Science.gov

Sample records for magnetospheric radio emissions

  1. Radio emission in Mercury magnetosphere

    NASA Astrophysics Data System (ADS)

    Varela, J.; Reville, V.; Brun, A. S.; Pantellini, F.; Zarka, P.

    2016-10-01

    Context. Active stars possess magnetized wind that has a direct impact on planets that can lead to radio emission. Mercury is a good test case to study the effect of the solar wind and interplanetary magnetic field (IMF) on radio emission driven in the planet magnetosphere. Such studies could be used as proxies to characterize the magnetic field topology and intensity of exoplanets. Aims: The aim of this study is to quantify the radio emission in the Hermean magnetosphere. Methods: We use the magnetohydrodynamic code PLUTO in spherical coordinates with an axisymmetric multipolar expansion for the Hermean magnetic field, to analyze the effect of the IMF orientation and intensity, as well as the hydrodynamic parameters of the solar wind (velocity, density and temperature), on the net power dissipated on the Hermean day and night side. We apply the formalism derived by Zarka et al. (2001, Astrophys. Space Sci., 277, 293), Zarka (2007, Planet. Space Sci., 55, 598) to infer the radio emission level from the net dissipated power. We perform a set of simulations with different hydrodynamic parameters of the solar wind, IMF orientations and intensities, that allow us to calculate the dissipated power distribution and infer the existence of radio emission hot spots on the planet day side, and to calculate the integrated radio emission of the Hermean magnetosphere. Results: The obtained radio emission distribution of dissipated power is determined by the IMF orientation (associated with the reconnection regions in the magnetosphere), although the radio emission strength is dependent on the IMF intensity and solar wind hydro parameters. The calculated total radio emission level is in agreement with the one estimated in Zarka et al. (2001, Astrophys. Space Sci., 277, 293) , between 5 × 105 and 2 × 106 W.

  2. An Interpretation of Banded Magnetospheric Radio Emissions

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Osherovich, V. A.; Fainberg, J.; Vinas, A. F.; Ruppert, D. R.; Vondrak, Richard R. (Technical Monitor)

    2000-01-01

    Recently-published Active Magnetospheric Particle Tracer Explorer/Isothermal Remanent Magnetization (AMPTE/IRM) banded magnetospheric emissions, commonly referred to as '(n + 1/2)f(sub ce)' emissions where f(sub ce) is the electron gyrofrequency, are analyzed by treating them as analogous to sounder-stimulated ionospheric emissions. We show that both individual AMPTE/IRM spectra of magnetospheric banded emissions, and a statistically-derived spectra observed over the two-year lifetime of the mission, can be interpreted in a self-consistent manner. The analysis, which predicts all spectral peaks within 4% of the observed peaks, interprets the higher-frequency emissions as due to low group-velocity Bernstein-mode waves and the lower-frequency emissions as eigen modes of cylindrical-electromagnetic-plasma-oscillations. The demarcation between these two classes of emissions is the electron plasma frequency f(sub pe), where an emission is often observed. This f(sub pe), emission is not necessarily the strongest. None of the observed banded emissions were attributed to the upper-hybrid frequency. We present Alouette-2 and ISIS-1 plasma-resonance data, and model electron temperature (T(sub e)) values, to support the argument that the frequency-spectrum of ionospheric sounder-stimulated emissions is not strongly temperature dependent and thus that the interpretation of these emissions in the ionosphere is relevant to other plasmas (such as the magnetosphere) where N(sub e) and T(sub e) can be quite different but where the ratio f(sub pe)/f(sub ce) is identical.

  3. Observation of HF radio emission bursts of magnetospheric origin at mid latitudes

    NASA Astrophysics Data System (ADS)

    Dudnik, O. V.

    1999-01-01

    Results of the observations of high frequency radio noises of magnetospheric origin at 150 MHz in 1993 are presented. The radio receiving channel for the registration of radio noises at mid latitudes and the method of data processing are described. Perturbations necessary for generation of radio emission are shown to be transported by irregularities of high-speed solar wind streams toward the Earth's magnetosphere. The possible mechanism of radio bursts generation by precipitating energetic electrons from the Earth's radiation belts during the magnetospheric storms is discussed.

  4. Radio Emission by Particles Accelerated in Pulsar Magnetosphere

    NASA Astrophysics Data System (ADS)

    Thomas, R. M. C.; Gangadhara, R. T.

    2003-03-01

    We present a relativistic model of pulsar radio emission by plasma accelerated along the rotating magnetic field lines projected on to a 2D plane perpendicular to the rotation axis. We have derived the expression for the trajectory of a particle, and estimated the spectrum of radio emission by the plasma bunches. We used the parameters given in the paper by Peyman and Gangadhara (2002). Further the analystical expressions for the Stokes parameters are derived, and compared them with the observed profiles. The one sense of circular polarization, observed in many pulsars, can be explained in the light of our model.

  5. LOFAR Search for Magnetospheric Radio Emissions from Exoplanet HD 80606b

    NASA Astrophysics Data System (ADS)

    Winterhalter, D.; Lazio, J.; Hartman, J.; Majid, W.; Farrell, W. M.; Splitter, L.; Kuiper, T.

    2013-05-01

    This paper describes observations (LOFAR Cycle 0) targeting magnetospheric radio emission from the exoplanet HD 80606b during a periastron passage. Its orbit is among the most eccentric known, meaning that it is naturally exposed to a wide range of stellar wind strengths, which should modulate its radio emission. Further, the high orbital eccentricity suggests that it is in a state of pseudo-synchronous rotation, leading to a relatively robust estimate of its characteristic emission frequency. It may be among the most promising planets for the direct detection of radio emission.

  6. Theories of radio emissions and plasma waves. [in Jupiter magnetosphere

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Goertz, C. K.

    1983-01-01

    The complex region of Jupiter's radio emissions at decameter wavelengths, the so-called DAM, is considered, taking into account the basic theoretical ideas which underly both the older and newer theories and models. Linear theories are examined, giving attention to direct emission mechanisms, parallel propagation, perpendicular propagation, and indirect emission mechanisms. An investigation of nonlinear theories is also conducted. Three-wave interactions are discussed along with decay instabilities, and three-wave up-conversio. Aspects of the Io and plasma torus interaction are studied, and a mechanism by which Io can accelerate electrons is reviewed.

  7. Radio emission observed by Galileo in the inner Jovian magnetosphere during orbit A-34

    NASA Astrophysics Data System (ADS)

    Menietti, J. Douglas; Gurnett, Donald A.; Groene, Joseph B.

    2005-10-01

    The Galileo spacecraft encountered the inner magnetosphere of Jupiter on its way to a flyby of Amalthea on November 5, 2002. During this encounter, the spacecraft observed distinct spin modulation of plasma wave emissions. The modulations occurred in the frequency range from a few hundred hertz to a few hundred kilohertz and probably include at least two distinct wave modes. Assuming transverse EM radiation, we have used the swept-frequency receivers of the electric dipole antenna to determine the direction to the source of these emissions. Additionally, with knowledge of the magnetic field some constraints are placed on the wave mode of the emission based on a comparative analysis of the wave power versus spin phase of the different emissions. The emission appears in several bands separated by attenuation lanes. The analysis indicates that the lanes are probably due to blockage of the freely propagating emission by high density regions of the Io torus near the magnetic equator. Radio emission at lower frequencies (<40 kHz) appears to emanate from sources at high latitude and is not attenuated. Emission at f>80kHz is consistent with O-mode and Z-mode. Lower frequency emissions could be a mixture of O-mode, Z-mode and whistler mode. Emission for f<5kHz shows bands that are similar to upper hybrid resonance bands observed near the terrestrial plasmapause, and also elsewhere in Jovian magnetosphere. Based on the observations and knowledge of similar terrestrial emissions, we hypothesize that radio emission results from mode conversion near the strong density gradient of the inner radius of the cold plasma torus, similar to the generation of nKOM and continuum emission observed in the outer Jovian magnetosphere and in the terrestrial magnetosphere from source regions near the plasmapause.

  8. ORIGIN OF ELECTRON CYCLOTRON MASER INDUCED RADIO EMISSIONS AT ULTRACOOL DWARFS: MAGNETOSPHERE-IONOSPHERE COUPLING CURRENTS

    SciTech Connect

    Nichols, J. D.; Burleigh, M. R.; Casewell, S. L.; Cowley, S. W. H.; Wynn, G. A.; Clarke, J. T.; West, A. A.

    2012-11-20

    A number of ultracool dwarfs emit circularly polarized radio waves generated by the electron cyclotron maser instability. In the solar system such radio is emitted from regions of strong auroral magnetic-field-aligned currents. We thus apply ideas developed for Jupiter's magnetosphere, being a well-studied rotationally dominated analog in our solar system, to the case of fast-rotating UCDs. We explain the properties of the radio emission from UCDs by showing that it would arise from the electric currents resulting from an angular velocity shear in the fast-rotating magnetic field and plasma, i.e., by an extremely powerful analog of the process that causes Jupiter's auroras. Such a velocity gradient indicates that these bodies interact significantly with their space environment, resulting in intense auroral emissions. These results strongly suggest that auroras occur on bodies outside our solar system.

  9. On the Methods of Determining the Radio Emission Geometry in Pulsar Magnetospheres

    NASA Technical Reports Server (NTRS)

    Dyks, J.; Rudak, B.; Harding, Alice K.

    2004-01-01

    We present a modification of the relativistic phase shift method of determining the radio emission geometry from pulsar magnetospheres proposed by Gangadhara & Gupta (2001). Our modification provides a method of determining radio emission altitudes which does not depend on the viewing geometry and does not require polarization measurements. We suggest application of the method to the outer edges of averaged radio pulse profiles to identify magnetic field lines associated with'the edges of the pulse and, thereby, to test the geometric method based on the measurement of the pulse width at the lowest intensity level. We show that another relativistic method proposed by Blaskiewicz et al. (1991) provides upper limits for emission altitudes associated with the outer edges of pulse profiles. A comparison of these limits with the altitudes determined with the geometric method may be used to probe the importance of rotational distortions of magnetic field and refraction effects in the pulsar magnetosphere. We provide a comprehensive discussion of the assumptions used in the relativistic methods.

  10. Magnetospheric radio and plasma wave research - 1987-1990

    SciTech Connect

    Kurth, W.S. )

    1991-01-01

    This review covers research performed in the area of magnetospheric plasma waves and wave-particle interactions as well as magnetospheric radio emissions. The report focuses on the near-completion of the discovery phase of radio and plasma wave phenomena in the planetary magnetospheres with the successful completion of the Voyager 2 encounters of Neptune and Uranus. Consideration is given to the advances made in detailed studies and theoretical investigations of radio and plasma wave phenomena in the terrestrial magnetosphere or in magnetospheric plasmas in general.

  11. The main source of radio emission from the magnetosphere of Uranus.

    PubMed

    Gulkis, S; Carr, T D

    1987-12-30

    Observations of kilometric radiation from Uranus made with the planetary radio astronomy experiment on the Voyager 2 spacecraft are presented and discussed. Similarities between the auroral kilometric radiation from Earth and the observed Uranus emission are pointed out. A geometrical beaming model is developed in which a single distributed source is located above the darkside auroral region and emits in the extraordinary mode by the cyclotron maser process. The model can account for nearly all the Uranian kilometric radiation from the high-frequency limit near 850 kHz down to about 150 kHz and for much of it down to the lower limit of 20 kHz.

  12. Simultaneous oberservations of magnetospheric HF radio emission after Solar flare X1/3B at November 4, 2001 by use of different radio telescopes

    NASA Astrophysics Data System (ADS)

    Dudnik, O.; Yurovsky, Y.

    It is shown that the number of short-term (~1s) sporadic bursts of the near Earth space is changing at frequencies 100 - 500 MHz and depending on the time of the day as well as on the solar activity. The number of radio bursts of similar amplitude is increasing at the frequency 150 MHz when the proton density of high-speed solar wind streams is increasing. The level of radio noises was simultaneously registered during the high solar activity on November, 2001, at frequencies 280, 300, 150 and 500 MHz by radio telescopes, situated on the distance 700 km from each other. In spite of the slight differences of radio technical features of the receiving channels the simultaneous series of bursts have been observed after 3-4 hours from beginning of the strong 3B flare that took place on November 4, 2001. The comparative analysis of the fine structure of bursts registered in both places has been carried out. The obtained experimental data were compared with dynamics of electrons and protons fluxes of different energetic ranges in the interplanetary space by use the data of the ACE satellite as well as on the geostationary orbit by use the data of satellites of GOES series. The supposition was made on the basis of the carried out analyses that the source of HF radio bursts does not have long life space localization but it emerges sporadically for a short time from part of the second to several decades of seconds under the influence of the external factors. Such factors can be represented by fluxes of electrons and ions with energies 50 - 500 keV in the interplanetary space, that were generated in the powerful solar flare, or by ion-cyclotron waves of the outer part of the Earth's magnetosphere. The fine structure of bursts mostly does not coincide at different frequencies that testifies either the narrow band emission feature or the imposi g of local conditions on the radio waves propagation over the place of then bursts' receiving.

  13. Excitation of a magnetospheric maser through modification of the Earth's ionosphere by high-power HF radio emission from a ground-based transmitter

    SciTech Connect

    Markov, G. A. Belov, A. S.; Frolov, V. L.; Rapoport, V. O.; Parrot, M.

    2010-01-15

    A method for controlled excitation of a magnetospheric maser through the production of artificial density ducts by high-power HF radio emission from the Earth's surface has been proposed and implemented in an in-situ experiment. Artificial density ducts allow one to affect the maser resonator system and the excitation and propagation of low-frequency electromagnetic waves in a disturbed magnetic flux tube. The experimental data presented here were obtained at the mid-latitude Sura heating facility. The characteristics of electromagnetic and plasma disturbances at outer-ionosphere altitudes were measured using the onboard equipment of the DEMETER satellite as it passed through the magnetic flux tube rested on the region of intense generation of artificial ionospheric turbulence.

  14. Characteristics of magnetospheric radio noise spectra

    NASA Technical Reports Server (NTRS)

    Herman, J. R.

    1976-01-01

    Magnetospheric radio noise spectra (30 kHz to 10 MHz) taken by IMP-6 and RAE-2 exhibit time-varying characteristics which are related to spacecraft position and magnetospheric processes. In the mid-frequency range (100-1,000 kHz) intense noise peaks rise by a factor of 100 or more above background; 80% of the peak frequencies are within the band 125 kHz to 600 kHz, and the peak occurs most often (18% of the time) at 280 kHz. This intense mid-frequency noise has been detected at radial distances from 1.3 Re to 60 Re on all sides of the Earth during magnetically quiet as well as disturbed periods. Maximum occurrence of the mid-frequency noise is in the evening to midnight hours where splash-type energetic particle precipitation takes place. ""Magnetospheric lightning'' can be invoked to explain the spectral shape of the observed spectra.

  15. Saturn's Periodic Magnetosphere: The Relation Between Periodic Hot Plasma Injections, a Rotating Partial Ring Current, Global Magnetic Field Distortions, Plasmapause Motion, and Radio Emissions

    NASA Astrophysics Data System (ADS)

    Brandt, P. C.; Mitchell, D. G.; Gurnett, D. A.; Persoon, A. M.; Tsyganenko, N. A.

    2012-04-01

    It has been know for some time that the large-scale energetic particle injections (~3-200 keV) on the nigh side of Saturn observed by Cassini/INCA are closely tracked by the periodic Saturn Kilometric Radiation (SKR). The resulting energetic particle pressure is comparable to that of the colder plasma and it therefore distorts the global magnetic field significantly as the energetic particle population drifts around Saturn. In this presentation we discuss the important consequences this has for the large-scale dynamics and configuration of the entire inner magnetosphere of Saturn. We begin by reviewing the observational correlations between remote, global INCA observations of energetic particles, magnetic field distortions, and radio emissions. We present examples of how the magnetic field measurements and the INCA observations show direct implications of a rotating 3D electrical current system associated with, not only, the energetic particle pressure, but also with an interhemispheric field-aligned current (FAC) system. Recently, we found an intriguing high correlation also between the periodic motion of the high-latitude plasmapause-like boundary reported by Gurnett et al. [2011] and the energetic particles observed remotely by INCA that are periodically injected on the night side and then drift around Saturn according to their energy. In our preliminary analysis we see a direct correlation in at least 75% of the case with the center of drifting energetic particle distribution [Brandt et al., 2010] and the encounter with the rotating plasmapause-like density boundary [Gurnett et al., 2011]. However, the remaining, low-correlation cases suggest that we do not fully understand the global, 3D current system that produces the periodic perturbations in Saturn's magnetosphere. We will use these observations to constrain the underlying 3D current system and in particular, assess the role of interhemispheric FACs in reproducing the observations.

  16. LF radio noise from the earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Frankel, M. S.

    1973-01-01

    Gyro-synchrotron radio noise emitted by electrons trapped in the earth's magnetosphere has been a subject of extensive research. Previous efforts, which considered frequencies greater than 1 MHz, have shown that this noise should not be detectable in the MF to HF range because its intensity is below the cosmic background noise level. The author has investigated the LF range and has found that appreciable noise is generated at these frequencies. In fact, the theoretical results for this LF noise agree very well with experimental data obtained by a radio astronomy experiment aboard the IMP 6 spacecraft. A comparison showed that the model predicted both variation in the observed noise intensity with Kp and the noise spectral characteristics. Consequently, it is concluded that detectable LF radio noise is emitted, by means of the cyclotron-synchrotron mechanism, by electrons trapped in the earth's magnetosphere, and that this noise is observable only for frequencies below about 300 kHz. For higher frequencies, the theoretical model and the experimental data reconfirm that this noise is below that of cosmic origin.

  17. Possibility of detecting magnetospheric radio bursts from Uranus and Neptune

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Maggs, J. E.

    1976-01-01

    The intensity of magnetospheric radio bursts (MRBs) is scaled to solar-wind input into planetary magnetospheres and the frequency of emission is scaled to polar surface magnetic-field strength in order to estimate the possibility of detecting MRBs from Uranus and Neptune. A scaling law is derived which relates the ratio of power radiated in MRBs to the solar-wind input for earth, Jupiter, and Saturn. Power-flux spectra of MRBs from these three planets are plotted, and it is shown that Jupiter and Saturn may radiate 1% to 5% of the solar-wind energy input into their magnetospheres. The properties of MRBs from Uranus and Neptune are estimated by assuming a conversion efficiency of 1% to 5%, a bandwidth of half the peak frequency, and conformity of Uranus' and Neptune's dipole moments with the magnetic Bode's law. Based on the results, it is suggested that detection of MRBs from these two planets may be a reasonable cruise-mode radio-astronomy objective on future missions to the outer solar system.

  18. Characteristics of magnetospheric radio noise spectra

    NASA Technical Reports Server (NTRS)

    Herman, J. R.

    1976-01-01

    Magnetospheric radio noise spectra (30 kHz to 10 MHz) taken by IMP-6 and RAE-2 exhibit time varying characteristics which are related to spacecraft position and magnetospheric processes. In the midfrequency range (100-1000 kHz) intense noise peaks rise a factor of 100 or more above background; 80% of the peak frequencies are within the band 125 kHz to 600 kHz, and the peak occurs most often (18% of the time) at 280 kHz. Bandwidths of the peaks range from about 100 kHz to more than 500 kHz; most often the lower cutoff is at about 100 kHz and the upper at 380 kHz for a total bandwidth of 280 kHz. This intense mid-frequency noise was detected at radial distances from 1.3 Re to 60 Re on all sides of the earth (i.e., all local times) during magnetically quiet as well as disturbed periods. Maximum occurrence of the mid-frequency noise is in the evening to midnight hours where splash-type energetic particle precipitation takes place.

  19. Magnetospherically driven optical and radio aurorae at the end of the stellar main sequence

    NASA Astrophysics Data System (ADS)

    Hallinan, G.; Littlefair, S. P.; Cotter, G.; Bourke, S.; Harding, L. K.; Pineda, J. S.; Butler, R. P.; Golden, A.; Basri, G.; Doyle, J. G.; Kao, M. M.; Berdyugina, S. V.; Kuznetsov, A.; Rupen, M. P.; Antonova, A.

    2015-07-01

    Aurorae are detected from all the magnetized planets in our Solar System, including Earth. They are powered by magnetospheric current systems that lead to the precipitation of energetic electrons into the high-latitude regions of the upper atmosphere. In the case of the gas-giant planets, these aurorae include highly polarized radio emission at kilohertz and megahertz frequencies produced by the precipitating electrons, as well as continuum and line emission in the infrared, optical, ultraviolet and X-ray parts of the spectrum, associated with the collisional excitation and heating of the hydrogen-dominated atmosphere. Here we report simultaneous radio and optical spectroscopic observations of an object at the end of the stellar main sequence, located right at the boundary between stars and brown dwarfs, from which we have detected radio and optical auroral emissions both powered by magnetospheric currents. Whereas the magnetic activity of stars like our Sun is powered by processes that occur in their lower atmospheres, these aurorae are powered by processes originating much further out in the magnetosphere of the dwarf star that couple energy into the lower atmosphere. The dissipated power is at least four orders of magnitude larger than what is produced in the Jovian magnetosphere, revealing aurorae to be a potentially ubiquitous signature of large-scale magnetospheres that can scale to luminosities far greater than those observed in our Solar System. These magnetospheric current systems may also play a part in powering some of the weather phenomena reported on brown dwarfs.

  20. Magnetospherically driven optical and radio aurorae at the end of the stellar main sequence.

    PubMed

    Hallinan, G; Littlefair, S P; Cotter, G; Bourke, S; Harding, L K; Pineda, J S; Butler, R P; Golden, A; Basri, G; Doyle, J G; Kao, M M; Berdyugina, S V; Kuznetsov, A; Rupen, M P; Antonova, A

    2015-07-30

    Aurorae are detected from all the magnetized planets in our Solar System, including Earth. They are powered by magnetospheric current systems that lead to the precipitation of energetic electrons into the high-latitude regions of the upper atmosphere. In the case of the gas-giant planets, these aurorae include highly polarized radio emission at kilohertz and megahertz frequencies produced by the precipitating electrons, as well as continuum and line emission in the infrared, optical, ultraviolet and X-ray parts of the spectrum, associated with the collisional excitation and heating of the hydrogen-dominated atmosphere. Here we report simultaneous radio and optical spectroscopic observations of an object at the end of the stellar main sequence, located right at the boundary between stars and brown dwarfs, from which we have detected radio and optical auroral emissions both powered by magnetospheric currents. Whereas the magnetic activity of stars like our Sun is powered by processes that occur in their lower atmospheres, these aurorae are powered by processes originating much further out in the magnetosphere of the dwarf star that couple energy into the lower atmosphere. The dissipated power is at least four orders of magnitude larger than what is produced in the Jovian magnetosphere, revealing aurorae to be a potentially ubiquitous signature of large-scale magnetospheres that can scale to luminosities far greater than those observed in our Solar System. These magnetospheric current systems may also play a part in powering some of the weather phenomena reported on brown dwarfs.

  1. Synchronous x-ray and radio mode switches: a rapid global transformation of the pulsar magnetosphere.

    PubMed

    Hermsen, W; Hessels, J W T; Kuiper, L; van Leeuwen, J; Mitra, D; de Plaa, J; Rankin, J M; Stappers, B W; Wright, G A E; Basu, R; Alexov, A; Coenen, T; Grießmeier, J-M; Hassall, T E; Karastergiou, A; Keane, E; Kondratiev, V I; Kramer, M; Kuniyoshi, M; Noutsos, A; Serylak, M; Pilia, M; Sobey, C; Weltevrede, P; Zagkouris, K; Asgekar, A; Avruch, I M; Batejat, F; Bell, M E; Bell, M R; Bentum, M J; Bernardi, G; Best, P; Bîrzan, L; Bonafede, A; Breitling, F; Broderick, J; Brüggen, M; Butcher, H R; Ciardi, B; Duscha, S; Eislöffel, J; Falcke, H; Fender, R; Ferrari, C; Frieswijk, W; Garrett, M A; de Gasperin, F; de Geus, E; Gunst, A W; Heald, G; Hoeft, M; Horneffer, A; Iacobelli, M; Kuper, G; Maat, P; Macario, G; Markoff, S; McKean, J P; Mevius, M; Miller-Jones, J C A; Morganti, R; Munk, H; Orrú, E; Paas, H; Pandey-Pommier, M; Pandey, V N; Pizzo, R; Polatidis, A G; Rawlings, S; Reich, W; Röttgering, H; Scaife, A M M; Schoenmakers, A; Shulevski, A; Sluman, J; Steinmetz, M; Tagger, M; Tang, Y; Tasse, C; ter Veen, S; Vermeulen, R; van de Brink, R H; van Weeren, R J; Wijers, R A M J; Wise, M W; Wucknitz, O; Yatawatta, S; Zarka, P

    2013-01-25

    Pulsars emit from low-frequency radio waves up to high-energy gamma-rays, generated anywhere from the stellar surface out to the edge of the magnetosphere. Detecting correlated mode changes across the electromagnetic spectrum is therefore key to understanding the physical relationship among the emission sites. Through simultaneous observations, we detected synchronous switching in the radio and x-ray emission properties of PSR B0943+10. When the pulsar is in a sustained radio-"bright" mode, the x-rays show only an unpulsed, nonthermal component. Conversely, when the pulsar is in a radio-"quiet" mode, the x-ray luminosity more than doubles and a 100% pulsed thermal component is observed along with the nonthermal component. This indicates rapid, global changes to the conditions in the magnetosphere, which challenge all proposed pulsar emission theories.

  2. AN EMISSION MECHANISM EXPLAINING OFF-PULSE EMISSION ORIGINATING IN THE OUTER MAGNETOSPHERE OF PULSARS

    SciTech Connect

    Basu, Rahul; Mitra, Dipanjan; Melikidze, George I. E-mail: dmitra@ncra.tifr.res.in

    2013-08-01

    We have examined the cyclotron resonance instability developing in the relativistic outflowing plasma in the pulsar magnetosphere. The instability condition leads to radio emission in the subgigahertz frequency regime which is likely to be seen as off-pulse emission. Recent studies have shown the presence of off-pulse emission in long period pulsars, and we demonstrate this plasma process to be an energetically viable mechanism.

  3. Planetary foreshock radio emissions

    NASA Astrophysics Data System (ADS)

    Kuncic, Zdenka; Cairns, Iver H.

    2005-07-01

    The electron foreshock regions upstream of Earth's bow shock and upstream of traveling interplanetary shocks are known to be propitious sites for a variety of energetic particle and plasma wave phenomena, including radio emissions. A quantitative theoretical model has been developed for radio emissions associated with the terrestrial foreshock and for type II radio bursts associated with interplanetary shocks. Here, we generalize this model and apply it to other planetary foreshocks. We present predictions for the levels of planetary foreshock radio emissions and compare these with observations by past and present space missions. One key result is that Mercury can be a strong source of foreshock radio emissions, and this prediction may be testable with the anticipated BepiColombo space mission. Although the terrestrial foreshock radio emissions are the most detectable with existing instruments, our results predict that they are the second strongest in absolute terms, following the Jovian foreshock emissions. Indeed, we predict that the radio instrument on board Ulysses should have detected Jovian foreshock radio emissions, and we suggest that there is some evidence in the data to support this. We also suggest that Cassini was potentially capable of detecting foreshock emissions from Venus during its gravity-assist flybys and may possibly be capable of detecting foreshock emissions from Saturn under favorable solar wind conditions.

  4. Plasma Density and Radio Echoes in the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1995-01-01

    This project provided a opportunity to study a variety of interesting topics related to radio sounding in the magnetosphere. The results of this study are reported in two papers which have been submitted for publication in the Journal of Geophysical Research and Radio Science, and various aspects of this study were also reported at meetings of the American Geophysical Union (AGU) at Baltimore, Maryland and the International Scientific Radio Union (URSI) at Boulder, Colorado. The major results of this study were also summarized during a one-day symposium on this topic sponsored by Marshall Space Flight Center in December 1994. The purpose of the study was to examine the density structure of the plasmasphere and determine the relevant mechanisms for producing radio echoes which can be detected by a radio sounder in the magnetosphere. Under this study we have examined density irregularities, biteouts, and outliers of the plasmasphere, studied focusing, specular reflection, ducting, and scattering by the density structures expected to occur in the magnetosphere, and predicted the echoes which can be detected by a magnetospheric radio sounder.

  5. Magnetospheric Radio Tomography: Observables, Algorithms, and Experimental Analysis

    NASA Technical Reports Server (NTRS)

    Cummer, Steven

    2005-01-01

    This grant supported research towards developing magnetospheric electron density and magnetic field remote sensing techniques via multistatic radio propagation and tomographic image reconstruction. This work was motivated by the need to better develop the basic technique of magnetospheric radio tomography, which holds substantial promise as a technology uniquely capable of imaging magnetic field and electron density in the magnetosphere on large scales with rapid cadence. Such images would provide an unprecedented and needed view into magnetospheric processes. By highlighting the systems-level interconnectedness of different regions, our understanding of space weather processes and ability to predict them would be dramatically enhanced. Three peer-reviewed publications and 5 conference presentations have resulted from this work, which supported 1 PhD student and 1 postdoctoral researcher. One more paper is in progress and will be submitted shortly. Because the main results of this research have been published or are soon to be published in refereed journal articles listed in the reference section of this document, we provide here an overview of the research and accomplishments without describing all of the details that are contained in the articles.

  6. Study of the magnetospheres of active regions on the sun by radio astronomy techniques

    NASA Astrophysics Data System (ADS)

    Bogod, V. M.; Kal'tman, T. I.; Peterova, N. G.; Yasnov, L. V.

    2017-01-01

    In the 1990s, based on detailed studies of the structure of active regions (AR), the concept of the magnetosphere of the active region was proposed. This includes almost all known structures presented in the active region, ranging from the radio granulation up to noise storms, the radiation of which manifests on the radio waves. The magnetosphere concept, which, from a common point of view, considers the manifestations of the radio emission of the active region as a single active complex, allows one to shed light on the relation between stable and active processes and their interrelations. It is especially important to identify the basic ways of transforming nonthermal energy into thermal energy. A dominant role in all processes is attributed to the magnetic field, the measurement of which on the coronal levels can be performed by radio-astronomical techniques. The extension of the wavelength range and the introduction of new tools and advanced modeling capabilities makes it possible to analyze the physical properties of plasma structures in the AR magnetosphere and to evaluate the coronal magnetic fields at the levels of the chromosphere-corona transition zone and the lower corona. The features and characteristics of the transition region from the S component to the B component have been estimated.

  7. Detection of the Magnetospheric Emissions from Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Lazio, J.

    2014-12-01

    Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. These internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind, a planet's magnetic field can produce electron cyclotron masers in its magnetic polar regions. The most well known example of this process is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior as well as improved understanding of the basic planetary dynamo process. The magnetospheric emissions from solar system planets and the discovery of extrasolar planets have motivated both theoretical and observational work on magnetospheric emissions from extrasolar planets. Stimulated by these advances, the W.M. Keck Institute for Space Studies hosted a workshop entitled "Planetary Magnetic Fields: Planetary Interiors and Habitability." I summarize the current observational status of searches for magnetospheric emissions from extrasolar planets, based on observations from a number of ground-based radio telescopes, and future prospects for ground-based studies. Using the solar system planetary magnetic fields as a guide, future space-based missions will be required to study planets with magnetic field strengths lower than that of Jupiter. I summarize mission concepts identified in the KISS workshop, with a focus on the detection of planetary electron cyclotron maser emission. The

  8. On the Detection of Magnetospheric Radio Bursts from Uranus and Neptune.

    DTIC Science & Technology

    NEPTUNE(PLANET), *RADIO ASTRONOMY, *EXTRATERRESTRIAL RADIO WAVES, * URANUS (PLANET), MAGNETIC FIELDS, FLUX(RATE), COMPARISON, POWER SPECTRA, SATURN(PLANET), EARTH(PLANET), MAGNETOSPHERE, JUPITER(PLANET), SOLAR WIND.

  9. Solar radio emission

    NASA Technical Reports Server (NTRS)

    Goldman, M. V.; Smith, D. F.

    1981-01-01

    Active areas of both observational and theoretical research in which rapid progress is being made are discussed. These include: (1) the dynamic spectrum or frequency versus time plot; (2) physical mechanisms in the development of various types of bursts; (3) microwave type 1, 2, 3, and moving type 4 bursts; (4) bursts caused by trapped electrons; (5) physics of type 3bursts; (6) the physics of type 2 bursts and their related shocks; (7) the physics of both stationary and moving traps and associated type 1 and moving type 4 bursts; and (8) the status of the field of solar radio emission.

  10. Prediction of radio frequency power generation of Neptune's magnetosphere from generalized radiometric Bode's law

    NASA Astrophysics Data System (ADS)

    Millon, M. A.; Goertz, C. K.

    1988-01-01

    Magnetospheric radio frequency emission power has been shown to vary as a function of both solar wind and planetary values such as magnetic field by Kaiser and Desch. Planetary magnetic fields have been shown to scale with planetary variables such as density and angular momentum by numerous researchers. This paper combines two magnetic scaling laws (Busse's and Curtis Ness') with the radiometric law to yield "Bode's"-type laws governing planetary radio emission. Further analysis allows the reduction of variables to planetary mass and orbital distance. These generalized laws are then used to predict the power output of Neptune to be about 1.6×107W; with the intensity peaking at about 3 MHz.

  11. Perturbations of ionosphere-magnetosphere coupling by powerful VLF emissions from ground-based transmitters

    SciTech Connect

    Belov, A. S. Markov, G. A.; Ryabov, A. O.; Parrot, M.

    2012-12-15

    The characteristics of the plasma-wave disturbances stimulated in the near-Earth plasma by powerful VLF radiation from ground-based transmitters are investigated. Radio communication VLF transmitters of about 1 MW in power are shown to produce artificial plasma-wave channels (density ducts) in the near-Earth space that originate in the lower ionosphere above the disturbing emission source and extend through the entire ionosphere and magnetosphere of the Earth along the magnetic field lines. Measurements with the onboard equipment of the DEMETER satellite have revealed that under the action of emission from the NWC transmitter, which is one of the most powerful VLF radio transmitters, the generation of quasi-electrostatic (plasma) waves is observed on most of the satellite trajectory along the disturbed magnetic flux tube. This may probably be indicative of stimulated emission of a magnetospheric maser.

  12. The role of solar wind reconnection in driving the Neptune radio emission

    NASA Technical Reports Server (NTRS)

    Desch, M. D.; Farrell, W. M.; Kaiser, M. L.; Lepping, R. P.; Steinberg, J. T.; Villanueva, L. A.

    1991-01-01

    The only remote diagnostic of conditions within the outer planets' magnetospheres is the highly variable flux of low-frequency radio waves. As at the other radio planets, Neptune radio emission also manifests, on a time scale of days, major intensity fluctuations that are indicative of a solar wind energy-coupling process of some kind. It is found that the merging of interplanetary magnetic field lines with Neptune's magnetosphere is the best predictor of emitted radio energy. By contrast, viscouslike energy coupling processes, such as might be caused by solar wind density or bulk speed fluctuations, are apparently ineffective in driving the radio emission.

  13. Radio sounding in space: magnetosphere and topside ionosphere

    NASA Astrophysics Data System (ADS)

    Reinisch, B. W.; Haines, D. M.; Benson, R. F.; Green, J. L.; Sales, G. S.; Taylor, W. W. L.

    2001-01-01

    Modern sounding techniques have been developed for the space-borne exploration of Earth's magnetosphere and topside ionosphere. Two new satellite instruments will use the advanced techniques of the ground-based Digisondes. The Radio Plasma Imager (RPI), a low-frequency sounder with 500-m dipole antennas designed to sweep from 3 kHz to 3 MHz, will be part of NASA's IMAGE mission to be launched in February 2000 into an elliptical orbit with an altitude at apogee of 7Re. While in the magnetospheric cavity, RPI will receive echoes from the magnetopause and the plasmasphere and will measure the direct response of the magnetosphere's configuration to changes in the solar wind. With three orthogonal dipole antennas (two 500-m tip-to-tip antennas in the spin plane used for transmission and reception, one 20-m antenna along the spin axis for reception only) the arrival angle of returning echoes can be determined with high accuracy. The other instrument is the TOPside Automated Sounder (TOPAS), which was originally conceived for the Ukrainian WARNING mission with a launch date in 2001. Using one antenna for transmission and three orthogonal 10-m antennas for reception, TOPAS will be able to determine the arrival angle of ionospheric echoes and their wave polarization. It will then be possible to automatically scale the topside ionograms and calculate the electron density profiles in real time. Operating as a high-frequency radar, TOPAS will for the first time measure topside plasma velocities by tracking the motions of plasma irregularities.

  14. Radio Emission from Binary Stars

    NASA Astrophysics Data System (ADS)

    Hjellming, R.; Murdin, P.

    2000-11-01

    Stellar radio emission is most common in double star systems where each star provides something essential in producing the large amounts of radio radiation needed for it to be detectable by RADIO TELESCOPES. They transfer mass, supply energy or, when one of the stars is a NEUTRON STAR or BLACK HOLE, have the strong gravitational fields needed for the energetic particles and magnetic fields needed...

  15. Amalthea's Modulation of Jovian Decametric Radio Emission

    NASA Astrophysics Data System (ADS)

    Arkhypov, Oleksiy V.

    2006-08-01

    Institute of Radio Astronomy, National Academy of Sciences of Ukraine, Kharkiv, Ukraine Amalthea is the largest body after Galilean satellites near Jupiter. An anomaly in Jovian synchrotron radiation has been found just on the Amalthea magnetic shell (de Pater, Schulz & Brecht 1997). It has been suggested that Amalthea's motion through Jupiter's magnetic field induces Alfvén or whistler wings or electrostatic high-frequency waves which lead to the pitch angle scattering. It is reasonable to search for another effect of these processes: magnetospheric inhomogeneities which could be found via scattering of Jovian decametric radio emission (DAM). Such scattering on field-aligned inhomogeneities in the Io plasma torus is known as "modulation lanes" in DAM dynamic spectra. To search for analogous Amalthea's modulation, the positions and frequency drift of about 600 lanes are measured on the UFRO spectra of DAM. The special 3D algorithm is used for localization of field-aligned magnetospheric inhomogeneities by the frequency drift of modulation lanes. It is found that about 4% of the lanes are clustered near Amalthea's magnetic shell. There are two such clusters near longitudes of 123°≤λ[III]≤140° and 284°≤λ[III]≤305°, which coincide with the regions of maximum compression of fresh plasma due to rotating magnetic field of Jupiter (where ∂(B^2)/∂λ[III]) is maximal). The Amalthea modulation could explain the enigmatic "hf-lanes" (Genova, Aubier & Lecacheux 1981). The found magnetospheric formations are a new argument for the ice nature of Amalthea which has the density less than that of water (Anderson et al. 2005). Anderson J.D. et al. 2005, Science, 308, 5726, pp. 1291-1293. de Pater I., Schulz M., Brecht S.H. 1997, J. Geophys. Res., 102, A10, pp. 22043-22064. Genova F., Aubier M.G., Lecacheux A. 1981, Astron. and Astrophys. 104, 2, pp. 229-239.

  16. Zebra spectral structures in Jovian decametric radio emissions

    NASA Astrophysics Data System (ADS)

    Rošker, S.; Panchenko, M.; Rucker, H. O.; Brazhenko, A. I.

    2015-10-01

    Jupiter with the largest planetary magnetosphere in the solar system emits intense coherent non-thermal radiation in a wide frequency range. This emission is a result of complicated interactions between the dynamic Jovian magnetosphere and energetic particles supplying free energy from planetary rotation and the interaction between Jupiter and the Galilean moon Io. Decametric radio emission (DAM) is the strongest component of Jovian radiation observed in a frequency range from a few MHz up to 40 MHz. Depending on the time scales the Jovian DAM exhibits different complex spectral structures. Recent observations of the Jovian decametric radio emission using the large ground-based radio telescope URAN-2 (Poltava, Ukraine) enabled the detection of fine spectral structures, specifically zebra stripe-like patterns, never reported before in the Jovian decametric wavelength regime (Figure 1). In this presentation we describe and analyse these new observations by investigating the characteristics of the Jovian decametric zebra patterns. On basis of these findings the possible mechanism of wave generation is discussed and in particular the value of the determination of local plasma densities within the Jovian magnetosphere by remote radio sensing is emphasized.

  17. Fine spectral structures in Jovian decametric radio emission observed by ground-based radio telescope.

    NASA Astrophysics Data System (ADS)

    Panchenko, M.; Brazhenko, A. I.; Shaposhnikov, V. E.; Konovalenko, A. A.; Rucker, H. O.

    2014-04-01

    Jupiter with the largest planetary magnetosphere in the solar system emits intense coherent non-thermal radio emission in a wide frequency range. This emission is a result of a complicated interaction between the dynamic Jovian magnetosphere and energetic particles supplying the free energy from planetary rotation and the interaction between Jupiter and the Galilean moons. Decametric radio emission (DAM) is the strongest component of Jovian radiation observed in a frequency range from few MHz up to 40 MHz. This emission is generated via cyclotron maser mechanism in sources located along Jovian magnetic field lines. Depending on the time scales the Jovian DAMexhibits different complex spectral structures. We present the observations of the Jovian decametric radio emission using the large ground-based radio telescope URAN- 2 (Poltava, Ukraine) operated in the decametric frequency range. This telescope is one of the largest low frequency telescopes in Europe equipped with high performance digital radio spectrometers. The antenna array of URAN-2 consists of 512 crossed dipoles with an effective area of 28 000m2 and beam pattern size of 3.5 x 7 deg. (at 25 MHz). The instrument enables continuous observations of the Jovian radio during long period of times. Jovian DAM was observed continuously since Sep. 2012 (depending on Jupiter visibility) with relatively high time-frequency resolution (4 kHz - 100ms) in the broad frequency range (8-32MHz). We have detected a big amount of the fine spectral structures in the dynamic spectra of DAM such as trains of S-bursts, quasi-continuous narrowband emission, narrow-band splitting events and zebra stripe-like patterns. We analyzed mainly the fine structures associated with non-Io controlled DAM. We discuss how the observed narrowband structures which most probably are related to the propagation of the decametric radiation in the Jupiter's ionosphere can be used to study the plasma parameters in the inner Jovian magnetosphere.

  18. Discussing the processes constraining the Jovian synchrotron radio emission's features

    NASA Astrophysics Data System (ADS)

    Santos-Costa, Daniel; Bolton, Scott J.

    2008-03-01

    Our recent analysis and understanding of the Jovian synchrotron radio emission with a radiation-belt model is presented. In this work, the electron population is determined by solving the Fokker-Planck diffusion equation and considering different physical processes. The results of the modeling are first compared to in situ particle data, brightness distributions, radio spectrum, and beaming curves to verify the simulated particle distributions. The dynamics of high-energy electrons in Jupiter's inner magnetosphere and their related radio emission are then examined. The results demonstrate that the Jovian moons set the extension and intensity of the synchrotron emission's brightness distribution along the magnetic equator. Simulations show that moons and dust both control the transport toward the planet by significantly reducing the abundance of particles constrained to populate, near the equator and inside 1.8 Jovian radii, the innermost region of the magnetosphere. Due to interactions with dust and synchrotron mechanism, radiation-belt electrons are moved along field lines, between Metis (1.79 Jovian radii) and Amalthea (2.54 Jovian radii), toward high latitudes. The quantity of particles transported away from the equator is sufficient to produce measurable secondary radio emissions. Among all the phenomena acting in the inner magnetosphere, the moons (Amalthea and Thebe) are the primary moderator for the radiation's intensity at high latitudes. Moon losses also affect the characteristics of the total radio flux with longitude. The sweeping effect amplifies the 10-h modulation of the beaming curve's amplitude while energy resonances occurring near Amalthea and Thebe belong to phenomena adjusting it to the right level. Interactions with dust do not significantly constrain radio spectrum features. Resonances near Amalthea and Thebe are responsible for the Jovian radio spectrum's particular slope.

  19. Laboratory Reproduction of Auroral Magnetospheric Radio Wave Sources

    SciTech Connect

    Ronald, K.; Speirs, D. C.; McConville, S. L.; Gillespie, K. M.; Phelps, A. D. R.; Cross, A. W.; Robertson, C. W.; Whyte, C. G.; He, W.; Bingham, R.; Vorgul, I.; Cairns, R. A.; Kellett, B. J.

    2008-10-15

    Auroral Kilometric Radiation, AKR, occurs naturally in the polar regions of the Earth's magnetosphere where electrons are accelerated by electric fields into the increasing planetary magnetic dipole. Here conservation of the magnetic moment converts axial to rotational momentum forming a horseshoe distribution in velocity phase space. This distribution is unstable to cyclotron emissions and radiation is emitted in the X-mode. In the laboratory a 75-85kV electron beam of 5-40A was magnetically compressed by a system of solenoids. Results are presented for an electron beam gyrating at cyclotron frequencies of 4.42GHz and 11.7GHz resonating with near cut-off TE01 and TE03 modes respectively. Measurements of the electron transport combined with numerical simulations demonstrated that a horseshoe distribution function was formed in electron velocity space. Analysis of the experimental measurements allowed the inference of the 1D number density as a function of the electron beam pitch angle. The total power emitted experimentally was {approx}19-35 kW with a maximum RF emission efficiency of {approx}2%. These results were compared to those obtained numerically using a 2D PiC code KARAT with a maximum efficiency of 2% predicted for the same mode and frequency, consistent with astrophysical and theoretical results.

  20. Energetic neutral atom emissions from Titan interaction with Saturn's magnetosphere.

    PubMed

    Mitchell, D G; Brandt, P C; Roelof, E C; Dandouras, J; Krimigis, S M; Mauk, B H

    2005-05-13

    The Cassini Magnetospheric Imaging Instrument (MIMI) observed the interaction of Saturn's largest moon, Titan, with Saturn's magnetosphere during two close flybys of Titan on 26 October and 13 December 2004. The MIMI Ion and Neutral Camera (INCA) continuously imaged the energetic neutral atoms (ENAs) generated by charge exchange reactions between the energetic, singly ionized trapped magnetospheric ions and the outer atmosphere, or exosphere, of Titan. The images reveal a halo of variable ENA emission about Titan's nearly collisionless outer atmosphere that fades at larger distances as the exospheric density decays exponentially. The altitude of the emissions varies, and they are not symmetrical about the moon, reflecting the complexity of the interactions between Titan's upper atmosphere and Saturn's space environment.

  1. An Earth-like correspondence between Saturn's auroral features and radio emission.

    PubMed

    Kurth, W S; Gurnett, D A; Clarke, J T; Zarka, P; Desch, M D; Kaiser, M L; Cecconi, B; Lecacheux, A; Farrell, W M; Galopeau, P; Gérard, J-C; Grodent, D; Prangé, R; Dougherty, M K; Crary, F J

    2005-02-17

    Saturn is a source of intense kilometre-wavelength radio emissions that are believed to be associated with its polar aurorae, and which provide an important remote diagnostic of its magnetospheric activity. Previous observations implied that the radio emission originated in the polar regions, and indicated a strong correlation with solar wind dynamic pressure. The radio source also appeared to be fixed near local noon and at the latitude of the ultraviolet aurora. There have, however, been no observations relating the radio emissions to detailed auroral structures. Here we report measurements of the radio emissions, which, along with high-resolution images of Saturn's ultraviolet auroral emissions, suggest that although there are differences in the global morphology of the aurorae, Saturn's radio emissions exhibit an Earth-like correspondence between bright auroral features and the radio emissions. This demonstrates the universality of the mechanism that results in emissions near the electron cyclotron frequency narrowly beamed at large angles to the magnetic field.

  2. Pulsars Magnetospheres

    NASA Technical Reports Server (NTRS)

    Timokhin, Andrey

    2012-01-01

    Current density determines the plasma flow regime. Cascades are non-stationary. ALWAYS. All flow regimes look different: multiple components (?) Return current regions should have particle accelerating zones in the outer magnetosphere: y-ray pulsars (?) Plasma oscillations in discharges: direct radio emission (?)

  3. Radio Emission from Supernovae

    SciTech Connect

    Weiler, Kurt W.; Panagia, Nino; Sramek, Richard A.; Van Dyk, Schuyler D.; Stockdale, Christopher J.; Kelley, Matthew T.

    2009-05-03

    Study of radio supernovae over the past 27 years includes more than three dozen detected objects and more than 150 upper limits. From this work it is possible to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. It is also possible to detect ionized hydrogen along the line of sight, to demonstrate binary properties of the presupernova stellar system, and to detect dumpiness of the circumstellar material.

  4. Magnetospheric electrostatic emissions and cold plasma densities

    NASA Technical Reports Server (NTRS)

    Hubbard, R. F.; Birmingham, T. J.

    1978-01-01

    A synoptic study of electric wave, magnetometer, and plasma data from IMP-6 was carried out for times when banded electrostatic waves are observed between harmonics of the electron gyrofrequency in the earth's outer magnetosphere. Four separate classes of such waves were previously identified. The spatial and temporal occurrences of waves in each class are summarized here, as are correlations of occurrence with geomagnetic activity. Most importantly, associations between the observations of waves of different classes and the relative portions of cold and hot electrons present at the position of the spacecraft are established. Finally, evidence for the signature of the loss cone is sought in the plasma data.

  5. Stellar wind-magnetosphere interaction at exoplanets: computations of auroral radio powers

    NASA Astrophysics Data System (ADS)

    Nichols, J. D.; Milan, S. E.

    2016-09-01

    We present calculations of the auroral radio powers expected from exoplanets with magnetospheres driven by an Earth-like magnetospheric interaction with the solar wind. Specifically, we compute the twin cell-vortical ionospheric flows, currents, and resulting radio powers resulting from a Dungey cycle process driven by dayside and nightside magnetic reconnection, as a function of planetary orbital distance and magnetic field strength. We include saturation of the magnetospheric convection, as observed at the terrestrial magnetosphere, and we present power-law approximations for the convection potentials, radio powers and spectral flux densities. We specifically consider a solar-age system and a young (1 Gyr) system. We show that the radio power increases with magnetic field strength for magnetospheres with saturated convection potential, and broadly decreases with increasing orbital distance. We show that the magnetospheric convection at hot Jupiters will be saturated, and thus unable to dissipate the full available incident Poynting flux, such that the magnetic Radiometric Bode's Law (RBL) presents a substantial overestimation of the radio powers for hot Jupiters. Our radio powers for hot Jupiters are ˜5-1300 TW for hot Jupiters with field strengths of 0.1-10 BJ orbiting a Sun-like star, while we find that competing effects yield essentially identical powers for hot Jupiters orbiting a young Sun-like star. However, in particular, for planets with weaker magnetic fields, our powers are higher at larger orbital distances than given by the RBL, and there are many configurations of planet that are expected to be detectable using SKA.

  6. Multi-epoch study of the gamma-ray emission within the M87 magnetosphere model

    SciTech Connect

    Vincent, S.

    2015-05-01

    M87 is a nearby radio galaxy that has been detected at energies ranging from radio to very high energy (VHE) gamma-rays. Its proximity and its jet, misaligned from the line of sight allow detailed morphological studies. The imaging atmospheric Cherenkov technique (from 100 GeV to 10 TeV) provides insufficient angular resolution (few arc-minutes) to resolve the M87 emission region. However, the short time scale variability observed by MAGIC, HESS and VERITAS suggests the TeV emission is coming from a very small region, most likely close to the core. We propose that the variable TeV emission may be produced in a pair-starved region of the central black hole (BH) magnetosphere, i.e. a region where the density of the electron-positron plasma is not sufficient to completely screen the accelerating electric field. The funnel, a low density and magnetically dominated region around the poles, appears as a favourable site of low-density where a Blandford-Znajek process may explain the main properties of the TeV γ-ray emission from M87. We produce a broadband spectral energy distribution (SED) of the resulting radiation and compare the model with the observed fluxes from the nucleus of M87, for both low and high γ-ray activities. We finish with a brief discussion on the connection between the accretion rate and the intermittence in the formation of gaps in the magnetosphere.

  7. Probing the X-ray Emission from Dueling Magnetospheres

    NASA Astrophysics Data System (ADS)

    Chatterjee, Shamibrata

    2004-09-01

    The double pulsar system J0737-3039 may provide answers to longstanding questions about the pulsar emission mechanism and the physics of relativistic winds. X-ray emission detected with Chandra could be produced by pulsed magnetospheric emission or at termination shocks located at the wind-wind boundary or the wind-ISM boundary. We propose high time resolution observations with HRC-S which will determine the X-ray modulation fraction at the pulsar rotational and orbital periods, thus distinguishing between the various possibilities and providing direct constraints on the magnetization parameter of the relativistic wind.

  8. Radio emission from supernova remnants

    NASA Astrophysics Data System (ADS)

    Dubner, Gloria; Giacani, Elsa

    2015-09-01

    The explosion of a supernova releases almost instantaneously about 10^{51} ergs of mechanic energy, changing irreversibly the physical and chemical properties of large regions in the galaxies. The stellar ejecta, the nebula resulting from the powerful shock waves, and sometimes a compact stellar remnant, constitute a supernova remnant (SNR). They can radiate their energy across the whole electromagnetic spectrum, but the great majority are radio sources. Almost 70 years after the first detection of radio emission coming from an SNR, great progress has been achieved in the comprehension of their physical characteristics and evolution. We review the present knowledge of different aspects of radio remnants, focusing on sources of the Milky Way and the Magellanic Clouds, where the SNRs can be spatially resolved. We present a brief overview of theoretical background, analyze morphology and polarization properties, and review and critically discuss different methods applied to determine the radio spectrum and distances. The consequences of the interaction between the SNR shocks and the surrounding medium are examined, including the question of whether SNRs can trigger the formation of new stars. Cases of multispectral comparison are presented. A section is devoted to reviewing recent results of radio SNRs in the Magellanic Clouds, with particular emphasis on the radio properties of SN 1987A, an ideal laboratory to investigate dynamical evolution of an SNR in near real time. The review concludes with a summary of issues on radio SNRs that deserve further study, and analysis of the prospects for future research with the latest-generation radio telescopes.

  9. ON THE ORIGIN OF RADIO EMISSION FROM MAGNETARS

    SciTech Connect

    Szary, Andrzej; Melikidze, George I.; Gil, Janusz

    2015-02-10

    Magnetars are the most magnetized objects in the known universe. Powered by the magnetic energy, and not by the rotational energy as in the case of radio pulsars, they have long been regarded as a completely different class of neutron stars. The discovery of pulsed radio emission from a few magnetars weakened the idea of a clean separation between magnetars and normal pulsars. We use the partially screened gap (PSG) model to explain radio emission of magnetars. The PSG model requires that the temperature of the polar cap is equal to the so-called critical value, i.e., the temperature at which the thermal ions outflowing from the stellar surface screen the acceleration gap. We show that a magnetar has to fulfill the temperature, power, and visibility conditions in order to emit radio waves. First, in order to form PSG, the residual temperature of the surface has to be lower than the critical value. Second, since the radio emission is powered by the rotational energy, it has to be high enough to enable heating of the polar cap by backstreaming particles to the critical temperature. Finally, the structure of the magnetic field has to be altered by magnetospheric currents in order to widen a radio beam and increase the probability of detection. Our approach allows us to predict whether a magnetar can emit radio waves using only its rotational period, period derivative, and surface temperature in the quiescent mode.

  10. The Arecibo Reconnaissance of Radio Emission from Nearby Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Route, Matthew; Wolszczan, Alex

    2014-11-01

    For several decades, it has been known that the Earth and Jupiter naturally generate radio emission from their magnetospheres, and that this radio emission serves as a probe of the magnetic field properties and plasma environments of these objects. In particular, the terrestrial auroral kilometric radiation, Jovian radio emission from decimetric through kilometric frequencies, and the Saturn kilometric radiation have been well studied through both remote sensing and in situ methods. At the more massive end of the continuum of substellar objects, brown dwarfs of spectral type as late as L3.5 have been shown to emit radio waves through the same mechanism that causes most of the radio emission from the magnetized Solar System planets.During the course of our recent searches for radio emission from ultracool dwarfs, we investigated brown dwarfs of spectral types as late as T6.5 and pushed even farther down the intrinsic luminosity scale through the observation of the system of four planets around a young, A-type star, HR 8799. Our investigation was conducted with the 305-m Arecibo radio telescope, its 5 GHz receiver, and the fast-sampled, broadband Mock spectrometer. Although no radio emission was detected from the young, hot HR 8799 planets, we provide useful upper limits on their radio luminosities and magnetic field strengths. However, our surveys have detected radio emission from two cool brown dwarfs, which have temperatures comparable to those young planets: one of type T6 1050 K) and one of type T6.5 900 K; Route & Wolszczan 2012). These results imply that, for young, massive exoplanet systems, which, like the one around HR 8799, consist of planets at type-T brown dwarf luminosity-levels and temperatures, the detection of radio emission with instrumentation such as that currently available at Arecibo is entirely plausible. This strategy appears more promising than low frequency searches for radio emission from the old, low magnetic field exoplanets, which

  11. Detection of 610-MHz radio emission from hot magnetic stars

    NASA Astrophysics Data System (ADS)

    Chandra, P.; Wade, G. A.; Sundqvist, J. O.; Oberoi, D.; Grunhut, J. H.; ud-Doula, A.; Petit, V.; Cohen, D. H.; Oksala, M. E.; David-Uraz, A.

    2015-09-01

    We have carried out a study of radio emission from a small sample of magnetic O- and B-type stars using the Giant Metrewave Radio Telescope, with the goal of investigating their magnetospheres at low frequencies. These are the lowest frequency radio measurements ever obtained of hot magnetic stars. The observations were taken at random rotational phases in the 1390 and the 610 MHz bands. Out of the eight stars, we detect five B-type stars in both the 1390 and the 610 MHz bands. The three O-type stars were observed only in the 1390 MHz band, and no detections were obtained. We explain this result as a consequence of free-free absorption by the free-flowing stellar wind exterior to the confined magnetosphere. We also study the variability of individual stars. One star - HD 133880 - exhibits remarkably strong and rapid variability of its low-frequency flux density. We discuss the possibility of this emission being coherent emission as reported for CU Vir by Trigilio et al.

  12. Ionosphere-magnetosphere studies using ground based VLF radio propagation technique: an Indian example

    NASA Astrophysics Data System (ADS)

    Chakravarty, Subhas

    Since IGY period (1957-58), natural and artificially produced Very Low Frequency (VLF) elec-tromagnetic radiations are being recorded at large number of ground stations all over the world and on-board satellites to study various radio wave-thermal/energetic plasma interactive pro-cesses related to earth's ionosphere-plasmasphere-magnetosphere environment. The terrestrial propagation of these VLF radio waves are primarily enabled through the earth ionosphere wave guide (EIWG) mode to long horizontal distances around the globe and ducted along the ge-omagnetic field lines into the conjugate hemisphere through the plasmasphere-magnetosphere regions. The time frequency spectra of the received signals indicate presence of dispersion (wave/group velocities changing with frequency) and various cut-off frequencies based on the width of the EIWG, electron gyro and plasma frequencies etc., providing several types of received signals like whistlers, chorus, tweeks, hiss and hisslers which can be heard on loud-speakers/earphones with distinguishing audio structures. While the VLF technique has been a very effective tool for studying middle and high latitude phenomena, the importance of the similar and anomalous observations over the Indian low latitude stations provide potentially new challenges for their scientific interpretation and modelling. The ducted and non-ducted magnetospheric propagation, pro-longitudinal (PL) mode, low latitude TRIMPI/TLE (Tran-sient Luminous Emissions) or other effects of wave-particle/wave-wave interactions, effects due to ionospheric irregularities and electric fields, full wave solutions to D-region ionisation per-turbations due to solar and stellar energetic X-and γ ray emissions during normal and flaring conditions are a few problems which have been addressed in these low latitude studies over India. Since the conjugate points of Indian stations lie over the Indian oceanic region, the VLF propagation effects would be relatively free from

  13. ISEE-3 observations of the earth's radio continuum through the bow shock and magnetosheath and in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Steinberg, J.-L.; Hoang, S.; Lacombe, C.; Zwickl, R. D.

    1988-01-01

    On October 1 1983, ISEE-3 crossed the earth's bow shock several times and entered the magnetosphere while continuously recording the nonthermal continuum (NTC) radio emission which is generated inside the magnetosphere. The effects of the solar wind, the bow shock, the magnetosheath, and the magnetopause on the propagation of the NTC are studied. On that day it is found that: (1) the relative values of the NTC low frequency cut-off in the solar wind and in the magnetosheath is due to an unusually high density overshoot in the bow shock, 7 to 11 times the solar wind density; (2) refraction at the interface between the magnetosheath and the solar wind can explain most of the decrease in the source angular size when the observer travels away from the earth; (3) plasma density irregularities in the magnetosheath cause considerable scattering of the NTC, and this effect gives a large apparent size to the NTC source when observed from inside the magnetosheath; and (4) the apparent source is also relatively large inside the magnetosphere, probably due to an approach to ray isotropy caused by oblique reflections from the magnetopause.

  14. Controlled stimulation of magnetospheric electrons by radio waves Experimental model for lightning effects

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Curtis, S. A.; Barcus, J. R.; Siefring, C. L.; Kelley, M. C.

    1983-01-01

    Magnetospheric electrons precipitated by ground-based coded very low frequency radio transmissions have been detected by rocket measurement of bremsstrahlung X-rays, caused by impact of the electrons with the upper atmosphere. The direct correlations obtained between the very low frequency signals and the X-rays demonstrate the limits of sensitivity required and indicate that this remote sensing technique would be useful for future study of very low frequency effects induced by single lightning strokes.

  15. Controlled stimulation of magnetospheric electrons by radio waves: experimental model for lightning effects.

    PubMed

    Goldberg, R A; Curtis, S A; Barcus, J R; Siefring, C L; Kelley, M C

    1983-03-18

    Magnetospheric electrons precipitated by ground-based coded very low frequency radio transmissions have been detected by rocket measurement of bremsstrahlung x-rays, caused by impact of the electrons with the upper atmosphere. The direct correlations obtained between the very low frequency signals and the x-rays demonstrate the limits of sensitivity required and indicate that this remote sensing technique would be useful for future study of very low frequency effects induced by single lightning strokes.

  16. Periodic Bursts of Jovian Non-Io Decametric Radio Emission

    NASA Technical Reports Server (NTRS)

    Panchenko, M.; Rucker, H O.; Farrell, W. M.

    2013-01-01

    During the years 2000-2011 the radio instruments onboard Cassini, Wind and STEREO spacecraft have Recorded a large amount of the Jovian decametric radio emission (DAM). In this paper we report on the analysis of the new type of Jovian periodic radio bursts recently revealed in the decametric frequency range. These bursts, which are non-Io component of DAM, are characterized by a strong periodic reoccurrence over several Jovian days with a period approx. = 1:5% longer than the rotation rate of the planet's magnetosphere (System III). The bursts are typically observed between 4 and 12 MHz and their occurrence probability has been found to be significantly higher in the sector of Jovian Central Meridian Longitude between 300 deg. and 60 deg. (via 360 deg.). The stereoscopic multispacecraft observations have shown that the radio sources of the periodic bursts radiate in a non-axisymmetric hollow cone-like pattern and sub-corotate with Jupiter remaining active during several planet's rotations. The occurrence of the periodic non-Io DAM bursts is strongly correlated with pulses of the solar wind ram pressure at Jupiter. Moreover the periodic bursts exhibit a tendency to occur in groups every approx. 25 days. The polarization measurements have shown that the periodic bursts are right hand polarized radio emission associated with the Northern magnetic hemisphere of Jupiter. We suggest that periodic non-Io DAM bursts may be connected with the interchange instability in Io plasma torus triggered by the solar wind.

  17. Periodic bursts of Jovian non-Io decametric radio emission.

    PubMed

    Panchenko, M; Rucker, H O; Farrell, W M

    2013-03-01

    During the years 2000-2011 the radio instruments onboard Cassini, Wind and STEREO spacecraft have recorded a large amount of the Jovian decametric radio emission (DAM). In this paper we report on the analysis of the new type of Jovian periodic radio bursts recently revealed in the decametric frequency range. These bursts, which are non-Io component of DAM, are characterized by a strong periodic reoccurrence over several Jovian days with a period [Formula: see text] longer than the rotation rate of the planet's magnetosphere (System III). The bursts are typically observed between 4 and 12 MHz and their occurrence probability has been found to be significantly higher in the sector of Jovian Central Meridian Longitude between 300° and 60° (via 360°). The stereoscopic multispacecraft observations have shown that the radio sources of the periodic bursts radiate in a non-axisymmetric hollow cone-like pattern and sub-corotate with Jupiter remaining active during several planet's rotations. The occurrence of the periodic non-Io DAM bursts is strongly correlated with pulses of the solar wind ram pressure at Jupiter. Moreover the periodic bursts exhibit a tendency to occur in groups every [Formula: see text] days. The polarization measurements have shown that the periodic bursts are right hand polarized radio emission associated with the Northern magnetic hemisphere of Jupiter. We suggest that periodic non-Io DAM bursts may be connected with the interchange instability in Io plasma torus triggered by the solar wind.

  18. Periodic bursts of Jovian non-Io decametric radio emission

    PubMed Central

    Panchenko, M.; Rucker, H.O.; Farrell, W.M.

    2013-01-01

    During the years 2000–2011 the radio instruments onboard Cassini, Wind and STEREO spacecraft have recorded a large amount of the Jovian decametric radio emission (DAM). In this paper we report on the analysis of the new type of Jovian periodic radio bursts recently revealed in the decametric frequency range. These bursts, which are non-Io component of DAM, are characterized by a strong periodic reoccurrence over several Jovian days with a period ≈1.5% longer than the rotation rate of the planet's magnetosphere (System III). The bursts are typically observed between 4 and 12 MHz and their occurrence probability has been found to be significantly higher in the sector of Jovian Central Meridian Longitude between 300° and 60° (via 360°). The stereoscopic multispacecraft observations have shown that the radio sources of the periodic bursts radiate in a non-axisymmetric hollow cone-like pattern and sub-corotate with Jupiter remaining active during several planet's rotations. The occurrence of the periodic non-Io DAM bursts is strongly correlated with pulses of the solar wind ram pressure at Jupiter. Moreover the periodic bursts exhibit a tendency to occur in groups every ∼25 days. The polarization measurements have shown that the periodic bursts are right hand polarized radio emission associated with the Northern magnetic hemisphere of Jupiter. We suggest that periodic non-Io DAM bursts may be connected with the interchange instability in Io plasma torus triggered by the solar wind. PMID:23585696

  19. Periodic bursts of Jovian non-Io decametric radio emission

    NASA Astrophysics Data System (ADS)

    Panchenko, M.; Rucker, H. O.; Farrell, W. M.

    2013-03-01

    During the years 2000-2011 the radio instruments onboard Cassini, Wind and STEREO spacecraft have recorded a large amount of the Jovian decametric radio emission (DAM). In this paper we report on the analysis of the new type of Jovian periodic radio bursts recently revealed in the decametric frequency range. These bursts, which are non-Io component of DAM, are characterized by a strong periodic reoccurrence over several Jovian days with a period ≈1.5% longer than the rotation rate of the planet's magnetosphere (System III). The bursts are typically observed between 4 and 12 MHz and their occurrence probability has been found to be significantly higher in the sector of Jovian Central Meridian Longitude between 300° and 60° (via 360°). The stereoscopic multispacecraft observations have shown that the radio sources of the periodic bursts radiate in a non-axisymmetric hollow cone-like pattern and sub-corotate with Jupiter remaining active during several planet's rotations. The occurrence of the periodic non-Io DAM bursts is strongly correlated with pulses of the solar wind ram pressure at Jupiter. Moreover the periodic bursts exhibit a tendency to occur in groups every ∼25 days. The polarization measurements have shown that the periodic bursts are right hand polarized radio emission associated with the Northern magnetic hemisphere of Jupiter. We suggest that periodic non-Io DAM bursts may be connected with the interchange instability in Io plasma torus triggered by the solar wind.

  20. Radio emission in peculiar galaxies

    NASA Technical Reports Server (NTRS)

    Demellorabaca, Dulia F.; Abraham, Zulema

    1990-01-01

    During the last decades a number of surveys of peculiar galaxies have been carried out and accurate positions become available. Since peculiarities are a possible evidence of radio emission (Wright, 1974; Sulentic, 1976; Stocke et al., 1978), the authors selected a sample of 24 peculiar galaxies with optical jet-like features or extensions in different optical catalogues, mainly the Catalogue of Southern Peculiar Galaxies and Associations (Arp and Madore, 1987) and the ESO/Uppsala Survey of the ESO(B) Atlas (Lauberts, 1982) for observation at the radio continuum frequency of 22 GHz. The sample is listed in a table. Sol (1987) studied this sample and concluded that the majority of the jet-like features seem to admit an explanation in terms of interactive galaxies with bridges and/or tails due to tidal effects. Only in a few cases do the jets seem to be possibly linked to some nuclear activity of the host galaxy. The observations were made with the 13.7m-radome enclosed Itapetinga Radiotelescope (HPBW of 4.3 arcmin), in Brazil. The receiver was a 1 GHz d.s.b. super-heterodine mixer operated in total-power mode, with a system temperature of approximately 800 K. The observational technique consisted in scans in right ascention, centralized in the optical position of the galaxy. The amplitude of one scan was 43 arcmin, and its duration time was 20 seconds. The integration time was at least 2 hours (12 ten-minute observations) and the sensibility limit adopted was an antenna temperature greater than 3 times the r.m.s. error of the baseline determination. Virgo A was used as the calibrator source. Three galaxies were detected for the first time as radio sources and four other known galaxies at low frequencies had their flux densities measured at 22 GHz. The results for these sources are presented.

  1. Triggering process of whistler mode chorus emissions in the magnetosphere

    NASA Astrophysics Data System (ADS)

    Omura, Yoshiharu; Nunn, David

    2011-05-01

    Chorus emissions are triggered from the linear cyclotron instability driven by the temperature anisotropy of energetic electrons (10-100 keV) in the magnetosphere. Chorus emissions grow as an absolute nonlinear instability near the magnetic equator because of the presence of an electromagnetic electron hole in velocity space. The transition process from the linear wave growth at a constant frequency to the nonlinear wave growth with a rising tone frequency is due to formation of a resonant current -JB antiparallel to the wave magnetic field. The rising-tone frequency introduces a phase shift to the electron hole at the equator and results in a resonant current component antiparallel to the wave electric field -JE, which causes the nonlinear wave growth. To confirm this triggering mechanism, we perform Vlasov hybrid simulations with JB and without JB. The run without JB does not reproduce chorus emissions, while the run with JB does successfully reproduce chorus emissions. The nonlinear frequency shift ω1 due to JB plays a critical role in the triggering process. The nonlinear transition time TN for the frequency shift is found to be of the same order as the nonlinear trapping period, which is confirmed by simulations and observation. The established frequency sweep rate is ω1/TN, which gives an optimum wave amplitude of chorus emissions.

  2. Radio Continuum Emission from FS CMa Stars

    NASA Astrophysics Data System (ADS)

    Rodríguez, L. F.; Báez-Rubio, A.; Miroshnichenko, A. S.

    2012-04-01

    The FS CMa stars exhibit bright optical emission-line spectra and strong IR excesses. Very little is known of their radio characteristics. We analyzed archive Very Large Array data to search for radio continuum emission in a sample of them. There are good quality data for seven of the ~40 known FS CMa stars. Of these seven stars, five turn out to have associated radio emission. Two of these stars, CI Cam and MWC 300, have been previously reported in the literature as radio emitters. We present and briefly discuss the radio detection of the other three sources: FS CMa (the prototype of the class), AS 381, and MWC 922. The radio emission is most probably of a free-free nature but additional observations are required to better characterize it.

  3. Radio emissions from RHESSI TGFs

    NASA Astrophysics Data System (ADS)

    Mezentsev, Andrey; Østgaard, Nikolai; Gjesteland, Thomas; Albrechtsen, Kjetil; Cummer, Steven

    2016-04-01

    The discovery of bursts of energetic photons coming out to space from the Earth's atmosphere, referred to as terrsetrial gamma-ray flashes (TGFs), has stimulated research activity investigating different aspects of the TGF generation and accompanying processes. Two models of the TGF production are nowadays competing to explain the observations of the TGFs and related phenomena. One of the models involves the feedback mechanism enhancing the production rate of the runaway electrons in the ambient electric field of a thundercloud. Another model considers runaway electrons accelerated in the strong local electric field in front of the upward propagating negative leader of the +IC. We performed a detailed analysis of RHESSI TGFs detected between August 2004 and September 2015. It was reported that the RHESSI satellite clock has a systematic error of ˜ 1.8 ms, but the exact value remained unknown, also it was unclear if this systematic clock error is changing with time or not. We compared RHESSI TGFs with the world wide lightning location network (WWLLN) database and found the distribution of the time delays between the TGF peak times and associated WWLLN detections. This distribution allowed us to find the value of the RHESSI systematic clock offset with the microsecond accuracy level. Also we found that this offset experienced two changes: in August 2005 and in October 2013, which was confirmed by two independent ways. We found that in case of double TGFs WWLLN detection corresponds to the second TGF of the pair. VLF magnetic field recordings from the Duke University also attribute radio sferics to the second TGF, exhibiting no detectable radio emission during the first TGFs of the TGF pairs. We have proposed a possible scenario that is consistent with the observations. This scenario supports the leader-based model of the TGF generation. Spectral characteristics of 77 sferics recorded by the Duke University VLF sensors and related to the RHEESI TGFs show that maximal

  4. AURORAL RADIO EMISSION FROM STARS: THE CASE OF CU VIRGINIS

    SciTech Connect

    Trigilio, Corrado; Leto, Paolo; Umana, Grazia; Buemi, Carla S.; Leone, Francesco

    2011-09-20

    CU Virginis is a rapidly rotating Magnetic Chemically Peculiar star with at present unique characteristics as a radio emitter. The most intriguing one is the presence of intense, 100% circularly polarized radiation ascribed to a cyclotron maser. Each time the star rotates, this highly beamed emission points two times toward the Earth, like a pulsar. We observed CU Vir in 2010 April with the Expanded Very Large Array in two bands centered at 1450 and 1850 MHz. We covered nearly the whole rotational period, confirming the presence of the two pulses at a flux density up to 20 mJy. Dynamical spectra, obtained with unprecedented spectral and temporal sensitivity, allow us to clearly see the different time delays as a function of frequency. We interpret this behavior as a propagation effect of the radiation inside the stellar magnetosphere. The emerging scenario suggests interesting similarities with the auroral radio emission from planets, in particular with the Auroral Kilometric Radiation from Earth, which originates at few terrestrial radii above the magnetic poles and was only recently discovered to be highly beamed. We conclude that the magnetospheres of CU Vir, Earth, and other planets, maybe also exoplanets, could have similar geometrical and physical characteristics in the regions where the cyclotron maser is generated. In addition, the pulses are perfect 'markers' of the rotation period. This has given us for the first time the possibility to measure with extraordinary accuracy the spin-down of a star on or near the main sequence.

  5. Models of Uranium continuum radio emission

    NASA Technical Reports Server (NTRS)

    Romig, Joseph H.; Evans, David R.; Sawyer, Constance B.; Schweitzer, Andrea E.; Warwick, James W.

    1987-01-01

    Uranium continuum radio emission detected by the Voyager 2 Planetary Radio Astronomy experiment during the January 1986 encounter is considered. The continuum emissions comprised four components (equatorial emissions, anomaly emissions, strong nightside emissions, and weak nightside emissions) associated with different sources. The equatorial emissions appeared most prominently during the days before closest approach and extended from 40 kHz or below to about 120 kHz. The anomaly emissions were seen about 12 hours before closest approach and extended to about 250 kHz. The agreement found between Miranda's phase and strong radio emission at 20.4 kHz, just after closest approach, suggests intense dynamic activity on the Miranda L shell.

  6. Gamma ray emission from radio pulsars

    NASA Technical Reports Server (NTRS)

    Romani, Roger W.

    1994-01-01

    While the proposed research received partial funding under this grant, during the term of support substantial progress was made on the development of a new model for the emission of gamma-rays from isolated rotation-powered pulsars. In phase one of the work, we showed how a modified version of the 'outer gap' model of pulsar emission could reproduce the double peaked profiles seen in CGRO pulsar observations. This work also demonstrated the spectrum of gap radiation varies significantly with position in the magnetosphere, and produced approximate computations of the emission from outer magnetosphere gap zones, including primary curvature radiation, gamma - gamma pair production and synchrotron radiation and inverse Compton scattering by the resulting secondary particles. This work was followed in phase two by a more complete treatment of the geometry of the radiation zone, and improved connections with observations at other wavelengths.

  7. Non-thermal radio emission from Saturn

    NASA Technical Reports Server (NTRS)

    Warwick, J. W.

    1978-01-01

    Direct, strong evidence for non-thermal radio emission from Saturn exists in the hectometric data observed by Imp 6. The planet has been tentatively identified as a decametric source, but the most sensitive and most recent data fail to confirm this. At metric or decimetric wavelengths Saturn has no non-thermal emission like Jupiter's synchrotron sources. Finally, a comparative study of Earth and Jupiter radio emissions suggests lightning discharges.

  8. Backward wave cyclotron-maser emission in the auroral magnetosphere.

    PubMed

    Speirs, D C; Bingham, R; Cairns, R A; Vorgul, I; Kellett, B J; Phelps, A D R; Ronald, K

    2014-10-10

    In this Letter, we present theory and particle-in-cell simulations describing cyclotron radio emission from Earth's auroral region and similar phenomena in other astrophysical environments. In particular, we find that the radiation, generated by a down-going electron horseshoe distribution is due to a backward-wave cyclotron-maser emission process. The backward wave nature of the radiation contributes to upward refraction of the radiation that is also enhanced by a density inhomogeneity. We also show that the radiation is preferentially amplified along the auroral oval rather than transversely. The results are in agreement with recent Cluster observations.

  9. A test of magnetospheric radio tomographic imaging with IMAGE and WIND

    NASA Astrophysics Data System (ADS)

    Cummer, S. A.; Reiner, M. J.; Reinisch, B. W.; Kaiser, M. L.; Green, J. L.; Benson, R. F.; Manning, R.; Goetz, K.

    Theoretical studies have shown the potential scientific value of multi-spacecraft radio tomographic imaging of the magnetosphere. The <10 RE WIND perigee passes during August 2000 afforded a unique opportunity to test and verify the capabilities of radio tomography by measuring interspacecraft electromagnetic wave propagation parameters using the Radio Plasma Imager (RPI) on IMAGE as the transmitter and the WAVES instrument on WIND as the receiver. The primary goal of this experiment was to measure Faraday rotation variations in the RPI signal and interpret them in terms of the path-integrated magnetic field and electron density. A special 6 W linearly-polarized 828 kHz RPI signal was clearly detected by WAVES more than 6 RE away and showed a distinct signature of time-varying Faraday rotation. We show how changes in the path-integrated electron density/magnetic field product can be unambiguously measured from this continuous, low signal to noise ratio, single frequency measurement.

  10. Prompt Radio Emission from Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Gotthardt, Noelle

    2010-02-01

    Gamma-ray bursts have been observed, but these enigmatic objects are yet unexplained. These short duration events are undoubtedly due to high-energy events. Fading optical emission and even radio emission has been observed from such events, but prompt radio emission from these events would be very useful in pinning down the physics of the bursts, the nature of the progenitor object,and possibly the medium in which it occurs. If these phenomena occur at large redshifts, there is the possibility that the observations could probe the Epoch of Reionization, or the intergalactic medium. A number of models have been proposed to explain the gamma-ray bursts, ranging from compact object mergers, to maser-like coherent emission. These models are not well constrained by current observations. Prompt radio emission may be detected by a transient radio array. I will discuss a planned search for such signals by the Eight-meter-wavelength Transient Array (ETA). )

  11. Roles Played by Electrostatic Waves in Producing Radio Emissions

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    2000-01-01

    Processes in which electromagnetic radiation is produced directly or indirectly via intermediate waves are reviewed. It is shown that strict theoretical constraints exist for electrons to produce nonthermal levels of radiation directly by the Cerenkov or cyclotron resonances. In contrast, indirect emission processes in which intermediary plasma waves are converted into radiation are often favored on general and specific grounds. Four classes of mechanisms involving the conversion of electrostatic waves into radiation are linear mode conversion, hybrid linear/nonlinear mechanisms, nonlinear wave-wave and wave-particle processes, and radiation from localized wave packets. These processes are reviewed theoretically and observational evidence summarized for their occurrence. Strong evidence exists that specific nonlinear wave processes and mode conversion can explain quantitatively phenomena involving type III solar radio bursts and ionospheric emissions. On the other hand, no convincing evidence exists that magnetospheric continuum radiation is produced by mode conversion instead of nonlinear wave processes. Further research on these processes is needed.

  12. Gamma-ray emission in dissipative pulsar magnetospheres: from theory to Fermi observations

    SciTech Connect

    Kalapotharakos, Constantinos; Harding, Alice K.; Kazanas, Demosthenes

    2014-10-01

    We compute the patterns of γ-ray emission due to curvature radiation in dissipative pulsar magnetospheres. Our ultimate goal is to construct macrophysical models that are able to reproduce the observed γ-ray light curve phenomenology recently published in the Second Fermi Pulsar Catalog. We apply specific forms of Ohm's law on the open field lines using a broad range for the macroscopic conductivity values that result in solutions ranging, from near-vacuum to near-force-free. Using these solutions, we generate model γ-ray light curves by calculating realistic trajectories and Lorentz factors of radiating particles under the influence of both the accelerating electric fields and curvature radiation reaction. We further constrain our models using the observed dependence of the phase lags between the radio and γ-ray emission on the γ-ray peak separation. We perform a statistical comparison of our model radio-lag versus peak-separation diagram and the one obtained for the Fermi standard pulsars. We find that for models of uniform conductivity over the entire open magnetic field line region, agreement with observations favors higher values of this parameter. We find, however, significant improvement in fitting the data with models that employ a hybrid form of conductivity, specifically, infinite conductivity interior to the light cylinder and high but finite conductivity on the outside. In these models the γ-ray emission is produced in regions near the equatorial current sheet but modulated by the local physical properties. These models have radio lags near the observed values and statistically best reproduce the observed light curve phenomenology. Additionally, they also produce GeV photon cut-off energies.

  13. Pair Production and Gamma-Ray Emission in the Outer Magnetospheres of Rapidly Spinning Young Pulsars

    NASA Technical Reports Server (NTRS)

    Ruderman, Malvin; Chen, Kaiyou

    1997-01-01

    Electron-positron pair production and acceleration in the outer magnetosphere may be crucial for a young rapidly spinning canonical pulsar to be a strong Gamma-ray emitter. Collision between curvature radiated GeV photons and soft X-ray photons seems to be the only efficient pair production mechanism. For Crib-like pulsars, the magnetic field near the light cylinder is so strong, such that the synchrotron radiation of secondary pairs will be in the needed X-ray range. However, for majority of the known Gamma-ray pulsars, surface emitted X-rays seem to work as the matches and fuels for a gamma-ray generation fireball in the outer magnetosphere. The needed X-rays could come from thermal emission of a cooling neutron star or could be the heat generated by bombardment of the polar cap by energetic particles generated in the outer magnetosphere. With detection of more Gamma-ray pulsars, it is becoming evident that the neutron star's intrisic geometry (the inclination angle between the rotation and magnetic axes) and observational geometry (the viewing angle with respect to the rotation axis) are crucial to the understanding of varieties of observational properties exhibited by these pulsars. Inclination angles for many known high energy Gamma-ray pulsars appear to be large and the distribution seems to be consistent with random orientation. However, all of them except Geminga are pre-selected from known radio pulsars. The viewing angles are thus limited to be around the respective inclination angles for beamed radio emission, which may induce strong selection effect. The viewing angles as well as the inclination angles of PSR 1509-58 and PSB 0656+14 may be small such that most of the high energy Gamma-rays produced in the outer accelerators may not reach the observer's direction. The observed Gamma-rays below 5 MeV from this pulsar may be synchrotron radiation of secondary electron-positron pairs produced outside the accelerating regions.

  14. Instrument technology for magnetosphere plasma imaging from high Earth orbit. Design of a radio plasma sounder

    NASA Technical Reports Server (NTRS)

    Haines, D. Mark; Reinisch, Bodo W.

    1995-01-01

    The use of radio sounding techniques for the study of the ionospheric plasma dates back to G. Briet and M. A. Tuve in 1926. Ground based swept frequency sounders can monitor the electron number density (N(sub e)) as a function of height (the N(sub e) profile). These early instruments evolved into a global network that produced high-resolution displays of echo time delay vs frequency on 35-mm film. These instruments provided the foundation for the success of the International Geophysical Year (1958). The Alouette and International Satellites for Ionospheric Studies (ISIS) programs pioneered the used of spaceborne, swept frequency sounders to obtain N(sub e) profiles of the topside of the ionosphere, from a position above the electron density maximum. Repeated measurements during the orbit produced an orbital plane contour which routinely provided density measurements to within 10%. The Alouette/ISIS experience also showed that even with a high powered transmitter (compared to the low power sounder possible today) a radio sounder can be compatible with other imaging instruments on the same satellite. Digital technology was used on later spacecraft developed by the Japanese (the EXOS C and D) and the Soviets (Intercosmos 19 and Cosmos 1809). However, a full coherent pulse compression and spectral integrating capability, such as exist today for ground-based sounders (Reinisch et al., 1992), has never been put into space. NASA's 1990 Space Physics Strategy Implementation Study "The NASA Space Physics Program from 1995 to 2010" suggested using radio sounders to study the plasmasphere and the magnetopause and its boundary layers (Green and Fung, 1993). Both the magnetopause and plasmasphere, as well as the cusp and boundary layers, can be observed by a radio sounder in a high-inclination polar orbit with an apogee greater than 6 R(sub e) (Reiff et al., 1994; Calvert et al., 1995). Magnetospheric radio sounding from space will provide remote density measurements of

  15. Solar emission levels at low radio frequencies

    NASA Technical Reports Server (NTRS)

    Erickson, W. C.

    1990-01-01

    Solar radio emission could seriously interfere with observations made by a low frequency (1 to 10 MHz) array in space. International Sun-Earth Explorer (ISEE-3) radio data were used to determine solar emission level. The results indicate that solar emission should seriously disturb less than ten percent of the data, even during the years of solar maximum. Thus it appears that solar emission should not cause a disastrous loss of data. The information needed to design procedures to excise solar interference from the data produced by any low-frequency array is provided.

  16. Radio emissions and the heliospheric termination shock

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Cairns, I. H.; Donohue, D. J.; Matthaeus, W. H.

    1994-01-01

    With the Voyager spacecrafts' discovery of low-frequency radio emissions from the depths of the outer heliosphere has come the realization that the boundaries between our heliosphere and the local interstellar medium have been detected. A model is presented here that can account for the observed radio emissions, based upon a termination shock modified by the dynamical effect of galactic and anomalous cosmic rays. Frequency and time domain properties of both continuum and transient radio events are explained, and new estimates for the distance to the termination shock (approximately 60-70 astronomical units) and the heliopause (less than or approximately 90 AU) are given.

  17. Transient pulsed radio emission from a magnetar

    NASA Astrophysics Data System (ADS)

    Camilo, Fernando; Ransom, Scott M.; Halpern, Jules P.; Reynolds, John; Helfand, David J.; Zimmerman, Neil; Sarkissian, John

    2006-08-01

    Anomalous X-ray pulsars (AXPs) are slowly rotating neutron stars with very bright and highly variable X-ray emission that are believed to be powered by ultra-strong magnetic fields of >1014 G, according to the `magnetar' model. The radio pulsations that have been observed from more than 1,700 neutron stars with weaker magnetic fields have never been detected from any of the dozen known magnetars. The X-ray pulsar XTE J1810 - 197 was revealed (in 2003) as the first AXP with transient emission when its luminosity increased 100-fold from the quiescent level; a coincident radio source of unknown origin was detected one year later. Here we show that XTE J1810 - 197 emits bright, narrow, highly linearly polarized radio pulses, observed at every rotation, thereby establishing that magnetars can be radio pulsars. There is no evidence of radio emission before the 2003 X-ray outburst (unlike ordinary pulsars, which emit radio pulses all the time), and the flux varies from day to day. The flux at all radio frequencies is approximately equal-and at >20GHz XTE J1810 - 197 is currently the brightest neutron star known. These observations link magnetars to ordinary radio pulsars, rule out alternative accretion models for AXPs, and provide a new window into the coronae of magnetars.

  18. Transient pulsed radio emission from a magnetar.

    PubMed

    Camilo, Fernando; Ransom, Scott M; Halpern, Jules P; Reynolds, John; Helfand, David J; Zimmerman, Neil; Sarkissian, John

    2006-08-24

    Anomalous X-ray pulsars (AXPs) are slowly rotating neutron stars with very bright and highly variable X-ray emission that are believed to be powered by ultra-strong magnetic fields of >10(14) G, according to the 'magnetar' model. The radio pulsations that have been observed from more than 1,700 neutron stars with weaker magnetic fields have never been detected from any of the dozen known magnetars. The X-ray pulsar XTE J1810-197 was revealed (in 2003) as the first AXP with transient emission when its luminosity increased 100-fold from the quiescent level; a coincident radio source of unknown origin was detected one year later. Here we show that XTE J1810-197 emits bright, narrow, highly linearly polarized radio pulses, observed at every rotation, thereby establishing that magnetars can be radio pulsars. There is no evidence of radio emission before the 2003 X-ray outburst (unlike ordinary pulsars, which emit radio pulses all the time), and the flux varies from day to day. The flux at all radio frequencies is approximately equal--and at >20 GHz XTE J1810-197 is currently the brightest neutron star known. These observations link magnetars to ordinary radio pulsars, rule out alternative accretion models for AXPs, and provide a new window into the coronae of magnetars.

  19. Optical emission in the radio lobes of radio galaxies. II - New observations of 21 radio lobes

    NASA Astrophysics Data System (ADS)

    Crane, P.; Tyson, J. A.; Saslaw, W. C.

    1983-02-01

    The authors report new identifications of optical emission associated with the radio lobes of double radio galaxies. Optical emission is present in the outer radio structure of the sources 3C 219, 3C 244.1, 3C 247, 3C 252, 3C 268.2, 3C 321, 3C 319, 3C 337, and possibly in 3C 330. The authors have not found emission to the detection limit of V ≡ 24 in the sources 3C 79, 3C 173.1, 3C 223, 3C 325, and 3C 381. Of the 21 separate sources in optical studies of extended lobes of radio galaxies reported to date, 16 radio sources observed so far show significant optical emission within one or both lobes, while in 11 of these the optical object is within 2arcsec of the radio peak.

  20. Nonthermal Radio Emission and the HR Diagram

    NASA Technical Reports Server (NTRS)

    Gibson, D. M.

    1985-01-01

    Perhaps the most reliable indicator of non-radiative heating/momentum in a stellar atmosphere is the presence of nonthermal radio emission. To date, 77 normal stellar objects have been detected and identified as nonthermal sources. These stellar objects are tabulated herein. It is apparent that non-thermal radio emission is not ubiquitous across the HR diagram. This is clearly the case for the single stars; it is not as clear for the binaries unless the radio emission is associated with their late-type components. Choosing to make this association, the single stars and the late-type components are plotted together. The following picture emerges: (1) there are four locations on the HR diagram where non-thermal radio stars are found; (2) the peak incoherent 5 GHz luminosities show a suprisingly small range for stars within each class; (3) the fraction of stellar energy that escapes as radio emission can be estimated by comparing the integrated maximum radio luminosity to the bolometric luminosity; (4) there are no apparent differences in L sub R between binaries with two cool components, binaries with one hot and one cool component, and single stars for classes C and D; and (5) The late-type stars (classes B, C, and D) are located in parts of the HR diagram where there is reason to suspect that the surfaces of the stars are being braked with respect to their interiors.

  1. On the elliptical polarization of Jupiter's decametric radio emission

    NASA Technical Reports Server (NTRS)

    Melrose, D. B.; Dulk, G. A.

    1991-01-01

    The origin of the 100 percent elliptical polarization of Jupiter's decametric radio emission is investigated. The transfer of polarized radiation when coupling of the Stokes parameters is important is studied, and it is found, in agreement with earlier authors, that the density in and near the source region must be so low that the polarization remains fixed along the ray path. The polarization of the cyclotron maser radiation in these circumstances is determined, and it is found that the dispersion relation of the rarefied plasma composed of energetic, anisotropic electrons is like that in the vacuum. It is also found that the growth rate is sufficient to saturate the maser and account for the observed brightness temperature. Possible sources of plasma in and near the source region in Jupiter's inner, polar magnetosphere are considered.

  2. Radio Sounding Techniques for the Galilean Icy Moons and their Jovian Magnetospheric Environment

    NASA Technical Reports Server (NTRS)

    Green, James L.; Markus, Thursten; Fung, Shing F.; Benson, Robert F.; Reinich, Bodo W.; Song, Paul; Gogineni, S. Prasad; Cooper, John F.; Taylor, William W. L.; Garcia, Leonard

    2004-01-01

    Radio sounding of the Earth's topside ionosphere and magnetosphere is a proven technique from geospace missions such as the International Satellites for Ionospheric Studies (ISIS) and the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE). Application of this technique to Jupiter's icy moons and the surrounding Jovian magnetosphere will provide unique remote sensing observations of the plasma and magnetic field environments and the subsurface conductivities, of Europa, Ganymede, and Callisto. Spatial structures of ionospheric plasma above the surfaces of the moons vary in response to magnetic-field perturbations from (1) magnetospheric plasma flows, (2) ionospheric currents from ionization of sputtered surface material, and (3) induced electric currents in salty subsurface oceans and from the plasma flows and ionospheric currents themselves. Radio sounding from 3 kHz to 10 MHz can provide the global electron densities necessary for the extraction of the oceanic current signals and supplements in-situ plasma and magnetic field measurements. While radio sounding requires high transmitter power for subsurface sounding, little power is needed to probe the electron density and magnetic field intensity near the spacecraft. For subsurface sounding, reflections occur at changes in the dielectric index, e.g., at the interfaces between two different phases of water or between water and soil. Variations in sub-surface conductivity of the icy moons can be investigated by radio sounding in the frequency range from 10 MHz to 50 MHz, allowing the determination of the presence of density and solid-liquid phase boundaries associated with oceans and related structures in overlying ice crusts. The detection of subsurface oceans underneath the icy crusts of the Jovian moons is one of the primary objectives of the Jupiter Icy Moons Orbiter (JIMO) mission. Preliminary modeling results show that return signals are clearly distinguishable be&een an ice crust with a thickness of

  3. Dynamics of plasma density perturbations in the upper ionosphere and the magnetosphere under the action of powerful HF radio waves

    NASA Astrophysics Data System (ADS)

    Borisov, N.; Ryabova, N.; Ruzhin, Yu.

    2015-11-01

    Dynamics of the density perturbations of the main plasma components (electrons, oxygen and hydrogen ions) in the upper ionosphere and the magnetosphere under the action of powerful HF radio waves is discussed theoretically and numerically. For finite heating pulse and different effective powers the variations of the density perturbations in time at various heights are investigated. We argue that due to collisionless damping the magnetospheric duct along the whole field line is not formed. Instead positive and negative perturbations of the main plasma components propagating with the attenuation in the magnetosphere with two different speeds are predicted. Utilization of pulsed heating provides significant information concerning plasma perturbations in the upper ionosphere and the magnetosphere.

  4. Search for Radio Emission from HD80606b: a Highly Eccentric Exoplanet

    NASA Astrophysics Data System (ADS)

    Knapp, M.; Winterhalter, D.; Lazio, J.; Majid, W.; Kuiper, T.; Farrell, W. M.; Spitler, L.

    2014-12-01

    Exoplanetary radio emission is a potential goldmine of information about a wider sample of planetary interiors, dynamos, and magnetospheres than our solar system provides. To date, however, radio searches for exoplanetary radio emission have been unsuccessful likely because the observing frequencies are too high. Using the relatively new Low Frequency Array (LOFAR), we present analyses of observations of the highly eccentric Jovian exoplanet HD80606b during five epochs before and after the planet's periastron. All of the gas giants in the solar system, as well as the Earth, exhibit magnetospheric radio emission due to the electron cyclotron maser instability. The power of this emission is modulated by the solar wind intensity. HD80606b is in a highly eccentric (e=0.93) orbit with a 111 day period. As the planet passes from apastron (0.88 AU) to periastron (0.03 AU), it experiences widely varying stellar wind conditions which should lead to variable radio emission with the highest power corresponding to periastron passage. HD80606b has been observed previously with the VLA at 325 MHz and 1425 MHz by Lazio et. al (2010), but LOFAR's lower frequency range (30-75 MHz) and high sensitivity is better suited to Jovian-type radio emissions. The LOFAR observations were made 48 hours and 18 hours pre-periastron, plus 18 and 48 hours post-periastron to capture the predicted strongest emission, and near apastron to provide a baseline level. The data are analyzed for both time-dependent and frequency dependent emission at each of the five observation epochs. This work presents the ongoing analysis of the data. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  5. UNRAVELING THE NATURE OF COHERENT PULSAR RADIO EMISSION

    SciTech Connect

    Mitra, Dipanjan; Gil, Janusz; Melikidze, George I. E-mail: jag@astro.ia.uz.zgora.pl

    2009-05-10

    Forty years have passed since the discovery of pulsars, yet the physical mechanism of their coherent radio emission is a mystery. Recent observational and theoretical studies strongly suggest that the radiation coming out from the pulsar magnetosphere mainly consists of extraordinary waves polarized perpendicular to the planes of pulsar dipolar magnetic field. However, the fundamental question of whether these waves are excited by maser or coherent curvature radiation, remains open. High-quality single-pulse polarimetry is required to distinguish between these two possible mechanisms. Here we showcase such decisive, strong single pulses from 10 pulsars observed with the Giant Meterwave Radio Telescope, showing extremely high linear polarization with the position angle following locally the mean position angle traverse. These pulses, which are relatively free from depolarization, must consist exclusively of a single polarization mode. We associate this mode with the extraordinary wave excited by the coherent curvature radiation. This crucial observational signature enables us to argue, for the first time, in favor of the coherent curvature emission mechanism, excluding the maser mechanism.

  6. The hot electrons in the innermost Saturn's magnetosphere from the HF radio measurements on Cassini

    NASA Astrophysics Data System (ADS)

    Schippers, P.; Moncuquet, M.

    2013-12-01

    We analyze the large-scale structure of the hot electrons in Saturn's innermost magnetosphere obtained from the HF radio measurements acquired with the Cassini/RPWS electric dipole antenna. The temperatures are deduced by two different ways (Moncuquet et al., 2005) from: 1) the quasi-thermal noise (QTN) maximum level identified in the electric power spectra and 2) the QTN in Bernstein waves, which are electrostatic waves propagating perpendicularly to the magnetic field and enhanced at frequencies between the electron cyclotron frequency harmonics. These waves are observed in strong magnetized environment where the thermal noise is dominated by the gyro-motion of the particles. We compare the results with the hot electron measurements acquired by the Cassini electron spectrometer CAPS/ELS.

  7. Physical Analysis of the Jovian Synchrotron Radio Emission

    NASA Astrophysics Data System (ADS)

    Santos-Costa, D.; Bolton, S. J.; Levin, S. M.; Thorne, R. M.

    2006-12-01

    We present results of our recent investigation of the Jovian synchrotron emission based on a particle transport code. The features of the two-dimensional brightness distributions, radio spectra and beaming curves are correlated to the different phenomena driven the dynamics of the electron radiation belts. The adiabatic invariant theory was used for performing this analysis work. The theoretical approach first enabled us to describe the electron radiation belts by modeling the interactions between high-energy trapped particles and plasmas, neutrals, moons, dust and magnetic field. Then radio observations were used to discuss the computed particle distributions in the inner magnetosphere of Jupiter. The simulated brightness mappings were compared with VLA observations made at two wavelengths (20 and 6 cm). The beaming curve comparisons at 13-cm wavelength were performed for different epochs in order to evaluate the dependence of the model to the geometric factor De. The computed radio spectra were discussed with measurements made in the [0.5-20] GHz radio band. The simulation results match the different remote observations very well and thus allowed us to study the phenomenology of the Jovian synchrotron radio emission. The analysis of the Jovian synchrotron emission demonstrates that during the inward particle transport, local losses associated with the Jovian moons set the extension and intensity of the synchrotron radiation along the magnetic equator. Close to the planet, trapped electrons suffer from the interactions with dust and magnetic field, resulting in the transport of particles toward the high latitudes. The quantity of particles transported away from the equator is sufficient to produce the measurable secondary radio emissions. The simulations show that the moon sweeping effect controls both the transport toward the planet and at high latitudes by reducing the abundance of particles constrained to populate the regions out of the equator. Among the

  8. Characterising Radio Emissions in Cosmic Filaments

    NASA Astrophysics Data System (ADS)

    Miller, R. O.

    2014-02-01

    A growing number of radio studies probe galaxy clusters into the low-power regime in which star formation is the dominant source of radio emission. However, at the time of writing no comparably deep observations have focused exclusively on the radio populations of cosmic filaments. This thesis describes the ATCA 2.1 GHz observations and subsequent analysis of two such regions - labelled Zone 1 (between clusters A3158 and A3125/A3128) and Zone 2 (between A3135 and A3145) - in the Horologium-Reticulum Supercluster (HRS). Source count profiles of both populations are discussed and a radio luminosity function for Zone 1 is generated. While the source counts of Zone 2 appear to be consistent with expected values, Zone 1 exhibits an excess of counts across a wide flux range (1 mJy< S_1.4 < 200 mJy). An excess in radio activity at the lower extent of this range (log P_1.4 < 22.5; within the SF-dominated regime) is also suggested by the radio luminosity function for that region, and brief colour analysis suggests that such an excess is indeed predominantly associated with a starforming population. The differences between the two filamentary zones is attributed to cosmic variation. The regions are both small (~ 1 degree square), and are significantly separated in the HRS. Further radio observations of filaments are required and the results combined into a larger sample size in order to arrive at a generalised model filamentary population.

  9. The Influence of The Galilean Satellites on Radio Emissions From The Jovian System

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Gurnett, D. A.; Menietti, J. D.

    2000-01-01

    The Galilean satellites influence radio emissions from the Jovian system in a variety of ways. The best and most familiar example of these is the Io control of decametric radiation discovered in 1964 by Bigg. Voyager observations of broadband kilometric radiation revealed a low-latitude shadow zone cast by the Io torus at frequencies between a few tens of kHz and about 1 MHz. Voyager also discovered narrowband kilometric radio emissions emanating from the outer edge of the torus. In this paper we will discuss expansions in the suite of satellite influences based on new observations by Galileo. These include the discovery of Ganymede's magnetosphere and evidence of radio emissions generated via mode conversion from upper hybrid waves in the frequency range of about 20 - 100 kHz. There is evidence that Ganymede may control some of the hectometric or low-frequency decametric radio emissions based on occultation measurements and statistical studies of radio emission occurrence as a function of Ganymede phase. Direction-finding measurements in the vicinity of Io suggest that a portion of the hectometric emissions may be generated near the lo L-shell. A rotationally modulated attenuation band in the hectometric emission appears to be the result of scattering at or near the Io L-shell where the waves propagate nearly parallel to the magnetic field. There is even a tantalizing hint of a Europa connection to the source of narrowband kilometric radiation.

  10. The Lightning and Radio Emission Detector (LRD) instrument. [carried by Galileo Probe into Jupiter's atmosphere

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.; Rinnert, K.; Dehmel, G.; Gliem, F. O.; Krider, E. P.; Uman, M. A.; Umlauft, G.; Bach, J.

    1992-01-01

    The Lightning and Radio Emission Detector (LRD) instrument will be carried by the Galileo Probe into Jupiter's atmosphere. The LRD will verify the existence of lightning in the atmosphere and will determine the details of many of its basic characteristics. The instrument, operated in its magnetospheric mode at distances of about 5, 4, 3, and 2 planetary radii from Jupiter's center, will also measure the RF noise spectrum in Jupiter's magnetosphere. The LRD instrument is composed of a ferrite-core radio frequency antenna and two photodiodes mounted behind individual fisheye lenses. The output of the RF antenna is analyzed both separately and in coincidence with the optical signals from the photodiodes. The RF antenna provides data both in the frequency domain (with three narrow-band channels, primarily for deducing the physical properties of distant lightning) and in the time domain with a priority scheme (primarily for determining from individual RF waveforms the physical properties of closeby-lightning).

  11. Simultaneous observations of periodic non-Io decametric radio emission by ground radio telescope URAN-2 and STEREO/WAVES

    NASA Astrophysics Data System (ADS)

    Panchenko, M.; Brazhenko, A. I.; Rucker, H. O.; Frantzusenko, A.; Shaposhnikov, V. E.; Konovalenko, A. A.

    2013-09-01

    Periodic bursts of the non-Io component of Jovian decametric radio emission (non-Io DAM) is observed as (1) series of arc-like radio bursts with negative frequency drift which reoccur with 1.5% longer period than the Jovian magnetosphere rotation rate, (2) series of bursts with positive frequency drift which reoccur with Jupiter's rotation period and (3) periodic non-arc like radio features [1, 2]. These bursts are typically detected during several Jupiter rotations in decametric frequency range from 4 MHz to 12 - 16 MHz between 300° and 60° of CML. We present simultaneous observations of the periodic non-Io controlled DAM performed by the WAVES radio experiment onboard the two STEREO spacecraft and the groundbased radio telescope URAN-2 (Poltava, Ukraine) operated in the decametric frequency range. URAN-2 with an effective area of about 30000 m2 consists of 512 broadband crossed dipoles and equipped with the high performance digital radio spectrometer with polarization measurement capability. During the observation campaign Sep., 2012 - Apr., 2013 URAN-2 recorded a large amount of Jovian DAM events with the high time-frequency resolution (4 kHz - 100 ms) in a frequency range 8-32 MHz. In the same time the two spatially separated STEREO spacecraft was able to observe DAM in the frequency range up to 16 MHz. The first analysis of the acquired stereoscopic observations is presented. In particular, we show one episode when the periodic non-arc DAM was recorded together with long lasting Jovian narrow band (NB) emissions. These NB emission was observed at the high frequency cutoff of DAM and can be interpreted as propagation of the decametric radiation in the Jovian ionosphere [3]. We discuss the possible relations between the observed NB events and the periodic non-Io controlled Jovian decametric radio emission.

  12. PSR J0737-3039B: A PROBE OF RADIO PULSAR EMISSION HEIGHTS

    SciTech Connect

    Perera, B. B. P.; McLaughlin, M. A.; Lomiashvili, D.; Gourgouliatos, K. N.; Lyutikov, M.

    2012-05-10

    In the double pulsar system PSR J0737-3039A/B, the strong wind produced by pulsar A distorts the magnetosphere of pulsar B. The influence of these distortions on the orbital-dependent emission properties of pulsar B can be used to determine the location of the coherent radio emission generation region in the pulsar magnetosphere. Using a model of the wind-distorted magnetosphere of pulsar B and the well-defined geometrical parameters of the system, we determine the minimum emission height to be {approx}20R{sub NS} in the two bright orbital longitude regions. We can determine the maximum emission height by accounting for the amount of deflection of the polar field line with respect to the magnetic axis using the analytical magnetic reconnection model of Dungey and the semi-empirical numerical model of Tsyganenko. Both of these models estimate the maximum emission height to be {approx}2500R{sub NS}. The minimum and maximum emission heights we calculate are consistent with those estimated for normal isolated pulsars.

  13. Radio emissions from double RHESSI TGFs

    NASA Astrophysics Data System (ADS)

    Mezentsev, Andrew; Østgaard, Nikolai; Gjesteland, Thomas; Albrechtsen, Kjetil; Lehtinen, Nikolai; Marisaldi, Martino; Smith, David; Cummer, Steven

    2016-07-01

    A detailed analysis of Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) terrestrial gamma ray flashes (TGFs) is performed in association with World Wide Lightning Location Network (WWLLN) sources and very low frequency (VLF) sferics recorded at Duke University. RHESSI clock offset is evaluated and found to experience changes on the 5 August 2005 and 21 October 2013, based on the analysis of TGF-WWLLN matches. The clock offsets were found for all three periods of observations with standard deviations less than 100 μs. This result opens the possibility for the precise comparative analyses of RHESSI TGFs with the other types of data (WWLLN, radio measurements, etc.) In case of multiple-peak TGFs, WWLLN detections are observed to be simultaneous with the last TGF peak for all 16 cases of multipeak RHESSI TGFs simultaneous with WWLLN sources. VLF magnetic field sferics were recorded for two of these 16 events at Duke University. These radio measurements also attribute VLF sferics to the second peak of the double TGFs, exhibiting no detectable radio emission during the first TGF peak. Possible scenarios explaining these observations are proposed. Double (multipeak) TGFs could help to distinguish between the VLF radio emission radiated by the recoil currents in the +IC leader channel and the VLF emission from the TGF producing electrons.

  14. Steady-State Models of X-ray Emission from Massive-Star Magnetospheres

    NASA Astrophysics Data System (ADS)

    Bard, Christopher; Townsend, Richard D.

    2016-01-01

    In the subset of OB stars with large-scale, organized magnetic fields, the stellar wind is forced to flow along magnetic field lines and is trapped within a magnetosphere corotating with its host star. As the wind turns on itself, shocks heat the plasma to millions of degrees and produce X-ray emission. Such magnetospheres are typically classified with the "wind magnetic confinement parameter", a simplified ratio between the magnetic energy density and the wind kinetic energy density. This parameter is often used to estimate magnetosphere properties, such as size, mass-loss rate, and spin-down time. Unfortunately, the strong magnetic fields in magnetospheres (polar strength: 100 G - 10 kG) and resulting Alfven velocities make magnetohydrodynamics simulations computationally difficult due to very small timesteps. To get around this issue, we approximate a massive-star magnetosphere as a series of one-dimensional flows along magnetic dipole field lines and develop a steady-state model from the resulting hydrodynamic equations. With this model, we derive scaling relations for the stellar mass-loss rate as a function of surface colatitude and find agreement with previous scaling results derived from simulations. These relations are further extended to include the effects of rigid-body rotation within the magnetosphere. Additionally, we develop an X-ray emission model from this steady-state analysis and compare it against both the "XADM" model for X-ray emission from massive star magnetospheres and observations of massive magnetic stars. Finally, we discuss improvements to the traditional wind magnetic confinement parameter to take into account the effect of a magnetic field on the wind kinetic energy density.

  15. DIFFUSE RADIO EMISSION IN ABELL 754

    SciTech Connect

    Kale, Ruta; Dwarakanath, K. S. E-mail: dwaraka@rri.res.in

    2009-07-10

    We present a low-frequency study of the diffuse radio emission in the galaxy cluster A754. We present a new 150 MHz image of the galaxy cluster A754 made with the Giant Metrewave Radio Telescope and discuss the detection of four diffuse features. We compare the 150 MHz image with the images at 74, 330, and 1363 MHz; one new diffuse feature is detected. The flux density upper limits at 330 and 1363 MHz imply a synchrotron spectral index, {alpha}>2 (S {proportional_to} {nu}{sup -{alpha}}), for the new feature. The 'west relic' detected at 74 MHz is not detected at 150 MHz and is thus consistent with its nondetection at 1363 MHz and 330 MHz. Integrated spectra of all the diffuse features are presented. The fourth diffuse feature is located along the proposed merger axis in A754 and 0.7 Mpc away from the peak of X-ray emission; we refer to it as a relic. We have made use of the framework of the adiabatic compression model to obtain spectra. We show that the spectrum of the fourth diffuse feature is consistent with that of a cocoon of a radio galaxy lurking for about 9 x 10{sup 7} yr; no shock compression is required. The other three diffuse emission have spectra steeper than 1.5 and could be cocoons lurking for longer time. We discuss other possibilities such as shocks and turbulent reacceleration being responsible for the diffuse emission in A754.

  16. Models of Neptune's smooth recurrent radio emission

    NASA Technical Reports Server (NTRS)

    Sawyer, Constance

    1993-01-01

    The quantitative response of the Planetary Radio Astronomy (PRA) instrument to a wave with polarization ellipse of arbitrary shape and orientation, arriving at the antennas from any direction, can be determined. This capability is used to model the time variation of intensity and circular polarization over a range of radio frequencies for proposed radio-source locations and emission characteristics at Neptune. At frequencies below 400 kHz the observed variation of intensity, polarization, and phase are closely simulated in an offset tilted dipole magnetic field by conjugate sources at midlatitude with filled emission cones. The phase of emission at higher frequencies is reproduced by sources at lower latitude. Modeled wide-cone emission does not reach the spacecraft at the observed phase nor have the polarization sense observed before closest approach. Source-surface maps of apparent polarization for the period before closest approach when instrumental response is especially sensitive to source location is presented. The method is capable of extension to more realistic models of the magnetic field.

  17. Radio Emissions from the Outer Heliosphere

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Kurth, W. S.

    1996-01-01

    For nearly fifteen years the Voyager 1 and 2 spacecraft have been detecting an unusual radio emission in the outer heliosphere in the frequency range from about 2 to 3 kHz. Two major events have been observed, the first in 1983-84 and the second in 1992-93. In both cases the onset of the radio emission occurred about 400 days after a period of intense solar activity, the first in mid-July 1982, and the second in May-June 1991. These two periods of solar activity produced the two deepest cosmic ray Forbush decreases ever observed. Forbush decreases are indicative of a system of strong shocks and associated disturbances propagating outward through the heliosphere. The radio emission is believed to have been produced when this system of shocks and disturbances interacted with one of the outer boundaries of the heliosphere, most likely in the vicinity of the the heliopause. The emission is believed to be generated by the shock-driven Langmuir-wave mode conversion mechanism, which produces radiation at the plasma frequency (f(sub p)) and at twice the plasma frequency (2f(sub p)). From the 400-day travel time and the known speed of the shocks, the distance to the interaction region can be computed, and is estimated to be in the range from about 110 to 160 AU.

  18. Search for 150 MHz radio emission from extrasolar planets in the TIFR GMRT Sky Survey

    NASA Astrophysics Data System (ADS)

    Sirothia, S. K.; Lecavelier des Etangs, A.; Gopal-Krishna; Kantharia, N. G.; Ishwar-Chandra, C. H.

    2014-02-01

    The ongoing radio continuum TIFR GMRT Sky Survey (TGSS) using the Giant Metrewave Radio Telescope (GMRT) at 150 MHz offers an unprecedented opportunity to undertake a fairly deep search for low-frequency radio emission from nearby extrasolar planets. Currently TGSS images are available for a little over a steradian, encompassing 175 confirmed exoplanetary systems. We have searched for their radio counterparts in the TGSS (150 MHz), supplemented with a search in the NRAO VLA Sky Survey (NVSS) and the VLA FIRST survey at 1.4 GHz. For 171 planetary systems, we find no evidence of radio emission in the TGSS maps, placing a 3σ upper limit between 8.7 mJy and 136 mJy (median ~24.8 mJy) at 150 MHz. These non-detections include the 55 Cnc system for which we place a 3σ upper limit of 28 mJy at 150 MHz. Nonetheless, for four of the extrasolar planetary systems, we find TGSS radio sources coinciding with or located very close to their coordinates. One of these is 61 Vir: for this system a large radio flux density was predicted in the scenario involving magnetosphere-ionosphere coupling and rotation-induced radio emission. We also found 150 MHz emissions toward HD 86226 and HD 164509, where strong radio emission can be produced by the presence of a massive satellite orbiting a rapidly rotating planet. We also detected 150 MHz emission within a synthesized beam from 1RXS1609 b, a pre-main-sequence star harboring a ~14 Jupiter mass planet (or a brown dwarf). With a bright X-ray-UV star and a high mass, the planet 1RXS1609 b presents the best characteristics for rotation-induced emissions with high radio power. Deeper high-resolution observations toward these planetary systems are needed to discriminate between the possibilities of background radio-source and radio-loud planets. At 1.4 GHz, radio emission toward the planet-harboring pulsar PSR B1620-26 is detected in the NVSS. Emissions at 1.4 GHz are also detected toward the very-hot-Jupiter WASP-77A b (in the FIRST survey

  19. Amalthea's modulation of Jovian decametric radio emission

    NASA Astrophysics Data System (ADS)

    Arkhypov, O. V.; Rucker, H. O.

    2007-08-01

    Most modulation lanes in dynamic spectra of Jovian decametric emission (DAM) are formed by radiation scattering on field-aligned inhomogeneities in the Io plasma torus. The positions and frequency drift of hundreds of lanes have been measured on the DAM spectra from UFRO archives. A special 3D algorithm is used for localization of field-aligned magnetospheric inhomogeneities by the frequency drift of modulation lanes. It is found that some lanes are formed near the magnetic shell of the satellite Amalthea mainly at longitudes of 123 to 140 deg. (north; III 1965 system) and 284 to 305 deg. (south). These disturbances coincide with regions of plasma compression by the rotating magnetic field of Jupiter. Such modulations are found at other longitudes too (189 to 236 deg.) with higher sensitivity. Amalthea's plasma torus could be another argument for the ice nature of the satellite, which has a density less than that of water.

  20. Amalthea's modulation of Jovian decametric radio emission

    NASA Astrophysics Data System (ADS)

    Arkhypov, O. V.; Rucker, H. O.

    2007-05-01

    Most modulation lanes in dynamic spectra of Jovian decametric emission (DAM) are formed by radiation scattering on field-aligned inhomogeneities in the Io plasma torus. The positions and frequency drift of hundreds of lanes have been measured on the DAM spectra from UFRO archives. A special 3D algorithm is used for localization of field-aligned magnetospheric inhomogeneities by the frequency drift of modulation lanes. It is found that some lanes are formed near the magnetic shell of the satellite Amalthea mainly at longitudes of 123°≤λ_III≤140° (north) and 284°≤λ_III≤305° (south). These disturbances coincide with regions of plasma compression by the rotating magnetic field of Jupiter. Such modulations are found at other longitudes too (189° to 236°) with higher sensitivity. Amalthea's plasma torus could be another argument for the ice nature of the satellite, which has a density less than that of water.

  1. Analysis and Modeling of Jovian Radio Emissions Observed by Galileo

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.

    2003-01-01

    Our studies of Jovian radio emission have resulted in the publication of five papers in refereed journals, with three additional papers in progress. The topics of these papers include the study of narrow-band kilometric radio emission; the apparent control of radio emission by Callisto; quasi-periodic radio emission; hectometric attenuation lanes and their relationship to Io volcanic activity; and modeling of HOM attenuation lanes using ray tracing. A further study of the control of radio emission by Jovian satellites is currently in progress. Abstracts of each of these papers are contained in the Appendix. A list of the publication titles are also included.

  2. ARCADE 2 Observations of Galactic Radio Emission

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Fixsen, D. J.; Levin, S. M.; Limon, M.; Lubin, P. M.; Mirel, P.; Seiffert, M.; Singal, J.; Villela, T.; Wollack, E.; Wuensche, C. A.

    2010-01-01

    We use absolutely calibrated data from the Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE 2) flight in July 2006 to model Galactic emission at frequencies 3, 8, and 10 GHz. The spatial structure in the data is consistent with a superposition of free-free and synchrotron emission. Emission with spatial morphology traced by the Haslam 408 MHz survey has spectral index beta_synch = -2.5 +/- 0.1, with free-free emission contributing 0.10 +/- 0.01 of the total Galactic plane emission in the lowest ARCADE 2 band at 3.15 GHz. We estimate the total Galactic emission toward the polar caps using either a simple plane-parallel model with csc|b| dependence or a model of high-latitude radio emission traced by the COBE/FIRAS map of CII emission. Both methods are consistent with a single power-law over the frequency range 22 MHz to 10 GHz, with total Galactic emission towards the north polar cap T_Gal = 0.498 +/- 0.028 K and spectral index beta = -2.55 +/- 0.03 at reference frequency 0.31 GHz. The well calibrated ARCADE 2 maps provide a new test for spinning dust emission, based on the integrated intensity of emission from the Galactic plane instead of cross-correlations with the thermal dust spatial morphology. The Galactic plane intensity measured by ARCADE 2 is fainter than predicted by models without spinning dust, and is consistent with spinning dust contributing 0.4 +/- 0.1 of the Galactic plane emission at 23 GHz.

  3. Polarization model applied to Uranian radio emission

    NASA Astrophysics Data System (ADS)

    Sawyer, C. B.; Neal, K. L.; Warwick, J. W.

    1991-04-01

    The total power and the degree of circular polarization as measured by the Planetary Radio Astronomy experiments on the Voyager spacecraft are modeled. For a source near the electron cyclotron frequency, the degree of circular polarization is determined by the angle between the wave vector and the field. It is shown that the observed strong circular polarization of Uranian smooth low-frequency (SLF) can be modeled as emission that is beamed along the direction of the magnetic field in a filled cone. The main observational constraints of SLF emission from Uranus are met by conjugate sources at about 21 deg from the magnetic equator.

  4. Radio emission from RS CVn binary systems

    SciTech Connect

    Doiron, D.J.

    1984-01-01

    The RS CVn binary stellar systems UX Ari, HR 1099, AR Lac, HR 5110, II Peg, lambda And, and SZ Psc were investigated by use of radio interferometry during the period from July 1982 through August 1983. Interferometry took two forms: Very Large Array (VLA) observations and Very Long Baseline Interferometry (VLBI). The VLA observations determined the characteristic polarization and flux behavior of the centimeter wavelength radio emission. The observed spectral index was near zero during quiescent periods, rising to between 0.5 and 1.0 during active periods. No net linear polarization is observed to a limit of 1.7%. This is expected since the Faraday depth of thermal electrons deduced from x-ray observations is approx. 10/sup 5/. Circular polarization is observed to be less than 20% at all frequencies often with a helicity reversal between 1.6 GHz and 5 GHz. The VLBI observations have shown that the brightness temperatures are often T/sub B/ approx.> 10/sup 10/ /sup 0/K and size sources smaller than or comparable to the overall size of the binary system. These data are consistent with incoherent gyrosynchrotron emission from mildly relativistic electrons which are optically thick to their own radiation at 1.6 GHz and optically thin at 5 GHz and above. The spectral behavior suggests that the radio emission is due to a power-law distribution of electrons.

  5. Coronal Mass Ejections and Solar Radio Emissions

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2010-01-01

    Coronal mass ejections (CMEs) have important connections to various types of radio emissions from the Sun. The persistent noise storm radiation (type I storm at metric wavelengths, type III storms at longer wavelengths) can be clearly interrupted by the occurrence of a CME in the active region that produces the storm. Sometimes the noise storm completely disappears and other times, it reappears in the active region. Long-lasting type III bursts are associated with CME eruption, thought to be due to the reconnection process taking place beneath the erupting CME. Type II bursts are indicative of electron acceleration in the CME-driven shocks and hence considered to be the direct response of the CME propagation in the corona and interplanetary medium. Finally type IV bursts indicate large-scale post-eruption arcades containing trapped electrons that produce radio emission. This paper summarizes some key results that connect CMEs to various types of radio emission and what we can learn about particle acceleration in the corona) and interplanetary medium. Particular emphasis will be placed on type If bursts because of their connection to interplanetary shocks detected in situ.

  6. Electrodynamics of Pulsar Magnetospheres

    NASA Astrophysics Data System (ADS)

    Cerutti, Benoît; Beloborodov, Andrei M.

    2016-12-01

    We review electrodynamics of rotating magnetized neutron stars, from the early vacuum model to recent numerical experiments with plasma-filled magnetospheres. Significant progress became possible due to the development of global particle-in-cell simulations which capture particle acceleration, emission of high-energy photons, and electron-positron pair creation. The numerical experiments show from first principles how and where electric gaps form, and promise to explain the observed pulsar activity from radio waves to gamma-rays.

  7. Jupiter's magnetosphere and radiation belts

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Coroniti, F. V.

    1979-01-01

    Radioastronomy and Pioneer data reveal the Jovian magnetosphere as a rotating magnetized source of relativistic particles and radio emission, comparable to astrophysical cosmic ray and radio sources, such as pulsars. According to Pioneer data, the magnetic field in the outer magnetosphere is radially extended into a highly time variable disk-shaped configuration which differs fundamentally from the earth's magnetosphere. The outer disk region, and the energetic particles confined in it, are modulated by Jupiter's 10 hr rotation period. The entire outer magnetosphere appears to change drastically on time scales of a few days to a week. In addition to its known modulation of the Jovian decametric radio bursts, Io was found to absorb some radiation belt particles and to accelerate others, and most importantly, to be a source of neutral atoms, and by inference, a heavy ion plasma which may significantly affect the hydrodynamic flow in the magnetosphere. Another important Pioneer finding is that the Jovian outer magnetosphere generates, or permits to escape, fluxes of relativistic electrons of such intensities that Jupiter may be regarded as the dominant source of 1 to 30 MeV cosmic ray electrons in the heliosphere.

  8. Updated modeling of Io and non-Io Radio Auroral Emissions of Jupiter

    NASA Astrophysics Data System (ADS)

    Louis, C.; Lamy, L.; Zarka, P.; Cecconi, B.; Hess, S.

    2015-10-01

    The radio auroral emissions produced by the Jupiter's magnetosphere between a few kHz and 40MHz, the most intense of our Solar System, are known since half a century, but they still drive many questions, and their deepened study is one of the main aim of the JUNO missions (arrival in July 2016). Jovian auroral radio emissions are thought to be produced through the Cyclotron Maser Instability (CMI), from non-maxwellian weakly relativistic electrons gyrating along high-latitude magnetic fields lines (Zarka, 1998). These emissions divide in different spectral components, driven or not by the moon Io. The origin and the relationship between kilometric, hectometric and decametric non-Io emissions in particular remains poorly understood. To investigate these emissions, we simulated numerical dynamic spectra with the most recent version of the ExPRES code - Exoplanetary and Planetary Radio Emission Simulator, available at http://maser.obspm.fr - already used to successfully model Io decametric and Saturn's kilometric arcshaped emissions (Hess et al., 2008, Lamy et al., 2008) and predict exoplanetary radio emissions (Hess et al., 2011). Such simulations bring direct constraints on the locus of active magnetic field lines and on the nature of CMI-unstable electrons (Hess et al., submitted). We validated the new theoretical calculation of the beaming angle used by ExPRES, which now includes refraction at the source. We then built updated simulations of Io and non-Io emissions which were compared to the radio observations acquired by the Cassini spacecraft (Jupiter flyby in 2000) and the Nançay decameter array (routines observations of Jupiter).

  9. Physics of the Jovian Magnetosphere

    NASA Astrophysics Data System (ADS)

    Dessler, A. J.

    2002-08-01

    List of tables; Foreword James A. Van Allen; Preface; 1. Jupiter's magnetic field and magnetosphere Mario H. Acuña, Kenneth W. Behannon and J. E. P. Connerney; 2. Ionosphere Darrell F. Strobel and Sushil K. Atreya; 3. The low-energy plasma in the Jovian magnetosphere J. W. Belcher; 4. Low-energy particle population S. M. Krimigis and E. C. Roelof; 5. High-energy particles A. W. Schardt and C. K. Goertz; 6. Spectrophotometric studies of the Io torus Robert A. Brown, Carl B. Pilcher and Darrell F. Strobel; 7. Phenomenology of magnetospheric radio emissions T. D. Carr, M. D. Desch and J. K. Alexander; 8. Plasma waves in the Jovian magnetosphere D. A. Gurnett and F. L. Scarf; 9. Theories of radio emissions and plasma waves Melvyn L. Goldstein and C. K. Goertz; 10. Magnetospheric models T. W. Hill, A. J. Dessler and C. K. Goertz; 11. Plasma distribution and flow Vytenis M. Vasyliunas; 12. Microscopic plasma processes in the Jovian magnetosphere Richard Mansergh Thorne; Appendixes; References; Index.

  10. Electrostatic emissions between electron gyroharmonics in the outer magnetosphere

    NASA Technical Reports Server (NTRS)

    Hubbard, R. F.; Birmingham, T. J.

    1977-01-01

    A scheme was constructed and a theoretical model was developed to classify electrostatic emissions. All of the emissions appear to be generated by the same basic mechanism: an unstable electron plasma distribution consisting of cold electrons (less than 100 eV) and hot loss cone electrons (about 1 keV). Each emission class is associated with a particular range of model parameters; the wide band electric field data can thus be used to infer the density and temperature of the cold plasma component. The model predicts that gyroharmonic emissions near the plasma frequency require large cold plasma densities.

  11. Correlated variations of UV and radio emissions during an outstanding Jovian auroral event

    NASA Technical Reports Server (NTRS)

    Prange, R.; Zarka, P.; Ballester, G. E.; Livengood, T. A.; Denis, L.; Carr, T.; Reyes, F.; Bame, S. J.; Moos, H. W.

    1993-01-01

    a significant disturbance in the solar wind, involving the generation of an interplanetary shock and the presence of a CME have interacted with the Jovian magnetosphere at about the time of the auroral event. Both arguments suggest that we may have observed for the first time a magnetic storm-type interaction in an outer planet magnetosphere, affecting simultaneously several auroral processes. Conversely, the observed relationship between the level of UV auroral activity and the detection of decameter emission (DAM), if it were a typical feature, might argue in favour of a more direct and permanent association between the auroral processes leading to UV and radio aurorae, possibly related to 'discrete-arc'-like activity and electron precipitation.

  12. Source characteristics of Jovian hectometric radio emissions

    NASA Technical Reports Server (NTRS)

    Reiner, M. J.; Fainberg, J.; Stone, R. G.

    1993-01-01

    Direct confirmation that low-frequency Jovian hectometric (HOM) radio emissions centered near 0 deg central meridian longitude consist of distinct, oppositely polarized northern and southern beams has been achieved using data from the Unified Radio and Plasma Wave (URAP) experiment on the Ulysses spacecraft during the Ulysses-Jupiter encounter in early February 1992. Distinct northern and southern beams were observed in the frequency range from approximately 300 kHz to 1 MHz for at least eight Jovian rotations during the Ulysses inbound pass at distances from 100 to 40 R(sub j). The radiation from the two magnetic hemispheres was measured from different Jovigraphic longitudes and magnetic (or centrifugal) latitudes. Observed temporal variations in the radio intensities, with time scales on the order of 30 min, may result either from longitudinal variations of the HOM sources or from longitudinal density variations in the Io plasma torus. Using the URAP direction-finding capabilities and assuming a tilted dipole planetary magnetic field model, the three-dimensional HOM source locations, the L shell through these source locations, and the beam opening angles were independently deduced. The HOM sources were found to originate at approximately 3 R(sub j) and on low L shells (L approximately 4 to 6), with beam opening angles ranging from 10 to 50 deg.

  13. Properties and geometry of radio pulsar emission

    NASA Astrophysics Data System (ADS)

    Smits, Johannes Martinus

    2006-10-01

    This thesis consists of a number of studies on the radio emission of pulsars. The central topics are polarisation and multi frequency observations, which both lead to important information on the geometry of the emission. The first chapter introduces different aspects of pulsars that are related to the research that has been done in this thesis. In particular it deals with different aspects concerning the geometry of pulsar emission. Chapter 2 is about the nature of the radio emission. It shows the result of an attempt to confirm and expand on work that has been published by Jenet et al. (2001) on the detection of coherence in pulsar radiation. From an analysis of high time resolution observations, we found that the detection of coherence is consistent with the effects of interstellar scintillation. In chapter 3 a study is carried out on the orthogonal polarisation mode behaviour as a function of frequency of 18 pulsars. By making the assumption that the radiation consists of two 100% polarised completely orthogonal superposed modes, both modes could be separated In chapter 4 PSR B0031-07 is studied at two frequencies using two observations that were carried out simultaneously. It is shown that from the three known drift modes, only one drift mode is seen at high frequency. Based on this result we suggest a geometrical model in which different modes are emitted in concentric rings around the magnetic axis, with each mode having a different radius. The fifth chapter follows the suggestions made in chapter 4 to create a geometrical model of PSR B0031-07 for two of the drift modes. The results can be used to limit the possible geometries of PSR B0031-07. The final chapter consists of documentation of software that was written in C and utilised for this thesis for handling and analysing data files in the EPN format

  14. Study of sub-auroral radio emissions observed by ICE experiment onboard DEMETER satellite

    NASA Astrophysics Data System (ADS)

    Boudjada, M. Y.; Galopeau, P. H. M.; Mogilevski, M. M.; Sawas, S.; Blecki, J.; Berthelier, J. J.; Voller, W.

    2012-04-01

    We report on the terrestrial kilometric and hectometric radio emissions recorded by the DEMETER/ICE (Instrument Champ Electrique) experiment. This instrument measures the electric field components of electromagnetic and electrostatic waves in the frequency range from DC to 3.25 MHz. Despite the limited satellite invariant latitude (data acquisition below about 65°), specific events have been observed, close to the sub-auroral region, in the frequency range from 100 kHz to about 1 MHz. This range covers the well-known auroral kilometric radiation (AKR), the terrestrial kilometric continuum, and the sub-auroral terrestrial emission at higher frequency up to 3 MHz. The high spectral capability of the experiment leads us to distinguish between the bursty and the continuum emissions. Selected events have been found to principally occur in the late evening and early morning sectors of the magnetosphere (22 MLT - 02 MLT) but others have been observed on the dayside. Our first results are compared to previous radio observations performed on board INTERBALL-1 (Kuril'chik et al, Cosmic Research, 43, 2005) and GEOTAIL (Hashimoto et al., JGR, 104, 1999) satellites. We also discuss the common and different features of the Earth and Jovian radio emissions. We emphasis on the observational parameters: the occurrence probability, the emission beam and the spectral emission types. We show that the physical interpretation of the auroral phenomena needs a good knowledge of the geometric configuration of the source and observer and the reception system (antenna beam and receivers).

  15. Frequency band broadening of magnetospheric VLF emissions near the equator

    NASA Technical Reports Server (NTRS)

    Maeda, K.; Lin, C. S.

    1981-01-01

    The broadening of the whistler mode VLF emission band has frequently been observed by the equatorially orbiting S3-A (Explorer 45) satellite outside the midnight sector of the plasmasphere, during periods of geomagnetic disturbance. Prior to the broadening, the band of this emission is narrow with a sharp gap at the half electron gyrofrequency. The gradual broadening of the emission band on the low-frequency side is associated with the simultaneously observed spreading of the anisotropy of the ring current electrons to higher and wider energy ranges. Using the modeled distribution function, the linear growth rates of the cyclotron instability are calculated numerically. The results suggest that broadening of the VLF emission band near the plasmasphere can be caused by spreading of the ring current electron anisotropy toward higher energies.

  16. A multidisciplinary study of planetary, solar and astrophysical radio emissions

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Calvert, W.; Fielder, R.; Goertz, C.; Grabbe, C.; Kurth, W.; Mutel, R.; Sheerin, J.; Mellott, M.; Spangler, S.

    1986-01-01

    Combination of the related fields of planetary, solar, and astrophysical radio emissions was attempted in order to more fully understand the radio emission processes. Topics addressed include: remote sensing of astrophysical plasma turbulence; Alfven waves; astrophysical shock waves; surface waves; very long base interferometry results; very large array observations; solar magnetic flux; and magnetohydrodynamic waves as a tool for solar corona diagnostics.

  17. Extended optical-emission-line gas in powerful radio galaxies

    SciTech Connect

    Baum, S.A.

    1987-01-01

    Results of a search for extended optical-emission-line gas in 43 powerful radio galaxies are presented. Spatially extended optical-emission-line gas is common in these galaxies. The extent and luminosity of the emission-line gas in powerful radio galaxies is an order of magnitude greater than in normal elliptical galaxies of similar optical magnitudes. The total emission-line luminosity is roughly half of the radio luminosity, and the radio luminosity correlates with the narrow-line luminosity over four decades. The near-nuclear emission-line gas is often distributed in a smooth, roughly elliptical feature, centered on and symmetric about the nucleus. The distribution of axial ratios found in these small emission-line nebulae (ELN) is inconsistent with them being disks seen from different orientations. The minor axes of the small regions of emission-line gas show only a weak tendency to align with the position angle of the extended radio source and the major axis of the stellar isophotes. The very extended emission line gas (d{sub neb} > 10 kpc) is filamentary and is found preferentially within the regions occupied by the radio source. The small (d{sub radio} < 100 kpc) radio sources with very extended ELN show evidence of interacting with their gas-rich environments; the large (d{sub radio} > 100 kpc) radio sources with very extended ELN show no signs that they have been disturbed by their surrounding media. Lower limits to the density of the emission line gas at distances of 10 kpc from the galaxy nucleus are {approximately}0.1 cm{sup {minus}3} and upper limits to the total mass in emission line gas are {approximately}10{sup 9} M {circle dot}. The optical nuclear continuum is strongly correlated with the narrow emission line luminosity and is sufficient to photoionize the ELN.

  18. Phenomenology of Neptune's radio emissions observed by the Voyager planetary radio astronomy experiment

    NASA Technical Reports Server (NTRS)

    Pedersen, B. M.; Lecacheux, A.; Zarka, P.; Aubier, M. G.; Kaiser, M. L.; Desch, M. D.

    1992-01-01

    The Neptune flyby in 1989 added a new planet to the known number of magnetized planets generating nonthermal radio emissions. We review the Neptunian radio emission morphology as observed by the planetary radio astronomy experiment on board Voyager 2 during a few weeks before and after closest approach. We present the characteristics of the two observed recurrent main components of the Neptunian kilometric radiation, i.e., the 'smooth' and the 'bursty' emissions, and we describe the many specific features of the radio spectrum during closest approach.

  19. TWO RADIO-EMISSION MECHANISMS IN PSR J0901–4624

    SciTech Connect

    Raithel, C. A.; Shannon, R. M.; Johnston, S.; Kerr, M.

    2015-05-01

    We have detected sporadic, bright, short-duration radio pulses from PSR J0901–4624. These pulses are emitted simultaneously with persistent, periodic emission that dominates the flux density when averaging over many periods of the pulsar. The bright pulses have energies that are consistent with a power-law distribution. The integrated profile of PSR J0901–4624 is highly polarized and shows four distinct components. The bright pulses appear to originate near the magnetic pole of the pulsar and have polarization properties unlike those of the underlying emission at the same pulse phase. We conclude that the bright pulses represent a secondary giant-micropulse emission process, possibly from a different region in the pulsar magnetosphere.

  20. Solar system radio emissions studies with the largest low-frequency radio telescopes

    NASA Astrophysics Data System (ADS)

    Zakharenko, V.; Konovalenko, A.; Litvinenko, G.; Kolyadin, V.; Zarka, P.; Mylostna, K.; Vasylieva, I.; Griessmeier, J.-M.; Sidorchuk, M.; Rucker, H.; Fischer, G.; Cecconi, B.; Coffre, A.; Denis, L.; Shevchenko, V.; Nikolaenko, V.

    2014-04-01

    We describe the trends and tasks in the field of lowfrequency studies of radio emission from the Solar system's objects. The world's largest decameter radio telescopes UTR-2 and URAN have a unique combination of sensitivity and time/frequency resolution parameters, providing the capability of the most detailed studies of various types of solar and planetary emissions.

  1. A JVLA survey of the high-frequency radio emission of the massive magnetic B- and O-type stars

    NASA Astrophysics Data System (ADS)

    Kurapati, Sushma; Chandra, Poonam; Wade, Gregg; Cohen, David H.; David-Uraz, Alexandre; Gagne, Marc; Grunhut, Jason; Oksala, Mary E.; Petit, Veronique; Shultz, Matt; Sundqvist, Jon; Townsend, Richard H. D.; ud-Doula, Asif

    2017-02-01

    We conducted a survey of seven magnetic O-type stars and eleven B-type stars with masses above 8 M⊙ using the Very Large Array in the 1, 3 and 13 cm bands. The survey resulted in a detection of two O- and two B-type stars. While the detected O-type stars - HD 37742 and HD 47129 - are in binary systems, the detected B-type stars, HD 156424 and ALS 9522, are not known to be in binaries. All four stars were detected at 3 cm, whereas three were detected at 1 cm and only one star was detected at 13 cm. The detected B-type stars are significantly more radio luminous than the non-detected ones, which is not the case for O-type stars. The non-detections at 13 cm are interpreted as due to thermal free-free absorption. Mass-loss rates were estimated using 3 cm flux densities and were compared with theoretical mass-loss rates, which assume free-free emission. For HD 37742, the two values of the mass-loss rates were in good agreement, possibly suggesting that the radio emission for this star is mainly thermal. For the other three stars, the estimated mass-loss rates from radio observations were much higher than those expected from theory, suggesting either a possible contribution from non-thermal emission from the magnetic star or thermal or non-thermal emission due to interacting winds of the binary system, especially for HD 47129. All the detected stars are predicted to host centrifugal magnetospheres except HD 37742, which is likely to host a dynamical magnetosphere. This suggests that non-thermal radio emission is favoured in stars with centrifugal magnetospheres.

  2. Acoustic-gravity waves in the nonisothermal atmosphere and its influence on the magnetospheric quasi-periodic vlf emissions

    NASA Astrophysics Data System (ADS)

    Savina, Olga; Bespalov, Peter; Misonova, Vera; Petrov, Kiril

    2014-05-01

    We examine two mutually complementing tasks related to the theoretical analysis of acoustic-gravity disturbances in the Earth's atmosphere and its influence on magnetosphere processes. Our research is based on modern atmospherical models. We study waves propagation, absorption, and filtration. The atmospheric nonisothermicity is taken into account, for example, by introduction of a two-layered atmosphere temperature model. For a study of more delicate effects, a piecewise-linear model, for which the analytical solution is written by the hypergeometric functions, is employed. Also we consider an influence of acoustic-gravity waves on VLF electromagnetic wave excitation in the magnetosphere. This influence occurs as a result of the following processes: a modulation of the plasma density by acoustic-gravity waves in the ionosphere, a modulation of reflection from the ionosphere for VLF waves, and a modification of the magnetospheric resonator Q-factor for VLF waves. Variation of the magnetospheric resonator Q-factor has an influence on the operation of the plasma magnetospheric maser, where the active substances are radiation belts particles and the working modes are electromagnetic VLF waves (whistler-type waves). The plasma magnetospheric maser can be responsible for an excitation of self-oscillations. These self-oscillations are frequently characterized by alternating stages of accumulation and precipitation of energetic particles into the ionosphere during a pulse of whistler emissions. Numerical and analytical investigations of the response of self-oscillations to harmonic oscillations of the whistler reflection coefficient shows that even a small modulation rate can significantly changes the magnetospheric VLF emissions. Our results can explain the causes of the modulation of energetic electron fluxes and whistler wave intensity with a time scale from 10 to 150 seconds in the day-side magnetosphere. Such quasi-periodic VLF emissions are often observed in the sub

  3. Radio Emission from Saturn's Rings: Polarization

    NASA Astrophysics Data System (ADS)

    Molnar, L. A.; Dunn, D. E.

    2002-09-01

    We are pursuing a systematic program of observing and modeling the radio emission from Saturn's rings over a range of wavelengths and ring inclinations. In our earlier reports we have presented a number total intensity maps along with results from our Monte Carlo radiative transfer code, simrings. This has been a fruitful test of particle spatial distribution within the rings: in particular evidence of wake structure in the A ring and of a near monolayer in the C ring. In this contribution we present our first maps of polarized intensity. Such observations offer independent information about the nature of the ring particles. In particular, Grossman (Ph.D. thesis, 1990) showed that the orientation of the position angle of the polarization of the rings is in direct conflict with the predictions of Mie scattering. We will present several polarized maps, discuss some of the subtleties of producing such maps (in particular the tradeoff between angular resolution and reliable intensities), and suggest possible approaches for modeling of the polarized emission. This work was supported in part by a grant from Research Corporation.

  4. Searching the Nearest Stars for Exoplanetary Radio Emission: VLA and LOFAR Observations

    NASA Astrophysics Data System (ADS)

    Knapp, Mary; Winterhalter, Daniel; Lazio, Joseph

    2016-10-01

    Six of the eight solar system planets and one moon (Ganymede) exhibit present-day dynamo magnetic fields. To date, however, there are no conclusive detections of exoplanetary magnetic fields. Low frequency radio emission via the cyclotron maser instability (CMI) from interactions between a planet and the solar/stellar wind is the most direct means of detecting and characterizing planetary/exoplanetary magnetic fields. We have undertaken a survey of the very nearest stars in low frequency radio (30 MHz - 4 GHz) in order to search for yet-undiscovered planets. The closest stars are chosen in order to reduce the attenuation of the magnetospheric radio signal by distance dilution, thereby increasing the chances of making a detection if a planet with a strong magnetic field is present. The VLA telescope (P-band: 230-470 MHz, L-band: 1-2 GHz, S-band: 2-4 GHz) and LOFAR telescope (LBA: 30-75 MHz) have been used to conduct this survey.This work focuses on VLA and LOFAR observations of an M-dwarf binary system: GJ 725. We present upper limits on radio flux as a function of frequency. Since the peak emission frequency of CMI-type emission is the local plasma frequency in the emission region, the peak frequency of planetary radio emission is a direct proxy for the magnetic field strength of the planet. Our spectral irradiance upper limits therefore represent upper limits on the magnetic field strengths of any planets in the GJ 725 system.Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  5. Neptune's non-thermal radio emissions - Phenomenology and source locations

    NASA Technical Reports Server (NTRS)

    Rabl, Gerald K. F.; Ladreiter, H.-P.; Rucker, Helmut O.; Kaiser, Michael L.

    1992-01-01

    During the inbound and the outbound leg of Voyager 2's encounter with Neptune, the Planetary Radio Astronomy (PRA) experiment aboard the spacecraft detected short radio bursts at frequencies within the range of about 500-1300 kHz, and broad-banded smoothly varying emission patterns within the frequency range from about 40-800 kHz. Both emissions can be described in terms of a period of 16.1 hours determining Neptune's rotation period. Furthermore, just near closest approach, a narrow-banded smoothly varying radio component was observed occurring between 600 and 800 kHz. After giving a brief overview about some general characteristics of Neptune's nonthermal radio emission, the source locations of Neptune's emission components are determined, using an offset tilted dipole model for Neptune's magnetic field. Assuming that the emission originates near the electron gyrofrequency a geometrical beaming model is developed in order to fit the observed emission episodes.

  6. Continuum radiation in planetary magnetospheres

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.

    1991-01-01

    With the completion of the Voyager tour of the outer planets, radio and plasma wave instruments have executed the first survey of the wave spectra of Earth, Jupiter, Saturn, Uranus, and Neptune. One of the most notable conclusions of this survey is that there is a great deal of qualitative similarity in both the plasma wave and radio wave spectra from one magnetosphere to the next. In particular, in spite of detailed differences, most of the radio emissions at each of the planets have been tentatively classified into two primary categories. First, the most intense emissions are generally associated with the cyclotron maser instability. Second, a class of weaker emissions can be found at each of the magnetospheres which appears to be the result of conversion from intense electrostatic emissions at the upper hybrid resonance frequency into (primarily) ordinary mode radio emission. It is this second category, often referred to as nonthermal continuum radiation, which we will discuss in this review. We review the characteristics of the continuum spectrum at each of the planets, discuss the source region and direct observations of the generation of the emissions where available, and briefly describe the theories for the generation of the emissions. Over the past few years evidence has increased that the linear mode conversion of electrostatic waves into the ordinary mode can account for at least some of the continuum radiation observed. There is no definitive evidence which precludes the possibility that a nonlinear mechanism may also be important.

  7. Radio emission and the forbidden line region of Seyfert galaxies

    SciTech Connect

    Ulvestad, J.S.

    1981-01-01

    The results of an extensive program of mapping Seyfert galaxies using the Very Large Array radio telescope are presented. Unlike the majority of radio galaxies, the radio emission in most Seyferts is confined to the inner few kiloparsecs (or less) of the galaxy. This scale is similar to the size of the region in which optical forbidden line emission occurs. Six double (or triple) radio sources have been mapped now in Seyfert galaxies. Approximately ten more galaxies shown more diffuse emission or are resolved only slightly. In almost all galaxies, the central radio peak, when present, coincides with the optical continuum peak. In every double or triple radio source, the outer radio lobes straddle that optical peak. The major axes of the double and triple radio sources may be correlated with the directions of greatest elongation of the optical line-emitting cloud complexes. However, the radio source axes do not appear to be related to the major or minor axes of the outer optical continuum isophotes of the Seyfert galaxies. Synchrotron emission is the dominant source of radio photons in all the galaxies observed. Thermal processes contribute, on the average, no more than about 6% of the total radio emission at 4.885 GHz. Using standard assumptions, radio luminosities, magnetic fields, and total energy contents have been calculated for the observed galaxies. The triple radio source in NGC 5548 has been studied in detail. The properties of NGC 5548 have been used to investigate some theoretical aspects of the double and triple sources and their relationship to the forbidden line region (FLR).

  8. Detection of radio emission from GX9+1.

    NASA Technical Reports Server (NTRS)

    Zaumen, W.; Murthy, G. T.; Rappaport, S.; Hjellming, R. M.; Wade, C. M.

    1972-01-01

    Detection of a variable radio source in association with the X-ray source GX9+1, using the NRAO three-element interferometer at frequencies of 2695 and 8085 MHz. This radio source appears unresolved at all spacings, and must therefore be smaller than 1 arc sec. Two other celestial X-ray sources, GX349+2 and GX340+0 were also observed for radio emission during the same period of observations of GX9+1. These two sources should be good candidates for radio emission.

  9. Solar wind control of Jupiter's hectometric radio emission

    NASA Technical Reports Server (NTRS)

    Barrow, C. H.; Desch, M. D.

    1989-01-01

    Radio, plasma, and magnetic field data obtained by Voyager 1 and Voyager 2 were used to examine the manner in which the Jovian hectometric radio emission (HOM) is controlled by the solar wind. Using the method of superposed epochs, it was found that the higher energy HOM is correlated with the IMF as well as with the solar wind density and pressure. However, unlike the Io-independent decametric radio emission (Non-Io DAM), the HOM displayed no correlation with the solar wind velocity, although this radio component appear to be also influenced by the IMF. The results suggest separate HOM amd Non-Io DAM sources.

  10. RADIO AND GAMMA-RAY PULSED EMISSION FROM MILLISECOND PULSARS

    SciTech Connect

    Du, Y. J.; Chen, D.; Qiao, G. J.

    2013-01-20

    Pulsed {gamma}-ray emission from millisecond pulsars (MSPs) has been detected by the sensitive Fermi space telescope, which sheds light on studies of the emission region and its mechanism. In particular, the specific patterns of radio and {gamma}-ray emission from PSR J0101-6422 challenge the popular pulsar models, e.g., outer gap and two-pole caustic models. Using the three-dimensional annular gap model, we have jointly simulated radio and {gamma}-ray light curves for three representative MSPs (PSR J0034-0534, PSR J0101-6422, and PSR J0437-4715) with distinct radio phase lags, and present the best simulated results for these MSPs, particularly for PSR J0101-6422 with complex radio and {gamma}-ray pulse profiles, and for PSR J0437-4715 with a radio interpulse. We have found that both the {gamma}-ray and radio emission originate from the annular gap region located in only one magnetic pole, and the radio emission region is not primarily lower than the {gamma}-ray region in most cases. In addition, the annular gap model with a small magnetic inclination angle instead of an 'orthogonal rotator' can account for the MSPs' radio interpulse with a large phase separation from the main pulse. The annular gap model is a self-consistent model not only for young pulsars but also MSPs, and multi-wavelength light curves can be fundamentally explained using this model.

  11. On the proposed triggering of Jovian radio emissions

    NASA Technical Reports Server (NTRS)

    Desch, M. D.; Kaiser, M. L.

    1985-01-01

    Calvert (1985) has proposed that a solar type III radio bursts can trigger the onset of certain Jovian hectometer wavelength emissions. It is shown, using the data obtained by the Voyager Planetary Radio Astronomy experiment, that this triggering hypothesis is not supported statistically. Furthermore, the causality of this proposed triggering is questioned because much of the Jovian hectometer emission is due to a quasi-continuous radio source rotating, in lighthouse fashion, with Jupiter. Thus, an observed 'onset' of emission is simply a function of the observer's position in local time around Jupiter.

  12. Disk wind and magnetospheric accretion in emission from the Herbig Ae star MWC 480

    NASA Astrophysics Data System (ADS)

    Tambovtseva, L. V.; Grinin, V. P.; Potravnov, I. S.; Mkrtichian, D. E.

    2016-09-01

    The young Herbig Ae star MWC 480 (HD 31648) is one of the comprehensively spectroscopically studied stars in the ultraviolet, optical, and infrared spectral ranges. Using non-LTE modeling of its hydrogen spectrum, we have calculated the contribution to the hydrogen emission from such important regions of the circumstellar environment as the disk wind and the magnetosphere. We have used our own observations of the stellar spectrum performed with the 2.4-m telescope at the Thai National Observatory to quantitatively check our theoretical calculations. In addition, all of the visible and infrared spectra available in the literature have been used for a qualitative comparison. The modeling results have revealed a significant role of the magneto-centrifugal disk wind in the formation of atomic hydrogen emission. The cause of the emission line variability in the spectrum ofMWC 480 is discussed.

  13. Radio emission of magnetars driven by the quasi-linear diffusion

    NASA Astrophysics Data System (ADS)

    Osmanov, Z.

    2014-11-01

    In this paper, we study the possibility of generation of electromagnetic waves in the magnetospheres of radio magnetars by means of the quasi-linear diffusion (QLD). Considering the magnetosphere composed of the so-called beam and the plasma components, respectively, we argue that the frozen-in condition will inevitably lead to the generation of the unstable cyclotron modes. These modes, via the QLD, will in turn influence the particle distribution function, leading to certain values of the pitch angles, thus to an efficient synchrotron mechanism, producing radio photons. We show that for three known radio magnetars, the QLD might be a realistic mechanism for producing photons in the radio band.

  14. Neptune radio emission in dipole and multipole magnetic fields

    NASA Technical Reports Server (NTRS)

    Sawyer, C. B.; King, N. V.; Romig, J. H.; Warwick, J. W.

    1995-01-01

    We study Neptune's smooth radio emission in two ways: we simulate the observations and we then consider the radio effects of Neptune's magnetic multipoles. A procedure to deduce the characteristics of radio sources observed by the Planetary Radio Astronomy experiment minimizes limiting assumptions and maximizes use of the data, including quantitative measurement of circular polarization. Study of specific sources simulates time variation of intensity and apparent polarization of their integrated emission over an extended time period. The method is applied to Neptune smooth recurrent emission (SRE). Time series are modeled with both broad and beamed emission patterns, and at two frequencies which exhibit different time variation of polarization. These dipole-based results are overturned by consideration of more complex models of Neptune's magnetic field. Any smooth emission from the anticipated auroral radio source is weak and briefly observed. Dominant SRE originates complex fields at midlatitude. Possible SRE source locations overlap that of 'high-latitude' emission (HLE) between +(out) and -(in) quadrupoles. This is the first identification of multipolar magnetic structure with a major source of planetary radio emission.

  15. Analysis of Jovian decamteric data: Study of radio emission mechanisms

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.; Rosenkranz, P. W.; Arias, T. A.; Garnavich, P. N.; Hammerschlag, R.

    1986-01-01

    This research effort involved careful examination of Jovian radio emission data below 40 MHz, with emphasis on the informative observations of the Planetary Radio Astronomy experiment (PRA) on the Voyager 1 and 2 spacecraft. The work is divided into three sections, decametric arcs, decametric V bursts, and hectometric modulated spectral activity (MSA).

  16. Fast Radio Bursts’ Emission Mechanism: Implication from Localization

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim

    2017-03-01

    We argue that the localization of the repeating fast radio bursts (FRBs) at ∼1 Gpc excludes a rotationally powered type of radio emission (e.g., analogs of Crab’s giant pulses coming from very young energetic pulsars) as the origin of FRBs.

  17. Evidence for solar wind control of Saturn radio emission

    NASA Technical Reports Server (NTRS)

    Desch, M. D.

    1982-01-01

    Using data collected by the Voyager 1 and 2 spacecraft in 1980 and 1981, strong evidence is presented for a direct correlation between variations in the solar wind at Saturn and the level of activity of Saturn's nonthermal radio emission. Correlation coefficients of 57 to 58% are reached at lag times of 0 to 1 days between the arrival at Saturn of high pressure solar wind streams and the onset of increased radio emission. The radio emission exhibits a long-term periodicity of 25 days, identical to the periodicity seen in the solar wind at this time and consistent with the solar rotation period. The energy coupling efficiency between the solar wind with the Saturn radio emission is estimated and compared with that for Earth.

  18. Satellite Emission Radio Interferometric Earth Surveying (SERIES). [astrometry

    NASA Technical Reports Server (NTRS)

    Macdoran, P. F.

    1980-01-01

    Existing satellite radio emissions of the global positioning system were exploited as a resource for cost effective high accuracy geodetic measurements. System applications were directed toward crustal dynamics and earthquake research.

  19. Near Earth space sporadic radio emission busts occurring during sunrise

    NASA Technical Reports Server (NTRS)

    Dudnik, A. V.; Zaljubovsky, I. I.; Kartashev, V. M.; Lasarev, A. V.; Shmatko, E. S.

    1985-01-01

    During the period of low solar activity at sunrise the effect of sporadic high frequency near Earth space radio emission was experimentally discovered at middle latitudes. The possible mechanism of its origin is discussed.

  20. Voyager detection of nonthermal radio emission from Saturn

    NASA Technical Reports Server (NTRS)

    Kaiser, M. L.; Desch, M. D.; Warwick, J. W.; Pearce, J. B.

    1980-01-01

    The detection of bursts of nonthermal radio noise from Saturn by the planetary radio astonomy experiment onboard the Voyager spacecraft is discussed. The emissions occur near 200 kHz with a peak flux density comparable to higher frequency Jovian emissions. The radiation is right-hand polarized and is most likely emitted in the extraordinary magnetoionic mode from Saturn's northern hemisphere. Modulation is apparent in the data which is consistent with a planetary rotation period of 10 hr 39.9 min.

  1. Pulsed Gamma Rays from the Original Millisecond and Black Widow Pulsars: A Case for Caustic Radio Emission?

    NASA Astrophysics Data System (ADS)

    Guillemot, L.; Johnson, T. J.; Venter, C.; Kerr, M.; Pancrazi, B.; Livingstone, M.; Janssen, G. H.; Jaroenjittichai, P.; Kramer, M.; Cognard, I.; Stappers, B. W.; Harding, A. K.; Camilo, F.; Espinoza, C. M.; Freire, P. C. C.; Gargano, F.; Grove, J. E.; Johnston, S.; Michelson, P. F.; Noutsos, A.; Parent, D.; Ransom, S. M.; Ray, P. S.; Shannon, R.; Smith, D. A.; Theureau, G.; Thorsett, S. E.; Webb, N.

    2012-01-01

    We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope and timing solutions based on radio observations conducted at the Westerbork and Nançay radio telescopes. In addition, we analyzed archival Rossi X-ray Timing Explorer and XMM-Newton X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence (~4σ) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by two peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034-0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission profiles suggests co-located emission regions in the outer magnetosphere.

  2. PULSED GAMMA RAYS FROM THE ORIGINAL MILLISECOND AND BLACK WIDOW PULSARS: A CASE FOR CAUSTIC RADIO EMISSION?

    SciTech Connect

    Guillemot, L.; Kramer, M.; Freire, P. C. C.; Noutsos, A.; Johnson, T. J.; Harding, A. K.; Venter, C.; Kerr, M.; Michelson, P. F.; Pancrazi, B.; Livingstone, M.; Janssen, G. H.; Jaroenjittichai, P.; Stappers, B. W.; Espinoza, C. M.; Cognard, I.; Camilo, F.; Gargano, F.; Grove, J. E.; Johnston, S. E-mail: tyrel.j.johnson@gmail.com E-mail: kerrm@stanford.edu; and others

    2012-01-01

    We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope and timing solutions based on radio observations conducted at the Westerbork and Nancay radio telescopes. In addition, we analyzed archival Rossi X-ray Timing Explorer and XMM-Newton X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence ({approx}4{sigma}) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by two peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034-0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission profiles suggests co-located emission regions in the outer magnetosphere.

  3. Pulsed Gamma Rays from the Original Millisecond and Black Widow Pulsars: A Case for Caustic Radio Emission?

    NASA Technical Reports Server (NTRS)

    Guillemot, L.; Johnson, T. J.; Venter, C.; Kerr, M.; Pancrazi, B.; Livingstone, M.; Janssen, G. H.; Jaroenjittichai, P.; Kramer, M.; Cognard, I.; Stappers, B. W.; Harding, A. K.; Camilo, F.; Espinoza, C. M.; Freire, P. C. C.; Gargano, F.; Grove, J. E.; Johnston, S.; Michelson, P. F.; Noutsos, A.; Parent, D.; Ransom, S. M.; Ray, P. S.; Shannon, R.; Smith, D. A.

    2011-01-01

    We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope (LAT) and timing solutions based on radio observations conducted at the Westerbork and Nancay radio telescopes. In addition, we analyzed archival RXTE and XMM-Newton X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence (approx. 4(sigma)) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by two peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034..0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission pro les suggests co-located emission regions in the outer magnetosphere.

  4. On the links between magnetodisc perturbations and radio emissions at Jupiter.

    NASA Astrophysics Data System (ADS)

    Louarn, P.

    2014-04-01

    We first review measurements made by the Galileo energetic particle detector (EPD), the magnetometer (MAG) and the plasma wave/radio instrument (PWS) to establish relationships between various dynamic processes occurring in the jovian magnetosdisk and in Io torus: (1) the 'energetic-events' or 'radio events' seenwith PWS [Louarn et al., 1998]), (2) in-situ signatures of reconnection seen by the magnetometer and EPD (the 'reconfiguration-events' [Kronberg et al., 2005, Vogt et al., 2010]), at 80-100 RJ and, (3) particle injections seen at 10-20 RJ [Mauk et al., 1999, Louarn et al, 2014]. We then present new analysis attempting to characterize the density/magnetic perturbations of the magnetodisk that may be related to these major disturbances. They are based on PWS and MAG observations made in the magnetodisk itself, at distances ranging from 20 to ~70 RJ. It is shown that the radio events generally correspond to increases of the plasma content of the disk (which is deduced from measurements of the upper hybrid frequency). In a few cases, it is observed that the magnetic field deviates off the meridian plane, with an azimuthal component that becomes significant. This suggests that an enhanced magnetosphere/ionosphere current system enforces the co-rotation of the more massive disk. The link between this possible enhanced current system and more powerful radio emissions is discussed.

  5. Instrumental and observational requirements for space-based imaging of magnetospheric emissions

    NASA Technical Reports Server (NTRS)

    Robinson, R. M.; Chiu, Y. T.; Catura, R. C.; Collin, H. L.; Garrido, D.; Smith, R.

    1992-01-01

    Simulated images of extreme ultraviolet (EUV) emissions from energetic outflowing ions have been constructed to study techniques for remotely sensing the dynamic behavior of hot plasmas in the near-Earth environment. These calculations include realistic assumptions about the energetic ion outflow from high latitudes and take into account the effects of cold plasmaspheric and ionospheric ions. The energetic ion outflow is determined from a statistical study based on five years of measurements from the Energetic Ion Composition Spectrometer on Dynamics Explorer 1. The simulated images change significantly with viewing geometry and certain spacecraft locations are clearly favorable for observing emissions from energetic ions. For example, for a near equatorial orbit, viewing locations greater than 9 Earth radii are required to observe outflowing ions above the cold plasmaspheric background. We will discuss other important considerations for magnetospheric imaging including the sensitivity requirements of the detector. In particular, we consider the performance of multi-layer optics for EUV wavelengths.

  6. Creation of visible artificial optical emissions in the aurora by high-power radio waves.

    PubMed

    Pedersen, Todd R; Gerken, Elizabeth A

    2005-02-03

    Generation of artificial light in the sky by means of high-power radio waves interacting with the ionospheric plasma has been envisaged since the early days of radio exploration of the upper atmosphere, with proposed applications ranging from regional night-time street lighting to atmospheric measurements. Weak optical emissions have been produced for decades in such ionospheric 'heating' experiments, where they serve as key indicators of electron acceleration, thermal heating, and other effects of incompletely understood wave-particle interactions in the plasma under conditions difficult to replicate in the laboratory. The extremely low intensities produced previously have, however, required sensitive instrumentation for detection, preventing applications beyond scientific research. Here we report observations of radio-induced optical emissions bright enough to be seen by the naked eye, and produced not in the quiet mid-latitude ionosphere, but in the midst of a pulsating natural aurora. This may open the door to visual applications of ionospheric heating technology or provide a way to probe the dynamics of the natural aurora and magnetosphere.

  7. Possible radio-emission signatures of exoplanets

    NASA Astrophysics Data System (ADS)

    Budding, E.; Slee, O. B.; Johnston-Hollitt, M.

    2015-03-01

    A brief review of possibly detectable radio-effects from exoplanets is presented. Previous observations may show relevant effects, when appropriate theory is taken into account. Pointers to contemporary and future lines of investigation are also presented.

  8. X-RAY EMISSION FROM OPTICALLY SELECTED RADIO-INTERMEDIATE AND RADIO-LOUD QUASARS

    SciTech Connect

    Miller, B. P.; Brandt, W. N.; Schneider, D. P.; Wu Jianfeng; Gibson, R. R.; Steffen, A. T. E-mail: niel@astro.psu.edu E-mail: jfwu@astro.psu.edu E-mail: rgibson@astro.washington.edu

    2011-01-01

    We present the results of an investigation into the X-ray properties of radio-intermediate and radio-loud quasars (RIQs and RLQs, respectively). We combine large, modern optical (e.g., SDSS) and radio (e.g., FIRST) surveys with archival X-ray data from Chandra, XMM-Newton, and ROSAT to generate an optically selected sample that includes 188 RIQs and 603 RLQs. This sample is constructed independently of X-ray properties but has a high X-ray detection rate (85%); it provides broad and dense coverage of the l-z plane, including at high redshifts (22% of objects have z = 2-5), and it extends to high radio-loudness values (33% of objects have R* = 3-5, using logarithmic units). We measure the 'excess' X-ray luminosity of RIQs and RLQs relative to radio-quiet quasars (RQQs) as a function of radio loudness and luminosity, and parameterize the X-ray luminosity of RIQs and RLQs both as a function of optical/UV luminosity and also as a joint function of optical/UV and radio luminosity. RIQs are only modestly X-ray bright relative to RQQs; it is only at high values of radio loudness (R* {approx}> 3.5) and radio luminosity that RLQs become strongly X-ray bright. We find no evidence for evolution in the X-ray properties of RIQs and RLQs with redshift (implying jet-linked IC/CMB emission does not contribute substantially to the nuclear X-ray continuum). Finally, we consider a model in which the nuclear X-ray emission contains both disk/corona-linked and jet-linked components and demonstrate that the X-ray jet-linked emission is likely beamed but to a lesser degree than applies to the radio jet. This model is used to investigate the increasing dominance of jet-linked X-ray emission at low inclinations.

  9. Compositional Impact of Io Volcanic Emissions on Jupiter's Magnetosphere and the Icy Galilean Moons

    NASA Technical Reports Server (NTRS)

    Cooper, John; Fegley, Bruce; Lipatov, Alexander; Richardson, John; Sittler, Edward

    2011-01-01

    measured throughout the jovian magnetosphere and in the local moon environments can act as tracers if we know from direct measurements and models the distributions at the mostly likely sources, i.e. at IO. However, our knowledge of these abundances are very limited from earlier in-situ and remote measurements, mainly confined to major (S, O) and some minor (Na, K, Cl) species with abundances at or above a few percent relative to O. Future in-situ plasma measurements by the planned Jupiter Europa Orbiter and Jupiter Ganymede Orbiter missions should extend the abundance coverage to minor and even trace elemental species. For Europa astrobiological investigations it is also important to specify iogenic inputs and surface processing of isotopic species. We discuss the range of abundance distributions arising from models for IO hot volcanic emissions, and from the subsequent dynamics of ion injection, magnetospheric transport, and icy moon surface bombardment.

  10. Terrestrial structured radio emissions occurring close to the equatorial regions

    NASA Astrophysics Data System (ADS)

    Boudjada, Mohammed Y.; Galopeau, Patrick H. M.; Sawas, Sami; Berthelier, Jean-Jacques

    2015-04-01

    We study the occurrence of terrestrial radio emissions observed by the electric field experiment (ICE) onboard DEMETER micro-satellite. We principally consider the ICE observations recorded in the HF frequency range between 10 kHz and 3.175 MHz. A dynamic spectrum is recorded each half-orbit with a time and frequency resolutions, respectively, in the order of 3.25 kHz and 2.048 sec. The terrestrial structured radio emission is found to occur when the satellite is approaching the equatorial region of the Earth. It appears as a structured narrow band 'continuum' with a positive or negative low frequency drift rate, less than 1 kHz/s. The bandwidth is, on average, of about 30 kHz. We derive from our investigation the beam and the probable location of the emission source. We discuss the origin of this terrestrial radio emission and its dependence, or not, on the solar and geomagnetic activities.

  11. Double features in mean pulsar profiles and the nature of their radio emission

    NASA Astrophysics Data System (ADS)

    Melikidze, George I.; Gil, Janusz

    In the talk presented at this Workshop by J.Dyks, the author claimed that the long-sought Rosetta Stone needed to decipher the nature of pulsar radio emission has been finally identified as the double features in averaged pulsar profiles. The author argued that highly symmetric bifurcated features are produced by a split-fan beams of extraordinary-mode curvature radiation emitted by thin microscopic streams of magnetospheric plasma conducted by a very narrow bundle of magnetic field lines. We examined arguments leading to these intriguing conclusions and found a number of flaws. At least one of them is fatal, namely there is not enough available energy within such thin microscopic plasma streams.

  12. The Far-Infrared Emission of Radio Loud and Radio Quiet Quasars

    NASA Technical Reports Server (NTRS)

    Polletta, M.; Courvoisier, T. J.-L.; Wilkes, B. J.; Hooper, E. J.

    2000-01-01

    Continuum observations at radio, millimeter, infrared and soft X-ray energies are presented for a sample of 22 quasars, consisting of flat and steep spectrum radio loud, radio intermediate and radio quiet objects. The primary observational distinctions, among the different kinds of quasars in the radio and IR energy domains are studied using large observational datasets provided by ISOPHOT on board the Infrared Space Observatory, by the IRAM interferometer, by the sub-millimetre array SCUBA on JCMT, and by the European Southern Observatory (ESO) facilities IRAC1 on the 2.2 m telescope and SEST. The spectral energy distributions of all quasars from radio to IR energies are analyzed and modeled with non-thermal and thermal spectral components. The dominant mechanism emitting in the far/mid-IR is thermal dust emission in all quasars, with the exception of flat spectrum radio loud quasars for which the presence of thermal IR emission remains rather uncertain, since it is difficult to separate it from the bright non-thermal component. The dust is predominantly heated by the optical/ultraviolet radiation emitted from the external components of the AGN. A starburst contributes to the IR emission at different levels, but always less than the AGN (<= 27%). The distribution of temperatures, sizes, masses, and luminosities of the emitting dust are independent of the quasar type.

  13. Coronal and interplanetary Type 2 radio emission

    NASA Astrophysics Data System (ADS)

    Cane, H. V.

    1987-09-01

    Several observations suggest that the disturbances which generate coronal (meter wavelength) type II radio bursts are not driven by coronal mass ejections (CMEs). A new analysis using a large sample of metric radio bursts and associated soft X-ray events provides further support for the original hypothesis that type II-producing disturbances are blast waves generated at the time of impulsive energy release in flares. Interplanetary (IP) shocks, however, are closely associated with CMEs. The shocks responsible for IP type II events (observed at kilometer wavelengths) are associated with the most energetic CMEs.

  14. VLA Detects Unexplained Radio Emission From Three Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    2005-01-01

    Astronomers have discovered three brown dwarfs -- enigmatic objects that are neither stars nor planets -- emitting radio waves that scientists cannot explain. The three newly-discovered radio-emitting brown dwarfs were found as part of a systematic study of nearby brown dwarfs using the National Science Foundation's Very Large Array (VLA) radio telescope. The VLA The Very Large Array CREDIT: NRAO/AUI/NSF (Click on image for VLA gallery) Until 2001, scientists believed that brown dwarfs, which are intermediate in mass between stars and planets, could not emit detectable amounts of radio waves. That year, summer students at the VLA made the first discovery of radio emission from a brown dwarf. Subsequently, as many as a half- dozen more radio-emitting brown dwarfs were discovered. "It clearly had become time to make a systematic study and try to find out just what percentage of brown dwarfs are emitting radio waves," said Rachel Osten, an astronomer at the National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia. Osten was assisted in the project in the summer of 2004 by Lynnae Quick, a student at North Carolina Agricultural and Technical State University; Tim Bastian, also an astronomer at NRAO; and Suzanne Hawley, an astronomer at the University of Washington. The research team presented their results to the American Astronomical Society's meeting in San Diego, CA. The three new detections of radio-emitting brown dwarfs are just the first results from the systematic study, which aims to observe all the known brown dwarfs within about 45 light-years of Earth. "We want to be able to say definitively just how common radio emission is among brown dwarfs," Osten explained. The study involves observing 65 individual brown dwarfs, so these new detections represent just the beginning of the results expected from the study. Brown dwarfs are too big to be planets but too small to be true stars, as they have too little mass to trigger hydrogen fusion reactions

  15. Radio emission of the sun at millimeter wavelengths

    NASA Astrophysics Data System (ADS)

    Nagnibeda, V. G.; Piotrovich, V. V.

    This review article deals with the radio emission originating from different solar atmospheric regions - the quiet solar atmosphere, active regions and solar flares. All experimental data of the quiet Sun brightness temperature at the region of 0.1 - 20 mm wavelength are summarized. The quiet Sun brightness distributions across the disk and values of the solar radio radius are reviewed. The properties of the sources of sunspot-associated active region emission and radio brightness depression associated with Hα-filaments are considered in comparison with observations at centimetre and optical domains. The observational properties of millimetre wave bursts and their correlations with similar phenomena at other domains are reviewed. Special reference is devoted to nearly 100% correlation impulsive radio bursts with hard X-ray bursts. Existence of the fine temporal structure containing many spikes with time scales up to 10 ms as well as observations of quasi-periodic millisecond oscillations are discussed.

  16. E.l.f./v.l.f. emissions observed on Ariel 4. [wave-particle phenomena in magnetosphere

    NASA Technical Reports Server (NTRS)

    Bullough, K.; Denby, M.; Gibbons, W.; Hughes, A. R. W.; Kaiser, T. R.; Tatnall, A. R. L.

    1975-01-01

    The Ariel 4 satellite was designed to study wave-particle phenomena in the magnetosphere by measuring the electromagnetic wave fields over a wide frequency range and the fluxes and pitch angle distributions of energetic particles. We describe here the results of a preliminary study of the various v.l.f./e.l.f. electromagnetic wave phenomena which are observed. These include man-made signals from v.l.f. transmitters, impulsive noise originating in thunderstorms and emissions arising from magnetospheric energetic charged particles.

  17. Satellite emission radio interferometric earth surveying series - GPS geodetic system

    NASA Technical Reports Server (NTRS)

    Macdoran, P. F.

    1979-01-01

    A concept called SERIES (satellite emissions radio interferometric earth surveying) which makes use of GPS (global positioning system) radio transmissions without any satellite modifications, is described. Through the use of very long baseline interferometry (VLBI) and its calibration methods, 0.5 to 3 cm three dimensional baseline accuracy can be achieved over distances of 2 to 200 km respectively, with only 2 hours of on-site data acquisition. Attention is given to such areas as: the radio flux equivalent of GPS transmissions, synthesized delay precision, transmission and frequency subsystem requirements, tropospheric and ionospheric errors. Applications covered include geodesy and seismic tectonics.

  18. Observations of the Solar Continuum Radio Emission at Decameter Wavelengths

    NASA Astrophysics Data System (ADS)

    Brazhenko, Anatoliy I.; Mel'Nik, Valentin N.; Konovalenko, Alexander A.; Abranin, Edward P.; Dorovskyy, Vladimir V.; Vashchishin, Rostislav V.; Frantzusenko, Anatoly V.; Rucker, Helmut O.

    2010-01-01

    Results of study of the continuum radio emission of the Sun in the decameter range are presented. Observations were carried out with radio telescope URAN-2 in summer months in 2008-2009. Radio fluxes at frequencies 20 MHz and 25 MHz in frequency band 250 kHz were obtained during the time, when there were no active regions on the solar disk. Their average values for two years were 670 Jy and 850 Jy at frequencies 20 MHz and 25 MHz correspondingly. These fluxes are in agreement with high frequency values.

  19. Radio emission from rapidly-rotating cool giant stars

    NASA Technical Reports Server (NTRS)

    Drake, Stephen A.; Walter, Frederick M.; Florkowski, David R.

    1990-01-01

    The results of a VLA program are reported to examine the radio continuum emission from 11 rapidly-rotating cool giant stars, all of which were originally believed to be single stars. Six of the 11 stars were detected as radio sources, including FK Com and HR 9024, for which there exist multifrequency observations. HD 199178, UZ Lib (now known to be a binary system), and HD 82558, for which there is only 6-cm data. The radio properties of these stars are compared with those of the active, rapidly rotating evolved stars found in the RS CVn binary systems.

  20. A model for radio emission from solar coronal shocks

    SciTech Connect

    Zhao, G. Q.; Chen, L.; Wu, D. J.

    2014-05-01

    Solar coronal shocks are very common phenomena in the solar atmosphere and are believed to be the drivers of solar type II radio bursts. However, the microphysical nature of these emissions is still an open question. This paper proposes that electron cyclotron maser (ECM) emission is responsible for the generation of radiation from the coronal shocks. In the present model, an energetic ion beam accelerated by the shock first excites the Alfvén wave (AW), then the excited AW leads to the formation of a density-depleted duct along the foreshock boundary of the shock. In this density-depleted duct, the energetic electron beam produced via the shock acceleration can effectively excite radio emission by ECM instability. Our results show that this model may potentially be applied to solar type II radio bursts.

  1. Probing the radio emission from air showers with polarization measurements

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giammarchi, M.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; PeÂķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcǎu, O.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Pierre Auger Collaboration

    2014-03-01

    The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed that cannot be described by the geomagnetic emission process. The data provide strong evidence that the other electric field component is polarized radially with respect to the shower axis, in agreement with predictions made by Askaryan who described radio emission from particle showers due to a negative charge excess in the front of the shower. Our results are compared to calculations which include the radiation mechanism induced by this charge-excess process.

  2. RESISTIVE SOLUTIONS FOR PULSAR MAGNETOSPHERES

    SciTech Connect

    Li, Jason; Spitkovsky, Anatoly; Tchekhovskoy, Alexander

    2012-02-10

    The current state of the art in the modeling of pulsar magnetospheres invokes either the vacuum or force-free limits for the magnetospheric plasma. Neither of these limits can simultaneously account for both the plasma currents and the accelerating electric fields that are needed to explain the morphology and spectra of high-energy emission from pulsars. To better understand the structure of such magnetospheres, we combine accelerating fields and force-free solutions by considering models of magnetospheres filled with resistive plasma. We formulate Ohm's law in the minimal velocity fluid frame and construct a family of resistive solutions that smoothly bridges the gap between the vacuum and the force-free magnetosphere solutions. The spin-down luminosity, open field line potential drop, and the fraction of open field lines all transition between the vacuum and force-free values as the plasma conductivity varies from zero to infinity. For fixed inclination angle, we find that the spin-down luminosity depends linearly on the open field line potential drop. We consider the implications of our resistive solutions for the spin-down of intermittent pulsars and sub-pulse drift phenomena in radio pulsars.

  3. 3D modelling of stellar auroral radio emission

    NASA Astrophysics Data System (ADS)

    Leto, P.; Trigilio, C.; Buemi, C. S.; Umana, G.; Ingallinera, A.; Cerrigone, L.

    2016-06-01

    The electron cyclotron maser is the coherent emission process that gives rise to the radio lighthouse effect observed in the hot magnetic chemically peculiar star CU Virginis. It has also been proposed to explain the highly circularly polarized radio pulses observed in some ultracool dwarfs with spectral type earlier than M7. Coherent events of this kind resemble auroral radio emission from the magnetized planets of the Solar system. In this article, we present a three-dimensional model able to simulate the timing and profile of the pulses emitted by those stars characterized by a dipolar magnetic field by following the hypothesis of the laminar source model, used to explain the beaming of terrestrial auroral kilometric radiation. This model proves to be a powerful tool with which to understand the auroral radio emission phenomenon, allowing us to derive some general conclusions about the effects of the model's free parameters on the features of coherent pulses and to learn more about the detectability of such pulsed radio emission.

  4. Particle acceleration and radio emission for SGRs/AXPs as white dwarf pulsars

    NASA Astrophysics Data System (ADS)

    Lobato, R. V.; Coelho, Jaziel; Malheiro, M.

    2015-07-01

    Recently, an alternative model based on white dwarfs pulsars has been proposed to explain a class of pulsars known as Soft Gamma Repeaters (SGR) and Anomalus X-Ray Pulsars (AXP) [6][4], usually named as magnetars. In this model the magnetized white dwarfs can have surface magnetic field B ∼ 107 — 1010G and rotate very fast with frequencies ω ∼ 1 rad/s, allowing them to produce large electromagnetic (EM) potentials and generate electron-positron pairs. These EM potentials are comparable with the ones of neutron stars pulsars with strong magnetic fields. In our study we consider two possible processes associated with the particle acceleration: in one we have the pair production near to the star polar caps i.e., inside the light cylinder where magnetic-field lines are closed, on the other the creation of pair is in the Outer Magnetosphere i.e., far away of the star surface where magnetic field are open [1]. This analysis of the possibility of radio emission was done for all the 23 SGRs/AXPs of the McGill Online Magnetar Catalog [7] that contains the current information available on these sources. Our work is a first attempted to find an explanation for the puzzle why for all the SGRs/AXPs was expected radio emission, but it was observed in only four of them.

  5. A periodically active pulsar giving insight into magnetospheric physics.

    PubMed

    Kramer, M; Lyne, A G; O'Brien, J T; Jordan, C A; Lorimer, D R

    2006-04-28

    PSR B1931+24 (J1933+2421) behaves as an ordinary isolated radio pulsar during active phases that are 5 to 10 days long. However, when the radio emission ceases, it switches off in less than 10 seconds and remains undetectable for the next 25 to 35 days, then switches on again. This pattern repeats quasi-periodically. The origin of this behavior is unclear. Even more remarkably, the pulsar rotation slows down 50% faster when it is on than when it is off. This indicates a massive increase in magnetospheric currents when the pulsar switches on, proving that pulsar wind plays a substantial role in pulsar spin-down. This allows us, for the first time, to estimate the magnetospheric currents in a pulsar magnetosphere during the occurrence of radio emission.

  6. Detection of exomoons through observation of radio emissions

    SciTech Connect

    Noyola, J. P.; Satyal, S.; Musielak, Z. E. E-mail: ssatyal@uta.edu

    2014-08-10

    In the Jupiter-Io system, the moon's motion produces currents along the field lines that connect it to Jupiter's polar regions. The currents generate and modulate radio emissions along their paths via the electron-cyclotron maser instability. Based on this process, we suggest that such modulation of planetary radio emissions may reveal the presence of exomoons around giant planets in exoplanetary systems. A model explaining the modulation mechanism in the Jupiter-Io system is extrapolated and used to define criteria for exomoon detectability. A cautiously optimistic scenario of the possible detection of such exomoons around Epsilon Eridani b and Gliese 876 b is provided.

  7. Kiloparsec-scale radio emission in Seyfert and LINER galaxies

    NASA Astrophysics Data System (ADS)

    Singh, Veeresh; Ishwara-Chandra, C. H.; Wadadekar, Yogesh; Beelen, Alexandre; Kharb, Preeti

    2015-01-01

    Seyfert and LINER galaxies are known to exhibit compact radio emission on ˜10-100 pc scales, but larger Kiloparsec-Scale Radio structures (KSRs) often remain undetected in sub-arcsec high-resolution observations. We investigate the prevalence and nature of KSRs in Seyfert and LINER galaxies using the 1.4 GHz VLA FIRST and NVSS observations. Our sample consists of 2651 sources detected in FIRST and of these 1737 sources also have NVSS counterparts. Considering the ratio of total to peak flux density (θ = (Sint/Speak)1/2) as a parameter to infer the presence of extended radio emission we show that ≥30 per cent of FIRST-detected sources possess extended radio structures on scales larger than 1.0 kpc. The use of low-resolution NVSS observations help us to recover faint extended KSRs that are resolved out in FIRST observations and results in ≥42.5 per cent KSR sources in FIRST-NVSS sub-sample. This fraction is only a lower limit owing to the combination of projection, resolution and sensitivity effects. Our study demonstrates that KSRs may be more common than previously thought and are found across all redshifts, luminosities and radio loudness. The extranuclear radio luminosity of KSR sources is found to be positively correlated with the core radio luminosity as well as the [O III] λ5007 Å line luminosity and this can be interpreted as KSRs being powered by AGN rather than star formation. The distributions of the FIR-to-radio ratios and mid-IR colours of KSR sources are also consistent with their AGN origin. However, contribution from star formation cannot be ruled out particularly in sources with low radio luminosities.

  8. Radio Emissions from Plasma with Electron Kappa-Distributions

    NASA Astrophysics Data System (ADS)

    Fleishman, G. D.; Kuznetsov, A. A.

    2015-12-01

    Gregory Fleishman (New Jersey Institute of Technology, Newark, USA)Alexey Kuznetsov (Institute of Solar-Terrestrial Physics, Irkutsk, Russia), Currently there is a concern about the ability of the classical thermal (Maxwellian) distribution to describe quasisteady-state plasma in the solar atmosphere, including active regions. In particular, other distributions have been proposed to better fit observations, for example, kappa-distributions. If present, these distributions will generate radio emissions with different observable properties compared with the classical gyroresonance (GR) or free-free emission, which implies a way of remotely detecting these kappa distributions in the radio observations. Here we present analytically derived GR and free-free emissivities and absorption coefficients for the kappa-distribution, and discuss their properties, which are in fact remarkably different from the classical Maxwellian plasma. In particular, the radio brightness temperature from a gyrolayer increases with the optical depth τ for kappa-distribution. This property has a remarkable consequence allowing a straightforward observational test: the GR radio emission from the non-Maxwellian distributions is supposed to be noticeably polarized even in the optically thick case, where the emission would have strictly zero polarization in the case of Maxwellian plasma. This offers a way of remote probing the plasma distribution in astrophysical sources, including solar active regions as a vivid example. In this report, we present analytical formulae and computer codes to calculate the emission parameters. We simulate the gyroresonance emission under the conditions typical of the solar active regions and compare the results for different electron distributions. We discuss the implications of our findings for interpretation of radio observations. This work was supported in part by NSF grants AGS-1250374 and AGS-1262772, NASA grant NNX14AC87G to New Jersey Institute of Technology

  9. Source of O mode radio emissions from the dayside of Uranus

    SciTech Connect

    Menietti, J.D.; Curran, D.B. )

    1990-09-01

    During the inbound trajectory toward Uranus the Planetary Radio Astronomy instrument on board the Voyager 2 spacecraft observed narrowband smooth (n-smooth) emission at frequencies centered near 60 kHz and O mode emission (the dayside source) in a frequency range narrowly confined around 160 kHz. By assuming empirical models of the plasma density for the dayside magnetosphere of Uranus, and by using cold plasma theory together with observational constraints, the authors have performed ray-tracing calculations to determine the source lcoation of the O mode emission. The dayside source appears to originate along magnetic field lines with a footprint near the north magnetic pole. Sources of nightside, high-frequency, broadband smooth (b-smooth) emission observed by Voyager after encounter are believed to exist near the conjugate footprint of these same field lines. This would indicate that the particle population supplying the free energy source has energies at least as high as a few keV and the density in the source region satisfies the condition 0.3 < f{sub p}/f{sub ce} < 1.0 where f{sub p} and f{sub ce} are the electron plasma frequency and gyrofrequency, respectively.

  10. Mean and extreme radio properties of quasars and the origin of radio emission

    SciTech Connect

    Kratzer, Rachael M.; Richards, Gordon T.

    2015-02-01

    We investigate the evolution of both the radio-loud fraction (RLF) and (using stacking analysis) the mean radio loudness of quasars. We consider how these properties evolve as a function of redshift and luminosity, black hole (BH) mass and accretion rate, and parameters related to the dominance of a wind in the broad emission-line region. We match the FIRST source catalog to samples of luminous quasars (both spectroscopic and photometric), primarily from the Sloan Digital Sky Survey. After accounting for catastrophic errors in BH mass estimates at high redshift, we find that both the RLF and the mean radio luminosity increase for increasing BH mass and decreasing accretion rate. Similarly, both the RLF and mean radio loudness increase for quasars that are argued to have weaker radiation line driven wind components of the broad emission-line region. In agreement with past work, we find that the RLF increases with increasing optical/UV luminosity and decreasing redshift, while the mean radio loudness evolves in the exact opposite manner. This difference in behavior between the mean radio loudness and the RLF in L−z may indicate selection effects that bias our understanding of the evolution of the RLF; deeper surveys in the optical and radio are needed to resolve this discrepancy. Finally, we argue that radio-loud (RL) and radio-quiet (RQ) quasars may be parallel sequences, but where only RQ quasars at one extreme of the distribution are likely to become RL, possibly through slight differences in spin and/or merger history.

  11. An `analytic dynamical magnetosphere' formalism for X-ray and optical emission from slowly rotating magnetic massive stars

    NASA Astrophysics Data System (ADS)

    Owocki, Stanley P.; ud-Doula, Asif; Sundqvist, Jon O.; Petit, Veronique; Cohen, David H.; Townsend, Richard H. D.

    2016-11-01

    Slowly rotating magnetic massive stars develop `dynamical magnetospheres' (DMs), characterized by trapping of stellar wind outflow in closed magnetic loops, shock heating from collision of the upflow from opposite loop footpoints, and subsequent gravitational infall of radiatively cooled material. In 2D and 3D magnetohydrodynamic (MHD) simulations, the interplay among these three components is spatially complex and temporally variable, making it difficult to derive observational signatures and discern their overall scaling trends. Within a simplified, steady-state analysis based on overall conservation principles, we present here an `analytic dynamical magnetosphere' (ADM) model that provides explicit formulae for density, temperature, and flow speed in each of these three components - wind outflow, hot post-shock gas, and cooled inflow - as a function of colatitude and radius within the closed (presumed dipole) field lines of the magnetosphere. We compare these scalings with time-averaged results from MHD simulations, and provide initial examples of application of this ADM model for deriving two key observational diagnostics, namely hydrogen H α emission line profiles from the cooled infall, and X-ray emission from the hot post-shock gas. We conclude with a discussion of key issues and advantages in applying this ADM formalism towards derivation of a broader set of observational diagnostics and scaling trends for massive stars with such dynamical magnetospheres.

  12. Radio Pulsars

    NASA Astrophysics Data System (ADS)

    Beskin, V. S.; Chernov, S. V.; Gwinn, C. R.; Tchekhovskoy, A. A.

    2015-10-01

    Almost 50 years after radio pulsars were discovered in 1967, our understanding of these objects remains incomplete. On the one hand, within a few years it became clear that neutron star rotation gives rise to the extremely stable sequence of radio pulses, that the kinetic energy of rotation provides the reservoir of energy, and that electromagnetic fields are the braking mechanism. On the other hand, no consensus regarding the mechanism of coherent radio emission or the conversion of electromagnetic energy to particle energy yet exists. In this review, we report on three aspects of pulsar structure that have seen recent progress: the self-consistent theory of the magnetosphere of an oblique magnetic rotator; the location, geometry, and optics of radio emission; and evolution of the angle between spin and magnetic axes. These allow us to take the next step in understanding the physical nature of the pulsar activity.

  13. CURVATURE-DRIFT INSTABILITY FAILS TO GENERATE PULSAR RADIO EMISSION

    SciTech Connect

    Kaganovich, Alexander; Lyubarsky, Yuri

    2010-10-01

    The curvature-drift instability has long been considered as a viable mechanism for pulsar radio emission. We reconsidered this mechanism by finding an explicit solution describing the propagation of short electromagnetic waves in a plasma flow along curved magnetic field lines. We show that even though the waves could be amplified, the amplification factor remains very close to unity; therefore, this mechanism is unable to generate high brightness temperature emission from initial weak fluctuations.

  14. Multi-Spacecraft Observations of Saturn Kilometric Radio Emission

    NASA Technical Reports Server (NTRS)

    MacDowall, R. J.; Hess, R. A.

    2011-01-01

    Saturn kilometric radiation (SKR) is the auroral radio emission of Saturn, which has been observed by Voyager 1 & 2, Cassini, and Ulysses. Ulysses is able to detect the intense intervals of SKR from distances up to 10 AU, because of its long antennas (72 m tip-to-tip) and sensitive radio receivers. Studies of SKR by A. Lecacheux gave the surprising result that the periodicity of SKR varied with time; it was not locked to a planetary rotation of Saturn. This result has been confirmed by Cassini radio observations. Here, we compare Ulysses and Cassini observations of SKR to constrain a mode! for the SKR emission geometry. SpecifIcally, we examine the question - are the brighter sources of 5KR fixed in Saturn longitude or local time? The results have significant consequences for our understanding of SKR and its varying periodicity

  15. Magnetospheric structure of rotation powered pulsars

    SciTech Connect

    Arons, J. California Univ., Livermore, CA . Inst. of Geophysics and Planetary Physics)

    1991-01-07

    I survey recent theoretical work on the structure of the magnetospheres of rotation powered pulsars, within the observational constraints set by their observed spindown, their ability to power synchrotron nebulae and their ability to produce beamed collective radio emission, while putting only a small fraction of their energy into incoherent X- and gamma radiation. I find no single theory has yet given a consistent description of the magnetosphere, but I conclude that models based on a dense outflow of pairs from the polar caps, permeated by a lower density flow of heavy ions, are the most promising avenue for future research. 106 refs., 4 figs., 2 tabs.

  16. Second Harmonic Hectometric Radio Emission at Jupiter

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Gurnett, D. A.; Groene, J. B.

    1998-01-01

    Galileo has been in orbit around Jupiter since December 1995. The plasma wave instrument on board the spacecraft has occasionally detected a rotationally modulated attenuation band in the hectometric (HOM) emission that most likely is due to scattering of the radiation from density fluctuations along the Io L-shell, as reported earlier. The occurrence of the attenuation band is likely to be dependent on Io activity and the presence of density scattering centers along the Io-L-shell as well as the location of the source region. Some of the attenuation bands show clear indications of second harmonic emission. Without polarization measurements, it is difficult to place constraints on the local generation conditions based on the cyclotron maser instability, but the results imply that second harmonic emission could be present in the decametric (DAM) radiation as well. A survey of the data has revealed about 30 examples of second harmonic HOM.

  17. Second Harmonic Hectometric Radio Emission at Jupiter

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Gurnett, D. A.; Groene, J. B.

    1998-01-01

    Galileo has been in orbit around Jupiter since December 1995. The plasma wave instrument on board the spacecraft has occasionally detected a rotationally modulated attenuation band in the hectometric (HOM) emission that most likely is due to scattering of the radiation from density fluctuations along the Io L-shell, as reported earlier. The occurrence of the attenuation band is likely to be dependent on Io activity and the presence of density scattering centers along the Io L-shell as well as the location of the source region. Some of the attenuation bands show clear indications of second harmonic emission. Without polarization measurements, it is difficult to place constraints on the local generation conditions based on the cyclotron maser instability, but the results imply that second harmonic emission could be present in the decametric (DAM) radiation as well. A survey of the data has revealed about 30 examples of second harmonic HOM.

  18. Young gamma-ray pulsar: from modeling the gamma-ray emission to the particle-in-cell simulations of the global magnetosphere

    NASA Astrophysics Data System (ADS)

    Brambilla, Gabriele; Kalapotharakos, Constantions; Timokhin, Andrey; Kust Harding, Alice; Kazanas, Demosthenes

    2016-04-01

    Accelerated charged particles flowing in the magnetosphere produce pulsar gamma-ray emission. Pair creation processes produce an electron-positron plasma that populates the magnetosphere, in which the plasma is very close to force-free. However, it is unknown how and where the plasma departs from the ideal force-free condition, which consequently inhibits the understanding of the emission generation. We found that a dissipative magnetosphere outside the light cylinder effectively reproduces many aspects of the young gamma-ray pulsar emission as seen by the Fermi Gamma-ray Space Telescope, and through particle-in-cell simulations (PIC), we started explaining this configuration self-consistently. These findings show that, together, a magnetic field structure close to force-free and the assumption of gamma-ray curvature radiation as the emission mechanism are strongly compatible with the observations. Two main issues from the previously used models that our work addresses are the inability to explain luminosity, spectra, and light curve features at the same time and the inconsistency of the electrodynamics. Moreover, using the PIC simulations, we explore the effects of different pair multiplicities on the magnetosphere configurations and the locations of the accelerating regions. Our work aims for a self-consistent modeling of the magnetosphere, connecting the microphysics of the pair-plasma to the global magnetosphere macroscopic quantities. This direction will lead to a greater understanding of pulsar emission at all wavelengths, as well as to concrete insights into the physics of the magnetosphere.

  19. Galileo Direction Finding of Jovian Radio Emissions

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.

    1998-01-01

    The Galileo spacecraft, in orbit about Jupiter, has observed distinct spin modulation of plasma wave emissions near the Ganymede (G1 and G2) encounters in the frequency range from about 100 kHz to approximately 6 MHz. Assuming circularly polarized, transverse electromagnetic radiation, we have used the spin modulation of the sweep-frequency receivers of the electric dipole antenna over many spins to estimate the source location in the spin plane of the spacecraft. Hectometric (HOM) and decametric (DAM) emission is observed by Galileo as a general and continuous background with frequent bursts that last tens of minutes and can be separated by minutes or hours. We have analyzed HOM and DAM emissions observed near Jupiter just after the GI and G2 encounters, including two HOM/DAM "arc" signatures observed after the G2 encounter. These latter appear to be low-frequency extensions of DAM arcs, with source regions along either the Io or the Ganymede flux tube. While the uncertainties associated with the data analysis do not allow a precise source location, the HOM/DAM emission observed near the G1 and G2 encounters is consistent with a gyroresonant source region, but it is necessary to require refraction due to the Io torus to understand the results. To explain emission from apparent source regions above a gyroresonant source region, wave refraction from asymmetries in the Io plasma torus that extend along magnetic field lines is postulated. Alternatively, if such torus density asymmetries do not exist, emission with sources above a gyroresonant source region would require another free-energy source such as energetic plasma beams in the presence of density gradients or temperature anisotropies.

  20. Coincident bursts of auroral kilometric radiation and VLF emissions associted with a type 3 solar radio noise event

    NASA Technical Reports Server (NTRS)

    Rosenberg, T. J.; Singh, S.; Wu, C. S.; Labelle, J.; Treumann, R. A.; Inan, U. S.; Lanzerotti, L. J.

    1995-01-01

    This paper examines an isolated magnetospheric VLF/radio noise event that is highly suggestive of the triggering of terrestrial auroral kilometric radiation (AKR) bu solar type III radio emission and of a close relation between AKR and broadband hiss. The solar type III burst was measured on polar HF riometers and was coincident with local dayside VLF/LF noise emission bursts at South Pole station. It was also coincident with AKR bursts detected onthe AMPTE/IRM satellite, at the same magnetic local time as South Pole. On the basis of the close association of AKR and VLF bursts, and from geometric considerations relating to wave propagation, it is likely that the AKR source was on the dayside and on field lines near South Pole station. The general level of geomagnetic activity was very low. However, an isolated magnetic impulse event (MIE) accompanied by a riometer absorption pulse was in progress when all of the VLF/radio noise bursts occurred. The very close association of the typew III burst at HF with the AKR is consistent with external stimulation of the AKR, is different, more immediate,triggering process than that implied by Calvert (1981) is invoked. It is suggested here that some of the HF solar radiant energy may decay into waves with frequences comparable to those of the AKR by paraetric excitation or some other process, thus providing the few background photons required for the generation of AKR by the WU and Lee (1979) cyclotron maser instability. The AKR, perhaps by modifying the magnetospheric electron velocity distribution, might have produced the observed VLF emissions. Alternatively, the VLF emissions may have arisen from the same anisotropic and unstable electron distribution function responsible for the AKR.

  1. Coincident bursts of auroral kilometric radiation and VLF emissions associated with a type III solar radio noise event

    SciTech Connect

    Rosenberg, T.J.; Singh, S.; Wu, C.S.; LaBelle, J.; Treumann, R.A.; Inan, U.S.; Lanzerotti, L.J.

    1995-01-01

    This paper examines an isolated magnetospheric VLF/radio noise event that is highly suggestive of the triggering of terrestrial auroral kilometric radiation (AKR) by solar type III radio emission and of a close relation between AKR and broadband hiss. The solar type III burst was measured on polar HF riometers and was coincident with local dayside VLF/LF noise emission bursts at South Pole station. It was also coincident with AKR bursts detected on the AMPTE/IRM satellite, at the same magnetic local time as South Pole. On the basis of the close association of AKR and VLF bursts, and from geometrical considerations relating to wave propagnation, it is likely that the AKR source was on the dayside and on field lines near South Pole station. The general level of geomagnetic activity was very low. However, an isolated magnetic impulse event (MIE) accompanied by a riometer absorption pulse was in progress when all of the VLF/radio noise bursts occurred. The very close association of the type III burst at HF with the AKR is consistent with external stimulation of the AKR, if a different, more immediate, triggering process than that implied by Calvert is invoked. It is suggested here that some of the HF solar radiant energy may decay into waves with frequencies comparable to those of the AKR by parametric excitation or some other process, thus providing the few background photons required for the generation of AKR by the Wu and Lee cyclotron maser instability. The AKR, perhaps by modifying the magnetospheric electron velocity distribution, might have produced the observed VLF emissions. Alternatively, the VLF emissions may have arisen from the same anisotropic and unstable electron distribution function responsible for the AKR. 41 refs., 5 figs.

  2. Quasar feedback and the origin of radio emission in radio-quiet quasars

    NASA Astrophysics Data System (ADS)

    Zakamska, Nadia L.; Greene, Jenny E.

    2014-07-01

    We analyse Sloan Digital Sky Survey spectra of 568 obscured luminous quasars. The [O III] λ5007 Å emission line shows blueshifts and blue excess, indicating that some of the narrow-line gas is undergoing an organized outflow. The velocity width containing 90 per cent of line power ranges from 370 to 4780 km s-1, suggesting outflow velocities up to ˜2000 km s-1, and is strongly correlated with the radio luminosity among the radio-quiet quasars. We propose that radio emission in radio-quiet quasars is due to relativistic particles accelerated in the shocks within the quasar-driven outflows; star formation in quasar hosts is insufficient to explain the observed radio emission. The median radio luminosity of the sample of νLν[1.4 GHz] = 1040 erg s-1 suggests a median kinetic luminosity of the quasar-driven wind of Lwind = 3 × 1044 erg s-1, or about 4 per cent of the estimated median bolometric luminosity Lbol = 8 × 1045 erg s-1. Furthermore, the velocity width of [O III] is positively correlated with mid-infrared luminosity, which suggests that outflows are ultimately driven by the radiative output of the quasar. Emission lines characteristic of shocks in quasi-neutral medium increase with the velocity of the outflow, which we take as evidence of quasar-driven winds propagating into the interstellar medium of the host galaxy. Quasar feedback appears to operate above the threshold luminosity of Lbol ˜ 3 × 1045 erg s-1.

  3. High-resolution radio emission from RCW 49/Westerlund 2

    NASA Astrophysics Data System (ADS)

    Benaglia, P.; Koribalski, B.; Peri, C. S.; Martí, J.; Sánchez-Sutil, J. R.; Dougherty, S. M.; Noriega-Crespo, A.

    2013-11-01

    Aims: The HII region RCW 49 and its ionizing cluster form an extensive, complex region that has been widely studied at infrared (IR) and optical wavelengths. The Molonglo 843 MHz and Australia Telescope Compact Array data at 1.4 and 2.4 GHz showed two shells. Recent high-resolution IR imaging revealed a complex dust structure and ongoing star formation. New high-bandwidth and high-resolution data of the RCW 49 field have been obtained to survey the radio emission at arcsec scale and investigate the small-scale features and nature of the HII region. Methods: Radio observations were collected with the new 2-GHz bandwidth receivers and the CABB correlator of the Australia Telescope Compact Array [ATCA], at 5.5 and 9.0 GHz. In addition, archival observations at 1.4 and 2.4 GHz have been re-reduced and re-analyzed in conjunction with observations in the optical, IR, X-ray, and gamma-ray regimes. Results: The new 2-GHz bandwidth data result in the most detailed radio continuum images of RCW 49 to date. The radio emission closely mimics the near-IR emission observed by Spitzer, showing pillars and filaments. The brightest continuum emission comes from the region known as the bridge. The overall flattish spectral index is typically consistent with a free-free emission mechanism. However, hints of nonthermal components are also present in the bridge. An interesting jet-like structure surrounded by a bubble feature whose nature is still unclear has been discovered close to the Westerlund 2 core. Two apparent bow shocks and a number of discrete sources have been detected as well in the surroundings of RCW 49. In addition, we also report on and discuss the possible detection of a hydrogen recombination line. Conclusions: The radio results support an association between the cm continuum and molecular emission. The detection of the radio recombination line kinematically favors a RCW 49 distance of 6-7 kpc. If the negative spectral indices measured at the bridge should be

  4. Non-dipolar magnetic field models and patterns of radio emission: Uranus and Neptune compared

    NASA Technical Reports Server (NTRS)

    Evans, D. R.

    1994-01-01

    The magnetic field geometries of Uranus and Neptune are superficially similar, and are similarly unlike those of other planets: the field strengths are similar, and they contain extraordinarily large non-dipolar components. As a corollary, the best dipolar field models of each of the two planets comprises a dipole that is considerably offset from the planetary center and tilted away from the rotational axis. However, in other respects the best field models of the two planets are quite different. Uranus has a quadrupole model in which all the terms are well determined and in which none of the higher order terms is determined. To represent the magnetometer data acquired during Voyager's Neptune encounter requires a model of order 8 (instead of Uranus' order 2), yet many of the coefficients are poorly determined. A second model, an octupole model comprising the terms up to order three of the order 8 model, has been suggested by the magnetometer team as being useful; its use, however, is limited only to the region outside of about 2R(exp N), whereas planetary radio emissions have their sources well inside this surface. Computer code has been written that permits an analysis of the detailed motion of low energy charged particles moving in general planetary magnetic fields. At Uranus, this code reveals the existence of an isolated region of the inner magnetosphere above the day side in which particles may be trapped, separate from the more general magnetospheric trapping. An examination of the so-call ordinary mode uranian radio emissions leads us to believe that these emissions are in fact extraordinary mode emissions coming from particles trapped in this isolated region. A similar attempt to discover trapping regions at Neptune has proved, unfortunately, to be impossible. This arises from three factors: (1) the computation needed to track particles in an eighth order field is more than an order of magnitude greater than that needed to perform a similar calculation in a

  5. Solar wind influence on Jupiter's magnetosphere and aurora

    NASA Astrophysics Data System (ADS)

    Vogt, Marissa; Gyalay, Szilard; Withers, Paul

    2016-04-01

    Jupiter's magnetosphere is often said to be rotationally driven, with strong centrifugal stresses due to large spatial scales and a rapid planetary rotation period. For example, the main auroral emission at Jupiter is not due to the magnetosphere-solar wind interaction but is driven by a system of corotation enforcement currents that arises to speed up outflowing Iogenic plasma. Additionally, processes like tail reconnection are also thought to be driven, at least in part, by processes internal to the magnetosphere. While the solar wind is generally expected to have only a small influence on Jupiter's magnetosphere and aurora, there is considerable observational evidence that the solar wind does affect the magnetopause standoff distance, auroral radio emissions, and the position and brightness of the UV auroral emissions. We will report on the results of a comprehensive, quantitative study of the influence of the solar wind on various magnetospheric data sets measured by the Galileo mission from 1996 to 2003. Using the Michigan Solar Wind Model (mSWiM) to predict the solar wind conditions upstream of Jupiter, we have identified intervals of high and low solar wind dynamic pressure. We can use this information to quantify how a magnetospheric compression affects the magnetospheric field configuration, which in turn will affect the ionospheric mapping of the main auroral emission. We also consider whether there is evidence that reconnection events occur preferentially during certain solar wind conditions or that the solar wind modulates the quasi-periodicity seen in the magnetic field dipolarizations and flow bursts.

  6. Analysis of Jovian low frequency radio emissions

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.

    1985-01-01

    The density of ions in the Io plasma torus and the scattering of these ions by low frequency electromagnetic emissions detected by Voyager 1 were studied. The ion density profile was investigated using whistler dispersion measurements provided by the Voyager plasma instrument. The scale height and absolute density of H+ ions in the vicinity of the plasma torus were determined by combining the measured plasma densities with the whistler dispersion measurements. A theoretical analysis of the modes of propagation of low frequency electromagnetic emissions in the torus was undertaken. Polarization reversal effects and rough estimates of the ion diffusion coefficient were utilized. Numerical evaluation of the ion diffusion coefficients in the torus were made using the observed Voyager 1 wave intensities. Results show that the observed wave intensities produce significant ion diffusion effects in the ion torus.

  7. Striated spectral activity in Jovian and Saturnian radio emission

    NASA Technical Reports Server (NTRS)

    Thieman, James R.; Alexander, Joseph K.; Arias, Tomas A.; Staelin, David H.

    1988-01-01

    Examination of high time resolution frequency-time spectrograms of radio emission measured near the Voyager 1 and 2 encounters with Jupiter reveals occasional striation patterns within the normally diffuse hectometric radiation. The patterns are characterized by distinctive banded structures of enhanced intensity meandering in frequency over time scales of minutes to tens of minutes. This banded form of striated spectral activity (SSA) has an occurrence probability of the order of 5 percent during the three weeks before and after Jupiter encounters. Plots of single 6-s frequency sweeps often exhibit a slow rise in intensity followed by a sharp drop-off in each band as frequency decreases. Banded SSA is often preceded or followed by chaotic SSA in which banding of the emission becomes discontinuous or unrecognizable, although the intensity modulation is still evident. Although SSA normally occurs in the frequency range of roughly 0.2-1.0 MHz, similar but longer-lasting patterns have been found occasionally in decametric emission above 10 MHz. Analogous modulation has also been observed in the Saturnian radio emission, suggesting that SSA may be a common feature intrinsic to the radio emission at both planets.

  8. New observations of the low frequency interplanetary radio emissions

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Gurnett, D. A.

    1991-01-01

    Recent Voyager 1 observations reveal reoccurrences of the low frequency interplanetary radio emissions. Three of the new events are weak transient events which rise in frequency from the range of 2-2.5 kHz to about 3 kHz with drift rates of approximately 1.5 kHz/year. The first of the transient events begins in mid-1989 and the more recent pair of events both were first detected in late 1991. In addition, there is an apparent onset of a 2-kHz component of the emission beginning near day 70 of 1991. The new transient emissions are barely detectable on Voyager 1 and are below the threshold of detectability on Voyager 2, which is less sensitive than Voyager 1. The new activity provides new opportunities to test various theories of the triggering, generation, and propagation of the outer heliospheric radio emissions and may signal a response of the source of the radio emissions to the increased solar activity associated with the recent peak in the solar cycle.

  9. Shocks in nova outflows - II. Synchrotron radio emission

    NASA Astrophysics Data System (ADS)

    Vlasov, Andrey; Vurm, Indrek; Metzger, Brian D.

    2016-11-01

    The discovery of GeV gamma-rays from classical novae indicates that shocks and relativistic particle acceleration are energetically key in these events. Further evidence for shocks comes from thermal keV X-ray emission and an early peak in the radio light curve on a time-scale of months with a brightness temperature which is too high to result from freely expanding photoionized gas. Paper I developed a one-dimensional model for the thermal emission from nova shocks. This work concluded that the shock-powered radio peak cannot be thermal if line cooling operates in the post-shock gas at the rate determined by collisional ionization equilibrium. Here we extend this calculation to include non-thermal synchrotron emission. Applying our model to three classical novae, we constrain the amplification of the magnetic field ɛB and the efficiency ɛe of accelerating relativistic electrons of characteristic Lorentz factor γ ˜ 100. If the shocks are radiative (low velocity vsh ≲ 1000 km s-1) and cover a large solid angle of the nova outflow, as likely characterize those producing gamma-rays, then values of ɛe ˜ 0.01-0.1 are required to achieve the peak radio brightness for ɛB = 10-2. Such high efficiencies exclude secondary pairs from pion decay as the source of the radio-emitting particles, instead favouring the direct acceleration of electrons at the shock. If the radio-emitting shocks are instead adiabatic (high velocity), as likely characterize those responsible for the thermal X-rays, then much higher brightness temperatures are possible, allowing the radio-emitting shocks to cover a smaller outflow solid angle.

  10. Terrestrial kilometric radiation: 2: Emission from the magnetospheric cusp and dayside magnetosheath

    NASA Technical Reports Server (NTRS)

    Alexander, J. K.; Kaiser, M. L.

    1976-01-01

    Measurements of the location of sources of terrestrial kilometric radiation obtained with the lunar orbiting Radio Astronomy Explorer-2 satellite have revealed a class of emission associated with the cusp and dayside magnetosheath. At frequencies near 250 kHz this emission is observed at radial distances between 2 and 20 R sub E at magnetic latitudes of 75 deg to 80 deg and is most often detected during periods of auroral activity (AE or approximately = 250) and southward orientation of the interplanetary magnetic field vertical component. During very disturbed times, the emission at the lowest frequencies ( or approximately = 200 kHz) appears to come from the dayside magnetosheath at distances or approximately = 12 R sub E. Whenever the geomagnetic dipole is tilted significantly with respect to the ecliptic pole ( or approximately = 10 deg) the cusp emission is confined to the hemisphere containing the sub solar point. The measurements also suggest that the region of cusp emission is rather narrowly confined in longitude to within + or - a few hours of the noon meridian.

  11. Source characteristics of Jovian narrow-band kilometric radio emissions

    NASA Astrophysics Data System (ADS)

    Reiner, M. J.; Fainberg, J.; Stone, R. G.; Kaiser, M. L.; Desch, M. D.; Manning, R.; Zarka, P.; Pedersen, B.-M.

    1993-07-01

    New observations of Jovian narrow-band kilometric (nKOM) radio emissions were made by the Unified Radio and Plasma Wave (URAP) experiment on the Ulysses spacecraft during the Ulysses-Jupiter encounter in early February 1992. These observations have demonstrated the unique capability of the URAP instrument for determining both the direction and polarization of nKOM radio sources. An important result is the discovery that nKOM radio emission originates from a number of distinct sources located at different Jovian longitudes and at the inner and outermost regions of the Io plasma torus. These sources have been tracked for several Jovian rotations, yielding their corotational lags, their spatial and temporal evolution, and their radiation characteristics at both low latitudes far from Jupiter and at high latitudes near the planet. Both right-hand and left-hand circularly polarized nKOM sources were observed. The polarizations observed for sources in the outermost regions of the torus seem to favor extraordinary mode emission.

  12. Virtual observatory tools and amateur radio observations supporting scientific analysis of Jupiter radio emissions

    NASA Astrophysics Data System (ADS)

    Cecconi, Baptiste; Hess, Sebastien; Le Sidaner, Pierre; Savalle, Renaud; Stéphane, Erard; Coffre, Andrée; Thétas, Emmanuel; André, Nicolas; Génot, Vincent; Thieman, Jim; Typinski, Dave; Sky, Jim; Higgins, Chuck; Imai, Masafumi

    2016-04-01

    In the frame of the preparation of the NASA/JUNO and ESA/JUICE (Jupiter Icy Moon Explorer) missions, and the development of a planetary sciences virtual observatory (VO), we are proposing a new set of tools directed to data providers as well as users, in order to ease data sharing and discovery. We will focus on ground based planetary radio observations (thus mainly Jupiter radio emissions), trying for instance to enhance the temporal coverage of jovian decametric emission. The data service we will be using is EPN-TAP, a planetary science data access protocol developed by Europlanet-VESPA (Virtual European Solar and Planetary Access). This protocol is derived from IVOA (International Virtual Observatory Alliance) standards. The Jupiter Routine Observations from the Nancay Decameter Array are already shared on the planetary science VO using this protocol, as well as data from the Iitate Low Frquency Radio Antenna, in Japan. Amateur radio data from the RadioJOVE project is also available. The attached figure shows data from those three providers. We will first introduce the VO tools and concepts of interest for the planetary radioastronomy community. We will then present the various data formats now used for such data services, as well as their associated metadata. We will finally show various prototypical tools that make use of this shared datasets.

  13. Detection of thermal radio emission from a single coronal giant

    NASA Astrophysics Data System (ADS)

    O'Gorman, E.; Harper, G. M.; Vlemmings, W.

    2017-02-01

    We report the detection of thermal continuum radio emission from the K0 III coronal giant Pollux (β Gem) with the Karl G. Jansky Very Large Array (VLA). The star was detected at 21 and 9 GHz with flux density values of 150 ± 21 and 43 ± 8 μJy, respectively. We also place a 3σrms upper limit of 23 μJy for the flux density at 3 GHz. We find the stellar disk-averaged brightness temperatures to be approximately 9500, 15 000, and <71 000 K, at 21, 9, and 3 GHz, respectively, which are consistent with the values of the quiet Sun. The emission is most likely dominated by optically thick thermal emission from an upper chromosphere at 21 and 9 GHz. We discuss other possible additional sources of emission at all frequencies and show that there may also be a small contribution from gyroresonance emission above active regions, coronal free-free emission and free-free emission from an optically thin stellar wind, particularly at the lower frequencies. We constrain the maximum mass-loss rate from Pollux to be less than 3.7 × 10-11M⊙ yr-1 (assuming a wind terminal velocity of 215 km s-1), which is about an order of magnitude smaller than previous constraints for coronal giants and is in agreement with existing predictions for the mass-loss rate of Pollux. These are the first detections of thermal radio emission from a single (i.e., non-binary) coronal giant and demonstrate that low activity coronal giants like Pollux have atmospheres at radio frequencies akin to the quiet Sun.

  14. RFID Transponders' Radio Frequency Emissions in Aircraft Communication and Navigation Radio Bands

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Williams, Reuben A.; Koppen, Sandra V.; Salud, Maria Theresa P.

    2006-01-01

    Radiated emissions in aircraft communication and navigation bands are measured from several active radio frequency identification (RFID) tags. The individual tags are different in design and operations. They may also operate in different frequency bands. The process for measuring the emissions is discussed, and includes tag interrogation, reverberation chamber testing, and instrument settings selection. The measurement results are described and compared against aircraft emission limits. In addition, interference path loss for the cargo bays of passenger aircraft is measured. Cargo bay path loss is more appropriate for RFID tags than passenger cabin path loss. The path loss data are reported for several aircraft radio systems on a Boeing 747 and an Airbus A320.

  15. A Search for Radio Emission from Nearby Exoplanets

    NASA Astrophysics Data System (ADS)

    Maps, Amethyst D.; Bastian, Timothy S.; Beasley, Anthony J.

    2017-01-01

    Since the discovery of the first extrasolar planet orbiting a main sequence star more than 20 years ago, the study of exoplanets has become a burgeoning field with more than 3300 confirmed extrasolar planets now known. A variety of techniques has been used to discover exoplanets orbiting main sequence stars and to deduce their properties: timing, radial velocities, direct imaging, microlensing, and transits in the optical/IR bands. Absent from this list so far is the detection of exoplanets at radio wavelengths, but not for lack of trying. Searches for radio emission from exoplanets predate their discovery (Winglee et al. 1986) and have continued sporadically to this day. The majority of searches for radio emission from exoplanets has searched for coherent radio emission. It is indeed the case that in our own solar system, all magnetized planets are powerful radio emitters, the likely emission mechanism being the cyclotron maser instability. The outstanding example is Jupiter, which emits 1010-1011 W at decameter wavelengths (frequencies <40 MHz). If there are Jupiter-like planets in other solar systems, many must surely emit CMI radiation. The emitted radiation could be orders of magnitude more intense than Jupiter’s if the interaction between the magnetized planet and the wind from the primary star is stronger than the Sun/Jupiter interaction - due, for example, to a more powerful wind and/or the planet being closer to the star.We have initiated a new search for radio emission from exoplanets, focusing on all known exoplanetary systems within 20 pc - more than 50 systems containing nearly 100 planets using the Jansky Very Large Array (JVLA) in three frequency bands: 1-2 GHz, 2-4 GHz, and 4-8 GHz with a target sensitivity of ~10 microJy. We have completed the 2-4 GHz survey and report our preliminary results, which include the detection of two systems. We discuss whether the emission is from a planet or from the star and the implications of our conclusions for

  16. A New Solar Radio Emission Component Observed at Hectometric Wavelengths

    NASA Astrophysics Data System (ADS)

    Reiner, M.; Kaiser, M.; Fainberg, J.

    2003-04-01

    From May 17 to 22, 2002 a highly circularly polarized solar radio source was observed by the WAVES receivers on the Wind spacecraft. This unique event, which became quite intense and definite after May 19 and which was observed continuously for 6 days, was characterized by fine frequency structures, 1 to 2 hour amplitude periodicities, and a peaked frequency spectrum. Indeed, this emission has characteristics more typical of planetary emissions than of solar emissions. This is the only such event observed by Wind/WAVES in its 8 years of operation. (The only other example of an event of similar nature may have been observed more than 20 years ago by the ISEE-3 spacecraft.) The direction-finding analysis for this event indicates a relatively small radio source that may lie somewhere between 0.06 and 0.36 AU from the sun. The radiation from this event was very weak at the onset, being nearly an order of magnitude below the galactic background radiation level. It is speculated that this radio event may be a unique hectometric manifestation of a moving type IV burst. The radiation mechanism is unknown--possibilities include plasma emission, gyro-synchrotron, and cyclotron maser.

  17. Simultaneous Observation of Jovian Radio Emissions by Cassini and Wind

    NASA Technical Reports Server (NTRS)

    Kaiser, M. L.; Kurth, W. S.; Hospodarsky, G. B.; Gurnett, D. A.

    1999-01-01

    During the Cassini instrument checkout interval in January 1999 as the spacecraft was making a distant (0.6 AU) swing by Earth, the radio and plasma wave receiver (RPWS) detected radio emission from the sun, Earth, and Jupiter, the latter including both the hectometric (HOM) and decametric (DAM) components. The WAVES experiment on the Wind spacecraft in orbit near Earth was also making observations of Jupiter at this same time. By combining the RPWS and WAVES data sets, we are able to provide some insight into the instantaneous beaming of Jovian radio emissions. As seen by Jupiter, Cassini and Wind were a few degrees apart during this period, yet the correlation between Jovian DAM arcs observed by the two spacecraft suggests that the beam width is even narrower and does not simultaneously illuminate both. The only earlier spacecraft capable, in principle, of making these observations were Voyager-1 and 2, but their sensitivity to DAM emissions was too limited to reliably measure the instantaneous beaming. The beam width implied by the RPWS-WAVES measurements is approximately the same as the angle through which Jupiter rotates while an arc (at a fixed frequency) is visible. The HOM Jovian emissions, on the other hand, seem similar as observed by RPWS and WAVES, consistent with earlier Wind-Ulysses measurements indicating a somewhat broader beam width.

  18. The low-energy plasma in the Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Belcher, J. W.

    1983-01-01

    Burke and Franklin (1955) discovered radio emissions from Jupiter at 22.2 MHz. Subsequent observations established the strong control of the decametric emissions by the satellite Io. The Voyager encounters with Jupiter in 1979 have resulted in a dramatic increase in detailed knowledge of the plasma properties of the Jovian magnetosphere. The Io plasma torus is discussed, taking into account the Voyager plasma science experiment, positive-ion temperatures in the torus, electron distribution functions in the torus, elementary-charge concentrations in the torus, positive-ion composition in the torus, and plasma velocities in the torus. The Io flux tube is considered along with the middle magnetosphere and the outer magnetosphere. Attention is given to the sources of plasma, aspects of diffusive transport, questions of inertial loading, and the existence of nonazimuthal flow velocities in the middle magnetosphere.

  19. ELECTRON-BEAM-INDUCED RADIO EMISSION FROM ULTRACOOL DWARFS

    SciTech Connect

    Yu, S.; Doyle, J. G.; Kuznetsov, A.; Hallinan, G.; Antonova, A.; MacKinnon, A. L.; Golden, A.

    2012-06-10

    We present the numerical simulations for an electron-beam-driven and loss-cone-driven electron-cyclotron maser (ECM) with different plasma parameters and different magnetic field strengths for a relatively small region and short timescale in an attempt to interpret the recent discovered intense radio emission from ultracool dwarfs. We find that a large amount of electromagnetic (EM) field energy can be effectively released from the beam-driven ECM, which rapidly heats the surrounding plasma. A rapidly developed high-energy tail of electrons in velocity space (resulting from the heating process of the ECM) may produce the radio continuum depending on the initial strength of the external magnetic field and the electron beam current. Both significant linear polarization and circular polarization of EM waves can be obtained from the simulations. The spectral energy distributions of the simulated radio waves show that harmonics may appear from 10 to 70{nu}{sub pe} ({nu}{sub pe} is the electron plasma frequency) in the non-relativistic case and from 10 to 600{nu}{sub pe} in the relativistic case, which makes it difficult to find the fundamental cyclotron frequency in the observed radio frequencies. A wide frequency band should therefore be covered by future radio observations.

  20. Discovery of Circularly Polarized Radio Emission from SS 433.

    PubMed

    Fender; Rayner; Norris; Sault; Pooley

    2000-02-10

    We report the discovery of circularly polarized radio emission from the radio-jet X-ray binary SS 433 with the Australia Telescope Compact Array. The flux density spectrum of the circular polarization, clearly detected at four frequencies between 1 and 9 GHz, is of the form V~nu-0.9+/-0.1. Multiple components in the source and a lack of very high spatial resolution do not allow a unique determination of the origin of the circular polarization or of the spectrum of fractional polarization. However, we argue that the emission is likely to arise in the inner regions of the binary, possibly via propagation-induced conversion of linear to circular polarization, and the fractional circular polarization of these regions may be as high as 10%. Observations such as these have the potential to help us investigate the composition, whether pairs or baryonic, of the ejecta from X-ray binaries.

  1. Periodic Bursts of Coherent Radio Emission from an Ultracool Dwarf

    DTIC Science & Technology

    2007-06-15

    unidentified cool, dim brown dwarf or extrasolar planet in the solar neighborhood. In particular, the period of 1.28 hr observed for the bursts from...coherent radiation detected from the magnetized planets in our solar system (Zarka 1998; Ergun et al. 2000). However, studies of the electron...maser instability is the mechanism deemed responsible for the coherent radio emission detected from the magnetized planets in our solar system (Zarka 1998

  2. Radio emission from Supernovae and High Precision Astrometry

    NASA Astrophysics Data System (ADS)

    Perez-Torres, M. A.

    1999-11-01

    The present thesis work makes contributions in two scientific fronts: differential astrometry over the largest angular scales ever attempted (approx. 15 arcdegrees) and numerical simulations of radio emission from very young supernovae. In the first part, we describe the results of the use of very-long-baseline interferometry (VLBI) in one experiment designed to measure with very high precision the angular distance between the radio sources 1150+812 (QSO) and 1803+784 (BL Lac). We observed the radio sources on 19 November 1993 using an intercontinental array of radio telescopes, which simultaneously recorded at 2.3 and 8.4 GHz. VLBI differential astrometry is capable, Nature allowing, of yielding source positions with precisions well below the milliarcsecond level. To achieve this precision, we first had to accurately model the rotation of the interferometric fringes via the most precise models of Earth Orientation Parameters (EOP; precession, polar motion and UT1, nutation). With this model, we successfully connected our phase delay data at both frequencies and, using difference astrometric techniques, determined the coordinates of 1803+784 relative to those of 1150+812-within the IERS reference frame--with an standard error of about 0.6 mas in each coordinate. We then corrected for several effects including propagation medium (mainly the atmosphere and ionosphere), and opacity and source-structure effects within the radio sources. We stress that our dual-frequency measurements allowed us to accurately subtract the ionosphere contribution from our data. We also used GPS-based TEC measurements to independently find the ionosphere contribution, and showed that these contributions agree with our dual-frequency measurements within about 2 standard deviations in the less favorables cases (the longest baselines), but are usually well within one standard deviation. Our estimates of the relative positions, whether using dual-frequency-based or GPS-based ionosphere

  3. EMISSION PATTERNS AND LIGHT CURVES OF GAMMA RAYS IN THE PULSAR MAGNETOSPHERE WITH A CURRENT-INDUCED MAGNETIC FIELD

    SciTech Connect

    Li, X.; Zhang, L.

    2011-12-20

    We study the emission patterns and light curves of gamma rays in the pulsar magnetosphere with a current-induced magnetic field perturbation. Based on the solution of a static dipole with the magnetic field induced by some currents (perturbation field), we derive the solutions of a static as well as a retarded dipole with the perturbation field in the Cartesian coordinates. The static (retarded) magnetic field can be expressed as the sum of the pure static (retarded) dipolar magnetic field and the static (retarded) perturbation field. We use the solution of the retarded magnetic field to investigate the influence of the perturbation field on the emission patterns and light curves, and apply the perturbed solutions to calculate the gamma-ray light curves for the case of the Vela pulsar. We find that the perturbation field induced by the currents will change the emission patterns and then the light curves of gamma rays, especially for a larger perturbation field. Our results indicate that the perturbation field created by the outward-flowing (inward-flowing) electrons (positrons) can decrease the rotation effect on the magnetosphere and makes emission pattern appear to be smoother relative to that of the pure retarded dipole, but the perturbation field created by the outward-flowing (inward-flowing) positrons (electrons) can make the emission pattern less smooth.

  4. Radio emission from the magnetic equator of Uranus

    NASA Technical Reports Server (NTRS)

    Kaiser, M. L.; Desch, M. D.; Connerney, J. E. P.

    1989-01-01

    The major observational characteristics of the smooth, narrow bandwidth component of Uranus' radio emissions are well described by sources radiating near the local electron gyrofrequency, confined to the magnetic equatorial plane and encircling the planet at radial distances of approximately 2 to 3 R(U). The most intense emission appears to be generated in association with the epsilon ring at 2.0 R(U) radial distance. A cold electron density of less than or equal to 4/cu cm are inferred in this region.

  5. The radiation belt origin of Uranus' nightside radio emission

    NASA Technical Reports Server (NTRS)

    Curtis, S. A.; Desch, M. D.; Kaiser, M. L.

    1987-01-01

    On the basis of the location of the source field lines of the smooth nightside component of Uranus kilometric radiation, the most likely free energy source is the outer radiation belts. As the terminator sweeps over the magnetic north polar region, precipitation of electrons generated by solar heating of the upper atmosphere and submergence of the electron mirror points deeper in the atmosphere will create a backscattered electron distribution with an enhanced population at large pitch angles. The clocklike radio emission turns out to be a direct consequence of the terminator's control of the emission process.

  6. Radio emission from the magnetic equator of Uranus

    SciTech Connect

    Kaiser, M.L.; Desch, M.D.; Connerney, J.E.P. )

    1989-03-01

    The major observational characteristics of the smooth, narrow bandwidth component of Uranus' radio emissions are well described by sources radiating near the local electron gyrofrequency, confined to the magnetic equatorial plane and encircling the plant at radial distances of approximately 2 to 3 R{sub v}. The most intense emission appears to be generated in association with the {var epsilon} ring at 2.0 R{sub v} radial distance. The authors infer a cold electron density of {le} 4 cm{sup {minus}3} in this region.

  7. The Role of the Jet Emission in Young Radio Sources

    NASA Astrophysics Data System (ADS)

    Migliori, Giulia

    2014-07-01

    We investigated the contribution of the jet to the observed high energy emission in a sample of young and compact radio quasars. For the first time, we compared the Fermi-LAT and Chandra observations of the sample to γ-ray and X-ray luminosities predicted assuming a jet synchrotron and inverse Compton radiative model. The simulations performed for a reasonable set of model parameters and assumptions provide constraints on the minimum jet power (Ljet,kin/Ldisk >0.01), on the contribution of the jet to the X-ray emission, and on the particles to magnetic field energy density ratios.

  8. Radio Emission in Atmospheric Air Showers Measured by LOPES-30

    SciTech Connect

    Isar, P. G.

    2008-01-24

    When Ultra High Energy Cosmic Rays (UHECR) interact with particles in the Earth's atmosphere, they produce a shower of secondary particles propagating towards the ground. These relativistic particles emit synchrotron radiation in the radio frequency range when passing the Earth's magnetic field. The LOPES (LOFAR Prototype Station) experiment investigates the radio emission from these showers in detail and will pave the way to use this detection technique for large scale applications like in LOFAR (Low Frequency Array) and the Pierre Auger Observatory. The LOPES experiment is co-located and measures in coincidence with the air shower experiment KASCADE-Grande at Forschungszentrum Karlsruhe, Germany. LOPES has an absolute amplitude calibration array of 30 dipole antennas (LOPES-30). After one year of measurements of the single East-West polarization by all 30 antennas, recently, the LOPES-30 set-up was configured to perform dual-polarization measurements. Half of the antennas have been configured for measurements of the North-South polarization. Only by measuring at the same time both, the E-W and N-S polarization components of the radio emission, the geo-synchrotron effect as the dominant emission mechanism in air showers can be verified. The status of the measurements, including the absolute calibration procedure of the dual-polarized antennas as well as analysis of dual-polarized event examples are reported.

  9. Fast Radio Bursts with Extended Gamma-Ray Emission?

    NASA Astrophysics Data System (ADS)

    Murase, Kohta; Mészáros, Peter; Fox, Derek B.

    2017-02-01

    We consider some general implications of bright γ-ray counterparts to fast radio bursts (FRBs). We show that even if these manifest in only a fraction of FRBs, γ-ray detections with current satellites (including Swift) can provide stringent constraints on cosmological FRB models. If the energy is drawn from the magnetic energy of a compact object such as a magnetized neutron star, the sources should be nearby and be very rare. If the intergalactic medium is responsible for the observed dispersion measure, the required γ-ray energy is comparable to that of the early afterglow or extended emission of short γ-ray bursts. While this can be reconciled with the rotation energy of compact objects, as expected in many merger scenarios, the prompt outflow that yields the γ-rays is too dense for radio waves to escape. Highly relativistic winds launched in a precursor phase, and forming a wind bubble, may avoid the scattering and absorption limits and could yield FRB emission. Largely independent of source models, we show that detectable radio afterglow emission from γ-ray bright FRBs can reasonably be anticipated. Gravitational wave searches can also be expected to provide useful tests.

  10. Current Sheets in Pulsar Magnetospheres and Winds: Particle Acceleration and Pulsed Gamma Ray Emission

    NASA Astrophysics Data System (ADS)

    Arons, Jonathan

    The research proposed addresses understanding of the origin of non-thermal energy in the Universe, a subject beginning with the discovery of Cosmic Rays and continues, including the study of relativistic compact objects - neutron stars and black holes. Observed Rotation Powered Pulsars (RPPs) have rotational energy loss implying they have TeraGauss magnetic fields and electric potentials as large as 40 PetaVolts. The rotational energy lost is reprocessed into particles which manifest themselves in high energy gamma ray photon emission (GeV to TeV). Observations of pulsars from the FERMI Gamma Ray Observatory, launched into orbit in 2008, have revealed 130 of these stars (and still counting), thus demonstrating the presence of efficient cosmic accelerators within the strongly magnetized regions surrounding the rotating neutron stars. Understanding the physics of these and other Cosmic Accelerators is a major goal of astrophysical research. A new model for particle acceleration in the current sheets separating the closed and open field line regions of pulsars' magnetospheres, and separating regions of opposite magnetization in the relativistic winds emerging from those magnetopsheres, will be developed. The currents established in recent global models of the magnetosphere will be used as input to a magnetic field aligned acceleration model that takes account of the current carrying particles' inertia, generalizing models of the terrestrial aurora to the relativistic regime. The results will be applied to the spectacular new results from the FERMI gamma ray observatory on gamma ray pulsars, to probe the physics of the generation of the relativistic wind that carries rotational energy away from the compact stars, illuminating the whole problem of how compact objects can energize their surroundings. The work to be performed if this proposal is funded involves extending and developing concepts from plasma physics on dissipation of magnetic energy in thin sheets of

  11. Constraining Substellar Magnetic Dynamos using Auroral Radio Emission

    NASA Astrophysics Data System (ADS)

    Kao, Melodie; Hallinan, Gregg; Pineda, J. Sebastian; Escala, Ivanna; Burgasser, Adam J.; Stevenson, David J.

    2017-01-01

    An important outstanding problem in dynamo theory is understanding how magnetic fields are generated and sustained in fully convective stellar objects. A number of models for possible dynamo mechanisms in this regime have been proposed but constraining data on magnetic field strengths and topologies across a wide range of mass, age, rotation rate, and temperature are sorely lacking, particularly in the brown dwarf regime. Detections of highly circularly polarized pulsed radio emission provide our only window into magnetic field measurements for objects in the ultracool brown dwarf regime. However, these detections are very rare; previous radio surveys encompassing ˜60 L6 or later targets have yielded only one detection. We have developed a selection strategy for biasing survey targets based on possible optical and infrared tracers of auroral activity. Using our selection strategy, we previously observed six late L and T dwarfs with the Jansky Very Large Array (VLA) and detected the presence of highly circularly polarized radio emission for five targets. Our initial detections at 4-8 GHz provided the most robust constraints on dynamo theory in this regime, confirming magnetic fields >2.5 kG. To further develop our understanding of magnetic fields in the ultracool brown dwarf mass regime bridging planets and stars, we present constraints on surface magnetic field strengths for two Y-dwarfs as well as higher frequency observations of the previously detected L/T dwarfs corresponding ~3.6 kG fields. By carefully comparing magnetic field measurements derived from auroral radio emission to measurements derived from Zeeman broadening and Zeeman Doppler imaging, we provide tentative evidence that the dynamo operating in this mass regime may be inconsistent with predicted values from currently in vogue models. This suggests that parameters beyond convective flux may influence magnetic field generation in brown dwarfs.

  12. Natural radio emission of Jupiter as interferences for radar investigations of the icy satellites of Jupiter

    NASA Astrophysics Data System (ADS)

    Cecconi, B.; Hess, S.; Hérique, A.; Santovito, M. R.; Santos-Costa, D.; Zarka, P.; Alberti, G.; Blankenship, D.; Bougeret, J. L.; Bruzzone, L.; Kofman, W.

    2011-10-01

    Radar instruments are part of the core payload of the two Europa Jupiter System Mission (EJSM) spacecraft: NASA-led Jupiter Europa Orbiter (JEO) and ESA-led Jupiter Ganymede Orbiter (JGO). At this point of the project, several frequency bands are under study for radar, which ranges between 5MHz and 50MHz. Part of this frequency range overlaps with that of the natural Jovian radio emissions, which are very intense in the decametric range, below 40 MHz. Radio observations above 40 MHz are free of interferences, whereas below this threshold, careful observation strategies have to be investigated. We present a review of spectral intensity, variability and sources of these radio emissions. As the radio emission are strongly beamed, it is possible to model the visibility of the radio emissions, as seen from the vicinity of Europa or Ganymede. We have investigated Io-related radio emissions as well as radio emissions related to the auroral oval. We also review the radiation belts synchrotron emission characteristics. We present radio sources visibility products (dynamic spectra and radio source location maps, on still frames or movies), which can be used for operation planning. This study clearly shows that a deep understanding of the natural radio emissions at Jupiter is necessary to prepare the future EJSM radar instrumentation. We show that this radio noise has to be taken into account very early in the observation planning and strategies for both JGO and JEO. We also point out possible synergies with RPW (Radio and Plasma Waves) instrumentations.

  13. Natural radio emission of Jupiter as interferences for radar investigations of the icy satellites of Jupiter

    NASA Astrophysics Data System (ADS)

    Cecconi, B.; Hess, S.; Hérique, A.; Santovito, M. R.; Santos-Costa, D.; Zarka, P.; Alberti, G.; Blankenship, D.; Bougeret, J.-L.; Bruzzone, L.; Kofman, W.

    2012-02-01

    Radar instruments are part of the core payload of the two Europa Jupiter System Mission (EJSM) spacecraft: NASA-led Jupiter Europa Orbiter (JEO) and ESA-led Jupiter Ganymede Orbiter (JGO). At this point of the project, several frequency bands are under study for radar, which ranges between 5 and 50 MHz. Part of this frequency range overlaps with that of the natural jovian radio emissions, which are very intense in the decametric range, below 40 MHz. Radio observations above 40 MHz are free of interferences, whereas below this threshold, careful observation strategies have to be investigated. We present a review of spectral intensity, variability and sources of these radio emissions. As the radio emissions are strongly beamed, it is possible to model the visibility of the radio emissions, as seen from the vicinity of Europa or Ganymede. We have investigated Io-related radio emissions as well as radio emissions related to the auroral oval. We also review the radiation belts synchrotron emission characteristics. We present radio sources visibility products (dynamic spectra and radio source location maps, on still frames or movies), which can be used for operation planning. This study clearly shows that a deep understanding of the natural radio emissions at Jupiter is necessary to prepare the future EJSM radar instrumentation. We show that this radio noise has to be taken into account very early in the observation planning and strategies for both JGO and JEO. We also point out possible synergies with RPW (Radio and Plasma Waves) instrumentations.

  14. Modelling of radio emission from cosmic ray air showers

    NASA Astrophysics Data System (ADS)

    Ludwig, Marianne

    2011-06-01

    Cosmic rays entering the Earth's atmosphere induce extensive air showers consisting of up to billions of secondary particles. Among them, a multitude of electrons and positrons are generated. These get deflected in the Earth's magnetic field, creating time-varying transverse currents. Thereby, the air shower emits coherent radiation in the MHz frequency range measured by radio antenna arrays on the ground such as LOPES at the KIT. This detection method provides a possibility to study cosmic rays with energies above 1017 eV. At this time, the radio technique undergoes the change from prototype experiments to large scale application. Thus, a detailed understanding of the radio emission process is needed more than ever. Before starting this work, different models made conflicting predictions on the pulse shape and the amplitude of the radio signal. It turned out that a radiation component caused by the variation of the number of charged particles within the air shower was missed in several models. The Monte Carlo code REAS2 superposing the radiation of the individual air shower electrons and positrons was one of those. At this time, it was not known how to take the missing component into account. For REAS3, we developed and implemented the endpoint formalism, a universal approach, to calculate the radiation from each single particle. For the first time, we achieve a good agreement between REAS3 and MGMR, an independent and completely different simulation approach. In contrast to REAS3, MGMR is based on a macroscopic approach and on parametrisations of the air shower. We studied the differences in the underlying air shower models to explain the remaining deviations. For comparisons with LOPES data, we developed a new method which allows "top-down" simulations of air showers. From this, we developed an air shower selection criterion based on the number of muons measured with KASCADE to take shower-to-shower fluctuations for a single event analysis into account. With

  15. Radio Emission from Red-Giant Hot Jupiters

    NASA Technical Reports Server (NTRS)

    Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony; Nordhaus, Jason; Zimmerman, Neil T.; Parsons, Aaron R.; Mirbabayi, Mehrdad; Madhusudhan, Nikku

    2016-01-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such "Red-Giant Hot Jupiters" (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.

  16. RADIO EMISSION FROM RED-GIANT HOT JUPITERS

    SciTech Connect

    Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony; Nordhaus, Jason; Zimmerman, Neil T.; Parsons, Aaron R.; Mirbabayi, Mehrdad; Madhusudhan, Nikku

    2016-04-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main-sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such “Red-Giant Hot Jupiters” (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.

  17. Radio Emission from Red-giant Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Fujii, Yuka; Spiegel, David S.; Mroczkowski, Tony; Nordhaus, Jason; Zimmerman, Neil T.; Parsons, Aaron R.; Mirbabayi, Mehrdad; Madhusudhan, Nikku

    2016-04-01

    When planet-hosting stars evolve off the main sequence and go through the red-giant branch, the stars become orders of magnitudes more luminous and, at the same time, lose mass at much higher rates than their main-sequence counterparts. Accordingly, if planetary companions exist around these stars at orbital distances of a few au, they will be heated up to the level of canonical hot Jupiters and also be subjected to a dense stellar wind. Given that magnetized planets interacting with stellar winds emit radio waves, such “Red-Giant Hot Jupiters” (RGHJs) may also be candidate radio emitters. We estimate the spectral auroral radio intensity of RGHJs based on the empirical relation with the stellar wind as well as a proposed scaling for planetary magnetic fields. RGHJs might be intrinsically as bright as or brighter than canonical hot Jupiters and about 100 times brighter than equivalent objects around main-sequence stars. We examine the capabilities of low-frequency radio observatories to detect this emission and find that the signal from an RGHJ may be detectable at distances up to a few hundred parsecs with the Square Kilometer Array.

  18. On the Magnetospheric Engine Behind Kilometric Radiation at Earth and Saturn

    NASA Astrophysics Data System (ADS)

    Brandt, Pontus; Mitchell, Donald

    2014-05-01

    The planets of the solar system display a range of different space environments and solar interaction regimes, from non/weakly magnetized, to magnetized with convective- versus rotation-dominated magnetospheres. All magnetized planets with an appreciable magnetosphere are immersed in a dynamic energetic particle (hot plasma), as well as cold plasma, environment. These five planetary magnetospheres (Earth, Jupiter, Saturn, Uranus and Neptune) are also significant emitters of low-frequency radio waves that are consistent with a cyclotron-maser instability set up in a field-aligned current region. Radio observations in the <200 MHz range is so far the only technique that shows promise to provide constraints on the magnetospheric processes of exoplanets and their stellar-wind interaction. The thrust of this presentation is therefore to understand the relation between radio emissions and magnetospheric acceleration processes in our own solar system as a laboratory to determine what remote radio observations of exoplanets may tell us about magnetospheric processes. Terrestrial Auroral Kilometric Radiation (AKR) emissions in the ~30-800 kHz range have long been known to be associated with auroral intensifications and magnetospheric substorms. In a similar fashion, recent remote imaging using Energetic Neutral Atoms (ENAs) obtained by the Cassini mission have revealed that the periodic Saturn Kilometric Radiation (SKR) emission from Saturn's high-latitude magnetosphere is highly correlated with simultaneous large-scale injections of energetic particles in the night side magnetosphere. These observations imply that the engine behind the AKR and SKR is current system associated with the planet ward fast plasma flows during an injection and/or the resulting plasma pressure gradients of the heated plasma.

  19. Low-frequency radio emissions in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Macek, W. M.; Cairns, I. H.; Kurth, W. S.; Gurnett, D. A.

    1991-01-01

    Progress is reported toward a model for the 2 and 3 kHz radio waves observed by Voyagers 1 and 2 during the 1983-1987 interval at radial distances from the sun of 17 and 13 AU, respectively. The brightness temperature and range of the volume emissivity for the radiation are calculated, and the results are compared with the characteristics of known radiation at multiples of the plasma frequency. The derived brightness temperatures are used to constrain the source of the Langmuir waves required to generate the observed emission and to rule out certain emission mechanisms. Minimum values of 3-30 micro-V/m are derived for the Langmuir wave electric field intensity and are found to be in reasonable agreement with observed values at planetary bow shocks. Path lengths required for the radiation to reach the observed levels are derived and discussed. The relevance of these ideas to possible direct observations of heliospheric boundaries is addressed.

  20. Sporadic radio emission of the Sun in the decametre range

    NASA Astrophysics Data System (ADS)

    Melnik, Valentin N.; Konovalenko, Alexander A.; Rucker, Helmut O.; Lecacheux, Alain

    2007-08-01

    Results of the last observations of solar sporadic radio emission at the UTR-2 radio telescope (Kharkov, Ukraine) at the frequencies 10 - 30 MHz are presented. The use of new backend facilities, the DSP and 60-channel spectrometer, allows us to obtain data with time resolution up to 2 ms and frequency resolution of 12 kHz in the continuous frequency band 12 MHz. Usual Type III bursts, Type IIIb bursts, U- and J-bursts in the decameter range are discussed. Special attention is paid to detection and analysis of Type II bursts and their properties, newly discovered fine time structures of Type III bursts, Type III-like bursts, s-bursts, new observational features of drift pair bursts, and ‘absorption’ bursts.

  1. Sporadic Radio Emission of the Sun in the Decameter Range

    NASA Astrophysics Data System (ADS)

    Mel'Nik, V. N.; Konovalenko, A. A.; Rucker, H. O.; Lecacheux, A.

    2006-08-01

    Results of the last observations of solar sporadic radio emission on the UTR-2 radio telescope (Kharkov, Ukraine) at the frequencies 10-30MHz are presented. Using of new back-end facilities, the DSP and 60-channel spectrometer, allows obtaining data with time resolution up to 2 ms and frequency resolution 12 kHz in the continuous frequency band 12MHz. Usual Type III bursts, type III-b bursts, U- and J- bursts in the decameter range are discussed. Especial attention is paid to detection and analysis of Type II bursts and their properties, first found fine time structures of Type III bursts, Type III-like bursts, s-bursts, new observational features of drift pair bursts, "absorption" burst.

  2. QUASI-QUIESCENT RADIO EMISSION FROM THE FIRST RADIO-EMITTING T DWARF

    SciTech Connect

    Williams, Peter K. G.; Berger, Edo; Zauderer, B. Ashley

    2013-04-20

    Radio detections of ultracool dwarfs provide insight into their magnetic fields and the dynamos that maintain them, especially at the very bottom of the main sequence, where other activity indicators dramatically weaken. Until recently, radio emission was only detected in the M and L dwarf regimes, but this has changed with the Arecibo detection of rapid polarized flares from the T6.5 dwarf 2MASS J10475385+2124234. Here, we report the detection of quasi-quiescent radio emission from this source at 5.8 GHz using the Karl G. Jansky Very Large Array. The spectral luminosity is L{sub {nu}} = (2.2 {+-} 0.7) Multiplication-Sign 10{sup 12} erg s{sup -1} Hz{sup -1}, a factor of {approx}100 times fainter than the Arecibo flares. Our detection is the lowest luminosity yet achieved for an ultracool dwarf. Although the emission is fully consistent with being steady, unpolarized, and broad band, we find tantalizing hints for variability. We exclude the presence of short-duration flares as seen by Arecibo, although this is not unexpected given estimates of the duty cycle. Follow-up observations of this object will offer the potential to constrain its rotation period, electron density, and the strength and configuration of the magnetic field. Equally important, follow-up observations will address the question of whether the electron cyclotron maser instability, which is thought to produce the flares seen by Arecibo, also operates in the very different parameter regime of the emission we detect, or whether instead this ultracool dwarf exhibits both maser and gyrosynchrotron radiation, potentially originating from substantially different locations.

  3. Dark Matter and Synchrotron Emission from Galactic Center Radio Filaments

    SciTech Connect

    Linden, Tim; Hooper, Dan; Yusef-Zadeh, Farhad

    2011-11-10

    The inner degrees of the Galactic center contain a large population of filamentary structures observed at radio frequencies. These so-called non-thermal radio filaments (NRFs) trace magnetic field lines and have attracted significant interest due to their hard (S_v ~ -0.1 +/- 0.4) synchrotron emission spectra. The origin of these filaments remains poorly understood. We show that the electrons and positrons created through the annihilations of a relatively light (~5-10 GeV) dark matter particle with the cross section predicted for a simple thermal relic can provide a compelling match to the intensity, spectral shape, and flux variation of the NRFs. Furthermore, the characteristics of the dark matter particle necessary to explain the synchrotron emission from the NRFs is consistent with those required to explain the excess gamma-ray emission observed from the Galactic center by the Fermi-LAT, as well as the direct detection signals observed by CoGeNT and DAMA/LIBRA.

  4. STUDY OF CALIBRATION OF SOLAR RADIO SPECTROMETERS AND THE QUIET-SUN RADIO EMISSION

    SciTech Connect

    Tan, Chengming; Yan, Yihua; Tan, Baolin; Fu, Qijun; Liu, Yuying; Xu, Guirong

    2015-07-20

    This work presents a systematic investigation of the influence of weather conditions on the calibration errors by using Gaussian fitness, least chi-square linear fitness, and wavelet transform to analyze the calibration coefficients from observations of the Chinese Solar Broadband Radio Spectrometers (at frequency bands of 1.0–2.0 GHz, 2.6–3.8 GHz, and 5.2–7.6 GHz) during 1997–2007. We found that calibration coefficients are influenced by the local air temperature. Considering the temperature correction, the calibration error will reduce by about 10%–20% at 2800 MHz. Based on the above investigation and the calibration corrections, we further study the radio emission of the quiet Sun by using an appropriate hybrid model of the quiet-Sun atmosphere. The results indicate that the numerical flux of the hybrid model is much closer to the observation flux than that of other ones.

  5. Theory of Type 3 and Type 2 Solar Radio Emissions

    NASA Technical Reports Server (NTRS)

    Robinson, P. A.; Cairns, I. H.

    2000-01-01

    The main features of some current theories of type III and type II bursts are outlined. Among the most common solar radio bursts, type III bursts are produced at frequencies of 10 kHz to a few GHz when electron beams are ejected from solar active regions, entering the corona and solar wind at typical speeds of 0.1c. These beams provide energy to generate Langmuir waves via a streaming instability. In the current stochastic-growth theory, Langmuir waves grow in clumps associated with random low-frequency density fluctuations, leading to the observed spiky waves. Nonlinear wave-wave interactions then lead to secondary emission of observable radio waves near the fundamental and harmonic of the plasma frequency. Subsequent scattering processes modify the dynamic radio spectra, while back-reaction of Langmuir waves on the beam causes it to fluctuate about a state of marginal stability. Theories based on these ideas can account for the observed properties of type III bursts, including the in situ waves and the dynamic spectra of the radiation. Type 11 bursts are associated with shock waves propagating through the corona and interplanetary space and radiating from roughly 30 kHz to 1 GHz. Their basic emission mechanisms are believed to be similar to those of type III events and radiation from Earth's foreshock. However, several sub-classes of type II bursts may exist with different source regions and detailed characteristics. Theoretical models for type II bursts are briefly reviewed, focusing on a model with emission from a foreshock region upstream of the shock for which observational evidence has just been reported.

  6. Planetary radio emissions from low magnetic latitudes - Observations and theories

    NASA Astrophysics Data System (ADS)

    Jones, Dyfrig

    Recent observations of planetary radiations from low magnetic latitudes are reviewed. At Earth a major source of nonthermal continuum is Terrestrial Myriametric Radiation (TMR) from the equatorial plasmapause and from the magnetopause. The theories proposed for the production of TMR are listed and their predictions are compared with satellite observations. The application of the theories to Jovian Kilometric Radiation (KOM), the radio emission at Jupiter which has been suggested to be the analogue of TMR, is reviewed. The implications of the TMR and KOM results for radiations observed at Saturn and Uranus are briefly considered.

  7. Correlation of pulsar radio emission spectrum with peculiarities of particle acceleration in a polar gap

    SciTech Connect

    Kontorovich, V. M. Flanchik, A. B.

    2013-01-15

    The analytical expression for the frequency of radio emission intensity maximum in pulsars with free electron emission from the stellar surface has been found. Peculiarities of the electron acceleration in a polar gap are considered. The correlation between the high-frequency cutoff and low-frequency turnover in the radio emission spectrum of pulsars known from observations has been explained.

  8. New data of radio emission from three AXPs

    NASA Astrophysics Data System (ADS)

    Teplykh, Daria

    2011-07-01

    Anomalous X-ray pulsars (AXPs) are a group of 9 X-ray sources showing periodical pulsation at periods in the 2-12 s range. The main problem is the source of energy, because their X-ray luminosities much higher than can be provided by the rotational kinetic-energy losses. Many attempts have been made to detect radio emission. The first detection of periodical pulsations from the AXP 1E 2259+586 have been made at the frequency 111 MHz by Malofeev (Malofeev et al., 2001, 2005). The second transient AXP XTE J1810-197 and the third AXP candidate 1E1547.0-5408 (Camilo et al., 2006, 2007) have been detected in the large frequency band 0.69-42 GHz. In this report we present new data for three AXPs 1E 2259+586, 4U 0142+61 and XTE J1810-197 at low frequencies. The observations were carried out on two sensitive transit radio telescopes in the range 42-112 MHz. The flux densities and mean pulse profiles, the estimation of the distances and integrated radio luminosities are presented. We used new digital receivers to obtain pulse profiles and dynamic spectra. Comparison with X-ray data shows large differences in the mean pulse widths and luminosities.

  9. Search for Radio Emissions From Extrasolar Planets at 150 MHz

    NASA Astrophysics Data System (ADS)

    Winterhalter, D.; Majid, W. A.; Kuiper, T. B.; Chandra, I.; Lazio, J.; Gupta, Y.; Naudet, C. J.; Zarka, P.; Bryden, G.; Gonzalez, W.

    2005-12-01

    Using the new 150 MHz receivers of the Giant Metrewave Radiotelescope (GMRT) in India, we have searched for radio emissions from a sub-set of known "hot Jupiters": UpsAnd, Tauboo, 70 Vir, HD162020, and HD179949. We have selected these targets based on the expected flux density and the level of background noise. Calibrations with GMRT at 150 MHz have confirmed the noise floor to be a few mJy over a 5 MHz bandwidth. The noise floor is well below the expected flux levels from the targets. No observation of these targets has been attempted previously at these frequencies with the sensitivity and aperture offered by GMRT. Radio maps of the targets were produced using the AIPS CLEANing and image making software, and will be presented. Dynamic spectra from the target regions will also be presented. In addition to the targets above, we have just (August 2005) completed new and deeper (longer integration times) radio observations of UpsAnd, HD179949 (evidence of star-planet magenic connection), HD188753Ab (newly discovered in tripple star system), HD209458b (transiting planet), and Gliese876 (red dwarf system containg "rocky" planet). Time permitting for analyses, we will present very preliminary, first-look, results.

  10. Search for Radio Emissions from Extrasolar Planets at 150 MHz

    NASA Astrophysics Data System (ADS)

    Winterhalter, D.; Majid, WA; Kuiper, TBH; Naudet, CJ; Bryden, G.; Chandra, I.; Gupta, Y.; Lazio, J.; Zarka, P.; Gonzalez, W.

    2005-12-01

    Using the new 150 MHz receivers of the Giant Metrewave Radiotelescope (GMRT) in India, we have searched for radio emissions from a sub-set of known "hot Jupiters": UpsAnd, Tauboo, 70 Vir, HD162020, and HD179949. We have selected these targets based on the expected flux density and the level of background noise. Calibrations with GMRT at 150 MHz have confirmed the noise floor to be a few mJy over a 5 MHz bandwidth. The noise floor is well below the expected flux levels from the targets. No observation of these targets has been attempted previously at these frequencies with the sensitivity and aperture offered by GMRT. Radio maps of the targets were produced using the AIPS CLEANing and image making software, and will be presented. Dynamic spectra from the target regions will also be presented. In addition to the targets above, we have just (August 2005) completed new and deeper (longer integration times) radio observations of UpsAnd, HD179949 (evidence of star-planet magenic connection), HD188753Ab (newly discovered in tripple star system), HD209458b (transiting planet), and Gliese876 (red dwarf system containg "rocky" planet). Time permitting for analyses, we will present very preliminary, first-look, results.

  11. A Searchlight Beam Model of Jupiter's Decametric Radio Emissions

    NASA Astrophysics Data System (ADS)

    Imai, K.; Garcia, L.; Reyes, F.; Imai, M.; Thieman, J. R.; Ikuta, M.

    2008-12-01

    It has long been recognized that there is a marked long-term periodic variation in Jupiter's integrated radio occurrence probability. The period of the variation is on the order of a decade. Carr et al. [1970] showed that such variations are much more closely correlated with Jovicentric declination of the Earth (De). The range of the smoothed variation of De is from approximately +3.3 to -3.3 degrees. This De effect was extensively studied and confirmed by Garcia [1996]. It shows that the occurrence probability of the non-Io-A source is clearly controlled by De at 18, 20, and 22 MHz during the 1957-1994 apparitions. We propose a new model to explain the De effect. This new model shows that the beam structure of Jupiter radio emissions, which has been thought of like a hollow-cone, has a narrow beam like a searchlight, which can be explained by assuming that the three dimensional shape of the radio source expands along the line of the magnetic field. Various computer graphics illustrate the concept of this searchlight beam model.

  12. Is the Enigma of Pulsar Radio Emission Solved?

    NASA Astrophysics Data System (ADS)

    Gil, Janusz A.; Melikidze, George I.

    2011-08-01

    An intriguing paper has recently been published claiming that the long-sought Rosetta Stone needed to decipher the nature of pulsar radio emission has been finally identified as the bifurcated features in averaged pulsar profiles. The authors argued that highly symmetric bifurcated features observed in PSR J1012+5307 and other pulsars are produced by a split-fan beams of extraordinary-mode curvature radiation emitted by thin streams of sources conducted by a very narrow bundles of magnetic field lines. We examined the arguments leading to such a profound conclusion and found at least one fatal flaw. Using an elementary pulsar physics we showed that there is not enough energy to power the bifurcated feature in J1012+5307 within a split-fan beams model. If the source streams are indeed so thin that their emission can reveal the signatures of elementary radiation mechanism, then the energy deficit reaches several orders of magnitude.

  13. Radio emission of sea surface at centimeter wavelengths and is fluctuations

    NASA Technical Reports Server (NTRS)

    Tseytlin, N. M.; Shutko, A. M.; Zhislin, G. M.

    1981-01-01

    The eigen thermal radio emission of the sea was examined as well as the agitated surface of the sea when the reflection (scattering) is similar in nature to diffused scattering. The contribution of this emission to the total emission of the sea is practically constant in time, and the time fluctuations of the radio emissions of the sea are basically determined only by a change in the eigen emission of the sea, connected with the agitation.

  14. In situ observations of medium frequency auroral radio emissions

    NASA Astrophysics Data System (ADS)

    Broughton, M.; Labelle, J. W.; Pfaff, R. F.; Parrot, M.; Yan, X.; Burchill, J. K.

    2013-12-01

    The auroral ionosphere is a region rich with plasma waves that can be studied both in space and on the ground. These waves may mediate energy exchange between particle populations and provide information about the local plasma properties and boundaries. Auroral medium frequency (MF) burst is an impulsive radio emission observed at ground-level from 1.3-4.5 MHz that is associated with local substorm onset. There have been two recent reports of impulsive, broadband, MF waves at high latitudes. Burchill and Pfaff [2005] reported observations from the FAST satellite of impulsive, broadband, MF and low frequency (LF) radio waves. Using data from the DEMETER satellite, Parrot et al. [2009] surveyed MF waves caused by lightning. This study did show a high-latitude population of MF waves. We investigate whether the waves observed by these two satellites are related to auroral MF burst. Using FAST satellite burst mode electric field data from high-latitude (> 60 degrees magnetic), low-altitude (< 1000 km) intervals of moderate to large geomagnetic activity (Kp > 3) from 1996-2002, we have found forty-four examples of impulsive MF waves, all of which are associated with impulsive LF waves. Although MF burst and the waves observed by FAST have similar spectral signatures, they have different magnetic local time dependencies, which suggests that they may be unrelated. A study of MF waves observed at high latitude by DEMETER is ongoing. In situ observations of MF burst could provide crucial information about this heretofore unexplained natural radio emission.

  15. Tracking the CME-driven shock wave on 2012 March 5 and radio triangulation of associated radio emission

    SciTech Connect

    Magdalenić, J.; Marqué, C.; Mierla, M.; Zhukov, A. N.; Rodriguez, L.; Krupar, V.; Maksimović, M.; Cecconi, B.

    2014-08-20

    We present a multiwavelength study of the 2012 March 5 solar eruptive event, with an emphasis on the radio triangulation of the associated radio bursts. The main points of the study are reconstruction of the propagation of shock waves driven by coronal mass ejections (CMEs) using radio observations and finding the relative positions of the CME, the CME-driven shock wave, and its radio signatures. For the first time, radio triangulation is applied to different types of radio bursts in the same event and performed in a detailed way using goniopolarimetric observations from STEREO/Waves and WIND/Waves spacecraft. The event on 2012 March 5 was associated with a X1.1 flare from the NOAA AR 1429 situated near the northeast limb, accompanied by a full halo CME and a radio event comprising long-lasting interplanetary type II radio bursts. The results of the three-dimensional reconstruction of the CME (using SOHO/LASCO, STEREO COR, and HI observations), and modeling with the ENLIL cone model suggest that the CME-driven shock wave arrived at 1 AU at about 12:00 UT on March 7 (as observed by SOHO/CELIAS). The results of radio triangulation show that the source of the type II radio burst was situated on the southern flank of the CME. We suggest that the interaction of the shock wave and a nearby coronal streamer resulted in the interplanetary type II radio emission.

  16. "Enhanced" Ray Tracing Study of the Attenuation Lanes in Jupiter's Hectometric Radio Emission By Using Cassini Jupiter Encounter Data

    NASA Astrophysics Data System (ADS)

    Imai, M.; Lecacheux, A.

    2014-12-01

    Cassini Jupiter encounter, in the late 2000 and the early 2001, revealed persistent properties of Jovian hectometric (HOM) radiation, which is produced along auroral magnetic field lines in the polar regions of Jupiter. One of the unique properties - known as attenuation lanes (or so-called attenuation bands) - appears as a recurrent, well defined intensity extinction/enhancement feature in the HOM dynamic spectrum. It is believed that this phenomenon is the consequence of ray refraction from high-density medium - either (1) the field-aligned enhanced density along Io plasma torus or (2) Io plasma torus itself or both - in the course of radio propagation from the radio source to the observer. Many studies, mainly on case (1), have used standard ray-tracing technique, which cannot provide reliable information on transmitted radiation intensity. In this study, we have investigated case (2) by using an "enhanced" ray-tracing technique, in which a family of neighboring rays is simultaneously traced, allowing the physical intensity to be estimated along the ray path. We show the results of our ray-tracing computations and then suggest the most plausible scenario for the attenuation lanes phenomenon. More generally and from this example, we conclude that existing refracting plasma structures, encountered by radiation along its ray path through the planetary magnetosphere, might strongly affect, while not taken into account, the overall properties of the radio emission measured by a distant observer.

  17. THE ION-INDUCED CHARGE-EXCHANGE X-RAY EMISSION OF THE JOVIAN AURORAS: MAGNETOSPHERIC OR SOLAR WIND ORIGIN?

    SciTech Connect

    Hui Yawei; Schultz, David R.; Kharchenko, Vasili A.; Stancil, Phillip C.; Cravens, Thomas E.; Lisse, Carey M. E-mail: schultzd@ornl.gov E-mail: stancil@physast.uga.edu E-mail: carey.lisse@jhuapl.edu

    2009-09-10

    A new and more comprehensive model of charge-exchange induced X-ray emission, due to ions precipitating into the Jovian atmosphere near the poles, has been used to analyze spectral observations made by the Chandra X-ray Observatory. The model includes for the first time carbon ions, in addition to the oxygen and sulfur ions previously considered, in order to account for possible ion origins from both the solar wind and the Jovian magnetosphere. By comparing the model spectra with newly reprocessed Chandra observations, we conclude that carbon ion emission provides a negligible contribution, suggesting that solar wind ions are not responsible for the observed polar X-rays. In addition, results of the model fits to observations support the previously estimated seeding kinetic energies of the precipitating ions ({approx}0.7-2 MeV u{sup -1}), but infer a different relative sulfur-to-oxygen abundance ratio for these Chandra observations.

  18. The Ion-induced Charge-exchange X-ray Emission of the Jovian Auroras: Magnetospheric or Solar Wind Origin?

    SciTech Connect

    Hui, Yawei; Schultz, David Robert; Kharchenko, Vasili A; Stancil, Phillip C.; Cravens, Thomas E. E.; Lisse, Carey M.; Dalgarno, A.

    2009-01-01

    A new and more comprehensive model of charge-exchange induced X-ray emission, due to ions precipitating into the Jovian atmosphere near the poles, has been used to analyze spectral observations made by the Chandra X-ray Observatory. The model includes for the first time carbon ions, in addition to the oxygen and sulfur ions previously considered, in order to account for possible ion origins from both the solar wind and the Jovian magnetosphere. By comparing the model spectra with newly reprocessed Chandra observations, we conclude that carbon ion emission provides a negligible contribution, suggesting that solar wind ions are not responsible for the observed polar X-rays. In addition, results of the model fits to observations support the previously estimated seeding kinetic energies of the precipitating ions ( 0.7-2 MeV/u), but infer a different relative sulfur to oxygen abundance ratio for these Chandra observations.

  19. Polarized radio emission from extensive air showers measured with LOFAR

    SciTech Connect

    Schellart, P.; Buitink, S.; Corstanje, A.; Enriquez, J.E.; Falcke, H.; Hörandel, J.R.; Krause, M.; Nelles, A.; Rachen, J.P.; Veen, S. ter; Thoudam, S.

    2014-10-01

    We present LOFAR measurements of radio emission from extensive air showers. We find that this emission is strongly polarized, with a median degree of polarization of nearly 99%, and that the angle between the polarization direction of the electric field and the Lorentz force acting on the particles, depends on the observer location in the shower plane. This can be understood as a superposition of the radially polarized charge-excess emission mechanism, first proposed by Askaryan and the geomagnetic emission mechanism proposed by Kahn and Lerche. We calculate the relative strengths of both contributions, as quantified by the charge-excess fraction, for 163 individual air showers. We find that the measured charge-excess fraction is higher for air showers arriving from closer to the zenith. Furthermore, the measured charge-excess fraction also increases with increasing observer distance from the air shower symmetry axis. The measured values range from (3.3± 1.0)% for very inclined air showers at 25 m to (20.3± 1.3)% for almost vertical showers at 225 m. Both dependencies are in qualitative agreement with theoretical predictions.

  20. Rotational modulation of Saturn's radio emissions after equinox

    NASA Astrophysics Data System (ADS)

    Ye, S.-Y.; Fischer, G.; Kurth, W. S.; Menietti, J. D.; Gurnett, D. A.

    2016-12-01

    Saturn kilometric radiation (SKR), narrowband emission, and auroral hiss are periodically modulated due to Saturn's rotation, and the periods were found to vary with time. We analyze Cassini observations of Saturn's radio emissions with the main focus on the four years 2012-2015. It is shown that the rotation rates of SKR north and south were different since mid-2012 with SKR north being faster until autumn 2013, followed by a 1 year interval of similar north and south rotation rates and phases, before the northern SKR component finally became slower than the southern SKR in late 2014. The dual rotation rates of 5 kHz narrowband emissions reappeared for slightly longer than 1 year after a long break since equinox. Auroral hiss provides an unambiguous way of tracking the rotation signals from each hemisphere because the whistler mode waves cannot cross the equator. Rotation rates of auroral hiss and narrowband emissions are consistent with each other and those of SKR when they are observed at high latitudes in early 2013. The phase difference between SKR and auroral hiss and the intensity of auroral hiss are local time dependent.

  1. Natural radio emission of Jupiter as interferences for radar investigations of the icy satellites of Jupiter

    NASA Astrophysics Data System (ADS)

    Cecconi, B.; Hess, S.; Herique, A.; Santos-Costa, D.; Santovito, M.; Zarka, P. M.; Alberti, G.; Blankenship, D. D.; Bougeret, J. H.; Bruzzone, L.; Kofman, W. W.

    2010-12-01

    Radar instruments are part of the core payload of the two Europa Jupiter System Mission (EJSM) spacecraft: NASA- led Jupiter Europa Orbiter (JEO) and ESA-led Jupiter Ganymede Orbiter (JGO). At this point of the project, several frequency bands are foreseen for radar studies between 5MHz and 50MHz. While the high frequencies (above ˜40 MHz) are clean bands since natural jovian radio emissions show a high frequency cutoff at about 40 MHz, lower frequencies are right in the middle of the intense decametric (DAM) radio emissions. We present a review of spectral intensity, variability and sources of these radio emissions. As the radio emission are beamed, it is possible to model the visibility of the radio emissions, as seen from the vicinity of Europa or Ganymede. We have investigated Io-related radio emissions as well as radio emissions related to the auroral oval. One result from these simulations is that some portion of the orbit of Europa is clean from Non-Io DAM emissions above 22 MHz. We also review the radiation belts synchrotron emission characteristics. This study clearly shows that a deep understanding of the natural radio emissions at Jupiter is necessary to prepare the future EJSM radar instrumentation.

  2. Two component model for X-ray emission of radio selected QSO's

    NASA Technical Reports Server (NTRS)

    Isobe, T.; Feigelson, E. D.; Singh, K. P.; Kembhavi, A.

    1986-01-01

    Using a large database of radio, optical, and x ray luminosities of AGNs with survival analysis, it was found that the x ray emission of the radio selected quasars has two components. One is related to the optical luminosity and the other is related to the radio luminosity.

  3. Search for Neutrino Emission from Fast Radio Bursts with IceCube

    NASA Astrophysics Data System (ADS)

    Xu, Donglian; Vandenbroucke, Justin; Fahey, Samuel; Kheirandish, Ali; IceCube Collaboration

    2017-01-01

    Fast radio bursts (FRBs) typically last a few milliseconds, and are thought to be of extragalactic origin due to their large dispersion measures. Since the discovery of FRBs in 2007 by the Parkes radio telescope, a multitude of radio telescopes have observed a total of 30 FRBs to date. Though there are various emerging models to explain such phenomena, the physics origin of FRBs is still a mystery. It is predicted that soft gamma-ray repeater (SGR) hyperflares could produce non-thermal millisecond radio outbursts from the relativistic magnetized explosions in the magnetospheres. With the volatility of strong magnetic fields, SGRs are also expected to be cosmic ray accelerators, which could produce TeV photons and neutrinos under the hadronic processes. We will present recent searches for coincident neutrinos with FRBs from IceCube. NSF

  4. Analysis of Jovian decametric data: Study of radio emission mechanisms

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.

    1986-01-01

    Catalogues of approx. 200 decametric arcs and approx. 200 gaps between arcs were studied, in an effort to reconcile the data with predictions for the model wherein reflections of Io-induced currents each emit in a conical pattern and yield a distinct radio arc. The most recent interpretations of this data suggest that these Io-produced Alfven waves persist for at least one or two passages of Io, and that the emission cone half angles are approx. 40 to 90 deg., varying from arc to arc. Below 1.2 MHz it was discovered that Jupiter emits radiation strongly modulated in frequency with periods of approx. 200 kHz; this quasi-sinusoidal emission (MSA) can shift more than 180 deg. in phase over periods of 6 seconds, although these shifts are usually much smaller. MSA is not strongly correlated with the longitudes of Io or Jupiter, and typically occurs in patches covering approx. 500 kHz or more for periods of a few minutes. Furthermore, this modulation sometimes resembles a train of impulses in frequency with exponential decays toward high frequencies. Comparison of these results with the previous studies of V-shaped S-bursts is suggestive of an emission mechanism.

  5. Local Time Dependence of Jovian Radio Emissions Observed by Galileo

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Gurnett, D. A.; Kurth, W. S.; Groene, J. B.

    1999-01-01

    Galileo has been in orbit around Jupiter since December 1995. All the orbits are equatorial and elliptical, with apogees between 60 R(sub J) - 142 R(sub J) and perigees from 8 - 12 R(sub J). Since orbit injection, the plasma wave instrument (PWS) has been collecting data over specific intervals of each of the orbits at all local times and a range of different radial distances. We present the results of a survey of the data for the frequency range 300 kHz to 5.6 MHz, which includes the hectometric (HOM) and low-frequency decametric (DAM) emissions. The results indicate that both the HOM and DAM emission are more intense and occur more frequently in the midnight sector of Jupiter. This is in analogy to Earth and consistent with a magnetic substorm source for a portion of the radio emissions in this frequency range. Another peak in the power levels is observed on the Jovian dayside in the local time range 11 hrs < LT < 12 hrs. This peak does not have a terrestrial counterpart. We speculate that this dayside peak may be a result of sampling near perigee, but we cannot rule out the possibility that this is not the case.

  6. On the Variability of Radio Emission from MWC 349

    NASA Astrophysics Data System (ADS)

    Parihar, Prachi; Bartlett, C.; Pomerantz, B.; Strelnitski, V.

    2013-01-01

    We analyze the results of 15-year monitoring of millimeter radio emission from MWC 349 in hydrogen recombination α-lines and in continuum made on the 12-m and 10-m radio telescopes of Arizona Radio Observatory (ARO). Both the masing lines and the continuum show large intensity variations, up to a factor of a few, at various time scales, from days to years. Other line parameters vary more moderately. In the best studied double-peaked H30α line, both the width of the peaks and their radial velocities (relative to the systemic velocity) vary within ±10%.The narrowness of the peaks and the rate of their intensity variations indicate that the H30α maser is essentially unsaturated. The observed single case of short-time scale correlated variability of H30α and the optical Hα line (the latter monitored with the Maria Mitchell Obs.’s 24-inch CCD telescope) confirms this conclusion. The changes of the “red” (R) and “blue” (B) peaks correlate but to varying extent, which indicates the presence of both a variable central source of excitation and the independently varying local conditions in the portions of the circumstellar disk where the B and R masers are assumed to arise. The variability pattern and the computer calculations of hydrogen level populations under the putative conditions in the disk allow us to estimate the unsaturated gain of the maser as |τ| ≈ 3±1. The observed anti-correlation of the B and R radial velocities for H30α and H35α lines confirms a common variable central source of excitation and the location of the masers at opposite sides of a (quasi)-Keplerian disk. We acknowledge with gratitude the TAC and the technical staff of ARO for the allocated time and help with the observations. This project was supported by NSF/REU grant AST-0851892 and the Nantucket Maria Mitchell Association.

  7. Estimation of emission cone wall thickness of Jupiter's decametric radio emission using stereoscopic STEREO/WAVES observations

    NASA Astrophysics Data System (ADS)

    Panchenko, M.; Rucker, H. O.

    2016-11-01

    Aims: Stereoscopic observations by the WAVES instrument onboard two STEREO spacecraft have been used with the aim of estimating wall thickness of an emission cone of Jovian decametric radio emission (DAM). Methods: Stereoscopic observations provided by STEREO-A and -B facilitate unambiguous recognition of the Jovian DAM in observed dynamic spectra as well as identification of its components (Io DAM or non-Io DAM). The dynamic spectra of radio emissions recorded by STEREO/WAVES have been analyzed using the method of cross-correlation of the radio dynamic spectra. Results: Altogether, 139 radio events, in particular 91 Io- and 48 non-Io-related radio events were observed. The averaged width of the emission cone wall for Io-DAM as well as for non-Io DAM is about 1.1° ± 0.2°. These results are in agreement with previous findings.

  8. Analysis of Jovian decametric data: Study of radio emission mechanisms

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.; Arias, T. A.

    1985-01-01

    Data gathered by the Voyager 1 and Voyager 2 Planetary Radio Astronomy Experiments (PRA) are unique in many ways including their frequency range, time resolution, polarization information and geometric characteristics. Studies of rapidly varying phenomena have thus far been hampered by paper display techniques which require large amounts of paper to exploit the full PRA time resolution. A software package capable of effectively displaying full 6s resolution PRA dynamic spectra on a high quality video monitor while compensating for the aforementioned variations was developed. The most striking phenomena revealed by the new display techniques is called Modulated Spectral Activity (MSA) because of its appearance in dynamic spectra as a series at least two parallel emission bands which drift back and forth in frequency on time scales of tens of seconds. In an attempt to locate and understand the MSA source mechanism, a catalogue has been compiled of the start and end of all known MSA events.

  9. Solar wind control of Jupiter's decametric radio emission

    NASA Technical Reports Server (NTRS)

    Barrow, C. H.; Genova, F.; Desch, M. D.

    1986-01-01

    Observations of the solar wind close to Jupiter are compared with the decametric radio emission (DAM), using data recorded by Voyager 1 and Voyager 2 during 1979. The Non-Io DAM, recorded by both spacecraft and combined using the superposed epoch technique, is found to correlate with the solar wind density and velocity, as well as with the interplanetary magnetic field (IMF) magnitude. In agreement with earlier work using ground-based observations, there are indications that the Non-Io DAM is somehow associated with magnetic sector structure although the precise details of the relationship are still not known and it is not clear if this is a fundamental effect or some secondary effect of intercorrelation.

  10. Herringbone bursts associated with type II solar radio emission

    NASA Technical Reports Server (NTRS)

    Cairns, I. H.; Robinson, R. D.

    1987-01-01

    Detailed observations of the herringbone (HB) fine structure on type II solar radio bursts are presented. Data from the Culgoora radiospectrograph, radiometer and radioheliograph are analyzed. The characteristic spectral profiles, frequency drift rates and exciter velocities, fluxes, source sizes, brightness temperatures, and polarizations of individual HB bursts are determined. Correlations between individual bursts within the characteristic groups of bursts and the properties of the associated type II bursts are examined. These data are compatible with HB bursts being radiation at multiples of the plasma frequency generated by electron streams accelerated by the type II shock. HB bursts are physically distinct phenomena from type II and type III bursts, differing significantly in emission processes and/or source conditions; this conclusion indicates that many of the presently available theoretical ideas for HB bursts are incorrect.

  11. The relationship of storm severity to directionally resolved radio emissions

    NASA Technical Reports Server (NTRS)

    Johnson, R. O.; Bushman, M. L.; Sherrill, W. M.

    1980-01-01

    Directionally resolved atmospheric radio frequency emission data were acquired from thunderstorms occurring in the central and southwestern United States. In addition, RF sferic tracking data were obtained from hurricanes and tropical depressions occurring in the Gulf of Mexico. The data were acquired using a crossed baseline phase interferometer operating at a frequency of 2.001 MHz. The received atmospherics were tested for phase linearity across the array, and azimuth/elevation angles of arrival were computed in real time. A histogram analysis of sferic burst count versus azimuth provided lines of bearing to centers of intense electrical activity. Analysis indicates a consistent capability of the phase linear direction finder to detect severe meteorological activity to distances of 2000 km from the receiving site. The technique evidences the ability to discriminate severe storms from nonsevere storms coexistent in large regional scale thunderstorm activity.

  12. Radio emission signature of Saturn immersions in Jupiter's magnetic tail

    NASA Technical Reports Server (NTRS)

    Desch, M. D.

    1983-01-01

    During the interval from about May through August 1981, when Voyager 2 was inbound to Saturn, the Planetary Radio Astronomy instrument measured repeated, dramatic decreases in the intensity of the Saturn Kilometric Radiation (SKR). The emission dropouts averaged two orders of magnitude below mean energy levels and varied from about 1 to 10 Saturn rotations in duration. Comparison with pre-Saturn encounter Voyager 1 observations (June to November, 1980) shows that the SKR dropouts were unique to the Voyager 2 observing interval, consistent with the closer proximity of Saturn to Jupiter's distant magnetotail in 1981. Further, the dropouts occurred on the average at times when Voyager 2 is known to have been within or near Jupiter's magnetic tail.

  13. Penetration characteristics of electromagnetic emissions from an underground seismic source into the atmosphere, ionosphere, and magnetosphere

    NASA Astrophysics Data System (ADS)

    Molchanov, O. A.; Hayakawa, M.; Rafalsky, V. A.

    1995-02-01

    Theoretical calculations are made on electromagnetic fields in the frequency range 10(exp -2) to 10(exp 2) Hz on the ground surface and above the ionosphere induced by stochastic microcurrent activity inside the future seismic sources on the assumption of cylindrical symmetry of the effective current and three types of polarization. The inhomogeneity of the ground and atmosphere conductivity and anisotropy of the ionosphere are taken into consideration. The intensity of ULF magnetic and electric precursors observed on the ground, and their spatial distribution can be explained by using the results of the present computations. It is found that only the fields from a magnetic type source can penetrate into the magnetosphere and generate propagating Alfven waves. The expected values of magnetospheric electric and magnetic field are 1-10 microV/m/square root of Hz and 1-10 pT/square root of Hz respectively, and the horizontal scale of their distribution is about 100-200 km. Finally, these theoretical predictions are compared with the corresponding results of satellite observations.

  14. Direct evidence for solar wind control of Jupiter's hectometer-wavelength radio emission

    NASA Technical Reports Server (NTRS)

    Desch, M. D.; Barrow, C. H.

    1984-01-01

    Observations of the solar wind close to Jupiter, by the Voyager 1 and Voyager 2 spacecraft in 1978 and 1979, are compared with the hectometer wavelength radio emission from the planet. A significant positive correlation is found between variations in the solar wind plasma density at Jupiter and the level of Jovian radio emission output. During the 173-day interval studied for the Voyager 2 data, the radio emission displayed a long term periodicity of about 13 days, identical to that shown by the solar wind density at Jupiter and consistent with the magnetic sector structure association already proposed for groundbased observations of the decameter wavelength emission.

  15. Far-UV Emission Properties of FR1 Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Danforth, Charles W.; Stocke, John T.; France, Kevin; Begelman, Mitchell C.; Perlman, Eric

    2016-11-01

    The power mechanism and accretion geometry for low-power FR 1 radio galaxies are poorly understood in comparison to those for Seyfert galaxies and QSOs. In this paper, we use the diagnostic power of the Lyα recombination line observed using the Cosmic Origins Spectrograph (COS) aboard the Hubble Space Telescope (HST) to investigate the accretion flows in three well-known, nearby FR 1s: M87, NGC 4696, and Hydra A. The Lyα emission line’s luminosity, velocity structure, and the limited knowledge of its spatial extent provided by COS are used to assess conditions within a few parsecs of the supermassive black hole in these radio-mode active galactic nuclei. We observe strong Lyα emission in all three objects with total luminosity similar to that seen in BL Lacertae objects. M87 shows a complicated emission-line profile in Lyα, which varies spatially across the COS aperture and possibly temporally over several epochs of observation. In both NGC 4696 and M87, the Lyα luminosities ˜1040 erg s-1 are closely consistent with the observed strength of the ionizing continuum in Case B recombination theory and with the assumption of a near-unity covering factor. It is possible that the Lyα-emitting clouds are ionized largely by beamed radiation associated with the jets. Long-slit UV spectroscopy can be used to test this hypothesis. Hydra A and the several BL Lac objects studied in this and previous papers have Lyα luminosities larger than M87 but their extrapolated, nonthermal continua are so luminous that they overpredict the observed strength of Lyα, a clear indicator of relativistic beaming in our direction. Given their substantial space density (˜4 × 10-3 Mpc-3), the unbeamed Lyman continuum radiation of FR 1s may make a substantial minority contribution (˜10%) to the local UV background if all FR 1s are similar to M87 in ionizing flux level.

  16. Interstellar matter in early-type galaxies. III - Radio emission and star formation

    NASA Technical Reports Server (NTRS)

    Walsh, D. E. P.; Knapp, G. R.; Wrobel, J. M.; Kim, D.-W.

    1989-01-01

    The relationship between the IR and radio luminosity in early-type galaxies is examined using the correlation among spiral galaxies as a diagnostic of the presence of star formation. For ellipticals, the presence of long-wavelength IR emission enhances the probability that the galaxy is a radio source and is also correlated with the strength of that source. These findings are consistent with the idea that active radio nuclei are due to black holes being fueled by accretion of gas. The majority of S0s detected in both radio and far-IR have a similar ratio of IR to radio luminosity as has been found in spirals, and which is considered to be indicative of recent star formation. Sensitive radio limits for several galaxies reveal another substantial population of S0s with moderately strong IR emission unaccompanied by radio power.

  17. The lower subsidiary diffuse plasma resonances and the classification of radio emissions below the plasma frequency

    SciTech Connect

    Osherovich, V.A.; Benson, R.F. )

    1991-11-01

    The diffuse ionospheric resonances D{sub n}, stimulated by topside sounders, have been studied for over 2 decades. These resonances are observed below the plasma frequency f{sub N} between the harmonics of the electron gyrofrequency f{sub H}. The D{sub n} resonances are often accompanied by upper and lower subsidiary branches. The present paper concentrates on the classification of diffuse resonances, one motivation being the possible application to the interpretation of naturally occurring radio emissions in the magnetosphere. Osherovich has shown that the D{sub n} resonances are characterized by a nonequally spaced spectrum of frequencies f{sub D{sub n}} = f{sub Ds}n{sup 1/2} (n = 1, 2, 3, and 4), where f{sub D{sub s}} = 0.95(f{sub N}f{sub H}){sup 1/2}, and that the upper subsidiary resonances D{sub n}{sup +} = (f{sup 2}{sub D{sub n}} + f{sup 2}{sub H}){sup 1/2}. This classification is here extended to include the lower subsidiary resonances D{sub n}{sup minus} (n = 1, 2, 3, and 4), and it is shown that their frequencies are related to f{sub D{sub n}} and f{sub H} by the expression f{sub D{sub n}} = (f{sup 2}{sub D{sub n}} - f{sup 2}{sub H}){sup 1/2}. This result is based on a combination of previously published data and newly scaled ionograms from the Alouette 2 and ISIS 1 topside sounder experiments.

  18. Unusually high frequency natural VLF radio emissions observed during daytime in Northern Finland

    NASA Astrophysics Data System (ADS)

    Manninen, Jyrki; Turunen, Tauno; Kleimenova, Natalia; Rycroft, Michael; Gromova, Liudmila; Sirviö, Iina

    2016-12-01

    Geomagnetic field variations and electromagnetic waves of different frequencies are ever present in the Earth’s environment in which the Earth’s fauna and flora have evolved and live. These waves are a very useful tool for studying and exploring the physics of plasma processes occurring in the magnetosphere and ionosphere. Here we present ground-based observations of natural electromagnetic emissions of magnetospheric origin at very low frequency (VLF, 3-30 kHz), which are neither heard nor seen in their spectrograms because they are hidden by strong impulsive signals (sferics) originating in lightning discharges. After filtering out the sferics, peculiar emissions are revealed in these digital recordings, made in Northern Finland, at unusually high frequencies in the VLF band. These recently revealed emissions, which are observed for several hours almost every day in winter, contain short (˜1-3 min) burst-like structures at frequencies above 4-6 kHz, even up to 15 kHz; fine structure on the 1 s time scale is also prevalent. It seems that these whistler mode emissions are generated deep inside the magnetosphere, but the detailed nature, generation region and propagation behaviour of these newly discovered high latitude VLF emissions remain unknown; however, further research on them may shed new light on wave-particle interactions occurring in the Earth’s radiation belts.

  19. Radio Emissions Precursors of Impulsive Phase of Solar Flares Recorded by CALLISTO-BR

    NASA Astrophysics Data System (ADS)

    Fernandes, Francisco; Cunha-Silva, Rafael; Galdino, Marcela; Sodré, Zuleika

    2016-07-01

    A solar flare consists in an eruptive process and involves a sudden release of energy generated by processes carried on from instabilities in the magnetic configuration at solar atmosphere, generating emissions at different wavelengths. Usually, the pre-flare phase presents an increasing of soft X-ray, ultraviolet and radio emissions. In this work, we present a survey of solar radio emission recorded in metric wavelengths (45 - 250 MHz) by CALLISTO-BR spectrograph, belong to the e-Callisto network, associated with pre-flare phase of solar X-rays flares. A sample of 281 radio emissions was analyzed, and 120 were identified as precursor emissions of X-rays flares. The main results of the statistics can be summarized as: (a) 55% of the precursor radio emissions start less than 60 minutes before the beginning of the associated X-ray flare and about 20% start less than 20 minutes before the X-ray emission; (b) 27% of flares with precursor emissions are classified as B class, 61% of C class, and less than 22% of M class. No precursors radio emissions were associated with X class flare; (c) about 42% of radio precursor emissions are of type III bursts and 33% have complex morphology, as drifting pulsating structures. Analysis of global emission trends recorded during the precursor phase of the C4.8 flare of February 15, 2011 (14:32-14:51 UT) is also presented. The occurrence of radio emission during the pre-impulsive phase of a solar flare suggests the presence of plasma turbulence in the active region, since during the impulsive phase, when the energy is released, occur the heating of the plasma and increasing of soft X-ray emission as identified in the event analyzed. The results are presented and discussed.

  20. Mpc-scale diffuse radio emission in two massive cool-core clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Sommer, Martin W.; Basu, Kaustuv; Intema, Huib; Pacaud, Florian; Bonafede, Annalisa; Babul, Arif; Bertoldi, Frank

    2017-04-01

    Radio haloes are diffuse synchrotron sources on scales of ∼1 Mpc that are found in merging clusters of galaxies, and are believed to be powered by electrons re-accelerated by merger-driven turbulence. We present measurements of extended radio emission on similarly large scales in two clusters of galaxies hosting cool cores: Abell 2390 and Abell 2261. The analysis is based on interferometric imaging with the Karl G. Jansky Very Large Array, Very Large Array and Giant Metrewave Radio Telescope. We present detailed radio images of the targets, subtract the compact emission components and measure the spectral indices for the diffuse components. The radio emission in A2390 extends beyond a known sloshing-like brightness discontinuity, and has a very steep in-band spectral slope at 1.5 GHz that is similar to some known ultrasteep spectrum radio haloes. The diffuse signal in A2261 is more extended than in A2390 but has lower luminosity. X-ray morphological indicators, derived from XMM-Newton X-ray data, place these clusters in the category of relaxed or regular systems, although some asymmetric features that can indicate past minor mergers are seen in the X-ray brightness images. If these two Mpc-scale radio sources are categorized as giant radio haloes, they question the common assumption of radio haloes occurring exclusively in clusters undergoing violent merging activity, in addition to commonly used criteria for distinguishing between radio haloes and minihaloes.

  1. OSCILLATION-DRIVEN MAGNETOSPHERIC ACTIVITY IN PULSARS

    SciTech Connect

    Lin, Meng-Xiang; Xu, Ren-Xin; Zhang, Bing E-mail: r.x.xu@pku.edu.cn

    2015-02-01

    We study the magnetospheric activity in the polar cap region of pulsars under stellar oscillations. The toroidal oscillation of the star propagates into the magnetosphere, which provides additional voltage due to unipolar induction, changes Goldreich-Julian charge density from the traditional value due to rotation, and hence influences particle acceleration. We present a general solution of the effect of oscillations within the framework of the inner vacuum gap model and consider three different inner gap modes controlled by curvature radiation, inverse Compton scattering, and two-photon annihilation, respectively. With different pulsar parameters and oscillation amplitudes, one of three modes would play a dominant role in defining the gap properties. When the amplitude of oscillation exceeds a critical value, mode changing occurs. Oscillations also lead to a change of the size of the polar cap. As applications, we show the inner gap properties under oscillations in both normal pulsars and anomalous X-ray pulsars/soft gamma-ray repeaters (AXPs/SGRs). We interpret the onset of radio emission after glitches/flares in AXPs/SGRs as due to oscillation-driven magnetic activities in these objects, within the framework of both the magnetar model and the solid quark star model. Within the magnetar model, radio activation may be caused by the enlargement of the effective polar cap angle and the radio emission beam due to oscillation, whereas within the solid quark star angle, it may be caused by activation of the pulsar inner gap from below the radio emission death line due to an oscillation-induced voltage enhancement. The model can also explain the glitch-induced radio profile change observed in PSR J1119–6127.

  2. EMISSION PATTERNS OF SOLAR TYPE III RADIO BURSTS: STEREOSCOPIC OBSERVATIONS

    SciTech Connect

    Thejappa, G.; Bergamo, M.; MacDowall, R. J. E-mail: mbergamo@umd.edu

    2012-02-01

    Simultaneous observations of solar type III radio bursts obtained by the STEREO A, B, and WIND spacecraft at low frequencies from different vantage points in the ecliptic plane are used to determine their directivity. The heliolongitudes of the sources of these bursts, estimated at different frequencies by assuming that they are located on the Parker spiral magnetic field lines emerging from the associated active regions into the spherically symmetric solar atmosphere, and the heliolongitudes of the spacecraft are used to estimate the viewing angle, which is the angle between the direction of the magnetic field at the source and the line connecting the source to the spacecraft. The normalized peak intensities at each spacecraft R{sub j} = I{sub j} /{Sigma}I{sub j} (the subscript j corresponds to the spacecraft STEREO A, B, and WIND), which are defined as the directivity factors are determined using the time profiles of the type III bursts. It is shown that the distribution of the viewing angles divides the type III bursts into: (1) bursts emitting into a very narrow cone centered around the tangent to the magnetic field with angular width of {approx}2 Degree-Sign and (2) bursts emitting into a wider cone with angular width spanning from {approx} - 100 Degree-Sign to {approx}100 Degree-Sign . The plots of the directivity factors versus the viewing angles of the sources from all three spacecraft indicate that the type III emissions are very intense along the tangent to the spiral magnetic field lines at the source, and steadily fall as the viewing angles increase to higher values. The comparison of these emission patterns with the computed distributions of the ray trajectories indicate that the intense bursts visible in a narrow range of angles around the magnetic field directions probably are emitted in the fundamental mode, whereas the relatively weaker bursts visible to a wide range of angles are probably emitted in the harmonic mode.

  3. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  4. PREDICTION OF TYPE II SOLAR RADIO BURSTS BY THREE-DIMENSIONAL MHD CORONAL MASS EJECTION AND KINETIC RADIO EMISSION SIMULATIONS

    SciTech Connect

    Schmidt, J. M.; Cairns, Iver H.; Hillan, D. S.

    2013-08-20

    Type II solar radio bursts are the primary radio emissions generated by shocks and they are linked with impending space weather events at Earth. We simulate type II bursts by combining elaborate three-dimensional MHD simulations of realistic coronal mass ejections (CMEs) at the Sun with an analytic kinetic radiation theory developed recently. The modeling includes initialization with solar magnetic and active region fields reconstructed from magnetograms of the Sun, a flux rope of the initial CME dimensioned with STEREO spacecraft observations, and a solar wind driven with averaged empirical data. We demonstrate impressive accuracy in time, frequency, and intensity for the CME and type II burst observed on 2011 February 15. This implies real understanding of the physical processes involved regarding the radio emission excitation by shocks and supports the near-term development of a capability to predict and track these events for space weather prediction.

  5. Variable low-frequency radio emission of the solar system and galactic objects

    NASA Astrophysics Data System (ADS)

    Konovalenko, Alexander; Kolyadin, Vladimir; Rucker, Helmut; Zakharenko, Vyacheslav; Zarka, Philippe; Griessmeier, Jean-M.; Denis, Loran; Melnik, Valentin; Litvinenko, Galina; Zaitsev, Valerij; Falkovich, Igor; Ulyanov, Oleg; Sidorchuk, Mikhail; Stepkin, Sergej; Stanislavskij, Alexander; Kalinichenko, Nikolaj; Boiko, Nastja; Vasiljiva, Iaroslavna; Mukha, Dmytro; Koval, Artem

    2013-04-01

    There are many physical processes and propagation effects for the producing the time variable radio emission just at the low frequencies (at the decameter wavelength). The study of this radio emission is the important part of the modern radio astronomy. Strong progress in the development of the radio telescopes, methods and instrumentation allowed to start the corresponding investigations at new quality and quantity levels. It related to the implementation of the world largest UTR-2 radio telescope (effective area is more than 100 000 sq.m) more high sensitive at frequencies less than 30 MHz. During last years many new observations were carried out with this radio telescope and many new effects have been detected for the Sun, planets, interplanetary medium, exoplanets as well as various kinds of the stars.

  6. Effects of electromagnetic ion cyclotron rising tone emissions on the magnetospheric plasmas

    NASA Astrophysics Data System (ADS)

    Shoji, M.; Omura, Y.

    2015-12-01

    We perform self-consistent hybrid simulations on electromagnetic ion cyclotron (EMIC) triggered emissions with a gradient of the non-uniform ambient magnetic field and obtained broadband and clear rising tone EMIC emissions. We also performed the test particle simulations for scattering of the relativistic electrons. Broadband emissions induce rapid precipitation of energetic protons and relativistic electrons into the loss cone since the scattering by the concurrent triggering takes place faster than that of the coherent emissions. The coherent triggered emission causes efficient proton acceleration around the equator because of the stable particle trapping by the coherent rising tone emission. Nonlinear trapping causes significant relativistic electron scattering in wide energy range. Since the frequency of the rising tone emissions reaches close to the gyro-frequency and the emission also induces lower band EMIC waves which are also close to the gyro-frequency, the minimum resonance energy of the electrons reaches 300 keV. The higher energetic electrons (with 6 MeV to 20 MeV) are scattered almost 70 % for both broadband and rising tone cases. The hybrid simulations including cold ion heating are also performed, which shows the selective heating of heavy ions (Helium and Oxygen). These heating mechanism also makes the dynamic spectrum of the EMIC wave complex.

  7. Coherent Cherenkov radio emission and problems of ultrahigh-energy cosmic ray and neutrino detection

    NASA Astrophysics Data System (ADS)

    Tsarev, V. A.

    2006-08-01

    This review is concerned with prospects for employment of coherent Cherenkov radio emission for detecting ultrahigh-energy cosmic rays and neutrinos. Reasons for interest in and problems of studying the ultrahigh-energy particles are summarized. A history of the development of a radio-wave method and its main merits are recalled. Current experiments and proposals based on this method are briefly discussed with emphasize on the most recent Lunar Orbital Radio Detector (LORD) proposal.

  8. CO emission from radio quiet quasars - New detections support a thermal origin for the FIR emission

    NASA Astrophysics Data System (ADS)

    Alloin, D.; Barvainis, R.; Gordon, M. A.; Antonucci, R. R. J.

    1992-11-01

    We report detections of CO emission from the radio quiet quasars and luminous Seyfert 1 galaxies 0050+12, 0157+00, 0232-09, 0838+77, 1353+18, 1434+59, and 1613+65, and upper limits in five others. The observations show the same correlation between CO and FIR luminosity, and between 60-100 micron color temperature and the ratio L(FIR)/M(H2), as has previously been found for luminous IR galaxies. These results support thermal radiation from dust as the far-infrared source rather than synchrotron emission. Because we have observed with two different telescopes, and in two different transitions, we have been able to constrain source sizes in a few objects.

  9. A 1.6 MHz survey of the galactic background radio emission

    NASA Technical Reports Server (NTRS)

    Ellis, G. R. A.; Mendillo, M.

    1987-01-01

    Observations of the galactic radio emission at 1.6 MHz have been made during the current solar activity minimum using a radio telescope with a beamwidth of 25 deg. The radiation intensity was mapped for six declinations between -12 and -72 degrees and from 1000 to 0500 hours R.A.

  10. Ground-based decameter wavelength observations of the planetary and stellar radio emission

    NASA Astrophysics Data System (ADS)

    Konovalenko, A. A.; Rucker, H. O.; Lecacheux, A.; Melnik, V. N.; Litvinenko, G. V.; Abranin, E. P.; Falkovich, I. S.

    2007-08-01

    The studies of the non-thermal radio emission of the magnetized objects (the Sun, planets, exoplanets, active stars, etc.) are the important field of low-frequency radio astronomy and astrophysics. This kind of radio emission mainly relates to transient phenomena and requires for its investigations the high sensitive radio telescopes as well as the special technique and methods. Such investigations represent the significant part of future LOFAR scientific program. But the existing largest instruments (first, the Ukrainian decameter radio telescopes UTR-2, URAN) give the good possibilities for studying. Huge effective area of UTR-2 radio telescope (> 100 000 sq. m), broadband (8 *10E32 MHz), high dynamic range, the electronic steering and multi-beam ON-OFF method implementation allow to reach the sensitivity less than 1Jy, high time and frequency resolution and reliable detection of weak sporadic low-frequency radio emission events. Here we present the main results of the studies of the Sun, Jupiter, Saturn, active stars radio emission as well as outer heliosphere investigation by the scintillation method. Special interest paid to the simultaneous ground-based and space low-frequency experiments with the existing and future space missions (WIND, Cassini, STEREO, etc.). The favourable perspectives of the future investigations are evident from the presented researches.

  11. Ultraviolet and Radio Emission from the Northern Middle Lobe of Centaurus A

    NASA Technical Reports Server (NTRS)

    Neff, Susan

    2009-01-01

    We present deep GALEX ultraviolet (135 - 280 nm) images of the Northern Middle Lobe (NML) of the nearby radio galaxy Centaurus A. We find that the ultraviolet emission appears to have a complex interaction with soft X-ray, H-alpha emission, and radio emission, which should help constrain various models of energy transport in the NML. We also present new 90cm VLA images of the NML. The radio morphology at this wavelength is indicative of a more complex system than either a straightforward flaring jet (Morganti et al. 1999) or a bubble with trailing stem (Saxton et al. 2001). New limits are placed on the lack of radio emission from any corresponding southern counterpart to the NML.

  12. Generation condition of the Upper-band and Lower-band chorus emissions in the Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Habagishi, T.; Yagitani, S.; Omura, Y.; Kojima, H.

    2013-12-01

    In the present study, chorus emissions have been analyzed on the basis of the nonlinear growth theory [1] in the Earth's magnetosphere. A rising-tone chorus emission is initially generated continuously in the frequency range from 0.1 to 0.7 fce0, where fce0 is the gyrofrequency in the generation region. Because of the nonlinear damping mechanism [2] the rising-tone chorus is separated into upper and lower bands at half the local gyrofrequency for the quasi-parallel propagation toward higher latitude (i.e. toward larger gyrofrequencies). Thus the lower cutoff of the upper-band chorus indicates half-gyrofrequency at the observational point (1/2 fce), whereas the upper cutoff of the lower-band chorus indicates half the gyrofrequency in the generation region (1/2fce0). We found an observational evidence of such characteristics of upper-band and lower-band chorus observed by the wave form capture (WFC) and the sweep frequency analyzer (SFA) onboard Geotail [3]. Mainly ';'lower-band-only chorus'' (only the lower-band emission exists) is observed and occasionally ';'dual-band chorus'' (both the upper-band and the lower-band emissions) is observed by Geotail. In this study, we statistically analyze the difference between the lower-band-only chorus and the dual-band chorus, using the SFA data obtained during October, 1992 and August, 2011. It has been confirmed that the dual-band chorus is generated because of the nonlinear damping at half the local gyrofrequency during the propagation. When the dual-band chorus propagates toward higher latitudes with its the upper-band part completely damped at half the local gyrofrequencies, the dual-band chorus becomes the lower-band-only chorus. We assume that the upper cutoff frequency of the lower-band chorus equals to the half-gyrofrequency in the generation region. When 0.7 fce0 (i.e. upper limit frequency of the chorus generation) is higher than local 1/2 fce, the dual-band chorus is possibly observed because the higher

  13. Instrument technology for magnetosphere plasma imaging from high Earth orbit. Design of a radio plasma sounder. Final report

    SciTech Connect

    Haines, D.M.; Reinisch, B.W.

    1995-01-01

    The use of radio sounding techniques for the study of the ionospheric plasma dates back to G. Briet and M. A. Tuve in 1926. Ground based swept frequency sounders can monitor the electron number density (N{sub e}) as a function of height (the N{sub e} profile). These early instruments evolved into a global network that produced high-resolution displays of echo time delay vs frequency on 35-mm film. These instruments provided the foundation for the success of the International Geophysical Year. The Alouette and International Satellites for Ionospheric Studies (ISIS) programs pioneered the used of spaceborne, swept frequency sounders to obtain N{sub e} profiles of the topside of the ionosphere, from a position above the electron density maximum. Repeated measurements during the orbit produced an orbital plane contour which routinely provided density measurements to within 10%. The Alouette/ISIS experience also showed that even with a high powered transmitter (compared to the low power sounder possible today) a radio sounder can be compatible with other imaging instruments on the same satellite. Digital technology was used on later spacecraft developed by the Japanese (the EXOS C and D) and the Soviets (Intercosmos 19 and Cosmos 1809). However, a full coherent pulse compression and spectral integrating capability, such as exist today for ground-based sounders (Reinisch et al.), has never been put into space. NASA`s 1990 Space Physics Strategy Implementation Study `The NASA Space Physics Program from 1995 to 2010` suggested using radio sounders to study the plasmasphere and the magnetopause and its boundary layers (Green and Fung). Both the magnetopause and plasmasphere, as well as the cusp and boundary layers, can be observed by a radio sounder in a high-inclination polar orbit with an apogee greater than 6 R{sub e} (Reiff et al.; Calvert et al.).

  14. Sharing Low Frequency Radio Emissions in the Virtual Observatory: Application for JUNO-Ground-Radio Observations Support.

    NASA Astrophysics Data System (ADS)

    Cecconi, B.; Savalle, R.; Zarka, P. M.; Anderson, M.; Andre, N.; Coffre, A.; Clarke, T.; Denis, L.; Ebert, R. W.; Erard, S.; Genot, V. N.; Girard, J. N.; Griessmeier, J. M.; Hess, S. L.; Higgins, C. A.; Hobara, Y.; Imai, K.; Imai, M.; Kasaba, Y.; Konovalenko, A. A.; Kumamoto, A.; Kurth, W. S.; Lamy, L.; Le Sidaner, P.; Misawa, H.; Nakajo, T.; Orton, G. S.; Ryabov, V. B.; Sky, J.; Thieman, J.; Tsuchiya, F.; Typinski, D.

    2015-12-01

    In the frame of the preparation of the NASA/JUNO and ESA/JUICE (Jupiter Icy Moon Explorer) missions, and the development of a planetary sciences virtual observatory (VO), we are proposing a new set of tools directed to data providers as well as users, in order to ease data sharing and discovery. We will focus on ground based planetary radio observations (thus mainly Jupiter radio emissions), trying for instance to enhance the temporal coverage of jovian decametric emission. The data service we will be using is EPN-TAP, a planetary science data access protocol developed by Europlanet-VESPA (Virtual European Solar and Planetary Access). This protocol is derived from IVOA (International Virtual Observatory Alliance) standards. The Jupiter Routine Observations from the Nancay Decameter Array are already shared on the planetary science VO using this protocol, as well as data from the Iitate Low Frquency Radio Antenna, in Japan. Amateur radio data from the RadioJOVE project is also available. The attached figure shows data from those three providers. We will first introduce the VO tools and concepts of interest for the planetary radioastronomy community. We will then present the various data formats now used for such data services, as well as their associated metadata. We will finally show various prototypical tools that make use of this shared datasets.

  15. Circular polarization of radio emission from air showers in thunderstorm conditions

    NASA Astrophysics Data System (ADS)

    Trinh, T. N. G.; Scholten, O.; Bonardi, A.; Buitink, S.; Corstanje, A.; Ebert, U.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Mitra, P.; Mulrey, K.; Nelles, A.; Thoudam, S.; Rachen, J. P.; Rossetto, L.; Rutjes, C.; Schellart, P.; ter Veen, S.; Winchen, T.

    2017-03-01

    We present measured radio emission from cosmic-ray-induced air showers under thunderstorm conditions. We observe for these events large differences in intensity, linear polarization and circular polarization from the events measured under fair-weather conditions. This can be explained by the effects of atmospheric electric fields in thunderclouds. Therefore, measuring the intensity and polarization of radio emission from cosmic ray extensive air showers during thunderstorm conditions provides a new tool to probe the atmospheric electric fields present in thunderclouds.

  16. Observation of radio-wave-induced red hydroxyl emission at low altitude in the ionosphere.

    PubMed

    Kagan, L M; Nicolls, M J; Kelley, M C; Carlson, H C; Belikovich, V V; Bakhmet'eva, N V; Komrakov, G P; Trondsen, T S; Donovan, E

    2005-03-11

    We report the discovery of radio-wave-induced red emission of OH Meinel rotation-vibrational bands at 629.79 nm. These are the first measurements of artificial aurora below 100 km. We believe that the 629.79-nm OH emission was due to radio-wave focusing by sporadic ionization clouds near 80-85 km altitude, thus giving a technique to visualize the low-altitude sporadic ionization and providing insight into ionospheric interactions at these low altitudes.

  17. Searches for correlated X-ray and radio emission from X-ray burst sources

    NASA Technical Reports Server (NTRS)

    Johnson, H. M.; Catura, R. C.; Lamb, P. A.; White, N. E.; Sanford, P. W.; Hoffman, J. A.; Lewin, W. H. G.; Jernigan, J. G.

    1978-01-01

    The NRAO Green Bank interferometer has been used to monitor MXB 1730-335 and MXB 1837+05 during periods when 68 X-ray bursts were detected by X-ray observations. No significant radio emission was detected from these objects, or from MXB 1820-30 and MXB 1906+00, which emitted no bursts throughout the simultaneous observations. The data place upper limits on radio emission from these objects in the 2695 and 8085 MHz bands.

  18. Plasma and radio waves from Neptune: Source mechanisms and propagation

    NASA Technical Reports Server (NTRS)

    Wong, H. K.

    1994-01-01

    This report summarizes results obtained through the support of NASA Grant NAGW-2412. The objective of this project is to conduct a comprehensive investigation of the radio wave emission observed by the planetary radio astronomy (PRA) instrument on board Voyager 2 as if flew by Neptune. This study has included data analysis, theoretical and numerical calculations, ray tracing, and modeling to determine the possible source mechanism(s) and locations of the Neptune radio emissions. We have completed four papers, which are included in the appendix. The paper 'Modeling of Whistler Ray Paths in the Magnetosphere of Neptune' investigated the propagation and dispersion of lighting-generated whistler in the magnetosphere of Neptune by using three dimensional ray tracing. The two papers 'Numerical Simulations of Bursty Radio Emissions from Planetary Magnetospheres' and 'Numerical Simulations of Bursty Planetary Radio Emissions' employed numerical simulations to investigate an alternate source mechanism of bursty radio emissions in addition to the cyclotron maser instability. We have also studied the possible generation of Z and whistler mode waves by the temperature anisotropic beam instability and the result was published in 'Electron Cyclotron Wave Generation by Relativistic Electrons.' Besides the aforementioned studies, we have also collaborated with members of the PRA team to investigate various aspects of the radio wave data. Two papers have been submitted for publication and the abstracts of these papers are also listed in the appendix.

  19. Radio-Quiet Quasars in the VIDEO Survey: Evidence for AGN-powered radio emission below 1 mJy

    NASA Astrophysics Data System (ADS)

    White, Sarah; Jarvis, Matt; Haeussler, Boris; Maddox, Natasha

    2015-01-01

    Several lines of evidence suggest that the interaction between active galactic nucleus (AGN) activity and star formation is responsible for the co-evolution of black hole mass with galaxy bulge mass. Therefore studying this interplay is crucial to our understanding of galaxy formation and evolution. The new generation of radio surveys are able to play a key role in this area, as both processes produce radio emission.We use a combination of optical and near-infrared photometry to select a sample of 72 quasars from the VISTA Deep Extragalactic Observations (VIDEO) Survey, over 1 deg2. The depth of VIDEO allows us to study very low accretion rates and/or lower-mass black holes. 26% of the candidate quasar sample has been spectroscopically confirmed using the Southern African Large Telescope and the VIMOS VLT Deep Survey. We then use a radio-stacking technique to sample below the nominal flux-density threshold of existing Very Large Array data at 1.4 GHz. In agreement with other work, we show that a power-law fit to the radio number counts is inadequate, with an upturn in the counts being observed at these faint luminosities. Previous authors attribute this to an emergent star-forming population. However, by comparing radio emission from our quasars with that from a control sample of galaxies, we suggest that this emission is predominantly caused by accretion activity. Further support for an AGN origin is provided by a comparison of two independent estimates of star formation rate. These findings have important implications for modelling radio populations below 1 mJy, which is necessary for the development of the Square Kilometre Array.

  20. LATE-TIME RADIO EMISSION FROM X-RAY-SELECTED TIDAL DISRUPTION EVENTS

    SciTech Connect

    Bower, Geoffrey C.; Cenko, S. Bradley; Silverman, Jeffrey M.; Bloom, Joshua S.; Metzger, Brian D.

    2013-02-15

    We present new observations with the Karl G. Jansky Very Large Array of seven X-ray-selected tidal disruption events (TDEs). The radio observations were carried out between 9 and 22 years after the initial X-ray discovery, and thus probe the late-time formation of relativistic jets and jet interactions with the interstellar medium in these systems. We detect a compact radio source in the nucleus of the galaxy IC 3599 and a compact radio source that is a possible counterpart to RX J1420.4+5334. We find no radio counterparts for five other sources with flux density upper limits between 51 and 200 {mu}Jy (3{sigma}). If the detections truly represent late radio emission associated with a TDE, then our results suggest that a fraction, {approx}> 10%, of X-ray-detected TDEs are accompanied by relativistic jets. We explore several models for producing late radio emission, including interaction of the jet with gas in the circumnuclear environment (blast wave model), and emission from the core of the jet itself. Upper limits on the radio flux density from archival observations suggest that the jet formation may have been delayed for years after the TDE, possibly triggered by the accretion rate dropping below a critical threshold of {approx}10{sup -2}-10{sup -3} M-dot {sub Edd}. The non-detections are also consistent with this scenario; deeper radio observations can determine whether relativistic jets are present in these systems. The emission from RX J1420.4+5334 is also consistent with the predictions of the blast wave model; however, the radio emission from IC 3599 is substantially underluminous, and its spectral slope is too flat, relative to the blast wave model expectations. Future radio monitoring of IC 3599 and RX J1420.4+5334 will help to better constrain the nature of the jets in these systems.

  1. The low-frequency radio emission in blazar PKS2155-304

    NASA Astrophysics Data System (ADS)

    Pandey-Pommier, M.; Sirothia, S.; Chadwick, P.; Martin, J.-M.; Colom, P.; van Driel, W.; Combes, F.; Kharb, P.; Crespeau, P.-J.; Richard, J.; Guiderdoni, B.

    2016-12-01

    We report radio imaging and monitoring observations in the frequency range 0.235 - 2.7 GHz during the flaring mode of PKS 2155-304, one of the brightest BL Lac objects. The high sensitivity GMRT observations not only reveal extended kpc-scale jet and FRI type lobe morphology in this erstwhile 'extended-core' blazar but also delineate the morphological details, thanks to its arcsec scale resolution. The radio light curve during the end phase of the outburst measured in 2008 shows high variability (8.5%) in the jet emission in the GHz range, compared to the lower core variability (3.2%) seen at the lowest frequencies. The excess of flux density with a very steep spectral index in the MHz range supports the presence of extra diffuse emission at low frequencies. The analysis of multi wavelength (radio/optical/gamma-ray) light curves at different radio frequencies confirms the variability of the core region and agrees with the scenario of high energy emission in gamma-rays due to inverse Compton emission from a collimated relativistic plasma jet followed by synchrotron emission in radio. Clearly, these results give an interesting insight of the jet emission mechanisms in blazars and highlight the importance of studying such objects with low frequency radio interferometers like LOFAR and the SKA and its precursor instruments.

  2. A Giant Radio Flare from Cygnus X-3 with Associated Gamma-Ray Emission

    NASA Technical Reports Server (NTRS)

    Corbel, S.; Dubus, G.; Tomsick, J. A.; Szostek, A.; Corbet, R. H. D.; Miller-Jones, J. C. A.; Richards, J. L.; Pooley, G.; Trushkin, S.; Dubois, R.; Hill, A. B.; Kerr, M.; Max-Moerbeck, W.; Readhead, A. C. S.; Bodaghee, A.; Tudose, V.; Parent, D.; Wilms, J.; Pottschmidt, K.

    2012-01-01

    With frequent flaring activity of its relativistic jets, Cygnus X-3 (Cyg X-3) is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high energy gamma-ray emission, thanks to detections by Fermi/LAT and AGILE. In 2011, Cyg X-3 was observed to transit to a soft X-ray state, which is known to be associated with high-energy gamma-ray emission. We present the results of a multiwavelength campaign covering a quenched state, when radio emission from Cyg X-3 is at its weakest and the X-ray spectrum is very soft. A giant (approx 20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E greater than or equal 100 MeV) reveal renewed gamma-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the gamma-ray emission is not exclusively related to the rare giant radio flares. A 3-week period of gamma-ray emission is also detected when Cyg X-3 was weakly flaring in radio, right before transition to the radio quenched state. No gamma rays are observed during the one-month long quenched state, when the radio flux is weakest. Our results suggest transitions into and out of the ultrasoft X-ray (radio quenched) state trigger gamma-ray emission, implying a connection to the accretion process, and also that the gamma-ray activity is related to the level of radio flux (and possibly shock formation), strengthening the connection to the relativistic jets.

  3. The effect of solar wind and geomagnetic indices on emissions in the magnetosphere

    NASA Astrophysics Data System (ADS)

    Boynton, Richard; Walker, Simon

    2016-07-01

    In this study, we investigate which of the solar wind parameters or geomagnetic indices have the greatest influence on plasma waves in the radiation belts. We analysed three emission types for this study: Lower Band Chorus (LBC), Hiss and Equatorial MagnetoSonic (EMS) waves. The Error Reduction Ratio (ERR) analysis was used to identify the solar wind parameters or geomagnetic indices with the greatest control over the waves. The ERR analysis plays a key role in structure detection for nonlinear system identification modelling techniques. In this application, the solar wind parameters and geomagnetic indices are the input data, while the wave magnitudes for the three emission types at different locations are considered as the output data. The ERR analysis is able to automatically determine a set of the most influential parameters that explain the variations in the emissions. The results of the analysis were obtained in frame of the PROGRESS project funded by the Horizon 2020 EU program.

  4. Observing the Plasma-Physical Processes of Pulsar Radio Emission with Arecibo

    NASA Astrophysics Data System (ADS)

    Rankin, Joanna M.

    2017-01-01

    With their enormous densities and fields, neutron stars entail some of the most exotic physics in the cosmos. Similarly, the physical mechanisms of pulsar radio emission are no less exotic, and we are only now beginning to understand them. The talk will provide an introduction to the phenomenology of radio pulsar emission and focus on those aspects of the exquisite Arecibo observations that bear on their challenging emission physics.The commonalities of the radio beamforms of most slow pulsars (and some millisecond pulsars) argue strongly that their magnetic fields have a nearly dipolar structure at the height of their radio emission regions. These heights can often be determined by aberration/retardation analyses. Similarly, measurement of the orientation of the polarized radio emission with respect to the emitting magnetic field facilitates identification of the physical(X/O) emission modes and study of the plasma coupling to the electromagnetic radiation.While the physics of primary plasma generation above the pulsar polar cap is only beginning to be understood, it is clear that the radio pulsars we see are able to generate copious amounts of electron-positron plasma in their emission regions. Within the nearly dipolar field structure of these emission regions, the plasma density is near to that of the Goldreich-Julian model, and so the physical conditions in these regions can be accurately estimated.These conditions show that the plasma frequencies in the emission regions are much higher than the frequency of the emitted radiation, such that the plasma couples most easily to the extraordinary mode as observed. Therefore, the only surviving emission mechanism is curvature radiation from charged solitons, produced by the two-stream instability. Such soliton emission has probably been observed directly in the Crab pulsar; however, a physical theory of charged soliton radiation does not yet exist.

  5. Frequency variations of quasi-periodic ELF-VLF emissions: A possible new ground-based diagnostic of the outer high-latitude magnetosphere

    SciTech Connect

    Alford, J.; Engebretson, M.; Arnoldy, R.; Inan, U.

    1996-01-01

    Magnetic pulsations and quasi-periodic (QP) amplitude modulations of ELF-VLF waves at Pc 3-4 frequencies (15-50 mHz) are commonly observed simultaneously in cusp-latitude data. The naturally occurring ELF-VLF emissions are believed to be modulated within the magnetosphere by the compressional component of geomagnetic pulsations formed external to the magnetosphere. The authors have examined data from South Pole Station (L {approximately} 14) to determine the occurrence and characteristics of QP emissions. On the basis of 14 months of data during 1987 and 1988 they found that QP emissions typically appeared in both the 0.5-1 kHz and 1-2 kHz receiver channels at South Pole Station and ocassionally in the 2-4 kHz channel. The QP emission frequency appeared to depend on solar wind parameters and interplanetary magnetic field (IMF) direction, and the months near fall equinox in both 1987 and 1988 showed a significant increase in the percentage of QP emissions only in the lowest-frequency channel. The authors present a model consistent with these variations in which high-latitude (nonequatorial) magnetic field minima near the magnetopause play a major role, because the field magnitude governs both the frequency of ELF-VLF emissions and the whistler mode propagation cutoffs. Because the field in these regions will be strongly influenced by solar wind and IMF parameters, variations in the frequency of such emissions may be useful in providing ground-based diagnostics of the outer high-latitude magnetosphere. 32 refs., 13 figs.

  6. RFID Transponders' RF Emissions in Aircraft Communication and Navigation Radio Bands

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Ely, Jay J.; Koppen Sandra V.; Fersch, Mariatheresa S.

    2008-01-01

    Radiated emission data in aircraft communication and navigation bands are presented for several active radio frequency identification (RFID) tags. The individual tags are different in design, operation and transmitting frequencies. The process for measuring the tags emissions in a reverberation chamber is discussed. Measurement issues dealing with tag interrogation, low level measurement in the presence of strong transmissions, and tags low duty factors are discussed. The results show strong emissions, far exceeding aircraft emission limits and can be of potential interference risks.

  7. Wave propagation and earth satellite radio emission studies

    NASA Technical Reports Server (NTRS)

    Yeh, K. C.; Liu, C. H.; Flaherty, B. J.

    1974-01-01

    Radio propagation studies of the ionosphere using satellite radio beacons are described. The ionosphere is known as a dispersive, inhomogeneous, irregular and sometimes even nonlinear medium. After traversing through the ionosphere the radio signal bears signatures of these characteristics. A study of these signatures will be helpful in two areas: (1) It will assist in learning the behavior of the medium, in this case the ionosphere. (2) It will provide information of the kind of signal characteristics and statistics to be expected for communication and navigational satellite systems that use the similar geometry.

  8. A Review of the Low-Frequency Waves in the Giant Magnetospheres

    NASA Astrophysics Data System (ADS)

    Delamere, P. A.

    2016-02-01

    The giant magnetospheres harbor a plethora of low-frequency waves with both internal (i.e., moons) and external (i.e., solar wind) source mechanisms. This chapter summarizes the observation of low-frequency waves at Jupiter and Saturn and postulates the underlying physics based on our understanding of magnetodisc generation mechanisms. The source mechanisms of ULF pulsations at the giant magnetospheres are numerous. The satellite-magnetosphere interactions and mass loading of corotational flows generate many low-frequency waves. Observations of low-frequency bursts of radio emissions serve as an excellent diagnostic for understanding satellite-magnetosphere interactions. The outward radial transport of plasma through the magnetodisc and related magnetic flux circulation is a significant source of ULF pulsations; however, it is uncertain how the radial transport mechanism compares with solar wind induced perturbations.

  9. The birthplace of planetary radio astronomy: The Seneca, Maryland observatory 50 years after Burke and Franklin's Jupiter radio emission discovery.

    NASA Astrophysics Data System (ADS)

    Garcia, L. N.; Thieman, J. R.; Higgins, C. A.

    2004-12-01

    Burke and Franklin's discovery of radio emissions from Jupiter in 1955 effectively marked the birth of the field of planetary radio astronomy. The discovery was made near Seneca, Maryland using the Department of Terrestrial Magnetism/Carnegie Institution of Washington's Mills Cross Array. Fifty years later there is very little evidence of this 96-acre X-shaped array of dipoles still in existence, nor evidence of any of the other antennas used at this site. The site, now known as the McKee Besher Wildlife Management Area, is owned by the State of Maryland Department of Natural Resources. Radio Jove, a NASA/GSFC education and public outreach project, will recognize the 50th anniversary of this discovery through an historic reenactment using their receiver and dual-dipole array system. Our search through the DTM/CIW archives, our visit to the site to look for evidence of this array, and other efforts at commemorating this anniversary will be described.

  10. A study of diffuse radio sources and X-ray emission in six massive clusters

    NASA Astrophysics Data System (ADS)

    Parekh, V.; Dwarakanath, K. S.; Kale, R.; Intema, H.

    2017-01-01

    The goal of this study is to extend our current knowledge of the diffuse radio source (halo and relic) populations to z > 0.3. Here, we report GMRT and EVLA radio observations of six galaxy clusters taken from the MAssive Cluster Survey (MACS) catalogue to detect diffuse radio emission. We used archival GMRT (150, 235, and 610 MHz) and EVLA (L band) data and made images at multiple radio frequencies of the following six clusters - MACSJ0417.5-1154, MACSJ1131.8-1955, MACSJ0308.9+2645, MACSJ2243.3-0935, MACSJ2228.5+2036, and MACSJ0358.8-2955. We detect diffuse radio emission (halo or relic, or both) in the first four clusters. In the last two clusters, we do not detect any diffuse radio emission but we put stringent upper limits on their radio powers. We also use archival Chandra X-ray data to carry out morphology and substructure analysis of these clusters. We find that based on X-ray data, these MACS clusters are non-relaxed and show substructures in their temperature distribution. The radio powers of the first four MACS clusters are consistent with their expected values in the LX-P1.4 GHz plot. However, we found ultrasteep spectrum radio halo in the MACSJ0417.5-1154 cluster whose rest-frame cut-off frequency is at ˜900 MHz. The remaining two clusters whose radio powers are ˜11 times below the expected values are most likely to be in the `off-state' as has been postulated in some of the models of radio halo formation.

  11. Shock-powered radio emission from V5589 Sagittarii (Nova Sgr 2012 #1)

    NASA Astrophysics Data System (ADS)

    Weston, Jennifer H. S.; Sokoloski, J. L.; Chomiuk, Laura; Linford, Justin D.; Nelson, Thomas; Mukai, Koji; Finzell, Tom; Mioduszewski, Amy; Rupen, Michael P.; Walter, Frederick M.

    2016-08-01

    Since the Fermi discovery of γ-rays from novae, one of the biggest questions in the field has been how novae generate such high-energy emission. Shocks must be a fundamental ingredient. Six months of radio observations of the 2012 Nova V5589 Sgr with the VLA and 15 weeks of X-ray observations with Swift/XRT show that the radio emission consisted of: (1) a shock-powered, non-thermal flare; and (2) weak thermal emission from 10-5 M⊙ of freely expanding, photoionized ejecta. Absorption features in the optical spectrum and the peak optical brightness suggest that V5589 Sgr lies 4 kpc away (3.2-4.6 kpc). The shock-powered flare dominated the radio light curve at low frequencies before day 100. The spectral evolution of the radio flare, its high radio brightness temperature, the presence of unusually hard (kTx > 33 keV) X-rays, and the ratio of radio to X-ray flux near radio maximum all support the conclusions that the flare was shock-powered and non-thermal. Unlike most other novae with strong shock-powered radio emission, V5589 Sgr is not embedded in the wind of a red-giant companion. Based on the similar inclinations and optical line profiles of V5589 Sgr and V959 Mon, we propose that shocks in V5589 Sgr formed from collisions between a slow flow with an equatorial density enhancement and a subsequent faster flow. We speculate that the relatively high speed and low mass of the ejecta led to the unusual radio emission from V5589 Sgr, and perhaps also to the non-detection of γ-rays.

  12. Voyager planetary radio astronomy studies

    NASA Technical Reports Server (NTRS)

    Staelin, David H.; Eikenberry, Stephen S.

    1993-01-01

    Analysis of nonthermal radio emission data obtained by the Planetary Radio Astronomy (PRA) spectrometers on the Voyager 1 and 2 spacecraft was performed. This PRA data provided unique insights into the radio emission characteristics of the outer planets because of PRA's unique spectral response below the terrestrial ionospheric plasma frequency and its unprecedented proximity to the source. Of those results which were documented or published, this final report surveys only the highlights and cites references for more complete discussions. Unpublished results for Uranus, Neptune, and theoretical Ionian current distributions are presented at greater length. The most important conclusion to be drawn from these observations is that banded spectral emission is common to the radio emission below 1-2 MHz observed from all four Jovian planets. In every case multiple spectral features evolve on time scales of seconds to minutes. To the extent these features drift in frequency, they appear never to cross one another. The Neptunian spectral features appear to drift little or not at all, their evolution consisting principally of waxing and waning. Since other evidence strongly suggests that most or all of this radio emission is occurring near the local magnetospheric electron cyclotron frequency, this implies that this emission preferentially occurs at certain continually changing planetary radii. It remains unknown why certain radii might be favored, unless radial electric field components or other means serve to differentiate radially the magnetospheric plasma density, particle energy vectors, or particle coherence. Calculation of the spatial distribution and intensity of the Io-generated magnetospheric currents are also presented; these currents may be limited principally by wave impedance and local field strengths.

  13. Formation Process of Relativistic Electron Flux Through Interaction with Chorus Emissions in the Earth's Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Omura, Y.; Miyashita, Y.; Yoshikawa, M.; Summers, D.; Hikishima, M.; Ebihara, Y.; Kubota, Y.

    2015-12-01

    We perform test particle simulations of energetic electrons interacting with whistler-mode chorus emissions. We compute trajectories of a large number of electrons forming a delta function with the same energy and pitch angle. The electrons are launched at different locations along the magnetic field line and different timings with respect to a pair of chorus emissions generated at the magnetic equator. We follow the evolution of the delta function, and obtain a distribution function in energy and equatorial pitch angle, which is a numerical Green's function for one cycle of chorus wave-particle interaction. We obtain the Green's functions for the energy range 10 keV ˜ 6 MeV and all pitch angles greater than the loss cone angle. By taking the convolution integral of the Green's functions with the distribution function of the injected electrons repeatedly, we follow a long-time evolution of the distribution function. We find that the energetic electrons are accelerated effectively by relativistic turning acceleration and ultra-relativistic acceleration through nonlinear trapping by chorus emissions, and that these processes result in the rapid formation of a dumbbell distribution of highly relativistic electrons within a few minutes after the injection of tens of keV electrons.

  14. The radio emission from the ultraluminous far-infrared galaxy NGC 6240

    NASA Technical Reports Server (NTRS)

    Colbert, Edward J. M.; Wilson, Andrew S.; Bland-Hawthorn, Jonathan

    1994-01-01

    We present new radio observations of the 'prototypical' ultraluminous far-infrared galaxy NGC 6240, obtained using the Very Large Array (VLA) at lambda = 20 cm in B-configuration and at lambda = 3.6 cm in A-configuration. These data, along with those from four previous VLA observations, are used to perform a comprehensive study of the radio emission from NGC 6240. Approximately 70% (approximately 3 x 10(exp 23) W/Hz) of the total radio power at 20 cm originates from the nuclear region (approximately less than 1.5 kpc), of which half is emitted by two unresolved (R approximately less than 36 pc) cores and half by a diffuse component. The radio spectrum of the nuclear emission is relatively flat (alpha approximately equals 0.6; S(sub nu) proportional to nu(exp -alpha). The supernova rate required to power the diffuse component is consistent with that predicted by the stellar evolution models of Rieke et al. (1985). If the radio emission from the two compact cores is powered by supernova remnants, then either the remnants overlap and form hot bubbles in the cores, or they are very young (approximately less than 100 yr.) Nearly all of the remaining 30% of the total radio power comes from an 'armlike' region extending westward from the nuclear region. The western arm emission has a steep spectrum (alpha approximately equals 1.0), suggestive of aging effects from synchrotron or inverse-Compton losses, and is not correlated with starlight; we suggest that it is synchrotron emission from a shell of material driven by a galactic superwind. Inverse Compton scattering of far-infrared photons in the radio sources is expected to produce an X-ray flux of approximately 2 - 6 x 10(exp -14) ergs/s/sq cm in the 2 - 10 keV band. No significant radio emission is detected from or near the possible ultramassive 'dark core'.

  15. Understanding of particle acceleration and loss in Jupiter's magnetosphere from Juno mission

    NASA Astrophysics Data System (ADS)

    Bolton, Scott

    2016-07-01

    Juno is the first Jupiter polar mission. Juno science goals include the study of Jupiter's origin, interior structure, deep atmosphere, aurora and magnetosphere. The payload consists of a set of microwave antennas for deep sounding, magnetometers, gravity radio science, low and high energy charged particle detectors, electric and magnetic field radio and plasma wave experiment, ultraviolet imaging spectrograph, infrared imager and a visible camera. Juno's extensive suite of fields and particle experiments along with the UV and IR imagers will provide the first detailed investigation of Jupiter's polar magnetosphere. The set of six microwave radiometers on Juno provide an unprecedented view of Jupiter's synchrotron emission from inside Jupiter's powerful radiation belts. The Juno mission design, science goals, and measurements related to the magnetosphere and radiation belts of Jupiter will be presented.

  16. Solar Radio Emission as a Prediction Technique for Coronal Mass Ejections' registration

    NASA Astrophysics Data System (ADS)

    Sheiner, Olga; Fridman, Vladimir

    2016-07-01

    The concept of solar Coronal Mass Ejections (CMEs) as global phenomenon of solar activity caused by the global magnetohydrodynamic processes is considered commonly accepted. These processes occur in different ranges of emission, primarily in the optical and the microwave emission being generated near the surface of the sun from a total of several thousand kilometers. The usage of radio-astronomical data for CMEs prediction is convenient and promising. Actually, spectral measurements of solar radio emission cover all heights of solar atmosphere, sensitivity and accuracy of measurements make it possible to record even small energy changes. Registration of the radio emission is provided by virtually all-weather ground-based observations, and there is the relative cheapness to obtain the corresponding information due to a developed system of monitoring observations. On the large statistical material there are established regularities of the existence of sporadic radio emission at the initial stage of CMEs' formation and propagation in the lower layers of the solar atmosphere during the time interval from 2-3 days to 2 hours before registration of CMEs on coronagraph. In this report we present the prediction algorithm and scheme of short-term forecasting developed on the base of statistical analysis regularities of solar radio emission data prior to "isolated" solar Coronal Mass Ejections registered in 1998, 2003, 2009-2013.

  17. High sensitive observations of the planetary radio emission in decameter wavelength

    NASA Astrophysics Data System (ADS)

    Litvinenko, Galina; Zakharenko, Vyacheslav; Rucker, Helmut; Konovalenko, Alexander; Shaposhnikov, Vladimir; Zarka, Philippe; Griessmeier, Jean-M.; Fisher, Georg; Vinogradov, Vladimir; Mylostna, Krystyna

    2013-04-01

    The progress of the ground-based low frequency radio astronomy has opened a new approach to the study of planetary radio emission in the solar system and beyond. This is manifested in the study of the Jupiter (detection of various types of the sporadic emission), of the Saturn (investigation of the electrostatic discharges emission, SED), as well as other planets and exoplanets. High efficiency decameter wavelength radio telescope UTR-2 and modern registration systems (effective area is more than 100 000 sq.m., instant frequency band is 8-33 MHz, dynamic range is about 90 dB, the frequency resolution is about 1 kHz, the temporal resolution is about 1 microsecond) allow for a new observation and detect many interesting phenomena. This includes the detection of superfine time-frequency structures and new types of the modulations effects in the Jovian radio emission, the detection of microsecond scales in the SED emission of the Saturn, and dispersion delay of the SED signals in the interplanetary medium. In addition, the described above method of observation of the planetary signals allowed for the first time to start ground-based searching radio emission from Uranus, Venus, Mars and exoplanets.

  18. Observation of local radio emission associated with type III radio bursts and Langmuir waves

    NASA Technical Reports Server (NTRS)

    Reiner, M. J.; Stone, R. G.; Fainberg, J.

    1992-01-01

    The first clear detection of fundamental and harmonic radiation from the type III radio source region is presented. This radiation is characterized by its lack of frequency drift, its short rise and decay times, its relative weakness compared to the remotely observed radiation and its temporal coincidence with observed Langmuir waves. The observations were made with the radio and plasma frequency (URAP) receivers on the Ulysses spacecraft between about 1 and 2 AU from the Sun.

  19. Dione's Magnetospheric Interaction

    NASA Astrophysics Data System (ADS)

    Kurth, W. S.; Hospodarsky, G. B.; Schippers, P.; Moncuquet, M.; Lecacheux, A.; Crary, F. J.; Khurana, K. K.; Mitchell, D. G.

    2015-12-01

    Cassini has executed four close flybys of Dione during its mission at Saturn with one additional flyby planned as of this writing. The Radio and Plasma Wave Science (RPWS) instrument observed the plasma wave spectrum during each of the four encounters and plans to make additional observations during the 17 August 2015 flyby. These observations are joined by those from the Cassini Plasma Spectrometer (CAPS), Magnetospheric Imaging Instrument (MIMI), and the Magnetometer instrument (MAG), although neither CAPS nor MAG data were available for the fourth flyby. The first and fourth flybys were near polar passes while the second and third were near wake passes. The second flyby occurred during a time of hot plasma injections which are not thought to be specifically related to Dione. The Dione plasma wave environment is characterized by an intensification of the upper hybrid band and whistler mode chorus. The upper hybrid band shows frequency fluctuations with a period of order 1 minute that suggest density variations of up to 10%. These density variations are anti-correlated with the magnetic field magnitude, suggesting a mirror mode wave. Other than these periodic density fluctuations there appears to be no local plasma source which would be observed as a local enhancement in the density although variations in the electron distribution are apparent. Wake passages show a deep density depletion consistent with a plasma cavity downstream of the moon. Energetic particles show portions of the distribution apparently absorbed by the moon leading to anisotropies that likely drive both the intensification of the upper hybrid band as well as the whistler mode emissions. We investigate the role of electron anisotropies and enhanced hot electron fluxes in the intensification of the upper hybrid band and whistler mode emissions.

  20. Anticipating Juno Observations of the Magnetosphere of Jupiter

    NASA Astrophysics Data System (ADS)

    Bunnell, E.; Fowler, C. M.; Bagenal, F.; Bonfond, B.

    2012-12-01

    The Juno spacecraft will arrive at Jupiter in 2016 and will go into polar orbit. Juno will make the first exploration of the polar regions of Jupiter's vast magnetosphere, combining in situ particles and fields measurements with remote sensing of auroral emissions in the UV, IR and radio. The primary science period comprises ~30 orbits with 11-day periods with a~1.06Rj perijove, allowing Juno to duck under the hazardous synchrotron radiation belts. Apojove is at ~38Rj. The oblateness of the planet causes the orbit to precess with the major axis moving progressively south at about 1 degree per orbit, eventually bringing the spacecraft into the radiation belts. This orbit allows unprecedented views of the aurora and exploration of the auroral acceleration regions. We present an overview of anticipated Juno observations based on models of the Jovian magnetosphere. On approach to Jupiter and over a capture orbit that extends to ~180Rj on the dawn flank, Juno will traverse the magnetosheath, magnetopause and boundary layer regions of the magnetosphere. Due to the high plasma pressures in the magnetospheric plasmasheet the magnetosphere of Jupiter is known to vary substantially with the changes in the solar wind dynamic pressure. We use Ulysses solar wind data obtained around 5 AU to predict the conditions that Juno will observe over the several months it will spend in these boundary regions.

  1. Unprecedentedly Strong and Narrow Electromagnetic Emissions Stimulated by High-Frequency Radio Waves in the Ionosphere

    SciTech Connect

    Norin, L.; Leyser, T. B.; Nordblad, E.; Thide, B.; McCarrick, M.

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.

  2. Unprecedentedly strong and narrow electromagnetic emissions stimulated by high-frequency radio waves in the ionosphere.

    PubMed

    Norin, L; Leyser, T B; Nordblad, E; Thidé, B; McCarrick, M

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.

  3. Is lightning a possible source of the radio emission on HAT-P-11b?

    NASA Astrophysics Data System (ADS)

    Hodosán, G.; Rimmer, P. B.; Helling, Ch.

    2016-09-01

    Lightning induced radio emission has been observed on Solar system planets. There have been many attempts to observe exoplanets in the radio wavelength, however, no unequivocal detection has been reported. Lecavelier des Etangs et al. carried out radio transit observations of the exoplanet HAT-P-11b, and suggested that a small part of the radio flux can be attributed to the planet. Here, we assume that this signal is real, and study if this radio emission could be caused by lightning with similar energetic properties like in the Solar system. We find that a lightning storm with 3.8 × 106 times larger flash densities than the Earth-storms with the largest lightning activity is needed to produce the observed signal from HAT-P-11b. The optical emission of such thunderstorm would be comparable to that of the host star. We show that HCN produced by lightning chemistry is observable 2-3 yr after the storm, which produces signatures in the L (3.0-4.0 μm) and N (7.5-14.5 μm) infrared bands. We conclude that it is unlikely that the observed radio signal was produced by lightning, however, future, combined radio and infrared observations may lead to lightning detection on planets outside the Solar system.

  4. Transition radiation model for LF radio emission produced by ultrahigh-energy cosmic rays

    NASA Astrophysics Data System (ADS)

    Rahman, M.; Boruah, K.

    2016-03-01

    Wide-band radio emission from cosmic ray-induced extensive air showers is now well established. The electromagnetic component of the extensive air shower, during their propagation through atmosphere, interacts with their surroundings emitting radio pulses which can be detected from the very low frequency to the very high frequency. Conventional detection techniques, although effective, have lower duty cycles and are expensive. The radio method, on the other hand, provides almost 100 % duty cycle after suppressing the radio frequency interferences and is also cost-effective. Correlation studies show that there must be at least two separate mechanisms responsible for radio emission at low and high frequencies. So far, theoretical models based on computer simulations have been successful in explaining the emission at high frequencies. However, at low frequencies, the available theories have been incapable of explaining the observed field strengths as high as 750 μV/m/MHz. In this paper, a mathematical model based on transition radiation is proposed to explain the low-frequency radio emission that uses realistic particle distribution obtained from the Monte Carlo simulation code CORSIKA.

  5. A Study of Nonthermal X-Ray and Radio Emission from the O Star 9 Sgr

    NASA Technical Reports Server (NTRS)

    Waldron, Wayne L.; Corcoran, Michael F.; Drake, Stephen A.

    1999-01-01

    The observed X-ray and highly variable nonthermal radio emission from OB stars has eluded explanation for more than 18 years. The most favorable model of X-ray production in these stars (shocks) predicts both nonthermal radio and X-ray emission. The nonthermal X-ray emission should occur above 2 keV and the variability of this X-ray component should also be comparable to the observed radio variability. To test this scenario, we proposed an ASC/VLA monitoring program to observe the OB star, 9 Sgr, a well known nonthermal, variable radio source and a strong X-ray source. We requested 625 ks ASCA observations with a temporal spacing of approximately 4 days which corresponds to the time required for a density disturbance to propagate to the 6 cm radio free-free photosphere. The X-ray observations were coordinated with 5 multi-wavelength VLA observations. These observations represent the first systematic attempt to investigate the relationship between the X-ray and radio emission in OB stars.

  6. VLF wave growth and discrete emission triggering in the magnetosphere - A feedback model

    NASA Technical Reports Server (NTRS)

    Helliwell, R. A.; Inan, U. S.

    1982-01-01

    A simple nonlinear feedback model is presented to explain VLF wave growth and emission triggering observed in VLF transmission experiments. The model is formulated in terms of the interaction of electrons with a slowly varying wave in an inhomogeneous medium as in an unstable feedback amplifier with a delay line; constant frequency oscillations are generated on the magnetic equator, while risers and fallers are generated on the downstream and upstream sides of the equator, respectively. Quantitative expressions are obtained for the stimulated radiation produced by energy exchanged between energetic electrons and waves by Doppler-shifted cyclotron resonance, and feedback between the stimulated radiation and the phase bunched currents is incorporated in terms of a two-port discrete time model. The resulting model is capable of explaining the observed temporal growth and saturation effects, phase advance, retardation or frequency shift during growth in the context of a single parameter depending on the energetic particle distribution function, as well as pretermination triggering.

  7. Source characteristics and locations of hectometric radio emissions from the northern Jovian hemisphere

    NASA Technical Reports Server (NTRS)

    Reiner, M. J.; Fainberg, J.; Stone, R. G.

    1993-01-01

    Northern Jovian hectometric (HOM) radio emissions, detected from high Jovian latitudes by the Unified Radio and Plasma Wave experiment on the Ulysses spacecraft, were observed at all Jovian longitudes. This emission was observed to be predominantly right-hand circularly polarized, but some left-hand circular polarization was observed implying the presence of O mode emissions from the northern Jovian hemisphere. Intense HOM emissions, with well-defined directions and polarizations, were often confined to similar longitudinal regions where intense HOM emissions were previously observed at low latitudes. The present analysis confirms that these northern HOM sources lie in the Jovian polar regions on magnetic field lines that pass through the Io plasma torus. The observations may be consistent with emission from either a filled cone beam or a longitudinal distribution of thin hollow cones.

  8. Radio-to-TeV Phase-resolved Emission from the Crab Pulsar: The Annular Gap Model

    NASA Astrophysics Data System (ADS)

    Du, Y. J.; Qiao, G. J.; Wang, W.

    2012-04-01

    The Crab pulsar is a quite young, famous pulsar that radiates multi-wavelength pulsed photons. The latest detection of GeV and TeV pulsed emission with an unprecedented signal-to-noise ratio, supplied by the powerful telescopes Fermi, MAGIC, and VERITAS, challenges the current popular pulsar models, and can be a valuable discriminator to justify the pulsar high-energy-emission models. Our work is divided into two steps. First, taking reasonable parameters (the magnetic inclination angle α = 45° and the view angle ζ = 63°), we use the latest high-energy data to calculate radio, X-ray, γ-ray, and TeV light curves from a geometric view to obtain crucial information on emission locations. Second, we calculate the phase-averaged spectrum and phase-resolved spectra for the Crab pulsar and take a theoretical justification from a physical view for the emission properties as found in the first step. It is found that a Gaussian emissivity distribution with the peak emission near the null charge surface in the so-called annular gap (AG) region gives the best modeled light curves. The pulsed radio, X-ray, γ-ray, and TeV emission are mainly generated from the emission of primary particles or secondary particles with different emission mechanisms in the nearly similar region of the AG located in the only magnetic pole, which leads to the nearly "phase-aligned" multi-wavelength light curves. The emission of peak 1 and peak 2 originates from the AG region near the null charge surface, while the emission of the bridge primarily originates from the core gap (CG) region. The charged particles cannot co-rotate with the pulsar and escape from the magnetosphere, which determines the original flowing primary particles. The acceleration electric field and potential in the AG and CG are huge enough and are in the several tens of neutron star radii. Thus, the primary particles are accelerated to ultra-relativistic energies and produce numerous secondary particles (pairs) in the inner

  9. Radio emission at the centre of the galaxy cluster Abell 3560: evidence for core sloshing?

    NASA Astrophysics Data System (ADS)

    Venturi, T.; Rossetti, M.; Bardelli, S.; Giacintucci, S.; Dallacasa, D.; Cornacchia, M.; Kantharia, N. G.

    2013-10-01

    Context. We study the interplay between the radio emission associated with the dominant galaxy in clusters and the properties of the surrounding intracluster medium on the basis of its X-ray emission. Aims: Previous radio observations of the galaxy cluster A 3560, located in the Shapley Concentration core, revealed complex radio emission associated with the brightest cluster member. To understand the origin of this radio emission we performed a detailed multiwavelength study with high-quality proprietary data in the radio and X-ray bands and by means of optical data available in the literature. Methods: We observed the cluster with the Giant Metrewave Radio Telescope, the Very Large Array, and the Australia Telescope Compact array at 240 and 610 MHz, 1.28, 1.4, 2.3, 4.8, and 8.4 GHz, and performed a detailed morphological and spectral study of the radio emission associated with the brightest cluster galaxy (BCG). Furthermore, we observed the cluster with the XMM-Newton and Chandra observatories to derive the properties of the intracluster gas. Finally, we made use of literature data to obtain the bidimensional distribution of the galaxies in the cluster. Results: The radio emission, associated with the north-eastern nucleus of the dumb-bell BCG, is the result of two components: an active radio galaxy, with jets and lobes, plus aged diffuse emission, which is not refurbished with new electrons at present. Our Chandra data show that the radio active nucleus of the BCG has extended X-ray emission, which we classify as a low-luminosity corona. A residual image of the XMM-Newton brightness distribution shows a spiral-like feature, which we interpret as the signature of gas sloshing. A sub-group is clearly visible in the surface brightness residual map, and this is also supported by the XMM-Newton temperature analysis. The optical bidimensional analysis shows substructure in A 3560. A galaxy clump was detected at the location of the X-ray sub-group, and another group is

  10. A comparison of the radio data and model calculations of Jupiter's synchrotron radiation. I - The high energy electron distribution in Jupiter's inner magnetosphere. II - East-west asymmetry in the radiation belts as a function of Jovian longitude

    NASA Technical Reports Server (NTRS)

    De Pater, I.

    1981-01-01

    A comparison has been made between detailed model calculations of Jupiter's synchrotron radiation and the radio data at wavelengths of 6, 21, and 50 cm. The calculations were performed for a Jovian longitude of 200 deg and were based on the multipole field configurations as derived from the Pioneer data. The electron distribution in the inner magnetosphere was derived as a function of energy, pitch angle, and spatial coordinates. In addition, the hot region or east-west asymmetry in the radiation belts is investigated. It is suggested that this asymmetry is due to the combined effect of an overabundance of electrons at jovicentric longitudes of 240-360 deg and the existence of a dusk-to-dawn directed electric field over the inner magnetosphere generated by the wind system in the upper atmosphere.

  11. Spectroscopy of emission-line nebulae in powerful radio galaxies - Interpretation

    NASA Astrophysics Data System (ADS)

    Baum, S. A.; Heckman, T. M.; van Breugel, W.

    1992-04-01

    Long-slit optical spectra of the emission-line nebulae associated with 21 low-redshift (less than 0.2) radio galaxies are analyzed. Nebulae are classified kinematically into three types: rotators, calm nonrotators, and violent nonrotators; these types are characterized. It is proposed that the rotators have dynamically young disks of gas recently acquired by the radio galaxy in an interaction or merger with a gas-rich galaxy. This is consistent with the data on the morphologies, colors, and stellar dynamics of radio galaxies with strong emission lines. It is inferred from the association of the large-scale gas kinematics with the radio and optical properties of an active galaxy that the angular momentum of the gas which fuels the AGN may be an important parameter in the determinant of how activity is manifest in an AGN.

  12. Quantitative prediction of type II solar radio emission from the Sun to 1 AU

    NASA Astrophysics Data System (ADS)

    Schmidt, J. M.; Cairns, Iver H.

    2016-01-01

    Coronal mass ejections (CMEs) are frequently associated with shocks and type II solar radio bursts. Despite involving fundamental plasma physics and being the archetype for collective radio emission from shocks, type II bursts have resisted detailed explanation for over 60 years. Between 29 November and 1 December 2013 the two widely separated spacecraft STEREO A and B observed a long lasting, intermittent, type II radio burst from ≈4 MHz to 30 kHz (harmonic), including an intensification when the CME-driven shock reached STEREO A. We demonstrate the first accurate and quantitative simulation of a type II burst from the high corona (near 11 solar radii) to 1 AU for this event with a combination of a data-driven three-dimensional magnetohydrodynamic simulation for the CME and plasma background and an analytic quantitative kinetic model for the radio emission.

  13. Planetary magnetospheres

    NASA Technical Reports Server (NTRS)

    Stern, D. P.; Ness, N. F.

    1981-01-01

    A concise overview is presented of our understanding of planetary magnetospheres (and in particular, of that of the Earth), as of the end of 1981. Emphasis is placed on processes of astrophysical interest, e.g., on particle acceleration, collision-free shocks, particle motion, parallel electric fields, magnetic merging, substorms, and large scale plasma flows. The general morphology and topology of the Earth's magnetosphere are discussed, and important results are given about the magnetospheres of Jupiter, Saturn and Mercury, including those derived from the Voyager 1 and 2 missions and those related to Jupiter's satellite Io. About 160 references are cited, including many reviews from which additional details can be obtained.

  14. Simulation of VLF chorus emissions in the magnetosphere and comparison with THEMIS spacecraft data

    NASA Astrophysics Data System (ADS)

    Demekhov, A. G.; Taubenschuss, U.; Santolík, O.

    2017-01-01

    We present results of numerical simulations of VLF chorus emissions based on the backward wave oscillator model and compare them with Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft data from the equatorial chorus source region on the early morning side at a radial distance of 6 Earth radii. Specific attention is paid to the choice of simulation parameters based on experimental data. We show that with known parameters of the geomagnetic field, plasma density, and the initial wave frequency, one can successfully reproduce individual chorus elements in the simulation. In particular, the measured growth rate, wave amplitude, and frequency drift rate are in agreement with observed values. The characteristic interval between the elements has a mismatch of factor 2. The agreement becomes perfect if we assume that the inhomogeneity scale of the magnetic field along the field line is half of that obtained from the T96 model. Such an assumption can be justified since the T96 model does not fit well for the time of chorus observations, and there is a shear in the observed field which indicates the presence of local currents.

  15. On Using Solar Radio Emission to Probe Interiors of Asteroids and Comets

    NASA Astrophysics Data System (ADS)

    Winebrenner, D. P.; Gary, D. E.; Sahr, J. D.; Asphaug, E. I.

    2015-12-01

    Asteroids, comets and other primitive solar system bodies are key sources of information on the early solar system, on volatiles and organics delivered to the terrestrial planets, and on processes of planetary formation now observed in operation around other stars. Whether asteroids (in various size classes) are rubble piles or monolithic, and whether any porosity or internal voids contain volatiles, are first-order questions for understanding the delivery of volatiles to the early Earth, and for assessing impact hazards. Information on bulk composition aids discrimination between types and origins of primitive bodies, .e.g., the degree of aqueous alteration and bound-water content of carbonaceous chondrite bodies, and the volatile mass fraction of comets. Radar and radio methods can provide direct information on bulk composition, micro- and macro-porosity, body-scale internal structure, and on whether voids in rocky materials are volatile- or vacuum-filled. Such methods therefore figure prominently in current missions to primitive bodies (e.g., CONSERT) and in a variety of proposed missions. Radio transmitters necessary for conventional methods, however, add considerably to spacecraft mass and power requirements. Moreover, at many wavelengths most useful for radio sounding, powerful radio emission from the Sun strongly interferes with conventional signals. Here we present initial results from an investigation of how solar radio emission could serve as a natural resource for probing interiors of primitive bodies, rather than as interference. We briefly review methods for using stochastic radio illumination (aka noise radar methods), and illustrate the characteristics of solar radio emission relevant to mission design (e.g., observed intervals between emission events of specified intensity for different points in the solar cycle). We then discuss methods for selecting and interpreting observations in terms of interior properties, for bodies is different size classes

  16. ON THE ORIGIN OF THE RADIO EMISSION OF Sw 1644+57

    SciTech Connect

    Barniol Duran, Rodolfo; Piran, Tsvi E-mail: tsvi.piran@mail.huji.ac.il

    2013-06-20

    We apply relativistic equipartition synchrotron arguments to the puzzling radio emission of the tidal disruption event candidate Sw 1644+57. We find that regardless of the details of the equipartition scenario considered, the energy required to produce the observed radio (i.e., energy in the magnetic field and radio emitting electrons) must increase by a factor of {approx}20 during the first 200 days. It then saturates. This energy increase cannot be alleviated by a varying geometry of the system. The radio data can be explained by the following. (1) An afterglow like emission of the X-ray emitting narrow relativistic jet. The additional energy can arise here from a slower moving material ejected in the first few days that gradually catches up with the slowing down blast wave. However, this requires at least {approx}4 Multiplication-Sign 10{sup 53} erg in the slower moving outflow. This is much more than the energy of the fast moving outflow that produced the early X-rays and it severely constrains the overall energy budget. (2) Alternatively, the radio may arise from a mildly relativistic and quasi-spherical outflow. Here, the energy available for radio emission increases with time, reaching at least {approx}10{sup 51} erg after 200 days. This scenario requires, however, a second separate X-ray emitting collimated relativistic component. Given these results, it is worthwhile to consider alternative models in which the energy of the magnetic field and/or of the radio emitting electrons increases with time without having a continuous energy supply to the blast wave. This can happen, for example, if the energy is injected initially mostly in one form (Poynting flux or baryonic) and it is gradually converted to the other form, leading to a strong time-varying deviation from equipartition. Another intriguing possibility is that a gradually decreasing inverse Compton cooling modifies the synchrotron emission and leads to an increase of the available energy in the radio

  17. Voyager 2 radio observations of uranus.

    PubMed

    Warwick, J W; Evans, D R; Romig, J H; Sawyer, C B; Desch, M D; Kaiser, M L; Alexander, J K; Carr, T D; Staelin, D H; Gulkis, S; Poynter, R L; Aubier, M; Boischot, A; Leblanc, Y; Lecacheux, A; Pedersen, B M; Zarka, P

    1986-07-04

    Within distances to Uranus of about 6 x 10(6) kilometers (inbound) and 35 x 10(6) kilometers (outbound), the planetary radio astronomy experiment aboard Voyager 2 detected a wide variety of radio emissions. The emission was modulated in a period of 17.24 +/- 0.01 hours, which is identified as the rotation period of Uranus' magnetic field. Of the two poles where the axis of the off-center magnetic dipole (measured by the magnetometer experiment aboard Voyager 2) meets the planetary surface, the one closer to dipole center is now located on the nightside of the planet. The radio emission generally had maximum power and bandwidth when this pole was tipped toward the spacecraft. When the spacecraft entered the nightside hemisphere, which contains the stronger surface magnetic pole, the bandwidth increased dramatically and thereafter remained large. Dynamically evolving radio events of various kinds embedded in these emissions suggest a Uranian magnetosphere rich in magnetohydrodynamic phenomena.

  18. RADIO MONITORING OF THE PERIODICALLY VARIABLE IR SOURCE LRLL 54361: NO DIRECT CORRELATION BETWEEN THE RADIO AND IR EMISSIONS

    SciTech Connect

    Forbrich, Jan; Rodríguez, Luis F.; Palau, Aina; Zapata, Luis A.; Muzerolle, James; Gutermuth, Robert A.

    2015-11-20

    LRLL 54361 is an infrared source located in the star-forming region IC 348 SW. Remarkably, its infrared luminosity increases by a factor of 10 over roughly one week every 25.34 days. To understand the origin of these remarkable periodic variations, we obtained sensitive 3.3 cm JVLA radio continuum observations of LRLL 54361 and its surroundings in six different epochs: three of them during the IR-on state and three during the IR-off state. The radio source associated with LRLL 54361 remained steady and did not show a correlation with the IR variations. We suggest that the IR is tracing the results of fast (with a timescale of days) pulsed accretion from an unseen binary companion, while the radio traces an ionized outflow with an extent of ∼100 AU that smooths out the variability over a period of the order of a year. The average flux density measured in these 2014 observations, 27 ± 5 μJy, is about a factor of two less than that measured about 1.5 years before, 53 ± 11 μJy, suggesting that variability in the radio is present, but over larger timescales than in the IR. We discuss other sources in the field, in particular two infrared/X-ray stars that show rapidly varying gyrosynchrotron emission.

  19. Gamma-ray Burst Reverse Shock Emission in Early Radio Afterglows

    NASA Astrophysics Data System (ADS)

    Resmi, Lekshmi; Zhang, Bing

    2016-07-01

    Reverse shock (RS) emission from gamma-ray bursts is an important tool in investigating the nature of the ejecta from the central engine. If the magnetization of the ejecta is not high enough to suppress the RS, a strong RS emission component, usually peaking in the optical/IR band early on, would provide an important contribution to early afterglow light curve. In the radio band, synchrotron self-absorption may suppress early RS emission and also delay the RS peak time. In this paper, we calculate the self-absorbed RS emission in the radio band under different dynamical conditions. In particular, we stress that the RS radio emission is subject to self-absorption in both RSs and forward shocks (FSs). We calculate the ratio between the RS to FS flux at the RS peak time for different frequencies, which is a measure of the detectability of the RS emission component. We then constrain the range of physical parameters for a detectable RS, in particular the role of magnetization. We notice that unlike optical RS emission which is enhanced by moderate magnetization, moderately magnetized ejecta do not necessarily produce a brighter radio RS due to the self-absorption effect. For typical parameters, the RS emission component would not be detectable below 1 GHz unless the medium density is very low (e.g., n < 10-3 cm-3 for the interstellar medium and A * < 5 × 10-4 for wind). These predictions can be tested using the afterglow observations from current and upcoming radio facilities such as the Karl G. Jansky Very Large Array, the Low-Frequency Array, the Five Hundred Meter Aperture Spherical Telescope, and the Square Kilometer Array.

  20. Time-scales of close-in exoplanet radio emission variability

    NASA Astrophysics Data System (ADS)

    See, V.; Jardine, M.; Fares, R.; Donati, J.-F.; Moutou, C.

    2015-07-01

    We investigate the variability of exoplanetary radio emission using stellar magnetic maps and 3D field extrapolation techniques. We use a sample of hot Jupiter hosting stars, focusing on the HD 179949, HD 189733 and τ Boo systems. Our results indicate two time-scales over which radio emission variability may occur at magnetized hot Jupiters. The first is the synodic period of the star-planet system. The origin of variability on this time-scale is the relative motion between the planet and the interplanetary plasma that is corotating with the host star. The second time-scale is the length of the magnetic cycle. Variability on this time-scale is caused by evolution of the stellar field. At these systems, the magnitude of planetary radio emission is anticorrelated with the angular separation between the subplanetary point and the nearest magnetic pole. For the special case of τ Boo b, whose orbital period is tidally locked to the rotation period of its host star, variability only occurs on the time-scale of the magnetic cycle. The lack of radio variability on the synodic period at τ Boo b is not predicted by previous radio emission models, which do not account for the co-rotation of the interplanetary plasma at small distances from the star.

  1. Auroral medium frequency burst radio emission associated with the 23 March 2007 THEMIS study substorm

    NASA Astrophysics Data System (ADS)

    Bunch, N. L.; Labelle, J.; Weatherwax, A. T.; Hughes, J. M.

    2008-01-01

    Auroral medium frequency (MF) burst is an impulsive auroral radio emission associated with substorm onset detected by ground-based instruments between 1.3 and 4.5 MHz. On 23 March 2007 an MF burst emission was detected by the Dartmouth radio interferometer located near Toolik Lake, Alaska. This emission temporally coincides with the onset of the 23 March 2007 Time History of Events and Macroscale Interactions during Substorms (THEMIS) study substorm. Directions of arrival computed using the Dartmouth radio interferometer for this event also coincide spatially with the location of the expanding auroral arcs to the south observed by the all-sky imager at Fort Yukon, Alaska. This observation represents the first example of a direction of arrival measurement for MF burst. It strongly supports the association of MF burst with intense auroral arcs accompanying substorm onset. The direction of arrival of the MF burst is consistent with the direction to the eastern edge of the substorm onset location determined by multiple data sets during this substorm and suggests that location of MF burst radio emissions may be an effective method of locating substorm onsets, much as radio atmospherics are used to locate lightning.

  2. ``Drifting tadpoles'' in wavelet spectra of decimetric radio emission of fiber bursts

    NASA Astrophysics Data System (ADS)

    Mészárosová, H.; Karlický, M.; Rybák, J.; Jiřička, K.

    2009-08-01

    Aims: The solar decimetric radio emission of fiber bursts was investigated searching for the “drifting tadpole” structures proposed by theoretical studies. Methods: Characteristic periods with the tadpole pattern were searched for in the radio flux time series by wavelet analysis methods. Results: For the first time, we have found drifting tadpoles in the wavelet spectra of the decimetric radio emission associated with the fiber bursts observed in July 11, 2005. These tadpoles were detected at all radio frequencies in the 1602-1780 MHz frequency range. The characteristic period of the wavelet tadpole patterns was found to be 81.4 s and the frequency drift of the tadpole heads is -6.8 MHz s-1. These tadpoles are interpreted as a signature of the magnetoacoustic wave train moving along a dense flare waveguide and their frequency drift as a motion of the wave train modulating the radio emission produced by the plasma emission mechanism. Using the Aschwanden density model of the solar atmosphere, only low values of the Alfvén speed and the magnetic field strength in the loop guiding this wave train were derived which indicates a neutral current sheet as the guiding structure. The present analysis supports the model of fiber bursts based on whistler waves.

  3. Sampling Studies Of Quasars, Radio-loud Galaxies, & Radio-quiet Galaxies -- Searching For The Cause Of Radio Emission

    NASA Astrophysics Data System (ADS)

    Coldwell, G.; Salois, Amee; Soechting, I.; Smith, M.

    2011-01-01

    Comparing the environments of Radio-Loud Galaxies, Radio-Quiet Galaxies, and Quasars offers an opportunity to study the evolution of these objects. Our samples have been carefully chosen from Data Release 7 of the Sloan Digital Sky Survey, which also includes samples studied in the FIRST survey, and have been cut to determine the best possible results. Our study includes three samples. The Quasar sample currently contains 69 objects, the Radio-Loud Galaxy (RLG) sample has 1,335 objects, and the Radio-Quiet Galaxy (RQG) sample contains 2,436 objects (any updates will be given at the meeting). A number of trims were made to produce (smaller) samples with characteristics suited for precise results. By comparing the environments of these three samples we will be able to see any similarities or differences between them. If similarities are detected it suggests that the central object has evolved according to 'nature' - in an isolated manner with little environmental feedback, which may or may not have an effect on its evolution, as supposed by Coldwell et al. (2009). If differences are detected it suggests that the central object has evolved according to `nurture’ and that the environment may have played an important role in the development of their properties. We employ similar procedures used by Coldwell et al. (2009) in their study of blue and red AGNs. Upon the completion of an accurate sample, future work will be pursued studying a number of properties of the environments including studies of: the stellar masses, star formation rates, sersic morphologies, as well as densities and ages of the environments.

  4. Simulation of radio emission from air showers in atmospheric electric fields

    SciTech Connect

    Buitink, S.; Huege, T.; Falcke, H; Kuijpers, J.

    2010-02-25

    We study the effect of atmospheric electric fields on the radio pulse emitted by cos- mic ray air showers. Under fair weather conditions the dominant part of the radio emission is driven by the geomagnetic field. When the shower charges are accelerated and deflected in an electric field additional radiation is emitted. We simulate this effect with the Monte Carlo code REAS2, using CORSIKA-simulated showers as input. In both codes a routine has been implemented that treats the effect of the electric field on the shower particles. We find that the radio pulse is significantly altered in background fields of the order of ~100 V/cm and higher. Practically, this means that air showers passing through thunderstorms emit radio pulses that are not a reliable measure for the shower energy. Under other weather circumstances significant electric field effects are expected to occur rarely, but nimbostratus clouds can harbor fields that are large enough. In general, the contribution of the electric field to the radio pulse has polarization properties that are different from the geomagnetic pulse. In order to filter out radio pulses that have been affected by electric field effects, radio air shower experiments should keep weatherinformation and perform full polarization measurements of the radio signal.

  5. Radio emission evolution of nonstationary sources in the Hedgehog model

    NASA Technical Reports Server (NTRS)

    Kovalev, Y. A.; Mikhaylutsa, V. P.

    1980-01-01

    Correlations are obtained for numerical calculation of flux F sub v and polarized radiation intensity of a cloud of arbitrary geometry, consisting of ultrarelativistic electrons that dissipate in a radial magnetic field of the nucleus at a random angle to the observer. It is possible that some of the variable extragalactic objects that were previously described by the Shklovskiy model are young formations in the examined model. Radio astronomical observations would permit a determination of their distance, age, and lifetime.

  6. Searching towards the Galactic Centre region for pulsed radio emission

    NASA Astrophysics Data System (ADS)

    Toomey, Lawrence; Johnston, Simon; Hobbs, George; Bhat, Ramesh; Shannon, Ryan

    2014-10-01

    A search of archival Parkes survey data has uncovered a source similar to that of a radio pulsar, however the detection DM indicates that it may be either the closest pulsar ever discovered, or simply a case of mistaken identity and is in fact an RFI event that closely mimics that of a pulsar signal. We would like to propose a grid search of the location of this source, at 3 available frequency bands, in order to determine its nature.

  7. Saturnian magnetospheric dynamics: Elucidation of a camshaft model

    NASA Astrophysics Data System (ADS)

    Southwood, D. J.; Kivelson, M. G.

    2007-12-01

    Periodic modulation of magnetospheric phenomena at Earth and Jupiter results principally from the tilt of the dipole axis relative to the rotation axis. Saturn's nearly aligned dipole moment is tilted by less than 0.5° from the spin axis, yet the power of radio-frequency emissions, the orientation of the magnetic field, and many properties of the magnetospheric plasma vary periodically at the approximate rate of Saturn's rotation. Here we examine properties of the periodic magnetic signal detected in the magnetospheric regions inside ~12-15 R S . We show that it is associated with a rotating nonaxisymmetric system of field-aligned currents flowing on magnetic shells bounding the region where the signals are seen. Magnetohydrodynamic ideas suggest that these currents would drive rotating plasma flow patterns in the northern and southern ionospheres, with the flows oppositely directed in the two hemispheres. On magnetic shells beyond the sheets of field-aligned current, the magnetic perturbations generate an effective rotating equatorial dipole moment that when added to the planetary dipole moment, produces a dipole moment tilted relative to the spin axis at an angle of order 12-15°. The overt source of the north-south asymmetric ionospheric circulation could link to different ionospheric conductances that result from nonuniform solar illumination. Other possible sources are discussed but, although we can elucidate much, the origin of the cam signal (as well as other phenomena such as the Saturn kilometric radio emission with close to the same period) remains enigmatic.

  8. Search of the radio emission from flare stars at decameter wavelengths

    NASA Astrophysics Data System (ADS)

    Boiko, A. I.; Konovalenko, A. A.; Koliadin, V. L.; Melnik, V. N.

    2012-11-01

    Observations of the two M-dwarf flare stars (AD Leonis and EV Lacertae), which were carried out with the radio telescope UTR-2 (Kharkiv, Ukraine) in the range of 16.5-33 MHz, are presented. 167 events of radio emission from AD Leo and 73 events from EV Lac were detected in the period of 2010-2011. These events were considered as stellar emission in ON-OFF regime of observations. The morphology of the probable events in the form of bursts from flare stars is considered and frequency drift rates, durations and fluxes of the bursts are analysed.

  9. Detection of Nonthermal Radio Emission from a Polar coronal mass ejection

    NASA Astrophysics Data System (ADS)

    Gopalswamy, Nat; Reiner, Mike J.; Makela, Pertti; Yashiro, Seiji; Akiyama, Sachiko

    2016-07-01

    High-latitude coronal mass ejections from the polar crown region are generally of low energy and hence thought to be not responsible for driving shocks. However, the eruption of such CMEs are associated with weak post eruption arcades suggesting that particle acceleration does happen in the reconnection region beneath the erupting filaments. An unusually fast CME erupted from the southern polar crown on 1999 June 14 observed by the Large Angle and Spectrometric Coronagraph (LASCO) on board the Solar and Heliospheric Observatory (SOHO) mission. The post eruption arcade was observed by the Soft X-ray Telescope on board the Yohkoh mission and the Extreme-ultraviolet imaging Telescope (EIT) on board SOHO. A diffuse radio emission was observed below 1 MHz by the Radio and Plasma Wave experiment (WAVES) on board the Wind spacecraft. The good temporal association between the radio burst and the CME suggests that the CME must be the source of energy for the radio emission. The drift rate of the radio burst was much smaller than that of a typical interplanetary type II burst. We suggest that the radio burst is produced by a flank of the CME-driven shock passing through a streamer located close to the east limb of the Sun. Such an interaction is likely to have caused the slow drift of the burst because the shock flank passes roughly parallel to the solar surface in the flank region. The enhanced density in the streamer makes the local Alfven speed lower, making the shock sufficiently strong to accelerate a few keV electrons that lead to the radio emission. The diffuse feature also contains a series of spikes, which suggest possible escape of nonthermal electrons along open field lines. We use the radio direction finding to confirm the results. This result has important implications for particle acceleration by shock flanks, where the geometry is expected to be quasi-perpendicular.

  10. Detection of fundamental and harmonic type III radio emission and the associated Langmuir waves at the source region

    NASA Technical Reports Server (NTRS)

    Reiner, M. J.; Stone, R. G.; Fainberg, J.

    1992-01-01

    Type III radio emission generated in the vicinity of the Ulysses spacecraft has been detected at both the fundamental and harmonic of the local plasma frequency. The observations represent the first clear evidence of locally generated type III radio emission. This local emission shows no evidence of frequency drift, exhibits a relatively short rise time, is less intense than the observed remotely generated radio emission, and is temporally correlated with observed in situ Langmuir waves. The observations were made with the unified radio astronomy and wave (URAP) experiment on the Ulysses spacecraft between 1990 November 4 and 1991 April 30, as it traveled from 1 to 3 AU from the sun. During this time period many thousands of bursts were observed. However, only three examples of local emission and associated Langmuir waves were identified. This supports previous suggestions that type III radio emission is generated in localized regions of the interplanetary medium, rather than uniformly along the extent of the electron exciter beam.

  11. Correlated spin-down rates and radio emission in PSR B1859+07

    NASA Astrophysics Data System (ADS)

    Perera, B. B. P.; Stappers, B. W.; Weltevrede, P.; Lyne, A. G.; Rankin, J. M.

    2016-01-01

    We study the spin-down changes of PSR B1859+07 over a period of more than 28 years of radio observation. We identify that the time derivative of the rotational frequency (ν) varies quasi-periodically with a period of ˜350 d, switching mainly between two spin-down states. The profile shape of the pulsar is correlated with the ν˙ variation, producing two slightly different profile shapes corresponding to high- and low-ν˙ states. In addition to these two normal emission states, we confirm the occasional flare-state of the pulsar, in which the emission appears early in spin phase compared to that of the common normal emission. The profile of the flare-state is significantly different from that of the two normal emission states. The correlation analysis further shows that the flare-state is not directly linked with the ν˙ changes. With a simple emission beam model, we estimate the emission altitude of the normal emission to be 240 km, and explain the origin of the flare-state as an emission height variation from the leading edge of the beam. We also argue that the emission of these states can be explained with a partially active beam model. In this scenario, the trailing portion of the radio beam is usually active and the normal emission is produced. The flare-state occurs when the leading edge of the beam becomes active while the trailing part is being blocked. This model estimates a fixed emission altitude of 360 km. However, the cause of the flare-state (i.e. the emission height variation, or the time-dependent activity across the radio beam) is not easily explained.

  12. Simultaneous observations of solar sporadic radio emission by the radio telescopes UTR-2, URAN-2 and NDA within the frequency range 8-42 MHz

    NASA Astrophysics Data System (ADS)

    Melnik, V.; Konovalenko, A.; Brazhenko, A.; Briand, C.; Dorovskyy, V.; Zarka, P.; Denis, L.; Bulatzen, V.; Frantzusenko, A.; Rucker, H.; Stanislavskyy, A.

    2012-09-01

    From 25 June till 12 August 2011 sporadic solar radio emission was observed simultaneously by three separate radio telescopes: UTR-2 (Kharkov, Ukraine), URAN-2 (Poltava, Ukraine) and NDA (Nancay, France). During these observations some interesting phenomena were observed. Some of them are discussed in this paper.

  13. THE CONNECTION BETWEEN THE RADIO JET AND THE GAMMA-RAY EMISSION IN THE RADIO GALAXY 3C 120

    SciTech Connect

    Casadio, Carolina; Gómez, José L.; Grandi, Paola; Jorstad, Svetlana G.; Marscher, Alan P.; Lister, Matthew L.; Kovalev, Yuri Y.; Pushkarev, Alexander B.

    2015-08-01

    We present the analysis of the radio jet evolution of the radio galaxy 3C 120 during a period of prolonged γ-ray activity detected by the Fermi satellite between 2012 December and 2014 October. We find a clear connection between the γ-ray and radio emission, such that every period of γ-ray activity is accompanied by the flaring of the millimeter very long baseline interferometry (VLBI) core and subsequent ejection of a new superluminal component. However, not all ejections of components are associated with γ-ray events detectable by Fermi. Clear γ-ray detections are obtained only when components are moving in a direction closer to our line of sight. This suggests that the observed γ-ray emission depends not only on the interaction of moving components with the millimeter VLBI core, but also on their orientation with respect to the observer. Timing of the γ-ray detections and ejection of superluminal components locate the γ-ray production to within ∼0.13 pc from the millimeter VLBI core, which was previously estimated to lie about 0.24 pc from the central black hole. This corresponds to about twice the estimated extension of the broad line region, limiting the external photon field and therefore suggesting synchrotron self Compton as the most probable mechanism for the production of the γ-ray emission. Alternatively, the interaction of components with the jet sheath can provide the necessary photon field to produced the observed γ-rays by Compton scattering.

  14. Detection of Radio Emission from the Hyperactive L Dwarf 2MASS J13153094-2649513AB

    NASA Astrophysics Data System (ADS)

    Burgasser, Adam J.; Melis, Carl; Zauderer, B. Ashley; Berger, Edo

    2013-01-01

    We report the detection of radio emission from the unusually active L5e + T7 binary 2MASS J13153094-2649513AB made with the Australian Telescope Compact Array. Observations at 5.5 GHz reveal an unresolved source with a continuum flux of 370 ± 50 μJy, corresponding to a radio luminosity of L rad = νL ν = (9 ± 3)×1023 erg s-1 and log10 L rad/L bol = -5.44 ± 0.22. No detection is made at 9.0 GHz to a 5σ limit of 290 μJy, consistent with a power-law spectrum S νvpropν-α with α >~ 0.5. The emission is quiescent, with no evidence of variability or bursts over three hours of observation, and no measurable polarization (V/I < 34%). 2MASS J1315-2649AB is one of the most radio-luminous ultracool dwarfs detected in quiescent emission to date, comparable in strength to other cool sources detected in outburst. Its detection indicates no decline in radio flux through the mid-L dwarfs. It is unique among L dwarfs in having strong and persistent Hα and radio emission, indicating the coexistence of a cool, neutral photosphere (low electron density) and a highly active chromosphere (high electron density and active heating). These traits, coupled with the system's mature age and substellar secondary, make 2MASS J1315-2649AB an important test for proposed radio emission mechanisms in ultracool dwarfs.

  15. Effects of exomoon’s magnetic field on generation of radio emissions

    NASA Astrophysics Data System (ADS)

    Griffith, John; Noyola, Joaquin; Satyal, Suman; Musielak, Zdzislaw E.

    2017-01-01

    In the recent work by Noyola et al. (2014, 2016), a novel technique of detection of exomoons through the radio emissions produced by the magnetic field interactions between exoplanet-exomoon pair is emulated based upon the processes occurring in the Jupiter-Io system. Their calculations have shown that the radio signal from the distant extra-solar planetary systems is detectable by current technology provided that the systems emanating the radio waves are relatively closer, have some form of atmosphere, and have larger exomoons. In this work, we explore the effect of exomoon’s magnetic field on the radio emission processes by considering a hypothetical magnetic exomoon and re-calculating the resulting radio flux. Then, a limit to the exomoon’s magnetic field is proposed based on the signal amplification versus the dampening effect the magnetic field induces on the secondary conditions such as the containment of ions within the exomoon’s magnetic field and the effect of the plasma torus density that co-orbits with the moon. The energy from the exomoon’s magnetic field is expected to amplify the radio signal, hence increasing the probability of detection of the first exomoons.

  16. Discovery of radio emission from the brown dwarf LP944-20.

    PubMed

    Berger, E; Ball, S; Becker, K M; Clarke, M; Frail, D A; Fukuda, T A; Hoffman, I M; Mellon, R; Momjian, E; Murphy, N W; Teng, S H; Woodruff, T; Zauderer, B A; Zavala, R T

    2001-03-15

    Brown dwarfs are not massive enough to sustain thermonuclear fusion of hydrogen at their centres, but are distinguished from gas-giant planets by their ability to burn deuterium. Brown dwarfs older than approximately 10 Myr are expected to possess short-lived magnetic fields and to emit radio and X-rays only very weakly from their coronae. An X-ray flare was recently detected on the brown dwarf LP944-20, whereas previous searches for optical activity (and one X-ray search) yielded negative results. Here we report the discovery of quiescent and flaring radio emission from LP944-20, with luminosities several orders of magnitude larger than predicted by the empirical relation between the X-ray and radio luminosities that has been found for many types of stars. Interpreting the radio data within the context of synchrotron emission, we show that LP944-20 has an unusually weak magnetic field in comparison to active M-dwarf stars, which might explain the previous null optical and X-ray results, as well as the strength of the radio emissions compared to those at X-ray wavelengths.

  17. ELF/VLF emissions generated in the ionosphere by heating facilities - a new tool for ionospheric and magnetospheric research

    SciTech Connect

    Kotik, D.S.

    1994-12-01

    A brief summary of ELF/VLF generation experiments using the SURA heating facility is presented. The possibilities of applications of the measured ionospherically generated low frequency signal parameters for diagnosing the physical phenomena in the ionosphere and the magnetosphere are discussed.

  18. The Relationship Between Solar Radio and Hard X-Ray Emission

    NASA Technical Reports Server (NTRS)

    White, S. M.; Benz, A. O.; Christe, S.; Farnik, F.; Kundu, M. R.; Mann, G.; Ning, Z.; Raulin, J.-P.; Silva-Valio, A. V. R.; Saint-Hilaire, P.; Vilmer, N.; Warmuth, A.

    2011-01-01

    This review discusses the complementary relationship between radio and hard Xray observations of the Sun using primarily results from the era of the Reuven Ramaty High Energy Solar Spectroscopic Imager satellite. A primary focus of joint radio and hard X-ray studies of solar flares uses observations of nonthermal gyrosynchrotron emission at radio wavelengths and bremsstrahlung hard X-rays to study the properties of electrons accelerated in the main flare site, since it is well established that these two emissions show very similar temporal behavior. A quantitative prescription is given for comparing the electron energy distributions derived separately from the two wavelength ranges: this is an important application with the potential for measuring the magnetic field strength in the flaring region, and reveals significant differences between the electrons in different energy ranges. Examples of the use of simultaneous data from the two wavelength ranges to derive physical conditions are then discussed, including the case of microflares, and the comparison of images at radio and hard X-ray wavelengths is presented. There have been puzzling results obtained from observations of solar flares at millimeter and submillimeter wavelengths, and the comparison of these results with corresponding hard X-ray data is presented. Finally, the review discusses the association of hard X-ray releases with radio emission at decimeter and meter wavelengths, which is dominated by plasma emission (at lower frequencies) and electron cyclotron maser emission (at higher frequencies), both coherent emission mechanisms that require small numbers of energetic electrons. These comparisons show broad general associations but detailed correspondence remains more elusive.

  19. Cassini and Wind Stereoscopic Observations of Jovian Non-Thermal Radio Emissions

    NASA Technical Reports Server (NTRS)

    Kaiser, Michael L.; Kurth, W. S.; Hospodarsky, G. B.; Gurnett, D. A.; Zarka, P.

    1999-01-01

    During two intervals in 1999, simultaneous observations of Jupiter's decametric and hectometric radio emissions were made with the Cassini radio and plasma wave instrument (RPWS) and the radio and plasma wave instrument (WAVES) on the Wind spacecraft in Earth orbit. During January, the Jovian longitude difference between the two spacecraft was about 5 deg, whereas for the August-September Earth flyby of Cassini, the angle ranged from 0 deg to about 2.5 deg. With these separations, the instantaneous widths of the walls of the hollow conical radiation beams of some of the decametric arcs were measured suggesting that the typical width is approximately 2 deg. The conical beams seem to move at Io's revolution rate rather than with Jupiter's rotation rate. Additionally, some of the non-arc emissions have very narrow and quite peculiar beamwidths.

  20. The influence of circumnuclear environment on the radio emission from TDE jets

    NASA Astrophysics Data System (ADS)

    Generozov, A.; Mimica, P.; Metzger, B. D.; Stone, N. C.; Giannios, D.; Aloy, M. A.

    2017-01-01

    Dozens of stellar tidal disruption events (TDEs) have been identified at optical, UV and X-ray wavelengths. A small fraction of these, most notably Swift J1644+57, produce radio synchrotron emission, consistent with a powerful, relativistic jet shocking the surrounding circumnuclear gas. The dearth of similar non-thermal radio emission in the majority of TDEs may imply that powerful jet formation is intrinsically rare, or that the conditions in galactic nuclei are typically unfavourable for producing a detectable signal. Here we explore the latter possibility by constraining the radial profile of the gas density encountered by a TDE jet using a one-dimensional model for the circumnuclear medium which includes mass and energy input from a stellar population. Near the jet Sedov radius of 1018 cm, we find gas densities in the range of n18 ˜ 0.1-1000 cm-3 across a wide range of plausible star formation histories. Using one- and two-dimensional relativistic hydrodynamical simulations, we calculate the synchrotron radio light curves of TDE jets (as viewed both on and off-axis) across the allowed range of density profiles. We find that bright radio emission would be produced across the plausible range of nuclear gas densities by jets as powerful as Swift J1644+57, and we quantify the relationship between the radio luminosity and jet energy. We use existing radio detections and upper limits to constrain the energy distribution of TDE jets. Radio follow-up observations several months to several years after the TDE candidate will strongly constrain the energetics of any relativistic flow.

  1. The Absence of Radio Emission from the Globular Cluster G1

    NASA Astrophysics Data System (ADS)

    Miller-Jones, J. C. A.; Wrobel, J. M.; Sivakoff, G. R.; Heinke, C. O.; Miller, R. E.; Plotkin, R. M.; Di Stefano, R.; Greene, J. E.; Ho, L. C.; Joseph, T. D.; Kong, A. K. H.; Maccarone, T. J.

    2012-08-01

    The detections of both X-ray and radio emission from the cluster G1 in M31 have provided strong support for existing dynamical evidence for an intermediate-mass black hole (IMBH) of mass (1.8 ± 0.5) × 104 M ⊙ at the cluster center. However, given the relatively low significance and astrometric accuracy of the radio detection, and the non-simultaneity of the X-ray and radio measurements, this identification required further confirmation. Here we present deep, high angular resolution, strictly simultaneous X-ray and radio observations of G1. While the X-ray emission (L X = 1.74+0.53 -0.44 × 1036 (d/750 kpc)2 erg s-1 in the 0.5-10 keV band) remained fully consistent with previous observations, we detected no radio emission from the cluster center down to a 3σ upper limit of 4.7 μJy beam-1. Our favored explanation for the previous radio detection is flaring activity from a black hole low-mass X-ray binary (LMXB). We performed a new regression of the "Fundamental Plane" of black hole activity, valid for determining black hole mass from radio and X-ray observations of sub-Eddington black holes, finding log M BH = (1.638 ± 0.070)log L R - (1.136 ± 0.077)log L X - (6.863 ± 0.790), with an empirically determined uncertainty of 0.44 dex. This constrains the mass of the X-ray source in G1, if a black hole, to be <9.7 × 103 M ⊙ at 95% confidence, suggesting that it is a persistent LMXB. This annuls what was previously the most convincing evidence from radiation for an IMBH in the Local Group, though the evidence for an IMBH in G1 from velocity dispersion measurements remains unaffected by these results.

  2. A Magnetohydrodynamic Simulation Study of the Dynamic Variations in the Configuration, Convection and Auroral Emissions in Saturn's Magnetosphere Driven by the Observed Solar Wind

    NASA Astrophysics Data System (ADS)

    Walker, R. J.; Fukazawa, K.; Eriksson, S.

    2015-12-01

    In our previous simulations we have used constant and simple solar wind conditions to understand the basic behavior of the Kronian magnetosphere. In this study we used Cassini observations of the solar wind upstream of Saturn to drive a massively parallel simulation. Using these solar wind data we simulated the Kronian magnetosphere from 2008-02-12/14:00:31 to 2008-02-13/01:59:31. During this interval the Hubble Space Telescope (HST) observed Kronian UV auroral emissions. For these solar wind conditions there are several enhancements of the solar wind dynamic pressure (shocks) and a polarity reversal in the IMF components. From these simulations we obtained the dynamically changing shape and convection pattern of the Kronian magnetosphere in response to the variations in solar wind dynamic pressure and IMF direction. For instance the magnetopause and bow shock location at the subsolar point changed by 40% during one solar wind pressure increase and 22% during another. After the pressure increases a layered convection pattern formed between the corotation dominated region and the magnetopause. The layers in this convection system interacted with each other, forming large vortices. We calculated the configuration of field aligned currents from the simulation and found layered and patchy distributions in the ionosphere. The pattern of these upward field aligned currents (FACs) in the dawn side ionosphere resembles the configuration of auroral emissions observed by HST well. To confirm the relationship between the layered configuration and upward FACs, we have calculated the footprint of magnetic field lines from the layered convection pattern to the polar region.

  3. Lateral distribution of radio emission and its dependence on air shower longitudinal development

    SciTech Connect

    Kalmykov, Nikolai N.; Konstantinov, Andrey A. E-mail: elan1980@mail.ru

    2012-12-01

    The lateral distribution function (LDF) of radio emission from an extensive air shower is considered as the basic signature sensitive to the shower longitudinal development and, as a consequence, to the mass of a primary cosmic ray's particle that initiated a given shower. The peculiarities in the LDF's structure as well as their sensitivity to the height of shower maximum are investigated and explained.

  4. The evolution of the radio emission from Kepler's Supernova remnant

    NASA Technical Reports Server (NTRS)

    Dickel, John R.; Sault, Robert; Arendt, Richard G.; Korista, Kirk T.; Matsui, Yutaka

    1988-01-01

    High-resolution radio maps of Kepler's Supernova remnant (SNR) using all four arrays of the VLA have been obtained at wavelengths of 20 and 6 cm. They show the complete structure of the remnant; all features are resolved with sizes greater than about 2 arcsec, and the relative brightness of the smooth component near the center is about 1/4 the brightness of the rim. The results have been compared with earlier more limited data to measure changes in the remnant over a four-year time span. The SNR is expanding with a mean rate of R proportional to t exp 0.50 with considerable variations around the shell. Values range from R proportional to t exp 0.35 on the bright northern rim to R proportional to t exp 0.65 on the eastern part of the shell. The measurements are consistent with expansion into a variable circumstellar medium.

  5. Physical properties of conventional explosives deduced from radio frequency emissions

    SciTech Connect

    Harlin, Jeremiah D; Nemzek, Robert

    2008-01-01

    Los Alamos National Laboratory collected broadband radio frequency (RF) electric field change measurements from multiple detonations of high explosives (HE). Three types of HE were used: small cylinders of flake TNT, solid TNT, and PBX-9501. Low frequency signals (<80 MHz) were shot-to-shot repeatable and occurred within the first 100 {mu} s at measured amplitudes of about 2 V m{sup -1} at 35 m distance. High frequency signals (>290 MHz) occurred later, were an order of magnitude lower in signal strength, and were not repeatable. There is a positive correlation between the maximum electric field change and the shock velocity of the HE. The amount of free charge produced in the explosion estimated from the first RF pulse is between 10 and 150 {mu} C. This implies a weakly ionized plasma with temperatures between 2600 and 2900 K.

  6. Weathering the Largest Storms in the Universe : Understanding environmental effects on extended radio emission in clusters

    NASA Astrophysics Data System (ADS)

    Dehghan, S.

    2014-05-01

    This thesis presents an investigation of the habitat of extended radio sources, and the way in which the generation and properties of these radio sources are affected by environmental factors. We begin with a detailed structure analysis of the 0.3 deg2 area of the MUSYC-ACES field, generated by applying a density-based clustering method, known as DBSCAN, to our spectroscopic and photometric samples of the field. As a result, we identify 62 over-dense regions across the field. Based on the properties of the detected structures, we classify 13 as clusters, of which 90% are associated with diffuse soft-band X-ray emission. This provides a strong and independent confirmation that both the clustering and classification methodologies are reliable for use in investigation of the environment of the radio sources in the Chandra Deep Field South (CDFS). Using an interpolation-based method followed by a new calibration technique of using clusters of similar mass as standard candles, we are able to estimate the local environmental richness for a desired region. This methodology is applied to a sample of AGNs and star forming galaxies in the CDFS to probe whether or not the radio luminosity of the different radio sources is correlated to their environments. As a result, we do not find a significant correlation between the radio luminosity and the environment of star-forming galaxies and radio-quiet AGNs, however, a weak positive dependency is spotted for radio-loud AGNs. This may indicate that over-populated environments trigger or enhance the radio activity processes in the AGNs. We find that star-forming galaxies, unlike radio-loud AGNs, tend to avoid overpopulated environments especially at low redshifts. However, radio-loud AGN are found in both poor and rich environments. As a result, we find neither of these radio sources suitable for tracing the over-dense regions of the Universe, unlike tailed radio galaxies. It is believed that tailed radio galaxies reside in the dense

  7. The Absence of Radio Emission from the Globular Cluster G1

    NASA Astrophysics Data System (ADS)

    Wrobel, J. M.; Miller-Jones, J. C. A.; Heinke, C. O.; Sivakoff, G. R.; Miller, R. E.; Di Stefano, R.; Kong, A. K. H.; Greene, J. E.; Ho, L. C.

    2012-01-01

    The globular cluster G1 in M31 has been suggested as a good candidate to host an intermediate-mass black hole. An excess of dark mass at the cluster center was inferred from studies of the stellar dynamics, and the subsequent detection of both X-ray and radio emission from positions consistent with the cluster core suggested the presence of an accreting black hole. From the ratio of radio to X-ray luminosities, the black hole mass was believed to fall in the range 500-19,000 solar masses, although a variable stellar-mass X-ray binary could not be ruled out owing to the non-simultaneity of the radio and X-ray observations. We therefore made strictly-simultaneous observations in 2011 with Chandra and the Expanded Very Large Array (EVLA) to determine the ratio of radio to X-ray luminosities. The EVLA was in its A configuration, providing a FWHM resolution of 0.4 arcsec near 6 GHz. While the X-ray emission was consistent with the previously-reported level of about 2x1036 ergs/s (2-10 keV), no radio emission was detected from the cluster to a 5-sigma upper limit of 8 microJy/beam, about 3.5 times lower than the previously-reported radio detection in 2006. We discuss two possible explanations for the dramatic radio non-detection, namely that the radio source in G1 is time-variable, or that the previous 4.5-sigma source was an artifact, possibly caused by the mix of VLA and EVLA electronics in use in 2006. Although our simultaneous measurements in 2011 can constrain the mass of a central black hole through the empirical radio--X-ray--mass relation for accreting systems, the simplest explanation is that the X-ray emission from G1 arises from a low-mass X-ray binary. The NRAO is a facility of the NSF operated under cooperative agreement by AUI.

  8. Comparative analysis of theories of zebra-pattern in solar radio emission

    NASA Astrophysics Data System (ADS)

    Zlotnik, E.

    2007-08-01

    Strong and weak aspects of different theories of fine structure on solar radio emission dynamic spectra observed as several or numerous quasi- equidistant bands of enhanced and reduced radiation (zebra-pattern) are discussed. Most of works proposing zebra-pattern interpretation is based on plasma mechanism of radio emission generation which consists of exciting plasma (electrostatic) waves and their succeeding transformation into electromagnetic emission. Plasma waves arise due to kinetic or hydrodynamic instability at the upper hybrid frequencies (at the levels of double plasma resonance in a distributed source) or at the electron gyrofrequency harmonics (Bernstein modes in a compact source with quasi-uniform magnetic field). The reason for the instability is occurrence of a number of electrons with nonequilibrium distribution over velocities perpendicular to magnetic field. Radio emission escaping from the source is a result of nonlinear coalescence of plasma waves with low frequency or high frequency waves which does not break the harmonic character of spectrum. A significant number of works is devoted to considering whistlers as a main reason for occurring stripes in emission and absorption on dynamic spectra. Whistlers are also believed to be excited by a group of nonequilibrium electrons, and then some nonlinear processes including whistler interaction result in specific frequency spectrum with enhanced and reduced radiation stripes. An alternative theory of zebra-pattern origin suggests the presence of a compact source with trapped plasma waves in the corona. The trapped waves in a confined space easily provide discrete spectrum. One more interpretation is based on special effects that may occur when radio waves are propagating through non-uniform coronal plasma: the alternate bright and dark stripes on dynamic spectra are supposed to be a result of radio wave interference or diffraction on some periodical structure in the solar corona. All suggested

  9. RADIO EMISSION FROM SN 1994I IN NGC 5194 (M 51): THE BEST-STUDIED TYPE Ib/c RADIO SUPERNOVA

    SciTech Connect

    Weiler, Kurt W.; Panagia, Nino; Stockdale, Christopher; Rupen, Michael; Sramek, Richard A.; Williams, Christopher L. E-mail: panagia@stsci.edu E-mail: mrupen@nrao.edu E-mail: clmw@mit.edu

    2011-10-20

    We present the results of detailed monitoring of the radio emission from the Type Ic supernova SN 1994I from three days after optical discovery on 1994 March 31 until eight years later at age 2927 days on 2002 April 5. The data were mainly obtained using the Very Large Array at the five wavelengths of {lambda}{lambda}1.3, 2.0, 3.6, 6.2, and 21 cm and from the Cambridge 5 km Ryle Telescope at {lambda}2.0 cm. Two additional measurements were obtained at millimeter wavelengths. This data set represents the most complete, multifrequency radio observations ever obtained for a Type Ib/c supernova. The radio emission evolves regularly in both time and frequency and is well described by established supernova emission/absorption models. It is the first radio supernova with sufficient data to show that it is clearly dominated by the effects of synchrotron self-absorption at early times.

  10. Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Slavin, J. A.

    1999-01-01

    Among the major discoveries made by the Mariner 10 mission to the inner planets was the existence of an intrinsic magnetic field at Mercury with a dipole moment of approx. 300 nT R(sup 3, sub M). This magnetic field is sufficient to stand off the solar wind at an altitude of about 1 R(sub M) (i.e. approx. 2439 km). Hence, Mercury possesses a 'magnetosphere' from which the so]ar wind plasma is largely excluded and within which the motion of charged particles is controlled by the planetary magnetic field. Despite its small size relative to the magnetospheres of the other planets, a Mercury orbiter mission is a high priority for the space physics community. The primary reason for this great interest is that Mercury unlike all the other planets visited thus far, lacks a significant atmosphere; only a vestigial exosphere is present. This results in a unique situation where the magnetosphere interacts directly with the outer layer of the planetary crust (i.e. the regolith). At all of the other planets the topmost regions of their atmospheres become ionized by solar radiation to form ionospheres. These planetary ionospheres then couple to electrodynamically to their magnetospheres or, in the case of the weakly magnetized Venus and Mars, directly to the solar wind. This magnetosphere-ionosphere coupling is mediated largely through field-aligned currents (FACs) flowing along the magnetic field lines linking the magnetosphere and the high-latitude ionosphere. Mercury is unique in that it is expected that FACS will be very short lived due to the low electrical conductivity of the regolith. Furthermore, at the earth it has been shown that the outflow of neutral atmospheric species to great altitudes is an important source of magnetospheric plasma (following ionization) whose composition may influence subsequent magnetotail dynamics. However, the dominant source of plasma for most of the terrestrial magnetosphere is the 'leakage'of solar wind across the magnetopause and more

  11. AB INITIO PULSAR MAGNETOSPHERE: THE ROLE OF GENERAL RELATIVITY

    SciTech Connect

    Philippov, Alexander A.; Cerutti, Benoit; Spitkovsky, Anatoly; Tchekhovskoy, Alexander

    2015-12-20

    It has recently been demonstrated that self-consistent particle-in-cell simulations of low-obliquity pulsar magnetospheres in flat spacetime show weak particle acceleration and no pair production near the poles. We investigate the validity of this conclusion in a more realistic spacetime geometry via general-relativistic particle-in-cell simulations of the aligned pulsar magnetosphere with pair formation. We find that the addition of the frame-dragging effect makes the local current density along the magnetic field larger than the Goldreich–Julian value, which leads to unscreened parallel electric fields and the ignition of a pair cascade. When pair production is active, we observe field oscillations in the open field bundle, which could be related to pulsar radio emission. We conclude that general-relativistic effects are essential for the existence of the pulsar mechanism in low-obliquity rotators.

  12. Io's volcanism influences Jupiter's magnetosphere

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-02-01

    Volcanic emissions from Jupiter's moon Io supply plasma to the planet's magnetosphere and lead to its main auroral emissions. New observations show that the main auroral oval expanded and outer emissions brightened in spring 2007. Some studies have suggested that magnetospheric changes such as these could be caused by changes in the incoming solar wind. Bonfond et al. present several lines of evidence—including images from the Hubble Space Telescope and observations of a volcanic plume on Io from the New Horizons probe along with measurements of increased emissions from Jupiter's sodium cloud—that indicate that Io's volcanism controls changes in Jupiter's magnetosphere. (Geophysical Research Letters, doi:10.1029/2011GL050253, 2012)

  13. Testing the Young Neutron Star Scenario with Persistent Radio Emission Associated with FRB 121102

    NASA Astrophysics Data System (ADS)

    Kashiyama, Kazumi; Murase, Kohta

    2017-04-01

    Recently a repeating fast radio burst (FRB) 121102 has been confirmed to be an extragalactic event and a persistent radio counterpart has been identified. While other possibilities are not ruled out, the emission properties are broadly consistent with Murase et al. that theoretically proposed quasi-steady radio emission as a counterpart of both FRBs and pulsar-driven supernovae. Here, we constrain the model parameters of such a young neutron star scenario for FRB 121102. If the associated supernova has a conventional ejecta mass of M ej ≳ a few M ⊙, a neutron star with an age of t age ∼ 10–100 years, an initial spin period of P i ≲ a few ms, and a dipole magnetic field of B dip ≲ a few × 1013 G can be compatible with the observations. However, in this case, the magnetically powered scenario may be favored as an FRB energy source because of the efficiency problem in the rotation-powered scenario. On the other hand, if the associated supernova is an ultra-stripped one or the neutron star is born by the accretion-induced collapse with M ej ∼ 0.1 M ⊙, a younger neutron star with t age ∼ 1–10 years can be the persistent radio source and might produce FRBs with the spin-down power. These possibilities can be distinguished by the decline rate of the quasi-steady radio counterpart.

  14. Electron plasma oscillations associated with type 3 radio emissions and solar electrons

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Frank, L. A.

    1975-01-01

    An extensive study of the IMP-6 and IMP-8 plasma and radio wave data was performed to try to find electron plasma oscillations associated with type III radio noise bursts and low-energy solar electrons. It is shown that electron plasma oscillations are seldom observed in association with solar electron events and type III radio bursts at 1.0 AU. For the one case in which electron plasma oscillations are definitely produced by the electrons ejected by the solar flare the electric field strength is relatively small. Electromagnetic radiation, believed to be similar to the type III radio emission, is observed coming from the region of the more intense electron plasma oscillations upstream. Quantitative calculations of the rate of conversion of the plasma oscillation energy to electromagnetic radiation are presented for plasma oscillations excited by both solar electrons and electrons from the bow shock. These calculations show that neither the type III radio emissions nor the radiation from upstream of the bow shock can be adequately explained by a current theory for the coupling of electron plasma oscillations to electromagnetic radiation.

  15. A study of halo and relic radio emission in merging clusters using the Murchison Widefield Array

    NASA Astrophysics Data System (ADS)

    George, L. T.; Dwarakanath, K. S.; Johnston-Hollitt, M.; Intema, H. T.; Hurley-Walker, N.; Bell, M. E.; Callingham, J. R.; For, Bi-Qing; Gaensler, B.; Hancock, P. J.; Hindson, L.; Kapińska, A. D.; Lenc, E.; McKinley, B.; Morgan, J.; Offringa, A.; Procopio, P.; Staveley-Smith, L.; Wayth, R. B.; Wu, Chen; Zheng, Q.

    2017-01-01

    We have studied radio haloes and relics in nine merging galaxy clusters using the Murchison Widefield Array (MWA). The images used for this study were obtained from the GaLactic and Extragalactic All-sky MWA (GLEAM) Survey which was carried out at 5 frequencies, viz. 88, 118, 154, 188 and 215 MHz. We detect diffuse radio emission in 8 of these clusters. We have estimated the spectra of haloes and relics in these clusters over the frequency range 80 - 1400 MHz; the first such attempt to estimate their spectra at low frequencies. The spectra follow a power law with a mean value of α = -1.13 ± 0.21 for haloes and α = -1.2 ± 0.19 for relics where, S∝να. We reclassify two of the cluster sources as radio galaxies. The low frequency spectra are thus an independent means of confirming the nature of cluster sources. Five of the nine clusters host radio haloes. For the remaining four clusters, we place upper limits on the radio powers of possible haloes in them. These upper limits are a factor of 2 - 20 below those expected from the LX - P1.4 relation. These limits are the lowest ever obtained and the implications of these limits to the hadronic model of halo emission are discussed.

  16. Long-period dynamic spectrograms of low-frequency interplanetary radio emissions

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Gurnett, D. A.; Scarf, F. L.; Poynter, R. L.

    1987-01-01

    Dynamic spectrograms of the low-frequency interplanetary radio emissions as observed by Voyagers 1 and 2 from 1983 through mid-1986 are reported. The radio emissions were observed to be most intense in the latter portion of 1983 at 3 kHz but have also been detected at 2 kHz. The emission has been present almost continuously at either 2 or 3 kHz since late 1983. The spectrograms presented herein show that the phenomenon appears almost identically as observed by the two spacecraft separated by more than 10 AU, at least at the higher frequency. One feature revealed by the dynamic spectrograms which had not been noticed previously is a gradual rise in frequency of the 3-kHz component following the onset of the late 1983 event. These new observations reinforce the conclusion that the low-frequency emissions are freely propagating radio waves, but the two-component spectral structure implies that the previous model of emission at twice the plasma frequency at the inner heliosphere shock is inadequate to fully account for the observations. Either an additional source region or an additional source mechanism is suggested.

  17. Steep-Spectrum Radio Emission from the Low-Mass Active Galactic Nucleus GH 10

    NASA Astrophysics Data System (ADS)

    Wrobel, J. M.; Greene, J. E.; Ho, L. C.; Ulvestad, J. S.

    2008-10-01

    GH 10 is a broad-lined active galactic nucleus (AGN) energized by a black hole of mass 800,000 M⊙. It was the only object detected by Greene et al. in their Very Large Array (VLA) survey of 19 low-mass AGNs discovered by Greene & Ho. New VLA imaging at 1.4, 4.9, and 8.5 GHz reveals that GH 10's emission has an extent of less than 320 pc, has an optically thin synchrotron spectrum with a spectral index α = - 0.76 +/- 0.05 (Sν propto ν+ α), is less than 11% linearly polarized, and is steady—although poorly sampled—on timescales of weeks and years. Circumnuclear star formation cannot dominate the radio emission, because the high inferred star formation rate, 18 M⊙ yr-1, is inconsistent with the rate of less than 2 M⊙ yr-1 derived from narrow Hα and [O II] λ3727 emission. Instead, the radio emission must be mainly energized by the low-mass black hole. GH 10's radio properties match those of the steep-spectrum cores of Palomar Seyfert galaxies, suggesting that, like those galaxies, the emission is outflow-driven. Because GH 10 is radiating close to its Eddington limit, it may be a local analog of the starting conditions, or seeds, for supermassive black holes. Future imaging of GH 10 at higher linear resolution thus offers an opportunity to study the relative roles of radiative versus kinetic feedback during black hole growth.

  18. Recent Observations of the Very Low Frequency Interplanetary Radio Emission.

    DTIC Science & Technology

    1986-08-01

    fluctuations. Finally, we would like to take advantage of the Voyager 2 Uranus Observatory Phase during which wideband data were available on...seen by both Voyagers even though the spacecraft are separated by large distances. Finally, the Uranus encounter provided an opportunity to track the...from Voyager 2 as it j approached. Uranus . ( Uranus closest approach occured on day 24 of 1986.) Notice the emission at 3.4 kHz decreases smoothly in

  19. Long-term changes in Jovian synchrotron radio emission - Intrinsic variations or effects of viewing geometry?

    NASA Astrophysics Data System (ADS)

    Hood, L. L.

    1993-04-01

    Possible causes of the observed long-term variation of Jovian synchrotron radio emission, including both intrinsic changes in the Jovian radiation belts and apparent changes due to variations in the Jovigraphic declination of the earth, DE, are investigated. An increase in diffusion rate with other parameters held constant results in an inward displacement of the peak emission radial distance that is not observed. Effects of viewing geometry changes are examined. The possible importance of such effects is suggested by a correlation between the total decimetric radio flux and DE, which varies between -3.3 and +3.3 deg during one Jovian orbital period. Because the Jovian central meridian longitudes where the magnetic latitude passes through zero during a given Jovian rotation change substantially with DE and since significant longitudinal asymmetries exist in both the volume emissivity and the latitudinal profile of the beam, the total intensity should be at least a partial function of D sub E.

  20. Source location of the smooth high-frequency radio emissions from Uranus

    SciTech Connect

    Farrell, W.M.; Calvert, W. )

    1989-05-01

    The source location of the smooth high-frequency (SHF) radio emissions from Uranus has been determined using a technique differing from those applied previously. Specifically, by fitting the signal dropouts which occurred as Voyager traversed the hollow center for the emission pattern to a symmetrical cone centered on the source magnetic field direction at the cyclotron frequency, a southern-hemisphere (nightside) source was found at approximately 56{degree} S, 219{degree} W. The half-angle for the hollow portion of the emission pattern was found to be 13{degree}.

  1. Modeling the Magnetospheric X-ray Emission from Solar Wind Charge Exchange with Verification from XMM-Newton Observations

    DTIC Science & Technology

    2016-08-26

    Pulkkinen, P. Janhunen, and C.-C Wu (2003), Stormtime energy transfer in global MHD simulation, J. Geophys. Res., 108(A1), 1048, doi:10.1029...Photon Imaging Cameras on board XMM-Newton. This model incorporates the Global Unified Magnetosphere-Ionosphere Coupling Simulation-4 MHD code and...cases and poor/anticorrelation in others. The sources of error for any user wishing to simulate terrestrial SWCX using an MHD model are described

  2. Non-thermal radio emission from O-type stars. V. 9 Sagittarii

    NASA Astrophysics Data System (ADS)

    Blomme, R.; Volpi, D.

    2014-01-01

    Context. The colliding winds in a massive binary system generate synchrotron emission due to a fraction of electrons that have been accelerated to relativistic speeds around the shocks in the colliding-wind region (CWR). Aims: We studied the radio light curve of 9 Sgr = HD 164794, a massive O-type binary with a 9.1-year period. We investigated whether the radio emission varies consistently with orbital phase and we determined some parameters of the colliding-wind region (CWR). Methods: We reduced a large set of archive data from the Very Large Array (VLA) to determine the radio light curve of 9 Sgr at 2, 3.6, 6, and 20 cm. We also constructed a simple model that solves the radiative transfer in the CWR and both stellar winds. Results: The 2 cm radio flux shows clear phase-locked variability with the orbit. The behaviour at other wavelengths is less clear, mainly because of a lack of observations centred on 9 Sgr around periastron passage. The high fluxes and nearly flat spectral shape of the radio emission show that synchrotron radiation dominates the radio light curve at all orbital phases. The model provides a good fit to the 2 cm observations, allowing us to estimate that the brightness temperature of the synchrotron radiation emitted in the colliding-wind region at 2 cm is at least 4 × 108 K. Conclusions: The simple model used here already allows us to derive important information about the CWR. We propose that 9 Sgr is a good candidate for more detailed modelling, as the CWR remains adiabatic during the whole orbit thus simplifying the hydrodynamics. Appendix A is available in electronic form at http://www.aanda.org

  3. Non-thermal radio emission from colliding flows in classical nova V1723 Aql

    NASA Astrophysics Data System (ADS)

    Weston, Jennifer H. S.; Sokoloski, J. L.; Metzger, Brian D.; Zheng, Yong; Chomiuk, Laura; Krauss, Miriam I.; Linford, Justin D.; Nelson, Thomas; Mioduszewski, Amy J.; Rupen, Michael P.; Finzell, Tom; Mukai, Koji

    2016-03-01

    The importance of shocks in nova explosions has been highlighted by Fermi's discovery of γ-ray-producing novae. Over three years of multiband Very Large Array radio observations of the 2010 nova V1723 Aql show that shocks between fast and slow flows within the ejecta led to the acceleration of particles and the production of synchrotron radiation. Soon after the start of the eruption, shocks in the ejecta produced an unexpected radio flare, resulting in a multipeaked radio light curve. The emission eventually became consistent with an expanding thermal remnant with mass 2 × 10-4 M⊙ and temperature 104 K. However, during the first two months, the ≳106 K brightness temperature at low frequencies was too high to be due to thermal emission from the small amount of X-ray-producing shock-heated gas. Radio imaging showed structures with velocities of 400 km s-1 (d/6 kpc) in the plane of the sky, perpendicular to a more elongated 1500 km s-1 (d/6 kpc) flow. The morpho-kinematic structure of the ejecta from V1723 Aql appears similar to nova V959 Mon, where collisions between a slow torus and a faster flow collimated the fast flow and gave rise to γ-ray-producing shocks. Optical spectroscopy and X-ray observations of V1723 Aql during the radio flare are consistent with this picture. Our observations support the idea that shocks in novae occur when a fast flow collides with a slow collimating torus. Such shocks could be responsible for hard X-ray emission, γ-ray production, and double-peaked radio light curves from some classical novae.

  4. MODELING OF GYROSYNCHROTRON RADIO EMISSION PULSATIONS PRODUCED BY MAGNETOHYDRODYNAMIC LOOP OSCILLATIONS IN SOLAR FLARES

    SciTech Connect

    Mossessian, George; Fleishman, Gregory D.

    2012-04-01

    A quantitative study of the observable radio signatures of the sausage, kink, and torsional magnetohydrodynamic (MHD) oscillation modes in flaring coronal loops is performed. Considering first non-zero order effect of these various MHD oscillation modes on the radio source parameters such as magnetic field, line of sight, plasma density and temperature, electron distribution function, and the source dimensions, we compute time-dependent radio emission (spectra and light curves). The radio light curves (of both flux density and degree of polarization) at all considered radio frequencies are then quantified in both time domain (via computation of the full modulation amplitude as a function of frequency) and in Fourier domain (oscillation spectra, phases, and partial modulation amplitude) to form the signatures specific to a particular oscillation mode and/or source parameter regime. We found that the parameter regime and the involved MHD mode can indeed be distinguished using the quantitative measures derived in the modeling. We apply the developed approach to analyze radio burst recorded by Owens Valley Solar Array and report possible detection of the sausage mode oscillation in one (partly occulted) flare and kink or torsional oscillations in another flare.

  5. The spectrum and variability of radio emission from AE Aquarii

    NASA Technical Reports Server (NTRS)

    Abada-Simon, Meil; Lecacheux, Alain; Bastian, Tim S.; Bookbinder, Jay A.; Dulk, George A.

    1993-01-01

    The first detections of the magnetic cataclysmic variable AE Aquarii at millimeter wavelengths are reported. AE Aqr was detected at wavelengths of 3.4 and 1.25 mm. These data are used to show that the time-averaged spectrum is generally well fitted by a power law S(nu) varies as nu exp alpha, where alpha is approximately equal to 0.35-0.60, and that the power law extends to millimeter wavelengths, i.e., the spectral turnover is at a frequency higher than 240 GHz. It is suggested that the spectrum is consistent with that expected from a superposition of flarelike events where the frequency distribution of the initial flux density is a power law f (S0) varies as S0 exp -epsilon, with index epsilon approximately equal to 1.8. Within the context of this model, the high turnover frequency of the radio spectrum implies magnetic field strengths in excess of 250 G in the source.

  6. Numerical Simulation of the Propagation of Type III Radio Emission

    NASA Astrophysics Data System (ADS)

    Rutkevych, B. P.; Melnik, V. N.

    Recently solar Type III bursts with fine time structure have been observed by radio telescope UTR-2 at frequencies 10 - 30 MHz. For the first time Type III-like bursts with high frequency drift rates were observed at these frequencies too. All this became possible due to both high sensitivity and high time resolution of UTR-2. The properties of decameter Type III bursts can be understood if we take into account the spatial dependence of the electromagnetic wave group velocity as well as the fine spatial structure of the cloud of fast electrons responsible for Type III bursts. These effects are considered numerically in this paper. The fine time structure of Type III bursts is shown to be observed in the days when the associated active region is situated near the central meridian. In other days such structures disappeared. The Type III-like bursts with frequency drift rates of 10 - 20 MHz/s should also be observed, when the associated active region is near the central meridian. These peculiarities are confirmed by observations.

  7. Aborted jets and the X-ray emission of radio-quiet AGNs

    NASA Astrophysics Data System (ADS)

    Ghisellini, G.; Haardt, F.; Matt, G.

    2004-01-01

    We propose that radio-quiet quasars and Seyfert galaxies have central black holes powering outflows and jets which propagate only for a short distance, because the velocity of the ejected material is smaller than the escape velocity. We call them ``aborted" jets. If the central engine works intermittently, blobs of material may be produced, which can reach a maximum radial distance and then fall back, colliding with the blobs produced later and still moving outwards. These collisions dissipate the bulk kinetic energy of the blobs by heating the plasma, and can be responsible (entirely or at least in part) for the generation of the high energy emission in radio-quiet objects. This is alternative to the more conventional scenario in which the X-ray spectrum of radio-quiet sources originates in a hot (and possibly patchy) corona above the accretion disk. In the latter case the ultimate source of energy of the emission of both the disk and the corona is accretion. Here we instead propose that the high energy emission is powered also by the extraction of the rotational energy of the black hole (and possibly of the disk). By means of Montecarlo simulations we calculate the time dependent spectra and light curves, and discuss their relevance to the X-ray spectra in radio-quiet AGNs and galactic black hole sources. In particular, we show that time variability and spectra are similar to those observed in Narrow Line Seyfert 1 galaxies.

  8. Radio emission and mass loss rate limits of four young solar-type stars

    NASA Astrophysics Data System (ADS)

    Fichtinger, Bibiana; Güdel, Manuel; Mutel, Robert L.; Hallinan, Gregg; Gaidos, Eric; Skinner, Stephen L.; Lynch, Christene; Gayley, Kenneth G.

    2017-03-01

    Aims: Observations of free-free continuum radio emission of four young main-sequence solar-type stars (EK Dra, π1 UMa, χ1 Ori, and κ1 Cet) are studied to detect stellar winds or at least to place upper limits on their thermal radio emission, which is dominated by the ionized wind. The stars in our sample are members of The Sun in Time programme and cover ages of 0.1-0.65 Gyr on the main-sequence. They are similar in magnetic activity to the Sun and thus are excellent proxies for representing the young Sun. Upper limits on mass loss rates for this sample of stars are calculated using their observational radio emission. Our aim is to re-examine the faint young Sun paradox by assuming that the young Sun was more massive in its past, and hence to find a possible solution for this famous problem. Methods: The observations of our sample are performed with the Karl G. Jansky Very Large Array (VLA) with excellent sensitivity, using the C-band receiver from 4-8 GHz and the Ku-band from 12-18 GHz. Atacama Large Millimeter/Submillitmeter Array (ALMA) observations are performed at 100 GHz. The Common Astronomy Software Application (CASA) package is used for the data preparation, reduction, calibration, and imaging. For the estimation of the mass loss limits, spherically symmetric winds and stationary, anisotropic, ionized winds are assumed. We compare our results to 1) mass loss rate estimates of theoretical rotational evolution models; and 2) to results of the indirect technique of determining mass loss rates: Lyman-α absorption. Results: We are able to derive the most stringent direct upper limits on mass loss so far from radio observations. Two objects, EK Dra and χ1 Ori, are detected at 6 and 14 GHz down to an excellent noise level. These stars are very active and additional radio emission identified as non-thermal emission was detected, but limits for the mass loss rates of these objects are still derived. The emission of χ1 Ori does not come from the main target

  9. Properties of solar energetic particle events inferred from their associated radio emission

    NASA Astrophysics Data System (ADS)

    Kouloumvakos, A.; Nindos, A.; Valtonen, E.; Alissandrakis, C. E.; Malandraki, O.; Tsitsipis, P.; Kontogeorgos, A.; Moussas, X.; Hillaris, A.

    2015-08-01

    Aims: We study selected properties of solar energetic particle (SEP) events as inferred from their associated radio emissions. Methods: We used a catalogue of 115 SEP events, which consists of entries of proton intensity enhancements at one AU, with complete coverage over solar cycle 23 based on high-energy (~68 MeV) protons from SOHO/ERNE. We also calculated the proton release time at the Sun using velocity dispersion analysis (VDA). After an initial rejection of cases with unrealistic VDA path lengths, we assembled composite radio spectra for the remaining events using data from ground-based and space-borne radio spectrographs. We registered the associated radio emissions for every event, and we divided the events in groups according to their associated radio emissions. In cases of type III-associated events, we extended our study to the timings between the type III radio emission, the proton release, and the electron release as inferred from VDA based on Wind/3DP 20-646 keV data. Results: The proton release was found to be most often accompanied by both type III and II radio bursts, but a good association percentage was also registered in cases accompanied by type IIIs only. The worst association was found for the cases only associated with type II. In the type III-associated cases, we usually found systematic delays of both the proton and electron release times as inferred by the particles' VDAs, with respect to the start of the associated type III burst. The comparison of the proton and electron release times revealed that, in more than half of the cases, the protons and electrons were simultaneously released within the statistical uncertainty of our analysis. For the cases with type II radio association, we found that the distribution of the proton release heights had a maximum at ~2.5 R⊙. Most (69%) of the flares associated with our SEP events were located in the western hemisphere, with a peak within the well-connected region of 50°-60° western

  10. Magnetostrophic balance in planetary dynamos - Predictions for Neptune's magnetosphere

    NASA Technical Reports Server (NTRS)

    Curtis, S. A.; Ness, N. F.

    1986-01-01

    With the purpose of estimating Neptune's magnetic field and its implications for nonthermal Neptune radio emissions, a new scaling law for planetary magnetic fields was developed in terms of externally observable parameters (the planet's mean density, radius, mass, rotation rate, and internal heat source luminosity). From a comparison of theory and observations by Voyager it was concluded that planetary dynamos are two-state systems with either zero intrinsic magnetic field (for planets with low internal heat source) or (for planets with the internal heat source sufficiently strong to drive convection) a magnetic field near the upper bound determined from magnetostrophic balance. It is noted that mass loading of the Neptune magnetosphere by Triton may play an important role in the generation of nonthermal radio emissions.

  11. Galactic Synchrotron Emission and the Far-infrared-Radio Correlation at High Redshift

    NASA Astrophysics Data System (ADS)

    Schober, J.; Schleicher, D. R. G.; Klessen, R. S.

    2016-08-01

    Theoretical scenarios, including the turbulent small-scale dynamo, predict that strong magnetic fields already exist in young galaxies. Based on the assumption of energy equipartition between magnetic fields and turbulence, we determine the galactic synchrotron flux as a function of redshift z. Galaxies in the early universe are different from local galaxies, in particular, the former have more intense star formation. To cover a large range of conditions, we consider two different systems: one model galaxy comparable to the Milky Way and one typical high-z starburst galaxy. We include a model of the steady-state cosmic ray spectrum and find that synchrotron emission can be detected up to cosmological redshifts with current and future radio telescopes. The turbulent dynamo theory is in agreement with the origin of the observed correlation between the far-infrared (FIR) luminosity L FIR and the radio luminosity L radio. Our model reproduces this correlation well at z = 0. We extrapolate the FIR-radio correlation to higher redshifts and predict a time evolution with a significant deviation from its present-day appearance already at z≈ 2 for a gas density that increases strongly with z. In particular, we predict a decrease of the radio luminosity with redshift which is caused by the increase of cosmic ray energy losses at high z. The result is an increase of the ratio between L FIR and L radio. Simultaneously, we predict that the slope of the FIR-radio correlation becomes shallower with redshift. This behavior of the correlation could be observed in the near future with ultra-deep radio surveys.

  12. Understanding the periodicities in radio and GeV emission from LS I +61°303

    NASA Astrophysics Data System (ADS)

    Jaron, F.; Torricelli-Ciamponi, G.; Massi, M.

    2016-11-01

    Context. One possible scenario to explain the emission from the stellar binary system LS I + 61°303 is that the observed flux is emitted by precessing jets powered by accretion. Accretion models predict two ejections along the eccentric orbit of LS I + 61°303: one major ejection at periastron and a second, lower ejection towards apastron. Our GeV gamma-ray observations show two peaks along the orbit (orbital period P1) but reveal that at apastron the emission is also affected by a second periodicity, P2. Strong radio outbursts also occur at apastron, which are affected by both periodicities (i.e. P1 and P2), and radio observations show that P2 is the precession of the radio jet. Consistently, a long-term modulation, equal to the beating of P1 and P2, affects both radio and gamma-ray emission at apastron but it does not affect gamma-ray emission at periastron. Aims: If there are two ejections, why does the one at periastron not produce a radio outburst there? Is the lack of a periastron radio outburst somehow related to the lack of P2 from the periastron gamma-ray emission? Methods: We develop a physical model in which relativistic electrons are ejected twice along the orbit. The ejecta form a conical jet that is precessing with P2. The jet radiates in the radio band by the synchrotron process and the jet radiates in the GeV energy band by the external inverse Compton and synchrotron self-Compton processes. We compare the output fluxes of our physical model with two available large archives: Owens Valley Radio Observatory (OVRO) radio and Fermi Large Area Telescope (LAT) GeV observations, the two databases overlapping for five years. Results: The larger ejection around periastron passage results in a slower jet, and severe inverse Compton losses result in the jet also being short. While large gamma-ray emission is produced, there is only negligible radio emission. Our results are that the periastron jet has a length of 3.0 × 106rs and a velocity β 0.006, whereas

  13. Narrowband Radio Emission As A Possible Feature of Before CMEs Onset Processes

    NASA Astrophysics Data System (ADS)

    Fridman, V.; Sheiner, O.; Grechin, S.

    The narrow band events in microwave radio emission were discovered during the ob- servations by RT-22 CrAO on August 12, 1989 before CMEs registration has been done. The observations were carried out using the sweeping spectrograph in 13-17 GHz range with frequency resolution of 100 MHz and sweeping time of less then 1 sec. It is well known that the period preceding the CMEs formation is characterized by sporadic radio emission of different types. We have found the existence of fast changes in temporal behavior of radio emission during the burst. They are character- ized by consistent origin of narrow-band (<1 GHz) components of emission with flux amplitude of about 1 sfu, moving from high to low frequencies in 1-3 seconds. We detected the shift of spectral maximum to short waves and appearance of narrow-band (<800 MHz) features during the CMEs formation. The results are being discussed within the framework of known models of radioemission of active region and bursts. Their application to possible conditions in formation of CMEs is also addressed in this research. This work is being supported by the Federal Science and Technology Programme "Astronomy" and the Russian Foundation for Fundamental Research.

  14. THE VLA SURVEY OF CHANDRA DEEP FIELD SOUTH. V. EVOLUTION AND LUMINOSITY FUNCTIONS OF SUB-MILLIJANSKY RADIO SOURCES AND THE ISSUE OF RADIO EMISSION IN RADIO-QUIET ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Padovani, P.; Mainieri, V.; Rosati, P.; Miller, N.; Kellermann, K. I.; Tozzi, P.

    2011-10-10

    We present the evolutionary properties and luminosity functions of the radio sources belonging to the Chandra Deep Field South Very Large Array survey, which reaches a flux density limit at 1.4 GHz of 43 {mu}Jy at the field center and redshift {approx}5 and which includes the first radio-selected complete sample of radio-quiet active galactic nuclei (AGNs). We use a new, comprehensive classification scheme based on radio, far- and near-IR, optical, and X-ray data to disentangle star-forming galaxies (SFGs) from AGNs and radio-quiet from radio-loud AGNs. We confirm our previous result that SFGs become dominant only below 0.1 mJy. The sub-millijansky radio sky turns out to be a complex mix of SFGs and radio-quiet AGNs evolving at a similar, strong rate; non-evolving low-luminosity radio galaxies; and declining radio powerful (P {approx}> 3 x 10{sup 24} W Hz{sup -1}) AGNs. Our results suggest that radio emission from radio-quiet AGNs is closely related to star formation. The detection of compact, high brightness temperature cores in several nearby radio-quiet AGNs can be explained by the coexistence of two components, one non-evolving and AGN related and one evolving and star formation related. Radio-quiet AGNs are an important class of sub-millijansky sources, accounting for {approx}30% of the sample and {approx}60% of all AGNs, and outnumbering radio-loud AGNs at {approx}< 0.1 mJy. This implies that future, large area sub-millijansky surveys, given the appropriate ancillary multiwavelength data, have the potential of being able to assemble vast samples of radio-quiet AGNs, bypassing the problems of obscuration that plague the optical and soft X-ray bands.

  15. A search of the SAS-2 data for pulsed gamma-ray emission from radio pulsars

    NASA Technical Reports Server (NTRS)

    Ogelman, H. B.; Fichtel, C. E.

    1976-01-01

    Data from the SAS-2 high energy gamma ray experiment were examined for pulsed emission from each of 75 radio pulsars which were viewed by the instrument and which have sufficiently well defined period and period derivative information from radio observations to allow for gamma ray periodicity searches. When gamma ray arrival times were converted to pulsar phase using the radio reference timing information, two pulsars, PSR 1747-46 and PSR 1818-04, showed positive effects, each with a probability less than 0.0001 of being a random fluctuation in the data for that pulsar. These are in addition to PSR 0531+21 and PSR 0833-45, previously reported. The results of this study suggest that gamma-ray astronomy has reached the detection threshold for gamma ray pulsars and that work in the near future should give important information on the nature of pulsars.

  16. Radio Emission from Pulsar Wind Nebulae without Surrounding Supernova Ejecta: Application to FRB 121102

    NASA Astrophysics Data System (ADS)

    Dai, Z. G.; Wang, J. S.; Yu, Y. W.

    2017-03-01

    In this paper, we propose a new scenario in which a rapidly rotating strongly magnetized pulsar without any surrounding supernova ejecta repeatedly produces fast radio bursts (FRBs) via a range of possible mechanisms; simultaneously, an ultra-relativistic electron/positron pair wind from the pulsar sweeps up its ambient dense interstellar medium, giving rise to a non-relativistic pulsar wind nebula (PWN). We show that the synchrotron radio emission from such a PWN is bright enough to account for the recently discovered persistent radio source associated with the repeating FRB 121102 within reasonable ranges of the model parameters. Our PWN scenario is consistent with the non-evolution of the dispersion measure inferred from all of the repeating bursts observed in four years.

  17. Compact non-thermal radio emission from B-peculiar stars

    NASA Technical Reports Server (NTRS)

    Phillips, R. B.; Lestrade, J.-F.

    1988-01-01

    Some stars hotter than 10,000 K show propensity for unusual surface abundances and excessive magnetic fields. These peculiar stars, Ap and Bp in the spectral nomenclature, show unusually prominent absorption lines of heavier elements. Rapid rotation and strong magnetic fields are revealed by line shapes and Zeeman splitting. VLBI is here used to directly probe the source size and brightness temperature of weak radio emission recently discovered from two isolated Bp stars, sigma Orionis E and HD37017. The emitting zone for each star is no more than 6 stellar diameters in extent, reflecting brightness temperatures of more than one billion K. Such high surface brightness resembles gyrosynchrotron radiation from mildly relativistic electrons trapped in the strong magnetic fields surrounding these stars. Compact radio radiation from these two stars presents new opportunities for probing the physical environments of early-type stars and for precise radio astrometry.

  18. Very Large Array Detects Radio Emission from Gamma-Ray Burst

    NASA Astrophysics Data System (ADS)

    1997-05-01

    Astronomers have used the National Science Foundation's (NSF) Very Large Array (VLA) radio telescope to make the first detection of radio emission from a cosmic gamma-ray burst. This sheds the first light on longstanding questions about the actual physics of these mysterious, tremendously energetic events. "The mere discovery of radio emission from this gamma-ray burst rules out some theoretical models," said Dale Frail of the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico. "We are still observing it and each additional observation will help further discriminate among competing models." "This detection may finally tell us what these mysterious gamma-ray bursts are, helping to resolve one of the biggest mysteries in astrophysics," said Hugh Van Horn, Director of the NSF's Division of Astronomical Sciences. The VLA detection was made by some of the same scientists who announced yesterday that optical observations showed that gamma-ray bursts come from great distances. In addition to Frail, the VLA astronomers are: Shri Kulkarni of Caltech and the BeppoSAX Gamma-Ray Burst Team, consisting of Luciano Nicastro, Eliana Palazi, Enrico Costa, Marco Feroci, Luigi Piro, Fillipo Frontera, and John Heise. The burst of gamma rays was detected May 8 by the Italian-Dutch satellite BeppoSAX. Hundreds of such bursts have been recorded by satellites in the past 30 years, but last week's event already has become the most scientifically significant of them all. For years, the difficulty of precisely locating the bursts' position in the sky made it nearly impossible to study them with optical and radio instruments. In late 1996, this situation improved with the launch of BeppoSAX, which can pinpoint the bursts' location much more accurately than previous spacecraft. Following BeppoSAX discoveries, optical and radio astronomers have been able to make quick observations of the burst locations. The largest unanswered question about gamma-ray bursts has been their

  19. Bursts of HF radio noises after irregularities of solar wind

    NASA Astrophysics Data System (ADS)

    Dudnik, O. V.; Malykhina, T. V.

    We present analyses of HF radio emission spectra of magnetospheric origin, at frequencies of 150 and 500 MHz, collected with ground-based antennae at middle latitudes ( L=2) during the second half of 1999. We discover a large occurrence of short-time-scale (1-10 s) sporadic radio bursts during active solar periods. To identify the source of these bursts, we associate their occurrence and perform correlations with solar wind parameters and energetic particle fluxes in interplanetary space and in the outer magnetosphere. Solar wind parameters and energetic ion fluxes in interplanetary space are provided by the ACE satellite. GOES8 and GOES10 satellites provide electron fluxes with energy E>2 MeV at geosynchronous orbit. These data are analyzed in order to show a correlation between particle fluxes and high amplitude radio bursts. There is a delay between the initiations of high-amplitude, short-term, sporadic radio bursts (at a frequency 150 MHz) and the arrival of high-speed solar wind streams at Earth's magnetosphere. The temporal delay of a few hours from the start of these features in the temporal distribution of electron fluxes at L=6.6 is shown, too. We suggest the possibility that the sources of radio bursts are located in the inner parts of magnetosphere.

  20. SPECTRAL INDEX STUDIES OF THE DIFFUSE RADIO EMISSION IN ABELL 2256: IMPLICATIONS FOR MERGER ACTIVITY

    SciTech Connect

    Kale, Ruta; Dwarakanath, K. S. E-mail: dwaraka@rri.res.i

    2010-08-01

    We present a multi-wavelength analysis of the merging rich cluster of galaxies, Abell 2256 (A2256). We have observed A2256 at 150 MHz using the Giant Metrewave Radio Telescope and successfully detected the diffuse radio halo and the relic emission over a {approx}1.2 Mpc{sup 2} extent. Using this 150 MHz image and the images made using archival observations from the Very Large Array (VLA; 1369 MHz) and the Westerbrok Synthesis Radio Telescope (WSRT; 330 MHz), we have produced spectral index images of the diffuse radio emission in A2256. These spectral index images show a distribution of flat spectral index (S {proportional_to} {nu}{sup {alpha}}, {alpha} in the range -0.7 to -0.9) plasma in the region NW of the cluster center. Regions showing steep spectral indices ({alpha} in the range -1.0 to -2.3) are toward the SE of the cluster center. These spectral indices indicate synchrotron lifetimes for the relativistic plasmas in the range 0.08-0.4 Gyr. We interpret this spectral behavior as resulting from a merger event along the direction SE to NW within the last 0.5 Gyr or so. A shock may be responsible for the NW relic in A2256 and the megaparsec scale radio halo toward the SE is likely to be generated by the turbulence injected by mergers. Furthermore, the diffuse radio emission shows spectral steepening toward lower frequencies. This low-frequency spectral steepening is consistent with a combination of spectra from two populations of relativistic electrons created at two epochs (two mergers) within the last {approx}0.5 Gyr. Earlier interpretations of the X-ray and the optical data also suggested that there were two mergers in Abell 2256 in the last 0.5 Gyr, consistent with the current findings. Also highlighted in this study is the futility of correlating the average temperatures of thermal gas and the average spectral indices of diffuse radio emission in the respective clusters.

  1. The origin of radio bursts of pulsar J0643+80

    NASA Astrophysics Data System (ADS)

    Machabeli, G.; Malofeev, V. M.; Gogoberidze, G.

    2017-03-01

    We develop a model to explain flares observed at a frequency of 111 MHz in the radiation of pulsar J0643+80. We consider non-linear processes in the electron-positron plasma of the pulsar magnetosphere and show that these interactions can cause self-trapping of radio emission in narrow bands of frequencies. This mechanism can explain the origin of the observed flares without any additional sources of radio emission. The proposed scenario naturally explains why strong enhancement of the radio emission does not affect radiation in other frequency bands.

  2. X-RAY AND RADIO EMISSION FROM TYPE IIn SUPERNOVA SN 2010jl

    SciTech Connect

    Chandra, Poonam; Chevalier, Roger A.; Chugai, Nikolai; Fransson, Claes; Soderberg, Alicia M.

    2015-09-01

    We present all X-ray and radio observations of the Type IIn supernova SN 2010jl. The X-ray observations cover a period up to day 1500 with Chandra, XMM-Newton, NuSTAR, and Swift-X-ray Telescope (XRT). The Chandra observations after 2012 June, the XMM-Newton observation in 2013 November, and most of the Swift-XRT observations until 2014 December are presented for the first time. All the spectra can be fitted by an absorbed hot thermal model except for Chandra spectra on 2011 October and 2012 June when an additional component is needed. Although the origin of this component is uncertain, it is spatially coincident with the supernova and occurs when there are changes to the supernova spectrum in the energy range close to that of the extra component, indicating that the emission is related to the supernova. The X-ray light curve shows an initial plateau followed by a steep drop starting at day ∼300. We attribute the drop to a decrease in the circumstellar density. The column density to the X-ray emission drops rapidly with time, showing that the absorption is in the vicinity of the supernova. We also present Very Large Array radio observations of SN 2010jl. Radio emission was detected from SN 2010jl from day 570 onwards. The radio light curves and spectra suggest that the radio luminosity was close to its maximum at the first detection. The velocity of the shocked ejecta derived assuming synchrotron self-absorption is much less than that estimated from the optical and X-ray observations, suggesting that free–free absorption dominates.

  3. Variable and Polarized Radio Emission from a T6 Brown Dwarf

    NASA Astrophysics Data System (ADS)

    Williams, Peter K. G.; Gizis, John; Berger, Edo

    2017-01-01

    Route & Wolszczan (2016) recently detected five radio bursts from the T6 brown dwarf WISEP J112254.7+255021.5 and used the timing of these events to propose that this object rotates with an ultra-short period of ~17.3 minutes. We conducted follow-up observations with the Very Large Array and Gemini-North but found no evidence for this periodicity. We do, however, observe variable, highly circularly polarized radio emission possibly with a period of 116 minutes, although our observation lasted only 162 minutes and so more data are needed to confirm it. Our proposed periodicity is typical of other radio-active ultracool dwarfs. The handedness of the circular polarization alternates with time and there is no evidence for any unpolarized emission component, the first time such a phenomenology has been observed in radio studies of very low-mass stars and brown dwarfs. We suggest that the object’s magnetic dipole axis may be highly misaligned relative to its rotation axis.

  4. SCO X-1: Origin of the radio and hard X-ray emissions

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Cheng, C. C.; Tsuruta, S.

    1973-01-01

    The consequences of models for the central radio source and the hard X-ray ( 30 keV) emitting region in Sco X-1 are examined. It was found that the radio emission could result from noncoherent synchrotron radiation and that the X-rays may be produced by bremsstrahlung. It is shown that both mechanisms require a mass outflow from Sco X-1. The radio source is located at r approximately 3x10 to the 12th power cm from the center of the star, and its linear dimensions do not exceed 3x10 to the 13th power cm. The magnetic field in the radio source is on the order of 1 gauss. If the hard X-rays are produced by thermal bremsstrahlung, their source is located at 10 to the 9th power approximately r approximately 5x10 to the 9th power cm, the temperature is 2x10 to the 9th power K, and the emission measure is 2x10 to the 56th power/cu cm. This hot plasma loses energy inward by conduction and outward by supersonic expansion. The rates of energy loss for both processes are about 10 to the 36th power erg/s, comparable to the total luminosity of Sco X-1.

  5. A Highly Circularly Polarized Solar Radio Emission Component Observed at Hectometric Wavelengths

    NASA Astrophysics Data System (ADS)

    Reiner, M. J.; Kaiser, M. L.; Fainberg, J.; Bougeret, J.-L.

    2006-04-01

    We report here the observation of a rare solar radio event at hectometric wavelengths that was characterized by essentially 100% circularly polarized radiation and that was observed continuously for about six days, from May 17 to 23, 2002. This was the first time that a solar source with significantly polarized radiation was detected by the WAVES experiment on the Wind spacecraft. From May 19 to 22, the intense polarized radio emissions were characterized by quasi-periodic intensity variations with periods from one to two hours and with superposed drifting, narrowband, fine structures. The bandwidth of this radiation extended from about 400 kHz to 7 MHz, and the peak frequency of the frequency spectrum slowly decreased from 2 MHz to about 0.8 MHz over the course of four days. The radio source, at each frequency, was observed to slowly drift from east to west about the Sun, as viewed from the Earth and was estimated to lie between 26 and 82 R ⊙ ( R ⊙ = 696 000 km). We speculate that this unusual event may represent an interplanetary manifestation of a moving type IV burst and discuss possible radio emission mechanisms. The ISEE-3 spacecraft may possibly have detected a similar event some 26 years ago.

  6. Role of Microwave Radio Emission in Estimation of CMEs Geo-Effectiveness in their Formation Stage

    NASA Astrophysics Data System (ADS)

    Durasova, M.; Fridman, V.; Sheyner, O.

    It was shown by authors earlier [1] that formation stage of the majority CMEs (time interval about 2 hours) is accompanied by sporadic events in solar radio emission. The study of evaluation of CMEs geo-effectiveness is carried out according to their manifestation in microwave emission during formation stage. Data value consists of original recordings of solar radio emission during regular observations in the Radio Astronomical Observatory "Zimenki" (Russia) at 6 frequencies in the range of 9100-100 MHz and includes about 185 events during XXI-XXIII cycles of solar activity. The first stage of study consists in establishment of the fact of CMEs geo- effectiveness on the basis of Kp-index behavior during 1-2 days after CMEs registration. Such parameters of CMES as their Central Locations (CL) and Apparent Widths (AW) were used for analysis. It is shown that the mean AW for geo-effective CMEs top the same one for non-geo-effective CMEs at least by 20%. Above-mentioned study gives stable results for 3 independent volumes of data of 1980-1988, 1998, and 1999. This effect is strengthen for all data concerning geo- effective CMEs of Loop -type and keeps in geometric notions where AW and CL contain the Earth location in space. For further study all radio data are separated into 2 volumes: the first one is connected with sporadic events that are observed during the formation of geo- effective CMEs and the second one - the others CMEs. The difference of characteristics of these sporadic events is examined. It is shown that it is possible to evaluate CMEs geo-effectiveness using totality of characteristics of broad band precursors in radio emission. This work is being supported by the Russian Foundation for Fundamental Research (grant N 00-02-17655).References. 1. Durasova M.S., Fridman V.M., Sheiner O.A. The distinctive features of nonstationary solar radio emission corresponding to CME's formation on the base of wide frequency range observations. In: Proc.of Euroconference

  7. Adaptive-array Electron Cyclotron Emission diagnostics using data streaming in a Software Defined Radio system

    NASA Astrophysics Data System (ADS)

    Idei, H.; Mishra, K.; Yamamoto, M. K.; Hamasaki, M.; Fujisawa, A.; Nagashima, Y.; Hayashi, Y.; Onchi, T.; Hanada, K.; Zushi, H.; the QUEST Team

    2016-04-01

    Measurement of the Electron Cyclotron Emission (ECE) spectrum is one of the most popular electron temperature diagnostics in nuclear fusion plasma research. A 2-dimensional ECE imaging system was developed with an adaptive-array approach. A radio-frequency (RF) heterodyne detection system with Software Defined Radio (SDR) devices and a phased-array receiver antenna was used to measure the phase and amplitude of the ECE wave. The SDR heterodyne system could continuously measure the phase and amplitude with sufficient accuracy and time resolution while the previous digitizer system could only acquire data at specific times. Robust streaming phase measurements for adaptive-arrayed continuous ECE diagnostics were demonstrated using Fast Fourier Transform (FFT) analysis with the SDR system. The emission field pattern was reconstructed using adaptive-array analysis. The reconstructed profiles were discussed using profiles calculated from coherent single-frequency radiation from the phase array antenna.

  8. Polarization features of solar radio emission and possible existence of current sheets in active regions

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.; Zheleznyakov, V. V.; White, S. M.; Kundu, M. R.

    1994-01-01

    We show that it is possible to account for the polarization features of solar radio emission provided the linear mode coupling theory is properly applied and the presence of current sheets in the corona is taken into account. We present a schematic model, including a current sheet that can explain the polarization features of both the low frequency slowly varying component and the bipolar noise storm radiation; the two radiations face similar propagation conditions through a current sheet and hence display similar polarization behavior. We discuss the applications of the linear mode coupling theory to the following types of solar emission: the slowly varying component, the microwave radio bursts, metric type U bursts, and bipolar noise storms.

  9. The Moon as a calibrator of linearly polarized radio emission for the SPOrt project

    NASA Astrophysics Data System (ADS)

    Poppi, S.; Carretti, E.; Cortiglioni, S.; Krotikov, V. D.; Vinyajkin, E. N.

    2002-03-01

    The Moon could be the best external calibrator for the Sky Polarization Observatory (SPOrt) experiment, providing the highest polarized signal at large angular scales (>=7 °) in the 22-90 GHz range. Maps of linearly polarized lunar radio emission have been realized at 8.3 GHz with the 32-m radiotelescope of IRA-CNR (Medicina-Italy) at full Moon, new Moon, first and last quarter. We derived estimates of spectral and time properties of both the intensity and the linear polarization of the Moon radio emission, taking into account the radiative transfer of heat in lunar soil and the surface roughness. A comparison between predictions of the theory and observations is presented. .

  10. Self-consistent particle-in-cell simulations of fundamental and harmonic radio plasma emission mechanisms

    NASA Astrophysics Data System (ADS)

    Tsiklauri, D.; Thurgood, J. O.

    2015-12-01

    first co-author Jonathan O. Thurgood (QMUL) The simulation of three-wave interaction based plasma emission, an underlying mechanism for type III solar radio bursts, is a challenging task requiring fully-kinetic, multi-dimensional models. This paper aims to resolve a contradiction in past attempts, whereby some authors report that no such processes occur and others draw conflicting conclusions, by using 2D, fully kinetic, particle-in-cell simulations of relaxing electron beams. Here we present the results of particle-in-cell simulations which for different physical parameters permit or prohibit the plasma emission. We show that the possibility of plasma emission is contingent upon the frequency of the initial electrostatic waves generated by the bump-in-tail instability, and that these waves may be prohibited from participating in the necessary three-wave interactions due to the frequency beat requirements. We caution against simulating astrophysical radio bursts using unrealistically dense beams (a common approach which reduces run time), as the resulting non-Langmuir characteristics of the initial wave modes significantly suppresses the emission. Comparison of our results indicates that, contrary to the suggestions of previous authors, a plasma emission mechanism based on two counter-propagating beams is unnecessary in astrophysical context. Finally, we also consider the action of the Weibel instability, which generates an electromagnetic beam mode. As this provides a stronger contribution to electromagnetic energy than the emission, we stress that evidence of plasma emission in simulations must disentangle the two contributions and not simply interpret changes in total electromagnetic energy as the evidence of plasma emission. In summary, we present the first self-consistent demonstration of fundamental and harmonic plasma emission from a single-beam system via fully kinetic numerical simulation. Pre-print can be found at http://astro.qmul.ac.uk/~tsiklauri/jtdt1

  11. The Jovian magnetosphere

    NASA Technical Reports Server (NTRS)

    Birmingham, T. J.

    1983-01-01

    Research on Jovian magnetospheric physics from 1979 through 1982 is surveyed, with a focus on the observations of Voyagers 1 and 2. Jovian fields and plasmas are characterized in the order of their distance from the planet, and special emphasis is given to the Io plasma torus (IPT) in the 4.9-8-Jovian-radius region and to the extended Jovian magnetotail. Topics reviewed include synchrotron radiation, magnetic-field models, Na and S emissions in the IPT, aurora, the magnetic-anomaly model, IPT plasma diffusion-convection, Io-generated Alfven wave, plasma configuration beyond the IPT, low-energy charged particles, cosmic-ray-energy particles, particle acceleration, magnetic configuration, tail current sheet and plasma disc, magnetopause and magnetosheath, interplanetary ions of Jovian origin, and the Jovian magnetosphere at Saturnian distances.

  12. Probing Atmospheric Electric Fields in Thunderstorms through Radio Emission from Cosmic-Ray-Induced Air Showers.

    PubMed

    Schellart, P; Trinh, T N G; Buitink, S; Corstanje, A; Enriquez, J E; Falcke, H; Hörandel, J R; Nelles, A; Rachen, J P; Rossetto, L; Scholten, O; Ter Veen, S; Thoudam, S; Ebert, U; Koehn, C; Rutjes, C; Alexov, A; Anderson, J M; Avruch, I M; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Broderick, J W; Brüggen, M; Butcher, H R; Ciardi, B; de Geus, E; de Vos, M; Duscha, S; Eislöffel, J; Fallows, R A; Frieswijk, W; Garrett, M A; Grießmeier, J; Gunst, A W; Heald, G; Hessels, J W T; Hoeft, M; Holties, H A; Juette, E; Kondratiev, V I; Kuniyoshi, M; Kuper, G; Mann, G; McFadden, R; McKay-Bukowski, D; McKean, J P; Mevius, M; Moldon, J; Norden, M J; Orru, E; Paas, H; Pandey-Pommier, M; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H; Scaife, A M M; Schwarz, D J; Serylak, M; Smirnov, O; Steinmetz, M; Swinbank, J; Tagger, M; Tasse, C; Toribio, M C; van Weeren, R J; Vermeulen, R; Vocks, C; Wise, M W; Wucknitz, O; Zarka, P

    2015-04-24

    We present measurements of radio emission from cosmic ray air showers that took place during thunderstorms. The intensity and polarization patterns of these air showers are radically different from those measured during fair-weather conditions. With the use of a simple two-layer model for the atmospheric electric field, these patterns can be well reproduced by state-of-the-art simulation codes. This in turn provides a novel way to study atmospheric electric fields.

  13. CONSTRAINTS ON DARK MATTER ANNIHILATION IN CLUSTERS OF GALAXIES FROM DIFFUSE RADIO EMISSION

    SciTech Connect

    Storm, Emma; Jeltema, Tesla E.; Profumo, Stefano; Rudnick, Lawrence

    2013-05-10

    Annihilation of dark matter can result in the production of stable Standard Model particles including electrons and positrons that, in the presence of magnetic fields, lose energy via synchrotron radiation, observable as radio emission. Galaxy clusters are excellent targets to search for or to constrain the rate of dark matter annihilation, as they are both massive and dark matter dominated. In this study, we place limits on dark matter annihilation in a sample of nearby clusters using upper limits on the diffuse radio emission, low levels of observed diffuse emission, or detections of radio mini-halos. We find that the strongest limits on the annihilation cross section are better than limits derived from the non-detection of clusters in the gamma-ray band by a factor of {approx}3 or more when the same annihilation channel and substructure model, but different best-case clusters, are compared. The limits on the cross section depend on the assumed amount of substructure, varying by as much as two orders of magnitude for increasingly optimistic substructure models as compared to a smooth Navarro-Frenk-White profile. In our most optimistic case, using the results of the Phoenix Project, we find that the derived limits reach below the thermal relic cross section of 3 Multiplication-Sign 10{sup -26} cm{sup 3} s{sup -1} for dark matter masses as large as 400 GeV, for the b b-bar annihilation channel. We discuss uncertainties due to the limited available data on the magnetic field structure of individual clusters. We also report the discovery of diffuse radio emission from the central 30-40 kpc regions of the groups M49 and NGC 4636.

  14. Relationship of Solar Radio Emission at λ=1.43m and Optical Processes in the Sun

    NASA Astrophysics Data System (ADS)

    Makandarashvili, Sh.; Oghrapishvili, N.; Japaridze, D.; Maghradze, D.

    2016-09-01

    Radio frequency observations supplement optical studies and in some cases they are the only way of obtaining information on the physical conditions for radio waves and their propagation. Solar radio emission appears in two forms, "quiescent" and "sporadic." Their distinctive features are well known. Solar radio observations at meter wavelengths (λ = 1.43 m, ν = 210 MHz) have been made at the Abastumani Astrophysical Observatory using a solar radio telescope throughout five solar cycles (since 1957). This article is a study of the long-term observations of solar radio bursts and sunspots. It is found that there is a correlation between the amplitudes of the radio bursts, the number of spots, and the regions of the spots.

  15. Searching for coronal radio emission from protostars using very-long-baseline interferometry

    NASA Astrophysics Data System (ADS)

    Forbrich, J.; Massi, M.; Ros, E.; Brunthaler, A.; Menten, K. M.

    2007-07-01

    Aims:In order to directly study the role of magnetic fields in the immediate vicinity of protostars, we use Very-Long-Baseline Interferometry (VLBI), aiming at the detection of non-thermal centimetric radio emission. This is technically the only possibility to study coronal emission at sub-AU resolution. Methods: We performed VLBI observations of the four nearby protostars HL Tau, LDN 1551 IRS5, EC 95, and YLW 15 in order to look for compact non-thermal centimetric radio emission. For maximum sensitivity, we used the High Sensitivity Array (HSA) where possible, involving the Very Long Baseline Array (VLBA), the phased Very Large Array (VLA), as well as the Arecibo, Green Bank, and Effelsberg radio telescopes. Results: While all four protostars were detected in VLA-only data, only one source (YLW 15 VLA 2) was detected in the VLBI data. The possibility of non-detections due to free-free absorption, possibly depending on source geometry, is considered.

  16. Radio-Continuum Emission from the Young Galactic Supernova Remnant G1.9+0.3

    NASA Astrophysics Data System (ADS)

    De Horta, A. Y.; Filipovic, M. D.; Crawford, E. J.; Stootman, F. H.; Pannuti, T. G.; Bozzetto, L. M.; Collier, J. D.; Sommer, E. R.; Kosakowski, A. R.

    2014-12-01

    We present an analysis of a new Australia Telescope Compact Array (ATCA) radio-continuum observation of supernova remnant (SNR) G1.9+0.3, which at an age of ˜181±25 years is the youngest known in the Galaxy. We analysed all available radio-continuum observations at 6-cm from the ATCA and Very Large Array. Using this data we estimate an expansion rate for G1.9+0.3 of 0.563±0.078 percent per year between 1984 and 2009. We note that in the 1980's G1.9+0.3 expanded somewhat slower (0.484 percent per year) than more recently (0.641 percent per year). We estimate that the average spectral index between 20-cm and 6-cm, across the entire SNR is α=-0.72±0.26 which is typical for younger SNRs. At 6-cm, we detect an average of 6 percent fractionally polarised radio emission with a peak of 17±3 percent. The polarised emission follows the contours of the strongest of X-ray emission. Using the new equipartition formula we estimate a magnetic field strength of B≈273~μ G, which to date, is one of the highest magnetic field strength found for any SNR and consistent with G1.9+0.3 being a very young remnant.

  17. A Stochastic Acceleration Model of Radio Emission from Pulsar Wind Nebulae

    NASA Astrophysics Data System (ADS)

    Tanaka, S.; Asano, K.

    2016-06-01

    The broadband emission of Pulsar Wind Nebulae (PWNe) is well described by non-thermal emissions from accelerated electrons and positrons. However, the difference of spectral indices at radio and X-rays are not reproduced by the standard shock particle acceleration and cooling processes, and then, for example, the broken power-law spectrum for the particle energy distribution at the injection has been groundlessly adopted. Here, we propose a possible resolution for the particle distribution; the radio emitting particles are not accelerated at the pulsar wind termination shock but are stochastically accelerated by turbulence inside the PWNe. The turbulence may be induced by the interaction of the pulsar wind with the supernova ejecta. We upgrade our one-zone spectral evolution model including the stochastic acceleration and apply it to the Crab Nebula. We consider both continuous and impulsive injections of particles to the stochastic acceleration process. The radio emission in the Crab Nebula is reproduced by our stochastic acceleration model. The required forms of the momentum diffusion coefficient will be discussed.

  18. MODELING BRIGHT γ-RAY AND RADIO EMISSION AT FAST CLOUD SHOCKS

    SciTech Connect

    Lee, Shiu-Hang; Patnaude, Daniel J.; Raymond, John C.; Slane, Patrick O.; Nagataki, Shigehiro; Ellison, Donald C. E-mail: slane@cfa.harvard.edu E-mail: jraymond@cfa.harvard.edu E-mail: shigehiro.nagataki@riken.jp

    2015-06-10

    Recent observations by the Large Area Telescope on board the Fermi satellite have revealed bright γ-ray emission from middle-aged supernova remnants (SNRs) inside our Galaxy. These remnants, which also possess bright non-thermal radio shells, are often found to be interacting directly with surrounding gas clouds. We explore the non-thermal emission mechanism at these dynamically evolved SNRs by constructing a hydrodynamical model. Two scenarios of particle acceleration, either a re-acceleration of Galactic cosmic rays or an efficient nonlinear diffusive shock acceleration (NLDSA) of particles injected from downstream, are considered. Using parameters inferred from observations, our models are contrasted with the observed spectra of SNR W44. For the re-acceleration case, we predict a significant enhancement of radio and GeV emission as the SNR undergoes a transition into the radiative phase. If sufficiently strong magnetic turbulence is present in the molecular cloud, the re-acceleration scenario can explain the observed broadband spectral properties. The NLDSA scenario also succeeds in explaining the γ-ray spectrum but fails to reproduce the radio spectral index. Efficient NLDSA also results in a significant post-shock non-thermal pressure that limits the compression during cooling and prevents the formation of a prominent dense shell. Some other interesting differences between the two models in hydrodynamical behavior and resulting spectral features are illustrated.

  19. Nonlinear reflection from the surface of neutron stars and features of radio emission from the pulsar in the Crab nebula

    NASA Astrophysics Data System (ADS)

    Kontorovich, V. M.

    2016-08-01

    There are no explanations for the high-frequency component of the emission from the pulsar in the Crab nebula, but it may be a manifestation of instability in nonlinear reflection from the star's surface. Radiation from relativistic positrons flying from the magnetosphere to the star and accelerated by the electric field of the polar gap is reflected. The instability involves stimulated scattering on surface waves.

  20. Radio-wave emission due to hypervelocity impacts and its correlation with optical observations

    NASA Astrophysics Data System (ADS)

    Takano, T.; Maki, K.; Yamori, A.

    This paper describes the most interesting phenomena of radio-wave emission due to hypervelocity impacts. A projectile of polycarbonate with 1.1 g weight was accelerated by a rail gun to 3.8 km/sec, and hit two targets which are a 2 mm thick aluminum plate upstream and a 45 mm diameter aluminum column downstream, respectively. The projectile first breaks wires to give a triggering signal to a data recorder, then penetrates the aluminum plate, and finally hit the column, The emitted radio-waves propagate through the chamber window, and are received by antennas at each frequency band. The receivers in 22 GHz- and 2 GHz-bands consist of a low noise amplifier, a mixer, a local oscillator and an IF amplifier , respectively. The receiver in 1 MHz-band is a simple RF amplifier. The outputs of all receivers are fed to a data recorder which is actually a high-speed digital oscilloscope with a large amount of memory. The radio-waves were successfully recorded in 22 GHz-band with 500 MHz bandwidth, in 2 GHz-band with 300 MHz bandwidth, and in 1MHz-band. The waveforms in 22 GHz- and 2 GHz-bands coincide well each other, and are composed of two groups of sharp impulses with a separation of about 20 micro seconds. The width of an impulse is less than 2 n sec. which is the resolution limit of the data recorder. We carried out optical observations using an ultra-high speed camera simultaneously through another window of the chamber. The time interval between scenes is 2 micro sec. We can see a faint light of the projectile before the first impact to the plate, and then a brilliant gas exploding backward from the plate and forward to the column. After hitting the column target, the brilliant gas flows to the chamber wall and is reflected back to make a mixture with dark gas in the chamber. Excellent correlation between radio-wave emission and the observed optical phenomena was obtained in the experiment. It is easily conceived that the radio-waves consist of quite a wide frequency

  1. Remote sensing of the Io torus plasma ribbon using natural radio occultation of the Jovian radio emissions

    NASA Astrophysics Data System (ADS)

    Boudjada, M. Y.; Galopeau, P. H. M.; Sawas, S.; Lammer, H.

    2014-09-01

    We study the Jovian hectometric (HOM) emissions recorded by the RPWS (Radio and Plasma Wave Science) experiment onboard the Cassini spacecraft during its Jupiter flyby. We analyze the attenuation band associated with the intensity extinction of HOM radiation. This phenomenon is interpreted as a refraction effect of the Jovian hectometric emission inside the Io plasma torus. This attenuation band was regularly observed during periods of more than 5 months, from the beginning of October 2000 to the end of March 2001. We estimate for this period the variation of the electron density versus the central meridian longitude (CML). We find a clear local time dependence. Hence the electron density was not higher than 5.0 × 104 cm-3 during 2 months, when the spacecraft approached the planet on the dayside. In the late afternoon and evening sectors, the electron density increases to 1.5 × 105 cm-3 and reach a higher value at some specific occasions. Additionally, we show that ultraviolet and hectometric wavelength observations have common features related to the morphology of the Io plasma torus. The maxima of enhancements/attenuations of UV/HOM observations occur close to the longitudes of the tip of the magnetic dipole in the southern hemisphere (20° CML) and in the northern hemisphere (200° CML), respectively. This is a significant indication about the importance of the Jovian magnetic field as a physical parameter in the coupling process between Jupiter and the Io satellite.

  2. Cosmic Rays, Magnetic Fields and Diffuse Emissions: Combining Observations from Radio to Gamma Rays

    NASA Astrophysics Data System (ADS)

    Michelson, Peter

    With the advent of WMAP, Planck, and Fermi-LAT telescopes the diffuse emission from the Milky Way has received renewed attention. Observations of the different components of the diffuse emission reveal information on Cosmic Rays (CRs), magnetic fields (B-fields) and the interstellar medium. CRs interact with the interstellar medium and the B-fields in the Milky Way, producing diffuse emission from radio to gamma rays. The fundamental problem is that CRs, B-fields, and the interstellar medium are not precisely known. In fact, despite intensive studies, the B-field intensity and topology, and CR spectra and distribution throughout the Galaxy are still uncertain. As a consequence unequivocally disentangling and describing the diffuse components simultaneously using a single wavelength domain is impossible. Our approach to disentangling and describing the diffuse emission components is to simultaneously consider the diffuse emission in multiple frequency domains. We propose to exploit the entire database of the present radio surveys, microwave observations (WMAP and Planck), X-ray observations (INTEGRAL) and gamma-ray observations (COMPTEL and Fermi-LAT) in order to analyze their diffuse emission in a combined multi-wavelength approach. We will jointly infer information on the spectra and distribution of CRs in the Galaxy, and on Galactic B-fields, with unprecedented accuracy. Finally we will be able to describe the baseline Galactic diffuse emissions and characterize Milky Way structures and their emission mechanisms, which have attracted the attention of the scientific community recently. This project is innovative and essential for maximizing the scientific return from the presently available data in a multidisciplinary view and uses novel approaches. The results will benefit NASA-related science generally and the return from the named missions specifically.

  3. Radio emission from supernovae and gamma-ray bursters and the need for the SKA

    NASA Astrophysics Data System (ADS)

    Weiler, Kurt W.; Van Dyk, Schuyler D.; Sramek, Richard A.; Panagia, Nino

    2004-12-01

    Study of radio supernovae (SNe) over the past 25 years includes two dozen detected objects and more than 100 upper limits. From this work it is possible to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. It is also possible to detect ionized hydrogen along the line of sight, to demonstrate binary properties of the stellar system, and to show clumpiness of the circumstellar material. Since 1997 the afterglow of γ-ray bursting sources (GRBs) has occasionally been detected in the radio, as well in other wavelength bands. In particular, the interesting and unusual γ-ray burst GRB 980425, almost certainly related to the radio supernova SN 1998bw, and the more recent SN 2003dh/GRB 030329 are links between the two classes of objects. Analyzing the extensive radio emission data available for SN 1998bw, one can describe its time evolution within the well established framework available for the analysis of radio emission from supernovae. This then allows relatively detailed description of a number of physical properties of the object. The radio emission can best be explained as the interaction of a mildly relativistic ( Γ ˜ 1.6) shock with a dense pre-explosion stellar wind-established circumstellar medium that is highly structured both azimuthally, in clumps or filaments, and radially, with observed density enhancements. From this we can support the conclusion that at least some members of the slow-soft class of GRBs are related to type Ib/c SNe and can be attributed to the explosion of a massive star in a dense, highly structured CSM that was presumably established by the pre-explosion stellar system. However, due to the lack of sensitivity of current radio telescopes, most supernovae cannot be studied if they are more

  4. Phasing the Very Large Array on Galileo in the presence of Jupiter's strong radio emission

    NASA Technical Reports Server (NTRS)

    Ulvestad, J. S.

    1991-01-01

    Work is in progress to determine the feasibility of using the Very Large Array (VLA) radio telescope to receive telemetry from Galileo during its close encounter with Io on 7 Dec. 1995. The VLA was used previously to receive telemetry from Voyager 2 at Neptune. However, Jupiter's strong radio emission is an additional complication in the case of the Galileo encounter. This article analyzes the effect of Jupiter's radio emission on the phase-adjustment procedure ('autophasing') used to maintain coherence among the 27 VLA antennas. Results of an experiment designed to mimic the Io encounter are presented. As expected, Jupiter's strong radio emission has a considerable effect on the autophasing procedure. A simple emission model is found to give a good approximation to the fringe-visibility plots derived from the VLA data, and that successful model is used to estimate the VLA's ability to autophase on Galileo during the Io encounter. The effect of Jupiter should be small for projected baselines longer than approximately 800 m and completely negligible for projected baselines longer than approximately 1.1 km. The most extended configuration of the VLA (the A configuration) probably can be used successfully for telemetry reception during the Io encounter. Further analysis and testing of the effect of correlated noise from Jupiter is necessary before a final decision can be made about the feasibility of using the second largest (B) configuration of the VLA for reception of Galileo telemetry. Use of the B configuration could simplify the upgrades needed to support the Io encounter. Tests to help choose the preferred VLA configuration could be performed by using the VLA to observe the Magellan spacecraft at Venus during Jul. and Oct. 1991. Examination of the effects of planet noise on the VLA have implications beyond the use of that telescope for supporting the Io encounter. The effects of planet radio emission on spacecraft data received by antenna arrays are relevant to

  5. Milliarcsecond Imaging of the Radio Emission from the Quasar with the Most Massive Black Hole at Reionization

    NASA Astrophysics Data System (ADS)

    Wang, Ran; Momjian, Emmanuel; Carilli, Chris L.; Wu, Xue-Bing; Fan, Xiaohui; Walter, Fabian; Strauss, Michael A.; Wang, Feige; Jiang, Linhua

    2017-02-01

    We report Very Long Baseline Array (VLBA) observations of the 1.5 GHz radio continuum emission of the z = 6.326 quasar SDSS J010013.02+280225.8 (hereafter J0100+2802). J0100+2802 is by far the most optically luminous and is a radio-quiet quasar with the most massive black hole known at z > 6. The VLBA observations have a synthesized beam size of 12.10 mas ×5.36 mas (FWHM), and detected the radio continuum emission from this object with a peak surface brightness of 64.6 ± 9.0 μJy beam‑1 and a total flux density of 88 ± 19 μJy. The position of the radio peak is consistent with that from SDSS in the optical and Chandra in the X-ray. The radio source is marginally resolved by the VLBA observations. A 2D Gaussian fit to the image constrains the source size to (7.1 ± 3.5) mas × (3.1 ± 1.7) mas. This corresponds to a physical scale of (40 ± 20) pc × (18 ± 10) pc. We estimate the intrinsic brightness temperature of the VLBA source to be TB = (1.6 ± 1.2) × 107 K. This is significantly higher than the maximum value in normal star-forming galaxies, indicating an active galactic nucleus (AGN) origin for the radio continuum emission. However, it is also significantly lower than the brightness temperatures found in highest-redshift radio-loud quasars. J0100+2802 provides a unique example for studying the radio activity in optically luminous and radio-quiet AGNs in the early universe. Further observations at multiple radio frequencies will accurately measure the spectral index and address the dominant radiation mechanism of the radio emission.

  6. A LINK BETWEEN X-RAY EMISSION LINES AND RADIO JETS IN 4U 1630-47?

    SciTech Connect

    Neilsen, Joseph; Coriat, Mickaël; Fender, Rob; Broderick, Jess W.; Lee, Julia C.; Ponti, Gabriele; Tzioumis, Anastasios K.; Edwards, Philip G.

    2014-03-20

    Recently, Díaz Trigo et al. reported an XMM-Newton detection of relativistically Doppler-shifted emission lines associated with steep-spectrum radio emission in the stellar-mass black hole candidate 4U 1630-47 during its 2012 outburst. They interpreted these lines as indicative of a baryonic jet launched by the accretion disk. Here we present a search for the same lines earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. While our observations (eight months prior to the XMM-Newton campaign) also coincide with detections of steep spectrum radio emission by the Australia Telescope Compact Array, we find no evidence for any relativistic X-ray emission lines. Indeed, despite ∼5 × brighter radio emission, our Chandra spectra allow us to place an upper limit on the flux in the blueshifted Fe XXVI line that is ≳ 20 × weaker than the line observed by Díaz Trigo et al. We explore several scenarios that could explain our differing results, including variations in the geometry of the jet or a mass-loading process or jet baryon content that evolves with the accretion state of the black hole. We also consider the possibility that the radio emission arises in an interaction between a jet and the nearby interstellar medium, in which case the X-ray emission lines might be unrelated to the radio emission.

  7. A Link between X-Ray Emission Lines and Radio Jets in 4U 1630-47?

    NASA Astrophysics Data System (ADS)

    Neilsen, Joseph; Coriat, Mickaël; Fender, Rob; Lee, Julia C.; Ponti, Gabriele; Tzioumis, Anastasios K.; Edwards, Philip G.; Broderick, Jess W.

    2014-03-01

    Recently, Díaz Trigo et al. reported an XMM-Newton detection of relativistically Doppler-shifted emission lines associated with steep-spectrum radio emission in the stellar-mass black hole candidate 4U 1630-47 during its 2012 outburst. They interpreted these lines as indicative of a baryonic jet launched by the accretion disk. Here we present a search for the same lines earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. While our observations (eight months prior to the XMM-Newton campaign) also coincide with detections of steep spectrum radio emission by the Australia Telescope Compact Array, we find no evidence for any relativistic X-ray emission lines. Indeed, despite ~5 × brighter radio emission, our Chandra spectra allow us to place an upper limit on the flux in the blueshifted Fe XXVI line that is >~ 20 × weaker than the line observed by Díaz Trigo et al. We explore several scenarios that could explain our differing results, including variations in the geometry of the jet or a mass-loading process or jet baryon content that evolves with the accretion state of the black hole. We also consider the possibility that the radio emission arises in an interaction between a jet and the nearby interstellar medium, in which case the X-ray emission lines might be unrelated to the radio emission.

  8. A Deep Search for Prompt Radio Emission from Thermonuclear Supernovae with the Very Large Array

    NASA Astrophysics Data System (ADS)

    Chomiuk, Laura; Soderberg, Alicia M.; Chevalier, Roger A.; Bruzewski, Seth; Foley, Ryan J.; Parrent, Jerod; Strader, Jay; Badenes, Carles; Fransson, Claes; Kamble, Atish; Margutti, Raffaella; Rupen, Michael P.; Simon, Joshua D.

    2016-04-01

    Searches for circumstellar material around Type Ia supernovae (SNe Ia) are some of the most powerful tests of the nature of SN Ia progenitors, and radio observations provide a particularly sensitive probe of this material. Here, we report radio observations for SNe Ia and their lower-luminosity thermonuclear cousins. We present the largest, most sensitive, and spectroscopically diverse study of prompt ({{Δ }}t≲ 1 years) radio observations of 85 thermonuclear SNe, including 25 obtained by our team with the unprecedented depth of the Karl G. Jansky Very Large Array. With these observations, SN 2012cg joins SN 2011fe and SN 2014J as an SN Ia with remarkably deep radio limits and excellent temporal coverage (six epochs, spanning 5-216 days after explosion, implying \\dot{M}/{v}w≲ 5× 10-9 M⊙) yr-1/(100 km s-1), assuming ɛB = 0.1 and ɛe = 0.1). All observations yield non-detections, placing strong constraints on the presence of circumstellar material. We present analytical models for the temporal and spectral evolution of prompt radio emission from thermonuclear SNe as expected from interaction with either wind-stratified or uniform density media. These models allow us to constrain the progenitor mass loss rates, with limits in the range of \\dot{M}≲ 10-9-10-4 M⊙ yr-1, assuming a wind velocity of vw = 100 km s-1. We compare our radio constraints with measurements of Galactic symbiotic binaries to conclude that ≲10% of thermonuclear SNe have red giant companions.

  9. X-ray emission associated with radio galaxies in the Perseus cluster

    NASA Technical Reports Server (NTRS)

    Rhee, George; Burns, Jack O.; Kowalski, Michael P.

    1994-01-01

    In this paper, we report on new x-ray observations of the Perseus cluster made using four separate pointings of the Roentgen Satellite (ROSAT) Positron Sensitive Proportional Counter (PSPC). We searched for x-ray emission associated with 16 radio galaxies and detected six above 3 sigma. We made use of the PSPC spectra to determine if the x-ray emission associated with radio galaxies in Perseus is thermal or nonthermal in origin (i.e., hot gas or an active galactic nuclei (AGN)). For the head-tail radio galaxy IC 310, we find that the data are best fit by a power law model with an unusually large spectral index alpha = 2.7. This is consistent with its unresolved spatial structure. On the other hand, a second resolved x-ray source associated with another radio galaxy 2.3 Mpc from the Perseus center (V Zw 331) is best fit by a thermal model. For three sources with insufficient flux for a full spectral analysis, we calculated hardness ratios. On this basis, the x-ray emission associated with the well known head-tail source NGC 1265 is consistent with thermal radiation. The x-ray spectra of UGC 2608 and UGC 2654 probably arise from hot gas, although very steep power-law spectra (alpha greater than 3.2) are also possible. The spectrum of NGC 1275 is quite complex due to the presence of an AGN and the galaxy's location at the center of a cluster cooling flow.

  10. ON THE NATURE OF OFF-PULSE EMISSION FROM PULSARS

    SciTech Connect

    Basu, Rahul; Mitra, Dipanjan; Athreya, Ramana E-mail: dmitra@ncra.tifr.res.in

    2012-10-20

    In our earlier studies, we reported the detection of off-pulse emission from two long-period pulsars B0525+21 and B2045-16. The pulsars were observed at a single epoch using the 325 MHz frequency band of the Giant Meterwave Radio Telescope (GMRT). In this paper, we report a detailed study of the off-pulse emission from these two pulsars using multiple observations at two different frequencies, 325 MHz and 610 MHz bands of GMRT. We report detection of off-pulse emission during each observation and based on the scintillation effects and spectral index of off-pulse emission we conclude a magnetospheric origin. The magnetospheric origin of off-pulse emission gives rise to various interesting possibilities about its emission mechanism and raises questions about the structure of the magnetosphere.

  11. A Model of Jupiter's Decametric Radio Emissions as a Searchlight Beam

    NASA Astrophysics Data System (ADS)

    Imai, K.; Garcia, L.; Reyes, F.; Imai, M.; Thieman, J. R.

    It has long been recognized that there is a marked long-term periodic variation in Jupiter's integrated radio occurrence probability. The period of the variation is on the order of a decade. Carr et al. [1970] showed that such variations are closely correlated with Jovicentric declination of the Earth (DE). The range of the smoothed variation of DE is from approximately +3.3 to -3.3 degrees. This DE effect was extensively studied and confirmed by Garcia [1996]. It shows that the occurrence probability of the non-Io-A source is clearly controlled by DE at 18, 20, and 22 MHz during the 1957-1994 apparitions. We propose a new model to explain the DE effect. This new model shows that the beam structure of Jupiter radio emissions, which has been thought of like a hollow-cone, has a narrow beam like a searchlight, which can be explained by assuming that the three dimensional shape of the radio source expands along the line of the magnetic field. If we consider the sizes of the radio coherent region are 1000 m along Jupiter's magnetic field line and 200 m along the latitudinal direction, the equivalent beam pattern is 1 degree wide along Jupiter's magnetic field line and 5 degrees in latitude. As the searchlight beam is fixed with Jupiter's magnetic field, the pure geometrical effect of DE can be explained by this searchlight beam model.

  12. A Numerical Model of Parsec-scale SSC Morphologies and Their Radio Emission

    NASA Astrophysics Data System (ADS)

    Richter, S.; Spanier, F.

    2016-09-01

    In current models for jets of active galactic nuclei and their emission a shortcoming in the description and understanding of the connection between the largest and smallest scales exists. In this work we present a spatially resolved synchrotron self-Compton model extended to parsec scales, which opens the possibility of probing the connections between the radio and high-energy properties. We simulate an environment that leads to Fermi-I acceleration of leptonic particles and includes the full time dependence of this process. Omitting the restriction of a finite downstream region, we find that the spectral energy distribution produced by the accelerated particles strongly depends on their radial confinement behind the shock. The requirement, for both the restriction of high-energy emission to a small region around the shock and the production of a flat radio spectrum, is an initial linear increase of the radius immediately behind the shock, which then slows down with increasing distance from the shock. A good representation of the data for the blazar Mrk 501 is achieved by a parameterized log function. The prediction for the shape of the radio blob is given by the flux distribution with respect to shock distance.

  13. The Star Formation in Radio Survey: Mapping Star Formation in Nearby Galaxies with 33GHz Emission

    NASA Astrophysics Data System (ADS)

    Dong, Dillon; Murphy, Eric J.; Momjian, Emmanuel; Nyland, Kristina; Condon, James J.; Helou, George; Meier, David S.; Ott, Juergen; Schinnerer, Eva; Turner, Jean

    2015-01-01

    We present initial results from the 33GHz phase of the Star Formation in Radio Survey (SFRS), including a gallery of 2" resolution Jansky Very Large Array (VLA) images and spatially resolved thermal / synchrotron emission models in a subset of sources. The SFRS is targeting 118 galaxy nuclei and extranuclear star-forming regions in 56 nearby (d < 30Mpc) galaxies included in the Spitzer/SINGS and Herschel/KINGFISH legacy programs. VLA observations of the entire sample have recently been completed at 3GHz (S band), 15GHz (Ku band) and 33GHz (Ka band). For an initial subset of 9 targets, we have also obtained 90GHz ALMA continuum and line imaging during cycle 1 observations.The frequency spacing of our complete radio data set will allow us to accurately measure the radio spectral index of these targets, in order to model the physical processes that produce the radio emission. In particular, 33GHz observations of HII regions probe free-free emission, providing a sensitive, dust-unbiased measure of the current star formation activity in each complex. We can use the differences between 33GHz derived star formation rates and those derived with other tracers such as synchrotron radiation, extinction corrected UV and Hα emission, and infrared luminosity to examine the dependence of each tracer on separately measured variables such as extinction, metallicity and ionizing radiation field strength. Consequently, these data will help calibrate other empirically-derived star formation rate diagnostics that are more easily measured for high redshift studies, and help interpret rest-frame 33GHz observations from a new generation of deep high frequency (>10GHz) radio surveys.As an example of the science that can be done with SFRS data, we have used our images along with an archival 1.4GHz and a new 5GHz VLA image to map the spectral index, spectral curvature, and the separated thermal and synchrotron components of NGC1266, a low level AGN with a mass outflow rate of > 50 M⊙ / yr

  14. EFFECTS OF ALFVEN WAVES ON ELECTRON CYCLOTRON MASER EMISSION IN CORONAL LOOPS AND SOLAR TYPE I RADIO STORMS

    SciTech Connect

    Zhao, G. Q.; Chen, L.; Wu, D. J.; Yan, Y. H.

    2013-06-10

    Solar type I radio storms are long-lived radio emissions from the solar atmosphere. It is believed that these type I storms are produced by energetic electrons trapped within a closed magnetic structure and are characterized by a high ordinary (O) mode polarization. However, the microphysical nature of these emissions is still an open problem. Recently, Wu et al. found that Alfven waves (AWs) can significantly influence the basic physics of wave-particle interactions by modifying the resonant condition. Taking the effects of AWs into account, this work investigates electron cyclotron maser emission driven by power-law energetic electrons with a low-energy cutoff distribution, which are trapped in coronal loops by closed solar magnetic fields. The results show that the emission is dominated by the O mode. It is proposed that this O mode emission may possibly be responsible for solar type I radio storms.

  15. A model for the thermal radio-continuum emission from radiative shocks in colliding stellar winds

    NASA Astrophysics Data System (ADS)

    Montes, G.; González, R. F.; Cantó, J.; Pérez-Torres, M. A.; Alberdi, A.

    2011-07-01

    Context. In massive-star binary systems, the interaction of the strong stellar winds results in a wind collision region (WCR) between the stars, which is limited by two shock fronts. Besides the nonthermal emission resulting from the shock acceleration, these shocks emit thermal (free-free) radiation detectable at radio frequencies that increase the expected emission from the stellar winds. Observations and theoretical studies of these sources show that the shocked gas is an important, but not dominant, contributor to the total emission in wide binary systems, while it plays a very substantial role in close binaries. Aims: The interaction of two isotropic stellar winds is studied in order to calculate the free-free emission from the WCR. The effects of the binary separation and the wind momentum ratio on the emission from the wind-wind interaction region are investigated. Methods: We developed a semi-analytical model for calculating the thermal emission from colliding stellar winds. Assuming radiative shocks for the compressed layer, which are expected in close binaries, we obtained the emission measure of the thin shell. Then, we computed the total optical depth along each line of sight to obtain the emission from the whole configuration. Results: Here, we present predictions of the free-free emission at radio frequencies from analytic, radiative shock models in colliding wind binaries. It is shown that the emission from the WCR mainly arises from the optically thick region of the compressed layer and scales as ~D4/5, where D is the binary separation. The predicted flux density Sν from the WCR becomes more important as the frequency ν increases, showing higher spectral indices than the expected 0.6 value (Sν ∝ να, where α = 0.6) from the unshocked winds. We also investigate the emission from short-period WR+O systems calculated with our analytic formulation. In particular, we apply the model to the binary systems WR 98 and WR 113 and compare our results

  16. Direction finding of half-gyrofrequency VLF emissions in the off-equatorial region of the magnetosphere and their generation and propagation

    SciTech Connect

    Muto, H.; Hayakawa, M. ); Parrot, M.; Lefeuvre, F. )

    1987-07-01

    The spectra of VLF/ELF emissions in the off-equatorial region in the outer magnetosphere are, on occasion, found to consist of upper and lower bands with a frequency gap between them. The wave normal directions of the upper band VLF emissions have been determined by means of wave distribution function analyses based first on the measurement of three magnetic field components only, and then with the additional use of an electric field component. It is found that the wave distribution functions are composed of two peaks whose central wave normal angles {theta} with respect to the magnetic field at a geomagnetic latitude of {approximately} 17{degree} are close to the local oblique resonance cone {theta}{sub res} but whose values of {theta} are always about 15{degree}-20{degree} less than {theta}{sub res} at a higher latitude of {approximately}26{degree}. This observed wave normal behavior is compared with the theoretical prediction from direct ray tracing studies using the hypothesis deduced from a previous investigation that the waves are generated at the equator with wave normals close to {theta}{sub res}. A combination of this comparison and inverse ray tracing in which the initial wave normal directions are those determined from the wave distribution analysis has yielded the results that the {theta} values of the upper band VLF emissions are very close to {theta}{sub res} at the equator and that the normalized frequency there, {Lambda}{sub eq}, is above 0.5. Hence the upper band VLF emissions are identified as being half-gyrofrequency VLF emissions generated in the vicinity of the magnetic equator, with their wave normals close to {theta}{sub res}. The characteristics of propagation between the equatorial source region and the observing positions have been investigated by direct ray tracing. The generation mechanism is also discussed.

  17. Spatially resolved optical-emission spectroscopy of a radio-frequency driven iodine plasma source

    NASA Astrophysics Data System (ADS)

    Dedrick, James; Doyle, Scott; Grondein, Pascaline; Aanesland, Ane

    2016-09-01

    Iodine is of interest for potential use as a propellant for spacecraft propulsion, and has become attractive as a replacement to xenon due to its similar mass and ionisation potential. Optical emission spectroscopy has been undertaken to characterise the emission from a low-pressure, radio-frequency driven inductively coupled plasma source operating in iodine with respect to axial distance across its transverse magnetic filter. The results are compared with axial profiles of the electron temperature and density for identical source conditions, and the spatial distribution of the emission intensity is observed to be closely correlated with the electron temperature. This work has been done within the LABEX Plas@Par project, and received financial state aid managed by the ``Agence Nationale de la Recherche'', as part of the ``Programme d'Investissements d'Avenir'' under the reference ANR-11-IDEX-0004-02.

  18. SLAC T-510: Radio emission from particle cascades in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Mulrey, Katharine

    2017-03-01

    Cosmic ray induced particle cascades radiate in radio frequencies in the Earth's atmosphere. Geomagnetic and Askaryan emission provide an effective way to detect ultra-high energy cosmic rays. The SLAC T-510 experiment was the first to measure magnetically induced radiation from particle cascades in a controlled laboratory setting. An electron beam incident upon a dense dielectric target produced a particle cascade in the presence of a variable magnetic field. Antennas covering a band of 30-3000 MHz sampled RF emission in vertical and horizontal polarizations. Results from T-510 are compared to particle-level RF-emission simulations which are critical for reconstructing the energy and composition of detected ultra-high energy cosmic ray air showers. We discuss the experimental set up, the data processing, the systematic errors and the main results of the experiment, which we found in a good agreement with the simulations.

  19. First dynamic computations of synchrotron emission from the cygnus a radio cavity: Evidence for electron pair plasma in cavity

    SciTech Connect

    Mathews, William G.

    2014-03-01

    Cosmic rays, thermal gas and magnetic fields in FRII radio cavities are assumed to come entirely from winds flowing from just behind the jet shocks. Combining analytic and computational methods, it is shown that the computed radio-electron energy distribution and synchrotron emissivity spectra everywhere in the Cygnus A radio cavity agree with radio observations of the Cygnus A lobes. The magnetic field energy density is small everywhere and evolves passively in the post-shock wind. Most synchrotron emission arises in recent post-shock material as it flows back along the radio cavity wall. Because it experienced less adiabatic expansion, the magnetic field in this young backflow is larger than elsewhere in the radio lobe, explaining the observed radio synchrotron limb-brightening. The boundary backflow decelerates due to small cavity pressure gradients, causing large-scale fields perpendicular to the backflow (and synchrotron emission) to grow exponentially unlike observations. However, if the field is random on subgrid (sub-kpc) scales, the computed field reproduces both the magnitude and slowly decreasing radio synchrotron emissivity observed along the backflow. The radio synchrotron spectrum and image computed with a small-scale random field agree with Very Large Array observations. The total relativistic energy density in the post-jet shock region required in computations to inflate the radio cavity matches the energy density of relativistic electrons observed in the post-shock region of Cygnus A. This indicates that the component in the jet and cavity that dominates the dynamical evolution is a relativistic pair plasma.

  20. A Link Between X-ray Emission Lines and Radio Jets in 4U 1630-47?

    NASA Astrophysics Data System (ADS)

    Neilsen, Joseph; Coriat, Mickaël; Fender, Rob; Lee, Julia C.; Ponti, Gabriele; Tzioumis, A.; Edwards, Phillip; Broderick, Jess

    2014-06-01

    Recently, Díaz Trigo et al. reported an XMM-Newton detection of relativistically Doppler-shifted emission lines associated with steep-spectrum radio emission in the stellar-mass black hole candidate 4U 1630-47 during its 2012 outburst. They interpreted these lines as indicative of a baryonic jet launched by the accretion disk. We present a search for the same lines earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. While our observations (eight months prior to the XMM-Newton campaign) also coincide with detections of steep spectrum radio emission by the Australia Telescope Compact Array, we find a strong disk wind but no evidence for any relativistic X-ray emission lines. Indeed, despite ˜5× brighter radio emission, our Chandra spectra allow us to place an upper limit on the flux in the blueshifted Fe XXVI line that is ˜20× weaker than the line observed by Díaz Trigo et al. Thus we can conclusively say that radio emission is not universally associated with relativistically Doppler-shifted emission lines in 4U 1630-47. We explore several scenarios that could explain our differing results, including variations in the geometry of the jet or a mass-loading process or jet baryon content that evolves with the accretion state of the black hole. We also consider the possibility that the radio emission arises in an interaction between a jet and the nearby ISM, in which case the X-ray emission lines might be unrelated to the radio emission.

  1. How Else Can We Detect Fast Radio Bursts?

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim; Lorimer, Duncan R.

    2016-06-01

    We discuss possible electromagnetic signals accompanying Fast Radio Bursts (FRBs) that are expected in the scenario where FRBs originate in neutron star magnetospheres. For models involving Crab-like giant pulses, no appreciable contemporaneous emission is expected at other wavelengths. However, magnetar giant flares, driven by the reconfiguration of the magnetosphere, can produce both contemporaneous bursts at other wavelengths as well as afterglow-like emission. We conclude that the best chances are: (i) prompt short GRB-like emission, (ii) a contemporaneous optical flash that can reach naked eye peak luminosity (but only for a few milliseconds), and (iii) a high-energy afterglow emission. Case (i) could be tested by coordinated radio and high-energy experiments. Case (ii) could be seen in a coordinated radio-optical surveys, e.g., by the Palomar Transient Factory in a 60 s frame as a transient object of m = 15-20 mag with an expected optical detection rate of about 0.1 hr-1, an order of magnitude higher than in radio. Shallow, but large-area sky surveys such as ASAS-SN and EVRYSCOPE could also detect prompt optical flashes from the more powerful Lorimer-burst clones. The best constraints on the optical to radio power for this kind of emission could be provided by future observations with facilities like Large Synoptic Survey Telescope. Case (iii) might be seen in relatively rare cases that the relativistically ejected magnetic blob is moving along the line of sight.

  2. Modeling the Radio Emission from Cyg OB2 No. 5: A Quadruple System?

    NASA Astrophysics Data System (ADS)

    Kennedy, M.; Dougherty, S. M.; Fink, A.; Williams, P. M.

    2010-02-01

    Fifty observations at frequencies between 1.4 GHz and 43 GHz of the 6.6 day O6.5-7+O5.5-6 binary Cyg OB2 No. 5 using the Very Large Array over 20 years are re-examined. The aim is to determine the location and character of the previously detected variable radio emission. The radio emission from the system consists of a primary component that is associated with the binary, and a non-thermal source (NE), 0farcs8 to the NE of the binary that has been ascribed to a wind-collision region (WCR) between the stellar winds of the binary and that of a B-type star (Star D) to the NE. Previous studies have not accounted for the potential contribution of NE to the total radio emission, most especially in observations where the primary and NE sources are not resolved as separate sources. NE shows no evidence of variation in 23 epochs where it is resolved separately from the primary radio component, demonstrating that the variable emission arises in the primary component. Since NE is non-variable, the radio flux from the primary can now be well determined for the first time, most especially in observations that do not resolve both the primary and NE components. The variable radio emission from the primary component has a period of 6.7 ± 0.3 years which is described by a simple model of a non-thermal source orbiting within the stellar wind envelope of the binary. Such a model implies the presence of a third, unresolved stellar companion (Star C) orbiting the 6.6 day binary with a period of 6.7 years and independent of Star D to the NE. The variable non-thermal emission arises from either a WCR between Star C and the binary system, or possibly from Star C directly. The model gives a mass-loss rate of 3.4 × 10-5 M sun yr-1 for Cyg OB2 No. 5, unusually high for an Of supergiant and comparable to that of WR stars, and consistent with an unusually strong He I 1.083 µm emission line, also redolent of WR stars. An examination of radial velocity observations available from the

  3. MODELING THE RADIO EMISSION FROM Cyg OB2 NO. 5: A QUADRUPLE SYSTEM?

    SciTech Connect

    Kennedy, M.; Dougherty, S. M.; Fink, A.; Williams, P. M. E-mail: sean.dougherty@nrc.c E-mail: pmw@roe.ac.u

    2010-02-01

    Fifty observations at frequencies between 1.4 GHz and 43 GHz of the 6.6 day O6.5-7+O5.5-6 binary Cyg OB2 No. 5 using the Very Large Array over 20 years are re-examined. The aim is to determine the location and character of the previously detected variable radio emission. The radio emission from the system consists of a primary component that is associated with the binary, and a non-thermal source (NE), 0.''8 to the NE of the binary that has been ascribed to a wind-collision region (WCR) between the stellar winds of the binary and that of a B-type star (Star D) to the NE. Previous studies have not accounted for the potential contribution of NE to the total radio emission, most especially in observations where the primary and NE sources are not resolved as separate sources. NE shows no evidence of variation in 23 epochs where it is resolved separately from the primary radio component, demonstrating that the variable emission arises in the primary component. Since NE is non-variable, the radio flux from the primary can now be well determined for the first time, most especially in observations that do not resolve both the primary and NE components. The variable radio emission from the primary component has a period of 6.7 +- 0.3 years which is described by a simple model of a non-thermal source orbiting within the stellar wind envelope of the binary. Such a model implies the presence of a third, unresolved stellar companion (Star C) orbiting the 6.6 day binary with a period of 6.7 years and independent of Star D to the NE. The variable non-thermal emission arises from either a WCR between Star C and the binary system, or possibly from Star C directly. The model gives a mass-loss rate of 3.4 x 10{sup -5} M{sub sun} yr{sup -1} for Cyg OB2 No. 5, unusually high for an Of supergiant and comparable to that of WR stars, and consistent with an unusually strong He I 1.083 mum emission line, also redolent of WR stars. An examination of radial velocity observations available

  4. RESOLVE: A new algorithm for aperture synthesis imaging of extended emission in radio astronomy

    NASA Astrophysics Data System (ADS)

    Junklewitz, H.; Bell, M. R.; Selig, M.; Enßlin, T. A.

    2016-02-01

    We present resolve, a new algorithm for radio aperture synthesis imaging of extended and diffuse emission in total intensity. The algorithm is derived using Bayesian statistical inference techniques, estimating the surface brightness in the sky assuming a priori log-normal statistics. resolve estimates the measured sky brightness in total intensity, and the spatial correlation structure in the sky, which is used to guide the algorithm to an optimal reconstruction of extended and diffuse sources. During this process, the algorithm succeeds in deconvolving the effects of the radio interferometric point spread function. Additionally, resolve provides a map with an uncertainty estimate of the reconstructed surface brightness. Furthermore, with resolve we introduce a new, optimal visibility weighting scheme that can be viewed as an extension to robust weighting. In tests using simulated observations, the algorithm shows improved performance against two standard imaging approaches for extended sources, Multiscale-CLEAN and the Maximum Entropy Method.

  5. Constraining the neutrino emission of gravitationally lensed Flat-Spectrum Radio Quasars with ANTARES data

    SciTech Connect

    Adrián-Martínez, S.; Ardid, M.; Bou-Cabo, M.; André, M.; Anton, G.; Aubert, J.-J.; Bertin, V.; Brunner, J.; Busto, J.; Basa, S.; Biagi, S.; Capone, A.; Caramete, L.; and others

    2014-11-01

    This paper proposes to exploit gravitational lensing effects to improve the sensitivity of neutrino telescopes to the intrinsic neutrino emission of distant blazar populations. This strategy is illustrated with a search for cosmic neutrinos in the direction of four distant and gravitationally lensed Flat-Spectrum Radio Quasars. The magnification factor is estimated for each system assuming a singular isothermal profile for the lens. Based on data collected from 2007 to 2012 by the ANTARES neutrino telescope, the strongest constraint is obtained from the lensed quasar B0218+357, providing a limit on the total neutrino luminosity of this source of 1.08× 10{sup 46} erg s{sup -1}. This limit is about one order of magnitude lower than those previously obtained in the ANTARES standard point source searches with non-lensed Flat-Spectrum Radio Quasars.

  6. VERITAS UPPER LIMIT ON THE VERY HIGH ENERGY EMISSION FROM THE RADIO GALAXY NGC 1275

    SciTech Connect

    Acciari, V. A.; Benbow, W.; Aliu, E.; Boltuch, D.; Arlen, T.; Celik, O.; Aune, T.; Bautista, M.; Cogan, P.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Bradbury, S. M.; Byrum, K.; Cannon, A.; Cesarini, A.; Ciupik, L.; Cui, W.; Duke, C.

    2009-12-01

    The recent detection by the Fermi gamma-ray space telescope of high-energy gamma-rays from the radio galaxy NGC 1275 makes the observation of the very high energy (VHE: E>100 GeV) part of its broadband spectrum particularly interesting, especially for the understanding of active galactic nuclei with misaligned multi-structured jets. The radio galaxy NGC 1275 was recently observed by VERITAS at energies above 100 GeV for about 8 hr. No VHE gamma-ray emission was detected by VERITAS from NGC 1275. A 99% confidence level upper limit of 2.1% of the Crab Nebula flux level is obtained at the decorrelation energy of approximately 340 GeV, corresponding to 19% of the power-law extrapolation of the Fermi Large Area Telescope result.

  7. Collisional quenching of OH radio emission from comet Hale-Bopp.

    PubMed

    Schloerb, F P; Devries, C H; Lovell, A J; Irvine, W M; Senay, M; Wootten, H A

    1997-01-01

    Observations of comets in the 18-cm OH transitions offer a means to probe gas production, kinematics, and OH excitation in comets. We present initial results of OH observations of comet Hale-Bopp obtained with the NRAO 43 m antenna located in Greenbank, WV. Maps of the emission provide strong constraints on the amount of quenching of the inversion of the OH ground state A-doublet in the coma. Analysis of the total radio OH flux and maps of its radial brightness distribution indicate a quenched region on the order of approximately 500,000 km during March and April 1997. This large value is generally consistent with previous observations of radio OH quenching in lower production rate comets when the high production rate of comet Hale-Bopp is considered.

  8. Self-consistent particle-in-cell simulations of fundamental and harmonic plasma radio emission mechanisms

    NASA Astrophysics Data System (ADS)

    Thurgood, J. O.; Tsiklauri, D.

    2015-12-01

    Aims: The simulation of three-wave interaction based plasma emission, thought to be the underlying mechanism for Type III solar radio bursts, is a challenging task requiring fully-kinetic, multi-dimensional models. This paper aims to resolve a contradiction in past attempts, whereby some studies indicate that no such processes occur. Methods: We self-consistently simulate three-wave based plasma emission through all stages by using 2D, fully kinetic, electromagnetic particle-in-cell simulations of relaxing electron beams using the EPOCH2D code. Results: Here we present the results of two simulations; Run 1 (nb/n0 = 0.0057, vb/ Δvb = vb/Ve = 16) and Run 2 (nb/n0 = 0.05, vb/ Δvb = vb/Ve = 8), which we find to permit and prohibit plasma emission respectively. We show that the possibility of plasma emission is contingent upon the frequency of the initial electrostatic waves generated by the bump-in-tail instability, and that these waves may be prohibited from participating in the necessary three-wave interactions due to frequency conservation requirements. In resolving this apparent contradiction through a comprehensive analysis, in this paper we present the first self-consistent demonstration of fundamental and harmonic plasma emission from a single-beam system via fully kinetic numerical simulation. We caution against simulating astrophysical radio bursts using unrealistically dense beams (a common approach which reduces run time), as the resulting non-Langmuir characteristics of the initial wave modes significantly suppresses emission. Comparison of our results also indicates that, contrary to the suggestions of previous authors, an alternative plasma emission mechanism based on two counter-propagating beams is unnecessary in an astrophysical context. Finally, we also consider the action of the Weibel instability which generates an electromagnetic beam mode. As this provides a stronger contribution to electromagnetic energy than the emission, we stress that

  9. Detection of decametre-wavelength pulsed radio emission of 40 known pulsars

    NASA Astrophysics Data System (ADS)

    Zakharenko, V. V.; Vasylieva, I. Y.; Konovalenko, A. A.; Ulyanov, O. M.; Serylak, M.; Zarka, P.; Grießmeier, J.-M.; Cognard, I.; Nikolaenko, V. S.

    2013-06-01

    The study of pulsars at the lowest radio frequencies observable from the ground (10-30 MHz) is complicated by strong interstellar (dispersion, scattering) and ionospheric (scintillation, refraction) propagation effects, as well as intense Galactic background noise and interference. However, it permits us to measure interstellar plasma parameters (the effects of which increase by a power of two to >4 times the wavelength), the spectrum and the pulse profile at low frequencies more accurately. Up to now, only ˜10 pulsars have been successfully detected at these frequencies. The recent upgrade of the receivers at the Ukrainian T-shaped Radio telescope, second modification (UTR-2) has increased its sensitivity and motivated a new search for pulsed radio emissions. In this work we carried out a survey of known pulsars with declination above -10°, period >0.1 s and dispersion measure (DM) < 30 pc cm-3, i.e. a sample of 74 sources. Our goal was either to detect pulsars not recorded before in the decametre range or to identify factors that prevent their detection. As a result, we have detected the radio emission of 40 pulsars, i.e. 55 per cent of the observed sample. For 30 of them, this was a first detection at these frequencies. Parameters of their average profiles have been calculated, including the intrinsic widening of the pulse (not due to interstellar scattering) with decreasing frequency. Furthermore, two pulsars beyond the selected DM (B0138+59 with DM ≈ 35 pc cm-3 and B0525+21 with DM ≈51 pc cm-3) were also detected. Our results indicate that there is still room to detect new transient and pulsed sources with low-frequency observations.

  10. Probing Shock Breakout and Progenitors of Stripped-envelope Supernovae through their Early Radio Emissions

    NASA Astrophysics Data System (ADS)

    Maeda, Keiichi

    2013-01-01

    We study properties of early radio emission from stripped-envelope supernovae (SNe; those of Type IIb/Ib/Ic). We suggest there is a sub-class of stripped-envelope SNe based on their radio properties, including the optically well-studied Type Ic SNe (SNe Ic) 2002ap and 2007gr, showing a rapid rise to a radio peak within ~10 days and reaching a low luminosity (at least an order of magnitude fainter than a majority of SNe IIb/Ib/Ic). They show a decline after the peak that is shallower than that of other stripped-envelope SNe while their spectral index is similar. We show that all these properties are naturally explained if the circumstellar material (CSM) density is low and therefore the forward shock is expanding into the CSM without deceleration. Since the forward shock velocity in this situation, as estimated from the radio properties, still records the maximum velocity of the SN ejecta following the shock breakout, observing these SNe in radio wavelengths provides new diagnostics on the nature of both the breakout and the progenitor which otherwise require a quite rapid follow-up in other wavelengths. The inferred post-shock breakout velocities of SNe Ic 2002ap and 2007gr are sub-relativistic, ~0.3c. These are higher than that inferred for SN II 1987A, in line with suggested compact progenitors. However, these are lower than expected for a Wolf-Rayet (W-R) progenitor. It may reflect an as yet unresolved nature of the progenitors just before the explosion, and we suggest that the W-R progenitor envelopes might have been inflated which could quickly reduce the maximum ejecta velocity from the initial shock breakout velocity.

  11. PROBING SHOCK BREAKOUT AND PROGENITORS OF STRIPPED-ENVELOPE SUPERNOVAE THROUGH THEIR EARLY RADIO EMISSIONS

    SciTech Connect

    Maeda, Keiichi

    2013-01-01

    We study properties of early radio emission from stripped-envelope supernovae (SNe; those of Type IIb/Ib/Ic). We suggest there is a sub-class of stripped-envelope SNe based on their radio properties, including the optically well-studied Type Ic SNe (SNe Ic) 2002ap and 2007gr, showing a rapid rise to a radio peak within {approx}10 days and reaching a low luminosity (at least an order of magnitude fainter than a majority of SNe IIb/Ib/Ic). They show a decline after the peak that is shallower than that of other stripped-envelope SNe while their spectral index is similar. We show that all these properties are naturally explained if the circumstellar material (CSM) density is low and therefore the forward shock is expanding into the CSM without deceleration. Since the forward shock velocity in this situation, as estimated from the radio properties, still records the maximum velocity of the SN ejecta following the shock breakout, observing these SNe in radio wavelengths provides new diagnostics on the nature of both the breakout and the progenitor which otherwise require a quite rapid follow-up in other wavelengths. The inferred post-shock breakout velocities of SNe Ic 2002ap and 2007gr are sub-relativistic, {approx}0.3c. These are higher than that inferred for SN II 1987A, in line with suggested compact progenitors. However, these are lower than expected for a Wolf-Rayet (W-R) progenitor. It may reflect an as yet unresolved nature of the progenitors just before the explosion, and we suggest that the W-R progenitor envelopes might have been inflated which could quickly reduce the maximum ejecta velocity from the initial shock breakout velocity.

  12. Modelling the multi-wavelength emission of flat-spectrum radio quasar 3C 279

    NASA Astrophysics Data System (ADS)

    Zheng, Y. G.; Yang, C. Y.

    2016-04-01

    We employ a length-dependent conical jet model for the jet structure and emission properties of flat-spectrum radio quasar 3C 279 in the steady state. In the model, ultra-relativistic leptons are injected at the base of the jet and propagate along the jet structure. Non-thermal photons are produced by both synchrotron emission and inverse Compton scattering off synchrotron photons and external soft photons at each segment of the jet. We derive the total energy spectra contribution through integrating every segment. We apply the model to the quasi-simultaneous multi-wavelength observed data of two quiescent epochs. Using the observed radio data of the source, we determine the length of the jet L ˜ 100 pc and the magnetic field B0 ˜ 0.1-1 G at the base of the jet. Assuming a steady geometry of the jet structure and suitable physical parameters, we reproduce the multi-wavelength spectra during two quiescent observed epochs. Our results show that the initial γ-ray emission site is ˜0.5 pc from the black hole.

  13. Jet Emission in Young Radio Sources: A Fermi Large Area Telescope Gamma-Ray View

    NASA Astrophysics Data System (ADS)

    Migliori, G.; Siemiginowska, A.; Kelly, B. C.; Stawarz, Ł.; Celotti, A.; Begelman, M. C.

    2014-01-01

    We investigate the contribution of the beamed jet component to the high-energy emission in young and compact extragalactic radio sources, focusing for the first time on the γ-ray band. We derive predictions on the γ-ray luminosities associated with the relativistic jet assuming a leptonic radiative model. The high-energy emission is produced via Compton scattering by the relativistic electrons in a spherical region at the considered scales (lsim10 kpc). Simulations show a wide range of γ-ray luminosities, with intensities up to ~1046-1048 erg s-1 depending on the assumed jet parameters. We find a highly linear relation between the simulated X-ray and γ-ray luminosities that can be used to select candidates for γ-ray detection. We compare the simulated luminosity distributions in the radio, X-ray, and γ-ray regimes with observations for the largest sample of X-ray-detected young radio quasars. Our analysis of ~4-yr Fermi Large Area Telescope (LAT) data does not yield any statistically significant detections. However, the majority of the model-predicted γ-ray fluxes for the sample are near or below the current Fermi-LAT flux threshold and compatible with the derived upper limits. Our study gives constraints on the minimum jet power (L jet, kin/L disk > 0.01) of a potential jet contribution to the X-ray emission in the most compact sources (lsim 1 kpc) and on the particle-to-magnetic field energy density ratio that are in broad agreement with equipartition assumptions.

  14. Pioneer 11 observations of energetic particles in the jovian magnetosphere.

    PubMed

    Van Allen, J A; Randall, B A; Baker, D N; Goertz, C K; Sentman, D D; Thomsen, M F; Flindt, H R

    1975-05-02

    Knowledge of the positional distributions, absolute intensities, energy spectra, and angular distributions of energetic electrons and protons in the Jovian magnetosphere has been considerably advanced by the planetary flyby of Pioneer 11 in November-December 1974 along a quite different trajectory from that of Pioneer 10 a year earlier. (i) The previously reported magnetodisc is shown to be blunted and much more extended in latitude on the sunward side than on the dawn side. (ii) Rigid corotation of the population of protons E(p) approximately 1 million electron volts in the magnetodisc is confirmed. (iii) Angular distributions of energetic electrons E(e) > 21 million electron volts in the inner magnetosphere are shown to be compatible with the Kennel-Petschek whistler-mode instability. (iv) A diverse body of magnetospheric effects by the Jovian satellites is found. (v) Observations of energetic electrons in to a radial distance of 1.59 Jovian radii provide a fresh basis for the interpretation of decimetric radio noise emission.

  15. Three Dimensional Structure and Time Development of Radio Emission from Solar Active Regions.

    DTIC Science & Technology

    1983-01-15

    1950), Contribution a l’tude des emissions radloelectriques solaires , Ann. d’Ap. 13:181-202. 17. Gelfreikh, G., Korol’kov, D., Rishkov, N. and...1959a),Structures et proprit’ts des sources d’activit solaire our ondes centimtriques, Ann. dAp. 22:1-100. 24. Kundu, M.R. (1959b), Etude...interferometrique des sources d’activit solaire sur 3 cm de longueur d’onde, Paris Symposium on Radio Astronomy, R.N. Bracewell, Ed., Stanford University Press

  16. Onion-shell model for cosmic ray electrons and radio synchrotron emission in supernova remnants

    NASA Technical Reports Server (NTRS)

    Beck, R.; Drury, L. O.; Voelk, H. J.; Bogdan, T. J.

    1985-01-01

    The spectrum of cosmic ray electrons, accelerated in the shock front of a supernova remnant (SNR), is calculated in the test-particle approximation using an onion-shell model. Particle diffusion within the evolving remnant is explicity taken into account. The particle spectrum becomes steeper with increasing radius as well as SNR age. Simple models of the magnetic field distribution allow a prediction of the intensity and spectrum of radio synchrotron emission and their radial variation. The agreement with existing observations is satisfactory in several SNR's but fails in other cases. Radiative cooling may be an important effect, especially in SNR's exploding in a dense interstellar medium.

  17. Completing a Flux-limited Survey for X-ray Emission from Radio Jets

    NASA Astrophysics Data System (ADS)

    Marshall, Herman

    2009-07-01

    We will measure the changing flow speeds, magnetic fields, and energy fluxes in well-resolved quasar jets found in our short-exposure Chandra survey by combining new, deep Chandra data with radio and optical imaging. We will image each jet with sufficient sensitivity to estimate beaming factors and magnetic fields in several distinct regions, and so map the variations in these parameters down the jets. HST observations will help diagnose the role of synchrotron emission in the overall SED, and may reveal condensations on scales less than 0.1 arcsec.

  18. Fast and slow frequency-drifting millisecond bursts in Jovian decametric radio emissions

    NASA Astrophysics Data System (ADS)

    Ryabov, V. B.; Zarka, P.; Hess, S.; Konovalenko, A.; Litvinenko, G.; Zakharenko, V.; Shevchenko, V. A.; Cecconi, B.

    2014-08-01

    We present an analysis of several Jovian Io-related decametric radio storms recorded in 2004-2012 at the Ukrainian array UTR-2 using the new generation of baseband digital receivers. Continuous baseband sampling within sessions lasting for several hours enabled us to study the evolution of multiscale spectral patterns during the whole storm at varying time and frequency resolutions and trace the temporal transformation of burst structures in unprecedented detail. In addition to the well-known frequency drifting millisecond patterns known as S bursts we detected two other classes of events that often look like S bursts at low resolution but reveal a more complicated structure in high resolution dynamic spectra. The emissions of the first type (LS bursts, superposition of L and S type emissions) have a much lower frequency drift rate than the usual quasi linearly drifting S bursts (QS) and often occur within a frequency band where L emission is simultaneously present, suggesting that both LS and at least part of L emissions may come from the same source. The bursts of the second type (modulated S bursts called MS) are formed by a wideband frequency-modulated envelope that can mimic S bursts with very steep negative (or even positive) drift rates. Observed with insufficient time-frequency resolution, MS look like S bursts with complex shapes and varying drifts; MS patterns often occur in association with (i) narrowband emission; (ii) S burst trains; or (iii) sequences of fast drift shadow events. We propose a phenomenological description for various types of S emissions, that should include at least three components: high- and low-frequency limitation of the overall frequency band of the emission, fast frequency modulation of emission structures within this band, and emergence of elementary S burst substructures, that we call "forking" structures. All together, these three components can produce most of the observed spectral structures, including S bursts with

  19. Measurement of the circular polarization in radio emission from extensive air showers confirms emission mechanisms

    NASA Astrophysics Data System (ADS)

    Scholten, O.; Trinh, T. N. G.; Bonardi, A.; Buitink, S.; Correa, P.; Corstanje, A.; Dorosti Hasankiadeh, Q.; Falcke, H.; Hörandel, J. R.; Mitra, P.; Mulrey, K.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Thoudam, S.; ter Veen, S.; de Vries, K. D.; Winchen, T.

    2016-11-01

    We report here on a novel analysis of the complete set of four Stokes parameters that uniquely determine the linear and/or circular polarization of the radio signal for an extensive air shower. The observed dependency of the circular polarization on azimuth angle and distance to the shower axis is a clear signature of the interfering contributions from two different radiation mechanisms, a main contribution due to a geomagnetically-induced transverse current and a secondary component due to the build-up of excess charge at the shower front. The data, as measured at LOFAR, agree very well with a calculation from first principles. This opens the possibility to use circular polarization as an investigative tool in the analysis of air shower structure, such as for the determination of atmospheric electric fields.

  20. From Radio with Love: An Overview of the Role of Radio Observations in Understanding High-Energy Emission from Active Galaxies

    NASA Technical Reports Server (NTRS)

    Ojha, Roopesh

    2012-01-01

    The gamma-ray satellite Fermi and the ground based TeV facilities MAGIC, VERITAS and HESS have ushered in a new era in the observation of high-energy emission from active galaxies. The energy budgets of these objects have a major contribution from gamma-rays and it is simply not possible to understand their physics without high-energy observations. Though the exact mechanisms for high-energy production in galaxies remains an open question, gamma-rays typically result from interactions between high-energy particles. Via different interactions these same particles can produce radio emission. Thus the non-thermal nature of gamma-ray emission practically guarantees that high-energy emitters are also radio loud. Aside from their obvious role as a component of multiwavelength analysis, radio observations provide two crucial elements essential to understanding the source structure and physical processes of high-energy emitters: very high timing resolution and very high spatial resolution. A brief overview of the unique role played by radio observations in unraveling the mysteries of the high energy Universe as presented here.

  1. Detection of Thermal Radio Emission from Evolved Solar-Type Stars with the Jansky VLA

    NASA Astrophysics Data System (ADS)

    Villadsen, Jackie; Hallinan, G.; Bourke, S.

    2014-01-01

    We present the first detections of thermal radio emission from the atmospheres of evolved solar-type stars τ Cet, η Cas A, and 40 Eri A. These stars all resemble the Sun in age and level of magnetic activity, as indicated by X-ray luminosity and chromospheric emission in calcium H and K lines. We observed these stars with the Jansky VLA with sensitivities of a few μJy at combinations of 10.0, 15.0, and 34.5 GHz. All three stars are detected at 34.5 GHz with signal-to-noise ratio of between 4.3 and 8.4, with upper limits at 10.0 and/or 15.0 GHz that imply a rising spectral index. The measured 34.5-GHz fluxes correspond to stellar disk-averaged brightness temperatures of roughly 10,000 K, similar to the solar brightness temperature at the same frequency. We explain this emission as optically-thick thermal free-free emission from the chromosphere, with the possibility of a minor contribution from coronal gyroresonance emission above active regions.

  2. Synoptic observations of Jupiter's radio emissions: Average Statistical properties observed by Voyager

    NASA Technical Reports Server (NTRS)

    Alexander, J. K.; Carr, T. D.; Thieman, J. R.; Schauble, J. J.; Riddle, A. C.

    1980-01-01

    Observations of Jupiter's low frequency radio emissions collected over one month intervals before and after each Voyager encounter were analyzed. Compilations of occurrence probability, average power flux density and average sense of circular polarization are presented as a function of central meridian longitude, phase of Io, and frequency. The results are compared with ground based observations. The necessary geometrical conditions are preferred polarization sense for Io-related decametric emission observed by Voyager from above both the dayside and nightside hemispheres are found to be essentially the same as are observed in Earth based studies. On the other hand, there is a clear local time dependence in the Io-independent decametric emission. Io appears to have an influence on average flux density of the emission down to below 2 MHz. The average power flux density spectrum of Jupiter's emission has a broad peak near 9MHz. Integration of the average spectrum over all frequencies gives a total radiated power for an isotropic source of 4 x 10 to the 11th power W.

  3. A Study of the X-Ray Emission from Three Radio Pulsars

    NASA Technical Reports Server (NTRS)

    Slane, Patrick O. (Principal Investigator)

    1996-01-01

    The subject grant is for work on a study of x-ray emission from isolated pulsars. The purpose of the study was to: determine whether the pulsars were x-ray sources; and, if so, search for evidence of pulsations at the known radio period; and study the nature of the x-ray emission. Observation of the pulsar PSR 0355+54 were obtained, and the analysis of these data is complete. These results were reported at the 183rd AAS Meeting, and in a paper entitled 'X-Ray Emission from PSR 0355+54' which as published in the The Astrophysical Journal. Also obtained an approx. 3 ks PSPC observations of PSR 1642-03. A summary of the results from these data were reported in a Conference Proceedings for the 'New Horizon of X-ray Astronomy' symposium. In addition, as part of a study with a student from the SAO Summer Intern Program, I incorporated ROSAT archival data in an extended study of pulsar emission. These results were reported at the 185th AAS Meeting, and in a paper entitled 'Soft X-ray Emission from Selected Isolated Pulsars' which was published in The Astrophysical Journal (Letters).

  4. A search of the SAS-2 data for pulsed gamma-ray emission from radio pulsars

    NASA Technical Reports Server (NTRS)

    Ogelman, H.; Fichtel, C. E.; Kniffen, D. A.; Thompson, D. J.

    1976-01-01

    Data from the SAS-2 high-energy (above 35 MeV) gamma-ray experiment have been examined for pulsed emission from each of 75 radio pulsars which were viewed by the instrument and which have sufficiently well-defined period and period-derivative information from radio observations to allow for gamma-ray periodicity searches. When gamma-ray arrival times were converted to pulsar phase using the radio reference timing information, two pulsars, PSR 1747-46 and PSR 1818-04, showed positive effects, each with a probability of less than 1 part in 10,000 of being a random fluctuation in the data for that pulsar. These are in addition to PSR 0531+21 and PSR 0833-45, previously reported. The results of this study suggest that gamma-ray astronomy has reached the detection threshold for gamma-ray pulsars and that work in the near future should give important new information on the nature of pulsars.

  5. POLARIZED EXTENDED Ly{alpha} EMISSION FROM A z = 2.3 RADIO GALAXY

    SciTech Connect

    Humphrey, A.; Vernet, J.; Fosbury, R. A. E.; Villar-Martin, M.; Di Serego Alighieri, S.; Cimatti, A.

    2013-05-01

    We present spatially resolved spectropolarimetric measurements of the 100 kpc scale gaseous environment of the z = 2.34 radio galaxy TXS 0211-122. The polarization level of the narrow Ly{alpha} emission is low centrally (P < 5%), but rises to P = 16.4% {+-} 4.6% in the eastern part of the nebula, indicating that the nebula is at least partly powered by the scattering of Ly{alpha} photons by H I. Not only is this the first detection of polarized Ly{alpha} around a radio-loud active galaxy, it is also the second detection to date for any kind of Ly{alpha} nebula. We also detect a pair of diametrically opposed UV continuum sources along the slit, at the outer edges of the Ly{alpha} nebula, which we suggest may be the limb of a dusty shell, related to the large-scale H I absorbers often associated with high-z radio galaxies.

  6. MURCHISON WIDEFIELD ARRAY LIMITS ON RADIO EMISSION FROM ANTARES NEUTRINO EVENTS

    SciTech Connect

    Croft, S.; Kaplan, D. L.; Tingay, S. J.; Murphy, T.; Rowlinson, A.; Bell, M. E.; Adrián-Martínez, S.; Ardid, M.; André, M.; Anton, G.; Avgitas, T.; Baret, B. [APC, Université Paris Diderot, CNRS Collaboration: for the MWA Collaboration; for the ANTARES Collaboration; for the TAROT Collaboration; for the ROTSE Collaboration; and others

    2016-04-01

    We present a search, using the Murchison Widefield Array (MWA), for electromagnetic (EM) counterparts to two candidate high-energy neutrino events detected by the ANTARES neutrino telescope in 2013 November and 2014 March. These events were selected by ANTARES because they are consistent, within 0.°4, with the locations of galaxies within 20 Mpc of Earth. Using MWA archival data at frequencies between 118 and 182 MHz, taken ∼20 days prior to, at the same time as, and up to a year after the neutrino triggers, we look for transient or strongly variable radio sources that are consistent with the neutrino positions. No such counterparts are detected, and we set a 5σ upper limit for low-frequency radio emission of ∼10{sup 37} erg s{sup −1} for progenitors at 20 Mpc. If the neutrino sources are instead not in nearby galaxies, but originate in binary neutron star coalescences, our limits place the progenitors at z ≳ 0.2. While it is possible, due to the high background from atmospheric neutrinos, that neither event is astrophysical, the MWA observations are nevertheless among the first to follow up neutrino candidates in the radio, and illustrate the promise of wide-field instruments like MWA for detecting EM counterparts to such events.

  7. HORIZON-SCALE LEPTON ACCELERATION IN JETS: EXPLAINING THE COMPACT RADIO EMISSION IN M87

    SciTech Connect

    Broderick, Avery E.; Tchekhovskoy, Alexander

    2015-08-10

    It has now become clear that the radio jet in the giant elliptical galaxy M87 must turn on very close to the black hole. This implies the efficient acceleration of leptons within the jet at scales much smaller than feasible by the typical dissipative events usually invoked to explain jet synchrotron emission. Here we show that the stagnation surface, the separatrix between material that falls back into the black hole and material that is accelerated outward forming the jet, is a natural site of pair formation and particle acceleration. This occurs via an inverse Compton pair catastrophe driven by unscreened electric fields within the charge-starved region about the stagnation surface and substantially amplified by a post-gap cascade. For typical estimates of the jet properties in M87, we find excellent quantitive agreement between the predicted relativistic lepton densities and those required by recent high-frequency radio observations of M87. This mechanism fails to adequately fill a putative jet from Sagittarius A{sup *} with relativistic leptons, which may explain the lack of an obvious radio jet in the Galactic center. Finally, this process implies a relationship between the kinetic jet power and the gamma-ray luminosity of blazars, produced during the post-gap cascade.

  8. Observational Constraints on Radio Transient Emissions from Binary Neutron Star Mergers

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Joanna; Dispoto, D.; Cardena, B.; Kavic, M.; Ellingson, S.; Simonetti, J.; Cutchin, S.; Patterson, C.

    2012-01-01

    The merger of a binary neutron star pair is expected to generate a strong transient radio signal. This emission will be strongest at low-frequency and will disperse as it transverses the interstellar medium arriving at Earth after coincidentally emitted gravitational or (higher frequency) electromagnetic signals. The rate of compact object merger events is poorly constrained by observations. The Eight-meter-wavelength Transient Array (ETA) telescope is a low-frequency radio telescope initially located at the Pisgah Astronomical Research Institute (PARI), which is sensitive to a frequency range of 29-47 MHz. It is being upgraded and relocated to western Virginia where it will continue to conduct low frequency observations. This instrument is an all-sky instrument designed to detect astronomical sources of radio transients. Using a series of observations taken during the ETA's first science run, we were able to constrain the rate of such merger events to <1.3 x 10-5 Mpc-3/yr.

  9. Searching for Hard X-Ray Emission from Radio-Loud Gamma-Ray Quiet Blazars

    NASA Astrophysics Data System (ADS)

    Wada, Katelyn R.; Macomb, Daryl J.

    2017-01-01

    While the Swift BAT AGN source catalog is dominated by radio-quiet Seyfert AGN, around 15% of the sample are radio galaxies or blazars (Ajello et al., 2009). There is an overlap of about 40 sources between the Fermi LAT and Swift BAT detected AGN populations, only a few percent of the Fermi total. These small numbers are presumably a result of selection bias as the SSC peak often falls squarely within the Fermi LAT bandpass while the Swift BAT sensitivity is highest in the spectral region straddling the synchrotron and SSC components.Recently however, a significant sample of bright (F 15GHz >1.5 Jy), radio selected AGN was found, surprisingly, to overlap with Fermi at only the ~80% level (Lister et. al., 2015). This could be a result of selection bias as well as the gamma-ray quiet objects of that survey having synchrotron peak frequencies of 10^13.4 Hz or less. On the other hand it could be due to deficient Doppler boosting among that ~20%. One can, in principle, test the former possibility by assessing emission from the low-energy wings of putative sub-GeV peaked SSC components. We describe our ongoing joint Swift BAT analysis project that attempts to address this possibility. Initial results, comparisons with INTEGRAL observations, and conclusions are presented.

  10. Development of a moon-based magnetospheric and coronal imager using a large broadband array

    NASA Technical Reports Server (NTRS)

    Lebo, George

    1991-01-01

    The 'Missions to and from Planet Earth' mandated by President Bush in 1989 provide a unique opportunity for magnetospheric and coronal plasma physicists to cooperate with low frequency radio astronomers in the development of an advanced experiment designed for the lunar surface. A large active lunar based array would sound the Earth's magnetosphere at VLF frequencies and the solar corona at decametric wavelengths allowing plasma physicists to map both the Earth's magnetosphere and those regions in the solar corona that trigger precursors to solar flares. With the transmitter silent, the array would become the ideal low frequency radio telescope, examining both geospace emissions such as auroral kilometric radiation and extraterrestrial signals from the planets, pulsars, supernova remnants, and active galactic nuclei. Both experiments satisfy requirements mandated in both 'Mission to Planet Earth' and in 'Mission from Planet Earth.' By proposing a cooperative effort both communities (plasma physicists and radio astronomers) stand to benefit. Jim Green, Director of the NASA Space Science Data Center (NSSDC) at GSFC; Tony Phillips, Research Fellow at California Institute of Technology; T. D. Carr, Director of the University of Florida Radio Observatory (UFRO) and the author are enlisting the cooperation of the scientific community in defining the system specifications. Some components, such as the receivers, will be standard 'off-the-shelf' items, and hence will require little developmental research. However, the individual antenna elements and the phasing and matching networks will require some R&D to satisfy the frequency requirements (20 KHz-40 MHz). By flying the experiment in Earth orbit first, Dr. Green proposes to gather valuable magnetospheric data as well as to prove the principle of the large moon based experiment. He claims that funding for the preliminary ground based studies at the UFRO may be available as early as FY-92.

  11. Observations of the radio emission field around the gamma -ray source 2EG J1834-2138

    NASA Astrophysics Data System (ADS)

    Combi, J. A.; Romero, G. E.

    1998-03-01

    We present results of a study of the radio emission field around the best estimate position of the low-latitude EGRET source 2EG J1834-2138. The identification of this gamma -ray source with the gravitational lensed AGN PKS 1830-211 has been recently proposed by \\cite[Mattox et al. (1997)]{ma97}. Additional support for this identification is provided here. Contamination produced by the diffuse disk emission has been removed from new radio images of the surrounding region of 2EG J1834-2138 allowing a determination of the fine radio structure. Several previously unnoticed supernova remnants have been found within a few degrees from the gamma -ray source. However, the only strong radio source within the 95% source location confidence contour of 2EG J1834-2138 is PKS 1830-211. In addition, both spectrum and variability analysis of the EGRET data support the identification of both sources.

  12. A model of diffuse Galactic radio emission from 10 MHz to 100 GHz

    NASA Astrophysics Data System (ADS)

    de Oliveira-Costa, Angélica; Tegmark, Max; Gaensler, B. M.; Jonas, Justin; Landecker, T. L.; Reich, Patricia

    2008-07-01

    Understanding diffuse Galactic radio emission is interesting both in its own right and for minimizing foreground contamination of cosmological measurements. cosmic microwave background experiments have focused on frequencies >~10GHz, whereas 21-cm tomography of the high-redshift universe will mainly focus on <~0.2GHz, for which less is currently known about Galactic emission. Motivated by this, we present a global sky model derived from all publicly available total power large-area radio surveys, digitized with optical character recognition when necessary and compiled into a uniform format, as well as the new Villa Elisa data extending the 1.42-GHz map to the entire sky. We quantify statistical and systematic uncertainties in these surveys by comparing them with various global multifrequency model fits. We find that a principal component based model with only three components can fit the 11 most accurate data sets (at 10, 22, 45 and 408 MHz and 1.42, 2.326, 23, 33, 41, 61, 94 GHz) to an accuracy around 1-10 per cent depending on frequency and sky region. Both our data compilation and our software returning a predicted all-sky map at any frequency from 10 MHz to 100 GHz are publicly available at http://space.mit.edu/home/angelica/gsm.

  13. Electron cyclotron maser emission in coronal arches and solar radio type V bursts

    SciTech Connect

    Tang, J. F.; Wu, D. J.; Tan, C. M.

    2013-12-10

    Solar radio type V bursts were classified as a special spectral class based on their moderately long duration, wide bandwidth, and sense of polarization opposite of associated type III bursts. However, type V bursts are also closely related to the preceding type III bursts. They have an approximately equal source height and the same dispersion of position with frequency. Electron cyclotron maser (ECM) instability driven by beam electrons has been used to explain type III bursts in recent years. We propose ECM emission as the physical process of type V solar radio bursts. According to the observed properties of type V and III bursts, we propose that energetic electrons in excited type V continuum are trapped in coronal loops, which are adjacent to the open field lines traced by type III electrons. With the proposed magnetic field configuration and the ECM emission mechanism, the observed properties of type V bursts, such as long duration, wide bandwidth, and opposite sense of polarization can be reasonably explained by our model.

  14. Electron plasma oscillations associated with type III radio emissions and solar electrons

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Frank, L. A.

    1975-01-01

    Results of an extensive search for electron plasma oscillations associated with type III radio noise bursts are presented which were obtained by analyzing 87 type III bursts detected in plasma-wave and charged-particle measurements carried out by IMP 6, 7, and 8. Only one case is found for which plasma oscillations were associated with electrons of solar origin; at least eight events are identified in which no plasma oscillations were detected even though electrons from solar flares were clearly evident. The type III emissions are compared with similar radiation coming from upstream of earth's bow shock at the harmonic of the local electron plasma frequency, and quantitative calculations of the rate of conversion from plasma oscillatory energy to electromagnetic radiation are performed. The results show that electron plasma oscillations are seldom observed in association with solar electron events and type III radio bursts at 1.0 AU and that neither the type III emissions nor the radiation from upstream of the bow shock can be adequately explained by a current model for the coupling of electron plasma oscillations to electromagnetic radiation. Several possible explanations are considered for this discrepancy between theory and observations.

  15. Correlation of far-infrared emission and radio continuum emission along the major axis of edge-on spiral galaxies

    NASA Technical Reports Server (NTRS)

    Heikkila, Bryant; Webber, William R.

    1994-01-01

    Using new High Resolution far-infrared (FIR) images we have determined FIR flux densities, the FIR luminosity, and intensity profiles along the major axis for eight nearby edge-on spiral galaxies. We present spatial comparisons between the FIR profiles in three of the four IRAS Bands (25, 60, 100 microns). We also present direct spatial comparisons between the 60 micron intensity profiles and intensity profiles from 20 cm radio continuum maps with identical resolution (approx. 60 sec) obtained from J. J. Condon. Using these profiles we have evaluated the 60 micron-to-20 cm ratio Q(sub 60) along the major axis for each galaxy and have compared the results to global Q(sub 60) values. This analysis reveals that a considerable amount of complicated structure exists within the disk of spiral galaxies. Closer examination of this disk structure will make it possible to place further constraints on the well known global far-infrared and radio continuum emission correlation.

  16. Diffuse radio foregrounds: all-sky polarisation and anomalous microwave emission

    NASA Astrophysics Data System (ADS)

    Vidal Navarro, M. A.

    2014-07-01

    plane. We study the foreground contamination in a region of the sky. We also discuss some properties of the diffuse synchrotron emission observed on the Galactic plane by QUIET.Using interferometric observations at 31 GHz, we studied AME in the translucent cloud LDN 1780. Interferometric data at 31 GHz and different ancillary data were used. We study the connection between the radio emission and the interstellar dust present in the cloud. The spinning dust hypothesis for the origin of AME is tested and we conclude that it can explain the radio properties observed in this cloud.

  17. Direction of Arrival Measurements of Auroral Medium Frequency Burst Radio Emissions at Toolik Lake, AK

    NASA Astrophysics Data System (ADS)

    Bunch, N. L.; Labelle, J. W.; Hughes, J. M.; Weatherwax, A. T.; Ye, S.; Lummerzheim, D.

    2007-12-01

    MF burst is an impulsive radio emission of auroral origin detected by ground-based instruments approximately between 1,300 and 3,700 kHz, and associated with substorm onsets. Its exact generation mechanism is unknown, though it has been speculated that it arises from mode conversion radiation. To discover the generation mechanism and the relation of MF burst to auroral processes, Dartmouth has deployed radio interferometers in Alaska, Northern Canada, Greenland, and Antarctica, including a three-element interferometer deployed at Toolik Lake Field Station in Alaska in 2006. This instrument measured spectra, amplitudes, and directions of arrival (DOA's) of over 47 MF burst events occurring between November 30, 2006 and May 26, 2007. These represent the first DOA measurements ever reported for the impulsive MF burst phenomenon. Preliminary analysis shows that the events originated from a wide range of directions in the sky, with all azimuths represented in the distribution of DOA's. The DOA of each individual event is well-defined, however. Many events show apparent motion, with southward motions more common than northward among the subset of events analyzed so far. Some of the events were detected simultaneously on an interferometer deployed at Kaktovik, Alaska, 400 km away. The all-sky imager at Toolik Lake was also operational for some events. Further analysis of these data promises to reveal first information about the locations and motions of MF burst sources, a first step towards discovering the generation mechanism of this mysterious radio emission and its relation to auroral processes.

  18. Radio Observations of HD 80606 Near Planetary Periastron

    DTIC Science & Technology

    2010-12-01

    for magnetospherically generated radio emission from extrasolar planets , at frequencies ranging from 25 MHz to 1400 MHz (Yantis et al. 1977; Winglee... extrasolar planets have been found with the radial velocity method. A concern with this focus on so-called hot Jupiters is that they are likely to be tidally...80606b is one member of the rapidly growing class of transiting extrasolar planets , and recent transit observations demonstrate that there is a significant

  19. Interplanetary radio storms. 2: Emission levels and solar wind speed in the range 0.05-0.8 AU

    NASA Technical Reports Server (NTRS)

    Bougeret, J. L.; Fainberg, J.; Stone, R. G.

    1982-01-01

    Storms of interplanetary type III radio bursts (IP storms) are commonly observed in the interplanetry medium by the ISEE-3 radio instrument. This instrument has the capability of accurately determining the arrival direction of the radio emission. At each observing frequency, the storm radio sources are tracked as they cross the line-of-sight to the Sun. Usng a simple model, the emission levels are determined at a number of radio frequencies for four separate storms. The IP storm radiation is found to occur in regions of enhanced density at levels of 0.05 to 0.8 AU. The density in these enhancements falls off faster than R(-2). The solar wind speed in the storm region is also measured. The analysis is consistent with steady conditions in the storm region during a few days around the central meridian passage of the storm. The comparison with average in situ density measurements compiled from the HELIOS 1-2 observations favors type III storm burst radio emission at the harmonic of the local plasma frequency.

  20. A computationally assisted spectroscopic technique to measure secondary electron emission coefficients in radio frequency plasmas

    NASA Astrophysics Data System (ADS)

    Daksha, M.; Berger, B.; Schuengel, E.; Korolov, I.; Derzsi, A.; Koepke, M.; Donkó, Z.; Schulze, J.

    2016-06-01

    A computationally assisted spectroscopic technique to measure secondary electron emission coefficients (γ-CAST) in capacitively-coupled radio-frequency plasmas is proposed. This non-intrusive, sensitive diagnostic is based on a combination of phase resolved optical emission spectroscopy and particle-based kinetic simulations. In such plasmas (under most conditions in electropositive gases) the spatio-temporally resolved electron-impact excitation/ionization rate features two distinct maxima adjacent to each electrode at different times within each RF period. While one maximum is the consequence of the energy gain of electrons due to sheath expansion, the second maximum is produced by secondary electrons accelerated towards the plasma bulk by the sheath electric field at the time of maximum voltage drop across the adjacent sheath. Due to these different excitation/ionization mechanisms, the ratio of the intensities of these maxima is very sensitive to the secondary electron emission coefficient γ. This sensitvity, in turn, allows γ to be determined by comparing experimental excitation profiles and simulation data obtained with various γ-coefficients. The diagnostic, tested here in a geometrically symmetric argon discharge, yields an effective secondary electron emission coefficient of γ =0.066+/- 0.01 for stainless steel electrodes.

  1. The solar wind control of Jupiter's broad-band kilometric radio emission

    NASA Technical Reports Server (NTRS)

    Barrow, C. H.; Leblanc, Y.; Desch, M. D.

    1988-01-01

    Observations of the solar wind close to Jupiter are compared with the broad-band kilometric radio emission (bKOM), using data recorded by Voyager 1 and Voyager 2 during 1979. The lower bKOM frequencies, less than about 300 kHz, are found to correlate with the solar wind density and pressure and with the interplanetary magnetic field (IMF) magnitude during periods when there is a well-defined magnetic sector structure. The results suggest that lower frequency bKOM events are most likely to occur after a sector boundary has passed Jupiter during the period when the solar wind density and the IMF magnitude are increasing towards the sector center. The average bKOM energy per Jovian rotation tends to have lower values soon after the sector center has passed. Higher-frequency/higher-energy bKOM emission may be contaminated by hectometric emission (HOM) and differently correlated with solar activity. The solar wind control may also be obscured by some stronger control. It is suggested that electron density fluctuations in the Io torus, where the source is believed to be located, may be responsible for variations in the beaming and hence variations in the observed emission.

  2. Direction of Arrival Studies of Medium Frequency Burst Radio Emissions at Toolik Lake, AK

    NASA Astrophysics Data System (ADS)

    Bunch, N.; Labelle, J.; Weatherwax, A.; Lummerzheim, D.; Stenbaek-Nielsen, H.

    2008-05-01

    MF burst is an impulsive radio emission of auroral origin, which can be detected by ground-based instruments at frequencies between 1,300 and 4,500kHz. MF burst has been shown to be associated with substorm onset, but its exact generation mechanism remains unknown, although it is thought to arise from mode conversion radiation [see review by LaBelle and Treumann, 2002] . In search of the generation mechanism of this emission, Dartmouth College has deployed radio interferometers in Alaska, Northern Canada, Greenland, and Antarctica, including a three-element interferometer deployed to Toolik Field Station in Alaska during the summer of 2006. This instrument measured spectra, amplitudes and directions of arrival (DOA's) of over 47 MF burst events between November 30, 2006 and May 26, 2007. These data represent the first DOA measurements of impulsive MF burst, of which selected case studies were presented at the Fall 2007 AGU conference. Here we present a statistical survey of all 47 events as well as detailed analysis of three events occurring on: Mar 5, Mar 23, and Nov 20, 2007. For the statistical survey, we present distributions of DOA as a function of local time and frequency. In each case study we analyze the direction of arrival of the emissions as a function of both time and frequency within each event. The time variations will be compared with the time variations of optical auroral forms simultaneously measured with all-sky cameras. The dependence of the arrival direction on frequency enables a significant test of the generation mechanism whereby the waves are emitted at the local plasma or upper hybrid frequency in the topside ionosphere, predicting that higher frequencies should originate at lower altitudes. These three events have been selected because All-Sky camera data are available at these times from Toolik Lake and Fort Yukon, Alaska. These are critical both for identifying which optical features are associated with the radio emissions as well as for

  3. The radio-emission spectra of some extragalactic radio sources in the 11.6-36.8 GHz range

    NASA Astrophysics Data System (ADS)

    Valtaoja, E.; Valtonen, M.; Lekhto, Kh.; Efanov, V. A.; Moiseev, I. G.

    Results are presented of coordinated observations of 20 extragalactic radio sources in the 11.6-3.8 GHz range. The measurements were carried out in 1980-1982 using the RT-22 and RT-14 radio telescopes at the Crimean Astrophysical Observatory and the Radio Laboratory of the Helsinki University of Technology, respectively. Quasi-simultaneous radiation spectra are presented for 12 sources and the magnetic field strength (MFS) is estimated for 0235+16, OH 471, OJ 287, and BL Lac. The MFS turns out to be in the 0.001-0.002 G range.

  4. A SCENARIO FOR THE FINE STRUCTURES OF SOLAR TYPE IIIb RADIO BURSTS BASED ON ELECTRON CYCLOTRON MASER EMISSION

    SciTech Connect

    Wang, C. B.

    2015-06-10

    A scenario based on electron cyclotron maser (ECM) emission is proposed for the fine structures of solar radio emission. It is suggested that under certain conditions modulation of the ratio between the plasma frequency and electron gyro frequency by ultra-low-frequency waves, which is a key parameter for excitation of ECM instability, may lead to the intermittent emission of radio waves. As an example, the explanation for the observed fine-structure components in the solar Type IIIb bursts is discussed in detail. Three primary issues of Type IIIb bursts are addressed: (1) the physical mechanism that results in intermittent emission elements that form a chain in the dynamic spectrum of Type IIIb bursts, (2) the cause of split pairs (or double stria) and triple stria, and (3) why only IIIb–III bursts are observed in the events of fundamental harmonic pair emission whereas IIIb–IIIb or III–IIIb bursts are very rarely observed.

  5. A Scenario for the Fine Structures of Solar Type IIIb Radio Bursts Based on Electron Cyclotron Maser Emission

    NASA Astrophysics Data System (ADS)

    Wang, C. B.

    2015-06-01

    A scenario based on electron cyclotron maser (ECM) emission is proposed for the fine structures of solar radio emission. It is suggested that under certain conditions modulation of the ratio between the plasma frequency and electron gyro frequency by ultra-low-frequency waves, which is a key parameter for excitation of ECM instability, may lead to the intermittent emission of radio waves. As an example, the explanation for the observed fine-structure components in the solar Type IIIb bursts is discussed in detail. Three primary issues of Type IIIb bursts are addressed: (1) the physical mechanism that results in intermittent emission elements that form a chain in the dynamic spectrum of Type IIIb bursts, (2) the cause of split pairs (or double stria) and triple stria, and (3) why only IIIb-III bursts are observed in the events of fundamental harmonic pair emission whereas IIIb-IIIb or III-IIIb bursts are very rarely observed.

  6. A distinct class of isolated intracloud lightning discharges and their associated radio emissions

    NASA Astrophysics Data System (ADS)

    Smith, D. A.; Shao, X. M.; Holden, D. N.; Rhodes, C. T.; Brook, M.; Krehbiel, P. R.; Stanley, M.; Rison, W.; Thomas, R. J.

    1999-02-01

    Observations of radio emissions from thunderstorms were made during the summer of 1996 using two arrays of sensors located in northern New Mexico. The first array consisted of three fast electric field change meters separated by distances of 30 to 230 km. The second array consisted of three broadband (3 to 30 MHz) HF data acquisition systems separated by distances of 6 to 13 km. Differences in signal times of arrival at multiple stations were used to locate the sources of received signals. Relative times of arrival of signal reflections from the ionosphere and Earth were used to determine source heights. A distinct class of short-duration electric field change emissions was identified and characterized. The emissions have previously been termed narrow positive bipolar pulses (NPBPs). NPBPs were emitted from singular intracloud discharges that occurred in the most active regions of three thunderstorms located in New Mexico and west Texas. The discharges occurred at altitudes between 8 and 11 km above mean sea level. NEXRAD radar images show that the NPBP sources were located in close proximity to high reflectivity storm cores where reflectivity values were in excess of 40 dBZ. NPBP electric field change waveforms were isolated, bipolar, initially positive pulses with peak amplitudes comparable to those of return stroke field change waveforms. The mean FWHM (full width at half maximum) of initial NPBP field change pulses was 4.7 μs. The HF emissions associated with NPBPs were broadband noise-like radiation bursts with a mean duration of 2.8 μs and amplitudes 10 times larger than emissions from typical intracloud and cloud-to-ground lightning processes. Calculations indicate that the events represent a distinct class of singular, isolated lightning discharges that have limited spatial extents of 300 to 1000 m and occur in high electric field regions. The unique radio emissions produced by these discharges, in combination with their unprecedented physical

  7. Natural radio lasing at Jupiter

    NASA Technical Reports Server (NTRS)

    Calvert, W.; Leblanc, Y.; Ellis, G. R. A.

    1988-01-01

    Like the comparable AKR radio emissions from earth's magnetosphere, the well-known decametric radio S-bursts from Jupiter, observed in France and Australia at frequencies from 10 to 26 MHz, have been found to exhibit equally spaced discrete spectral components which can be attributed to the adjacent longitudinal oscillation modes of natural radio lasers. Implying sizes of only a few kilometers for the individual radio lasers producing the S-bursts, the frequency spacing of these modes was roughly constant with frequency and about 30 to 50 kHz. Their corresponding temporal spacings, however, varied inversely proportional to the observing frequency, suggesting that the radio lasers producing the S-bursts were expanding uniformly at a rate of about 4 km/s. Presumably caused by the projected motion of Io with respect to the planet, this expansion of the S-burst radio lasers would account for the downward frequency drifts of the S-bursts without the energetic electron bunches which have heretofore always been assumed necessary to account for such behavior.

  8. The role of rotation and polar-cap currents on pulsar radio emission and polarization

    SciTech Connect

    Kumar, D.; Gangadhara, R. T. E-mail: ganga@iiap.res.in

    2013-06-01

    Perturbations such as rotation and polar-cap current (PC-current) have been believed to greatly affect the pulsar radio emission and polarization. The two effects have not been considered simultaneously in the literature; each one of these has been considered separately, and a picture has been deduced by simply superposing them, but such an approach can lead to spurious results. Hence, by considering pulsar rotation and PC-current perturbations together instead of one at a time, we have developed a single particle curvature radiation model, which is expected to be much more realistic. By simulating a set of typical pulse profiles, we have made an attempt to explain most of the observational results of pulsar radio emission and polarization. The model predicts that due to the perturbations the leading side component can become either stronger or weaker than the corresponding trailing one in any given cone, depending on the passage of the sight line and modulation (nonuniform source distribution). Further, we find that the phase delay of the polarization angle inflection point with respect to the core component greatly depends on the viewing geometry. The correlation between the sign reversal of circular polarization and the polarization angle swing in the case of core-dominated pulsars becomes obscure once the perturbations and modulation become significant. However, the correlation between the negative circular polarization and the increasing polarization angle and vice versa is very clear in the case of conal-double pulsars. The 'kinky'-type distortions in polarization angle swing could be due to the incoherent superposition of modulated emission in the presence of strong perturbations.

  9. CORONAL THICK TARGET HARD X-RAY EMISSIONS AND RADIO EMISSIONS

    SciTech Connect

    Lee, Jeongwoo; Lim, Daye; Choe, G. S.; Kim, Kap-Sung; Jang, Minhwan

    2013-05-20

    A distinctive class of hard X-ray (HXR) sources located in the corona was recently found, which implies that the collisionally thick target model (CTTM) applies even to the corona. We investigated whether this idea can be independently verified by microwave radiations which have been known as the best companion to HXRs. This study is conducted on the GOES M2.3 class flare which occurred on 2002 September 9 and was observed by the Reuven Ramaty High-Energy Solar Spectroscopic Imager and the Owens Valley Solar Array. Interpreting the observed energy-dependent variation of HXR source size under the CTTM, the coronal density should be as high as 5 Multiplication-Sign 10{sup 11} cm{sup -3} over a distance of up to 12''. To explain the cutoff feature of the microwave spectrum at 3 GHz, however, we require a density no higher than 1 Multiplication-Sign 10{sup 11} cm{sup -3}. Additional constraints must be placed on the temperature and magnetic field of the coronal source in order to reproduce the microwave spectrum as a whole. First, a spectral feature called the Razin suppression requires a magnetic field in a range of 250-350 G along with high viewing angles around 75 Degree-Sign . Second, to avoid excess fluxes at high frequencies due to the free-free emission that was not observed, we need a high temperature {>=}2 Multiplication-Sign 10{sup 7} K. These two microwave spectral features, Razin suppression and free-free emissions, become more significant at regions of high thermal plasma density and are essential for validating and determining additional parameters of the coronal HXR sources.

  10. The structure of the jet in Cyg X-1 inferred from orbital modulation of the radio emission

    NASA Astrophysics Data System (ADS)

    Zdziarski, Andrzej A.

    2012-05-01

    We study free-free absorption of radio emission by winds of massive stars. We derive formulae for the optical depth through the wind measured from a point of emission along a jet, taking into account Compton and photoionization heating and Compton, recombination, line and advection cooling. We apply the developed formalism to radio monitoring data for Cyg X-1, which allows us to obtain strong constraints on the structure of its inner jet. With the data at 15 GHz, and taking into account an anisotropy of the stellar wind in Cyg X-1, we estimate the location of the peak of that emission along the jet at about one orbital separation, i.e. ˜3 × 1012 cm. Given a previous determination of the turnover frequency in Cyg X-1, this implies the location of the base of the jet at ˜103 gravitational radii. We also obtain corresponding results at 8.3 and 2.25 GHz, which roughly follow the standard conical partially self-absorbed jet model. Furthermore, we find that the level of the orbital modulation depends on the radio flux, with the modulation being substantially stronger when the radio flux is lower. This is explained by the height of the radio emission along the jet decreasing with the decreasing radio flux, as predicted by jet models. Based on the finding of the flux-dependent orbital modulation, we are able to estimate a range of the possible changes of the form of the radio/X-ray correlation in Cyg X-1 due to free-free absorption. We also derive predictions for the orbital modulation and flux attenuation at frequencies beyond the 2.25-15 GHz range.

  11. Black hole magnetospheres

    SciTech Connect

    Nathanail, Antonios; Contopoulos, Ioannis

    2014-06-20

    We investigate the structure of the steady-state force-free magnetosphere around a Kerr black hole in various astrophysical settings. The solution Ψ(r, θ) depends on the distributions of the magnetic field line angular velocity ω(Ψ) and the poloidal electric current I(Ψ). These are obtained self-consistently as eigenfunctions that allow the solution to smoothly cross the two singular surfaces of the problem, the inner light surface inside the ergosphere, and the outer light surface, which is the generalization of the pulsar light cylinder. Magnetic field configurations that cross both singular surfaces (e.g., monopole, paraboloidal) are uniquely determined. Configurations that cross only one light surface (e.g., the artificial case of a rotating black hole embedded in a vertical magnetic field) are degenerate. We show that, similar to pulsars, black hole magnetospheres naturally develop an electric current sheet that potentially plays a very important role in the dissipation of black hole rotational energy and in the emission of high-energy radiation.

  12. DISENTANGLING THE NATURE OF THE RADIO EMISSION IN WOLF-RAYET STARS

    SciTech Connect

    Montes, Gabriela; Perez-Torres, Miguel A.; Alberdi, Antonio; Gonzalez, Ricardo F. E-mail: torres@iaa.e E-mail: g.montes@astrosmo.unam.m

    2009-11-01

    We present quasi-simultaneous, multi-frequency Very Large Array observations at 4.8, 8.4, and 22.5 GHz of a sample of 13 Wolf-Rayet (WR) stars, aimed at disentangling the nature of their radio emission and the possible detection of a non-thermal behavior in close binary systems. We detected 12 stars from our sample, for which we derived spectral information and estimated their mass-loss rates. From our data, we identified four thermal sources (WR 89, 113, 138, and 141), and three sources with a composite spectrum (similar contribution of thermal and non-thermal emission; WR 8, 98, and 156). On the other hand, from the comparison with previous observations, we confirm the non-thermal spectrum of one (WR 105), and also found evidence of a composite spectrum for WR 79a, 98a, 104, and 133. Finally, we discuss the possible scenarios to explain the nature of the emission for the observed objects.

  13. The First Unbiased Radio Emission Line Survey of the Protoplanetary Disk Orbiting Lkca 15

    NASA Astrophysics Data System (ADS)

    Punzi, Kristina Marie; Kastner, Joel H.; Hily-Blant, Pierre; Forveille, Thierry; Sacco, G. G.

    2014-06-01

    We have conducted the first comprehensive mm-wave molecular emission line survey of the circumstellar disk orbiting the nearby, pre-main sequence (T Tauri) star LkCa 15 (D = 140 pc). The outer disk is chemically rich, with numerous previous detections of molecular emission lines revealing a significant gas mass. The disk around this young (˜3-5 Myr), actively accreting solar analog likely hosts a young protoplanet (LkCa 15b) within its central cavity. Hence, LkCa 15 is an excellent target for an unbiased radio spectroscopic survey intended to produce a full census of the detectable molecular species within an evolved, protoplanetary disk. Our survey of LkCa 15 was conducted with the Institute de Radioastronomie Millimétrique (IRAM) 30 meter telescope over the 1.1-1.4 mm wavelength range. The survey includes detections of the three most abundant CO isotopologues (12CO, 13CO, and C18O) which facilitate estimates of the spatially integrated CO emission line optical depths, and complete coverage of the hyperfine line complexes of CN and C2H that provide diagnostics of excitation and opacity for these species. This work demonstrates the value of comprehensive single-dish line surveys in guiding future high resolution interferometric imaging by ALMA of protoplanetary disks orbiting T Tauri stars.

  14. SCORPIO: a deep survey of radio emission from the stellar life-cycle

    NASA Astrophysics Data System (ADS)

    Umana, G.; Trigilio, C.; Franzen, T. M. O.; Norris, R. P.; Leto, P.; Ingallinera, A.; Buemi, C. S.; Agliozzo, C.; Cavallaro, F.; Cerrigone, L.

    2015-11-01

    Radio emission has been detected in a broad variety of stellar objects from all stages of stellar evolution. However, most of our knowledge originates from targeted observations of small samples, which are strongly biased to sources which are peculiar at other wavelengths. In order to tackle this problem we have conducted a deep 1.4 GHz survey by using the Australian Telescope Compact Array, with a net bandwidth of 1.7 GHz (1.4-3.1 GHz) , following the same observing setup as that used for the Australia Telescope Large Area Survey project, this time choosing a region more appropriate for stellar work. In this paper, the Stellar Continuum Originating from Radio Physics In Ourgalaxy (SCORPIO) project is presented as well as results from the pilot experiment. The achieved rms is 30 μJy and the angular resolution ˜10 arcsec. 614 point-like sources have been extracted just from the pilot field. Only 34 of them are classified in SIMBAD or the NASA/IPAC Extragalactic Database. About 80 per cent of the extracted sources are reported in one of the inspected catalogues and 50 per cent of them appears to belong to a reddened stellar/Galactic population. However, the evaluation of extragalactic contaminants is very difficult without further investigations. Interesting results have been obtained for extended radio sources that fall in the SCORPIO field. Many roundish-like structures (indicated as bubbles in the following) have been found, some of which are classified at other wavelengths. However, for all of these sources, our project has provided us with images of unprecedented sensitivity and angular resolution.

  15. Emergence of double-peaked emission lines in the broad-line radio galaxy Pictor A

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Eracleous, Michael

    1994-01-01

    A new optical spectrum of the nearby broad-line radio galaxy (BLRG) Pictor A reveals a prominent double-peaked component of the Balmer lines which does not appear in any historical spectra of this object. Carried out with the hope of obtaining exactly such a result, this observation is a key to the interpretation of double-peaked emitters. If bolsters our previous conclusion that there is a set of additional properties which are associated with the rare class of double-peaked emitters, namely F-R II radio morphology, strong low-ionization forbidden lines, weak UV continuum, and flat far-infrared spectrum. Furthermore, the low-velocity, 'ordinary' broad Balmer lines in Pictor A remained relatively unchanged as the new twin peaks appeared, which justifies the practice of applying models that fit only the double peaks and not the low-velocity components that are often present in spectra of this type. We discuss the relative merits of accretion-disk models and other models for double-peaked emission lines in the light of this new observation.

  16. Stochastic reacceleration of relativistic electrons by turbulent reconnection: a mechanism for cluster-scale radio emission?

    NASA Astrophysics Data System (ADS)

    Brunetti, G.; Lazarian, A.

    2016-05-01

    In this paper, we investigate a situation where relativistic particles are reaccelerated diffusing across regions of reconnection and magnetic dynamo in super-Alfvenic, incompressible large-scale turbulence. We present an exploratory study of this mechanism in the intracluster medium (ICM). In view of large-scale turbulence in the ICM, we adopt a reconnection scheme that is based on turbulent reconnection and magnetohydrodynamics (MHD) turbulence. In this case, particles are accelerated and decelerated in a systematic way in reconnecting and magnetic-dynamo regions, respectively, and on longer time-scales undergo a stochastic process diffusing across these sites (similar to second-order Fermi). Our study extends on larger scales numerical studies that focused on the acceleration in and around turbulent reconnecting regions. We suggest that this mechanism may play a role in the reacceleration of relativistic electrons in galaxy clusters providing a new physical scenario to explain the origin of cluster-scale diffuse radio emission. Indeed differently from current turbulent reacceleration models proposed for example for radio haloes, this mechanism is based on the effect of large-scale incompressible and super-Alfvenic turbulence. In this new model, turbulence governs the interaction between relativistic particles and magnetic field lines that diffuse, reconnect and are stretched in the turbulent ICM.

  17. Intranight optical variability of radio-quiet weak emission line quasars - IV

    NASA Astrophysics Data System (ADS)

    Kumar, Parveen; Chand, Hum; Gopal-Krishna

    2016-09-01

    We report an extension of our programme to search for radio-quiet BL Lac candidates using intranight optical variability (INOV) as a probe. The present INOV observations cover a well-defined representative set of 10 `radio-quiet weak-emission-line quasars' (RQWLQs), selected from a newly published sample of 46 such sources, derived from the Sloan Digital Sky Survey (Data release 7). Intranight CCD monitoring of the 10 RQWLQs was carried out in 18 sessions lasting at least 3.5 h. For each session, differential light curves of the target RQWLQ were derived relative to two steady comparison stars monitored simultaneously. Combining these new data with those already published by us for 15 RQWLQs monitored in 30 sessions, we estimate an INOV duty cycle of ˜3 per cent for the RQWLQs, which appears inconsistent with BL Lacs. However, the observed INOV events (which occurred in just two of the sessions) are strong (with a fractional variability amplitude ψ > 10 per cent), hence blazar-like. We briefly point out the prospects of an appreciable rise in the estimated INOV duty cycle for RQWLQs with a relatively modest increase in sensitivity for monitoring these rather faint objects.

  18. The radio waves and thermal electrostatic noise spectroscopy (SORBET) experiment on BEPICOLOMBO/MMO/PWI: Scientific objectives and performance

    NASA Astrophysics Data System (ADS)

    Moncuquet, M.; Matsumoto, H.; Bougeret, J.-L.; Blomberg, L. G.; Issautier, K.; Kasaba, Y.; Kojima, H.; Maksimovic, M.; Meyer-Vernet, N.; Zarka, P.

    2006-01-01

    SORBET ( Spectroscopie des Ondes Radio and du Bruit Electrostatique Thermique) is a radio HF spectrometer designed for the radio and Plasma Waves Instrument onboard BepiColombo/Mercury Magnetospheric Orbiter (MMO), which performs remote and in situ measu