wave intervals exhibit regular inverse steepening. Inverse steepening happens during northward IMF conditions, as previously reported and, in addition, during intervals of dominant equatorial IMF. Inverse steepening observed under the latter conditions may be due to the absence of KHI or due to instabilities arising from the alignment of flow and magnetic fields in the magnetosheath.
Currents and Flows in Distant Magnetospheres
NASA Technical Reports Server (NTRS)
Kivelson, Margaret Galland
2000-01-01
Space scientists have explored, described, and explained the terrestrial magnetosphere for four decades. Rarely do they point out that the planetary and solar wind parameters controlling the size, shape, and activity of Earth's magnetosphere map out only a small portion of the space of dimensionless parameters that govern magnetospheric properties. With the discovery of Ganymede's magnetosphere, the range of parameters relevant to magnetospheric studies has grown by orders of magnitude. Consider the extremes of Ganymede's and Jupiter's magnetospheres. Jupiter's magnetosphere forms within a plasma flowing at super-Alfvenic speed, whereas Ganymede's forms in a sub-Alfvenic flow. The scale sizes of these magnetospheres, characterized by distances to the magnetopause of order 7x10(exp 6) km and 5x10(exp 3) km, respectively, differ by three orders of magnitude, ranging from 100 to 0.1 times the scale of Earth's magnetosphere. The current systems that control the structure and dynamics of a magnetosphere depend on specific plasma and field properties. Magnetopause currents at Ganymede differ greatly from the forms familiar for Earth and Jupiter, principally because the Mach number of the ambient plasma flow greatly influences the shape of the magnetosphere. A magnetodisk current, present at Jupiter because of its rapid rotation, is absent at Earth and Ganymede. The ring current, extensively investigated at Earth, is probably unimportant at Ganymede because the dynamical variations of the external flow are slow. The ring current is subsumed within the magnetodisk current at Jupiter. This paper describes and contrasts aspects of these and other current systems for the three bodies.
Geotail MCA Plasma Wave Investigation Data Analysis
NASA Technical Reports Server (NTRS)
Anderson, Roger R.
1997-01-01
The primary goals of the International Solar Terrestrial Physics/Global Geospace Science (ISTP/GGS) program are identifying, studying, and understanding the source, movement, and dissipation of plasma mass, momentum, and energy between the Sun and the Earth. The GEOTAIL spacecraft was built by the Japanese Institute of Space and Astronautical Science and has provided extensive measurements of entry, storage, acceleration, and transport in the geomagnetic tail and throughout the Earth's outer magnetosphere. GEOTAIL was launched on July 24, 1992, and began its scientific mission with eighteen extensions into the deep-tail region with apogees ranging from around 60 R(sub e) to more than 208 R(sub e) in the period up to late 1994. Due to the nature of the GEOTAIL trajectory which kept the spacecraft passing into the deep tail, GEOTAIL also made 'magnetopause skimming passes' which allowed measurements in the outer magnetosphere, magnetopause, magnetosheath, bow shock, and upstream solar wind regions as well as in the lobe, magnetosheath, boundary layers, and central plasma sheet regions of the tail. In late 1994, after spending nearly 30 months primarily traversing the deep tail region, GEOTAIL began its near-Earth phase. Perigee was reduced to 10 R(sub e) and apogee first to 50 R(sub e) and finally to 30 R(sub e) in early 1995. This orbit provides many more opportunities for GEOTAIL to explore the upstream solar wind, bow shock, magnetosheath, magnetopause, and outer magnetosphere as well as the near-Earth tail regions. The WIND spacecraft was launched on November 1, 1994 and the POLAR spacecraft was launched on February 24, 1996. These successful launches have dramatically increased the opportunities for GEOTAIL and the GGS spacecraft to be used to conduct the global research for which the ISTP program was designed. The measurement and study of plasma waves have made and will continue to make important contributions to reaching the ISTP/GGS goals and solving the significant problems of sun-earth connections. Plasma waves are involved in the energization and de-energization of plasma and energetic particles via numerous wave-particle interaction processes. Plasma waves in many instances are the source for the heating or cooling of the particles. They can cause particle precipitation by scattering particles into the loss cone. They move particles across boundaries in mass and energy dependent ways. Identifying the waves and the instabilities which produce them are thus crucial for understanding the plasma processes. Wave-particle interaction processes are especially important at various boundaries between the different regions of geospace including the bow shock, magnetopause, and interfaces in the geomagnetic tail between the magnetosheath, lobe, plasmasheet, boundary layers, and neutral sheet. In addition to identifying the characteristics of the instabilities and generation mechanisms encountered, plasma wave measurement are used in conjunction with other fields and particle measurements to identify the region of space the spacecraft is in or the boundary that is being crosed.
NASA Technical Reports Server (NTRS)
Farrugia, C. J.; Sandholt, P. E.; Burlaga, L. F.
1994-01-01
Auroral activity occurred in the late afternoon sector (approx. 16 MLT) in the northern hemisphere during the passage at Earth of an interplanetary magnetic cloud on January 14, 1988. The auroral activity consisted of a very dynamic display which was preceded and followed by quiet auroral displays. During the quiet displays, discrete rayed arcs aligned along the geomagnetic L shells were observed. In the active stage, rapidly evolving spiral forms centered on magnetic zenith were evident. The activity persisted for many minutes and was characterized by the absence of directed motion. They were strongly suggestive of intense filaments of upward field-aligned currents embedded in the large-scale region 1 current system. Distortions of the flux ropes as they connect from the equatorial magnetosphere to the ionosphere were witnessed. We assess as possible generating mechanisms three nonlocal sources known to be associated with field-aligned currents. Of these, partial compressions of the magnetosphere due to variations of solar wind dynamic pressure seem an unlikely source. The possibility that the auroral forms are due to reconnection is investigated but is excluded because the active aurora were observed on the closed field line region just equatorward of the convection reversal boundary. To support this conclusion further, we apply recent results on the mapping of ionospheric regions to the equatorial plane based on the Tsyganenko 1989 model (Kaufmann et al., 1993). We find that for comparable magnetic activity the aurora map to the equatorial plane at X(sub GSM) = approx. 3 R(sub E) and approx. 2 R(sub E) inward of the magnetopause, that is, the inner edge of the boundary layer close to dusk. Since the auroral forms are manifestly associated with magnetic field shear, a vortical motion at the equatorial end of the flux rope is indicated, making the Kelvin-Helmholtz instability acting at the inner edge of the low-latitude boundary layer the most probable generating source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, Ian J.; Mauk, Barry H.; Anderson, Brian J.
Here, observations from the Energetic Particle Detector (EPD) instrument suite aboard the Magnetospheric Multiscale (MMS) spacecraft show that energetic (greater than tens of keV) magnetospheric particle escape into the magnetosheath occurs commonly across the dayside. This includes the surprisingly frequent observation of magnetospheric electrons in the duskside magnetosheath, an unexpected result given assumptions regarding magnetic drift shadowing. The 238 events identified in the 40 keV electron energy channel during the first MMS dayside season that exhibit strongly anisotropic pitch angle distributions indicating monohemispheric field-aligned streaming away from the magnetopause. A review of the extremely rich literature of energetic electron observationsmore » beyond the magnetopause is provided to place these new observations into historical context. Despite the extensive history of such research, these new observations provide a more comprehensive data set that includes unprecedented magnetic local time (MLT) coverage of the dayside equatorial magnetopause/magnetosheath. These data clearly highlight the common escape of energetic electrons along magnetic field lines concluded to have been reconnected across the magnetopause. While these streaming escape events agree with prior studies which show strong correlation with geomagnetic activity (suggesting a magnetotail source) and occur most frequently during periods of southward IMF, the high number of duskside events is unexpected and previously unobserved. Although the lowest electron energy channel was the focus of this study, the events reported here exhibit pitch angle anisotropies indicative of streaming up to 200 keV, which could represent the magnetopause loss of >1 MeV electrons from the outer radiation belt.« less
Cohen, Ian J.; Mauk, Barry H.; Anderson, Brian J.; ...
2017-08-01
Here, observations from the Energetic Particle Detector (EPD) instrument suite aboard the Magnetospheric Multiscale (MMS) spacecraft show that energetic (greater than tens of keV) magnetospheric particle escape into the magnetosheath occurs commonly across the dayside. This includes the surprisingly frequent observation of magnetospheric electrons in the duskside magnetosheath, an unexpected result given assumptions regarding magnetic drift shadowing. The 238 events identified in the 40 keV electron energy channel during the first MMS dayside season that exhibit strongly anisotropic pitch angle distributions indicating monohemispheric field-aligned streaming away from the magnetopause. A review of the extremely rich literature of energetic electron observationsmore » beyond the magnetopause is provided to place these new observations into historical context. Despite the extensive history of such research, these new observations provide a more comprehensive data set that includes unprecedented magnetic local time (MLT) coverage of the dayside equatorial magnetopause/magnetosheath. These data clearly highlight the common escape of energetic electrons along magnetic field lines concluded to have been reconnected across the magnetopause. While these streaming escape events agree with prior studies which show strong correlation with geomagnetic activity (suggesting a magnetotail source) and occur most frequently during periods of southward IMF, the high number of duskside events is unexpected and previously unobserved. Although the lowest electron energy channel was the focus of this study, the events reported here exhibit pitch angle anisotropies indicative of streaming up to 200 keV, which could represent the magnetopause loss of >1 MeV electrons from the outer radiation belt.« less
NASA Astrophysics Data System (ADS)
Cohen, Ian J.; Mauk, Barry H.; Anderson, Brian J.; Westlake, Joseph H.; Sibeck, David G.; Turner, Drew L.; Fennell, Joseph F.; Blake, J. Bern; Jaynes, Allison N.; Leonard, Trevor W.; Baker, Daniel N.; Spence, Harlan E.; Reeves, Geoff D.; Giles, Barbara J.; Strangeway, Robert J.; Torbert, Roy B.; Burch, James L.
2017-09-01
Observations from the Energetic Particle Detector (EPD) instrument suite aboard the Magnetospheric Multiscale (MMS) spacecraft show that energetic (greater than tens of keV) magnetospheric particle escape into the magnetosheath occurs commonly across the dayside. This includes the surprisingly frequent observation of magnetospheric electrons in the duskside magnetosheath, an unexpected result given assumptions regarding magnetic drift shadowing. The 238 events identified in the 40 keV electron energy channel during the first MMS dayside season that exhibit strongly anisotropic pitch angle distributions indicating monohemispheric field-aligned streaming away from the magnetopause. A review of the extremely rich literature of energetic electron observations beyond the magnetopause is provided to place these new observations into historical context. Despite the extensive history of such research, these new observations provide a more comprehensive data set that includes unprecedented magnetic local time (MLT) coverage of the dayside equatorial magnetopause/magnetosheath. These data clearly highlight the common escape of energetic electrons along magnetic field lines concluded to have been reconnected across the magnetopause. While these streaming escape events agree with prior studies which show strong correlation with geomagnetic activity (suggesting a magnetotail source) and occur most frequently during periods of southward IMF, the high number of duskside events is unexpected and previously unobserved. Although the lowest electron energy channel was the focus of this study, the events reported here exhibit pitch angle anisotropies indicative of streaming up to 200 keV, which could represent the magnetopause loss of >1 MeV electrons from the outer radiation belt.
Magnetic flux ropes at the high-latitude magnetopause
NASA Technical Reports Server (NTRS)
Berchem, Jean; Raeder, Joachim; Ashour-Abdalla, Maha
1995-01-01
We examine the consequences of magnetic reconnection at the high-latitude magnetopause using a three-dimensional global magnetohydrodynamic simulation of the solar wind interaction with the Earth's magnetosphere. Magnetic field lines from the simulation reveal the formation of magnetic flux ropes during periods with northward interplanetary magnetic field. These flux ropes result from multiple reconnection processes between the lobes field lines and draped magnetosheath field lines that are convected around the flank of the magnetosphere. The flux ropes identified in the simulation are consistent with features observed in the magnetic field measured by Hawkeye-1 during some high-latitude magnetopause crossings.
Ion current in a magnetic neutral region - Generation of an incipient magnetopause
NASA Technical Reports Server (NTRS)
Whipple, E. C.; Silevitch, M. B.
1982-01-01
The current contributed by ions trapped in the vicinity of a magnetic X line is calculated. The three dimensional configuration of the neutral region is found to be critical in determining the current in that the escape mechanism and trapping times depend on the three-dimensional aspects. A trapping criterion is defined. In the neutral region the ions can gain substantial kinetic energy, and the current will change the X line configuration in such a way that there will be a positive feedback effect, rapidly forming an extended magnetopauselike structure for even very small incident plasma densities.
NASA Technical Reports Server (NTRS)
Trattner, K. J.; Burch, J. L.; Ergun, R.; Fuselier, S. A.; Gomez, R. G.; Grimes, E. W.; Lewis, W. S.; Mauk, B.; Petrinec, S. M.; Pollock, C. J.
2016-01-01
Reconnection at the Earth's magnetopause is the mechanism by which magnetic fields in different regions change topology to create open magnetic field lines that allow energy, mass, and momentum to flow into the magnetosphere. It is the primary science goal of the recently launched MMS mission to unlock the mechanism of magnetic reconnection with a novel suite of plasma and field instruments. This study investigates several magnetopause crossings in the vicinity of the X-line on 19 September 2015 and compares the observed X-line location with predictions from the Maximum Magnetic Shear model. Rotations of the interplanetary magnetic field OMF) during the magnetopause crossings together with the close proximity of the four MMS satellites are used to determine the response time of the reconnection X-line location to changes in the IMF. The reconnection location exhibits a continuous motion during slow changes in the IMF but a delayed response to sudden changes in the IMF.
On the topology of flux transfer events
NASA Technical Reports Server (NTRS)
Hesse, Michael; Birn, Joachim; Schindler, Karl
1990-01-01
A topological analysis is made of a simple model magnetic field of a perturbation at the magnetopause that shares magnetic properties with flux transfer events. The aim is to clarify a number of topological aspects that arise in the case of fully three-dimensional magnetic fields. It is shown that a localized perturbation at the magnetopause can in principle open a closed magnetosphere by establishing magnetic connections across the magnetopause by the formation of a ropelike magnetic field structure. For this purpose a global topological model of a closed magnetosphere is considered as the unperturbed state. The topological substructure of the model flux rope is discussed in detail.
A Vortical Dawn Flank Boundary Layer for Near-Radial IMF: Wind Observations on 24 October 2001
NASA Technical Reports Server (NTRS)
Farrugia, C. J.; Gratton, F. T.; Gnavi, G.; Torbert, R. B.; Wilson, Lynn B., III
2014-01-01
We present an example of a boundary layer tailward of the dawn terminator which is entirely populated by rolled-up flow vortices. Observations were made by Wind on 24 October 2001 as the spacecraft moved across the region at the X plane approximately equal to -13 Earth radii. Interplanetary conditions were steady with a near-radial interplanetary magnetic field (IMF). Approximately 15 vortices were observed over the 1.5 hours duration of Wind's crossing, each lasting approximately 5 min. The rolling up is inferred from the presence of a hot tenuous plasma being accelerated to speeds higher than in the adjoining magnetosheath, a circumstance which has been shown to be a reliable signature of this in single-spacecraft observations. A blob of cold dense plasma was entrained in each vortex, at whose leading edge abrupt polarity changes of field and velocity components at current sheets were regularly observed. In the frame of the average boundary layer velocity, the dense blobs were moving predominantly sunward and their scale size along the X plane was approximately 7.4 Earth radii. Inquiring into the generation mechanism of the vortices, we analyze the stability of the boundary layer to sheared flows using compressible magnetohydrodynamic Kelvin-Helmholtz theory with continuous profiles for the physical quantities. We input parameters from (i) the exact theory of magnetosheath flow under aligned solar wind field and flow vectors near the terminator and (ii) the Wind data. It is shown that the configuration is indeed Kelvin-Helmholtz (KH) unstable. This is the first reported example of KH-unstable waves at the magnetopause under a radial IMF.
NASA Astrophysics Data System (ADS)
Yamada, M.; Ren, Y.; Ji, H.; Gerhardt, S.; Darfman, S.
2006-12-01
With the recent upgrade of the MRX (Magnetic Reconnection Experiment) device[1], our experimental operation allows us to carry out a jog experiment in which a current sheet can be moved swiftly across an inserted probe assembly. A cluster of probes with variable distances can be inserted into a known desired position in the MRX device. This setup can be similar to the situation in which a cluster of satellites encounters a rapidly moving reconnection layer. If necessary, we can create a neutral sheet where the density of one side is significantly higher than the other, as is the case for the magnetopause. A variable guide field will be applied to study its effect on reconnection. We proposed[2] to document basic patterns of data during a simulated encounter of the MRX reconnection layer with the four-probe mock-up system and compare them with data acquired from past satellites. Relative position of the MMS satellites in the magnetosphere can then be determined. Optimum cluster configuration or distance between the four satellites can be determined for various diagnostics or research missions. The relationship of magnetic fluctuations[3] with the observed out-of- plane quadrupole field, a characteristic signature of the Hall MHD, can be also studied in this series of experiments. In this paper, results from a preliminary experiment will be presented. These experiments utilize effectively the unique MRX ability to accurately know the location of diagnostics with respect to the moving reconnection layer. Supported by DoE, NASA, NSF. [1] M. Yamada et al, Phys. Plasmas 13, 052119 (2006), [2] M.Yamada et al, MMS-IDS proposal (2006), [3] H. Ji et al, Phys. Rev. Letts. 92, 115001 (2004)
Penetration of Magnetosheath Plasma into Dayside Magnetosphere: 1. Density, Velocity, and Rotation
NASA Technical Reports Server (NTRS)
Lyatsky, Wladislaw; Pollock, Craig; Goldstein, Melvyn L.; Lyatsky, Sonya; Avanov, Levon Albert
2016-01-01
In this study, we examine a large number of plasma structures (filaments), observed with the Cluster spacecraft during 2 years (2007-2008) in the dayside magnetosphere but consisting of magnetosheath plasma. To reduce the effects observed in the cusp regions and on magnetosphere flanks, we consider these events predominantly inside the narrow cone less than 30 about the subsolar point. Two important features of these filaments are (i) their stable antisunward (earthward) motion inside the magnetosphere, whereas the ambient magnetospheric plasma moves usually in the opposite direction (sunward), and (ii) between these filaments and the magnetopause, there is a region of magnetospheric plasma, which separates these filaments from the magnetosheath. The stable earthward motion of these magnetopause show the possible disconnection of these filaments from the magnetosheath, as suggested earlier by many researchers. The results also show that these events cannot be a result of back-and-forth motions of magnetopause position or surface waves propagating on the magnetopause. Another important feature of these filaments is their rotation about the filament axis, which might be a result of their passage through the velocity shear on magnetopause boundary. After crossing the velocity shear, the filaments get a rotational velocity, which has opposite directions in the noon-dusk and noon-dawn sectors. This rotation velocity may be an important factor, supporting the stability of these filaments and providing their motion into the magnetosphere.
Magnetic Reconnection as Revealed by the Magnetospheric Multiscale Mission
NASA Astrophysics Data System (ADS)
Burch, J. L.; Torbert, R. B.; Moore, T. E.; Giles, B. L.; Phan, T.; Le Contel, O.; Webster, J.; Genestreti, K.; Ergun, R.; Chen, L. J.; Wang, S.; Dorelli, J.; Rager, A. C.; Graham, D.; Gershman, D. J.
2017-12-01
The NASA Magnetospheric Multiscale (MMS) mission has completed its prime mission observations and has now entered an extended mission phase. During the two-year prime mission MMS made fundamental advances in our understanding of magnetic reconnection as enabled by its unprecedentedly high-resolution plasma and field measurements, which were made from 4 identical spacecraft in tetrahedral formations ranging down to 7 km. The primary objective of MMS is to understand reconnection at the electron scale, and this objective was accomplished by detailed analysis of 32 electron diffusion regions at the dayside magnetopause and a significant number in the magnetotail, which are still being captured and analyzed. Significant interplay between theory and experiment has occurred throughout the mission leading to the discovery of agyrotropic "crescent-shaped" electron velocity-space distributions, which carry the out-of-plane current; the electron pressure tensor divergence, which produces the reconnection electric field; standing oblique whistler waves, which produce intense dissipation in sub-gyroscale regions near the X-line and electron stagnation point; beam-plasma interactions leading to whistler-mode and Langmuir waves; electromagnetic drift waves leading to corrugated magnetopause current sheets, and numerous other new reconnection-related phenomena. In this talk the many new aspects of reconnection discovered by MMS will be placed into context and used to evaluate our current level of understanding of this universally important space plasma phenomenon.
Reconnection properties in Kelvin-Helmholtz instabilities
NASA Astrophysics Data System (ADS)
Vernisse, Y.; Lavraud, B.; Eriksson, S.; Gershman, D. J.; Dorelli, J.; Pollock, C. J.; Giles, B. L.; Aunai, N.; Avanov, L. A.; Burch, J.; Chandler, M. O.; Coffey, V. N.; Dargent, J.; Ergun, R.; Farrugia, C. J.; Genot, V. N.; Graham, D.; Hasegawa, H.; Jacquey, C.; Kacem, I.; Khotyaintsev, Y. V.; Li, W.; Magnes, W.; Marchaudon, A.; Moore, T. E.; Paterson, W. R.; Penou, E.; Phan, T.; Retino, A.; Schwartz, S. J.; Saito, Y.; Sauvaud, J. A.; Schiff, C.; Torbert, R. B.; Wilder, F. D.; Yokota, S.
2017-12-01
Kelvin-Helmholtz instabilities are particular laboratories to study strong guide field reconnection processes. In particular, unlike the usual dayside magnetopause, the conditions across the magnetopause in KH vortices are quasi-symmetric, with low differences in beta and magnetic shear angle. We study these properties by means of statistical analysis of the high-resolution data of the Magnetospheric Multiscale mission. Several events of Kelvin-Helmholtz instabilities pas the terminator plane and a long lasting dayside instabilities event where used in order to produce this statistical analysis. Early results present a consistency between the data and the theory. In addition, the results emphasize the importance of the thickness of the magnetopause as a driver of magnetic reconnection in low magnetic shear events.
Magnetotail boundary and energy transfer processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swift, D.W.; Lee, L.C.
1982-05-01
A particle code is used to simulate the magnetopause region in the high latitude geomagnetic tail in which the magnetic field undergoes a significant increase in going from the magnetosheath to the magnetotail lobe. The simulation indicates that plasma can flow from the magnetosheath to the lobe, which is accompanied by a drop in pressure and density. In the earth's inertial frame, the particles do work against the convection electric field. Hence the magnetopause region serves ass a dynamo. The simulation also shows that the width of th transition region increases with time. In the earth's inertial frame this ismore » seen as an expansion of the magnetopause thickness in the antisunward direction.« less
Dynamics of Magnetopause Reconnection in Response to Variable Solar Wind Conditions
NASA Astrophysics Data System (ADS)
Berchem, J.; Richard, R. L.; Escoubet, C. P.; Pitout, F.
2017-12-01
Quantifying the dynamics of magnetopause reconnection in response to variable solar wind driving is essential to advancing our predictive understanding of the interaction of the solar wind/IMF with the magnetosphere. To this end we have carried out numerical studies that combine global magnetohydrodynamic (MHD) and Large-Scale Kinetic (LSK) simulations to identify and understand the effects of solar wind/IMF variations. The use of the low dissipation, high resolution UCLA MHD code incorporating a non-linear local resistivity allows the representation of the global configuration of the dayside magnetosphere while the use of LSK ion test particle codes with distributed particle detectors allows us to compare the simulation results with spacecraft observations such as ion dispersion signatures observed by the Cluster spacecraft. We present the results of simulations that focus on the impacts of relatively simple solar wind discontinuities on the magnetopause and examine how the recent history of the interaction of the magnetospheric boundary with solar wind discontinuities can modify the dynamics of magnetopause reconnection in response to the solar wind input.
A transient auroral event on the dayside
NASA Technical Reports Server (NTRS)
Heikkila, Walter J.; Jorgensen, T. Stockflet T.; Lanzerotti, Louis J.; Maclennan, Carol G.
1989-01-01
A strong perturbation lasting about 10 min, beginning at 0930 UT on December 5, 1986, was recorded by high-latitude magnetometer stations in Greenland, Iqaluit, and the South Pole. Viking and Polar Bear satellite observations of the perturbation and observations of similar perturbations on the afternoon side in Svalbard, Heiss Island, and northern Siberia are also reported. It is suggested that the likely source of the perturbation is a magnetic disturbance in the solar wind observed by ISEE 1/2 and IMP 8. The perturbation is interpreted as an impulsive penetration of solar wind plasma on an interplanetary magnetic flux tube occurring through the magnetopause, ending in the low latitude boundary layer.
Magnetopause Boundary Processes Throughout the Solar System
NASA Astrophysics Data System (ADS)
Masters, A.
2014-12-01
Earth is not the only planet in the Solar System with a natural magnetic shield. Mercury, Jupiter, Saturn, Uranus, and Neptune are similarly protected from the solar wind and cosmic rays. However, like our planet, the magnetic shielding of each of these magnetized planets can break down, driving energy flow through each planetary magnetosphere. Although studies of the magnetopause boundary of Earth's magnetosphere have shed considerable light on the processes that lead to this breakdown, the extent to which we can apply this understanding to the diverse space plasma environments surrounding other planets remains unclear. Here we review what we have learnt so far about the operation of magnetopause boundary processes at all the magnetized planets in the Solar System, and outline some of the relevant outstanding questions. We start by consolidating present understanding of terrestrial magnetopause processes, which is our reference when considering other boundaries. We focus on selected processes (magnetic reconnection, Kelvin-Helmholtz instability), compare how we expect them to operate at each planetary magnetopause, and assess whether or not this is consistent with in situ spacecraft observations. For each planetary magnetosphere we then discuss the nature of the total interaction with the solar wind, and whether this is expected to be dominant over internal drivers of magnetospheric dynamics. A combination of further spacecraft exploration and dedicated numerical modeling is required in order to address the many outstanding questions concerning this topic. Progress in this direction would have broad implications for other space plasma systems, in our solar system and beyond.
Observations of EMIC Waves in the Exterior Cusp Region and in the Nearby Magnetosheath
NASA Astrophysics Data System (ADS)
Grison, B.; Escoubet, C. P.; Santolik, O.; Lavraud, B.; Cornilleau-Wehrlin, N.
2014-12-01
In the early years (2000-2004) of the mission, Cluster crossed the most distant part of the polar cusps. On 05/01/2002, Cluster enters the distant cusp region on the duskside of the southern hemisphere (inbound). The spacecraft are successively crossing the magnetopause between 19:50 UT (SC4) and 20:15 UT (SC3). The interplanetary conditions during the crossing were stable with a dominant negative By. The magnetometer (FGM) data indicates that the entry into the cusp takes place in a region where the magnetic field lines in the magnetosheath are anti-parallel with the field lines in the magnetosphere. Despite this clear picture, the global encounter is rather complex: one can notice partial magnetopause crossings, magnetic null points, and intense monochromatic waves on both sides of the magnetopause.We investigate electromagnetic ion cyclotron (EMIC) waves observed in the cusp and in the nearby magnetosheath, just before the magnetopause crossing by the spacecraft. Left-handed monochromatic waves observed in the cusp display different duration and frequency (below and above the local proton gyrofrequency) on each spacecraft. Both the Poynting flux of these emissions and the simultaneously recorded ion flows propagate in the same direction - toward the Earth. The wavenumber are determined in two ways: considering the Doppler shift and from direct measurements of the refractive index. We analyze these wave parameters and the local plasma conditions to explain the wave generation process on each side of the magnetopause.
Particle Dynamics at and near the Electron and Ion Diffusion Regions as a Function of Guide Field
NASA Astrophysics Data System (ADS)
Giles, Barbara; Burch, James; Phan, Tai; Webster, James; Avanov, Levon; Torbert, Roy; Chen, Li-Jen; Chandler, Michael; Dorelli, John; Ergun, Robert; Fuselier, Stephen; Gershman, Daniel; Lavraud, Benoit; Moore, Thomas; Paterson, William; Pollock, Craig; Russell, Christopher; Saito, Yoshifumi; Strangeway, Robert; Wang, Shan
2017-04-01
At the dayside magnetopause, magnetic reconnection often occurs in thin sheets of plasma carrying electrical currents and rotating magnetic fields. Charged particles interact strongly with the magnetic field and simultaneously their motions modify the fields. Researchers are able to simulate the macroscopic interactions between the two plasma domains on both sides of the magnetopause and, for precise results, include individual particle motions to better describe the microscopic scales. Here, observed ion and electron distributions are compared for asymmetric reconnection events with weak-, moderate-, and strong-guide fields. Several of the structures noted have been demonstrated in simulations and others have not been predicted or explained to date. We report on these observations and their persistence. In particular, we highlight counterstreaming low-energy ion distributions that are seen to persist regardless of increasing guide-field. Distributions of this type were first published by Burch and Phan [GRL, 2016] for an 8 Dec 2015 event and by Wang et al. [GRL, 2016] for a 16 Oct 2015 event. Wang et al. showed the distributions were produced by the reflection of magnetosheath ions by the normal electric field at the magnetopause. This report presents further results on the relationship between the counterstreaming ions with electron distributions, which show the ions traversing the magnetosheath, X-line, and in one case the electron stagnation point. We suggest the counterstreaming ions become the source of D-shaped distributions at points where the field line opening is indicated by the electron distributions. In addition, we suggest they become the source of ion crescent distributions that result from acceleration of ions by the reconnection electric field. Burch, J. L., and T. D. Phan (2016), Magnetic reconnection at the dayside magnetopause: Advances with MMS, Geophys. Res. Lett., 43, 8327-8338, doi:10.1002/2016GL069787. Wang, S., et al. (2016), Two-scale ion meandering caused by the polarization electric field during asymmetric reconnection, Geophys. Res. Lett., 43, 7831-7839, doi:10.1002/2016GL069842.
NASA Technical Reports Server (NTRS)
Haines, D. Mark; Reinisch, Bodo W.
1995-01-01
The use of radio sounding techniques for the study of the ionospheric plasma dates back to G. Briet and M. A. Tuve in 1926. Ground based swept frequency sounders can monitor the electron number density (N(sub e)) as a function of height (the N(sub e) profile). These early instruments evolved into a global network that produced high-resolution displays of echo time delay vs frequency on 35-mm film. These instruments provided the foundation for the success of the International Geophysical Year (1958). The Alouette and International Satellites for Ionospheric Studies (ISIS) programs pioneered the used of spaceborne, swept frequency sounders to obtain N(sub e) profiles of the topside of the ionosphere, from a position above the electron density maximum. Repeated measurements during the orbit produced an orbital plane contour which routinely provided density measurements to within 10%. The Alouette/ISIS experience also showed that even with a high powered transmitter (compared to the low power sounder possible today) a radio sounder can be compatible with other imaging instruments on the same satellite. Digital technology was used on later spacecraft developed by the Japanese (the EXOS C and D) and the Soviets (Intercosmos 19 and Cosmos 1809). However, a full coherent pulse compression and spectral integrating capability, such as exist today for ground-based sounders (Reinisch et al., 1992), has never been put into space. NASA's 1990 Space Physics Strategy Implementation Study "The NASA Space Physics Program from 1995 to 2010" suggested using radio sounders to study the plasmasphere and the magnetopause and its boundary layers (Green and Fung, 1993). Both the magnetopause and plasmasphere, as well as the cusp and boundary layers, can be observed by a radio sounder in a high-inclination polar orbit with an apogee greater than 6 R(sub e) (Reiff et al., 1994; Calvert et al., 1995). Magnetospheric radio sounding from space will provide remote density measurements of unprecedented precision and coverage in the plasmasphere, inner magnetosphere and magnetopause, from which the structure, inter-relationship, and variations of different plasma regions can be determined (Armstrong Johnson, 1995). A space-borne Radio Plasma Imager (RPI) could provide a unique global view of the magnetosphere revealing the underlying structure of remote plasma regions, thereby providing a framework for the interpretation of images obtained by other techniques as identified in the technical areas TA1 to TA4 in the MSFC NRA8-8.
NASA Astrophysics Data System (ADS)
Akhavan-Tafti, M.; Slavin, J. A.; Le, G.; Eastwood, J. P.; Strangeway, R. J.; Russell, C. T.; Nakamura, R.; Baumjohann, W.; Torbert, R. B.; Giles, B. L.; Gershman, D. J.; Burch, J. L.
2016-12-01
Determining the magnetic field structure, electric currents, and plasma distribution within flux transfer event (FTE)-type flux ropes is critical to the understanding of their origin, evolution, and dynamics. We analyze FTEs observed by the Magnetospheric Multiscale (MMS) mission in the vicinity of the sub-solar magnetopause, i.e. 12 ± 22.5' Local Time and XGSM > 7 RE. High-resolution data from the Fluxgate Magnetometer (FGM) and Fast Plasma Investigation (FPI) are used to determine and compare the extent to which large (> 1 RE) and small (ion scale) diameter FTEs are force-free, i.e. J×B=0, or non-force-free, i.e. J×B= gradP. Three independent methods are used: i) current density parallel and perpendicular to the magnetic field derived from the plasma measurements or magnetic field using the curlometer technique; ii) direct measurement of the plasma pressure gradient by FPI; and iii) fitting magnetic field to force-free (J=αB) flux rope models. Our initial results indicate that the plasma content of the ion-scale FTEs often exceeds that of larger FTEs. This results in higher plasma pressure gradients inside smaller FTEs and a magnetic field that is less force-free than the larger flux ropes.
Interplay between electric fields generated by reconnection and by secondary processes
NASA Astrophysics Data System (ADS)
Lapenta, G.; Innocenti, M. E.; Pucci, F.; Cazzola, E.; Berchem, J.; Newman, D. L.; El-Alaoui, M.; Walker, R. J.; Goldman, M. V.; Ergun, R.
2017-12-01
Reconnection regions are surrounded by several sources of free energy that push reconnection towards a turbulent regime: beams can drive streaming instabilities, currents can drive tearing like secondary instabilities, velocity and density shears can drive Kelvin-Helmholtz or Rayleigh-Taylor type of instabilities. The interaction between these instabilities can be very complex. For instance, from a kinetic point of view, instabilities resulting from shears are intermixed with drift-type instabilities, such as drift-kink, kink driven by relative species drift, lower hybrid modes of the electrostatic or electromagnetic type. In addition, the interaction with reconnection is two ways: reconnection causes the conditions for those instabilities to develop while the instabilities alter the progress of reconnection. Although MMS has observed features that can be associated with such instabilities: strong localized parallel electric fields (monopolar and bipolar), fluctuations in the drift range (lower hybrid, whistler), it has been difficult to determine which ones operate and how they differ depending on the symmetric and asymmetric reconnection configurations observed in the magnetotail and at the magnetopause, respectively. We present a comparison between the results of kinetic simulations obtained for typical magnetotail and the magnetopause configurations, using for each of them both analytical equilibria and results of global MHD simulations to initialize the iPIC3D simulations. By selecting what drivers (e.g. shear/no shear) are present, we can identify what instabilities develop and determine their effects on the progression of reconnection in the magnetotail and at the magnetopause. We focus especially on the role of drift waves and whistler instabilities, and discuss our results by comparing them with MMS observations.
Asymmetric Magnetosphere Deformation Driven by Hot Flow Anomaly(ies)
NASA Technical Reports Server (NTRS)
Safrankova, J.; Goncharov, O.; Nemecek, Z.; Prech, L.; Sibeck, D. G.
2012-01-01
We present a case study of a large deformation of the magnetopause on November 26, 2008. The investigation is based on observations of five THEMIS spacecraft located at the dawn flank in the magnetosphere and magnetosheath, on Cluster measurements at the dusk magnetosheath, and is supported by ACE solar wind monitoring. The main revelation of our study is that the interaction of the IMF discontinuity with the bow shock creates either one very elongated hot flow anomaly (HFA) or a pair of them that is (are) simultaneously observed at both flanks. Whereas the dusk HFA is weak and does not cause observable deformation of the magnetopause, the pressure variations connected with the dawn HFA lead to a magnetopause displacement by approx. = 5 R(sub E) outward from its nominal position. This is followed by a rapid inward motion of the magnetopause approx. = 4 R(sub E) inward with respect to the model location. The surface deformation is so large that the outermost THEMIS spacecraft was in the magnetosphere, whereas the spacecraft located 9 R(sub E) inbound entered into the magnetosheath at the same time. The whole event lasted about 5 minutes.
NASA Astrophysics Data System (ADS)
Nykyri, K.; Moore, T.; Dimmock, A. P.
2017-12-01
In the Earth's magnetosphere, the magnetotail plasma sheet ions are much hotter than in the shocked solar wind. On the dawn-sector, the cold-component ions are more abundant and hotter by 30-40 percent when compared to the dusk sector. Recent statistical studies of the flank magnetopause and magnetosheath have shown that the level of temperature asymmetry of the magnetosheath is unable to account for this, so additional physical mechanisms must be at play, either at the magnetopause or plasma sheet that contribute to this asymmetry. In this study, we perform a statistical analysis on the ion-scale wave properties in the three main plasma regimes common to flank magnetopause boundary crossings when the boundary is unstable to KHI: hot and tenuous magnetospheric, cold and dense magnetosheath and mixed [Hasegawa 2004 et al., 2004]. These statistics of ion-scale wave properties are compared to observations of fast magnetosonic wave modes that have recently been linked to Kelvin-Helmholtz vortex centered ion heating [Moore et al., 2016]. The statistical analysis shows that during KH events there is enhanced non-adiabatic heating calculated during (temporal) ion scale wave intervals when compared to non-KH events.
Simulation of Theoretical Most-Extreme Geomagnetic Sudden Commencements
NASA Astrophysics Data System (ADS)
Welling, D. T.; Love, J. J.; Wiltberger, M. J.; Rigler, E. J.
2016-12-01
We report results from a numerical simulation of geomagnetic sudden commencements driven by solar wind conditions given by theoretical-limit extreme coronal-mass ejections (CMEs) estimated by Tsurutani and Lakhina [2014]. The CME characteristics at Earth are a step function that jumps from typical quiet values to 2700 km/s flow speed and a magnetic field magnitude of 127 nT. These values are used to drive three coupled models: a global magnetohydrodynamic (MHD) magnetospheric model (BATS-R-US), a ring current model (the Rice Convection Model, RCM), and a height-integrated ionospheric electrodynamics model (the Ridley Ionosphere Model, RIM), all coupled together using the Space Weather Modeling Framework (SWMF). Additionally, simulations from the Lyon-Fedder-Mobarry MHD model are performed for comparison. The commencement is simulated with both purely northward and southward IMF orientations. Low-latitude ground-level geomagnetic variations, both B and dB/dt, are estimated in response to the storm sudden commencement. For a northward interplanetary magnetic field (IMF) storm, the combined models predict a maximum sudden commencement response, Dst-equivalent of +200 nT and a maximum local dB/dt of 200nT/s. While this positive Dst response is driven mainly by magnetopause currents, complicated and dynamic Birkeland current patterns also develop, which drive the strong dB/dt responses at high latitude. For southward IMF conditions, erosion of dayside magnetic flux allows magnetopause currents to approach much closer to the Earth, leading to a stronger terrestrial response (Dst-equivalent of +250 nT). Further, high latitude signals from Region 1 Birkeland currents move to lower latitudes during the southward IMF case, increasing the risk to populated areas around the globe. Results inform fundamental understanding of solar-terrestrial interaction and benchmark estimates for induction hazards of interest to the electric-power grid industry.
NASA Astrophysics Data System (ADS)
Payne, D.; Argall, M. R.; Dors, I.; Ergun, R.; Farrugia, C. J.; Giles, B. L.; Russell, C.; Torbert, R. B.; Vaith, H.; Magnes, W.
2016-12-01
The electron drift instrument (EDI) on the Magnetospheric Multiscale (MMS) mission detects 0 and 180 degree pitch angle electrons on millisecond timescales. Using this data, we observe rapid variation of these electron fluxes in regions close to the magnetopause boundary. These variations in flux provide key insights into the dynamic field line configurations that arise from reconnection. These variations in the field detected by the spacecraft may be indicative of rapid reconnection or oscillations in the position of the boundary itself. By investigating these fluctuations near the magnetopause, we may be able to discover which of these processes, if any, are occurring. The results of this investigation may provide further insight into the process of reconnection and its effect on magnetic field topologies in the magnetosphere.
NASA Astrophysics Data System (ADS)
Sturner, A. P.; Eriksson, S.; Gershman, D. J.; Plaschke, F.; Burch, J.
2017-12-01
Magnetopause current sheets have been fertile ground for understanding kinetic-scale physics of magnetic reconnection, but can also be used to study more macroscopic scale phenomena statistically. Post-reconnection, magnetic flux and plasma are accelerated away from the x-line into exhaust regions. As the exhausting plasma exits the electron diffusion region, electrons become remagnetized and are accelerated by the magnetic field into an E x B jet while the ions remain unmagnetized. Further along the exhaust, at the edge of the ion diffusion region, the ions become frozen into the magnetic field, and are accelerated to join the electrons in the exhaust jet. By assuming a constant reconnection rate of 0.1, we can infer the distance to the x-line from the normal width of the exhaust. We present a statistical study using the Magnetospheric Multiscale Mission (MMS) to map out the electron and ion remagnetization distances that define the edge of the electron and ion diffusion regions for magnetopause reconnection, and explore the effects of a guide magnetic field.
NASA Technical Reports Server (NTRS)
Ober, Daniel M.; Horwitz, J. L.
1998-01-01
We present initial results on the modeling of the circulation of plasmaspheric-origin plasma into the outer magnetosphere and low-latitude boundary layer (LLBL), using a dynamic global core plasma model (DGCPM). The DGCPM includes the influences of spatially and temporally varying convection and refilling processes to calculate the equatorial core plasma density distribution throughout the magnetosphere. We have developed an initial description of the electric and magnetic field structures in the outer magnetosphere region. The purpose of this paper is to examine both the losses of plasmaspheric-origin plasma into the magnetopause boundary layer and the convection of this plasma that remains trapped on closed magnetic field lines. For the LLBL electric and magnetic structures we have adopted here, the plasmaspheric plasma reaching the outer magnetosphere is diverted anti-sunward primarily along the dusk flank. These plasmas reach X= -15 R(sub E) in the LLBL approximately 3.2 hours after the initial enhancement of convection and continues to populate the LLBL for 12 hours as the convection electric field diminishes.
NASA Technical Reports Server (NTRS)
Farrugia, C. J.; Harris, B.; Leitner, M.; Moestl, C.; Galvin, A. B.; Simunac, K. D. C.; Torbert, R. B.; Temmer, M. B.; Veronig, A. M.; Erkaev, N. V.;
2012-01-01
We discuss the temporal variations and frequency distributions of solar wind and interplanetary magnetic field parameters during the solar minimum of 2007 - 2009 from measurements returned by the IMPACT and PLASTIC instruments on STEREO-A.We find that the density and total field strength were significantly weaker than in the previous minimum. The Alfven Mach number was higher than typical. This reflects the weakness of magnetohydrodynamic (MHD) forces, and has a direct effect on the solar wind-magnetosphere interactions.We then discuss two major aspects that this weak solar activity had on the magnetosphere, using data from Wind and ground-based observations: i) the dayside contribution to the cross-polar cap potential (CPCP), and ii) the shapes of the magnetopause and bow shock. For i) we find a low interplanetary electric field of 1.3+/-0.9 mV/m and a CPCP of 37.3+/-20.2 kV. The auroral activity is closely correlated to the prevalent stream-stream interactions. We suggest that the Alfven wave trains in the fast streams and Kelvin-Helmholtz instability were the predominant agents mediating the transfer of solar wind momentum and energy to the magnetosphere during this three-year period. For ii) we determine 328 magnetopause and 271 bow shock crossings made by Geotail, Cluster 1, and the THEMIS B and C spacecraft during a three-month interval when the daily averages of the magnetic and kinetic energy densities attained their lowest value during the three years under survey.We use the same numerical approach as in Fairfield's empirical model and compare our findings with three magnetopause models. The stand-off distance of the subsolar magnetopause and bow shock were 11.8 R(sub E) and 14.35 R(sub E), respectively. When comparing with Fairfield's classic result, we find that the subsolar magnetosheath is thinner by approx. 1 R(sub E). This is mainly due to the low dynamic pressure which results in a sunward shift of the magnetopause. The magnetopause is more flared than in Fairfield's model. By contrast the bow shock is less flared, and the latter is the result of weaker MHD forces.
Polar Cap Energy Deposition Events During the 5-6 August 2011 Magnetic Storm
NASA Astrophysics Data System (ADS)
Horvath, Ildiko; Lovell, Brian C.
2018-03-01
We study the 5-6 August 2011 storm for its energy deposition events occurring deep in the polar cap region, where the consequential localized intensifications of earthward directed Poynting flux led to the development of their related localized neutral density increases. For unraveling the underlying physical processes, we investigate the relations among Poynting flux intensifications, flow channels (FCs), and localized neutral density enhancements plus the nature of the underlying reconnection events. Observational results demonstrate Poynting flux increase deep in the polar cap in a FC-2 type FC during magnetopause reconnections and in a FC-4 type FC during lobe reconnections. During the latter stages of these different types of reconnection events, energy/momentum transfer occurred along old-open field lines and commonly led to the development of localized neutral density increases during their respective upwelling events fueled by field-aligned currents and above/within these polar FCs. The prevailing BY domination and the pulsed nature of this storm created favorable conditions for the development of these FC-2 and FC-4 types in the sunlit northern summer hemisphere and caused the observed Poynting flux intensifications deep in the polar cap. The solar wind source of these reconnections taking place along old-open field lines was situated in the high-latitude boundary layer. Thus, the high-latitude boundary layer dynamo provided a vigorous source of energy/momentum transfer during the latter-stage reconnections unfolding along old-open field lines.
NASA Astrophysics Data System (ADS)
Souza, V. M. C. E. S.; Gonzalez, W.; Sibeck, D. G.; Koga, D.; Walsh, B.; Mendes, O., Jr.
2017-12-01
This work examines the large-scale aspects of magnetic field reconnection at the Earth's dayside magnetopause. We use two sets of reconnection events, which are identified mostly by the in situ detection of accelerated and Alfvénic plasma flows. We intercompare three analytical models that predict the reconnection X-line location and orientation, namely the Trattner et al., (2007) and Swisdak and Drake (2007) models, and also a modified version of the component merging model (Gonzalez and Mozer 1974, Sonnerup 1974). In the first set of reconnection observations, we show three fortuitous, quasi-simultaneous dayside magnetopause crossing events where two widely separated spacecraft detect reconnection signatures, and the X-line location and orientation can be inferred from the observations. We compare X-line model predictions to those inferred from observations. These three reconnection events indicate the presence of an extended (>7 Earth radii in length), component-type reconnection X-line on Earth's dayside magnetopause connecting and structuring the reconnection signatures at locations far apart. In the second set of reconnection events, we analyze the X-line models' performance in predicting the observed reconnection outflow direction, i.e., its north-south and/or east-west senses, in a total of 75 single, rather than multiple and quasi-simultaneous, magnetopause crossing events, where reconnection-associated plasma flows were clearly present. We found that the Swisdak and Drake's (2007) X-line model performs slightly better, albeit not statistically significant, when predicting both accelerated plasma flow north-south and east-west components in 73% and 53% of the cases, respectively, as compared to the Trattner et al., (2007) model (70% north-south, 42% east-west), and the modified component merging model (66% north-south, 50% east-west).
Magnetohydrodynamic modeling of three Van Allen Probes storms in 2012 and 2013
NASA Astrophysics Data System (ADS)
Paral, J.; Hudson, M. K.; Kress, B. T.; Wiltberger, M. J.; Wygant, J. R.; Singer, H. J.
2015-08-01
Coronal mass ejection (CME)-shock compression of the dayside magnetopause has been observed to cause both prompt enhancement of radiation belt electron flux due to inward radial transport of electrons conserving their first adiabatic invariant and prompt losses which at times entirely eliminate the outer zone. Recent numerical studies suggest that enhanced ultra-low frequency (ULF) wave activity is necessary to explain electron losses deeper inside the magnetosphere than magnetopause incursion following CME-shock arrival. A combination of radial transport and magnetopause shadowing can account for losses observed at radial distances into L = 4.5, well within the computed magnetopause location. We compare ULF wave power from the Electric Field and Waves (EFW) electric field instrument on the Van Allen Probes for the 8 October 2013 storm with ULF wave power simulated using the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) magnetospheric simulation code coupled to the Rice Convection Model (RCM). Two other storms with strong magnetopause compression, 8-9 October 2012 and 17-18 March 2013, are also examined. We show that the global MHD model captures the azimuthal magnetosonic impulse propagation speed and amplitude observed by the Van Allen Probes which is responsible for prompt acceleration at MeV energies reported for the 8 October 2013 storm. The simulation also captures the ULF wave power in the azimuthal component of the electric field, responsible for acceleration and radial transport of electrons, at frequencies comparable to the electron drift period. This electric field impulse has been shown to explain observations in related studies (Foster et al., 2015) of electron acceleration and drift phase bunching by the Energetic Particle, Composition, and Thermal Plasma Suite (ECT) instrument on the Van Allen Probes.
Coupling of Outward Radial Diffusion and Losses at the Magnetopause in the Outer Radiation Belt
NASA Astrophysics Data System (ADS)
Castillo Tibocha, A. M.; Shprits, Y.; Drozdov, A.; Kellerman, A. C.; Aseev, N.
2017-12-01
Sudden dropouts observed in relativistic electron fluxes within the radiation belts are one the most studied and yet poorly understood features of the dynamics of radiation belts. A number of physical processes contributing to these dropout events are triggered by solar wind drivers. Magnetopause losses are one of the most effective mechanisms involved here and usually occur when drifting particles reach the boundary or when inward motion of the magnetopause crosses closed particle drift shells. In both cases, particles are rapidly transported into interplanetary space generating sharp gradients in electron PSD that will promote further outward radial diffusion of particles due to adiabatic transport and the influence of outward ULF waves. Studies suggest that the coupling of these two mechanisms explains nearly all the depletion of MeV electrons observed in the outer region of the radiation belts (L*>5). In this study, we present a simple approach to model electron losses at the magnetopause and outward radial diffusion in the outer radiation belt during geomagnetic storm time. Measured upstream solar wind parameters were used to calculate the radial distance of the subsolar point as proposed by Shue et al. (1997), which was defined as the radial extent of our assumed dipole field configuration. Radial diffusion was modelled using the empirical Kp-dependent DLL [Brautigam and Albert, JGR 2000] diffusion coefficient, which is included in the 3D Versatile Electron Radiation Belt (VERB) code. Simulations of geomagnetic storms were performed in order to evaluate the effects of the integrated mechanisms and the results were compared with Van Allen probe satellite data. Our simulation results reproduce well the observed loss at the magnetopause and electron depletion in the outer radiation belt.
MESSENGER: Exploring Mercury's Magnetosphere
NASA Technical Reports Server (NTRS)
Slavin, James A.; Krimigis, Stamatios M.; Acuna, Mario H.; Anderson, Brian J.; Baker, Daniel N.; Koehn, Patrick L.; Korth, Haje; Levi, Stefano; Mauk, Barry H.; Solomon, Sean C.;
2005-01-01
The MESSENGER mission to Mercury offers our first opportunity to explore this planet s miniature magnetosphere since the brief flybys of Mariner 10. Mercury s magnetosphere is unique in many respects. The magnetosphere of Mercury is among the smallest in the solar system; its magnetic field typically stands off the solar wind only - 1000 to 2000 km above the surface. For this reason there are no closed drift paths for energetic particles and, hence, no radiation belts. The characteristic time scales for wave propagation and convective transport are short and kinetic and fluid modes may be coupled. Magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere allowing solar wind ions to impact directly the regolith. Inductive currents in Mercury s interior may act to modify the solar wind interaction by resisting changes due to solar wind pressure variations. Indeed, observations of these induction effects may be an important source of information on the state of Mercury s interior. In addition, Mercury s magnetosphere is the only one with its defining magnetic flux tubes rooted in a planetary regolith as opposed to an atmosphere with a conductive ionospheric layer. This lack of an ionosphere is probably the underlying reason for the brevity of the very intense, but short-lived, - 1-2 min, substorm-like energetic particle events observed by Mariner 10 during its first traversal of Mercury s magnetic tail. Because of Mercury s proximity to the sun, 0.3 - 0.5 AU, this magnetosphere experiences the most extreme driving forces in the solar system. All of these factors are expected to produce complicated interactions involving the exchange and re-cycling of neutrals and ions between the solar wind, magnetosphere, and regolith. The electrodynamics of Mercury s magnetosphere are expected to be equally complex, with strong forcing by the solar wind, magnetic reconnection at the magnetopause and in the tail, and the pick-up of planetary ions all driving field-aligned electric currents. However, these field-aligned currents do not close in an ionosphere, but in some other manner. In addition to the insights- into magnetospheric physics offered by study of the solar wind - Mercury system, quantitative specification of the "external" magnetic field generated by magnetospheric currents is necessary for accurate determination of the strength and multi-polar decomposition of Mercury s intrinsic magnetic field. MESSENGER S highly capable instrumentation and broad orbital coverage will greatly advance our understanding of both the origin of Mercury s magnetic field and the acceleration of charged particles in small magnetospheres. In. this article, we review what is known about Mercury s magnetosphere and describe the MESSENGER science team s strategy for obtaining answers to the outstanding science questions surrounding the interaction of the solar wind with Mercury and its small, but dynamic, magnetosphere.
Magnetopause modeling - Flux transfer events and magnetosheath quasi-trapped distributions
NASA Technical Reports Server (NTRS)
Speiser, T. W.; Williams, D. J.
1982-01-01
Three-dimensional distribution functions for energetic ions are studied numerically in the magnetosphere, through the magnetopause, and in the magnetosheath using a simple one-dimensional quasi-static model and ISEE 1 magnetopause crossing data for November 10, 1977. Quasi-trapped populations in the magnetosheath observed near flux transfer events (FTEs) are investigated, and it is shown that the population in the sheath appears to sandwich the FTE distributions. These quasi-trapped distributions are due to slow, large pitch angle, outward moving particles left behind by the outward rush of the ions more field-aligned at the time the flux was opened. It is found that sheath convective flows can map along the connected flux tube without drastically changing the distribution function, and results suggest that localized tangential fields above the upper limit may exist.
Moderate Geomagnetic Storms: Interplanetary Origins and Coupling Functions (ISEE3 Data)
NASA Technical Reports Server (NTRS)
Mendes, Odim, Jr.; Gonzalez, W. D.; Gonzalez, A. L. C.; Pinto, O., Jr.; Tsurutani, B. T.
1996-01-01
Geomagnetic storms are related to the ring current intensification, which is driven by energy injection primarily during energetic solar wind-magnetosphere coupling due to reconnection at the magnetopause. This work identified the interplanetary origins of moderate geomagnetic storms (-100nT is less or equal to Dst(sub peak) is less than or equal to -50 nT) and analyzed the coupling processes during the storm main phase at solar maximum (1978-1979).
DC and AC Electric Field Measurements by Spin-Plane Double Probes Onboard MMS
NASA Astrophysics Data System (ADS)
Lindqvist, P. A.; Marklund, G. T.; Khotyaintsev, Y. V.; Ergun, R. E.; Goodrich, K.; Torbert, R. B.; Argall, M. R.; Nakamura, R.
2015-12-01
The four spacecraft of the NASA Magnetospheric Multiscale mission (MMS) were launched on 12 March 2015 into a 1.2 x 12 Re equatorial orbit to study energy conversion processes in Earth's magnetosphere. After a 5-month commissioning period the first scientific phase starts on 1 September as the orbit enters the dusk magnetopause region. The Spin-plane Double Probe electric field instrument (SDP), part of the electric and magnetic fields instrument suite FIELDS, measures the electric field in the range 0.3 - 500 mV/m with a continuous time resolution up to 8192 samples/s. The instrument features adjustable bias currents and guard voltages to optimize the measurement performance. SDP also measures the spacecraft potential, which can be controlled by the Active Spacecraft Potential Control (ASPOC) ion emitter, and under certain conditions can be used to determine plasma density. We present observations of DC and AC electric fields in different plasma regions covered by MMS since launch including the night side flow braking region, reconnection regions at the dusk and dayside magnetopause, and in the magnetosheath. We compare the electric field measurements by SDP to other, independent determinations of the electric field, in particular by the Electron Drift Instrument (EDI), in order to assess the accuracy of the electric field measurement under different plasma conditions. We also study the influence of the currents emitted by ASPOC and EDI on the SDP measurements.
Evidence of Multiple Reconnection Lines at the Magnetopause from Cusp Observations
NASA Technical Reports Server (NTRS)
Trattner, K. J.; Petrinec, S. M.; Fuselier, S. A.; Omidi, N.; Sibeck, David Gary
2012-01-01
Recent global hybrid simulations investigated the formation of flux transfer events (FTEs) and their convection and interaction with the cusp. Based on these simulations, we have analyzed several Polar cusp crossings in the Northern Hemisphere to search for the signature of such FTEs in the energy distribution of downward precipitating ions: precipitating ion beams at different energies parallel to the ambient magnetic field and overlapping in time. Overlapping ion distributions in the cusp are usually attributed to a combination of variable ion acceleration during the magnetopause crossing together with the time-of-flight effect from the entry point to the observing satellite. Most "step up" ion cusp structures (steps in the ion energy dispersions) only overlap for the populations with large pitch angles and not for the parallel streaming populations. Such cusp structures are the signatures predicted by the pulsed reconnection model, where the reconnection rate at the magnetopause decreased to zero, physically separating convecting flux tubes and their parallel streaming ions. However, several Polar cusp events discussed in this study also show an energy overlap for parallel-streaming precipitating ions. This condition might be caused by reopening an already reconnected field line, forming a magnetic island (flux rope) at the magnetopause similar to that reported in global MHD and Hybrid simulations
Solar Wind - Magnetosheath - Magnetopause Interactions in Global Hybrid-Vlasov Simulations
NASA Astrophysics Data System (ADS)
Hoilijoki, S.; Pfau-Kempf, Y.; Ganse, U.; Hietala, H.; Cassak, P.; Walsh, B.; Juusola, L.; Jarvinen, R.; von Alfthan, S.; Palmroth, M.
2017-12-01
We present results of interactions of solar wind and Earth's magnetosphere in global hybrid-Vlasov simulations carried out using the Vlasiator model. Vlasiator propagates ions as velocity distribution functions by solving the Vlasov equation and electrons are treated as charge-neutralizing massless fluid. Vlasiator simulations show a strong coupling between the ion scale and global scale physics. Global scale phenomena affect the local physics and the local phenomena impact the global system. Our results have shown that mirror mode waves growing in the quasi-perpendicular magnetosheath have an impact on the local reconnection rates at the dayside magnetopause. Furthermore, multiple X-line reconnection at the dayside magnetopause leads to the formation of magnetic islands (2D flux transfer events), which launch bow waves upstream propagating through the magnetosheath. These steep bow waves have the ability to accelerate ions in the magnetosheath. When the bow waves reach the bow shock they are able to bulge the shock locally. The bulge in the shock decreases the angle between the interplanetary magnetic field and the shock normal and allows ions to be reflected back to the solar wind along the magnetic field lines. Consequently, Vlasiator simulations show that magnetosheath fluctuations affect magnetopause reconnection and reconnection may influence particle acceleration and reflection in the magnetosheath and solar wind.
Magnetic Field Observations of Partial Ring Current during Storm Recovery Phase
NASA Technical Reports Server (NTRS)
Le, G.; Russell, C. T.; Slavin, J. A.; Lucek, E. A.
2008-01-01
We present results of an extensive survey of the magnetic field observations in the inner magnetosphere using 30 years of magnetospheric magnetic field data from Polar, Cluster, ISEE, and AMPTE/CCE missions. The purpose of this study is to understand the magnetic field evolution during the recovery phase of geomagnetic storms, and its implication to the ring current recovery and loss mechanisms of ring current particles. It is now commonly believed that a strong partial ring current is formed during the storm main phase due to the enhanced earthward convection of energetic ions from nightside plasma sheet. But the presence of a strong partial ring current throughout the recovery phase remains controversial. The magnetic field generated by the ring current inflates the inner magnetosphere and causes magnetic field depressions in the equatorial magnetosphere. During the storm recovery phase, we find that the distribution of the equatorial magnetic field depression exhibits similar local time dependence as the ring current distribution obtained from the combined dataset in the earlier study. It shows that a strong partial ring current is a permanent feature throughout the recovery phase. In the early recovery phase, the partial ring current peaks near the dusk terminator as indicated by the peak of the magnetic field depression. As the recovery phase progresses, the partial ring current decays most quickly near the dusk and results in a dusk-to-midnight moving of the peak of the partial ring current. Thus the loss mechanisms work most effectively near the dusk. The magnetic field depression increases the gyroradius of ring current protons to a scale greater or comparable to the thickness of the magnetopause, which increases the chance of ion drift loss near the dusk magnetopause at larger L-shell (L greater than 5). But the drift loss mechanism alone cannot explain the loss of ring current ions especially in the smaller L-shell (L less than 5). The precipitation loss due to wave-particle interaction is most likely the dominant loss mechanism in the small L-shell as it works most effectively at the same local time.
Solar wind-magnetosphere coupling during intense magnetic storms (1978-1979)
NASA Technical Reports Server (NTRS)
Gonzalez, Walter D.; Gonzalez, Alicia L. C.; Tsurutani, Bruce T.; Smith, Edward J.; Tang, Frances
1989-01-01
The solar wind-magnetosphere coupling problem during intense magnetic storms was investigated for ten intense magnetic storm events occurring between August 16, 1978 to December 28, 1979. Particular attention was given to the dependence of the ring current energization on the ISEE-measured solar-wind parameters and the evolution of the ring current during the main phase of the intense storms. Several coupling functions were tested as energy input, and several sets of the ring current decay time-constant were searched for the best correlation with the Dst response. Results indicate that a large-scale magnetopause reconnection operates during an intense storm event and that the solar wind ram pressure plays an important role in the energization of the ring current.
NASA Technical Reports Server (NTRS)
Clauer, C. Robert; Friis-Christensen, Eigil
1988-01-01
On July 23, 1983 the IMF turned strongly northward, becoming about 22 nT for several hours. Using a combined data set of ionospheric convection measurements made by the Sondre Stromfjord incoherent scatter radar and convection inferred from Greenland magnetometer measurements, the onset of the reconfiguration of the high-latitude ionospheric currents is found to occur about 3 min after the northward IMF encounters the magnetopause. The large-scale reconfiguration of currents, however, appears to evolve over a period of about 22 min. These observations and the results of numerical simulations indicate that the dayside polar-cap electric field observed during strong northward IMF is produced by a direct electrical current coupling with the solar wind.
The effect of Birkeland currents on magnetic field topology
NASA Technical Reports Server (NTRS)
Peroomian, Vahe; Lyons, Larry R.; Schulz, Michael
1996-01-01
A technique was developed for the inclusion of large scale magnetospheric current systems in magnetic field models. The region 1 and 2 Birkeland current systems are included in the source surface model of the terrestrial magnetosphere. The region 1 and 2 Birkeland currents are placed in the model using a series of field aligned, infinitely thin wire segments. The normal component of the magnetic field from these currents is calculated on the surface of the magnetopause and shielded using image current carrying wires placed outside of the magnetosphere. It is found that the inclusion of the Birkeland currents in the model results in a northward magnetic field in the near-midnight tail, leading to the closure of previously open flux in the tail, and a southward magnetic field in the flanks. A sunward shift in the separatrix is observed.
Solar Wind Charge Exchange During Geomagnetic Storms
NASA Technical Reports Server (NTRS)
Robertson, Ina P.; Cravens, Thomas E.; Sibeck, David G.; Collier, Michael R.; Kuntz, K. D.
2012-01-01
On March 31st. 2001, a coronal mass ejection pushed the subsolar magnetopause to the vicinity of geosynchronous orbit at 6.6 RE. The NASA/GSFC Community Coordinated Modeling Center (CCMe) employed a global magnetohydrodynamic (MHD) model to simulate the solar wind-magnetosphere interaction during the peak of this geomagnetic storm. Robertson et aL then modeled the expected 50ft X-ray emission due to solar wind charge exchange with geocoronal neutrals in the dayside cusp and magnetosheath. The locations of the bow shock, magnetopause and cusps were clearly evident in their simulations. Another geomagnetic storm took place on July 14, 2000 (Bastille Day). We again modeled X-ray emission due to solar wind charge exchange, but this time as observed from a moving spacecraft. This paper discusses the impact of spacecraft location on observed X-ray emission and the degree to which the locations of the bow shock and magnetopause can be detected in images.
NASA Astrophysics Data System (ADS)
TenBarge, J. M.; Shay, M. A.; Sharma, P.; Juno, J.; Haggerty, C. C.; Drake, J. F.; Bhattacharjee, A.; Hakim, A.
2017-12-01
Turbulence and magnetic reconnection are the primary mechanisms responsible for the conversion of stored magnetic energy into particle energy in many space and astrophysical plasmas. The magnetospheric multiscale mission (MMS) has given us unprecedented access to high cadence particle and field data of turbulence and magnetic reconnection at earth's magnetopause. The observations include large guide field reconnection events generated within the turbulent magnetopause. Motivated by these observations, we present a study of large guide reconnection using the fully kinetic Eulerian Vlasov-Maxwell component of the Gkeyll simulation framework, and we also employ and compare with gyrokinetics to explore the asymptotically large guide field limit. In addition to studying the configuration space dynamics, we leverage the recently developed field-particle correlations to diagnose the dominant sources of dissipation and compare the results of the field-particle correlation to other energy dissipation measures.
NASA Technical Reports Server (NTRS)
Mitchell, D. G.; Kutchko, F.; Williams, D. J.; Eastman, T. E.; Frank, L. A.
1987-01-01
The characteristics and structure of the low-latitude boundary layer (LLBL) have been studied for 66 ISEE 1 passes through the LLBL region. The dawn and dusk LLBL are on closed magnetic field lines for northward magnetosheath and/or IMF (M/IMF), and are on both closed and open field lines for southward M/IMF. For southward M/IMF, the regions of open LLBL field lines lie adjacent to the magnetopause and outside the closed LLBL. The LLBL is thicker (thinner) for northward (southward) M/IMF. With distance away from the subsolar magnetosphere, the LLBL becomes thicker for northward M/IMF and more variable in thickness for southward M/IMF. No dependence of LLBL thickness or electric field on geomagnetic activity is seen in these data. The LLBL electric field is a few millivolts per meter with a apparent upper limit of about 10 mV/m. The field captures magnetospherically drifting particles and propels them tailward.
Anderson, B. J.; Korth, H.; Waters, C. L.; ...
2014-05-07
The Active Magnetosphere and Planetary Electrodynamics Response Experiment uses magnetic field data from the Iridium constellation to derive the global Birkeland current distribution every 10 min. We examine cases in which the interplanetary magnetic field (IMF) rotated from northward to southward resulting in onsets of the Birkeland currents. Dayside Region 1/2 currents, totaling ~25% of the final current, appear within 20 min of the IMF southward turning and remain steady. In the onset of nightside currents occurs 40 to 70 min after the dayside currents appear. Afterwards, the currents intensify at dawn, dusk, and on the dayside, yielding a fullymore » formed Region 1/2 system ~30 min after the nightside onset. Our results imply that the dayside Birkeland currents are driven by magnetopause reconnection, and the remainder of the system forms as magnetospheric return flows start and progress sunward, ultimately closing the Dungey convection cycle.« less
Cusp and LLBL as Sources of the Isolated Dayside Auroral Feature During Northward IMF
NASA Technical Reports Server (NTRS)
Chang, S.-W.; Gallagher, D. L.; Spann, J. F.; Mende, S. B.; Greenwald, R. A.; Newell, P. T.
2004-01-01
An intense dayside proton aurora was observed by Imager for Magnetopause-to- Aurora Global Exploration Far Ultra-Violet imager (IMAGE FUV) for an extensive period of northward interplanetary magnetic field (IMF) on 17 and 18 September 2000. This aurora partially coincided with the auroral oval and intruded farther poleward into the polar cap, and it showed longitudinal motions in response to IMF By variation. Intense magnetosheath-like electron and ion precipitations have been simultaneously detected by Defense Meteorological Satellite Program (DMSP) above the poleward portion of the high-latitude dayside aurora. They resemble the typical plasmas observed in the low-altitude cusp. However, less intense electrons and more energetic ions were detected over the equatonvard part of the aurora. These plasmas are closer to the low-latitude boundary layer (LLBL) plasmas. Under strongly northward IMF, global ionospheric convection derived from Super Dual Auroral Radar Network (SuperDARN) radar measurements showed a four-cell pattern with sunward convection in the middle of the dayside polar cap and the dayside aurora corresponded to two different convection cells. This result further supports two source regions for the aurora. The cusp proton aurora is on open magnetic field lines convecting sunward whereas the LLBL proton aurora is on closed field lines convecting antisunward. These IMAGE, DMSP, and SuperDARN observations reveal the structure and dynamics of the aurora and provide strong evidence for magnetic merging occurring at the high-latitude magnetopause poleward from the cusp. This merging process was very likely quasi-stationary.
MESSENGER Orbital Observations of Large-Amplitude Kelvin-Helmholtz Waves at Mercury's Magnetopause
NASA Technical Reports Server (NTRS)
Sundberg, Torbjorn; Boardsen, Scott A.; Slavin, James A.; Anderson, Brian J.; Korth, Haje; Zurbuchen, Thomas H.; Raines, Jim M.; Solomon, Sean C.
2012-01-01
We present a survey of Kelvi\\ n-Helmholtz (KH) waves at Mercury's magnetopause during MESSENGER's first Mercury year in orb it. The waves were identified on the basis of the well-established sawtooth wave signatures that are associated with non-linear KH vortices at the magnetopause. MESSENGER frequently observed such KH waves in the dayside region of the magnetosphere where the magnetosheath flow velocity is still sub -sonic, which implies that instability growth rates at Mercury's magnetopau are much larger than at Earth. We attribute these greater rates to the limited wave energy dissipation in Mercury's highly resistive regolith. The wave amplitude was often on the order of ' 00 nT or more, and the wave periods were - 10- 20 s. A clear dawn-dusk asymmetry is present in the data, in that all of the observed wave events occurred in the post-noon and dusk-side sectors of the magnetopause. This asymmetry is like ly related to finite Larmor-radius effects and is in agreement with results from particle-in-cell simulations of the instability. The waves were observed almost exclusively during periods when the north-south component of the magnetosheath magnetic field was northward, a pattern similar to that for most terrestrial KH wave events. Accompanying plasma measurements show that the waves were associated with the transport of magnetosheath plasma into the magnetosphere.
Variability of ULF wave power at the magnetopause: a study at low latitude with Cluster data
NASA Astrophysics Data System (ADS)
Cornilleau-Wehrlin, N.; Grison, B.; Belmont, G.; Rezeau, L.; Chanteur, G.; Robert, P.; Canu, P.
2012-04-01
Strong ULF wave activity has been observed at magnetopause crossings since a long time. Those turbulent-like waves are possible contributors to particle penetration from the Solar Wind to the Magnetosphere through the magnetopause. Statistical studies have been performed to understand under which conditions the ULF wave power is the most intense and thus the waves can be the most efficient for particle transport from one region to the other. Clearly the solar wind pressure organizes the data, the stronger the pressure, the higher the ULF power (Attié et al 2008). Double STAR-Cluster comparison has shown that ULF wave power is stronger at low latitude than at high latitude (Cornilleau-Wehrlin et al, 2008). The different studies performed have not, up to now, shown a stronger power in the vicinity of local noon. Nevertheless under identical activity conditions, the variability of this power, even at a given location in latitude and local time is very high. The present work intends at understanding this variability by means of the multi spacecraft mission Cluster. The data used are from spring 2008, while Cluster was crossing the magnetopause at low latitude, in particularly quite Solar Wind conditions. The first region of interest of this study is the sub-solar point vicinity where the long wavelength surface wave effects are most unlikely.
NASA Technical Reports Server (NTRS)
Dyal, P.; Parkin, C. W.; Daily, W. D.
1974-01-01
Magnetometers were deployed at four Apollo sites on the moon to measure remanent and induced lunar magnetic fields. Measurements from this network of instruments were used to calculate the electrical conductivity, temperature, magnetic permeability, and iron abundance of the lunar interior. Global lunar fields due to eddy currents, induced in the lunar interior by magnetic transients in the geomagnetic tail field, were analyzed to calculate an electrical conductivity profile for the moon: the conductivity increases rapidly with depth from 10 to the minus 9 power mhos/meter at the lunar surface to .0001 mhos/meter at 200 km depth, then less rapidly to .02 mhos/meter at 1000 km depth. A temperature profile is calculated from conductivity: temperature rises rapidly with depth to 1100 K at 200 km depth, then less rapidly to 1800 K at 1000 km depth. Velocities and thicknesses of the earth's magnetopause and bow shock are estimated from simultaneous magnetometer measurements. Average speeds are determined to be about 50 km/sec for the magnetopause and 70 km/sec for the bow shock, although there are large variations in the measurements for any particular boundary crossing.
Electron Currents and Heating in the Ion Diffusion Region of Asymmetric Reconnection
NASA Technical Reports Server (NTRS)
Graham, D. B.; Khotyaintsev, Yu. V.; Norgren, C.; Vaivads, A.; Andre, M.; Lindqvist, P. A.; Marklund, G. T.; Ergun, R. E.; Paterson, W. R.; Gershman, D. J.;
2016-01-01
In this letter the structure of the ion diffusion region of magnetic reconnection at Earths magnetopause is investigated using the Magnetospheric Multiscale (MMS) spacecraft. The ion diffusion region is characterized by a strong DC electric field, approximately equal to the Hall electric field, intense currents, and electron heating parallel to the background magnetic field. Current structures well below ion spatial scales are resolved, and the electron motion associated with lower hybrid drift waves is shown to contribute significantly to the total current density. The electron heating is shown to be consistent with large-scale parallel electric fields trapping and accelerating electrons, rather than wave-particle interactions. These results show that sub-ion scale processes occur in the ion diffusion region and are important for understanding electron heating and acceleration.
EIDOSCOPE: particle acceleration at plasma boundaries
NASA Astrophysics Data System (ADS)
Vaivads, A.; Andersson, G.; Bale, S. D.; Cully, C. M.; De Keyser, J.; Fujimoto, M.; Grahn, S.; Haaland, S.; Ji, H.; Khotyaintsev, Yu. V.; Lazarian, A.; Lavraud, B.; Mann, I. R.; Nakamura, R.; Nakamura, T. K. M.; Narita, Y.; Retinò, A.; Sahraoui, F.; Schekochihin, A.; Schwartz, S. J.; Shinohara, I.; Sorriso-Valvo, L.
2012-04-01
We describe the mission concept of how ESA can make a major contribution to the Japanese Canadian multi-spacecraft mission SCOPE by adding one cost-effective spacecraft EIDO (Electron and Ion Dynamics Observatory), which has a comprehensive and optimized plasma payload to address the physics of particle acceleration. The combined mission EIDOSCOPE will distinguish amongst and quantify the governing processes of particle acceleration at several important plasma boundaries and their associated boundary layers: collisionless shocks, plasma jet fronts, thin current sheets and turbulent boundary layers. Particle acceleration and associated cross-scale coupling is one of the key outstanding topics to be addressed in the Plasma Universe. The very important science questions that only the combined EIDOSCOPE mission will be able to tackle are: 1) Quantitatively, what are the processes and efficiencies with which both electrons and ions are selectively injected and subsequently accelerated by collisionless shocks? 2) How does small-scale electron and ion acceleration at jet fronts due to kinetic processes couple simultaneously to large scale acceleration due to fluid (MHD) mechanisms? 3) How does multi-scale coupling govern acceleration mechanisms at electron, ion and fluid scales in thin current sheets? 4) How do particle acceleration processes inside turbulent boundary layers depend on turbulence properties at ion/electron scales? EIDO particle instruments are capable of resolving full 3D particle distribution functions in both thermal and suprathermal regimes and at high enough temporal resolution to resolve the relevant scales even in very dynamic plasma processes. The EIDO spin axis is designed to be sun-pointing, allowing EIDO to carry out the most sensitive electric field measurements ever accomplished in the outer magnetosphere. Combined with a nearby SCOPE Far Daughter satellite, EIDO will form a second pair (in addition to SCOPE Mother-Near Daughter) of closely separated satellites that provides the unique capability to measure the 3D electric field with high accuracy and sensitivity. All EIDO instrumentation are state-of-the-art technology with heritage from many recent missions. The EIDOSCOPE orbit will be close to equatorial with apogee 25-30 RE and perigee 8-10 RE. In the course of one year the orbit will cross all the major plasma boundaries in the outer magnetosphere; bow shock, magnetopause and magnetotail current sheets, jet fronts and turbulent boundary layers. EIDO offers excellent cost/benefits for ESA, as for only a fraction of an M-class mission cost ESA can become an integral part of a major multi-agency L-class level mission that addresses outstanding science questions for the benefit of the European science community.
NASA Technical Reports Server (NTRS)
Alves, L. R.; Da Silva, L. A.; Souza, V. M.; Sibeck, D. G.; Jauer, P. R.; Vieira, L. E. A.; Walsh, B. M.; Silveira, M. V. D.; Marchezi, J. P.; Rockenbach, M.;
2016-01-01
Magnetopause shadowing and wave-particle interactions are recognized as the two primary mechanisms for losses of electrons from the outer radiation belt. We investigate these mechanisms, sing satellite observations both in interplanetary space and within the magnetosphere and particle drift modeling. Two interplanetary shocks sheaths impinged upon the magnetopause causing a relativistic electron flux dropout. The magnetic cloud (C) and interplanetary structure sunward of the MC had primarily northward magnetic field, perhaps leading to a concomitant lack of substorm activity and a 10 day long quiescent period. The arrival of two shocks caused an unusual electron flux dropout. Test-particle simulations have shown 2 to 5 MeV energy, equatorially mirroring electrons with initial values of L 5.5can be lost to the magnetosheath via magnetopause shadowing alone. For electron losses at lower L-shells, coherent chorus wave-driven pitch angle scattering and ULF wave-driven radial transport have been shownto be viable mechanisms.
NASA Technical Reports Server (NTRS)
Kuznetsova, Maria M.; Sibeck, David Gary; Hesse, Michael; Berrios, David; Rastaetter, Lutz; Toth, Gabor; Gombosi, Tamas I.
2011-01-01
Flux transfer events (FTEs) were originally identified by transient bipolar variations of the magnetic field component normal to the nominal magnetopause centered on enhancements in the total magnetic field strength. Recent Cluster and THEMIS multi-point measurements provided a wide range of signatures that are interpreted as evidence for FTE passage (e.g., crater FTE's, traveling magnetic erosion regions). We use the global magnetohydrodynamic (MHD) code BATS-R-US developed at the University of Michigan to model the global three-dimensional structure and temporal evolution of FTEs during multi-spacecraft magnetopause crossing events. Comparison of observed and simulated signatures and sensitivity analysis of the results to the probe location will be presented. We will demonstrate a variety of observable signatures in magnetic field profile that depend on space probe location with respect to the FTE passage. The global structure of FTEs will be illustrated using advanced visualization tools developed at the Community Coordinated Modeling Center
Interplanetary magnetic field orientation for transient events in the outer magnetosphere
NASA Technical Reports Server (NTRS)
Sibeck, D. G.; Newell, P. T.
1995-01-01
It is generally believed that flux transfer events (FTEs) in the outer dayside magneosphere, usually identified by transient (approximately 1 min) bipolar magneitc field perturbations in the direction normal to the nominal magnetopause, occur when the magnetosheath magetic field has a southward component. We compare the results of three methods for determining the magnetosheath magnetic field orientationat the times of previously identified UKS/IRM events: (1) the average magnetosheath magnetic field orientation in the 30-min period adjacent to the nearest magnetopause crossing, (2) the magnetosheath magnetic field orientation observed just outside the magnetopause, and (3) the lagged interplanetary magnetic field (IMF) orientation at the time of the transient events. Whereas the results of method 2 indicate that the events tend to occur for a southward magnetosheath magnetic field, the results of methods 1 and 3 show no such tnedency. The fact that the three methods yield significantly diffeent results emphasizes the need for caution in future studies.
NASA Technical Reports Server (NTRS)
Chen, Sheng-Hsien; Kivelson, Margaret G.; Gosling, Jack T.; Walker, Raymond J.; Lazarus, Allan J.
1993-01-01
On February 15, 1978, the orientation of the IMF remained steadily northward for more than 12 hours. Using plasma and magnetic field data from ISEE 1 and 2, IMP 8, and IMP 7, we show that (1) the magnetosheath flow speed on the flanks of the magnetotail steadily exceeded the solar wind speed by 20 percent, (2) surface waves of about 5-min period and very nonsinusoidal waveform were persistently present on the dawn magnetopause and waves of similar period were present in the dusk magnetosheath, and (3) the magnetotail ceased to flare at an antisunward distance of 15 earth radii. We propose that the acceleration of the magnetosheath flow is achieved by magnetic tension in the draped field configuration for northward IMP; the reduction of tail flaring is consistent with a decreased amount of open magnetic flux and a larger standoff distance of the subsolar magnetopause. Results of a 3D MHD simulation support this phenomenological model.
Ion-Scale Structure in Mercury's Magnetopause Reconnection Diffusion Region
NASA Technical Reports Server (NTRS)
Gershman, Daniel J.; Dorelli, John C.; DiBraccio, Gina A.; Raines, Jim M.; Slavin, James A.; Poh, Gangkai; Zurbuchen, Thomas H.
2016-01-01
The strength and time dependence of the electric field in a magnetopause diffusion region relate to the rate of magnetic reconnection between the solar wind and a planetary magnetic field. Here we use approximately 150 milliseconds measurements of energetic electrons from the Mercury Surface, Space Environment, GEochemistry, and Ranging (MESSENGER) spacecraft observed over Mercury's dayside polar cap boundary (PCB) to infer such small-scale changes in magnetic topology and reconnection rates. We provide the first direct measurement of open magnetic topology in flux transfer events at Mercury, structures thought to account for a significant portion of the open magnetic flux transport throughout the magnetosphere. In addition, variations in PCB latitude likely correspond to intermittent bursts of approximately 0.3 to 3 millivolts per meter reconnection electric fields separated by approximately 5 to10 seconds, resulting in average and peak normalized dayside reconnection rates of approximately 0.02 and approximately 0.2, respectively. These data demonstrate that structure in the magnetopause diffusion region at Mercury occurs at the smallest ion scales relevant to reconnection physics.
Detection of magnetized quark-nuggets, a candidate for dark matter.
VanDevender, J Pace; VanDevender, Aaron P; Sloan, T; Swaim, Criss; Wilson, Peter; Schmitt, Robert G; Zakirov, Rinat; Blum, Josh; Cross, James L; McGinley, Niall
2017-08-18
Quark nuggets are theoretical objects composed of approximately equal numbers of up, down, and strange quarks and are also called strangelets and nuclearites. They have been proposed as a candidate for dark matter, which constitutes ~85% of the universe's mass and which has been a mystery for decades. Previous efforts to detect quark nuggets assumed that the nuclear-density core interacts directly with the surrounding matter so the stopping power is minimal. Tatsumi found that quark nuggets could well exist as a ferromagnetic liquid with a ~10 12 -T magnetic field. We find that the magnetic field produces a magnetopause with surrounding plasma, as the earth's magnetic field produces a magnetopause with the solar wind, and substantially increases their energy deposition rate in matter. We use the magnetopause model to compute the energy deposition as a function of quark-nugget mass and to analyze testing the quark-nugget hypothesis for dark matter by observations in air, water, and land. We conclude the water option is most promising.
Plasma and Energetic Particle Behaviors During Asymmetric Magnetic Reconnection at the Magnetopause
NASA Technical Reports Server (NTRS)
Lee, S. H.; Zhang, H.; Zong, Q.-G.; Otto, A.; Sibeck, D. G.; Wang, Y.; Glassmeier, K.-H.; Daly, P.W.; Reme, H.
2014-01-01
The factors controlling asymmetric reconnection and the role of the cold plasma population in the reconnection process are two outstanding questions. We present a case study of multipoint Cluster observations demonstrating that the separatrix and flow boundary angles are greater on the magnetosheath than on the magnetospheric side of the magnetopause, probably due to the stronger density than magnetic field asymmetry at this boundary. The motion of cold plasmaspheric ions entering the reconnection region differs from that of warmer magnetosheath and magnetospheric ions. In contrast to the warmer ions, which are probably accelerated by reconnection in the diffusion region near the subsolar magnetopause, the colder ions are simply entrained by ??×?? drifts at high latitudes on the recently reconnected magnetic field lines. This indicates that plasmaspheric ions can sometimes play only a very limited role in asymmetric reconnection, in contrast to previous simulation studies. Three cold ion populations (probably H+, He+, and O+) appear in the energy spectrum, consistent with ion acceleration to a common velocity.
Radio Emissions from Magnetopause Reconnection Events
NASA Astrophysics Data System (ADS)
Fung, S. F.; Kunze, J.
2017-12-01
A new terrestrial radio emission has recently been identified and attributed to a source connected to the magnetopause magnetic reconnection process [Fung et al., 2013]. Known as the terrestrial myriametric radio burst (TMRB), the new emission was observed by both the IMAGE and Geotail spacecraft during a period of northward interplanetary magnetic field (IMF Bz >0) as a temporal and isolated burst of emission with perhaps well-defined or directed emission cones. Spectral and spin-modulation analyses showed that both the intensity and source direction of the emission are sensitive to the variability of the IMF. The strong control of the emission by the IMF suggests that the emission is connected to the magnetopause reconnection process. A number of potential TMRB events have now been identified by surveying all the dynamic spectrogram data obtained by the IMAGE, Geotail, Cluster, and Wind spacecraft in 5/2000-12/2005. This paper will present our analyses of how the spectral signatures and beaming characteristics of the emissions might depend on the IMF orientations, and thus their likelihood of being TMRBs. Special emphasis will be on events associated with northward and southward IMF in order to determine if TMRBs might be generally produced from magnetopause reconnection processes. Fung, S. F., K. Hashimoto, H. Kojima, S. A. Boardsen, L. N. Garcia, H. Matsumoto, J. L. Green, and B. W. Reinisch (2013), Terrestrial myriametric radio burst observed by IMAGE and Geotail satellites, J. Geophys. Res. Space Physics, 118, doi:10.1002/jgra.50149.
Lunar electrical conductivity, permeability,and temperature from Apollo magnetometer experiments
NASA Technical Reports Server (NTRS)
Dyal, P.; Parkin, C. W.; Daily, W. D.
1974-01-01
Magnetometers were deployed at four Apollo sites on the moon to measure remanent and induced lunar magnetic fields. Measurements from this network of instruments were used to calculate the electrical conductivity, temperature, magnetic permeability, and iron abundance of the lunar interior. Global lunar fields due to eddy currents, induced in the lunar interior by magnetic transients, were analyzed to calculate and electrical conductivity profile for the moon, and those profiles were used to calculate the lunar temperature for an assumed lunar material of olivine. Simultaneous measurements by magnetometers on the lunar surface and in orbit around the moon were use to construct a whole-moon hysteresis curve, from which the global lunar magnetic permeability is determined. Total iron abundance (sum of iron in the ferromagnetic and paramagnetic states) was calculated for two assumed compositional models of the lunar interior. Other lunar models with an iron core and with a shallow iron-rich layer also discussed in light of the measured global lunar permeability. Simultaneous magnetic field and solar plasma pressure measurements show that the remanent fields at the Apollo 12 and 16 sites interact with, and are compressed by, the solar wind. Velocities and thicknesses of the earth's magnetopause and bow shock were also estimated from simultaneous magnetometer measurements.
MMS Encounters with Reconnection Diffusion Regions in the Earth's Magnetotail
NASA Astrophysics Data System (ADS)
Torbert, R. B.; Burch, J. L.; Argall, M. R.; Farrugia, C. J.; Alm, L.; Dors, I.; Payne, D.; Rogers, A. J.; Strangeway, R. J.; Phan, T.; Ergun, R.; Goodrich, K.; Lindqvist, P. A.; Khotyaintsev, Y. V.; Giles, B. L.; Rager, A. C.; Gershman, D. J.; Kletzing, C.
2017-12-01
The Magnetospheric Multiscale (MMS) fleet of four spacecraft traversed the Earth's magnetotail in May through August of 2017 with an apogee of 25 Re, and encountered diffusion regions characteristic of symmetric reconnection. This presentation will describe in-situ measurements of large electric fields, strong electron cross-tail and Hall currents, and electron velocity distributions (frequently crescent-shaped) that are commonly observed in these regions. Positive electromagnetic energy conversion is also typical. The characteristics of symmetric reconnection observations will be contrasted with those of asymmetric reconnection that MMS observed previously at the dayside magnetopause.
Keppler, E; Blake, J B; Fränz, M; Korth, A; Krupp, N; Quenby, J J; Witte, M; Woch, J
1992-09-11
Observations of ions and electrons of probable Jovian origin upstream of Jupiter were observed after a corotating interplanetary particle event. During the passage of Ulysses through the Jovian bow shock, magnetopause, and outer magnetosphere, the fluxes of energetic particles were surprisingly low. During the passage through the "middle magnetosphere," corotating fluxes were observed within the current sheet near the jovimagnetic equato. During the outbound pass, fluxes were variably directed; in the later part of the flyby, they were probably related to high-latitude phenomena.
NASA's THEMIS Mission: Multipoint Observations of Substorms, the Foreshock, and the Magnetopause
NASA Technical Reports Server (NTRS)
Sibeck, D. G.; Angelopoulos, V.; Kuznetsova, M.; Glabmeier, K.-H.; McFadden. J. P.
2008-01-01
From launch on February 17 through the repositioning to final orbits that began in September 2007, the five-spacecraft of the THEMIS mission operated nominally in nearly identical 14.6 RE apogee near-equatorial orbits. On March 23, while aligned from east to west in the duskside magnetotail, the spacecraft observed two substorm sequences in fast survey mode. Timing the motion of these signatures served as an early proof of concept for the main phase of the mission: particle injection and dipolarization signatures propagated duskward from one probe to another, as did auroral intensifications seen by the dedicated array of ground-based observatories. During the summer of 2007, the spacecraft were on the dayside, where the three inner spacecraft (C, D, E) were separated by 100-500 km and the two outer probes (B, -4) by 5,000 - 10,000 km. Here the THEMIS probes repeatedly encountered the magnetopause and bow shock, dissecting flux transfer events (FTEs), determining the instantaneous width of the low-latitude boundary layer, and simultaneously observing hot flow anomalies upstream and downstream from the bow shock at the moment of their inception. From January to March 2008, the spacecraft were in the Earths magnetotail with apogees of 31.0, 19.5, 11.8 (2) and 10.0 RE corresponding to periods of 4, 2, and 1 days. Radial alignments once each four days offered an opportunity to pinpoint when and where substorms begin. This talk reviews THEMIS discoveries to date, with an emphasis on model-data comparisons of FTE characteristics
The magnetosphere of Neptune - Its response to daily rotation
NASA Technical Reports Server (NTRS)
Voigt, Gerd-Hannes; Ness, Norman F.
1990-01-01
The Neptunian magnetosphere periodically changes every eight hours between a pole-on magnetosphere with only one polar cusp and an earth-type magnetosphere with two polar cusps. In the pole-on configuration, the tail current sheet has an almost circular shape with plasma currents closing entirely within the magnetosphere. Eight hours later the tail current sheet assumes an almost flat shape with plasma currents touching the magnetotail boundary and closing over the tail magnetopause. Magnetic field and tail current sheet configurations have been calculated in a three-dimensional model, but the plasma- and thermodynamic conditions were investigated in a simplified two-dimensional MHD equilibrium magnetosphere. It was found that the free energy in the tail region of the two-dimensional model becomes independent of the dipole tilt angle. It is conjectured that the Neptunian magnetotail might assume quasi-static equilibrium states that make the free energy of the system independent of its daily rotation.
NASA Technical Reports Server (NTRS)
Lennartsson, W.
1992-01-01
Based on He(2+) and H(-) ion composition data from the Plasma Composition Experiment on ISEE 1, a scenario is proposed for the solar wind penetration of the earth's magnetic tail, which does not require that the solar wind plasma be magnetized. While this study does not take issue with the notion that earth's magnetic field merges with the solar wind magnetic field on a regular basis, it focuses on certain aspects of interaction between the solar wind particles and the earth's field, e.g, the fact that the geomagnetic tail always has a plasma sheet, even during times when the physical signs of magnetic merging are weak or absent. It is argued that the solar plasma enters along slots between the tail lobes and the plasma sheet, even quite close to earth, convected inward along the plasma sheet boundary layer or adjacent to it, by the electric fringe field of the ever present low-latitude magnetopause boundary layer (LLBL). The required E x B drifts are produced by closing LLBL equipotential surfaces through the plasma sheet.
Impacts of Spontaneous Hot Flow Anomalies on the Magnetosheath and Magnetopause
NASA Technical Reports Server (NTRS)
Omidi, N.; Berchem, J.; Sibeck, D.; Zhang, H.
2016-01-01
Spacecraft observations and global hybrid (kinetic ions and fluid electrons) simulations have demonstrated that ion dissipation processes at the quasi-parallel bow shock are associated with the formation of structures called spontaneous hot flow anomalies (SHFAs). Previous simulations and recent spacecraft observations have also established that SHFAs result in the formation of magnetosheath filamentary structures(MFS). In this paper we demonstrate that in addition to MFS, SHFAs also result in the formation of magnetos heath cavities that are associated with decreases in density, velocity, and magnetic field and enhancements in temperature. We use the results of a global MHD run to determine the change in the magnetosheath properties associated with cavities due to ion kinetic effects. The results also show the formation of regions of high flow speed called magnetosheath jets whose properties as a function of solar wind Mach number are described in this study. Comparing the properties of the simulated magnetosheath cavities and jets to past spacecraft observations provides good agreement in both cases. We also demonstrate that pressure variations associated with cavities and SHFAs in the sheath result in a continuous sunward and anti sunward magnetopause motion. This result is consistent with previous suggestions that SHFAs may be responsible for the generation of ion cyclotron waves and precipitation of ring current protons in the outer magnetosphere.
NASA Astrophysics Data System (ADS)
Argall, M. R.; Caide, A.; Chen, L.; Torbert, R. B.
2012-12-01
Magnetometers have been used to measure terrestrial and extraterrestrial magnetic fields in space exploration ever since Sputnik 3. Modern space missions, such as Cluster, RBSP, and MMS incorporate both search coil magnetometers (SCMs) and fluxgate magnetometers (FGMs) in their instrument suites: FGMs work well at low frequencies while SCMs perform better at high frequencies. In analyzing the noise floor of these instruments, a cross-over region is apparent around 0.3-1.5Hz. The satellite separation of MMS and average speeds of field convection and plasma flows at the subsolar magnetopause make this a crucial range for the upcoming MMS mission. The method presented here combines the signals from SCM and FGM by taking a weighted average of both in this frequency range in order to draw out key features, such as narrow current sheet structures, that would otherwise not be visible. The technique is applied to burst mode Cluster data for reported magnetopause and magnetotail reconnection events to demonstrate the power of the combined data. This technique is also applied to data from the the EMFISIS instrument on the RBSP mission. The authors acknowledge and thank the FGM and STAFF team for the use of their data from the CLUSTER Active Archive.
Energetic-particle drift motions in the outer dayside magnetosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buck, R.C.
1987-01-01
Models of the geomagnetic field predict that within a distance of approximately one earth radius inside the dayside magnetopause, magnetic fields produced by the Chapman-Ferraro magnetopause currents create high-latitude minimum-B pockets in the geomagnetic field. These pockets are theoretically capable of temporarily trapping azimuthally-drifting electrons and modifying electron directional distributions. The Lawrence Livermore National Laboratory's scanning electron spectrometer aboard the OGO-5 satellite provided detailed energetic (E > 70 keV) electron pitch-angle distributions throughout the magnetosphere. Distributions obtained in the outer dayside magnetosphere over a wide range of longitudes show unusual flux features. This study analyzes drift-shell branching caused by themore » minimum-B pockets, and interprets the observed flux features in terms of an adiabatic-shell branching and rejoining process. The author examines the shell-branching process for a static field in detail, using the Choe-Beard 1974 magnetospheric magnetic field mode. He finds that shell branching and rejoining conserves the particle mirror field B/sub M/, the fieldline integral invariant I, and the directional electron flux j. He also finds a good correlation between the itch angles that mark the transition from branched to unbranched shells in the model and the distinctive features of the OGO-5 distributions.« less
Impacts of spontaneous hot flow anomalies on the magnetosheath and magnetopause
NASA Astrophysics Data System (ADS)
Omidi, N.; Berchem, J.; Sibeck, D.; Zhang, H.
2016-04-01
Spacecraft observations and global hybrid (kinetic ions and fluid electrons) simulations have demonstrated that ion dissipation processes at the quasi-parallel bow shock are associated with the formation of structures called spontaneous hot flow anomalies (SHFAs). Previous simulations and recent spacecraft observations have also established that SHFAs result in the formation of magnetosheath filamentary structures (MFS). In this paper we demonstrate that in addition to MFS, SHFAs also result in the formation of magnetosheath cavities that are associated with decreases in density, velocity, and magnetic field and enhancements in temperature. We use the results of a global MHD run to determine the change in the magnetosheath properties associated with cavities due to ion kinetic effects. The results also show the formation of regions of high flow speed called magnetosheath jets whose properties as a function of solar wind Mach number are described in this study. Comparing the properties of the simulated magnetosheath cavities and jets to past spacecraft observations provides good agreement in both cases. We also demonstrate that pressure variations associated with cavities and SHFAs in the sheath result in a continuous sunward and antisunward magnetopause motion. This result is consistent with previous suggestions that SHFAs may be responsible for the generation of ion cyclotron waves and precipitation of ring current protons in the outer magnetosphere.
Rotationally driven magnetic reconnection in Saturn's dayside
NASA Astrophysics Data System (ADS)
Guo, R. L.; Yao, Z. H.; Wei, Y.; Ray, L. C.; Rae, I. J.; Arridge, C. S.; Coates, A. J.; Delamere, P. A.; Sergis, N.; Kollmann, P.; Grodent, D.; Dunn, W. R.; Waite, J. H.; Burch, J. L.; Pu, Z. Y.; Palmaerts, B.; Dougherty, M. K.
2018-06-01
Magnetic reconnection is a key process that explosively accelerates charged particles, generating phenomena such as nebular flares1, solar flares2 and stunning aurorae3. In planetary magnetospheres, magnetic reconnection has often been identified on the dayside magnetopause and in the nightside magnetodisc, where thin-current-sheet conditions are conducive to reconnection4. The dayside magnetodisc is usually considered thicker than the nightside due to the compression of solar wind, and is therefore not an ideal environment for reconnection. In contrast, a recent statistical study of magnetic flux circulation strongly suggests that magnetic reconnection must occur throughout Saturn's dayside magnetosphere5. Additionally, the source of energetic plasma can be present in the noon sector of giant planetary magnetospheres6. However, so far, dayside magnetic reconnection has only been identified at the magnetopause. Here, we report direct evidence of near-noon reconnection within Saturn's magnetodisc using measurements from the Cassini spacecraft. The measured energetic electrons and ions (ranging from tens to hundreds of keV) and the estimated energy flux of 2.6 mW m-2 within the reconnection region are sufficient to power aurorae. We suggest that dayside magnetodisc reconnection can explain bursty phenomena in the dayside magnetospheres of giant planets, which can potentially advance our understanding of quasi-periodic injections of relativistic electrons6 and auroral pulsations7.
Magnetic Field Observations of Partial Ring Current during Storm Recovery Phase
NASA Technical Reports Server (NTRS)
Le, Guan; Russell, C. T.; Slavin, J. A.; Lucek, E. A.
2007-01-01
We present results of an extensive survey of the magnetic field observations in the inner magnetosphere using 30 years of magnetospheric magnetic field data from Polar, Cluster, ISEE, and AMPTE/CCE missions. The purpose of this study is to understand the magnetic field evolution during the recovery phase of geomagnetic storms, and its implication to the ring current recovery and loss mechanisms of ring current particles. Our previous work on global ring current distribution [Le et al., 2004] has shown that a significant partial ring current is always present at all Dst levels (regardless of storm phases) even for quiet time ring current. The total current carried by the partial ring current is much stronger than (during stormtime) or at least comparable to (during quiet time) the symmetric ring current. It is now commonly believed that a strong partial ring current is formed during the storm main phase due to the enhanced earthward convection of energetic ions from nightside plasma sheet. But the presence of a strong partial ring current throughout the recovery phase remains controversial. The magnetic field generated by the ring current inflates the inner magnetosphere and causes magnetic field depressions in the equatorial magnetosphere. During the storm recovery phase, we find that the distribution of the equatorial magnetic field depression exhibits similar local time dependence as the ring current distribution obtained from the combined dataset in the earlier study. It shows that a strong partial ring current is a permanent feature throughout the recovery phase. In the early recovery phase, the partial ring current peaks near the dusk terminator as indicated by the peak of the magnetic field depression. As the recovery phase progresses, the partial ring current decays most quickly near the dusk and results in a dusk-to-midnight moving of the peak of the partial ring current. Thus the loss mechanisms work most effectively near the dusk. The magnetic field depression increases the gyroradius of ring current protons to a scale greater or comparable to the thickness of the magnetopause, which increases the chance of ion drift loss near the dusk magnetopause at larger L-shell (L>5). But the drift loss mechanism alone cannot explain the loss of ring current ions especially in the smaller L-shell (L<5). The precipitation loss due to wave-particle interaction is most likely the dominant loss mechanism in the small L-shell as it works most effectively at the same local time.
Observational test of empirical magnetopause location models using geosynchronous satellite data
NASA Astrophysics Data System (ADS)
Park, Eunsu; Moon, Y.-J.; Lee, Kangjin
2016-11-01
In this study, we identify 123 geosynchronous magnetopause crossings using geosynchronous satellite observation data from 1996 to 2010 as well as make an observational test of magnetopause location models using the identified events. For this, we consider three models: Petrinec and Russell (1996), Shue et al. (1998), and Lin et al. (2010). To evaluate the models, we estimate a probability of detection (PoD) and a critical success index (CSI) as a function of year. To examine the effect of solar cycle phase, we consider three different time periods: (1) ascending phase (1996-1999), (2) maximum phase (2000-2002), and (3) descending phase (2003-2008). Major results from this study are as follows. First, the PoD values of all models range from 0.4 to 0.8 for the most of years. Second, the PoD values of Lin et al. (2010) are noticeably higher than those of the other models. Third, the CSI values of all models range from 0.1 to 0.3, and those of Shue et al. (1998) are slightly higher than those of the other models. Fourth, the predicted magnetopause radii based on Lin et al.(2010) well match the observed ones within 1 Earth radius, while those on Shue et al. (1998) overestimate the observed ones by about 2 Earth radii. Fifth, the PoD and critical success index (CSI) values of all the models are better for the solar maximum phase than those for the other phases, implying that the models are more optimized for the phase.
NASA Astrophysics Data System (ADS)
Rezeau, L.; Belmont, G.; Manuzzo, R.; Aunai, N.; Dargent, J.
2018-01-01
We explore the structure of the magnetopause using a crossing observed by the Magnetospheric Multiscale (MMS) spacecraft on 16 October 2015. Several methods (minimum variance analysis, BV method, and constant velocity analysis) are first applied to compute the normal to the magnetopause considered as a whole. The different results obtained are not identical, and we show that the whole boundary is not stationary and not planar, so that basic assumptions of these methods are not well satisfied. We then analyze more finely the internal structure for investigating the departures from planarity. Using the basic mathematical definition of what is a one-dimensional physical problem, we introduce a new single spacecraft method, called LNA (local normal analysis) for determining the varying normal, and we compare the results so obtained with those coming from the multispacecraft minimum directional derivative (MDD) tool developed by Shi et al. (2005). This last method gives the dimensionality of the magnetic variations from multipoint measurements and also allows estimating the direction of the local normal when the variations are locally 1-D. This study shows that the magnetopause does include approximate one-dimensional substructures but also two- and three-dimensional structures. It also shows that the dimensionality of the magnetic variations can differ from the variations of other fields so that, at some places, the magnetic field can have a 1-D structure although all the plasma variations do not verify the properties of a global one-dimensional problem. A generalization of the MDD tool is proposed.
Analysing the magnetopause internal structure: new possibilities offered by MMS
NASA Astrophysics Data System (ADS)
Belmont, G.; Rezeau, L.; Manuzzo, R.; Aunai, N.; Dargent, J.
2017-12-01
We explore the structure of the magnetopause using a crossing observed by the MMS spacecraft on October 16th, 2015. Several methods (MVA, BV, CVA) are first applied to compute the normal to the magnetopause considered as a whole. The different results obtained are not identical and we show that the whole boundary is not stationary and not planar, so that basic assumptions of these methods are not well satisfied. We then analyse more finely the internal structure for investigating the departures from planarity. Using the basic mathematical definition of what is a one-dimensional physical problem, we introduce a new method, called LNA (Local Normal Analysis) for determining the varying normal, and we compare the results so obtained with those coming from the MDD tool developed by [Shi et al., 2005]. This method gives the dimensionality of the magnetic variations from multi-point measurements and allows estimating the direction of the local normal using the magnetic field. On the other hand, LNA is a single-spacecraft method which gives the local normal from the magnetic field and particle data. This study shows that the magnetopause does include approximate one-dimensional sub-structures but also two and three dimensional intervals. It also shows that the dimensionality of the magnetic variations can differ from the variations of the other fields so that, at some places, the magnetic field can have a 1D structure although all the plasma variations do not verify the properties of a global one-dimensional problem. Finally a generalisation and a systematic application of the MDD method to the physical quantities of interest is shown.
Stability of plasma cylinder with current in a helical plasma flow
NASA Astrophysics Data System (ADS)
Leonovich, Anatoly S.; Kozlov, Daniil A.; Zong, Qiugang
2018-04-01
Stability of a plasma cylinder with a current wrapped by a helical plasma flow is studied. Unstable surface modes of magnetohydrodynamic (MHD) oscillations develop at the boundary of the cylinder enwrapped by the plasma flow. Unstable eigenmodes can also develop for which the plasma cylinder is a waveguide. The growth rate of the surface modes is much higher than that for the eigenmodes. It is shown that the asymmetric MHD modes in the plasma cylinder are stable if the velocity of the plasma flow is below a certain threshold. Such a plasma flow velocity threshold is absent for the symmetric modes. They are unstable in any arbitrarily slow plasma flows. For all surface modes there is an upper threshold for the flow velocity above which they are stable. The helicity index of the flow around the plasma cylinder significantly affects both the Mach number dependence of the surface wave growth rate and the velocity threshold values. The higher the index, the lower the upper threshold of the velocity jump above which the surface waves become stable. Calculations have been carried out for the growth rates of unstable oscillations in an equilibrium plasma cylinder with current serving as a model of the low-latitude boundary layer (LLBL) of the Earth's magnetic tail. A tangential discontinuity model is used to simulate the geomagnetic tail boundary. It is shown that the magnetopause in the geotail LLBL is unstable to a surface wave (having the highest growth rate) in low- and medium-speed solar wind flows, but becomes stable to this wave in high-speed flows. However, it can remain weakly unstable to the radiative modes of MHD oscillations.
NASA Technical Reports Server (NTRS)
Wendel, Deirdre E.; Reiff, Patricia H.; Goldstein, Melvyn L.
2010-01-01
We simulate a northward IMF cusp reconnection event at the magnetopause using the OpenGGCM resistive MHD code. The ACE input data, solar wind parameters, and dipole tilt belong to a 2002 reconnection event observed by IMAGE and Cluster. Based on a fully three-dimensional skeleton separators, nulls, and parallel electric fields, we show magnetic draping, convection, ionospheric field line tying play a role in producing a series of locally reconnecting nulls with flux ropes. The flux ropes in the cusp along the global separator line of symmetry. In 2D projection, the flux ropes the appearance of a tearing mode with a series of 'x's' and 'o's' but bearing a kind of 'guide field' that exists only within the magnetopause. The reconnecting field lines in the string of ropes involve IMF and both open and closed Earth magnetic field lines. The observed magnetic geometry reproduces the findings of a superposed epoch impact parameter study derived from the Cluster magnetometer data for the same event. The observed geometry has repercussions for spacecraft observations of cusp reconnection and for the imposed boundary conditions reconnection simulations.
Detection of magnetized quark-nuggets, a candidate for dark matter
VanDevender, J. Pace; VanDevender, Aaron P.; Sloan, T.; ...
2017-08-18
Quark nuggets are theoretical objects composed of approximately equal numbers of up, down, and strange quarks and are also called strangelets and nuclearites. They have been proposed as a candidate for dark matter, which constitutes ~85% of the universe’s mass and which has been a mystery for decades. Previous efforts to detect quark nuggets assumed that the nuclear-density core interacts directly with the surrounding matter so the stopping power is minimal. Tatsumi found that quark nuggets could well exist as a ferromagnetic liquid with a ~10 12-T magnetic field. We find that the magnetic field produces a magnetopause with surroundingmore » plasma, as the earth’s magnetic field produces a magnetopause with the solar wind, and substantially increases their energy deposition rate in matter. We use the magnetopause model to compute the energy deposition as a function of quark-nugget mass and to analyze testing the quark-nugget hypothesis for dark matter by observations in air, water, and land. We conclude the water option is most promising.« less
New Understanding of Mercury's Magnetosphere from MESSENGER'S First Flyby
NASA Technical Reports Server (NTRS)
Slavin, James A.; Acuna, Mario H.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Gloeckler, George; Gold, Robert E.; Ho, George C.; Killen, M.; Korth, Haje;
2008-01-01
Observations by the MESSENGER spacecraft on 14 January 2008 have revealed new features of the solar system's smallest planetary magnetosphere. The interplanetary magnetic field orientation was unfavorable for large inputs of energy from the solar wind and no evidence of magnetic substorms, internal magnetic reconnection, or energetic particle acceleration was detected. Large-scale rotations of the magnetic field were measured along the dusk flank of the magnetosphere and ultra-tow frequency waves were frequently observed beginning near closest approach. Outbound the spacecraft encountered two current-sheet boundaries across which the magnetic field intensity decreased in a step-like manner. The outer current sheet is the magnetopause boundary. The inner current sheet is similar in structure, but weaker and -1000 km closer to the planet. Between these two current sheets the magnetic field intensity is depressed by the diamagnetic effect of planetary ions created by the photo-ionization of Mercury's exosphere.
NASA Astrophysics Data System (ADS)
Sturner, A. P.; Eriksson, S.; Newman, D. L.; Lapenta, G.; Gershman, D. J.; Plaschke, F.; Ergun, R.; Wilder, F. D.; Torbert, R. B.; Giles, B. L.; Strangeway, R. J.; Russell, C. T.; Burch, J. L.
2016-12-01
Kinetic simulations and observations of magnetic reconnection suggest the Hall term of Ohm's Law is necessary for understanding fast reconnection in the Earth's magnetosphere. During high (>1) guide field plasma conditions in the solar wind and in Earth's magnetopause, tripolar variations in the guide magnetic field are often observed during current sheet crossings, and have been linked to reconnection Hall magnetic fields. Two proposed mechanisms for these tripolar variations are the presence of multiple nearby X-lines and magnetic island coalescence. We present results of an investigation into the structure of the electron currents supporting tripolar guide magnetic field variations during Kelvin-Helmholtz wave current sheet crossings using the Magnetosphere Multiscale (MMS) Mission, and compare with bipolar magnetic field structures and with kinetic simulations to understand how these tripolar structures may be used as tracers for magnetic islands.
NASA Technical Reports Server (NTRS)
Taguchi, S.; Sugiura, M.; Winningham, J. D.; Slavin, J. A.
1993-01-01
The magnetic field and plasma data from 47 passes of DE-2 are used to study the IMF By-dependent distribution of field-aligned currents in the cleft region. It is proposed that the low-latitude cleft current (LCC) region is not an extension of the region 1 or region 2 current system and that a pair of LCCs and high-latitude cleft currents (HCCs) constitutes the cleft field-aligned current regime. The proposed pair of cleft field-aligned currents is explained with a qualitative model in which this pair of currents is generated on open field lines that have just been reconnected on the dayside magnetopause. The electric fields are transmitted along the field lines to the ionosphere, creating a poleward electric field and a pair of field-aligned currents when By is positive; the pair of field-aligned currents consists of a downward current at lower latitudes and an upward current at higher latitudes. In the By negative case, the model explains the reversal of the field-aligned current direction in the LCC and HCC regions.
Electron Scale Structures and Magnetic Reconnection Signatures in the Turbulent Magnetosheath
NASA Technical Reports Server (NTRS)
Yordanova, E.; Voros, Z.; Varsani, A.; Graham, D. B.; Norgren, C.; Khotyaintsev, Yu. V.; Vaivads, A.; Eriksson, E.; Nakamura, R.; Lindqvist, P.-A.;
2016-01-01
Collisionless space plasma turbulence can generate reconnecting thin current sheets as suggested by recent results of numerical magnetohydrodynamic simulations. The Magnetospheric Multiscale (MMS) mission provides the first serious opportunity to verify whether small ion-electron-scale reconnection, generated by turbulence, resembles the reconnection events frequently observed in the magnetotail or at the magnetopause. Here we investigate field and particle observations obtained by the MMS fleet in the turbulent terrestrial magnetosheath behind quasi-parallel bow shock geometry. We observe multiple small-scale current sheets during the event and present a detailed look of one of the detected structures. The emergence of thin current sheets can lead to electron scale structures. Within these structures, we see signatures of ion demagnetization, electron jets, electron heating, and agyrotropy suggesting that MMS spacecraft observe reconnection at these scales.
NASA Technical Reports Server (NTRS)
Mozer, F. S.; Agapitov, O. A.; Artemyev, A.; Burch, J. L.; Ergun, R. E.; Giles, B. L.; Mourenas, D.; Torbert, R. B.; Phan, T. D.; Vasko, I.
2016-01-01
The same time domain structures (TDS) have been observed on two Magnetospheric Multiscale Satellites near Earth's dayside magnetopause. These TDS, traveling away from the X line along the magnetic field at 4000 km/s, accelerated field-aligned approx. 5 eV electrons to approx. 200 eV by a single Fermi reflection of the electrons by these overtaking barriers. Additionally, the TDS contained both positive and negative potentials, so they were a mixture of electron holes and double layers. They evolve in approx.10 km of space or 7 ms of time and their spatial scale size is 10-20 km, which is much larger than the electron gyroradius (less than1km) or the electron inertial length (4 km at the observation point, less nearer the X line).
A numerical code for a three-dimensional magnetospheric MHD equilibrium model
NASA Technical Reports Server (NTRS)
Voigt, G.-H.
1992-01-01
Two dimensional and three dimensional MHD equilibrium models were begun for Earth's magnetosphere. The original proposal was motivated by realizing that global, purely data based models of Earth's magnetosphere are inadequate for studying the underlying plasma physical principles according to which the magnetosphere evolves on the quasi-static convection time scale. Complex numerical grid generation schemes were established for a 3-D Poisson solver, and a robust Grad-Shafranov solver was coded for high beta MHD equilibria. Thus, the effects were calculated of both the magnetopause geometry and boundary conditions on the magnetotail current distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockwood, M.
1991-04-01
The suggestion is discussed that characteristic particle and field signatures at the dayside magnetopause, termed flux transfer events, are, in at least some cases, due to transient solar wind and/or magnetosheath dynamic pressure increases, rather than time-dependent magnetic reconnection. It is found that most individual cases of FTEs observed by a single spacecraft can, at least qualitatively, be explained by the pressure pulse model, provided a few rather unsatisfactory features of the predictions are explained in terms of measurement uncertainties. The most notable exceptions to this are some two-regime observations made by two satellites simultaneously, one on either side ofmore » the magnetopause. However, this configuration has not been frequently achieved for sufficient time, such observations are rare, and the relevant tests are still not conclusive. The strongest evidence that FTEs are produced by magnetic reconnection is the dependence of their occurence on the north-south component of the interplanetary magnetic field (IMF) or of the magnetosheath field. The pressure pulse model provides an explanation for this dependence in the case of magnetosheath FTEs, but does not apply to magnetosphere FTEs. The only surveys of magnetosphere FTEs have not employed the simultaneous IMF, but have shown that their occurence is strongly dependent on the north-south component of the magnetosheath field, as observed earlier/later on the same magnetopause crossing. This paper employs statistics on the variability of the IMF orientation to investigate the effects of IMF changes between the times of the magnetosheath and FTE observations. It is shown that the previously published results are consistent with magnetospheric FTEs being entirely absent when the magentosheath field is northward.« less
Earth's Paleomagnetosphere and Planetary Habitability
NASA Astrophysics Data System (ADS)
Tarduno, J. A.; Blackman, E. G.; Oda, H.; Bono, R. K.; Carroll-Nellenback, J.; Cottrell, R. D.; Nimmo, F.
2017-12-01
The geodynamo is thought to play an important role in protecting Earth's hydrosphere, vital for life as we know it, from loss due to the erosive potential of the solar wind. Here we consider the mechanisms and history of this shielding. A larger core dynamo magnetic field strength provides more pressure to abate the solar wind dynamic pressure, increasing the magnetopause radius. However, the larger magnetopause also implies a larger collecting area for solar wind flux during phases of magnetic reconnection. The important variable is not mass capture but energy transfer, which does not scale linearly with magnetosphere size. Moreover, the ordered field provides the magnetic topology for recapturing atmospheric components in the opposite hemisphere such that the net global loss might not be greatly affected. While a net protection role for magnetospheres is suggested, forcing by the solar wind will change with stellar age. Paleomagnetism utilizing the single silicate crystal approach, defines a relatively strong field some 3.45 billion years ago (the Paleoarchean), but with a reduced magnetopause of 5 Earth radii, implying the potential for some atmospheric loss. Terrestrial zircons from the Jack Hills (Western Australia) and other localities host magnetic inclusions, whose magnetization has now been recorded by a new generation of ultra-sensitive 3-component SQUID magnetometer (U. Rochester) and SQUID microscope (GSJ/AIST). Paleointensity data suggest the presence of a terrestrial dynamo and magnetic shielding for Eoarchean to Hadean times, at ages as old as 4.2 billion years ago. However, the magnetic data suggest that for intervals >100,000 years long, magnetopause standoff distances may have reached 3 to 4 Earth radii or less. The early inception of the geodynamo, which probably occurred shortly after the lunar-forming impact, its continuity, and an early robust hydrosphere, appear to be key ingredients for Earth's long-term habitability.
NASA Astrophysics Data System (ADS)
Pilipenko, V. A.; Kozyreva, O. V.; Lorentzen, D. A.; Baddeley, L. J.
2018-05-01
Long-period pulsations in the nominal Pc5-6 band (periods about 3-15 min) have been known to be a persistent feature of dayside high latitudes. A mixture of broadband Irregular Pulsations at Cusp Latitudes (IPCL) and narrowband P≿5 waves is often observed. The mechanism and origin of IPCL have not been firmly established yet. Magnetopause surface eigenmodes were suggested as a potential source of high-latitude ULF waves with frequencies less than 2 mHz. A ground response to these modes is expected to be beneath the ionospheric projection of the open-closed field line boundary (OCB). To unambiguously resolve a possible association of IPCL with the magnetopause surface modes, multi-instrument observation data from Svalbard have been analyzed. We examine the latitudinal structure of high-latitude pulsations in the Pc5-6 band recorded by magnetometers covering near-cusp latitudes. This structure is compared with an instant location of the equatorward boundary of the cusp aurora, assumed to be a proxy of the OCB. The optical OCB latitude has been identified by an automatic algorithm, using data from the meridian scanning photometer at Longyearbyen, Svalbard. The comparison has shown that the latitudinal maximum of the broadband IPCL maximizes about 2°-3° deeper in the magnetosphere than the OCB optical proxy. Therefore, these pulsations cannot be associated with the ground image of the magnetopause surface modes. It is likely that an essentially non-dipole geometry of field lines and a high variability of the magnetopause region may suppress the excitation efficiency. The obtained result imposes important limitations on possible mechanisms of high-latitude dayside ULF variations.
NASA Astrophysics Data System (ADS)
Dobreva, P. S.; Kartalev, M. D.; Borodkova, N. L.; Zastenker, G. N.
2016-07-01
This paper describes an approach to a theoretical interpretation of Interball-1 satellite measurements data in two cases of the satellite's crossings of the magnetosheath. An interpretation is made of both the measured crossings of the magnetosheath boundaries and the behavior of the registered plasma parameters. In our case, it is the value of the ion flux along the spacecraft trajectory. The magnetosheath-magnetosphere model, developed at the Institute of Mechanics, Sofia, Bulgaria, is used as a theoretical basis. It describes the interaction between the solar wind and the Earth's magnetosphere in a simplified gas-dynamic approximation. A characteristic feature of the model is that it allows for the self-consistent description of the magnetosheath boundaries - the bow shock (BS) and the magnetopause (MP). The three-dimensional picture of the magnetosheath fluid flow is also obtained as part of the solution. The magnetosheath characteristics thus obtained are in correspondence with a given momentary state of the interplanetary medium, defined on the basis of WIND satellite data (appropriately shifted by time). The results are discussed in the context of advantages and limitations of using the gas-dynamic model for the interpretation of magnetosheath plasma measurements in the near-magnetopause magnetosheath.
Modeling the Magnetopause Shadowing Loss during the October 2012 Dropout Event
NASA Astrophysics Data System (ADS)
Tu, Weichao; Cunningham, Gregory
2017-04-01
The relativistic electron flux in Earth's outer radiation belt are observed to drop by orders of magnitude on timescales of a few hours, which is called radiation belt dropouts. Where do the electrons go during the dropouts? This is one of the most important outstanding questions in radiation belt studies. Radiation belt electrons can be lost either by precipitation into the atmosphere or by transport across the magnetopause into interplanetary space. The latter mechanism is called magnetopause shadowing, usually combined with outward radial diffusion of electrons due to the sharp radial gradient it creates. In order to quantify the relative contribution of these two mechanisms to radiation belt dropout, we performed an event study on the October 2012 dropout event observed by Van Allen Probes. First, the precipitating MeV electrons observed by multiple NOAA POES satellites at low altitude did not show evidence of enhanced precipitation during the dropout, which suggested that precipitation was not the dominant loss mechanism for the event. Then, in order to simulate the magnetopause shadowing loss and outward radial diffusion during the dropout, we applied a radial diffusion model with electron lifetimes on the order of electron drift periods outside the last closed drift shell. In addition, realistic and event-specific inputs of radial diffusion coefficients (DLL) and last closed drift shell (LCDS) were implemented in the model. Specifically, we used the new DLL developed by Cunningham [JGR 2016] which were estimated in realistic TS04 [Tsyganenko and Sitnov, JGR 2005] storm time magnetic field model and included physical K (2nd adiabatic invariant) or pitch angle dependence. Event-specific LCDS traced in TS04 model with realistic K dependence was also implemented. Our simulation results showed that these event-specific inputs are critical to explain the electron dropout during the event. The new DLL greatly improved the model performance at low L* regions (L*<3.6) compared to empirical Kp-dependent DLL [Brautigam and Albert, JGR 2000] used in previous radial diffusion models. Combining the event-specific DLL and LCDS, our model well captured the magnetopause shadowing loss and reproduced the electron dropout at L*=4.0-4.5. In addition, we found the K-dependent LCDS is critical to reproduce the pitch angle dependence of the observed electron dropout.
Pioneer 10 and 11 (Jupiter and Saturn) magnetic field experiments
NASA Technical Reports Server (NTRS)
Jones, D. E.
1986-01-01
Magnet field data obtained by the vector helium magnetometer (VHM) during the encounters of Jupiter (Pioneer 10 and 11) and Saturn (Pioneer 11) was analyzed and interpreted. The puzzling characteristics of the Jovian and Saturnian magnetospheric magnetic fields were studied. An apparent substorm (including thinning of the dayside tail current sheet) was observed at Jupiter, as well as evidence suggesting that at the magnetopause the cusp is at an abnormally low latitude. The characteristics of Saturn's ring current as observed by Pioneer 11 were dramatically different from those suggested by the Voyager observations. Most importantly, very strong perturbations in the azimuthal ring current magnetic field suggest that the plane of the ring was not in the dipole equatorial plane, being tilted 5 to 10 deg. relative to the dipole and undergoing significant changes during the encounter. When these changing currents were corrected for, an improved planetary field determination was obtained. In addition, the ring and azimuthal currents at Saturn displayed significantly different time dependences.
NASA Technical Reports Server (NTRS)
Clauer, C. R.; Banks, P. M.
1986-01-01
The electrical coupling between the solar wind, magnetosphere, and ionosphere is studied. The coupling is analyzed using observations of high-latitude ion convection measured by the Sondre Stromfjord radar in Greenland and a computer simulation. The computer simulation calculates the ionospheric electric potential distribution for a given configuration of field-aligned currents and conductivity distribution. The technique for measuring F-region in velocities at high time resolution over a large range of latitudes is described. Variations in the currents on ionospheric plasma convection are examined using a model of field-aligned currents linking the solar wind with the dayside, high-latitude ionosphere. The data reveal that high-latitude ionospheric convection patterns, electric fields, and field-aligned currents are dependent on IMF orientation; it is observed that the electric field, which drives the F-region plasma curve, responds within about 14 minutes to IMF variations in the magnetopause. Comparisons of the simulated plasma convection with the ion velocity measurements reveal good correlation between the data.
MESSENGER Observations of Mercury's Magnetosphere
NASA Technical Reports Server (NTRS)
Slavin, James A.
2010-01-01
During MESSENGER's second and third flybys of Mercury on October 6, 2008 and September 29, 2009, respectively, southward interplanetary magnetic field (IMF) produced intense reconnection signatures in the dayside and nightside magnetosphere and markedly different system-level responses. The IMF during the second flyby was continuously southward and the magnetosphere appeared very active, with large magnetic field components normal to the magnetopause and the generation of flux transfer events at the magnetopause and plasmoids in the tail current sheet every 30 to 90 s. However, the strength and direction of the tail magnetic field was stable. In contrast, the IMF during the third flyby varied from north to south on timescales of minutes. Although the MESSENGER measurements were limited during that encounter to the nightside magnetosphere, numerous examples of plasmoid release in the tail were detected, but they were not periodic. Instead, plasmoid release was highly correlated with four large enhancements of the tail magnetic field (i.e. by factors > 2) with durations of approx. 2 - 3 min. The increased flaring of the magnetic field during these intervals indicates that the enhancements were caused by loading of the tail with magnetic flux transferred from the dayside magnetosphere. New analyses of the second and third flyby observations of reconnection and its system-level effects provide a basis for comparison and contrast with what is known about the response of the Earth s magnetosphere to variable versus steady southward IMF.
NASA Astrophysics Data System (ADS)
Akhavan-Tafti, M.; Slavin, J. A.; Eastwood, J. P.; Cassak, P.; Gershman, D. J.; Zhao, C.
2017-12-01
Flux Transfer Events (FTEs) are transient signatures of magnetic reconnection at the dayside magnetopause and play significant roles in determining the rate of reconnection and accelerating particles. This study investigates the magnetohydrodynamic forces inside and outside FTEs to infer the process through which these structures become force-free and uses electron dynamics to study the mechanisms for particle acceleration within the FTE. Akhavan-Tafti et al. [2017] demonstrated that ion-scale FTEs contain regions of elevated plasma density which greatly contribute to plasma pressure forces inside FTEs. It is shown that as FTEs evolve, the plasma is evacuated as the core magnetic field strengthens, hence becoming more force-free. The neighboring ion-scale FTEs formed at the subsolar magnetopause due to multiple X-line reconnection are forced to interact, and likely coalesce. Entropy is invoked to motivate the discussion on the essential role of coalescence in reconfiguring magnetic fields and current density distributions inside FTEs to allow for the adiabatic growth of these structures. Here, we present observational evidence which shows that, in the absence of coalescence, FTEs can become less force free. Local electron kinematics is studied to compare the contributions of parallel electric field, Fermi acceleration, and betatron acceleration mechanisms to particle heating. Acceleration due to parallel electric fields are shown to be dominant in the vicinity of the reconnection site while betatron acceleration controls perpendicular heating inside the FTE in the presence of magnetic pressure gradients. In the downstream of the reconnection site, the `freshly' reconnected field lines start to straighten due to the magnetic curvature force. Straightening field lines accelerate trapped electrons parallel to the local magnetic field (i.e., first-order Fermi acceleration). These acceleration mechanisms are shown to explain the observed anisotropic pitch angle distributions at the core and at the edges of FTEs. Finally, the forces inside non-flux rope-type FTEs (due to coalescence, expansion, contraction, or division) are shown to contribute to selective plasma heating, hence giving rise to anisotropic plasma temperatures and the subsequent wave activities (e.g. propagation of whistler waves).
NASA Astrophysics Data System (ADS)
Egedal, J.; Le, A.; Daughton, W.; Wetherton, B.; Cassak, Pa; Chen, Lj; Lavraud, B.; Dorell, J.; Avanov, L.; Gershman, D.
2016-10-01
During asymmetric magnetic reconnection in the dayside magnetopause in situ spacecraft mea- surements show that electrons from the high density inflow penetrate some distance into the low density inflow. Supported by a kinetic simulation, we present a general derivation of an exclusion energy parameter, which provides a lower kinetic energy bound for an electron to jump across the reconnection region from one inflow region to the other. As by a Maxwell Demon, only high energy electrons are permitted to cross the inner reconnection region, strongly impacting the form of the electron distribution function observed along the low density side separatrix. The dynamics produce two distinct flavors of crescent-shaped electron distributions in a thin boundary layer along the separatrix between the magnetospheric inflow and the reconnection exhaust. The analytical model presented relates these salient details of the distribution function to the electron dynamics in the inner reconnection region.
Pioneer 11 encounter: preliminary results from the ames research center plasma analyzer experiment.
Mihaloy, J D; Collard, H R; McKibbin, D D; Wolfe, J H; Intriligator, D S
1975-05-02
Pioneer 11 observations of the interaction of Jupiter's magnetosphere with the distant solar wind have confirmed the earlier Pioneer 10 observations of the great size and extreme variability of the outer magnetosphere. The nature of the plasma transitions across Jupiter's bow shock and magnetopause as observed on Pioneer 10 have also been confirmed on Pioneer 11. However, the northward direction of the Pioneer 11 outbound trajectory and the distance of the final magnetopause crossing (80 Jupiter radii) now suggest that Jupiter's magnetosphere is extremely broad with a half-thickness (normal to the ecliptic plane in the noon meridian) which is comparable to or greater than the sunward distance to the nose.
NASA Technical Reports Server (NTRS)
Gosling, J. T.; Thomsen, M. F.; Bame, S. J.; Elphic, R. C.; Russell, C. T.
1991-01-01
Results are presented of ISEE 2 observations of plasma accelerations obtained at the high-latitude (lobe) magnetopause at a time when the local magnetosheath and magnetospheric magnetic fields were nearly oppositely directed and the flow speed in the magnetosheath, V(s), was nearly equal to the local Alfven speed, V(A). The observations provide direct evidence for the rereconnection of the open field lines of the tail lobes with the IMF, when the magnetic field shear is large. It is pointed out, however, that, since V(s) was almost equal to V(A), it is unlikely that the rereconnection is associated with the strong sunward convection in the polar cap.
THEMIS Observations of a Transient Event at the Magnetopause
NASA Technical Reports Server (NTRS)
Korotova, G. I.; Sibeck, D. G.; Weatherwax, A.; Angelopoulos, V.; Styazhkin, V.
2011-01-01
This study focuses on Time History of Events and Macroscale Interactions During Substorms (THEMIS) observations of a long \\duration transient event in the vicinity of the dayside magnetopause at approx.15:34 UT on 18 July 2008 that was characterized by features typical of a magnetospheric flux transfer event (FTE): a bipolar negative-positive 5-7 nT signature in the Bn component, a positive monopolar variation in the Bl and Bm components, a approx.5-7 nT enhancement in the total magnetic field strength, and a transient density and flow enhancement. The interplanetary magnetic field (IMF) was mostly radial and disturbed during the intervals studied; that is, it was favorable for the repeated formation, disappearance and reformation of the foreshock just upstream from the subsolar bow shock. We show that varying IMF directions and solar wind pressures created significant effects that caused the compressions of the magnetosphere and the bow shock and magnetopause motions and triggered the transient event. Global signatures of magnetic impulse events (MIEs) in ground magnetograms during the period suggest a widespread pressure pulse instead of a localized FTE as the cause of the event in the magnetosphere. The directions of propagation and the flow patterns associated with the event also suggest an interpretation in terms of pressure pulses.
Reconstruction of Propagating Kelvin-Helmholtz Vortices at Mercury's Magnetopause
NASA Technical Reports Server (NTRS)
Sundberg, Torbjoern; Boardsen, Scott A.; Slavin, James A.; Blomberg, Lars G.; Cumnock, Judy A.; Solomon, Sean C.; Anderson, Brian J.; Korth, Haje
2011-01-01
A series of quasi-periodic magnetopause crossings were recorded by the MESSENGER spacecraft during its third flyby of Mercury on 29 September 2009, likely caused by a train of propagating Kelvin-Helmholtz (KH) vortices. We here revisit the observations to study the internal structure of the waves. Exploiting MESSENGER s rapid traversal of the magnetopause, we show that the observations permit a reconstruction of the structure of a rolled-up KH vortex directly from the spacecraft s magnetic field measurements. The derived geometry is consistent with all large-scale fluctuations in the magnetic field data, establishes the non-linear nature of the waves, and shows their vortex-like structure. In several of the wave passages, a reduction in magnetic field strength is observed in the middle of the wave, which is characteristic of rolled-up vortices and is related to the increase in magnetic pressure required to balance the centrifugal force on the plasma in the outer regions of a vortex, previously reported in computer simulations. As the KH wave starts to roll up, the reconstructed geometry suggests that the vortices develop two gradual transition regions in the magnetic field, possibly related to the mixing of magnetosheath and magnetospheric plasma, situated at the leading edges from the perspectives of both the magnetosphere and the magnetosheath.
NASA Technical Reports Server (NTRS)
Chen, Sheng-Hsien; Kivelson, Margaret G.; Gosling, Jack T.; Walker, Raymond T.; Lazarus, Allan J.
1992-01-01
On 15 Feb. 1978, the orientation of the interplanetary magnetic field (IMF) remained steadily northward for more than 12 hours. The ISEE 1 and 2 spacecraft were located near apogee on the dawn side flank of the magnetotail. IMP 8 was almost symmetrically located in the magnetosheath on the dusk flank and IMP 7 was upstream in the solar wind. Using plasma and magnetic field data, we show the following: (1) the magnetosheath flow speed on the flanks of the magnetotail steadily exceeded the solar wind speed by 20 percent; (2) surface waves with approximately a 5-min period and very non-sinusoidal waveform were persistently present on the dawn magnetopause and waves of similar period were present in the dusk magnetosheath; and (3) the magnetotail ceased to flare at an antisunward distance of 15 R(sub E). We propose that the acceleration of the magnetosheath flow is achieved by magnetic tension in the draped field configuration for northward IMF and that the reduction of tail flaring is consistent with a decreased amount of open magnetic flux and a larger standoff distance of the subsolar magnetopause. Results of a three-dimensional magnetohydrodynamic simulation support this phenomenological model.
NASA Astrophysics Data System (ADS)
Zhou, Huai-Bei
This dissertation examines the dynamic response of a magnetoplasma to an external time-dependent current source. To achieve this goal a new method which combines analytic and numerical techniques to study the dynamic response of a 3-D magnetoplasma to a time-dependent current source imposed across the magnetic field was developed. The set of the cold electron and/or ion plasma equations and Maxwell's equations are first solved analytically in (k, omega)^ace; inverse Laplace and 3 -D complex Fast Fourier Transform (FFT) techniques are subsequently used to numerically transform the radiation fields and plasma currents from the (k, omega) ^ace to the (r, t) space. The dynamic responses of the electron plasma and of the compensated two-component plasma to external current sources are studied separately. The results show that the electron plasma responds to a time -varying current source imposed across the magnetic field by exciting whistler/helicon waves and forming of an expanding local current loop, induced by field aligned plasma currents. The current loop consists of two anti-parallel field-aligned current channels concentrated at the ends of the imposed current and a cross-field current region connecting these channels. The latter is driven by an electron Hall drift. A compensated two-component plasma responds to the same current source as following: (a) For slow time scales tau > Omega_sp{i}{-1} , it generates Alfven waves and forms a non-local current loop in which the ion polarization currents dominate the cross-field current; (b) For fast time scales tau < Omega_sp{i}{-1} , the dynamic response of the compensated two-component plasma is the same as that of the electron plasma. The characteristics of the current closure region are determined by the background plasma density, the magnetic field and the time scale of the current source. This study has applications to a diverse range of space and solid state plasma problems. These problems include current closure in emf inducing tethered satellite systems (TSS), generation of ELF/VLF waves by ionospheric heating, current closure and quasineutrality in thin magnetopause transitions, and short electromagnetic pulse generation in solid state plasmas. The cross-field current in TSS builds up on a time scale corresponding to the whistler waves and results in local current closure. Amplitude modulated HF ionospheric heating generates ELF/VLF waves by forming a horizontal magnetic dipole. The dipole is formed by the current closure in the modified region. For thin transition the time-dependent cross-field polarization field at the magnetopause could be neutralized by the formation of field aligned current loops that close by a cross-field electron Hall current. A moving current source in a solid state plasma results in microwave emission if the speed of the source exceeds the local phase velocity of the helicon or Alfven waves. Detailed analysis of the above problems is presented in the thesis.
NASA Technical Reports Server (NTRS)
Newell, Patrick T.; Sibeck, David G.; Meng, Ching-I
1995-01-01
Magnetosheath plasma peertated into the magnetospere creating the particle cusp, and similarly the interplanetary magnetic field (IMF) B(sub y) component penetrates the magnetopause. We reexamine the phenomenology of such penetration to investigate implications for the magnetopause merging site. Three models are popular: (1) the 'antiparallel' model, in which merging occurs where the local magnetic shear is largest (usually high magnetic latitude); (2) a tilted merging line passing through the subsolar point but extending to very high latitudes; or (3) a tilted merging line passing through the subsolar point in which most merging occurs within a few Earth radii of the equatorial plane and local noon (subsolar merging). It is difficult to distinguish between the first two models, but the third implies some very different predictions. We show that properties of the particle cusp imply that plasma injection into the magnetosphere occurs most often at high magnetic latitudes. In particular, we note the following: (1) The altitude of the merging site inferred from midaltitude cusp ion pitch angle dispersion is typically 8-12 R(sub E). (2) The highest ion energy observable when moving poleward through the cusp drops long before the bulk of the cusp plasma is reached, implying that ions are swimming upstream against the sheath flow shortly after merging. (3) Low-energy ions are less able to enter the winter cusp than the summer cusp. (4) The local time behavior of the cusp as a function of B(sub y) and B(sub z) corroborates predictions of the high-latitude merging models. We also reconsider the penetration of the IMF B(sub y) component onto closed dayside field lines. Our approach, in which closed field lines ove to fill in flux voids created by asymmetric magnetopause flux erosion, shows that strich subsolar merging cannot account for the observations.
Foreshock and magnetosheath transients, origin and connection to the magnetopause.
NASA Astrophysics Data System (ADS)
Blanco-Cano, X.
2014-12-01
The solar wind interaction with earths's magnetosphere begins well ahead of the magnetopause when the solar wind encounters the foreshock, bow shock and magnetosheath. In these regions a variety of waves and magnetic structures exist and modify the solar wind. The foreshock is permeated by a variety of ultra low frequency (ULF) waves and magnetic transient structures such as shocklets, SLAMs, and cavitons. These structures are very compressive and are generated by the solar wind interaction with backstreaming particles plus non linear processes. Other structures such as hot flow anomalies (HFA), and spontaneous hot flow anomalies (SHFA) can also exist in the foreshock. HFAs are generated by discontinuities that arrive to the bow shock. Recent studies show that SHFA have the same profiles as HFA, but form by the interaction of foreshock cavitons with the bowshock. Foreshock bubbles can form when energetic ions upstream of the quasi-parallel bow shock interact with rotational discontinuities in the solar wind. All these structures can merge with the bow shock and be convected into the magnetosheath. The magnetosheath is both a place for rich plasma physical processes and a filter between solar wind and the magnetospheric plasma and magnetic field environments. It is permeated by the superposition of upstream convected structures plus locally generated waves (ion cyclotron and mirror mode). Recent studies have shown that jets and magnetosheath filamentary structures (MFS) can be observed downstream from the bow shock. Jets are associated to shock rippling efects and MFS to acceleration of particles at and near the shock. Due to the presence of the foreshock, bow shock and magnetosheath transients, the solar wind arriving to the magnetopause is very different to the pristine solar wind. In this talk we will address the main characteristics of these transients, discuss their origin, and how they can modify the solar wind, the bow shock, the magnetosheath and the magnetopause.
Finite Gyroradius Effects in the Electron Outflow of Asymmetric Magnetic Reconnection
NASA Technical Reports Server (NTRS)
Norgren, C.; Graham, D. B.; Khotyaintsev, Yu. V.; Andre, M.; Vaivads, A.; Chen, Li-Jen; Lindqvist, P.-A.; Marklund, G. T.; Ergun, R. E.; Magnes, W.;
2016-01-01
We present observations of asymmetric magnetic reconnection showing evidence of electron demagnetization in the electron outflow. The observations were made at the magnetopause by the four Magnetospheric Multiscale (MMS) spacecraft, separated by approximately 15 km. The reconnecting current sheet has negligible guide field, and all four spacecraft likely pass close to the electron diffusion region just south of the X line. In the electron outflow near the X line, all four spacecraft observe highly structured electron distributions in a region comparable to a few electron gyroradii. The distributions consist of a core with T(sub parallel) greater than T(sub perpendicular) and a nongyrotropic crescent perpendicular to the magnetic field. The crescents are associated with finite gyroradius effects of partly demagnetized electrons. These observations clearly demonstrate the manifestation of finite gyroradius effects in an electron-scale reconnection current sheet.
NASA Astrophysics Data System (ADS)
Nichols, J. D.; Cowley, S. W. H.; McComas, D. J.
2006-03-01
We make the first quantitative estimates of the magnetopause reconnection rate at Jupiter using extended in situ data sets, building on simple order of magnitude estimates made some thirty years ago by Brice and Ionannidis (1970) and Kennel and Coroniti (1975, 1977). The jovian low-latitude magnetopause (open flux production) reconnection voltage is estimated using the Jackman et al. (2004) algorithm, validated at Earth, previously applied to Saturn, and here adapted to Jupiter. The high-latitude (lobe) magnetopause reconnection voltage is similarly calculated using the related Gérard et al. (2005) algorithm, also previously used for Saturn. We employ data from the Ulysses spacecraft obtained during periods when it was located near 5AU and within 5° of the ecliptic plane (January to June 1992, January to August 1998, and April to October 2004), along with data from the Cassini spacecraft obtained during the Jupiter flyby in 2000/2001. We include the effect of magnetospheric compression through dynamic pressure modulation, and also examine the effect of variations in the direction of Jupiter's magnetic axis throughout the jovian day and year. The intervals of data considered represent different phases in the solar cycle, such that we are also able to examine solar cycle dependency. The overall average low-latitude reconnection voltage is estimated to be ~230 kV, such that the average amount of open flux created over one solar rotation is ~500 GWb. We thus estimate the average time to replenish Jupiter's magnetotail, which contains ~300-500 GWb of open flux, to be ~15-25 days, corresponding to a tail length of ~3.8-6.5 AU. The average high-latitude reconnection voltage is estimated to be ~130 kV, associated with lobe "stirring". Within these averages, however, the estimated voltages undergo considerable variation. Generally, the low-latitude reconnection voltage exhibits a "background" of ~100 kV that is punctuated by one or two significant enhancement events during each solar rotation, in which the voltage is elevated to ~1-3 MV. The high-latitude voltages are estimated to be about a half of these values. We note that the peak values of order a few MV are comparable to the potential drop due to sub-corotating plasma flows in the equatorial magnetosphere between ~20 RJ and the magnetopause, such that during these periods magnetopause reconnection may have a significant effect on the otherwise rotationally dominated magnetosphere. Despite such variations during each solar rotation, however, the total amount of open flux produced during each solar rotation varies typically by less than ~30% on either side of the overall average for that epoch. The averages over individual data epochs vary over the solar cycle from ~600 GWb per solar rotation at solar maximum to ~400 GWb at solar minimum. In addition we show that the IMF sector with positive clock angle is favoured for reconnection when the jovian spin axis clock angle is also positive, and vice versa, although this effect represents a first order correction to the voltage, which is primarily modulated by IMF strength and direction.
MESSENGER Observations of Reconnection and Its Effects on Mercury's Magnetosphere
NASA Technical Reports Server (NTRS)
Slavin, James A.; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Boardsen, Scott A.; Gloeckler, George; Gold, Robert E.; Ho, George C.; Imber, Suzanne M.; Korth, Haje;
2010-01-01
During MESSENGER's second and third flybys of Mercury on October 6, 2008 and September 29, 2009, respectively, southward interplanetary magnetic fields produced very intense reconnection signatures in the dayside and nightside magnetosphere and very different systemlevel responses. The IMF during the second flyby was continuously southward and the magnetosphere appeared very active with very large magnetic fields normal to the magnetopause and the generation of flux transfer events at the magnetopause and plasmoids in the tail current sheet every 30 s to 90 s. However, the strength and direction of the tail magnetic field was very stable. In contrast the third flyby experienced a variable IMF with it varying from north to south on timescales of minutes. Although the MESSENGER measurements were limited this time to the nightside magnetosphere, numerous examples of plasmoid release in the tail were detected, but they were not periodic. Rather, plasmoid release was highly correlated with the four large enhancements of the tail magnetic field (i.e. by factors > 2) with durations of approx. 2 - 3 min. The increased flaring of the magnetic field during these intervals indicates that the enhancements were caused by loading of the tail with magnetic flux transferred from the dayside magnetosphere. New analyses of the second and third flyby observations of reconnection and its system-level effects will be presented. The results will be examined in light of what is known about the response of the Earth's magnetosphere to variable versus steady southward IMF.
Magnetohydrodynamics with Embedded Particle-in-Cell Simulation of Mercury's Magnetosphere
NASA Astrophysics Data System (ADS)
Chen, Y.; Toth, G.; Jia, X.; Gombosi, T. I.; Markidis, S.
2015-12-01
Mercury's magnetosphere is much more dynamic than other planetary magnetospheres because of Mercury's weak intrinsic magnetic field and its proximity to the Sun. Magnetic reconnection and Kelvin-Helmholtz phenomena occur in Mercury's magnetopause and magnetotail at higher frequencies than in other planetary magnetosphere. For instance, chains of flux transfer events (FTEs) on the magnetopause, have been frequentlyobserved by the the MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER) spacecraft (Slavin et al., 2012). Because ion Larmor radius is comparable to typical spatial scales in Mercury's magnetosphere, finite Larmor radius effects need to be accounted for. In addition, it is important to take in account non-ideal dissipation mechanisms to accurately describe magnetic reconnection. A kinetic approach allows us to model these phenomena accurately. However, kinetic global simulations, even for small-size magnetospheres like Mercury's, are currently unfeasible because of the high computational cost. In this work, we carry out global simulations of Mercury's magnetosphere with the recently developed MHD-EPIC model, which is a two-way coupling of the extended magnetohydrodynamic (XMHD) code BATS-R-US with the implicit Particle-in-Cell (PIC) model iPIC3D. The PIC model can cover the regions where kinetic effects are most important, such as reconnection sites. The BATS-R-US code, on the other hand, can efficiently handle the rest of the computational domain where the MHD or Hall MHD description is sufficient. We will present our preliminary results and comparison with MESSENGER observations.
3-D VPIC simulation of an vortex-induced reconnection event observed by MMS
Nakamura, Takuma; Daughton, William
2016-01-01
The data set consists of a 3-D fully kinetic (VPIC) simulation of an in-situ observation event at the Earth's magnetopause by the NASA MMS spacecraft on September 8, 2015. The results show a turbulent development of magnetic reconnection induced by the Kelvin-Helmohltz vortex, and resulting significantly efficient plasma mixing across the magnetopause. The vortex-induced reconnection signatures are well consistent with the MMS observations. These results are published in some scientific journals such as Nature Communications. Fortran unformatted files with 1024x1536x512 cells, which have been compressed from original ones with 2048x3072x1024 cells, are archived for selected time slices of field and moment data shown in these papers.
Magnetosheath Flow Anomalies in 3-D
NASA Technical Reports Server (NTRS)
Vaisberg, O. L.; Burch, J. L.; Smirnov, V. N.; Avanov, L. A.; Moore, T. E.; Waite, J. H., Jr.; Skalsky, A. A.; Borodkova, N. L.; Coffey, V. N.; Gallagher, D. L.;
2000-01-01
Measurements of the plasma and magnetic field with high temporal resolution on the Interball Tail probe reveal many flow anomalies in the magnetosheath. They are usually seen as flow direction and number density variations, accompanied by magnetic field discontinuities. Large flow anomalies with number density variations of factor of 2 or more and velocity variations of 100 km/s or more are seen with periodicity of about I per hour. The cases of flow anomalies following in succession are also observed, and suggest their decay while propagating through the magnetosheath. Some magnetospheric disturbances observed in the outer magnetosphere after the satellite has crossed the magnetopause on the inbound orbit suggest their association with magnetosheath flow anomalies observed in the magnetosheath prior to magnetopause crossing.
A statistical study of ion pitch-angle distributions
NASA Technical Reports Server (NTRS)
Sibeck, D. G.; Mcentire, R. W.; Lui, A. T. Y.; Krimigis, S. M.
1987-01-01
Preliminary results of a statistical study of energetic (34-50 keV) ion pitch-angle distributions (PADs) within 9 Re of earth provide evidence for an orderly pattern consistent with both drift-shell splitting and magnetopause shadowing. Normal ion PADs dominate the dayside and inner magnetosphere. Butterfly PADs typically occur in a narrow belt stretching from dusk to dawn through midnight, where they approach within 6 Re of earth. While those ion butterfly PADs that typically occur on closed drift paths are mainly caused by drift-shell splitting, there is also evidence for magnetopause shadowing in observations of more frequent butterfly PAD occurrence in the outer magnetosphere near dawn than dusk. Isotropic and gradient boundary PADs terminate the tailward extent of the butterfly ion PAD belt.
A model of the open magnetosphere. [with field configuration based on Chapman-Ferraro theory
NASA Technical Reports Server (NTRS)
Kan, J. R.; Akasofu, S.-I.
1974-01-01
The Chapman-Ferraro image method is extended to construct an idealized model of the open magnetosphere that responds to a change of the interplanetary field direction as well as to a change of the field magnitude or of the solar wind momentum flux. The magnetopause of the present model is an infinite plane surface having a normal field component distribution that is consistent with the merging theory. An upper limit on the inward displacement of the magnetopause following a southward turning of the interplanetary field is obtained. The results are in fair agreement with a single event reported by Aubry et al. (1971). The model determines the field configuration and the total magnetic flux connecting the magnetosphere to interplanetary space.
Spatial characteristics of magnetotail reconnection
NASA Astrophysics Data System (ADS)
Genestreti, Kevin J.
We examine the properties of magnetic reconnection as it occurs in the Earth's magnetosphere, first focusing on the spatial characteristics of the near-Earth magnetotail reconnection site, then analyzing the properties of cold plasma that may affect reconnection at the dayside magnetopause. Two models are developed that empirically map the position and occurrence rate of the nightside ion diffusion region, which are based upon Geotail data (first model) and a combination of Geotail and Cluster data (second model). We use these empirical models to estimate that NASA's MMS mission will encounter the ion-scale reconnection site 11+/-4 times during its upcoming magnetotail survey phase. We also find that the occurrence of magnetotail reconnection is localized and asymmetric, with reconnection occurring most frequently at the duskside magnetotail neutral sheet near YGSM* = 5 RE. To determine the physics that governs this asymmetry and localization, we analyze the time history of the solar wind, the instantaneous properties of the magnetotail lobes and current sheet, as well as the geomagnetic activity levels, all for a larger set of Geotail and Cluster reconnection site observations. We find evidence in our own results and in the preexisting literature that localized (small DeltaY) reconnection sites initially form near YGSM* = 5 RE due to an asymmetry in the current sheet thickness. If the solar wind driving remains strong, then localized reconnection sites may expand in the +/-Y direction. The DeltaY extent of the reconnection site ap- pears to be positively correlated with the geomagnetic activity level, which is to be expected for a simplified "energy in equals energy out"-type picture of 3D reconnection. We develop two new methods for determining the temperatures of plasmas that are largely below the energy detection range of electrostatic analyzer instruments. The first method involves the direct application of a theoretical fit to the visible, high-energy portion of the distribution function. The second method for determining temperatures involves a comparison of the energy-dependent and total plasma number densities. Both methods assume an infinitely thin sheath model for space- craft charging, a Maxwellian-type plasma, and bulk velocities that are strictly governed by ExB drift, which we model with a dipole magnetic field and a Volland-Stern electric potential field. The two methods are applied to RBSP observations of the plasmasphere proper. We find positive agreement with existing measurements of the temperatures, which were based upon data from low-altitude polar orbiting spacecraft. We also find evidence for in situ heating of the plasmasphere at the equator in the ring current overlap region. Finally, we apply these techniques to a single conjunction event, where MMS and RBSP provided simultaneous and nearly continuous coverage of the plasmasphere and plume from its equatorial base to the reconnecting magnetopause. We develop scaling laws for the temperature and density of the plasmasphere as a function of geocentric distance, showing that it is heated and density depleted by factors 20 and 200 (respectively) from L = 5 to the magnetospheric side of the reconnection boundary layer.
Field-Aligned Current Systems at Mercury
NASA Astrophysics Data System (ADS)
Heyner, Daniel; Exner, Willi
2017-04-01
Mercury exhibits a very dynamic magnetosphere, which is partially due to strong dayside reconnection and fast magnetospheric convection. It has been shown that dayside reconnection occurs even on low magnetic shear angles across the magnetopause. This drives quasi-steady region 1 field-aligned currents (FAC) that are observable in in-situ MESSENGER data. Here, the structure of the Hermean FAC-system is discussed and compared to the terrestrial counterpart. Due to the lack of a significant ionosphere at Mercury, it has to be examined how much of the poloidal FAC is reflected back to the magnetosphere, closed via toroidal currents in the planetary interior or via Pedersen currents in the tenuous exosphere. This investigation gives insights into the planetary conductivity structure as well as the exospheric plasma densities. Furthermore, it will be examined how much the only partially developed ring current at Mercury produces possible region 2 FAC signatures. We conclude with requirements to simulations that are needed to forecast the FAC structure on the southern hemisphere that will be closely studied with the upcoming BepiColombo mission.
A summary of the results from the UCLA OGO-5 fluxgate magnetometer
NASA Technical Reports Server (NTRS)
Coleman, P. J., Jr.; Russell, C. T.
1973-01-01
The OGO-5 fluxgate magnetometer experiment (E-14) was designed to measure the vector magnetic field over the full range of the OGO-5 orbit. Thus, it had a dynamic range of + or - 64,000 gamma yet it maintained a precision of + or - 1/16 gamma at all times. This enabled a broad spectrum of problems to be attached. Studies of the magnetospheric waves, currents, waves-particle interactions, pitch angle distributions and wave normal directions were made. The structure of the magnetopause, the magnetotail, and bow shock were probed, waves and discontinuities in the solar wind were examined and the various phases of substorms were examined in depth.
Gas-dynamic model and experimental study of the plasma properties in the Earth's magnetosheath
NASA Astrophysics Data System (ADS)
Dobreva, Polya; Zastenker, Georgy; Kartalev, Monio; Borodkova, Natalia
2016-07-01
This paper uses numerical self-consistent model to investigate the boundaries and structures in the Earth's magnetosheath. The model is developed to represent the interaction between the regions of the magnetosheath and magnetosphere. In the magnetosheath, the gas-dynamic approach is used for the description of the solar wind flow. The magnetosphere module is based on the modified Tsyganenko magnetic field model, where the magnetopause currents are calculated self-consistently. The magnetosheath boundaries are determined from the boundary conditions. WIND and ACE data are used as a solar wind monitor. The model calculations are compared with real satellite measurements of the boundary positions. The plasma parameters behavior in the magnetosheath is also discussed.
NASA Technical Reports Server (NTRS)
Shelley, E. G.; Klumpar, D. M.; Peterson, W. K.; Ghielmetti, A.; Balsiger, H.; Geiss, J.; Rosenbauer, H.
1985-01-01
Observations from the Hot Plasma Composition Experiment on the AMPTE/CCE spacecraft during the magnetic storm of 4-5 September 1984 reveal that significant injection of ions of terrestrial origin accompanied the storm development. The compression of the magnetosphere at storm sudden commencement carried the magnetopause inside the CCE orbit clearly revealing the shocked solar wind plasma. A build up of suprathermal ions is observed near the plasmapause during the storm main phase and recovery phase. Pitch angle distributions in the ring current during the main phase show differences between H(+) and O(+) that suggest mass dependent injection, transport and/or loss processes.
NASA Technical Reports Server (NTRS)
Gallagher, D. L.; Fok, M.-C.; Fuselier, S.; Gladstone, G. R.; Green, J. L.; Fung, S. F.; Perez, J.; Reiff, P.; Roelof, E. C.; Wilson, G.
1998-01-01
Simultaneous, global measurement of major magnetospheric plasma systems will be performed for the first time with the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) Mission. The ring current, plasmasphere, and auroral systems will be imaged using energetic neutral and ultraviolet cameras. Quantitative remote measurement of the magnetosheath, plasmaspheric, and magnetospheric densities will be obtained through radio sounding by the Radio Plasma Imager. The IMAGE Mission will open a new era in global magnetospheric physics, while bringing with it new challenges in data analysis. An overview of the IMAGE Theory and Modeling team efforts will be presented, including the state of development of Internet tools that will be available to the science community for access and analysis of IMAGE observations.
An Energetic Electron Flux Dropout Due to Magnetopause Shadowing on 1 June 2013
NASA Astrophysics Data System (ADS)
Kang, Suk-Bin; Fok, Mei-Ching; Komar, Colin; Glocer, Alex; Li, Wen; Buzulukova, Natalia
2018-02-01
We examine the mechanisms responsible for the dropout of energetic electron flux during 31 May to 1 June 2013 using Van Allen Probe (Radiation Belt Storm Probes (RBSP)) electron flux data and simulations with the Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model. During the storm main phase, L-shells at RBSP locations are greater than 8, which are connected to open drift shells. Consequently, diminished electron fluxes were observed over a wide range of energies. The combination of drift shell splitting, magnetopause shadowing, and drift loss all results in butterfly electron pitch angle distributions (PADs) at the nightside. During storm sudden commencement, RBSP observations display electron butterfly PADs over a wide range of energies. However, it is difficult to determine whether there are butterfly PADs during the storm main phase since the maximum observable equatorial pitch angle from RBSP is not larger than 40° during this period. To investigate the causes of the dropout, the CIMI model is used as a global 4-D kinetic inner magnetosphere model. The CIMI model reproduces the dropout with very similar timing and flux levels and PADs along the RBSP trajectory for 593 keV. Furthermore, the CIMI simulation shows butterfly PADs for 593 keV during the storm main phase. Based on comparison of observations and simulations, we suggest that the dropout during this event mainly results from magnetopause shadowing.
Cross-scale transport processes in the three-dimensional Kelvin-Helmholtz instability
NASA Astrophysics Data System (ADS)
Delamere, P. A.; Burkholder, B. L.; Ma, X.; Nykyri, K.
2017-12-01
The Kelvin-Helmholtz (KH) instability is a crucial aspect of the solar wind interaction with the giant magnetospheres. Rapid internal rotation of the magnetodisc produces conditions favorable for the growth of KH vortices along much of the equatorial magnetopause boundary. Pronounced dawn/dusk asymmetries at Jupiter and Saturn indicate a robust interaction with the solar wind. Using three-dimensional hybrid simulations we investigate the transport processes associated with the flow shear-driven KH instability. Of particular importance is small-scale and intermittent reconnection generated by the twisting of the magnetic field into configurations with antiparallel components. In three-dimensions strong guide field reconnection can occur even for initially parallel magnetic field configurations. Often the twisting motion leads to pairs of reconnection sites that can operate asynchronously, generating intermittent open flux and Maxwell stresses at the magnetopause boundary. We quantify the generation of open flux using field line tracing methods, determine the Reynolds and Maxwell stresses, and evaluate the mass transport as functions of magnetic shear, velocity shear, electron pressure and plasma beta. These results are compared with magnetohydrodynamic simulations (Ma et al., 2017). In addition, we present preliminary results for the role of cross-scale coupling processes, from fluid to ion scales. In particular, we characterize small-scale waves and the their role in mixing, diffusing and heating plasma at the magnetopause boundary.
{Interball-1 Plasma, Magnetic Field, and Energetic Particle Observations}
NASA Technical Reports Server (NTRS)
Sibeck, David G.
1998-01-01
Funding from NASA was received in two installments. The first installment supported research using Russian/Czech/Slovak/French Interball-1 plasma, magnetic field, and energetic particles observations in the vicinity of the magnetopause. The second installment provided salary support to review unsolicited proposals to NASA for data recovery and archiving, and also to survey ISTP data provision efforts. Two papers were published under the auspices of the grant. Sibeck et al. reported Interball-1 observations of a wave on the magnetopause with an amplitude in excess of 5 R(sub E), the largest ever reported to date. They attributed the wave to a hot flow anomaly striking the magnetopause and suggested that the hot flow anomaly itself formed during the interaction of an IMF discontinuity with the bow shock. Nemecek et al. used Interball-1's VDP Faraday cup to identify large transient increases in the magnetosheath density. They noted large variations in simultaneous Wind observations of the IMF cone angle, but were unable to establish any relationship between the cone angle variations at Wind and the density variations at Interball-1. Funds from the second installment were used to review over 20 proposals from various researchers in the scientific community who sought NASA support to restore or archive past observations. It also supported a survey of ISTP data provisions which was used as input to a Senior Review of ongoing NASA ISTP programs.
NASA Technical Reports Server (NTRS)
Pickett, J. S.; Franz, J. R.; Scudder, J. D.; Menietti, J. D.; Gurnett, D. A.; Hospodarsky, G. B.; Braunger, R. M.; Kintner, P. M.; Kurth, W. S.
2001-01-01
The boundary layer located in the cusp and adjacent to the magnetopause is a region that is quite turbulent and abundant with waves. The Polar spacecraft's orbit and sophisticated instrumentation are ideal for studying this region of space. Our analysis of the waveform data obtained in this turbulent boundary layer shows broadband magnetic noise extending up to a few kilohertz (but less than the electron cyclotron frequency); sinusoidal bursts (a few tenths of a second) of whistler mode waves at around a few tens of hertz, a few hundreds of hertz, and just below the electron cyclotron frequency; and bipolar pulses, interpreted as electron phase-space holes. In addition, bursts of electron cyclotron harmonic waves are occasionally observed with magnetic components. We show evidence of broadband electrostatic bursts covering a range of approx. 3 to approx. 25 kHz (near but less than the plasma frequency) occurring in packets modulated at the frequency of some of the whistler mode waves. On the basis of high time resolution particle data from the Polar HYDRA instrument, we show that these bursts are consistent with generation by the resistive medium instability. The most likely source of the whistler mode waves is the magnetic reconnection site closest to the spacecraft, since the waves are observed propagating both toward and away from the Earth, are bursty, which is often the case with reconnection, and do not fit on the theoretical cold plasma dispersion relation curve.
Simulations of plasmas pentrating magnetic barriers
NASA Astrophysics Data System (ADS)
Gunell, Herbert; Hurtig, Tomas; Koepke, Mark; Brenning, Nils; Nilsson, Hans
2007-11-01
Perturbed currents perpendicular to the magnetic are generated by plasma motions in which the equilibrium magnetic field (and the corresponding equilibrium currents) are compressed, stretched, and deformed. One example of this is the Earth's magnetopause with its ever-present equilibrium transverse currents and its strong perturbations. Experiments have recently been performed using a plasma gun to shoot a plasma at a magnetic barrier (Brenning, et al., PoP, 2005). It was found that, at a critical drift that is about 2-3 times the ion thermal speed, non-linear oscillations in the lower hybrid range give rise to a resistivity which is at least 200-300 times the Spitzer resistivity. We present simulations of the above scenario for different values of the plasma kinetic energy density. We find waves with frequencies on the order of the plasma frequency. These waves contribute to the electron heating that has been observed both in the experiments and in previous simulations (Hurtig, et al., PoP, 2003).
NASA Astrophysics Data System (ADS)
Vernisse, Y.; Riousset, J. A.; Motschmann, U.; Glassmeier, K.-H.
2018-03-01
This study addresses the issue of the electromagnetic interactions between a stellar wind and planetary magnetospheres with various dipole field strengths by means of hybrid simulations. Focus is placed on the configuration where the upstream plasma magnetic field is parallel to the planetary magnetic moment (also called "Southward-IMF" configuration), leading to anti-parallel magnetic fields in the dayside interaction region. Each type of plasma interaction is characterized by means of currents flowing in the interaction region. Reconnection triggered in the tail in such configuration is shown to affect significantly the structure of the magnetotail at early stages. On the dayside, only the magnetopause current is observable for moderate planetary dipole field amplitude, while both bow-shock and magnetotail currents are identifiable downtail from the terminator. Strong differences in term of temperature for ions are particularly noticeable in the magnetosheath and in the magnetotail, when the present results are compared with our previous study, which focused on "Northward-IMF" configuration.
NASA Astrophysics Data System (ADS)
Broll, J. M.; Fuselier, S. A.; Trattner, K. J.; Steven, P. M.; Burch, J. L.; Giles, B. L.
2017-12-01
Magnetic reconnection at Earth's dayside magnetopause is an essential process in magnetospheric physics. Under southward IMF conditions, reconnection occurs along a thin ribbon across the dayside magnetopause. The location of this ribbon has been studied extensively in terms of global optimization of quantities like reconnecting field energy or magnetic shear, but with expected errors of 1-2 Earth radii these global models give limited context for cases where an observation is near the reconnection line. Building on previous results, which established the cutoff contour method for locating reconnection using in-situ velocity measurements, we examine the effects of MHD-scale waves on reconnection exhaust distributions. We use a test particle exhaust distribution propagated through a globamagnetohydrodynamics model fields and compare with Magnetospheric Multiscale observations of reconnection exhaust.
Magnetic field studies at jupiter by voyager 1: preliminary results.
Ness, N F; Acuna, M H; Lepping, R P; Burlaga, L F; Behannon, K W; Neubauer, F M
1979-06-01
Results obtained by the Goddard Space Flight Center magnetometers on Voyager 1 are described. These results concern the large-scale configuration of the Jovian bow shock and magnetopause, and the magnetic field in both the inner and outer magnetosphere. There is evidence that a magnetic tail extending away from the planet on the nightside is formed by the solar wind-Jovian field interaction. This is much like Earth's magnetosphere but is a new configuration for Jupiter's magnetosphere not previously considered from earlier Pioneer data. We report on the analysis and interpretation of magnetic field perturbations associated with intense electrical currents (approximately 5 x 10(6) amperes) flowing near or in the magnetic flux tube linking Jupiter with the satellite Jo and induced by the relative motion between Io and the corotating Jovian magnetosphere. These currents may be an important source of heating the ionosphere and interior of Io through Joule dissipation.
New models of Saturn's magnetic field using Pioneer 11 Vector Helium Magnetometer data
NASA Technical Reports Server (NTRS)
Davis, L., Jr.; Smith, E. J.
1986-01-01
In a reanalysis of the Vector Helium Magnetometer data taken by Pioneer 11 during its Saturn encounter in 1979, using improvements in the data set and in the procedures, studies are made of a variety of models. The best is the P(11)84 model, an axisymmetric spherical harmonic model of Saturn's magnetic field within 8 Saturn radii of the planet. The appropriately weighted root mean square average of the difference between the observed and the modeled field is 1.13 percent. For the Voyager-based Z3 model of Connerney, Acuna, and Ness, this average difference from the Pioneer 11 data is 1.81 percent. The external source currents in the magnetopause, tail, bow shock, and perhaps ring currents vary with time and can only be crudely modeled. An algebraic formula is derived for calculating the L shells on which energetic charged particles drift in axisymmetric fields.
The synchronous orbit magnetic field data set
NASA Technical Reports Server (NTRS)
Mcpherron, R. L.
1979-01-01
The magnetic field at synchronous orbit is the result of superposition of fields from many sources such as the earth, the magnetopause, the geomagnetic tail, the ring current and field-aligned currents. In addition, seasonal changes in the orientation of the earth's dipole axis causes significant changes in each of the external sources. Main reasons for which the synchronous orbit magnetic field data set is a potentially valuable resource are outlined. The primary reason why synchronous magnetic field data have not been used more extensively in magnetic field modeling is the presence of absolute errors in the measured fields. Nevertheless, there exists a reasonably large collection of synchronous orbit magnetic field data. Some of these data can be useful in quantitative modeling of the earth's magnetic field. A brief description is given of the spacecraft, the magnetometers, the standard graphical data displays, and the digital data files.
NASA Astrophysics Data System (ADS)
Schmitz, R. G.; Alves, M. V.; Barbosa, M. V. G.
2017-12-01
One of the most important processes that occurs in Earth's magnetosphere is known as magnetic reconnection (MR). This process can be symmetric or asymmetric, depending basically on the plasma density and magnetic field in both sides of the current sheet. A good example of symmetric reconnection in terrestrial magnetosphere occurs in the magnetotail, where these quantities are similar on the north and south lobes. In the dayside magnetopause MR is asymmetric, since the plasma regimes and magnetic fields of magnetosheath and magnetosphere are quite different. Symmetric reconnection has some unique signatures. For example, the formation of a quadrupolar structure of Hall magnetic field and a bipolar Hall electric field that points to the center of the current sheet. The different particle motions in the presence of asymmetries change these signatures, causing the quadrupolar pattern to be distorted and forming a bipolar structure. Also, the bipolar Hall electric field is modified and gives rise to a single peak pointing toward the magnetosheat, considering an example of magnetopause reconnection. The presence of a guide-field can also distort the quadrupolar pattern, by giving a shear angle across the current sheet and altering the symmetric patterns, according to previous simulations and observations. Recently, a quadrupolar structure was observed in an asymmetric guide-field MR event using MMS (Magnetospheric Multiscale) mission data [Peng et al., JGR, 2017]. This event shows clearly that the density asymmetry and the guide-field were not sufficient to form signatures of asymmetric reconnection. Using the particle-in-cell code iPIC3D [Markidis et al, Mathematics and Computers in Simulation, 2010] with the MMS data from this event used to define input parameters, we found a quadrupolar structure of Hall magnetic field and a bipolar pattern of Hall electric field in ion scales, showing that our results are in an excellent agreement with the MMS observations. To our knowledge, this is the first time PIC simulations show this kind of results, since previous simulations have predicted bipolar pattern in the asymmetric guide-field reconnection.
Properties of the Equatorial Magnetotail Flanks ˜50-200 RE Downtail
NASA Astrophysics Data System (ADS)
Artemyev, A. V.; Angelopoulos, V.; Runov, A.; Wang, C.-P.; Zelenyi, L. M.
2017-12-01
In space, thin boundaries separating plasmas with different properties serve as a free energy source for various plasma instabilities and determine the global dynamics of large-scale systems. In planetary magnetopauses and shock waves, classical examples of such boundaries, the magnetic field makes a significant contribution to the pressure balance and plasma dynamics. The configuration and properties of such boundaries have been well investigated and modeled. However, much less is known about boundaries that form between demagnetized plasmas where the magnetic field is not important for pressure balance. The most accessible example of such a plasma boundary is the equatorial boundary layer of the Earth's distant magnetotail. Rather, limited measurements since its first encounter in the late 1970s by the International Sun-Earth Explorer-3 spacecraft revealed the basic properties of this boundary, but its statistical properties and structure have not been studied to date. In this study, we use Geotail and Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) missions to investigate the equatorial boundary layer from lunar orbit (˜55 Earth radii, RE, downtail) to as far downtail as ˜200 RE. Although the magnetic field has almost no effect on the structure of the boundary layer, the layer separates well the hot, rarefied plasma sheet from dense cold magnetosheath plasmas. We suggest that the most important role in plasma separation is played by polarization electric fields, which modify the efficiency of magnetosheath ion penetration into the plasma sheet. We also show that the total energies (bulk flow plus thermal) of plasma sheet ions and magnetosheath ions are very similar; that is, magnetosheath ion thermalization (e.g., via ion scattering by magnetic field fluctuations) is sufficient to produce hot plasma sheet ions without any additional acceleration.
On the electron dynamics during island coalescence in asymmetric magnetic reconnection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cazzola, E., E-mail: emanuele.cazzola@wis.kuleuven.be; Innocenti, M. E., E-mail: mariaelena.innocenti@wis.kuleuven.be; Lapenta, G., E-mail: giovanni.lapenta@wis.kuleuven.be
We present an analysis of the electron dynamics during rapid island merging in asymmetric magnetic reconnection. We consider a doubly periodic system with two asymmetric transitions. The upper layer is an asymmetric Harris sheet of finite width perturbed initially to promote a single reconnection site. The lower layer is a tangential discontinuity that promotes the formation of many X-points, separated by rapidly merging islands. Across both layers, the magnetic field and the density have a strong jump, but the pressure is held constant. Our analysis focuses on the consequences of electron energization during island coalescence. We focus first on themore » parallel and perpendicular components of the electron temperature to establish the presence of possible anisotropies and non-gyrotropies. Thanks to the direct comparison between the two different layers simulated, we can distinguish three main types of behavior characteristic of three different regions of interest. The first type represents the regions where traditional asymmetric reconnections take place without involving island merging. The second type of regions instead shows reconnection events between two merging islands. Finally, the third regions identify the regions between two diverging island and where typical signature of reconnection is not observed. Electrons in these latter regions additionally show a flat-top distribution resulting from the saturation of a two-stream instability generated by the two interacting electron beams from the two nearest reconnection points. Finally, the analysis of agyrotropy shows the presence of a distinct double structure laying all over the lower side facing the higher magnetic field region. This structure becomes quadrupolar in the proximity of the regions of the third type. The distinguishing features found for the three types of regions investigated provide clear indicators to the recently launched Magnetospheric Multiscale NASA mission for investigating magnetopause reconnection involving multiple islands.« less
Jupiter's Magnetosphere: Plasma Description from the Ulysses Flyby.
Bame, S J; Barraclough, B L; Feldman, W C; Gisler, G R; Gosling, J T; McComas, D J; Phillips, J L; Thomsen, M F; Goldstein, B E; Neugebauer, M
1992-09-11
Plasma observations at Jupiter show that the outer regions of the Jovian magnetosphere are remarkably similar to those of Earth. Bow-shock precursor electrons and ions were detected in the upstream solar wind, as at Earth. Plasma changes across the bow shock and properties of the magnetosheath electrons were much like those at Earth, indicating that similar processes are operating. A boundary layer populated by a varying mixture of solar wind and magnetospheric plasmas was found inside the magnetopause, again as at Earth. In the middle magnetosphere, large electron density excursions were detected with a 10-hour periodicity as planetary rotation carried the tilted plasma sheet past Ulysses. Deep in the magnetosphere, Ulysses crossed a region, tentatively described as magnetically connected to the Jovian polar cap on one end and to the interplanetary magnetic field on the other. In the inner magnetosphere and lo torus, where corotation plays a dominant role, measurements could not be made because of extreme background rates from penetrating radiation belt particles.
Origins of Energetic Ions in the Earth's Magnetosheath
NASA Technical Reports Server (NTRS)
Fuselter, S. A.; Shelley, E. G.; Klumpar, D. M.
1992-01-01
The analysis and interpretation of the combined scientific data from the Hot Plasma Composition Experiment (HPCE) and the Charge Energy Mass (CHEM) spectrometer on the Active Mesospheric Particle Tracer Experiment (AMPTE) Charge Composition Explorer (CCE) spacecraft are discussed. These combined data sets have and will be used to survey the energetic ion environment in the Earth's magnetosheath to determine the origins and relative strengths of the energetic ion populations found there. A computer code was developed to analyze and interpret the data sets. The focus of the first year was on the determination of the contribution of leaked magnetospheric protons to the total energetic proton population. Emphasis was placed on intervals when the AMPTE spacecraft was in the plasma depletion layer because it was argued that in this region, only the leaked population contributes to the energetic ion population. Manipulation of the CHEM data and comparison of the CHEM and HPCE data over their common energy range near the magnetopause also contributed directly to a second study of that region.
The plasmasheet H+ and O+ contribution on the storm time ring current
NASA Astrophysics Data System (ADS)
Mouikis, C.; Bingham, S.; Kistler, L. M.; Spence, H. E.; Gkioulidou, M.; Claudepierre, S. G.; Farrugia, C. J.
2015-12-01
The source population of the storm time ring current is the night side plasma sheet. We use Van Allen Probes and Cluster observations to determine the contribution of the convecting plasma sheet H+ and O+ particles in the storm time development of the ring current. Using the Volland-Stern model with a dipole magnetic field together with the identification of the observed energy cutoffs in the particle spectra, we specify the pressure contributed by H+ and O+ populations that are on open drift paths vs. the pressure contributed by the trapped populations, for different local times. We find that during the storm main phase most of the ring current pressure in the pre-midnight inner magnetosphere is contributed by particles on open drift paths that cause the development of a strong partial ring current that causes most of the main phase Dst drop. These particles can reach as deep as L~2 and their pressure compares to the local magnetic field pressure as deep as L~3. During the recovery phase, if these particles are not lost at the magnetopause, will become trapped and will contribute to the symmetric ring current.
Multi-point observations of Ion Dispersions near the Exterior Cusp with Cluster
NASA Astrophysics Data System (ADS)
Escoubet, C.-Philippe; Grison, Benjamin; Berchem, Jean; Trattner, Kralheinz; Pitout, Frederic; Richard, Robert; Taylor, Matt; Soucek, Jan; Laakso, Harri; Masson, Arnaud; Dunlop, Malcolm; Dandouras, Iannis; Reme, Henri; Fazakerley, Andrew; Daly, Patrick
2014-05-01
The exterior cusp is the most external region of the polar magnetosphere in direct contact with the plasma and the magnetic field from the solar wind. Unlike the rest of the magnetopause surface, the exterior cusp is a singular region with small and turbulent magnetic field and where large entry of plasma from solar origin takes place. The main process that injects solar wind plasma into the polar cusp is now generally accepted to be magnetic reconnection. Depending on the IMF direction, this process will take place equatorward (for IMF southward), poleward (for IMF northward) or on the dusk or dawn sides (for IMF azimuthal) of the cusp. We report a Cluster crossing on 5 January 2002 near the exterior cusp on the southern dusk side. The IMF was mainly azimuthal (IMF-By around -5 nT), the solar wind speed lower than usual around 280 km/s and the density around 5 cm-3. The four Cluster spacecraft were still in the "magnetotail" configuration with two perfect tetrahedra of 2000 km around apogee and turning into an elongated configuration near the magnetopause. C4 was the first spacecraft to enter the cusp around 19:52:04 UT, followed by C2 at 19:52:35 UT, C1 at 19:54:24 UT and C3 at 20:13:15 UT. C4 and C1 observed two ion energy dispersions at 20:10 UT and 20:40 UT and C3 at 20:35 UT and 21:15 UT. Using the time of flight technique on the upgoing and downgoing ions in the dispersions, we obtain an altitude of the sources of these ions between 14 and 20 RE. Using Tsyganenko model, these sources are located on the dusk flank, past the terminator. In addition, before entering the cusp, the magnetopause crossing was characterized by a large shear in By and bipolar plasma flows, suggesting that reconnection was taking place near the exterior cusp. We will discuss the extent of the reconnection line along the flank of the magnetopause based on these observations.
Radio Sounding Techniques for the Galilean Icy Moons and their Jovian Magnetospheric Environment
NASA Technical Reports Server (NTRS)
Green, James L.; Markus, Thursten; Fung, Shing F.; Benson, Robert F.; Reinich, Bodo W.; Song, Paul; Gogineni, S. Prasad; Cooper, John F.; Taylor, William W. L.; Garcia, Leonard
2004-01-01
Radio sounding of the Earth's topside ionosphere and magnetosphere is a proven technique from geospace missions such as the International Satellites for Ionospheric Studies (ISIS) and the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE). Application of this technique to Jupiter's icy moons and the surrounding Jovian magnetosphere will provide unique remote sensing observations of the plasma and magnetic field environments and the subsurface conductivities, of Europa, Ganymede, and Callisto. Spatial structures of ionospheric plasma above the surfaces of the moons vary in response to magnetic-field perturbations from (1) magnetospheric plasma flows, (2) ionospheric currents from ionization of sputtered surface material, and (3) induced electric currents in salty subsurface oceans and from the plasma flows and ionospheric currents themselves. Radio sounding from 3 kHz to 10 MHz can provide the global electron densities necessary for the extraction of the oceanic current signals and supplements in-situ plasma and magnetic field measurements. While radio sounding requires high transmitter power for subsurface sounding, little power is needed to probe the electron density and magnetic field intensity near the spacecraft. For subsurface sounding, reflections occur at changes in the dielectric index, e.g., at the interfaces between two different phases of water or between water and soil. Variations in sub-surface conductivity of the icy moons can be investigated by radio sounding in the frequency range from 10 MHz to 50 MHz, allowing the determination of the presence of density and solid-liquid phase boundaries associated with oceans and related structures in overlying ice crusts. The detection of subsurface oceans underneath the icy crusts of the Jovian moons is one of the primary objectives of the Jupiter Icy Moons Orbiter (JIMO) mission. Preliminary modeling results show that return signals are clearly distinguishable be&een an ice crust with a thickness of 7 km on 1) an ocean and 2) a layer of bedrock. Knowledge of the ionospheric contributions to the time delay of the low-frequency subsurface radar is shown to be important in obtaining accurate depth information.
Plasma observations near jupiter: initial results from voyager 1.
Bridge, H S; Belcher, J W; Lazarus, A J; Sullivan, J D; McNutt, R L; Bagenal, F; Scudder, J D; Sittler, E C; Siscoe, G L; Vasyliunas, V M; Goertz, C K; Yeates, C M
1979-06-01
Extensive measurements of low-energy positive ions and electrons were made throughout the Jupiter encounter of Voyager 1. The bow shock and magneto-pause were crossed several times at distances consistent with variations in the upstream solar wind pressure measured on Voyager 2. During the inbound pass, the number density increased by six orders of magnitude between the innermost magnetopause crossing at approximately 47 Jupiter radii and near closest approach at approximately 5 Jupiter radii; the plasma flow during this period was predominately in the direction of corotation. Marked increases in number density were observed twice per planetary rotation, near the magnetic equator. Jupiterward of the Io plasma torus, a cold, corotating plasma was observed and the energylcharge spectra show well-resolved, heavy-ion peaks at mass-to-charge ratios A/Z* = 8, 16, 32, and 64.
Reflection and refraction of hydromagnetic waves at the magnetopause
NASA Technical Reports Server (NTRS)
Verzariu, P.
1973-01-01
Reflection and transmission coefficients of MHD waves are obtained at a stable, plane interface which separates two compressible, perfectly conducting media in relative motion to each other. The coefficients are evaluated for representative conditions of the quiet-time, near-earth magnetopause. The transmission coefficient averaged over a hemispherical distribution of incident waves is found to be 1-2%. Yet the magnitude of the energy flux deposited into the magnetosphere in a day averaged over a hemispherical distribution of waves having amplitudes of say 2-3 gamma, is estimated to be of the order 10 to the 22-nd power erg. Therefore the energy input of MHD waves must contribute significantly to the energy budget of the magnetosphere. The assumption that the boundary surface is a tangential discontinuity with no curvature limits the present theory to hydromagnetic frequencies higher than about .1 Hz.
Electron and ion distribution functions in magnetopause reconnection
NASA Astrophysics Data System (ADS)
Wang, S.; Chen, L. J.; Bessho, N.; Hesse, M.; Kistler, L. M.; Torbert, R. B.; Mouikis, C.; Pollock, C. J.
2015-12-01
We investigate electron and ion velocity distribution functions in dayside magnetopause reconnection events observed by the Cluster and MMS spacecraft. The goal is to build a spatial map of electron and ion distribution features to enable the indication of the spacecraft location in the reconnection structure, and to understand plasma energization processes. Distribution functions, together with electromagnetic field structures, plasma densities, and bulk velocities, are organized and compared with particle-in-cell simulation results to indicate the proximities to the reconnection X-line. Anisotropic features in the distributions of magnetospheric- and magnetosheath- origin electrons at different locations in the reconnection inflow and exhaust are identified. In particular, parallel electron heating is observed in both the magnetosheath and magnetosphere inflow regions. Possible effects of the guide field strength, waves, and upstream density and temperature asymmetries on the distribution features will be discussed.
Force Balance at the Magnetopause Determined with MMS: Application to Flux Transfer Events
NASA Technical Reports Server (NTRS)
Zhao, C.; Russell, C. T.; Strangeway, R. J.; Petrinec, S. M.; Paterson, W. R.; Zhou, M.; Anderson, B. J.; Baumjohann, W.; Bromund, K. R.; Chutter, M.;
2016-01-01
The Magnetospheric Multiscale mission (MMS) consists of four identical spacecraft forming a closely separated (less than or equal to 10 km) and nearly regular tetrahedron. This configuration enables the decoupling of spatial and temporal variations and allows the calculation of the spatial gradients of plasma and electromagnetic field quantities. We make full use of the well cross-calibrated MMS magnetometers and fast plasma instruments measurements to calculate both the magnetic and plasma forces in flux transfer events (FTEs) and evaluate the relative contributions of different forces to the magnetopause momentum variation. This analysis demonstrates that some but not all FTEs, consistent with previous studies, are indeed force-free structures in which the magnetic pressure force balances the magnetic curvature force. Furthermore, we contrast these events with FTE events that have non-force-free signatures.
A theory for narrow-banded radio bursts at Uranus - MHD surface waves as an energy driver
NASA Technical Reports Server (NTRS)
Farrell, W. M.; Curtis, S. A.; Desch, M. D.; Lepping, R. P.
1992-01-01
A possible scenario for the generation of the narrow-banded radio bursts detected at Uranus by the Voyager 2 planetary radio astronomy experiment is described. In order to account for the emission burstiness which occurs on time scales of hundreds of milliseconds, it is proposed that ULF magnetic surface turbulence generated at the frontside magnetopause propagates down the open/closed field line boundary and mode-converts to kinetic Alfven waves (KAW) deep within the polar cusp. The oscillating KAW potentials then drive a transient electron stream that creates the bursty radio emission. To substantiate these ideas, Voyager 2 magnetometer measurements of enhanced ULF magnetic activity at the frontside magnetopause are shown. It is demonstrated analytically that such magnetic turbulence should mode-convert deep in the cusp at a radial distance of 3 RU.
Plasma observations near Jupiter - Initial results from Voyager 1
NASA Technical Reports Server (NTRS)
Bridge, H. S.; Belcher, J. W.; Lazarus, A. J.; Sullivan, J. D.; Mcnutt, R. L.; Bagenal, F.; Scudder, J. D.; Sittler, E. C.; Siscoe, G. L.; Vasyliunas, V. M.
1979-01-01
Extensive measurements of low-energy positive ions and electrons were made throughout the Jupiter encounter of Voyager 1. The bow shock and magnetopause were crossed several times at distances consistent with variations in the upstream solar wind pressure measured on Voyager 2. During the inbound pass, the number density increased by six orders of magnitude between the innermost magnetopause crossing at approximately 47 Jupiter radii and near closest approach at approximately 5 Jupiter radii; the plasma flow during this period was predominately in the direction of corotation. Marked increases in number density were observed twice per planetary rotation, near the magnetic equator. Jupiterward of the Io plasma torus, a cold, corotating plasma was observed and the energy/charge spectra show well-resolved, heavy-ion peaks at mass-to-charge ratios equal to 8, 16, 32, and 64.
Velocity Space Evolution of Dayside Reconnection Outflow
NASA Astrophysics Data System (ADS)
Broll, J. M.; Fuselier, S. A.; Trattner, K. J.
2015-12-01
Magnetic reconnection is a universal phenomenon occurring when energy stored in a complicated magnetic field topology is released into the surrounding plasma as the field simplifies its configuration. At Earth's dayside magnetopause, reconnection is responsible for mass and energy input from the solar wind into the magnetosphere. We describe the evolution of the velocity-space evolution of plasma outflow from a dayside magnetic reconnection region. We analyze Cluster magnetopause crossings between 1 and 10 Earth radii from the reconnection X-line predicted by the maximum magnetic shear model. The effects of nonadiabatic processes, such as deformation of the profile due to finite-gyroradius-induced pitch-angle scattering and wave-particle interactions, are described. We compare observations and simulation results to describe the outflow evolution and infer the field-aligned distance between an observation and the reconnection site producing it.
Source of the dayside cusp aurora.
Mende, S B; Frey, H U; Angelopoulos, V
2016-08-01
Monochromatic all-sky imagers at South Pole and other Antarctic stations of the Automatic Geophysical Observatory chain recorded the aurora in the region where the Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellites crossed the dayside magnetopause. In several cases the magnetic field lines threading the satellites when mapped to the atmosphere were inside the imagers' field of view. From the THEMIS magnetic field and the plasma density measurements, we were able to locate the position of the magnetopause crossings and map it to the ionosphere using the Tsyganenko-96 field model. Field line mapping is reasonably accurate on the dayside subsolar region where the field is strong, almost dipolar even though compressed. From these coordinated observations, we were able to prove that the dayside cusp aurora of high 630 nm brightness is on open field lines, and it is therefore direct precipitation from the magnetosheath. The cusp aurora contained significant highly structured N 2 + 427.8 nm emission. The THEMIS measurements of the magnetosheath particle energy and density taken just outside the magnetopause compared to the intensity of the structured N 2 + 427.8 nm emissions showed that the precipitating magnetosheath particles had to be accelerated. The most likely electron acceleration mechanism is by dispersive Alfvén waves propagating along the field line. Wave-accelerated suprathermal electrons were seen by FAST and DMSP. The 427.8 nm wavelength channel also shows the presence of a lower latitude hard-electron precipitation zone originating inside the magnetosphere.
Observational Test of the Dayside Magnetopause Reconnection Rate
NASA Astrophysics Data System (ADS)
Wang, S.; Kistler, L. M.; Mouikis, C.
2014-12-01
In asymmetric reconnection, the reconnection rate (R) is expected to follow the Cassak-Shay formula with an aspect ratio of around 0.1. At the magnetopause, reconnection is asymmetric, with the dense shocked solar wind population on the magnetosheath side, and a normally hot and tenuous population on the magnetospheric side. However, the hot magnetospheric population can contain a significant O+ component that increases the mass density, and the magnetospheric population may also include a cold dense population of plasmaspheric origin. We perform a statistical study of 13 magnetopause reconnection events observed by Cluster to determine how the reconnection rate depends on these different populations. The events are mainly at high latitudes, due to the Cluster orbit. Our results show that the measured R generally follows the Cassak-Shay prediction when all populations are included. However, the predicted rate only considering the magnetosheath contribution also correlates well with the measured R. For individual events, cold ions can make a comparable contribution to the magnetosheath H+ when there are plasmaspheric drainage plumes; the contribution of the magnetospheric hot O+ can be up to ~30%. However, the variation of solar wind conditions has a larger effect on the variation in the reconnection rate. The aspect ratio does not vary systematically with the O+ content, and 0.1 is a reasonable estimation. The outflow velocity is around the hybrid Alfven speed, but there is not a strong correlation. This may be due to motion of the x-line, or effects of the magnetosheath shear flow.
NASA Astrophysics Data System (ADS)
Pickett, J. S.; Christopher, I. W.; Grison, B.; Grimald, S.; Santolík, O.; Décréau, P. M. E.; Lefebvre, B.; Engebretson, M. J.; Kistler, L. M.; Constantinescu, D.; Chen, L.-J.; Omura, Y.; Lakhina, G. S.; Gurnett, D. A.; Cornilleau-Wehrlin, N.; Fazakerley, A. N.; Dandouras, I.; Lucek, E.
2011-01-01
We present the results of a study of Electrostatic Solitary Waves (ESWs) in which propagation of a series of noncyclical ESWs is observed from one Cluster spacecraft to another over distances as great as tens of km and time lags as great as a few tens of ms. This propagation study was conducted for locations near the magnetopause on the magnetosheath side. Propagation was found primarily toward the earth with speeds on the order of 1500 to 2400 km/s. The sizes of the ESWs obtained from these velocities were on the order of 1 km along the magnetic field direction and several tens of km perpendicular. These results are consistent with measurements on single spacecraft in which the ESW propagation is observed with time lags of only ˜0.1 ms. Our results thus show the stability of ESWs over time periods much greater than their own characteristic pulse durations of a few 100s of microseconds. We present also the results of a study of ESW modulation at the magnetopause on the earthward side. We found that ESWs were modulated at ˜1.3 Hz, consistent with a Pc1 wave which was observed concurrently. During this time, tens of eV electron beams are present. We propose a Buneman type instability in which the E″″ component of the Pc1 waves provides a mechanism for accelerating electrons, resulting in the generation of the ESWs modulated at the Pc1 frequency.
Magnetosheath High-Speed Jets: Coupling Bow Shock Processes to the Magnetosphere
NASA Astrophysics Data System (ADS)
Hietala, H.
2016-12-01
Magnetosheath high-speed jets (HSJs) - dynamic pressure enhancements typically of 1 Earth radius in size - are the most common dayside transient. They impact the magnetopause many times per hour, especially during intervals of low interplanetary magnetic field cone-angle. Upon impact they cause large amplitude yet localized magnetopause indentations, and can couple to global dynamics by driving magnetospheric waves that alter radiation belt electron populations, and by affecting subsolar magnetopause reconnection. Previous observational studies have provided considerable insight into properties of the HSJs. Similarly, recent hybrid simulations have demonstrated the formation of jets downstream of the quasi-parallel shock with properties resembling the observed ones. Yet these studies were based on differing definitions of transients, have used varying terminology, methodology, data sets/simulations, and yielded, not unexpectedly, differing results on origin and characteristics of jets. In this talk we will present the first results towards a more unified understanding of these jets from a dedicated International Space Science Institute (ISSI) team. In particular, we compare the three selection criteria used in the recent observational statistical studies: (i) high dynamic pressure in the Sun-Earth direction with respect to the solar wind; (ii) enhancement of the total dynamic pressure with respect to the ambient magnetosheath plasma; (iii) enhancement of density with respect to the ambient plasma. We apply these criteria to global kinetic simulations and compare what structures they pick out. Consequently, we can effectively demonstrate where the different criteria agree and where they disagree.
Source of the dayside cusp aurora
Frey, H. U.; Angelopoulos, V.
2016-01-01
Abstract Monochromatic all‐sky imagers at South Pole and other Antarctic stations of the Automatic Geophysical Observatory chain recorded the aurora in the region where the Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellites crossed the dayside magnetopause. In several cases the magnetic field lines threading the satellites when mapped to the atmosphere were inside the imagers' field of view. From the THEMIS magnetic field and the plasma density measurements, we were able to locate the position of the magnetopause crossings and map it to the ionosphere using the Tsyganenko‐96 field model. Field line mapping is reasonably accurate on the dayside subsolar region where the field is strong, almost dipolar even though compressed. From these coordinated observations, we were able to prove that the dayside cusp aurora of high 630 nm brightness is on open field lines, and it is therefore direct precipitation from the magnetosheath. The cusp aurora contained significant highly structured N2 + 427.8 nm emission. The THEMIS measurements of the magnetosheath particle energy and density taken just outside the magnetopause compared to the intensity of the structured N2 + 427.8 nm emissions showed that the precipitating magnetosheath particles had to be accelerated. The most likely electron acceleration mechanism is by dispersive Alfvén waves propagating along the field line. Wave‐accelerated suprathermal electrons were seen by FAST and DMSP. The 427.8 nm wavelength channel also shows the presence of a lower latitude hard‐electron precipitation zone originating inside the magnetosphere. PMID:27867797
NASA Technical Reports Server (NTRS)
Wilder, F. D.; Ergun, R. E.; Schwartz, S. J.; Newman, D. L.; Eriksson, S.; Stawarz, J. E.; Goldman, M. V.; Goodrich, K. A.; Gershman, D. J.; Malaspina, D.;
2016-01-01
On 8 September 2015, the four Magnetospheric Multiscale spacecraft encountered a Kelvin-Helmholtz unstable magnetopause near the dusk flank. The spacecraft observed periodic compressed current sheets, between which the plasma was turbulent. We present observations of large-amplitude (up to 100 mVm) oscillations in the electric field. Because these oscillations are purely parallel to the background magnetic field, electrostatic, and below the ion plasma frequency, they are likely to be ion acoustic-like waves. These waves are observed in a turbulent plasma where multiple particle populations are intermittently mixed, including cold electrons with energies less than 10 eV. Stability analysis suggests a cold electron component is necessary for wave growth.
Electron Energization and Structure of the Diffusion Region During Asymmetric Reconnection
NASA Technical Reports Server (NTRS)
Chen, Li-Jen; Hesse, Michael; Wang, Shan; Bessho, Naoki; Daughton, William
2016-01-01
Results from particle-in-cell simulations of reconnection with asymmetric upstream conditions are reported to elucidate electron energization and structure of the electron diffusion region (EDR). Acceleration of unmagnetized electrons results in discrete structures in the distribution functions and supports the intense current and perpendicular heating in the EDR. The accelerated electrons are cyclotron turned by the reconnected magnetic field to produce the outflow jets, and as such, the acceleration by the reconnection electric field is limited, leading to resistivity without particle-particle or particle-wave collisions. A map of electron distributions is constructed, and its spatial evolution is compared with quantities previously proposed to be EDR identifiers to enable effective identifications of the EDR in terrestrial magnetopause reconnection.
Electron Distribution Functions in the Diffusion Region of Asymmetric Magnetic Reconnection
NASA Technical Reports Server (NTRS)
Bessho, N.; Chen, L.-J.; Hesse, M.
2016-01-01
We study electron distribution functions in a diffusion region of antiparallel asymmetric reconnection by means of particle-in-cell simulations and analytical theory. At the electron stagnation point, the electron distribution comprises a crescent-shaped population and a core component. The crescent-shaped distribution is due to electrons coming from the magnetosheath toward the stagnation point and accelerated mainly by electric field normal to the current sheet. Only a part of magnetosheath electrons can reach the stagnation point and form the crescent-shaped distribution that has a boundary of a parabolic curve. The penetration length of magnetosheath electrons into the magnetosphere is derived. We expect that satellite observations can detect crescent-shaped electron distributions during magnetopause reconnection.
Alfven Wave Reflection Model of Field-Aligned Currents at Mercury
NASA Technical Reports Server (NTRS)
Lyatsky, Wladislaw; Khazanov, George V.; Slavin, James
2010-01-01
An Alfven Wave Reflection (AWR) model is proposed that provides closure for strong field-aligned currents (FACs) driven by the magnetopause reconnection in the magnetospheres of planets having no significant ionospheric and surface electrical conductance. The model is based on properties of the Alfven waves, generated at high altitudes and reflected from the low-conductivity surface of the planet. When magnetospheric convection is very slow, the incident and reflected Alfven waves propagate along approximately the same path. In this case, the net field-aligned currents will be small. However, as the convection speed increases. the reflected wave is displaced relatively to the incident wave so that the incident and reflected waves no longer compensate each other. In this case, the net field-aligned current may be large despite the lack of significant ionospheric and surface conductivity. Our estimate shows that for typical solar wind conditions at Mercury, the magnitude of Region 1-type FACs in Mercury's magnetosphere may reach hundreds of kilo-Amperes. This AWR model of field-aligned currents may provide a solution to the long-standing problem of the closure of FACs in the Mercury's magnetosphere. c2009 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sturner, Andrew P.; Eriksson, Stefan; Nakamura, Takuma; Gershman, Daniel J.; Plaschke, Ferdinand; Ergun, Robert E.; Wilder, Frederick D.; Giles, Barbara; Pollock, Craig; Paterson, William R.; Strangeway, Robert J.; Baumjohann, Wolfgang; Burch, James L.
2018-02-01
Two magnetopause current sheet crossings with tripolar guide magnetic field signatures were observed by multiple Magnetosphere Multiscale (MMS) spacecraft during Kelvin-Helmholtz wave activity. The two out-of-plane magnetic field depressions of the tripolar guide magnetic field are largely supported by the observed in-plane electron currents, which are reminiscent of two clockwise Hall current loop systems. A comparison with a three-dimensional kinetic simulation of Kelvin-Helmholtz waves and vortex-induced reconnection suggests that MMS likely encountered the two Hall magnetic field depressions on either side of a magnetic reconnection X-line. Moreover, MMS observed an out-of-plane current reversal and a corresponding in-plane magnetic field rotation at the center of one of the current sheets, suggesting the presence of two adjacent flux ropes. The region inside one of the ion-scale flux ropes was characterized by an observed decrease of the total magnetic field, a strong axial current, and significant enhancements of electron density and parallel electron temperature. The flux rope boundary was characterized by currents opposite this axial current, strong in-plane and converging electric fields, parallel electric fields, and weak electron-frame Joule dissipation. These return current region observations may reflect a need to support the axial current rather than representing local reconnection signatures in the absence of any exhausts.
Electromagnetic radiation trapped in the magnetosphere above the plasma frequency
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Shaw, R. R.
1973-01-01
An electromagnetic noise band is frequently observed in the outer magnetosphere by the Imp 6 spacecraft at frequencies from about 5 to 20 kHz. This noise band generally extends throughout the region from near the plasmapause boundary to near the magnetopause boundary. The noise typically has a broadband field strength of about 5 microvolts/meter. The noise band often has a sharp lower cutoff frequency at about 5 to 10 kHz, and this cutoff has been identified as the local electron plasma frequency. Since the plasma frequency in the plasmasphere and solar wind is usually above 20 kHz, it is concluded that this noise must be trapped in the low-density region between the plasmapause and magnetopause boundaries. The noise bands often contain a harmonic frequency structure which suggests that the radiation is associated with harmonics of the electron cyclotron frequency.
NASA Technical Reports Server (NTRS)
Russell, C. T.
1981-01-01
Highlights of the design and fabrication of fluxgate magnetometers for the ISEE A and B satellites which were launched from a single launch vehicle into the same highly elliptical orbit are presented. The instrument consisted of four basic assemblies: the sensors, the drive and sense electronics, the data handling unit; and the flipper. The digital handling data handling assembly contained a digital filter that mantained a uniform transfer function for all three axes of both spacecraft. Initial studies centered on the bow shock and the magnetopause and show that both boundaries are in rapid motion. The bow shock was found to be very thin, close to an ion inertial length in thickness, but the magnetopause was much thicker than expected, about 400 to 1000 km on average. The magnetometers have each logged over 3 2/3 years of continuous operation.
NASA Astrophysics Data System (ADS)
Chen, Y.; Toth, G.; Cassak, P.; Jia, X.; Gombosi, T. I.; Slavin, J. A.; Welling, D. T.; Markidis, S.; Peng, I. B.; Jordanova, V. K.; Henderson, M. G.
2017-12-01
We perform a three-dimensional (3D) global simulation of Earth's magnetosphere with kinetic reconnection physics to study the interaction between the solar wind and Earth's magnetosphere. In this global simulation with magnetohydrodynamics with embedded particle-in-cell model (MHD-EPIC), both the dayside magnetopause reconnection region and the magnetotail reconnection region are covered with a kinetic particle-in-cell code iPIC3D, which is two-way coupled with the global MHD model BATS-R-US. We will describe the dayside reconnection related phenomena, such as the lower hybrid drift instability (LHDI) and the evolution of the flux transfer events (FTEs) along the magnetopause, and compare the simulation results with observations. We will also discuss the response of the magnetotail to the southward IMF. The onset of the tail reconnection and the properties of the magnetotail flux ropes will be discussed.
Scientific Visualization to Study Flux Transfer Events at the Community Coordinated Modeling Center
NASA Technical Reports Server (NTRS)
Rastatter, Lutz; Kuznetsova, Maria M.; Sibeck, David G.; Berrios, David H.
2011-01-01
In this paper we present results of modeling of reconnection at the dayside magnetopause with subsequent development of flux transfer event signatures. The tools used include new methods that have been added to the suite of visualization methods that are used at the Community Coordinated Modeling Center (CCMC). Flux transfer events result from localized reconnection that connect magnetosheath magnetic field and plasma with magnetospheric fields and plasma and results in flux rope structures that span the dayside magnetopause. The onset of flux rope formation and the three-dimensional structure of flux ropes are studied as they have been modeled by high-resolution magnetohydrodynamic simulations of the dayside magnetosphere of the Earth. We show that flux transfer events are complex three-dimensional structures that require modern visualization and analysis techniques. Two suites of visualization methods are presented and we demonstrate the usefulness of those methods through the CCMC web site to the general science user.
Local time asymmetry of Saturn's magnetosheath flows
NASA Astrophysics Data System (ADS)
Burkholder, B.; Delamere, P. A.; Ma, X.; Thomsen, M. F.; Wilson, R. J.; Bagenal, F.
2017-06-01
Using gross averages of the azimuthal component of flow in Saturn's magnetosheath, we find that flows in the prenoon sector reach a maximum value of roughly half that of the postnoon side. Corotational magnetodisc plasma creates a much larger flow shear with solar wind plasma prenoon than postnoon. Maxwell stress tensor analysis shows that momentum can be transferred out of the magnetosphere along tangential field lines if a normal component to the boundary is present, i.e., field lines which pierce the magnetopause. A Kelvin-Helmholtz unstable flow gives rise to precisely this situation, as intermittent reconnection allows the magnetic field to thread the boundary. We interpret the Kelvin-Helmholtz instability acting along the magnetopause as a tangetial drag, facilitating two-way transport of momentum through the boundary. We use reduced magnetosheath flows in the dawn sector as evidence of the importance of this interaction in Saturn's magnetosphere.
Analysis of proton and electron spectrometer data from OGO-5 spacecraft
NASA Technical Reports Server (NTRS)
Pomerantz, M. A.
1975-01-01
The interaction between the geomagnetic and interplanetary magnetic fields is studied through its effects upon the intensities of solar electrons reaching the polar caps during times of strongly anisotropic electron fluxes in the magnetosheath. During the particle event of November 18, 1968, electrons of solar origin were observed outside the magnetopause with detectors aboard OGO-5. Correlative studies of these satellite observations and concurrent measurements by riometers and ionospheric forward scatter systems in both polar regions revealed that the initial stage of the associated polar cap absorption event is attributable to the arrival of solar electrons. Evidence of a north-south asymmetry in the solar electron flux, at a time when the interplanetary magnetic field vector was nearly parallel with the ecliptic plane, supports an open magnetospheric model. The analysis indicates that an anisotropic electron flux may be isotropized at the magnetopause before propagating into the polar regions.
Overview of magnetospheric research
NASA Technical Reports Server (NTRS)
Ashour-Abdalla, Maha
1994-01-01
During the funding period for NASA Grant NAG5-1480 which prior to December, 1, 1990 was known as NASA Grant NAGW-78, the group has made substantial progress on the various topics originally proposed. The research performed has resulted in two Ph.D. Theses, more than 50 refereed papers in various journals and conference proceedings, and 31 invited and 104 contributed talks at conferences and symposia throughout the world. The main results from this work are summarized in each of the sections outlined in the original proposal, followed by a complete list of the group publications associated with this grant, a list of all invited talks given during the last three years, and finally a listing of the contributed talks. Research topics include global magnetohydrodynamic simulations, structure of the dayside magnetopause, merging at the dayside magnetopause, polar wind, plasma waves in the distant magnetotail, slow shocks in the distant magnetotail, collisionless tearing instabilities in the magnetotail, and other problems.
Inverse Energy Dispersion of Energetic Ions Observed in the Magnetosheath
NASA Technical Reports Server (NTRS)
Lee, S. H.; Sibeck, D. G.; Hwang, K.-J.; Wang, Y.; Silveira, M. V. D.; Fok, M.-C.; Mauk, B. H.; Cohen, I. J.; Ruohoniemi, J. M.; Kitamura, N.;
2016-01-01
We present a case study of energetic ions observed by the Energetic Particle Detector (EPD) on the Magnetospheric Multiscale spacecraft in the magnetosheath just outside the subsolar magnetopause that occurred at 1000 UT on 8 December 2015. As the magnetopause receded inward, the EPD observed a burst of energetic (approximately 50-1000 keV) proton, helium, and oxygen ions that exhibited an inverse dispersion, with the lowest energy ions appearing first. The prolonged interval of fast antisunward flow observed in the magnetosheath and transient increases in the H components of global ground magnetograms demonstrate that the burst appeared at a time when the magnetosphere was rapidly compressed. We attribute the inverse energy dispersion to the leakage along reconnected magnetic field lines of betatron-accelerated energetic ions in the magnetosheath, and a burst of reconnection has an extent of about 1.5 R(sub E) using combined Super Dual Auroral Radar Network radar and EPD observations.
Long-lived plasmaspheric plumes: What is the source of the plasma?
NASA Astrophysics Data System (ADS)
Denton, M.; Borovsky, J.; Thomsen, M. F.; Welling, D. T.
2015-12-01
Magnetospheric Plasma Analyzer (MPA) instruments on-board Los Alamos National Laboratory (LANL) satellites regularly measures cold ions in the plasmasphere, and in plasmaspheric plumes. Following periods of calm geomagnetic conditions, the plasmasphere fills to ion number densities in excess of 100 cm-3 - these ions corotate with the Earth. During enhanced convection the outer plasmasphere is eroded - these ions are convected to the dayside magnetopause. LANL/MPA instruments regularly measure plumes which last for many days. On occasion, plumes can last more than two weeks. Such observations raise questions as to the production mechanisms that can continually supply high-number-density material to geosynchronous orbit, and onwards to the magnetopause. We will discuss the plume observations by LANL/MPA, improvements in theoretical modeling of the refilling process, and the need for in-situ observations (from TEC, satellites, etc.) required to address this problem.
Momentum transport at the Mars magnetopause
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez-de-Tejada, H.
1991-07-01
The conditions leading to the transport of momentum of the shocked solarwind to the Mars magnetosphere are examined. It is argued that planetary pickup ions born in the magnetosheath and scattered across the magnetopause by local turbulent waves carry that momentum and deliver it to the magnetospheric plasma. It is further suggested that as the pickup ions experience momentum scattering interactions with the wave field in the velocity shear adjacent to the magnetosphere they are subject to a gradual internment within that region of space. The end effect of this phenomenon is that the pickup ions deliver a larger amountmore » of momentum to the local flow than what they can subtract from it. Calculations of the efficiency of the process lead to values of the effective mean free path of the pickup ions of the order of a few hundred kilometers.« less
Geodynamo, solar wind, and magnetopause 3.4 to 3.45 billion years ago.
Tarduno, John A; Cottrell, Rory D; Watkeys, Michael K; Hofmann, Axel; Doubrovine, Pavel V; Mamajek, Eric E; Liu, Dunji; Sibeck, David G; Neukirch, Levi P; Usui, Yoichi
2010-03-05
Stellar wind standoff by a planetary magnetic field prevents atmospheric erosion and water loss. Although the early Earth retained its water and atmosphere, and thus evolved as a habitable planet, little is known about Earth's magnetic field strength during that time. We report paleointensity results from single silicate crystals bearing magnetic inclusions that record a geodynamo 3.4 to 3.45 billion years ago. The measured field strength is approximately 50 to 70% that of the present-day field. When combined with a greater Paleoarchean solar wind pressure, the paleofield strength data suggest steady-state magnetopause standoff distances of < or = 5 Earth radii, similar to values observed during recent coronal mass ejection events. The data also suggest lower-latitude aurora and increases in polar cap area, as well as heating, expansion, and volatile loss from the exosphere that would have affected long-term atmospheric composition.
NASA Astrophysics Data System (ADS)
Dorville, Nicolas; Belmont, Gérard; Aunai, Nicolas; Dargent, Jérémy; Rezeau, Laurence
2015-09-01
Finding kinetic equilibria for non-collisional/collisionless tangential current layers is a key issue as well for their theoretical modeling as for our understanding of the processes that disturb them, such as tearing or Kelvin Helmholtz instabilities. The famous Harris equilibrium [E. Harris, Il Nuovo Cimento Ser. 10 23, 115-121 (1962)] assumes drifting Maxwellian distributions for ions and electrons, with constant temperatures and flow velocities; these assumptions lead to symmetric layers surrounded by vacuum. This strongly particular kind of layer is not suited for the general case: asymmetric boundaries between two media with different plasmas and different magnetic fields. The standard method for constructing more general kinetic equilibria consists in using Jeans theorem, which says that any function depending only on the Hamiltonian constants of motion is a solution to the steady Vlasov equation [P. J. Channell, Phys. Fluids (1958-1988) 19, 1541 (1976); M. Roth et al., Space Sci. Rev. 76, 251-317 (1996); and F. Mottez, Phys. Plasmas 10, 1541-1545 (2003)]. The inverse implication is however not true: when using the motion invariants as variables instead of the velocity components, the general stationary particle distributions keep on depending explicitly of the position, in addition to the implicit dependence introduced by these invariants. The standard approach therefore strongly restricts the class of solutions to the problem and probably does not select the most physically reasonable. The BAS (Belmont-Aunai-Smets) model [G. Belmont et al., Phys. Plasmas 19, 022108 (2012)] used for the first time the concept of particle accessibility to find new solutions: considering the case of a coplanar-antiparallel magnetic field configuration without electric field, asymmetric solutions could be found while the standard method can only lead to symmetric ones. These solutions were validated in a hybrid simulation [N. Aunai et al., Phys. Plasmas (1994-present) 20, 110702 (2013)], and more recently in a fully kinetic simulation as well [J. Dargent and N. Aunai, Phys. Plasmas (submitted)]. Nevertheless, in most asymmetric layers like the terrestrial magnetopause, one would indeed expect a magnetic field rotation from one direction to another without going through zero [J. Berchem and C. T. Russell, J. Geophys. Res. 87, 8139-8148 (1982)], and a non-zero normal electric field. In this paper, we propose the corresponding generalization: in the model presented, the profiles can be freely imposed for the magnetic field rotation (although restricted to a 180 rotation hitherto) and for the normal electric field. As it was done previously, the equilibrium is tested with a hybrid simulation.
Non-ideal energy conversion during asymmetric magnetic reconnection with a moderate guide field
NASA Astrophysics Data System (ADS)
Genestreti, K. J.; Varsani, A.; Hesse, M.; Torbert, R. B.; Burch, J.; Cassak, P.; Ergun, R.; Phan, T.; Nakamura, R.; Giles, B. L.; Schwartz, S. J.; Wang, S.; Toledo Redondo, S.; Hwang, K. J.; Laignel, B.; Escoubet, C. P.; Fear, R. C.; Khotyaintsev, Y. V.
2017-12-01
Using data from NASA's Magnetospheric Multiscale (MMS) mission, we investigate the local (in time and space) rate of work done by the non-ideal electric field on the plasma during a crossing through the magnetopause reconnection region. The four MMS spacecraft were in a tight tetrahedral formation ( 7 km separation) and observed several ion and electron-scale signatures of asymmetric reconnection, one of which was J.E' (=J.(E+vexB))>0. The data indicate that the magnetic field was expending energy both (1) near the magnetosphere-side separator, where the current was carried by counter-streaming electrons with crescent-shaped velocity distribution functions, and (2) near the magnetic X-point, where the current was carried by accelerated inflowing magnetosheath electrons moving against the guide field. Near the X-point, the current-aligned portion of the non-ideal electric field is largely a result of electron pressure divergence. We further investigate the pressure tensor divergence, separating the components from in and out-of-the-plane gradients as well as gyrotropic and non-gyrotropic pressures.
Loss of ring current O(+) ions due to interaction with Pc 5 waves
NASA Astrophysics Data System (ADS)
Li, Xinlin; Hudson, Mary; Chan, Anthony; Roth, Ilan
1993-01-01
A test particle code is used here to investigate ring current ion interaction with Pc 5 waves, combined with convection and corotation electric fields, with emphasis on the loss of O(+) ions over the dayside magnetosphere. A new loss mechanism for the O(+) ions due to the combined effects of convection and corotation electric fields and interactions with Pc 5 waves via a magnetic drift-bound resonance is presented. For given fields, whether a particle gains or losses energy depends on its initial kinetic energy, pitch angle at the equatorial plane, and the position of its guiding center with respect to the azimuthal phase of the wave. The ring current O(+) ions show a dispersion in energies and L values with decreasing local time across the dayside, and a bulk shift to lower energies and higher L values. Due to interaction with the Pc 5 waves, the particle's kinetic energy can drop below that required to overcome the convection potential and the particle is lost to the dayside magnetopause by a sunward E x B drift.
Electric fields in Earth orbital space
NASA Astrophysics Data System (ADS)
Olson, W. P.; Pfitzer, K. A.; Scotti, S. J.
1982-05-01
This is a report of progress during the past year. The work was performed in three areas with a long term goal understanding the formation and maintenance of electrostatic fields in the earth's magnetosphere. The entry of low energy charged particles into a magnetically closed magnetosphere has been examined in some detail. Entry is permitted because of the non-uniform nature of the magnetic field over the magnetopause surface. Electrostatic fields may be formed across the tail of the magnetosphere because fo the different 'entry efficiencies ' of protons and electrons. The consequences of this particle entry mechanism for the plasma sheet, plasma mantle, and boundary plasmas in the magnetosphere are examined. The mathematics of particle entry was investigated in a one-dimensional boundary using both kinetic theory and bulk MHD parameters. From our participation in the 6th Coordinated Data Analysis Workshop, we have determined that at least during disturbed magnetic conditions, currents persist near geosynchronous orbit in the nightime region which are presently not included in our dynamic magnetic field models. These currents are probably associated with the field aligned currents which close in the ionosphere near auroral latitudes.
Fingerprints of collisionless reconnection at the separator, I, Ambipolar-Hall signatures
NASA Astrophysics Data System (ADS)
Scudder, J. D.; Mozer, F. S.; Maynard, N. C.; Russell, C. T.
2002-10-01
Plasma, electric, and magnetic field data on the Polar spacecraft have been analyzed for the 29 May 1996 magnetopause traversal searching for evidence of in situ reconnection and traversal of the separator. In this paper we confine our analysis to model-free observations and intrasensor coherence of detection of the environs of the separator. (1) We illustrate the first documented penetration of the separator of collisionless magnetic reconnection in temporal proximity to successful Walén tests with opposite slopes. (2) We present the first direct measurements of E∥ at the magnetopause. (3) We make the first empirical argument that E∥ derives from the electron pressure gradient force. (4) We document the first detection of the electron pressure ridge astride the magnetic depression that extends from the separator. (5) We provide the first empirical detection of the reconnection rate at the magnetopause with the locally sub-Alfvénic ion inflow, MAi ≃ 0.1, and trans-Alfvénic exhaust at high electron pressure of MiA ≃ 1.1-5. (6) We exhibit the first empirical detection of supra-Alfvénic electron flows parallel to B in excess of 5 in narrow sheets. (7) We illustrate the detection of heat flux sheets indicative of separatrices near, but not always in superposition, with the supra-Alfvénic parallel electron bulk flows. (8) We present the first evidence that pressure gradient scales are short enough to explain the electron fluid's measured cross-field drifts not explained by E × B drift but predicted by the measured size of E∥. (9) We illustrate that the size of the observed E∥ is well organized with the limit implied by Vasyliunas's analysis of the generalized Ohm's law of scale length ?, indicative of the intermediate scale of the diffusion region. (10) We document the first detection of departure from electron gyrotropy not only at the separator crossing but also in its vicinity, an effect presaged by [1975]. (11) We make the first reports of very large values of electron βe ≃ 680 localized at the separator, which imply that the electron thermal gyroradius exceeds the electron inertial length by more than an order of magnitude there. This clearly delineates that the environs of the reversed field region in this data contain non-MHD scales. The ambipolar association and the measured E∥ data imply the presence of the nonideal ρs scale in these layers surrounding the null point. The high βe signals the possible demagnetization of the thermal electrons in any structures with spatial scales of the electron skin depth, which is theoretically anticipated to surround the magnetic null line of the separator proper. This possibility is supported by the large number of temporally unaliased spectra at high βe that are inconsistent with gyrotropy.
NASA Technical Reports Server (NTRS)
Santos, J. C.; Sibeck, D. G.; Buchner, J.; Gonzalez, W. D.; Ferreira, J. L.
2014-01-01
We present predictions for the evolution of FTEs generated by localized bursts of reconnection on a planar magnetopause that separates a magnetosheath region of high densities and weak magnetic field from a magnetospheric region of low densities and strong magnetic field. The magnetic fields present a shear angle of 105 degrees. Reconnection forms a pair of FTEs each crossing the magnetopause in the field reversal region and bulging into the magnetosphere and magnetosheath. At their initial stage they can be characterized as flux tubes since the newly reconnected magnetic field lines are not twisted. Reconnection launches Alfvenic perturbations that propagate along the FTEs generating high-speed jets, which move the pair of FTEs in opposite directions. As the FTE moves, it displaces the ambient magnetic field and plasma producing bipolar magnetic field and plasma velocity signatures normal to the nominal magnetopause in the regions surrounding the FTE. The combination of the ambient plasma with the FTE flows generates a vortical velocity pattern around the reconnected field lines. During its evolution the FTE evolves to a flux rope configuration due to the twist of the magnetic field lines. The alfvenic perturbations propagate faster along the part of the FTE bulging into the magnetosphere than in the magnetosheath, and due to the differences between the plasma and magnetic field properties the perturbations have slightly different signatures in the two regions. As a consequence, the FTEs have different signatures depending on whether the satellite encounters the part bulging into the magnetosphere or into the magnetosheath.
Dual-spacecraft reconstruction of a three-dimensional magnetic flux rope at the Earth's magnetopause
Hasegawa, H.; Sonnerup, B. U. Ö.; Eriksson, S.; ...
2015-02-03
We present the first results of a data analysis method, developed by Sonnerup and Hasegawa (2011), for reconstructing three-dimensional (3-D), magnetohydrostatic structures from data taken as two closely spaced satellites traverse the structures. The method is applied to a magnetic flux transfer event (FTE), which was encountered on 27 June 2007 by at least three (TH-C, TH-D, and TH-E) of the five THEMIS probes near the subsolar magnetopause. The FTE was sandwiched between two oppositely directed reconnection jets under a southward interplanetary magnetic field condition, consistent with its generation by multiple X-line reconnection. The recovered 3-D field indicates that amore » magnetic flux rope with a diameter of ~ 3000 km was embedded in the magnetopause. The FTE flux rope had a significant 3-D structure, because the 3-D field reconstructed from the data from TH-C and TH-D (separated by ~ 390 km) better predicts magnetic field variations actually measured along the TH-E path than does the 2-D Grad–Shafranov reconstruction using the data from TH-C (which was closer to TH-E than TH-D and was at ~ 1250 km from TH-E). Such a 3-D nature suggests that the field lines reconnected at the two X-lines on both sides of the flux rope are entangled in a complicated way through their interaction with each other. The generation process of the observed 3-D flux rope is discussed on the basis of the reconstruction results and the pitch-angle distribution of electrons observed in and around the FTE.« less
NASA Astrophysics Data System (ADS)
Ebert, Robert; Bagenal, Fran; McComas, David; Fowler, Christopher
2014-09-01
We examine Ulysses solar wind and interplanetary magnetic field (IMF) observations at 5 AU for two ~13 month intervals during the rising and declining phases of solar cycle 23 and the predicted response of the Jovian magnetosphere during these times. The declining phase solar wind, composed primarily of corotating interaction regions and high-speed streams, was, on average, faster, hotter, less dense, and more Alfvénic relative to the rising phase solar wind, composed mainly of slow wind and interplanetary coronal mass ejections. Interestingly, none of solar wind and IMF distributions reported here were bimodal, a feature used to explain the bimodal distribution of bow shock and magnetopause standoff distances observed at Jupiter. Instead, many of these distributions had extended, non-Gaussian tails that resulted in large standard deviations and much larger mean over median values. The distribution of predicted Jupiter bow shock and magnetopause standoff distances during these intervals were also not bimodal, the mean/median values being larger during the declining phase by ~1 - 4%. These results provide data-derived solar wind and IMF boundary conditions at 5 AU for models aimed at studying solar wind-magnetosphere interactions at Jupiter and can support the science investigations of upcoming Jupiter system missions. Here, we provide expectations for Juno, which is scheduled to arrive at Jupiter in July 2016. Accounting for the long-term decline in solar wind dynamic pressure reported by McComas et al. (2013), Jupiter’s bow shock and magnetopause is expected to be at least 8 - 12% further from Jupiter, if these trends continue.
PC-5 Waves and Low Energy Plasma in the Outer Magnetosphere
NASA Technical Reports Server (NTRS)
Gallanger, Dennis L.; Vaisberg, Oleg L.; Coffey, Victoria N.
1999-01-01
The Interball Tail Probe crosses the dayside magnetopause at low latitudes where it frequently measures low energy ion plasma (<100 eV) in the outer magnetosphere. We present the wave characteristics associated with this cold component.
NASA Astrophysics Data System (ADS)
Tu, W.; Cunningham, G.
2017-12-01
The relativistic electron flux in Earth's radiation belt are observed to drop by orders of magnitude on timescale of a few hours. Where do the electrons go during the dropout? This is one of the most important outstanding questions in radiation belt studies. Here we will study the 22 June 2015 dropout event which occurred during one of the largest geomagnetic storms in the last decade. A sudden and nearly complete loss of all the outer zone relativistic and ultra-relativistic electrons were observed after a strong interplanetary shock. The Last Closed Drift Shell (LCDS) calculated using the TS04 model reached as low as L*=3.7 during the shock and stay below L*=4 for 1 hour. The unusually low LCDS values suggest that magnetopause shadowing and the associated outward radial diffusion can contribute significantly to the observed dropout. In addition, Drift Orbit Bifurcation (DOB) has been suggested as an important loss mechanism for radiation belt electrons, especially when the solar wind dynamic pressure is high, but its relative importance has not been quantified. Here, we will model the June 2015 dropout event using a radial diffusion model that includes physical and event-specific inputs. First, we will trace electron drift shells based on TS04 model to identify the LCDS and bifurcation regions as a function of the 2nd adiabatic invariant (K) and time. To model magnetopause shadowing, electron lifetimes in our model will be set to electron drift periods at L*>LCDS. Electron lifetimes inside the bifurcation region have been estimated by Ukhorskiy et al. [JGR 2011, doi:10.1029/2011JA016623] as a function of L* and K, which will also be implemented in the model. This will be the first effort to include the DOB loss in a comprehensive radiation belt model. Furthermore, to realistically simulate outward radial diffusion, the new radial diffusion coefficients that are calculated based on the realistic TS04 model and include physical K dependence [Cunningham, JGR 2016, doi:10.1002/2015JA021981] will be achieved and included here. With these event-specific and physical model inputs, we will test how well the observed fast dropout during the June 2015 event can be reproduced by our model, and quantify the relative contribution of magnetopause shadowing, outward radial diffusion, and DOB to the fast electron depletion.
Magnetosheath jets: MMS observations of internal structures and jet interactions with ambient plasma
NASA Astrophysics Data System (ADS)
Plaschke, F.; Karlsson, T.; Hietala, H.; Archer, M. O.; Voros, Z.; Nakamura, R.; Magnes, W.; Baumjohann, W.; Torbert, R. B.; Russell, C. T.; Giles, B. L.
2017-12-01
The dayside magnetosheath downstream of the quasi-parallel bow shock is commonly permeated by high-speed jets. Under low IMF cone angle conditions, large scale jets alone (with cross-sectional diameters of over 2 Earth radii) have been found to impact the subsolar magnetopause once every 6 minutes - smaller scale jets occurring much more frequently. The consequences of jet impacts on the magnetopause can be significant: they may trigger local reconnection and waves, alter radiation belt electron drift paths, disturb the geomagnetic field, and potentially generate diffuse throat aurora at the dayside ionosphere. Although some basic statistical properties of jets are well-established, their internal structure and interactions with the surrounding magnetosheath plasma are rather unknown. We present Magnetospheric Multiscale (MMS) observations which reveal a rich jet-internal structure of high-amplitude plasma moment and magnetic field variations and associated currents. These variations/structures are generally found to be in thermal and magnetic pressure balance; they mostly (but not always) convect with the plasma flow. Small velocity differences between plasma and structures are revealed via four-spacecraft timing analysis. Inside a jet core region, where the plasma velocity maximizes, structures are found to propagate forward (i.e., with the jet), whereas backward propagation is found outside that core region. Although super-magnetosonic flows are detected by MMS in the spacecraft frame of reference, no fast shock is seen as the jet plasma is sub-magnetosonic with respect to the ambient magnetosheath plasma. Instead, the fast jet plasma pushes ambient magnetosheath plasma ahead of the jet out of the way, possibly generating anomalous sunward flows in the vicinity, and modifies the magnetic field aligning it with the direction of jet propagation.
Diffusion Region's Structure at the Subsolar Magnetopause with MMS Data
NASA Astrophysics Data System (ADS)
Cozzani, G.; Retino, A.; Califano, F.; Alexandrova, A.; Catapano, F.; Fu, H.; Le Contel, O.; Khotyaintsev, Y. V.; Vaivads, A.; Ahmadi, N.; Lindqvist, P. A.; Breuillard, H.; Mirioni, L.; Ergun, R.; Torbert, R. B.; Giles, B. L.; Russell, C. T.; Nakamura, R.; Moore, T. E.; Fuselier, S. A.; Mauk, B.; Burch, J.
2017-12-01
Magnetic reconnection occurs in the magnetosphere in thin current sheets, where a change in the magneticfield topology leads to rapid conversion of magnetic energy into ion and electron energy. To allow for magneticfield reconfiguration, both ions and electrons have to become demagnetized in the ion and electron diffusionregions, respectively. MMS spacecraft observations at inter-spacecraft separation ˜ 10 km (correspondingto ˜ 5 d_e at the magnetopause) allow, for the first time, to make multi-point studies of the structure of theelectron diffusion region (EDR). We present MMS observations on January,27th 2017 of one magnetopausecrossing close to the subsolar point showing several signatures consistent with an EDR encounter nearbya magnetic field minimum. The proximity to the reconnection site is further substantiated by the FirstOrder Taylor Expansion (FOTE) method applied to the magnetic field data. Observations suggest that allspacecraft passed through the EDR. Despite of the small inter-spacecraft separation (7 km), the observationsshow important differences among spacecraft. We focus on the comparison between MMS3 and MMS4 sincethey show the most striking differences. MMS3 measures a stronger parallel electron heating and highercurrent densities than MMS4. Both satellites observe crescent-shaped electron distribution functions on themagnetospheric side but MMS4 observes them over a longer time interval. These observations suggest thatMMS3 is passing closer to the reconnection site than MMS4. The differences between the observations by thetwo spacecraft indicate that the EDR is rather structured over scales of a few electron inertial lengths. Wealso evaluate the Generalized Ohm's law and find that the electric field is mainly balanced by the divergenceof the electron pressure tensor while the electron inertia term is negligible.
NASA Astrophysics Data System (ADS)
Lin, C. S.; Barfield, J. N.
1985-11-01
Storm-time Pc 5 wave events observed simultaneously by the GOES 2 and GOES 3 satellites in the afternoon sector during the 1-year interval of March 1979 to February 1980 are surveyed to learn the wave propagation. Essentially, all storm-time Pc 5 waves (approximately 93 percent) are found to propagate westward azimuthally with a velocity of 5 to 50 km/s and a wavelength of 1000 km to 9000 km (Only two of 30 events had eastward propagation, with a velocity of about 150 km/s). It is concluded that westward propagating waves are excited by ion drift instabilities associated with the ion ring current, and that the eastward propagating waves are excited by surface waves on the magnetopause through Kelvin-Helmholtz instability.
Sources and Losses of Ring Current Ions
NASA Technical Reports Server (NTRS)
Chen, Sheng-Hsien; Fok, Mei-Ching H.; Angeloupoulos, Vassilis
2010-01-01
During geomagnetic quiet times, in-situ measurements of ring current energetic ions (few to few tens of keVs) from THEMIS spacecraft often exhibit multiple ion populations at discrete energies that extend from the inner magnetosphere to the magnetopause at dayside or plasma sheet at nightside. During geomagnetic storm times, the levels of fluxes as well as the mean energies of these ions elevated dramatically and the more smooth distributions in energies and distances during quiet times are disrupted into clusters of ion populations with more confined spatial extends. This reveals local plasma heating processes that might have come into play. Several processes have been proposed. Magnetotail dipolarization, sudden enhancement of field-aligned current, local current disruptions, and plasma waves are possible mechanisms to heat the ions locally as well as strong convections of energetic ions directly from the magnetotail due to reconnections. We will examine two geomagnetic storms on October 11, 2008 and July 22, 2009 to reveal possible heating mechanisms. We will analyze in-situ plasma and magnetic field measurements from THEMIS, GOES, and DMSP for the events to study the ion pitch angle distributions and magnetic field perturbations in the auroral ionosphere and inner magnetosphere where the plasma heating processes occur.
The Kelvin-Helmhotz instability and thin current sheets in the MHD and Hall MHD formalisms
NASA Astrophysics Data System (ADS)
Chacon, L.; Knoll, D.
2005-12-01
Sheared magnetic fields and sheared flows co-exist in many space, astrophysical, and laboratory plasmas. In such situations the evolution of the Kelvin-Helmhotz instability (KHI) can have a significant impact on the topology of the magnetic field. In particular, it can result in current sheet thinning [2,3], which may allow Hall scales to become relevant and result in fast reconnection rates [1]. There are a number of interesting applications of this phenomena in the magnetosphere. We will discuss some of our recent work in this area [1,2,3] with special focus on Hall MHD effects on the KHI [1]. As an example, we will discuss the parameter regime in which the 2-D parallel KHI can evolve for sub-Alfvenic flows [1]. This may have important implication for dayside reconnection in the magnetopause. [1] Chacon, Knoll, and Finn, Phys. Lett. A, vol. 308, 2003 [2] Knoll and Chacon, PRL, vol. 88, 2002 [3] Brackbill and Knoll, PRL, vol. 86, 2001
NASA Astrophysics Data System (ADS)
Ridley, A. J.; De Zeeuw, D. L.; Manchester, W. B.; Hansen, K. C.
2006-01-01
We present results from a coupled magnetospheric and ionospheric simulation of a very strong solar wind shock and coronal mass ejection (CME). The solar wind drivers that are used for this simulation were output from the Sun-to-Earth MHD simulation of the Carrington-like CME reported in Manchester et al. [Manchester IV, W., Ridley, A., Gombosi, T., De Zeeuw, D. Modeling the Sun-Earth propagation of a very fast cme. Adv. Space Res. 38 (this issue), 2006]. We use the University of Michigan's BATS-R-US MHD code to model the global magnetosphere and coupled height integrated ionosphere. As the interplanetary shock swept over the magnetosphere, a wave is observed to propagate through the system. This is evident both in the magnetosphere and ionosphere. On the dayside, the magnetospheric bowshock is shown to bifurcate. The inner shock is pushed close to the inner boundary, where it "bounces" and propagates back outwards to meet the outer bowshock, which is propagating inwards. The inward and outward motion of the bowshocks can be observed propagating down the flanks of the magnetosphere. In the ionosphere, the wave is manifested as two pairs of field-aligned currents moving antisunward. The first pair is opposite of the normal region-1 current system, while the second pair is in the same sense as the normal region-1 system. The ionospheric potential shows a behavior consistent with the field-aligned current pattern, given the strong gradient in the conductance from the dayside to the nightside. As the magnetic cloud flows over the system, the entire magnetopause boundary is observed to move inside of geosynchronous orbit (6.6 Re). At the time of the most extreme solar wind conditions, the magnetopause boundary encounters the inner edge of the magnetospheric simulation domain. During the magnetic cloud, the ionospheric cross-polar cap potential is shown to match the Siscoe et al. [Siscoe, G.L., Erickson, G., Sonnerup, B., Maynard, N., Schoendorf, J., Siebert, K., Weimer, D., White, W., Wilson, G. Hill model of transpolar potential saturation: comparisons with MHD simulations. J. Geophys. Res. 107, 1321, doi:10.1029/2001JA009176, 2002] formulation relating the ionospheric potential to the solar wind and IMF conditions. It is shown that by using this formulation, the extremely large potentials observed in the MHD results are most likely saturated.
Properties of Magnetic Reconnection as a function of magnetic shear
NASA Astrophysics Data System (ADS)
Liu, Y.; Daughton, W. S.; Karimabadi, H.; Li, H.; Gary, S. P.; Guo, F.
2013-12-01
Observations of reconnection events at the Earth's magnetopause and in the solar wind show that reconnection occurs for a large range in magnetic shear angles extending to the very low shear limit 1. Here we report a fully kinetic study of the influence of the magnetic shear on details of reconnection such as its structure and rate. In previous work, we found that the electron diffusion region bifurcates into two or more distinct layers in regimes with weak magnetic shear2, a new feature that may be observable by NASA's up-coming Magnetospheric Multiscale mission. In this work, we have systematically extended the study to lower shear cases and found a new regime, where the reconnection electric field becomes much smaller and the properties of the reconnection changes significantly. We will discuss the role of various physics mechanisms in determining the observed scaling of the reconnection rate, including the dispersive properties of the waves in the system, the dissipation mechanisms and the tearing instability. 1 J. T. Goslings and T. D. Phan. APJL 763, L39, 2013 2 Yi-Hsin Liu et al. Phys. Rev. Lett. 110 , 265004, 2013
NASA Technical Reports Server (NTRS)
Lockwood, M.; Davis, C. J.; Smith, M. F.; Onsager, T. G.; Denig, W. F.
1994-01-01
We present an analysis of a cusp ion step observed between two poleward-moving events of enhanced ionospheric electron temperature. From the computed variation of the reconnection rate and the onset times of the associated ionospheric events, the distance between the satellite and the X-line can be estimated, but with a large uncertainty due to that in the determination of the low-energy cut-off of the ion velocity distribution function, f(E). Nevertheless, analysis of the time series f(t) shows the reconnection site to be on the dayside magnetopause, consistent with the pulsating cusp model, and the best estimate of the X-line location is 13 R(E) from the satellite. The ion precipitation is used to reconstruct the field-parallel part of the Cowley-D ion distribution function injected into the open low latitude boundary layer (LLBL) in the vicinity of the X-line. From this the Alfven speed, plasma density, magnetic field, parallel ion temperature, and flow velocity of the magnetosheath near the X-line can be derived.
Three-dimensional, ten-moment multifluid simulation of the solar wind interaction with Mercury
NASA Astrophysics Data System (ADS)
Dong, Chuanfei; Hakim, Ammar; Wang, Liang; Bhattacharjee, Amitava; Germaschewski, Kai; Dibraccio, Gina
2017-10-01
We investigate Mercury's magnetosphere by using Gkeyll ten-moment multifluid code that solves the continuity, momentum and pressure tensor equations of both protons and electrons, as well as the full Maxwell equations. Non-ideal effects like the Hall effect, inertia, and tensorial pressures are self-consistently embedded without the need to explicitly solve a generalized Ohm's law. Previously, we have benchmarked this approach in classical test problems like the Orszag-Tang vortex and GEM reconnection challenge problem. We first validate the model by using MESSENGER magnetic field data through data-model comparisons. Both day- and night-side magnetic reconnection are studied in detail. In addition, we include a mantle layer (with a resistivity profile) and a perfect conducting core inside the planet body to accurately represent Mercury's interior. The intrinsic dipole magnetic fields may be modified inside the planetary body due to the weak magnetic moment of Mercury. By including the planetary interior, we can capture the correct plasma boundary locations (e.g., bow shock and magnetopause), especially during a space weather event.
NASA Astrophysics Data System (ADS)
Huang, Zong-Ying; Pu, Zu-Yin; Xiao, Chi-Jie; Xong, Qui-Gang; Fu, Sui-Yan; Xie, Lun; Shi, Quan-Qi; Cao, Jin-Bin; Liu, Zhen-Xing; Shen, Cao; Shi, Jian-Kui; Lu, Li; Wang, Nai-Quan; Chen, Tao; Fritz, T.; Glasmeier, K.-H.; Daly, P.; Reme, H.
2004-04-01
From 11:10 to 11:40UT on January 26, 2001 the four Cluster II spacecraft were located in the duskside high latitude regions of the magnetosheath and magnetosheath boundary layer (MSBL). During this time Interval the interplanetary magnetic field (IMF) had a negative Bz component. A detailed study on the multiple flux ropes (MFRs) observed in this period is conducted in this paper. It is found that: (1) The multiple flux ropes in the high latitude MSBL appeared quasi-periodically with a repeated time period of about 78s, which is much shorter than the averaged occurring period (about 8-11min) of the flux transfer events (FTEs) at the dayside magnetopause (MP). (2) All the flux ropes observed in this event had a strong core magnetic field. The axial orientation of the most flux ropes is found to lie in the direction of the minimum magnetic field variance; a few flux ropes had their axes lying in the direction of the middle magnetic field variance; while for the remainders their principle axes could not be determined by the method of Principal Axis Analysis (PAA). The reason that causes this complexity relys on the different trajectories of the spacecraft passing through the flux ropes. (3) Each flux rope had a good corresponding HT frame of reference in which it was in a quasi-steady state. All flux ropes moved along the surface of the MP in a similar direction indicating that these flux ropes all came from the dawnside low latitude. Their radial scale is 1-2RE, comparable to the normal diameter of FTEs observed atthe dayside MP. (4) The energetic ions originated from the magnetosphere flowed out to the magnetosheath on the whole, while the solar wind plasma flowed into the magnetosphere along the axis of the flux ropes. The flux ropes offered channels for the transport of the solar wind plasma into the magnetosphere and the escaping of the magnetospheric plasma into the interplanetary space. (5) Each event was accompanied by an enhanced reversal of the dusk-dawn electric field, which could be identified to be the convective electric field in nature.
On the large-scale structure of the tail current as measured by THEMIS
NASA Astrophysics Data System (ADS)
Kalegaev, V. V.; Alexeev, I. I.; Nazarkov, I. S.; Angelopoulos, V.; Runov, A.
2014-11-01
The magnetic field structure and the spatial characteristics of the large-scale currents in the magnetospheric tail were studied during quiet and moderately disturbed geomagnetic conditions in 2009. The magnetic field of the currents other than the tail current was calculated in terms of a paraboloid model of the Earth’s magnetosphere, A2000, and was subtracted from measurements. It was found on the base of obtained tail current magnetic field radial distribution that the inner edge of the tail current sheet is located in the night side magnetosphere, at distances of about 10 RE and of about 7 RE during quiet and disturbed periods respectively. During the disturbance of February 14, 2009 (Dstmin ∼ -35 nT), the Bx and the Bz component of the tail current magnetic field near its inner edge were about 60 nT, and -60 nT that means that strong cross-tail current have been developed. The tail current parameters at different time moments during February 14, 2009 have been estimated. Solar wind conditions during this event were consistent with those during moderate magnetic storms with minimum Dst of about -100 nT. However, the magnetospheric current systems (magnetopause and cross-tail currents) were located at larger geocentric distances than typical during the 2009 extremely quiet epoch and did not provide the expected Dst magnitude. Very small disturbance on the Earth’s surface was detected consistent with an “inflated” magnetosphere.
Cluster observations of ion dispersion discontinuities in the polar cusp
NASA Astrophysics Data System (ADS)
Escoubet, C. P.; Berchem, J.; Pitout, F.; Richard, R. L.; Trattner, K. J.; Grison, B.; Taylor, M. G.; Masson, A.; Dunlop, M. W.; Dandouras, I. S.; Reme, H.; Fazakerley, A. N.
2009-12-01
The reconnection between the interplanetary magnetic field (IMF) and the Earth’s magnetic field is taking place at the magnetopause on magnetic field lines threading through the polar cusp. When the IMF is southward, reconnection occurs near the subsolar point, which is magnetically connected to the equatorward boundary of the polar cusp. Subsequently the ions injected through the reconnection point precipitate in the cusp and are dispersed poleward. If reconnection is continuous and operates at constant rate, the ion dispersion is smooth and continuous. On the other hand if the reconnection rate varies, we expect interruption in the dispersion forming energy steps or staircase. Similarly, multiple entries near the magnetopause could also produce steps at low or mid-altitude when a spacecraft is crossing subsequently the field lines originating from these multiple sources. In addition, motion of the magnetopause induced by solar wind pressure changes or erosion due to reconnection can also induce a motion of the polar cusp and a disruption of the ions dispersion observed by a spacecraft. Cluster with four spacecraft following each other in the mid-altitude cusp can be used to distinguish between these “temporal” and “spatial” effects. We will present a cusp crossing with two spacecraft, separated by around two minutes. The two spacecraft observed a very similar dispersion with a step in energy in its centre and two other dispersions poleward. We will show that the steps could be temporal (assuming that the time between two reconnection bursts corresponds to the time delay between the two spacecraft) but it would be a fortuitous coincidence. On the other hand the steps and the two poleward dispersions could be explained by spatial effects if we take into account the motion of the open-closed boundary between the two spacecraft crossings.
The Polar Cusp Observed by Cluster Under Constant Imf-Bz Southward
NASA Astrophysics Data System (ADS)
Escoubet, C. P.; Berchem, J.; Pitout, F.; Trattner, K. J.; Richard, R. L.; Taylor, M. G.; Soucek, J.; Grison, B.; Laakso, H. E.; Masson, A.; Dunlop, M. W.; Dandouras, I. S.; Reme, H.; Fazakerley, A. N.; Daly, P. W.
2011-12-01
The Earth's magnetic field is influenced by the interplanetary magnetic field (IMF), specially at the magnetopause where both magnetic fields enter in direct contact and magnetic reconnection can be initiated. In the polar regions, the polar cusp that extends from the magnetopause down to the ionosphere is also directly influenced. The reconnection not only allow ions and electrons from the solar wind to enter the polar cusp but also give an impulse to the magnetic field lines threading the polar cusp through the reconnection electric field. A dispersion in energy of the ions is subsequently produced by the motion of field lines and the time-of-flight effect on down-going ions. If reconnection is continuous and operates at constant rate, the ion dispersion is smooth and continuous. On the other hand if the reconnection rate varies, we expect interruption in the dispersion forming energy steps or staircase. Similarly, multiple entries near the magnetopause could also produce steps at low or mid-altitude when a spacecraft is crossing subsequently the field lines originating from these multiple sources. Cluster with four spacecraft following each other in the mid-altitude cusp can be used to distinguish between these "temporal" and "spatial" effects. We will show two Cluster cusp crossings where the spacecraft were separated by a few minutes. The energy dispersions observed in the first crossing were the same during the few minutes that separated the spacecraft. In the second crossing, two ion dispersions were observed on the first spacecraft and only one of the following spacecraft, about 10 min later. The detailed analysis indicates that these steps result from spatial structures.
The polar cusp: Cluster observations and simulations
NASA Astrophysics Data System (ADS)
Escoubet, C. Philippe; Berchem, Jean; Pitout, Frederic; Richard, Robert; Trattner, Karlheinz; Grison, Benjamin; Taylor, Matthew; Laakso, Harri; Masson, Arnaud; Dunlop, Malcolm; Dandouras, Iannis; Reme, Henri; Fazakerley, Andrew N.
The polar cusp, together with the magnetopause, are the magnetospheric regions in direct contact with the shocked solar wind flowing continuously from the Sun. Therefore any changes in the solar wind plasma reaching the magnetopause induce changes in the polar cusp with a delay of a few minutes to a few tens of minutes. For instance a change of the interplanetary magnetic field (IMF) direction from South to North will displace the polar cusp poleward and at the same time will change the injection of ions from the subsolar magnetopause to the magnetotail lobes. In the mid and low-altitude cusp a spacecraft will then observe a reversal of the dispersion in energy of the ions. We will use Cluster string of pearl configuration in the mid-altitude polar cusp to investigate the temporal variations of ion injections in the polar cusp. In the period from July to September, the Cluster spacecraft follow each other in the mid-altitude cusp with a delay of few minutes up to one hour. A few examples of cusp crossings will be presented to illustrate the influence of solar wind changes in the polar cusp. We will show that a sudden change in the IMF direction from South to North produces a double cusp crossing. By opposition, a change of the IMF from North to South produces a temporal injection on the equatorward side of the cusp and an erosion of the magnetosphere. Finally, we will show that when the interplanetary conditions are stable with the IMF pointing Northward or Southward for more than 10 min the polar cusp ion dispersion stays constant. MHD and large-scale particle simulations will also be used to complement the Cluster data.
How Much Flux does a Flux Transfer Event Transfer?
NASA Astrophysics Data System (ADS)
Fear, R. C.; Trenchi, L.; Coxon, J.; Milan, S. E.
2016-12-01
Flux transfer events are bursts of reconnection at the dayside magnetopause, which give rise to characteristic signatures that are observed by a range of magnetospheric/ionospheric instrumentation. Spacecraft situated near the magnetopause observe a bipolar variation in the component of the magnetic field normal to the magnetopause (BN); auroral instrumentation (either ground- or space-based) observe poleward moving auroral forms which indicate the convection of newly-opened flux into the polar cap, and ionospheric radars similarly observe pulsed ionospheric flows or poleward moving radar auroral forms. One outstanding problem is the fact that there is a fundamental mismatch between the estimates of the flux that is opened by each flux transfer event - in other words, their overall significance in the Dungey cycle. Spacecraft-based estimates of the flux content of individual FTEs correspond to each event transferring flux equivalent to approximately 1% of the open flux in the magnetosphere, whereas studies based on global-scale radar and auroral observations suggest this figure could be more like 10%. In the former case, flux transfer events would be a minor detail in the Dungey cycle, but in the latter they could be its main driver. We present observations of a conjunction between flux transfer event signatures observed by the Cluster spacecraft, and pulsed ionospheric flows observed by the SuperDARN network on the 8th February 2002. Over the course of an hour, a similar number of FTE signatures were observed by Cluster (at 13 MLT) and the Prince George radar (at 7 MLT). We argue that the reason for the existing mismatch in flux estimates is that implicit assumptions about flux transfer event structure lead to a major underestimate of the flux content based on spacecraft observations. If these assumptions are removed, a much better match is found.
Ion dynamics in the magnetospheric flanks of Mercury
NASA Astrophysics Data System (ADS)
Aizawa, S.; Delcourt, D.; Terada, N.
2017-12-01
Because of a large velocity shear in the flanks of Mercury's magnetosphere, Kelvin-Helmholtz (KH) instability is expected to develop and to play a role in mass and momentum transport across the magnetopause. Using single particle simulations in field configurations obtained from MHD simulations, we investigate the dynamics of ions in this region. We focus on heavy ions of planetary origin (e.g., Na+, K+, Mg+) that may be found on either side of the magnetopause, due to the ionization of exospheric neutrals. Because characteristic spatial and temporal scales of KH instability at Mercury are comparable to or smaller than typical ion scales, we show that under such conditions the guiding center approximation is invalid and that planetary ions may be transported in a non-adiabatic (magnetic moment violation) manner. In this study, we focus on the effect of the electric field that develops within KH vortices. We show that the intensification rather than the change of orientation of this electric field is responsible for large (up to hundreds of eVs or a few keVs) energization of heavy planetary ions. This energization occurs systematically for particles with low initial energies in the perpendicular direction, the energy realized being of the order of the energy corresponding to the maximum ExB drift speed, ɛmax, in a like manner to a pickup ion process. It is also found that particles that have initial energies comparable to ɛmax may be decelerated depending upon gyration phase. Finally, we find that particles with initial perpendicular energies much larger than ɛmax are little affected during transport through KH vortices. We suggest that the development of KH instabilities in Mercury's magnetospheric flanks may lead to significant ion energization and pitch angle diffusion, and may thus play a prominent role in plasma mixing at the magnetopause.
Radio Sounding of the Magnetopause from the Ground (NIRFI Part)
2000-04-06
subsolar point sounding from SURA location leads to oblique sounding wave propagation through the ionosphere when penetration condition requires less... ecliptic plane (along the direction of solar wind sector boundaries, morning hours) • near the subsolar point (along the solar wind velocity, noon
On the Occurrence of Magnetic Reconnection Along the Dawn and Dusk Magnetopause
NASA Astrophysics Data System (ADS)
Petrinec, S. M.; Burch, J. L.; Fuselier, S. A.; Trattner, K. J.; Gomez, R. G.; Giles, B. L.; Pollock, C.; Russell, C. T.; Strangeway, R. J.
2017-12-01
Magnetic reconnection is recognized as the primary process by which bulk solar wind plasma is able to enter the magnetosphere. The amount of plasma and energy transport is affected by the reconnection rate along the reconnection line as well as the spatial extent of the reconnection line. These parameters are in turn influenced by parameters such as the orientation of the interplanetary magnetic field (IMF), the dipole tilt angle of the Earth, and the local change in plasma beta between the magnetosheath and magnetosphere. Local variations of magnetosheath parameters are influenced by the character of the standing bow shock upstream of the observing location; i.e., there is greater variation downstream of the quasi-parallel shock than downstream of the quasi-perpendicular shock. Observations from the MMS mission are used to examine the occurrence of quasi-steady magnetic reconnection along the dawn and dusk regions of the magnetopause, and to determine the influence of local magnetosheath variations on the characteristics of the extended reconnection line.
NASA Technical Reports Server (NTRS)
Daly, P. W.; Rijnbeek, R. P.; Sckopke, N.; Russell, C. T.; Saunders, M. A.
1984-01-01
The distribution of energetic ion anisotropies in flux transfer events (FTEs) about the dayside magnetopause has been determined for ISEE 2 crossings of the boundary in 1977 and 1978. When the events are sorted according to the sign of the east-west component of the magnetic field in the magnetosphere, a clear correlation is observed on the northern morningside. When the field is eastward, particles flow antiparallel to the field, implying field line connection to the Northern Hemisphere; when the field is westward, the opposite is true. On the afternoonside, the particle anisotropies are correlated with latitude. Explanations for this pattern are discussed which involve FTE formation at low latitudes with subsequent motion at a velocity given by the vector superposition of the Alfven velocity from the release of magnetic tension and the magnetosheath bulk flow velocity. Evidence that the geomagnetic and not the geocentric solar magnetospheric equator is the source of FTEs is considered.
NASA Technical Reports Server (NTRS)
Cohen, I. J.; Mauk, B. H.; Anderson, B. J.; Westlake, J. H.; Sibeck, David Gary; Giles, Barbara L.; Pollock, C. J.; Turner, D. L.; Fennell, J. F.; Blake, J. B.;
2016-01-01
Energetic (greater than tens of keV) magnetospheric particle escape into the magnetosheath occurs commonly, irrespective of conditions that engender reconnection and boundary-normal magnetic fields. A signature observed by the Magnetospheric Multiscale (MMS) mission, simultaneous monohemispheric streaming of multiple species (electrons, H+, Hen+), is reported here as unexpectedly common in the dayside, dusk quadrant of the magnetosheath even though that region is thought to be drift-shadowed from energetic electrons. This signature is sometimes part of a pitch angle distribution evolving from symmetric in the magnetosphere, to asymmetric approaching the magnetopause, to monohemispheric streaming in the magnetosheath. While monohemispheric streaming in the magnetosheath may be possible without a boundary-normal magnetic field, the additional pitch angle depletion, particularly of electrons, on the magnetospheric side requires one. Observations of this signature in the dayside dusk sector imply that the static picture of magnetospheric drift-shadowing is inappropriate for energetic particle dynamics in the outer magnetosphere.
NASA Astrophysics Data System (ADS)
Phan, T. D.; Shay, M. A.; Haggerty, C. C.; Gosling, J. T.; Eastwood, J. P.; Fujimoto, M.; Malakit, K.; Mozer, F. S.; Cassak, P. A.; Oieroset, M.; Angelopoulos, V.
2016-09-01
We report a Time History of Events and Macroscale Interactions during Substorms (THEMIS-D) spacecraft crossing of a magnetopause reconnection exhaust ~9 ion skin depths (di) downstream of an X line. The crossing was characterized by ion jetting at speeds substantially below the predicted reconnection outflow speed. In the magnetospheric inflow region THEMIS detected (a) penetration of magnetosheath ions and the resulting flows perpendicular to the reconnection plane, (b) ion outflow extending into the magnetosphere, and (c) enhanced electron parallel temperature. Comparison with a simulation suggests that these signatures are associated with the gyration of magnetosheath ions onto magnetospheric field lines due to the shift of the flow stagnation point toward the low-density magnetosphere. Our observations indicate that these effects, ~2-3 di in width, extend at least 9 di downstream of the X line. The detection of these signatures could indicate large-scale proximity of the X line but do not imply that the spacecraft was upstream of the electron diffusion region.
NASA Technical Reports Server (NTRS)
Mandt, M. E.; Lee, L. C.
1991-01-01
The high correlation of Pc 1 events with magnetospheric compressions is known. A mechanism is proposed which leads to the generation of Pc 1 waves. The interaction of a dynamic pressure pulse with the earth's bow shock leads to the formation of a weak fast-mode shock propagating into the magnetoshealth. The shock wave can pass right through a tangential discontinuity (magnetopause) and into the magnetosphere, without disturbing either of the structures. In a quasiperpendicular geometry, the shock wave exhibits anisotropic heating. This anisotropy drives unstable ion-cyclotron waves which can contribute to the generation of the Pc 1 waves which are detected. The viability of the mechanism is demonstrated with simulations. This mechanism could explain the peak in the occurrence of observed Pc 1 waves in the postnoon sector where a field-aligned discontinuity in the solar wind would most often be parallel to the magnetopause surface due to the average Parker-spiral magnetic-field configuration.
Magnetosheath Propagation Time of Solar Wind Directional Discontinuities
NASA Astrophysics Data System (ADS)
Samsonov, A. A.; Sibeck, D. G.; Dmitrieva, N. P.; Semenov, V. S.; Slivka, K. Yu.; Å afránkova, J.; Němeček, Z.
2018-05-01
Observed delays in the ground response to solar wind directional discontinuities have been explained as the result of larger than expected magnetosheath propagation times. Recently, Samsonov et al. (2017, https://doi.org/10.1002/2017GL075020) showed that the typical time for a southward interplanetary magnetic field (IMF) turning to propagate across the magnetosheath is 14 min. Here by using a combination of magnetohydrodynamic simulations, spacecraft observations, and analytic calculations, we study the dependence of the propagation time on solar wind parameters and near-magnetopause cutoff speed. Increases in the solar wind speed result in greater magnetosheath plasma flow velocities, decreases in the magnetosheath thickness and, as a result, decreases in the propagation time. Increases in the IMF strength result in increases in the magnetosheath thickness and increases in the propagation time. Both magnetohydrodynamic simulations and observations suggest that propagation times are slightly smaller for northward IMF turnings. Magnetosheath flow deceleration must be taken into account when predicting the arrival times of solar wind structures at the dayside magnetopause.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doss, C. E.; Cassak, P. A., E-mail: Paul.Cassak@mail.wvu.edu; Swisdak, M.
2016-08-15
We investigate magnetic reconnection in systems simultaneously containing asymmetric (anti-parallel) magnetic fields, asymmetric plasma densities and temperatures, and arbitrary in-plane bulk flow of plasma in the upstream regions. Such configurations are common in the high-latitudes of Earth's magnetopause and in tokamaks. We investigate the convection speed of the X-line, the scaling of the reconnection rate, and the condition for which the flow suppresses reconnection as a function of upstream flow speeds. We use two-dimensional particle-in-cell simulations to capture the mixing of plasma in the outflow regions better than is possible in fluid modeling. We perform simulations with asymmetric magnetic fields,more » simulations with asymmetric densities, and simulations with magnetopause-like parameters where both are asymmetric. For flow speeds below the predicted cutoff velocity, we find good scaling agreement with the theory presented in Doss et al. [J. Geophys. Res. 120, 7748 (2015)]. Applications to planetary magnetospheres, tokamaks, and the solar wind are discussed.« less
NASA Technical Reports Server (NTRS)
Gurnett, Donald A.; Menietti, J. D.
2003-01-01
The project has resulted in four separate investigations, which are each in various stages of publication in the refereed scientific journals. The first investigation was of the generation of electrostatic electron cyclotron waves observed by the Polar spacecraft throughout the auroral regions, dayside cusp, and polar magnetosphere. We have since discovered that these waves are also present within the magnetopause and magnetosheath, which is one of the topics of a second study, entitled: 'Polar observations of plasma waves in and near the dayside magnetopause/magnetosheath.' A third study of plasma waves focussed on kilometric continuum (KC) emission. This work is reported in a paper entitled 'Near-source and Remote Observations of Kilometric Continuum Radiation From Multi-spacecraft Observations'.The final investigation of this program concerns the possible transverse heating of auroral ions by impulsive wave structures. We summarize that substantial transverse ion heating has already occurred at lower altitudes. Abstracts of the above four studies are included in the Appendix to this final report.
NASA Astrophysics Data System (ADS)
Shuster, J. R.; Torbert, R. B.; Vaith, H.; Argall, M. R.; Li, G.; Chen, L. J.; Ergun, R. E.; Lindqvist, P. A.; Marklund, G. T.; Khotyaintsev, Y. V.; Russell, C. T.; Magnes, W.; Le Contel, O.; Pollock, C. J.; Giles, B. L.
2015-12-01
The electron drift instruments (EDIs) onboard each MMS spacecraft are designed with large geometric factors (~0.01cm2 str) to facilitate detection of weak (~100 nA) electron beams fired and received by the two gun-detector units (GDUs) when EDI is in its "electric field mode" to determine the local electric and magnetic fields. A consequence of the large geometric factor is that "ambient mode" electron flux measurements (500 eV electrons having 0°, 90°, or 180° pitch angle) can vary depending on the orientation of the EDI instrument with respect to the magnetic field, a nonphysical effect that requires a correction. Here, we present determinations of the θ- and ø-dependent correction factors for the eight EDI GDUs, where θ (ø) is the polar (azimuthal) angle between the GDU symmetry axis and the local magnetic field direction, and compare the corrected fluxes with those measured by the fast plasma instrument (FPI). Using these corrected, high time resolution (~1,000 samples per second) ambient electron fluxes, combined with the unprecedentedly high resolution 3D electric field measurements taken by the spin-plane and axial double probes (SDP and ADP), we are equipped to accurately detect electron-scale current layers and electric field waves associated with the non-Maxwellian (anisotropic and agyrotropic) particle distribution functions predicted to exist in the reconnection diffusion region. We compare initial observations of the diffusion region with distributions and wave analysis from PIC simulations of asymmetric reconnection applicable for modeling reconnection at the Earth's magnetopause, where MMS will begin Science Phase 1 as of September 1, 2015.
Physics of Boundaries and their Interactions in Space Plasmas
NASA Technical Reports Server (NTRS)
Omidi, Nojan; Karimabadi, Homayoun; Krauss-Varban, Dietmar
1998-01-01
This final report describes a brief summary of our accomplishments during the complete contract period. Traditionally, due to computational limitations, it has been impossible to obtain a global view of the magnetosphere on ion time and spatial scales. As a result, kinetic simulations have concentrated on the local structure of different magnetospheric discontinuities and boundaries. However, due to the emergence of low cost desktop superconductors, as well as by taking full advantage of latest advances in data mining and visualization technology, we were able to bypass our planned (proposed) regional simulations and proceed to large-scale 3-D and 2-D global hybrid simulations of the magnetosphere. As a result, although we are only finishing the second year of the proposed activity, much of the original scientific objectives have been surpassed and new avenues of investigation have been opened. Such simulations have led us to possible explanations of some long-standing issues in magnetospheric physics. They have also enabled us to make a number of important discoveries/predictions, which need to be looked for in satellite data. Examples include: (1) the finding that the bow shock can become unstable to the Kelvin-Helmholtz (KH;) (2) the discovery of a mechanism for intermittent reconnection due to ion physics which may be relevant to the explanation of the recurrence rate of flux transfer events (FTEs;) and (3) the finding that the current sheet in the near-Earth magnetotail region can become unstable to KH with detectable, unique ionospheric signatures. Further, we demonstrated a viable mechanism for the onset of reconnection at the magnetopause, examined the detailed structure of the boundary layer incorporating curvature effects, and provided an explanation for the large core fields observed within FTEs as well as flux ropes in the magnetotail.
Physics of Boundaries and their Interactions in Space Plasmas
NASA Technical Reports Server (NTRS)
Omidi, Nojan; Karimabadi, Homayoun; Krauss-Varban, Dietmar
1998-01-01
This final report describes a brief summary of our accomplishments during the complete contract period. Traditionally, due to computational limitations, it has been impossible to obtain a global view of the magnetosphere on ion time and spatial scales. As a result, kinetic-simulations have concentrated on the local structure of different magnetospheric discontinuities and boundaries. However, due to the emergence of low cost supercomputers, as well as by taking full advantage of latest advances in data mining and visualization technology, we were able to bypass our planned (proposed) regional simulations and proceed to large-scale 3-D and 2-D global hybrid simulations of the magnetosphere. As a result, although we are only finishing the second year of the proposed activity, much of the original scientific objectives have been surpassed and new avenues of investigation have been opened. Such simulations have led us to possible explanations of some long-standing issues in magnetospheric physics. They have also enables us to make a number of important discoveries predictions, which need to be looked for in satellite data. Examples include the finding that the bow shock can become unstable to the Kelvin-Helmholtz (KH), (2) the discovery of a mechanism for intermittent reconnection due to ion physics which may be relevant to the explanation of the recurrence rate of flux transfer events (FTEs), and (3) this finding that the current sheet in the near-Earth magnetotail region can become unstable to KH with detectable, unique ionospheric signatures. Further, we demonstrated a viable mechanism for the onset of reconnection at the magnetopause, examined the detailed structure of the boundary layer incorporating curvature effects, and provided an explanation for the large core fields observed within FTEs as well as flux ropes in the magnetotail.
MHD-waves in the geomagnetic tail: A review
NASA Astrophysics Data System (ADS)
Leonovich, Anatoliy; Mazur, Vitaliy; Kozlov, Daniil
2015-03-01
This article presents the review of experimental and theoretical studies on ultra-lowfrequency MHD oscillations of the geomagnetic tail. We consider the Kelvin-Helmholtz instability at the magnetopause, oscillations with a discrete spectrum in the "magic frequencies"range, the ballooning instability of coupled Alfvén and slow magnetosonic waves, and "flapping" oscillations of the current sheet of the geomagnetic tail. Over the last decade, observations from THEMIS, CLUSTER and Double Star satellites have been of great importance for experimental studies. The use of several spacecraft allows us to study the structure of MHD oscillations with high spatial resolution. Due to this, we can make a detailed comparison between theoretical results and those obtained from multi-spacecraft studies. To make such comparisons in theoretical studies, in turn, we have to use the numerical models closest to the real magnetosphere.
Localized Oscillatory Energy Conversion in Magnetopause Reconnection
NASA Astrophysics Data System (ADS)
Burch, J. L.; Ergun, R. E.; Cassak, P. A.; Webster, J. M.; Torbert, R. B.; Giles, B. L.; Dorelli, J. C.; Rager, A. C.; Hwang, K.-J.; Phan, T. D.; Genestreti, K. J.; Allen, R. C.; Chen, L.-J.; Wang, S.; Gershman, D.; Le Contel, O.; Russell, C. T.; Strangeway, R. J.; Wilder, F. D.; Graham, D. B.; Hesse, M.; Drake, J. F.; Swisdak, M.; Price, L. M.; Shay, M. A.; Lindqvist, P.-A.; Pollock, C. J.; Denton, R. E.; Newman, D. L.
2018-02-01
Data from the NASA Magnetospheric Multiscale mission are used to investigate asymmetric magnetic reconnection at the dayside boundary between the Earth's magnetosphere and the solar wind. High-resolution measurements of plasmas and fields are used to identify highly localized ( 15 electron Debye lengths) standing wave structures with large electric field amplitudes (up to 100 mV/m). These wave structures are associated with spatially oscillatory energy conversion, which appears as alternatingly positive and negative values of J · E. For small guide magnetic fields the wave structures occur in the electron stagnation region at the magnetosphere edge of the electron diffusion region. For larger guide fields the structures also occur near the reconnection X-line. This difference is explained in terms of channels for the out-of-plane current (agyrotropic electrons at the stagnation point and guide field-aligned electrons at the X-line).
NASA Astrophysics Data System (ADS)
Huang, Y. C.; Lyu, L. H.
2014-12-01
Magnetic reconfiguration/reconnection plays an important role on energy and plasma transport in the space plasma. It is known that magnetic field lines on two sides of a tangential discontinuity can connect to each other only at a neutral point, where the strength of the magnetic field is equal to zero. Thus, the standard reconnection picture with magnetic field lines intersecting at the neutral point is not applicable to the component reconnection events observed at the magnetopause and in the solar corona. In our early study (Yu, Lyu, & Wu, 2011), we have shown that annihilation of magnetic field near a thin current sheet can lead to the formation of normal magnetic field component (normal to the current sheet) to break the frozen-in condition and to accelerate the reconnected plasma flux, even without the presence of a neutral point. In this study, we examine whether or not a generation, rather than annihilation, of magnetic field in a nun-uniform thin current sheet can also lead to reconnection of plasma flux. Our results indicate that a non-uniform enhancement of electric current can yield formation of field-aligned currents. The normal-component magnetic field generated by the field-aligned currents can yield reconnection of plasma flux just outside the current-enhancement region. The particle motion that can lead to non-uniform enhancement of electric currents will be discussed.
The Association of High-Latitude Dayside Aurora With NBZ Field-Aligned Currents
NASA Astrophysics Data System (ADS)
Carter, J. A.; Milan, S. E.; Fogg, A. R.; Paxton, L. J.; Anderson, B. J.
2018-05-01
The relationship between auroral emissions in the polar ionosphere and the large-scale flow of current within the Earth's magnetosphere has yet to be comprehensively established. Under northward interplanetary magnetic field (IMF) conditions, magnetic reconnection occurs at the high-latitude magnetopause, exciting two reverse lobe convection cells in the dayside polar ionosphere and allowing ingress of solar wind plasma to form an auroral "cusp spot" by direct impact on the atmosphere. It has been hypothesized that a second class of NBZ auroras, High-latitude Dayside Aurora, are produced by upward field-aligned currents associated with lobe convection. Here we present data from the Special Sensor Ultraviolet Spectrographic Imager instrument and from the Active Magnetosphere and Planetary Electrodynamics Response Experiment, from January 2010 to September 2013, in a large statistical study. We reveal a northward IMF auroral phenomenon that is located adjacent to the cusp spot and that is colocated with a region of upward electrical current in the clockwise-rotating lobe cell. The emission only occurs in the sunlit summer hemisphere, demonstrating the influence of the conductance of the ionosphere on current closure. In addition, fast solar wind speed is required for this emission to be bright. The results show that dayside auroral emission is produced by IMF-magnetosphere electrodynamic coupling, as well as by direct impact of the atmosphere by the solar wind, confirming the association of High-latitude Dayside Aurora with NBZ currents.
NASA Astrophysics Data System (ADS)
Kirpichev, Igor; Antonova, Elizaveta
We analyzed the characteristics of the plasma region surrounding the Earth at the geocentric distances between 6 and 15 Re using the data of THEMIS mission. To calculate plasma pressure including ion and electron contributions we have used the particle spectra measured by ESA and SST instruments. The magnetic field was obtained from the FGM magnetometer data. We take into account the daytime compression of the magnetic field lines and the shift of the minimal value of the magnetic field to higher latitudes. The obtained averaged distributions of plasma pressure, of pressure anisotropy, and of magnetic field near the equatorial plane showed the presence of a ring-shaped structure surrounding the Earth at the geocentric distances till the dayside magnetopause near noon. Plasma pressure gradients in the analyzed region have mainly earthward direction which means the existence of westward directed transverse currents. We obtain the values of such current densities and integral currents along field lines during quite geomagnetic conditions suggesting the validity of the condition of the magnetostatic equilibrium. We show that transverse currents in the high latitude magnetosphere have the ring-like structure forming the high latitude continuation of the ordinary ring current. The obtained data base is used for the creation of the model of the pressure distribution during different IMF and solar wind conditions.
The Earth's magnetosphere modeling and ISO standard
NASA Astrophysics Data System (ADS)
Alexeev, I.
The empirical model developed by Tsyganenko T96 is constructed by minimizing the rms deviation from the large magnetospheric data base Fairfield et al 1994 which contains Earth s magnetospheric magnetic field measurements accumulated during many years The applicability of the T96 model is limited mainly by quiet conditions in the solar wind along the Earth orbit But contrary to the internal planet s field the external magnetospheric magnetic field sources are much more time-dependent A reliable representation of the magnetic field is crucial in the framework of radiation belt modelling especially for disturbed conditions The last version of the Tsyganenko model has been constructed for a geomagnetic storm time interval This version based on the more accurate and physically consistent approach in which each source of the magnetic field would have its own relaxation timescale and a driving function based on an individual best fit combination of the solar wind and IMF parameters The same method has been used previously for paraboloid model construction This method is based on a priori information about the global magnetospheric current systems structure Each current system is included as a separate block module in the magnetospheric model As it was shown by the spacecraft magnetometer data there are three current systems which are the main contributors to the external magnetospheric magnetic field magnetopause currents ring current and tail current sheet Paraboloid model is based on an analytical solution of the Laplace
Distinct sources of particles near the cusp and the dusk flank of the magnetosphere
NASA Astrophysics Data System (ADS)
Escoubet, C. P.; Grison, B.; Berchem, J.; Trattner, K. J.; Lavraud, B.; Pitout, F.; Soucek, J.; Richard, R. L.; Laakso, H. E.; Masson, A.; Dunlop, M.; Dandouras, I. S.; Rème, H.; Fazakerley, A. N.; Daly, P. W.
2015-12-01
At the magnetopause, the location of the magnetic reconnection sites depends on the orientation of the interplanetary magnetic field (IMF) in the solar wind: on the dayside magnetosphere for an IMF southward, on the lobes for an IMF northward and on the flanks for an IMF in the East-West direction. Since most of observations of reconnection events have sampled a limited region of space simultaneously it is still not yet know if the reconnection line is extended over large regions of the magnetosphere or if is patchy and made of many reconnection lines. We report a Cluster crossing on 5 January 2002 near the exterior cusp on the southern dusk side where we observe multiple sources of reconnection/injections. The IMF was mainly azimuthal (IMF-By around -5 nT), the solar wind speed lower than usual around 280 km/s with the density of order 5 cm-3. The four Cluster spacecraft had an elongated configuration near the magnetopause. C4 was the first spacecraft to enter the cusp around 19:52:04 UT, followed by C2 at 19:52:35 UT, C1 at 19:54:24 UT and C3 at 20:13:15 UT. C4 and C1 observed two ion energy dispersions at 20:10 UT and 20:40 UT and C3 at 20:35 UT and 21:15 UT. Using the time of flight technique on the upgoing and downgoing ions, which leads to energy dispersions, we obtain distances of the ion sources between 14 and 20 RE from the spacecraft. The slope of the ion energy dispersions confirmed these distances. Using Tsyganenko model, we find that these sources are located on the dusk flank, past the terminator. The first injection by C3 is seen at approximately the same time as the 2nd injection on C1 but their sources at the magnetopause were separated by more than 7 RE. This would imply that two distinct sources were active at the same time on the dusk flank of the magnetosphere. In addition, a flow reversal was observed at the magnetopause on C4 which would be an indication that reconnection is also taking place near the exterior cusp quasi-simultaneously. A three-dimensional global magnetohydrodynamic (MHD) simulation will be used to determine the global topology of the magnetic field during the event.
NASA Astrophysics Data System (ADS)
Slavin, James
M. H. Acũa (2), B. J. Anderson (3), D. N. Baker (4), M. Benna (2), S. A. Boardsen (1), G. n Gloeckler (5), R. E. Gold (3), G. C. Ho (3), H. Korth (3), S. M. Krimigis (3), S. A. Livi (6), R. L. McNutt Jr. (3), J. M. Raines (5), M. Sarantos (1), D. Schriver (7), S. C. Solomon (8), P. Travnicek (9), and T. H. Zurbuchen (5) (1) Heliophysics Science Division, NASA GSFC, Greenbelt, MD 20771, USA, (2) Solar System Exploration Division, NASA GSFC, Greenbelt, MD 20771, USA, (3) The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA, (4) Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303, USA, (5) Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48109, USA (6) Southwest Research Institute, San Antonio, TX 28510, USA, (7) Institute for Geophysics and Planetary Physics, University of California, Los Angeles, CA 90024, USA, (8) Department of Terrestrial Magnetism, Carnegie Institution of Washington, DC 20015, USA, and (9) Institute of Atmospheric Physics, Prague, Czech Republic, 14131 MESSENGER's 14 January 2008 encounter with Mercury has provided new observations of the solar wind interaction with this planet. Here we report initial results concerning this miniature magnetosphere's response to the north-south component of the interplanetary magnetic field (IMF). This is the component of the IMF that is expected to exert the greatest influence over the structure of the magnetopause and the processes responsible for energy transfer into the magnetosphere. The IMF was northward immediately prior to and following the passage of the MESSENGER spacecraft through this small magnetosphere. However, several-minute episodes of southward IMF were observed in the magnetosheath during the inbound portion of the encounter. Evidence for reconnection at the dayside magnetopause in the form of welldeveloped flux transfer events (FTEs) was observed in the magnetosheath following some of these southward-Bz intervals. The inbound magnetopause crossing in the magnetic field measurements is consistent with a transition from the magnetosheath into the plasma sheet. Immediately following MESSENGER's entry into the magnetosphere, rotational perturbations in the magnetic field similar to those seen at the Earth in association with large-scale plasma sheet vortices driven by Kelvin-Helmholtz waves along the magnetotail boundary at the Earth are observed. The outbound magnetopause occurred during northward IMF Bz and had the characteristics of a tangential discontinuity. These new observations have important implications for our understanding of energy transfer into Mercury's magnetosphere.
NASA Technical Reports Server (NTRS)
Whang, Y. C.
1975-01-01
A model magnetosphere of Mercury using Mariner 10 data is presented. Diagrams of the bow shock wave and magnetopause are shown. The analysis of Mariner 10 data indicates that the magnetic field of the planet is intrinsic. The magnetic tail and secondary magnetic fields, and the influence of the solar wind are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorville, Nicolas, E-mail: nicolas.dorville@lpp.polytechnique.fr; Belmont, Gérard; Aunai, Nicolas
Finding kinetic equilibria for non-collisional/collisionless tangential current layers is a key issue as well for their theoretical modeling as for our understanding of the processes that disturb them, such as tearing or Kelvin Helmholtz instabilities. The famous Harris equilibrium [E. Harris, Il Nuovo Cimento Ser. 10 23, 115–121 (1962)] assumes drifting Maxwellian distributions for ions and electrons, with constant temperatures and flow velocities; these assumptions lead to symmetric layers surrounded by vacuum. This strongly particular kind of layer is not suited for the general case: asymmetric boundaries between two media with different plasmas and different magnetic fields. The standard methodmore » for constructing more general kinetic equilibria consists in using Jeans theorem, which says that any function depending only on the Hamiltonian constants of motion is a solution to the steady Vlasov equation [P. J. Channell, Phys. Fluids (1958–1988) 19, 1541 (1976); M. Roth et al., Space Sci. Rev. 76, 251–317 (1996); and F. Mottez, Phys. Plasmas 10, 1541–1545 (2003)]. The inverse implication is however not true: when using the motion invariants as variables instead of the velocity components, the general stationary particle distributions keep on depending explicitly of the position, in addition to the implicit dependence introduced by these invariants. The standard approach therefore strongly restricts the class of solutions to the problem and probably does not select the most physically reasonable. The BAS (Belmont-Aunai-Smets) model [G. Belmont et al., Phys. Plasmas 19, 022108 (2012)] used for the first time the concept of particle accessibility to find new solutions: considering the case of a coplanar-antiparallel magnetic field configuration without electric field, asymmetric solutions could be found while the standard method can only lead to symmetric ones. These solutions were validated in a hybrid simulation [N. Aunai et al., Phys. Plasmas (1994-present) 20, 110702 (2013)], and more recently in a fully kinetic simulation as well [J. Dargent and N. Aunai, Phys. Plasmas (submitted)]. Nevertheless, in most asymmetric layers like the terrestrial magnetopause, one would indeed expect a magnetic field rotation from one direction to another without going through zero [J. Berchem and C. T. Russell, J. Geophys. Res. 87, 8139–8148 (1982)], and a non-zero normal electric field. In this paper, we propose the corresponding generalization: in the model presented, the profiles can be freely imposed for the magnetic field rotation (although restricted to a 180 rotation hitherto) and for the normal electric field. As it was done previously, the equilibrium is tested with a hybrid simulation.« less
Beyond 2D: Parallel Electric Fields and Dissipation in Guide Field Reconnectio
NASA Astrophysics Data System (ADS)
Wilder, F. D.; Ergun, R.; Ahmadi, N.; Goodrich, K.; Eriksson, S.; Shimoda, E.; Burch, J. L.; Phan, T.; Torbert, R. B.; Strangeway, R. J.; Giles, B. L.; Lindqvist, P. A.; Khotyaintsev, Y. V.
2017-12-01
In 2015, NASA launched the Magnetospheric Multiscale (MMS) mission to study phenomenon of magnetic reconnection down to the electron scale. Advantages of MMS include a 20s spin period and long axial booms, which together allow for measurement of 3-D electric fields with accuracy down to 1 mV/m. During the two dayside phases of the prime mission, MMS has observed multiple electron and ion diffusion region events at the Earth's subsolar and flank magnetopause, as well as in the magnetosheath, providing an option to study both symmetric and asymmetric reconnection at a variety of guide field strengths. We present a review of parallel electric fields observed by MMS during diffusion region events, and discuss their implications for simulations and laboratory observations of reconnection. We find that as the guide field increases, the dissipation in the diffusion region transitions from being due to currents and fields perpendicular to the background magnetic field, to being associated with parallel electric fields and currents. Additionally, the observed parallel electric fields are significantly larger than those predicted by simulations of reconnection under strong guide field conditions.
NASA Astrophysics Data System (ADS)
Tenfjord, Paul; Østgaard, Nikolai; Snekvik, Kristian; Reistad, Jone; Magnus Laundal, Karl; Haaland, Stein; Milan, Steve
2016-04-01
We describe the effects of the interplanetary magnetic field (IMF) By component on the coupling between the solar wind and magnetosphere-ionosphere system using AMPERE observations and MHD simulations. We show how By is induced on closed magnetospheric field lines on both the dayside and nightside. The magnetosphere imposes asymmetric forces on the ionosphere, and the effects on the ionospheric flow are characterized by distorted convection cell patterns, often referred to as "banana" and "orange" cell patterns. The flux asymmetrically added to the lobes results in a nonuniform induced By in the closed magnetosphere. We present a mechanism that predicts asymmetric Birkeland currents at conjugate foot points. Asymmetric Birkeland currents are created as a consequence of y directed tension contained in the return flow. Associated with these currents, we expect aurora and fast localized ionospheric azimuthal flows present in one hemisphere but not necessarily in the other. We present a statistical study where we show that these processes should occur on timescales of about 30 minutes after the IMF By has arrived at the magnetopause. We also present an event with simultaneous global imaging of the aurora and SuperDARN measurements from both hemisphere. The event is interpreted as an example of the of the proposed asymmetric current mechanism.
Paraboloid magnetospheric magnetic field model and the status of the model as an ISO standard
NASA Astrophysics Data System (ADS)
Alexeev, I.
A reliable representation of the magnetic field is crucial in the framework of radiation belt modelling especially for disturbed conditions The empirical model developed by Tsyganenko T96 is constructed by minimizing the rms deviation from the large magnetospheric data base The applicability of the T96 model is limited mainly by quiet conditions in the solar wind along the Earth orbit But contrary to the internal planet s field the external magnetospheric magnetic field sources are much more time-dependent A reliable representation of the magnetic field is crucial in the framework of radiation belt modelling especially for disturbed conditions It is a reason why the method of the paraboloid magnetospheric model construction based on the more accurate and physically consistent approach in which each source of the magnetic field would have its own relaxation timescale and a driving function based on an individual best fit combination of the solar wind and IMF parameters Such approach is based on a priori information about the global magnetospheric current systems structure Each current system is included as a separate block module in the magnetospheric model As it was shown by the spacecraft magnetometer data there are three current systems which are the main contributors to the external magnetospheric magnetic field magnetopause currents ring current and tail current sheet Paraboloid model is based on an analytical solution of the Laplace equation for each of these large-scale current systems in the magnetosphere with a
Predicting the magnetospheric plasma of weather
NASA Technical Reports Server (NTRS)
Dawson, John M.
1986-01-01
The prediction of the plasma environment in time, the plasma weather, is discussed. It is important to be able to predict when large magnetic storms will produce auroras, which will affect the space station operating in low orbit, and what precautions to take both for personnel and sensitive control (computer) equipment onboard. It is also important to start to establish a set of plasma weather records and a record of the ability to predict this weather. A successful forecasting system requires a set of satellite weather stations to provide data from which predictions can be made and a set of plasma weather codes capable of accurately forecasting the status of the Earth's magnetosphere. A numerical magnetohydrodynamic fluid model which is used to model the flow in the magnetosphere, the currents flowing into and out of the auroral regions, the magnetopause, the bow shock location and the magnetotail of the Earth is discussed.
A nonsingular model of the open magnetosphere
NASA Technical Reports Server (NTRS)
Toffoletto, F. R.; Hill, T. W.
1993-01-01
We present a modified version of the Toffoletto and Hill (1989) open magnetosphere model that incorporates a tail-like interconection field with a discontinuity 10 represent the slow-mode expansion fan that defines the high-latitude tail magnetopause. (The interconnection field is defined as the perturbation on an initially closed magnetosphere model to make it open.) The expansion fan controls the open field line region in the tail, and the intersection of the fan with the tail current sheet is, by design, the x line. The new interconnection field allows greater control of the tail field structure; in particular, it enables us to eliminate the nightside mapping singularity that occurs in previous models when the interplanetary magnetic field is nonsouthward. Also, in contrast to earlier models, the far tail x line extends farther downstream on the flanks than in the center of the tail, consistent with observations.
Electron Jet of Asymmetric Reconnection
NASA Technical Reports Server (NTRS)
Khotyaintsev, Yu. V.; Graham, D. B.; Norgren, C.; Eriksson, E.; Li, W.; Johlander, A.; Vaivads, A.; Andre, M.; Pritchett, P. L.; Retino, A.;
2016-01-01
We present Magnetospheric Multiscale observations of an electron-scale current sheet and electron outflow jet for asymmetric reconnection with guide field at the subsolar magnetopause. The electron jet observed within the reconnection region has an electron Mach number of 0.35 and is associated with electron agyrotropy. The jet is unstable to an electrostatic instability which generates intense waves with E(sub parallel lines) amplitudes reaching up to 300 mV/m and potentials up to 20% of the electron thermal energy. We see evidence of interaction between the waves and the electron beam, leading to quick thermalization of the beam and stabilization of the instability. The wave phase speed is comparable to the ion thermal speed, suggesting that the instability is of Buneman type, and therefore introduces electron-ion drag and leads to braking of the electron flow. Our observations demonstrate that electrostatic turbulence plays an important role in the electron-scale physics of asymmetric reconnection.
Cusp observation at Saturn's high-latitude magnetosphere by the Cassini spacecraft.
Jasinski, J M; Arridge, C S; Lamy, L; Leisner, J S; Thomsen, M F; Mitchell, D G; Coates, A J; Radioti, A; Jones, G H; Roussos, E; Krupp, N; Grodent, D; Dougherty, M K; Waite, J H
2014-03-16
We report on the first analysis of magnetospheric cusp observations at Saturn by multiple in situ instruments onboard the Cassini spacecraft. Using this we infer the process of reconnection was occurring at Saturn's magnetopause. This agrees with remote observations that showed the associated auroral signatures of reconnection. Cassini crossed the northern cusp around noon local time along a poleward trajectory. The spacecraft observed ion energy-latitude dispersions-a characteristic signature of the terrestrial cusp. This ion dispersion is "stepped," which shows that the reconnection is pulsed. The ion energy-pitch angle dispersions suggest that the field-aligned distance from the cusp to the reconnection site varies between ∼27 and 51 R S . An intensification of lower frequencies of the Saturn kilometric radiation emissions suggests the prior arrival of a solar wind shock front, compressing the magnetosphere and providing more favorable conditions for magnetopause reconnection. We observe evidence for reconnection in the cusp plasma at SaturnWe present evidence that the reconnection process can be pulsed at SaturnSaturn's cusp shows similar characteristics to the terrestrial cusp.
NASA Technical Reports Server (NTRS)
Boardsen, Scott A.; Sundberg, Torgjoern; Slavin, James A.; Anderson, Brian J.; Korth, Haje; Solomon, Sean C.; Blomberg, Lars G.
2010-01-01
During the third MESSENGER flyby of Mercury on 29 September 2009, 15 crossings of the dusk-side magnetopause were observed in the magnetic field data over a 2-min period, during which the spacecraft traveled a distance of 0.2 R(sub M) (where R(sub M) is Mercury's radius). The quasi-periodic nature of the magnetic field variations during the crossings, the characteristic time separations of approx.16 s between pairs of crossings, and the variations of the magnetopause normal directions indicate that the signals are likely the signature of surface waves highly steepened at their leading edge that arose from the Kelvin-Helmholtz instability. At Earth, the Kelvin- Helmholtz instability is believed to lead to the turbulent transport of solar wind plasma into Earth's plasma sheet. This solar wind entry mechanism could also be important at Mercury. Citation: Boardsen, S. A., T. Sundberg, J. A.Slavin, B. J. Anderson, H. Korth, S. C. Solomon, and L. G. Blomberg (2010), Observations of Kelvin-Helmholtz waves along the dusk-side boundary of Mercury s magnetosphere during MESSENGER's third flyby,
Three-dimensional, ten-moment multifluid simulation of the solar wind interaction with Mercury
NASA Astrophysics Data System (ADS)
Dong, C.; Hakim, A.; Wang, L.; Bhattacharjee, A.; Germaschewski, K.; DiBraccio, G. A.
2017-12-01
We investigate Mercury's magnetosphere by using Gkeyll ten-moment multifluid code that solves the continuity, momentum and pressure tensor equations of both protons and electrons, as well as the full Maxwell equations. Non-ideal effects like the Hall effect, inertia, and tensorial pressures are self-consistently embedded without the need to explicitly solve a generalized Ohm's law. Previously, we have benchmarked this approach in classical test problems like the Orszag-Tang vortex and GEM reconnection challenge problem. We first validate the model by using MESSENGER magnetic field data through data-model comparisons. Both day- and night-side magnetic reconnection are studied in detail. In addition, we include a mantle layer (with a resistivity profile) and a perfect conducting core inside the planet body to accurately represent Mercury's interior. The intrinsic dipole magnetic fields may be modified inside the planetary body due to the weak magnetic moment of Mercury. By including the planetary interior, we can capture the correct plasma boundary locations (e.g., bow shock and magnetopause), especially during a space weather event. This study has the potential to enhance the science returns of both the MESSENGER mission and the upcoming BepiColombo mission (to be launched to Mercury in 2018).
Observations of a Newly "Captured" Magnetosheath Field Line: Evidence for "Double Reconnection"
NASA Technical Reports Server (NTRS)
Chandler, Michael O.; Avanov, Levon A.; Craven, Paul D.; Mozer, Forrest S.; Moore, Thomas E.
2007-01-01
We have begun an investigation of the nature of the low-latitude boundary layer in the mid-altitude cusp region using data from the Polar spacecraft. This region has been routinely sampled for about three months each year for the periods 1999-2001 and 2004-2006. The low-to-mid-energy ion instruments frequently observed dense, magnetosheath-like plasma deep (in terms of distance from the magnetopause and in invariant latitude) in the magnetosphere. One such case, taken during a period of northward interplanetary magnetic field (IMF), shows magnetosheath ions within the magnetosphere with velocity distributions resulting from two separate merging sites along the same field lines. Cold ionospheric ions were also observed counterstreaming along the field lines, evidence that these field lines were closed. These results are consistent with the hypothesis that double merging can produce closed field .lines populated by solar wind plasma. Through the use of individual cases such as this and statistical studies of a broader database we seek to understand the morphology of the LLBL as it projects from the sub-solar region into the cusp. We will present preliminary results of our ongoing study.
NASA Technical Reports Server (NTRS)
Cai, DongSheng; Tao, Weinfeng; Yan, Xiaoyang; Lembege, Bertrand; Nishikawa, Ken-Ichi
2007-01-01
Using a three-dimensional full electromagnetic particle model (EMPM), we have performed global simulations of the interaction between the solar wind and the terrestrial magnetosphere, and have investigated its asymptotic stability. The distance between the dayside magnetopause subsolar point and the Earth center, R(sub mp) is measured, as the intensity of southward IMF |B(sub z)| is slowly varying. Based on the field topology theory, one analyzes the variation of R(sub mp) as a reference index of the dynamics of this interaction, when IMF |B(sub z)| successively increases and decreases to its original value. Two striking results are observed. First, as the IMF |B(sub z)| increases above a critical value, the variation of R(sub mp) suddenly changes (so called 'bifurcation' process in field topology). Above this critical value, the overall magnetic field topology changes drastically and is identified as being the signature of magnetic reconnection at the subsolar point on the magnetopause. Second, this subsolar point recovers its original location R(sub mp) by following different paths as the IMF |B(sub z)| value increases (from zero to a maximum fixed value) and decreases (from this maximum to zero) passing through some critical values. These different paths are the signature of 'hysteresis' effect, and are characteristic of the so-called 'subcritical-type' bifurcation. This hysteresis signature indicates that dissipation processes take place via an energy transfer from the solar wind to the magnetosphere by some irreversible way, which leads to a drastic change in the magnetospheric field topology. This hysteresis is interpreted herein as a consequence of the magnetic reconnection taking place at the dayside magnetopause. The field topology reveals to be a very powerful tool to analyze the signatures of three-dimensional magnetic reconnection without the obligation for determining the mechanisms responsible for, and the consequences of the reconnection on the overall magnetospheric dynamics.
Cluster Observations of Particle Injections in the Exterior Cusp
NASA Astrophysics Data System (ADS)
Escoubet, C. P.; Grison, B.; Berchem, J.; Trattner, K. J.; Lavraud, B.; Pitout, F.; Soucek, J.; Richard, R. L.; Laakso, H. E.; Masson, A.; Dunlop, M. W.; Dandouras, I. S.; Reme, H.; Fazakerley, A. N.; Daly, P. W.
2014-12-01
The main process that injects solar wind plasma into the polar cusp is now generally accepted to be magnetic reconnection. Depending on the IMF direction, this process takes place equatorward (for IMF southward), poleward (for IMF northward) or on the dusk or dawn sides (for IMF azimuthal) of the cusp. We report a Cluster crossing on 5 January 2002 near the exterior cusp on the southern dusk side. The IMF was mainly azimuthal (IMF-By around -5 nT), the solar wind speed lower than usual around 280 km/s with the density of order 5 cm-3. The four Cluster spacecraft had an elongated configuration near the magnetopause. C4 was the first spacecraft to enter the cusp around 19:52:04 UT, followed by C2 at 19:52:35 UT, C1 at 19:54:24 UT and C3 at 20:13:15 UT. C4 and C1 observed two ion energy dispersions at 20:10 UT and 20:40 UT and C3 at 20:35 UT and 21:15 UT. Using the time of flight technique on the upgoing and downgoing ions, which leads to energy dispersions, we obtain distances of the ion sources between 14 and 20 RE from the spacecraft. Using Tsyganenko model, we find that these sources are located on the dusk flank, past the terminator. The first injection by C3 is seen at approximately the same time as the 2nd injection on C1 but their sources at the magnetopause were separated by more than 7 RE. This would imply that two distinct sources were active at the same time on the dusk flank of the magnetosphere. In addition, a flow reversal was observed at the magnetopause on C4 which would be an indication that reconnection is taking place near the exterior cusp.
NASA Astrophysics Data System (ADS)
Park, K.; Ogino, T.; Lee, D.; Walker, R. J.; Kim, K.
2013-12-01
One of the significant problems in magnetospheric physics concerns the nature and properties of the processes which occur at the magnetopause boundary; in particular how energy, momentum, and plasma the magnetosphere receives from the solar wind. Basic processes are magnetic reconnection [Dungey, 1961] and viscouslike interaction, such as Kelvin-Helmholtz instability [Dungey 1955, Miura, 1984] and pressure-pulse driven [Sibeck et al. 1989]. In generally, magnetic reconnection occurs efficiently when the IMF is southward and the rate is largest where the magnetosheath magnetic field is antiparallel to the geomagnetic field. [Sonnerup, 1974; Crooker, 1979; Luhmann et al., 1984; Park et al., 2006, 2009]. The Kelvin-Helmholtz instability is driven by the velocity shear at the boundary, which occur frequently when the IMF is northward. Also variation of the magnetic field and the plasma properties is reported to be quasi-periodic with 2-3min [Otto and Fairfield, 2000] and period of vortex train with 3 to 4 minutes by global MHD simulation [Ogino, 2011]. The pressure-pulse is driven by the solar wind. And the observations of the magnetospheric magnetic field response show quasi-periodic with a period of 8 minutes [Sibeck et al., 1989; Kivelson and Chen, 1995]. There have been few studies of the vortices in the magnetospheric boundary under southward IMF condition. However it is not easy to find the generation mechanism and characteristic for vortices in complicated 3-dimensional space. Thus we have performed global MHD simulation for the steady solar wind and southward IMF conditions. From the simulation results, we find that the vortex occurs at R= 11.7Re (IMF Bz = -2 nT) and R= 10.2Re (IMF Bz = -10 nT) in the dayside magnetopause boundary. Also the vortex rotates counterclockwise in duskside magnetopause (clockwise in dawnside) and propagates tailward. Across the vortex, magnetic field and plasma properties clearly show quasi-periodic fluctuations with a period of 8~10 minutes under the weak southward IMF and 4~8 minutes for strong southward IMF conditions. Magnetic reconnection favorably occurs in anti-parallel field region with slower shear velocity in the magnetosheath. The magnetic field lines are highly bent by parallel vorticity (Omega||) in the flanks of the magnetopause boundary. Also, similar vortices are formed in a grid spacing of 0.3Re and 0.2Re. A small structure vortices are generated in higher resolution (0.1Re) and two vortices are mixed after 1m30s We suggest that the reconnection is a mechanism of generating vortex with a periodicity in the dayside during the southward IMF.
NASA Technical Reports Server (NTRS)
Friis-Christensen, E.; Vennerstrom, S.; Mchenry, M. A.; Clauer, C. R.
1988-01-01
Analysis of 20-second resolution magnetometer data from an array of temporary stations operated around Sondre Stromfjord, Greenland, during the summer of 1986 shows the signatures of localized ionospheric traveling convection vortices. An example of an isolated event of this kind observed near 08 local time is presented in detail. This event consists of a twin vortex pattern of convection consistent with the presence of two field-aligned current filaments separated by about 600 km in the east-west direction. This system of currents is observed to move westward (tailward) past the array of stations at about 4 km/sec. The event is associated with relative quiet time ionospheric convection and occurs during an interval of northward IMF. It is, however, associated with a large fluctuation in both the Z and Y components of the IMF and with a large sudden decrease in the solar wind number density. The propagation of the system is inconsistent with existing models of FTE current systems, but nevertheless appears to be related to a readjustment of the magnetopause boundary to a sudden change in the solar wind dynamic pressure and/or to a change in reconnection brought about by a sudden reorientation of the IMF.
Research study of space plasma boundary processes
NASA Technical Reports Server (NTRS)
Greenstadt, E. W.; Taylor, W. W. L.
1984-01-01
Representation of the Earth's bow shock and magnetopause and their geometrically determined macrostructure was investigated. Computer graphic depictions of the global distributions of bow shock structures and elementary animation of the dynamics of those distributions in the changing solar wind were developed. The shock-foreshock boundary and subcritical bow shocks as observed by ISEE 1 and 2 are discussed.
NASA Technical Reports Server (NTRS)
Buzulukova, N.; Fok, M.-C.; Pulkkinen, A.; Kuznetsova, M.; Moore, T. E.; Glocer, A.; Brandt, P. C.; Toth, G.; Rastaetter, L.
2010-01-01
We present simulation results from a one-way coupled global MHD model (Block-Adaptive-Tree Solar-Wind Roe-Type Upwind Scheme, BATS-R-US) and kinetic ring current models (Comprehensive Ring Current Model, CRCM, and Fok Ring Current, FokRC). The BATS-R-US provides the CRCM/FokRC with magnetic field information and plasma density/temperature at the polar CRCM/FokRC boundary. The CRCM uses an electric potential from the BATS-R-US ionospheric solver at the polar CRCM boundary in order to calculate the electric field pattern consistent with the CRCM pressure distribution. The FokRC electric field potential is taken from BATS-R-US ionospheric solver everywhere in the modeled region, and the effect of Region II currents is neglected. We show that for an idealized case with southward-northward-southward Bz IMF turning, CRCM-BATS-R-US reproduces well known features of inner magnetosphere electrodynamics: strong/weak convection under the southward/northward Bz; electric field shielding/overshielding/penetration effects; an injection during the substorm development; Subauroral Ion Drift or Polarization Jet (SAID/PJ) signature in the dusk sector. Furthermore, we find for the idealized case that SAID/PJ forms during the substorm growth phase, and that substorm injection has its own structure of field-aligned currents which resembles a substorm current wedge. For an actual event (12 August 2000 storm), we calculate ENA emissions and compare with Imager for Magnetopause-to-Aurora Global Exploration/High Energy Neutral Atom data. The CRCM-BATS-R-US reproduces both the global morphology of ring current and the fine structure of ring current injection. The FokRC-BATS-R-US shows the effect of a realistic description of Region II currents in ring current-MHD coupled models.
NASA Astrophysics Data System (ADS)
Mouikis, C.; Bingham, S.; Kistler, L. M.; Farrugia, C. J.; Spence, H. E.; Gkioulidou, M.
2016-12-01
The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), co-rotating interaction regions (CIR's), high-speed streamers and other structures. The resulting changes in the ring current particle pressure change the global magnetic field, which affects the transport of the radiation belts. In order to determine the field changes during a storm, it is necessary to understand the transport, sources and losses of the particles that contribute to the ring current. The source population of the storm time ring current is the night side plasma sheet. We use Van Allen Probes observations to determine the ring current pressure contribution of the convecting plasma sheet H+ and O+ particles in the storm time development of the ring current. We compare storms that are related to different interplanetary drivers, CMEs and CIRs, as observed at different local times. We find that during the storm main phase most of the ring current pressure in the pre-midnight inner magnetosphere is contributed by particles on open drift paths that cause the development of a strong partial ring current that causes most of the main phase Dst drop. These particles can reach as deep as L 2 and their pressure compares to the local magnetic field pressure as deep as L 3. During the recovery phase, if these particles are not lost at the magnetopause, will become trapped and will contribute to the symmetric ring current. However, the largest difference between the CME and CIR ring current responses during the storm main and early recovery phases is caused by how the 15 - 60 keV O+ responds to these drivers.
The Plasmasphere as "Seen" by the IMAGE Mission
NASA Technical Reports Server (NTRS)
Gallagher, D. L.; Green, J. L.; Fung, S. F.; Benson, R. F.; Sandel, B. R.; Carpenter, D. L.
1999-01-01
The Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) is the first mission designed exclusively to remotely measure the magnetosphere. As such, it will reveal the ring current, plasmasphere, polar cusp, and magnetopause as whole extended, interacting systems. For the first time, our impressions of the global magnetosphere, synthesized through many years of whistler and in situ measurement, will be replaced by images. The overall morphology of each system of plasma and the correspondence of changes between them in response to the sun and solar wind will become available. The Extreme Ultraviolet Imager (EUV) and the Radio Plasma Imager (RPI) are the two IMAGE instruments which will remotely measure and image the plasmasphere. What we expect to "see" from these instruments and how it may be interpreted is the subject of this presentation. The EUV instrument includes three optical cameras, with an almost 90 degree field of view, transverse to the spin axis. EUV is designed to see He+ ions in resonantly scatter solar light at 30.4rim. The IMAGE spacecraft will spin with a period of about 2 minutes, with its spin axis parallel to the orbit normal. The IMAGE orbit will be highly inclined, with a high latitude apogee at a geocentric distance of 8RE and perigee of about 1.2RE. The normal observing integration time of 10 minutes will easily see to the outer edge of the plasmasphere. The RPI instrument makes use of three orthoganal dipole antennas: two in the spin plane with a tip-to-tip length of 500m and one along the spin axis with a length of 20 meters. Using coded pulse transmissions, the RPI instrument will broadcast from 3kHz to 3MHz. With one minute resolution, plasma densities from about 0.1 cm(exp -3) to 100,000 cm(exp -3), along with line-of-sight bulk velocities and locations, will be obtained from all returned radio wave signals. When transmitting from the high latitude magnetospheric cavity, RPI will measure density profiles for the major plasma structures in the magnetosphere, including the magnetopause, polar cusp, and plasmasphere. RPI should also see isolated density irregularities and possibly the plasma sheet. Observations The EUV instrument will return line-of-sight integrated images through the optically thin helium medium of the plasmasphere and magnetosphere. A variety of techniques have been suggested for the translation of the images into physically useful data, such as plasmapause location and three dimensional density distribution. The RPI instrument will return quantitative density values and line-of-sight velocity as a function of position along reflecting wave propagation paths. How they may be used individually and together to study plasmaspheric dynamics and global structure will be discussed. Attention will also be given to the data products and how access to IMAGE data will be provided by the IMAGE team and the NSSDC.
NASA Astrophysics Data System (ADS)
Lapenta, Giovanni; Oieroset, Marit; Phan, Tai; Eastwood, Jonathan; Goldman, Martin; Newman, David L.; Russel, Christopher; Strangeway, Robert; Paterson, William; Giles, Barbara; Lavraud, Benoit; Khotyaintsev, Yuri; Ergun, Robert; Torbert, Roy; Burch, James
2017-04-01
Recently Øieroset et al. [2016] reported evidence for reconnection between colliding reconnection jets in a compressed current sheet at the center of a magnetic flux rope at Earth's magnetopause. Here, we set up a simulation with parameters similar to those observed: in particular we used the same guide field ratio to the in plane field. The initial state is a Harris sheet with mass ratio 256 and temperature ratio 10. The domain is 3D with box size 20x15x10 di. Reconnection is initiated at the two edges of the box by seeding an initial localized x-line. Reconnection starts at the two x-lines by design due to the strong perturbation. The subsequent evolution shows reconnection taking root in the initially seeded x-lines. Later an instability develops within the flux rope, likely similar to those reported in Lapenta et al. [2015], and secondary reconnection starts in a ring near the center of the flux rope. The analogy with the kink mode of laboratory and solar wind flux ropes[Lapenta et al., 2006] is striking and future work will be needed to investigate if the instability satisfies the Kruskal-Shafranov limit [Shafranov, 1957, Kruskal and Tuck, 1958]. At late times, the primary reconnection site becomes inactive and the secondary reconnection site becomes dominant. In this later stage, agyrotropy and J · E' are stronger in the center. But more strikingly, the ions are outflowing predominantly away from the secondary reconnection site in the central region of the flux rope and the ring near the center where reconnection signatures (agyrotropy and J · E') are strongest. The electron pressure presents several intense loci, identifying where strong electron energization by secondary reconnection takes place. The results of the simulation are studied producing synthetic virtual satellite diagnostics obtained from the simulation results but with a format similar to in situ spacecraft observations. With these data formats the results can be more readily be compared with the MMS data reported in Øieroset et al. [2016]. References M. Kruskal and J. Tuck. The instability of a pinched fluid with a longitudinal magnetic field. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 245(1241):222-237, 1958. G. Lapenta, I. Furno, and T. Intrator. Kink instability of flux ropes anchored at one end and free at the other. J. Geophys. Res., 111:A12S06, 2006. G. Lapenta, S. Markidis, M. V. Goldman, and D. L. Newman. Secondary reconnection sites in reconnection-generated flux ropes and reconnection fronts. Nature Physics, 11(8):690-695, 2015. M. Øieroset, T. Phan, C. Haggerty, M. Shay, J. Eastwood, et al. Mms observations of large guide field symmetric reconnection between colliding reconnection jets at the center of a magnetic flux rope at the magnetopause. Geophysical Research Letters, 2016.
First results from ideal 2-D MHD reconstruction: magnetopause reconnection event seen by Cluster
NASA Astrophysics Data System (ADS)
Teh, W.-L.; Ã-. Sonnerup, B. U.
2008-09-01
We have applied a new reconstruction method (Sonnerup and Teh, 2008), based on the ideal single-fluid MHD equations in a steady-state, two-dimensional geometry, to a reconnection event observed by the Cluster-3 (C3) spacecraft on 5 July 2001, 06:23 UT, at the dawn-side Northern-Hemisphere magnetopause. The event has been previously studied by use of Grad-Shafranov (GS) reconstruction, performed in the deHoffmann-Teller frame, and using the assumption that the flow effects were either negligible or the flow was aligned with the magnetic field. Our new method allows the reconstruction to be performed in the frame of reference moving with the reconnection site (the X-line). In the event studied, this motion is tailward/equatorward at 140 km/s. The principal result of the study is that the new method functions well, generating a magnetic field map that is qualitatively similar to those obtained in the earlier GS-based reconstructions but now includes the reconnection site itself. In comparison with the earlier map by Hasegawa et al. (2004), our new map has a slightly improved ability (cc=0.979 versus cc=0.975) to predict the fields measured by the other three Cluster spacecraft, at distances from C3 ranging from 2132 km (C1) to 2646 km (C4). The new field map indicates the presence of a magnetic X-point, located some 5300 km tailward/equatorward of C3 at the time of its traversal of the magnetopause. In the immediate vicinity of the X-point, the ideal-MHD assumption breaks down, i.e. resistive and/or other effects should be included. We have circumvented this problem by an ad-hoc procedure in which we allow the axial part of convection electric field to be non-constant near the reconnection site. The new reconstruction method also provides a map of the velocity field, in which the inflow into the wedge of reconnected field lines and the plasma jet within it can be seen, and maps of the electric potential and of the electric current distribution. Even though the velocity map is expected to be inaccurate near the X-point, it provides high-quality predictions (cc=0.969) of the velocity components at points along the path of C1, some of which are close to the X-point; the predictions of density and pressure are less good. Except near the reconnection site, the new reconstruction provides a complete characterization, in unprecedented detail, of the entire dynamic plasma and field equilibrium, reconstructed from the C3 data. It represents our best prediction to date of what the actual configuration was like. But, since substantial time variations were present in the event, the recovered structure by necessity includes considerable time aliasing. The invariant direction used in the reconstruction, is found to agree, within 6°, with a recent theoretical prediction of the X-line orientation by Swisdak and Drake (2007).
NASA Astrophysics Data System (ADS)
Singh, Sumitra; Mahala, Pramila; Pal, Suchandan
2018-01-01
This work evaluates the effect of graphene, indium tin oxide (ITO) and Ni/Au as contact/current spreading layer/current spreading layer for GaN vertical light emitting diodes (V-LEDs). In this simulation study, the effect of these contact/current spreading layers on different performance parameters of GaN V-LEDs has been studied. By using these three different types of contact/current spreading layers, we have comparatively studied the effect on light extraction efficiency (LEE), optical output power, wall plug efficiency and radiant intensity of V-LEDs. As per the simulation results, it shows that using graphene contact/current spreading layers, it is possible to achieve better performance than using ITO and Ni/Au contact/current spreading layers. For graphene/(Ni/Au) contact/current spreading layers, the LEE is improved by 36.77% whereas for ITO/(Ni/Au) contact/current spreading layers it is improved by 13.74%. Also, by using graphene/(Ni/Au) contact/current spreading layers, the optical output power of LEDs improved by 11.11% whereas for ITO/(Ni/Au) contact/current spreading layers shown 4.16% improvement. The radiant intensity is enhanced by 37.65% for graphene/(Ni/Au) contact/current spreading layers and 13.5% for ITO/(Ni/Au) contact/current spreading layers. In this report, we have given a detailed analysis of the obtained simulation results. The simulation was carried out in SimuLED tool.
Orientation and spread of reconnection x-line in asymmetric current sheets
NASA Astrophysics Data System (ADS)
Liu, Y. H.; Hesse, M.; Wendel, D. E.; Kuznetsova, M.; Wang, S.
2017-12-01
The magnetic field in solar wind plasmas can shear with Earth's dipole magnetic field at arbitrary angles, and the plasma conditions on the two sides of the (magnetopause) current sheet can greatly differ. One of the outstanding questions in such asymmetric geometry is what local physics controls the orientation of the reconnection x-line; while the x-line in a simplified 2D model (simulation) always points out of the simulation plane by design, it is unclear how to predict the orientation of the x-line in a fully three-dimensional (3D) system. Using kinetic simulations run on Blue Waters, we develop an approach to explore this 3D nature of the reconnection x-line, and test hypotheses including maximizing the reconnection rate, tearing mode growth rate or reconnection outflow speed, and the bisection solution. Practically, this orientation should correspond to the M-direction of the local LMN coordinate system that is often employed to analyze diffusion region crossings by the Magnetospheric Multiscale Mission (MMS). In this talk, we will also discuss how an x-line spread from a point source in asymmetric geometries, and the boundary effect on the development of the reconnection x-line and turbulence.
NASA Astrophysics Data System (ADS)
Cattell, C.; Breneman, A.; Colpitts, C.; Dombeck, J.; Thaller, S.; Tian, S.; Wygant, J.; Fennell, J.; Hudson, M. K.; Ergun, Robert; Russell, C. T.; Torbert, Roy; Lindqvist, Per-Arne; Burch, J.
2017-09-01
Observations from Magnetospheric MultiScale ( 8
Concerning the Motion of FTEs and Attendant Signatures
NASA Technical Reports Server (NTRS)
Sibeck, David G.
2010-01-01
We employ the Cooling et al. [2001] model to predict the location, orientation, and motion of flux transfer events (FTEs) generated along finite length component and anti parallel reconnection lines for typical solar wind plasma conditions and various interplanetary magnetic field (IMF) orientations in the plane perpendicular to the SunEarth line at the solstices and equinoxes. For duskward and northward or southward IMF orientations, events formed by component reconnection originate along reconnection curves passing through the sub solar point that tilt from southern dawn to northern dusk. They maintain this orientation as they move either northward into the northern dawn quadrant or southward into the southern dusk quadrant. By contrast, events formed by antiparallel reconnection originate along reconnection curves running from northern dawn to southern dusk in the southern dawn and northern dusk quadrants and maintain these orientations as they move anti sunward into both these quadrants. Although both the component and antiparallel reconnection models can explain previously reported event orientations on the southern dusk magnetopause during intervals of northward and dawn ward IMF orientation, only the component model explains event occurrence near the subsolar magnetopause during intervals when the IMF does not point due southward.
NASA Astrophysics Data System (ADS)
Zhang, B.; Delamere, P. A.; Ma, X.; Burkholder, B.; Wiltberger, M.; Lyon, J. G.; Merkin, V. G.; Sorathia, K. A.
2018-01-01
The multifluid Lyon-Fedder-Mobarry (MFLFM) global magnetosphere model is used to study the interactions between solar wind and rapidly rotating, internally driven Jupiter magnetosphere. The MFLFM model is the first global simulation of Jupiter magnetosphere that captures the Kelvin-Helmholtz instability (KHI) in the critically important subsolar region. Observations indicate that Kelvin-Helmholtz vortices are found predominantly in the dusk sector. Our simulations explain that this distribution is driven by the growth of KHI modes in the prenoon and subsolar region (e.g., >10 local time) that are advected by magnetospheric flows to the dusk sector. The period of density fluctuations at the dusk terminator flank (18 magnetic local time, MLT) is roughly 1.4 h compared with 7.2 h at the dawn flank (6 MLT). Although the simulations are only performed using parameters of the Jupiter's magnetosphere, the results may also have implications for solar wind-magnetosphere interactions at other corotation-dominated systems such as Saturn. For instance, the simulated average azimuthal speed of magnetosheath flows exhibit significant dawn-dusk asymmetry, consistent with recent observations at Saturn. The results are particularly relevant for the ongoing Juno mission and the analysis of dawnside magnetopause boundary crossings for other planetary missions.
NASA Astrophysics Data System (ADS)
Soucek, Jan; Escoubet, C. Philippe; Grison, Benjamin
2015-04-01
We present the results of a statistical study of the distribution of mirror and Alfvén-ion cyclotron (AIC) waves in the magnetosheath together with plasma parameters important for the stability of ULF waves, specifically ion temperature anisotropy and ion beta. Magnetosheath crossings registered by Cluster spacecraft over the course of 2 years served as a basis for the statistics. For each observation we used bow shock, magnetopause, and magnetosheath flow models to identify the relative position of the spacecraft with respect to magnetosheath boundaries and local properties of the upstream shock crossing. A strong dependence of both plasma parameters and mirror/AIC wave occurrence on upstream ΘBn and MA is identified. We analyzed a joint dependence of the same parameters on ΘBn and fractional distance between shock and magnetopause, zenith angle, and length of the flow line. Finally, the occurrence of mirror and AIC modes was compared against the respective instability thresholds. We noted that AIC waves occurred nearly exclusively under mirror stable conditions. This is interpreted in terms of different characters of nonlinear saturation of the two modes.
Can the Plasmaspheric Plume Significantly Contribute to Magnetosheath Densities?
NASA Technical Reports Server (NTRS)
Gallagher, Dennis; Goldstein, Jerry; Sibeck, David
2010-01-01
Intervals of strong magnetospheric convection electric fields can result in the removal of large portions of the outer plasmasphere and its transport to the vicinity of the magnetopause. Of growing interest is the disposition of that plasma and its possible influence on the processes operating in the regions contributed to by this dense thermal plasma of ionospheric origin. Plasmaspheric plasma may recirculate within the outer magnetosphere through the flanks to become part of the plasmasheet, be entrained on reconnected magnetic field lines drawn anti-sunward over the polar cap, or be lost into the magnetosheath flow and into the solar wind. Of interest here is whether it is reasonable to anticipate that the plume material is sufficient to contribute substantially to magnetosheath densities at the magnetopause where it could influence reconnection between the interplanetary and terrestrial magnetic fields. We present the results of model simulations of plasmaspheric plume and magnetosheath plasmas in the context of several storm-time event periods. Plume and magnetosheath densities are compared as a function of location and storm phase. The short answer is, "yes", but not always and not at all locations. The full answer will be presented.
NASA Technical Reports Server (NTRS)
Jacob, Jamey D.; Carrell, Cynthia
1993-01-01
We present preliminary results of a study of upstream magnetic field and plasma conditions measured by IRM during flux transfer events observed at the Earth's magnetopause by CCE. This study was designed to determine the importance of various upstream factors in the formation of bipolar magnetic field signatures called flux transfer events (FTEs). Six FTE encounters were examined. In three cases, the two satellites were on similar magnetic field lines. Preliminary investigation showed that fluctuations occurred in the Bz component of the interplanetary magnetic field (IMF) resulting in a southward field preceding the FTE in all three of these cases. In two of these cases, the changes were characterized by a distinct rotation from a strong southward to a strong northward field. There were also accompanying changes in the dynamic and thermal pressure in the solar wind immediately before the FTE was encountered. Examination of the 3D plasma distributions showed that these pulses were due to the addition of energetic upstreaming foreshock particles. There were no consistent changes in either Bz or the plasma pressure at IRM for the three events when the satellites were not connected by the IMF.
Cluster finds giant gas vortices at the edge of Earth's magnetic bubble
NASA Astrophysics Data System (ADS)
2004-08-01
12 August 2004 ESA’s quartet of space-weather watchers, Cluster, has discovered vortices of ejected solar material high above the Earth. The superheated gases trapped in these structures are probably tunnelling their way into the Earth’s magnetic ‘bubble’, the magnetosphere. This discovery possibly solves a 17-year-mystery of how the magnetosphere is constantly topped up with electrified gases when it should be acting as a barrier. hi-res Size hi-res: 1446 Kb Credits: H. Hasegawa (Dartmouth College) Three-dimensional cut-away view of Earth's magnetosphere This figure shows a three-dimensional cut-away view of Earth' s magnetosphere. The curly features sketched on the boundary layer are the Kelvin-Helmholtz vortices discovered by Cluster. They originate where two adjacent flows travel with different speed. In this case, one of the flows is the heated gas inside the boundary layer of the magnetosphere, the other the solar wind just outside it. The arrows show the direction of the magnetic field, in red that associated with the solar wind and in green the one inside Earth’s magnetosphere. The white dashed arrow shows the trajectory followed by Cluster. High resolution version (JPG format) 1446 Kb High resolution version (TIFF format) 15 365 Kb hi-res Size hi-res: 22 Kb Credits: H. Hasegawa (Dartmouth College) Electrified gas varies across the vortices along Cluster’s trajectory This computer simulation shows how the density of the electrified gas is expected to vary across the vortices along Cluster’s trajectory (white dashed line). The density is lower inside the boundary layer (blue region) and higher outside, in the region dominated by the solar wind (shown in red). The density variations measured by the instruments on board Cluster match those predicted by this model. Low resolution version (JPG format) 22 Kb High resolution version (TIFF format) 3438 Kb The Earth’s magnetic field is our planet’s first line of defence against the bombardment of the solar wind. The solar wind itself is launched from the Sun and carries the Sun’s magnetic field throughout the Solar System. Sometimes this magnetic field is aligned with Earth’s and sometimes it points in the opposite direction. When the two fields point in opposite directions, scientists understand how ‘doors’ in Earth’s field can open. This phenomenon, called ‘magnetic reconnection’, allows the solar wind to flow in and collect in the reservoir known as the boundary layer. On the contrary, when the fields are aligned they should present an impenetrable barrier to the flow. However, spacecraft measurements of the boundary layer, dating back to 1987, present a puzzle because they clearly show that the boundary layer is fuller when the fields are aligned than when they are not. So how is the solar wind getting in? Thanks to the data from the four formation-flying spacecraft of ESA’s Cluster mission, scientists have made a breakthrough. On 20 November 2001, the Cluster flotilla was heading around from behind Earth and had just arrived at the dusk side of the planet, where the solar wind slides past Earth’s magnetosphere. There it began to encounter gigantic vortices of gas at the magnetopause, the outer ‘edge’ of the magnetosphere. “These vortices were really huge structures, about six Earth radii across,” says Hiroshi Hasegawa, Dartmouth College, New Hampshire who has been analysing the data with help from an international team of colleagues. Their results place the size of the vortices at almost 40 000 kilometres each, and this is the first time such structures have been detected. These vortices are known as products of Kelvin-Helmholtz instabilities (KHI). They can occur when two adjacent flows are travelling with different speeds, so one is slipping past the other. Good examples of such instabilities are the waves whipped up by the wind slipping across the surface of the ocean. Although KHI-waves had been observed before, this is the first time that vortices are actually detected. When a KHI-wave rolls up into a vortex, it becomes known as a ‘Kelvin Cat’s eye’. The data collected by Cluster have shown density variations of the electrified gas, right at the magnetopause, precisely like those expected when travelling through a ‘Kelvin Cat’s eye’. Scientists had postulated that, if these structures were to form at the magnetopause, they might be able to pull large quantities of the solar wind inside the boundary layer as they collapse. Once the solar wind particles are carried into the inner part of the magnetosphere, they can be excited strongly, allowing them to smash into Earth’s atmosphere and give rise to the aurorae. Cluster’s discovery strengthens this scenario but does not show the precise mechanism by which the gas is transported into Earth’s magnetic bubble. Thus, scientists still do not know whether this is the only process to fill up the boundary layer when the magnetic fields are aligned. For those measurements, Hasegawa says, scientists will have to wait for a future generation of magnetospheric satellites. Notes for editors The results of this investigation have appeared in today’s issue of the scientific journal Nature, in a paper entitled ‘Transport of solar wind into Earth's magnetosphere through rolled-up Kelvin-Helmholtz vortices’, by H. Hasegawa, M. Fujimoto, T.D. Phan, H. Reme, A. Balogh, M.W. Dunlop, C. Hashimoto and R. TanDokoro. More about magnetic reconnection Solar wind particles follow ‘magnetic field lines’, rather like beads on a wire. The ‘doors’ that open in Earth’s magnetosphere during oppositely aligned magnetic configurations are caused by a phenomenon called ‘magnetic reconnection‘. During this process, Earth’s field lines spontaneously break and join themselves to the Sun’s, allowing the solar wind to pass freely into Earth’s magnetosphere. Magnetic reconnections are not possible in the aligned case, however, hence the need for a different mechanism to inject the particles into Earth’s magnetosphere. More about Cluster Cluster is a mission of international co-operation between ESA and NASA. It involves four spacecraft, launched on two Russian rockets during the summer of 2000. They are now flying in formation around Earth, relaying the most detailed ever information about how the solar wind affects our planet in 3D. The solar wind is the perpetual stream of subatomic particles given out by the Sun and it can damage communications satellites and power stations on Earth. The Cluster mission is expected to continue until at least 2005. The ongoing archiving of the Cluster data (or Cluster Active Archive) is part of the International Living with a Star programme (ILWS), in which space agencies worldwide get together to investigate how variations in the Sun affect the environment of Earth and the other planets. In particular, ILWS concentrate on those aspects of the Sun-Earth system that may affect mankind and society. ILWS is a collaborative initiative between Europe, the United States, Russia, Japan and Canada.
Saturn's Magnetic Field and Magnetosphere.
Smith, E J; Davis, L; Jones, D E; Coleman, P J; Colburn, D S; Dyal, P; Sonett, C P
1980-01-25
The Pioneer Saturn vector helium magnetometer has detected a bow shock and magnetopause at Saturn and has provided an accurate characterization of the planetary field. The equatorial surface field is 0.20 gauss, a factor of 3 to 5 times smaller than anticipated on the basis of attempted scalings from Earth and Jupiter. The tilt angle between the magnetic dipole axis and Saturn's rotation axis is < 1 degrees , a surprisingly small value. Spherical harmonic analysis of the measurements shows that the ratio of quadrupole to dipole moments is < 10 percent, indicating that the field is more uniform than those of the Earth or Jupiter and consistent with Saturn having a relatively small core. The field in the outer magnetosphere shows systematic departures from the dipole field, principally a compression of the field near noon and an equatorial orientation associated with a current sheet near dawn. A hydromagnetic wake resulting from the interaction of Titan with the rotating magnetosphere appears to have been observed.
Optimized merging of search coil and fluxgate data for MMS
NASA Astrophysics Data System (ADS)
Fischer, David; Magnes, Werner; Hagen, Christian; Dors, Ivan; Chutter, Mark W.; Needell, Jerry; Torbert, Roy B.; Le Contel, Olivier; Strangeway, Robert J.; Kubin, Gernot; Valavanoglou, Aris; Plaschke, Ferdinand; Nakamura, Rumi; Mirioni, Laurent; Russell, Christopher T.; Leinweber, Hannes K.; Bromund, Kenneth R.; Le, Guan; Kepko, Lawrence; Anderson, Brian J.; Slavin, James A.; Baumjohann, Wolfgang
2016-11-01
The Magnetospheric Multiscale mission (MMS) targets the characterization of fine-scale current structures in the Earth's tail and magnetopause. The high speed of these structures, when traversing one of the MMS spacecraft, creates magnetic field signatures that cross the sensitive frequency bands of both search coil and fluxgate magnetometers. Higher data quality for analysis of these events can be achieved by combining data from both instrument types and using the frequency bands with best sensitivity and signal-to-noise ratio from both sensors. This can be achieved by a model-based frequency compensation approach which requires the precise knowledge of instrument gain and phase properties. We discuss relevant aspects of the instrument design and the ground calibration activities, describe the model development and explain the application on in-flight data. Finally, we show the precision of this method by comparison of in-flight data. It confirms unity gain and a time difference of less than 100 µs between the different magnetometer instruments.
NASA Technical Reports Server (NTRS)
El-Alaoui, M.; Ashour-Abdalla, M.; Raeder, J.; Frank, L. A.; Paterson, W. R.
1998-01-01
In this study we investigate the transport of H+ ions that made up the complex ion distribution function observed by the Geotail spacecraft at 0740 UT on November 24, 1996. This ion distribution function, observed by Geotail at approximately 20 R(sub E) downtail, was used to initialize a time-dependent large-scale kinetic (LSK) calculation of the trajectories of 75,000 ions forward in time. Time-dependent magnetic and electric fields were obtained from a global magnetohydrodynamic (MHD) simulation of the magnetosphere and its interaction with the solar wind and the interplanetary magnetic field (IMF) as observed during the interval of the observation of the distribution function. Our calculations indicate that the particles observed by Geotail were scattered across the equatorial plane by the multiple interactions with the current sheet and then convected sunward. They were energized by the dawn-dusk electric field during their transport from Geotail location and ultimately were lost at the ionospheric boundary or into the magnetopause.
Transient analysis for alternating over-current characteristics of HTSC power transmission cable
NASA Astrophysics Data System (ADS)
Lim, S. H.; Hwang, S. D.
2006-10-01
In this paper, the transient analysis for the alternating over-current distribution in case that the over-current was applied for a high-TC superconducting (HTSC) power transmission cable was performed. The transient analysis for the alternating over-current characteristics of HTSC power transmission cable with multi-layer is required to estimate the redistribution of the over-current between its conducting layers and to protect the cable system from the over-current in case that the quench in one or two layers of the HTSC power cable happens. For its transient analysis, the resistance generation of the conducting layers for the alternating over-current was reflected on its equivalent circuit, based on the resistance equation obtained by applying discrete Fourier transform (DFT) for the voltage and the current waveforms of the HTSC tape, which comprises each layer of the HTSC power transmission cable. It was confirmed through the numerical analysis on its equivalent circuit that after the current redistribution from the outermost layer into the inner layers first happened, the fast current redistribution between the inner layers developed as the amplitude of the alternating over-current increased.
Low-latitude boundary layer near noon: An open field line model
NASA Technical Reports Server (NTRS)
Lyons, L. R.; Schulz, M.; Pridmore-Brown, D. C.; Roeder, J. L.
1994-01-01
We propose that many features of the cusp and low-latitude boundary layer (LLBL) observed near noon MLT can be explained by interpreting the LLBL as being on open lines with an inner boundary at the separatrix between open and closed magnetic field lines. This interpretation places the poleward boundary of the LLBL and equatorward boundary of the cusp along the field line that bifurcates at the cusp neutral point. The interpretation accounts for the abrupt boundary of magnetosheath particles at the inner edge of the LLBL, a feature that is inconsistent with LLBL formation by diffusion onto closed field lines, and for the distribution of magnetosheath particles appearing more as one continuous region than as two distinct regions across the noon cusp/LLBL boundary. Furthermore, we can explain the existence of energetic radiation belt electrons and protons with differing pitch angle distributions within the LLBL and their abrupt cutoff at the poleward boundary of the LLBL. By modeling the LLBL and cusp region quantitatively, we can account for a hemispherical difference in the location of the equatorial boundary of the cusp that is observed to be dependent on the dipole tilt angle but not on the interplanetary magnetic field (IMF) x component. We also find important variations and hemispherical differences in that the size of the LLBL that should depend strongly upon the x component of the IMF. This prediction is observationally testable. Finally, we find that when the IMF is strongly northward, the LLBL may include a narrow region adjacent to the magnetopause where field lines are detached (i.e., have both ends connected to the IMF).
Whistlers observed outside the plasmasphere: Correlation to plasmaspheric/plasmapause features
NASA Astrophysics Data System (ADS)
Adrian, M. L.; Fung, S. F.; Gallagher, D. L.; Green, J. L.
2015-09-01
Whistlers observed outside the plasmasphere by Cluster have been correlated with the global plasmasphere using Imager for Magnetopause-to-Aurora Global Exploration-Extreme Ultraviolet Imager (IMAGE-EUV) observations. Of the 12 Cluster-observed whistler events reported, EUV is able to provide global imaging of the plasmasphere for every event and demonstrates a direct correlation between the detection of lightning-generated whistlers beyond the plasmapause and the presence of a global perturbation of the local plasmapause. Of these 12 correlated events, seven of the Cluster-observed whistlers (or 58%) are associated with the Cluster spacecraft lying radially outward from a plasmaspheric notch. Two of the Cluster-observed whistlers (17%) are associated with the low-density region between the late afternoon plasmapause and the western wall of a plasmaspheric drainage plume. The final three Cluster-observed whistler events (25%) are associated with a nonradial, nonazimuthal depletion in plasmaspheric He+ emission that are termed "notch-like" crenulations. In one of these cases, the notch-like crenulations appear to be manifestations entrained within the plasmasphere boundary layer of a standing wave on the surface of the plasmasphere. The correlated Cluster/IMAGE-EUV observations suggest that the depleted flux tubes that connect the ionosphere to the low-density regions of plasmaspheric trough and inner magnetosphere facilitate the escape of whistler waves from the plasmasphere.
Catalog of particles and fields data 19581965
NASA Technical Reports Server (NTRS)
King, M. L. (Editor)
1975-01-01
Available particles and fields data, covering the period 1966 to 1973 inclusive, are announced. Most data result from individual experiments carried on board individual spacecraft. A variety of user-oriented data are included. A newly created composite interplanetary magnetic field data set is discussed and other data products, that may interest the particles/fields community are mentioned, including geomagnetism, magnetopause and bow shock positions, and magnetospherically trapped particles.
Modeling and observations of ULF waves trapped in a plasmaspheric density plume
NASA Astrophysics Data System (ADS)
Degeling, A. W.; Zhang, S.; Foster, J. C.; Shi, Q.; Zong, Q. G.; Rankin, R.
2017-12-01
In order for ULF waves to effectively energise radiation belt electrons by drift-resonance, wave power must be significant in regions within the magnetosphere where the ULF wave phase propagation and electron drift directions are roughly aligned. For waves launched along the dayside magnetopause, such a region would be located in the afternoon - dusk sector of the inner magnetosphere. During periods of storm activity and enhanced convection, the plasma density in this region is highly dynamic due to the development of plasmaspheric drainage plume (PDP) structure. This significantly affects the local Alfvén speed, and alters the propagation of ULF waves launched from the magnetopause. It can therefore be expected that the accessibility of ULF wave power for radiation belt energisation is sensitively dependent on the recent history of magnetospheric convection, and the stage of development of the PDP. This is investigated using a 3D model for ULF waves within the magnetosphere in which the plasma density distribution is evolved using an advection model for cold plasma, driven by a (Volland - Stern) convection electrostatic field (resulting in PDP structure). The wave model includes magnetic-field day/night asymmetry, and extends to a paraboloid dayside magnetopause, from which ULF waves are launched at various stages during the PDP development. We find that the plume structure significantly alters the field line resonance (FLR) location, and the turning point for MHD fast waves, introducing strong asymmetry in the ULF wave distribution across the noon meridian. Moreover, the density enhancement within the PDP creates a waveguide or local cavity for MHD fast waves, such that eigenmodes formed allow the penetration of ULF wave power to much lower L within the plume than outside. This may explain satellite observations of the appearance of ULF wave activity within localized density enhancements associated with a PDP. Such an example, made by THEMIS following a geomagnetic storm on October 9, 2013, is described, and compared against the ULF wave model results, for which inputs are constrained by available observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lester, M.; Freeman, M.P.; Southwood, D.J.
On July 14, 1982 the Sweden and Britain Radar-Aurora Experiment (SABRE) observed the ionospheric flow reversal boundary at {approximately} 0400 MLT to move equatorward across the radar field of view and then later to return poleward. The polar cap appeared to be considerably inflated at this time. Concurrent observations by ISEE-3 at the L1 libration point of the solar wind speed and density, and of the interplanetary magnetic field (IMF) indicated that the solar wind conditions were unusual throughout the interval under consideration. A mapping of the solar wind parameters from the L1 point to the subsolar magnetopause and thencemore » to the SABRE local time sector indicates that the equatorward motion of the polar cap boundary was controlled by a southward turning of the IMF. The inference of a concomitant increase in open magnetic flux is supported by a comparison of the magnetopause location observed by ISEE-1 on an inbound pass in the 2,100 MLT sector with a magnetopause model based upon the solar wind measurements made by ISEE-3. Some 20 minutes after the expansion of the polar cap boundary was first seen by SABRE, there was a rapid contraction of the boundary, the casue of which was independent of the INF and solar wind parameters, and which had a poleward velocity component in excess of 1,900 m s{sup {minus}1}. the boundary as it moved across the radar field of view was highly structured and oriented at a large angle to the ionospheric footprints of the magnetic L shells. Observations in the premidnight sector by the Air Force Geophysics Laboratory (AFGL) magnetometer array indicate that the polar cap contraction is caused by substorm draining of the polar cap flux and occurs without a clearly associated trigger in the interplanetary medium. The response time in the early morning local time sector to the substorm onset switch is approximately 20 minutes, equivalent to an ionospheric azimuthal phase velocity of some 5 km s{sup {minus}1}.« less
Geomagnetically Induced Currents Around the World During the 17 March 2015 Storm
NASA Technical Reports Server (NTRS)
Carter, B. A.; Yizengaw, E.; Pradipta, R.; Weygand, J. M.; Piersanti, M.; Pulkkinen, Antti Aleksi; Moldwin, M. B.; Norman, R.; Zhang, K.
2016-01-01
Geomagnetically induced currents (GICs) represent a significant space weather issue for power grid and pipeline infrastructure, particularly during severe geomagnetic storms. In this study, magnetometer data collected from around the world are analyzed to investigate the GICs caused by the 2015 St. Patricks Day storm. While significant GIC activity in the high-latitude regions due to storm time substorm activity is shown for this event, enhanced GIC activity was also measured at two equatorial stations in the American and Southeast Asian sectors. This equatorial GIC activity is closely examined, and it is shown that it is present both during the arrival of the interplanetary shock at the storm sudden commencement (SSC) in Southeast Asia and during the main phase of the storm approximately 10 h later in South America. The SSC caused magnetic field variations at the equator in Southeast Asia that were twice the magnitude of those observed only a few degrees to the north, strongly indicating that the equatorial electrojet (EEJ) played a significant role. The large equatorial magnetic field variations measured in South America are also examined, and the coincident solar wind data are used to investigate the causes of the sudden changes in the EEJ approximately 10 h into the storm. From this analysis it is concluded that sudden magnetopause current increases due to increases in the solarwind dynamic pressure, and the sudden changes in the resultant magnetospheric and ionospheric current systems, are the primary drivers of equatorial GICs.
NASA Astrophysics Data System (ADS)
Bessho, N.; Chen, L. J.; Hesse, M.; Wang, S.
2017-12-01
In asymmetric reconnection with a guide field in the Earth's magnetopause, electron motion in the electron diffusion region (EDR) is largely affected by the guide field, the Hall electric field, and the reconnection electric field. The electron motion in the EDR is neither simple gyration around the guide field nor simple meandering motion across the current sheet. The combined meandering motion and gyration has essential effects on particle acceleration by the in-plane Hall electric field (existing only in the magnetospheric side) and the out-of-plane reconnection electric field. We analyze electron motion and crescent-shaped electron distribution functions in the EDR in asymmetric guide field reconnection, and perform 2-D particle-in-cell (PIC) simulations to elucidate the effect of reconnection electric field on electron distribution functions. Recently, we have analytically expressed the acceleration effect due to the reconnection electric field on electron crescent distribution functions in asymmetric reconnection without a guide field (Bessho et al., Phys. Plasmas, 24, 072903, 2017). We extend the theory to asymmetric guide field reconnection, and predict the crescent bulge in distribution functions. Assuming 1D approximation of field variations in the EDR, we derive the time period of oscillatory electron motion (meandering + gyration) in the EDR. The time period is expressed as a hybrid of the meandering period and the gyro period. Due to the guide field, electrons not only oscillate along crescent-shaped trajectories in the velocity plane perpendicular to the antiparallel magnetic fields, but also move along parabolic trajectories in the velocity plane coplanar with magnetic field. The trajectory in the velocity space gradually shifts to the acceleration direction by the reconnection electric field as multiple bounces continue. Due to the guide field, electron distributions for meandering particles are bounded by two paraboloids (or hyperboloids) in the velocity space. We compare theory and PIC simulation results of the velocity shift of crescent distribution functions based on the derived time period of bounce motion in a guide field. Theoretical predictions are applied to electron distributions observed by MMS in magnetopause reconnection to estimate the reconnection electric field.
Preliminary pioneer 10 encounter results from the ames research center plasma analyzer experiment.
Wolfe, J H; Collard, H R; Mihalov, J D; Intriligator, D S
1974-01-25
Preliminary results from the Ames Research Center plasma analyzer experiment for the Pioneer 10 Jupiter encounter indicate that Jupiter has a detached bow shock and magnetopause similar to the case at Earth but much larger in spatial extent. In contrast to Earth, Jupiter's outer magnetosphere appears to be highly inflated by thermal plasma and therefore highly responsive in size to changes in solar wind dynamic pressure.
Simulation of a Rapid Dropout Event for Highly Relativistic Electrons with the RBE Model
NASA Technical Reports Server (NTRS)
Kang, S-B.; Fok, M.-C.; Glocer, A.; Min, K.-W.; Choi, C.-R.; Choi, E.; Hwang, J.
2016-01-01
A flux dropout is a sudden and sizable decrease in the energetic electron population of the outer radiation belt on the time scale of a few hours. We simulated a flux dropout of highly relativistic 2.5 MeV electrons using the Radiation Belt Environment model, incorporating the pitch angle diffusion coefficients caused by electromagnetic ion cyclotron (EMIC) waves for the geomagnetic storm events of 23-26 October 2002. This simulation showed a remarkable decrease in the 2.5 MeV electron flux during main phase of the storm, compared to those without EMIC waves. This decrease was independent of magnetopause shadowing or drift loss to the magnetopause. We suggest that the flux decrease was likely to be primarily due to pitch angle scattering to the loss cone by EMIC waves. Furthermore, the 2.5 MeV electron flux calculated with EMIC waves correspond very well with that observed from Solar Anomalous and Magnetospheric Particle EXplorer spacecraft. EMIC wave scattering is therefore likely one of the key mechanisms to understand flux dropouts. We modeled EMIC wave intensities by the Kp index. However, the calculated dropout is a several hours earlier than the observed one. We propose that Kp is not the best parameter to predict EMIC waves.
NASA Astrophysics Data System (ADS)
Rae, I. J.; Taylor, M. G.; Lavraud, B.; Cowley, S. W.; Lester, M.; Fenrich, F. R.; Fazakerley, A.; Räme, H.; Sofko, G.; Balogh, A.
2001-12-01
The launch of the Cluster satellite constellation allows, amongst other things, the study of the small-scale spatio-temporal structures in the near-Earth geospace. We present a case study of the high-altitude northern hemispheric cusp by the Cluster-II spacecraft constellation under southward IMF conditions. During this interval Cluster traversed the northern hemispheric dayside region and crossed the magnetopause close to the noon-midnight meridian, and observed both the plasma and magnetic field observations of transient reconnection for a number of hours. Throughout this interval, the ionospheric footprint of the spacecraft maps into the Canadian sector of the Earth's ionosphere into the Saskatoon and Kapuskasing HF radars fields-of-view. This SuperDARN HF radar pair observe the ionospheric flows generated by this transient reconnection during this interval at approximately the same magnetic latitude and local time. The calculated orientation of the reconnected flux tubes is found to be in accordance with the prevailing IMF conditions and the direction of motion of the excited ionospheric flows. We discuss these observations in terms of transient magnetic flux transfer and in terms of the size and location of the active reconnection X-line at the low-latitude magnetopause.
NASA Technical Reports Server (NTRS)
Tang, Xiangwei; Cattell, Cynthia; Dombeck, John; Dai, Lei; Wilson, Lynn B. III; Breneman, Aaron; Hupack, Adam
2013-01-01
We present the first observations of large amplitude waves in a well-defined electron diffusion region based on the criteria described by Scudder et al at the subsolar magnetopause using data from one Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite. These waves identified as whistler mode waves, electrostatic solitary waves, lower hybrid waves, and electrostatic electron cyclotron waves, are observed in the same 12 s waveform capture and in association with signatures of active magnetic reconnection. The large amplitude waves in the electron diffusion region are coincident with abrupt increases in electron parallel temperature suggesting strong wave heating. The whistler mode waves, which are at the electron scale and which enable us to probe electron dynamics in the diffusion region were analyzed in detail. The energetic electrons (approx. 30 keV) within the electron diffusion region have anisotropic distributions with T(sub e(right angle))/T(sub e(parallel)) > 1 that may provide the free energy for the whistler mode waves. The energetic anisotropic electrons may be produced during the reconnection process. The whistler mode waves propagate away from the center of the "X-line" along magnetic field lines, suggesting that the electron diffusion region is a possible source region of the whistler mode waves.
A statistical survey of ultralow-frequency wave power and polarization in the Hermean magnetosphere.
James, Matthew K; Bunce, Emma J; Yeoman, Timothy K; Imber, Suzanne M; Korth, Haje
2016-09-01
We present a statistical survey of ultralow-frequency wave activity within the Hermean magnetosphere using the entire MErcury Surface, Space ENvironment, GEochemistry, and Ranging magnetometer data set. This study is focused upon wave activity with frequencies <0.5 Hz, typically below local ion gyrofrequencies, in order to determine if field line resonances similar to those observed in the terrestrial magnetosphere may be present. Wave activity is mapped to the magnetic equatorial plane of the magnetosphere and to magnetic latitude and local times on Mercury using the KT14 magnetic field model. Wave power mapped to the planetary surface indicates the average location of the polar cap boundary. Compressional wave power is dominant throughout most of the magnetosphere, while azimuthal wave power close to the dayside magnetopause provides evidence that interactions between the magnetosheath and the magnetopause such as the Kelvin-Helmholtz instability may be driving wave activity. Further evidence of this is found in the average wave polarization: left-handed polarized waves dominate the dawnside magnetosphere, while right-handed polarized waves dominate the duskside. A possible field line resonance event is also presented, where a time-of-flight calculation is used to provide an estimated local plasma mass density of ∼240 amu cm -3 .
Physics of the diffusion region in the Magnetospheric Multiscale era
NASA Astrophysics Data System (ADS)
Chen, L. J.; Hesse, M.; Wang, S.; Ergun, R.; Bessho, N.; Burch, J. L.; Giles, B. L.; Torbert, R. B.; Gershman, D. J.; Wilson, L. B., III; Dorelli, J.; Pollock, C. J.; Moore, T. E.; Lavraud, B.; Strangeway, R. J.; Russell, C. T.; Khotyaintsev, Y. V.; Le Contel, O.; Avanov, L. A.
2016-12-01
Encounters of reconnection diffusion regions by the Magnetospheric Multiscale (MMS) mission during its first magnetopause scan are studied in combination with theories and simulations. The goal is to understand by first-principles how stored magnetic energy is converted into plasma thermal and bulk flow energies via particle energization, mixing and interaction with waves. The magnetosheath population having much higher density than the magnetospheric plasma is an outstanding narrator for and participant in the magnetospheric part of the diffusion region. For reconnection with negligible guide fields, the accelerated magnetosheath population (for both electrons and ions) is cyclotron turned by the reconnected magnetic field to form outflow jets, and then gyrotropized downstream. Wave fluctuations are reduced in the central electron diffusion region (EDR) and do not dominate the energy conversion there. For an event with a significant guide field to magnetize the electrons, wave fluctuations at the lower hybrid frequency dominate the energy conversion in the EDR, and the fastest electron outflow is established dominantly by a strong perpendicular electric field via the ExB flow in one exhaust and by time-of-flight effects along with parallel electric field acceleration in the other. Whether the above features are common threads to magnetopause reconnection diffusion regions is a question to be further examined.
X-ray Magnetosheath Emission from Solar Wind Charge Exchange During Two CME Events in 2001
NASA Astrophysics Data System (ADS)
Sembay, S.; Whittaker, I. C.; Read, A.; Carter, J. A.; Milan, S. E.; Palmroth, M.
2016-12-01
Using a combination of the GUMICS-4 MHD model and observed solar wind heavy ion abundances from ACE, we produce case studies looking at X-ray emission from charge exchange in the Earth's magnetosheath. We specifically look in the 0.5-0.7 keV range, which is dominated by highly ionised oxygen emission. Previous studies looking at solar wind charge exchange (SWCX) emission have verified our modelling process via comparison to the XMM-Newton X-ray observatory, and we use the same simulation process here. This study investigates the emission magnitude changes that occur during two coronal mass ejection (CME) events (31 March 2001 and 21 October 2001). As part of this work we also provide a novel masking technique to exclude the plasma of terrestrial origin in the MHD model. As expected the two CME cases examined provide an increased dynamic pressure which pushes the magnetopause closer to the Earth, with a high temporal variation. We show how these changes cause an increase in the peak SWCX emission signature by over an order of magnitude from the quiescent solar wind case. Imaging of this SWCX emission allows a global view of the magnetopause shape and position, a technique planned for future missions such as SMILE (Solar wind Magnetosphere Ionosphere Link Explorer).
Effect of scrape-off-layer current on reconstructed tokamak equilibrium
King, J. R.; Kruger, S. E.; Groebner, R. J.; ...
2017-01-13
Methods are described that extend fields from reconstructed equilibria to include scrape-off-layer current through extrapolated parametrized and experimental fits. The extrapolation includes both the effects of the toroidal-field and pressure gradients which produce scrape-off-layer current after recomputation of the Grad-Shafranov solution. To quantify the degree that inclusion of scrape-off-layer current modifies the equilibrium, the χ-squared goodness-of-fit parameter is calculated for cases with and without scrape-off-layer current. The change in χ-squared is found to be minor when scrape-off-layer current is included however flux surfaces are shifted by up to 3 cm. Here the impact on edge modes of these scrape-off-layer modificationsmore » is also found to be small and the importance of these methods to nonlinear computation is discussed.« less
Space Weather Studies at Istanbul Technical University
NASA Astrophysics Data System (ADS)
Kaymaz, Zerefsan
2016-07-01
This presentation will introduce the Upper Atmosphere and Space Weather Laboratory of Istanbul Technical University (ITU). It has been established to support the educational needs of the Faculty of Aeronautics and Astronautics in 2011 to conduct scientific research in Space Weather, Space Environment, Space Environment-Spacecraft Interactions, Space instrumentation and Upper Atmospheric studies. Currently the laboratory has some essential infrastructure and the most instrumentation for ionospheric observations and ground induced currents from the magnetosphere. The laboratory has two subunits: SWIFT dealing with Space Weather Instrumentation and Forecasting unit and SWDPA dealing with Space Weather Data Processing and Analysis. The research area covers wide range of upper atmospheric and space science studies from ionosphere, ionosphere-magnetosphere coupling, magnetic storms and magnetospheric substorms, distant magnetotail, magnetopause and bow shock studies, as well as solar and solar wind disturbances and their interaction with the Earth's space environment. We also study the spacecraft environment interaction and novel plasma instrument design. Several scientific projects have been carried out in the laboratory. Operational objectives of our laboratory will be carried out with the collaboration of NASA's Space Weather Laboratory and the facilities are in the process of integration to their prediction services. Educational and research objectives, as well as the examples from the research carried out in our laboratory will be demonstrated in this presentation.
Dark current of organic heterostructure devices with insulating spacer layers
NASA Astrophysics Data System (ADS)
Yin, Sun; Nie, Wanyi; Mohite, Aditya D.; Saxena, Avadh; Smith, Darryl L.; Ruden, P. Paul
2015-03-01
The dark current density at fixed voltage bias in donor/acceptor organic planar heterostructure devices can either increase or decrease when an insulating spacer layer is added between the donor and acceptor layers. The dominant current flow process in these systems involves the formation and subsequent recombination of an interfacial exciplex state. If the exciplex formation rate limits current flow, the insulating interface layer can increase dark current whereas, if the exciplex recombination rate limits current flow, the insulating interface layer decreases dark current. We present a device model to describe this behavior and illustrate it experimentally for various donor/acceptor systems, e.g. P3HT/LiF/C60.
Striate cortical contribution to the transcorneal electrically evoked response of the visual system.
Shimazu, K; Miyake, Y; Fukatsu, Y; Watanabe, S
1996-01-01
Analyses of current-source-density (CSD) and multiple unit activity (MUA) in area 17 of the cat were performed to determine the sources of the cortical transcorneal electrically evoked response. Cortical field potential, CSD and MUA profiles were obtained with multi-electrodes. CSD findings include: current sinks (inward cell membrane current) within 20 ms latency, in layers 4 and 6 of the striate cortex; current sinks corresponding to N3 (negative component of the EER; latency, 35 ms) in layer 4 and lower layer 3 with current sources (outward cell membrane current) for N3 in the supragranular layers; current sinks with latency over 40 ms in the supragranular layers. In the layers 4 and 6, simultaneous MUA was seen. When the stimulus frequency was increased or with dual stimulation, the N3 current sinks were decreased. This indicates that N1 (latency, 9 ms) and N2 (latency, 20 ms) reflect near-field potentials in layers 4 and 6, generated by geniculocortical afferents, and that N3 is a post- and polysynaptic component. It is also suggested that dipoles composed of cell bodies and the apical dendrites of pyramidal cells of layer 3, generated by satellite cells in layer 4, play a major role in generating N3.
Electron drag in ferromagnetic structures separated by an insulating interface
NASA Astrophysics Data System (ADS)
Kozub, V. I.; Muradov, M. I.; Galperin, Y. M.
2018-06-01
We consider electron drag in a system of two ferromagnetic layers separated by an insulating interface. The source of it is expected to be magnon-electron interactions. Namely, we assume that the external voltage is applied to the "active" layer stimulating electric current through this layer. In its turn, the scattering of the current-carrying electrons by magnons leads to a magnon drag current within this layer. The 3-magnons interactions between magnons in the two layers (being of non-local nature) lead to magnon drag within the "passive" layer which, correspondingly, produce electron drag current via processes of magnon-electron scattering. We estimate the drag current and compare it to the phonon-induced one.
Visualization of High Latitude Ion Upflow in Support of the Image Mission
NASA Technical Reports Server (NTRS)
Wilson, Gordon R.
1996-01-01
The study of the magnetosphere is a 400 year old science that began with the publication by Gilbert, in 1600, of his hypotheses that the Earth was a giant magnet. Since then we have learned many things about the magnetosphere, particularly in the last 40 years of the space age, but we still have many unanswered questions. In spite of the many thousands of observations of this system we still lack a global understanding of how it works. This is due to its large size and tenuous nature that mean that any measurement made of the fields or particles involved only give one a knowledge of the local conditions at a given time. To gain a global perspective through such observations would require the simultaneous operation of thousands of satellites spread throughout the magnetospheric system in addition to observations made on the ground. Such a program would be impractical at least from financial considerations. What is needed for the advancement of magnetospheric physics is to develop the same capabilities that astrophysicists, solar physicists and meteorologists have been using for years --- the ability to stand back from the object under study and see it in its entirety. The challenge for doing this for the magnetosphere is that the particle densities are very low and the material is, for the most part, not luminous. In the last 25 years several ideas have been proposed that would allow at least the imaging of certain portions of the magnetosphere. These include imaging of the plasmasphere through the resonant scattering of solar 304 A from He+ ions, imaging of various hot plasma populations (i.e. the ring current, plasmasheet, upflowing ionospheric ions, etc.) from the neutral atoms that result when ions of these populations charge exchange with the hydrogen geocorona, and imaging the aurora at various wavelengths in the far ultraviolet. In addition, a novel technique for probing various boundaries in the magnetosphere by bouncing low frequency radio waves off of them has been extensively studied. Such a technique is analogous to the way the under water world can be probed with sonar. About five years ago NASA convened a science working group to study the possibility of flying a magnetospheric imaging mission. This resulted in a number of proposals for such a mission, one of which was selected to be the first MIDEX mission, to be launched in early 2000. The mission is called IMAGE (Imager for Magnetopause to Aurora Global Exploration) and its P.I. is J. Burch at SwRI. The IMAGE spacecraft will carry imagers to view the plasmasphere, aurora, ring current, inner plasmasheet, and upflowing ionospheric ions as well as a radio sounder to probe the location, shape and dynamics of the magnetopause, plasmapause, etc. Between its selection last April and the non advocacy mission review, which takes place next spring, the IMAGE teams needs to further refine the design of the mission and its instruments. The theory and modeling (T&M) subgroup of this team has the task of demonstrating what kind of images the instruments on IMAGE will see as well as showing that useful scientific information can be extracted from such images. As a central element to the efforts of the T&M subgroup we have decided to simulate and create synthetic images for the magnetic cloud event of October, 1995. In this event a large cloud, with high plasma densities and strong magnetic fields, ejected from the sun collided with the earth's magnetosphere triggering a three day period of intense magnetic storms and substorms. This event was observed from a number of different spacecraft and on the ground so we have a good data set to work with. In our work we will place the IMAGE spacecraft in the magnetosphere on its proposed orbit, with its proposed instruments, to see what it would see had it been there. Existing models of the plasmasphere, ring current and magnetopause will be run for this event to give the structures for the imaging instruments. There are several models which are lacking and which need to be developed. These include a model for the cusp, the inner plasmasheet and the upflowing ions. My task this summer was to develop the upflowing ion model and use it to create synthetic images.
The Lunar X-ray Observatory (LXO)/Magnetosheath Explorer in X-Rays (MagEX)
NASA Technical Reports Server (NTRS)
Collier, M.R.; Abbey, T.F.; Bannister, N.P.; Carter, J.A.; Choi, M.; Cravens, T.; Evans, M.; Fraser, G.W.; Hills, H.K.; Kuntz, K.;
2009-01-01
X-ray observations of solar wind charge exchange (SWCX) emission, a nuisance to astrophysicists, will dramatically enhance our ability to determine the structure and variability of the Earth's magnetosheath. Such observations could be made from the lunar surface or an Earth-orbiting spacecraft and will resolve key controversies about magnetopause physics as well as better characterize SWCX emission with the aim of avoiding or removing it from astrophysical observations.
Steady state magnetic field configurations for the earth's magnetotail
NASA Technical Reports Server (NTRS)
Hau, L.-N.; Wolf, R. A.; Voigt, G.-H.; Wu, C. C.
1989-01-01
A two-dimensional, force-balance magnetic field model is presented. The theoretical existence of a steady state magnetic field configuration that is force-balanced and consistent with slow, lossless, adiabatic, earthward convection within the limit of the ideal MHD is demonstrated. A numerical solution is obtained for a two-dimensional magnetosphere with a rectangular magnetopause and nonflaring tail. The results are consistent with the convection time sequences reported by Erickson (1985).
Nitride based quantum well light-emitting devices having improved current injection efficiency
Tansu, Nelson; Zhao, Hongping; Liu, Guangyu; Arif, Ronald
2014-12-09
A III-nitride based device provides improved current injection efficiency by reducing thermionic carrier escape at high current density. The device includes a quantum well active layer and a pair of multi-layer barrier layers arranged symmetrically about the active layer. Each multi-layer barrier layer includes an inner layer abutting the active layer; and an outer layer abutting the inner layer. The inner barrier layer has a bandgap greater than that of the outer barrier layer. Both the inner and the outer barrier layer have bandgaps greater than that of the active layer. InGaN may be employed in the active layer, AlInN, AlInGaN or AlGaN may be employed in the inner barrier layer, and GaN may be employed in the outer barrier layer. Preferably, the inner layer is thin relative to the other layers. In one embodiment the inner barrier and active layers are 15 .ANG. and 24 .ANG. thick, respectively.
Current–voltage characteristics of organic heterostructure devices with insulating spacer layers
Yin, Sun; Nie, Wanyi; Mohite, Aditya D.; ...
2015-05-14
The dark current density in donor/acceptor organic planar heterostructure devices at a given forward voltage bias can either increase or decrease when an insulating spacer layer is added between the donor and acceptor layers. The dominant current flow process in these systems involves the formation and subsequent recombination of interfacial exciplex states. If the exciplex recombination rate limits current flow, an insulating interface layer decreases the dark current. However, if the exciplex formation rate limits the current, an insulating interface layer may increase the dark current. As a result, we present a device model to describe this behavior, and wemore » discuss relevant experimental data.« less
Thin film buried anode battery
Lee, Se-Hee [Lakewood, CO; Tracy, C Edwin [Golden, CO; Liu, Ping [Denver, CO
2009-12-15
A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).
Cluster Observations of reconnection along the dusk flank of the magnetosphere
NASA Astrophysics Data System (ADS)
Escoubet, C.-Philippe; Grison, Benjamin; Berchem, Jean; Trattner, Karlheinz; Lavraud, Benoit; Pitout, Frederic; Soucek, Jan; Richard, Robert; Laakso, Harri; Masson, Arnaud; Dunlop, Malcolm; Dandouras, Iannis; Reme, Henri; Fazakerley, Andrew; Daly, Patrick
2015-04-01
Magnetic reconnection is generally accepted to be the main process that transfers particles and energy from the solar wind to the magnetosphere. The location of the reconnection site depends on the orientation of the interplanetary magnetic field (IMF) in the solar wind: on the dayside magnetosphere for an IMF southward, on the lobes for an IMF northward and on the flanks for an IMF in the East-West direction. Since most of observations of reconnection events have sampled a limited region of space simultaneously it is still not yet know if the reconnection line is extended over large regions of the magnetosphere or if is patchy and made of many reconnection lines. We report a Cluster crossing on 5 January 2002 near the exterior cusp on the southern dusk side where we observe multiple sources of reconnection/injections. The IMF was mainly azimuthal (IMF-By around -5 nT), the solar wind speed lower than usual around 280 km/s with the density of order 5 cm-3. The four Cluster spacecraft had an elongated configuration near the magnetopause. C4 was the first spacecraft to enter the cusp around 19:52:04 UT, followed by C2 at 19:52:35 UT, C1 at 19:54:24 UT and C3 at 20:13:15 UT. C4 and C1 observed two ion energy dispersions at 20:10 UT and 20:40 UT and C3 at 20:35 UT and 21:15 UT. Using the time of flight technique on the upgoing and downgoing ions, which leads to energy dispersions, we obtain distances of the ion sources between 14 and 20 RE from the spacecraft. The slope of the ion energy dispersions confirmed these distances. Using Tsyganenko model, we find that these sources are located on the dusk flank, past the terminator. The first injection by C3 is seen at approximately the same time as the 2nd injection on C1 but their sources at the magnetopause were separated by more than 7 RE. This would imply that two distinct sources were active at the same time on the dusk flank of the magnetosphere. In addition, a flow reversal was observed at the magnetopause on C4 which would be an indication that reconnection is also taking place near the exterior cusp quasi-simultaneously.
Characteristics of dayside auroral displays in relation to magnetospheric processes
NASA Astrophysics Data System (ADS)
Minow, Joseph I.
1997-09-01
The use of dayside aurorae as a ground based monitor of magnetopause activity is explored in this thesis. The origin of diffuse (OI) 630.0 nm emissions in the midday auroral oval is considered first. Analysis of low altitude satellite records of precipitating charged particles within the cusp show an unstructured electron component that will produce a 0.5-1 kR 630.0 nm emission throughout the cusp. Distribution of the electrons is controlled by the requirement of charge neutrality in the cusp, predicting a diffuse 630.0 nm background even if the magnetosheath plasma is introduced into the magnetosphere in discrete merging events. Cusp electron fluxes also contain a structured component characterized by enhancements in the electron energy and energy flux over background values in narrow regions a few 10's of kilometers in width. These structured features are identified as the source of the transient midday arcs. An auroral model is developed to study the morphology of (OI) 630.0 nm auroral emissions produced by the transient arcs. The model demonstrates that a diffuse 630.0 nm background emission is produced by transient arcs due to the long lifetime of the O(1D) state. Two sources of diffuse 630.0 nm background emissions exist in the cusp which may originate in discrete merging events. The conclusion is that persistent 630.0 nm emissions cannot be interpreted as prima facie evidence for continuous particle transport from the magnetosheath across the magnetopause boundary and into the polar cusp. The second subject that is considered is the analysis of temporal and spatial variations of the diffuse 557.7 nm pulsating aurora in relation to the 630.0 nm dominated transient aurora. Temporal variations at the poleward boundary of the diffuse 557.7 nm aurora correlate with the formation of the 630.0 nm transient aurorae suggesting that the two events are related. The character of the auroral variations is consistent with the behavior of particle populations reported during satellite observations of flux transfer events near the dayside magnetopause. An interpretation of the events in terms of impulsive magnetic reconnection yields a new observation that relates the poleward moving transient auroral arcs in the midday sector to the flux transfer events.
Loss of ring current O+ ions due to interaction with Pc 5 waves
NASA Astrophysics Data System (ADS)
Hudson, Mary; Chan, Anthony; Roth, Ilan
1993-01-01
The behavior of ring current ions in low-frequency geomagnetic pulsations is investigated analytically and numerically. We focus primarily on ring current O+ ions, whose flux increases dramatically during geomagnetic storms and decays at a rate which is not fully explained by collisional processes. This paper presents a new loss mechanism for the O+ ions due to the combined effects of convection and corotation electric fields and interaction with Pc 5 waves (wave period: 150-600 s) via a magnetic drift-bounce resonance. A test particle code has been developed to calculate the motion of the ring current O+ ions in a time-independent dipole magnetic field, and convection and corotation electric fields, plus Pc 5 wave fields, for which a simple analytical model has been formulated based on spacecraft observations. For given fields, whether a particle gains or loses energy depends on its initial kinetic energy, pitch angle at the equatorial plane, and the position of its guiding center with respect to the azimuthal phase of the wave. The ring current O+ ions show a dispersion in energies and L values with decreasing local time across the dayside, and a bulk shift to lower energies and higher L values. The former is due to the wave-particle interaction causing the ion to gain or lose energy, while the latter is due to the convection electric field. Our simulations show that, due to the interaction with the Pc 5 waves, the particle's kinetic energy can drop below that required to overcome the convection potential and the particle will be lost to the dayside magnetopause by a sunward E×B drift. This may contribute to the loss of O+ ions at intermediate energies (tens of keV) observed during the recovery phase of geomagnetic storms.
Anticipating Juno Observations of the Magnetosphere of Jupiter
NASA Astrophysics Data System (ADS)
Bunnell, E.; Fowler, C. M.; Bagenal, F.; Bonfond, B.
2012-12-01
The Juno spacecraft will arrive at Jupiter in 2016 and will go into polar orbit. Juno will make the first exploration of the polar regions of Jupiter's vast magnetosphere, combining in situ particles and fields measurements with remote sensing of auroral emissions in the UV, IR and radio. The primary science period comprises ~30 orbits with 11-day periods with a~1.06Rj perijove, allowing Juno to duck under the hazardous synchrotron radiation belts. Apojove is at ~38Rj. The oblateness of the planet causes the orbit to precess with the major axis moving progressively south at about 1 degree per orbit, eventually bringing the spacecraft into the radiation belts. This orbit allows unprecedented views of the aurora and exploration of the auroral acceleration regions. We present an overview of anticipated Juno observations based on models of the Jovian magnetosphere. On approach to Jupiter and over a capture orbit that extends to ~180Rj on the dawn flank, Juno will traverse the magnetosheath, magnetopause and boundary layer regions of the magnetosphere. Due to the high plasma pressures in the magnetospheric plasmasheet the magnetosphere of Jupiter is known to vary substantially with the changes in the solar wind dynamic pressure. We use Ulysses solar wind data obtained around 5 AU to predict the conditions that Juno will observe over the several months it will spend in these boundary regions.
NASA Technical Reports Server (NTRS)
Korth, Haje; Anderson, Brian J.; Gershman, Daniel J.; Raines, Jim M.; Slavin, James A.; Zurbuchen, Thomas H.; Solomon, Sean C.; McNutt, Ralph L.
2014-01-01
We assess the statistical spatial distribution of plasma in Mercury's magnetosphere from observations of magnetic pressure deficits and plasma characteristics by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. The statistical distributions of proton flux and pressure were derived from 10months of Fast Imaging Plasma Spectrometer (FIPS) observations obtained during the orbital phase of the MESSENGER mission. The Magnetometer-derived pressure distributions compare favorably with those deduced from the FIPS observations at locations where depressions in the magnetic field associated with the presence of enhanced plasma pressures are discernible in the Magnetometer data. The magnitudes of the magnetic pressure deficit and the plasma pressure agree on average, although the two measures of plasma pressure may deviate for individual events by as much as a factor of approximately 3. The FIPS distributions provide better statistics in regions where the plasma is more tenuous and reveal an enhanced plasma population near the magnetopause flanks resulting from direct entry of magnetosheath plasma into the low-latitude boundary layer of the magnetosphere. The plasma observations also exhibit a pronounced north-south asymmetry on the nightside, with markedly lower fluxes at low altitudes in the northern hemisphere than at higher altitudes in the south on the same field line. This asymmetry is consistent with particle loss to the southern hemisphere surface during bounce motion in Mercury's offset dipole magnetic field.
Cusp and LLBL as Sources of the Isolated Dayside Auroral Feature During Northward IMF
NASA Technical Reports Server (NTRS)
Chang, S.; Gallagher, D. L.; Spann, J. F., Jr.; Mende, S.; Greenwald, R.; Newell, P. T.
2004-01-01
An intense dayside proton aurora was observed by IMAGE FUV for an extensive period of northward interplanetary magnetic field (IMF) on 17 and 18 September, 2000. This aurora partially coincided with the auroral oval and intruded farther poleward into the polar cap, and it showed longitudinal motions in response to IMF $B-y$ variation. Intense magnetosheath-like electron and ion precipitations have been simultaneously detected by DMSP above the poleward portion of the high-latitude dayside aurora. They resemble the typical plasmas observed in the low-altitude cusp. However, less intense electrons and more intense energetic ions were detected over the equatorward part of the aurora. These plasmas are closer to the low-latitude boundary layer (LLBL) plasmas. Under strongly northward IMF, global ionospheric convection derived from SuperDARN radar measurements showed a 4-cell pattern with sunward convection in the middle of the dayside polar cap and the dayside aurora corresponded to two different convection cells. This result further supports two source regions for the aurora. The cusp proton aurora is on open magnetic field lines convecting sunward whereas the LLBL proton aurora is on closed field lines convecting antisunward. These IMAGE, DMSP and SuperDARN observations reveal the structure and dynamics of the aurora and provide strong evidence for magnetic merging occurring at the high-latitude magnetopause poleward from the cusp. This merging process was very likely quasi-stationary.
Wave Phenomena and Beam-Plasma Interactions at the Magnetopause Reconnection Region
NASA Astrophysics Data System (ADS)
Burch, J. L.; Webster, J. M.; Genestreti, K. J.; Torbert, R. B.; Giles, B. L.; Fuselier, S. A.; Dorelli, J. C.; Rager, A. C.; Phan, T. D.; Allen, R. C.; Chen, L.-J.; Wang, S.; Le Contel, O.; Russell, C. T.; Strangeway, R. J.; Ergun, R. E.; Jaynes, A. N.; Lindqvist, P.-A.; Graham, D. B.; Wilder, F. D.; Hwang, K.-J.; Goldstein, J.
2018-02-01
This paper reports on Magnetospheric Multiscale observations of whistler mode chorus and higher-frequency electrostatic waves near and within a reconnection diffusion region on 23 November 2016. The diffusion region is bounded by crescent-shaped electron distributions and associated dissipation just upstream of the X-line and by magnetic field-aligned currents and electric fields leading to dissipation near the electron stagnation point. Measurements were made southward of the X-line as determined by southward directed ion and electron jets. We show that electrostatic wave generation is due to magnetosheath electron beams formed by the electron jets as they interact with a cold background plasma and more energetic population of magnetospheric electrons. On the magnetosphere side of the X-line the electron beams are accompanied by a strong perpendicular electron temperature anisotropy, which is shown to be the source of an observed rising-tone whistler mode chorus event. We show that the apex of the chorus event and the onset of electrostatic waves coincide with the opening of magnetic field lines at the electron stagnation point.
MMS Observations of Vorticity Near Sites of Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Paterson, W. R.; Giles, B. L.; Avanov, L. A.; Boardsen, S. A.; Dorelli, J.; Gershman, D. J.; Mackler, D. A.; Moore, T. E.; Pollock, C. J.; Schiff, C.; Shuster, J. R.; Viñas, A. F.; Russell, C. T.; Strangeway, R. J.; Burch, J. L.; Torbert, R. B.
2017-12-01
With highly capable plasma instruments on four spacecraft flown in tetrahedral formation, it is possible for MMS investigators to approximate spatial derivatives of the plasma parameters observed. Here, we examine vorticity of the electron and ion components of the plasma computed from the curl of velocity as measured by the Fast Plasma Investigation (FPI). Vorticity of magnetospheric plasma has not previously been studied on scales of tens-of-km to less than 10 km, which are the typical inter-spacecraft separations for MMS. Nor has it been explored on time scales of 30 ms for electrons and 150 ms for ions, which are the burst data rates for the FPI spectrometers. Review of observations from the magnetopause and magnetotail phases of the mission finds increases in vorticity associated with near encounters with the electron diffusion region, with nearby regions of measurable current, and with elevated electron and ion temperatures. These are suggestive of a possible role for turbulence in magnetic reconnection. In this presentation we provide an assessment of the quality of these measurements and discuss their potential significance.
Magnetic field studies at jupiter by voyager 2: preliminary results.
Ness, N F; Acuna, M H; Lepping, R P; Burlaga, L F; Behannon, K W; Neubauer, F M
1979-11-23
Data from the Goddard Space Flight Center magnetometers on Voyager 2 have yielded on inbound trajectory observations of multiple crossings of the bow shock and magnetosphere near the Jupiter-sun line at radial distances of 99 to 66 Jupiter radii (RJ) and 72 to 62 RJ, respectively. While outbound at a local hour angle of 0300, these distances increase appreciably so that at the time of writing only the magnetopause has been observed between 160 and 185 RJ. These results and the magnetic field geometry confirm the earlier conclusion from Voyager I studies that Jupiter has an enormous magnetic tail, approximately 300 to 400 RJ in diameter, trailing behind the planet with respect to the supersonic flow of the solar wind. Addi- tional observations of the distortion of the inner magnetosphere by a concentrated plasma show a spatial merging of the equatorial magnetodisk current with the cur- rent sheet in the magnetic tail. The spacecraft passed within 62,000 kilometers of Ganymede (radius = 2,635 kilometers) and observed characteristic fluctuations in- terpreted tentatively as being due to disturbances arising from the interaction of the Jovian magnetosphere with Ganymede.
NASA Astrophysics Data System (ADS)
Chu, C. S.; Nykyri, K.; Dimmock, A. P.
2017-12-01
In this paper we test a hypothesis that magnetotail reconnection in the thin current sheet could be initiated by external fluctuations. Kelvin-Helmholtz instability (KHI) has been observed during southward IMF and it can produce, cold, dense plasma transport and compressional fluctuations that can move further into the magnetosphere. The properties of the KHI depend on the magnetosheath seed fluctuation spectrum (Nykyri et al., JGR, 2017). In this paper we present a statistical correlation study between Solar Wind, Magnetosheath and Plasma sheet fluctuation properties using 9+ years of THEMIS data in aberrated GSM frame, and in a normalized coordinate system that takes into account the changes of the magnetopause and bow shock location with respect to changing solar wind conditions. We present statistical results of the plasma sheet fluctuation properties (dn, dV and dB) and their dependence on IMF orientation and fluctuation properties and resulting magnetosheath state. These statistical maps are compared with spatial distribution of magnetotail Bursty Bulk Flows to study possible correlations with magnetotail reconnection and these fluctuations.
NASA Astrophysics Data System (ADS)
Dods, Joe; Chapman, Sandra; Gjerloev, Jesper
2017-04-01
We characterise the response of the quiet-time (no substorms or storms) large scale ionospheric convection system to north-south and south-north IMF turnings by using a dynamical network of ground-based magnetometers. Canonical correlation between all pairs of SuperMAG magnetometer stations in the northern hemisphere (MLat 50-82°) is used to establish the extent of near-simultaneous magnetic response between regions of MLT-MLat. Parameters and maps that describe spatial-temporal correlation are used to characterise the system and its response to the turnings aggregated over several hundred events. We find that regions that experience large increases in correlation post-turning coincide with typical locations of a two cell convection system and are influenced by the IMF By. The time between the turnings reaching the magnetopause and a network response is found to be ˜8-10 minutes and correlation in the dayside occurs 2-8 mins before that in the nightside.
NASA Technical Reports Server (NTRS)
Slavin, J. A.; Tsurutani, B. T.; Smith, E. J.; Jones, D. E.; Sibeck, D. G.
1983-01-01
Magnetic field measurements from the first two passes of the ISEE-3 GEOTAIL Mission have been used to study the structure of the trans-lunar tail. Good agreement was found between the ISEE-3 magnetopause crossings and the Explorer 33, 35 model of Howe and Binsack (1972). Neutral sheet location was well ordered by the hinged current sheet models based upon near earth measurements. Between X = -20 and -120 earth radii the radius of the tail increases by about 30 percent while the lobe field strength decreases by approximately 60 percent. Beyond X = -100 to -1200 earth radii the tail diameter and lobe field magnitude become nearly constant at terminal values of approximately 60 earth radii and 9 nT, respectively. The distance at which the tail was observed to cease flaring, 100-120 earth radii, is in close agreement with the predictions of the analytic tail model of Coroniti and Kennel (1972). Overall, the findings of this study suggest that the magnetotail retains much of its near earth structure out to X = -220 earth radii.
Plasma Waves Near the Magnetopause.
1981-06-01
be fairly typical of the late morning sector. In these three time intervals, the sheath magnetic field was southward of the ecliptic plane by...to peak sharply when the antenna was at spin phase 1400 ± 5. During this period, the mean magnetic field ecliptic longitude was about 2600 ± 5...implying that the electric field peaks at ecliptic longitude 40 or 2200, which is close to the plasma flow direction of 208. When all signals above 4 x 10
Survey of thermal plasma ions in Saturn's magnetosphere utilizing a forward model
NASA Astrophysics Data System (ADS)
Wilson, R. J.; Bagenal, F.; Persoon, A. M.
2017-07-01
The Cassini Plasma Spectrometer instrument gathered thermal ion data at Saturn from 2004 to 2012, predominantly observing water group ions and protons. Plasma parameters, with uncertainties, for those two ion species are derived using a forward model of anisotropic convected Maxwellians moving at a shared velocity. The resulting data set is filtered by various selection criteria to produce a survey of plasma parameters derived within 10° of the equator at radial distances of 5.5 to 30 RS (1 RS = Saturn's radius). The previous 2008 work used a simpler method and had just 150 records over 5 orbits; this comprehensive survey has 9736 records over all 9 years. We present the results of this survey and compare them with a previous survey derived from numerical moments, highlighting the differences between the reported densities and temperatures from the two methods. Radial profiles of the plasma parameters in the inner and middle magnetospheres out to ≈22RS are stable year by year, but variable at distances larger than 23 RS near the magnetopause. New results include proton densities increasing in the near magnetopause region, suggestive of plasma mixing; evidence for the global electric field in Saturn's inner magnetosphere extends out to ≈15RS; no evidence for supercorotating plasma nor the middle magnetosphere "plasma cam" feature is present; the thermal plasma β is found to exceed unity at equatorial distances greater than 15 RS.
Control of ULF Wave Accessibility to the Inner Magnetosphere by the Convection of Plasma Density
NASA Astrophysics Data System (ADS)
Degeling, A. W.; Rae, I. J.; Watt, C. E. J.; Shi, Q. Q.; Rankin, R.; Zong, Q.-G.
2018-02-01
During periods of storm activity and enhanced convection, the plasma density in the afternoon sector of the magnetosphere is highly dynamic due to the development of plasmaspheric drainage plume (PDP) structure. This significantly affects the local Alfvén speed and alters the propagation of ULF waves launched from the magnetopause. Therefore, it can be expected that the accessibility of ULF wave power for radiation belt energization is sensitively dependent on the recent history of magnetospheric convection and the stage of development of the PDP. This is investigated using a 3-D model for ULF waves within the magnetosphere in which the plasma density distribution is evolved using an advection model for cold plasma, driven by a (VollandStern) convection electrostatic field (resulting in PDP structure). The wave model includes magnetic field day/night asymmetry and extends to a paraboloid dayside magnetopause, from which ULF waves are launched at various stages during the PDP development. We find that the plume structure significantly alters the field line resonance location, and the turning point for MHD fast waves, introducing strong asymmetry in the ULF wave distribution across the noon meridian. Moreover, the density enhancement within the PDP creates a waveguide or local cavity for MHD fast waves, such that eigenmodes formed allow the penetration of ULF wave power to much lower L within the plume than outside, providing an avenue for electron energization.
Calculating the Motion and Direction of Flux Transfer Events with Cluster
NASA Technical Reports Server (NTRS)
Collado-Vega, Y. M.; Sibeck, D. G.
2012-01-01
For many years now, the interactions of the solar wind plasma with the Earth's magnetosphere has been one of the most important problems for Space Physics. It is very important that we understand these processes because the high-energy particles and also the solar wind energy that cross the magneto sphere could be responsible for serious damage to our technological systems. The solar wind is inherently a dynamic medium, and the particles interaction with the Earth's magnetosphere can be steady or unsteady. Unsteady interaction include transient processes like bursty magnetic reconnection. Flux Transfer Events (FTEs) are magnetopause signatures that usually occur during transient times of reconnection. They exhibit bipolar signatures in the normal component of the magnetic field. We use multi-point timing analysis to determine the orientation and motion of ux transfer events (FTEs) detected by the four Cluster spacecraft on the high-latitude dayside and flank magnetopause during 2002 and 2003. During these years, the distances between the Cluster spacecraft were greater than 1000 km, providing the tetrahedral configuration needed to select events and determine velocities. Each velocity and location will be examined in detail and compared to the velocities and locations determined by the predictions of the component and antiparallel reconnection models for event formation, orientation, motion, and acceleration for a wide range of spacecraft locations and solar wind conditions.
Generation Mechanism for Interlinked Flux Tubes on the Magnetopause
NASA Astrophysics Data System (ADS)
Farinas Perez, G.; Cardoso, F. R.; Sibeck, D.; Gonzalez, W. D.; Facskó, G.; Coxon, J. C.; Pembroke, A. D.
2018-02-01
We use a global magnetohydrodynamics simulation to analyze transient magnetic reconnection processes at the magnetopause. The solar wind conditions have been kept constant, and an interplanetary magnetic field with large duskward BY and southward BZ components has been imposed. Five flux transfer events (FTEs) with clear bipolar magnetic field signatures have been observed. We observed a peculiar structure defined as interlinked flux tubes (IFTs) in the first and fourth FTE, which had very different generation mechanisms. The first FTE originates as an IFTs and remains with this configuration until its final moment. However, the fourth FTE develops as a classical flux rope but changes its 3-D magnetic configuration to that of IFTs. This work studies the mechanism for generating IFTs. The growth of the resistive tearing instability has been identified as the cause for the first IFTs formation. We believe that the instability has been triggered by the accumulation of interplanetary magnetic field at the subsolar point where the grid resolution is very high. The evidence shows that two new reconnection lines form northward and southward of the subsolar region. The IFTs have been generated with all the classical signatures of a single flux rope. The other IFTs detected in the fourth FTE developed as a result of magnetic reconnection inside its complex and twisted magnetic fields, which leads to a change in the magnetic configuration from a flux rope of twisted magnetic field lines to IFTs.
Simulation of Mercury's magnetosheath with a combined hybrid-paraboloid model
NASA Astrophysics Data System (ADS)
Parunakian, David; Dyadechkin, Sergey; Alexeev, Igor; Belenkaya, Elena; Khodachenko, Maxim; Kallio, Esa; Alho, Markku
2017-08-01
In this paper we introduce a novel approach for modeling planetary magnetospheres that involves a combination of the hybrid model and the paraboloid magnetosphere model (PMM); we further refer to it as the combined hybrid model. While both of these individual models have been successfully applied in the past, their combination enables us both to overcome the traditional difficulties of hybrid models to develop a self-consistent magnetic field and to compensate the lack of plasma simulation in the PMM. We then use this combined model to simulate Mercury's magnetosphere and investigate the geometry and configuration of Mercury's magnetosheath controlled by various conditions in the interplanetary medium. The developed approach provides a unique comprehensive view of Mercury's magnetospheric environment for the first time. Using this setup, we compare the locations of the bow shock and the magnetopause as determined by simulations with the locations predicted by stand-alone PMM runs and also verify the magnetic and dynamic pressure balance at the magnetopause. We also compare the results produced by these simulations with observational data obtained by the magnetometer on board the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft along a dusk-dawn orbit and discuss the signatures of the magnetospheric features that appear in these simulations. Overall, our analysis suggests that combining the semiempirical PMM with a self-consistent global kinetic model creates new modeling possibilities which individual models cannot provide on their own.
Buried anode lithium thin film battery and process for forming the same
Lee, Se-Hee; Tracy, C. Edwin; Liu, Ping
2004-10-19
A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).
Field-aligned Currents at Mercury and Implications for Crustal Electrical Conductivity
NASA Astrophysics Data System (ADS)
Anderson, B. J.; Johnson, C. L.; Korth, H.; Winslow, R. M.; Slavin, J. A.; Solomon, S. C.; McNutt, R. L., Jr.
2013-12-01
Magnetic field data acquired in orbit about Mercury by the Magnetometer on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft are used to identify signatures of steady-state field-aligned or Birkeland currents in the northern polar region. These signatures allow us to determine the distribution, area, and total current typically flowing toward and away from the planet and closing at low altitudes. Results reveal that current flows downward on the dawn side and upward on the dusk side, a pattern corresponding to the Region-1 current system at Earth. Typical current densities are 10 to 20 nA/m2. The total current ranges from 10 kA under magnetically calm conditions to nearly 40 kA during disturbed periods. Both the current density and the total current are approximately two orders of magnitude lower than at Earth. The electric potential, consistent with dayside magnetopause magnetic reconnection, is estimated to be ~30 kV under typical conditions, implying that the net resistance to closure of the Birkeland currents is on the order of 1 ohm. At Earth this resistance is typically 0.02 ohms, and if the height-integrated low-altitude conductance were the same, the resistance at Mercury would be even lower than at Earth, ~0.01 ohms. The comparatively low current observed and the estimated high resistance are consistent with expectations that current closure at Mercury is markedly different than at Earth. We solve for the potential implied by the observed currents given closure through the planet. We consider crustal and mantle conductances consistent with experimental results for olivine, and we use a nominal present-day radial temperature profile for Mercury. Net potentials comparable to 30 kV require that the current closes radially through the crust and horizontally through the higher-conductivity mantle at depths of 50 to 400 km. The crust accounts for nearly all of the resistance to current flow, and the results are consistent with a crustal conductivity on the order of 10-8 S/m.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Qinli; Li, Yufan; Chien, Chia-ling
Provided is an electric-current-controllable magnetic unit, including: a substrate, an electric-current channel disposed on the substrate, the electric-current channel including a composite heavy-metal multilayer comprising at least one heavy-metal; a capping layer disposed over the electric-current channel; and at least one ferromagnetic layer disposed between the electric-current channel and the capping layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foltyn, Stephen R; Jia, Quanxi; Arendt, Paul N
A superconducting tape having reduced AC losses. The tape has a high temperature superconductor layer that is segmented. Disruptive strips, formed in one of the tape substrate, a buffer layer, and the superconducting layer create parallel discontinuities in the superconducting layer that separate the current-carrying elements of the superconducting layer into strips or filament-like structures. Segmentation of the current-carrying elements has the effect of reducing AC current losses. Methods of making such a superconducting tape and reducing AC losses in such tapes are also disclosed.
Ultra-high current density thin-film Si diode
Wang; Qi
2008-04-22
A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egedal, J.; Le, Ari; Daughton, William
Fully kinetic simulations of asymmetric magnetic reconnection reveal the presence of magnetic-field-aligned beams of electrons flowing toward the topological magnetic x line. Within the ~ 6d e electron-diffusion region, the beams become oblique to the local magnetic field, providing a unique signature of the electron-diffusion region where the electron frozen-in law is broken. These numerical predictions are confirmed by in situ Magnetospheric Multiscale spacecraft observations during asymmetric reconnection at Earth’s dayside magnetopause.
Opening the cusp. [using magnetic field topology
NASA Technical Reports Server (NTRS)
Crooker, N. U.; Toffoletto, F. R.; Gussenhoven, M. S.
1991-01-01
This paper discusses the magnetic field topology (determined by the superposition of dipole, image, and uniform fields) for mapping the cusp to the ionosphere. The model results are compared to both new and published observations and are then used to map the footprint of a flux transfer event caused by a time variation in the merging rate. It is shown that the cusp geometry distorts the field lines mapped from the magnetopause to yield footprints with dawn and dusk protrusions into the region of closed magnetic flux.
Egedal, J.; Le, Ari; Daughton, William; ...
2018-01-29
Fully kinetic simulations of asymmetric magnetic reconnection reveal the presence of magnetic-field-aligned beams of electrons flowing toward the topological magnetic x line. Within the ~ 6d e electron-diffusion region, the beams become oblique to the local magnetic field, providing a unique signature of the electron-diffusion region where the electron frozen-in law is broken. These numerical predictions are confirmed by in situ Magnetospheric Multiscale spacecraft observations during asymmetric reconnection at Earth’s dayside magnetopause.
Calculations of electric currents in Europa
NASA Technical Reports Server (NTRS)
Colburn, D. S.; Reynolds, R. T.
1986-01-01
Electrical currents should flow in the Galilean satellite, Europa, because it is located in Jupiter's corotating magnetosphere. The possible magnitudes of these currents are calculated by assuming that Europa is a differentiated body consisting of an outer H2O layer and a silicate core. Two types of models are considered here: one in which the water is completely frozen and a second in which there is an intermediate liquid layer. For the transverse electric mode (eddy currents), the calculated current density in a liquid layer is approximately 10 to the -5/Am. For the transverse magnetic mode (unipolar generator), the calculated current density in the liquid is severely constrained by the ice layer to a range of only 10 to the -10 to -11th power/ Am, for a total H2O thickness of 100 km, provided that neither layer is less than 4 km thick. The current density is less for a completely frozen H2O layer. If transient cracks were to appear in the ice layer, thereby exposing liquid, the calculated current density could rise to a range of 10 to the -6 to 10 to the -5/Am, depending on layer thicknesses, which would require an exposed area of 10 to the -9 to 10 to the -8 of the Europa surface. The corresponding total current of 2.3x10 to the 5th power A could in 1 yr. electrolyze 7x10 to the 5th power kg of water (and more if the cells were in series), and thereby store up to 10 the 8th power J of energy, but it is not clear how electrolysis can take place in the absence of suitable electrodes. Electrical heating would be significant only if the ice-layer thickness were on the order of 1 m, such as might occur if an exposed liquid surface were to freeze over; the heating under this condition could hinder the thickening of the ice layer.
Time-lag and Correlation between ACE and RBSPICE Injection Event Observations during Storm Times
NASA Astrophysics Data System (ADS)
Madanian, H.; Patterson, J. D.; Manweiler, J. W.; Soto-chavez, A. R.; Gerrard, A. J.; Lanzerotti, L. J.
2017-12-01
The Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on the Van Allen Probes mission measures energetic charged particles [ 20 keV to 1 MeV] in the inner magnetosphere and ring current. During geomagnetic storms, injections of energetic ions into the ring current change the ion population and produce geomagnetic field depressions on Earth's surface. We analyzed the magnetic field strength and particle composition in the interplanetary medium measured by instruments on the Advanced Composition Explorer (ACE) spacecraft near the inner Lagrangian point. The Electron, Proton, and Alpha Monitor-Low Energy Magnetic Spectrometer (EPAM-LEMS) sensor on ACE measures energetic particles [ 50 keV to 5 MeV] in the interplanetary space. The SYM-H index is utilized to classify the storm events by magnitude and to select more than 60 storm events between 2013 and 2017. We cross-compared ACE observations at storm times, with the RBSPICE ion measurements at dusk to midnight magnetic local time and over the 3-6 L-shell range. We report on the relative composition of the solar particles and the relative composition of the inner magnetospheric hot plasma during storm times. The data correlation is accomplished by shifting the observation time from ACE to RBSPICE using the solar wind velocity at the time of the observation. We will discuss time lags between storm onset at the magnetopause and injection events measured for each storm.
Energy transport towards magnetosphere: current background and perspectives
NASA Astrophysics Data System (ADS)
Savin, Sergey; Zelenyi, Lev
On the background of rising number of multi-scale magnetospheric constellations of satellites (e.g. MMS, ROY, SCOPE etc.), we discuss realistic options for the future experimental efforts in the current international framework. Now space weather predictions require cross-scale (i.e. multi-point) and micro-scale (down to the electron inertial length and gyroradius, i.e. few km and 0.1 s) measurements, which should facilitate the fundamental turbulence explorations impacting e.g. fusion and astrophysical tasks. Both ROY and SCOPE could provide 4-6 space-craft under wide international collaboration. For SCOPE near-equatorial plane is the region for the multi-scale studies, while ROY will start from high latitudes and finish at the intermediate and, hopefully, low ones. We suggest a new strategy for the correlated measurements instead of a multi-tetrahedron configuration: -place spacecraft along magnetospheric boundaries: magne-topause, neutral sheet, bow shock et. instead of tetrahedron Cluster-like configuration trying to get the multi-scale measurements along the natural boundaries; -monitor the processes along the streamlines in magnetosheath; -use extra 2-8 nano/ pico-satellites for campaigns of the multi-spacecraft explorations, -utilize multi-frequency radio-tomography for monitoring of the inter-spacecraft processes Both SCOPE and ROY launchers have respective payload resources, which, with the respective international cooperation, should provide a new step in the magnetospheric plasma explorations.
NASA Astrophysics Data System (ADS)
Mouikis, Christopher; Bingham, Samuel; Kistler, Lynn; Spence, Harlan; Gkioulidou, Matina
2017-04-01
The ring current responds differently to the different solar and interplanetary storm drivers such as coronal mass injections, (CME's), and co-rotating interaction regions (CIR's). Using Van Allen Probes observations, we develop an empirical ring current model of the ring current pressure, the pressure anisotropy and the current density development during the storm phases for both types of storm drivers and for all MLTs inside L 6. Delineating the differences in the ring current development between these two drivers will aid our understanding of the ring current dynamics. We find that during the storm main phase most of the ring current pressure in the pre-midnight inner magnetosphere is contributed by particles on open drift paths that cause the development of a strong partial ring current that causes most of the main phase Dst drop. These particles can reach as deep as L 2 and their pressure compares to the local magnetic field pressure as deep as L 3. During the recovery phase, if these particles are not lost at the magnetopause, will become trapped and will contribute to the symmetric ring current. However, the largest difference between the CME and CIR ring current responses during the storm main and early recovery phases is caused by how the 15 - 60 keV O+ responds to these drivers. This empirical model is compared to the results of CIMI simulations of a CMEs and a CIRs where the model input is comprised of the superposed epoch solar wind conditions of the storms that comprise the empirical model. Different inner magnetosphere boundary conditions are tested in order to match the empirical model results. Comparing the model and simulation results improves our understanding of the ring current dynamics as part of the highly coupled inner magnetosphere system. In addition, within the framework of this empirical model, the prediction of the EMIC wave generation linear theory is tested using the observed plasma parameters and comparing with the observations of EMIC waves.
Zhao, Sheng-Xun; Liu, Xiao-Yong; Zhang, Lin-Qing; Huang, Hong-Fan; Shi, Jin-Shan; Wang, Peng-Fei
2016-12-01
Thermal atomic layer deposition (ALD)-grown AlN passivation layer is applied on AlGaN/GaN-on-Si HEMT, and the impacts on drive current and leakage current are investigated. The thermal ALD-grown 30-nm amorphous AlN results in a suppressed off-state leakage; however, its drive current is unchanged. It was also observed by nano-beam diffraction method that thermal ALD-amorphous AlN layer barely enhanced the polarization. On the other hand, the plasma-enhanced chemical vapor deposition (PECVD)-deposited SiN layer enhanced the polarization and resulted in an improved drive current. The capacitance-voltage (C-V) measurement also indicates that thermal ALD passivation results in a better interface quality compared with the SiN passivation.
Observation of a stationary, current-free double layer in a plasma
NASA Technical Reports Server (NTRS)
Hairapetian, G.; Stenzel, R. L.
1990-01-01
A stationary, current-free, potential double layer is formed in a two-electron-population plasma due to self-consistent separation of the two electron species. The position and amplitude of the double layer are controlled by the relative densities of the two electron populations. The steady-state double layer traps the colder electrons on the high potential side, and generates a neutralized, monoenergetic ion beam on the low potential side. The field-aligned double layer is annihilated when an electron current is drawn through the plasma.