Science.gov

Sample records for magnetotelluric method mmt

  1. Magnetotellurics as a multiscale geophysical exploration method

    NASA Astrophysics Data System (ADS)

    Carbonari, Rolando; D'Auria, Luca; Di Maio, Rosa; Petrillo, Zaccaria

    2016-04-01

    Magnetotellurics (MT) is a geophysical method based on the use of natural electromagnetic signals to define subsurface electrical resistivity structure through electromagnetic induction. MT waves are generated in the Earth's atmosphere and magnetosphere by a range of physical processes, such as magnetic storms, micropulsations, lightning activity. Since the underground MT wave propagation is of diffusive type, the longer is the wavelength (i.e. the lower the wave frequency) the deeper will be the propagation depth. Considering the frequency band commonly used in MT prospecting (10-4 Hz to 104 Hz), the investigation depth ranges from few hundred meters to hundreds of kilometers. This means that magnetotellurics is inherently a multiscale method and, thus, appropriate for applications at different scale ranging from aquifer system characterization to petroleum and geothermal research. In this perspective, the application of the Wavelet transform to the MT data analysis could represent an excellent tool to emphasize characteristics of the MT signal at different scales. In this note, the potentiality of such an approach is studied. In particular, we show that the use of a Discrete Wavelet (DW) decomposition of measured MT time-series data allows to retrieve robust information about the subsoil resistivity over a wide range of spatial (depth) scales, spanning up to 5 orders of magnitude. Furthermore, the application of DWs to MT data analysis has proven to be a flexible tool for advanced data processing (e.g. non-linear filtering, denoising and clustering).

  2. On resolution of the method of directional magnetotelluric soundings

    NASA Astrophysics Data System (ADS)

    Savin, Mihail

    2015-12-01

    The problem is to examine the resolution of directional magnetotelluric soundings (DMTS). Abrupt changes of impedances Z^e,h of electrical and magnetic types in critical region of parameters R 0, Jωμσ where R=Re[(K_x)2+(K_y)2], J=Im[(K_x)2+(K_y)2] are shown to result in significantly higher resolution of the method as compared with the traditional interpretation using Tikhonov-Cagniard impedance Z^0. The stability of solution of DMTS method inverse problem is considered subject to field measurement errors limited the resolution. The minimum of the limits is determined for the conductivity Δσ/σ small variations. For studying DMTS resolution as applied to MT monitoring of earthquake site the mathematical experiment for three-layer geoelectric model was carried out. When changing the earthquake site conductivity of Δσ ∼ ±10 variations of reflection coefficient of electric mode ΔQe are in the range of 20% that is significantly more than the field measurement error. The possibility for prediction modeling in the context of obtained results is discussed.

  3. Practical Magnetotellurics

    NASA Astrophysics Data System (ADS)

    Simpson, Fiona; Bahr, Karsten

    2005-02-01

    The magnetotelluric (MT) method, a technique for probing the electrical conductivity structure of the Earth, is increasingly used both in applied geophysics and in basic research. This is the first book on the subject to go into detail on practical aspects of applying the MT technique. Beginning with the basic principles of electromagnetic induction in the Earth, this introduction to magnetotellurics aims to guide students and researchers in geophysics and other areas of earth science through the practical aspects of the MT method: from planning a field campaign, through data processing and modelling, to tectonic and geodynamic interpretation. The book will be of use to graduate-level students and researchers who are embarking on a research project involving MT; to lecturers preparing courses on MT; and to geoscientists involved in multi-disciplinary research projects who wish to incorporate MT results in their interpretations.

  4. Two dimension magnetotelluric modeling using finite element method, incomplete lu preconditioner and biconjugate gradient stabilized technique

    NASA Astrophysics Data System (ADS)

    Zukir, Muhammad; Srigutomo, Wahyu

    2016-08-01

    Magnetotelluric (MT) method is a passive geophysical exploration technique utilizing natural electromagnetic source to obtain variation of the electric field and magnetic field on the surface of the earth. The frequency range used in this modeling is 10-4 Hz to 102 Hz. The two-dimensional (2D) magnetotelluric modeling is aimed to determine the value of electromagnetic field in the earth, the apparent resistivity, and the impedance phase. The relation between the geometrical and physical parameters used are governed by the Maxwell's equations. These equations are used in the case of Transverse Electric polarization (TE) and Transverse Magnetic polarization (TM). To calculate the solutions of electric and magnetic fields in the entire domain, the modeling domain is discretized into smaller elements using the finite element method, whereas the assembled matrix of equation system is solved using the Biconjugate Gradient Stabilized (BiCGStab) technique combined with the Incomplete Lower - Upper (ILU) preconditioner. This scheme can minimize the iteration process (computational cost) and is more effective than the Biconjugate Gradient (BiCG) technique with LU preconditions and Conjugate Gradient Square (CGS).

  5. Update of MMT assessment

    EPA Science Inventory

    Methylcyclopentadienyl manganese tricarbonyl (MMT) is added to gasoline to increase its octane rating. As a metal additive with potential for widespread use and manganese (Mn) exposure implications, MMT has been the focus of numerous analyses and debates about its potential publi...

  6. A method of synthesis magnetotelluric time-series combining interstation transfer functions and a reference site

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Campanyà, Joan

    2016-04-01

    A new method to Synthesis magnetotelluric (MT) data is proposed whereby the MT Time-series of local site are derived using an Inverse Fourier transform of electric and magnetic fields spectrum of local site, which are computed by Combining Interstation transfer functions and a Reference horizontal magnetic time series (STICIR). The method is based on the stability of interstation transfer function, assuming that the geoelectrical structures of the subsurface independent of time. Applying the suggested method, two interstation transfer functions need to be estimated: the quasi-MT impedance tensor and the interstation geomagnetic transfer functions, which are used to compute the horizontal electric fields and the vertical magnetic field at the local site, respectively. The interstation transfer functions can be estimated by single site robust or remote reference (RR) method if another reference site existed. STICIR provides a new way to synthesis MT time-series at the local site combining interstation transfer functions and the magnetic fields at a reference site. Due to this property, STICIR provides significant improvements processing MT data when time-series at the local site are affected by local noise or are truncated. A test with good quality of MT data shows that synthetic time-series are similar to natural electric and magnetic time series. For contaminated data example, when this method is used to remove noise present at the local site, the scatter of MT sounding curves are clear reduced, and the low frequency data quality are improved.

  7. Efficient computational methods for electromagnetic imaging with applications to 3D magnetotellurics

    NASA Astrophysics Data System (ADS)

    Kordy, Michal Adam

    The motivation for this work is the forward and inverse problem for magnetotellurics, a frequency domain electromagnetic remote-sensing geophysical method used in mineral, geothermal, and groundwater exploration. The dissertation consists of four papers. In the first paper, we prove the existence and uniqueness of a representation of any vector field in H(curl) by a vector lying in H(curl) and H(div). It allows us to represent electric or magnetic fields by another vector field, for which nodal finite element approximation may be used in the case of non-constant electromagnetic properties. With this approach, the system matrix does not become ill-posed for low-frequency. In the second paper, we consider hexahedral finite element approximation of an electric field for the magnetotelluric forward problem. The near-null space of the system matrix for low frequencies makes the numerical solution unstable in the air. We show that the proper solution may obtained by applying a correction on the null space of the curl. It is done by solving a Poisson equation using discrete Helmholtz decomposition. We parallelize the forward code on multicore workstation with large RAM. In the next paper, we use the forward code in the inversion. Regularization of the inversion is done by using the second norm of the logarithm of conductivity. The data space Gauss-Newton approach allows for significant savings in memory and computational time. We show the efficiency of the method by considering a number of synthetic inversions and we apply it to real data collected in Cascade Mountains. The last paper considers a cross-frequency interpolation of the forward response as well as the Jacobian. We consider Pade approximation through model order reduction and rational Krylov subspace. The interpolating frequencies are chosen adaptively in order to minimize the maximum error of interpolation. Two error indicator functions are compared. We prove a theorem of almost always lucky failure in the

  8. Polarisation analysis of magnetotelluric time series using a wavelet-based scheme: A method for detection and characterisation of cultural noise sources

    NASA Astrophysics Data System (ADS)

    Escalas, M.; Queralt, P.; Ledo, J.; Marcuello, A.

    2013-05-01

    The identification and elimination of cultural noise that affects magnetotelluric (MT) time series presents a challenge in the vicinity of industrialised, urban or farming areas. Most noise sources are fixed in space and create a signal with certain polarisation properties. In this paper, we propose a new method for detection and characterisation of cultural noise sources in magnetotelluric time series based on polarisation analysis of the electromagnetic signal in the time-frequency domain using a wavelet scheme. We tested the proposed method with synthetic polarised signals and experimental time series corresponding to a field experiment with a controlled EM source and several MT real cases. The results demonstrated the difference between the polarisation properties of the natural MT signal and the signal contaminated by a controlled source or by cultural noise.

  9. Fuel Additives: Canada bans MMT

    SciTech Connect

    Sissell, K.

    1997-04-16

    The Canadian Senate voted late last week to ban use of the manganese-based fuel additive MMT, produced only in the US by Ethyl. MMT, which has been sold in Canada for the past 20 years and accounts for about half of Ethyl`s Canadian sales, has been criticized by environmentalists, who have raised public health concerns, and automakers, who say it harms emission control systems. {open_quotes}Canada`s vote is a great victory for public health and the environment,{close_quotes} says Environmental Defense Fund executive director Fred Krupp. {open_quotes}The US should move swiftly to follow suit and suspend sales of MMT until adequate toxicity testing on the additive is completed.{close_quotes} EPA had refused to approve MMT for sale because of health concerns but was compelled to do so by a December 1995 court ruling. Ethyl asserts the ban violates Canada`s obligations under Nafta and says it will file a damage claim with the Nafta arbitration panel.

  10. The subsurface cross section resistivity using magnetotelluric method in Pelabuhan Ratu area, West Java, implication for geological hazard mitigation

    NASA Astrophysics Data System (ADS)

    Gaffar, Eddy Z.

    2016-02-01

    Pelabuhan Ratu area is located on the south coast of West Java. Pelabuhan Ratu area's rapid development and population growth were partly stimulated by the Indonesian Government Regulation No. 66 the year 1998 that made Pelabuhan Ratu the capital city of the district of Sukabumi. Because of this fact, it is very important to create a geological hazard mitigation plan for the area. Pelabuhan Ratu were passed by two major faults: Cimandiri fault in the western and Citarik fault in the eastern. Cimandiri fault starts from the upstream of Cimandiri River to the southern of Sukabumi and Cianjur city. While Citarik fault starts from the Citarik River until the Salak Mountain. These two faults needs to be observed closely as they are prone to cause earthquake in the area. To mitigate earthquake that is estimated will occur at Cimandiri fault or the Citarik fault, the Research Center for Geotechnology LIPI conducted research using Magnetotelluric (MT) method with artificial Phoenix MT tool to determine the cross-section resistivity of the Pelabuhan Ratu and the surrounding area. Measurements were taken at 40 points along the highway towards Jampang to Pelabuhan Ratu, and to Bandung towards Cibadak with a distance of less than 500 meters between the measuring points. Measurement results using this tool will generate AMT cross-section resistivity to a depth of 1500 meters below the surface. Cross-section resistivity measurement results showed that there was a layer of rock with about 10 Ohm-m to 1000 Ohm-m resistivity. Rocks with resistivity of 10 Ohm-m was interpreted as conductive rocks that were loose or sandstone containing water. If an earthquake to occur in this area, it will lead to a strong movement and liquefaction that will destroy buildings and potentially cause casualties in this area.

  11. MMT and Magellan infrared spectrograph

    NASA Astrophysics Data System (ADS)

    McLeod, Brian A.; Fabricant, Daniel; Geary, John; Martini, Paul; Nystrom, George; Elston, Richard; Eikenberry, Stephen S.; Epps, Harland

    2004-09-01

    We present the preliminary design for the MMT and Magellan Infrared Spectrograph (MMIRS). MMIRS is a fully refractive imager and multi-object spectrograph that uses a 2048x2048 pixel Hawaii2 HgCdTe array. It offers a 7'x7' imaging field of view and a 4'x7' field of view for multi-object spectroscopy. Dispersion is provided by a set of 5 grisms providing R=3000 at J, H, or K, or R=1300 in J+H or H+K.

  12. Parallel three-dimensional magnetotelluric inversion using adaptive finite-element method. Part I: theory and synthetic study

    NASA Astrophysics Data System (ADS)

    Grayver, Alexander V.

    2015-07-01

    This paper presents a distributed magnetotelluric inversion scheme based on adaptive finite-element method (FEM). The key novel aspect of the introduced algorithm is the use of automatic mesh refinement techniques for both forward and inverse modelling. These techniques alleviate tedious and subjective procedure of choosing a suitable model parametrization. To avoid overparametrization, meshes for forward and inverse problems were decoupled. For calculation of accurate electromagnetic (EM) responses, automatic mesh refinement algorithm based on a goal-oriented error estimator has been adopted. For further efficiency gain, EM fields for each frequency were calculated using independent meshes in order to account for substantially different spatial behaviour of the fields over a wide range of frequencies. An automatic approach for efficient initial mesh design in inverse problems based on linearized model resolution matrix was developed. To make this algorithm suitable for large-scale problems, it was proposed to use a low-rank approximation of the linearized model resolution matrix. In order to fill a gap between initial and true model complexities and resolve emerging 3-D structures better, an algorithm for adaptive inverse mesh refinement was derived. Within this algorithm, spatial variations of the imaged parameter are calculated and mesh is refined in the neighborhoods of points with the largest variations. A series of numerical tests were performed to demonstrate the utility of the presented algorithms. Adaptive mesh refinement based on the model resolution estimates provides an efficient tool to derive initial meshes which account for arbitrary survey layouts, data types, frequency content and measurement uncertainties. Furthermore, the algorithm is capable to deliver meshes suitable to resolve features on multiple scales while keeping number of unknowns low. However, such meshes exhibit dependency on an initial model guess. Additionally, it is demonstrated

  13. A fast and low-loss 3-D magnetotelluric inversion method with parallel structure

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Zhang, L.

    2013-12-01

    The 2D assumption is valid in some cases of interpretation, the approximation does not work in most cases, especially in areas with complex geo-electrical structure. A number of 3D magentotelluric inversion methods has been proposed, including RRI, CG, QA, NLCG. Each of those methods has its own advantages and disadvantages. However, as the 3D dataset and mesh grid require greater computer memory and calculation time than 2D methods, the efficiency of the inversion scheme become a key concern of 3D inversions. We chose NLCG as the optimization method for inversion. A parameter matrix related with the current resisitivity model and data error is proposed to approximate the Hessian matrix. So four forward calculation can be avoided each iteration. In addition, OPENMP parallel API is utilized to establish an effecient parallel inversion structure based on frequency to reduce computation time. And both synthetic and field data are used to test the efficiency of the inversion and the preconditioning method. The model consists of four square prisms residing in a halfspace. The total computation time of invertion is 706s (use one PC). Fiugre 1 shows the inversion result. The abnormal bodies can be distinguished clearly. Field data from the NIHE dataset in China is used to verify the reliability and efficiency of the 3D inversion method. The total computation time is about 25 minutes after 60 iterations on one PC. Totally, four electrical layers can be corresponded to the four stratum in 3D AMT inversion model, and the faults can be seen clearly. In addition, we can get more information about fault and alteration interface from constrained inversion result. Finally, the inversion method is very fast and low-loss, so it can be used in modern PC (need only one PC) with few hardware constraints. (a): initial model; (b): inversion depth slices (1-4km); (c): fitting error (a): AMT 3D slice; (b): CSAMT 2D model; (c): TEM 1D model; (d): SIP 2D model; (e) AMT 3D constrained

  14. Magnetotelluric studies in East Africa

    NASA Astrophysics Data System (ADS)

    Whaler, K. A.

    2012-12-01

    Since its introduction just over half a century ago, the magnetotelluric method has been used in a wide range of environments, both onshore and submarine, at a large number of length scales, and to tackle a huge variety of problems in the earth sciences, both applied and curiosity-driven. Electromagnetic fields are induced in the sub-surface by passive magnetic field sources originating from lightning strikes trapped in the ionospheric waveguide and from the solar wind interacting with the magnetosphere, which enables information on the sub-surface resistivity distribution to be derived. Measuring the tiny induced signals depends on the careful deployment of very sensitive equipment. These time series are then subject to careful selection and processing techniques in the frequency domain to make robust estimates of the tensor quantity embodying the resistivity information as a function of depth. Further processing and assessment of the data allows the practitioner to assess the minimum dimension of the underlying resistivity distribution consistent with the data. As if this wasn't enough, the inverse problem is extremely non-linear, even in the simplest case of resistivity purely a function of depth. Most modelling and interpretation thus proceeds by a combination of forward modelling and regularised inversion, with tests to assess the resolving depth of the data, and their sensitivity to certain features of the model, for example. After introducing the method, I will illustrate it with examples of experiments carried out in East Africa with which I've been involved, concentrating on two substantial inter-disciplinary studies in Ethiopia, one of the northern Main Ethiopian rift, and the other an on-going project studying magmatic and tectonic processes associated with a current rifting episode in Afar. The main target for magnetotellurics in these projects has been imaging partial melt and magma in the sub-surface. I will aim to show how the interpretation of the

  15. Characterizing a large shear-zone with seismic and magnetotelluric methods: The case of the Dead Sea Transform

    USGS Publications Warehouse

    Maercklin, N.; Bedrosian, P.A.; Haberland, C.; Ritter, O.; Ryberg, T.; Weber, M.; Weckmann, U.

    2005-01-01

    Seismic tomography, imaging of seismic scatterers, and magnetotelluric soundings reveal a sharp lithologic contrast along a ???10 km long segment of the Arava Fault (AF), a prominent fault of the southern Dead Sea Transform (DST) in the Middle East. Low seismic velocities and resistivities occur on its western side and higher values east of it, and the boundary between the two units coincides partly with a seismic scattering image. At 1-4 km depth the boundary is offset to the east of the AF surface trace, suggesting that at least two fault strands exist, and that slip occurred on multiple strands throughout the margin's history. A westward fault jump, possibly associated with straightening of a fault bend, explains both our observations and the narrow fault zone observed by others. Copyright 2005 by the American Geophysical Union.

  16. Direct methanol fuel cell (DMFC) based on PVA/MMT composite polymer membranes

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Lee, Ying-Jeng; Yang, Jen Ming

    A novel composite polymer electrolyte membrane composed of a PVA polymer host and montmorillonite (MMT) ceramic fillers (2-20 wt.%), was prepared by a solution casting method. The characteristic properties of the PVA/MMT composite polymer membrane were investigated using thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), and micro-Raman spectroscopy, and the AC impedance method. The PVA/MMT composite polymer membrane showed good thermal and mechanical properties and high ionic conductivity. The highest ionic conductivity of the PVA/10 wt.%MMT composite polymer membrane was 0.0368 S cm -1 at 30 °C. The methanol permeability (P) values were 3-4 × 10 -6 cm 2 s -1, which was lower than that of Nafion 117 membrane of 5.8 × 10 -6 cm 2 s -1. It was revealed that the addition of MMT fillers into the PVA matrix could markedly improve the electrochemical properties of the PVA/MMT composite membranes; which can be accomplished by a simple blend method. The maximum peak power density of the DMFC with the PtRu anode based on Ti-mesh in a 2 M H 2SO 4 + 2 M CH 3OH solution was 6.77 mW cm -2 at ambient pressure and temperature. As a result, the PVA/MMT composite polymer appears to be a good candidate for the DMFC applications.

  17. A MATLAB GUI based algorithm for modelling Magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Timur, Emre; Onsen, Funda

    2016-04-01

    The magnetotelluric method is an electromagnetic survey technique that images the electrical resistivity distribution of layers in subsurface depths. Magnetotelluric method measures simultaneously total electromagnetic field components such as both time-varying magnetic field B(t) and induced electric field E(t). At the same time, forward modeling of magnetotelluric method is so beneficial for survey planning purpose, for comprehending the method, especially for students, and as part of an iteration process in inverting measured data. The MTINV program can be used to model and to interpret geophysical electromagnetic (EM) magnetotelluric (MT) measurements using a horizontally layered earth model. This program uses either the apparent resistivity and phase components of the MT data together or the apparent resistivity data alone. Parameter optimization, which is based on linearized inversion method, can be utilized in 1D interpretations. In this study, a new MATLAB GUI based algorithm has been written for the 1D-forward modeling of magnetotelluric response function for multiple layers to use in educational studies. The code also includes an automatic Gaussian noise option for a demanded ratio value. Numerous applications were carried out and presented for 2,3 and 4 layer models and obtained theoretical data were interpreted using MTINV, in order to evaluate the initial parameters and effect of noise. Keywords: Education, Forward Modelling, Inverse Modelling, Magnetotelluric

  18. Validation of Manual Muscle Testing and a Subset of Eight Muscles (MMT8) for Adult and Juvenile Idiopathic Inflammatory Myopathies

    PubMed Central

    Rider, Lisa G.; Koziol, Deloris; Giannini, Edward H.; Jain, Minal S.; Smith, Michaele R.; Whitney-Mahoney, Kristi; Feldman, Brian M.; Wright, Susan J.; Lindsley, Carol B.; Pachman, Lauren M.; Villalba, Maria L.; Lovell, Daniel J.; Bowyer, Suzanne L.; Plotz, Paul H.; Miller, Frederick W.; Hicks, Jeanne E.

    2010-01-01

    Objective To validate manual muscle testing (MMT) for strength assessment in juvenile and adult dermatomyositis (DM) and polymyositis (PM). Methods Seventy-three children and 45 adult DM/PM patients were assessed at baseline and reevaluated 6–9 months later. We compared Total MMT (a group of 24 proximal, distal, and axial muscles) and Proximal MMT (7 proximal muscle groups) tested bilaterally on a 0–10 scale with 144 subsets of six and 96 subsets of eight muscle groups tested unilaterally. Expert consensus was used to rank the best abbreviated MMT subsets for face validity and ease of assessment. Results The Total, Proximal and best MMT subsets had excellent internal reliability (rs:Total MMT 0.91–0.98), and consistency (Cronbach’s α 0.78–0.97). Inter- and intra-rater reliability were acceptable (Kendall’s W 0.68–0.76; rs 0.84–0.95). MMT subset scores correlated highly with Total and Proximal MMT scores and with the Childhood Myositis Assessment Scale, and correlated moderately with physician global activity, functional disability, magnetic resonance imaging, axial and distal MMT scores and, in adults, with creatine kinase. The standardized response mean for Total MMT was 0.56 in juveniles and 0.75 in adults. Consensus was reached to use a subset of eight muscles (neck flexors, deltoids, biceps, wrist extensors, gluteus maximus and medius, quadriceps and ankle dorsiflexors) that performed as well as the Total and Proximal MMT, and had good face validity and ease of assessment. Conclusions These findings aid in standardizing the use of MMT for assessing strength as an outcome measure for myositis. PMID:20391500

  19. Determination of near-surface, crustal and lithospheric structures in the Canadian Precambrian Shield using time-domain electromagnetic and magnetotelluric methods

    NASA Astrophysics Data System (ADS)

    Wu, Xianghong

    Two electromagnetic methods were used to analyse the geoelectric structure of the subsurface of regions of the Precambrian Shield in Canada: the magnetotelluric (MT) and time-domain electromagnetic (TEM) methods. Magnetotelluric soundings were made at 60 sites in the southwestern Northwest Territories, Canada, along the LITHOPROBE SNORCLE Transect Corridor 1 and 1A, in the summer of 1996. The sites are located in southwestern Northwest Territories, Canada, between latitudes 60°--65°N and longitudes 110°--125°W, and cross the Archean Slave Province, the Proterozoic Buffalo Head, Great Bear Magmatic Arc, Hottah, Fort Simpson and Nahanni terranes, and the Great Slave Lake Shear Zone. Phanerozoic sedimentary rocks overlie the Proterozoic terranes. The main object of this project is to map the fracture zones and fresh/saline water interface in Precambrian granitic rocks using the surface TEM method. The TEM surveys were completed at Sites B, D, URL and A. A GEONICS PROTEM47 system with a 100 m transmitter loop was used. The data were collected for receiver offsets ranging from 0--280 m on four sides of transmitter loop. Analysis of the TEM and borehole log data indicates a basic three-layer structure: a thin conductive surface layer, a thick resistive second layer with an embedded conductive layer at some stations, and a conductive bottom layer. The results of this study show the TEM method can be used to investigate the fracture zones and groundwater salinity distribution in the Precambrian granitic rocks and contribute to site investigations for nuclear waste deposit. The TEM study in the Lac du Bonnet Batholith was successful in demonstrating the potential of the TEM methods in mapping groundwater salinity in granitic batholith. The PROTEM47 instrument, in combination with a 100 m transmitter loop, provides a suitable TEM system for mapping the resistivity structure of the Lac du Bonnet batholith down to a depth of 300--400 m. For deeper penetration and more

  20. Magnetotelluric measurements in Antarctica

    NASA Astrophysics Data System (ADS)

    Trivedi, N. B.; Padilha, A. L.; Barbosa, M. J. F.

    1986-11-01

    In the period of 2/14/86 to 3/7/86, during the 4th Brazilian Scientific Expedition to Antarctica, organized through the CIRM (Comissao Interministerial para Recursos do Mar), Station Commander Ferraz, (62 deg 5 min S, 58 deg 23.5 min W), magnetotelluric measurements were accomplished in 120 second intervals for DC. This measurement complemented the former, accomplished in the preceeding year between 20 and 400 seconds and although it presented excellent agreement in the overlapping intervals, it was a difficult interpretation. A Hilbert transformation technique was utilized for solving this problem, which brought to mind similar obtained resistivity values. The preliminary results encountered were presented and discussed.

  1. Geophysical characterization of areas prone to quick-clay landslides using radio-magnetotelluric and seismic methods

    NASA Astrophysics Data System (ADS)

    Wang, Shunguo; Malehmir, Alireza; Bastani, Mehrdad

    2016-05-01

    Landslides attributed to quick clays have not only considerable influences on surface geomorphology, they have caused delays in transportation systems, environmental problems and human fatalities, especially in Scandinavia and North America. If the subsurface distributions of quick clays are known, potential damages can be mitigated and the triggers of landslides can better be studied and understood. For this purpose, new radio-magnetotelluric (RMT) and seismic data were acquired in an area near the Göta River in southwest Sweden that contains quick clays and associated landslides. High-resolution data along 4 new lines, in total 3.8 km long, were acquired and merged with earlier acquired data from the site. Velocity and resistivity models derived from first breaks and RMT data were used to delineate subsurface geology, in particular the bedrock surface and coarse-grained materials that overlay the bedrock. The latter often are found underlying quick clays at the site. Comparably high-resistivity and sometimes high-velocity regions within marine clays are attributed to a combination of leached salt from marine clays or potential quick clays and coarse-grained materials. The resistivity and tomographic velocity models suggest a much larger role of the coarse-grained materials at the site than previously thought, but they also suggest two different scenarios for triggering quick-clay landslides at the site. These scenarios are related to the erosion of the riverbank, increased pore-pressure and surface topography when close to the river and human activity when away from the river and where bowl-shaped bedrock surrounds the sediments.

  2. An evaluation of the applicability of the telluric-electric and audio-magnetotelluric methods to mineral assessment on the Arabian Shield, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Flanigan, Vincent J.; Zablocki, Charles J.

    1984-01-01

    Feasibility studies of two electromagnetic methods were made in selected areas of the Jabal Hibshi (1:250,000) quadrangle, 26F, in the Kingdom of Saudi Arabia in March of 1983. The methods tested were the natural source-field telluricelectric and audio-magnetotelluric methods developed and extensively used in recent years by the U.S. Geological Survey in some of its domestic programs related to geothermal and mineral resource assessment. Results from limited studies in the Meshaheed district, the Jabal as Silsilah ring complex, and across a portion of the Raha fault zone clearly demonstrate the appropriateness of these sub-regional scale, reconnaissance-type studies to mineral resource assessment. The favorable results obtained are largely attributed to distinctive and large contrasts in the electrical resistivity of the major rock types encountered. It appears that the predominant controlling factor governing the rock resistivities is the amount of contained clay minerals. Accordingly, unaltered (specifically, non-argillic) igneous and metamorphic rocks have very high resistivities; metasedimentary rocks of the Murdama group that contain several percent clay minerals have intermediate values of resistivity; and highly altered rocks, containing abundant clay minerals, have very low values of resistivity. Water-filled fracture porosity may be a secondary, but important, factor in some settings. However, influences from variations in interstitial or intercrystalline, water-filled porosity are probably small because these types of porosity are generally low. It is reasonable to expect similar results in other areas within the Arabian Shield.

  3. Continuous profiling of magnetotelluric fields

    SciTech Connect

    Verdin, C.T.

    1991-05-01

    The magnetotelluric (MT) method of mapping ground electrical conductivity is traditionally based on measurement of the surface impedance at widely spaced stations to infer models of the subsurface through a suitable pseudo 1-D inverse or with linearized least-squares inversion for 2- or 3-D geoelectric media. It is well known that small near-surface inhomogeneities can produce spatial discontinuities in the measured electric fields over a wide frequency range and may consequently bias the impedance on a very local scale. Inadequate station spacing effectively aliases the electric field measurements and results in distortions that cannot be removed in subsequent processing or modelling. In order to fully exploit the benefits of magnetotellurics in complex geological environments, closely spaced measurements must be used routinely. This thesis entertains an analysis of MT data taken along continuous profiles and is a first step that will allow more encompassing 2-D sampling techniques to become viable in the years to come. The developments presented here are to a large extent motivated by the physical insight gained from low-contrast solutions to the forward MT problem. These solutions describe the relationship between a perturbation in the electrical conductivity of the subsurface and the ensuing perturbation of the MT response as the output of a linear system. Albeit strictly accurate in a limited subset of practical exploration problems, the linearized solutions allow one to pursue a model independent study of the response characteristics of MT data. In fact, these solutions yield simple expressions for 1-,2-, and 3-D resistivity models which are here examined in progressive sequence.

  4. Making Metadata Better with CMR and MMT

    NASA Technical Reports Server (NTRS)

    Gilman, Jason Arthur; Shum, Dana

    2016-01-01

    Ensuring complete, consistent and high quality metadata is a challenge for metadata providers and curators. The CMR and MMT systems provide providers and curators options to build in metadata quality from the start and also assess and improve the quality of already existing metadata.

  5. Three-dimensional inversion of magnetotelluric data from the Coso Geothermal Field, based on a finite difference Gauss-Newton method parallelized on a multicore workstation

    NASA Astrophysics Data System (ADS)

    Maris, Virginie

    An existing 3-D magnetotelluric (MT) inversion program written for a single processor personal computer (PC) has been modified and parallelized using OpenMP, in order to run the program efficiently on a multicore workstation. The program uses the Gauss-Newton inversion algorithm based on a staggered-grid finite-difference forward problem, requiring explicit calculation of the Frechet derivatives. The most time-consuming tasks are calculating the derivatives and determining the model parameters at each iteration. Forward modeling and derivative calculations are parallelized by assigning the calculations for each frequency to separate threads, which execute concurrently. Model parameters are obtained by factoring the Hessian using the LDLT method, implemented using a block-cyclic algorithm and compact storage. MT data from 102 tensor stations over the East Flank of the Coso Geothermal Field, California are inverted. Less than three days are required to invert the dataset for ˜ 55,000 inversion parameters on a 2.66 GHz 8-CPU PC with 16 GB of RAM. Inversion results, recovered from a halfspace rather than initial 2-D inversions, qualitatively resemble models from massively parallel 3-D inversion by other researchers and overall, exhibit an improved fit. A steeply west-dipping conductor under the western East Flank is tentatively correlated with a zone of high-temperature ionic fluids based on known well production and lost circulation intervals. Beneath the Main Field, vertical and north-trending shallow conductors are correlated with geothermal producing intervals as well.

  6. REGIONAL MAGNETOTELLURIC SURVEYS IN HYDROCARBON EXPLORATION, PARANA BASIN, BRAZIL.

    USGS Publications Warehouse

    Stanley, William D.; Saad, Antonio; Ohofugi, Walter

    1985-01-01

    The mangetotelluric geophysical method has been used effectively as a hydrocarbon exploration tool in the intracratonic Parana basin of South America. The 1-2 km thick surface basalts and buried diabase sills pose no problem for the magnetotelluric method because the natural electromagnetic fields used as the energy source pass easily through the basalt. Data for the regional study were taken on six profiles with sounding spaced 8 to 15 km apart. The magnetotelluric sounding data outline a linear uplift known as the Ponta Grossa arch. This major structural feature cuts across the northeast-trending intracratonic basin almost perpendicularly, and is injected with numerous diabase dikes. Significant electrical contrasts occur between the Permian sediments and older units, so that magnetotelluric measurements can give an indication of the regional thickness of the Permian and younger sediments to aid in interpreting hydrocarbon migration patterns and possible trap areas. Refs.

  7. Classification of 5 DES supernovae by MMT

    NASA Astrophysics Data System (ADS)

    Challis, P.; Kirshner, R.; Mandel, K.; Avelino, A.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; Gladney, L.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Nichol, R.; Papadopoulos, A.; Childress, M.; D'Andrea, C.; Smith, M.; Sullivan, M.; Maartens, R.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.

    2016-04-01

    We report optical spectroscopy of 5 supernovae discovered by the Dark Energy Survey (ATel #4668). The spectra (330-850nm) were obtained using the Blue Channel Spectrograph on the MMT. Object classification was performed using SNID (Blondin & Tonry, 2007, ApJ, 666, 1024) and superfit (Howell et al, 2005, ApJ, 634, 119), the details of which are reported in the table below.

  8. The MMT-POL Instrument Control System

    NASA Astrophysics Data System (ADS)

    Warner, C.; Packham, C.; Jones, T. J.; Varosi, F.; Eikenberry, S. S.; Dewahl, K.; Krejny, M.

    2011-07-01

    Instrument control system (ICS) suites are a continually evolving class of software packages that are highly dependent upon the design choices and application programming interfaces (APIs) of the observatory control system (OCS), as well as the hardware choices for motors and electronics. We present the ICS for MMT-POL, a 1-5 μm polarimeter for the MMT telescope, in the context of being a transitional step between the software packages developed for facility class instruments at the University of Florida (UF), such as Flamingos-II and CanariCam, and in preparation for 30 m-class instruments. Our goals for improving ICS suites are to make them (a) portable (compile once, run anywhere), (b) highly modular and extensible (through the re-use of common libraries), (c) multi-threaded (to allow multiple tasks to be performed in parallel), (d) smart, and (e) easy to use and maintain. An ICS should also be well-defined and use mature languages (we choose Java and Python) and common standards (such as XML and the FITS file format). We also note that as hardware moves away from serial communications to ethernet, the use of TCP sockets makes communication faster and easier. Below, we present our design choices for the MMT-POL ICS and discuss our reasons for these choices and potential issues that must be addressed for future ICS suites ready for thirty meter class instruments.

  9. Tectonic framework of the southern portion of the Paraná Basin based on magnetotelluric method: a contribution to the understanding of unconventional reservoirs

    NASA Astrophysics Data System (ADS)

    Rolim, S.

    2015-12-01

    The characterization of the tectonic framework of Paleozoic terrains is crucial for the investigation of unconventional fractured volcanic reservoirs. In recent years, the need for exploitation of these areas showed the value of the non-seismic methods in Brazil. Here we present the results of a magnetotelluric imaging (MT) to identify and characterize the structural framework of the southern portion of the Paraná Basin, southern Brazil. We carried out a SW-NE ,1200 km-long MT profile, with 68 stations spaced between 5-15 km on the southernmost states in Brazil. The observation of the PSI profile highlights the presence of large scale NW-SE faults and emphasize the presence of two major regional structures: (i) the Rio Grande Arc in the southern portion, and (ii) the Torres Syncline in the northern portion. The Rio Grande Arc is a horst highlighted by the basement uplift and the thicker layers of sedimentary rocks in the extremes south and north of this structure. The fault system observed along the profile suggests simultaneously uplifting of the basement and deposition of the sedimentary sequences of the Paraná Basin. This hypothesis is in agreement with stratigraphic, borehole and geochronological data, which have shown that the Rio Grande arc is contemporaneous with the deposition of the Triassic to Early Jurassic sediments. The Torres Syncline is a structure characterized by the increasing thickness of sedimentary layers in the north section of our MT profile. The continuity of the layers is interrupted by large regional fault systems, which also affect the volcanic rocks of the Serra Geral Formation, indicating that the faults were active after the Cretaceous. The results show that the MT modeling brings a distinct contribution to the understanding of the present structural architecture of the Paraná basin and the construction of a model for potential fractured volcanic reservoirs.

  10. Probability distributions for magnetotellurics

    SciTech Connect

    Stodt, John A.

    1982-11-01

    Estimates of the magnetotelluric transfer functions can be viewed as ratios of two complex random variables. It is assumed that the numerator and denominator are governed approximately by a joint complex normal distribution. Under this assumption, probability distributions are obtained for the magnitude, squared magnitude, logarithm of the squared magnitude, and the phase of the estimates. Normal approximations to the distributions are obtained by calculating mean values and variances from error propagation, and the distributions are plotted with their normal approximations for different percentage errors in the numerator and denominator of the estimates, ranging from 10% to 75%. The distribution of the phase is approximated well by a normal distribution for the range of errors considered, while the distribution of the logarithm of the squared magnitude is approximated by a normal distribution for a much larger range of errors than is the distribution of the squared magnitude. The distribution of the squared magnitude is most sensitive to the presence of noise in the denominator of the estimate, in which case the true distribution deviates significantly from normal behavior as the percentage errors exceed 10%. In contrast, the normal approximation to the distribution of the logarithm of the magnitude is useful for errors as large as 75%.

  11. STS-114: Discovery Post MMT Briefing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Wayne Hale, Space Shuttle Deputy Program Manager and Terri Murphy, Space Shuttle Imagery Integration Manager are seen in this post Mission Management Team (MMT) briefing. Hale begins with showing a video that was recovered from the Solid Rocket Booster (SRB) looking at the external tank during ascent. Pictures of the RH Nose Landing Gear Damage (NLGD), Protruding gap filler near chine and protruding gap fillers are shown. Terri Murphy talks about the imagery from debris, integrated simulations and radar data collected from the launch. Hale answers questions from the news media about the location of the gap fillers, possible EVA to remove the gap fillers and the thermal protection system.

  12. Magnetotellurics and radio-wave interference sounding

    NASA Astrophysics Data System (ADS)

    Khmelevskoy, V. K.; Petrukhin, B. P.; Pushkarev, P. Yu.

    2010-09-01

    The plane harmonic electromagnetic fields are considered in the theory of magnetotelluric methods in the range of frequencies from 0.0001 Hz to 20 kHz. These fields are natural by their origin and contain information on the depths from tens of meters up to 100 km and more. The magnetotelluric soundings, which use the fields of radio stations, expand the frequency band almost up to 1 MHz and make it possible to study the depths from the first few meters. The method of radio-wave interference sounding supplements geoelectric prospecting on plane waves into the range of even higher frequencies (up to 100 MHz). In this case, the conduction and displacement currents become comparable, which makes it possible to distinguish objects both by their electrical conductivity and by their dielectric permittivity. For the two-layered model of a medium, there exist simple kinematic methods of data interpretation of a radio-interferometry sounding. Within multilayer, and especially horizontally heterogeneous, media, methods for solving equations of electrodynamics and inverse problems of geophysics are required. In the present paper, the foundations of the theory of radio-interferometry sounding, the methodology, its role in geoelectric prospecting, and the opportunities for the solution of geological problems are discussed.

  13. Regional magnetotelluric surveys in hydrocarbon exploration, Parana' Basin, Brazil

    SciTech Connect

    Stanley, W.D.; Ohofugi, W.; Saad, A.R.

    1985-03-01

    The magnetotelluric geophysical method has been used effectively as a hydrocarbon exploration tool in the intracratonic Parana basin of South America. The 1-2 km thick surface basalts and buried diabase sills pose no problem for the magnetotelluric method because the natural electromagnetic fields used as the energy source pass easily through the basalt. Data for the regional study were taken on six profiles with soundings spaced 8 to 15 km apart. The magnetotelluric sounding data outline a linear uplift known as the Ponta Grossa arch. This major structural feature cuts across the northeast-trending intracratonic basin almost perpendicularly, and is injected with numerous diabase dikes. In the survey area, MT interpretations show that basalts have aggregate thicknesses of as much as 2 km (6,600 ft), and basement may be as much as 6 km (20,000 ft) below the surface. Over most of the basin, the basalts are covered by Upper Cretaceous to Holocene continental sediments of a few hundred meters thickness and are underlain by 2 to 4 km (6,600 to 13,100 ft) thick Paleozoic sediments with possible hydrocarbon potential. Significant electrical contrasts occur between the Permian sediments and older units, so that magnetotelluric measurements can give an indication of the regional thickness of the Permian and younger sediments to aid in interpreting hydrocarbon migration patterns and possible trap areas.

  14. Ethyl`s MMT ready to hit the road

    SciTech Connect

    Stringer, J.

    1996-01-03

    After spending two decades and about $30 million on the fight to sell the fuel octane booster methylcyclopentadienyl manganese tricarbonyl (MMT), Ethyl has started marketing the product. Ethyl president and chief operating officer Thomas Gottwald says he expects a profit from MMT from the outset. {open_quotes}MMT is a gangbuster new product,{close_quotes} says Paul Raman, an analyst with S.G. Warburg (New York), {open_quotes}and it will be very profitable for Ethyl.{close_quotes} Ethyl`s effort to bring MMT to market faced pressure from EPA and automakers. EPA says MMT should not be marketed until more research is done on health effects of the manganese-based additive. US automakers oppose MMT, fearing it will damage catalytic converters. Last October Ethyl won a federal appeals court decision compelling EPA to approve MMT use. Gottwald says the MMT fight has been well worth it: {open_quotes}We fought with our eye on the bottom line.{close_quotes}

  15. EPA dashes ethyl`s hopes for MMT

    SciTech Connect

    Heller, K.

    1992-01-15

    Up until the Environmental Protection Agency (EPA; Washington) decided to deny Ethyl`s (Richmond, VA) petition to sell manganese-based gasoline additive MMT, many on Wall Street were bullish. Bets were that MMT sales could create an up to $200 million/year sales windfall for Ethyl with $60 million/year income, and push its near $26/share price up by at least 50 cts. But EPA ruled January 8 against MMT in unleaded gas due to its potential to increase hydrocarbon emissions. What kept analysts hoping is that octane enhancer MMT`s environmental impacts are mixed. An Ethyl spokesman says that MMT cut tailpipe emissions of nitrogen oxide by 20% and carbon monoxide by 7%. Ethyl also points out that MMT could save as much as 85,000 barrels/day of imported oil because of lower energy requirements in blending. And the product has sold for 13 years in Canada with no reported ill health effects. But, points out Smith, Barney (New York) analyst James Wilbur, Canada is not the congested Los Angeles basin, where the unknown effects of small amounts of heavy metal manganese would show up a lot faster if every car burnt MMT. For now, the financial effect of the decision is negligible, although at some point Ethyl may have to take a write-down on its Orangeburg, NC plant.

  16. New approaches to estimation of magnetotelluric parameters

    SciTech Connect

    Egbert, G.D.

    1991-01-01

    Fully efficient robust data processing procedures were developed and tested for single station and remote reference magnetotelluric (Mr) data. Substantial progress was made on development, testing and comparison of optimal procedures for single station data. A principal finding of this phase of the research was that the simplest robust procedures can be more heavily biased by noise in the (input) magnetic fields, than standard least squares estimates. To deal with this difficulty we developed a robust processing scheme which combined the regression M-estimate with coherence presorting. This hybrid approach greatly improves impedance estimates, particularly in the low signal-to-noise conditions often encountered in the dead band'' (0.1--0.0 hz). The methods, and the results of comparisons of various single station estimators are described in detail. Progress was made on developing methods for estimating static distortion parameters, and for testing hypotheses about the underlying dimensionality of the geological section.

  17. Stochastic Inversion of 2D Magnetotelluric Data

    SciTech Connect

    Chen, Jinsong

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows

  18. Stochastic Inversion of 2D Magnetotelluric Data

    2010-07-01

    The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function ismore » explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows« less

  19. Cooperative inversion of magnetotelluric and seismic data sets

    NASA Astrophysics Data System (ADS)

    Markovic, M.; Santos, F.

    2012-04-01

    Cooperative inversion of magnetotelluric and seismic data sets Milenko Markovic,Fernando Monteiro Santos IDL, Faculdade de Ciências da Universidade de Lisboa 1749-016 Lisboa Inversion of single geophysical data has well-known limitations due to the non-linearity of the fields and non-uniqueness of the model. There is growing need, both in academy and industry to use two or more different data sets and thus obtain subsurface property distribution. In our case ,we are dealing with magnetotelluric and seismic data sets. In our approach,we are developing algorithm based on fuzzy-c means clustering technique, for pattern recognition of geophysical data. Separate inversion is performed on every step, information exchanged for model integration. Interrelationships between parameters from different models is not required in analytical form. We are investigating how different number of clusters, affects zonation and spatial distribution of parameters. In our study optimization in fuzzy c-means clustering (for magnetotelluric and seismic data) is compared for two cases, firstly alternating optimization and then hybrid method (alternating optimization+ Quasi-Newton method). Acknowledgment: This work is supported by FCT Portugal

  20. The characterizations of rheological, electrokinetical and structural properties of ODTABr/MMT and HDTABr/MMT organoclays

    SciTech Connect

    Isci, S. Uslu, Y.O.; Ece, O.I.

    2009-05-15

    In the present paper, we have investigated as a function of surfactant concentration the rheological (yield value, plastic viscosity) and electrokinetic (mobility, zeta potential) properties of montmorillonite (MMT) dispersions. The influence of surfactants (Octadeccyltrimethylammonium bromide, ODTABr and Hexadecyltrimethylammonium bromide, HDTABr) on dispersions of Na-activated bentonite was evaluated by rheological and electrokinetic measurements, and X-ray diffraction (XRD) studies. The interactions between clay minerals and surfactants in water-based Na-activated MMT dispersions (2 wt.%) were examined in detail using rheologic parameters, such as viscosity, yield point, apparent and plastic viscosity, hysteresis area, and electrokinetic parameters of mobility and zeta potentials, and XRD also analyses helped to determine swelling properties of d-spacings. MMT and organoclay dispersions showed Bingham Plastic flow behavior. The zeta potential measurements displayed that the surfactant molecules hold on the clay particle surfaces and the XRD analyses displayed that they get into the basal layers.

  1. Introducing Python tools for magnetotellurics: MTpy

    NASA Astrophysics Data System (ADS)

    Krieger, L.; Peacock, J.; Inverarity, K.; Thiel, S.; Robertson, K.

    2013-12-01

    Within the framework of geophysical exploration techniques, the magnetotelluric method (MT) is relatively immature: It is still not as widely spread as other geophysical methods like seismology, and its processing schemes and data formats are not thoroughly standardized. As a result, the file handling and processing software within the academic community is mainly based on a loose collection of codes, which are sometimes highly adapted to the respective local specifications. Although tools for the estimation of the frequency dependent MT transfer function, as well as inversion and modelling codes, are available, the standards and software for handling MT data are generally not unified throughout the community. To overcome problems that arise from missing standards, and to simplify the general handling of MT data, we have developed the software package "MTpy", which allows the handling, processing, and imaging of magnetotelluric data sets. It is written in Python and the code is open-source. The setup of this package follows the modular approach of successful software packages like GMT or Obspy. It contains sub-packages and modules for various tasks within the standard MT data processing and handling scheme. Besides pure Python classes and functions, MTpy provides wrappers and convenience scripts to call external software, e.g. modelling and inversion codes. Even though still under development, MTpy already contains ca. 250 functions that work on raw and preprocessed data. However, as our aim is not to produce a static collection of software, we rather introduce MTpy as a flexible framework, which will be dynamically extended in the future. It then has the potential to help standardise processing procedures and at same time be a versatile supplement for existing algorithms. We introduce the concept and structure of MTpy, and we illustrate the workflow of MT data processing utilising MTpy on an example data set collected over a geothermal exploration site in South

  2. A final report on computed magneto-telluric curves for hypothetical models of crustal structure

    USGS Publications Warehouse

    Pritchard, J.I.

    1965-01-01

    Several mathematical models were investigated to determine the capa-bilities of the magneto-telluric method for determining the resistivity structure of the earth's crust. The model parameters were based on the crust model proposed by Keller (1963). The mathematical technique used was developed by Cagniard (1953). The investigations indicate that a three-layer model approximation of the crust and mantle is the most detailed model warranted in inter-preting the information provided by the magneto-telluric method about the lower crust. Only the thickness of the lower crust can be determined, and not the resistivity.

  3. Two and three dimensional magnetotelluric inversion

    NASA Astrophysics Data System (ADS)

    Booker, J. R.

    Improved imaging of underground electrical structure has wide practical importance in exploring for groundwater, mineral, and geothermal resources, and in characterizing oil fields and waste sites. Because the electromagnetic inverse problem for natural sources is generally multidimensional, most imaging algorithms saturate available computer power long before they can deal with complete data sets. We have developed an algorithm to directly invert large multidimensional magnetotelluric data sets that is orders of magnitude faster than competing methods. In the past year, we have extended the two-dimensional (2D) version to permit incorporation of geological constraints, have developed ways to assess model resolution, and have completed work on an accurate and fast three-dimensional (3D) forward algorithm. We are proposing to further enhance the capabilities of the 2D code and to incorporate the 3D forward code in a fully 3D inverse algorithm. Finally, we will embark on an investigation of related EM imaging techniques which may have the potential for further increasing resolution.

  4. Two and three dimensional magnetotelluric inversion

    SciTech Connect

    Booker, J.R.

    1994-07-01

    Improved imaging of underground electrical structure has wide practical importance in exploring for groundwater, mineral and geothermal resources, and in characterizing oil fields and waste sites. Because the electromagnetic inverse problem for natural sources is generally multi-dimensional, most imaging algorithms saturate available computer power long before they can deal with complete data sets. We have developed an algorithm to directly invert large multi-dimensional magnetotelluric data sets that is orders of magnitude faster than competing methods. In the past year, we have extended the two- dimensional (2D) version to permit incorporation of geological constraints, have developed ways to assess model resolution and have completed work on an accurate and fast three-dimensional (3D) forward algorithm. We are proposing to further enhance the capabilities of the 2D code and to incorporate the 3D forward code in a fully 3D inverse algorithm. Finally, we will embark on an investigation of related EM imaging techniques which may have the potential for further increasing resolution.

  5. Commissioning results of MMT-POL: the 1-5um imaging polarimeter leveraged from the AO secondary of the 6.5m MMT

    NASA Astrophysics Data System (ADS)

    Packham, C.; Jones, T. J.; Warner, C.; Krejny, M.; Shenoy, D.; Vonderharr, T.; Lopez-Rodriguez, E.; DeWahl, K.

    2012-09-01

    MMT-POL is an adaptive optics optimized imaging polarimeter designed for use at the 6.5m MMT. By taking full advantage of the adaptive optics secondary mirror of the MMT, this polarimeter offers diffraction-limited polarimetry with very low instrumental polarization and minimal thermal background. MMT-POL permits observations as diverse as protoplanetary discs, comets, red giant winds, (super)novae and ejecta, galaxies, and AGN. We report on the initial on-sky commissioning results of the instrument including a description of the instrument.

  6. Semiautomatic and Automatic Cooperative Inversion of Seismic and Magnetotelluric Data

    NASA Astrophysics Data System (ADS)

    Le, Cuong V. A.; Harris, Brett D.; Pethick, Andrew M.; Takam Takougang, Eric M.; Howe, Brendan

    2016-09-01

    Natural source electromagnetic methods have the potential to recover rock property distributions from the surface to great depths. Unfortunately, results in complex 3D geo-electrical settings can be disappointing, especially where significant near-surface conductivity variations exist. In such settings, unconstrained inversion of magnetotelluric data is inexorably non-unique. We believe that: (1) correctly introduced information from seismic reflection can substantially improve MT inversion, (2) a cooperative inversion approach can be automated, and (3) massively parallel computing can make such a process viable. Nine inversion strategies including baseline unconstrained inversion and new automated/semiautomated cooperative inversion approaches are applied to industry-scale co-located 3D seismic and magnetotelluric data sets. These data sets were acquired in one of the Carlin gold deposit districts in north-central Nevada, USA. In our approach, seismic information feeds directly into the creation of sets of prior conductivity model and covariance coefficient distributions. We demonstrate how statistical analysis of the distribution of selected seismic attributes can be used to automatically extract subvolumes that form the framework for prior model 3D conductivity distribution. Our cooperative inversion strategies result in detailed subsurface conductivity distributions that are consistent with seismic, electrical logs and geochemical analysis of cores. Such 3D conductivity distributions would be expected to provide clues to 3D velocity structures that could feed back into full seismic inversion for an iterative practical and truly cooperative inversion process. We anticipate that, with the aid of parallel computing, cooperative inversion of seismic and magnetotelluric data can be fully automated, and we hold confidence that significant and practical advances in this direction have been accomplished.

  7. Audio-magnetotelluric data collected in the area of Beatty, Nevada

    SciTech Connect

    Williams, J.M.

    1998-11-01

    In the summer of 1997, electrical geophysical data was collected north of Beatty, Nevada. Audio-magnetotellurics (AMT) was the geophysical method used to collect 16 stations along two profiles. The purpose of this data collection was to determine the depth to the alluvial basement, based upon the needs of the geologists requesting the data.

  8. Predictors of One-Year Retention in Methadone Maintenance Treatment (MMT) in Iran, Rafsanjan

    PubMed Central

    Sheikh Fathollahi, Mahmood; Torkashvand, Fateme; Najmeddin, Hamid; Rezaeian, Mohsen

    2016-01-01

    Background Retention in treatment is a key factor to the success of methadone maintenance treatment (MMT) and considered an important measure in evaluation of treatment effectiveness. Objectives This study aimed to investigate the retention rate and predictors of retention in MMT in Rafsanjan. Patients and Methods This was a historical cohort study. A total of 1396 patients admitted between March 2011 and March 2012 in 16 MMT clinics (13 private and 3 state clinics) in Rafsanjan, entered the study and their retention rate was examined for one year. The patients’ data abstracted from their medical records using checklists and collected by clinics’ staff. Data analyses were performed using SPSS 15.0 and SAS 9.1. Kaplan-Meier method and Cox proportional hazards model were used to determine the retention rate and identify predictors of retention, respectively. Results The mean age of 1396 patients was 37.65 ± 10.77 years and most patients were men (93.8%). The mean and median of retention duration were 193.22 ± 3.83 and 153 ± 9.54 days, respectively. Three-month and one-year retention rates were 66.0% and 34.4%, respectively. Predictor variables of one-year retention in Cox proportional hazards model were high methadone dosage, polysubstance abuse and treatment under state clinics. Conclusions In this study, retention rate was lower compared to previous studies from other countries. The results suggested that program related factors are better predictors of retention than individual related ones. PMID:27803890

  9. CuO-MMT nanocomposite: effective photocatalyst for the discoloration of methylene blue in the absence of H2O2

    NASA Astrophysics Data System (ADS)

    Sohrabnezhad, Sh.; Pourahmad, A.; Salavatiyan, T.

    2016-02-01

    Copper oxide (CuO) nanoparticles are of particular interest because of their interesting properties and promising applications in photocatalysis and purification of water. In this work, CuO-montmorillonite (CuO-MMT) nanocomposite was synthesized by a thermal decomposition method and characterized by diffuse reflectance spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy and transmission electron microscopy. The resultant particles were nearly spherical, and particle size in MMT was in the range of ˜3-5 nm. The powder X-ray reflection patterns indicate that MMT has a d-spacing higher (1.22 nm) than CuO-MMT nanocomposite (0.97 nm). The shrinkage probably is related to the conformation of CuO nanoparticles on the clay surface. The diffuse reflectance spectrum of CuO-MMT showed band around 340-360 nm corresponding to presence of [Cu-O-Cu] n -type clusters over the support surface. The band gaps of the resulting CuO nanoparticles and CuO-MMT nanocomposite were widened from 1.70 to 1.80 eV for an indirect allowed band gap and from 3.70 to 3.82 eV for a direct allowed inter band transition owing to the quantum size effect, respectively. The nanocomposite exhibited an enhanced and stable photoactivity for the discoloration of methylene blue (MB) aqueous solution under visible light. The result showed that MB discoloration was observed after 20 min light irradiation in the absence of H2O2. The several parameters were examined, such as the catalyst amount, pH and initial concentration of MB. The mechanism of separation of the photogenerated electrons and holes of the CuO-MMT nanocomposite was discussed.

  10. The Lithospheric Structure of Southern Africa from Magnetotelluric Sounding

    NASA Astrophysics Data System (ADS)

    Evans, R. L.; Jones, A. G.; Atekwana, E. A.

    2014-12-01

    Measurements of mantle electrical conductivity, made through the magnetotelluric method, offer considerable insight into the structure of cratonic lithosphere. A particularly expansive data set has been collected in Southern Africa, started through the Southern Africa Magnetotelluric Experiment (SAMTEX) experiment, now continuing north through Zambia as part of the Project for Rift Initiation Development and Evolution (PRIDE) experiment. The combined data set highlights large variability in lithospheric structure that broadly correlates with surface geology: cratonic lithosphere is generally thick and electrically resistive, while much thinner lithosphere is seen beneath mobile belts. In areas of relatively uniform resistivity structure, we have constructed resistivity-depth profiles and use new laboratory data to place constraints on the water content of lithospheric mantle. Uncertainty in our estimates arises from differences between different laboratory results, but our data are generally consistent with a slightly damp upper lithospheric mantle above a dry and strong cratonic root. Other areas show complexity of structure that is difficult to understand using current knowledge of conductivity -the Bushveld complex, where the mantle is highly conductive, is one such example. In southwestern Zambia, the lithosphere is seen to be very thin (around 50km) beneath mobile belt terrain, as was inferred nearly 40 years ago on the basis of high heatflow. The mantle is highly conductive, most likely due to a combination of elevated temperatures, water content and perhaps a trace amount of melting. This anomalous structure may be linked to the southwest propagation of the East African Rift system.

  11. Beyond magnetotelluric decomposition: Induction, current channeling, and magnetotelluric phases over 90°

    NASA Astrophysics Data System (ADS)

    Lezaeta, Pamela; Haak, Volker

    2003-06-01

    This paper presents a method to examine strong current channeling affecting the magnetotelluric (MT) impedances, going beyond existing tensor decomposition schemes. The method allows recognition of elongated conductors in the crust and is also useful for a qualitative recognition of general three-dimensional (3-D) high-conductivity anomalies. This has been tested with synthetic data from 3-D and 2-D anisotropic models. The current channeling analysis has been applied to MT data collected in the Andean subduction zone, where the Atacama megafault system close to the Pacific Ocean and oriented subparallel to the coast line is located. The analysis suggests the presence of vertical dike-like conductors of limited lateral extent along the fault zone. Several MT sites distributed along the faults have impedance phases of the electric field tangential to the local azimuth far exceeding 90° at longer periods. We are able to explain this as being the result of strong current channeling producing magnetic distortion due to an electromagnetic coupling between the conductive ocean and the continental elongated conductors.

  12. A layer stripping approach for monitoring resistivity variations using surface magnetotelluric responses

    NASA Astrophysics Data System (ADS)

    Ogaya, Xènia; Ledo, Juanjo; Queralt, Pilar; Jones, Alan G.; Marcuello, Álex

    2016-09-01

    The resolution of surface-acquired magnetotelluric data is typically not sufficiently high enough in monitoring surveys to detect and quantify small resistivity variations produced within an anomalous structure at a given depth within the subsurface. To address this deficiency we present an approach, called "layer stripping", based on the analytical solution of the one-dimensional magnetotelluric problem to enhance the sensitivity of surface magnetotelluric responses to such subtle subsurface temporal variations in resistivity within e.g. reservoirs. Given a well-known geoelectrical baseline model of a reservoir site, the layer stripping approach aims to remove the effect of the upper, unchanging structures in order to simulate the time-varying magnetotelluric responses at depth. This methodology is suggested for monitoring all kinds of reservoirs, e.g. hydrocarbons, gas, geothermal, compress air storage, etc., but here we focus on CO2 geological storage. We study one-dimensional and three-dimensional resistivity variations in the reservoir layer and the feasibility of the method is appraised by evaluating the error of the approach and defining different detectability parameters. The geoelectrical baseline model of the Hontomín site (Spain) for CO2 geological storage in a deep saline aquifer is taken as our exemplar for studying the validity of the 1D assumption in a real scenario. We conclude that layer stripping could help detect resistivity variations and locate them in the space, showing potential to also sense unforeseen resistivity variations at all depths. The proposed approach constitutes an innovative contribution to take greater advantage of surface magnetotelluric data and to use the method as a cost-effective permanent monitoring technique in suitable geoelectrical scenarios.

  13. Magnetotelluric Response Function Estimation Based on Hilbert-Huang Transform

    NASA Astrophysics Data System (ADS)

    Cai, Jian-hua

    2013-11-01

    Magnetotelluric (MT) data series are non-stationary random signals that do not meet the basic requirements of conventional methods based on the Fourier transform. To minimize the estimation bias errors brought about by the non-stationary characteristics of MT data, a new method, based on the Hilbert-Huang transform (HHT), is proposed for the first time for estimating the MT response functions from a time series of electromagnetic field variations. With the HHT method, the amplitude of data series are expressed as a function of frequency and time and then response functions are estimated statistically from the time-frequency spectrum. Mathematical model and calculation processes are introduced and some simulated data are analyzed to verify the correctness of the method. Finally, the measured MT data is facilitated by applying the HHT to assess the ability of HHT method to quantify meaningful geologic information.

  14. Joint three-dimensional inversion of magnetotelluric and magnetovariational data

    NASA Astrophysics Data System (ADS)

    Zhdanov, M. S.; Dmitriev, V. I.; Gribenko, A. V.

    2010-08-01

    The problem of quantitative three-dimensional interpretation of the magnetotelluric (MT) data ranks among the most difficult problems in electromagnetic (EM) geophysics. Our paper presents a new rigorous numerical method for MT inversion, based on the integral equations technique. An important feature of the proposed method is the calculation of the Frechet derivative with the aid of a quasi-analytical approximation with an inhomogeneous background. This approach simplifies the algorithm of inversion and requires only a single forward modeling on each iteration. We have also developed a method for a joint inversion of MT and magnetovariational (MV) data. We show in the present paper that the joint inversion of MT impedances and the Wiese-Parkinson vectors can automatically allow for the static shift in the observed data, which is caused by the geoelectric inhomogeneities contained in the near-surface layer.

  15. Use of a Fourier transform spectrometer on a balloon-borne telescope and at the multiple mirror telescope (MMT)

    NASA Technical Reports Server (NTRS)

    Traub, W. A.; Chance, K. V.; Brasunas, J. C.; Vrtilek, J. M.; Carleton, N. P.

    1982-01-01

    The design and use of an infrared Fourier transform spectrometer which has been used for observations of laboratory, stratospheric, and astronomical spectra are described. The spectrometer has a spectral resolution of 0.032/cm and has operated in the mid-infrared (12 to 13 microns) as well as the far-infrared (40 to 140 microns), using both bolometer and photoconductor cryogenic detectors. The spectrometer is optically sized to accept an f/9 beam from the multi-mirror telescope (MMT). The optical and electronic design are discussed, including remote operation of the spectrometer on a balloon-borne 102-cm telescope. The performance of the laser-controlled, screw-driven moving cat's-eye mirror is discussed. Segments of typical far-infrared balloon flight spectra, lab spectra, and mid-infrared MMT spectra are presented. Data reduction, interferogram processing, artifact removal, wavelength calibration, and intensity calibration methods are discussed. Future use of the spectrometer is outlined.

  16. Magnetotelluric inversion via reverse time migration algorithm of seismic data

    SciTech Connect

    Ha, Taeyoung . E-mail: tyha@math.snu.ac.kr; Shin, Changsoo . E-mail: css@model.snu.ac.kr

    2007-07-01

    We propose a new algorithm for two-dimensional magnetotelluric (MT) inversion. Our algorithm is an MT inversion based on the steepest descent method, borrowed from the backpropagation technique of seismic inversion or reverse time migration, introduced in the middle 1980s by Lailly and Tarantola. The steepest descent direction can be calculated efficiently by using the symmetry of numerical Green's function derived from a mixed finite element method proposed by Nedelec for Maxwell's equation, without calculating the Jacobian matrix explicitly. We construct three different objective functions by taking the logarithm of the complex apparent resistivity as introduced in the recent waveform inversion algorithm by Shin and Min. These objective functions can be naturally separated into amplitude inversion, phase inversion and simultaneous inversion. We demonstrate our algorithm by showing three inversion results for synthetic data.

  17. The Estimation and Inversion of Magnetotelluric Data with Static Shift

    NASA Astrophysics Data System (ADS)

    Wang, X.; Zhou, J.; Zhang, J.; Min, G.; Xia, S.

    2015-12-01

    IntroductionIn magnetotelluric sounding data processing, the static shift correction is one of the most important steps. Due to the complexity of near-surface inhomogeneous bodies distribution, it is difficult to estimate the static shift of measured data. For this problem, we put forward on the basis of the inversion model for static shift estimation, and reconstructed the initial model with using the original data for 2D or 3D inversion. Estimation and Inversion methodThe magnetotelluric impedance phase has the characteristics of not influenced by the static shift in Two-dimensional electrical structure. The objective function for static shift estimation can be constructed based on impedance phase data. On the basis of normal inversion, utilizing one-dimensional linear search algorithm, combined with the forward modeling, the MT static shift can be estimated.Using estimation results for translation of anomaly measured curve. According to the inversion(1-D) of these translated curve, the initial model for two-dimensional or two-dimensional inversion can be reconstructed. On this basis, we do inversion for the original data, which not only can effectively eliminate the influence of static shift on the deep structure of inversion model, but also can get the right shallow electrical structure in the inversionConclusionThe estimation value of static shift based on impedance phase can be close to the true value. This estimation results can be used to modify the initial model, which makes the deep electric structure of the model more reasonable. On this basis, the inversion of the original data can ensure the correctness of the final inversion results (including shallow and deep).Acknowledgement This paper is supported by National Natural Science Foundation (41274078) and National 863 High Technology Research and Development Program (2014AA06A612).Reference[1] deGroot-Hedlin C. Removal of static shift in two dimensions by regularized inversion[J]. Geophysics, 1991, 56

  18. Three-dimensional modelling in magnetotelluric and magnetic variational sounding

    NASA Technical Reports Server (NTRS)

    Reddy, I. K.; Phillips, R. J.; Rankin, D.

    1977-01-01

    The Galerkin finite-element method is used to obtain approximate solutions for the three-dimensional induction problem. A rectangular conductive prism is considered as an example, and solutions are obtained for linear and circularly polarized incident plane-wave fields. Magnetotelluric tensor impedances and magnetic transfer functions are computed. Polar diagrams of the tensor impedances and magnetic transfer functions along with their amplitude contour maps are presented. The dimensionality parameter, skew, is contoured at the surface of the earth. It is shown that the relative amplitudes and shapes of the additional and principal impedance polar diagrams can be used to determine the dimensionality of geoelectrical structures. Stations with skew values greater than 0.2 are significantly influenced by the three-dimensionality of the geoelectric structure. The amplitudes of the magnetic transfer function and the orientations of its polar diagrams exhibit large anomalies in the vicinity of the intersection of the lateral contacts.

  19. Magnetotelluric inversion for azimuthally anisotropic resistivities employing artificial neural networks

    NASA Astrophysics Data System (ADS)

    Montahaei, Mansoure; Oskooi, Behrooz

    2014-02-01

    An extension of an artificial neural network (ANN) approach to solve the magnetotelluric (MT) inverse problem for azimuthally anisotropic resistivities is presented and applied for a real dataset. Three different model classes, containing general 1-D and 2-D azimuthally anisotropic features, have been considered. For each model class, characteristics of three-layer feed forward ANNs trained through an error back propagation algorithm have been adjusted to approximate the inverse modeling function. It appears that, at least for synthetic models, reasonable results would be obtained by applying the amplitudes of the complex impedance tensor elements as inputs. Furthermore, the Levenberg-Marquart algorithm possesses optimal performance as a learning paradigm for this problem. The evaluation of applicability of the trained ANNs for unknown data sets excluded from the learning procedure reveals that the trained ANNs possess acceptable interpolation and extrapolation abilities to estimate model parameters accurately. This method was also successfully used for a field dataset wherein anisotropy had been previously recognized.

  20. Data Reduction Pipeline for the MMT and Magellan Infrared Spectrograph

    NASA Astrophysics Data System (ADS)

    Chilingarian, Igor; Beletsky, Yuri; Moran, Sean; Brown, Warren; McLeod, Brian; Fabricant, Daniel

    2015-04-01

    We describe the new spectroscopic data reduction pipeline for the multi-object MMT/Magellan Infrared Spectrograph. The pipeline is implemented in idl as a stand-alone package and is publicly available in both stable and development versions. We describe novel algorithms for sky subtraction and correction for telluric absorption. We demonstrate that our sky subtraction technique reaches the Poisson limit set by the photon statistics. Our telluric correction uses a hybrid approach by first computing a correction function from an observed stellar spectrum, and then differentially correcting it using a grid of atmosphere transmission models for the target airmass value. The pipeline provides a sufficient level of performance for real time reduction and thus enables data quality control during observations. We reduce an example dataset to demonstrate the high data reduction quality.

  1. A practical, low-noise coil system for magnetotellurics

    USGS Publications Warehouse

    Stanley, William D.; Tinkler, Richard D.

    1983-01-01

    Magnetotellurics is a geophysical technique which was developed by Cagnaird (1953) and Tikhonov (1950) and later refined by other scientists worldwide. The technique is a method of electromagnetic sounding of the Earth and is based upon the skin depth effect in conductive media. The electric and magnetic fields arising from natural sources are measured at the surface of the earth over broad frequency bands. An excellent review of the technique is provided in the paper by Vozoff (1972). The sources of the natural fields are found in two basic mechanisms. At frequencies above a few hertz, most of the energy arises from lightning in thunderstorm belts around the equatorial regions. This energy is propagated in a wave-guide formed by the earthionospheric cavity. Energy levels are higher at fundamental modes for this cavity, but sufficient energy exists over most of the audio range to be useful for sounding at these frequencies, in which case the technique is generally referred to as audio-magnetotellurics or AMT. At frequencies lower than audio, and in general below 1 Hz, the source of naturally occuring electromagnetic energy is found in ionospheric currents. Current systems flowing in the ionosphere generate EM waves which can be used in sounding of the earth. These fields generate a relatively complete spectrum of electromagnetic energy that extends from around 1 Hz to periods of one day. Figure 1 shows an amplitude spectrum characteristic of both the ionospheric and lightning sources, covering a frequency range from 0.0001 Hz to 1000 Hz. It can be seen that there is a minimum in signal levels that occurs at about 1 Hz, in the gap between the two sources, and that signal level increases with a decrease in frequency.

  2. MMT hypervelocity star survey. III. The complete survey

    SciTech Connect

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J. E-mail: mgeller@cfa.harvard.edu

    2014-05-20

    We describe our completed spectroscopic survey for unbound hypervelocity stars (HVSs) ejected from the Milky Way. Three new discoveries bring the total number of unbound late B-type stars to 21. We place new constraints on the nature of the stars and on their distances using moderate resolution MMT spectroscopy. Half of the stars are fast rotators; they are certain 2.5-4 M {sub ☉} main sequence stars at 50-120 kpc distances. Correcting for stellar lifetime, our survey implies that unbound 2.5-4 M {sub ☉} stars are ejected from the Milky Way at a rate of 1.5 × 10{sup –6} yr{sup –1}. These unbound HVSs are likely ejected continuously over the past 200 Myr and do not share a common flight time. The anisotropic spatial distribution of HVSs on the sky remains puzzling. Southern hemisphere surveys like SkyMapper will soon allow us to map the all-sky distribution of HVSs. Future proper motion measurements with Hubble Space Telescope and Gaia will provide strong constraints on origin. Existing observations are all consistent with HVS ejections from encounters with the massive black hole in the Galactic center.

  3. New equipment and processing for magnetotelluric remote reference observations

    NASA Astrophysics Data System (ADS)

    Ritter, Oliver; Junge, Andreas; Dawes, Graham

    1998-03-01

    Robust estimates of magnetotelluric and geomagnetic response functions are determined using the coherency and expected uniformity of the magnetic source field as quality criteria. The method is applied on data sets of three simultaneously recording sites. For the data acquisition we used a new generation of geophysical equipment (S.P.A.M. MkIII), which comprises novel concepts of parallel computing and networked, digital data transmission. The data-processing results show that the amount of noise on the horizontal components of the magnetic field varies considerably in time, between sites and over the frequency range. The removal of such contaminated data beforehand is essential for most data-processing schemes, as the magnetic channels are usually assumed to be free of noise. The standard remote reference method is aimed at reducing bias in response function estimates. However, this does not necessarily improve their precision as our results clearly show. With our method, on the other hand, we can filter out source field irregularities, thereby providing suitable working conditions for the robust algorithm, and eventually obtain considerably improved results. Contrary to previous concepts, we suggest rejecting as much data as feasible in order to concentrate on the remaining parts of high-quality observations.

  4. 3D magnetotelluric inversion with full distortion matrix

    NASA Astrophysics Data System (ADS)

    Gribenko, A. V.; Zhdanov, M. S.

    2014-12-01

    Distortion of regional electric fields by local structures represent one of the major problems facing three-dimensional magnetotelluric (MT) interpretation. Effect of 3D local inhomogenities on MT data can be described by a real 2x2 distortion matrix. In this project we develop a method of simultaneous inversion of the full MT impedance data for 3D conductivity distribution and for the distortion matrix. Tikhonov regularization is employed to solve the resulting inverse problem. Integral equations method is used to compute MT responses. Minimization of the cost functional is achieved via conjugate gradient method. The inversion algorithm is tested on the synthetic data from Dublin Secret Model II (DSM 2) for which multiple inversion solutions are available for comparison. Inclusion of the distortion matrix provides faster convergence and allows coarser discretization of the near-surface while achievingsimilar or better data fits as inversion for the conductivity only with finely discretized shallow regions. As a field data example we chose a subset of the EarthScope MT dataset covering Great Basin and adjacent areas of the Western United States. Great Basin data inversion identified several prominent conductive zones which correlate well with areas of tectonic and geothermal activity.

  5. Magnetotelluric investigations at Mount Hood, Oregon

    SciTech Connect

    Mozley, E.C.; Goldstein, N.E.; Morrison, H.F.

    1986-10-01

    Magnetotelluric data, with both electric and magnetic field references for noise cancellation, were collected at accessible locations around and as close as possible to the Mount Hood andesite-dacite volcano. The purpose of the study was to identify and map conductive features and to relate them to the thermal regime of the region. Several conductors could be discerned. The shallowest, at a depth of around 500 m below the surface, was identified as a flow of heated water moving away from the summit: the deepest (--50 km) might be a melt zone in the upper mantle. Of particular interest is an elongate conductor that strikes N 10/sup 0/ W and extends from a depth of 12 km down to 22 km. Because the conductor strike is close to the trend of the chain of Cascade volcanoes and because of the high conductive thermal gradients reported for the area, this feature was initially believed to be a zone of partial melt following the volcanic axis. However, because no teleseismic P wave velocity anomaly has been found, the cause of the conductor is more problematic. While the existence of small zones of melt cannot be ruled out, it is possible that the conductor is caused by a large volume of intensely deformed rocks with brine-filled microfractures.

  6. West Flank Coso, CA FORGE Magnetotelluric Inversion

    DOE Data Explorer

    Doug Blankenship

    2016-05-16

    The Coso Magnetotelluric (MT) dataset of which the West Flank FORGE MT data is a subset, was collected by Schlumberger / WesternGeco and initially processed by the WesternGeco GeoSolutions Integrated EM Center of Excellence in Milan, Italy. The 2011 data was based on 99 soundings that were centered on the West Flank geothermal prospect. The new soundings along with previous data from 2003 and 2006 were incorporated into a 3D inversion. Full impedance tensor data were inverted in the 1-3000 Hz range. The modelling report notes several noise sources, specifically the DC powerline that is 20,000 feet west of the survey area, and may have affected data in the 0.02 to 10 Hz range. Model cell dimensions of 450 x 450 x 65 feet were used to avoid computational instability in the 3D model. The fit between calculated and observed MT values for the final model run had an RMS value of 1.807. The included figure from the WesternGeco report shows the sounding locations from the 2011, 2006 and 2003 surveys.

  7. Magnetotelluric Data, Southern San Luis Valley, Colorado

    USGS Publications Warehouse

    Williams, Jackie M.; Rodriguez, Brian D.

    2007-01-01

    Introduction The population of the San Luis Valley region is growing rapidly. The shallow unconfined and the deeper confined Santa Fe Group aquifer in the San Luis Basin is the main sources of municipal water for the region. Water shortfalls could have serious consequences. Future growth and land management in the region depend on accurate assessment and protection of the region's ground-water resources. An important issue in managing the ground-water resources is a better understanding of the hydrogeology of the Santa Fe Group and the nature of the sedimentary deposits that fill the Rio Grande rift, which contain the principal ground-water aquifers. The U.S. Geological Survey (USGS) is conducting a series of multidisciplinary studies of the San Luis Basin located in southern Colorado. Detailed geologic mapping, high-resolution airborne magnetic surveys, gravity surveys, an electromagnetic survey, called magnetotellurics (MT), and hydrologic and lithologic data are being used to better understand the aquifer systems. The primary goal of the MT survey is to map changes in electrical resistivity with depth that are related to differences in rock type. These various rock types help control the properties of aquifers in the region. This report does not include any interpretation of the data. Its purpose is to release the MT data acquired at the 22 stations shown in figure 1.

  8. Magnetotelluric Data, San Luis Valley, Colorado

    USGS Publications Warehouse

    Rodriguez, Brian D.; Williams, Jackie M.

    2008-01-01

    The San Luis Valley region population is growing. Water shortfalls could have serious consequences. Future growth and land management in the region depend on accurate assessment and protection of the region?s ground-water resources. An important issue in managing the ground-water resources is a better understanding of the hydrogeology of the Santa Fe Group and the nature of the sedimentary deposits that fill the Rio Grande rift, which contain the principal ground-water aquifers. The shallow unconfined aquifer and the deeper confined Santa Fe Group aquifer in the San Luis Basin are the main sources of municipal water for the region. The U.S. Geological Survey (USGS) is conducting a series of multidisciplinary studies of the San Luis Basin located in southern Colorado. Detailed geologic mapping, high-resolution airborne magnetic surveys, gravity surveys, an electromagnetic survey (called magnetotellurics, or MT), and hydrologic and lithologic data are being used to better understand the aquifers. The MT survey primary goal is to map changes in electrical resistivity with depth that are related to differences in rock types. These various rock types help control the properties of aquifers. This report does not include any data interpretation. Its purpose is to release the MT data acquired at 24 stations. Two of the stations were collected near Santa Fe, New Mexico, near deep wildcat wells. Well logs from those wells will help tie future interpretations of this data with geologic units from the Santa Fe Group sediments to Precambrian basement.

  9. MTpy: A Python toolbox for magnetotellurics

    NASA Astrophysics Data System (ADS)

    Krieger, Lars; Peacock, Jared R.

    2014-11-01

    We present the software package MTpy that allows handling, processing, and imaging of magnetotelluric (MT) data sets. Written in Python, the code is open source, containing sub-packages and modules for various tasks within the standard MT data processing and handling scheme. Besides the independent definition of classes and functions, MTpy provides wrappers and convenience scripts to call standard external data processing and modelling software. In its current state, modules and functions of MTpy work on raw and pre-processed MT data. However, opposite to providing a static compilation of software, we prefer to introduce MTpy as a flexible software toolbox, whose contents can be combined and utilised according to the respective needs of the user. Just as the overall functionality of a mechanical toolbox can be extended by adding new tools, MTpy is a flexible framework, which will be dynamically extended in the future. Furthermore, it can help to unify and extend existing codes and algorithms within the (academic) MT community. In this paper, we introduce the structure and concept of MTpy. Additionally, we show some examples from an everyday work-flow of MT data processing: the generation of standard EDI data files from raw electric (E-) and magnetic flux density (B-) field time series as input, the conversion into MiniSEED data format, as well as the generation of a graphical data representation in the form of a Phase Tensor pseudosection.

  10. An audio-magnetotelluric investigation in Terceira Island (Azores)

    NASA Astrophysics Data System (ADS)

    Monteiro Santos, Fernando A.; Trota, António; Soares, António; Luzio, Rafael; Lourenço, Nuno; Matos, Liliana; Almeida, Eugénio; Gaspar, João L.; Miranda, Jorge M.

    2006-08-01

    Ten audio-magnetotelluric soundings have been carried out along a profile crossing the Serra do Cume caldera in the eastern part of the Terceira Island (Azores). The main objectives of this investigation were to detect geoelectrical features related with tectonic structures and to characterize regional hydrological and hydrothermal aspects mainly those related to geothermal fluid dynamics. Three-dimensional numerical investigation showed that the data acquired at periods shorter than 1 s are not significantly affected by ocean effect. The data was analysed using the Smith's decomposition method in order to investigate possible distortions caused by superficial structures and to estimate a global regional strike. The results suggest that in general the soundings were not distorted. A regional N55°W strike was chosen for the two-dimensional data inversion. The low-resistivity zones (10-30 ohm-m) displayed in the central part of the 2-D geoelectrical model have been interpreted as caused by hydrothermal circulation. The low-resistivity anomalies at the ends of the profile might be attributed to alteration zones with interaction of seawater intrusion. High-resistivity (> 300 ohm-m) values have been related with less permeable zones in the SW of Cinco Picos and Guilherme Moniz caldera walls.

  11. Synthesis of CarAlg/MMt nanocomposite hydrogels and adsorption of cationic crystal violet.

    PubMed

    Mahdavinia, Gholam Reza; Aghaie, Huriyeh; Sheykhloie, Hossein; Vardini, Mohammad Taghi; Etemadi, Hossein

    2013-10-15

    CarAlg/MMt nanocomposite hydrogels composed of kappa-carrageenan (Car) and sodium alginate (Alg) biopolymers were synthesized by incorporation of sodium montmorillonite (Na-MMt) nanoclay. Acrylamide (AAm), methylenebisacrylamide (MBA), and ammonium persulfate (APS) were used as monomer, crosslinker, and initiator, respectively. The structure and morphology of nanocomposites were characterized by XRD, SEM, and TEM techniques. The XRD results showed exfoliated MMt nanoclay and exfoliation of MMt was confirmed by TEM graph. The resulting nanocomposites were evaluated to remove cationic crystal violet (CV) dye from water. According to data, the adsorption capacity of nanocomposites was enhanced as the clay content was increased. The experimental data were analyzed according to both Langmuir and Freundlich models and experimental maximum adsorption capacity was obtained 88.8 mg g(-1). By studying the effect of pH on the dye adsorption capacity of nanocomposites, it was revealed that the adsorption capacity of nanocomposites was enhanced at acidic pHs as the Na-MMt nanoclay and kappa-carrageenan components were increased.

  12. Synthesis of CarAlg/MMt nanocomposite hydrogels and adsorption of cationic crystal violet.

    PubMed

    Mahdavinia, Gholam Reza; Aghaie, Huriyeh; Sheykhloie, Hossein; Vardini, Mohammad Taghi; Etemadi, Hossein

    2013-10-15

    CarAlg/MMt nanocomposite hydrogels composed of kappa-carrageenan (Car) and sodium alginate (Alg) biopolymers were synthesized by incorporation of sodium montmorillonite (Na-MMt) nanoclay. Acrylamide (AAm), methylenebisacrylamide (MBA), and ammonium persulfate (APS) were used as monomer, crosslinker, and initiator, respectively. The structure and morphology of nanocomposites were characterized by XRD, SEM, and TEM techniques. The XRD results showed exfoliated MMt nanoclay and exfoliation of MMt was confirmed by TEM graph. The resulting nanocomposites were evaluated to remove cationic crystal violet (CV) dye from water. According to data, the adsorption capacity of nanocomposites was enhanced as the clay content was increased. The experimental data were analyzed according to both Langmuir and Freundlich models and experimental maximum adsorption capacity was obtained 88.8 mg g(-1). By studying the effect of pH on the dye adsorption capacity of nanocomposites, it was revealed that the adsorption capacity of nanocomposites was enhanced at acidic pHs as the Na-MMt nanoclay and kappa-carrageenan components were increased. PMID:23987355

  13. Superabsorbent nanocomposite (alginate-g-PAMPS/MMT): synthesis, characterization and swelling behavior.

    PubMed

    Yadav, Mithilesh; Rhee, Kyong Yop

    2012-09-01

    A superabsorbent composite (alginate-g-PAMPS/MMT) was prepared by graft copolymerization from alginate, 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and Na+ montmorillonite (MMT) in an inert atmosphere. Effects of polymerization variables on water absorbency, including the content of Na+ montmorillonite, sodium alginate, N,N'-methylenebisacrylamide and AMPS, were studied. The introduced montmorillonite formed a loose and porous surface and improved the water absorbency of the alginate-g-PAMPS/MMT superabsorbent composite. Swelling behaviors of the superabsorbent composites in various cationic salt solutions (NaCl, CaCl2 and FeCl3) and anionic salt solutions (NaCl and Na2SO4) were also systematically investigated. The superabsorbent composite was further characterized using Fourier transform infrared spectroscopy (FTIR), rheology, thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM) taking alginate-g-PAMPS as a reference. PMID:24751026

  14. Synthesis and biological evaluation of PMMA/MMT nanocomposite as denture base material.

    PubMed

    Zheng, Junping; Su, Qiang; Wang, Chen; Cheng, Gang; Zhu, Ran; Shi, Jin; Yao, Kangde

    2011-04-01

    Inorganic-polymer nanocomposites are of significant interest for emerging materials due to their improved properties and unique combination of properties. Poly (methylmethacrylate) (PMMA)/montmorillonite (MMT) nanocomposites were prepared by in situ suspension polymerization with dodecylamine used as MMT-modifier. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the structures of the nanocomposites. Cytotoxicity test, hemolysis test, acute systemic toxicity test, oral mucous membrane irritation test, guinea-pig maximization test and mouse bone-marrow micronucleus test were used to evaluate the biocompatibility of PMMA/MMT nanocomposites. The results indicated that an exfoliated nanocomposite was achieved, and the resulting nanocomposites exhibited excellent biocompatibility as denture base material and had potential application in dental materials. PMID:21373810

  15. Magnetotelluric studies at the Cerro Prieto geothermal field

    SciTech Connect

    Goubau, W.M.; Goldstein, N.E.; Clarke, J.

    1981-01-01

    During three years of magnetotelluric surveying, data were acquired at 26 sites distributed over 190 km/sup 2/ around the production area. A relatively well-defined strike of N27W +- 1.5/sup 0/ (magnetic) was established. The simple model shown suggests a lateral discontinuity in the vicinity of Nueva Leon.

  16. Structure of the Tongariro Volcanic system: Insights from magnetotelluric imaging

    NASA Astrophysics Data System (ADS)

    Hill, Graham J.; Bibby, Hugh M.; Ogawa, Yasuo; Wallin, Erin L.; Bennie, Stewart L.; Caldwell, T. Grant; Keys, Harry; Bertrand, Edward A.; Heise, Wiebke

    2015-12-01

    The dynamics of magma reservoirs (the main repositories for eruptible magma) play a fundamental role in the style and behaviour of volcanic systems. A key first step in understanding these systems is to identify their location and size accurately. We present results from a broadband magnetotelluric study of the Tongariro Volcanic system and discuss how the results fit within current petrological models. The Tongariro Volcanic system is a composite andesitic cone complex, located at the southern end of the Taupo Volcanic Zone in the central North Island of New Zealand. We use data from 136 broadband magnetotelluric soundings within a 25 × 35 km area covering the volcanic system to construct a 3D image of the magmatic system of the Tongariro Volcanic Complex including Mount Ngauruhoe. The structure of the Tongariro magmatic system has been determined from 3D forward and inverse modelling of the magnetotelluric data and allowed for an estimation of the melt fraction present within the system. 3D inverse modelling of the magnetotelluric data shows: a well-developed shallow low resistivity zone outlining the geothermal system; a zone of even lower resistivity representing a shallow crustal magma accumulation zone located at a depth of ˜4-12 km offset to the east of the Tongariro vent system; and a zone with a slightly higher resistivity connecting these two components of the magmatic system providing the path for magmatic fluids from the deeper source region to reach the surface during eruptive events.

  17. Very long period magnetotellurics at Tucson Observatory: Estimation of impedances

    SciTech Connect

    Egbert, G.D.; Booker, J.R.; Schultz, A.

    1992-10-10

    Eleven years (1932-1942) of electric potential and magnetic measurements at the Tucson observatory represent a unique very long period magnetotelluric (MT) data set. The authors report on a careful reanalysis of this data using modern processing techniques. They have developed and used novel methods for separating out the quasi-periodic daily variation fields and for cleaning up outliers and filling in missing data in the time domain. MT impedance tensors, estimated using the cleaned and filled data and using robust frequency domain methods, are well determined and smoothly varying for periods between 4 hours and 10 days. At longer periods the electric field data are swamped by large-amplitude incoherent noise, particularly after the third year of the experiment. Although they find no evidence for contamination of any field components by oceanic motional induction at tidal periods, the MT impedance estimates do show evidence of small systematic biases due to finite spatial scale geomagnetic sources at harmonics of the daily variation period. These periods are thus removed from the time series and not used in further analysis. They show that the resulting impedance tensor is well modeled by a real, frequency-independent distortion of a scalar impedance, which is consistent with non-inductive distortion of the electric fields by local surface geology. To estimate the undetermined static shift of the MT impedance, the authors compare the long-period MT results to equivalent MT impedances determined from 46 years of geomagnetic data. Combining the geomagnetic and undistorted MT impedances results in scalar impedance estimates for periods 0.17 < T < 91 days of unprecedented precision. However, for periods less than one day, the phase and amplitude of this impedance, while individually consistent, are not mutually consistent with any one-dimensional conductivity distribution. 51 refs., 19 figs., 4 tabs.

  18. Contribution of methylcyclopentadienyl manganese tricarbonyl (MMT) to atmospheric Mn concentration near expressway: dispersion modeling estimations

    NASA Astrophysics Data System (ADS)

    Loranger, Sylvain; Zayed, Joseph; Kennedy, Greg

    Since 1976, methylcyclopentadienyl manganese tricarbonyl (MMT) has been used in Canada as an antiknock agent in gasoline and it completely replaced lead in 1990. The combustion of MMT lead's to the formation of Mn oxides, especially Mn 3O 4. This paper calculates the contribution of Mn from MMT source to the total atmospheric Mn concentration using two dispersion models (CALINE4, ISCLT). The results are compared to CO estimates since CO is often used as a surrogate for Mn human exposure assessment. The study area is located near a major highway (117,585 cars per day) in the city of Montreal. Model estimates were validated using results from two sampling stations located 25 and 250 m from the road centerline. Both models gave similar Mn estimates for distances over 250 m with values ranging from 1 to 3 ng m -3. These predicted values underestimate by a factor of ten the measured values 250 m from the road. The Mn contribution from MMT may be masked by other sources such as Mn enriched road dust or naturally occurring crustal material. On the other hand, CO estimates and measured values are almost identical. This may be explained by the fact that the mobile source Mn contribution to total atmospheric emissions is less than 20%, whereas for CO it may reach 75%. The total uncertainty in the model predictions was estimated at 50%.

  19. Magnetotelluric experiment over the ROSE area

    SciTech Connect

    Filloux, J.H.

    1982-10-10

    Seafloor observations in natural electromagnetic fluctuations diffusing into the earth have been made in the vicinity of the Pacific Rise at 12/sup 0/N and 21/sup 0/N to gather information on the electrical conductivity structure of the oceanic basement near a spreading ridge. At 21/sup 0/N the close proximity of land (Baja California) introduces a noticeable distortion of the EM fields, and consequently the magnetotelluric sounding for this area must be interpreted with caution. At both locations the conductance of the upper 200 km appears exceptionally high and the conductivity rises rapidly below, reaching 1 S m/sup -1/ or more at 350 km. The statistical significance of a prominent conductivity increase near a depth of 22.5 km detected in the inverted data from 12/sup 0/N and of a less developed one at 30 km in the case of 21/sup 0/N is discussed. Records of the magnetic variations of 21/sup 0/N taken above the spreading center, compared to records from 40 and 120 km to the west, reveal a conspicuous enhancement of the high-frequency horizontal variations in a direction slightly west of magnetic north. We interpret this distinctive feature as the signature of an electric current sheet concentrated in an extremely high conductance, relatively shallow layer electrically bridging the two seafloor areas adjacent to the spreading center. An approximate calculation suggests a conductance in excess of 3000 S per meter of ridge crest in the close vicinity of the accretion center, equivalent to 1 to 8 km of molten basalt, depending on temperature (1000/sup 0/-1200/sup 0/C.) and depth (2-10 km.). This structure is consistent with seismic refraction information for the same area and with stratigraphic reconstruction of a fossil accretion center in Samail ophiolite. An interpretation in terms of a well-developed magma chamber is irresistable, although confirmation of the existence of this feature as well as improvement of its resolution by means of additional EM data would

  20. Interpretation of magnetotelluric measurements over an electrically dispersive one-dimensional earth

    SciTech Connect

    Patella, D.

    1987-01-01

    Frequency dispersion of electromagnetic parameters of earth materials has been widely documented in recent years. It is claimed that magnetotellurics (MT)may be significantly affected by dispersion. This paper studies the MT plane-wave interpretative problem for a one-dimensional earth characterized by the presence of dispersive layers. The theoretical properties of the MT field under the dispersion hypothesis, and the main features of the dispersion phenomenon are synthetically reviewed. The examination of previously published MT curve responses over some models of dispersive earth section shows that ambiguity can arise when interpreting MT data with no other source of information. Thus it maybe almost impossible to distinguish between the response of a dispersive section and an equally probable dispersion-free section. The dispersion magnetotelluric (DMT) method is proposed as a means to resolve the ambiguity. The DMT method is based on the execution, at the same site, of an MT sounding and of an always dispersion-free dc geoelectric deep sounding.

  1. Non-linearity in Bayesian 1-D magnetotelluric inversion

    NASA Astrophysics Data System (ADS)

    Guo, Rongwen; Dosso, Stan E.; Liu, Jianxin; Dettmer, Jan; Tong, Xiaozhong

    2011-05-01

    This paper applies a Bayesian approach to examine non-linearity for the 1-D magnetotelluric (MT) inverse problem. In a Bayesian formulation the posterior probability density (PPD), which combines data and prior information, is interpreted in terms of parameter estimates and uncertainties, which requires optimizing and integrating the PPD. Much work on 1-D MT inversion has been based on (approximate) linearized solutions, but more recently fully non-linear (numerical) approaches have been applied. This paper directly compares results of linearized and non-linear uncertainty estimation for 1-D MT inversion; to do so, advanced methods for both approaches are applied. In the non-linear formulation used here, numerical optimization is carried out using an adaptive-hybrid algorithm. Numerical integration applies Metropolis-Hastings sampling, rotated to a principal-component parameter space for efficient sampling of correlated parameters, and employing non-unity sampling temperatures to ensure global sampling. Since appropriate model parametrizations are generally not known a priori, both under- and overparametrized approaches are considered. For underparametrization, the Bayesian information criterion is applied to determine the number of layers consistent with the resolving power of the data. For overparametrization, prior information is included which favours simple structure in a manner similar to regularized inversion. The data variance and/or trade-off parameter regulating data and prior information are treated in several ways, including applying fixed optimal estimates (an empirical Bayesian approach) or including them as hyperparameters in the sampling (hierarchical Bayesian). The latter approach has the benefit of accounting for the uncertainty in the hyperparameters in estimating model parameter uncertainties. Non-linear and linearized inversion results are compared for synthetic test cases and for the measured COPROD1 MT data by considering marginal probability

  2. MTpy - Python Tools for Magnetotelluric Data Processing and Analysis

    NASA Astrophysics Data System (ADS)

    Krieger, Lars; Peacock, Jared; Thiel, Stephan; Inverarity, Kent; Kirkby, Alison; Robertson, Kate; Soeffky, Paul; Didana, Yohannes

    2014-05-01

    We present the Python package MTpy, which provides functions for the processing, analysis, and handling of magnetotelluric (MT) data sets. MT is a relatively immature and not widely applied geophysical method in comparison to other geophysical techniques such as seismology. As a result, the data processing within the academic MT community is not thoroughly standardised and is often based on a loose collection of software, adapted to the respective local specifications. We have developed MTpy to overcome problems that arise from missing standards, and to provide a simplification of the general handling of MT data. MTpy is written in Python, and the open-source code is freely available from a GitHub repository. The setup follows the modular approach of successful geoscience software packages such as GMT or Obspy. It contains sub-packages and modules for the various tasks within the standard work-flow of MT data processing and interpretation. In order to allow the inclusion of already existing and well established software, MTpy does not only provide pure Python classes and functions, but also wrapping command-line scripts to run standalone tools, e.g. modelling and inversion codes. Our aim is to provide a flexible framework, which is open for future dynamic extensions. MTpy has the potential to promote the standardisation of processing procedures and at same time be a versatile supplement for existing algorithms. Here, we introduce the concept and structure of MTpy, and we illustrate the workflow of MT data processing, interpretation, and visualisation utilising MTpy on example data sets collected over different regions of Australia and the USA.

  3. Variables associated with perceived sleep disorders in methadone maintenance treatment (MMT) patients.

    PubMed

    Peles, Einat; Schreiber, Shaul; Adelson, Miriam

    2006-04-28

    To characterize sleep disorders in methadone maintenance treatment (MMT) patients, we evaluated sleep quality of 101 non-selective patients from our MMT clinic in Israel between July, 2003 and July, 2004 by using the self-report questionnaire Pittsburgh Sleep Quality Index (PSQI). Patients' urine tests were analyzed for methadone metabolite, opiates, benzodiazepine, cocaine, cannabis and amphetamines. Their urine results for drug abuse throughout the months prior to filling in the questionnaire and their maintenance methadone doses were recorded. Drug abuse was defined by at least one positive urine test. Methadone serum levels were available in 55 patients, assessed by Gas Chromatography Mass Spectroscopy. The patients' self-reported chronic pain questionnaires and their diagnosed psychiatric disorders were analyzed. Out of the 101 study patients, 78.2% were male, 52.5% had psychiatric disorders, 46.5% reported having chronic pain and 46.5% had positive urine for benzodiazepine. The mean daily methadone dose was 157+/-52.9 mg. The mean PSQI score was 9+/-4.8 (75.2% had scores >5 indicating "poor sleepers"). PSQI scores were higher in patients with positive urine for benzodiazepine, chronic pain and psychiatric disorders and they correlated with years of opiate abuse before admission to MMT, and with the methadone dose (r=0.48, p<0.0005). The latter two also correlated with each other. The PSQI was not correlated with duration in MMT, gender, age, abuse of opiates, cannabis or cocaine. We concluded that sleep disorders should be evaluated and treated among MMT patients, particularly in those with psychiatric disorders, benzodiazepine abuse, chronic pain and high methadone dose. PMID:16154297

  4. Probabilistic 3-D time-lapse inversion of magnetotelluric data: application to an enhanced geothermal system

    NASA Astrophysics Data System (ADS)

    Rosas-Carbajal, M.; Linde, N.; Peacock, J.; Zyserman, F. I.; Kalscheuer, T.; Thiel, S.

    2015-12-01

    Surface-based monitoring of mass transfer caused by injections and extractions in deep boreholes is crucial to maximize oil, gas and geothermal production. Inductive electromagnetic methods, such as magnetotellurics, are appealing for these applications due to their large penetration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In this work, we propose a 3-D Markov chain Monte Carlo inversion of time-lapse magnetotelluric data to image mass transfer following a saline fluid injection. The inversion estimates the posterior probability density function of the resulting plume, and thereby quantifies model uncertainty. To decrease computation times, we base the parametrization on a reduced Legendre moment decomposition of the plume. A synthetic test shows that our methodology is effective when the electrical resistivity structure prior to the injection is well known. The centre of mass and spread of the plume are well retrieved. We then apply our inversion strategy to an injection experiment in an enhanced geothermal system at Paralana, South Australia, and compare it to a 3-D deterministic time-lapse inversion. The latter retrieves resistivity changes that are more shallow than the actual injection interval, whereas the probabilistic inversion retrieves plumes that are located at the correct depths and oriented in a preferential north-south direction. To explain the time-lapse data, the inversion requires unrealistically large resistivity changes with respect to the base model. We suggest that this is partly explained by unaccounted subsurface heterogeneities in the base model from which time-lapse changes are inferred.

  5. Detection of Deep Fluid Flow in Subduction Zones with Magnetotelluric Monitoring

    NASA Astrophysics Data System (ADS)

    Ritter, O.; Araya, J.

    2014-12-01

    After the 1995 Mw 8 Antofagasta earthquake, Husen and Kissling (2001) interpreted alterations observed in the seismic velocity structure as large-scale fluid distribution changes, deep within the subduction zone. Such large scale fluid relocation would cause similar modifications of the associated deep electrical resistivity structure. In this paper, we examine feasibility to detect such changes in the deep hydraulic system with magnetotelluric monitoring. Continuous magnetotelluric (MT) data have been recorded above the subduction zone in northern Chile as part of the Integrated Plate Boundary Observatory Chile (IPOC) with an array of 9 stations since 2007. With the MT method, electrical resistivity and lateral changes of the resistivity structure are estimated from so called transfer functions (TF). If the subsurface resistivity structure is stable, these TFs vary only within their statistical significance intervals over time. Any statistically significant deviations, particularly when observed over the network of sites, must be originated from a change in the subsurface resistivity structure. We simulate the effects of such changes on the TFs using 3D forward modelling studies. The background model is based on 3D inversion of the IPOC MT stations. The results show that detectable differences in the TFs are obtained if the resistivity decreases by 5 times of its original value in the lower continental crust over the rupture zone. The implications of these results are compared with observed changes in the TFs after the 2007 Mw 7.7 Tocopilla and 2014 Mw 8.2 Pisagua earthquakes.

  6. Magnetotelluric Investigation of the South Aegean Volcanic Arc, Greece

    NASA Astrophysics Data System (ADS)

    Kalisperi, Despina; Romano, Gerardo; Smirnov, Maxim; Kouli, Maria; Perrone, Angela; Makris, John P.; Vallianatos, Filippos

    2014-05-01

    The South Aegean Volcanic Arc (SAVA) is a chain of volcanic islands in the South Aegean resulting from the subduction of the African tectonic plate beneath the Eurasian plate. It extends from Methana, northwest, to the Island of Nisyros southeast (450 km total length). SAVA comprises a series of dormant and historically active volcanoes, with the most prominent to be Aegina, Methana, Milos, Santorini, Kolumbo, Kos and Nisyros. The aim of the ongoing research project "MagnetoTellurics in studying Geodynamics of the hEllenic ARc (MT-GEAR)" is to contribute to the investigation of the geoelectric structure of Southern Aegean, and particularly to attempt to image the Hellenic Subduction Zone. In this context, onshore magnetotelluric (MT) measurements were recently carried out on the central and eastern part of SAVA (Milos, Santorini, Nisyros and Kos Islands). Data were collected using two MT systems running simultaneously plus a remote reference station installed in Omalos plateau (Western Crete). Robust MT data analysis of the broad-band MT soundings and the resulting model of the conductivity structure of the South Aegean Volcanic Arc is presented. The research is co-funded by the European Social Fund (ESF) and National Resources under the Operational Programme 'Education and Lifelong Learning (EdLL) within the context of the Action 'Supporting Postdoctoral Researchers' in the framework of the project title "MagnetoTellurics in studying Geodynamics of the hEllenic ARc (MT-GEAR)".

  7. Noise Elimination Study for a Single Station Magnetotelluric Data

    NASA Astrophysics Data System (ADS)

    Şengül, Ebru; Uǧur Ulugergerli, Emin; Göktaş, Hilal

    2010-05-01

    Five components of the natural electromagnetic field relating to underground conductivity distribution on Earth are measured as a time series in the Magnetotelluric (MT) method. E (Ex, Ey) and H (Hx, Hy, Hz) components of the electromagnetic field suffers from noise contamination. The noise, in general, can be classified as random and systematic noise. Random noise disrupts the pattern of data such as sudden signal peaks and/or step structures called impulsive effect. This type of noise usually is dominant in some parts of the time series. The sources of random noise vary; some of the sources are instrumental problems and atmospheric events. On the other hand, systematic noise occurs at certain frequencies and is added to the data. Industrial activities cause such type of the noise and can corrupt all the data set. The estimation of the impedance tensor from single-station MT data is subject to this study. The proposed method uses statistical approaches focused on the noise elimination techniques. Noise elimination from MT time series is very important particularly to achieve repeatable impedance values using single station MT data. The conventional impedance estimation technique requires solution of a linear equation system (E = ZH) based on Gaussian statistical model which requires the noise of electric channels should obey Gaussian distribution and magnetic channels should be noise free. In fact, measured data never provides this ideal condition. Therefore, noise elimination techniques are very important step in data processing works in MT method. Random noise such as spikes makes deviations in impedance values, resistivity and phase curves. Random noise should be eliminated to correct of these deviations in the data. For this purpose firstly, all data are divided into time windows. Each window consists of 512 values. After that, spikes are removed and missing data are regenerated by using interpolation technique for each window in time domain. Then, data are

  8. Experimental study and micromechanical modeling of MMT platelet-reinforced PP nanocomposites

    NASA Astrophysics Data System (ADS)

    Cauvin, Ludovic; Bhatnagar, Naresh; Brieu, Mathias; Kondo, Djimédo

    2007-11-01

    Nanocomposites with platelets reinforcements are emerging materials with strong potential for future engineering applications. The present study is a first step to characterize and predict the elastic behavior of Montmorillonite (MMT) clay reinforced Polypropylene (PP) nanocomposites. The pellets of nanoclay composites were made by first uniformly mixing the MMT platelets in a twin-screw extruder by the melt intercalation route. These pellets were then converted into tensile specimens as per ASTM 638 by injection molding process. From tensile tests it is shown that there is a significant increase of the Young modulus with the mass fraction (2-7%) of clay platelets. A first approach of homogenization allows to conclude that the Ponte Castañeda and Willis (1995) bound predicts the measured moduli provided that a suitable aspect ratio of the reinforcement is considered. To cite this article: L. Cauvin et al., C. R. Mecanique 335 (2007).

  9. Anisotropic magnetotelluric inversion using a mutual information constraint

    NASA Astrophysics Data System (ADS)

    Mandolesi, E.; Jones, A. G.

    2012-12-01

    In recent years, several authors pointed that the electrical conductivity of many subsurface structures cannot be described properly by a scalar field. With the development of field devices and techniques, data quality improved to the point that the anisotropy in conductivity of rocks (microscopic anisotropy) and tectonic structures (macroscopic anisotropy) cannot be neglected. Therefore a correct use of high quality data has to include electrical anisotropy and a correct interpretation of anisotropic data characterizes directly a non-negligible part of the subsurface. In this work we test an inversion routine that takes advantage of the classic Levenberg-Marquardt (LM) algorithm to invert magnetotelluric (MT) data generated from a bi-dimensional (2D) anisotropic domain. The LM method is routinely used in inverse problems due its performance and robustness. In non-linear inverse problems -such the MT problem- the LM method provides a spectacular compromise betwee quick and secure convergence at the price of the explicit computation and storage of the sensitivity matrix. Regularization in inverse MT problems has been used extensively, due to the necessity to constrain model space and to reduce the ill-posedness of the anisotropic MT problem, which makes MT inversions extremely challenging. In order to reduce non-uniqueness of the MT problem and to reach a model compatible with other different tomographic results from the same target region, we used a mutual information (MI) based constraint. MI is a basic quantity in information theory that can be used to define a metric between images, and it is routinely used in fields as computer vision, image registration and medical tomography, to cite some applications. We -thus- inverted for the model that best fits the anisotropic data and that is the closest -in a MI sense- to a tomographic model of the target area. The advantage of this technique is that the tomographic model of the studied region may be produced by any

  10. Magnetotelluric soundings on the Idaho National Engineering Laboratory Facility, Idaho

    NASA Astrophysics Data System (ADS)

    Stanley, William D.

    1982-04-01

    The magnetotelluric (MT) method was used as one of several geophysical tools to study part of the Idaho Engineering Laboratory (INEL) facility. The purpose of the geophysical study on INEL was to investigate the facility for a possible site to drill a geothermal exploration well. A successful geothermal well would be used to provide hot water for a chemical processing plant. The MT method was employed to map any large-scale structures or conductivity anomalies that might prove interesting as geothermal exploration targets. In addition to the MT data, direct current resistivity soundings, gravity data, aeromagnetic data, and seismic refraction data were obtained in the course of the geophysical study. In the MT survey described in this paper, an additional goal was to provide a better understanding of the electrical units mapped in the regional study of the Snake River Plain (SNRP) by Stanley et al. (1977). It was thought that a widespread conductive layer found beneath surface basalts in the 1977 study could be categorized petrologically by a deep well and additional MT soundings done nearby. Also, INEL is located on the margin of the SNRP, and it was desired to have MT data in the area to study the electrical nature of the margin of the plain. The MT sounding interpretations did not indicate any conductivity anomalies or significant structures near the chemical processing plant which could be used to guide the location of the proposed geothermal well to be drilled to a depth of 3 km. The initial interpretation of the MT sounding data was done with one-dimensional models consisting of four or five layers, the minimum number required to fit the data. After the test well (INEL-1) was completed, the electric log was used to guide an improved one-dimensional ID interpretation of the MT sounding data. Profile models derived from the well log provided good agreement with velocity models derived from refraction seismic data. A resolution study using generalized inverse

  11. The Skellefte Ore District as seen with magnetotellurics

    NASA Astrophysics Data System (ADS)

    de los Ángeles García Juanatey, María; Hübert, Juliane; Tryggvason, Ari; Juhlin, Christopher; Pedersen, Laust B.; Bauer, Tobias E.; Dehghannejad, Mahdieh; Weihed, Pär

    2013-04-01

    The Skellefte District is one of the richest metallogenic mining areas in Sweden. The main deposits consist of volcanic-hosted massive sulphides (VHMS) rich in zinc, copper, lead, gold and silver, that have been explored and mined for more than a century. Considering that technological advancements allow deeper mining, and that today new discoveries occur less often, new efforts have been directed at locating targets at greater depths. Thus, current exploration strategies need to be adjusted, and a better understanding of regional scale structures is necessary. Following this approach the project "VINNOVA 4D modeling of the Skellefte District" was launched. Its main purpose was to unravel the regional structures and tectonic setting of the Skellefte District and construct a 3D geological model of two key localities within the district. To help accomplish this, magnetotelluric (MT) data were acquired throughout the district together with seismic reflection, geoelectric (ERT and IP) and potential field data. The MT data set consists of 120 stations that were mainly acquired along existing seismic lines. Time series processing yielded MT transfer functions in the frequency range between 700 Hz and 200 s. These data were inverted into 2D resistivity depth sections and subsequently analyzed to identify robust features. Additionally, 3D inversions were computed and compared with the standard 2D results to assess their reliability and better locate conductive bodies. The resistivity features deemed trustworthy were then interpreted in geological terms. For this task, results from the other geophysical methods were considered. The achieved penetration depth varied between 10 and 20 km. The main findings include: (1) conductive hydrothermally altered zones are present within the otherwise resistive rocks of the ore-bearing volcanic units, (2) the depth extension of early and post-orogenic intrusions are depicted as high resistivity features, (3) several prominent conductive

  12. Preparation and photo-catalytic activities of FeOOH/ZnO/MMT composite

    NASA Astrophysics Data System (ADS)

    Zhou, Yao; Liu, Fusheng; Yu, Shitao

    2015-11-01

    Montmorillonite (MMT) was used as the carrier for synthesis of FeOOH and FeOOH/ZnO nano-material. FeOOH and FeOOH/ZnO were synthesized by the aqueous solutions of Fe(NO3)3-HNO3 and Zn(NO3)2-NaOH/Fe(NO3)3-HNO3 with the carrier of montmorillonite respectively. Transmission electron-microscopy (TEM) and X-ray diffraction (XRD) were used to study the morphology form and structure of the nano-materials. TEM was also used to demonstrate that FeOOH/ZnO can be formed with the appropriate interface. According to UV-vis absorption spectra, FeOOH/ZnO has a better response to visible light than FeOOH and ZnO, which indicates there is some coupling effect between FeOOH and ZnO. Pentachlorophenol (PCP) was used as a representative organic pollutant to evaluate the photo-catalytic efficiency of the FeOOH/ZnO and FeOOH catalysts in visible light (λ > 400 nm). The photo-catalytic efficiency of FeOOH/ZnO/MMT is better than FeOOH/MMT. According to FTIR, changes of pH and TOC, the degradation mechanism was also discussed. PCP was degraded to aromatic ketone and chloro-hydrocarbon compounds and then to H2O, CO2 and HCl.

  13. Egg white/poly (vinyl alcohol)/MMT nanocomposite hydrogels for wound dressing.

    PubMed

    Jahani-Javanmardi, Azinsadat; Sirousazar, Mohammad; Shaabani, Yasaman; Kheiri, Farshad

    2016-08-01

    Nanocomposite hydrogels on the basis of egg white and poly (vinyl alcohol) (PVA) containing 0, 5, and 10 wt.% of montmorillonite (MMT) nanoclay were prepared by a facile cyclic freezing-thawing technique and their properties investigated for wound dressing application. The morphological, structural, thermal, physical, and in vitro cytotoxic properties of the prepared nanocomposite hydrogel wound dressings (NHWDs) were experimentally studied. The NHWDs had an exfoliated morphology with a porous structure having pores sizes in the nanometric scale. It was shown that MMT acted as cross-linker in the network of NHWDs and improved their thermal stabilities. The prepared wound dressings were transparent and their equilibrium water contents and water vapor transmission rates, as two important factors of wound dressings, were very close to the properties of human skin which means that the prepared wound dressings could interact appropriately with the damaged tissues of wounds and protect them like an artificial skin during the wound healing process. The in vitro cytotoxicity assay also confirmed the non-cytotoxic nature of the prepared NHWDs. It was finally concluded that the prepared egg white/PVA/MMT nanocomposite hydrogels are promising materials to be used as novel wound dressings in wound and burn care. PMID:27193240

  14. HISTORY AND ACCOMPLISHMENTS OF THE US EPA'S SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION (SITE) MONITORING AND MEASUREMENT (MMT) PROGRAM

    EPA Science Inventory

    This manuscript presents the history and evolution of the U.S. Environmental Protection Agency's (EPA) Superfund Innovative Technology Evaluation (SITE) Monitoring and Measurement Technology (MMT) Program. This includes a discussion of how the fundamental concepts of a performanc...

  15. MM&T: Bibliography on optical testing with appendix

    NASA Astrophysics Data System (ADS)

    Cornejo-Rodriguez, A.; Caulfield, H. J.; Friday, W.

    1982-02-01

    The following is a major expansion of 'Bibliography on Various Optical Testing Methods,' by Daniel Malacara, Alejandro Cornejo, and M. V. R. K. Murty which appeared in Applied Optica, 14, 1065 - 1080(1975). It is computerized to allow for easy update and correction. The last update was in September 1979. For availability information, please contact either of the authors. The present bibliography occupies 321 pages and includes the work of Cornejo, et al. as an appendix.

  16. The IRETHERM Project: How Can We Characterize Geothermal Reservoirs in Ireland using Magnetotelluric Surveying?

    NASA Astrophysics Data System (ADS)

    Delhaye, R. P.; Jones, A. G.; Rath, V.; Brown, C.; Reay, D.

    2014-12-01

    We present results from two geophysical investigations of the north of Ireland, one of a concealed sedimentary basin and the other of an area of pre- to mid-Cambrian metasedimentary material with local microseismicity in Donegal. Magnetotelluric data have been acquired over each area as part of the IRETHERM Project in order to assess potential low-enthalpy geothermal resources. In addition, airborne frequency-domain EM response data have been used to assist in the definition of near-surface electrical structure and constraint of magnetotelluric modeling. The Rathlin Basin in Northern Ireland was identified as a potential geothermal resource due both an elevated geothermal gradient (observed in two deep boreholes) and favorable hydraulic properties in thick successions of Permian and Triassic sandstones (measured from core samples). Prior seismic experiments failed to fully image the sediments beneath the overlying flood basalt. A new experiment applying the magnetotelluric method has had more success, as the MT signal is not dissipated by the crystalline overburden. MT data were acquired at 69 sites across the north-eastern portion of the onshore Rathlin Basin and on nearby Rathlin Island in order to image the thickness, depth, and lateral continuity of the target sediments. Analyses and modeling of the data have determined a resistivity model that maps the variation in thickness of the sediment fill and the truncation of the sediments against the structurally-controlling Tow Valley Fault. Further testing of the model sensitivity to variations of the thickness of the Sherwood Sandstone Group within the sediment fill has also been performed, as the overlying sediments have lower porosities and permeabilities from core sampling. Microseismicity in a metasedimentary area of northern Donegal suggests that secondary porosity distributions along fracture planes may have been augmented, leading to elevated electrical conductivity. MT data were acquired over the epicenter

  17. Synthesize function for describing distorted 2-D magnetotelluric responses caused by topography

    NASA Astrophysics Data System (ADS)

    Promdee, Ninrat; Sarakorn, Weerachai

    2016-04-01

    In this research, the distortions of 2-D magnetotelluric responses caused by topographies are described by an appropriated synthesize functions. The damping wave equations and the considered topographic curves are used as the kernel of selected synthesize functions. The parameters of those functions are estimated by using the randomized neighborhood search method. The validity of functions is tested on half-space and COMMEMI2D-1 models with cosinusoidal, Gaussian and logistic topographic curves. The obtained results indicate that distorted apparent resistivity are well described by the selected synthesize functions with an acceptable root mean square errors. The obtained values of parameters are varied on both periods of EM wave and height of topographies.

  18. APPLICATION OF AUDIO-MAGNETOTELLURIC SURVEYS ON SAO MIGUEL ISLAND, AZORES PORTUGAL.

    USGS Publications Warehouse

    Hoover, Donald; Rodrigues Da Silva, A.; Pierce, Herbert A.; Amaral, Roberto

    1984-01-01

    Geothermal exploration and development has been under way on Sao Miguel Island, Azores since 1975. This work had been restricted to the Fogo volcano, one of three dormant silicic volcanic centers on the island. The USGS in 1982 and 1983 conducted reconnaissance natural-source audio-magnetotelluric (AMT) surveys of all three silicic centers to evaluate the potential for geothermal systems at each and to demonstrate the utility of the method in areas of difficult terrain. Results on Fogo showed a low resistivity trend extending from the present production area upslope to the caldera boundary. The upper part of this trend is the upwelling zone of a thermal plume which supplies the production area. Further exploration and drilling are now planned for this area.

  19. Two and three-dimensional magnetotelluric inversion. Technical report, December 1, 1991--May 31, 1994

    SciTech Connect

    Booker, J.R.

    1994-06-27

    Our overall goal is to develop efficient techniques for high resolution imaging of the electrical structure of the Earth`s subsurface. We have focussed on natural source techniques. Such as magnetotellurics (MT). The main accomplishment under our past DOE funding has been to implement a new algorithm to invert MT data for multi-dimensional structure which is orders of magnitude faster and more memory efficient than competing algorithms. In our most recent work, we have substantially extended the capability of our two-dimensional code: completed basic implementation of a three-dimensional code and investigated holographic techniques able to rapidly extract images without solving for material properties. The principal new goal of our proposed research is to extend our methods to the controlled source electromagnetic (CSEM) techniques used in many industrial applications.

  20. A data variance technique for automated despiking of magnetotelluric data with a remote reference

    SciTech Connect

    Kappler, K.

    2011-02-15

    The magnetotelluric method employs co-located surface measurements of electric and magnetic fields to infer the local electrical structure of the earth. The frequency-dependent 'apparent resistivity' curves can be inaccurate at long periods if input data are contaminated - even when robust remote reference techniques are employed. Data despiking prior to processing can result in significantly more reliable estimates of long period apparent resistivities. This paper outlines a two-step method of automatic identification and replacement for spike-like contamination of magnetotelluric data; based on the simultaneity of natural electric and magnetic field variations at distant sites. This simultaneity is exploited both to identify windows in time when the array data are compromised, and to generate synthetic data that replace observed transient noise spikes. In the first step, windows in data time series containing spikes are identified via intersite comparison of channel 'activity' - such as the variance of differenced data within each window. In the second step, plausible data for replacement of flagged windows is calculated by Wiener filtering coincident data in clean channels. The Wiener filters - which express the time-domain relationship between various array channels - are computed using an uncontaminated segment of array training data. Examples are shown where the algorithm is applied to artificially contaminated data, and to real field data. In both cases all spikes are successfully identified. In the case of implanted artificial noise, the synthetic replacement time series are very similar to the original recording. In all cases, apparent resistivity and phase curves obtained by processing the despiked data are much improved over curves obtained from raw data.

  1. Hunting for extremely metal-poor emission-line galaxies in the Sloan Digital Sky Survey: MMT and 3.5 m APO observations

    NASA Astrophysics Data System (ADS)

    Izotov, Y. I.; Thuan, T. X.; Guseva, N. G.

    2012-10-01

    We present 6.5-m MMT and 3.5 m APO spectrophotometry of 69 H ii regions in 42 low-metallicity emission-line galaxies, selected from the data release 7 of the Sloan Digital Sky Survey to have mostly [O iii]λ4959/Hβ ≲ 1 and [N ii]λ6583/Hβ ≲ 0.1. The electron temperature-sensitive emission line [O iii] λ4363 is detected in 53 H ii regions allowing a direct abundance determination. The oxygen abundance in the remaining 16 H ii regions is derived using a semi-empirical method. The oxygen abundance of the galaxies in our sample ranges from 12 + log O/H ~ 7.1 to ~7.9, with 14 H ii regions in 7 galaxies with 12 + log O/H ≤ 7.35. In 5 of the latter galaxies, the oxygen abundance is derived here for the first time. Including other known extremely metal-deficient emission-line galaxies from the literature, e.g. SBS 0335-052W, SBS 0335-052E and I Zw 18, we have compiled a sample of the 17 most metal-deficient (with 12 + log O/H ≤ 7.35) emission-line galaxies known in the local universe. There appears to be a metallicity floor at 12 + log O/H ~ 6.9, suggesting that the matter from which dwarf emission-line galaxies formed was pre-enriched to that level by e.g. Population III stars. Based on observations with the Multiple Mirror telescope (MMT) and the 3.5 m Apache Point Observatory (APO). The MMT is operated by the MMT Observatory (MMTO), a joint venture of the Smithsonian Institution and the University of Arizona. The Apache Point Observatory 3.5-m telescope is owned and operated by the Astrophysical Research Consortium.Figures 1-3 and Tables 2-8 are available in electronic form at http://www.aanda.org

  2. West Flank Coso FORGE Magnetotelluric 3D Data

    DOE Data Explorer

    Doug Blankenship

    2016-01-01

    This is the 3D version of the MT data for the West Flank FORGE area.The Coso geothermal field has had three Magnetotelluric (MT) datasets collected including surveys in 2003, 2006, and 2011. The final collection, in 2011, expanded the survey to the west and covers the West Flank of FORGE area.This most recent data set was collected by Schlumberger/WesternGeco and inverted by the WesternGeco GeoSolutions Integrated EM Center of Excellence in Milan, Italy; the 2003 and 2006 data were integrated for these inversions in the present study.

  3. Probabilistic 3-D time-lapse inversion of magnetotelluric data: Application to an enhanced geothermal system

    USGS Publications Warehouse

    Rosas-Carbajal, Marina; Linde, Nicolas; Peacock, Jared R.; Zyserman, F. I.; Kalscheuer, Thomas; Thiel, Stephan

    2015-01-01

    Surface-based monitoring of mass transfer caused by injections and extractions in deep boreholes is crucial to maximize oil, gas and geothermal production. Inductive electromagnetic methods, such as magnetotellurics, are appealing for these applications due to their large penetration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In this work, we propose a 3-D Markov chain Monte Carlo inversion of time-lapse magnetotelluric data to image mass transfer following a saline fluid injection. The inversion estimates the posterior probability density function of the resulting plume, and thereby quantifies model uncertainty. To decrease computation times, we base the parametrization on a reduced Legendre moment decomposition of the plume. A synthetic test shows that our methodology is effective when the electrical resistivity structure prior to the injection is well known. The centre of mass and spread of the plume are well retrieved.We then apply our inversion strategy to an injection experiment in an enhanced geothermal system at Paralana, South Australia, and compare it to a 3-D deterministic time-lapse inversion. The latter retrieves resistivity changes that are more shallow than the actual injection interval, whereas the probabilistic inversion retrieves plumes that are located at the correct depths and oriented in a preferential north-south direction. To explain the time-lapse data, the inversion requires unrealistically large resistivity changes with respect to the base model. We suggest that this is partly explained by unaccounted subsurface heterogeneities in the base model from which time-lapse changes are inferred.

  4. Inversion of magnetotelluric data in a sparse model domain

    NASA Astrophysics Data System (ADS)

    Nittinger, Christian G.; Becken, Michael

    2016-06-01

    The inversion of magnetotelluric data into subsurface electrical conductivity poses an ill-posed problem. Smoothing constraints are widely employed to estimate a regularized solution. Here, we present an alternative inversion scheme that estimates a sparse representation of the model in a wavelet basis. The objective of the inversion is to determine the few non-zero wavelet coefficients which are required to fit the data. This approach falls into the class of sparsity constrained inversion schemes and minimizes the combination of the data misfit in a least squares ℓ2 sense and of a model coefficient norm in a ℓ1 sense (ℓ2-ℓ1 minimization). The ℓ1 coefficient norm renders the solution sparse in a suitable representation such as the multi-resolution wavelet basis, but does not impose explicit structural penalties on the model as it is the case for ℓ2 regularization. The presented numerical algorithm solves the mixed ℓ2-ℓ1 norm minimization problem for the non-linear magnetotelluric inverse problem. We demonstrate the feasibility of our algorithm on synthetic 2-D MT data as well as on a real data example. We found that sparse models can be estimated by inversion and that the spatial distribution of non-vanishing coefficients indicates regions in the model which are resolved.

  5. Inversion of magnetotelluric data in a sparse model domain

    NASA Astrophysics Data System (ADS)

    Nittinger, Christian G.; Becken, Michael

    2016-08-01

    The inversion of magnetotelluric data into subsurface electrical conductivity poses an ill-posed problem. Smoothing constraints are widely employed to estimate a regularized solution. Here, we present an alternative inversion scheme that estimates a sparse representation of the model in a wavelet basis. The objective of the inversion is to determine the few non-zero wavelet coefficients which are required to fit the data. This approach falls into the class of sparsity constrained inversion schemes and minimizes the combination of the data misfit in a least-squares ℓ2 sense and of a model coefficient norm in an ℓ1 sense (ℓ2-ℓ1 minimization). The ℓ1 coefficient norm renders the solution sparse in a suitable representation such as the multiresolution wavelet basis, but does not impose explicit structural penalties on the model as it is the case for ℓ2 regularization. The presented numerical algorithm solves the mixed ℓ2-ℓ1 norm minimization problem for the nonlinear magnetotelluric inverse problem. We demonstrate the feasibility of our algorithm on synthetic 2-D MT data as well as on a real data example. We found that sparse models can be estimated by inversion and that the spatial distribution of non-vanishing coefficients indicates regions in the model which are resolved.

  6. Magnetotelluric Data, Southern Yucca Flat, Nevada Test Site, Nevada

    SciTech Connect

    J.M. Williams; B.D. Rodriguez, and T.H. Asch

    2005-11-23

    Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for Southern Yucca Flat, Profile 4, as shown in Figure 1. No interpretation of the data is included here.

  7. Magnetotelluric Data, Central Yucca Flat, Nevada Test Site, Nevada

    SciTech Connect

    J.M. Williams; B.D. Rodriguez, and T.H. Asch

    2005-11-23

    Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for Central Yucca Flat, Profile 1, as shown in figure 1. No interpretation of the data is included here.

  8. Magnetotelluric Data, Northern Frenchman Flat, Nevada Test Site Nevada

    SciTech Connect

    J.M. Williams; B.D. Rodriguez, and T. H. Asch

    2005-11-23

    Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for Frenchman Flat Profile 3, as shown in Figure 1. No interpretation of the data is included here.

  9. Multistation magnetotellurics. Final report, 1 January 1996--30 June 1997

    SciTech Connect

    Egbert, G.D.

    1997-12-31

    The author has developed the foundations of a practical multivariate approach to processing magnetotelluric array data. Compared to current standards for magnetotelluric data processing, the multivariate approach is unique in that all available data channels are used simultaneously. The approach is outlined in this report. Using Multmtrn, a program for multiple station analysis of magnetotelluric data, the author achieved significant improvements in apparent resistivity and phase estimates in initial tests. Examples of the use of this approach are given including: Carrizo Plain and Parkfield electromagnetic profiling data; sea floor magnetotelluric (MT) data from the Gulf of Mexico; MT survey in a culturally noisy area of Bavaria; and Parkfield/Hollister earthquake monitoring array data. Experience with these projects has resulted in an improved program. The new version of the code is available at http://www.cg.NRCan.gc.ca/mtnet/mtnet.html or by contacting egbert{at}oce.orst.edu. Appendices of this report present documentation for Multmtrn.

  10. Two and three dimensional magnetotelluric inversion

    SciTech Connect

    Booker, J.

    1993-01-01

    Electrical conductivity depends on properties such as the presence of ionic fluids in interconnected pores that are difficult to sense with other remote sensing techniques. Thus improved imaging of underground electrical structure has wide practical importance in exploring for groundwater, mineral and geothermal resources, and in assessing the diffusion of fluids in oil fields and waste sites. Because the electromagnetic inverse problem is fundamentally multi-dimensional, most imaging algorithms saturate available computer power long before they can deal with the complete data set. We have developed an algorithm to directly invert large multi-dimensional data sets that is orders of magnitude faster than competing methods. We have proven that a two-dimensional (2D) version of the algorithm is highly effective for real data and have made substantial progress towards a three-dimensional (3D) version. We are proposing to cure identified shortcomings and substantially expand the utility of the existing 2D program, overcome identified difficulties with extending our method to three-dimensions (3D) and embark on an investigation of related EM imaging techniques which may have the potential for even further increasing resolution.

  11. Audio-magnetotelluric methods in reconnaissance geothermal exploration

    USGS Publications Warehouse

    Hoover, D.B.; Long, C.L.

    1976-01-01

    and 18 600 Hz where artificial VLF sources are available. As a reconnaissance technique we use AMT surveys in conjunction with regional gravity, magnetic, and telluric surveys. The exploration depth is a function of the resistivities of the lithologic section, but typically ranges from the surface to 0.2 km in low-resistivity areas and to greater than 2 km in high-resistivity regions. Results of the initial reconnaissance AMT surveys provide a rational basis for deciding on the extent of costlier follow-up surveys. As part of the U.S. Geological Survey geothermal program, surveys were conducted in Long Valley and Surprise Valley, California; the Vale, Ore-Weiser, Idaho region; and Bruneau-Grand View, Raft River, and Island Park regions of Idaho. AMT surveys in five additional known geothermal resource areas (KGRA's) have been scheduled for completion by May 1975. In the Raft River and Bruneau-Grand View regions and Long Valley, follow-up electrical surveys substantiated the effectiveness of the AMT technique for reconnaissance surveying.

  12. Multi-site magnetotelluric measurement system with real-time data analysis. Final technical report No. 210

    SciTech Connect

    Becker, J.D.; Bostick, F.X. Jr.; Smith, H.W.

    1981-09-01

    A magnetotelluric measurement system has been designed to provide a more cost effective electrical method for geothermal and mineral exploration. The theoretical requirements and sensitivities of the magnetotelluric inversion process were specifically addressed in determining system performance requirements. Significantly reduced instrument noise levels provide improved data quality, and simultaneous measurement at up to six locations provides reduced cost per site. Remotely located, battery powered, instrumentation packages return data to a central controlling site through a 2560 baud wire-line or radio link. Each remote package contains preamplifiers, data conditioning filters, and a 12-bit gain ranging A-D converter for frequencies from 0.001 Hz to 8 Hz. Data frequencies above 8 Hz are processed sequentially by a heterodyne receiver to reduce bandwidth to within the limits of the 2560 baud data link. The central data collection site provides overall control for the entire system. The system operator interacts with the system through a CRT terminal, and he receives hard copy from a matrix graphics printer. Data from the remote packages may be recorded in time sequence on a magnetic tape cartridge system, or an optional Hewlett-Packard 21MX minicomputer can be used to perform real-time frequency analysis. The results of this analysis provide feedback to the operator for improved evaluation of system performance and for selection of future measurement sites.

  13. Magnetotelluric array data analysis from north-west Fennoscandia

    NASA Astrophysics Data System (ADS)

    Cherevatova, M.; Smirnov, M. Yu.; Jones, A. G.; Pedersen, L. B.; Becken, M.; Biolik, M.; Cherevatova, M.; Ebbing, J.; Gradmann, S.; Gurk, M.; Hübert, J.; Jones, A. G.; Junge, A.; Kamm, J.; Korja, T.; Lahti, I.; Löwer, A.; Nittinger, C.; Pedersen, L. B.; Savvaidis, A.; Smirnov, M.

    2015-06-01

    New magnetotelluric (MT) data in north-west Fennoscandia were acquired within the framework of the project "Magnetotellurics in the Scandes" (MaSca). The project focuses on the investigation of the crustal and upper mantle lithospheric structure in the transition zone from stable Precambrian cratonic interior to passive continental margin beneath the Caledonian orogen and the Scandinavian Mountains in western Fennoscandia. An array of 59 synchronous long period and 220 broad-band MT sites was occupied in the summers of 2011 to 2013. We estimated MT transfer functions in the period range from 0.003 to 105 s. The Q-function multi-site multi-frequency analysis and the phase tensor were used to estimate strike and dimensionality of MT data. Dimensionality and strike analyses indicate generally 2-D behaviour of the data with 3-D effects at some sites and period bands. In this paper we present 2-D inversion of the data, 3-D inversion models are shown in the parallel paper. We choose to invert the determinant of the impedance tensor to mitigate 3-D effects in the data on our 2-D models. Seven crustal-scale and four lithospheric-scale 2-D models are presented. The resistive regions are images of the Archaean and Proterozoic basement in the east and thin Caledonian nappes in the west. The middle and lower crust of the Svecofennian province is conductive. The southern end of the Kittilä Greenstone Belt is seen in the models as a strong upper to middle crustal conductor. In the Caledonides, the highly conductive alum shales are observed along the Caledonian Thrust Front. The thickest lithosphere is in the Palaeoproterozioc Svecofennian Domain, not in the Archaean. The thickness of the lithosphere is around 200 km in the north and 300 km in the south-west.

  14. Crustal structure beneath southern Norway imaged by magnetotellurics

    NASA Astrophysics Data System (ADS)

    Cherevatova, M.; Smirnov, M.; Korja, T.; Kaikkonen, P.; Pedersen, L. B.; Hübert, J.; Kamm, J.; Kalscheuer, T.

    2014-07-01

    We use data from two magnetotelluric profiles, ToSca10 and ToSca'09, over the Scandinavian Mountains to study the crustal structure in southern Norway. The profiles cross the major tectonic structures of the Caledonian orogen as well as the western margin of the Precambrian Baltica. Dimensionality and strike analyses indicate generally 3-D behavior of the data. However, the majority of the used data distinguishes a preferable strike direction, which is supported by the geology of the region. Hence, we employ 2-D inversion and choose to invert the determinant of the impedance tensor to mitigate 3-D effects in the data on our 2-D models. Magnetotelluric data from both profiles are inverted using a damped least squares solution based on a singular value decomposition. We improved the solution by defining the inverse model covariance matrix through gradient or Laplacian smoothing operators. The two-dimensional inversion models of the ToSca'09 and ToSca'10 field data from southern Norway derived from the damped least squares scheme with the Laplacian inverse model covariance matrix are presented. Resistive rocks, extending to the surface, image the autochthonous Southwest Scandinavian Domain and the allochthonous Western Gneiss Region. Near-surface conductors, which are located between the resistive Caledonian nappes and Precambrian basement, delineate highly conductive shallow-sea sediments, so called alum shales. They exhibit a decollement along which the Caledonian nappes were overthrust. A deeper, upper to mid-crustal conducting layer in the Southwest Scandinavian Domain may depict the remnants of closed ocean basins formed during the accretions and collisions of various Sveconorwegian terranes. In ToSca'10, the Caledonian nappes, the conducting alum shales and the deeper conductor are terminated in the west by the Faltungsgraben shear complex which represents a crustal scale boundary between the Western Gneiss Region in the west and the Southwest Scandinavian

  15. Magnetotelluric Data, Northern Yucca Flat, Nevada Test Site, Nevada

    SciTech Connect

    J.M. Williams; B.D. Rodriguez, and T.H. Asch

    2005-11-23

    Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for Profile 2, (fig. 1), located in the northern Yucca Flat area. No interpretation of the data is included here.

  16. Magnetotelluric Data, Across Quartzite Ridge, Nevada Test Site, Nevada

    SciTech Connect

    J.M. Williams; B.D. Rodriguez, and T.H. Asch

    2005-11-23

    Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT soundings across Quartzite Ridge, Profiles 5, 6a, and 6b, as shown in Figure 1. No interpretation of the data is included here.

  17. Magnetotelluric Data, North Central Yucca Flat, Nevada Test Site, Nevada

    SciTech Connect

    J.M. Williams; B.D. Rodriguez, and T.H. Asch

    2005-11-23

    Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for north central Yucca Flat, Profile 7, as shown in Figure 1. No interpretation of the data is included here.

  18. Megacam: A Wide-Field CCD Imager for the MMT and Magellan

    NASA Astrophysics Data System (ADS)

    McLeod, Brian; Geary, John; Conroy, Maureen; Fabricant, Daniel; Ordway, Mark; Szentgyorgyi, Andrew; Amato, Stephen; Ashby, Matthew; Caldwell, Nelson; Curley, Dylan; Gauron, Thomas; Holman, Matthew; Norton, Timothy; Pieri, Mario; Roll, John; Weaver, David; Zajac, Joseph; Palunas, Povilas; Osip, David

    2015-04-01

    Megacam is a large-format optical camera that can be operated at the f/5 Cassegrain foci of the MMT on Mount Hopkins, Arizona, and the Magellan Clay telescope at Las Campanas Observatory, Chile. Megacam's focal plane is composed of 36 closely packed e2v CCD42-90 CCDs, each with 2048 × 4608 pixels, assembled in an 18,432 × 18,432 array. Two additional CCD42-90s are provided for autoguiding and focus control. The CCDs have 13.5 μm square pixels that subtend 0 \\overset{''}{.} 08 at the f/5 foci, yielding a 25' × 25' field-of-view. The camera system includes a focal plane shutter, two filter wheels, two liquid nitrogen reservoirs, a central chamber that holds the CCD mosaic array, and two electronics boxes. Megacam is equipped with a variety of broadband and narrowband filters. Software features include automatic calculation of twilight flat exposure times.

  19. Joint interpretation of magnetotelluric, seismic, and well-log data in Hontomín (Spain)

    NASA Astrophysics Data System (ADS)

    Ogaya, Xènia; Alcalde, Juan; Marzán, Ignacio; Ledo, Juanjo; Queralt, Pilar; Marcuello, Alex; Martí, David; Saura, Eduard; Carbonell, Ramon; Benjumea, Beatriz

    2016-06-01

    Hontomín (N of Spain) hosts the first Spanish CO2 storage pilot plant. The subsurface characterization of the site included the acquisition of a 3-D seismic reflection and a circumscribed 3-D magnetotelluric (MT) survey. This paper addresses the combination of the seismic and MT results, together with the available well-log data, in order to achieve a better characterization of the Hontomín subsurface. We compare the structural model obtained from the interpretation of the seismic data with the geoelectrical model resulting from the MT data. The models correlate well in the surroundings of the CO2 injection area with the major structural differences observed related to the presence of faults. The combination of the two methods allowed a more detailed characterization of the faults, defining their geometry, and fluid flow characteristics, which are key for the risk assessment of the storage site. Moreover, we use the well-log data of the existing wells to derive resistivity-velocity relationships for the subsurface and compute a 3-D velocity model of the site using the 3-D resistivity model as a reference. The derived velocity model is compared to both the predicted and logged velocity in the injection and monitoring wells, for an overall assessment of the computed resistivity-velocity relationships. The major differences observed are explained by the different resolution of the compared geophysical methods. Finally, the derived velocity model for the near surface is compared with the velocity model used for the static corrections in the seismic data. The results allowed extracting information about the characteristics of the shallow unconsolidated sediments, suggesting possible clay and water content variations. The good correlation of the velocity models derived from the resistivity-velocity relationships and the well-log data demonstrate the potential of the combination of the two methods for characterizing the subsurface, in terms of its physical properties

  20. Joint Audio-Magnetotelluric and Passive Seismic Imaging of the Cerdanya Basin

    NASA Astrophysics Data System (ADS)

    Gabàs, A.; Macau, A.; Benjumea, B.; Queralt, P.; Ledo, J.; Figueras, S.; Marcuello, A.

    2016-09-01

    The structure of Cerdanya Basin (north-east of Iberian Peninsula) is partly known from geological cross sections, geological maps and vintage geophysical data. However, these data do not have the necessary resolution to characterize some parts of Cerdanya Basin such as the thickness of soft soil, geometry of bedrock or geometry of geological units and associated faults. For all these reasons, the main objective of this work is to improve this deficiency carrying out a detailed study in this Neogene basin applying jointly the combination of passive seismic methods ( H/V spectral ratio and seismic array) and electromagnetic methods (audio-magnetotelluric and magnetotelluric method). The passive seismic techniques provide valuable information of geometry of basement along the profile. The maximum depth is located near Alp village with a bedrock depth of 500 m. The bedrock is located in surface at both sites of profile. The Neogene sediments present a shear-wave velocity between 400 and 1000 m/s, and the bedrock basement presents a shear-wave velocity values between 1700 and 2200 m/s. These results are used as a priori information to create a 2D resistivity initial model which constraints the inversion process of electromagnetic data. We have obtained a 2D resistivity model which is characterized by (1) a heterogeneous conductivity zone (<40 Ohm m) that corresponds to shallow part of the model up to 500 m depth in the centre of the profile. These values have been associated with Quaternary and Neogene sediments formed by silts, clays, conglomerates, sandstones and gravels, and (2) a deeper resistive zone (1000-3000 Ohm m) interpreted as Palaeozoic basement (sandstones, limestones and slates at NW and conglomerates and microconglomerates at SE). The resistive zone is truncated by a discontinuity at the south-east of the profile which is interpreted as the Alp-La Tet Fault. This discontinuity is represented by a more conductive zone (600 Ohm m approx.) and is explained

  1. The Use of Direct Solver in Vector Finite Element Modeling for Calculating 3-D Magnetotelluric Responses

    NASA Astrophysics Data System (ADS)

    Prihantoro, Rudy; Sutarno, Doddy; Nurhasan

    2016-08-01

    In this work, we seek numerical solution of 3-D Magnetotelluric (MT) using edge- based finite element method. This approach is a variant of standard finite element method and commonly referred as vector finite-element (VFE) method. Nonphysical solutions usually occurred when the solution is sought using standard finite element which is a node based element. Vector finite element attempt to overcome those nonphysical solutions by using the edges of the element as vector basis. The proposed approach on solving second order Maxwell differential equation of 3-D MT is using direct solver rather than iterative method. Therefore, divergence correction to accelerate the rate of convergence for its iterative solution is no longer needed. The utilization of direct solver has been verified previously for correctness by comparing the resulting solution to those given by analytical solution, as well as the solution come from the other numerical methods, for earth layered model, 2-D models and COMMEMI 3D-2 model. In this work, further verification resulted from recent comparison model of Dublin Test Model 1 (DTM1) is presented.

  2. Comparison of In Situ Polymerization and Solution-Dispersion Techniques in the Preparation of Polyimide/Montmorillonite (MMT) Nanocomposites

    PubMed Central

    Ahmad, Mansor Bin; Gharayebi, Yadollah; Salit, Mohd. Sapuan; Hussein, Mohd. Zobir; Shameli, Kamyar

    2011-01-01

    In this paper, Polyimide/Montmorillonite Nanocomposites (PI/MMT NCs), based on aromatic diamine (4-Aminophenyl sulfone) (APS) and aromatic dianhydride (3,3′,4,4′-benzophenonetetracarboxylic dianhydride) (BTDA) were prepared using in situ polymerization and solution-dispersion techniques. The prepared PI/MMT NCs films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The XRD results showed that at the content of 1.0 wt % Organo Montmorillonite (OMMT) for two techniques and 3.0 wt % OMMT for the in situ polymerization technique, the OMMT was well-intercalated, exfoliated and dispersed into polyimide matrix. The OMMT agglomerated when its amount exceeded 10 wt % and 3.0 wt % for solution-dispersion and in situ polymerization techniques respectively. These results were confirmed by the TEM images of the prepared PI/MMT NCs. The TGA thermograms indicated that thermal stability of prepared PI/MMT NCs were increased with the increase of loading that, the effect is higher for the samples prepared by in situ polymerization technique. PMID:22016643

  3. Magnetotelluric investigation of the geothermal anomaly in Hailin, Mudanjiang, northeastern China

    NASA Astrophysics Data System (ADS)

    Zhang, Lili; Hao, Tianyao; Xiao, Qibin; Wang, Jie; Zhou, Liang; Qi, Min; Cui, Xiangpan; Cai, Ningxiao

    2015-07-01

    To study the occurrence conditions and locations of geothermal bodies in Hailin, Mudanjiang, northeastern China, we conducted a magnetotelluric investigation to delineate the electrical conductivity structure of the area on three parallel profiles. The area to the west of the Mudanjiang Fault lies in the Hailang sag of the Ning'an Basin. The data were processed using the mutual reference technique, static shift correction, and structural strike and dimensionality analysis based on tensor decomposition. Moreover, a modified anisotropic-diffusion-based method was used to suppress noise for the magnetotelluric time series data. This method retains the advantages of conventional anisotropic diffusion and is superior in its discrimination ability. The method is characteristic not only of the inherited features such as intra-region smoothing and edge preservation, but also of the adaptive selection of the diffusion coefficient. Data analysis revealed that the electrical resistivity structure can be approximated by a two-dimensional characterization. Two-dimensional inversion and rendering visualization show that a highly resistive granite basement is covered with conductive sedimentary layers and that a relatively low-resistivity anomalous structure with a resistivity of approximately 100-600 Ω·m is imbedded in the high-resistivity background. The anomalous structure has a narrow top and a wide bottom (the bottom depth is at least 3500 m). The shape and electrical features of the structure indicate favorable storage space for hot subsurface water. Fault activities and magma intrusion may result in the fractures of the basement, which are filled with hot water and thus produce the relatively low resistivity. Based on a comprehensive analysis, we infer that the structure is indicative of a geothermal reservoir. An exploratory well drilled near the structure confirms the occurrence of high temperatures. Several geological factors (cap rock, basement, and major faults

  4. (An)isotropic 3D Array Magnetotelluric Modeling of the South Western Vogelsberg Area

    NASA Astrophysics Data System (ADS)

    Junge, A.; Löwer, A.

    2013-12-01

    The Vogelsberg is the largest volcanic region in Central Europe with an area of 2100sqkm. It covers the Phyllitzone, which marks the border between the Rhenoherzynikum and the Moldanubikum. The structural fabric in this zone is predominantly arranged NW-SE and correlated with the variscan strike direction. Because of huge basalt layers the exact extension of the Phyllitzone in the Vogelsberg region could not be verified by drillings. Another fault is the Horloff-Graben, which crosses the Phyllitzone with a NNW-SSE strike direction and is an extension of the Upper-Rhine-Graben to the north. Recent seismicity signifies a weak active fault zone which is reaching the middle crust. In the southwest Vogelsberg area plenty mineral and thermal waters appear whose origin is under controversial discussion. The conductivity structure beneath the Vogelsberg area was investigated with the magnetotelluric method. This method uses natural time depending variations of the earth's electric and magnetic field, their sources originate e.g. in electric currents in the ionosphere for low-frequencies and lightning for high-frequencies. The method responds to conductivity contrasts beneath the surface which might be graphite, free fluids and/or partial melts. The Phyllitzone is supposed to have an anisotropic conductivity structure and should therefore be differentiable from the bedrock of the mid-German crystalline rise and the sediment covering of the Horloff Graben. The targets of these studies are the differentiation and search for the extension of the geological structures beneath the Vogelsberg basalt, particularly those from the Phyllitzone, the mid-German crystalline rise and the Horloff-Graben, and also their importance for the exploration of hydrological and geothermal resources. A 3D array with 25 broadband magnetotelluric stations was set up during winter 2010/11 and 2011/12 in an area of about 300 square miles south west of the Vogelsberg. Thus it is covering the Horloff

  5. Lithology-derived structure classification from the joint interpretation of magnetotelluric and seismic models

    USGS Publications Warehouse

    Bedrosian, P.A.; Maercklin, N.; Weckmann, U.; Bartov, Y.; Ryberg, T.; Ritter, O.

    2007-01-01

    Magnetotelluric and seismic methods provide complementary information about the resistivity and velocity structure of the subsurface on similar scales and resolutions. No global relation, however, exists between these parameters, and correlations are often valid for only a limited target area. Independently derived inverse models from these methods can be combined using a classification approach to map geologic structure. The method employed is based solely on the statistical correlation of physical properties in a joint parameter space and is independent of theoretical or empirical relations linking electrical and seismic parameters. Regions of high correlation (classes) between resistivity and velocity can in turn be mapped back and re-examined in depth section. The spatial distribution of these classes, and the boundaries between them, provide structural information not evident in the individual models. This method is applied to a 10 km long profile crossing the Dead Sea Transform in Jordan. Several prominent classes are identified with specific lithologies in accordance with local geology. An abrupt change in lithology across the fault, together with vertical uplift of the basement suggest the fault is sub-vertical within the upper crust. ?? 2007 The Authors Journal compilation ?? 2007 RAS.

  6. Application of Mixture of Gaussian Clustering on Joint Facies Interpretation of Seismic and Magnetotelluric Sections

    NASA Astrophysics Data System (ADS)

    Shahrabi, Mohammad Ali; Hashemi, Hosein; Hafizi, Mohammad Kazem

    2016-02-01

    Seismic and magnetotelluric (MT) methods are the most applicable geophysical methods in exploration of hydrocarbon resources. In this paper, mixture of Gaussian clustering is used to combine seismic and MT images under the scheme of Expectation/Maximization (EM) algorithm. Pre-Stack Depth Migration (PSDM) velocity, Root Mean Square (RMS) velocity and vertical gradient of RMS velocity of seismic and resistivity model of MT along 19.3 km MUN-21 profile in Munir Block that has been located in Southwest of Iran in Dezful embayment over the Seh-Qanat anticline are applied. The anticline is the most important oil trap of this area. The Expectation/Maximization (EM) method that has been applied includes: (1) creation of data vectors from the seismic and MT images using image processing techniques, (2) normalizing and mapping using Principal Component Analysis (PCA) procedure (3) unsupervised learning of dataset matrix, (4) setting the matrix in Expectation/Maximization (EM) iteration algorithm (5) remapping to physical space. The final model consists fof six classes which could be given to eight formations that belong to Eocene to Neocomian geological age. Pre-Stack Depth Migration (PSDM) velocity model obtained from seismic study on Seh-Qanat anticline only detected 2 horizons of formations, Asmari and Sarvak Formations; however, the current methodology introduces subdivision anticline into six classes by matching it to the log information of Seh-Qanat Deep-1 (SQD-1) borehole where it was excavated over the anticline with total depth of 2876 m.

  7. Spatial and temporal characterization of CO2 storage sites using magnetotellurics

    NASA Astrophysics Data System (ADS)

    Ledo, J.; Queralt, P.; Marcuello, A.; Roca, E.; Rubinat, M.

    2009-04-01

    Integration of different geophysical, geological and geochemical methods will play a key role for the spatial and temporal characterization of underground CO2 storage sites. Among the geophysical techniques the magnetotelluric method (MT) may help on both, site characterization and monitoring of the CO2 plume, mainly on deep saline reservoirs. In this work we present the characterization of a salt diapir in southern Spain using MT data. This diaper does not satisfy the conditions to be a future reservoir due to the absence of a good lithological seal, but can be use as a natural analog to determine the validity of different geophysical methods. In total 34 MT sites were acquired along a 15 km profile. Once the data has been analyzed, inverted and integrated with surface geological data a simulated investigation for monitoring the CO2 has been carried out. In this simulation the CO2 has been located at the base of the Jurassic to Turonnian carbonates and marls increasing the resistivity of the model. Several tests varying the resistivity and the amount of the CO2 as well as the number of MT sites used will be show.

  8. New explanation of an old magnetotelluric observation: source rock of the Transdanubian Range Conductivity Anomaly ascertained

    NASA Astrophysics Data System (ADS)

    Németh, Viktória; Horváth, Frank; Tari, Gabor; Wesztergom, Viktor

    2014-05-01

    The so-called Transdanubian Conductivity Anomaly (TCA) at the Hungarian part of the NW Pannonian Basin has been well known for nearly four decades. Hungarian research institutions carried out several magnetotelluric soundings and exceptionally low resistivity (i.e. 1-2 Ohmm) zones were found with a large areal extent (on the order of few thousand square km). The low resistivity bodies are situated in the depth range of 4 to 10 km and no surface outcrops of such a highly conducting rock mass can be found in Hungary. This enigmatic geophysical anomaly was explained in a number of ways by different authors, invoking sub-horizontal Alpine nappe contacts to subvertical dikes with graphite and/or saline fluid content. Only one possible outcrop area of the high conductivity anomaly was considered so far, in the Drauzug/Gailtal area of the Eastern Alps in Austria, some 300 km to the West from the anomaly area. Whereas there were previous attempts to find correspondence between the TCA and prominent seismic reflectors seen on 2D seismic reflection profiles, in this study we have systematically correlated, for the first time, the TCA with modern 2D and 3D industry seismic reflection data. Our results show a very strong correlation between the subsurface extent and position of TCA and various sub-horizontal Cretaceous Alpine nappe surfaces. In addition, we drew on the latest structural correlation of the Alpine nappe stack of the Transdanubian Central Range with its proper tectonic counterpart in the Eastern Alps. At the southern edge of the Upper Austroalpine units in northern Styria, in the Veitsch Nappe of the Greywacke Zone, numerous graphite localities are known historically. We propose that the best explanation for the observed extent and geometry of the TCA is the presence of graphite in subhorizontal, tectonically thinned detachment surfaces in the Upper Austroalpine nappe edifice of NW Hungary. This explanation is supported by reinterpretation of old magnetotelluric

  9. Regularized inversion of controlled source audio-frequency magnetotelluric data in horizontally layered transversely isotropic media

    NASA Astrophysics Data System (ADS)

    Zhou, Jianmei; Wang, Jianxun; Shang, Qinglong; Wang, Hongnian; Yin, Changchun

    2014-04-01

    We present an algorithm for inverting controlled source audio-frequency magnetotelluric (CSAMT) data in horizontally layered transversely isotropic (TI) media. The popular inversion method parameterizes the media into a large number of layers which have fixed thickness and only reconstruct the conductivities (e.g. Occam's inversion), which does not enable the recovery of the sharp interfaces between layers. In this paper, we simultaneously reconstruct all the model parameters, including both the horizontal and vertical conductivities and layer depths. Applying the perturbation principle and the dyadic Green's function in TI media, we derive the analytic expression of Fréchet derivatives of CSAMT responses with respect to all the model parameters in the form of Sommerfeld integrals. A regularized iterative inversion method is established to simultaneously reconstruct all the model parameters. Numerical results show that the inverse algorithm, including the depths of the layer interfaces, can significantly improve the inverse results. It can not only reconstruct the sharp interfaces between layers, but also can obtain conductivities close to the true value.

  10. Three-dimensional controlled-source electromagnetic and magnetotelluric joint inversion

    SciTech Connect

    Commer, M.; Newman, G.A.

    2009-02-15

    The growing use of the controlled-source electromagnetic method (CSEM) and magnetotellurics (MT) for exploration applications has been driving the development of data acquisition technologies, and three-dimensional (3-D) modeling and imaging techniques. However, targeting increasingly complex geological environments also further enhances the problems inherent in large-scale inversion, such as non-uniqueness and resolution issues. In this paper, we report on two techniques to mitigate these problems. We use 3-D joint CSEM and MT inversion to improve the model resolution. To avoid the suppression of the resolution capacities of one data type, and thus to balance the use of inherent, and ideally complementary information content, different data reweighting schemes are proposed. Further, a hybrid model parameterization approach is presented, where traditional cell-based model parameters are used simultaneously within a parametric inversion. The idea is to limit the non-uniqueness problem, typical for 3-D imaging problems, in order to allow for a more focusing inversion. The methods are demonstrated using synthetic data generated from models with a strong practical relevance.

  11. Magnetotelluric Data, Mid Valley, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Williams, Jackie M.; Wallin, Erin L.; Rodriguez, Brian D.; Lindsey, Charles R.; Sampson, Jay A.

    2007-01-01

    Introduction The United States Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO, collected and processed data at the Nevada Test Site in and near Yucca Flat (YF) to help define the character, thickness, and lateral extent of the pre-Tertiary confining units. We collected 51 magnetotelluric (MT) and audio-magnetotelluric (AMT), stations for that research. In early 2005 we extended that research with 26 additional MT data stations, located on and near Rainier Mesa and Shoshone Mountain (RM-SM). The new stations extended the area of the hydrogeologic study previously conducted in Yucca Flat. This work was done to help refine what is known about the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal was to define the upper clastic confining unit (UCCU). The UCCU is comprised of late Devonian to Mississippian siliciclastic rocks assigned to the Eleana Formation and Chainman Shale. The UCCU underlies the Yucca Flat area and extends westward towards Shoshone Mountain, southward to Buckboard Mesa, and northward to Rainier Mesa. Late in 2005 we collected another 14 MT stations in Mid Valley and in northern Yucca Flat basin. That work was done to better determine the extent and thickness of the UCCU near

  12. Geophysical Studies of Irish Granites Using Magnetotelluric and Gravity Data

    NASA Astrophysics Data System (ADS)

    Farrell, T. F.; Muller, M. R.; Rath, V.; Feely, M.; Hogg, C.

    2014-12-01

    We present results of on-going geophysical studies of Caledonian radiothermal granite bodies in Ireland, which are being undertaken to investigate the volumetric depth extent and structural features of these granites. During three field seasons, magnetotelluric (MT) and audio-magnetotelluric (AMT) data were acquired at 156 sites targeting three separate granite bodies. These studies will contribute to a crustal-scale investigation of the geothermal energy potential of the granites and their contribution to the thermal field of the Irish crust. Across the calc-alkaline Galway granite, located on the Irish west coast, MT and AMT data were acquired at 75 sites distributed in a grid. Preliminary 3D inversion reveals the presence of a resistor, thickest beneath the central block of the granite where it extends to depths of 11 - 12 km. The greater depth of the resistor beneath the central block is in contrast to previous thinking that proposed the central block granites to have shallower depth extent than those of the western block, based on Bouguer anomaly maps of the area in which the western block exhibited a more pronounced negative Bouguer anomaly than the central block. At the S-type Leinster granite, in eastern Ireland and to the south of Dublin, MT and AMT data were acquired along two profiles (LGN - 27 sites and LGS - 32 sites). Preliminary 1D inversions of AMT data along profile LGN show the Northern Units of the Leinster granite to extend to a depth of 4.5 km and the Lugnaquilla pluton extending to 2.5 km depth. MT and AMT data were acquired at 22 sites along a profile across the buried Kentstown granite, 35 km to the NW of Dublin. The Kentstown granite was intersected by two mineral exploration boreholes at depths of 492 m and 663 m. Preliminary 2D inversions do not yet satisfactorily resolve the top of the buried granite. Inversion of MT and AMT data is continuing, with the electrical conductivity structures revealed by these inversions being used to

  13. Magnetotelluric Data, Mid Valley, Nevada Test Site, Nevada.

    SciTech Connect

    Jackie M. Williams; Erin L. Wallin; Brian D. Rodriguez; Charles R. Lindsay; and Jay A. Sampson

    2007-08-15

    The United States Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain Corrective Action Unit (CAU) (Bechtel Nevada, 2006). During 2003, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO, collected and processed data at the Nevada Test Site in and near Yucca Flat (YF) to help define the character, thickness, and lateral extent of the pre-tertiary confining units. We collected 51 magnetotelluric (MT) and audio-magnetotelluric (AMT), stations for that research (Williams and others, 2005a, 2005b, 2005c, 2005d, 2005e, 2005f). In early 2005 we extended that research with 26 additional MT data stations (Williams and others, 2006), located on and near Rainier Mesa and Shoshone Mountain (RM-SM). The new stations extended the area of the hydrogeologic study previously conducted in Yucca Flat. This work was done to help refine what is known about the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal was to define the upper clastic confining unit (UCCU). The UCCU is comprised of late Devonian to Mississippian siliciclastic rocks assigned to the Eleana Formation and Chainman Shale. The UCCU underlies the Yucca Flat area and extends westward towards Shoshone Mountain, southward to Buckboard Mesa, and northward to Rainier Mesa. Late in 2005 we collected another 14 MT stations in Mid Valley and in

  14. New approaches to estimation of magnetotelluric parameters. Final technical report, 1 August 1989--31 July 1991

    SciTech Connect

    Egbert, G.D.

    1991-12-31

    Fully efficient robust data processing procedures were developed and tested for single station and remote reference magnetotelluric (Mr) data. Substantial progress was made on development, testing and comparison of optimal procedures for single station data. A principal finding of this phase of the research was that the simplest robust procedures can be more heavily biased by noise in the (input) magnetic fields, than standard least squares estimates. To deal with this difficulty we developed a robust processing scheme which combined the regression M-estimate with coherence presorting. This hybrid approach greatly improves impedance estimates, particularly in the low signal-to-noise conditions often encountered in the ``dead band`` (0.1--0.0 hz). The methods, and the results of comparisons of various single station estimators are described in detail. Progress was made on developing methods for estimating static distortion parameters, and for testing hypotheses about the underlying dimensionality of the geological section.

  15. A magnetotelluric survey in the northern Bolivian Altiplano

    SciTech Connect

    Ritz, M. ); Bondoux, F. ); Herail, G.; Sempere, T. )

    1991-03-01

    Magnetotelluric (MT) measurements were performed at 9 sites on the northern Bolivian Altiplano in an attempt to determine thicknesses of the Cainozoic sedimentary infill and to characterize the underlying crust. At some of the sites the MT soundings show complications due to static shift effects caused by local, surficial heterogeneities. Preliminary one-dimensional (1D) modeling of the data based on the impedance tensor determinant parameters was undertaken for sites considered to be free of static effects, and was followed by 2D modeling. The model obtained indicates, from the surface downward, three important geoelectrical units, namely (1) a very low-resistivity layer (1-6 ohm-m) consisting of late Cainozoic volcanic rocks and/or Tertiary-Cretaceous sedimentary rocks 1-4 km in thickness, (2) a crustal resistive zone (about 200 ohm-m), and (3) a lower crustal or uppermost mantle conductor (less than 10 ohm-m) at depths of 40-45 km which might be related to partial melting. This model is consistent with the geological model according to which the Altiplano formed as a synorogenic basin showing abrupt changes in depositional thicknesses across thrust faults.

  16. Magnetotelluric models of the Roosevelt Hot Springs thermal area, Utah

    SciTech Connect

    Wannamaker, P.E.; Ward, S.H.; Hohmann, G.W.; Sill, W.R.

    1980-09-01

    The Roosevelt Hot Springs (RHS) thermal area, which includes a hotwater-dominated fracture zone prospect, near the eastern margin of the Basin-Range tectonic province, conceivably possesses a whole family of resistivity structures that includes the following: deep hot brine reservoirs, deep-seated partially molten heat sources in the crust or upper mantle that drive the convective system, near-surface hydrothermal alteration zones, wet sedimentary fill in valleys, and a regional, apparently one-dimensional resistivity profile of the crust and upper mantle. This complex resistivity makeup, particular to RHS but probably similar to that at other geothermal areas in the Great Basin, must be treated as being fully three-dimensional (3-D). In an attempt to understand these structures, broadband (10/sup -3/ to 10/sup -2/ Hz) tensor magnetotelluric (MT) data were obtained including apparent resistivities (rho/sub a/), impedance phases (phi) and vertical magnetic field transfer functions for 93 sites in the vicinity of this resource area.

  17. Magnetotelluric data, Taos Plateau Volcanic Field, New Mexico

    USGS Publications Warehouse

    Ailes, Chad E.; Rodriguez, Brian D.

    2010-01-01

    The population of the San Luis Basin region of northern New Mexico is growing. Water shortfalls could have serious consequences. Future growth and land management in the region depend on accurate assessment and protection of the region's groundwater resources. An important issue in managing the groundwater resources is a better understanding of the hydrogeology of the Santa Fe Group and the nature of the sedimentary deposits that fill the Rio Grande rift, which contain the principal groundwater aquifers. The shallow unconfined aquifer and the deeper confined Santa Fe Group aquifer in the San Luis Basin are the main sources of municipal water for the region. The U.S. Geological Survey (USGS) is conducting a series of multidisciplinary studies of the San Luis Basin. Detailed geologic mapping, high-resolution airborne magnetic surveys, gravity surveys, an electromagnetic survey called magnetotellurics (MT), and hydrologic and lithologic data are being used to better understand the aquifers. This report describes a regional east-west MT sounding profile acquired in late July 2009 across the Taos Plateau Volcanic Field where drillhole data are sparse. Resistivity modeling of the MT data can be used to help map changes in electrical resistivity with depths that are related to differences in rock types. These various rock types help control the properties of aquifers. The purpose of this report is to release the MT sounding data collected along the east-west profile. No interpretation of the data is included.

  18. Magnetotelluric monitoring of a fluid injection: Example from an enhanced geothermal system

    NASA Astrophysics Data System (ADS)

    Peacock, J. R.; Thiel, S.; Reid, P.; Heinson, G.

    2012-09-01

    Enhanced geothermal systems (EGS) are on the verge of becoming commercially viable for power production, where advancements in subsurface characterization are imperative to develop EGS into a competitive industry. Theory of an EGS is simple, pump fluids into thermally enhanced lithology and extract the hot fluids to produce energy. One significant complication in EGS development is estimating where injected fluids flow in the subsurface. Micro-seismic surveys can provide information about where fractures opened, but not fracture connectivity nor fluid inclusion. Electromagnetic methods are sensitive to conductivity contrasts and can be used as a supplementary tool to delineate reservoir boundaries. In July, 2011, an injection test for a 3.6 km deep EGS at Paralana, South Australia was continuously monitored by both micro-seismic and magnetotellurics (MT). Presented are the first results from continuous MT measurements suggesting transient variations in subsurface conductivity structure generated from the introduction of fluids at depth can be measured. Furthermore, phase tensor representation of the time dependent MT response suggests fluids migrated in a NE direction from the injection well. Results from this experiment supports the extension of MT to a monitoring tool for not only EGS but other hydraulic stimulations.

  19. Three-dimensional Magnetotelluric Modeling of the Pohukuloa Training Area, Hawaii Island

    NASA Astrophysics Data System (ADS)

    Thomas, D. M.; Lienert, B. R.; Wallin, E.

    2015-12-01

    We report the results of 3D modeling of magnetotelluric (MT) data collected in the Pohakuloa Training Area (PTA) on the saddle between Mauna Loa and Mauna Kea volcanoes on Hawaii Island. We have previously used lower frequency MT data to construct 1D and 2D resistivity profiles in this area and confirmed the presence of a low-resistivity region at depths of about 2 km. One of our drill holes in PTA had previously encountered temperatures of 150 C at a similar depth. However, our 1D and 2D models were unable to fit features of the data that we suspected were due to 3D variations in subsurface resistivity. For the 3D modeling, we reprocessed the higher frequency data (1 kHz sampling rate) which were available at all 20 sites. We were then able to obtain complex impedances at frequencies of 0.5-500 Hz to use for the 3D inversion. We used Siripunvaraporn's 3D inversion method to obtain resistivities in a rectangular array of 0.5x0.5x0.25 km blocks spanning the areal extent of the stations down to a depth of 2.5 km. The results confirmed that much of the anomalous data could be explained by near-surface 3D variations in resistivity. The underlying conductor of 5-10 ohm-m at 2 km depth now appears to extend over the entire survey area.

  20. Bootstrap resampling as a tool for uncertainty analysis in 2-D magnetotelluric inversion modelling

    NASA Astrophysics Data System (ADS)

    Schnaidt, Sebastian; Heinson, Graham

    2015-10-01

    Uncertainty estimation is a vital part of geophysical numerical modelling. There exist a variety of methods aimed at uncertainty estimation, which are often complicated and difficult to implement. We present an inversion technique that produces multiple solutions, based on bootstrap resampling, to create a qualitative uncertainty measure for 2-D magnetotelluric inversion models. The approach is easy to implement, can be used with almost any inversion code, and does not require access to the inversion software's source code. It is capable of detecting the effect of data uncertainties on the model result rather than just analysing the effect of model variations on the model response. To obtain uncertainty estimates for an inversion model, the original data set is resampled repeatedly and alternate data set realizations are created and inverted. This ensemble of solutions is then statistically analysed to determine the variability between the different solutions. The process yields interpretable uncertainty maps for the inversion model and we demonstrate its effectiveness to qualitatively quantify uncertainty in synthetic model tests and a case study.

  1. Joint Geophysical Characterization of Geothermal System in Menengai, Kenya Using Magnetotelluric and Gravity

    NASA Astrophysics Data System (ADS)

    Wamalwa, A. M.; Serpa, L. F.

    2010-12-01

    Geothermal exploration typically focuses on the identification of the heat source and defining the plumbing system that allows fluid flow at depths of 1-5 km where production of geothermal energy is feasible. The faults and fracture systems that make up the plumbing systems for hydrothermal fluids are often offset from their source and may be entirely hidden beneath basin fill or volcanic flows. Thus, a variety of different geophysical methods are used to detect the fracture zones and heat sources, including electrical, electromagnetic, seismic, and potential field techniques, each not giving a unique interpretation. Therefore a careful qualitative and quantitative joint analysis of these data based on common/shared geology may improve the overall understanding of the study area. To determine the extent of geothermal system as the target for development around Menengai volcano in the southern region of the Kenya rift valley, Magnetotelluric (MT) and gravity data were analysed. Subsurface conductivity and density distribution were used to infer the possible geological structures that relate to permeability and the heat source. Density gradient in the NW and NE north of the Menengai caldera defines the rift faults. A low resistivity layer at about 500 m and 1 km is interpreted as alteration clay minerals and overlays a relatively resistive zone. A low resistivity region at a depth of about 5-6 km is inferred to be a cooling magmatic body.

  2. Interpretation of EarthScope magnetotelluric data for Northwestern United States

    NASA Astrophysics Data System (ADS)

    Green, Alisa Marie

    In this dissertation, I present the results of large-scale three-dimensional magnetotelluric (MT) inversion, based on the nonlinear conjugate gradient algorithm and the contraction integral equation forward modeling method, applied to data collected in Northwestern United States for part of the EarthScope project. It is shown that the most noteworthy anomalies within the inverse geo-electrical model are resistive structures associated with oceanic lithosphere and cratons, and conductive features associated with mantle upwelling. Density estimations from seismic data analysis show upwelling phenomena in the upper mantle where Yellowstone is the present-day surface expression of the deep heat source. Comparison of MT results to approximately 400 km depth have reasonable correlation with P-wave and S-wave velocity models obtained from seismic tomography. The MT inversion demonstrates that strong resistive zones line up along the northwest coast correlating to recent seismic interpretations of old oceanic slabs at 100 km depth believed to be remnants of the Farrallon oceanic plate. This dissertation shows that access to multiple physical properties within the subsurface increases our ability to understand complexities in geological interpretations resulting from the interplay of transforming quanta at differing pressure and temperature regimes with depth. Therefore, EarthScope is proving true to the founding philosophy that the bold, new experiment will fundamentally change our view of the planet.

  3. In situ aluminization of the MMT 6.5m primary mirror

    NASA Astrophysics Data System (ADS)

    Clark, D.; Kindred, W.; Williams, J. T.

    2006-06-01

    In May, 2000 the MMT Conversion was dedicated. Space limitations on the summit of Mt. Hopkins, AZ and limited financial resources dictated in-situ aluminization of the φ 6.5m primary mirror. Some of the attendant challenges successfully addressed in the course of accomplishing that task are described. For example: a 22 metric ton, φ7m vacuum head had to be lifted 25m before being lowered through the horizon-pointing telescope truss (clearing by 16 mm), then secured to the mirror cell that serves as a vacuum vessel; dirty mirror-support hardware integral to the cell required isolation of the process volume operating at 10 -6mbar; extensive modeling of source geometry was needed to achieve uniformity goals at very short source-substrate distances; and a cost-effective 75kW DC filament voltage source using commercially-available arc welders was developed that allowed simultaneous firing of 200 evaporation sources. Details of design and construction of the evaporation system are given along with techniques and results of the successful coating in November 2001 and September 2005.

  4. Computational fluid dynamic modeling of the summit of Mt. Hopkins for the MMT Observatory

    NASA Astrophysics Data System (ADS)

    Callahan, S.

    2010-07-01

    Over the past three decades, the staff of the MMT observatory used a variety of techniques to predict the summit wind characteristics including wind tunnel modeling and the release of smoke bombs. With the planned addition of a new instrument repair facility to be constructed on the summit of Mt. Hopkins, new computational fluid dynamic (CFD) models were made to determine the building's influence on the thermal environment around the telescope. The models compared the wind profiles and density contours above the telescope enclosure with and without the new building. The results show the steeply-sided Mount Hopkins dominates the summit wind profiles. In typical winds, the height of the telescope remains above the ground layer and is sufficiently separated from the new facility to insure the heat from the new building does not interfere with the telescope. The results also confirmed the observatories waste heat exhaust duct location needs to be relocated to prevent heat from being trapped in the wind shadow of the new building and lofting above the telescope. These useful models provide many insights into understanding the thermal environment of the summit.

  5. Synthesis of novel MMT/acyl-protected nucleo alanine monomers for the preparation of DNA/alanyl-PNA chimeras

    PubMed Central

    Roviello, G. N.; Gröschel, S.; Pedone, C.

    2009-01-01

    Alanyl-peptide nucleic acid (alanyl-PNA)/DNA chimeras are oligomers envisaged to be beneficial in efficient DNA diagnostics based on an improved molecular beacon concept. A synthesis of alanyl-PNA/DNA chimera can be based on the solid phase assembly of the oligomer with mixed oligonucleotide/peptide backbone under DNA synthesis conditions, in which the nucleotides are introduced as phosphoramidites, whereas the nucleo amino acids make use of the acid labile monomethoxytrityl (MMT) group for temporary protection of the α-amino groups and acyl protecting groups for the exocyclic amino functions of the nucleobases. In this work, we realized for the first time the synthesis of all four MMT/acyl-protected nucleo alanines, achieved by deprotection/reprotection of the newly synthesized Boc/acyl intermediates, useful monomers for the obtainment of (alanyl-PNA)/DNA chimeras by conditions fully compatible with the standard phosphoramidite DNA synthesis strategy. PMID:19629638

  6. Synthesis of novel MMT/acyl-protected nucleo alanine monomers for the preparation of DNA/alanyl-PNA chimeras.

    PubMed

    Roviello, G N; Gröschel, S; Pedone, C; Diederichsen, U

    2010-05-01

    Alanyl-peptide nucleic acid (alanyl-PNA)/DNA chimeras are oligomers envisaged to be beneficial in efficient DNA diagnostics based on an improved molecular beacon concept. A synthesis of alanyl-PNA/DNA chimera can be based on the solid phase assembly of the oligomer with mixed oligonucleotide/peptide backbone under DNA synthesis conditions, in which the nucleotides are introduced as phosphoramidites, whereas the nucleo amino acids make use of the acid labile monomethoxytrityl (MMT) group for temporary protection of the alpha-amino groups and acyl protecting groups for the exocyclic amino functions of the nucleobases. In this work, we realized for the first time the synthesis of all four MMT/acyl-protected nucleo alanines, achieved by deprotection/reprotection of the newly synthesized Boc/acyl intermediates, useful monomers for the obtainment of (alanyl-PNA)/DNA chimeras by conditions fully compatible with the standard phosphoramidite DNA synthesis strategy.

  7. Magnetotelluric survey to characterize the Sunnyside porphyry copper system in the Patagonia Mountains, Arizona

    USGS Publications Warehouse

    Rodriguez, Brian D.; Sampson, Jay A.

    2010-01-01

    The Sunnyside porphyry copper system is part of the concealed San Rafael Valley porphyry system located in the Patagonia Mountains of Arizona. The U.S. Geological Survey is conducting a series of multidisciplinary studies as part of the Assessment Techniques for Concealed Mineral Resources project. To help characterize the size and resistivity of the mineralized area beneath overburden, a regional east-west magnetotelluric sounding profile was acquired. This is a data release report of the magnetotelluric sounding data collected along the east-west profile; no interpretation of the data is included.

  8. Magnetotelluric data collected to characterize aquifers in the San Luis Basin, New Mexico

    USGS Publications Warehouse

    Ailes, Chad E.; Rodriguez, Brian D.

    2015-01-01

    The U.S. Geological Survey is conducting a series of multidisciplinary studies of the San Luis Basin as part of the Geologic Framework of Rio Grande Basins project. Detailed geologic mapping, high-resolution airborne magnetic surveys, gravity surveys, magnetotelluric surveys, and hydrologic and lithologic data are being used to better understand the aquifers in the San Luis Basin. This report describes one north-south and two east-west regional magnetotelluric sounding profiles, acquired in June of 2010 and July and August of 2011, across the San Luis Basin in northern New Mexico. No interpretation of the data is included.

  9. Audio-magnetotelluric survey to characterize the Sunnyside porphyry copper system in the Patagonia Mountains, Arizona

    USGS Publications Warehouse

    Sampson, Jay A.; Rodriguez, Brian D.

    2010-01-01

    The Sunnyside porphyry copper system is part of the concealed San Rafael Valley porphyry system located in the Patagonia Mountains of Arizona. The U.S. Geological Survey is conducting a series of multidisciplinary studies as part of the Assessment Techniques for Concealed Mineral Resources project. To help characterize the size, resistivity, and skin depth of the polarizable mineral deposit concealed beneath thick overburden, a regional east-west audio-magnetotelluric sounding profile was acquired. The purpose of this report is to release the audio-magnetotelluric sounding data collected along that east-west profile. No interpretation of the data is included.

  10. Multiscale joint interpretation of seismic and magnetotelluric data in Hontomín (Spain): From shallow subsurface to reservoir.

    NASA Astrophysics Data System (ADS)

    Ogaya, Xènia; Alcalde, Juan; Marzán, Ignacio; Ledo, Juanjo; Queralt, Pilar; Marcuello, Alex; Saura, Eduard; Martí, David; Carbonell, Ramón; Benjumea, Beatriz

    2016-04-01

    The village of Hontomín (north of Spain) hosts the first Technological Development Plant (TDP) for CO2 geological storage located in Spain. The study area has been extensively surveyed to produce a multidisciplinary characterisation, including a 36 km2 3D seismic survey and a circumscribed 15 km2 3D magnetotelluric (MT) survey. In this work, we use the outcomes of these two methods to produce a combined characterisation of the subsurface of Hontomín. This characterisation is carried out at three different scales: reservoir, borehole and shallow subsurface. (1) At reservoir scale, characterisation is obtained by comparing the 3D structural model, obtained from the interpretation of the seismic dataset, with the resistivity model obtained from the 3D MT survey. This joint interpretation highlights the similarities and disagreements between the two models, which informs of their good complementarity. (2) At borehole scale, there is an outstanding correlation between the resistivity logs and the resistivity model obtained by the inversion of the 3D MT data. This allowed building resistivity-velocity pairs from the wireline-log data across the entire sedimentary sequence with confidence, and furthermore computing resistivity-velocity relationships for each formation. These relationships are used to calculate a 3D velocity model from the resistivity model. The agreement between the two velocity models is evaluated at the target depth (reservoir and seal formations). (3) At shallow subsurface (40 m depth), the derived velocity model is compared to the inverted model used in the static correction calculations in the seismic data. The results allowed extracting information about the characteristics of the shallow sediments, suggesting geometry and location of potential karstic structures present in the study area. This work explores the compatibility of the seismic and magnetotelluric methods across scales highlighting the importance of joint interpretation in

  11. Dimensionality and geological implications of a sparse magnetotelluric dataset

    NASA Astrophysics Data System (ADS)

    Derosier, B.; Dennis, K. N.; Plata Martinez, R. O.; Montahaei, M.; Bedrosian, P.; Pellerin, L.

    2014-12-01

    High-quality broadband magnetotelluric (MT) data (0.01-1000 s period) were acquired at four stations in Borrego Canyon within the Santo Domingo Basin of the Rio Grande Rift, New Mexico, during the 2014 Summer of Applied Geophysical Experience (SAGE) field program. MT response functions along the 10-km long NW trending profile are nearly identical with all stations showing a distinct mode split at 10 s period, suggesting a significant conductivity contrast is located roughly 10-20 km away from the profile based on skin depth estimates. Audiomagnetotelluric, polar diagrams, impedance skew, induction vectors and phase tensor analysis all indicate one-dimensional (1-D) structure at periods <10 sec, a predominantly two-dimensional (2-D) structure at intermediate depths (10-100 s) with a 60° geoelectric strike, and three-dimensional (3-D) structure at the longest periods. Inverse modeling of the data from 0.01-10 s reveals a three-layer electrical structure: a moderately resistive sediments from the surface to ~750 m depth, a conductive layer (weathered volcanoclastics) to 4 km depth, and below 4 km a highly resistive basement of Mesozoic and Precambrian rocks. A 2-D inverse model converged, but resulted in physically unrealistic structure. Hence a 3-D forward model study was performed using the 2014 data together with three additional MT stations acquired further to the east during SAGE 2010. Models that include a NE-trending conductive structure to the north of the profile show broad consistency between the measured and synthetic phase tensors and impedances. We infer our MT data to be on the conductive side of this contact, with the resistive material to the NW attributed to a heavily intruded crust beneath the Jemez lineament, and possibly the edge of the thick lithosphere beneath the Colorado Plateau. 3-D inversion of this sparse data set is being carried out to determine whether this conceptual model is consistent with the full impedance tensor and tipper data.

  12. Coupling Magnetotellurics and Hydrothermal Modeling to Further Understand Geothermal Resources

    NASA Astrophysics Data System (ADS)

    Folsom, M.; Pepin, J.; Kelley, S.; Person, M. A.; Blom, L.; Love, D.

    2015-12-01

    A comprehensive knowledge of the groundwater flow patterns associated with geothermal resources is critical to sustainable resource management and to discovering blind geothermal systems. Magnetotellurics (MT), which provides subsurface electrical conductivity information to substantial depths, has the ability to image geothermal reservoir features, such as conductive clay caps and hot, saline groundwater circulating within geothermal systems. We have used MT data along with 2D hydrothermal modeling, constrained by temperature, salinity and carbon-14 data, to explore possible deep groundwater circulation scenarios near the Sevilleta National Wildlife Refuge, in the Rio Grande Rift, central New Mexico. The area is underlain by a 100 to 150-m thick molten sill emplaced approximately 19 km below the surface. This sill is referred to locally as the Socorro Magma Body (SMB). Previous studies by Mailloux et al. (1999) and Pepin et al. (2015) suggest that the crystalline basement rocks in this region of the Rio Grande Rift can be significantly fractured to depths of 4-8 km and have permeabilities as high as 10-14 to 10-12 m2. The combination of high permeability conditions and the presence of the SMB makes this particular region a promising candidate for discovering a blind geothermal system at depth. We constructed a 2D hydrothermal model that traverses a 64-km zone of active uplift that is associated with the SMB. We also completed a 12-km long, 9-station MT transect across a portion of this profile, where land access was permitted and electromagnetic noise was minimal. Preliminary results suggest a deep convection-dominated system is a possibility, although further analysis of the MT data is necessary and ongoing. We hypothesize that using hydrothermal modeling in conjunction with MT surveys may prove to be an effective approach to discovering and managing deep regional hydrothermal resources.

  13. Magnetotelluric Investigation of Melt Storage Beneath Okmok Caldera, Alaska

    NASA Astrophysics Data System (ADS)

    Bennington, N. L.; Bedrosian, P.; Key, K.; Zelenak, G.

    2015-12-01

    Alaska accounts for nearly 99% of the seismic moment release within the US. Much of this is associated with the Aleutian volcanic arc, the most tectonically active region in North America, and an ideal location for studying arc magmatism. Okmok is an active volcano located in the central Aleutian arc, defined by a pair of nested, 10 km diameter calderas. The subdued topography of Okmok, relative to other Aleutian volcanoes, improves access and permits dense sampling within the caldera closer to the underlying magmatic system. Okmok volcano was selected as the site of study for this project due to frequent volcanic activity and the presence of a crustal magma reservoir as inferred from previous coarse resolution seismic studies. In June-July 2015, we carried out an amphibious geophysical field deployment at Okmok. Onshore work in and around the volcano included collection of an array of magnetotelluric (MT) stations and installation of a temporary, year-long seismic array. A ring of 3D offshore MT deployments made around the island augments the onshore array. An additional 2D tectonic-scale profile spans the trench, volcanic arc, and backarc. This new geophysical data will be used to gain a greater understanding of Aleutian arc melt generation, migration, and storage beneath an active caldera. We present results from the analysis of the newly collected amphibious 3D MT data. This data will be used to model the distribution and migration of melt within Okmok's crustal magma reservoir. Initial processing of the data shows strong MT signal levels, in particular from a geomagnetic storm that occurred from June 21-23, 2015. A companion abstract discussing the 2D tectonic scale MT profile, which constrains the mantle and deep crust beneath Okmok volcano, is discussed by Zelenak et al.

  14. Relationship of Medication Management Test-Revised (MMT-R) performance to neuropsychological functioning and antiretroviral adherence in adults with HIV.

    PubMed

    Patton, Doyle E; Woods, Steven Paul; Franklin, Donald; Cattie, Jordan E; Heaton, Robert K; Collier, Ann C; Marra, Christina; Clifford, David; Gelman, Benjamin; McArthur, Justin; Morgello, Susan; Simpson, David; McCutchan, J Allen; Grant, Igor

    2012-11-01

    While performance-based tests of everyday functioning offer promise in facilitating diagnosis and classification of HIV-associated neurocognitive disorders (HAND), there remains a dearth of well-validated instruments. In the present study, clinical correlates of performance on one such measure (i.e., Medication Management Test-Revised; MMT-R) were examined in 448 HIV+ adults who were prescribed antiretroviral therapy. Significant bivariate relationships were found between MMT-R scores and demographics (e.g., education), hepatitis C co-infection, estimated premorbid IQ, neuropsychological functioning, and practical work abilities. MMT-R scores were not related to HIV disease severity, psychiatric factors, or self-reported adherence among participants with a broad range of current health status. However, lower MMT-R scores were strongly and uniquely associated with poorer adherence among participants with CD4 T cell counts <200. In multivariate analyses, MMT-R scores were predicted by practical work abilities, estimated premorbid functioning, attention/working memory, learning, and education. Findings provide overall mixed support for the construct validity of the MMT-R and are discussed in the context of their clinical and research implications for evaluation of HAND.

  15. Software framework for the upcoming MMT Observatory primary mirror re-aluminization

    NASA Astrophysics Data System (ADS)

    Gibson, J. Duane; Clark, Dusty; Porter, Dallan

    2014-07-01

    Details of the software framework for the upcoming in-situ re-aluminization of the 6.5m MMT Observatory (MMTO) primary mirror are presented. This framework includes: 1) a centralized key-value store and data structure server for data exchange between software modules, 2) a newly developed hardware-software interface for faster data sampling and better hardware control, 3) automated control algorithms that are based upon empirical testing, modeling, and simulation of the aluminization process, 4) re-engineered graphical user interfaces (GUI's) that use state-of-the-art web technologies, and 5) redundant relational databases for data logging. Redesign of the software framework has several objectives: 1) automated process control to provide more consistent and uniform mirror coatings, 2) optional manual control of the aluminization process, 3) modular design to allow flexibility in process control and software implementation, 4) faster data sampling and logging rates to better characterize the approximately 100-second aluminization event, and 5) synchronized "real-time" web application GUI's to provide all users with exactly the same data. The framework has been implemented as four modules interconnected by a data store/server. The four modules are integrated into two Linux system services that start automatically at boot-time and remain running at all times. Performance of the software framework is assessed through extensive testing within 2.0 meter and smaller coating chambers at the Sunnyside Test Facility. The redesigned software framework helps ensure that a better performing and longer lasting coating will be achieved during the re-aluminization of the MMTO primary mirror.

  16. Synthesis, characterization and cure kinetics of polyaniline modified MMT clay/epoxy nanocomposites

    NASA Astrophysics Data System (ADS)

    Aykanat, Aydin

    bisphenol-A (DGEBA) epoxy prepolymer crosslinked with tri ethylene tetra amine (TETA) was analyzed by DSC. The tensile, flexural and impact tests of carbon fiber epoxy micro composites showed that PANi coated carbon fiber epoxy systems have higher modulus, toughness and mechanical strengths compared to unmodified carbon fiber epoxy composites. In the second part of the research work, conducting polyaniline (PANi) montmorillonite (MMT) clay nanocomposites were synthesized by using in-situ polymerization. The X-Ray diffraction patterns showed that polyaniline was intercalated between clay galleries in the order of nanoscale. From the SEM micrographs, it was revealed that, in-situ polymerization of aniline took place both in and out of the clay galleries. Polyaniline surface modified clay nanoparticles were then dispersed in diglycidyl ether of bisphenol-A (DGEBA) epoxy prepolymer using high shear mixing and ultrasonication. The viscosity measurements of modified and unmodified clay dispersed in epoxy prepolymer systems showed that PANi modified clay has lower viscosity than the pristine clay that provides easiness during processing. Infrared spectroscopy data proves that reactive secondary and tertiary amine groups on the fully dispersed polyaniline modified clay platelets react with epoxy resin resulting a strong chemical and physical interaction between nanoparticles and polymeric matrix. The effect of PANi surface modified nano particles on the curing reaction and kinetics of epoxy with tri-ethylene tetra amine (TETA) was analyzed by using DSC and explained by modified Avrami equation. The X-Ray diffraction pattern of fully cured 5% (w/w) PANi-MMT clay epoxy nanocomposites showed exfoliation behavior. Thermal analysis showed that for 5% (w/w) PANi-MMT filled epoxy nanocomposites has higher thermal stability than both fully cured pristine epoxy and 5% (w/w) clay epoxy nanocomposite. With the addition and exfoliation of 5% (w/w) PANi modified clay an increase of 8°C in

  17. MT+, integrating magnetotellurics to determine earth structure, physical state, and processes

    USGS Publications Warehouse

    Bedrosian, P.A.

    2007-01-01

    As one of the few deep-earth imaging techniques, magnetotellurics provides information on both the structure and physical state of the crust and upper mantle. Magnetotellurics is sensitive to electrical conductivity, which varies within the earth by many orders of magnitude and is modified by a range of earth processes. As with all geophysical techniques, magnetotellurics has a non-unique inverse problem and has limitations in resolution and sensitivity. As such, an integrated approach, either via the joint interpretation of independent geophysical models, or through the simultaneous inversion of independent data sets is valuable, and at times essential to an accurate interpretation. Magnetotelluric data and models are increasingly integrated with geological, geophysical and geochemical information. This review considers recent studies that illustrate the ways in which such information is combined, from qualitative comparisons to statistical correlation studies to multi-property inversions. Also emphasized are the range of problems addressed by these integrated approaches, and their value in elucidating earth structure, physical state, and processes. ?? Springer Science+Business Media B.V. 2007.

  18. Using seismically constrained magnetotelluric inversion to recover velocity structure in the shallow lithosphere

    NASA Astrophysics Data System (ADS)

    Moorkamp, M.; Fishwick, S.; Jones, A. G.

    2015-12-01

    Typical surface wave tomography can recover well the velocity structure of the upper mantle in the depth range between 70-200km. For a successful inversion, we have to constrain the crustal structure and assess the impact on the resulting models. In addition,we often observe potentially interesting features in the uppermost lithosphere which are poorly resolved and thus their interpretationhas to be approached with great care.We are currently developing a seismically constrained magnetotelluric (MT) inversion approach with the aim of better recovering the lithospheric properties (and thus seismic velocities) in these problematic areas. We perform a 3D MT inversion constrained by a fixed seismic velocity model from surface wave tomography. In order to avoid strong bias, we only utilize information on structural boundaries to combine these two methods. Within the region that is well resolved by both methods, we can then extract a velocity-conductivity relationship. By translating the conductivitiesretrieved from MT into velocities in areas where the velocity model is poorly resolved, we can generate an updated velocity model and test what impactthe updated velocities have on the predicted data.We test this new approach using a MT dataset acquired in central Botswana over the Okwa terrane and the adjacent Kaapvaal and Zimbabwe Cratons togetherwith a tomographic models for the region. Here, both datasets have previously been used to constrain lithospheric structure and show some similarities.We carefully asses the validity of our results by comparing with observations and petrophysical predictions for the conductivity-velocity relationship.

  19. Broadband signal generator for the approximation of a magnetotelluric source for indoor testing

    NASA Astrophysics Data System (ADS)

    Ge, Shuang-chao; Deng, Ming; Chen, Kai; Shi, Xin-yu

    2016-08-01

    To test the frequency response of a magnetotelluric (MT) receiver, a broadband source, especially white noise is more efficient and intuitive than single frequency signals. In view of the absence of an appropriate source generator for MT receiver indoor testing, we designed a broadband signal generator based on a pseudo-random binary sequence (PRBS). Firstly, we divided the whole MT band into two segments to avoid data redundancy and simplify calculation in data processing and designed a generator composed of several modules: a clock module, a PRBS logic module, and a voltage level conversion module. We conducted a detailed analysis of the optimal parameter selection methods for each module, and key parameters including clock frequency, order, the primitive polynomial and the original states of the linear registers were determined. The generator provides four-channel PRBS signals with two effective bandwidths of 5  ×  10‑4–714 Hz and 0.1 Hz–14 kHz which are broad enough to cover the frequency range for different MT methods. These four-channel signals were used to simulate two modes of sources (xy and yx) with strong auto-correlation and weak cross-correlation. The power spectral density is quite stable in the whole passband. The new generator is characterized by broadband output in low-frequency bands, low power consumption, simple operation and reliable performance. Indoor and field tests indicated that the generator can provide an analog MT source and is a practical tool for MT receiver indoor testing.

  20. Broadband signal generator for the approximation of a magnetotelluric source for indoor testing

    NASA Astrophysics Data System (ADS)

    Ge, Shuang-chao; Deng, Ming; Chen, Kai; Shi, Xin-yu

    2016-08-01

    To test the frequency response of a magnetotelluric (MT) receiver, a broadband source, especially white noise is more efficient and intuitive than single frequency signals. In view of the absence of an appropriate source generator for MT receiver indoor testing, we designed a broadband signal generator based on a pseudo-random binary sequence (PRBS). Firstly, we divided the whole MT band into two segments to avoid data redundancy and simplify calculation in data processing and designed a generator composed of several modules: a clock module, a PRBS logic module, and a voltage level conversion module. We conducted a detailed analysis of the optimal parameter selection methods for each module, and key parameters including clock frequency, order, the primitive polynomial and the original states of the linear registers were determined. The generator provides four-channel PRBS signals with two effective bandwidths of 5  ×  10-4-714 Hz and 0.1 Hz-14 kHz which are broad enough to cover the frequency range for different MT methods. These four-channel signals were used to simulate two modes of sources (xy and yx) with strong auto-correlation and weak cross-correlation. The power spectral density is quite stable in the whole passband. The new generator is characterized by broadband output in low-frequency bands, low power consumption, simple operation and reliable performance. Indoor and field tests indicated that the generator can provide an analog MT source and is a practical tool for MT receiver indoor testing.

  1. Imaging the conductivity anomalies at the vicinity of Ganos Fault, northwest Turkey by magnetotellurics

    NASA Astrophysics Data System (ADS)

    Karaş, Mustafa; Tank, Bülent; Özaydın, Sinan

    2016-04-01

    Audio-frequency magnetotelluric (AMT: 10400 Hz. - 1 Hz.) data were collected across Ganos Fault, near Mürefte, at the western part of North Anatolian Fault, Turkey. The twelve observation points were densely distributed to form a north - south aligned continuous profile that aims to reveal the electrical resisitivity structure to a depth of 1500 m. Ganos Fault is inactive since 1912 Mürefte Earthquake (Ms: 7.4) and acts as a locked segment with the potential to generate a significant event in the near future. Preliminary dimensionality analyses of the AMT data were performed by using three approaches; strike angle determination following Groom and Bailey decomposition (N70°E), phase tensor analyses (N70°E) and induction vectors (N60°E). All of these methods gave results that are in good agreement with present geological (N70°E) and seismological (N70°E) values. Following the dimensionality analyses, two- and three- dimensional numerical modeling routines were utilized to perform inverse modeling. The inversions were performed by different methods such as Rodi and Mackie, WinGLink, (2001) and Ogawa and Uchida, ABIC, (1996) for 2D and Siripunvaraporn et al., WSINV3DMT (2005) and Egbert and Kelbert, ModEM (2012) for 3D. All modeling attempts ended up with similar models suggesting that: (i) A significant low resistivity anomaly was detected just below the fault's trace representing the so-called "fault zone conductor" with 400 m width and 500 m depth, (ii) An asymmetric damage zone is present involving the fault's core concentrated to the south, (iii) A resistivity contrast between the two sides of the fault, representing a geological boundary between Eocene aged Keşan Formation in the north and Miocene aged Çengelli Formation in the south (iv) Opiholitic basement appears as a high resistivity block at a depth of 800 m.

  2. Pattern recognition and lithological interpretation of collocated seismic and magnetotelluric models using self-organizing maps

    NASA Astrophysics Data System (ADS)

    Bauer, K.; Muñoz, G.; Moeck, I.

    2012-05-01

    Joint interpretation of models from seismic tomography and inversion of magnetotelluric (MT) data is an efficient approach to determine the lithology of the subsurface. Statistical methods are well established but were developed for only two types of models so far (seismic P velocity and electrical resistivity). We apply self-organizing maps (SOMs), which have no limitations in the number of parameters considered in the joint interpretation. Our SOM method includes (1) generation of data vectors from the seismic and MT images, (2) unsupervised learning, (3) definition of classes by algorithmic segmentation of the SOM using image processing techniques and (4) application of learned knowledge to classify all data vectors and assign a lithological interpretation for each data vector. We apply the workflow to collocated P velocity, vertical P-velocity gradient and resistivity models derived along a 40 km profile around the geothermal site Groß Schönebeck in the Northeast German Basin. The resulting lithological model consists of eight classes covering Cenozoic, Mesozoic and Palaeozoic sediments down to 5 km depth. There is a remarkable agreement between the litho-type distribution from the SOM analysis and regional marker horizons interpolated from sparse 2-D industrial reflection seismic data. The most interesting features include (1) characteristic properties of the Jurassic (low P-velocity gradients, low resistivity values) interpreted as the signature of shales, and (2) a pattern within the Upper Permian Zechstein layer with low resistivity and increased P-velocity values within the salt depressions and increased resistivity and decreased P velocities in the salt pillows. The latter is explained in our interpretation by flow of less dense salt matrix components to form the pillows while denser and more brittle evaporites such as anhydrite remain in place during the salt mobilization.

  3. Shallow water radio-magnetotelluric (RMT) measurements in urban environment: A case study from Stockholm city

    NASA Astrophysics Data System (ADS)

    Mehta, Suman; Bastani, Mehrdad; Malehmir, Alireza; Wang, Shunguo; Pedersen, Laust

    2014-05-01

    of the impedance tensor were obtained by the parametric representation combined with a Truncated Singular Value Decomposition (TSVD) regularization of Bastani and Pedersen (2001). The processed data were then inverted to obtain 2D resistivity models. The resulting models along 23 lines correlate well and image variation of water depth, thickness of subaqueous sediments as well as the depth to crystalline bedrock. Low resistivity zones observed in the bedrock coincide well with the low velocity zones identified in refraction seismic surveys available along the RMT lines, indicating the presence of possible fracture zones in the bedrock. The experiment illustrates that the RMT methods can be well adapted to this type of environment; it is fast and cost-effective in shallow water especially in urban settings. Acknowledgments: Formas, SGU, BeFo, SBUF, Skanska, Boliden, FQM and NGI References: Bastani, M., 2001, EnviroMT - a new Controlled Source/Radio Magnetotelluric System: Ph.D. thesis, ISBN 91-554-5051-2, Uppsala University. Bastani, M. and Pedersen, L. B., 2001, Estimation of magnetotelluric transfer functions from radio transmitters. GEOPHYSICS, 66, 1038-1051.

  4. Magnetotelluric data, stable distributions and impropriety: an existential combination

    NASA Astrophysics Data System (ADS)

    Chave, Alan D.

    2014-07-01

    The robust statistical model of a Gaussian core contaminated by outlying data that underlies robust estimation of the magnetotelluric (MT) response function has been re-examined. The residuals from robust estimators are systematically long tailed compared to a distribution based on the Gaussian, and hence are inconsistent with the robust model. Instead, MT data are pervasively described by the alpha stable distribution family whose variance and sometimes mean are undefined. A maximum likelihood estimator (MLE) that exploits the stable nature of MT data is formulated, and its two-stage implementation in which stable parameters are first fit to the data and then the MT responses are solved for is described. The MLE is shown to be inherently robust, but differs from the conventional robust estimator because it is based on a model derived from the data, while robust estimators are ad hoc, being based on the robust model that is inconsistent with actual data. Propriety versus impropriety of the complex MT response was investigated, and a likelihood ratio test for propriety and its null distribution was established. The Cramér-Rao lower bounds for the covariance matrix of proper and improper MT responses were specified. The MLE was applied to exemplar long period and broad-band data sets from South Africa. Both are shown to be significantly stably distributed using the Kolmogorov-Smirnov goodness of fit and Ansari-Bradley non-parametric dispersion tests. Impropriety of the MT responses at both sites is pervasive, hence the improper Cramér-Rao bound was used to estimate the MLE covariance. The MLE is shown to be nearly unbiased and well described by a Gaussian distribution based on bootstrap simulation. The MLE was compared to a conventional robust estimator, establishing that the standard errors of the former are systematically smaller than for the latter and that the standardized differences between them exhibit excursions that are both too frequent and too large to

  5. EMT - Empirical-mode-decomposition-based Magneto-Telluric Processing

    NASA Astrophysics Data System (ADS)

    Neukirch, M.; Garcia, X.

    2012-04-01

    We present a new Magneto-Telluric (MT) data processing scheme based on an emerging non linear, non stationary time series analysis tool, called the Empirical Mode Decomposition (EMD) or Hilbert-Huang Transform (HHT), to transform data into a non-stationary frequency domain and a robust principal component regression to estimate the most likely MT transfer functions from the data with the 2-σ confidence intervals computed by a bootstrap algorithm. Optionally, data quality can be controlled by a physical coherence and a signal power filter. MT sources are assumed to be quasi stationary and therefore a (windowed) Fourier Transform is often applied to transform the time series into the frequency domain in which Transfer Functions (TF) are defined between the electromagnetic field components. This assumption can break down in the presence of noise or when the sources are non stationary, and then TF estimates can become unreliable when obtained through a stationary transform like the Fourier transform. Our TF estimation scheme naturally deals with non stationarity without introducing artifacts and, therefore, potentially can distinguish quasi-stationary sources and non-stationary noise. In contrast to previous works on using HHT for MT processing, we argue the necessity of a multivariate EMD to model the MT problem physically correctly and highlight the resulting possibility to use instantaneous parameters as independent and identically distributed variables. Furthermore, we define a homogenization between data channels of frequency discrepancies due to non stationarity and noise. The TF estimation in the frequency domain bases on a robust principal component analysis in order to find two source polarizations. These two principal components are used as predictor to regress robustly the data channels within a bootstrap algorithm to estimate the Earth's Transfer function with 2-σ confidence interval supplied by the measured data.The scheme can be used with and without

  6. Linking numerical models of lithospheric deformation and magnetotelluric images

    NASA Astrophysics Data System (ADS)

    Sobolev, S. V.

    2012-12-01

    Efficient modeling of geodynamic processes requires constraints from different fields of geosciences. Frequently used are data on crustal structure and composition and their evolution constrained by seismic, gravity and petrological/geochemical studies. However, links between geodynamic modeling and rapidly developing field of magnetotelluric (MT) studies are still insufficient. I'll consider two recent examples of MT observations and geodynamic modeling demonstrating that joint analyses of thermomechanical models of lithospheric deformation and MT images may be useful to understand geodynamic processes. One set of observations is MT data for San Andreas Fault (SAF) in the region close to the SAFOD Site (Becken et al., 2011) that shows high conductivity anomalies in the mantle, that are interpreted as fluid flow feeding creeping part of SAF south of the SAFOD Site. Interestingly, zones of high conductivity do not coincide with the expected zones of the recent active deformation (SAF), but are located to the west of it. Based on thermomechanical model of the evolution of the SAFS in Central and Northern California during the last 20 Mln. years (Popov et al., 2012), I'll demonstrate that high conductivity anomalies precisely coincide with the expected zones of the highest accumulated shear strain. Possible interpretation of this coincidence is that strong preferred orientation of olivine crystals in the highly deformed mantle shear zone causes high permeability of fluids. Another set of observations is MT data showing high conductivity anomalies in the crust of Tibet (Unsworh et al., 2005, Bai et al., 2010) and Pamirs (Sass et al., 2011) that are often interpreted as an evidence for the widely spread partially molten crust. Using 2D thermomechanical models of the collision between India and Eurasia, I'll demonstrate that such structures in the crust cannot appear without delamination of the mantle lithosphere during tectonic shortening. Internal heating of the

  7. The impact of ultra-low amounts of amino-modified MMT on dynamics and properties of densely cross-linked cyanate ester resins

    NASA Astrophysics Data System (ADS)

    Bershtein, Vladimir; Fainleib, Alexander; Egorova, Larisa; Gusakova, Kristina; Grigoryeva, Olga; Kirilenko, Demid; Konnikov, Semen; Ryzhov, Valery; Yakushev, Pavel; Lavrenyuk, Natalia

    2015-04-01

    Thermostable nanocomposites based on densely cross-linked cyanate ester resins (CER), derived from bisphenol E and doped by 0.01 to 5 wt. % amino-functionalized 2D montmorillonite (MMT) nanoparticles, were synthesized and characterized using Fourier transform infrared (FTIR), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDXS), wide-angle X-ray diffraction (WAXD), dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), far-infrared (Far-IR), and creep rate spectroscopy (CRS) techniques. It was revealed that ultra-low additives, e.g., 0.025 to 0.1 wt. %, of amino-MMT nanolayers covalently embedded into CER network exerted an anomalously large impact on its dynamics and properties resulting, in particular, in some suppression of dynamics, increasing the onset of glass transition temperature by 30° to 40° and twofold rise of modulus in temperature range from 20°C to 200°C. Contrarily, the effects became negligibly small or even negative at increased amino-MMT contents, especially at 2 and 5 wt. %. That could be explained by TEM/EDXS data displaying predominance of individual amino-MMT nanolayers and their thin (2 to 3 nanolayers) stacks over more thick tactoids (5 to 10 nanolayers) and the large amino-MMT aggregates (100 to 500 nm in thickness) reversing the composite structure produced with increasing of amino-MMT content within CER matrix. The revealed effect of ultra-low amino-MMT content testifies in favor of the idea about the extraordinarily enhanced long-range action of the `constrained dynamics' effect in the case of densely cross-linked polymer networks.

  8. Crosswell electromagnetic and magnetotelluric imaging of geothermal reservoirs - evaluation and case studies from Switzerland

    NASA Astrophysics Data System (ADS)

    Samrock, F.

    2015-12-01

    Geothermal energy resources are considered important contributors to any future energy mix, as they are renewable and can potentially provide a constant (i.e., baseload) and long-term energy output. However, most regions worldwide are lacking natural, convective hydrothermal resources. As a result, when relatively high subsurface temperatures exist in low-permeability rocks ("hot-dry" rocks), it has been suggested to artificially increase permeability to enable deep fluid circulation and associated advective heat transfer to a production well. One technique to enhance permeability, and thus the ability to extract geothermal heat, is hydraulic stimulation, creating (permeability) enhanced geothermal systems (EGS). In the "Deep Underground Geothermal (DUG)" laboratory in Switzerland, a meso-scale field experiment is planned, where pre-existing fault systems are hydraulically sheared. The aim of this experiment is to better understand the processes occurring during artificial reservoir creation. We present our 3D numerical modeling study evaluating the capability of low-frequency crosswell electromagnetic (EM) tomography using magnetic dipole sources to map stimulation-induced changes in electrical conductivity. This geophysical parameter is affected by several subsurface properties including temperature, interconnected porosity, permeability, and the presence of fluids. Electrical conductivity thus provides important information on the effectiveness of geothermal reservoir creation. Besides numerical modeling studies, we report on the current status of instrumentation and realization of crosswell EM measurements at the DUG laboratory. Furthermore, we present preliminary results of a magnetotelluric (MT) survey conducted at a prominent heat flow anomaly in Northern Switzerland. Here, we test methods to improve data quality of MT measurements in regions that exhibit substantial electromagnetic noise. We also discuss how information on the electrical conductivity

  9. A magnetotelluric study of the sensitivity of an area to seismoelectric signals

    USGS Publications Warehouse

    Balasis, G.; Bedrosian, P.A.; Eftaxias, K.

    2005-01-01

    During recent years, efforts at better understanding the physical properties of precursory ultra-low frequency pre-seismic electric signals (SES) have been intensified. Experiments show that SES cannot be observed at all points of the Earth's surface but only at certain so-called sensitive sites. Moreover, a sensitive site is capable of collecting SES from only a restricted number of seismic areas (selectivity effect). Tberefore the installation of a permanent station appropriate for SES collection should necessarily be preceded by a pilot study over a broad area and for a long duration. In short, a number of temporary stations are installed and, after the occurrence of several significant earthquakes (EQs) from a given seismic area, the most appropriate (if any) of these temporary stations, in the sense that they happen to collect SES, can be selected as permanent. Such a long experiment constitutes a serious disadvantage in identifying a site as SES sensitive. However, the SES sensitivity of a site should be related to the geoelectric structure of the area that hosts the site as well as the regional geoelectric structure between the station and the seismic focal area. Thus, knowledge of the local and regional geoelectric structure can dramatically reduce the time involved in identifying SES sites. hi this paper the magnetotelluric method is used to investigate the conductivity structure of an area where a permanent SES station is in operation. Although general conclusions cannot be drawn, the area surrounding an SES site near Ioannina, Greece is characterized by: (1) major faults in the vicinity; (2) highly resistive structure flanked by abrupt conductivity contrasts associated with large-scale geologic contacts, and (3) local inhomogeneities in conductivity structure. The above results are consistent with the fact that electric field amplitudes from remotely-generated signals should be appreciably stronger at such sites when compared to neighboring sites

  10. High resolution imaging of the Methana volcanic complex, Greece, with magnetotelluric and aeromagnetic data

    NASA Astrophysics Data System (ADS)

    Efstathiou, A.; Tzanis, A.; Chailas, S.; Lagios, E.; Stamatakis, M.

    2012-04-01

    The Methana calc-alkaline volcanic complex is located off the NE coast of Argolis Peninsula (Peloponnesus, Greece) at the NW terminus of the Hellenic Volcanic Arc (HVA). It consists of approximately 32 domes, with the most recent eruptive episodes dated to 258 BCE and 1700 CE. Herein, we report the results an attempt to investigate the volcano's interior with joint interpretation of Magnetotelluric and Aeromagnetic data. The aeromagnetic data was inverted with the UBC-GIF 3D magnetic inversion suite, constrained by several in-situ susceptibility measurements. At depths to 2 km, the inversion resolves individual intrusions corresponding to known phases of volcanic activity (domes), with susceptibilities >0.1. At depths greater than 4.5 km, a more weakly magnetized domain is detected (~0.025); its ceiling is well resolved; its floor cannot be placed with certainty but extends to at least 7 km. The depths are comparable to those of magma chambers. Based on the palaeomagnetic analysis of nearby volcanic rocks, it may be safely suggested that its temperature should not be higher than 550-600°C, but also not considerably lower. It may comprise a magma chamber, inasmuch as it compares well with the temperatures and locations of known magma chambers along the HVA. Finally, there's exists evidence of the location of the vents through which the extrusive activity has taken place. A Magnetotelluric survey comprising 14 stations was conducted IN 1992, as part of a geothermal project. Herein, this data is reevaluated with modern analysis methods and re-interpreted with 2D inversion. The results indicate the presence of conductors at depths of 1500-2500 m beneath the centre of the Peninsula, extensive horizontal conductors at, or just below sea level and conductive protrusions above sea level. The joint interpretation of the susceptibility and geoelectric images is based on the premise that they both are generated by hydrothermal circulation which depresses resistivity and

  11. Effect of film multi-scale structure on the water vapor permeability in hydroxypropyl starch (HPS)/Na-MMT nanocomposites.

    PubMed

    Liu, Siyuan; Cai, Panfu; Li, Xiaoxi; Chen, Ling; Li, Lin; Li, Bing

    2016-12-10

    To improve the water vapor resistance of starch-based films, Na-MMT (Na-montmorillonite) as nanofillers were fabricated into hydroxypropyl starch and the multi-scale structural changes (including intermolecular interaction, short-range conformation, long-range ordered structure and the aggregated structure of the film) were revealed. The elongation of the water vapor molecule pathway by tortuous path is generally recognized as the main reason for the improvement of water resistance. However this study observed the lowest water vapor permeability (WVP) was at the 3% Na-MMT/hydroxypropyl starch (HPS) ratio instead of 5% even nanofillers were partially exfoliated at both ratio. Except for the "tortuous path" caused by nanofillers, this observation proposed that the short-range conformation of HPS chains, long-range ordered structure and the aggregated structure likely influenced the water barrier property. The relationship between WVP and multi-scale structure of the film was investigated. The results suggested that a good balance of short-range conformationin the amorphous region, long-range ordered structure and the aggregated structure of the film was required for the improvement of water vapor barrier property.

  12. Effect of film multi-scale structure on the water vapor permeability in hydroxypropyl starch (HPS)/Na-MMT nanocomposites.

    PubMed

    Liu, Siyuan; Cai, Panfu; Li, Xiaoxi; Chen, Ling; Li, Lin; Li, Bing

    2016-12-10

    To improve the water vapor resistance of starch-based films, Na-MMT (Na-montmorillonite) as nanofillers were fabricated into hydroxypropyl starch and the multi-scale structural changes (including intermolecular interaction, short-range conformation, long-range ordered structure and the aggregated structure of the film) were revealed. The elongation of the water vapor molecule pathway by tortuous path is generally recognized as the main reason for the improvement of water resistance. However this study observed the lowest water vapor permeability (WVP) was at the 3% Na-MMT/hydroxypropyl starch (HPS) ratio instead of 5% even nanofillers were partially exfoliated at both ratio. Except for the "tortuous path" caused by nanofillers, this observation proposed that the short-range conformation of HPS chains, long-range ordered structure and the aggregated structure likely influenced the water barrier property. The relationship between WVP and multi-scale structure of the film was investigated. The results suggested that a good balance of short-range conformationin the amorphous region, long-range ordered structure and the aggregated structure of the film was required for the improvement of water vapor barrier property. PMID:27577909

  13. A SEARCH FOR OCCULTATIONS OF BRIGHT STARS BY SMALL KUIPER BELT OBJECTS USING MEGACAM ON THE MMT

    SciTech Connect

    Bianco, F. B.; Lehner, M. J.; Protopapas, P.; McLeod, B. A.; Alcock, C. R.; Holman, M. J.

    2009-08-15

    We conducted a search for occultations of bright stars by Kuiper Belt Objects (KBOs) to estimate the density of subkilometer KBOs in the sky. We report here the first results of this occultation survey of the outer solar system conducted in 2007 June and 2008 June/July at the MMT Observatory using Megacam, the large MMT optical imager. We used Megacam in a novel shutterless continuous-readout mode to achieve high-precision photometry at 200 Hz, which with point-spread function convolution results in an effective sampling of {approx}30 Hz. We present an analysis of 220 star hours of data at a signal-to-noise ratio of 25 or greater, taken from images of fields within 3 deg. of the ecliptic plane. The survey efficiency is greater than 10% for occultations by KBOs of diameter d {>=} 0.7 km, and we report no detections in our data set. We set a new 95% confidence level upper limit for the surface density {sigma} {sub N}(d) of KBOs larger than 1 km: {sigma} {sub N}(d {>=} 1 km) {<=} 2.0 x 10{sup 8} deg{sup -2}, and for KBOs larger than 0.7 km {sigma} {sub N}(d {>=} 0.7 km) {<=} 4.8 x 10{sup 8} deg{sup -2}.

  14. Assembly of luminescent ordered multilayer thin-films based on oppositely-charged MMT and magnetic NiFe-LDHs nanosheets with ultra-long lifetimes.

    PubMed

    Liu, Meitang; Wang, Tianlei; Ma, Hongwen; Fu, Yu; Hu, Kunran; Guan, Chao

    2014-01-01

    In this present report, luminescent ordered multilayer thin films (OMFs) based on oppositely-charged inorganic nanosheets and the different oppositely-charged chromophores were fabricated via layer-by-layer assembly method. Exfoliated layered double hydroxides (LDHs) and montmorillonite (MMT) nanosheets with opposite charges can be expected to provide a pseudo electronic microenvironment (PEM) which has not been declared in previous literatures, and transition metal-bearing LDHs nanosheets can offer an additional ferromagnetic effect (FME) for the chromophores at the same time. Surprisingly, the luminescent lifetimes of those OMFs with PEM and FME are significantly prolonged compared with that of the pristine chromophores, even much longer than those of OMFs without oppositely-charged and ferromagnetic architecture. Therefore, it is highly expected that the PEM and FME formed by oppositely-charged and transition metal-bearing inorganic nanosheets have remarkable influence on obtaining better optical property, which suggests a new potential way to manipulate, control and develop the novel light-emitting materials and optical devices. PMID:25413710

  15. Assembly of luminescent ordered multilayer thin-films based on oppositely-charged MMT and magnetic NiFe-LDHs nanosheets with ultra-long lifetimes

    PubMed Central

    Liu, Meitang; Wang, Tianlei; Ma, Hongwen; Fu, Yu; Hu, Kunran; Guan, Chao

    2014-01-01

    In this present report, luminescent ordered multilayer thin films (OMFs) based on oppositely-charged inorganic nanosheets and the different oppositely-charged chromophores were fabricated via layer-by-layer assembly method. Exfoliated layered double hydroxides (LDHs) and montmorillonite (MMT) nanosheets with opposite charges can be expected to provide a pseudo electronic microenvironment (PEM) which has not been declared in previous literatures, and transition metal-bearing LDHs nanosheets can offer an additional ferromagnetic effect (FME) for the chromophores at the same time. Surprisingly, the luminescent lifetimes of those OMFs with PEM and FME are significantly prolonged compared with that of the pristine chromophores, even much longer than those of OMFs without oppositely-charged and ferromagnetic architecture. Therefore, it is highly expected that the PEM and FME formed by oppositely-charged and transition metal-bearing inorganic nanosheets have remarkable influence on obtaining better optical property, which suggests a new potential way to manipulate, control and develop the novel light-emitting materials and optical devices. PMID:25413710

  16. Magnetotelluric study of the Xuefeng mountain area, Hu'nan Province, China

    NASA Astrophysics Data System (ADS)

    Chen, Musen; Xue, Lingxiang; Wang, Yousheng; Zhu, Shengjun

    2016-04-01

    A magnetotelluric study was carried out in the Xuefeng mountain uplift belt and its western margins. A detailed investigation was made of the resistivity of the formations, and reliable data were obtained. The sedimentary cover and basement structure of the Xuefeng mountain area and the deep geological structure were analyzed in detail using magnetotelluric data from the two-dimensional inversion of the resistivity profile data in combination with regional gravity and magnetic data. It was concluded that the tectonic movements were characterized by basement detachment, and north-south ramp. The study area can be divided into a southern uplift zone, a southern thrust-faulted zone, a central uplift zone, and a northern depression zone. This work has provided geophysical evidence that can be used in future studies of the tectonics and petroleum geology of this region.

  17. Numerical Simulation of Response Characteristics of Audio-magnetotelluric for Gas Hydrate in the Qilian Mountain Permafrost, China

    NASA Astrophysics Data System (ADS)

    Xiao, Kun; Zou, Changchun; Yu, Changqing; Pi, Jinyun

    2015-10-01

    Audio-magnetotelluric (AMT) method is a kind of frequencydomain sounding technique, which can be applied to gas hydrate prospecting and assessments in the permafrost region due to its high frequency band. Based on the geological conditions of gas hydrate reservoir in the Qilian Mountain permafrost, by establishing high-resistance abnormal model for gas hydrate and carrying out numerical simulation using finite element method (FEM) and nonlinear conjugate gradient (NLCG) method, this paper analyzed the application range of AMT method and the best acquisition parameters setting scheme. When porosity of gas hydrate reservoir is less than 5%, gas hydrate saturation is greater than 70%, occurrence scale is less than 50 m, or bury depth is greater than 500 m, AMT technique cannot identify and delineate the favorable gas hydrate reservoir. Survey line should be more than twice the length of probable occurrence scale, while tripling the length will make the best result. The number of stations should be no less than 6, and 11 stations are optimal. At the high frequency section (10~1000 Hz), there should be no less than 3 frequency points, 4 being the best number.

  18. Hydrothermal System of the Lastarria Volcano (Central Andes) Imaged by Magnetotellurics

    NASA Astrophysics Data System (ADS)

    Diaz, D.

    2015-12-01

    Lazufre volcanic complex, located in the central Andes, is recently undergoing an episode of uplift, conforming one of the most extensive deforming volcanic systems worldwide. Recent works have focused on the subsurface of this volcanic system at different scales, using surface deformation data, seismic noise tomography and magnetotellurics. Here we image the electrical resistivity structure of the Lastarria volcano, one of the most important features in the Lazufre area, using broadband magnetotelluric data at 30 locations around the volcanic edifice. Results from 3-D modeling show a conductive zone at 6 km depth south of the Lastarria volcano interpreted as a magmatic heat source, which is connected to a shallower conductive area beneath the volcanic edifice and its close vicinity. This shallow highly conductive zone fits with geochemical analysis results of thermal fluid discharges, related to fumaroles present in this area, in terms of depth extent and possible temperatures of fluids, and presents also a good correlation with seismic tomography results. The horizontal extension of this shallow conductive zone, related to the hydrothermal system of Lastarria, suggests that it has been draining one of the lagoons in the area (Laguna Azufrera), forming a sulfur rich area which can be observed at the southern side of this lagoon. Joint modeling of the hydrothermal system using magnetotellurics and seismic data is part of the current work.

  19. 3-D inversion of magnetotelluric data using unstructured tetrahedral elements: applicability to data affected by topography

    NASA Astrophysics Data System (ADS)

    Usui, Yoshiya

    2015-08-01

    A 3-D magnetotelluric (MT) inversion code using unstructured tetrahedral elements has been developed in order to correct the topographic effect by directly incorporating it into computational grids. The electromagnetic field and response functions get distorted at the observation sites of MT surveys because of the undulating surface topography, and without correcting this distortion, the subsurface structure can be misinterpreted. Of the two methods proposed to correct the topographic effect, the method incorporating topography explicitly in the inversion is applicable to a wider range of surveys. For forward problems, it has been shown that the finite element method using unstructured tetrahedral elements is useful for the incorporation of topography. Therefore, this paper shows the applicability of unstructured tetrahedral elements in MT inversion using the newly developed code. The inversion code is capable of using the impedance tensor, the vertical magnetic transfer function (VMTF), and the phase tensor as observational data, and it estimates the subsurface resistivity values and the distortion tensor of each observation site. The forward part of the code was verified using two test models, one incorporating topographic effect and one without, and the verifications showed that the results were almost the same as those of previous works. The developed inversion code was then applied to synthetic data from a MT survey, and was verified as being able to recover the resistivity structure as well as other inversion codes. Finally, to confirm its applicability to the data affected by topography, inversion was performed using the synthetic data of the model that included two overlapping mountains. In each of the cases using the impedance tensor, the VMTF and the phase tensor, by including the topography in the mesh, the subsurface resistivity was determined more proficiently than in the case using the flat-surface mesh. Although the locations of the anomalies were

  20. Case histories of electrical resistivity and controlled-source magnetotelluric surveys for the site investigation of tunnel construction

    SciTech Connect

    Kwon, H.S.; Song, Y.; Yi, M.J.; Chung, H.J.; Kim, K.S.

    2006-12-15

    In tunnel construction, the information regarding rock mass quality and the distribution of weak zones is crucial for economical tunnel design and to ensure safety. Usually, the rock mass grade is estimated by observing recovered cores obtained by drilling or by physical parameters calculated in a laboratory using core samples. However, the high drilling cost limits the number of boreholes; furthermore, rough terrains can reduce the access of drilling machines to the survey sites. In such situations, surface geophysical methods such as electrical resistivity or controlled-source magnetotelluric (CSMT) can provide a rough estimate of the rock mass condition over the planned tunnel route. These methods can also map weak zones (faults, fractures, coal bearing zones, and cavities), which are characterized by a lower resistivity than the surrounding fresh rock mass. We present two successful applications of the electrical resistivity and CSMT methods to the site investigation of tunnel construction over a rough terrain. The first example demonstrates that the boundary of the bedrock and weak zones related to the distribution of coaly shale and coal seams were estimated to extend beyond a few hundred meters below the rough surface. The second example shows that the developing direction and depth of cavities, which are mainly related to the weak zones in limestone, were successfully interpreted by a three-dimensional (3-D) electrical resistivity survey with the aid of borehole test results.

  1. An approach for monitoring resistivity variations using surface magnetotelluric data and its application to CO2 storage site

    NASA Astrophysics Data System (ADS)

    Ogaya, X.; Ledo, J.; Queralt, P.; Jones, A. G.; Marcuello, A.

    2014-12-01

    In this work we present an approach to perform electromagnetic (EM) monitoring using surface magnetotelluric (MT) data. The proposed methodology, called layer stripping, is based on the analytical solution of the one-dimensional MT problem and the fact that resolution to resistivity changes produced at a given depth increase when increasing the depth at which data are acquired. Thus, giving a well-known geoelectrical baseline model of a reservoir site, the layer stripping approach aims to remove the effect of the upper, unchanging, structures in order to obtain the time-varying MT responses at the target depth. In this paper the proposed method is tested and validated using the 3D geoelectrical baseline model of the Hontomín site (Spain) for CO2 geological storage in a deep saline aquifer. The 3D resistivity model of Hontomín defines the subsurface in the pre-injection state, showing the dome-like structure of the saline aquifer and imaging the principal set of faults. For monitoring purposes, the model allows obtaining the MT responses at the main reservoir depth using the layer stripping approach to remove the upper structures not affected by the injection of the gas. The results obtained in this work suggest that the layer stripping method improves the resolution of surface MT responses being able to detect smaller resistivity changes.

  2. MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Key, Kerry

    2016-08-01

    This work presents MARE2DEM, a freely available code for 2-D anisotropic inversion of magnetotelluric (MT) data and frequency-domain controlled-source electromagnetic (CSEM) data from onshore and offshore surveys. MARE2DEM parameterizes the inverse model using a grid of arbitrarily shaped polygons, where unstructured triangular or quadrilateral grids are typically used due to their ease of construction. Unstructured grids provide significantly more geometric flexibility and parameter efficiency than the structured rectangular grids commonly used by most other inversion codes. Transmitter and receiver components located on topographic slopes can be tilted parallel to the boundary so that the simulated electromagnetic fields accurately reproduce the real survey geometry. The forward solution is implemented with a goal-oriented adaptive finite element method that automatically generates and refines unstructured triangular element grids that conform to the inversion parameter grid, ensuring accurate responses as the model conductivity changes. This dual-grid approach is significantly more efficient than the conventional use of a single grid for both the forward and inverse meshes since the more detailed finite element meshes required for accurate responses do not increase the memory requirements of the inverse problem. Forward solutions are computed in parallel with a highly efficient scaling by partitioning the data into smaller independent modeling tasks consisting of subsets of the input frequencies, transmitters and receivers. Non-linear inversion is carried out with a new Occam inversion approach that requires fewer forward calls. Dense matrix operations are optimized for memory and parallel scalability using the ScaLAPACK parallel library. Free parameters can be bounded using a new non-linear transformation that leaves the transformed parameters nearly the same as the original parameters within the bounds, thereby reducing non-linear smoothing effects. Data

  3. MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Key, Kerry

    2016-10-01

    This work presents MARE2DEM, a freely available code for 2-D anisotropic inversion of magnetotelluric (MT) data and frequency-domain controlled-source electromagnetic (CSEM) data from onshore and offshore surveys. MARE2DEM parametrizes the inverse model using a grid of arbitrarily shaped polygons, where unstructured triangular or quadrilateral grids are typically used due to their ease of construction. Unstructured grids provide significantly more geometric flexibility and parameter efficiency than the structured rectangular grids commonly used by most other inversion codes. Transmitter and receiver components located on topographic slopes can be tilted parallel to the boundary so that the simulated electromagnetic fields accurately reproduce the real survey geometry. The forward solution is implemented with a goal-oriented adaptive finite-element method that automatically generates and refines unstructured triangular element grids that conform to the inversion parameter grid, ensuring accurate responses as the model conductivity changes. This dual-grid approach is significantly more efficient than the conventional use of a single grid for both the forward and inverse meshes since the more detailed finite-element meshes required for accurate responses do not increase the memory requirements of the inverse problem. Forward solutions are computed in parallel with a highly efficient scaling by partitioning the data into smaller independent modeling tasks consisting of subsets of the input frequencies, transmitters and receivers. Non-linear inversion is carried out with a new Occam inversion approach that requires fewer forward calls. Dense matrix operations are optimized for memory and parallel scalability using the ScaLAPACK parallel library. Free parameters can be bounded using a new non-linear transformation that leaves the transformed parameters nearly the same as the original parameters within the bounds, thereby reducing non-linear smoothing effects. Data

  4. The upper crust of the Scandinavian Caledonides as seen by Magnetotellurics

    NASA Astrophysics Data System (ADS)

    Yan, Ping; Garcia Juanatey, Maria A.; Kalscheuer, Thomas; Juhlin, Christopher

    2015-04-01

    As part of the Collisional Orogeny in the Scandinavian Caledonides (COSC) project, broadband magnetotelluric (MT) data were acquired along a 60 km long profile following recent seismic reflection surveys. In total, 78 MT sites were installed with an inter-site spacing varying between 600 and 1000 m. The aims of this study are to provide resistivity information on the upper crust of the mountain belt and, together with other geophysical investigations, to better delineate the structures of the orogen and the processes that shaped it. Additionally, the MT data are expected to help determine the location of a future borehole, COSC-2. COSC-2 is planned to drill through the décollement zone associated to the graphitic rich alum shales. Since these shales are highly conductive, they are an excellent target for the MT method. Besides the long MT profile, one short profile with 5 stations was acquired nearby the already existing COSC-1 drill site to increase areal coverage and better constrain 3D resistivity structures. The new 3D information improves the existing 3D geological model around the borehole, that has been interpreted from seismic reflection and potential field data. The impedance functions were calculated using a robust statistical procedure and the remote reference technique. MT data from Norway recorded at the same time in a field campaign by Oulu University were used for remote referencing. The data quality of the obtained transfer functions varies along the profile, being very good in remote areas, but quite noisy close to cities. Thus, a careful selection of the data set was necessary prior to analysis and modelling. 2D resistivity models of the 60 km long profile were estimated through inversion using the determinant of the impedance tensor, the TE mode, the TM mode, and the combination of TE and TM modes. The main features shared by the models are a resistor lying beneath COSC-1 extending down to about 2 km depth, a shallow resistor further to the east

  5. Amphibious Magnetotelluric Investigation of the Aleutian Arc: Mantle Melt Generation and Migration beneath Okmok Caldera

    NASA Astrophysics Data System (ADS)

    Zelenak, G.; Key, K.; Bennington, N. L.; Bedrosian, P.

    2015-12-01

    Understanding the factors controlling the release of volatiles from the downgoing slab, the subsequent generation of melt in the overlying mantle wedge, the migration of melt to the crust, and its evolution and emplacement within the crust are important for advancing our understanding of arc magmatism and crustal genesis. Because melt and aqueous fluids are a few orders of magnitude more electrically conductive than unmelted peridotite, the conductivity-mapping magnetotelluric (MT) method is well-suited to imaging fluids and melt beneath arc volcanoes. Here we present conductivity results from an amphibious MT profile crossing Okmok volcano in the central Aleutian arc. The Aleutian arc is one of the most volcanically active regions in North America, making it an ideal location for studying arc magnetism. Okmok volcano, located on the northeastern portion of Umnak Island, is among the most active volcanoes in the Aleutian chain. In addition to two caldera-forming events in the Holocene, numerous eruptions in the past century indicate a robust magmatic supply. Previous coarse resolution seismic studies have inferred a crustal magma reservoir. In order to investigate the role fluids play in melting the mantle wedge, how melts ascend through the corner flow regime of the mantle wedge, how melt migrates and is stored within the upper mantle and crust, and how this impacts explosive caldera forming eruptions, we carried out an amphibious geophysical survey across the arc in June-July 2015. Twenty-nine onshore MT stations and 10 offshore stations were collected in a 3D array covering Okmok, and 43 additional offshore MT stations completed a 300 km amphibious profile starting at the trench, crossing the forearc, arc and backarc. Thirteen onshore passive seismic stations were also installed and will remain in place for one year to supplement the twelve permanent stations on the island. Data collected by this project will be used to map seismic velocity and electrical

  6. 2-D magnetotelluric experiment to investigate the Nassugtoqidian orogeny in South-East Greenland

    NASA Astrophysics Data System (ADS)

    Heincke, Björn; Chen, Jin; Riisager, Peter; Kolb, Jochen; Jørgensen, Asta F.

    2015-04-01

    The northwest-trending Palaeoproterozoic Nagssugtoqidian orogen extends over 250 km along the east coast of Greenland in the area around the village Tasiilaq. The geological evolution of this area closely compares with the ones of the Lewisian complex of Scotland and the Nagssugtoqidian orogen in western Greenland and, hence, leads to the suggestion that they belong to the same continental-scale orogenic belt. However, an accurate correlation across the inland ice is challenging and still ambiguous and therefore more detailed knowledge about the individual orogens might help to understand their relationship. Details about the large-scale tectonic evolution during the Nagssugtoqidian orogeny in this remote Arctic region are not known due to complex geology, relatively coarse geological mapping and the lack of extensive geophysical investigations. E.g. the vergence of the orogen, subduction-related magmatism and accretion history are matters of ongoing discussion (Kalsbeek et al., 1993; Nutman et al., 2008 and Kolb, 2013). We performed a 2-D magnetotelluric (MT) experiment across the southern part of the orogen along the Sermilik Fjord in order to improve our understanding of the orogenic process in general and to better constrain the location and vergence of the suture zone. However, because of the rough climate and the lack of infrastructure, this study is considered as a first test to investigate how MT surveys can be most efficiently performed in this remote part of the world. The NE-SW trending profile consists of eight MT stations and has a total length of ~70 km using long period LEMI-420 systems. The quality of the data is severely affected by polar electrojets that do not satisfy the plane wave assumptions, which is typical for regions close to the magnetic poles. In order to reduce the distortion from these signals onto the impedance estimates, we tested different advanced processing schemes. In addition to the more conventional robust response function

  7. Analytic magnetotelluric responses to a two-segment model with axially anisotropic conductivity structures overlying a perfect conductor

    NASA Astrophysics Data System (ADS)

    Qin, Linjiang; Yang, Changfu

    2016-06-01

    The rocks in the crust and the upper mantle of the Earth are believed to exhibit electrical anisotropy to some extent. It is beneficial to further understand and recognize the propagation of the electromagnetic waves in the Earth by investigating the magnetotelluric (which is one of the main geophysical techniques to probe the deep structures in the Earth) responses of the media with anisotropic conductivity structures. In this study, we examine the magnetotelluric fields over an idealized 2-D model consisting of two segments with axially anisotropic conductivity structures overlying a perfect conductor basement by a quasi-static analytic approach. The resulting analytic solution could not only contribute to the electromagnetic induction theory in the anisotropic Earth but also serve as at least an initial standard solution which could be used to validate the reliability and accuracy of the numerical algorithms developed for modelling the magnetotelluric responses of the 2-D media with much more general anisotropic conductivity.

  8. Audio magnetotelluric study applied to hydrogeology at Santo Tomás Valley, Baja California, México

    NASA Astrophysics Data System (ADS)

    Islas, A. C.; Romo, J. M.

    2009-12-01

    The Santo Tomás valley, located 50 km southeast of Ensenada, Baja California, is one of the most important viniculture zones in all of Mexico. Therefore, aquifer characterization is very important for the area. A geophysical study was conducted using the audio-magnetotelluric method (AMT) to determinate the electric conductivity of the basin. 82 AMT stations were measured in three profiles with a North-South orientation. Data was collected using a Stratagem EH4 (by Geometrics) in frequencies between 10 Hz to 100 kHz. To determinate basement and water table depths we made 2D ground resistivity models, using an inversion regularized algorithm. The results show a conductive zone from a few meters up to depths of 200 meters; this unit can be interpreted as the aquifer zone. The models show a less conductive zone (~1000 Ohm-m) in the first 20 meters, which is interpreted as the vadose zone. Finally, we have a very resistive unit corresponding to the basement, estimated around 200 meters depth.

  9. Audio-magnetotelluric investigation of allochthonous iron formations in the Archaean Reguibat shield (Mauritania): structural and mining implications

    NASA Astrophysics Data System (ADS)

    Bronner, G.; Fourno, J. P.

    1992-11-01

    The M'Haoudat range, considered as an allochthonous unit amid the strongly metamorphosed Archaean basement (Tiris Group), belongs to the Lower Proterozoic Ijil Group, weakly metamorphosed, constituted mainly by iron quartzites including red jaspers and high grade iron ore. Audio-magnetotelluric (AMT) soundings (frequency range 1-7500 HZ) were performed together with the systematic survey of the range (SNIM mining company). The non-linear least squares method was used to perform a smoothness-constrained data model. The obvious AMT resistivity contrasts between the M'Haoudat Unit (150-3500 ohm. m) and the Archaean basement (20 000 ohm. m) allow to state precisely that the two thrust surfaces, on both sides of the range, join together at a depth which increases from North-West to South-East, as the ore bodies. Inside the steeply dipping M'Haoudat Unit, the main beds of iron quartzites (1500-3500 ohm. m), schists (1000-1500 ohm. m) and hematite ores (150-300 ohm. m) were distinguished when their thickness exceeded 30 to 50 m. The existence of an hydrostatic level (1-50 ohm. m) and the steeply dipping architecture, very likely responsible for the lack of resistivity contrast on the upper part of some profiles, complicate the interpretation at high frequencies the thin layers being poorly defined.

  10. MT2DInvMatlab—A program in MATLAB and FORTRAN for two-dimensional magnetotelluric inversion

    NASA Astrophysics Data System (ADS)

    Lee, Seong Kon; Kim, Hee Joon; Song, Yoonho; Lee, Choon-Ki

    2009-08-01

    MT2DInvMatlab is an open-source MATLAB® software package for two-dimensional (2D) inversion of magnetotelluric (MT) data; it is written in mixed languages of MATLAB and FORTRAN. MT2DInvMatlab uses the finite element method (FEM) to compute 2D MT model responses, and smoothness-constrained least-squares inversion with a spatially variable regularization parameter algorithm to stabilize the inversion process and provide a high-resolution optimal earth model. It is also able to include terrain effects in inversion by incorporating topography into a forward model. This program runs under the MATLAB environment so that users can utilize the existing general interface of MATLAB, while some specific functions are written in FORTRAN 90 to speed up computation and reuse pre-existing FORTRAN code in the MATLAB environment with minimal modification. This program has been tested using synthetic models, including one with variable topography, and on field data. The results were assessed by comparing inverse models obtained with MT2DInvMatlab and with a non-linear conjugate gradient (NLCG) algorithm. In both tests the new inversion software reconstructs the subsurface resistivity structure very closely and provides an improvement in both resolution and stability.

  11. 1D and 2D Occam's Inversion of Magnetotelluric Data Applied in Volcano-Geothermal Area In Central Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Ariani, Elsi; Srigutomo, Wahyu

    2016-08-01

    One-dimensional (1D) and two-dimensional (2D) magnetotelluric data inversion were conducted to reveal the subsurface resistivity structure beneath the eastern part of a volcano in Central Java, Indonesia. Fifteen magnetotelluric sounding data spanning two lines of investigation were inverted using Occam's inversion scheme. The result depict that there are extensively conductive layer (2-10 ohm meter) below the volcanic overburden. This conductive layer is interpreted as the clay cap resulted from thermal alteration. A higher resistivity layer (10-80 ohm meter) underlies the clay cap and is interpreted as the reservoir whose top boundaries vary between 1000 m above and 2000 m below sea level.

  12. Constraints on Extrasolar Planet Populations from VLT NACO/SDI and MMT SDI and Direct Adaptive Optics Imaging Surveys: Giant Planets are Rare at Large Separations

    NASA Astrophysics Data System (ADS)

    Nielsen, Eric L.; Close, Laird M.; Biller, Beth A.; Masciadri, Elena; Lenzen, Rainer

    2008-02-01

    We examine the implications for the distribution of extrasolar planets based on the null results from two of the largest direct imaging surveys published to date. Combining the measured contrast curves from 22 of the stars observed with the VLT NACO adaptive optics system by Masciadri and coworkers and 48 of the stars observed with the VLT NACO SDI and MMT SDI devices by Biller and coworkers (for a total of 60 unique stars), we consider what distributions of planet masses and semimajor axes can be ruled out by these data, based on Monte Carlo simulations of planet populations. We can set the following upper limit with 95% confidence: the fraction of stars with planets with semimajor axis between 20 and 100 AU, and mass above 4 MJup, is 20% or less. Also, with a distribution of planet mass of dN/dM propto M-1.16 in the range of 0.5-13 MJup, we can rule out a power-law distribution for semimajor axis (dN/da propto aα) with index 0 and upper cutoff of 18 AU, and index -0.5 with an upper cutoff of 48 AU. For the distribution suggested by Cumming et al., a power-law of index -0.61, we can place an upper limit of 75 AU on the semimajor axis distribution. In general, we find that even null results from direct imaging surveys are very powerful in constraining the distributions of giant planets (0.5-13 MJup) at large separations, but more work needs to be done to close the gap between planets that can be detected by direct imaging, and those to which the radial velocity method is sensitive.

  13. Magnetotellurics with long distance remote reference to reject DC railway noise

    NASA Astrophysics Data System (ADS)

    Hanstein, T.; Jiang, J.; Strack, K.; Ritter, O.

    2014-12-01

    Some parts of railway network in Europe is electrified by DC current. The return current in the ground is varying in space, time and power when the train is moving. Since the train traffic is active 24 hours, there is no quite time. The train signal is dominating for periods longer than 1 s and is a near field source. The transfer function of the magnetotelluric sounding (MT) is influenced by this near field source, the phase is going to zero and amplitude increase with slope 1 for longer periods. Since this dominating noise is present all day robust magnetotelluric processing technique to identify and remove outliers are not applicable and sufficient. The remote reference technique has successfully been applied for magnetotelluric soundings Combining an disturbed local MT data set with the data of the remote station, which is recording simultaneously the horizontal magnetic fields, can improve the data quality. Finding a good remote station during field survey is difficult and expensive. There is a permanent MT remote reference station in Germany. The set up and maintance is done by the GFZ - Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences. The location is near Wittstock and has good signal-to-noise-ratio with low cutural noise, the ground is almost lD and recording since May 2010. The electric and magnetic field is continously recorded with 250 Hz sampling and induction coils. The magnetic field is also recorded with fluxgate magnetometers and 5 Hz sampling. The distance to the local MT site is about 600 km.

  14. Topographic effect on Radio-Magnetotelluric and Slingram signals: application to a levee along the Loire river, France.

    NASA Astrophysics Data System (ADS)

    Duval, Rodolphe; Fauchard, Cyrille; Antoine, Raphael

    2014-05-01

    We study the influence of the topography of a levee on the electric and magnetic signals obtained with the Radio-Magnetotelluric method (RMT) and the Slingram method, respectively. For the RMT method, field measurements have been modelled with a finite element commercial software (AC/DC and Radio-Frequency modules of Comsol Multiphysics). A levee situated in Orléans (France) along the Loire river has been considered in order to design a model taking into account the skin depth and the incident wavelength. The effect of the incident electromagnetic field direction has been assessed with two different incident wave directions: BBC 5 from Salford (UK) and France-Inter from Allouis (France). The simulations highlight the tri-dimensional effects of the topography in the apparent resistivity, observed on the crest of the levee, depending on the incident field direction and topography. For the Slingram method, the magnetic field has been simulated using the AC/DC module of Comsol. The ratio of the primary magnetic field on the secondary one, received in a loop is determined above a straight levee. The study aims to show the various responses obtained in function of both vertical and horizontal coil configurations. We show that the signal also depends on the topography and the right configuration of the coils alignment with respect to the levee stretch direction. In this study, a buried gas pipe is also characterized by the two methods. Numerical modelling of 3D electromagnetic effects on geophysical signals helps to interpret the field measurements and offers to the stakeholder an optimized methodology for geophysical surveys on levees.

  15. Magnetotelluric survey to locate the Archean-Proterozoic suture zone in the northeastern Great Basin, Nevada, Utah, and Idaho

    USGS Publications Warehouse

    Sampson, Jay A.; Rodriguez, Brian D.

    2013-01-01

    North-central Nevada contains a large amount of gold in linear belts, the origin of which is not fully understood. During July 2008, September 2009, and August 2010, the U.S. Geological Survey, as part of the Assessment Techniques for Concealed Mineral Resources project, collected twenty-three magnetotelluric soundings along two profiles in Box Elder County, Utah; Elko County, Nevada; and Cassia, Minidoka, and Blaine Counties, Idaho. The main twenty-sounding north-south magnetotelluric profile begins south of Wendover, Nev., but north of the Deep Creek Range. It continues north of Wendover and crosses into Utah, with the north profile terminus in the Snake River Plain, Idaho. A short, three-sounding east-west segment crosses the main north-south profile near the northern terminus of the profile. The magnetotelluric data collected in this study will be used to better constrain the location and strike of the concealed suture zone between the Archean crust and the Paleoproterozoic Mojave province. This report releases the magnetotelluric sounding data that was collected. No interpretation of the data is included.

  16. Electrical conductivity structure of north-west Fennoscandia from three-dimensional inversion of magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Cherevatova, M.; Smirnov, M. Yu.; Korja, T.; Pedersen, L. B.; Ebbing, J.; Gradmann, S.; Becken, M.

    2015-06-01

    New magnetotelluric (MT) data in north-west Fennoscandia were acquired within the framework of the project "Magnetotellurics in the Scandes" (MaSca). The project focuses on the investigation of the crustal and upper mantle lithospheric structure in the transition zone from stable Precambrian cratonic interior to passive continental margin beneath the Caledonian orogen and the Scandinavian Mountains in western Fennoscandia. An array of 59 simultaneous long period and 220 broad-band MT sites were occupied in the summers of 2011 to 2013. The 3-D inversion of the MaSca data was obtained using the ModEM 3-D code. The full impedance and tipper data were used for the inversion. The rocks of Archaean and Proterozoic basement towards east and the Caledonian nappes towards west are modelled as resistive structures. In the central and southern parts, the whole crust is resistive and reflects the Trans-Scandinavian Igneous Belt granitoids. The middle to lower crust of the Svecofennian province is conductive. An uppermost crustal conductor is revealed in the Skellefteå Ore District. The south end of the Kittilä Greenstone Belt is seen in the models as a strong upper to middle crustal conductor. In the Caledonides, the highly conductive alum shales are observed along the Caledonian Thrust Front. A map of the crustal conductance for the north-west Fennoscandian Shield is presented.

  17. Magnetotelluric evidence for crustal suture zones bounding the southern Great Valley, California

    SciTech Connect

    Park, S.K.; Biasi, G.P. ); Mackie, R.L.; Madden T.R. )

    1991-01-10

    A geoelectric section inferred from a regional magnetotelluric study across the Coast Ranges, the Great Valley, and the Sierra Nevada reveals significant variations in electrical resistivity. Zones of lower resistivity interpreted at depths from 10 km to at least 30 km lie near mapped geologic boundaries between the Coast Ranges and the Great Valley and beneath the eastern side of the Great Valley. The former boundary is inferred by others to separate the subduction complex of the Coast Ranges from the mafic basement of the Great Valley. The lower resistivities are most likely associated with metasediments trapped between the Coast Ranges ophiolite and the former oceanic crust beneath the Great Valley. The latter boundary is problematic, but may be evidence for a deep metasedimentary section trapped between the ophiolites beneath the Great Valley and granitic rocks of the Sierra Nevada. The lack of change in the magnetotelluric phase across the Great Valley indicates that a suture zone marked by lower resistivities is unlikely to be present beneath the valley. However, this does not preclude the existence of a resistive suture zone.

  18. Magnetotelluric Data, Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Williams, Jackie M.; Sampson, Jay A.; Rodriguez, Brian D.; Asch, Theodore H.

    2006-01-01

    Introduction: The United States Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. During 2005, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO, collected and processed data from twenty-six magnetotelluric (MT) and audio-magnetotelluric (AMT) sites at the Nevada Test Site. The 2005 data stations were located on and near Rainier Mesa and Shoshone Mountain to assist in characterizing the pre-Tertiary geology in those areas. These new stations extend the area of the hydrogeologic study previously conducted in Yucca Flat. The MT data presented in this report will help refine what is known about the character, thickness, and lateral extent of pre Tertiary confining units. Subsequent interpretation will include a three dimensional (3 D) character analysis and a two-dimensional (2 D) resistivity model. The purpose of this report is to release the MT sounding data. No interpretation of the data is included here.

  19. Deep Magnetotelluric survey on Crete Island across the Hellenic Subduction Zone

    NASA Astrophysics Data System (ADS)

    Kalisperi, D.; Smirnov, M.; Kokologiannakis, A.; Pentes, G.; Makris, J. P.

    2013-12-01

    Crete Island is located in a prominent position at the fore-arc of the Hellenic Subduction Zone (HSZ), thus enabling onshore study of the Earth's deep structure. The area is characterized by a complicated geological and geotectonic setting as well as by intense geodynamics that manifests itself in high seismicity. The aim of the ongoing research project 'MagnetoTellurics in studying Geodynamics of the hEllenic ARc (MT-GEAR)' is to contribute to the investigation of the geoelectric structure of Southern Aegean, and particularly to try to image the Hellenic Subduction Zone. In this context, onshore magnetotelluric (MT) measurements were carried out in July 2013 on Crete Island, comprising three parallel profiles aligned to the North-South (NS) direction, yielding a site spacing of about 5 to 10 km. In total, 21 broad-band MT soundings were conducted in the period range of 0.003-1000 s organized in the three 36Km, 30Km and 42Km long NS trending profiles. Data were collected using two different types of MT instruments (an EMI MT24LF and two Uppsala type MTU2000 systems) which were running simultaneously. We present the resulting model of the conductivity structure of the HSZ in the area of Crete.

  20. Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data

    USGS Publications Warehouse

    Unsworth, M.J.; Jones, A.G.; Wei, W.; Marquis, G.; Gokarn, S.G.; Spratt, J.E.; Bedrosian, P.; Booker, J.; Leshou, C.; Clarke, G.; Shenghui, L.; Chanhong, L.; Ming, D.; Sheng, J.; Solon, K.; Handong, T.; Ledo, J.; Roberts, B.

    2005-01-01

    The Cenozoic collision between the Indian and Asian continents formed the Tibetan plateau, beginning about 70 million years ago. Since this time, at least 1,400 km of convergence has been accommodated by a combination of underthrusting of Indian and Asian lithosphere, crustal shortening, horizontal extrusion and lithospheric delamination. Rocks exposed in the Himalaya show evidence of crustal melting and are thought to have been exhumed by rapid erosion and climatically forced crustal flow. Magnetotelluric data can be used to image subsurface electrical resistivity, a parameter sensitive to the presence of interconnected fluids in the host rock matrix, even at low volume fractions. Here we present magnetotelluric data from the Tibetan-Himalayan orogen from 77??E to 92??E, which show that low resistivity, interpreted as a partially molten layer, is present along at least 1,000 km of the southern margin of the Tibetan plateau. The inferred low viscosity of this layer is consistent with the development of climatically forced crustal flow in Southern Tibet. ?? 2005 Nature Publishing Group.

  1. New application of wavelets in magnetotelluric data processing: reducing impedance bias

    NASA Astrophysics Data System (ADS)

    Larnier, Hugo; Sailhac, Pascal; Chambodut, Aude

    2016-04-01

    Magnetotelluric (MT) data consist of the sum of several types of natural sources including transient and quasiperiodic signals and noise sources (instrumental, anthropogenic) whose nature has to be taken into account in MT data processing. Most processing techniques are based on a Fourier transform of MT time series, and robust statistics at a fixed frequency are used to compute the MT response functions, but only a few take into account the nature of the sources. Moreover, to reduce the influence of noise in the inversion of the response functions, one often sets up another MT station called a remote station. However, even careful setup of this remote station cannot prevent its failure in some cases. Here, we propose the use of the continuous wavelet transform on magnetotelluric time series to reduce the influence of noise even for single site processing. We use two different types of wavelets, Cauchy and Morlet, according to the shape of observed geomagnetic events. We show that by using wavelet coefficients at clearly identified geomagnetic events, we are able to recover the unbiased response function obtained through robust remote processing algorithms. This makes it possible to process even single station sites and increase the confidence in data interpretation.

  2. Magnetotelluric survey for exploration of a volcanic-rock reservoir in the Yurihara oil and gas field, Japan

    SciTech Connect

    Mitsuhata, Yuji; Matsuo, Koichi; Minegishi, Masato

    1999-03-01

    The Yurihara oil and gas field is located on the southern edge of Akita Prefecture, northeastern Japan. In this area, drilling, surface geological surveys and many seismic surveys have been used to investigate the geological structure. Wells drilled into the Nishikurosawa Basalt Group (NBG) of Miocene age found oil and gas reservoirs at depths of 1.5--2 km. Oil and gas are now being produced commercially and further exploration is required in the surrounding areas. However, since the neighboring areas are covered with young volcanic products from the Chokai volcano, and have a rough topography, the subsurface distribution of the NBG must be investigated using other methods in addition to seismic reflection. According to the well data, the resistivity of the NBG is comparatively higher than that of the overlying sedimentary formations, and therefore the magnetotelluric (MT) method is expected to be useful for the estimation of the distribution of the NBG. An MT survey was conducted along three survey lines in this area. Each line trended east-west, perpendicular to the regional geological strike, and was composed of about 25 measurement sites. Induction vectors evaluated from the magnetic field show that this area has a two-dimensional structure. The evaluated resistivity sections are in agreement with the log data. In conclusion, the authors were able to detect resistive layers (the NBG) below conductive layers. The results indicate that the NBG becomes gradually less resistive from north to south. In the center of the northern line, an uplifted resistive area is interpreted as corresponding to the reservoir. By comparison with a seismic section, the authors prove the effectiveness of the integration of seismic and MT surveys for the investigation of the morphology and internal structure of the NBG. On other survey lines, the resistive uplifted zones are interpreted as possible prospective areas.

  3. A new co-operative inversion strategy via fuzzy clustering technique applied to seismic and magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Thong Kieu, Duy; Kepic, Anton

    2015-04-01

    Geophysical inversion produces very useful images of earth parameters; however, inversion results usually suffer from inherent non-uniqueness: many subsurface models with different structures and parameters can explain the measurements. To reduce the ambiguity, extra information about the earth's structure and physical properties is needed. This prior information can be extracted from geological principles, prior petrophysical information from well logs, and complementary information from other geophysical methods. Any technique used to constrain inversion should be able to integrate the prior information and to guide updating inversion process in terms of the geological model. In this research, we have adopted fuzzy c-means (FCM) clustering technique for this purpose. FCM is a clustering method that allows us to divide the model of physical parameters into a few clusters of representative values that also may relate to geological units based on the similarity of the geophysical properties. This exploits the fact that in many geological environments the earth is comprised of a few distinctive rock units with different physical properties. Therefore FCM can provide a platform to constrain geophysical inversion, and should tend to produce models that are geologically meaningful. FCM was incorporated in both separate and co-operative inversion processing of seismic and magnetotelluric (MT) data with petrophysical constraints. Using petrophysical information through FCM assists the inversion to build a reliable earth model. In this algorithm, FCM plays a role of guider; it uses the prior information to drive the model update process, and also forming an earth model filled with rocks units rather than smooth transitions when the boundary is in doubt. Where petrophysical information from well logs or core measurement is not locally available the cluster petrophysics may be solved for in inversion as well if some knowledge of how many distinctive geological exist. A

  4. Joint Interpretation of Magnetotellurics and Airborne Electromagnetics in the Rathlin Basin, Northern Ireland

    NASA Astrophysics Data System (ADS)

    Delhaye, Robert; Rath, Volker; Jones, Alan G.; Reay, Derek; The Iretherm Team

    2015-04-01

    In this study we present results from geophysical investigation of the sedimentary Rathlin Basin in Northern Ireland in order to assess the potential for low-to-medium enthalpy geothermal aquifers within the porous Permian and Triassic sandstone groups. The area and groups were identified as a potential geothermal resource due to the presence of both an elevated geothermal gradient (observed in two deep boreholes onshore) and favourable hydraulic properties (measured on core samples in the offshore part of the basin). Previous seismic experiments were not able to fully characterise the sediments beneath the overlying flood basalt. Complementing these earlier results, magnetotelluric data were acquired on a grid of 56 sites across the north-eastern portion of the onshore Rathlin Basin, and an additional 12 sites on the nearby Rathlin Island, in order to image the thickness, depth, and lateral continuity of the target sediments. Analysis and 3D modelling, including the effects of the highly conducting ocean, has been successful in deriving a resistivity model that maps the variation in the top of the sediments (base of the basalts) and the truncation of the basin sediments against the Tow Valley Fault, and gives a reasonable estimate of the thickness of the sediment fill. However, the resulting models show significant effects from distortion caused by near-surface inhomogeneities in the responses that cannot be resolved using the given frequency range and site density. Fortunately, for the area of Rathlin Basin, airborne electromagnetic data from the TELLUS project (http://www.bgs.ac.uk/gsni/tellus/contact/index.html) are available. These data were measured at four frequencies between 0.9 kHz and 25 kHz in a verical-coplanar loop configuration, with the dipole axis in flight direction. The spatial sampling distance was less than 25 m, with about 200 m distance between flight lines. Survey altitudes vary between 56 m and 244 m. Thus, for the top ˜100 m penetrated by

  5. Magnetotelluric characterization of a tectonic boundary in the Chaco-Pampean Plain (27° S), Argentina

    NASA Astrophysics Data System (ADS)

    Peri, V. G.; Pomposiello, C.; Favetto, A.; Barcelona, H.; Rossello, E.

    2013-05-01

    The study area is placed in the Chaco-Pampean Plain (Central-North Argentina), which is part of the distal plain of the central Andean piedmont originated by the uplift and erosion of the Andean Cordillera. A sedimentary aggradational process typifies this region and buries a large history related to Western Gondwana and Andean Orogeny. The Andean piedmont is composed of a collage of crustal blocks that were amalgamated by different orogeny and deformation belts. The Transbrasiliano lineament constitutes one of these continental belts and transversely intersects the South American Platform, from NNE to SSW. Northward, this lineament is well evidenced, while southward, in the distal Andean foreland, it remains unknown and is associated with the tectonic boundary between the Río de la Plata Craton (RPC) and the Pampean terrane (PT). This tectonic boundary is mostly unexposed in the Chaco-Pampean Plain. An east or west dipping subduction and a later collision between these terranes is still under debate. Deep geophysical studies are not abundant in this region. Few works have locally characterized the composition and structure of the crust and upper mantle beneath this extensive intracontinental plain. Magnetotelluric (MT), gravimetric and magnetic data have inferred the boundary between the RPC and the PT at the limit between Eastern Pampean Ranges and the Chaco-Pampean Plain. Furthermore, at regional scale, 3-D seismic tomographies and images of the seismic structure of the crust and the uppermost mantle have revealed the Moho depths and other lithospheric discontinuities. Here, we report the results of a MT survey along a W-E profile located at 27° S between 63°45' and 60°30' W, that characterized the geoelectric structure of the tectonic boundary between the RPC and the PT beneath the Chaco-Pampean Plain. The MT method provides an image of the electrical resistivity distribution of the Earth's subsurface and constitutes an effective and complementary technique

  6. Two and three dimensional magnetotelluric inversion. Final report

    SciTech Connect

    Booker, J.

    1993-05-01

    Electrical conductivity depends on properties such as the presence of ionic fluids in interconnected pores that are difficult to sense with other remote sensing techniques. Thus improved imaging of underground electrical structure has wide practical importance in exploring for groundwater, mineral and geothermal resources, and in assessing the diffusion of fluids in oil fields and waste sites. Because the electromagnetic inverse problem is fundamentally multi-dimensional, most imaging algorithms saturate available computer power long before they can deal with the complete data set. We have developed an algorithm to directly invert large multi-dimensional data sets that is orders of magnitude faster than competing methods. We have proven that a two-dimensional (2D) version of the algorithm is highly effective for real data and have made substantial progress towards a three-dimensional (3D) version. We are proposing to cure identified shortcomings and substantially expand the utility of the existing 2D program, overcome identified difficulties with extending our method to three-dimensions (3D) and embark on an investigation of related EM imaging techniques which may have the potential for even further increasing resolution.

  7. Thermal regimes of major volcanic centers: magnetotelluric constraints

    SciTech Connect

    Hermance, J.F.

    1987-11-13

    The focus of activity at this laboratory is on applying natural electromagnetic methods along with other geophysical techniques to studying the dynamical processes and thermal regimes associated with centers of major volcanic activity. We are presently emphasizing studies of the Long Valley/Mono Craters Volcanic Complex, the Cascades Volcanic Belt, and the Valles Caldera. This work addresses questions regarding geothermal energy, chemical transport of minerals in the crust, emplacement of economic ore deposits, and optimal siting of drill-holes for scientific purposes. In addition, since much of our work is performed in the intermontane sedimentary basins of the western US (along with testing our field-system in some of the graben structures in the Northeast), there is an application of these studies to developing exploration and interpretational strategies for detecting and delineating structures associated with hydrocarbon reserves.

  8. Indication of meta-anthracite by magnetotellurics in the Köszeg-Rechnitz Penninic window

    NASA Astrophysics Data System (ADS)

    Novák, Attila; Ádám, Antal; Prácser, Ernő

    2013-04-01

    In the Eastern end of the Eastern Alps - at the Austrian-Hungarian border - there are Pennninic Nappes among them the Köszeg-Rechnitz tectonic window having complicated metamorphic history from the Jurassic time. The organic material of the Penninic Ocean transformed to meta-anthracite. Its amount in the calc-phyllite has been estimated by the geochemists to 0.2 percent. Magnetotelluric soundings have been carried out to determine: - the resistivity decrease due to the above amount of conductive material, - the different EM distortions in E and B polarization caused by the conductor near and far from it, - the asthenospheric depth in the area of the tectonic window stepping out from the shallow asthenosphere of the Pannonian Basin, - looking for relation between geoelectric and seismic crustal structures.

  9. Analytical investigations of the magnetotelluric directionality estimation in 1-D anisotropic layered media

    NASA Astrophysics Data System (ADS)

    Okazaki, T.; Oshiman, N.; Yoshimura, R.

    2016-11-01

    Inferring geoelectric dimensionality (1D, 2D or 3D) and directionality (strike directions) from the impedance tensor is a basic procedure in magnetotelluric data processing. Given that electrical anisotropy is increasingly recognized in observations, it is valuable to understand the imprint of anisotropy in these analyses. In this paper, we analytically investigate the estimation of strike directions based on rotational invariants in 1D anisotropic layered media. We first show that if anisotropy axes are identical in all anisotropic layers, the estimated strike coincides with that direction. We then derive an analytical formula of the strike angle at long periods for general anisotropic layers with an isotropic basement. This formula shows a clear physical interpretation that the strike angle points where the conductance integrated along depth takes a maximum value.

  10. Application of Modified Differential Evolution Algorithm to Magnetotelluric and Vertical Electrical Sounding Data

    NASA Astrophysics Data System (ADS)

    Mingolo, Nusharin; Sarakorn, Weerachai

    2016-04-01

    In this research, the Modified Differential Evolution (DE) algorithm is proposed and applied to the Magnetotelluric (MT) and Vertical Electrical sounding (VES) data to reveal the reasonable resistivity structure. The common processes of DE algorithm, including initialization, mutation and crossover, are modified by introducing both new control parameters and some constraints to obtain the fitting-reasonable resistivity model. The validity and efficiency of our developed modified DE algorithm is tested on both synthetic and real observed data. Our developed DE algorithm is also compared to the well-known OCCAM's algorithm for real case of MT data. For the synthetic case, our modified DE algorithm with appropriate control parameters can reveal the reasonable-fitting models when compared to the original synthetic models. For the real data case, the resistivity structures revealed by our algorithm are closed to those obtained by OCCAM's inversion, but our obtained structures reveal layers more apparently.

  11. Magnetotelluric imaging of a fossil paleozoic intraoceanic subduction zone in western Junggar, NW China

    NASA Astrophysics Data System (ADS)

    Xu, Yixian; Yang, Bo; Zhang, Sheng; Liu, Ying; Zhu, Lupei; Huang, Rong; Chen, Chao; Li, Yongtao; Luo, Yinhe

    2016-06-01

    The fate of subducted oceanic slabs can provide important clues to plate reconstruction through Earth history. Since oceanic slabs in continental collision zones are typically not well preserved, ancient subduction zones have rarely been imaged by geophysical techniques. Here we present an exception from the Darbut belt in the Junggar accretionary collage in the southern Altaids of Asia. We deployed a 182 km long magnetotelluric (MT) profile including 60 broadband sounding sites across the belt. Quality off-diagonal impedances were inverted by a three-dimensional scheme to image resistivities beneath the profile. The resistivity model along with MT impedance phase ellipses and induction vectors were tested and interpreted in detail. Combining geological and geophysical observations, mineral physical experiment, and geodynamic modeling results, the MT transect suggests a fossil intraoceanic subduction zone during the Late Paleozoic in the western Junggar that has been well preserved due to lack of significant subsequent tecto-thermal events.

  12. Seismic and magneto-telluric imaging for geothermal exploration at Jemez pueblo in New Mexico

    SciTech Connect

    Huang, Lianjie; Albrecht, Michael

    2011-01-25

    A shallow geothermal reservoir in the Pueblo of Jemez in New Mexico may indicate a commercial-scale geothermal energy potential in the area. To explore the geothermal resource at Jemez Pueblo, seismic surveys are conducted along three lines for the purpose of imaging complex subsurface structures near the Indian Springs fault zone. A 3-D magneto-telluric (MT) survey is also carried out in the same area. Seismic and MT imaging can provide complementary information to reveal detailed geologic formation properties around the fault zones. The high-resolution seismic images will be used together with MT images, geologic mapping, and hydrogeochemistry, to explore the geothermal resource at Jemez Pueblo, and to determine whether a conunercial-scale geothermal resource exists for power generation or direct use applications after drilling and well testing.

  13. High-resolution lithosphere viscosity and dynamics revealed by magnetotelluric imaging

    NASA Astrophysics Data System (ADS)

    Liu, Lijun; Hasterok, Derrick

    2016-09-01

    An accurate viscosity structure is critical to truthfully modeling lithosphere dynamics. Here, we report an attempt to infer the effective lithospheric viscosity from a high-resolution magnetotelluric (MT) survey across the western United States. The high sensitivity of MT fields to the presence of electrically conductive fluids makes it a promising proxy for determining mechanical strength variations throughout the lithosphere. We demonstrate how a viscosity structure, approximated from electrical resistivity, results in a geodynamic model that successfully predicts short-wavelength surface topography, lithospheric deformation, and mantle upwelling beneath recent volcanism. We further show that this viscosity is physically consistent with and better constrained than that derived from laboratory-based rheology. We conclude that MT imaging provides a practical observational constraint for quantifying the dynamic evolution of the continental lithosphere.

  14. Magnetotelluric/audiomagnetotelluric study of the Zuni Hot Dry Rock Geothermal Prospect, New Mexico

    SciTech Connect

    Ander, M.E.; Goss, R.; Strangway, D.; Hillebrand, C.; Laughlin, A.W.; Hudson, C.

    1980-01-01

    The Los Alamos Scientific Laboratory has been investigating a large area in New Mexico for Hot Dry Rock geothermal potential. The area includes parts of the Jemez volcanic lineament and the central Rio Grande rift. LASL has completed a detailed magnetotelluric/audiomagnetotelluric survey covering 161 square km over an area of high heat flow, south of Zuni, NM. The data collection was collected and preliminary analysis phases of a regional MT survey which suggest the Jemez lineament is associated with a crustal structure of anomalously high electrical conductivity. The detailed MT shows an average tipper strike of N60/sup 0/E above 100 sec period, representing the structural trend within Precambrian basement. The Jemez lineament strikes approximately N55/sup 0/E; this suggests a relationship between the Precambrian structure beneath the Zuni area and the Jemez lineament.

  15. Pareto joint inversion of 2D magnetotelluric and gravity data

    NASA Astrophysics Data System (ADS)

    Miernik, Katarzyna; Bogacz, Adrian; Kozubal, Adam; Danek, Tomasz; Wojdyła, Marek

    2015-04-01

    In this contribution, the first results of the "Innovative technology of petrophysical parameters estimation of geological media using joint inversion algorithms" project were described. At this stage of the development, Pareto joint inversion scheme for 2D MT and gravity data was used. Additionally, seismic data were provided to set some constrains for the inversion. Sharp Boundary Interface(SBI) approach and description model with set of polygons were used to limit the dimensionality of the solution space. The main engine was based on modified Particle Swarm Optimization(PSO). This algorithm was properly adapted to handle two or more target function at once. Additional algorithm was used to eliminate non- realistic solution proposals. Because PSO is a method of stochastic global optimization, it requires a lot of proposals to be evaluated to find a single Pareto solution and then compose a Pareto front. To optimize this stage parallel computing was used for both inversion engine and 2D MT forward solver. There are many advantages of proposed solution of joint inversion problems. First of all, Pareto scheme eliminates cumbersome rescaling of the target functions, that can highly affect the final solution. Secondly, the whole set of solution is created in one optimization run, providing a choice of the final solution. This choice can be based off qualitative data, that are usually very hard to be incorporated into the regular inversion schema. SBI parameterisation not only limits the problem of dimensionality, but also makes constraining of the solution easier. At this stage of work, decision to test the approach using MT and gravity data was made, because this combination is often used in practice. It is important to mention, that the general solution is not limited to this two methods and it is flexible enough to be used with more than two sources of data. Presented results were obtained for synthetic models, imitating real geological conditions, where

  16. Eastern termination of the Altyn Tagh Fault, western China: Constraints from a magnetotelluric survey

    NASA Astrophysics Data System (ADS)

    Xiao, Qibin; Shao, Guihang; Liu-Zeng, Jing; Oskin, Michael E.; Zhang, Jin; Zhao, Guoze; Wang, Jijun

    2015-05-01

    The left-lateral Altyn Tagh Fault forms the northern boundary of the Tibetan Plateau. The strike-slip rate of the active Altyn Tagh Fault decreases northeastward and reduces close to zero as it passes north of the Qilian Shan. This geometry raises controversies on whether and how the fault terminates or extends further east. To address these controversies, wide-band magnetotelluric data were collected along four profiles across the Altyn Tagh Fault ranging from 135 to 261 km in length. All four profiles are located in the foreland of the Qilian Shan Ranges and are oriented perpendicular to the inferred fault zone that could be the continuation of Altyn Tagh Fault. Both the two-dimensional and three-dimensional electrical resistivity models derived from our magnetotelluric data show that the Hexi Corridor crust is generally of low resistivity, whereas the crust of the Huahai-Jinta basin is, in general, of high resistivity with a local and isolated low-resistivity anomaly within the mid-lower crust. The generally high-resistivity crust of the Huahai-Jinta basin may be rheologically unfavorable for the Altyn Tagh Fault passing through the basin toward the northeast. The entirely different electrical structure between the Hexi Corridor and its northern neighbors indicates the existence of a tectonic boundary that coincides with the Altyn Tagh Fault in the west and reverse faults in the east. The two-dimensional electrical conductivity models suggest that the Altyn Tagh Fault transfers from a single fault in the west to a branching set of mainly dip-slip faults in the east.

  17. Nine Seasons of Velocity Measurements in the Draco and Ursa Minor Dwarf Spheroidal Galaxies with the MMT Echelle

    NASA Astrophysics Data System (ADS)

    Olszewski, Edward W.; Aaronson, Marc; Hill, John M.

    1995-11-01

    We have used the Multiple Mirror Telescope echelle spectrograph to measure 112 velocities of 42 stars in the Draco and Ursa Minor dwarf spheroidal galaxies and three velocities of three foreground stars between 1982 April and 1990 September. We used 11 A resolution spectra obtained with the MX multifiber spectrograph at the Steward 90" to find additional giant candidates; 5 UMi and 13 Draco stars were then observed at the MMT and added to the original sample of velocity members. In addition, the MX spectra were used to eliminate 74 stars in the direction of UMI and 59 stars in Draco as likely foreground dwarfs. We detected 7 velocity variables, defined as those stars whose probability of exceeding the measured X^2^ by chance is less than 1.5%. Three of these stars are Carbon (C) stars (UMi K and VA 335 and Draco C1); two have emission lines (Draco CI and UMi M). We show that the C star Draco C4, with a proper motion membership probability of 7%, has a velocity consistent with membership. It is not surprising that these C (most likely CH) stars are binaries because McClure has shown that most Galactic CH stars are in binary systems. Of the remaining 35 stars, only 4 are velocity variables, with measured velocity extrema of 29.1 km s^-1^ (UMi M), 7.2 km s^-1^ (Draco XI-2), 9.0 km s^-1^ (Draco 24), and 8.3 km s^-1^ (Draco 473). The velocity dispersions are 10.1 +/- 1.7 km s^-1^ for UMi, and 9.9 +/- 1.4 km s^-1^ for Draco. These dispersions change to 10.5 +/- 2.0 for UMi, and 8.2 +?- 1.3 for Draco if we eliminate the velocity variables. Our dispersion for UMi differs from that of Hargreaves et al. [MNRAS, 271,693 (1994b)] by 1.3σ of the combined errors. These velocities are combined with the one-component King models of Pryor & Kormendy [AJ, 100,127 (1990)] to give M/L = 73 for UMi, and 77 for Draco.

  18. Crustal resistivity structure from magnetotelluric soundings in the Colorado Plateau-Basin and Range provinces, central and western Arizona

    USGS Publications Warehouse

    Klein, D.P.

    1991-01-01

    Resistivity structure to about 25 km depth is defined from two-dimensional modeling of 29 magnetotelluric (MT) soundings (0.002-5 Hz) that traverse 280 km of the southwestern Colorado Plateau, transition zone, and Basin and Range provinces in Arizona. From the surface to 5 km depth, the MT model suggests structural relationships between low-resistivity sedimentary and volcanic rocks (50-300 ohm m) and high-resistivity granitic and gneissic basement (500-9000 ohm m). -from Author

  19. 3D magnetotelluric inversion system with static shift correction and theoretical assessment in oil and gas exploration

    NASA Astrophysics Data System (ADS)

    Dong, H.; Kun, Z.; Zhang, L.

    2015-12-01

    This magnetotelluric (MT) system contains static shift correction and 3D inversion. The correction method is based on the data study on 3D forward modeling and field test. The static shift can be detected by the quantitative analysis of apparent parameters (apparent resistivity and impedance phase) of MT in high frequency range, and completed correction with inversion. The method is an automatic processing technology of computer with zero-cost, and avoids the additional field work and indoor processing with good results shown in Figure 1a-e. Figure 1a shows a normal model (I) without any local heterogeneity. Figure 1b shows a static-shifted model (II) with two local heterogeneous bodies (10 and 1000 ohm.m). Figure 1c is the inversion result (A) for the synthetic data generated from model I. Figure 1d is the inversion result (B) for the static-shifted data generated from model II. Figure 1e is the inversion result (C) for the static-shifted data from model II, but with static shift correction. The results show that the correction method is useful. The 3D inversion algorithm is improved base on the NLCG method of Newman & Alumbaugh (2000) and Rodi & Mackie (2001). For the algorithm, we added the frequency based parallel structure, improved the computational efficiency, reduced the memory of computer, added the topographic and marine factors, and added the constraints of geology and geophysics. So the 3D inversion could even work in PAD with high efficiency and accuracy. The application example of theoretical assessment in oil and gas exploration is shown in Figure 1f-i. The synthetic geophysical model consists of five layers (from top to downwards): shale, limestone, gas, oil, groundwater and limestone overlying a basement rock. Figure 1f-g show the 3D model and central profile. Figure 1h shows the centrel section of 3D inversion, the resultsd show a high degree of reduction in difference on the synthetic model. Figure 1i shows the seismic waveform reflects the

  20. Monitoring a CO2 plume using time-lapse 3D magnetotellurics, DC resistivity, and induced polarization

    NASA Astrophysics Data System (ADS)

    Bowles-martinez, E.; Schultz, A.; Vincent, P.

    2014-12-01

    When CO2 is injected into a deep saline aquifer, the combination of fluid displacement and chemical interaction with groundwater and minerals results in changes to the electrical properties of the storage formation. Geophysical methods that are sensitive to the electrical resistivity and chargeability of the rocks and fluids are used to monitor a modeled CO2 plume. The arrival of supercritical CO2 appears as a resistive pulse as the CO2 displaces water while rising buoyantly. Groundwater becomes carbonated and undergoes a rapid drop in pH. Formation conductivity increases as acidic fluid mobilizes ions in the surrounding rock. A surge of increased conductivity is seen at the plume front as easily-mobilized ions enter the fluid. As the injection proceeds and groundwater flows, this high-conductivity plume front migrates, leaving behind an aquifer largely depleted of highly-mobile ions, with only slightly elevated conductivity. Meanwhile, the dissolution of minerals reduces surface area along the fluid-mineral interface. This causes pore throat widening and reduction of sites where electric charge can build up, thereby reducing the polarizability in the parts of the formation that have encountered the plume. This study looks at monitoring methods that are sensitive to all of these changes in electrical properties at various depths within the earth. These methods include magnetotellurics (MT) and combined DC resistivity and induced polarization (IP). MT is useful for showing large-scale structure using an array that is moveable to cover an arbitrarily large area as the plume expands far beyond initial monitoring locations. MT also allows for phase tensor analysis to clearly show deep resistivity gradients and changes in dimensionality. The active-source nature of DC and IP makes them effective at clearly showing the plume's extent in the region within a few km of the injection well. All methods are modeled in 3D using the planned Kevin Dome carbon storage site in

  1. Fabrication and characterization of PVA/ODA-MMT-poly(MA-alt-1-octadecene)-g-graphene oxide e-spun nanofiber electrolytes and their response to bone cancer cells.

    PubMed

    Rzayev, Zakir M O; Salimi, Kouroush; Bunyatova, Ulviya; Acar, Selim; Salamov, Bahtiyar; Turk, Mustafa

    2016-04-01

    This work presents a new approach to fabrication and characterization of novel polymer nanofiber electrolytes from intercalated PVA/ODA-MMT nanocomposite as a matrix polymer and encapsulated graphene oxide (GO) nanosheets with amphiphilic reactive copolymer as partner polymers using electrospinning method. The chemical and physical structures, surface morphology, thermal behaviors and electric conductivity of nanocomposites and nanofibers were investigated using analyses methods including FTIR, XRD, SEM, DSC-TGA and conductivity analysis. Significant improvements in nanofiber morphology and size distribution were observed when GO and reactive organoclay were incorporated as reinforcement fillers into various matrix/partner solution blends. The structural factors of matrix-partner polymer nanocomposite particles with higher zeta-potential play important roles in both chemical and physical interfacial interactions and phase separation processing and also lead to the formation of nanofibers with unique surface morphologies and good conductivities. The cytotoxic, necrotic and apoptotic effects of chosen nanofibers on osteocarcinoma cells were also investigated. These multifunctional, self-assembled, nanofibrous surfaces can serve as semi-conductive and bioactive platforms in various electrochemical and bio-engineering processes, as well as reactive matrices used for the immobilization of various biopolymer precursors.

  2. Fabrication and characterization of PVA/ODA-MMT-poly(MA-alt-1-octadecene)-g-graphene oxide e-spun nanofiber electrolytes and their response to bone cancer cells.

    PubMed

    Rzayev, Zakir M O; Salimi, Kouroush; Bunyatova, Ulviya; Acar, Selim; Salamov, Bahtiyar; Turk, Mustafa

    2016-04-01

    This work presents a new approach to fabrication and characterization of novel polymer nanofiber electrolytes from intercalated PVA/ODA-MMT nanocomposite as a matrix polymer and encapsulated graphene oxide (GO) nanosheets with amphiphilic reactive copolymer as partner polymers using electrospinning method. The chemical and physical structures, surface morphology, thermal behaviors and electric conductivity of nanocomposites and nanofibers were investigated using analyses methods including FTIR, XRD, SEM, DSC-TGA and conductivity analysis. Significant improvements in nanofiber morphology and size distribution were observed when GO and reactive organoclay were incorporated as reinforcement fillers into various matrix/partner solution blends. The structural factors of matrix-partner polymer nanocomposite particles with higher zeta-potential play important roles in both chemical and physical interfacial interactions and phase separation processing and also lead to the formation of nanofibers with unique surface morphologies and good conductivities. The cytotoxic, necrotic and apoptotic effects of chosen nanofibers on osteocarcinoma cells were also investigated. These multifunctional, self-assembled, nanofibrous surfaces can serve as semi-conductive and bioactive platforms in various electrochemical and bio-engineering processes, as well as reactive matrices used for the immobilization of various biopolymer precursors. PMID:26838849

  3. Synthesis and characterization of silver/montmorillonite/chitosan bionanocomposites by chemical reduction method and their antibacterial activity.

    PubMed

    Shameli, Kamyar; Bin Ahmad, Mansor; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa; Shabanzadeh, Parvaneh; Moghaddam, Mansour Ghaffari

    2011-01-01

    Silver nanoparticles (AgNPs) of a small size were successfully synthesized using the wet chemical reduction method into the lamellar space layer of montmorillonite/chitosan (MMT/Cts) as an organomodified mineral solid support in the absence of any heat treatment. AgNO3, MMT, Cts, and NaBH4 were used as the silver precursor, the solid support, the natural polymeric stabilizer, and the chemical reduction agent, respectively. MMT was suspended in aqueous AgNO3/Cts solution. The interlamellar space limits were changed (d-spacing = 1.24-1.54 nm); therefore, AgNPs formed on the interlayer and external surface of MMT/Cts with d-average = 6.28-9.84 nm diameter. Characterizations were done using different methods, ie, ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence spectrometry, and Fourier transform infrared spectroscopy. Silver/montmorillonite/chitosan bionanocomposite (Ag/MMT/Cts BNC) systems were examined. The antibacterial activity of AgNPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria, ie, Escherichia coli, E. coli O157:H7, and Pseudomonas aeruginosa by the disc diffusion method using Mueller Hinton agar at different sizes of AgNPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biological research and biomedical applications, including surgical devices and drug delivery vehicles.

  4. Synthesis and characterization of silver/montmorillonite/chitosan bionanocomposites by chemical reduction method and their antibacterial activity

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa; Shabanzadeh, Parvaneh; Moghaddam, Mansour Ghaffari

    2011-01-01

    Silver nanoparticles (AgNPs) of a small size were successfully synthesized using the wet chemical reduction method into the lamellar space layer of montmorillonite/chitosan (MMT/Cts) as an organomodified mineral solid support in the absence of any heat treatment. AgNO3, MMT, Cts, and NaBH4 were used as the silver precursor, the solid support, the natural polymeric stabilizer, and the chemical reduction agent, respectively. MMT was suspended in aqueous AgNO3/Cts solution. The interlamellar space limits were changed (d-spacing = 1.24–1.54 nm); therefore, AgNPs formed on the interlayer and external surface of MMT/Cts with d-average = 6.28–9.84 nm diameter. Characterizations were done using different methods, ie, ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence spectrometry, and Fourier transform infrared spectroscopy. Silver/montmorillonite/chitosan bionanocomposite (Ag/MMT/Cts BNC) systems were examined. The antibacterial activity of AgNPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria, ie, Escherichia coli, E. coli O157:H7, and Pseudomonas aeruginosa by the disc diffusion method using Mueller Hinton agar at different sizes of AgNPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biological research and biomedical applications, including surgical devices and drug delivery vehicles. PMID:21499424

  5. Modelling magnetotelluric profiles in three-dimensional environments doing joint inversion of different electromagnetic tensor relationships: New opportunities for resource exploration

    NASA Astrophysics Data System (ADS)

    Llovet, Joan Campanya i.; Ogaya, Xenia; Jones, Alan G.

    2015-04-01

    As a consequence of measuring regional current flows, magnetotelluric data in a three-dimensional environment can be strongly affected by geological structures located far away from the sites where the data is acquired. This can complicate the characterization of the electrical resistivity distribution of the subsurface below the survey area. In this study we analysed the role of three different types of electromagnetic data: the MT impedance tensor responses (Z), the geomagnetic transfer functions (GTF) and the inter-station horizontal magnetic transfer-functions (HMT). We discovered that joint inversion of the three types of data greatly increases the quality of the modelling of magnetotelluric profiles in three-dimensional environments. The improvements in characterizing the electrical resistivity distribution of the subsurface offer new opportunities for resource exploration, particularly for onshore hydrocarbon exploration, using electromagnetic methods, due to the increase in the sensitivity of the models to highly electrically resistive anomalies (e.g. where hydrocarbons are present) and better characterization of the extent of low resistivity layers (e.g. sealing formations). We evaluated the sensitivity of each type of data to different electrical resistivity anomalies, showing that the degree to which each site and each period is affected by the same anomaly depends on the type of data used. Subsequently, we evaluated the effectivity of each type of datain recovering the geoelectrical structures of the subsurface in a three-dimensional environment. Results show that joint inversion of the MT impedance tensor responses (Z) with the geomagnetic transfer functions (GTF) and the inter-station horizontal magnetic transfer functions (HMT) remarkably increases the quality of the model when recovering the electrical resistivity distribution of the subsurface. Joint inversion of the three types of data provides four major improvements: (1) more accurate location

  6. Preliminary results of the 3D magnetotelluric characterization of the Research Laboratory on Geological Storage of CO2 in Hontomín (Burgos, Spain)

    NASA Astrophysics Data System (ADS)

    Ogaya, X.; Queralt, P.; Ledo, J.; Marcuello, A.; Jones, A. G.

    2012-04-01

    The work presented here is a component of an on-going project in the framework of establishing a Technical Development Plant (PDT) for carbon dioxide (CO2) storage in a deep saline aquifer. The Research Laboratory is located at the Spanish town of Hontomín, and the project is funded by Fundación Ciudad de la Energía-CIUDEN (http://www.ciuden.es) on behalf of the Spanish Government. In this setting, magnetotelluric (MT) data are providing a baseline model for estimating CO2 plume distribution after injection. The bulk electrical resistivity of rocks is expected to increase significantly due to the presence of CO2 inside the pores of the reservoir rock since the effective volume available for the ionic transport will be reduced. We present the preliminary results of the electromagnetic characterization of the Hontomín site. In total, 109 broadband magnetotelluric (BBMT) soundings were acquired in the area covering an extent of 3 x 4 km2. The data are organized mainly along five north-south profiles, each of around 4 km in length, in the period range of 15 to 4096 Hz. The stations were deployed at approximately 200 m intervals, recording data during 24 to 48 hours, and the average distance between profiles was 500 m. The instrumentation consisted of Metronix ADU06, Metronix ADU07 and Phoenix V8. A remote reference station was permanently placed around 20 km away from the study area. Different robust processing codes using remote reference methods have been tested and used at all stations to derive optimal MT responses. The 3D electrical resistivity model of the subsurface is being computed using different 3D inversion codes: commercial 3D inversion of Winglink® (Mackie and Madden, 1993), WSINV3DMT (Siripunvaraporn et al., 2005) and modEM (Egbert and Kelbert, 2012). The model is discretized on 73 x 114 x 113-layer grid and the inversions were undertaken using the 4 elements of the impedance tensor (8 responses) and more than 16 periods in the range of 0.001 to 10

  7. Application of magnetotelluric in the modeling of underlying structure of Gour Oumelalen (Egere-Aleksod terrane, Central Hoggar, South of Algeria)

    NASA Astrophysics Data System (ADS)

    Boukhalfa, Zakaria; Abderrezak, Bouzid; Khadidja, Ouzegane; Abderrahmane, Bendaoud; Mohamed, Hamoudi; Abdeslam, Abtout; Abdelhamid, Bendekken; Sofiane Said, Bougchiche; Walid, Boukhlouf; Abdelgharfour, Boukar; Aboubakr, Deramchi; Mohamed, Bendali; Abdenaceur, Lemgharbi; Mohammed, Djeddi

    2016-04-01

    The results of a magnetotelluric experiment crossing Ounane granodiorite to the east until the Amadror Wadi to the West, passing through Adrar Ounane in our study area are presented. The magnetotelluric field survey was carried out in the Gour Oumelalen (GO) area during March 2015. We deployed 34 magnetotelluric sites along two parallel EW profiles of a hundred km long. Time series were collected using a V5 system 2000® of Phoenix Geophysics. The first profile located to the north is composed of 18 braodband measurement sites obtained from merging magnetotelluri with audio-magnetotelluric (AMT) data. The second one located 10 km south of the first, is composed of 15 MT sites. An inter-station distance of ~5 km provides good lateral resolution. The MT time series were recorded during about 20 hours which allows to reach a depth of 100 km or more and the AMT data 30 minutes. This allows to get broadband magnetotelluric soundings with good quality data in period range from 0.001 s to 3000 s. In this study we will use the south profile data for modeling the underlying structure of GO. The crustal part of the model shows a resistance bloc, divided by conductive parts which can be interpreted as faults, as regards the lithospheric part it less resistant the upper part, the transition crust / mantle corresponding to MOHO is estimated at more or less 35 km.

  8. XML Storage for Magnetotelluric Transfer Functions: Towards a Comprehensive Online Reference Database

    NASA Astrophysics Data System (ADS)

    Kelbert, A.; Blum, C.

    2015-12-01

    Magnetotelluric Transfer Functions (MT TFs) represent most of the information about Earth electrical conductivity found in the raw electromagnetic data, providing inputs for further inversion and interpretation. To be useful for scientific interpretation, they must also contain carefully recorded metadata. Making these data available in a discoverable and citable fashion would provide the most benefit to the scientific community, but such a development requires that the metadata is not only present in the file but is also searchable. The most commonly used MT TF format to date, the historical Society of Exploration Geophysicists Electromagnetic Data Interchange Standard 1987 (EDI), no longer supports some of the needs of modern magnetotellurics, most notably accurate error bars recording. Moreover, the inherent heterogeneity of EDI's and other historic MT TF formats has mostly kept the community away from healthy data sharing practices. Recently, the MT team at Oregon State University in collaboration with IRIS Data Management Center developed a new, XML-based format for MT transfer functions, and an online system for long-term storage, discovery and sharing of MT TF data worldwide (IRIS SPUD; www.iris.edu/spud/emtf). The system provides a query page where all of the MT transfer functions collected within the USArray MT experiment and other field campaigns can be searched for and downloaded; an automatic on-the-fly conversion to the historic EDI format is also included. To facilitate conversion to the new, more comprehensive and sustainable, XML format for MT TFs, and to streamline inclusion of historic data into the online database, we developed a set of open source format conversion tools, which can be used for rotation of MT TFs as well as a general XML <-> EDI converter (https://seiscode.iris.washington.edu/projects/emtf-fcu). Here, we report on the newly established collaboration between the USGS Geomagnetism Program and the Oregon State University to gather

  9. Magnetotelluric Data, Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada.

    SciTech Connect

    Jackie M. Williams; Jay A. Sampson; Brian D. Rodriguez; and Theodore H. Asch.

    2006-11-03

    The United States Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. From 1951 to 1992, 828 underground nuclear tests were conducted at the Nevada Test Site northwest of Las Vegas. Most of these tests were conducted hundreds of feet above the ground-water table; however, more than 200 of the tests were near or within the water table. This underground testing was limited to specific areas of the Nevada Test Site, including Pahute Mesa, Rainier Mesa/Shoshone Mountain, Frenchman Flat, and Yucca Flat. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology, and its effects on ground-water flow. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain Corrective Action Unit (Bechtel Nevada, 2006). During 2005, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO, collected and processed data from twenty-six magnetotelluric (MT) and audio-magnetotelluric (AMT) sites at the Nevada Test Site. The 2005 data stations were located on and near Rainier Mesa and Shoshone Mountain to assist in characterizing the pre-Tertiary geology in those areas. These new stations extend the area of the hydrogeologic study previously conducted in Yucca Flat. This work will help refine what is known about the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU – late Devonian to Mississippian-age siliciclastic rocks assigned to the Eleana Formation and Chainman Shale) from the Yucca Flat area and west towards

  10. An Amphibious Magnetotelluric Investigation of the Cascadian Seismogenic and ETS zones.

    NASA Astrophysics Data System (ADS)

    Parris, B. A.; Livelybrooks, D.; Bedrosian, P.; Egbert, G. D.; Key, K.; Schultz, A.; Cook, A.; Kant, M.; Wogan, N.; Zeryck, A.

    2015-12-01

    The amphibious Magnetotelluric Observations of Cascadia using a Huge Array (MOCHA) experiment seeks to address unresolved questions about the seismogenic locked zone and down-dip transition zone where episodic tremor and slip (ETS) originates. The presence of free fluids is thought to be one of the primary controls on ETS behavior within the Cascadia margin. Since the bulk electrical conductivity in the crust and mantle can be greatly increased by fluids, magnetotelluric(MT) observations can offer unique insights on the fluid distribution and its relation to observed ETS behavior. Here we present preliminary results from the 146 MT stations collected for the MOCHA project. MOCHA is unique in that it is the first amphibious array of MT stations occupied to provide for 3-D interpretation of conductivity structure of a subduction zone. The MOCHA data set comprises 75 onshore stations and 71 offshore stations, accumulated over a two-year period, and located on an approximate 25km grid, spanning from the trench to the Eastern Willamette Valley, and from central Oregon into middle Washington. We present the results of a series of east-west (cross-strike) oriented, two-dimensional inversions created using the MARE2DEM software that provide an initial picture of the conductivity structure of the locked and ETS zones and its along strike variations. Our models can be used to identify correlations between ETS occurrence rates and inferred fluid concentrations. Our modeling explores the impact of various parameterizations on 2-D inversion results, including inclusion of a smoothness penalty reduction along the inferred slab interface. This series of 2-D inversions can then be used collectively to help make and guide an a priori 3-D inversion. In addition we will present a preliminary 3-D inversion of the onshore stations created using the ModEM software. We are currently working on modifying ModEM to support inversion of offshore data. The more computationally intensive 3-D

  11. INTERPRETATION OF SHALLOW ELECTRICAL FEATURES FROM ELECTROMAGNETIC AND MAGNETOTELLURIC SURVEYS AT MOUNT HOOD, OREGON

    SciTech Connect

    Wilt, M.; Goldstein, N.E.; Mozley, E.

    1981-04-01

    A magnetotelluric survey, with a reference magnetometer for noise cancellation, was conducted at accessible locations around Mount Hood, Oregon. Thirty-eight tensor magnetotelluric (MT) and remote telluric stations were set up in clusters around the volcano except for the northwest quadrant, a wilderness area. Because of limited access, station locations were restricted to elevations below 1829 m, or no closer than 5 km from the 3424-m summit. On the basis of the MT results, three areas were later investigated in more detail using a large-moment, controlled-source electromagnetic (EM) system developed at Lawrence Berkeley Laboratory and the University of California at Berkeley. One-dimensional interpretations of EM and MT data on the northeast flank of the mountain near the Cloud Cap eruptive center and on the south flank near Timberline Lodge show a similar subsurface resistivity pattern: a resistive surface layer 400-700 m thick, underlain by a conductive layer with variable thickness and resistivity of <20 ohm m. It is speculated that the surface layer consists of volcanics partially saturated with cold meteoric water. The underlying conductive zone is presumed to be volcanics saturated with water heated within the region of the central conduit and, possibly, at the Cloud Cap side vent. This hypothesis is supported by the existence of warm springs at the base of the mountain, most notably Swim Warm Springs on the south flank, and by several geothermal test wells, one of which penetrates the conductor south of Timberline Lodge. The MT data typically gave a shallower depth to the conductive zone than did the EM data. This is attributed, in part, to the error inherent in one-dimensional MT interpretations of geologically or topographically complex areas. On the other hand, MT was better for resolving the thickness of the conductive layer and deeper structure. The MT data show evidence for a moderately conductive north-south structure on the south flank below the

  12. Green synthesis of silver/montmorillonite/chitosan bionanocomposites using the UV irradiation method and evaluation of antibacterial activity

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Yunus, Wan Md Zin Wan; Rustaiyan, Abdolhossein; Ibrahim, Nor Azowa; Zargar, Mohsen; Abdollahi, Yadollah

    2010-01-01

    In this study, silver nanoparticles (Ag-NPs) were synthesized using a green physical synthetic route into the lamellar space of montmorillonite (MMT)/chitosan (Cts) utilizing the ultraviolet (UV) irradiation reduction method in the absence of any reducing agent or heat treatment. Cts, MMT, and AgNO3 were used as the natural polymeric stabilizer, solid support, and silver precursor, respectively. The properties of Ag/MMT/Cts bionanocomposites (BNCs) were studied as the function of UV irradiation times. UV irradiation disintegrated the Ag-NPs into smaller sizes until a relatively stable size and size distribution were achieved. Meanwhile, the crystalline structure and d-spacing of the MMT interlayer, average size and size distribution, surface morphology, elemental signal peaks, functional groups, and surface plasmon resonance of Ag/MMT/Cts BNCs were determined by powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray fluorescence, Fourier transform infrared, and UV-visible spectroscopy. The antibacterial activity of Ag-NPs in MMT/Cts was investigated against Gram-positive bacteria, ie, Staphylococcus aureus and methicillin-resistant S. aureus and Gram-negative bacteria (ie, Escherichia coli) by the disk diffusion method on Muller–Hinton Agar at different sizes of Ag-NPs. All of the synthesized Ag/MMT/Cts BNCs were found to have high antibacterial activity. These results show that Ag/MMT/Cts BNCs can be useful in different biologic research and biomedical applications, such as surgical devices and drug delivery vehicles. PMID:21116328

  13. Multifunctional electroactive electrospun nanofiber structures from water solution blends of PVA/ODA–MMT and poly(maleic acid-alt-acrylic acid): effects of Ag, organoclay, structural rearrangement and NaOH doping factors

    NASA Astrophysics Data System (ADS)

    Şimşek, Murat; Rzayev, Zakir M. O.; Bunyatova, Ulviya

    2016-06-01

    Novel multifunctional colloidal polymer nanofiber electrolytes were fabricated by green reactive electrospinning nanotechnology from various water solution/dispersed blends of poly (vinyl alcohol-co-vinyl acetate) (PVA)/octadecyl amine-montmorillonite (ODA–MMT) as matrix polymer nanocomposite and poly(maleic acid-alt-acrylic acid) (poly(MAc-alt-AA) and/or its Ag-carrying complex as partner copolymers. Polymer nanofiber electrolytes were characterized using FTIR, XRD, thermal (DSC, TGA–DTG), SEM, and electrical analysis methods. Effects of partner copolymers, organoclay, in situ generated silver nanoparticles (AgNPs), and annealing procedure on physical and chemical properties of polymer composite nanofibers were investigated. The electrical properties (resistance, conductivity, activation energy) of nanofibers with/without NaOH doping agent were also evaluated. This work presented a structural rearrangement of nanofiber mats by annealing via decarboxylation of anhydride units with the formation of new conjugated double bond sites onto partner copolymer main chains. It was also found that the semiconductor behaviors of nanofiber structures were essentially improved with increasing temperature and fraction of partner copolymers as well as presence of organoclay and AgNPs in nanofiber composite.

  14. Multifunctional electroactive electrospun nanofiber structures from water solution blends of PVA/ODA-MMT and poly(maleic acid-alt-acrylic acid): effects of Ag, organoclay, structural rearrangement and NaOH doping factors

    NASA Astrophysics Data System (ADS)

    Şimşek, Murat; Rzayev, Zakir M. O.; Bunyatova, Ulviya

    2016-06-01

    Novel multifunctional colloidal polymer nanofiber electrolytes were fabricated by green reactive electrospinning nanotechnology from various water solution/dispersed blends of poly (vinyl alcohol-co-vinyl acetate) (PVA)/octadecyl amine-montmorillonite (ODA-MMT) as matrix polymer nanocomposite and poly(maleic acid-alt-acrylic acid) (poly(MAc-alt-AA) and/or its Ag-carrying complex as partner copolymers. Polymer nanofiber electrolytes were characterized using FTIR, XRD, thermal (DSC, TGA-DTG), SEM, and electrical analysis methods. Effects of partner copolymers, organoclay, in situ generated silver nanoparticles (AgNPs), and annealing procedure on physical and chemical properties of polymer composite nanofibers were investigated. The electrical properties (resistance, conductivity, activation energy) of nanofibers with/without NaOH doping agent were also evaluated. This work presented a structural rearrangement of nanofiber mats by annealing via decarboxylation of anhydride units with the formation of new conjugated double bond sites onto partner copolymer main chains. It was also found that the semiconductor behaviors of nanofiber structures were essentially improved with increasing temperature and fraction of partner copolymers as well as presence of organoclay and AgNPs in nanofiber composite.

  15. Testing Magnetotelluric Constraints on the Physical State of the Yellowstone Plume

    NASA Astrophysics Data System (ADS)

    Murphy, B. S.; Egbert, G. D.; Humphreys, E.

    2015-12-01

    Recent inversions of long-period magnetotelluric (MT) datasets (Kelbert et al., 2012; Meqbel et al., 2014) have suggested that the mantle lithosphere directly beneath the modern Yellowstone caldera is electrically resistive. This observation implies that the uppermost mantle does not contain significant quantities of melt and therefore seems to contradict seismic tomography studies that find a major low-velocity plume-like feature directly beneath Yellowstone. Our ongoing investigation of the long-period Earthscope MT data suggests that these data are relatively insensitive to the conductivity structure in the upper mantle due to screening of deeper features by the modern electrically conductive magma chamber(s). Hence, at present we cannot conclude that the uppermost mantle directly beneath Yellowstone is electrically resistive. However, we do resolve a major electrically conductive anomaly that dips generally to the west at approximately 30 degrees from the vicinity of the seismically imaged magma reservoir(s) beneath the Yellowstone. The MT data therefore may indicate that the flow of melt is at least partially influenced by structures to the west of the modern caldera, specifically ancient (Paleoproterozoic) structures at the edge of the Wyoming Craton. While the geochemistry of Yellowstone eruptive products remains ambiguous with regards to source, radiogenic isotope model ages could be interpreted as supporting this possibility.

  16. Subduction of the Rivera Plate Beneath the Jalisco Block as Imaged by Magnetotelluric Data

    NASA Astrophysics Data System (ADS)

    Alvarez, R.; Corbo, F.; Arzate, J.

    2013-05-01

    Two magnetotelluric profiles perpendicular to the trench provide information on the subduction of the Rivera plate under the Jalisco Block (JB). The geometry of the subducting slab is inferred by the anomalous conductor on the top of the profile in the central part of the JB. High-conductivity zones (< 50 ohm-m) at depths shallower than 10 km are associated to dewatering of the oceanic crust below the accretion prism in the SW portion of the profile. Away from the coast, observed upper crustal conductors (< 10 km) are interpreted as partial melt related to the Central Jalisco Volcanic Lineament. The source of the crustal conductor in the central part of the MT profile, ~150 km inland and down to depths of 40 km is interpreted as a region of interconnected fluids associated with the metamorphic dehydration of the oceanic plate. Contrasting resistivity at the mantle wedge at depths below 40 km suggest to us that hot mantle material may be migrating upwards, mixing with dehydration reaction products. Across Bahia de Banderas fault (BBF) zone subduction appears to stop or to occur closer to the trench at a steeper angle. The conductivity image at the NW edge of JB reveals no downwards dipping plate but an extended conductor apparently rising from depths > 40 km. Our results supports the mantle upwelling theory as an explanation to the reported 1.5 km uplift of the central part of the Jalisco Block, and the Rivera plate discontinuity across the BBF zone as suggested by seismicity data.

  17. Web-based application for inverting one-dimensional magnetotelluric data using Python

    NASA Astrophysics Data System (ADS)

    Suryanto, Wiwit; Irnaka, Theodosius Marwan

    2016-11-01

    One-dimensional modeling of magnetotelluric (MT) data has been performed using an online application on a web-based virtual private server. The application was developed with the Python language using the Django framework with HTML and CSS components. The input data, including the apparent resistivity and phase as a function of period or frequency with standard deviation, can be entered through an interactive web page that can be freely accessed at https://komputasi.geofisika.ugm.ac.id. The subsurface models, represented by resistivity as a function of depth, are iteratively improved by changing the model parameters, such as the resistivity and the layer depth, based on the observed apparent resistivity and phase data. The output of the application displayed on the screen presents resistivity as a function of depth and includes the RMS error for each iteration. Synthetic and real data were used in comparative tests of the application's performance, and it is shown that the application developed accurate subsurface resistivity models. Hence, this application can be used for practical one-dimensional modeling of MT data.

  18. Preliminary Results of a Magnetotelluric Survey in the Center of Hawaii Island

    NASA Astrophysics Data System (ADS)

    Lienert, B. R.; Thomas, D. M.; Wallin, E.

    2014-12-01

    From 2013 up to the present we have been recording magnetotelluric (MT) data at 25 sites in a 35x25 km region (elev. 1943 m) on the saddle between the active volcano of Mauna Loa (4169 m) and the dormant volcano of Mauna Kea (4205 m) on Hawai'i Island. The MT data, particularly the electric fields, are frequently contaminated by spurious components that are not due to the plane-wave magnetic signals required for derivation of the MT impedance tensor. We therefore developed interactive graphical software (MTPlot) to plot and analyze the MT signals in the field. MTPlot allows us to quickly examine records in both the time and frequency domain to in order to judge their quality. It also transforms the data into estimates of apparent resistivity and their error in the frequency range 0.001-500 Hz. This has proved very useful for selecting suitable records for subsequent analysis. We then use multi-taper remote reference processing to obtain our final apparent resistivity estimates and their errors. We present preliminary results of one and two dimensional modeling of these estimates to obtain the three-dimensional distribution of subsurface resistivities down to depths of 5 km. The results are compared to temperatures and properties of cores obtained when we drilled a research hole to a depth of 1760 m in this same region. We shall discuss how our results relate to the extent of the fresh-water and geothermal energy reservoirs that we discovered during drilling.

  19. 2-D magnetotelluric inversion of the central part of Paraná Basin

    NASA Astrophysics Data System (ADS)

    Santos, E. B.; Santos, H. B.; Vitorello, I.; Pádua, M. B.

    2013-12-01

    The Paraná Basin is a large sedimentary basin in central-eastern South America that extends through Brazil, Paraguay, Uruguay and Argentina. Evolved completely over the South American continental crust, this Paleozoic basin is filled with sedimentary and volcanic rocks deposited from the Silurian to the Cretaceous, when a significant basaltic effusion covered almost the entire area of the basin. A series of superposed sedimentary and volcanic rock layers were laid down under the influence of different tectonic settings, probably originated from distant collisional dynamics of continental boards that led to the amalgamation of Gondwanaland. The current boundaries of the basin can be the result of issuing erosional or of tectonic origin, such as the building up of large arches and faults. To evaluate the deep structural architecture of the lithosphere under a sedimentary basin is a great challenge, requiring the integration of different geophysical and geological studies. In this paper, we present the resulting Paraná Basin lithospheric model, obtained from processing and inversion of broadband and long-period magnetotelluric soundings along an E-W profile across the central part of the basin, complemented by a qualitative joint interpretation of gravimetric data, in order to obtain a more precise geoelectric model of the deep structure of the region.

  20. Joint Interpretation of Magnetotelluric and Gravimetric Data from the South American Paraná Basin

    NASA Astrophysics Data System (ADS)

    Santos, E. B.; Santos, H. B.; Vitorello, I.; Pádua, M. B.

    2013-05-01

    The Paraná Basin is a large sedimentary basin in central-eastern South America that extends through Brazil, Paraguay, Uruguay and Argentina. Evolved completely over the South American continental crust, this Paleozoic basin is filled with sedimentary and volcanic rocks deposited from the Silurian to the Cretaceous, when a significant basaltic effusion covered almost the entire area of the basin. A series of superposed sedimentary and volcanic rock layers were laid down under the influence of different tectonic settings, probably originated from distant collisional dynamics of continental boards that led to the amalgamation of Gondwanaland. The current boundaries of the basin can be the result of issuing erosional or of tectonic origin, such as the building up of large arches and faults. To evaluate the deep structural architecture of the lithosphere under a sedimentary basin is a great challenge, requiring the integration of different geophysical and geological studies. In this paper, we present the resulting Paraná Basin lithospheric model, obtained from processing and inversion of broadband and long-period magnetotelluric soundings along an E-W profile across the central part of the basin, complemented by a qualitative joint interpretation of gravimetric data, in order to obtain a more precise geoelectric model of the deep structure of the region.

  1. 3-D magnetotelluric image of offshore magmatism at the Walvis Ridge and rift basin

    NASA Astrophysics Data System (ADS)

    Jegen, Marion; Avdeeva, Anna; Berndt, Christian; Franz, Gesa; Heincke, Björn; Hölz, Sebastian; Neska, Anne; Marti, Anna; Planert, Lars; Chen, J.; Kopp, Heidrun; Baba, Kiyoshi; Ritter, Oliver; Weckmann, Ute; Meqbel, Naser; Behrmann, Jan

    2016-06-01

    The Namibian continental margin marks the starting point of the Tristan da Cunha hotspot trail, the Walvis Ridge. This section of the volcanic southwestern African margin is therefore ideal to study the interaction of hotspot volcanism and rifting, which occurred in the late Jurassic/early Cretaceous. Offshore magnetotelluric data image electromagnetically the landfall of Walvis Ridge. Two large-scale high resistivity anomalies in the 3-D resistivity model indicate old magmatic intrusions related to hot-spot volcanism and rifting. The large-scale resistivity anomalies correlate with seismically identified lower crustal high velocity anomalies attributed to magmatic underplating along 2-D offshore seismic profiles. One of the high resistivity anomalies (above 500 Ωm) has three arms of approximately 100 km width and 300 km to 400 km length at 120° angles in the lower crust. One of the arms stretches underneath Walvis Ridge. The shape is suggestive of crustal extension due to local uplift. It might indicate the location where the hot-spot impinged on the crust prior to rifting. A second, smaller anomaly of 50 km width underneath the continent ocean boundary may be attributed to magma ascent during rifting. We attribute a low resistivity anomaly east of the continent ocean boundary and south of Walvis Ridge to the presence of a rift basin that formed prior to the rifting.

  2. Deep crustal structure of the Cascade Range and surrounding regions from seismic refraction and magnetotelluric data

    USGS Publications Warehouse

    Stanley, W.D.; Mooney, W.D.; Fuis, G.S.

    1990-01-01

    Several regional seismic refraction and magnetotelluric (MT) profiles have been completed across the Cascade Range and surrounding geologic provinces in California, Oregon, and Washington. Analysis of three MT and two seismic refraction profiles in Oregon and a coincident MT and refraction profile in northern California show a high degree of correlation between resistivity and velocity models. The main feature that is evident in both data sets is a highly conductive (2-20 ohm m) zone that occurs at depths of 6-20 km and largely within a midcrustal velocity layer of 6.4-6.6 km/s, overlying a lower crust with velocities of 7.0-7.4 km/s. Accretionary structures in the southern Washington Cascades have been shown to be related to stress release in the area of Mount St. Helens. In order to explain the similar structures in the MT and refraction models for Oregon and California, a model is proposed involving the effects of metamorphic zonation to produce the velocity structure, combined with metamorphically produced fluids and partial melt to produce the deep conductor. -from Authors

  3. Magnetotelluric imaging of upper crustal partial melt at Tendaho graben in Afar, Ethiopia

    NASA Astrophysics Data System (ADS)

    Didana, Yohannes Lemma; Thiel, Stephan; Heinson, Graham

    2014-05-01

    We report on a recent magnetotelluric (MT) survey across the Manda Hararo magmatic segment (MHMS) within the Tendaho graben in the Afar Depression in northeastern Ethiopia. Twenty-two broadband MT sites with ˜1 km station spacing were deployed along a profile with the recorded data covering a period range from 0.003 s to 1000 s. A two-dimensional (2-D) resistivity model reveals an upper crustal fracture zone (fault) and partial melt with resistivity of 1-10Ωm at a depth of >1 km. The partial melt has a maximum horizontal width of 15 km and extends to a depth of 15 km within the Afar Stratoid Series basalts. We estimate a melt fraction of about 13% based on geochemical and borehole data, and bulk resistivity from the 2-D MT inversion model. The interpreted upper crustal partial melt may have been formed by either a magma intrusion from mantle sources or a large volume of continental crust that has been fluxed by a small amount of mantle melt and heat. Within the MHMS and Tendaho graben, a magma intrusion is a plausible explanation for the upper crustal conductor. The inferred presence of a conductive fracture zone or fault with hydrothermal fluid and shallow heat sourcing magma reservoir also makes the Tendaho graben a promising prospect for the development of conventional hydrothermal geothermal energy.

  4. Midcontinent Rift and Remnants of Initiating Mantle Plume Imaged With Magnetotellurics

    NASA Astrophysics Data System (ADS)

    Bowles-martinez, E.; Schultz, A.

    2015-12-01

    Geologic evidence has long suggested that the Midcontinent Rift (MCR) was initiated by a mantle plume 1.1 Ga in the western Lake Superior region. EarthScope magnetotelluric data has been inverted to create a 3D resistivity model that shows remnants of the plume to depths of at least 150 km. The mantle plume remnants are imaged as a body of highly conductive material in the lithosphere. It is focused below western Lake Superior and northwestern Wisconsin, and elongated in a NW-SE direction, consistent with plate motion vectors. Recent seismic velocity models from EarthScope data also show an anomaly at this location. The presence of a plume after so much time has passed invites many questions regarding the long-term stability of conductive materials, the thickness of the lithosphere, and the stability of sub-craton mantle over long time periods. The resistivity model also shows features defining the length of the MCR as well as the Grenville orogeny. New data being collected this summer is incorporated into the model, extending it southeast across Grenville.

  5. Lassen Known Geothermal Resource Area, California: audio-magnetotelluric, telluric profiling, and self-potential studies

    SciTech Connect

    Christopherson, K.R.; Hoover, D.B.; Lewis, V.; Radtke, B.; Senterfit, R.M.

    1980-01-01

    During the summer of 1979, geophysical work was done in the Lassen KGRA in northeastern California to assess the geothermal potential of the area. As part of the study, 68 audio-magnetotelluric (AMT) soundings were made and 2 telluric and self-potential (SP) profiles were done. The AMT station locations are shown. The scalar resistivities were contoured for 7.5 and 27 hertz data at north-south and east-west E-line orientations. The contour maps are complex, reflecting both lateral changes in geology and geothermal activity. The locations of the telluric and self-potential traverses are given. The profiles for traverse 1 show varied SP and telluric responses. The variations are probably geologically related with the drop in SP voltage and telluric resistivity on the east end of the traverse caused by a lateral lithology change. The profiles for traverse 2 show a sharp drop in SP voltage combined with a sharp increase in telluric resistivity near station 6. This could be associated with large-scale intrusive features (a ring dike) which trend to the northwest.

  6. Extensional extrusion: Insights into south-eastward expansion of Tibetan Plateau from magnetotelluric array data

    NASA Astrophysics Data System (ADS)

    Dong, Hao; Wei, Wenbo; Jin, Sheng; Ye, Gaofeng; Zhang, Letian; Jing, Jian'en; Yin, Yaotian; Xie, Chengliang; Jones, Alan G.

    2016-11-01

    Despite extensive effort over many decades to understand the tectonic evolution of the Tibetan Plateau, the geodynamic processes creating the iconic south-eastward expansion of the plateau at the Eastern Himalayan Syntaxis (EHS) are still unclear and are hotly debated. Two popular (but not necessarily exclusive) geodynamic models, namely crustal flow at mid-to-lower crustal depths and coherent deformation between the crust and lithospheric mantle, are commonly invoked to explain the expansion mechanism. However, neither of these is able to reconcile all of the abundant geological and geophysical data. Here we present a three-dimensional (3D) geo-electrical model, derived from new SINOPROBE magnetotelluric (MT) array data, that reveals the geo-electrical, and by inference rheological, structure of southeast Tibet. Instead of NW-SE conductive channels proposed in prior two-dimensional (2D) MT studies, distinct NNE-SSW directed quasi-linear conductive anomalies are identified in the mid-to-lower crust, which are separated by a large-scale electrically resistive structure that extends from the crust to the upper mantle. This argues against the prior proposed model of south-eastward conductive anomalies, and hence against the southeast lower crust flow of material. To interpret our observations and resultant model, a new mechanism of "extensional extrusion" is proposed to address the lithospheric deformation of the south-eastward expansion of Tibetan Plateau.

  7. Distribution of melt beneath Mount St Helens and Mount Adams inferred from magnetotelluric data

    USGS Publications Warehouse

    Hill, G.J.; Caldwell, T.G.; Heise, W.; Chertkoff, D.G.; Bibby, H.M.; Burgess, M.K.; Cull, J.P.; Cas, Ray A.F.

    2009-01-01

    Three prominent volcanoes that form part of the Cascade mountain range in Washington State (USA)Mounts StHelens, Adams and Rainierare located on the margins of a mid-crustal zone of high electrical conductivity1,5. Interconnected melt can increase the bulk conductivity of the region containing the melt6,7, which leads us to propose that the anomalous conductivity in this region is due to partial melt associated with the volcanism. Here we test this hypothesis by using magnetotelluric data recorded at a network of 85 locations in the area of the high-conductivity anomaly. Our data reveal that a localized zone of high conductivity beneath thisvolcano extends downwards to join the mid-crustal conductor. As our measurements were made during the recent period of lava extrusion at Mount St Helens, we infer that the conductivity anomaly associated with the localized zone, and by extension with the mid-crustal conductor, is caused by the presence of partial melt. Our interpretation is consistent with the crustal origin of silicic magmas erupting from Mount St Helens8, and explains the distribution of seismicity observed at the time of the catastrophic eruption in 1980 (refs9, 10). ?? 2009 Macmillan Publishers Limited. All rights reserved.

  8. Preliminary magnetotelluric results across Dalma Volcanics, Eastern India: Inferences on metallogeny

    NASA Astrophysics Data System (ADS)

    Maurya, Ved P.; Shalivahan; Bhattacharya, B. B.; Adhikari, P. K.; Das, L. K.

    2015-04-01

    The regional magnetotelluric (MT) survey across Dalma Volcanics (DVs) in North Singhbhum Mobile Belt (NSMB) was carried out to obtain the conductivity model and to understand the metallogeny. The structure in general is 2-D and the average strike is N60°W. 2-D inversions using TE + TM and TE + TM + Tzy were carried out. Both inversions derived models with similar features but with modified shape. The TE + TM + Tzy inversion brings up two conducting zones enveloping three anomalous conducting bodies. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis of the samples collected from 8 to 10 m pit from different stratigraphic units of Dalma volcano-sedimentary belt indicates the presence of gold, silver, uranium and copper. The study area is a felsic dominated rifted margin and shows high conductivity contrast along with high gravity, magnetic and significant radiometric anomaly. Thus, the conducting zones indicate the presence of volcanogenic massive sulfide (VMS) or volcano hosted gold deposit (Au-VMS) in NSMB.

  9. Weighted Least Squares Estimates of the Magnetotelluric Transfer Functions from Nonstationary Data

    SciTech Connect

    Stodt, John A.

    1982-11-01

    Magnetotelluric field measurements can generally be viewed as sums of signal and additive random noise components. The standard unweighted least squares estimates of the impedance and tipper functions which are usually calculated from noisy data are not optimal when the measured fields are nonstationary. The nonstationary behavior of the signals and noises should be exploited by weighting the data appropriately to reduce errors in the estimates of the impedances and tippers. Insight into the effects of noise on the estimates is gained by careful development of a statistical model, within a linear system framework, which allows for nonstationary behavior of both the signal and noise components of the measured fields. The signal components are, by definition, linearly related to each other by the impedance and tipper functions. It is therefore appropriate to treat them as deterministic parameters, rather than as random variables, when analyzing the effects of noise on the calculated impedances and tippers. From this viewpoint, weighted least squares procedures are developed to reduce the errors in impedances and tippers which are calculated from nonstationary data.

  10. Probing Hypergiant Mass Loss with Adaptive Optics Imaging and Polarimetry in the Infrared: MMT-Pol and LMIRCam Observations of IRC +10420 and VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Shenoy, Dinesh P.; Jones, Terry J.; Packham, Chris; Lopez-Rodriguez, Enrique

    2015-07-01

    We present 2-5 μm adaptive optics (AO) imaging and polarimetry of the famous hypergiant stars IRC +10420 and VY Canis Majoris. The imaging polarimetry of IRC +10420 with MMT-Pol at 2.2 μ {m} resolves nebular emission with intrinsic polarization of 30%, with a high surface brightness indicating optically thick scattering. The relatively uniform distribution of this polarized emission both radially and azimuthally around the star confirms previous studies that place the scattering dust largely in the plane of the sky. Using constraints on scattered light consistent with the polarimetry at 2.2 μ {m}, extrapolation to wavelengths in the 3-5 μm band predicts a scattered light component significantly below the nebular flux that is observed in our Large Binocular Telescope/LMIRCam 3-5 μm AO imaging. Under the assumption this excess emission is thermal, we find a color temperature of ˜500 K is required, well in excess of the emissivity-modified equilibrium temperature for typical astrophysical dust. The nebular features of VY CMa are found to be highly polarized (up to 60%) at 1.3 μm, again with optically thick scattering required to reproduce the observed surface brightness. This star’s peculiar nebular feature dubbed the “Southwest Clump” is clearly detected in the 3.1 μm polarimetry as well, which, unlike IRC +10420, is consistent with scattered light alone. The high intrinsic polarizations of both hypergiants’ nebulae are compatible with optically thick scattering for typical dust around evolved dusty stars, where the depolarizing effect of multiple scatters is mitigated by the grains’ low albedos. Observations reported here were obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona.

  11. Probing Hypergiant Mass Loss with Adaptive Optics Imaging and Polarimetry in the Infrared: MMT-Pol and LMIRCam Observations of IRC +10420 and VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Shenoy, Dinesh P.; Jones, Terry J.; Packham, Chris; Lopez-Rodriguez, Enrique

    2015-07-01

    We present 2–5 μm adaptive optics (AO) imaging and polarimetry of the famous hypergiant stars IRC +10420 and VY Canis Majoris. The imaging polarimetry of IRC +10420 with MMT-Pol at 2.2 μ {m} resolves nebular emission with intrinsic polarization of 30%, with a high surface brightness indicating optically thick scattering. The relatively uniform distribution of this polarized emission both radially and azimuthally around the star confirms previous studies that place the scattering dust largely in the plane of the sky. Using constraints on scattered light consistent with the polarimetry at 2.2 μ {m}, extrapolation to wavelengths in the 3–5 μm band predicts a scattered light component significantly below the nebular flux that is observed in our Large Binocular Telescope/LMIRCam 3–5 μm AO imaging. Under the assumption this excess emission is thermal, we find a color temperature of ∼500 K is required, well in excess of the emissivity-modified equilibrium temperature for typical astrophysical dust. The nebular features of VY CMa are found to be highly polarized (up to 60%) at 1.3 μm, again with optically thick scattering required to reproduce the observed surface brightness. This star’s peculiar nebular feature dubbed the “Southwest Clump” is clearly detected in the 3.1 μm polarimetry as well, which, unlike IRC +10420, is consistent with scattered light alone. The high intrinsic polarizations of both hypergiants’ nebulae are compatible with optically thick scattering for typical dust around evolved dusty stars, where the depolarizing effect of multiple scatters is mitigated by the grains’ low albedos. Observations reported here were obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona.

  12. 3D inversion based on multi-grid approach of magnetotelluric data from Northern Scandinavia

    NASA Astrophysics Data System (ADS)

    Cherevatova, M.; Smirnov, M.; Korja, T. J.; Egbert, G. D.

    2012-12-01

    In this work we investigate the geoelectrical structure of the cratonic margin of Fennoscandian Shield by means of magnetotelluric (MT) measurements carried out in Northern Norway and Sweden during summer 2011-2012. The project Magnetotellurics in the Scandes (MaSca) focuses on the investigation of the crust, upper mantle and lithospheric structure in a transition zone from a stable Precambrian cratonic interior to a passive continental margin beneath the Caledonian Orogen and the Scandes Mountains in western Fennoscandia. Recent MT profiles in the central and southern Scandes indicated a large contrast in resistivity between Caledonides and Precambrian basement. The alum shales as a highly conductive layers between the resistive Precambrian basement and the overlying Caledonian nappes are revealed from this profiles. Additional measurements in the Northern Scandes were required. All together data from 60 synchronous long period (LMT) and about 200 broad band (BMT) sites were acquired. The array stretches from Lofoten and Bodo (Norway) in the west to Kiruna and Skeleftea (Sweden) in the east covering an area of 500x500 square kilometers. LMT sites were occupied for about two months, while most of the BMT sites were measured during one day. We have used new multi-grid approach for 3D electromagnetic (EM) inversion and modelling. Our approach is based on the OcTree discretization where the spatial domain is represented by rectangular cells, each of which might be subdivided (recursively) into eight sub-cells. In this simplified implementation the grid is refined only in the horizontal direction, uniformly in each vertical layer. Using multi-grid we manage to have a high grid resolution near the surface (for instance, to tackle with galvanic distortions) and lower resolution at greater depth as the EM fields decay in the Earth according to the diffusion equation. We also have a benefit in computational costs as number of unknowns decrease. The multi-grid forward

  13. AMBIENT AIR CONCENTRATIONS OF FINE (PM2.5) MANGANESE IN U.S. NATIONAL PARKS AND IN CALIFORNIA AND CANADIAN CITIES: THE POSSIBLE IMPACT OF ADDING MMT TO UNLEADED GASOLINE

    EPA Science Inventory

    The October 1995 court decision allowing Ethyl Corporation to offer methylcylopentadienyl manganese tricarbonyl (MMT) for sale to refiners for introduction into unleaded gasoline as an octane enhancer is likely to result in increased fine (PM2.5) manganese (Mn) concentrations in ...

  14. Three-dimensional inversion of magnetotelluric data from the Central Andean continental margin

    NASA Astrophysics Data System (ADS)

    Kühn, Christine; Küster, Jonas; Brasse, Heinrich

    2014-12-01

    Magnetotelluric data were collected in the late 1990s in the Central Andes of Chile and Bolivia, with the aim to delineate the electrical conductivity distribution in the subsurface and its relations to subduction processes. In previous studies, these data were interpreted based on 2-D models. The principal result was a vast conductivity zone beneath the Altiplano high plateau at mid and lower crustal depths and a much smaller, though significant conductor associated with the Precordillera Fault System. However, there are some significant 3-D effects in the investigation area, in particular near the coast and on the eastern Altiplano. The aim of this work is to give a reinterpretation based on new 3-D inversion of these data. The 3-D inversion not only provides a better fit to the data compared to 2-D results but furthermore allows to include sites with strong telluric distortion which were ignored in previous studies. We are now able to explain anomalous phases above 90° and induction arrows pointing subparallel to the coast as observed at several sites in the Coastal Cordillera. These strongly distorted data are caused by highly conductive near-surface structures that are partly connected to the Pacific Ocean, forcing currents to flow around the sites. The lower crust beneath the Coastal Cordillera resembles a poorly conductive, nearly homogeneous half-space and is electrically unremarkable. Besides, we can now image the Precordillera conductor as a continuous, elongated feature. The volcanic arc of the Western Cordillera is highly resistive with the exception of a few conductive spots which may be associated with certain individual volcanoes or geothermal resources, respectively. The Altiplano conductor is again the dominant electrical feature in the Central Andes, indicating widespread melting of the middle and lower back-arc crust.

  15. SAGE 2010 Magnetotelluric Soundings Provide New Constraints on Rio Grande Rift Mid-Crustal Conductor

    NASA Astrophysics Data System (ADS)

    Strader, A. E.; Martin, C. L.; Thomas, T.; Bedrosian, P. A.; Pellerin, L.; Jiracek, G. R.

    2010-12-01

    Since the inception of the Summer of Applied Geophysical Experience (SAGE) program in 1983, long-period magnetotelluric (MT) soundings have imaged a pronounced mid-crustal conductor at 10-20 km depth within the central Rio Grande rift. Wideband MT soundings (0.01 to over 1000 s period) collected in 2010 extended the detection of this feature to nearly 100 km length along the rift axis in the vicinity of Santa Fe, New Mexico. The conductive anomaly is clearly defined in the longest periods of the mode identified as the transverse electric (TE) in the recently acquired MT data. The spatially-limited 2010 soundings in the Santo Domingo Basin do not allow two-dimensional (2-D) inversions; however, one-dimensional (1-D) inversion of TE mode measurements in conductive rift basins can yield good depth estimates of deep conductive layers as has been shown by 2-D rift MT modeling. Such 1-D inversions of the 2010 MT soundings yield ~20 km depth to the top of the mid-crustal conductor, 5-10 km deeper than 90 km to the north if 3-D effects are negligible. Estimated conductance of the Santo Domingo basin conductor is 2000 S with resistivities in the range of 2-10 ohm-m. An interpretation of the ubiquitous, mid-crustal conductor in the Rio Grande rift is interconnected, saline, aqueous fluid trapped in the ductile crust below the ~10 km-deep seismogenic zone after fluid release and upward ascent from an upwarped mantle.

  16. Gravity and Magnetotelluric Modeling of the Santo Domingo Basin, Northern New Mexico

    NASA Astrophysics Data System (ADS)

    Zamudio, K. D.; Keithline, N.; Blum, C.; Cunningham, E.; Fromont, A.; Jorgensen, M.; Lee, R.; McBride, K.; Saez Berrios, P.; Harper, C.; Pellerin, L.; McPhee, D.; Ferguson, J. F.

    2015-12-01

    The Santo Domingo Basin, one of a series of basins within the Rio Grande Rift, is located between Santa Fe and Albuquerque, NM, and has been the focus of research by the Summer of Geophysical Experience (SAGE) program since 2000. Gravity, magnetotelluric (MT), and seismic data have been collected throughout the region, although we are concentrating on gravity and MT data collected during SAGE 2014 and 2015. The study area is located in the center of the Santo Domingo basin, an extensional, Miocene age, rift basin, in an area that was minimally involved in the preceding local Laramide orogenic activity. Rift sediments (~3.5 km thick) are underlain by Eocene age sediments that were shed from adjacent uplifts. Up to 3 km of Mesozoic and Paleozoic sediments are preserved above the Precambrian basement. Geologic outcrop, borehole and seismic reflection data, and known density values were used in the construction of a ~100 km-long, generalized geologic cross section from which a gravity response was calculated. The modeled gravity response makes fairly definitive predictions about the geometry of the basin as well as the stratigraphy and faulting within and bounding the basin. MT data was collected at ten stations within the basin. The MT sounding curves exhibit one-dimensional behavior at short periods (<10 s), not surprisingly considering the relatively flat local structure in the area. Layered-earth MT models, without geologic constraints, show a conductive (<10 ohm-m) layer at ~1.5 km above a more resistive layer (>1000 ohm-m) at ~ 3.5-4 km. Conductivities of the major stratigraphic units have been determined from well logs and previous MT modeling. Forward and inverse MT models constrained by the gravity-modeled geologic cross section are used to develop a conductivity model consistent with the geology, and are a step towards a better unified treatment of MT, seismic and gravity data.

  17. Crustal Structure at the vicinity of Nigde Massif and Central Anatolian Fault Zone from Magnetotelluric Data

    NASA Astrophysics Data System (ADS)

    Tank, B.; Sandvol, E. A.; Karas, M.; Ozaydin, S.

    2015-12-01

    Three magnetotelluric (MT) profiles were constructed to examine the electrical resistivity strucuture of a metamorphic core complex renown as Niğde massif and a northeast - southwest aligned fault zone (Central Anatolian Fault Zone, CAFZ) bounding this massif on the east in Central Anatolia. Nigde massif is a crystalline dome close to Inner-Tauride suture at the southern part of Central Anatolian Crystalline Complex. The sinistral CAFZ (in the south it is called Ecemis fault) is a ~700 km long, 2 to 80 km wide zone with an offset of 60 to 80 km. Northwest-southeast aligned Tuz Gölü (Salt Lake) and Derinkuyu faults are other major features that shape up the study area. A three-dimensional numerical modeling routine based on data-space modeling (WSINV3DMT) was used to invert the MT data collected at 85 high quality soundings. A mesh with 76 x 74 x 40 (7 layers for air) cells was used during the inversions. The resulting models suggest that (i) there is a low conductivity dome-like anomaly that coincides with the Nigde massif (presumably matches with Uckapili granite). (ii) Beneath this low conductivity anomaly there is a deeper (>20 km) high conductivity zone caused by partial melting (iii) Ecemis fault near Pozanti appears as a low to high conductivity interface. (iv) Likewise, Tuz Gölü and Derinkuyu faults appear as a low to high conductivity interfaces representing barriers for fluid flow (v) Adana basin sediments show high conductivity values (vi) Mt. Hasan and Mt. Karaca and the volcanic complexes in between them show highly conductive features in their roots, but (vi) older Mt. Erciyes lacks such a deep conductor.

  18. Analysis and 3D inversion of magnetotelluric crooked profile data from central Svalbard for geothermal application

    NASA Astrophysics Data System (ADS)

    Beka, Thomas I.; Smirnov, Maxim; Birkelund, Yngve; Senger, Kim; Bergh, Steffen G.

    2016-08-01

    Broadband (0.001-1000 s) magnetotelluric (MT) data along a crooked profile collected to investigate the geothermal potential on Spitsbergen could not be fully explained by two-dimensional (2D) models; hence we interpret the data with three-dimensional (3D) inversion herein. To better accommodate 3D features and nearby off profile resistivity structures, the full MT impedance tensor data together with the tipper were inverted. As a model control, a detailed bathymetry is systematically incorporated in the inversion. Our results from testing different inversion settings emphasised that appropriately choosing and tuning the starting model, data error floor and the model regularization together are crucial to obtain optimum benefit from MT field data. Through the 3D inversion, we reproduced out of quadrant impedance components and obtained an overall satisfactory data fit (RMS = 1.05). The final 3D resistivity model displays a complex geology of the near surface region (< 1.5 km), which suggests fractures, localized and regional fault systems and igneous intrusions in the Mesozoic platform cover deposits. The Billefjorden fault zone is revealed as a consistent and deep rooted (> 2 km) conductive anomaly, confirming the regional nature of the fault. The fault zone is positioned between two uplifted basement blocks (> 1000 Ωm) of presumably pre-Devonian (Caledonian) metamorphic rocks, and the fault may have been responsible for deformation in the overlying Paleozoic-Mesozoic unit. Upper crustal conductive anomalies (< 10 Ωm) below the Paleozoic-Mesozoic succession in the western part of the 3D model are interpreted as part of a Devonian basin fill. These conductors are laterally and vertically bounded by resistive rocks, suggesting a conducive environment for deep geothermal heat storage. Having this scenario in an area of a known high heat-flow, deep faults and a thinned lithosphere makes the hypothesis on finding a technologically exploitable geothermal resource

  19. A magnetotelluric sounding across Vancouver Island detects the subducting Juan de Fuca plate

    NASA Astrophysics Data System (ADS)

    Kurtz, R. D.; Delaurier, J. M.; Gupta, J. C.

    1986-06-01

    Magnetotelluric1 (MT) and geomagnetic2 depth-sounding measurements have been made at 18 sites (7 with remote reference3) across Vancouver Island (Fig. 1), beneath which the Juan de Fuca plate is underthrusting4,5. Vancouver Island is part of the old accretionary Wrangellia terrane6 and is located in the central portion of a 350-km forearc region that extends from the sediment-filled trench7 to the Garibaldi volcanic belt8. Gravity9 and seismic refraction studies10 suggest that the descending plate has a shallow northeasterly dip of 8°-16° with perhaps higher dips beneath northeastern Vancouver Island. A high-resolution seismic reflection survey11 along lines 1 and 3 (Fig. 1) located a zone of strong acoustic reflections (the E-horizon11) near the top of the subducting Juan de Fuca plate at depths of 23-34 km. Our model of the broad-band MT data defines a sloping, highly conducting zone also near the top of the subducting plate at the same depths as the seismic E-horizon. The high electrical conductivity in this zone (the E-conductor) is the result of saline fluid within the pore spaces of sedimentary and mafic materials of the upper oceanic crust that have been subducted to those depths beneath Vancouver Island. These are the first data which clearly define a dipping conductive layer associated with the boundary region between converging plates; they have significant implications for thrust earthquakes and metamorphic reactions that occur in subduction zones.

  20. Three-dimensional magnetotelluric inversion with distortion correction, practical experience and solution recipes

    NASA Astrophysics Data System (ADS)

    Moorkamp, Max; Avdeeva, Anna

    2016-04-01

    The static distortion of magnetotelluric (MT) impedances is a common problem that can prevent detailed imaging of the subsurface. The effect of distortion on the undistorted impedance Z can be described as a multiplication with an unknown, real-valued matrix C. Inverting the observed impedance Zobs = C ṡ Z without any consideration of distortion can result in strong artefacts, particularly in the near-surface. As a consequence, a variety of approaches have been developed to remove as much of the distortion effects as possible or compensate for them in the inversion. However, these either reduce the number of data and thus potentially reduce resolution, or make assumptions about the properties of the matrices C and Z which might not be generally valid. Recently we developed a new 3D inversion approach that includes the four unknown elements of C as parameters in the inversion and showed encouraging result with different synthetic test cases. In this presentation we will focus on the practical aspects of inverting real data with this approach. We will use a combined MT and transient electromagnetic (TEM) dataset acquired over the Kemaliye geothermal field in Turkey. We will demonstrate the improvements in imaging that can be obtained by incorporating distortion in the inversion. Having TEM data at each site, gives us some indication of the amount of distortion and we will compare our recovered distortion values with these measurements. Finally, we will also show in how far the inversion approach is robust in the presence of noise and present recipes for successful inversion with distortion correction.

  1. Magnetotelluric investigation of the Vestfold Hills and Rauer Group, East Antarctica

    USGS Publications Warehouse

    Peacock, Jared R.; Selway, Katherine

    2016-01-01

    The Vestfold Hills and Rauer Group in East Antarctica have contrasting Archean to Neoproterozoic geological histories and are believed to be juxtaposed along a suture zone that now lies beneath the Sørsdal Glacier. Exact location and age of this suture zone are unknown, as is its relationship to regional deformation associated with the amalgamation of East Gondwana. To image the suture zone, magnetotelluric (MT) data were collected in Prydz Bay, East Antarctica, mainly along a profile crossing the Sørsdal Glacier and regions inland of the Vestfold Hills and Rauer Group islands. Time-frequency analysis of the MT time series yielded three important observations: (1) Wind speeds in excess of ∼8 m/s reduce coherence between electric and magnetic fields due to charged wind-blown particles of ice and snow. (2) Estimation of the MT transfer function is best between 1000 and 1400 UT when ionospheric Hall currents enhance the magnetic source field. (3) Nonplanar source field effects were minimal but detectable and removed from estimation of the MT transfer function. Inversions of MT data in 2-D and 3-D produce similar resistivity models, where structures in the preferred 3-D resistivity model correlate strongly with regional magnetic data. The electrically conductive Rauer Group is separated from the less conductive Vestfold Hills by a resistive zone under the Sørsdal Glacier, which is interpreted to be caused by oxidation during suturing. Though a suture zone has been imaged, no time constrains on suturing can be made from the MT data.

  2. Imaging the magmatic and hydrothermal systems of Long Valley Caldera, California with magnetotellurics

    NASA Astrophysics Data System (ADS)

    Peacock, J.; Mangan, M.; McPhee, D.; Ponce, D. A.

    2015-12-01

    Long Valley Caldera (LVC) in Eastern California contains active hydrothermal systems, areas of episodic seismicity, and areas of elevated gas emissions, all of which are related to a deeper magmatic system that is not well characterized. To better image the Long Valley magmatic system, 60 full-tensor broadband magnetotelluric (MT) stations were collected in LVC and modeled in three-dimensions to constrain the subsurface electrical resistivity structure down to 30 km. Three conductive zones are imaged in the preferred resistivity model. The most prominent conductive zone (<7 Ohm-m) is located 5 km beneath the resurgent dome (near the center of Long Valley Caldera), where it elongates in a north-south direction, and has westward connection to the surface close to well 44-16 near Deer Mountan. This conductive zone is interpreted to be an accumulation zone of hydrothermal fluids originating from a deeper magmatic source. The shape of the conductive body suggests that the fluids pool under the resurgent dome and migrate westward, upwelling just south of well 44-16 to feed the near surface geothermal system. A second conductive zone (<10 Ohm-m) is 4 km southeast of the resurgent dome and 5 km deep and coincident with the seismic swarm of 2014. This is another zone of fluid accumulation, where the source could be the fluid accumulation zone to the west or an independent deeper source. The third conductive anomaly (<10 Ohm-m) is a few kilometers south of the resurgent dome below a depth of 15 km, and collocated with a low p- and s-wave velocity zone, and directly beneath a GPS inflation area, all of which advocate for a magma mush zone of as much as 30% interstitial melt. The preferred resistivity model suggests an accumulation of hydrothermal fluids 5 km below the resurgent dome that originates from a deeper magmatic source at 15 km depth.

  3. Lithospheric structure of the Yukon, northern Canadian Cordillera, obtained from magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Ledo, Juanjo; Jones, Alan G.; Ferguson, Ian J.; Wolynec, Lisa

    2004-04-01

    Two goals of Lithoprobe's geoscientific studies in the Phanerozoic accretionary cordillera of western North America were to define the subsurface geometries of the terranes and to infer the physical conditions of the crust. These questions were addressed in Canada's southern cordillera a decade ago and have more recently been addressed in the northern cordillera, of which one component of the new studies is magnetotelluric (MT) profiling from ancestral North American rocks to the coast. We present a resistivity cross section, and its interpretation, of the northern cordillera derived from modeling data from 42 MT sites along a 470-km-long NE-SW profile. Beneath the Coast Belt (southwestern end of the profile) a deep crustal low-resistivity layer dips inland; we interpret the crustal part of this conductor as being due to metasedimentary rocks emplaced and metamorphosed during Paleocene Kula plate subduction. A strong lateral transition in lithospheric mantle resistivity exists below the Intermontane Belt that is spatially coincident with changes in chemical and isotopic characteristics of Tertiary to recent alkaline lavas, suggesting that isotopically enriched lithosphere related to the Coast Belt basalts extends partly beneath the Intermontane Belt. The unusually high lower crustal resistivity in the Intermontane and Omineca Belts, similar in value to the resistivity found in the unextended part of central British Columbia, excludes the presence of fluids or conducting metasediments. Finally, our resistivity model displays strong lateral variation of the middle and lower crust between different terranes within the same belt, as a result of the complex structural evolution of the lithosphere.

  4. Multi-dimensional Crustal and Lithospheric Structure of the Atlas Mountains of Morocco by Magnetotelluric Imaging

    NASA Astrophysics Data System (ADS)

    Kiyan, D.; Jones, A. G.; Fullea, J.; Ledo, J.; Siniscalchi, A.; Romano, G.

    2014-12-01

    The PICASSO (Program to Investigate Convective Alboran Sea System Overturn) project and the concomitant TopoMed (Plate re-organization in the western Mediterranean: Lithospheric causes and topographic consequences - an ESF EUROSCORES TOPO-EUROPE project) project were designed to collect high resolution, multi-disciplinary lithospheric scale data in order to understand the tectonic evolution and lithospheric structure of the western Mediterranean. The over-arching objectives of the magnetotelluric (MT) component of the projects are (i) to provide new electrical conductivity constraints on the crustal and lithospheric structure of the Atlas Mountains, and (ii) to test the hypotheses for explaining the purported lithospheric cavity beneath the Middle and High Atlas inferred from potential-field lithospheric modeling. We present the results of an MT experiment we carried out in Morocco along two profiles: an approximately N-S oriented profile crossing the Middle Atlas, the High Atlas and the eastern Anti-Atlas to the east (called the MEK profile, for Meknes) and NE-SW oriented profile through western High Atlas to the west (called the MAR profile, for Marrakech). Our results are derived from three-dimensional (3-D) MT inversion of the MT data set employing the parallel version of Modular system for Electromagnetic inversion (ModEM) code. The distinct conductivity differences between the Middle-High Atlas (conductive) and the Anti-Atlas (resistive) correlates with the South Atlas Front fault, the depth extent of which appears to be limited to the uppermost mantle (approx. 60 km). In all inverse solutions, the crust and the upper mantle show resistive signatures (approx. 1,000 Ωm) beneath the Anti-Atlas, which is the part of stable West African Craton. Partial melt and/or exotic fluids enriched in volatiles produced by the melt can account for the high middle to lower crustal and uppermost mantle conductivity in the Folded Middle Atlas, the High Moulouya Plain and the

  5. 3D magnetotelluric modelling of the Alnö alkaline and carbonatite ring complex, central Sweden

    NASA Astrophysics Data System (ADS)

    Yan, Ping; Andersson, Magnus; Kalscheuer, Thomas; García Juanatey, María A.; Malehmir, Alireza; Shan, Chunling; Pedersen, Laust B.; Almqvist, Bjarne S. G.

    2016-06-01

    Thirty-four broadband magnetotelluric stations were deployed across the Alnö alkaline and carbonatite ring intrusion in central Sweden. The measurements were designed such that both 2D models along existing seismic profiles and a 3D model can be constructed. Alnö Island and surrounding areas are densely populated and industrialized and in order to reduce the effect of noise, the remote reference technique was utilized in time series processing. Strike and dimensionality analyses together with the induction arrows show that there is no homogeneous regional strike direction in this area. Therefore, only the determinant of the impedance tensor was used for 2D inversion whereas all elements of the impedance tensor were used for 3D inversion. Representative rock samples were collected from existing outcrops and their resistivities were measured in the laboratory to facilitate interpretation of the inversion models. The results from these measurements show that coarse-grained (sövite, white color) and fine-grained (dark color) carbonatites are the most conductive and resistive rock types, respectively. In accordance with the interpretation of the reflection seismic images, the 2D and 3D resistivity models depict the caldera-related ring-type fault system and updoming faulted and fractured systems as major 10-500 Ωm conductors, extending down to about 3 km depth. A central ~ 4000 Ωm resistive unit at about 3 km depth appears to correspond to a solidified fossil magma chamber as speculated from the reflection seismic data and earlier field geological studies.

  6. Mapping Electrical Structures in the Jarud Basin, Northeast China through Magnetotelluric Sounding

    NASA Astrophysics Data System (ADS)

    Zhao, W.

    2015-12-01

    In recent years, China Geological Survey (CGS) has launched 3D geological mapping programs from regional to local scales. The project Deep geological survey at the periphery of the Songliao Basin funded by CGS was implemented from 2012 to 2014. Its main goals are to reveal the tectonic framework of the Jarud Basin (JB) as well as to identify the strata distribution of Permian Linxi Formation by integrating new electromagnetic data with existing geophysical and geological data since black mudstones in the Linxi Formation have shown the potential of shale gas. The study area covered dominantly with Cretaceous-Jurassic igneous rocks with exception of the southeast part is situated in Jarud Banner and Ar Horqin Banner, Inner Mongolia, China. It tectonically lies in the southern Great Khingan Range, western margin of the Songliao Basin, and north of Xar Moron Fault. Over the period of 2012 to 2014, a magnetotelluric survey was carried out at the JB. A total of 926 MT sites with nominal spacing 1 km was acquired in the effective frequency range of 0.01 Hz ~ 300 Hz on six NW and five NE profiles, covering area that exceeds 10, 000 km2. After dimensionality analysis and static shift removal, the nonlinear conjugate algorithm was used to conduct 2D inversion for TM and TE modes. The resistivity models underwent examination using sensitivity tests. The optimal resistivity models revealed numerous large faults, some of which constitute the boundaries of the JB, and modified the tectonic framework. Integrated with well logging and geological mapping data, the strata of Linxi Formation were identified and classified into three depressions: Depressions Arituguri, Gadasu and Wufen. Attention should be paid to Depression Gadasu with area of around 500 km2 since it contains reasonably thick conductive sediments exceeding 4 km in depth which are inferred to be black mudstones pertaining to shale gas.

  7. 3-D analysis and interpretation of magnetotelluric data from the Aluto-Langano geothermal field, Ethiopia

    NASA Astrophysics Data System (ADS)

    Samrock, F.; Kuvshinov, A.; Bakker, J.; Jackson, A.; Fisseha, S.

    2015-09-01

    The Main Ethiopian Rift Valley encompasses a number of volcanoes, which are known to be actively deforming with reoccurring periods of uplift and setting. One of the regions where temporal changes take place is the Aluto volcanic complex. It hosts a productive geothermal field and the only currently operating geothermal power plant of Ethiopia. We carried out magnetotelluric (MT) measurements in early 2012 in order to identify the source of unrest. Broad-band MT data (0.001-1000 s) have been acquired at 46 sites covering the expanse of the Aluto volcanic complex with an average site spacing of 1 km. Based on this MT data it is possible to map the bulk electrical resistivity of the subsurface down to depths of several kilometres. Resistivity is a crucial geophysical parameter in geothermal exploration as hydrothermal and magmatic reservoirs are typically related to low resistive zones, which can be easily sensed by MT. Thus by mapping the electrical conductivity one can identify and analyse geothermal systems with respect to their temperature, extent and potential for production of energy. 3-D inversions of the observed MT data from Aluto reveal the typical electrical conductivity distribution of a high-enthalpy geothermal system, which is mainly governed by the hydrothermal alteration mineralogy. The recovered 3-D conductivity models provide no evidence for an active deep magmatic system under Aluto. Forward modelling of the tippers rather suggest that occurrence of melt is predominantly at lower crustal depths along an off-axis fault zone a few tens of kilometres west of the central rift axis. The absence of an active magmatic system implies that the deforming source is most likely situated within the shallow hydrothermal system of the Aluto-Langano geothermal field.

  8. Lithospheric electrical structure of South China imaged by magnetotelluric data and its tectonic implications

    NASA Astrophysics Data System (ADS)

    Zhang, Letian; Jin, Sheng; Wei, Wenbo; Ye, Gaofeng; Jing, Jianen; Dong, Hao; Xie, Chengliang

    2015-02-01

    The region of South China mainly consists of the Yangtze block in the northwest, the Cathaysia block in the southeast and the Jiangnan orogen in between these two major Precambrian continental blocks. The Yangtze block borders the North China Craton in the north and the eastern margin of the Tibetan Plateau in the west. The Cathaysia block adjoins the Pacific tectonic domain in the east. The study of tectonics in this region is of great significance given its important role in understanding the formation of the Asia continent. Under the auspices of SinoProbe Project, new magnetotelluric (MT) data were collected along a ∼1200 km long profile starting from central Sichuan Basin near Suining, extending southeastward, passing through the Yangtze Block, Jiangnan Orogen, and terminating within the western Cathaysia Block near Ganzhou. Based on data analysis results, 2D inversions were conducted on the dataset. Resulting model shows that the lithospheric electrical structure of South China is generally resistive which is consistent with the basic feature of stable Precambrian tectonic setting. The resistive western Yangtze block represents the stable, Archean aged cratonic region of the Yangtze basement. While the electrically conductive eastern Yangtze block is characterized by lithospheric shearing of the strike-slip fault system and extensional process that is probably caused by slab roll-back of a flatly subducted plate. The Jiangshao fault performs as a northwestward dipping conductive layer, which indicates the lithospheric underthrusting of Cathaysia block beneath Yangtze block with its frontal edge reaching the area of Jishou in the upper mantle. To the west of Jiangshao fault, eastern flank of the Xuefengshan Mountain marks the overthrusting frontier of the Yangtze block, as well as its southeastern boundary. To the east of Jiangshao fault, the northwestern boundary of the Cathaysia block displays the pattern of wedging tectonics, which is characterized by a

  9. MT Alcudia: a magnetotelluric profile across the south-eastern part of the Central Iberian Zone

    NASA Astrophysics Data System (ADS)

    Pous, J.; Monteiro Santos, F.; Galindo, J.; Ibarra, P.; Plancha, J.; Gonçalves, R.; Almeida, E.; Pedrera, A.; Ruiz-Constan, A.; Anahnah, F.

    2009-04-01

    The western part of the Iberian Peninsula (Iberian Massif) is the best exposed fragment of the Variscan orogen in Europe. Its southern half was generated by an oblique collision between three continental terranes belonging to the margins of Laurassia (Avalonia) - the South Portuguese Zone- and Godwana - the Ossa Morena Zone (OMZ) and the Central Iberian Zone (CIZ). The boundaries between them are considered to be sutures. A 210 km long magnetotelluric profile across the eastern part of the Central Iberian Zone is presented. The profile crosses the boundary between the Ossa Morena and Central Iberian zones and spans up to the Tajo basin, crossing the Sierra de Alcudia and the Toledo Mountains. The main structures investigated are: the Los Pedroches batholit, the Alcudia anticline - Domo Extremeño, the Almadén syncline, the fold structures located to the north and the Toledo fault. We present the results of this profile, which consists of 33 MT sites, with the five components of the electromagnetic field and period ranging from 1000 Hz to 1000 s. In each MT site a TEM sounding was carried out in order to characterize the shallow electrical resistivity and to control the galvanic distortion (static shift). The results of two-dimensional inversion reveal a high conductivity zone with the transition OMZ/CIZ. Apart from the sallow structure, the most striking feature is a high conductive layer at middle to lower crust in the whole CIZ, confirming the prolongation of the same layer detected in the OMZ in previous studies.

  10. Three-dimensional conductivity image of the Society hotspot using marine magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Tada, Noriko; Tarits, Pascal; Baba, Kiyoshi; Utada, Hisashi; Kasaya, Takafumi; Suetsugu, Daisuke

    2016-04-01

    The mantle upwellings are one of the most important features for understanding the mantle dynamics. A large-scale mantle upwelling beneath the French Polynesia region in the South Pacific has been suggested from seismic studies, which is called the South Pacific superplume, and a slow velocity anomaly continues from the core mantle boundary to the upper mantle just beneath the Society hotspot (e.g., Suetsugu et al., 2009). However, the previous studies are not enough to understand the geometry, temperature, and composition of the Society hotspot. Then, we carried out the TIARES project that composed of multi-sensor stations that include broadband ocean bottom seismometers, ocean bottom electromagnetometers (OBEMs), and differential pressure gauges from 2009 to 2010 (Suetsugu et al., 2012). In this study, we will present the results of observed data obtained from OBEMs. In order to obtain three-dimensional (3-D) image of the upwelling of the Society hotspot in terms of electrical conductivity, we newly settled eleven OBEMs. In addition to these data, the old data obtained by Nolasco et al. (1998) was reanalyzed, and we obtained magnetotelluric (MT) responses at 20 sites totally. A 3-D marine MT inversion program (Tada et al., 2012; Baba et al., 2013), which can treat topographic change distorting EM data, was applied to these MT responses to estimate 3-D electrical conductivity image beneath the seafloor. The result detected a 3-D shaped high conductive anomaly, like a thumb, elongating from the mantle transition zone to the uppermost upper mantle just below the Society hotspot. With regard to interpretations, we will make a presentation at another session (GD3.3/EMRP4.3/GMPV3.3/SM6.11).

  11. Structure and tectonics of the northwestern United States from EarthScope USArray magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Bedrosian, Paul A.; Feucht, Daniel W.

    2014-09-01

    The magnetotelluric component of the EarthScope USArray program has covered over 35% of the continental United States. Resistivity tomography models derived from these data image lithospheric structure and provide constraints on the distribution of fluids and melt within the lithosphere. We present a three-dimensional resistivity model of the northwestern United States which provides new insight into the tectonic assembly of western North America from the Archean to present. Comparison with seismic tomography models reveals regions of correlated and anti-correlated resistivity and velocity that help identify thermal and compositional variations within the lithosphere. Recent (Neogene) tectonic features reflected in the model include the subducting Juan de Fuca-Gorda plate which can be traced beneath the forearc to more than 100 km depth, high lithospheric conductivity along the Snake River Plain, and pronounced lower-crustal and upper-mantle conductivity beneath the Basin and Range. The latter is abruptly terminated to the northwest by the Klamath-Blue Mountains Lineament, which we interpret as an important structure during and since the Mesozoic assembly of the region. This boundary is interpreted to separate hot extended lithosphere from colder, less extended lithosphere. The western edge of Proterozoic North America, as indicated by the Cretaceous initial 87Sr/86Sr = 0.706 contour, is clearly reflected in the resistivity model. We further image an Archean crustal block (“Pend Oreille block”) straddling the Washington/Idaho border, which we speculate separated from the Archean Medicine Hat block in the Proterozoic. Finally, in the modern Cascades forearc, the geometry and internal structure of the Eocene Siletz terrane is reflected in the resistivity model. The apparent eastern edge of the Siletz terrane under the Cascades arc suggests that pre-Tertiary rocks fill the Washington and Oregon back-arc.

  12. Inversion of Magnetotelluric Data in Anisotropic Media Using Maximization of Mutual Information

    NASA Astrophysics Data System (ADS)

    Mandolesi, E.; Jones, A. G.

    2011-12-01

    Regularization in inverse geophysics problems has been used extensively, due to the necessity to constrain the model space and to reduce the ill-posedness of several problems. Magnetotelluric (MT) problems suffer from severe non-linearity and ill-posedness, which makes MT inversions extremely challenging. The use of a reference model has been used by many authors in order to drive the inversion process to converge on a model that shares features with the reference, as a result reducing non-uniqueness and improving the model resolution. In our work the reference model drives the inversion keeping the conductivity distribution close to that of the velocity using variation of information as measure of distance between the two pictures. In this way the electrical conductivity and seismic velocity can be compared from a statistical point of view, without the necessity of a common parameterization or a strict geometrical similarity. Our work involves the inversion of MT long-period data, which are sensitive to electrical conductivity, using shear wave velocity maps as reference model in a 1D anisotropic domain. Computation of variation of information is performed through the generation of the joint probability distribution, which allows exploration of the relation between models that fit seismic data and models that fit electrical properties. An approximate agreement between geoelectric strike direction and seismic fast axis have been recognized in different continental lithospheric areas, suggesting a common cause for both the seismic and electric anisotropic behavior. We present an application of this inversion approach to a real dataset from Central Germany, discussing pros and cons of this approach in relation to similar studies on the same area. Due to the minimal assumptions required by this approach, it highlights the possibility of application to different tomography techniques.

  13. Structure and Tectonics of the Pacific Northwest from EarthScope Magnetotelluric Data

    NASA Astrophysics Data System (ADS)

    Bedrosian, P. A.; Feucht, D. W.

    2012-12-01

    Though largely covered by thick volcanic sequences, the northwestern US preserves a record of the Mesozoic to present tectonic evolution of North America. Three-dimensional inversion of Earthscope Transportable Array magnetotelluric data provides important constraints on lithospheric structure as well as the distribution of fluids and melt within the crust and mantle. Resistivity models image a first-order change in the upper mantle across the Klamath-Blue Mountains lineament. Southeast of this boundary, high upper-mantle conductivity is characteristic of the extended Basin and Range province, and is attributed to elevated temperatures and a small percentage of melt. An incursion of this conductive zone to 45 degrees north within the Oregon arc and backarc separates arc segments with distinct isotopic and heat-flow character. The lithosphere is resistive to at least 200 km beneath Idaho and eastern Washington. Correspondence of the western edge of this deep resistor with the Sr 0.706 line suggests this represents the western edge of cratonic North America. Resistive lithosphere is also observed beneath the Hearne and Wyoming cratons and the Colorado Plateau. The geometry and extent of the Eocene Siletz Terrane is also imaged, shows close correspondence with magnetic-field data, and has an eastern boundary roughly coincident with the modern arc. The geometry of the Snake River Plain is clearly reflected within the resistivity model. High crustal resistivity suggests a heavily intruded crustal column, whereas high conductivity in the mantle lithosphere indicates elevated temperatures and partial melt. No indication of the Newberry volcanic progression is evident in the models. Though generally resistive, a modest enhancement in conductivity near the top of the subducting Juan de Fuca slab at of 30-40 km depth may reflect fluid release from metamorphic reactions or pore collapse. At greater depth, a pronounced lateral conductivity contrast projects to the magmatic arc

  14. Imaging Ancient Sutures with EarthScope Transportable Array Magnetotelluric Data

    NASA Astrophysics Data System (ADS)

    Egbert, G. D.

    2014-12-01

    Magnetotellurics (MT) provides a powerful geophysical tool for imaging of ancient suture zones, which are frequently marked by elongated zones of very low resistivity. These conductive anomalies, which can extend to great depths and have apparently persisted for several billion years, most likely result from graphite and sulfides deeply emplaced and remobilized, through subduction, accretion and orogenesis. The Earthscope MT transportable array provides a unique broad-scale view of sutures in the continental US. In the northwestern US subvertical conductive features bound all of the major cratonic blocks. These can be identified with the Cheyenne Belt between the Wyoming Craton (WC) and Yavapai Terranes (YT), the Great Falls Tectonic Zone between WC and the Medicine Hat Block (MHB), and the Vulcan Structure of southern Alberta between MHB and the Hearne Craton. In all cases the conductive anomalies extend well into the mantle lithosphere. The more recent MT TA footprint in the north-central US (surrounding the Mid-Continent Rift (MCR)) also reveals conductive signatures of ancient sutures. The most prominent lies south of Lake Superior, just north of the Niagara Fault (NF), and can be associated with the Penokean Orogeny (~1.85 Ga). A second, further south beneath Iowa and western Wisconsin, just south of the Spirit Lake tectonic zone (SLtz), can be identified with YT accretion (~1.75 Ga). Both of these sutures are cleanly cut by the MCR. The break in the anomalies is narrow (comparable to the surface expression of the MCR) indicating that rifting impacts on the entire crustal section were highly localized. The south-dipping NF conductive anomaly extends from surface outcrop to at least the Moho. The SLtz anomaly is north-dipping, extending from mid-crust through the Moho. In both cases there is some evidence for a modestly conductive layer (likely carbon) thrust to mid-lithospheric depths within the overriding terrane.

  15. Magnetotelluric investigation of the Vestfold Hills and Rauer Group, East Antarctica

    NASA Astrophysics Data System (ADS)

    Peacock, J. R.; Selway, K.

    2016-04-01

    The Vestfold Hills and Rauer Group in East Antarctica have contrasting Archean to Neoproterozoic geological histories and are believed to be juxtaposed along a suture zone that now lies beneath the Sørsdal Glacier. Exact location and age of this suture zone are unknown, as is its relationship to regional deformation associated with the amalgamation of East Gondwana. To image the suture zone, magnetotelluric (MT) data were collected in Prydz Bay, East Antarctica, mainly along a profile crossing the Sørsdal Glacier and regions inland of the Vestfold Hills and Rauer Group islands. Time-frequency analysis of the MT time series yielded three important observations: (1) Wind speeds in excess of ˜8 m/s reduce coherence between electric and magnetic fields due to charged wind-blown particles of ice and snow. (2) Estimation of the MT transfer function is best between 1000 and 1400 UT when ionospheric Hall currents enhance the magnetic source field. (3) Nonplanar source field effects were minimal but detectable and removed from estimation of the MT transfer function. Inversions of MT data in 2-D and 3-D produce similar resistivity models, where structures in the preferred 3-D resistivity model correlate strongly with regional magnetic data. The electrically conductive Rauer Group is separated from the less conductive Vestfold Hills by a resistive zone under the Sørsdal Glacier, which is interpreted to be caused by oxidation during suturing. Though a suture zone has been imaged, no time constrains on suturing can be made from the MT data.

  16. Lithostratigraphic interpretation from joint analysis of seismic tomography and magnetotelluric resistivity models using self-organizing map techniques

    NASA Astrophysics Data System (ADS)

    Bauer, K.; Muñoz, G.; Moeck, I.

    2012-12-01

    The combined interpretation of different models as derived from seismic tomography and magnetotelluric (MT) inversion represents a more efficient approach to determine the lithology of the subsurface compared with the separate treatment of each discipline. Such models can be developed independently or by application of joint inversion strategies. After the step of model generation using different geophysical methodologies, a joint interpretation work flow includes the following steps: (1) adjustment of a joint earth model based on the adapted, identical model geometry for the different methods, (2) classification of the model components (e.g. model blocks described by a set of geophysical parameters), and (3) re-mapping of the classified rock types to visualise their distribution within the earth model, and petrophysical characterization and interpretation. One possible approach for the classification of multi-parameter models is based on statistical pattern recognition, where different models are combined and translated into probability density functions. Classes of rock types are identified in these methods as isolated clusters with high probability density function values. Such techniques are well-established for the analysis of two-parameter models. Alternatively we apply self-organizing map (SOM) techniques, which have no limitations in the number of parameters to be analysed in the joint interpretation. Our SOM work flow includes (1) generation of a joint earth model described by so-called data vectors, (2) unsupervised learning or training, (3) analysis of the feature map by adopting image processing techniques, and (4) application of the knowledge to derive a lithological model which is based on the different geophysical parameters. We show the usage of the SOM work flow for a synthetic and a real data case study. Both tests rely on three geophysical properties: P velocity and vertical velocity gradient from seismic tomography, and electrical resistivity

  17. Two-dimensional magnetotelluric model of deep resistivity structure in the Bodie-Aurora district of California

    USGS Publications Warehouse

    Sampson, Jay A.

    2006-01-01

    Introduction: Magnetotelluric data were acquired during October 2001 by the U.S. Geological Survey (USGS) as part of a study to examine the structural nature of basins in the transition zone between the Sierra Nevada Mountains of California and the Basin and Range province of Nevada. Magnetotelluric (MT) geophysical studies assist the mapping of geologic structure and the inference of lithologic packages that are concealed beneath the Earth's surface. The Basin and Range province has a complicated geologic history, which includes extension and compression of the Earth's crust to form the basins and ranges that blanket much of Nevada. The basins and ranges in the vicinity of this study trend northeastward and are bounded by steeply dipping strike slip faults. Interestingly, deep east-west magnetic trends occur in the aeromagnetic data of this study area indicating that the northeast-trending basins and ranges represent only thin-skinned deformation at the surface with an underlying east-west structure. To investigate this issue, MT data were acquired at seven stations in eastern California, 20 km east of Mono Lake. The purpose of this report is to present a two-dimensional apparent resistivity model of the MT data acquired for this study.

  18. Full waveform time domain solutions for source and induced magnetotelluric and controlled-source electromagnetic fields using quasi-equivalent time domain decomposition and GPU parallelization

    NASA Astrophysics Data System (ADS)

    Imamura, N.; Schultz, A.

    2015-12-01

    Recently, a full waveform time domain solution has been developed for the magnetotelluric (MT) and controlled-source electromagnetic (CSEM) methods. The ultimate goal of this approach is to obtain a computationally tractable direct waveform joint inversion for source fields and earth conductivity structure in three and four dimensions. This is desirable on several grounds, including the improved spatial resolving power expected from use of a multitude of source illuminations of non-zero wavenumber, the ability to operate in areas of high levels of source signal spatial complexity and non-stationarity, etc. This goal would not be obtainable if one were to adopt the finite difference time-domain (FDTD) approach for the forward problem. This is particularly true for the case of MT surveys, since an enormous number of degrees of freedom are required to represent the observed MT waveforms across the large frequency bandwidth. It means that for FDTD simulation, the smallest time steps should be finer than that required to represent the highest frequency, while the number of time steps should also cover the lowest frequency. This leads to a linear system that is computationally burdensome to solve. We have implemented our code that addresses this situation through the use of a fictitious wave domain method and GPUs to speed up the computation time. We also substantially reduce the size of the linear systems by applying concepts from successive cascade decimation, through quasi-equivalent time domain decomposition. By combining these refinements, we have made good progress toward implementing the core of a full waveform joint source field/earth conductivity inverse modeling method. From results, we found the use of previous generation of CPU/GPU speeds computations by an order of magnitude over a parallel CPU only approach. In part, this arises from the use of the quasi-equivalent time domain decomposition, which shrinks the size of the linear system dramatically.

  19. Magnetotelluric Phase Tensor Applications to Geothermal Assessment in New Zealand and New Mexico

    NASA Astrophysics Data System (ADS)

    Jiracek, G. R.; Feucht, D. W.; Brown, D.; Castro, B.; Chang, J.; Goff, D.; Hardwick, C.; Hollingshaus, B.; Bowles-martinez, E.; Nakai, J.; Wilson, C.; Bertrand, E. A.; Bennie, S.; Caldwell, G.; Hill, G. J.; Wallin, E.; Bedrosian, P. A.; Hasterok, D. P.; Pellerin, L.

    2012-12-01

    Magnetotelluric (MT) phase tensor analysis preserves the background (regional) phase response irrespective of galvanic distortion even if distorting inhomogeneities change between multiple MT deployments. This characteristic is the basis for repeat MT monitoring of the South Karapiti, New Zealand region near the Wairakei Power Station where 1-2 km-deep reinjection of spent geothermal fluids will commence soon. Deep electrical conductivity changes caused by this injection may be detected by background phase tensor changes independent of possible surficial changes, e.g., from drilling operations, or from differing sensor alignments during the multi-MT occupations. In 2010-2012 twenty MT sites within 1.5 km of a newly-drilled injection well were reoccupied by New Zealand GNS scientists and US students from NSF's International Research Experiences for Students program. Maps of phase tensor ellipses at various frequencies have identified frequency bands exhibiting good repeatability, therefore, they are potentially useful for detection of future brine injection. Final reoccupation of the MT sites is scheduled in 2013 after a large brine injection. In New Mexico, the 2012 SAGE program (Summer of Applied Geophysical Experience) applied phase tensor analysis to 8 MT soundings aimed at understanding the occurrence of anomalously high vertical and horizontal temperature gradients located approximately 25 km NW of Santa Fe. Plots of phase tensor ellipses allowed unique, distortion-free visualization of the dimensionality and directions of background geoelectric variations. Analysis of the plots as functions of frequency and location revealed a nearly one-dimensional (1-D) upper conductive (sedimentary) section. Variations in the orientations of the principal axes of phase tensor ellipses exposed an overall, deeper three-dimensional (3-D) geoelectric structure in the region. However, two sequential frequency bands revealed dominantly two-dimensional (2-D) regional features

  20. Magnetotelluric investigation of the Alnö alkaline and carbonatite ring complex, central Sweden

    NASA Astrophysics Data System (ADS)

    Yan, Ping; Andersson, Magnus; Garcia Juanatey, Maria A.; Shan, Chunling; Malehmir, Alireza; Pedersen, Laust B.

    2014-05-01

    Alnö complex, 553-590 Ma, located in central Sweden, is one of the largest of few known alkaline and carbonatite ring intrusions in the world. The complex primarily consists of alkaline silicate rocks (ijolite, nepheline-syenite and pyroxenite) and a wide range of carbonatite dykes with different compositions (e.g., sövite). To better understand the intrusion mechanism(s) and the deeper structure of the intrusion, three high-resolution reflection seismic, gravity and magnetic profiles, crossing the main intrusion, were acquired in winter 2010. Together with these, petrophysical measurements on various rock samples have also been carried out. These data not only successfully showed the lateral extension of the intrusion at depth but also suggested a solidified saucer-shaped magma chamber at about 3 km depth that is associated with caldera-related ring-type fault systems. To further elucidate these interpretations, magnetotelluric (MT) data were acquired in summer 2013. The MT data were measured at 34 stations across the intrusion and designed so that a 3D conductivity model can be obtained. Most of the sites are located along the seismic profiles, while the rest is distributed over the intrusion area, to provide lateral and off-profile information. The time series were recorded with four broadband MT instruments simultaneously. The used sampling rates were 1000 Hz (two hours after midnight) and 20 Hz (a full day). The collected MT data are highly influenced by noise from cultural sources. Luckily, higher frequencies are less influenced providing a good coverage of the interest depth of about 5 km. Therefore, the data processing and analysis focused solely on the high frequency data. To decrease the effect of noise, the best quality site in one day was chosen for remote referencing the other three. Even if the sites were only 500 to 1000 m apart, better results were obtained, indicating very localized noise sources in the area. The strike analysis of the obtained

  1. The IRETHERM project: Magnetotelluric assessment of the Rathlin Basin as a possible geothermal aquifer

    NASA Astrophysics Data System (ADS)

    Delhaye, Robert; Jones, Alan; Reay, Derek

    2014-05-01

    IRETHERM (www.iretherm.ie) is a collaborative, SFI-funded research project to identify and evaluate sites within Ireland possessing the greatest potential for deep, low-enthalpy, geothermal energy provision. Possible areas for geothermal potential include the Permian and Triassic sedimentary basins in Northern Ireland, which contain groups with relatively high primary porosity, with viability depending largely on the permeability distribution, which controls fluid flow and heat-exchange. The most promising of these is the Triassic Sherwood Sandstone Group, which has measured porosities and permeabilities of 8-24% and 2-1000 mD respectively from borehole core samples. The subject of the work presented here, the Rathlin Basin in County Antrim, is one of three onshore basins in Northern Ireland, where measurements in two independent boreholes show geothermal gradients of between 36 and 43 °C/km to depths of 1481 m. Previously published interpretations of gravity models across the basin attribute a thickness of 2000 m to the Sherwood Sandstone Group, with a maximum depth to the Permo-Triassic basement of 4000 m. Magnetotelluric data were acquired onshore in June 2012 across a 2-D grid of 57 sites with a 2 km site spacing, and on the nearby Rathlin Island on two profiles totalling 12 sites with an 800 m site spacing in April 2013 in order to image the thickness and continuity of the sediments in the north-eastern portion of the basin. In the modelling results presented here, the Permo-Triassic sediment fill has a well-imaged resistivity contrast to the surrounding basal Dalradian metasediments. The data have been analysed and modelled to determine a resistivity model that maps the variation in thickness of the sediment fill and the truncation of the basin sediments against the Tow Valley Fault. Further synthetic testing of the model sensitivity to variation of the thickness of the Sherwood Sandstone Group within the sediment fill has also been performed, as the

  2. Very Long Period Magnetotelluric Data Across the India-Asia Collision Zone

    NASA Astrophysics Data System (ADS)

    Spratt, J. E.; Jones, A. G.; Nelson, K. D.; Unsworth, M. J.

    2002-12-01

    The collision of the Indian subcontinent with Asia is unparalleled - it offers the holy grail for interpreting the cryptic rock record of ancient collisional orogens, and provides a benchmark for testing evolutionary theories of tectonic processes. But, despite its importance, it remains poorly studied. Project INDEPTH was initiated in 1992 to advance our knowledge of the Tibetan Plateau, and magnetotelluric surveying was added during INDEPTH II in 1995. Broadband and long period data were acquired in 1995 along a N-S transect crossing the India-Asia collision zone, the Indus-Zangbo suture, at ~90° E longitude. However, these data failed to penetrate to mantle depths due to:\\ (1) Sunspot activity was at its lowest in the last 11-year solar cycle,\\ (2) Tibetan crust is doubly-thickened, with Moho depth estimates of >70 km, and\\ (3) Crustal conductivity is high at depths below about 20 km, and penetration beyond ~40 km was not possible.Mantle information is key for this region to provide a test of the model of subcretion to southern Tibet by the stiff Indian mantle lid. In order to obtain deep crustal and upper mantle information, an ultra-long period experiment was performed across the suture in 2001 as a component of a second Indus-Zangbo-crossing profile. It was planned to acquire two months of data at each of the five ultra-long period sites, but a series of problems resulted in inadequate data for most sites, with the exception of reasonable data at one site just north of the suture. Preliminary processing of the data from that site indicates upward-trending \\rhoa curves beyond 2,000 s, suggestive of an upper mantle resistive layer than could be the subcreted Indian mantle lid. Further processing and modeling will be shown. This second profile also permits comparison of possible along-strike variation of the Indus-Zangbo suture by comparing the results obtained from this survey with those obtained in 1995.

  3. Magnetotelluric survey to locate the Archean/Proterozoic suture zone north of Wells, Nevada

    USGS Publications Warehouse

    Williams, Jackie M.; Rodriguez, Brian D.

    2006-01-01

    , three regional north-south magnetotelluric (MT) sounding profiles were acquired in western Utah and northeastern Nevada (Williams and Rodriguez, 2003; 2004; 2005), and one east-west MT sounding profile (fig. 1) MT sounding profile was acquired in northeastern Nevada. Resistivity modeling of the MT data can be used to investigate buried structures or sutures that may have influenced subsequent regional fluid flow and localized mineralization. The purpose of this report is to release the MT sounding data collected along the east-west profile in northeastern Nevada; no interpretation of the data is included.

  4. Magnetotelluric study of the Pahute Mesa and Oasis Valley regions, Nye County, Nevada

    USGS Publications Warehouse

    Schenkel, Clifford J.; Hildenbrand, Thomas G.; Dixon, Gary L.

    1999-01-01

    Magnetotelluric data delineate distinct layers and lateral variations above the pre-Tertiary basement. On Pahute Mesa, three resistivity layers associated with the volcanic rocks are defined: a moderately resistive surface layer, an underlying conductive layer, and a deep resistive layer. Considerable geologic information can be derived from the conductive layer which extents from near the water table down to a depth of approximately 2 km. The increase in conductivity is probably related to zeolite zonation observed in the volcanic rock on Pahute Mesa, which is relatively impermeable to groundwater flow unless fractured. Inferred faults within this conductive layer are modeled on several profiles crossing the Thirsty Canyon fault zone. This fault zone extends from Pahute Mesa into Oasis Valley basin. Near Colson Pond where the basement is shallow, the Thirsty Canyon fault zone is several (~2.5) kilometers wide. Due to the indicated vertical offsets associated with the Thirsty Canyon fault zone, the fault zone may act as a barrier to transverse (E-W) groundwater flow by juxtaposing rocks of different permeabilities. We propose that the Thirsty Canyon fault zone diverts water southward from Pahute Mesa to Oasis Valley. The electrically conductive nature of this fault zone indicates the presence of abundant alteration minerals or a dense network of open and interconnected fractures filled with electrically conductive groundwater. The formation of alteration minerals require the presence of water suggesting that an extensive interconnected fracture system exists or existed at one time. Thus, the fractures within the fault zone may be either a barrier or a conduit for groundwater flow, depending on the degree of alteration and the volume of open pore space. In Oasis Valley basin, a conductive surface layer, composed of alluvium and possibly altered volcanic rocks, extends to a depth of 300 to 500 m. The underlying volcanic layer, composed mostly of tuffs, fills the

  5. Geoelectric structure estimated from magnetotelluric data from the Uttarakhand Himalaya, India

    NASA Astrophysics Data System (ADS)

    Miglani, Rohit; Shahrukh, M.; Israil, M.; Gupta, Pravin K.; Varshney, S. K.; Elena, Sokolova

    2014-12-01

    Geoelectric strike and resistivity structure of the crust have been estimated from 37 magnetotelluric (MT) data sites along a profile from Roorkee to Gangotri in Uttarakhand Himalaya. Impedance decomposition schemes based on Bahr's, Groom Bailey and Phase tensor were implemented in a MATLAB code for the average strike estimation. Geoelectric strike direction varies with period as well as in different litho-tectonic units along the profile. In the period band from 1 to 100 s average geoelectric strike in the southern end of the profile (Indo-Gangetic Plains) is N79°W, which is slightly rotated to the north in the Lesser Himalayan region and becomes N68°W whereas it is N81°W in the Higher Himalayan region. However, average strike is stabilized to N77°W for the entire profile in the long period band (100-1000 s). Geoelectrical structure of the crust has been obtained along the profile by 2D inversion of MT data. Major features of 2D resistivity model are: (i) southern part of the model is a low resistivity (<50 Om) zone at shallow depth (5-7 km) representing the loose sediments of the Indo-Gangetic Plains (IGP), whose thickness increases in the south; (ii) highly resistive (>1000 Om) layer below the IGP sediments is the basement rock, representing the resistivity of the top of the subducting Indian Plate; (iii) the Main Boundary Thrust (MBT) and the Main Central Thrust (MCT) zones can be seen in the electrical image. However, the Himalayan Frontal Thrust (HFT) could not be resolved and (iv) a low resistivity (<10 Om) feature in the MCT zone extending to the depth of 30 km is delineated. This low resistivity could be due to fluid-filled fractured rock matrix or partial melt zone. Hypocenters of many earthquakes are concentrated along the boundary of this low resistivity zone and relatively high resistivity blocks around it. The resulted model supports flat-ramp-flat geometry of the Main Himalayan Thrust along which the Indian Plate is subducting.

  6. Identification of kimberlite bodies in Brazil from a 3D audio-magnetotelluric survey

    NASA Astrophysics Data System (ADS)

    De Lugao, P. P.; Eric, C. D. O.; Loureiro, F. O.; Arantes, P. R.; Pastana, A. F.

    2015-12-01

    We report on a succesfull identification of kimberlite bodies in Brazil through the use of the electromagnetic technique audio-magnetotelluric (AMT). Macnae (1979) writes that "In one large survey in South Africa, electromagnetic (EM) techniques have proven to be remarkably effective in detecting the presence of weathered clays or epiclastic kimberlite contained within the pipes." Full tensor AMT data were acquired at 65 points (stations) in a 3D configuration with frequencies ranging from 10kHz to 1Hz. The survey was located in the NW portion of the Mato Grosso state, Brazil, in na area of thick jungle coverage. During the AMT survey, few outcrops were seen because of the dense forest cover. Usually, the occurrences found were of sand deposits, indicating the occurence of Fazenda Casa Branca and Utiariti Formations and gravel from Salto das Nuvens Formation, widely used in paving trails n this region. In the area of the survey, three main targets were confirmed/identified: Kimberlite Area 1 - a classic kimberlite in the region, with the crater facies with different clasts and distinct size. We noted the occurrence of a red-brown soil and an unusual vegetation in this area. The resistivity model provided confirmed the presence of Kimberlite Area 1 and was used to identify other two areas. Area of Interest 1 - area with atypical vegetation along a trail. There is an excavation that displays soil of white color with several blocks present, there are small quartz crystal agglomerates in these blocks. The resistivity model cleary shows a conductive body here, indicative of the presence of a kimberlite. Area of Interest 2 - the presence of a kimberlite was confirmed, not exactly where the targeted Area 2 was, but the southwest of it. Close to this area, there was a very fine rock and a few blocks of pure silica, probably indicating a kimberlitic intrusion. In summary, the 3D resistivity model in depth obtained from inversion of the AMT data confirmed and identified

  7. Imaging the magmatic system of Mono Basin, California with magnetotellurics in three--dimensions

    USGS Publications Warehouse

    Peacock, Jared R.; Mangan, Margaret T.; McPhee, Darcy K.; Ponce, David A.

    2015-01-01

    A three–dimensional (3D) electrical resistivity model of Mono Basin in eastern California unveils a complex subsurface filled with zones of partial melt, fluid–filled fracture networks, cold plutons, and regional faults. In 2013, 62 broadband magnetotelluric (MT) stations were collected in an array around southeastern Mono Basin from which a 3D electrical resistivity model was created with a resolvable depth of 35 km. Multiple robust electrical resistivity features were found that correlate with existing geophysical observations. The most robust features are two 300 ± 50 km3 near-vertical conductive bodies (3–10 Ω·m) that underlie the southeast and north-eastern margin of Mono Craters below 10 km depth. These features are interpreted as magmatic crystal–melt mush zones of 15 ± 5% interstitial melt surrounded by hydrothermal fluids and are likely sources for Holocene eruptions. Two conductive east–dipping structures appear to connect each magma source region to the surface. A conductive arc–like structure (< 0.9 Ω·m) links the northernmost mush column at 10 km depth to just below vents near Panum Crater, where the high conductivity suggests the presence of hydrothermal fluids. The connection from the southernmost mush column at 10 km depth to below South Coulée is less obvious with higher resistivity (200 Ω·m) suggestive of a cooled connection. A third, less constrained conductive feature (4–10 Ω·m) 15 km deep extending to 35 km is located west of Mono Craters near the eastern front of the Sierra Nevada escarpment, and is coincident with a zone of sporadic, long–period earthquakes that are characteristic of a fluid-filled (magmatic or metamorphic) fracture network. A resistive feature (103–105 Ω·m) located under Aeolian Buttes contains a deep root down to 25 km. The eastern edge of this resistor appears to structurally control the arcuate shape of Mono Craters. These observations have been combined to form a new conceptual model

  8. Physical properties of volcanic lightning: Constraints from magnetotelluric and video observations at Sakurajima volcano, Japan

    NASA Astrophysics Data System (ADS)

    Aizawa, Koki; Cimarelli, Corrado; Alatorre-Ibargüengoitia, Miguel A.; Yokoo, Akihiko; Dingwell, Donald B.; Iguchi, Masato

    2016-06-01

    The lightning generated by explosive volcanic eruptions is of interest not only as a promising technique for monitoring volcanic activity, but also for its broader implications and possible role in the origin of life on Earth, and its impact on the atmosphere and biosphere of the planet. However, at present the genetic mechanisms and physical properties of volcanic lightning remain poorly understood, as compared to our understanding of thundercloud lightning. Here, we present joint magnetotelluric (MT) data and video imagery that were used to investigate the physical properties of electrical discharges generated during explosive activity at Sakurajima volcano, Japan, and we compare these data with the characteristics of thundercloud lightning. Using two weeks of high-sensitivity, high-sample-rate MT data recorded in 2013, we detected weak electromagnetic signals radiated by volcanic lightning close to the crater. By carefully inspecting all MT waveforms that synchronized with visible flashes, and comparing with high-speed (3000 frame/s) and normal-speed (30 frame/s) videos, we identified two types of discharges. The first type consists of impulses (Type A) and is interpreted as cloud-to-ground (CG) lightning. The second type is characterized by weak electromagnetic variations with multiple peaks (Type B), and is interpreted as intra-cloud (IC) lightning. In addition, we observed a hybrid MT event wherein a continuous weak current accompanied Type A discharge. The observed features of volcanic lightning are similar to thunderstorm lightning, and the physical characteristics show that volcanic lightning can be treated as a miniature version of thunderstorm lightning in many respects. The overall duration, length, inter-stroke interval, peak current, and charge transfer all exhibit values 1-2 orders of magnitude smaller than those of thunderstorm lightning, thus suggesting a scaling relation between volcanic and thunderstorm lightning parameters that is independent of

  9. Magnetotelluric imaging of the subducting slab in Cascadia with constraints from seismology

    NASA Astrophysics Data System (ADS)

    Yang, B.; Egbert, G. D.; Kelbert, A.; Humphreys, E.

    2015-12-01

    We present results from three-dimensional (3D) inversion of long-period magnetotelluric (MT) data from Cascadia, using seismological constraints on plate geometry and back-arc structure, to refine 3D images of electrical resistivity across this subduction zone. For this study we employed the impedances and vertical transfer functions from 144 sites from the EarthScope Transportable Array, along with data from previous higher density MT profiles from Cascadia (EMSLAB, CAFE-MT etc.). Morphological parameters for the subducting Juan de Fuca and Gorda plates (e.g. upper boundary and thickness) were extracted from McCrory et al (2012) and Schmandt and Humphreys (2010) seismological models and used to define a resistive subducting slab structure in 3D. This was then either used as a prior model, or fixed (both resistivity and geometry) during the MT inversion. By imposing constraints on the geometry of the slab (which is otherwise imaged as an amorphous broad resistive zone) we improve recovery and resolution of subduction related conductivity features. The constrained inversions also allowed us to test sensitivity of the MT data to variants on slab geometry, such as the proposed slab "tear" near the Oregon-Washington border suggested by some seismic tomography models, and to explore consistency of the MT data with seismic models, which suggest segmentation of back-arc upwelling. Three zones of substantially reduced resistivity were found, all exhibiting significant along-strike variability. In the forearc, an N-S stripe of high conductivity (10 ohm-m or less) was found just above the plate interface, near the tip of the mantle wedge. This conductive feature is spatially coincident with mapped locations of episodic tremor and slip, and likely represents aqueous fluids associated with slab dehydration. To the east, a second, clearly separated, N-S elongate zone of similarly high conductivity occurs in the mid-lower crust and upper mantle beneath the modern arc, again

  10. Three-dimensional magnetotelluric exploration of Tenerife geothermal field (Canary Islands, Spain).

    NASA Astrophysics Data System (ADS)

    Piña-Varas, Perla; Ledo, Juanjo; Queralt, Pilar; Marcuello, Alex; Bellmunt, Fabián; Hidalgo, Raúl

    2013-04-01

    Several magnetotelluric (MT) surveys have been carried out to investigate the geothermal system in Tenerife Island (Canary Islands, Spain). These data have been acquired since 1987 till 2012 by different agencies and institutions. In 1987 and 1991, two MT surveys were carried out by the Spanish Geological Survey (IGME). These data in paper format (129 MT sites in total) were collected and digitized. In October 2009, 83 stations were acquired for Petratherm Ltd., and 25 stations in March 2012 by the University of Barcelona. In total, 237 MT stations distributed around the island center are available for this study. A simplified conceptual model of the island using known geological and geophysical data has been created to identify the ocean and topography effects on the MT data. The typical conceptual model of a generic high temperature volcanic geothermal system (Cumming, 2009a; Pellerin, 1996) and the 1D models from the MT data have played a key role for the correct construction of this conceptual model. Synthetic forward modeling was performed on a set of models to determine the effect of topography and of the conductive Atlantic Ocean. Finally, a 3D resistivity model of Tenerife Island has been computed with modEM code (Egbert and Kelbert, 2012). Out of the 237 MT sites available, 87 stations were discarded because of computational capability problems. Thus, for this new 3D model, 150 MT sites have been taking into account from the different field surveys. The model is discrtized on 94x65x133-layer grid and the inversions are undertaken using the off-diagonal components (Zxy, Zyx) of the impedance tensor for 16 periods in the frequency range from 1000 to 0.1 Hz. In the inversion processing we assumed a 5% error floor in the impedance components and the final RMS is 3.5. The 3D inversion model shows the typical layered pattern expected from a volcanic complex (andesite, basalt) with a possible geothermal overprint; a resistive fresh volcanic structure near the

  11. Magnetotelluric Studies of the Laguna del Maule Volcanic Field, Central Chile

    NASA Astrophysics Data System (ADS)

    Cordell, D. R.; Unsworth, M. J.; Diaz, D.; Pavez, M.; Blanco, B.

    2015-12-01

    Geodetic data has shown that the surface of the Laguna del Maule (LdM) volcanic field in central Chile has been moving upwards at rates >20 cm/yr since 2007 over a 200 km2 area. It has been hypothesized that this ground deformation is due to the inflation of a magma body at ~5 km depth beneath the lake (2.8 km b.s.l.). This magma body is a likely source for the large number of rhyolitic eruptions at this location over the last 25 ka. A dense broadband magnetotelluric (MT) array was collected from 2009 to 2015 and included data from a geothermal exploration project. MT phase tensor analysis indicates that the resistivity structure of the region is largely three-dimensional for signals with periods longer than 1 s, which corresponds to depths >5 km. The MT data were inverted using the ModEM inversion algorithm to produce a three-dimensional electrical resistivity model which included topography. Four primary features were identified in the model: 1) A north-south striking, 10 km by 5 km, low-resistivity zone (<5 Ωm) northwest of the inflation centre at a depth of ~5 km (2.8 km b.s.l.) is interpreted as a zone of partial melt which may be supplying material via conduits to account for the observed ground deformation; 2) A shallow low-resistivity feature ~400 m beneath the lake surface (1.8 km a.s.l.) and spatially coincident with the inflation centre is interpreted to be a zone of hydrothermal alteration; 3) A thin, low-resistivity feature to the west of LdM at a depth of ~250 m (2.2 km a.s.l.) is interpreted to be the clay cap of a potential geothermal prospect; 4) A large, low-resistivity zone beneath the San Pedro-Tatara Volcanic Complex to the west of LdM at a depth of ~10 km (8 km b.s.l.) is interpreted to be a zone of partial melt. Further MT data collection is planned for 2016 which will expand the current grid of MT stations to better constrain the lateral extent of the observed features and give greater insight into the dynamics of this restless magma system.

  12. Polarisation filtering of magnetotelluric data - Using an advanced wavelet processing scheme to discriminate between contribution of signal and noise to the data

    NASA Astrophysics Data System (ADS)

    Schmoldt, J.; Jones, A. G.; Garcia, X. A.

    2009-12-01

    The magnetotelluric (MT) method investigates the structure of the Earth by studying its vertical and lateral electric conductivity distribution. For that purpose natural electromagnetic (EM) fields are measured at Earth’s surface, and thus derive a spatially and frequency dependent impedance response function that can be modelled in terms of Earth structure. Long period natural EM fields (>1 s) are generated by the interaction of electrical charged particles radiated from the Sun with the Earth’s magnetosphere and ionosphere. In phases of low solar activity the source signal for MT is weak, especially at longer periods (>1,000 s) and the effects of noise can result in poor response function estimates. A significant contribution to noise can be cultural sources fixed in space, such as mining areas, electric fences and television transmitters. Electromagnetic waves generated by such sources exhibit a preferential polarisation ellipticity and direction that differs from the natural signals generated at the Earth’s outer magnetosphere and ionosphere. In MT, the ellipticity and direction of the polarisation can be determined because the magnetic component of the electromagnetic field is measured in orthogonal directions. In addition, the continuous wavelet transform (CWT) analysis is an efficient way to localize segments of chosen polarisation in the recorded dataset in both time and frequency. We have developed an algorithm that selects data segments according to their polarisation properties allowing us to improve the signal-to-noise ratio of MT responses. After rejecting segments of certain polarisation direction and therefore low signal-to-noise ratio for the signals we wish to record, the remaining data can be used for subsequent conventional MT processing. Using synthetic data and a MT dataset collected during the PICASSO fieldwork campaign in Spain in 2007, we test our pre-processing algorithm. In this paper we present a comparative analysis and results

  13. Crustal properties in the continuum Baltic Shield-Scandinavian Mountains from seismic ambient noise and magnetotelluric analysis

    NASA Astrophysics Data System (ADS)

    Ben Mansour, Walid; England, Richard W.; Fishwick, Stewart; Köhler, Andreas; Moorkamp, Max; Ottemøller, Lars; Smirnov, Maxim

    2016-04-01

    The Scandinavian passive margin is a good example of a region where a Precambrian shield is directly in contact with a younger mountain belt. Located along the Atlantic coast, the Scandinavian mountains, formed 440 Ma ago, show high peaks (> 1 km from the sea level) due to an uplift event 12 Ma ago. This topography contrasts strongly with the low topography of the Baltic shield (around 500 m from the sea level). If the mountain shows high topography compared to the shield, P-receiver functions analysis indicates that the Moho is deeper beneath the shield than beneath the orogenic belt. This result is surprising, as simple crustal isostasy would produce the opposite result. It is therefore likely that there is further variation in crustal and lithospheric properties between the shield and the mountain belt. In this perspective, several geophysical experiments (SCANLIPS2, POLENET-LAPNET, SCANLIPS3D, Norwegian National Seismic Network) have been deployed in the region in order to better understand the lateral variation in the crustal properties. From these different seismic arrays, we used the technique of ambient noise cross correlation in order to reconstruct the Rayleigh wave Green's function (R-R and Z-Z components) and produced a new Vs model of the upper crust in the transition between the Scandinavian mountains and Baltic Shield. In addition of this study, a magnetotelluric survey was done in the framework of MaSCa (MAgnetotellurics in the SCandes) project between 2011 and 2013 in the same area of broadband seismic network (Northern Scandinavia Mountains and the Baltic Shield). This project shows higher resistivity in the crust beneath the Baltic shield than beneath the orogenic belt. The results of this study are used in a joint inversion with seismic ambient noise in order to improve existing models. We used the multi objective genetic algorithms (GA) to inverse in the same time seismological data (receiver functions and dispersion curves from seismic ambient

  14. Mapping fractures using 1D anisotropic modelling of magnetotelluric data: a case study from the Otway Basin, Victoria, Australia

    NASA Astrophysics Data System (ADS)

    Kirkby, A.; Heinson, G.; Holford, S.; Thiel, S.

    2015-06-01

    We present 1D anisotropic inversion of magnetotelluric (MT) data as a potential tool for mapping structural permeability in sedimentary basins. Using 1D inversions of a 171 site, broadband MT data set from the Koroit region of the Otway Basin, Victoria, Australia, we have delineated an electrically anisotropic layer at approximately 2.5 to 3.5 km depth. The anisotropy strike is consistent between stations at approximately 160° east of north. The depth of anisotropy corresponds to the top depth of the Lower Cretaceous Crayfish Group, and the anisotropy factor increases from west to east. We interpret the anisotropy as resulting from north-northwest oriented, fluid-filled fractures resulting in enhanced electrical and hydraulic conductivity. This interpretation is consistent with permeability data from well formation tests. It is also consistent with the orientation of mapped faults in the area, which are optimally oriented for reactivation in the current stress field.

  15. Magnetotelluric observations over the Rhine Graben, France: a simple impedance tensor analysis helps constrain the dominant electrical features

    NASA Astrophysics Data System (ADS)

    Mareschal, M.; Jouanne, V.; Menvielle, M.; Chouteau, M.; Grandis, H.; Tarits, P.

    1992-12-01

    A simple impedance tensor analysis of four magnetotelluric soundings recorded over the ECORS section of the Rhine Graben shows that for periods shorter than about 30 s, induction dominates over channelling. For longer periods, 2-D induction galvanically distorted by surface heterogeneities and/or current chanelled in the Graben can explain the observations; the role of chanelling becomes dominant at periods of the order of a few hundred seconds. In the area considered, induction appears to be controlled by inclusions of saline water in a porous limestone layer (Grande Oolithe) and not by the limits of the Graben with its crystalline shoulder (Vosges). The simple analysis is supported by tipper analyses and by the results of schematic 2-D modelling.

  16. The inability of magnetotelluric off-diagonal impedance tensor elements to sense oblique conductors in three-dimensional inversion

    NASA Astrophysics Data System (ADS)

    Kiyan, Duygu; Jones, Alan G.; Vozar, Jan

    2014-03-01

    In this paper, we use synthetic data sets from a profile to demonstrate the importance of aligning the 3-D mesh and data coordinate system with the dominant geo-electrical strike direction in 3-D inverse modelling. The resistivity model investigated consists of a regional, elongated 2-D conductive structure at 45° to the profile. We compare the results of full impedance tensor inversion with the results from inversion of only off-diagonal components of the magnetotelluric impedance tensor. The 3-D inversion result obtained with the complete tensor elements yields the subsurface model closest to the original model, whereas the result of inverting only off-diagonal components is the poor imaging of the continuity of the conductive 2-D body. However, the conductor can be correctly recovered using only the off-diagonal components if the model mesh and the data are aligned with quasi-2-D geo-electrical strike.

  17. Ambient air concentrations of fine (PM2.5) manganese in U.S. national parks and in California and Canadian cities: the possible impact of adding MMT to unleaded gasoline.

    PubMed

    Wallace, L; Slonecker, T

    1997-06-01

    The October 1995 court decision allowing Ethyl Corporation to offer methylcyclopentadienyl manganese tricarbonyl (MMT) for sale to refiners for introduction into unleaded gasoline as an octane enhancer is likely to result in increased fine (PM2.5) manganese (Mn) concentrations in ambient air. Concern exists regarding possible health effects. In this paper, recent fine Mn concentrations in three monitoring networks and one U.S. Environmental Protection Agency (EPA) study of personal exposure are analyzed. One network consists mainly of rural sites in national parks in the United States, a second consists mainly of urban sites in California, and the third consists mainly of urban sites in Canada where MMT has been used for a number of years. During the late 1980s and early 1990s, mean ambient concentrations ranged from 1 ng/m3 in the mostly rural network to 3 ng/m3 in the mostly urban California network to 12 ng/m3 in the MMT-impacted Canadian network. Several lines of evidence suggested that some of the fine Mn observed in the United States during the 1986-1992 period was contributed by automobiles using leaded gasoline, for which MMT was a registered fuel additive. However, the near-disappearance of leaded gasoline has resulted in a very small portion of fine Mn being attributed to automobiles in the years since 1992. A source apportionment analysis suggested that crustal contributions to ambient fine Mn are on the order of 1-2 ng/m3 in both the United States and Canada.

  18. Deep crustal structure between the Selkirk Crest, Idaho and the Whitefish Range, Montana from magnetotelluric imaging

    NASA Astrophysics Data System (ADS)

    Bedrosian, P. A.; Box, S. E.; Pellerin, L.

    2006-12-01

    The Middle Proterozoic Belt Basin, spanning parts of Montana, Idaho, Washington, and British Columbia, is one of the deepest basins in North America. More than 18 km of fine-grained sedimentary strata were deposited rapidly between 1.5-1.4 Ga and split by rifting during late Proterozoic development of the North American passive margin. Basin strata were relatively undeformed until Mesozoic Cordilleran thrusting and early Eocene extension. Many outstanding questions require an understanding of deep basin structure, including the flexural load of the Basin, its role during Cordilleran deformation, and controls on ore-forming fluids that produced stratabound Cu-Ag deposits within the Basin. Long-period (deep-crustal) and broadband (shallow-crustal) magnetotelluric (MT) data were collected in 2005 along a 140 km transect within the central Belt Basin, with an average site spacing of 4 km. A portion of the transect is coincident with two deep-crustal seismic reflection profiles (COCORP lines MT-2 and ID-2). The data generally confirm the NW strike of the Sylvanite anticline and Purcell anticlinorium and the more northerly strike of the Libby Thrust Belt. A best-fit, two-dimensional (2D) resistivity model was generated from the MT data down to 50 km. The model is characterized by two subhorizontal, highly conductive horizons. A shallow horizon at 10-15 km depth begins 10 km west of the Whitefish Range front and continues to the west for 60 km to an abrupt end beneath the Sylvanite anticline. A deeper highly-conductive, concave-up layer occurs at 25-35 km depth from just west of southern Lake Koocanusa to an abrupt end about 20 km east of the Purcell trench. From that point west to the Selkirk Crest, the entire crust is very resistive. A crude resistivity stratigraphy is delineated: highly resistive (>104 Ømega m) middle and upper Belt Supergroup (above the Prichard Fm.), moderately conductive (30-1000 Ømega m) Prichard Fm. (to the present depth of exposure), a highly

  19. ON THE PHYSICS OF GALVANIC SOURCE ELECTROMAGNETIC GEOPHYSICAL METHODS FOR TERRESTRIAL AND MARINE EXPLORATION

    SciTech Connect

    David Alumbaugh and Evan Um

    2007-06-27

    A numerical study was conducted to investigate the governing physics of galvanic source electromagnetic (EM) methods for terrestrial and marine exploration scenarios. The terrestrial exploration scenario involves the grounded electric dipole source EM (GESTEM) method and the examination of how the GESTEM method can resolve a thin resistive layer representing underground gas and/or hydrocarbon storage. Numerical modeling studies demonstrate that the loop transient EM (TEM) and magnetotelluric (MT) methods are insensitive to a thin horizontal resistor at depth because they utilize horizontal currents. In contrast to these standard EM methods, the GESTEM method generates both vertical and horizontal transient currents. The vertical transient current interacts with a thin horizontal resistor and causes charge buildup on its surface. These charges produce a measurable perturbation in the surface electric field at early time. The degree of perturbation depends on source waveform. When the GESTEM method is energized with step-off waveform, the perturbation due to a thin horizontal resistor is small. This is because the step-off waveform mainly consists of low frequency signals. An alternative is taking the time-derivative of the step-off responses to approximate the impulse response which includes higher frequency signals. In order to improve degree of perturbation especially due to a localized small 3-D resistor, the diffusion angle of the vertical transient current, 45 should be considered to make vertical currents coupled to a resistive target efficiently. The major drawback of the GESTEM method lies in the fact that GESTEM sounding can not be interpreted using 1-D inversion schemes if there is near-surface inhomogeneity. The marine exploration scenario investigates the physics of marine frequency-domain controlled source EM (FDCSEM) and time-domain controlled source EM (TDCSEM) methods to explore resistive hydrocarbon reservoirs in marine environments. Unlike the

  20. A Combined Subaru/VLT/MMT 1-5 Micrometer Study of Planets Orbiting HR 8799: Implications For Atmospheric Properties, Masses and Formation

    NASA Technical Reports Server (NTRS)

    Currie, Thayne; Burrows, Adam; Itoh, Yoichi; Matsumura, Soko; Fukagawa, Misato; Apai, Daniel; Madhusudhan, Nikku; Hinz, Philip M.; Rodigas, T. J.; Kasper, Markus; Pyo, T.-S.; Ogino, Satoshi

    2011-01-01

    We present new 1-1.25 micron (z and J band) Subaru/IRCS and 2 micron (K band) VLT/NaCo data for HR 8799 and a rereduction of the 3-5 micron MMT/Clio data first presented by Hinz et al. Our VLT/NaCo data yield a detection of a fourth planet at a projected separation of approximately 15 AU--"HR 8799e ." We also report new, albeit weak detections of HR 8799b at 1.03 micron and 3.3 micron. Empirical comparisons to field brown dwarfs show that at least HR 8799b and HR 8799c, and possibly HR 8799d, have near-to-mid-IR colors/ magnitudes significantly discrepant from the L/T dwarf sequence. Standard cloud deck atmosphere models appropriate for brown dwarfs provide only (marginally) statistically meaningful fits to HR 8799b and c for unphysically small radii. Models with thicker cloud layers not present in brown dwarfs reproduce the planets' spectral energy distributions far more accurately and without the need for resealing the planets' radii. Our preliminary modeling suggests that HR 8799b has log(g) = 4-4.5, T(sub eff) = 900 K. while HR 8799c, d, and (by inference) e have log(g) = 4-4.5, T(sub eff) = 1000-1200 K. Combining results from planet evolution models and new dynamical stability limits implies that the masses of HR 8799b, c, d, and e are 6-7 M(sub j), 7-10 M(sub j), 7-10 M(sub j), and 7-10 M(sub j). "Patchy" cloud prescriptions may provide even better fits to the data and may lower the estimated surface gravities and masses. Finally, contrary to some recent claims, forming the HR 8799 planets by core accretion is still plausible, although such systems are likely rare.

  1. Investigation of groundwater resources using controlled-source radio magnetotellurics (CSRMT) in glacial deposits in Heby, Sweden

    NASA Astrophysics Data System (ADS)

    Ismail, Nazli; Schwarz, Gerhard; Pedersen, Laust B.

    2011-01-01

    We have combined tensor radio magnetotelluric- (RMT, 15-250 kHz) and controlled source tensor magnetotelluric (CSTMT, 1-12 kHz) data for the mapping of aquifers in gravel formations lying in between crystalline bedrock and clay rich sediments in the Heby area some 40 km west of Uppsala in Sweden. The estimated transfer functions, the impedance tensor and the tipper vector generally satisfy 1D or 2D necessary conditions except for the lowest CSTMT frequencies where near field effects become more dominant. The data measured from 8 profiles were inverted with the Rebocc code of Siripunvaraporn and Egbert (2000) assuming plane wave conditions. This meant that only 12 frequencies in the range of 4-180 kHz could be used. The four lowest frequencies of CSTMT in the range of 1-2.8 kHz were excluded because of source effects. Data from all profiles were inverted with a starting model of 100 Ω-m and a relative error floor of 0.02 on apparent resistivity, corresponding to less than 1° on phase. Tipper vectors are generally small except when source effects become dominant in the lowest frequencies of CSTMT and were therefore not used for inversion. Comparing with models derived from vertical electrical soundings, refraction and reflection seismic data as well as ground truth from exploration wells assessed the reliability of the deep part of the models. Furthermore we carried out a non-linear resolution analysis to better quantify the depth extent of the aquifers. The inverted models from the Heby area show well the thickness variations of glacial deposits overlying crystalline bedrock. Generally, the upper 20 m of the models have resistivities below 40 Ω-m, taken to represent clay rich formations. Below the clay layer resistivities increase to about 40-400 Ω-m, interpreted to represent sand/gravel formations with a maximum thickness of about 40 m and a width of several hundred metres. This is a potential aquifer that extends in approximately N-S direction for some

  2. Magnetotelluric Investigation of Structures Related to a Geothermal Anomaly in the Buckman Well field in the Rio Grande Rift, New Mexico

    NASA Astrophysics Data System (ADS)

    Jones, D.; Chu, S.; McCormack, K.; Barghouty, L. K.; Mostafanejad, A.; Lasscock, B.; Bedrosian, P.; Pellerin, L.

    2013-12-01

    High borehole temperature gradients have been measured over short spatial scales in the Buckman Well Field located within the Espanola Basin of the Rio Grande Rift, New Mexico. The proximity of the well field to the young Caja del Rio volcanic plateau prompted a study undertaken by the Summer of Applied Geophysical Experience (SAGE) program to uncover structure related to this geothermal anomaly. The localized nature of this geothermal anomaly is suggested to be indicative of a local controlling structure as opposed to a more regional structure. Two-dimensional (2-D) models were constructed using magnetotelluric (MT) and audiomagnetotelluric (AMT) data acquired during 2011-13 seasons of the SAGE field program. Geoelectric strike, being important in determining whether an optimal survey design was employed for 2-D MT inverse modeling, was determined from Swift';s formula, which is subject to galvanic distortion. The geoelectric strike direction obtained from a phase tensor analysis, unaffected by such distortion, generally agreed with the established geological strike of the region. The phase tensor analysis shows predominantly 2-D behavior, although some three-dimensional (3-D) character is observed in the low-frequency MT data. An independent statistical metric developed at SAGE confirms these findings. This observation could be reflected as a conductive anomaly found in the 2-D MT inverse model. Synthetic data were generated to test the sensitivity of the 2-D inversion method to different layer resistivity values and faulted structures in the AMT range. Using these synthetic results to understand the inversion of field data we identify conductive horizons at 100 m and 250-300 m depth. The MT models estimate basin depth at 3-4 km in accordance with independent constraints from geologic mapping, gravity models and seismic imaging. Variations in basement topography correlate to some degree with previously proposed structural features elsewhere beneath the Caja del

  3. Three-dimensional magnetotelluric inversion including topography using deformed hexahedral edge finite elements, direct solvers and data space Gauss-Newton, parallelized on SMP computers

    NASA Astrophysics Data System (ADS)

    Kordy, M. A.; Wannamaker, P. E.; Maris, V.; Cherkaev, E.; Hill, G. J.

    2014-12-01

    We have developed an algorithm for 3D simulation and inversion of magnetotelluric (MT) responses using deformable hexahedral finite elements that permits incorporation of topography. Direct solvers parallelized on symmetric multiprocessor (SMP), single-chassis workstations with large RAM are used for the forward solution, parameter jacobians, and model update. The forward simulator, jacobians calculations, as well as synthetic and real data inversion are presented. We use first-order edge elements to represent the secondary electric field (E), yielding accuracy O(h) for E and its curl (magnetic field). For very low frequency or small material admittivity, the E-field requires divergence correction. Using Hodge decomposition, correction may be applied after the forward solution is calculated. It allows accurate E-field solutions in dielectric air. The system matrix factorization is computed using the MUMPS library, which shows moderately good scalability through 12 processor cores but limited gains beyond that. The factored matrix is used to calculate the forward response as well as the jacobians of field and MT responses using the reciprocity theorem. Comparison with other codes demonstrates accuracy of our forward calculations. We consider a popular conductive/resistive double brick structure and several topographic models. In particular, the ability of finite elements to represent smooth topographic slopes permits accurate simulation of refraction of electromagnetic waves normal to the slopes at high frequencies. Run time tests indicate that for meshes as large as 150x150x60 elements, MT forward response and jacobians can be calculated in ~2.5 hours per frequency. For inversion, we implemented data space Gauss-Newton method, which offers reduction in memory requirement and a significant speedup of the parameter step versus model space approach. For dense matrix operations we use tiling approach of PLASMA library, which shows very good scalability. In synthetic

  4. A large hydrothermal reservoir beneath Taal Volcano (Philippines) revealed by magnetotelluric observations and its implications to the volcanic activity.

    PubMed

    Alanis, Paul K B; Yamaya, Yusuke; Takeuchi, Akihiro; Sasai, Yoichi; Okada, Yoshihiro; Nagao, Toshiyasu

    2013-01-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The magnetotelluric 3D forward analyses indicate the existence of a large high resistivity anomaly (∼100 Ω·m) with a volume of at least 3 km×3 km×3 km, which is capped by a conductive layer (∼10 Ω·m), beneath the Main Crater. This high resistivity anomaly is hypothesized to be a large hydrothermal reservoir, consisting of the aggregate of interconnected cracks in rigid and dense host rocks, which are filled with hydrothermal fluids coming from a magma batch below the reservoir. The hydrothermal fluids are considered partly in gas phase and liquid phase. The presence of such a large hydrothermal reservoir and the stagnant magma below may have influences on the volcano's activity. Two possibilities are presented. First, the 30 January 1911 explosion event was a magmatic hydrothermal eruption rather than a base-surge associated with a phreato-magmatic eruption. Second, the earlier proposed four eruption series may be better interpreted by two cycles, each consisting of series of summit and flank eruptions. PMID:24126286

  5. The buried southern continuation of the Oaxaca-Juarez terrane boundary and Oaxaca Fault, southern Mexico: Magnetotelluric constraints

    NASA Astrophysics Data System (ADS)

    Campos-Enriquez, J. O.; Corbo-Camargo, F.; Arzate-Flores, J.; Keppie, J. D.; Arango-Galván, C.; Unsworth, M.; Belmonte-Jiménez, S. I.

    2013-04-01

    Thirty magnetotelluric soundings were made along two NW-SE profiles to the north and south of Oaxaca City in southern Mexico. The profiles crossed the N-S Oaxaca Fault and the Oaxaca-Juarez terrane boundary defined by the Juarez mylonitic complex. Dimensionality analysis of the MT data showed that the subsurface resistivity structure is 2D or 3D. The Oaxaca and correlative Guichicovi terranes consist of ca. 1-1.4 Ga granulitic continental crust overlain by Phanerozoic sedimentary rocks, characterized by high and low resistivities, respectively. The Juarez terrane consists of oceanic Mesozoic metavolcanic and metasedimentary rocks, characterized by a low to medium resistivity layer, that is approximately 10 km thick. The Oaxaca Fault is a Cenozoic aged, normal fault that reactivated the dextral and thrust Juarez mylonitic complex north of Oaxaca City: its location south of Oaxaca City is uncertain. In the southern profile, the MT data show a ca. 20-50 km wide, west-dipping, relatively low resistivity zone material that extends through the entire crust. This is inferred to be the Juarez terrane bounded on either side by the ca. 1-1.4 Ga granulites. The Oaxaca Fault is imaged only by a major electrical resistivity discontinuity (low to the west, high to the east) along both the western border of the Juarez mylonitic complex (northern profile) and the San Miguel de la Cal mountains (southern profile) suggesting continuity.

  6. A large hydrothermal reservoir beneath Taal Volcano (Philippines) revealed by magnetotelluric observations and its implications to the volcanic activity

    PubMed Central

    ALANIS, Paul K. B.; YAMAYA, Yusuke; TAKEUCHI, Akihiro; SASAI, Yoichi; OKADA, Yoshihiro; NAGAO, Toshiyasu

    2013-01-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The magnetotelluric 3D forward analyses indicate the existence of a large high resistivity anomaly (∼100 Ω·m) with a volume of at least 3 km × 3 km × 3 km, which is capped by a conductive layer (∼10 Ω·m), beneath the Main Crater. This high resistivity anomaly is hypothesized to be a large hydrothermal reservoir, consisting of the aggregate of interconnected cracks in rigid and dense host rocks, which are filled with hydrothermal fluids coming from a magma batch below the reservoir. The hydrothermal fluids are considered partly in gas phase and liquid phase. The presence of such a large hydrothermal reservoir and the stagnant magma below may have influences on the volcano’s activity. Two possibilities are presented. First, the 30 January 1911 explosion event was a magmatic hydrothermal eruption rather than a base-surge associated with a phreato-magmatic eruption. Second, the earlier proposed four eruption series may be better interpreted by two cycles, each consisting of series of summit and flank eruptions. PMID:24126286

  7. Lithospheric reworking at the Proterozoic-Phanerozoic transition of Australia imaged using AusLAMP Magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Robertson, Kate; Heinson, Graham; Thiel, Stephan

    2016-10-01

    Seventy-four stations from the long-period Australia-wide AusLAMP (Australian Lithospheric Architecture Magnetotelluric Project) dataset were used to image the electrical resistivity beneath the Neoproterozoic Ikara-Flinders Ranges and adjacent Palaeo-Mesoproterozoic Curnamona Province. Results from 3D inversions using ModEM software show a relatively resistive Ikara-Flinders Ranges, with two parallel arcuate conductors at 20 to 80 km depth in the Nackara Arc. There is a good correlation of diamondiferous kimberlites occurring over conductors, which we interpret as evidence for these conductors to be residing on large lithospheric structures that have been conduits for partial melt and volatile movement in the Jurassic. The Curnamona Province is remarkably conductive for a region that is thought to have a cratonic core, with Delamerian reworking only at its edges. The conductor covers most of the province at depths of 10-40 km, and its presence at lower crustal depths suggests that conductive sediments can not entirely explain it. Fluids associated with subduction may have pervasively modified the crust in the past, resulting in an enrichment of carbon, enhancing the conductivity. Additionally, we conclude that the notion of a single continuous arcuate Flinders Conductivity Anomaly is unlikely and that the anomalous response observed is instead a result of the combined response of three separate anomalies; the Curnamona Province Conductor and the two Nackara Arc Conductors.

  8. A large hydrothermal reservoir beneath Taal Volcano (Philippines) revealed by magnetotelluric observations and its implications to the volcanic activity.

    PubMed

    Alanis, Paul K B; Yamaya, Yusuke; Takeuchi, Akihiro; Sasai, Yoichi; Okada, Yoshihiro; Nagao, Toshiyasu

    2013-01-01

    Taal Volcano is one of the most active volcanoes in the Philippines. The magnetotelluric 3D forward analyses indicate the existence of a large high resistivity anomaly (∼100 Ω·m) with a volume of at least 3 km×3 km×3 km, which is capped by a conductive layer (∼10 Ω·m), beneath the Main Crater. This high resistivity anomaly is hypothesized to be a large hydrothermal reservoir, consisting of the aggregate of interconnected cracks in rigid and dense host rocks, which are filled with hydrothermal fluids coming from a magma batch below the reservoir. The hydrothermal fluids are considered partly in gas phase and liquid phase. The presence of such a large hydrothermal reservoir and the stagnant magma below may have influences on the volcano's activity. Two possibilities are presented. First, the 30 January 1911 explosion event was a magmatic hydrothermal eruption rather than a base-surge associated with a phreato-magmatic eruption. Second, the earlier proposed four eruption series may be better interpreted by two cycles, each consisting of series of summit and flank eruptions.

  9. Is South-eastward Crustal Flow Possible around East Himalayan Syntax? - New Insights from SINOPROBE Magnetotellurics Array Data

    NASA Astrophysics Data System (ADS)

    Dong, H.; Wei, W.; Ye, G.; Jin, S.; Jing, J.; Jones, A. G.; Zhang, L.; Xie, C.; Yin, Y.; Wang, G.

    2015-12-01

    The south-eastward expansion of Tibet plateau in eastern Tibet is considered a key process for understanding the large scale uplift and crustal thickening without significant concomitant crustal shortening. However, the geodynamic processes creating this iconic process is still unclear and hotly debated. Two popular geodynamic models, namely crustal flow at mid-to-lower crustal depths and coherent deformation between the crust and lithospheric mantle, are commonly appealed to as the expansion's driving mechanism. However, neither of these mechanisms is able to reconcile all of the abundant geological and geophysical data. In this study we present a three-dimensional (3D) geo-electrical model, derived from SINOPROBE magnetotelluric (MT) array data, which reveals the geo-electrical and rheological structure in southeast Tibet that brings new insights into the region. Instead of continuous NW-SE conductive channels proposed in previous two-dimensional (2D) MT studies, a large-scale N-S directed resistive structure is revealed to disconnect the conductors from the crust to the upper mantle, arguing against the model of south-eastward (downslope) channel flow. Furthermore, distinct NNE directed conductive anomalies, which are perpendicular to the surface structures, are identified in the mid-to-lower crust. We interpret these anomalies as distributed NNE oriented crustal flow channels, which might cause the azimuthal clockwise extension around East Himalayan Syntax and partly contributed to the south-eastward expansion of eastern Tibet.

  10. Three-dimensional electrical resistivity model of the hydrothermal system in Long Valley Caldera, California, from magnetotellurics

    USGS Publications Warehouse

    Peacock, Jared R.; Mangan, Margaret T.; McPhee, Darcy K.; Wannamaker, Phil E.

    2016-01-01

    Though shallow flow of hydrothermal fluids in Long Valley Caldera, California, has been well studied, neither the hydrothermal source reservoir nor heat source has been well characterized. Here a grid of magnetotelluric data were collected around the Long Valley volcanic system and modeled in 3-D. The preferred electrical resistivity model suggests that the source reservoir is a narrow east-west elongated body 4 km below the west moat. The heat source could be a zone of 2–5% partial melt 8 km below Deer Mountain. Additionally, a collection of hypersaline fluids, not connected to the shallow hydrothermal system, is found 3 km below the medial graben, which could originate from a zone of 5–10% partial melt 8 km below the south moat. Below Mammoth Mountain is a 3 km thick isolated body containing fluids and gases originating from an 8 km deep zone of 5–10% basaltic partial melt.

  11. Structures and geometries of the Tajo Basin crust, Spain: Results of a magnetotelluric investigation compared to seismic and thermal models

    NASA Astrophysics Data System (ADS)

    Schmoldt, J.-P.; Jones, A. G.; Rosell, O.

    2014-09-01

    The Tajo Basin and Betic Mountain Chain in the south central region of the Iberian Peninsula were chosen for investigation in the first phase of the magnetotelluric (MT) component of the PICASSO (Program to Investigate the Convective Alboran Sea System Overturn) project. The MT results provide information about the electrical conductivity distribution in previously unprobed subsurface regions, as well as complimenting and enhancing results of prior geological and geophysical investigations thereby enabling the definition of a petrological subsurface model and a comprehensive understanding about the tectonic setting. Two-dimensional (2-D) inversion of the MT data provides enhanced insight into Iberian subsurface geology in the crust. The most striking features of the final model are (i) a distinct vertical interface within the Variscan basement beneath the center of the Tajo Basin that is spatially associated with the boundary between regions with and without substantial Alpine deformation, and (ii) a middle to lower crustal conductive anomaly that can be related to remnants of asthenospheric intrusion in connection with Pliocene volcanic events in the Calatrava Volcanic Province. For the latter, effects of hydrous phases are inferred that may originate from dehydration processes within the subducting slab beneath Alboran Domain and Betic Mountain Chain.

  12. Constraining the location of the Archean--Proterozoic suture in the Great Basin based on magnetotelluric soundings

    USGS Publications Warehouse

    Rodriguez, Brian D.; Sampson, Jay A.

    2012-01-01

    It is important to understand whether major mining districts in north-central Nevada are underlain by Archean crust, known to contain major orogenic gold deposits, or, alternatively, by accreted crust of the Paleoproterozoic Mojave province. Determining the location and orientation of the Archean-Proterozoic suture zone between the Archean crust and Mojave province is also critical because it may influence subsequent patterns of sedimentation, deformation, magmatism, and hydrothermal activity. In the Great Basin, the attitude of the suture zone is unknown because it is concealed below cover. A regional magnetotelluric sounding profile along the Utah-Nevada State line reveals a deeply penetrating, broad electrical conductor that may be the Archean-Proterozoic suture zone in the northwest corner of Utah. This major crustal conductor's strike direction is northwest, where it broadens to about 80 km wide below about 3-km depth. These results suggest that the southwestern limit of intact Archean crust in this part of the Great Basin is farther north than previously reported. These results also suggest that the major gold belts in north-central Nevada are located over the Paleoproterozoic Mojave province, and the Archean terrain lies northeast in the northwest corner of Utah. Rifted Archean crust segments south and west of the suture suggest that future mineral exploration northeast of current mineral trends may yield additional gold deposits.

  13. A new seafloor electromagnetic station with an Overhauser magnetometer, a magnetotelluric variograph and an acoustic telemetry modem

    NASA Astrophysics Data System (ADS)

    Toh, Hiroaki; Goto, Tadanori; Hamano, Yozo

    1998-11-01

    A new type of SeaFloor ElectroMagnetic Station (SFEMS) has been newly developed by adding a magnetotelluric (MT) variograph to its prototype built previously (Toh and Hamano, 1997). New SFEMS is able to conduct long-term electromagnetic (EM) observations at the seafloor, which is one of the principal goals of the Ocean Hemisphere Project (OHP). Long-term seafloor EM observations enable us to probe into the deep Earth (both the mantle and the core) by improving the spatial coverage of the existing EM observation network. The SFEMS has been tested in three sea experiments to yield 3 components of the geomagnetic field, 2 horizontal components of the geoelectric field and 2 components of tilts in addition to the absolute geomagnetic total force. The SFEMS is designed for measuring these EM signals at the seafloor continuously for as long as 2 yrs. The SFEMS mainly consists of the following three parts: (1) An Overhauser proton precession magnetometer for the absolute measurements of the geomagnetic total force with a possible bias of less than 10 nT. (2) An MT variograph that measures the rest of the EM components and tilt. (3) An Acoustic Telemetry Modem (ATM) that allows us to control/monitor the seafloor instrument as well as data transmission at the maximum rate of 1200 baud. Construction of seafloor EM observatories in regions where significant EM data have never been collected is now quite feasible by development of the SFEMS.

  14. PDE-based geophysical modelling using finite elements: examples from 3D resistivity and 2D magnetotellurics

    NASA Astrophysics Data System (ADS)

    Schaa, R.; Gross, L.; du Plessis, J.

    2016-04-01

    We present a general finite-element solver, escript, tailored to solve geophysical forward and inverse modeling problems in terms of partial differential equations (PDEs) with suitable boundary conditions. Escript’s abstract interface allows geoscientists to focus on solving the actual problem without being experts in numerical modeling. General-purpose finite element solvers have found wide use especially in engineering fields and find increasing application in the geophysical disciplines as these offer a single interface to tackle different geophysical problems. These solvers are useful for data interpretation and for research, but can also be a useful tool in educational settings. This paper serves as an introduction into PDE-based modeling with escript where we demonstrate in detail how escript is used to solve two different forward modeling problems from applied geophysics (3D DC resistivity and 2D magnetotellurics). Based on these two different cases, other geophysical modeling work can easily be realized. The escript package is implemented as a Python library and allows the solution of coupled, linear or non-linear, time-dependent PDEs. Parallel execution for both shared and distributed memory architectures is supported and can be used without modifications to the scripts.

  15. Magnetotelluric data release for locating the Archean/Proterozoic suture zone, east-central Tooele County, Utah

    USGS Publications Warehouse

    Williams, Jackie M.; Rodriguez, Brian D.

    2003-01-01

    Many sediment-hosted gold deposits occur along linear trends in the Great Basin. The distribution and genesis of these deposits in the Great Basin is not fully understood. In general, most models agree that regional structures played an important role in the spatial distribution of these deposits (e.g. Arehart and others, 1993; Ilchik and Barton, 1997; Radtke, 1985; Shawe, 1991; Sillitoe and Bonham, 1990; Tosdal, 1998). To investigate crustal structures that may be related to the genesis of gold deposits in the Great Basin, a regional south-north profile of magnetotelluric (MT) soundings was acquired in 2003. Resistivity modeling of the MT data can be used to investigate buried structures or sutures that may have influenced subsequent tectonism, sedimentation, and regional fluid flow. The goal of this survey is to infer the location of the Archean/Proterozoic suture zone in east-central Tooele County, Utah. The purpose of this report is to release the MT sounding data; no interpretation of the data is included.

  16. IRECCSEM: Evaluating Clare Basin potential for onshore carbon sequestration using magnetotelluric data (Preliminary results). New approaches applied for processing, modeling and interpretation

    NASA Astrophysics Data System (ADS)

    Campanya i Llovet, J.; Ogaya, X.; Jones, A. G.; Rath, V.

    2014-12-01

    The IRECCSEM project (www.ireccsem.ie) is a Science Foundation Ireland Investigator Project that is funded to evaluate Ireland's potential for onshore carbon sequestration in saline aquifers by integrating new electromagnetic data with existing geophysical and geological data. The main goals of the project are to determine porosity-permeability values of the potential reservoir formation as well as to evaluate the integrity of the seal formation. During the Summer of 2014 a magnetotelluric (MT) survey was carried out at the Clare basin (Ireland). A total of 140 sites were acquired including audiomagnetotelluric (AMT), broadband magnetotelluric (BBMT) and long period magnetotelluric (LMT) data. The nominal space between sites is 0.6 km for AMT sites, 1.2 km for BBMT sites and 8 km for LMT sites. To evaluate the potential for carbon sequestration of the Clare basin three advances on geophysical methodology related to electromagnetic techniques were applied. First of all, processing of the MT data was improved following the recently published ELICIT methodology. Secondly, during the inversion process, the electrical resistivity distribution of the subsurface was constrained combining three different tensor relationships: Impedances (Z), induction arrows (TIP) and multi-site horizontal magnetic transfer-functions (HMT). Results from synthetic models were used to evaluate the sensitivity and properties of each tensor relationship. Finally, a computer code was developed, which employs a stabilized least squares approach to estimate the cementation exponent in the generalized Archie law formulated by Glover (2010). This allows relating MT-derived electrical resistivity models to porosity distributions. The final aim of this procedure is to generalize the porosity - permeability values measured in the boreholes to regional scales. This methodology will contribute to the evaluation of possible sequestration targets in the study area.

  17. Ionic, XRD, dielectric and cyclic voltammetry studies on PVdF-co-HFP / MMT clay intercalated LiN(C2F5SO2)2 based composite electrolyte for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Vickraman, P.; Purushothaman, K.; SankaraSubramanian, N.

    2014-04-01

    The composition dependence of plasticizer, (EC/DMC)(70-x(wt%)) and LiBETIx(wt%) salt for fixed contents on PVdF-co-HFP(25wt%)/surface modified(SM)-octadecylamine MMT(ODA-MMT) nanoclay(5wt%) host matrix by varying its compositions x=1.5, 3.0, 4.5, 6.0 wt% prepared via solution casting technique has been investigated by A.C. Impedance, Dielectric, XRD, and cyclic voltammetry(CV) studies. The enhanced conductivity 2.1×10-5 S/cm at 300C is observed for (EC/DMC)(70-6)wt%/LiBETI(x=6)wt%. The XRD at 2θ=20.9° confirms β-phase formation, and CV studies on membranes show cyclability and reversibility. The dielectric studies show increase in dielectric constant and dielectric loss with decrease in frequency is attributed to high contribution of charge accumulation at the electrode-electrolyte interface.

  18. Combined magnetotelluric and petrologic constrains for the nature of the magma storage system beneath the Ciomadul volcano (SE Carpathians)

    NASA Astrophysics Data System (ADS)

    Novák, A.; Harangi, Sz.; Kiss, B.; Szarka, L.; Molnár, Cs.

    2012-04-01

    The Ciomadul volcano is the youngest in the Carpathian-Pannonian region (eastern-central Europe) and there are indications that magma could still reside at the depth. Therefore, we performed a magnetotelluric investigation with the aim to detect a still hot magma reservoir. The results were compared with those coming from the petrological investigations. The Ciomadul volcanic complex contains a central amalgamated set of lava domes and a few peripheral domes with two explosion craters in the central zone. Geologically the domes were built by effusion of high viscosity dacite magma. Lava dome collapses resulted in volcanoclastic deposits (block-and ash flow deposits). The magmatic activity could have been connected to the seismically powerful region of the nearby Vrancea zone. Twelve long period magnetotelluric (MT) soundings were carried out to aim of define to electric resistivity distribution of the volcanic system and find correlation with the petrologic model to confirm the hot magma chamber beneath the region. At each MT site, the horizontal components of the magnetic and the electric fields were observed between the 0.00006-4 Hz frequency range. The vertical component of the magnetic field was also recorded to analyze the lateral conductivity inhomogenities under the subsurface. Soundings were located in non systematic grid and we selected several profiles which may represent the resistivity distribution of subsurface and cross-sections were applied as well. At started by dimensionality analysis and decomposition parameters the most part of the measuring are multi-dimensional. Traditional MT interpretation - 1D, 2D inversion and modeling - was carried out taking into account the decomposition results. 3D interpretation is not realized because of weak resolution of the data and large memory requirement. Both the local 1D inversion and the 2D inversion along the profiles defined a low resistivity zones at about 2 km depth which in continuation at depth with a

  19. Constraints From Deep-Imaging Magnetotellurics on the Lithospheric Structure and Evolution of the Enigmatic Okwa Terrane, Botswana

    NASA Astrophysics Data System (ADS)

    Muller, M. R.; Jones, A. G.; Evans, R. L.

    2009-12-01

    The Okwa Terrane, located in central Botswana, is perhaps one of the least understood terranes within the southern African Archean to Palaeoproterozoic tectonic framework. Thick Quaternary Kalahari sand-cover provides minimal crustal exposure with which to define the nature and evolution of the terrane: its potential affiliations and tectonic relationships with adjacent terranes remain speculative and largely unconstrained. The Okwa Terrane, as defined primarily in potential field images, is bounded to the west and north by the Early Proterozoic Rehoboth Terrane, to the south by the Archean Kaapvaal Craton, and to the east, across a poorly defined boundary, by the Palaeoproterozoic Magondi orogenic belt and the Archean Zimbabwe Craton. While the Okwa Terrane is inferred in some interpretations to constitute the northern-most portion of the Kaapvaal Craton, there is no direct evidence to support an Archean lithospheric stabilisation age for the terrane. The oldest recorded crustal ages, for intrusive granites located in the Okwa Inlier, are between 2.1 and 2.0 Ga. Gneissic deformation of the granites is recognised at ~1.8 Ga and, in alternative interpretations, is regarded as the accretion age of the Okwa Terrane with the Kaapvaal Craton along the major east-west trending Palala Shear Zone. A reported diamondiferous kimberlite pipe in the Gope cluster of the Okwa Terrane suggests a lithospheric thickness in excess of the depth of the diamond stability field (~160 km), at least at the time of kimberlite eruption at ~80 Ma. The multinational Southern African Magnetotelluric Experiment (SAMTEX) has acquired, during the period between 2003 and 2008, more than 730 magnetotelluric (MT) sites along 14,000 kilometers of profile length across southern Africa. In acquiring MT data on two orthogonal ~600 km-long profiles across the Okwa Terrane, SAMTEX provides the first deep crustal and lithospheric mantle images of the terrane. MT stations were installed at roughly 20 km

  20. Magnetotelluric data collected near geophysically logged boreholes in the Espa?ola and Middle Rio Grande basins, New Mexico

    USGS Publications Warehouse

    Williams, Jackie M.; Rodriguez, Brian D.

    2006-01-01

    The Santa Fe region is growing rapidly. The Santa Fe Group aquifer in the Espa?ola Basin is the main source of municipal water for the region, and water shortfalls could have serious consequences. Future growth and land management in the region depend on accurate assessment and protection of the region's ground-water resources. An important issue in managing the ground-water resources is a better understanding of the hydrogeology of the Tertiary Santa Fe Group. The Santa Fe Group includes the sedimentary deposits that fill the Rio Grande rift and contain the principal ground-water aquifers. The U.S. Geological Survey (USGS) is conducting a series of multidisciplinary studies of the Espa?ola Basin in northern New Mexico. Detailed geologic mapping, high-resolution airborne magnetic surveys, electromagnetic surveys, and hydrologic, lithologic, and hydro-geochemical data are being used to better understand the aquifer systems. Magnetotelluric (MT) surveys were completed as part of these studies. The primary purpose of the MT surveys was to map changes in electrical resistivity with depth that are related to differences in various rock types that help control the properties of aquifers in the region. Resistivity modeling of the MT data can be used to investigate buried structures related to the basic geologic framework of the study area. The purpose of this report is to release MT sounding data collected near geophysically logged boreholes in the study area, including the nearby Middle Rio Grande Basin. This MT data can be used in subsequent resistivity modeling. No interpretation of the data is included in this report.

  1. Joint Inversion of Seismic and Magnetotelluric Data in the Parkfield Region of California Using the Normalized Cross-Gradient Constraint

    NASA Astrophysics Data System (ADS)

    Bennington, Ninfa L.; Zhang, Haijiang; Thurber, Clifford H.; Bedrosian, Paul A.

    2015-05-01

    We present jointly inverted models of P-wave velocity (Vp) and electrical resistivity for a two-dimensional profile centered on the San Andreas Fault Observatory at Depth (SAFOD). Significant structural similarity between main features of the separately inverted Vp and resistivity models is exploited by carrying out a joint inversion of the two datasets using the normalized cross-gradient constraint. This constraint favors structurally similar Vp and resistivity images that adequately fit the seismic and magnetotelluric (MT) datasets. The new inversion code, tomoDDMT, merges the seismic inversion code tomoDD and the forward modeling and sensitivity kernel subroutines of the MT inversion code OCCAM2DMT. TomoDDMT is tested on a synthetic dataset and demonstrates the code's ability to more accurately resolve features of the input synthetic structure relative to the separately inverted resistivity and velocity models. Using tomoDDMT, we are able to resolve a number of key issues raised during drilling at SAFOD. We are able to infer the distribution of several geologic units including the Salinian granitoids, the Great Valley sequence, and the Franciscan Formation. The distribution and transport of fluids at both shallow and great depths is also examined. Low values of velocity/resistivity attributed to a feature known as the Eastern Conductor (EC) can be explained in two ways: the EC is a brine-filled, high porosity region, or this region is composed largely of clay-rich shales of the Franciscan. The Eastern Wall, which lies immediately adjacent to the EC, is unlikely to be a fluid pathway into the San Andreas Fault's seismogenic zone due to its observed higher resistivity and velocity values.

  2. Crustal metamorphic fluid flux beneath the Dead Sea Basin: Constraints from 2D and 3D magnetotelluric modelling

    NASA Astrophysics Data System (ADS)

    Meqbel, Naser; Weckmann, Ute; Muñoz, Gerard; Ritter, Oliver

    2016-09-01

    We report on a study to explore the deep electrical conductivity structure of the Dead Sea Basin (DSB) using magnetotelluric (MT) data collected along a transect across the DSB where the left lateral strike slip Dead Sea transform fault (DST) splits into two fault strands forming one of the largest pull-apart basins of the world. A very pronounced feature of our 2D inversion model is a deep, sub-vertical conductive zone beneath the DSB. The conductor extends through the entire crust and is sandwiched between highly resistive structures associated with Precambrian rocks of the basin flanks. The high electrical conductivity could be attributed to fluids released by dehydration of the uppermost mantle beneath the DSB, possibly in combination with fluids released by mid to low grade metamorphism in the lower crust and generation of hydrous minerals in the middle crust through retrograde metamorphism. Similar high conductivity zones associated with fluids have been reported from other large fault systems. The presence of fluids and hydrous minerals in the middle and lower crust could explain the required low friction coefficient of the DST along the eastern boundary of the Dead Sea basin and the high subsidence rate of basin sediments. 3D inversion models confirm the existence of a sub-vertical high conductivity structure underneath the DSB but its expression is far less pronounced. Instead, the 3D inversion model suggests a deepening of the conductive DSB sediments off-profile towards the south, reaching a maximum depth of approximately 12 km, which is consistent with other geophysical observations. At shallower levels, the 3D inversion model reveals salt diapirism as an upwelling of highly resistive structures, localized underneath the Al-Lisan Peninsula. The 3D model furthermore contains an E-W elongated conductive structure to the north-east of the Dead Sea basin. More MT data with better spatial coverage are required, however, to fully constrain the robustness of

  3. Three-dimensional magnetotelluric inversion in practice—the electrical conductivity structure of the San Andreas Fault in Central California

    NASA Astrophysics Data System (ADS)

    Tietze, Kristina; Ritter, Oliver

    2013-10-01

    3-D inversion techniques have become a widely used tool in magnetotelluric (MT) data interpretation. However, with real data sets, many of the controlling factors for the outcome of 3-D inversion are little explored, such as alignment of the coordinate system, handling and influence of data errors and model regularization. Here we present 3-D inversion results of 169 MT sites from the central San Andreas Fault in California. Previous extensive 2-D inversion and 3-D forward modelling of the data set revealed significant along-strike variation of the electrical conductivity structure. 3-D inversion can recover these features but only if the inversion parameters are tuned in accordance with the particularities of the data set. Based on synthetic 3-D data we explore the model space and test the impacts of a wide range of inversion settings. The tests showed that the recovery of a pronounced regional 2-D structure in inversion of the complete impedance tensor depends on the coordinate system. As interdependencies between data components are not considered in standard 3-D MT inversion codes, 2-D subsurface structures can vanish if data are not aligned with the regional strike direction. A priori models and data weighting, that is, how strongly individual components of the impedance tensor and/or vertical magnetic field transfer functions dominate the solution, are crucial controls for the outcome of 3-D inversion. If deviations from a prior model are heavily penalized, regularization is prone to result in erroneous and misleading 3-D inversion models, particularly in the presence of strong conductivity contrasts. A `good' overall rms misfit is often meaningless or misleading as a huge range of 3-D inversion results exist, all with similarly `acceptable' misfits but producing significantly differing images of the conductivity structures. Reliable and meaningful 3-D inversion models can only be recovered if data misfit is assessed systematically in the frequency

  4. Resistivity Structure of the Central Indian Tectonic Zone (CITZ) from Multiple Magnetotelluric (MT) Profiles and Tectonic Implications

    NASA Astrophysics Data System (ADS)

    Abdul Azeez, K. K.; Unsworth, Martyn J.; Patro, Prasanta K.; Harinarayana, T.; Sastry, R. S.

    2013-12-01

    The Central Indian Tectonic Zone (CITZ) is a major tectonic feature extending across the Indian subcontinent. It was formed in the Paleoproterozoic when the Bastar Craton and the Bundelkhand Craton were sutured together. This region is recognized in the geological record as a persistent zone of weakness with many tectonothermal events occurring over geologic time. The weakness of this region may have caused the late Cretaceous/early Tertiary Deccan volcanism to have been localized in the CITZ. The zone is still tectonically active, as evidenced by sustained levels of seismic activity. This paper presents the first systematic investigation of the resistivity structure of the CITZ using multiple magnetotelluric (MT) transects. Two-dimensional (2D) resistivity models were generated for five north-south profiles that cross the CITZ and encompass an area of ~60,000 km2. The models were based on the joint inversion of transverse electric (TE), transverse magnetic (TM) and tipper (Hz) data. All the profiles showed a low resistive (10-80 Ωm) middle to lower crust beneath the CITZ with a crustal conductance of 300-800 S. The presence of an interconnected fluid phase and/or hydrous/metallic minerals appears to be the most likely explanation for the elevated conductivity that is observed beneath the CITZ. The presence of fluids is significant because it may indicate the cause of persistent weakness at crustal depths. A northward dip of both the crustal conductive layer and coincident seismic reflections favor a northward polarity of the subduction process associated with the formation of the CITZ.

  5. Making it and breaking it in the Midwest: Continental assembly and rifting from modeling of EarthScope magnetotelluric data

    USGS Publications Warehouse

    Bedrosian, Paul A.

    2016-01-01

    A three-dimensional lithospheric-scale resistivity model of the North American mid-continent has been estimated based upon EarthScope magnetotelluric data. Details of the resistivity model are discussed in relation to lithospheric sutures, defined primarily from aeromagnetic and geochronologic data, which record the southward growth of the Laurentian margin in the Proterozoic. The resistivity signature of the 1.1 Ga Mid-continent Rift System is examined in detail, in particular as relates to rift geometry, extent, and segmentation. An unrecognized expanse of (concealed) Proterozoic deltaic deposits in Kansas is identified and speculated to result from axial drainage along the southwest rift arm akin to the Rio Grande delta which drains multiple rift basins. A prominent conductor traces out Cambrian rifting in Arkansas, Missouri, Tennessee, and Kentucky; this linear conductor has not been imaged before and suggests that the Cambrian rift system may have been more extensive than previously thought. The highest conductivity within the mid-continent is imaged in Minnesota, Michigan, and Wisconsin where it is coincident with Paleoproterozoic metasedimentary rocks. The high conductivity is attributed to metallic sulfides, and in some cases, graphite. The former is a potential source of sulfur for multiple mineral deposits types, occurrences of which are found throughout the region. Finally, the imprint left within the mantle following the 1.1 Ga rifting event is examined. Variations in lithospheric mantle conductivity are observed and are interpreted to reflect variations in water content (depleted versus metasomatized mantle) imprinted upon the mantle by the Keweenawan mantle plume.

  6. Models of fluid saturated zones according magnetotellurics and seismics data on Tien-Shan crust and mantle along transect MANAS

    NASA Astrophysics Data System (ADS)

    Bataleva, E.; Rybin, A.; Batalev, V.; Matyukov, V.

    2009-04-01

    Recognized as one of the highest, youngest, and most active orogenic systems on the Earth the Tien Shan is situated internal to the Eurasian continent. New deep seismic data acquired from 2004 to 2007 constitute an -400 km lithospheric transect located from the northwestern Tarim Basin in China to the northern Tien Shan in Kyrgyzstan. This seismic profile consists of 40 seismic stations "Quanterra" containing STS-2 (Streckeisen, Switzerland) and CMG - 3T (Güralp Systems Ltd) broadband seismic receivers. Registration of the seismic data in each station was conducted with sampling frequency of 40 Hz. Time service based on GPS clock was applied on each station. Average distance between the seismic stations along the profile is 10-15 km. Observations were held on 30 stations in Kyrgyzstan and on 10 of them in China. As a result of seismic investigations wave speeds cross-section was calculated. A 450 km long north-south magnetotelluric profile spanning the Tien Shan from Kazakhstan to western China reveals lateral variations in the resistivity of the Earth crust and mantle lithosphere to depths of 140 km. MT profile consisting of 19 long period MT soundings (20-20,000 s periods) were combined with 30 broadband stations (0.1-1600 s periods). Broadband measurements (0.001-100 s periods) were also acquired at the 14 long period sites in Kazakhstan and Kyrgyzstan. [Bielinski, et al 2003] Conductivity changes of up to one order of magnitude are a result from variations in temperature or composition, or both. Previous magneto telluric (MT) studies [Trapeznikov et al., 1997] partly show that some low velocity layers also have low resistivity, lending support to the fluid hypothesis. Studies of wave speeds reveal sections of the crust that have pronounced low velocity zones in the thicker portions of the crust which are attributed to crustal metasomatism [Ghose et al., 1998] or fluid filled fractures in pervasively deformed rocks [Vinnik et al., 2002]. Comparing an obtained

  7. Magnetotelluric and Surface Nuclear Magnetic Resonance Measurements of Regional and Local Variability of Deep Saline Permafrost in Adventdalen, Svalbard

    NASA Astrophysics Data System (ADS)

    Bense, V.; Binley, A. M.; Keating, K.; Van Dam, R. L.; Christiansen, H. H.; Cohen, S.; McGuffy, C.

    2014-12-01

    In most Arctic areas the interplay between permafrost and parameters such as climate variability and geological history is not well understood or documented. Nevertheless, knowledge on the thermal state of permafrost, its thickness and ice/water content is crucial for a credible assessment of the impacts of surface warming on a suite of environmental processes such as groundwater flow to riverbeds and the release of methane from areas of degrading permafrost. We carried out geophysical surveys using non-invasive Magnetotelluric (MT) and Surface Nuclear Magnetic Resonance (SNMR) techniques to map permafrost occurrence in Adventdalen, Svalbard, a river valley in a typical coastal Arctic landscape. MT, which is sensitive to changes in the electrical conductivity and can be used to distinguish saline, fresh, and frozen soils, was used to determine the total thickness of permafrost (potentially several 100s of meters). SNMR, which is directly sensitive the volume of liquid water, was used to determine the unfrozen water content and the heterogeneity of permafrost at depths of up to ~100 m. We collected measurements in transects across and along the valley which is filled with Holocene estuarine sediments. MT observations suggest that permafrost thickens substantially to up to several hundreds of meters along the ~12 km long transect from the coastal area inland. The electrical resistivities observed are relatively low (~200-400 Ωm) when compared to permafrost environments in Alpine settings, which is most likely attributed to a high salinity of pore waters in our study area. In the parts of the valley above the marine limit (~70 m above sea-level) SNMR did not detect any unfrozen water content. However, closely spaced SNMR transects across the valley several kilometers from the coast show a substantial signal, potentially due to unfrozen water content in supra-permafrost taliks near the main river channel. This is the first study to illustrate the ability of combining

  8. Three-dimensional electrical resistivity of the north-central USA from EarthScope long period magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Egbert, Gary D.; Kelbert, Anna; Meqbel, Naser M.

    2015-07-01

    We present initial results from three-dimensional inversion of long period EarthScope magnetotelluric (MT) transportable array data from 232 sites covering the north-central US. The study area covers the 1.1 Ga Mid-Continent Rift (MCR) system, which cuts across a series of Archean and Paleoproterozoic lithospheric blocks. The western arm of the MCR is clearly evident in shallow depth sections, with a narrow resistive core, flanked by elongate conductive basins. Other prominent upper-crustal features mapped include the moderately conductive Michigan and Illinois Basins, and extremely high conductivities in foreland basin rocks at the southern margin of the Superior craton. The most prominent conductive anomalies, in an otherwise relatively resistive mid-lower crust, are two elongate east-west oriented structures, which are closely aligned with previously inferred continental sutures. The first underlies the southern margin of the Superior craton just north of the Niagara Fault (NF), and can be associated with the ∼1.85 Ga Penokean Orogeny. A second, further south beneath Iowa and western Wisconsin, lies just south of the Spirit Lake tectonic zone (SLtz), and can be identified with Yavapai accretion at ∼1.75 Ga. Both of these conductive sutures are cleanly cut by the MCR, which is otherwise not clearly evident in the deeper parts of the resistivity model. The break in the anomalies is narrow, comparable to the surface expression of the MCR, indicating that rifting impacts on the entire crustal section were highly localized. Both suture-related anomalies are imaged as extending into, and perhaps through, the lithosphere as dipping diffuse zones of reduced mantle resistivity. Sense of dip of these structures (southward for the NF anomaly, northward for SLtz) agrees with previously inferred models for subduction and accretion, suggesting that a conductive phase (most likely carbon) has been thrust deep into the lower crust and uppermost mantle, providing a marker of

  9. Magnetotelluric 3-D inversion—a review of two successful workshops on forward and inversion code testing and comparison

    NASA Astrophysics Data System (ADS)

    Miensopust, Marion P.; Queralt, Pilar; Jones, Alan G.; 3D MT modellers

    2013-06-01

    Over the last half decade the need for, and importance of, three-dimensional (3-D) modelling of magnetotelluric (MT) data have increased dramatically and various 3-D forward and inversion codes are in use and some have become commonly available. Comparison of forward responses and inversion results is an important step for code testing and validation prior to `production' use. The various codes use different mathematical approximations to the problem (finite differences, finite elements or integral equations), various orientations of the coordinate system, different sign conventions for the time dependence and various inversion strategies. Additionally, the obtained results are dependent on data analysis, selection and correction as well as on the chosen mesh, inversion parameters and regularization adopted, and therefore, a careful and knowledge-based use of the codes is essential. In 2008 and 2011, during two workshops at the Dublin Institute for Advanced Studies over 40 people from academia (scientists and students) and industry from around the world met to discuss 3-D MT inversion. These workshops brought together a mix of code writers as well as code users to assess the current status of 3-D modelling, to compare the results of different codes, and to discuss and think about future improvements and new aims in 3-D modelling. To test the numerical forward solutions, two 3-D models were designed to compare the responses obtained by different codes and/or users. Furthermore, inversion results of these two data sets and two additional data sets obtained from unknown models (secret models) were also compared. In this manuscript the test models and data sets are described (supplementary files are available) and comparisons of the results are shown. Details regarding the used data, forward and inversion parameters as well as computational power are summarized for each case, and the main discussion points of the workshops are reviewed. In general, the responses

  10. Broadband Magnetotelluric Investigations of Crustal Resistivity Structure in North-Eastern Alberta: Implications for Engineered Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Liddell, M. V.; Unsworth, M. J.; Nieuwenhuis, G.

    2013-12-01

    Greenhouse gas emissions from hydrocarbon consumption produce profound changes in the global climate, and the implementation of alternative energy sources is needed. The oilsands industry in Alberta (Canada) is a major producer of greenhouse gases as natural gas is burnt to produce the heat required to extract and process bitumen. Geothermal energy could be utilized to provide this necessary heat and has the potential to reduce both financial costs and environmental impacts of the oilsands industry. In order to determine the geothermal potential the details of the reservoir must be understood. Conventional hydrothermal reservoirs have been detected using geophysical techniques such as magnetotellurics (MT) which measures the electrical conductivity of the Earth. However, in Northern Alberta the geothermal gradient is relatively low, and heat must be extracted from deep inside the basement rocks using Engineered Geothermal Systems (EGS) and therefore an alternative exploration technique is required. MT can be useful in this context as it can detect fracture zones and regions of elevated porosity. MT data were recorded near Fort McMurray with the goal of determining the geothermal potential by understanding the crustal resistivity structure beneath the Athabasca Oilsands. The MT data are being used to locate targets of significance for geothermal exploration such as regions of low resistivity in the basement rocks which can relate to in situ fluids or fracture zones which can facilitate efficient heat extraction or het transport. A total of 93 stations were collected ~500m apart on two profiles stretching 30 and 20km respectively. Signals were recorded using Phoenix Geophysics V5-2000 systems over frequency bands from 1000 to 0.001 Hz, corresponding to depths of penetration approximately 50m to 50km. Groom-Bailey tensor decomposition and phase tensor analysis shows a well defined geoelectric strike direction that varied along the profile from N60°E to N45

  11. A magnetotelluric transect across the Dead Sea Basin: electrical properties of geological and hydrological units of the upper crust

    NASA Astrophysics Data System (ADS)

    Meqbel, Naser M. M.; Ritter, Oliver; DESIRE Group

    2013-06-01

    Oblique shear directions along the left lateral strike-slip Dead Sea transform (DST) fault caused the formation of the Dead Sea Basin (DSB), one of the world's largest pull-apart basins. The Dead Sea, which covers the northern part of the basin, is one of the most saline lakes in world. To understand interaction of saline water from the Dead Sea with the neighbouring hydrological system is an important geoscientific problem for this arid region. Here, we report on the first continuous magnetotelluric (MT) transect crossing the entire DSB, from the eastern to the western rift shoulders and beyond. 2-D inversion of the MT data reveals an unprecedented comprehensive picture of the subsurface structures from the basin and adjacent areas. Quaternary to recent sediments of the Al-Lisan/Samara formations are expressed as highly conductive structures reaching a depth of approximately 4 km. East and west of the rift valley layered sequences of resistive and conductive structures coincide with the sedimentary formations of the Cretaceous, Jurassic and Triassic. Pre-Cambrian basement (crystalized igneous rocks) appears at depths >3 km beneath both rift shoulders as very resistive regions. The eastern boundary fault of the DST is associated with a sharp lateral conductivity contrast between the highly resistive basement structures and the conductive fill of the DSB. The transition to the western rift shoulder appears wider and smoother, in agreement with a broader fractured region, possibly caused by a combination of strong normal faulting and strike-slip activity. The very high conductivities of less than 1 Ωm of the Al-Lisan/Samara formations can be explained with hypersaline waters of the Dead Sea reaching depths of a few kilometres and porosities of at least 37 per cent. The regional Judea and Kurnub aquifers of the Cretaceous are imaged as conductive layers with resistivities of 1-20 Ωm and we infer porosities of 15 per cent. The low resistivities observed in the

  12. Application of 2-D Inversion, to Magnetotelluric data on the Newberry Caldera, Oregon, for Potential Geothermal Power

    NASA Astrophysics Data System (ADS)

    Martin, T. P.; Schultz, A.

    2012-12-01

    understand the existing baseline subsurface resistivity structure at the Newberry site prior to well stimulation, magnetotelluric (MT) data will be collected in late July 2012 using two long period (1 Hz sampling) Narod Geophysics NIMS MT instruments along with EarthScope MT data aligned in a ~210 km long N-S profile centered on the stimulation zone. A 2-D inverse model will be obtained from the MT data set. The goal of this investigation is to determine the variations in the electrical resistivity in the mid-to-lower crust beneath the western flank of the caldera, providing a deeper view of putative heat sources than existing studies in this

  13. Magnetotelluric imaging of anisotropic crust near Fort McMurray, Alberta: implications for engineered geothermal system development

    NASA Astrophysics Data System (ADS)

    Liddell, Mitch; Unsworth, Martyn; Pek, Josef

    2016-06-01

    Viability for the development of an engineered geothermal system (EGS) in the oilsands region near Fort McMurray, Alberta, is investigated by studying the structure of the Precambrian basement rocks with magnetotellurics (MT). MT data were collected at 94 broad-band stations on two east-west profiles. Apparent resistivity and phase data showed little variation along each profile. The short period MT data detected a 1-D resistivity structure that could be identified as the shallow sedimentary basin underlain by crystalline basement rocks to a depth of 4-5 km. At lower frequencies a strong directional dependence, large phase splits, and regions of out-of-quadrant (OOQ) phase were detected. 2-D isotropic inversions of these data failed to produce a realistic resistivity model. A detailed dimensionality analysis found links between large phase tensor skews (˜15°), azimuths, OOQ phases and tensor decomposition strike angles at periods greater than 1 s. Low magnitude induction vectors, as well as uniformity of phase splits and phase tensor character between the northern and southern profiles imply that a 3-D analysis is not necessary or appropriate. Therefore, 2-D anisotropic forward modelling was used to generate a resistivity model to interpret the MT data. The preferred model was based on geological observations of outcropping anisotropic mylonitic basement rocks of the Charles Lake shear zone, 150 km to the north, linked to the study area by aeromagnetic and core sample data. This model fits all four impedance tensor elements with an rms misfit of 2.82 on the southern profile, and 3.3 on the northern. The conductive phase causing the anisotropy is interpreted to be interconnected graphite films within the metamorphic basement rocks. Characterizing the anisotropy is important for understanding how artificial fractures, necessary for EGS development, would form. Features of MT data commonly interpreted to be 3-D (e.g. out of OOQ phase and large phase tensor skew) are

  14. Deep electrical resistivity structure of the northwestern U.S. derived from 3-D inversion of USArray magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Meqbel, Naser M.; Egbert, Gary D.; Wannamaker, Philip E.; Kelbert, Anna; Schultz, Adam

    2014-09-01

    Long period (10-20,000 s) magnetotelluric (MT) data are being acquired across the continental USA on a quasi-regular grid of ˜70 km spacing as an electromagnetic component of the National Science Foundation EarthScope/USArray Program. These data are sensitive to fluids, melts, and other orogenic indicators, and thus provide a valuable complement to other components of EarthScope. We present and interpret results of 3-D MT data inversion from 325 sites acquired from 2006-2011 to provide a regional scale view of electrical resistivity from the middle crust to nearly the mantle transition zone, covering an area from NW Washington to NW Colorado. Beneath the active extensional subprovinces in the south-central region, on average we see a resistive upper crust, and then extensive areas of low resistivity in the lower crust and uppermost mantle. Further below, much of the upper half of the upper mantle appears moderately resistive, then subsequently the lower upper mantle becomes moderately conductive. This column suggests a dynamic process of moderately hydrated and fertile deeper upper mantle upwelling during extension, intersection of that material with the damp solidus causing dehydration and melting, and upward exodus of generated mafic melts to pond and exsolve saline fluids near Moho levels. Lithosphere here is very thin. To the east and northeast, thick sections of resistive lithosphere are imaged under the Wyoming and Medicine Hat Cratons. These are punctuated with numerous electrically conductive sutures presumably containing graphitic or sulfide-bearing meta-sediments deeply underthrust and emplaced during ancient collisions. Below Cascadia, the subducting Juan de Fuca and Gorda lithosphere appears highly resistive. Suspected oceanic lithosphere relicts in the central NW part of the model domain also are resistive, including the accreted “Siletzia” terrane beneath the Coast Ranges and Columbia Embayment, and the seismically fast “slab curtain” beneath

  15. Joint interpretation of seismic tomography and new magnetotelluric results provide evidence for support of high topography in the Southern Rocky Mountains and High Plains of eastern Colorado, USA

    NASA Astrophysics Data System (ADS)

    Feucht, D. W.; Sheehan, A. F.; Bedrosian, P.

    2015-12-01

    A recent magnetotelluric (MT) survey in central Colorado, USA, when interpreted alongside existing seismic tomography, reveals potential mechanisms of support for high topography both regionally and locally. Broadband and long period magnetotelluric data were collected at twenty-three sites along a 330 km E-W profile across the Southern Rocky Mountains and High Plains of central North America as part of the Deep RIFT Electrical Resistivity (DRIFTER) experiment. Remote-reference data processing yielded high quality MT data over a period range of 100 Hz to 10,000 seconds. A prominent feature of the regional geo-electric structure is the Denver Basin, which contains a thick package of highly conductive shales and porous sandstone aquifers. One-dimensional forward modeling was performed on stations within the Denver Basin to estimate depth to the base of this shallow conductor. Those estimates were then used to place a horizontal penalty cut in the model mesh of a regularized two-dimensional inversion. Two-dimensional modeling of the resistivity structure reveals two major anomalous regions in the lithosphere: 1) a high conductivity region in the crust under the tallest peaks of the Rocky Mountains and 2) a lateral step increase in lithospheric resistivity beneath the plains. The Rocky Mountain crustal anomaly coincides with low seismic wave speeds and enhanced heat flow and is thus interpreted as evidence of partial melt and/or high temperature fluids emplaced in the crust by tectonic activity along the Rio Grande Rift. The lateral variation in the mantle lithosphere, while co-located with a pronounced step increase in seismic velocity, appears to be a gradational boundary in resistivity across eastern Colorado and could indicate a small degree of compositional modification at the edge of the North American craton. These inferred conductivity mechanisms, namely crustal melt and modification of mantle lithosphere, likely contribute to high topography locally in the

  16. Three-Dimensional Forward Modeling of Magnetotelluric Data Over Cratonic Lithosphere and Attendent Geological Structures: Case Study of the Zimbabwe Craton

    NASA Astrophysics Data System (ADS)

    Miensopust, M. P.; Jones, A. G.; Farquharson, C. G.; MT Team

    2007-12-01

    The Southern African MagnetoTelluric Experiment (SAMTEX) is covering a huge area - containing parts of South Africa, Namibia and nearly the whole of Botswana - with acquisition of magnetotelluric (MT) data. The project's aim is to gain more information on the lithospheric geometries of the geological structures of this region which contains some of the oldest lithospheric pieces on Earth - the cratons (e.g. Kaapvaal and Zimbabwe cratons). Since the standard modeling of MT data is only in two-dimensions and the recently developed three-dimensional inversion programs require a lot of computation time and high speed computers with large memories, 3D forward modeling is a good compromise on the way to full 3D interpretation of MT data. Forward modeling of subsurface structures similar to the cratonic areas of study will give some indication of how the MT responses should look like and if they change significantly when the cratons have a different shape or extent or resistivity. The determined synthetic data then can be compared with the real data collected in the SAMTEX project. The area for the case study is the western edge of the Zimbabwe craton in eastern Botswana. The craton is surrounded by the Damara Mobile Belt and the Magondi Mobile Belt to the north and west and the Limpopo belt to the south. The giant northern Botswana dyke swarm is cross cutting the craton in about WNW to ESE direction. Based on this geological information, a 3D model was created to calculate synthetic MT responses using the forward modeling routine implemented in the 3D inversion program MT3Dinv (developed by the Geophysical Inversion Facility, University of British Columbia). We will show the results of this modeling exercise and compare them with the observations.

  17. Deep electrical resistivity structure of the Northwestern U. S. derived from 3-D inversion of USArray Magnetotelluric data (Invited)

    NASA Astrophysics Data System (ADS)

    Meqbel, N. M.; Egbert, G. D.; Wannamaker, P. E.; Kelbert, A.; Schultz, A.

    2013-12-01

    Long period (10-20,000 s) magnetotelluric (MT) data are being acquired across the continental USA on a quasi-regular grid of ~70 km spacing as an electromagnetic component of the National Science Foundation EarthScope/USArray Program. These data are sensitive to fluids, melts, and other orogenic indicators, and thus provide a valuable complement to other components of EarthScope. We present and interpret results of 3-D MT data inversion from 325 sites acquired from 2006-2011 to provide a regional scale view of electrical resistivity from the middle crust to nearly the mantle transition zone, covering an area from NW Washington to NW Colorado. Extensive areas of low resistivity are imaged in the lower crust and uppermost mantle beneath the extensional provinces, most plausibly explained by underplated, hybridized magmas and associated exsolved highly saline fluids. These pervasive low resistivities show aligned or 'streaky' textures roughly parallel to seismic fast-axes, possibly reflecting widespread flow induced alignment of melt in this area. Thick sections of resistive lithosphere imaged in the eastern and northeastern part of the domain coincide spatially with the Wyoming and Medicine Hat Cratons. Sutures bounding these cratonic blocks are electrically conductive most likely due to meta-sediments emplaced during ancient collisions. Below the Cascadia forearc, the subducting Juan de Fuca and Gorda lithosphere appears highly resistive. Other resistive zones in the NW part of the domain may denote relict oceanic lithosphere: the accreted 'Siletzia' terrane beneath the Coast Ranges and Columbia Embayment, and the seismically fast 'slab curtain' beneath eastern Idaho interpreted by others as stranded Farallon lithosphere. Quasi-horizontal patches of low resistivity in the deep crust beneath the Cascade volcanic arc and fore-arc likely represent fluids evolved from breakdown of hydrous minerals in the down-going slab. In the backarc, low resistivities concentrate in

  18. Analysis of magnetotelluric profile data from the Ruby Mountains metamorphic core complex and southern Carlin Trend region, Nevada

    USGS Publications Warehouse

    Wannamaker, Philip E.; Doerner, William M.; Stodt, John A.; Sodergen, Timothy L.; Rodriguez, Brian D.

    2002-01-01

    We have collected about 150 magnetotelluric (MT) soundings in northeastern Nevada in the region of the Ruby Mountains metamorphic core complex uplift and southern Carlin mineral trend, in an effort to illuminate controls on core complex evolution and deposition of world-class gold deposits. The region has experienced a broad range of tectonic events including several periods of compressional and extensional deformation, which have contributed to the total expression of electrical resistivity. Most of the soundings are in three east-west profiles across increasing degrees of core uplift to the north (Bald Mountain, Harrison Pass and Secret Pass latitudes). Two shorter lines cross a prominent east-west structure to the north of the northern profile. MT impedance tensor and vertical magnetic field rotations imply a N-NNE average regional geoelectric strike, similar to surface geologic trends. Model resistivity cross sections were derived using a 2-D inversion algorithm, which damps departures of model parameters from an a priori structure, emphasizing the transverse magnetic (TM) mode and vertical magnetic field data. Geological interpretation of the resistivity combines previous seismic, potential field and isotope models, structural and petrological models for regional compression and extension, and detailed structural/stratigraphic interpretations incorporating drilling for petroleum and mineral exploration. To first order, the resistivity structure is one of a moderately conductive, Phanerozoic sedimentary section fundamentally disrupted by intrusion and uplift of resistive crystalline rocks. Late Devonian and early Mississippian shales of the Pilot and Chainman Formations together form an important conductive marker sequence in the stratigraphy and show pronounced increases in conductance (conductivity-thickness product) from east to west. These increases in conductance are attributed to graphitization caused by Elko-Sevier era compressional shear deformation and

  19. Combined magnetotelluric and petrologic constrains for the nature of the magma storage system beneath the Late Pleistocene Ciomadul volcano (SE Carpathians)

    NASA Astrophysics Data System (ADS)

    Harangi, S.; Novák, A.; Kiss, B.; Seghedi, I.; Lukács, R.; Szarka, L.; Wesztergom, V.; Metwaly, M.; Gribovszki, K.

    2015-01-01

    The Ciomadul is the youngest volcano of the Carpathian-Pannonian region, which erupted last time at 32 ka. It produced high-K dacitic lava domes and pumiceous pyroclastic rocks. The dacite is crystal-rich and contains plagioclase, amphibole in addition to biotite, titanite, apatite, zircon and occasionally quartz, K-feldspar as well as olivine, clinopyroxene and orthopyroxene. There are two groups of amphiboles, characterized by low-Al and high-Al, respectively. They occur in the same samples and also as different zones of the same crystals. Thermobarometric calculations suggest that the low-Al amphiboles were formed from a low temperature (< 800 °C) silicic magma, whereas the high-Al amphiboles crystallized at about 950 °C from a more mafic melt. A near-solidus silicic crystal mush body was stored at 7-14 km depth, where an eruptible magma batch was produced by major reheating (about 200 °C temperature increase) due to the intrusion of hot mafic magma into the silicic magma reservoir. A magnetotelluric survey was performed to reveal whether any melt-bearing magma body could presently reside beneath the volcano. Both the 2D and 3D inversion modeling calculations indicate low electric resistivity values in the depth interval of 5-25 km, just beneath the volcanic centers. This can be interpreted as implying a partially melted zone, i.e. a crystal mush body containing about 5-15% melt fraction. In addition, the 2D modeling calculation indicates also a deeper low resistivity anomaly at 30-40 km depth. The consistent petrologic and magnetotelluric constrains on the magma storage beneath Ciomadul are corroborated by the recent seismic tomography result, which pointed out a low-velocity anomaly at 8-20 km depth zone. Thus, results of independent models suggest the presence of a melt-bearing crystal mush body beneath the seemingly inactive volcano. Since there are implications for long repose periods during the lifetime of the volcano as well as for effective and rapid

  20. An emerging view of the crust and mantle of tectonic North America from EMScope: a mid- term progress review of Earthscope's magnetotelluric program

    NASA Astrophysics Data System (ADS)

    Schultz, A.; Bedrosian, P.; Evans, R.; Egbert, G.; Kelbert, A.; Mickus, K.; Livelybrooks, D.; Park, S.; Patro, P.; Peery, T.; Wannamaker, P.; Unsworth, M.; Weiss, C.; Woodward, B.

    2008-12-01

    EMScope, the MT component of the Earthscope project has completed its final year of infrastructure construction, and its third annual campaign of regional magnetotelluric array operations in the western USA. Seven semi-permanent "backbone" MT observatories have been installed in California, Oregon, Montana, New Mexico, Minnesota, Missouri and Virginia, designed through installation in 2 m deep, insulated underground vaults and with long, buried electric dipole detectors using stable electrodes, to provide extremely long-period magnetotelluric data meant to provide a set of regional, deep structural "anchor points" penetrating into the mid-mantle, in which a series of denser and more uniform regional, transportable MT networks can be tied. A total of 160 "transportable array" MT stations have been occupied in Oregon, Washington, Idaho, northernmost-California, and Montana. These were located on a 70 km quasi-regular grid, with coverage of Cascadia, parts of the Basin and Range, the Rockies and the Snake River Plain, the zone above a putative mantle plume that is hypothesized to serve as the magma source for both the Yellowstone supervolcano and a chain of volcanic features extending westward into Oregon. It is anticipated that in 2009 the transportable array will sweep eastward through the Yellowstone region, following which a set of regional transects at sites of special geodynamic interest will be staged. The transportable array stations are typically occupied for three weeks, providing MT response functions extending from 2-10,000 s or in cases as great as 20,000 s period. These stations are anchored at longer periods (extending as close to 100,000 s periods as possible) by the network of 7 backbone stations, to be operated continuously for up to five years. We present an initial set of 3-d inverse models from the EMScope data sets There is substantial coherence between the resulting 3-d conductivity model and the known boundaries of major physiographic provinces

  1. New Insights into the Structure of the Northern Margin of the India-Asia Collision from Magnetotelluric Data across the Central Altyn Tagh Fault

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Unsworth, M. J.; Jin, S.; Wei, W.; Ye, G.; Jones, A. G.; Jing, J.; Dong, H.; Xie, C.; Le Pape, F.; Vozar, J.; Fang, Y.

    2015-12-01

    The Altyn Tagh Fault (ATF) is a left-lateral, strike-slip fault that forms the northern margin of the Tibetan Plateau and plays a significant role in accommodating the convergence between the colliding Indian and Eurasian plates. As a part of the fourth phase of the INDEPTH project, magnetotelluric (MT) data were collected across the central segment of the ATF to determine the lithospheric-scale structure of the fault system. Dimensionality analyses demonstrated that the MT data can be interpreted using two-dimensional approaches, but some localized 3-D effects are seen. Consequently, both 2-D and 3-D inversions were carried out, and a joint interpretation was made on the basis of these two types of models. Inversion models revealed two major conductors beneath the Qaidam Basin (QB) and Altyn Tagh Range (ATR), respectively. The conductive region beneath the QB was interpreted as a ductile layer in the lower crust to upper mantle that might represent flow beneath the western margin of the QB, whereas the large scale south-dipping conductor beneath the ATR is interpreted as a region with high fluid content formed by metamorphism associated with the oblique underthrusting of the Tarim Block beneath the northern Tibetan Plateau. These fluids migrate upward through the fault system and have formed serpentinized zones in the crust. Combining these interpretations, a structural model compatible with diverse geophysical observations is proposed, in which we suggest the competing end-member rigid block model and continuum model are reconcilable with the continuum model locally dominant for the study region, as evidenced by a thickened crust. * This work was funded by National Natural Science Foundation of China (41404060, 40974058, 40904025) and Fundamental Research Funds for the Central Universities (2652014016). Reference:Zhang, L., Unsworth, M., Jin, S., Wei, W., Ye, G., Jones, A.G., Jing, J., Dong, H., Xie, C., Le Pape, F., Vozar, J., 2015. Structure of the Central

  2. Investigating the Electrical Resistivity Structure at the Creeping Segment of the North Anatolian Fault near Ismetpasa by Wide-band Magnetotellurics

    NASA Astrophysics Data System (ADS)

    Tank, Bülent; Kandemir, Özgür; Akbayram, Kenan; Kanar, Fatih; Öztay, Erkan; Rıza Kılıç, Ali; Bakar, Levent; Tok, Turgut; Çobankaya, Mehmet; Aylan, Eşref; Karabulut, Gamze; Paker, Ercan

    2016-04-01

    More than hundred wide-band (360 Hz - 2000 sec.) magnetotelluric (MT) observations were performed and were utilized to decipher the electrical resistivity structure in two- and three- dimensions along a 320 km, northwest - southeast aligned profile that cuts through the Gerede - Ismetpasa segment of the North Anatolian Fault. Even though Gerede - Ismetpasa region has accommodated 1944, Gerede (Mw=7.2) and 1951, Kursunlu (Mw=6.9) events, seismically, this segment is considered as a relatively quiet portion of the North Anatolian Fault and is well known with its creeping behavior (approx. 7.6 mm/yr). In this study the aim is to compare electrical resistivity structure with the creep information. Several modeling attempts targeting different depths and portions of the profile were made for imaging different problems. Preliminary three-dimensional models that were developed by WSINV3DMT suggest that; (i) There is significant and deep extending fault zone conductor that might be related with the creeping segment and (ii) In the deeper levels high and low conductivity interfaces are present in and around the fault region, which might be related to the North Anatolian Fault and seldom earthquake activity.

  3. Crustal electrical structures and deep processes of the eastern Lhasa terrane in the south Tibetan plateau as revealed by magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Xie, Chengliang; Jin, Sheng; Wei, Wenbo; Ye, Gaofeng; Jing, Jianen; Zhang, Letian; Dong, Hao; Yin, Yaotian; Wang, Gang; Xia, Ruixue

    2016-04-01

    A 3D Magnetotelluric (MT) inversion for a 2D broadband MT profile along 92°E in the eastern Lhasa terrane was applied to understand the crustal electrical structures and deep processes in the India-Tibet continental collision zone. The middle and lower (- 20 to - 50 km) crust is distributed with conductors that are primarily concentrated north of the Yarlung-Zangbo sutures (YZS). The results imply that the hypothesis of middle (and/or lower) crustal flow between the Tethyan Himalaya and Lhasa terrane are not supported by the MT data within the profile area. We suggest that given the possibility of the existence of channel flow in the middle (and/or lower) crust extruding southward from Tibet, the southernmost portion should be limited in the northern YZS. The electric model also indicates that the primarily conductive region in the middle to lower crust can be imaged from the YZS to ~ 30.8°N, while the crust of the northern Lhasa terrane north of ~ 30.8°N has a higher resistivity. From this result, it can be inferred that the northern Lhasa terrane might have a cold and strong middle to lower crust and that the front of the India crust might be halted in the northern Lhasa terrane (~ 30.8°N) along 92°E.

  4. Evidence for an extensive intrusive component of the Deccan Large Igneous Province in the Narmada Son Lineament region, India from three dimensional magnetotelluric studies

    NASA Astrophysics Data System (ADS)

    Patro, Prasanta K.; Sarma, S. V. S.

    2016-10-01

    The crustal electrical structure beneath the western segment of Narmada-Son lineament zone in Central India has been imaged using magnetotelluric (MT) data set of 153 stations distributed over a grid (∼7-8 km site spacing). Three dimensional modeling of this data set brought out several major crustal conductors with different geometries at different depth levels in the crustal column. The conductive features, correlating with gravity high anomalies and high seismic velocity zones are interpreted to be mafic-ultramafic bodies derived from mantle. We infer that these bodies represent the intrusive component of the Large Igneous Province (LIP) of the Deccan volcanic episode triggered by the passage of the Indian continent over the Reunion hot spot during the Late Cretaceous. The disposition and the geometry of the subsurface magmatic bodies, which must have served as magma chambers for outpouring of the Deccan lavas, suggest that they are closely related to the plumbing geometry of the LIP of the Deccan volcanic episode.

  5. 2D magnetotelluric imaging of the Anqing-Guichi ore district, Yangtze metallogenic belt, eastern China: An insight into the crustal structure and tectonic units

    NASA Astrophysics Data System (ADS)

    Chen, Xiangbin; Yan, Jiayong

    2016-08-01

    Two parallel NW-trending magnetotelluric (MT) profiles were placed perpendicularly to the main structures of the Anqing-Guichi ore district, one of the seven ore districts in the middle-lower Yangtze River metallogenic belt of eastern China. In October-December 2013, the MT data acquisition was carried out at 117 sites with 0.5-1 km site spacing. The MT data has a good quality in the frequency range between 320 and 0.01 Hz. The dimensionality analysis and 2D resistivity inversion results indicate that: (1) the deep of the ore district with three-dimensional structural characteristics, but two-dimensional structural characteristics for shallow; (2) there is a clear correlation between resistivity and the main geological units of the ore district, as well as correlation with mapped surface faults; (3) the Gandan deep fault (GDF) and Jiangnan deep fault (JNF) extend from the surface to 10 km deep, with dip of NW45°, and dip angles larger than 60°. A series of NE-trending acidic intrusive rocks were controlled by the GDF.

  6. Chemical denudation in arctic-alpine Latnjavagge (Swedish Lapland) in relation to regolith as assessed by radio magnetotelluric-geophysical profiles

    NASA Astrophysics Data System (ADS)

    Beylich, Achim A.; Kolstrup, Else; Thyrsted, Tage; Linde, Niklas; Pedersen, Laust B.; Dynesius, Lars

    2004-02-01

    In Latnjavagge, a 9-km 2 drainage basin with homogeneous lithology in periglacial northern Swedish Lapland, water balance, water chemistry and radio magnetotelluric geophysical investigations along selected profiles were integrated with assessment of regolith thickness as well as of ground frost conditions within the basin. In combination with direct field observations, the geophysical profiles demonstrated presence of relatively thin regolith in most of the investigated area, yet in some parts, the bedrock was located deeper and locally was not detected at 40-m depth. TDS values of the water were generally very low. The areas that contributed with the lowest ion concentrations were cold and had a thin regolith, whereas there were higher concentrations in water that drained radiation exposed slopes with earlier thaw and thicker regolith. The low resistivities found along the profiles in the geophysical investigations in combination with the relatively higher TDS values found in related runoff and subsurface water samples showed that larger volumes of ice-rich frozen ground were not found along the investigated profiles in late August.

  7. Deep-crustal magma reservoirs beneath the Nicaraguan volcanic arc, revealed by 2-D and semi 3-D inversion of magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Brasse, Heinrich; Schäfer, Anja; Díaz, Daniel; Alvarado, Guillermo E.; Muñoz, Angélica; Mütschard, Lutz

    2015-11-01

    A long-period magnetotelluric (MT) experiment was conducted in early 2009 in western Nicaragua to study the electrical resistivity and thus fluid/melt distribution at the Central American continental margin where the Cocos plate subducts beneath the Caribbean plate. Strike analysis yields a preference direction perpendicular to the profile, with moderate deviation from two-dimensionality, however. Two-dimensional modeling maps the sediments of the Nicaraguan Depression and a high-conductivity zone in the mid-crust, slightly offset from the arc. Further conductors are modeled in the backarc. However, these features are probably artifacts when a 2-D program is applied to data which show moderate 3-D characteristics. 3-D inversion clarifies the situation, and the major remaining conductive structure is now quasi directly beneath the volcanic chain and interpreted as a deep-seated magma deposit. Conductivity in the backarc is also relatively high and may either be caused by still existing partial melts beneath the Paleocene to Miocene volcanic arcs or by related metallic deposits in the aureoles of hydrothermal alteration.

  8. STS-114: Discovery Post MMT Press Conference

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Bruce Buckingham of NASA Public Affairs hosted this press conference. Wayne Hill, Space Shuttle Deputy Program Manager; John Muratore, Shuttle Systems and Integration Manager; Mike Wetmore, Director for Shuttle Processing were present. Wayne started with a video from Shuttle Logistics Depot showing details of a point sensor box commonly named the black box. Work with the trouble shooting continues on a day to day basis, no definite launching date is set. John reports that they are in a mission support mode all over the country until the sensor problem is solved. Mike reports his team will complete scrub and securing tasks through the next day, restore the facility to its normal mode, and will start to a four day process of getting back to launch once trouble shooting is completed. Tanking test, thermal environment, problem identification, engine cut-off sensor problems, sensors, risk, design reviews, test and analysis, correlation of the problem with Columbia, are some of the topics covered with the News media.

  9. STS-114: Discovery Post MMT Briefing

    NASA Technical Reports Server (NTRS)

    2005-01-01

    On flight day 13, Leroy Cain, STS-114 Ascent/Entry Flight Director, discusses the condition of the Space Shuttle Discovery, and the weather outlook for landing. He answers questions from the news media about his feelings about re-entry since the Columbia tragedy, possible new information during re-entry, critical moments in the Mission Control Room during landing, and differences between night landing and day landing. Footage of the Mission Control Room and a talk with Soichi Noguchi in orbit is shown. Also, footage of the truss structure of the International Space Station, Destiny Laboratory, crew cabin of Discovery, and the Orbiter Docking System linked up to forward docking port on Discovery is shown. Eileen Collins and Wendy Lawrence are shown in the flight deck of Discovery. Charles Camarda is also shown in the mid-deck. Downlink television from Discovery shows spacewalk choreographer Andy Thomas with Stephen Robinson and Soichi Noguchi preparing for depressurization and pre-breathing activities that will lead to the opening of the hatch. The installation of a replacement GPS antenna, images of the port wing of Discovery and Canadarm moving with the Orbital Boom Sensor System (OBSS) extension is shown.

  10. STS-114: Discovery Post MMT Press Conference

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Bruce Buckingham, NASA Public Affairs hosted this conference. Bill Parsons, Space Shuttle Program Manager; John Muratore, Shuttle System and Integration Manager; Mike Wetmore, Shuttle Processing Director were present. The Panel summarizes that thorough effort of analysis and test techniques and great amount of work is being done to fix the sensor problem and will be ready to call the stations for a launch countdown process after the trouble shooting is fully completed. Launch time, grounding problem, sensor failure, trouble shooting, tanking test, pin swap, and heaters were topics covered with the News media. For clarification, Bruce Buckingham provided information that preferred launch time is at 10:39am on July 26, Eastern Time.

  11. STS-114: Discovery Post MMT Press Conference

    NASA Technical Reports Server (NTRS)

    2005-01-01

    George Diller, NASA Public Affairs, introduces the panel who consist of: Bill Parsons, Space Shuttle Program Manager; Wayne Hale, Space Shuttle Deputy Program Manager; Ed Mango, Deputy Manager JSC Orbiter Project Office; and Mike Wetmore, Director of Shuttle Processing. Bill Parsons begins by expressing that he is still searching for the problem with the low level fuel sensor inside the external tank. Hale talks about more ambient tests that will be performed to fix this problem. Mango expresses his findings from tests in the aft engine compartment, point sensor box, orbiter wiring, and wire resistance. He also talks about looking in detail into the circuit analysis of the point sensor box. Questions from the news media about tanking tests and extending the launch window are addressed.

  12. 3-dimensional magnetotelluric inversion including topography using deformed hexahedral edge finite elements and direct solvers parallelized on symmetric multiprocessor computers - Part II: direct data-space inverse solution

    NASA Astrophysics Data System (ADS)

    Kordy, M.; Wannamaker, P.; Maris, V.; Cherkaev, E.; Hill, G.

    2016-01-01

    Following the creation described in Part I of a deformable edge finite-element simulator for 3-D magnetotelluric (MT) responses using direct solvers, in Part II we develop an algorithm named HexMT for 3-D regularized inversion of MT data including topography. Direct solvers parallelized on large-RAM, symmetric multiprocessor (SMP) workstations are used also for the Gauss-Newton model update. By exploiting the data-space approach, the computational cost of the model update becomes much less in both time and computer memory than the cost of the forward simulation. In order to regularize using the second norm of the gradient, we factor the matrix related to the regularization term and apply its inverse to the Jacobian, which is done using the MKL PARDISO library. For dense matrix multiplication and factorization related to the model update, we use the PLASMA library which shows very good scalability across processor cores. A synthetic test inversion using a simple hill model shows that including topography can be important; in this case depression of the electric field by the hill can cause false conductors at depth or mask the presence of resistive structure. With a simple model of two buried bricks, a uniform spatial weighting for the norm of model smoothing recovered more accurate locations for the tomographic images compared to weightings which were a function of parameter Jacobians. We implement joint inversion for static distortion matrices tested using the Dublin secret model 2, for which we are able to reduce nRMS to ˜1.1 while avoiding oscillatory convergence. Finally we test the code on field data by inverting full impedance and tipper MT responses collected around Mount St Helens in the Cascade volcanic chain. Among several prominent structures, the north-south trending, eruption-controlling shear zone is clearly imaged in the inversion.

  13. Subsurface structure and stratigraphy of the northwest end of the Turkana Basin, Northern Kenya Rift, as revealed by magnetotellurics and gravity joint inversion

    NASA Astrophysics Data System (ADS)

    Abdelfettah, Yassine; Tiercelin, Jean-Jacques; Tarits, Pascal; Hautot, Sophie; Maia, Marcia; Thuo, Peter

    2016-07-01

    In order to understand the subsurface stratigraphy and structure of the northwest end of the Turkana Basin, Northern Kenya Rift, we used 2-D joint inversion of magnetotelluric (MT) and gravity data acquired along 3 profiles perpendicular to the main Murua Rith-Lapur Rift Border Fault. The regional geology is characterized by a basement of Precambrian age overlain by a ≤500-m thick sandstone formation named the Lapur Sandstone of upper Cretaceous-lower Eocene in age, covered by thick rhyolitic and basaltic lavas of late Eocene-middle Miocene age, known as the "Turkana Volcanics". Final interpretation of the resistivity and density models, until 5 km depth, obtained by the joint inversion approach confirms the previous general knowledge about the half-graben geometry of the northern part of the Turkana Basin. The main Murua Rith-Lapur Rift Border Fault is well identified by both gravity and MT. At least, two other important secondary faults without surface expression are also identified. A new small half-graben basin, named the Kachoda Basin, parallel to the main Turkana Basin and filled by 1.5 km of sediments, has been also characterized. This study also highlights strong thickness variations of the three main geological units that could be expected in the subsurface of the Turkana Basin. For example, the sedimentary Nachukui and Kibish Formations reach up to >3 km in thickness at the eastern end of the north and central profiles. Lateral variations of the topography of the Precambrian basement are also evidenced. Conceptual geological models, which result from the combination of the obtained density and resistivity models as well as from geological and reflection seismic data, are proposed. In such an area of intensive and promising oil exploration, these models are essential in terms of identification of reservoirs, source rocks and trapping mechanisms.

  14. Subsurface structure and stratigraphy of the northwest end of the Turkana Basin, Northern Kenya Rift, as revealed by magnetotellurics and gravity joint inversion

    NASA Astrophysics Data System (ADS)

    Abdelfettah, Yassine; Tiercelin, Jean-Jacques; Tarits, Pascal; Hautot, Sophie; Maia, Marcia; Thuo, Peter

    2016-07-01

    In order to understand the subsurface stratigraphy and structure of the northwest end of the Turkana Basin, Northern Kenya Rift, we used 2-D joint inversion of magnetotelluric (MT) and gravity data acquired along 3 profiles perpendicular to the main Murua Rith-Lapur Rift Border Fault. The regional geology is characterized by a basement of Precambrian age overlain by a ≤500-m thick sandstone formation named the Lapur Sandstone of upper Cretaceous-lower Eocene in age, covered by thick rhyolitic and basaltic lavas of late Eocene-middle Miocene age, known as the "Turkana Volcanics". Final interpretation of the resistivity and density models, until 5 km depth, obtained by the joint inversion approach confirms the previous general knowledge about the half-graben geometry of the northern part of the Turkana Basin. The main Murua Rith-Lapur Rift Border Fault is well identified by both gravity and MT. At least, two other important secondary faults without surface expression are also identified. A new small half-graben basin, named the Kachoda Basin, parallel to the main Turkana Basin and filled by 1.5 km of sediments, has been also characterized. This study also highlights strong thickness variations of the three main geological units that could be expected in the subsurface of the Turkana Basin. For example, the sedimentary Nachukui and Kibish Formations reach up to >3 km in thickness at the eastern end of the north and central profiles. Lateral variations of the topography of the Precambrian basement are also evidenced. Conceptual geological models, which result from the combination of the obtained density and resistivity models as well as from geological and reflection seismic data, are proposed. In such an area of intensive and promising oil exploration, these models are essential in terms of identification of reservoirs, source rocks and trapping mechanisms.

  15. 3-D magnetotelluric inversion including topography using deformed hexahedral edge finite elements and direct solvers parallelized on SMP computers - Part I: forward problem and parameter Jacobians

    NASA Astrophysics Data System (ADS)

    Kordy, M.; Wannamaker, P.; Maris, V.; Cherkaev, E.; Hill, G.

    2016-01-01

    We have developed an algorithm, which we call HexMT, for 3-D simulation and inversion of magnetotelluric (MT) responses using deformable hexahedral finite elements that permit incorporation of topography. Direct solvers parallelized on symmetric multiprocessor (SMP), single-chassis workstations with large RAM are used throughout, including the forward solution, parameter Jacobians and model parameter update. In Part I, the forward simulator and Jacobian calculations are presented. We use first-order edge elements to represent the secondary electric field (E), yielding accuracy O(h) for E and its curl (magnetic field). For very low frequencies or small material admittivities, the E-field requires divergence correction. With the help of Hodge decomposition, the correction may be applied in one step after the forward solution is calculated. This allows accurate E-field solutions in dielectric air. The system matrix factorization and source vector solutions are computed using the MKL PARDISO library, which shows good scalability through 24 processor cores. The factorized matrix is used to calculate the forward response as well as the Jacobians of electromagnetic (EM) field and MT responses using the reciprocity theorem. Comparison with other codes demonstrates accuracy of our forward calculations. We consider a popular conductive/resistive double brick structure, several synthetic topographic models and the natural topography of Mount Erebus in Antarctica. In particular, the ability of finite elements to represent smooth topographic slopes permits accurate simulation of refraction of EM waves normal to the slopes at high frequencies. Run-time tests of the parallelized algorithm indicate that for meshes as large as 176 × 176 × 70 elements, MT forward responses and Jacobians can be calculated in ˜1.5 hr per frequency. Together with an efficient inversion parameter step described in Part II, MT inversion problems of 200-300 stations are computable with total run times

  16. Three-dimensional Magnetotelluric Inversion and Model Validation with Potential Field Data and Seismics for the Central Portion of Parana Sedimentary Basin in Brazil

    NASA Astrophysics Data System (ADS)

    La Terra, E. F.; Fontes, S. L.; Taveira, D. T.; Miquelutti, L. G.

    2015-12-01

    The Paraná basin, on the central-south region of the South American Plate, is one of the biggest South American intracratonic basins. It is composed by Paleozoic and Mesozoic sediments, which were covered by the enormous Cretaceous flood basalts, associated with the rifting of Gondwana and the opening of the South Atlantic Ocean. Its depocenter region, with a maximum estimated depth of just over 7000 m, was crossed by three magnetotelluric - MT profiles proposed by the Brazilian Petroleum Agency (ANP) aimed at better characterizing its geological structure, as the seismic images are very poor. The data include about 350 MT broadband soundings spanning from 1000 Hz down to 2,000 s. The MT data were processed using robust techniques and remote reference. Static shift observed in some stations were corrected based on Transient Electromagnetic - TEM measurements at each site. These models were integrated to existent gravity, magnetic and seismic data for a more comprehensive interpretation of the region. A pilot 3D model has also been constructed on a crustal scale covering the study area using four frequencies per decade in the 3D inversion scheme proposed by Siripunvaraporn et al. (2005). The inversion scheme produced a reliable model and the observations were adequately reproduced, with observed fitting particularly better for the deeper structures related to basement compared to the 2D results. The main features in the conductivity model correspond to known geological features. These included the conductivity structures obtained for the upper crust, i.e. the sedimentary sequences, underlain by more resistive material, assumed to be basement. Local resistive features in the near-surface are associated to volcanic basalts covering the sediments. Some highly resistivity horizontal and vertical bodies were associated to volcanic intrusion like dikes and sills. We observed depressions on basement consistent with half-graben structures possibly filled with sandstones.

  17. Constraints on the crustal structure of the internal Variscan Belt in SW Europe: A magnetotelluric transect along the eastern part of Central Iberian Zone, Iberian Massif

    NASA Astrophysics Data System (ADS)

    Pous, Jaume; MartíNez Poyatos, David; Heise, Wiebke; Santos, Fernando Monteiro; Galindo-ZaldíVar, Jesús; Ibarra, Pedro; Pedrera, Antonio; Ruiz-ConstáN, Ana; Anahnah, Farida; GonçAlves, Rui; Mateus, Antonio

    2011-02-01

    The Iberian Massif is the best exposed segment of the European Variscan Belt. It includes relatively well preserved terranes that were accreted by transpression along time and resulted in a number of geotectonic units that formed part of the Late Paleozoic assembly of the Pangaea Supercontinent. In SW Iberia, these units are the Central Iberian Zone (CIZ), Ossa Morena Zone (OMZ), and the South Portuguese Zone (SPZ). A 210 km long NE-SW magnetotelluric profile was carried out through the CIZ, from the OMZ-CIZ boundary toward the north, reaching the Tagus (Cenozoic) basin. Data dimensionality analysis resulted in a suitable 2-D electrical resistivity structure, allowing a 2-D inversion of the data set. Complementary available geophysical data (deep seismic, gravity and aeromagnetic) and a comparison with a detailed geological cross section led us to constrain the interpretation of the 2-D electrical resistivity structure of the CIZ crust. The results show, for the upper crust, the existence of diverse conductive/resistive bodies that correlate well with known geological features (sedimentary basins, faults, granitic plutons, mineralized systems). A mild but steady conductive band is located along the middle and lower crust that is interpreted as a mafic granulite basement. The upper section of this band connects with several elongated shallow conductors, providing further evidence for the existence, in the Central Iberian Zone, of a complex décollement system where the major faults are rooted. Such a crustal architecture is viewed as the northward continuation of the Variscan large-scale structures previously recognized in the southern sectors (OMZ and SPZ).

  18. Imaging the hydrothermal system beneath the Jigokudani valley, Tateyama volcano, Japan: implications for structures controlling repeated phreatic eruptions from an audio-frequency magnetotelluric survey

    NASA Astrophysics Data System (ADS)

    Seki, Kaori; Kanda, Wataru; Ogawa, Yasuo; Tanbo, Toshiya; Kobayashi, Tomokazu; Hino, Yuta; Hase, Hideaki

    2015-01-01

    This study focuses on the results of an audio-frequency magnetotelluric (AMT) survey across the Jigokudani valley, Tateyama volcano, Japan, to investigate the spatial relationship between the distribution of electrical resistivity and geothermal activity and to elucidate the geologic controls on both its phreatic eruption history and recent increase in phreatic activity. The AMT data were collected at eight locations across the Jigokudani valley in September 2013, with high quality data obtained from most sites, enabling the identification of an underground 2D resistivity structure from the transverse magnetic (TM) mode data. The data obtained during this study provided evidence of a large conductive region beneath the surface of the Jigokudani valley that is underlain by a resistive layer at depths below 500 m. The resistive layer is cut by a relatively conductive region that extends subvertically toward the shallow conductor. The shallow conductive region is divided into an uppermost slightly conductive section that is thought to be a lacustrine sediment layer of an extinct crater lake containing hydrothermal fluids and a lower section containing a mix of volcanic gases and hydrothermal fluids. The low permeability of the clay zone means that the uppermost clayey sediments allow the accumulation of gases in the lower section of the conductive region, suggesting the existence of a cap structure. The deep resistive layer likely consists of units similar to the granitic rocks that are widely exposed throughout the Jigokudani valley. We suggest that the relatively conductive zone that separates these granitic rocks represents a high-temperature volcanic gas conduit, given that the most active fumarole in the Jigokudani valley lies directly along the trajectory of this path.

  19. From Archean to Present - Structure and Evolution of the North American Mid-Continent through the Lens of EarthScope Magnetotelluric Data

    NASA Astrophysics Data System (ADS)

    Bedrosian, P.

    2015-12-01

    The North American mid-continent presents a window into craton growth and stabilization as well as a 1.1 Ga rifting event that nearly tore Laurentia apart. Unique to this region is the preservation of this tectonic collage, largely unmodified by subsequent tectonic events, which permits examination of if and how such events are preserved in the continental lithosphere. I will present a three-dimensional lithospheric-scale resistivity model derived from EarthScope magnetotelluric data. I will discuss details of the resistivity model in relation to lithospheric sutures, defined primarily from aeromagnetic and geochronologic data, which record the southward growth of the Laurentian margin in the Precambrian. I will examine in detail the resistivity signature of the 1.1 Ga Mid-Continent Rift System as relates to rift geometry, extent, and segmentation. I further speculate that axial drainage along the southwest rift arm created an unrecognized expanse of (concealed) Precambrian deltaic deposits in Kansas akin to the Rio Grande delta that today drains multiple sub-basins within the Rio Grande Rift. The resistivity model also reveals the distribution of highly conductive Paleoproterozoic metasediments in Minnesota, Michigan, and Wisconsin. The high conductivity is attributed to metallic sulfides and in some cases graphite. The former is considered a potential source of sulfur for multiple types of mineral deposits found in the region. Finally, I consider the imprint left within the mantle following the 1.1 Ga rifting event. Throughout the mid-continent, variations in lithospheric mantle conductivity are revealed, most likely reflecting variations in hydration (depleted versus metasomatized mantle). The spatial pattern of conductivity variations bears little resemblance to past tectonic events or to the direction of North American absolute plate motion.

  20. On the sensitivity of long-term magnetotelluric monitoring in Southern Italy and source-dependent robust single station transfer function variability

    NASA Astrophysics Data System (ADS)

    Romano, Gerardo; Balasco, Marianna; Lapenna, Vincenzo; Siniscalchi, Agata; Telesca, Luciano; Tripaldi, Simona

    2014-06-01

    Since 2007, a permanent magnetotelluric (MT) monitoring station has been working in the seismic area of the Agri Valley (Basilicata region, southern Italy) in order to investigate the stability of the MT transfer function. The station was installed in a rural area near the supposed seismogenic fault of the strong earthquake (Mw = 6.9) that struck the Agri Valley in 1857. Analysing about 4 yr of MT data characterized by a low seismic activity, the long-term systematic variations of robust single station MT transfer function estimates were observed in two different sounding period ranges. First, a significant seasonal component of variability for short periods was noted; these short periods were up to 16 s and were linked to variations in wetting/drying of soil moisture in the shallower layers. Second, a connection between the monitored estimates and global geomagnetic activity, Ap index, was found, particularly in the [20-100 s] period range. Analysing remote reference results and tipper estimates in shorter monitoring window, it was shown that such effect cannot be explained by a local or incoherent noise, and a large-scale coherent source should be claimed. We show that this effect is subtle because it produces smooth estimates, satisfying the dispersion relationship between apparent resistivity and phase, with small error bars. As the global geomagnetic activity level increases, robust estimators, like the median value, can be considered as a representative of the estimates due to the natural source, and they tend to stabilize when the Ap index approaches 10. It is also worth noting that our monitored time window includes the recent global minimum of solar activity which occurred in 2009, thus enhancing the estimate dependence on the Ap index.

  1. A Mixed-methods Evaluation of the Feasibility, Acceptability and Preliminary Efficacy of a Mobile Intervention for Methadone Maintenance Clients

    PubMed Central

    Guarino, Honoria; Acosta, Michelle; Marsch, Lisa A.; Xie, Haiyi; Aponte-Melendez, Yesenia

    2015-01-01

    Despite the recent explosion of behavioral health interventions delivered on mobile devices, little is known about factors that make such applications practical, engaging and useful to their target audience. This study reports on the feasibility, acceptability and preliminary efficacy of a prototype of a novel, interactive mobile psychosocial intervention to reduce problematic drug use among clients in methadone maintenance treatment (MMT). A mixed-methods pilot study with new MMT clients (n=25) indicated that the mobile intervention approach was feasible, and that participants found the intervention highly acceptable and useful. On 100-point visual analog scale (VAS) items, participants reported high levels of liking the program (M=75.6), and endorsed it as useful (M=77.5), easy to use (M=80.7), and containing a significant amount of new information (M=74.8). When compared with 25 study participants who received standard MMT alone, pilot participants rated their treatment significantly higher in interestingness and usefulness, and were significantly more satisfied with their treatment. In qualitative interviews, participants reported using the mobile intervention in a range of settings, including during times of heightened risk for substance use, and finding it helpful in managing drug cravings. Additionally, pilot participants showed evidence of increased treatment retention and abstinence from illicit opioids (in terms of effect size) over a 3-month period relative to those in standard MMT, suggesting the application’s potential to enhance treatment outcomes. These promising findings suggest that an evidence-based mobile therapeutic tool addressing substance use may appeal to drug treatment clients and have clinical utility as an adjunct to formal treatment. PMID:26618796

  2. A mixed-methods evaluation of the feasibility, acceptability, and preliminary efficacy of a mobile intervention for methadone maintenance clients.

    PubMed

    Guarino, Honoria; Acosta, Michelle; Marsch, Lisa A; Xie, Haiyi; Aponte-Melendez, Yesenia

    2016-02-01

    Despite the recent explosion of behavioral health interventions delivered on mobile devices, little is known about factors that make such applications practical, engaging and useful to their target audience. This study reports on the feasibility, acceptability and preliminary efficacy of a prototype of a novel, interactive mobile psychosocial intervention to reduce problematic drug use among clients in methadone maintenance treatment (MMT). A mixed-methods pilot study with new MMT clients (n = 25) indicated that the mobile intervention approach was feasible, and that participants found the intervention highly acceptable and useful. On 100-point visual analog scale (VAS) items, participants reported high levels of liking the program (M = 75.6), and endorsed it as useful (M = 77.5), easy to use (M = 80.7), and containing a significant amount of new information (M = 74.8). When compared with 25 study participants who received standard MMT alone, pilot participants rated their treatment significantly higher in interestingness and usefulness, and were significantly more satisfied with their treatment. In qualitative interviews, participants reported using the mobile intervention in a range of settings, including during times of heightened risk for substance use, and finding it helpful in managing drug cravings. Additionally, pilot participants showed evidence of increased treatment retention and abstinence from illicit opioids (in terms of effect size) over a 3-month period relative to those in standard MMT, suggesting the application's potential to enhance treatment outcomes. These promising findings suggest that an evidence-based mobile therapeutic tool addressing substance use may appeal to drug treatment clients and have clinical utility as an adjunct to formal treatment.

  3. Crust and upper mantle electrical structure of Haiyuan-Liupanshan Thrust Belt and its vicinity revealed by magnetotelluric(MT) detection

    NASA Astrophysics Data System (ADS)

    Han, S.; Liu, G.; Han, J.

    2015-12-01

    Under the auspices of SinoProbe Project, an array of 91 broad-band magnetotelluric(MT) sites across the southern segment of the Haiyuan-Liupanshan Thrust Belt (HLTB) was occupied to determine the crust and upper mantle structure of the transition zone between the Ordos Block (OB) and the Qilian Orogenic Belt (QOB).An electrical structure model of the crust and the upper mantle was finally obtained after data processing, qualitative analysis and 2D inversion of the observed data.The model revealed the deep structure of the profile.The upper crust of the HLTB is modelled as resistive while the other two tectonic units are modelled as less resistive.The massive high resistive blocks in the upper crust are seen in the HLTB.On the contrast,the lower crust is revealed as conduvtive on the whole.Middle to lower crustal high conductive layers (HCL) are seen both in the QOB and the OB.A strong lower crust conductor is revealed in the HLTB.Electrical structure of the upper mantle is revealed as resistive,respectively.The wedge structure is seen in the uppermost mantle under the Liupanshan Mountain.According to the electrical structure of the profile,the study region can be divided into three tectonic units:the QOB,the Liupan Transition Zone (LTZ,expansion of the HLTB) and the OB.The tectonic deformation for the QB manifest as thrust nappe in the upper crust and shortening strain in the lower crust.The east-dipping conductor in the west of QOB may represent the accumulated weak material in the form of middle crust flow and the HCL of the QB may be the migration channel.The fluctuation of HCL may indicate interior deformation of the OB.The LTZ is quite different from the adjacent tectonic units that fragment structure exists in the upper crust and deep thrust faults cut through the upper crust.The conductor located in the lower crust is interpreted as partial melt zone as a result of the vertical decompression process.Joint interpretation of the electrical structure and the

  4. Topographic effect in marine magnetotelluric data and implications to the electrical conductivity structure of the mantle beneath the Tristan da Cunha hotspot area in southern Atlantic

    NASA Astrophysics Data System (ADS)

    Baba, K.; Chen, J.; Jegen, M. D.; Utada, H.; Kammann, J.; Geissler, W. H.

    2015-12-01

    Kiyoshi Baba1,2, Jin Chen2, Marion Jegen2, Hisashi Utada1, Janina Kammann3, and Wolfram H. Geissler4 1. Earthquake Research Institute, The University of Tokyo2. GEOMAR, Helmholtz Centre for Ocean Research Kiel3. University of Hamburg4. Alfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchTristan da Cunha Island is one of the hot spots in the Atlantic Ocean. The discussion about its source have not reached consensus yet whether it is in shallow asthenosphere or deeper mantle, because of lack of the geophysical observations in the area. A marine magnetotelluric (MT) experiment was conducted together with seismological observations in the area in 2012-2013 by collaboration between Germany and Japan, in order to give further constraints on the physical state of the mantle beneath the area. A total of 26 seafloor stations were deployed around the Tristan da Cunha islands and available data were retrieved from 23 stations. The MT responses were estimated for those available sites. The detailed data processing will be presented by Chen et al. in this meeting. In this study, we report on the topographic effect on the observed MT responses. During the cruises for seafloor instruments deployment and recovery, detailed bathymetry data were collected around the stations by onboard multi-narrow beam echo sounding (MBES) system. We compiled the MBES data and ETOPO1 data to incorporate the local and regional topography. Then, we applied iterative topographic effect correction and one-dimensional (1-D) conductivity structure inversion. The MT responses of each station were simulated by three-dimensional (3-D) forward modeling. Preliminary results show the overall feature of the observed MT responses at some stations were qualitatively well explained by the seafloor topography included in the conductivity structure model over the 1-D mantle structure. An extreme example is the station near the Tristan da Cunha Island. The impedance phases varies ~300 degrees in

  5. Magnetotelluric and audiomagnetotelluric groundwater survey along the Humu'ula portion of Saddle Road near and around the Pohakuloa Training Area, Hawaii

    USGS Publications Warehouse

    Pierce, Herbert A.; Thomas, Donald M.

    2009-01-01

    The Pohakuloa Training Area (PTA), operated by the U.S. Army on the Big Island of Hawaii, is in need of a reliable potable water supply to sustain ongoing operations by staff and trainees. In an effort to acquire baseline hydrologic data with which to develop a plan for providing that water, a series of magnetotelluric (MT) geophysical surveys was performed that spanned the Mauna Loa/Mauna Kea Saddle region of Hawaii Island. These surveys provided electrical resistivity profiles and resistivity maps at several elevations along the axis of the field measurements that can be interpreted to yield information on the depth to the water table. In 2004 a preliminary sequence of 23 audiomagnetotelluric (AMT) soundings was collected along Saddle Road extending from the Waikii Ranch area, west of the PTA, to Department of Hawaiian Home Lands Humu'ula properties east of the Mauna Kea access road. The results of those soundings showed that highly resistive rocks, consistent with dry basalts, were present to depths of at least one kilometer, the maximum depth to which the AMT technique can reliably reach in Hawaii's rocks. A second survey was conducted in 2008 using MT instruments capable of recovering resistivity data to depths of several kilometers below sea level where saturated formations are known to exist. A total of 30 MT soundings was performed along a roughly east to west transect that extended from the (recently acquired) Keamuku PTA lands on the west to as far as the County of Hawaii's upper Kaumana water supply well to the east. Inversion and processing of the field data yielded an electrical cross-section following the Saddle that roughly parallels the geologic contact between the Mauna Kea and Mauna Loa lavas. Several additional electrical sections were constructed normal to the main transect to investigate the three-dimensional nature of the contact. These resistivity data and models suggest that the elevation of saturated rock in places are 400 to 600 meters

  6. Understanding hydrothermal circulation patterns at a low-enthalpy thermal spring using audio-magnetotelluric data: A case study from Ireland

    NASA Astrophysics Data System (ADS)

    Blake, Sarah; Henry, Tiernan; Muller, Mark R.; Jones, Alan G.; Moore, John Paul; Murray, John; Campanyà, Joan; Vozar, Jan; Walsh, John; Rath, Volker

    2016-09-01

    Kilbrook spring is a thermal spring in east-central Ireland. The temperatures in the spring are the highest recorded for any thermal spring in Ireland (maximum of 25 °C). The temperature is elevated with respect to average Irish groundwater temperatures (9.5-10.5 °C), and represents a geothermal energy potential, which is currently under evaluation. A multi-disciplinary investigation based upon an audio-magnetotelluric (AMT) survey, and hydrochemical analysis including time-lapse temperature and chemistry measurements, has been undertaken with the aims of investigating the provenance of the thermal groundwater and characterising the geological structures facilitating groundwater circulation in the bedrock. The three-dimensional (3-D) electrical resistivity model of the subsurface at Kilbrook spring was obtained by the inversion of AMT impedances and vertical magnetic transfer functions. The model is interpreted alongside high resolution temperature and electrical conductivity measurements, and a previous hydrochemical analysis. The hydrochemical analysis and time-lapse measurements suggest that the thermal waters have a relatively stable temperature and major ion hydrochemistry, and flow within the limestones of the Carboniferous Dublin Basin at all times. The 3-D resistivity model of the subsurface reveals a prominent NNW aligned structure within a highly resistive limestone lithology that is interpreted as a dissolutionally enhanced strike-slip fault, of Cenozoic age. The karstification of this structure, which extends to depths of at least 500 m directly beneath the spring, has provided conduits that facilitate the operation of a relatively deep hydrothermal circulation pattern (likely estimated depths between 560 and 1000 m) within the limestone succession of the Dublin Basin. The results of this study support the hypothesis that the winter thermal maximum and simultaneous increased discharge at Kilbrook spring is the result of rapid infiltration, heating and

  7. Magnetotelluric deep soundings, gravity and geoid in the south São Francisco craton: Geophysical indicators of cratonic lithosphere rejuvenation and crustal underplating

    NASA Astrophysics Data System (ADS)

    Pinto, Luis Gustavo Rodrigues; de Pádua, Marcelo Banik; Ussami, Naomi; Vitorello, Ícaro; Padilha, Antonio Lopes; Braitenberg, Carla

    2010-09-01

    In the south São Francisco craton a circular and 8-m amplitude geoid anomaly coincides with the outcropping terrain of an Archean-Paleoproterozoic basement. Broadband magnetotelluric (MT) data inversions of two radial profiles within the positive geoid and Bouguer gravity anomaly yield geo-electrical crustal sections, whereby the lower crust is locally more conductive (10 to 100 Ωm) in spatial coincidence with a denser lower crust modeled by the gravity data. This anomalous lower crust may have resulted from magmatic underplating, associated with Mesoarchean and Proterozoic episodes of tholeiitic dike intrusion. Long-period MT soundings reveal a low electrical resistivity mantle (20 to 200 Ωm) from depths beyond 120 km. Forward geoid modeling, using the scope of the low electrical resistivity region within the mantle as a constraint, entails a density increase (40 to 50 kg/m 3) possibly due to Fe enrichment of mantle minerals. However, this factor alone does not explain the observed resistivity. A supplemented presence of small amounts of percolated carbonatite melting (~ 0.005 vol.%), dissolved water and enhanced oxygen fugacity within the peridotitic mantle are viable agents that could explain the less resistive upper mantle. We propose that metasomatic processes confined in the sub-continental lithospheric mantle foster the conditions for a low degree melting with variable CO 2, H 2O and Fe content. Even though the precise age of this metasomatism is unknown it might be older than the Early Cretaceous based on the evidence that a high-degree of melting in a lithospheric mantle impregnated with carbonatites originated the tholeiitic dike intrusions dispersed from the southeastern border of the São Francisco craton, during the onset of the lithosphere extension and break-up of the western Gondwana. The proxies are the NE Paraná and Espinhaço (130 Ma, Ar/Ar ages) tholeiitic dikes, which contain (~ 3%) carbonatites in their composition. The occurrence of a

  8. Structural influence on the evolution of the pre-Eonile drainage system of southern Egypt: Insights from magnetotelluric and gravity data

    NASA Astrophysics Data System (ADS)

    Roden, Jeff; Abdelsalam, Mohamed G.; Atekwana, Estella; El-Qady, Gad; Tarabees, Elhamy Aly

    2011-12-01

    The Wadi Kubbaniya in the Western Desert of Egypt north of the City of Aswan has been interpreted as the downstream continuation of the Wadi Abu Subeira, comprising an ancient W- and NW-flowing river system originating from the Precambrian crystalline rocks of the Red Sea Hills which were uplifted during the Miocene in association with the opening of the Red Sea. This drainage system is thought to have been active before the onset of the N-flowing Egyptian Nile which started ˜6 Ma with the Eonile phase; an event that resulted in carving of ˜1000 km long canyon (the Eonile canyon) extending from the Mediterranean Sea in the north to Aswan in the south due to the Messinian Salinity Crisis. This study utilizes geophysical data to examine the role of regional tectonics and local structures in controlling the evolution of the pre-Eonile drainage system. Magnetotelluric (MT) and gravity surveys were conducted along two ˜5 km-long profiles across the NW-trending Wadi Kubbaniya. Two-dimensional (2D) inversion of MT data and gravity models indicate the Wadi Kubbaniya is filled with loosely-consolidated sandstone and conglomerate that extend to a depth of ˜150-200 m into Cretaceous sandstone formations which overlie Precambrian crystalline rocks. These results were evaluated in terms of two end-member models; an incision model in which the 150-200 m thick sedimentary rocks were considered as being deposited within an incised valley that was carved into bedrock, or a structural model in which the sedimentary rocks are considered as filling a NW-trending graben controlled by normal faults that deform the Cretaceous sandstone formations and the underlying Precambrian crystalline rocks. Geological observations as well as supporting seismic data favor the interpretation that the Wadi Kubbaniya is a NW-trending graben similar to other extensional structures found 400 km northwest along-strike of Wadi Kubbaniya. These structures are impressively parallel to the western

  9. Implications for the lithospheric geometry of the Iapetus suture beneath Ireland based on electrical resistivity models from deep-probing magnetotellurics

    NASA Astrophysics Data System (ADS)

    Rao, C. K.; Jones, Alan G.; Moorkamp, Max; Weckmann, Ute

    2014-08-01

    Broad-band and long period magnetotelluric (MT) data were acquired at 39 stations along five NNW-SSE profiles crossing the Iapetus Suture Zone (ISZ) in Ireland. Regional strike analyses indicate that the vast majority of the MT data is consistent with an assumption of a 2-D geo-electric strike direction. Strike is N52°E for the three easternmost profiles and N75°E for the two westernmost profiles; these directions correlate well with the observed predominant geological strike of the study region. 2-D inversions of the galvanic distortion-corrected TE and TM mode data from each profile are shown and discussed. As mapped geological variations between the neighbouring profiles suggest a heterogeneous subsurface, it is important to verify the robustness of the presence and geometries of prominent conductivity anomalies by employing 3-D forward and inverse modelling. A high conductivity layer (resistivity of 1-10 Ωm), found at middle to lower crustal depths and presumed to be indicative of metamorphosed graphitic sediments rich in sulphides deposited during the convergence of the Laurentian and Avalonian continents, essentially constitutes the electrical signature of the ISZ. Shallow conductors observed are probably due to black shales that were widely deposited within the sedimentary accretionary wedge during Ordovician time. We interpret the moderately low resistivity at shallow depths from west to east across Ireland as indicative of an increase in maturity of the black shales in the easterly direction. From our conductivity models the southern extent of the ISZ is inferred to lie between the Navan Silvermines Fault and the Navan Tipperary Line, and shows clear resistivity contrast along all the profiles at the southern MT stations. The change in resistivity deduced from the 2-D models is spatially related to the composition of Lower Palaeozoic Ordovician, Silurian, Devonian and Carboniferous rocks. At upper mantle depths of about 60 km, a high conductivity block

  10. Magnetotelluric evidence of the tectonic boundary between the Río de La Plata Craton and the Pampean terrane (Chaco-Pampean Plain, Argentina): The extension of the Transbrasiliano Lineament

    NASA Astrophysics Data System (ADS)

    Peri, Verónica Gisel; Pomposiello, María Cristina; Favetto, Alicia; Barcelona, Hernan; Rossello, Eduardo Antonio

    2013-11-01

    The Transbrasiliano Lineament represents a continental shear belt that transversely intersects the South American Platform from NNE to SSW. Much evidence of this lineament exists to the north, but it remains uncharacterized in the distal Andean foreland to the south, where it is associated with the tectonic boundary between the Río de la Plata Craton and the Pampean terrane. This tectonic boundary is mostly unexposed in the Chaco-Pampean Plain (Argentina). Debate continues about the existence of an east- or west-dipping subduction zone and a later collisional event between the terranes. Here, we report the results of a magnetotelluric survey along a W-E profile at 27° S between 63° 45‧ and 60° 30‧ W. To characterize the geoelectric structure, the magnetotelluric data were processed, the dimensionality and distortion of the geoelectrical medium were analyzed, and a 2-D inversion model was developed. The distribution of the resistivities at the lithospheric scale indicates a highly resistive crust (20,000 Ω m) on the east side of the profile that is correlated with the Río de La Plata Craton. On the west side of the profile, a less resistive but still highly resistive crust (12,000 Ω m) is correlated with the Pampean terrane. The highly resistive blocks are separated by an east-dipping conductive anomaly (150-250 Ω m) that is correlated with the Transbrasiliano Lineament. This conductive feature is consistent with the east-dipping subduction model and can be explained by the presence of graphite in paleosutures in long-stable geological terranes. Oblique convergence between the terranes may have developed the transpressional shear belt. The results provide new geophysical evidence of the tectonic boundary between the Río de La Plata Craton and the Pampean terrane beneath the Chaco-Pampean Plain that extends southward into the Transbrasiliano Lineament. The study also improves the knowledge of the amalgamation of Western Gondwana.

  11. A 3D magnetotelluric inversion model for the study of ore-forming related processes in the central Skellefte district

    NASA Astrophysics Data System (ADS)

    Garcia Juanatey, M. A.; Hübert, J.; Tryggvason, A.; Juhlin, C.; Pedersen, L. B.; Bauer, T. E.; Dehghannejad, M.

    2012-12-01

    Broadband MT data were acquired in the Skellefte district, an important mining area in northern Sweden, as part of the VINNOVA project "4D modeling of the Skellefte District". The project aims to provide a better understanding of the local and regional processes that took place in the past and, thus, provide a framework for new exploration strategies to target deeper deposits in the area. The new MT data, acquired in the central part of the district, consist of 36 stations along two parallel profiles that follow seismic reflection lines and potential field modeling studies in the area. The dimensionality and quality of the data set were carefully analyzed and 2D and 3D inversions were performed. 2D inversions provided a basis to compare with other MT surveys in the area and to some extent validate 3D inversion results. 3D inversion was deemed necessary given the complexity of the geological setting of the studied area. The algorithms used were the data space based REBOCC and WSINV3DMT methods. For the 2D inversion only the determinant of the impedance tensor was used, while for the 3D inversion all its elements were considered. Prior to 3D inversion, new error floors were calculated using individual 1D inversions of the off-diagonal components of the impedance tensor. The obtained models have an RMS value of ~2, and share the main regional features. A detailed comparison reveals the superiority of the 3D model, both in model structures and data fit. An interpretation of the 3D model is presented using also results from previous geophysical studies. The most interesting features in the model are conductors associated to prominent shear zones (from 1 to 12 km deep) and hydrothermally altered zones within the Skellefte Group rocks (between 250 and 6000 m depth). In addition, it is possible to identify faults associated to the transport of hydrothermal fluids that might be closely related to ore forming processes.

  12. Regional conductivity structures of the northwestern segment of the North American Plate derived from 3-D inversion of USArray magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Meqbel, N. M.; Egbert, G. D.; Kelbert, A.

    2010-12-01

    Long period (10-20,000 s) magnetotelluric (MT) data are being acquired in a series of temporary arrays deployed across the continental United States through EMScope, a component of EarthScope, a multidisciplinary decade-long project to study the structure and evolution of the North American Continent. MT deployments in 2006-2010 have so far acquired data at 237 sites on an approximately regular grid, with the same nominal spacing as the USArray broadband seismic transportable array (~70 km), covering the Northwestern US, from the Oregon-Washington coast across the Rocky Mountains, into Montana and Wyoming. Preliminary 3-D inversion results (Patro and Egbert; 2008), based on data from the 110 westernmost “Cascadia” sites collected in the first two years, revealed extensive areas of high conductivity in the lower crust beneath the Northwest Basin and Range (NBR), inferred to result from fluids (including possibly partial melt at depth) associated with magmatic underplating, and beneath the Cascade Mountains, probably due to fluids released by the subducting Juan de Fuca slab. Here we extend this study, refining and further testing the preliminary results from Cascadia, and extending the inversion domain to the East, to include all of the EarthScope data. Although site spacing is very broad, distinct regional structures are clearly evident even in simple maps of apparent resistivity, phase and induction vectors. For the 3-D inversion we are using the parallelized version of our recently developed Modular Code (ModEM), which supports Non-Linear Conjugate Gradient and several Gauss-Newton type schemes. Our initial 3-D inversion results using 212 MT sites, fitting impedances and vertical field transfer functions (together and separately) suggest several conductive and resistive structures which appear to be stable and required by the measured data. These include: - A conductive structure elongated in the N-S direction underneath the volcanic arc of the Cascadia

  13. 3D and 2D inversion of magnetotelluric data from the continental collision zone in the Pamirs and Tien Shan, Central Asia

    NASA Astrophysics Data System (ADS)

    Sass, Paul; Ritter, Oliver; Rybin, Anatolii; Batalev, Vladislav

    2013-04-01

    Many geodynamic processes governing intra-continental collisional orogeny are largely unexplained and controversial. A key question is the state and dynamic behaviour of the lithosphere at middle and lower crustal levels while continental collision progresses. The Pamir - Tien Shan region in Central Asia may be the best location on Earth to study such lithospheric deformation processes in situ. The mountain ranges and high plateaus formed at the tip of the north-western Indian promontory through the Cenozoic experienced rates of shortening similar to the adjacent Himalaya-Tibet system. Today, the Pamir - Tien Shan orogenic belt hosts some of the deepest active intra-continental subduction zones on Earth and absorbs the highest strain rate over the shortest distance that is manifested in the India-Asia collision zone. The multi-disciplinary Tien Shan - Pamir Geodynamic Program (TIPAGE) was designed to address some of the geodynamic key questions in this region. A magnetotelluric (MT) survey was carried out in concert with other geophysical and geological observations in Kyrgyzstan and Tajikistan, predominantly along a 350 km long and 50 km wide corridor from southern Tajikistan to Osh in Kyrgyzstan across the Pamir Plateau and southern Tien Shan mountain ranges. In total we recorded MT data at 178 stations, 26 of them combine long-period and broad band recordings. We present and compare 2D and 3D MT inversion results. Strike analysis of the data revealed an overall mean geo-electric strike direction consistent with the predominant tectonic trends. 2D inversion yields a reasonable data fit, with exception of some sites which exhibit phases above 90 degrees. 3D inversion was carried out with the ModEM package. We inverted for all four impedance tensor components and the vertical magnetic transfer functions. Topography was also included. The 3D models are generally in agreement with the 2D results but achieve a better data fit, particularly phases which could not be

  14. Methods for enhancing mapping of thermal fronts in oil recovery

    DOEpatents

    Lee, D.O.; Montoya, P.C.; Wayland, J.R. Jr.

    1984-03-30

    A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the controlled source audio frequency magnetotelluric (CSAMT) technique is disclosed. This method includes the steps of: (1) preparing a CSAMT-determined topological resistivity map of the production field; (2) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the conate water of the production field; (3) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (4) mathematically comparing the maps from step (1) and step (3) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

  15. Assessment of geothermal energy potential by geophysical methods: Nevşehir Region, Central Anatolia

    NASA Astrophysics Data System (ADS)

    Kıyak, Alper; Karavul, Can; Gülen, Levent; Pekşen, Ertan; Kılıç, A. Rıza

    2015-03-01

    In this study, geothermal potential of the Nevşehir region (Central Anatolia) was assessed by using vertical electrical sounding (VES), self-potential (SP), magnetotelluric (MT), gravity and gravity 3D Euler deconvolution structure analysis methods. Extensive volcanic activity occurred in this region from Upper Miocene to Holocene time. Due to the young volcanic activity Nevşehir region can be viewed as a potential geothermal area. We collected data from 54 VES points along 5 profiles, from 28 MT measurement points along 2 profiles (at frequency range between 320 and 0.0001 Hz), and from 4 SP profiles (total 19 km long). The obtained results based on different geophysical methods are consistent with each other. Joint interpretation of all geological and geophysical data suggests that this region has geothermal potential and an exploration well validated this assessment beyond doubt.

  16. Metasomatism and current state of the lithospheric mantle beneath the Nógrád-Gömör Volcanic Field constrained by trace element modelling and magnetotelluric survey

    NASA Astrophysics Data System (ADS)

    Klébesz, Rita; Patkó, Levente; Novák, Attila; Wesztergom, Viktor; Szabó, Csaba

    2016-04-01

    The Nógrád-Gömör Volcanic Field (NGVF) is one of the five mantle xenolith bearing alkali basalt locations in the Carpathian-Pannonian Region, where Plio-Pleistocene alkali basalt brought to the surface lherzolite and wehrlite xenoliths. Petrographic and geochemical signature (i.e. newly formed clinopyroxene and olivine grains, Ti, Al, Fe, Mn and LRRE enrichment in rock-forming minerals) of the wehrlite xenoliths suggest that a portion of the upper mantle was transformed to wehrlite beneath the NGVF by upward migrating mafic melt agents. Based on trace element modelling, we argue that the metasomatic agent had an OIB-like trace element composition, similar to the host alkali basalts. In order to study the current state of the lithospheric mantle and to test whether the spatial distribution of the metasomatism can be imaged, magnetotelluric (MT) survey was carried out. Long period MT data were collected at 14 locations along a ~50 km long NNW-SSE profile in the NGVF. The lithosphere-asthenosphere boundary was detected at 70-90 km of depth. A low resistivity anomaly (~5-10 Ωm) was observed at 30-45 km in depth below the central part of the NNW-SSE profile, indicating the presence of a conductive body barely below the Moho. We suggest that the low resistivity body is related to the presence of residual, connected melt and/or the conductivity differences between the lherzolitic and wehrlitic mantle domain due to different chemical composition and ratio of the rock-forming minerals.

  17. Recent large fold nucleation in the upper crust: Insight from gravity, magnetic, magnetotelluric and seismicity data (Sierra de Los Filabres-Sierra de Las Estancias, Internal Zones, Betic Cordillera)

    NASA Astrophysics Data System (ADS)

    Pedrera, Antonio; Galindo-Zaldívar, Jesús; Ruíz-Constán, Ana; Duque, Carlos; Marín-Lechado, Carlos; Serrano, Inmaculada

    2009-01-01

    Rheological heterogeneities in the upper-crust have a close relationship with the fold position where rigid bodies could constitute initial perturbations that allow the nucleation of folds. Consequently, establish the position and geometry of anomalous rocks located in the upper-crust by geophysical studies help to understand the folded structure observed on surface. New geological observations in the field, along with gravity, magnetic, magnetotelluric and seismicity data, reveal the subsurface structure in the Sierra de Los Filabres-Sierra de Las Estancias folded region part of the Alpine belt in southern Spain. The geometry of the upper crust is determined by geological field data, 2D gravity models, 2D magnetic models and 2D MT resistivity model, while seismicity evidences the location of the deep active structures. These results allow us to propose that a basic rock body at 4 to 9 km depth has determined the nucleation and development of the Sierra de Los Filabres kilometric antiform. N-vergent large late folds are subjected to a variable present-day stress field. Earthquake focal mechanisms suggest the presence in depth of a regional NW-SE compressive stress field. However, most of the seismogenetic structures do not extend up to the surface, where NW-SE and WNW-ESE outcropping active normal faults are observed, thus indicating a NE-SW extension in the upper crust simultaneous to orthogonal NW-SE compression related to reverse faults and minor folds developed in the Eastern Almanzora Corridor and in the nearby Huércal-Overa Basin. The recent and active tectonic studies of cordilleras hinterland subjected to late folding greatly benefits from the integration of surface observations together with geophysical data.

  18. Efficiency of Pareto joint inversion of 2D geophysical data using global optimization methods

    NASA Astrophysics Data System (ADS)

    Miernik, Katarzyna; Bogacz, Adrian; Kozubal, Adam; Danek, Tomasz; Wojdyła, Marek

    2016-04-01

    Pareto joint inversion of two or more sets of data is a promising new tool of modern geophysical exploration. In the first stage of our investigation we created software enabling execution of forward solvers of two geophysical methods (2D magnetotelluric and gravity) as well as inversion with possibility of constraining solution with seismic data. In the algorithm solving MT forward solver Helmholtz's equations, finite element method and Dirichlet's boundary conditions were applied. Gravity forward solver was based on Talwani's algorithm. To limit dimensionality of solution space we decided to describe model as sets of polygons, using Sharp Boundary Interface (SBI) approach. The main inversion engine was created using Particle Swarm Optimization (PSO) algorithm adapted to handle two or more target functions and to prevent acceptance of solutions which are non - realistic or incompatible with Pareto scheme. Each inversion run generates single Pareto solution, which can be added to Pareto Front. The PSO inversion engine was parallelized using OpenMP standard, what enabled execution code for practically unlimited amount of threads at once. Thereby computing time of inversion process was significantly decreased. Furthermore, computing efficiency increases with number of PSO iterations. In this contribution we analyze the efficiency of created software solution taking under consideration details of chosen global optimization engine used as a main joint minimization engine. Additionally we study the scale of possible decrease of computational time caused by different methods of parallelization applied for both forward solvers and inversion algorithm. All tests were done for 2D magnetotelluric and gravity data based on real geological media. Obtained results show that even for relatively simple mid end computational infrastructure proposed solution of inversion problem can be applied in practice and used for real life problems of geophysical inversion and interpretation.

  19. Effect of clay surface silylation and dispersion method on the mechanical properties of epoxy-clay composites

    NASA Astrophysics Data System (ADS)

    Romeo, V.; Piscitelli, F.; Scamardella, A. M.; Amendola, E.; Lavorgna, M.; Mensitieri, G.; Acierno, D.

    2010-06-01

    Epoxy-clay nanocomposites were prepared dispersing both pristine and functionalized sodium montmorillonite powders (1 and 3 wt%) in epoxy resin by means of sonication and sonication/ball-milling high energy mixing processes. Silylation reaction of sodium montmorillonite (Na-MMT) was performed by using 3-aminopropyltriethoxysilane (A1100) and N-2-aminoethyl)-3-aminopropyltrimethoxysilane (A1120) as coupling agents. Morphological investigations showed that the MMT stacks are only slightly intercalated. However the surface modification of MMT clays improves the interfacial interaction with epoxy resins and the nanocomposites obtained through sonication exhibit enhanced mechanical properties compared to the nanocomposites prepared from pristine Na-MMT.

  20. Active supports and force optimization for the MMT primary mirror

    NASA Astrophysics Data System (ADS)

    Martin, Hubert M.; Callahan, Shawn P.; Cuerden, Brian; Davison, Warren B.; Derigne, S. T.; Dettmann, Lee R.; Parodi, G.; Trebisky, T. J.; West, Steve C.; Williams, Joseph T.

    1998-08-01

    We describe the active support system and optimization of support forces for the 6.5 m primary mirror for the Multiple Mirror Telescope Conversion. The mirror was figured to an accuracy of 26 nm rms surface error, excluding certain flexible bending modes that will be controlled by support forces in the telescope. On installation of the mirror into its telescope support cell, an initial optimization of support forces is needed because of minor differences between the support used during fabrication and that in the telescope cell. The optimization is based on figure measurements made interferometrically in the vibration- isolated test tower of the Steward Observatory Mirror Lab. Actuator influence functions were determined by finite- element analysis and verified by measurement. The optimization is performed by singular value decomposition of the influence functions into normal modes. Preliminary results give a wavefront accuracy better than that of the atmosphere in 0.11 arcsecond seeing.

  1. MMT Hypervelocity Star Survey. II. Five New Unbound Stars

    NASA Astrophysics Data System (ADS)

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J.

    2012-05-01

    We present the discovery of five new unbound hypervelocity stars (HVSs) in the outer Milky Way halo. Using a conservative estimate of Galactic escape velocity, our targeted spectroscopic survey has now identified 16 unbound HVSs as well as a comparable number of HVSs ejected on bound trajectories. A Galactic center origin for the HVSs is supported by their unbound velocities, the observed number of unbound stars, their stellar nature, their ejection time distribution, and their Galactic latitude and longitude distribution. Other proposed origins for the unbound HVSs, such as runaway ejections from the disk or dwarf galaxy tidal debris, cannot be reconciled with the observations. An intriguing result is the spatial anisotropy of HVSs on the sky, which possibly reflects an anisotropic potential in the central 10-100 pc region of the Galaxy. Further progress requires measurement of the spatial distribution of HVSs over the southern sky. Our survey also identifies seven B supergiants associated with known star-forming galaxies; the absence of B supergiants elsewhere in the survey implies there are no new star-forming galaxies in our survey footprint to a depth of 1-2 Mpc.

  2. MMT HYPERVELOCITY STAR SURVEY. II. FIVE NEW UNBOUND STARS

    SciTech Connect

    Brown, Warren R.; Geller, Margaret J.; Kenyon, Scott J. E-mail: mgeller@cfa.harvard.edu

    2012-05-20

    We present the discovery of five new unbound hypervelocity stars (HVSs) in the outer Milky Way halo. Using a conservative estimate of Galactic escape velocity, our targeted spectroscopic survey has now identified 16 unbound HVSs as well as a comparable number of HVSs ejected on bound trajectories. A Galactic center origin for the HVSs is supported by their unbound velocities, the observed number of unbound stars, their stellar nature, their ejection time distribution, and their Galactic latitude and longitude distribution. Other proposed origins for the unbound HVSs, such as runaway ejections from the disk or dwarf galaxy tidal debris, cannot be reconciled with the observations. An intriguing result is the spatial anisotropy of HVSs on the sky, which possibly reflects an anisotropic potential in the central 10-100 pc region of the Galaxy. Further progress requires measurement of the spatial distribution of HVSs over the southern sky. Our survey also identifies seven B supergiants associated with known star-forming galaxies; the absence of B supergiants elsewhere in the survey implies there are no new star-forming galaxies in our survey footprint to a depth of 1-2 Mpc.

  3. STS-114: Discovery Flight Day 7 Post MMT Meeting

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Wayne Hale Space Shuttle Deputy Program Manager, and Chuck Campbell Subsystem Engineer in Aerothermodynamics are seen in this post mission management teem briefing on this seventh day of space flight. Wayne Hale begins with talking about how the International Space Station has been resupplied with its necessities, and that the Control Moment Gyroscope (CSG) has been replaced. Hale expresses his concern about the health of the Space Shuttle Discovery with the two protruding gap fillers present, and the aerothermodynamics surrounding the gap fillers. These concerns led to the conclusion to have spacewalker Stephen Robinson remove the gap fillers during EVA-3. Campbell shows a video of the protruding gap filler aft of Nose Landing Gear Door (NLGD). Campbell and Hale answer questions from the news media about the risks of performing this spacewalk, boundary layer transitions, flight safety, inspections, and temperature concerns.

  4. Geothermal investigations in Idaho, Part 2, An evaluation of thermal water in the Bruneau-Grand View area, southwest Idaho - with a section on a reconnaissance audio-magnetotelluric survey

    USGS Publications Warehouse

    Young, H.W.; Whitehead, R.L.; Hoover, Donald B.; Tippens, C.L.

    1974-01-01

    The Bruneau-Grand View area occupies about 1,100 square miles in southwest Idaho and is on the southern flank of the large depression (possibly a graben) in which lies the western Snake River Plain. The igneous and sedimentary rocks in the area range in age from Late Cretaceous to Holocene. They are transected by a prominent system of northwest-trending faults. For discussion purposes, the aquifers in the area have been separated into two broad units: (1) the volcanic-rock aquifers, and (2) the overlying sedimentary-rock aquifers. The Idavada Volcanics or underlying rock units probably constitute the reservoir that contains thermal water. An audio-magnetotelluric survey indicates that a large conductive zone having apparent resistivities approaching 2 ohm-metres underlies a part of the area at a relatively shallow depth. Chemical analysis of 94 water samples collected in 1973 show that the thermal waters in the area are of a sodium bicarbonate type. Although dissolved-solids concentrations of water ranged from 181 to 1,100 milligrams per litre (mg/l) in the volcanic-rock aquifers, they were generally less than 500 mg/l. Measured chloride concentrations of water in the volcanic-rock aquifers were less than 20 mg/l. Temperatures of water from wells and springs ranged from 9.5 to 83.0 degrees C. Temperatures of water from the volcanic-rock aquifers ranged from 40.0 to 83.0 degrees C, whereas temperatures of water from the sedimentary-rock aquifers seldom exceeded 35 degrees C. Aquifer temperatures at depth, as estimated by silica and sodium-potassium-calcium geochemical thermometers, probably do not exceed 150 degrees C. However, a mixed-water geochemical thermometer indicates that temperatures at depth may exceed 180 degrees C. The gas in water from the volcanic-rock aquifers is composed chiefly of atmospheric oxygen and nitrogen. Methane gas (probably derived from organic material) was also found in some water from the sedimentary-rock aquifers. The thermal waters

  5. Magnetotelluric characterization through the Ambargasta-Sumampa Range: The connection between the northern and southern trace of the Río de La Plata Craton - Pampean Terrane tectonic boundary

    NASA Astrophysics Data System (ADS)

    Peri, V. Gisel; Barcelona, Hernan; Pomposiello, M. Cristina; Favetto, Alicia

    2015-04-01

    The South American Platform was part of the Western Gondwana, a collage of plates of different ages assembled in late Neoproterozoic to Cambrian times. The Transbrasiliano Lineament, a continental shear belt that transversely intersects this platform from NE to SW, has its southern expression in the tectonic boundary between the Río de La Plata Craton and the Pampean Terrane. Magnetotelluric long-period data in a W-E profile (29°30‧ S) that crosses the Ambargasta-Sumampa Range and the Chaco-Pampean Plain were obtained to connect information of this mostly inferred tectonic boundary. A 2-D inversion model shows the Chacoparanense basin, Río Dulce lineament, Ambargasta-Sumampa Range and Salina de Ambargasta in the upper crust. At mid-to-lower crust and 40 km to the east of the Ambargasta-Sumampa Range, a discontinuity (500-2000 Ω m) of 20-km-wide separates two highly resistive blocks, the Río de La Plata Craton (6000-20,000 Ω m) in the east, and the Pampean Terrane (5000-20,000 Ω m) in the west. This discontinuity represents the tectonic boundary between both cratons and could be explained by the presence of graphite. The geometry of the Pampean Terrane suggests an east-dipping paleo-subduction. Our results are consistent with gravimetric and seismicity data of the study area. A more conductive feature beneath the range and the tectonic boundary was associated with the NE-SW dextral transpressive system evidenced by the mylonitic belts exposed in the Eastern Pampean Ranges. This belt represents a conjugate of the mega-shear Transbrasiliano Lineament and could be explained by fluid-rock interaction by shearing during hundreds of years. The eastern border of the Ambargasta-Sumampa Range extends the trace of the Transbrasiliano Lineament. The electrical Moho depth (40 km to the west and 35 km to the east) was identified by a high electrical contrast between the crust and upper mantle. The upper mantle shows a resistive structure beneath the Río de La Plata

  6. Combination of Geophysical Methods to Support Urban Geological Mapping

    NASA Astrophysics Data System (ADS)

    Gabàs, A.; Macau, A.; Benjumea, B.; Bellmunt, F.; Figueras, S.; Vilà, M.

    2014-07-01

    Urban geological mapping is a key to assist management of new developed areas, conversion of current urban areas or assessment of urban geological hazards. Geophysics can have a pivotal role to yield subsurface information in urban areas provided that geophysical methods are capable of dealing with challenges related to these scenarios (e.g., low signal-to-noise ratio or special logistical arrangements). With this principal aim, a specific methodology is developed to characterize lithological changes, to image fault zones and to delineate basin geometry in the urban areas. The process uses the combination of passive and active techniques as complementary data: controlled source audio-magnetotelluric method (CSAMT), magnetotelluric method (MT), microtremor H/V analysis and ambient noise array measurements to overcome the limitations of traditional geophysical methodology. This study is focused in Girona and Salt surrounding areas (NE of Spain) where some uncertainties in subsurface knowledge (maps of bedrock depth and the isopach maps of thickness of quaternary sediments) need to be resolved to carry out the 1:5000 urban geological mapping. These parameters can be estimated using this proposed methodology. (1) Acoustic impedance contrast between Neogene sediments and Paleogene or Paleozoic bedrock is detected with microtremor H/V analysis that provides the soil resonance frequency. The minimum value obtained is 0.4 Hz in Salt city, and the maximum value is the 9.5 Hz in Girona city. The result of this first method is a fast scanner of the geometry of basement. (2) Ambient noise array constrains the bedrock depth using the measurements of shear-wave velocity of soft soil. (3) Finally, the electrical resistivity models contribute with a good description of lithological changes and fault imaging. The conductive materials (1-100 Ωm) are associated with Neogene Basin composed by unconsolidated detrital sediments; medium resistive materials (100-400 Ωm) correspond to

  7. Detecting Taiwan's Shanchiao Active Fault Using AMT and Gravity Methods

    NASA Astrophysics Data System (ADS)

    Liu, H.-C.; Yang, C.-H.

    2009-04-01

    Taiwan's Shanchiao normal fault runs in a northeast-southwest direction and is located on the western edge of the Taipei Basin in northern Taiwan. The overburden of the fault is late Quaternary sediment with a thickness of approximately a few tenth of a meter to several hundred meters. No detailed studies of the western side of the Shanchiao fault are available. As Taiwan is located on the Neotectonic Belt in the western Pacific, detecting active faults near the Taipei metropolitan area will provide necessary information for further disaster prevention. It is the responsibility of geologists and geophysicists in Taiwan to perform this task. Examination of the resistivity and density contrasts of subsurface layers permits a mapping of the Shanchiao fault and the deformed Tertiary strata of the Taipei Basin. The audio-frequency magnetotelluric (AMT) method and gravity method were chosen for this study. Significant resistivity and gravity anomalies were observed in the suspected fault zone. The interpretation reveals a good correlation between the features of the Shanchiao fault and resistivity and density distribution at depth. In this observation, AMT and gravity methods provides a viable means for mapping the Shanchiao fault position and studying its features associated with the subsidence of the western side of the Taipei Basin. This study indicates the AMT and gravity methods' considerable potential for accurately mapping an active fault.

  8. Joint inversion of 3-D seismic, gravimetric and magnetotelluric data for sub-basalt imaging in the Faroe-Shetland Basin

    NASA Astrophysics Data System (ADS)

    Heincke, B.; Moorkamp, M.; Jegen, M.; Hobbs, R. W.

    2012-12-01

    Imaging of sub-basalt sediments with reflection seismic techniques is limited due to absorption, scattering and transmission effects and the presence of peg-leg multiples. Although many of the difficulties facing conventional seismic profiles can be overcome by recording long offset data resolution of sub-basalt sediments in seismic sections is typically still largely restricted. Therefore multi-parametric approaches in general and joint inversion strategies in particular (e.g. Colombo et al., 2008, Jordan et al., 2012) are considered as alternative to gain additional information from sub-basalt structures. Here, we combine in a 3-D joint inversion first-arrival time tomography, FTG gravity and MT data to identify the base basalt and resolve potential sediments underneath. For sub-basalt exploration the three methods complement each other such that the null space is reduced and significantly better resolved models can be obtained than would be possible by the individual methods: The seismic data gives a robust model for the supra-basalt sediments whilst the gravity field is dominated by the high density basalt and basement features. The MT on the other hand is sensitive to the conductivity in both the supra- and sub-basalt sediments. We will present preliminary individual and joint inversion result for a FTG, seismic and MT data set located in the Faroe-Shetland basin. Because the investigated area is rather large (~75 x 40 km) and the individual data sets are relatively huge, we use a joint inversion framework (see Moorkamp et al., 2011) which is designed to handle large amount of data/model parameters. This program has moreover the options to link the individual parameter models either petrophysically using fixed parameter relationships or structurally using the cross-gradient approach. The seismic data set consists of a pattern of 8 intersecting wide-angle seismic profiles with maximum offsets of up to ~24 km. The 3-D gravity data set (size :~ 30 x 30 km) is

  9. `Earth-ionosphere' mode controlled source electromagnetic method

    NASA Astrophysics Data System (ADS)

    Li, Diquan; Di, Qingyun; Wang, Miaoyue; Nobes, David

    2015-09-01

    In traditional artificial-source electromagnetic exploration, the effects of the ionosphere and displacement current (DC) in the air were neglected, and only the geoelectrical structure of the earth's crust and upper mantle was considered, such as for controlled source audio-frequency magnetotelluric (CSAMT). By employing a transmitter (less than 30 kW) to generate source fields, the CSAMT method overcomes the problems associated with weak natural electromagnetic (EM) fields used in magnetotellurics. However, the transmitter is moved and the source-receiver offset is approximately less than 20 km, because of the limitation of emission energy. We put forward a new idea, that is, a fixed artificial source (greater than 200 kW) is used and the source location selected at a high resistivity region (to ensure a high emission efficiency), so there may be a possibility that as long as the source strength magnitude is strong enough, the artificial EM signal can be easily observed within a distance of several thousand kilometres. Previous studies have provided the evidence to support this idea; they used the `earth-ionosphere' mode in modeling the EM fields with the offset up to a thousand kilometres. Such EM fields still have a signal/noise ratio over 10-20 dB; this means that a new EM method with fixed source is feasible. However, in their calculations, the DC which plays a very important role for large offsets was neglected. This paper pays much attention to derive the formulae of the `earth-ionosphere' mode with a horizontal electric dipole source, and the DC is not neglected. We present some three layers modeling results to illustrate the basic EM field characteristics under the `earth-ionosphere' mode. As the offset increases, the contribution of the conduction current decreases, DC and ionosphere were taken into account, and the EM field attenuation decreases. We also quantitatively compare the predicted and observed data. The comparison of these results with the

  10. Ted Madden's Network Methods: Applications to the Earth's Schumann Resonances

    NASA Astrophysics Data System (ADS)

    Williams, E. R.; Yu, H.

    2014-12-01

    Ted Madden made clever use of electrical circuit concepts throughout his long career in geophysical research: induced polarization, DC resistivity, magnetotellurics, Schumann resonances, the transport properties of rocks and even elasticity and the brittle failure of stressed rocks. The general methods on network analogies were presented in a terse monograph (Madden, 1972) which came to be called "The Grey Peril" by his students, named more for the challenge of deciphering the material as for the color of its cover. This talk will focus on Ted's first major use of the transmission line analogy in treating the Earth's Schumann resonances. This approach in Madden and Thompson (1965) provided a greatly simplified two-dimensional treatment of an electromagnetic problem with a notable three-dimensional structure. This skillful treatment that included the role of the Earth's magnetic field also led to predictions that the Schumann resonance energy would leak into space, predictions that have been verified nearly 50 years later in satellite observations. An extension of the network analogy by Nelson (1967) using Green's function methods provides a means to treat the inverse problem for the background Schumann resonances for the global lightning activity. The development of Madden's methods will be discussed along with concrete results based on them for the monitoring of global lightning.

  11. MTpy: A Python toolbox for magnetotellurics

    USGS Publications Warehouse

    Krieger, Lars; Peacock, Jared R.

    2014-01-01

    In this paper, we introduce the structure and concept of MTpy  . Additionally, we show some examples from an everyday work-flow of MT data processing: the generation of standard EDI data files from raw electric (E-) and magnetic flux density (B-) field time series as input, the conversion into MiniSEED data format, as well as the generation of a graphical data representation in the form of a Phase Tensor pseudosection.

  12. Terrain effects in resistivity and magnetotelluric surveys

    SciTech Connect

    Holcombe, H.T.

    1982-12-01

    A three-dimensional finite element computer algorithm which can accommodate arbitrarily complex topography and subsurface structure, has been developed to model the resistivity response of the earth. The algorithm has undergone extensive evaluation and is believed to provide accurate results for realistic earth models. Testing included comparison to scale model measurements, analytically calculated solutions, and results calculated numerically by other independent means. Computer modeling experiments have demonstrated that it is possible to remove the effect of topography on resistivity data under conditions where such effects dominate the response. This can be done without resorting to lengthy and costly trial and error computer modeling. After correction, the data can be interpreted with confidence that the anomalies are due only to subsurface structure. The results of case studies on resistivity field data measured in high relief topography are discussed.

  13. Marine Controlled Source EM Methods: Equipment, Methodology, and Results

    NASA Astrophysics Data System (ADS)

    Constable, S.; Behrens, J.; Key, K.

    2005-12-01

    The marine CSEM method has become an important tool for academia and the petroleum industry. Commercially viable seafloor receivers were developed for marine MT exploration over the last decade, but progress in CSEM transmitter design is still at an early stage. We have developed 200~A and 500~A transmitters (Scripps Undersea Electromagnetic Source Instrument, or SUESI-200/500) which operate within the 30~kVA power limitations of academic tow cables. This is done by careful control of antenna impedance (resistance and inductance) and power efficiency. Electrode impedance is largely a function of length, rather than surface area or diameter. The antenna can be made neutrally buoyant by balancing the weight of an aluminum conductor with a thick plastic jacket. Telemetry for control, navigation, and monitoring is overlaid on high voltage power transmission down coaxial tow cables, as an alternative to fiber optic telemetry, allowing use with winches and cables of opportunity. The CSEM noise floor determines the source--receiver ranges, and thus the investigation depths, that can be achieved, and depends on frequency, dipole moment, receiver noise, magnetotelluric interference, and stack time. For typical values, this is 10-15~VA-1m-2. We present examples of data from a sub-salt hydrocarbon prospect in the Gulf of Mexico, and an academic project over the magma chambers of the East Pacific Rise.

  14. Common errors and clinical guidelines for manual muscle testing: "the arm test" and other inaccurate procedures

    PubMed Central

    Schmitt, Walter H; Cuthbert, Scott C

    2008-01-01

    Background The manual muscle test (MMT) has been offered as a chiropractic assessment tool that may help diagnose neuromusculoskeletal dysfunction. We contend that due to the number of manipulative practitioners using this test as part of the assessment of patients, clinical guidelines for the MMT are required to heighten the accuracy in the use of this tool. Objective To present essential operational definitions of the MMT for chiropractors and other clinicians that should improve the reliability of the MMT as a diagnostic test. Controversy about the usefulness and reliability of the MMT for chiropractic diagnosis is ongoing, and clinical guidelines about the MMT are needed to resolve confusion regarding the MMT as used in clinical practice as well as the evaluation of experimental evidence concerning its use. Discussion We expect that the resistance to accept the MMT as a reliable and valid diagnostic tool will continue within some portions of the manipulative professions if clinical guidelines for the use of MMT methods are not established and accepted. Unreliable assessments of this method of diagnosis will continue when non-standard MMT research papers are considered representative of the methods used by properly trained clinicians. Conclusion Practitioners who employ the MMT should use these clinical guidelines for improving their use of the MMT in their assessments of muscle dysfunction in patients with musculoskeletal pain. PMID:19099575

  15. Geophysical Monitoring Methods Evaluation for the FutureGen 2.0 Project

    SciTech Connect

    Strickland, Chris E.; USA, Richland Washington; Vermeul, Vince R.; USA, Richland Washington; Bonneville, Alain; USA, Richland Washington; Sullivan, E. Charlotte; USA, Richland Washington; Johnson, Tim C.; USA, Richland Washington; Spane, Frank A.; USA, Richland Washington; Gilmore, Tyler J.; USA, Richland Washington

    2014-12-31

    A comprehensive monitoring program will be needed in order to assess the effectiveness of carbon sequestration at the FutureGen 2.0 carbon capture and storage (CCS) field-site. Geophysical monitoring methods are sensitive to subsurface changes that result from injection of CO2 and will be used for: (1) tracking the spatial extent of the free phase CO2 plume, (2) monitoring advancement of the pressure front, (3) identifying or mapping areas where induced seismicity occurs, and (4) identifying and mapping regions of increased risk for brine or CO2 leakage from the reservoir. Site-specific suitability and cost effectiveness were evaluated for a number of geophysical monitoring methods including: passive seismic monitoring, reflection seismic imaging, integrated surface deformation, time-lapse gravity, pulsed neutron capture logging, cross-borehole seismic, electrical resistivity tomography, magnetotellurics and controlled source electromagnetics. The results of this evaluation indicate that CO2 injection monitoring using reflection seismic methods would likely be difficult at the FutureGen 2.0 site. Electrical methods also exhibited low sensitivity to the expected CO2 saturation changes and would be affected by metallic infrastructure at the field site. Passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture monitoring were selected for implementation as part of the FutureGen 2.0 storage site monitoring program.

  16. Geophysical Monitoring Methods Evaluation for the FutureGen 2.0 Project

    DOE PAGES

    Strickland, Chris E.; USA, Richland Washington; Vermeul, Vince R.; USA, Richland Washington; Bonneville, Alain; USA, Richland Washington; Sullivan, E. Charlotte; USA, Richland Washington; Johnson, Tim C.; USA, Richland Washington; et al

    2014-12-31

    A comprehensive monitoring program will be needed in order to assess the effectiveness of carbon sequestration at the FutureGen 2.0 carbon capture and storage (CCS) field-site. Geophysical monitoring methods are sensitive to subsurface changes that result from injection of CO2 and will be used for: (1) tracking the spatial extent of the free phase CO2 plume, (2) monitoring advancement of the pressure front, (3) identifying or mapping areas where induced seismicity occurs, and (4) identifying and mapping regions of increased risk for brine or CO2 leakage from the reservoir. Site-specific suitability and cost effectiveness were evaluated for a number ofmore » geophysical monitoring methods including: passive seismic monitoring, reflection seismic imaging, integrated surface deformation, time-lapse gravity, pulsed neutron capture logging, cross-borehole seismic, electrical resistivity tomography, magnetotellurics and controlled source electromagnetics. The results of this evaluation indicate that CO2 injection monitoring using reflection seismic methods would likely be difficult at the FutureGen 2.0 site. Electrical methods also exhibited low sensitivity to the expected CO2 saturation changes and would be affected by metallic infrastructure at the field site. Passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture monitoring were selected for implementation as part of the FutureGen 2.0 storage site monitoring program.« less

  17. New Advances for a joint 3D inversion of multiple EM methods

    NASA Astrophysics Data System (ADS)

    Meqbel, N. M.; Ritter, O.

    2013-12-01

    Electromagnetic (EM) methods are routinely applied to image the subsurface from shallow to regional structures. Individual EM methods differ in their sensitivities towards resistive and conductive structures as well as in their exploration depths. Joint 3D inversion of multiple EM data sets can result in significantly better resolution of subsurface structures than the individual inversions. Proper weighting between different EM data is essential, however. We present a recently developed weighting algorithm to combine magnetotelluric (MT), controlled source EM (CSEM) and DC-geoelectric (DC) data. It is well known that MT data are mostly sensible to regional conductive structures, whereas, CSEM and DC data are more suitable to recover more shallow and resistive structures. Our new scheme is based on weighting individual components of the total data gradient after each model update. Norms of each data residual are used to assess how much weight individual components of the total data gradient must have to achieve an equal contribution of all data sets in the inverse model. A numerically efficient way to search for appropriate weighting factors could be established by applying a bi-diagonalization procedure to the sensitivity matrix. Thereby, the original inverse problem can be projected onto a smaller dimension in which the search of weighting factors is numerically cheap. We demonstrate the efficiency of the proposed weighting schemes and explore the model domain with synthetic data sets.

  18. Constant-current control method of multi-function electromagnetic transmitter.

    PubMed

    Xue, Kaichang; Zhou, Fengdao; Wang, Shuang; Lin, Jun

    2015-02-01

    Based on the requirements of controlled source audio-frequency magnetotelluric, DC resistivity, and induced polarization, a constant-current control method is proposed. Using the required current waveforms in prospecting as a standard, the causes of current waveform distortion and current waveform distortion's effects on prospecting are analyzed. A cascaded topology is adopted to achieve 40 kW constant-current transmitter. The responsive speed and precision are analyzed. According to the power circuit of the transmitting system, the circuit structure of the pulse width modulation (PWM) constant-current controller is designed. After establishing the power circuit model of the transmitting system and the PWM constant-current controller model, analyzing the influence of ripple current, and designing an open-loop transfer function according to the amplitude-frequency characteristic curves, the parameters of the PWM constant-current controller are determined. The open-loop transfer function indicates that the loop gain is no less than 28 dB below 160 Hz, which assures the responsive speed of the transmitting system; the phase margin is 45°, which assures the stabilization of the transmitting system. Experimental results verify that the proposed constant-current control method can keep the control error below 4% and can effectively suppress load change caused by the capacitance of earth load. PMID:25725863

  19. Constant-current control method of multi-function electromagnetic transmitter

    NASA Astrophysics Data System (ADS)

    Xue, Kaichang; Zhou, Fengdao; Wang, Shuang; Lin, Jun

    2015-02-01

    Based on the requirements of controlled source audio-frequency magnetotelluric, DC resistivity, and induced polarization, a constant-current control method is proposed. Using the required current waveforms in prospecting as a standard, the causes of current waveform distortion and current waveform distortion's effects on prospecting are analyzed. A cascaded topology is adopted to achieve 40 kW constant-current transmitter. The responsive speed and precision are analyzed. According to the power circuit of the transmitting system, the circuit structure of the pulse width modulation (PWM) constant-current controller is designed. After establishing the power circuit model of the transmitting system and the PWM constant-current controller model, analyzing the influence of ripple current, and designing an open-loop transfer function according to the amplitude-frequency characteristic curves, the parameters of the PWM constant-current controller are determined. The open-loop transfer function indicates that the loop gain is no less than 28 dB below 160 Hz, which assures the responsive speed of the transmitting system; the phase margin is 45°, which assures the stabilization of the transmitting system. Experimental results verify that the proposed constant-current control method can keep the control error below 4% and can effectively suppress load change caused by the capacitance of earth load.

  20. Constant-current control method of multi-function electromagnetic transmitter.

    PubMed

    Xue, Kaichang; Zhou, Fengdao; Wang, Shuang; Lin, Jun

    2015-02-01

    Based on the requirements of controlled source audio-frequency magnetotelluric, DC resistivity, and induced polarization, a constant-current control method is proposed. Using the required current waveforms in prospecting as a standard, the causes of current waveform distortion and current waveform distortion's effects on prospecting are analyzed. A cascaded topology is adopted to achieve 40 kW constant-current transmitter. The responsive speed and precision are analyzed. According to the power circuit of the transmitting system, the circuit structure of the pulse width modulation (PWM) constant-current controller is designed. After establishing the power circuit model of the transmitting system and the PWM constant-current controller model, analyzing the influence of ripple current, and designing an open-loop transfer function according to the amplitude-frequency characteristic curves, the parameters of the PWM constant-current controller are determined. The open-loop transfer function indicates that the loop gain is no less than 28 dB below 160 Hz, which assures the responsive speed of the transmitting system; the phase margin is 45°, which assures the stabilization of the transmitting system. Experimental results verify that the proposed constant-current control method can keep the control error below 4% and can effectively suppress load change caused by the capacitance of earth load.

  1. Development of methods for the speciation of metals in atmospheric particulate matter

    NASA Astrophysics Data System (ADS)

    Majestic, Brian J.

    2007-12-01

    This study focuses on advancing methods to measure and speciate trace-elements in atmospheric particulate matter (PM) to support human exposure and health studies. Methods were developed to measure Fe(II) and Fe(III) in PM samples using samplers collecting daily average particulate matter samples and personal exposure samples. Low-cost wet-chemical methods were also developed to measure the oxidation state of leachable iron, chromium and manganese present in low-volume PM samples. In addition, a study was conducted to determine if metals collected by different personal exposure samplers currently used in exposure and health studies were comparable. Results from the intercomparison study between co-located personal and fixed-site ambient samplers showed that different personal sampler designs display biases that are largest for metals predominating in the super-micron fraction. Using one consistent personal exposure sampler, a pilot study was conducted to examine trace-metal concentrations in personal exposure samples from individuals residing in an assisted-living home. These results were compared to ambient outdoor and fixed-indoor concentrations, and generally, outdoor > indoor > personal exposure concentrations. The pilot study demonstrated that adequate tools exist to measure trace-element exposures under real-world conditions. Using the methods developed in the study, labile Fe(II) and Fe(III) as well as total soluble manganese and soluble oxidized manganese from atmospheric PM were routinely detected in ambient and personal exposure samples. Samples extracted in a variety of environmentally and biologically relevant fluids showed that leachable iron and manganese strongly depends on the extractant. Atmospheric samples from a residential location in Toronto (which uses the fuel additive, MMT) showed that a significant fraction of oxidized labile manganese is present in the PM2.5 fraction, in contrast to US cities that do not use MMT. Both the wet-chemical and

  2. EM Methods Applied for the Characterization and Monitoring of the Hontomin (Spain) CO2 Storage Pilot Plant

    NASA Astrophysics Data System (ADS)

    Ledo, Juanjo; Queralt, Pilar; Marcuello, Alex; Ogaya, Xenia; Vilamajo, Eloi; Bosch, David; Escalas, Lena; Piña, Perla

    2013-04-01

    The work presented here correspond to an on-going project in the frame of the development of a pilot plant for CO2 storage in a deep saline aquifer funded by Fundación Ciudad de la Energía-CIUDEN (http://www.ciuden.es/) on behalf of the Spanish Government. The main objective of the research Project is to monitor the CO2 migration within the reservoir during and after the injection as well as testing and evaluating different EM monitoring methods. In this way, a good characterization of the zone is imperative to perceive and quantify, as soon as possible, any change owing to the CO2 injection. Among all geophysical techniques, electrical and electromagnetic methods are especially useful and meaningful to monitor the CO2 plume since these methods are sensitive to the electrical conductivity of the pore fluid. The presence of CO2 inside the pore will replace a fraction of saline fluid within the storage aquifer, reducing the effective volume available for ionic transport. As a consequence, the bulk electrical resistivity of the rock is expected to increase significantly. The proposed EM techniques are the following: 1- Magnetotelluric method, 2-Cross-hole electrical resistivity tomography, 3- Control source electromagnetics. Moreover laboratory experiments are being carried out to monitor the CO2 flux inside sample cores using ERT.

  3. Structural mapping in basin-and-range-like geology by electromagnetic methods: A powerful aid to seismic

    SciTech Connect

    Galibert, P.Y.; Andrieux, P.; Guerin, R.

    1996-11-01

    A case history is presented where electromagnetic (EM) methods were applied as a complement to seismic, for structural mapping in basin-and-range-like geology: 366 five-component magnetotelluric (MT) soundings were carried out together with 331 transient soundings (TDEM) along seismic lines. Due to high structural complexity, seismic shows a number of limitations. For the same reasons, MT is highly perturbed and three specific interpretation techniques were comprehensively applied: (1) a classical correction of static effect using TDEM sounding, to determine the high-frequency nondistorted apparent resistivities and thus the corrected tensor; (2) a so-called regional correction based upon the same concept as the static effect, to transform distorted resistivity curves due to the horst/graben situation into plausible 1D curves, through the use of nomograms built for 2D H-polarization situations; and (3) a stripping technique which made it possible to map areas where a deep conductive Mesozoic shale was present below carbonates, at a depth of 3 km. After the best MT interpretation was obtained along each line, it was integrated with seismic and with the results from two boreholes. A crude empirical law relating resistivity and acoustic velocity was established and the MT horizons were plotted on the two-way traveltime seismic sections. The final integrated cross-sections obtained are undoubtedly of greater use to the explorationist than the initial seismic sections alone and two wells were accurately predicted.

  4. Electrochemical determination of phenol using CTAB-functionalized montmorillonite electrode.

    PubMed

    Huang, Wensheng; Zhou, Dazhai; Liu, Xiaopeng; Zheng, Xiaojiang

    2009-06-01

    Montmorillonite calcium (MMT) was modified with cetyltrimethylammonium bromide (CTAB) via replacement of its inorganic exchangeable cations. The resulting CTAB-modified MMT (CTAB/MMT) was used to modify the carbon paste electrode (CPE). The electrochemical behaviours of phenol at the unmodified CPE, MMT-modified CPE and CTAB/MMT-modified CPE were examined. It was found that the oxidation signal of phenol was remarkably improved at the CTAB/MMT-modified CPE, which was attributed to the higher accumulation efficiency of CTAB/MMT. Based on this, a sensitive and convenient electrochemical method was proposed for the determination of phenol. The effect of supporting electrolyte on the oxidation of phenol was examined, and 0.1 mol l(-1) NaOH was finally employed. In addition, the influences of mass content of CTAB/MMT and accumulation time were also investigated. The optimal mass content of CTAB/MMT is 25%, and the accumulation time is 3 min. Under the optimized conditions, the oxidation peak current of phenol is proportional to its concentration over the range from 1.0 x 10(-7) to 3.0 x 10(-5) mol l(-1), and the limit of detection is estimated to be 6.0 x 10(-8) mol l(-1). Finally, the CTAB/MMT-modified CPE was successfully applied to determine phenol in water samples. PMID:19705607

  5. Reducing Uncertainty in the Distribution of Hydrogeologic Units within Volcanic Composite Units of Pahute Mesa Using High-Resolution 3-D Resistivity Methods, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Rodriguez, Brian D.; Sweetkind, Don; Burton, Bethany L.

    2010-01-01

    Pahute Mesa within the Calico Hills zeolitic volcanic composite unit (VCU), an important hydrostratigraphic unit in Area 20. The resistivity response was evaluated and compared with existing well data and hydrogeologic unit tops from the current Pahute Mesa framework model. In 2008, the USGS processed and inverted the magnetotelluric data into a 3-D resistivity model. We interpreted nine depth slices and four west-east profile cross sections of the 3-D resistivity inversion model. This report documents the geologic interpretation of the 3-D resistivity model. Expectations are that spatial variations in the electrical properties of the Calico Hills zeolitic VCU can be detected and mapped with 3-D resistivity, and that these changes correlate to differences in rock permeability. With regard to LFA and TCU, electrical resistivity and permeability are typically related. Tuff confining units will typically have low electrical resistivity and low permeability, whereas LFA will have higher electrical resistivity and zones of higher fracture-related permeability. If expectations are shown to be correct, the method can be utilized by the UGTA scientists to refine the hydrostratigraphic unit (HSU) framework in an effort to more accurately predict radionuclide transport away from test areas on Pahute and Rainier Mesas.

  6. Method for determining depth and shape of a sub-surface conductive object

    DOEpatents

    Lee, D.O.; Montoya, P.C.; Wayland, Jr.

    1984-06-27

    The depth to and size of an underground object may be determined by sweeping a controlled source audio magnetotelluric (CSAMT) signal and locating a peak response when the receiver spans the edge of the object. The depth of the object is one quarter wavelength in the subsurface media of the frequency of the peak. 3 figures.

  7. Confine Clay in an Alternating Multilayered Structure through Injection Molding: A Simple and Efficient Route to Improve Barrier Performance of Polymeric Materials.

    PubMed

    Yu, Feilong; Deng, Hua; Bai, Hongwei; Zhang, Qin; Wang, Ke; Chen, Feng; Fu, Qiang

    2015-05-20

    Various methods have been devoted to trigger the formation of multilayered structure for wide range of applications. These methods are often complicated with low production efficiency or require complex equipment. Herein, we demonstrate a simple and efficient method for the fabrication of polymeric sheets containing multilayered structure with enhanced barrier property through high speed thin-wall injection molding (HSIM). To achieve this, montmorillonite (MMT) is added into PE first, then blended with PP to fabricate PE-MMT/PP ternary composites. It is demonstrated that alternating multilayer structure could be obtained in the ternary composites because of low interfacial tension and good viscosity match between different polymer components. MMT is selectively dispersed in PE phase with partial exfoliated/partial intercalated microstructure. 2D-WAXD analysis indicates that the clay tactoids in PE-MMT/PP exhibits an uniplanar-axial orientation with their surface parallel to the molded part surface, while the tactoids in binary PE-MMT composites with the same overall MMT contents illustrate less orientation. The enhanced orientation of nanoclay in PE-MMT/PP could be attributed to the confinement of alternating multilayer structure, which prohibits the tumbling and rotation of nanoplatelets. Therefore, the oxygen barrier property of PE-MMT/PP is superior to that of PE-MMT because of increased gas permeation pathway. Comparing with the results obtained for PE based composites in literature, outstanding barrier property performance (45.7% and 58.2% improvement with 1.5 and 2.5 wt % MMT content, respectively) is achieved in current study. Two issues are considered responsible for such improvement: enhanced MMT orientation caused by the confinement in layered structure, and higher local density of MMT in layered structure induced denser assembly. Finally, enhancement in barrier property by confining impermeable filler into alternating multilayer structure through such

  8. MMT-supported Ag nanoparticles for chitosan nanocomposites: structural properties and antibacterial activity.

    PubMed

    Lavorgna, M; Attianese, I; Buonocore, G G; Conte, A; Del Nobile, M A; Tescione, F; Amendola, E

    2014-02-15

    Multifunctional bionanocomposites have been prepared by loading chitosan matrix with silver-montmorillonite antimicrobial nanoparticles obtained by replacing Na(+) ions of natural montmorillonite with silver ions. This filler has been chosen for its twofold advantage to serve as silver supporting material and to confer new and better performance to the obtained material. It has been proved that the achievement of the intercalation of chitosan into the silicate galleries of montomorillonite as well as the interaction between chitosan and Ag ions and silver particles lead to an enhancement of the thermal stability, to an improvement of mechanical strengths and to a reduction of the liquid water uptake of the obtained bionanocomposites. Results also show that silver ions are released in a steady and prolonged manner providing, after 24 h, a significant reduction in the microbial growth of Pseudomonas spp. PMID:24507295

  9. Effect of nanocomposite composition on shear and elongational rheological behavior of PLA/MMT hybrids

    NASA Astrophysics Data System (ADS)

    Garofalo, Emilia; Scarfato, Paola; Di Maio, Luciano; Incarnato, Loredana

    2014-05-01

    The present work focuses on the possibility of conveniently tuning materials in PLA based nanocomposites in order to improve their processability in manufacturing processes where extensional flow is mainly involved. Nanocomposites at a constant silicate loading were produced by melt compounding, using a commercial polylactide grade (PLA 4032D) and two different organo-silicates (Cloisite 30B and Nanofil SE3010). A morphological characterization in solid and molten state, realized by TEM investigations and shear rheological measurements, firstly pointed out the influence of composition on the nanostructure of the hybrid systems. All the samples were then submitted to uniaxial stretching and the rheological response of the different nanocomposites was correlated to the initial nanostructure and the different polymer-clay affinity.

  10. Rheological investigation of specific interactions in Na Alginate and Na MMT suspension.

    PubMed

    Zlopasa, Jure; Norder, Ben; Koenders, Eduard A B; Picken, Stephen J

    2016-10-20

    Here we report on a study of a rheological behavior of sodium alginate and montmorillonite suspension. We find that viscoelastic behavior of this suspension is dramatically affected with increasing volume fraction of montmorillonite platelets. Addition of montmorillonite generally leads to gel formation, which is attributed to interactions of montmorillonite and alginate via H-bonding and attraction between the positive edges of the platelets and the anionic backbone of the biopolymer. A critical concentration for the measured system was observed at 20wt.% montmorillonite, where a crossover to a gel-like structure was detected. The observed gel has a rubber plateau, which develops further with higher montmorillonite concentration. In this physical gel the relaxation maximum was detected, which is associated with the breaking and reformation of the bonds between the platelets and the biopolymer. For this transient behavior, we find that a Maxwell type viscoelasticity quite well describes the relaxation time and the observed G'-G" crossover. We believe that this gel-like behavior plays an important role in formation of highly ordered nanostructures that develop during the drying of these bio-nanocomposite suspensions. PMID:27474553

  11. On the Efect of the Oxidative Reagents on the Conductivity of Polyaniline/MMT Nanocomposites

    NASA Astrophysics Data System (ADS)

    Garcia-Bernabé, A.; Gil-Agustí, M.; Ortega, G.; Llovera, P.; Almarza, A.; Vázquez, S.; Amantia, D.; Aubouy, L.

    2010-06-01

    The synthesis of polyaniline has been reported using three different oxidative reagents: ammonium persulfate, potassium iodate and potassium iodate+sodium hypochlorite. This polyaniline has been used to prepare several nanocomposites with different percentage of Montmorillonite. The DC conductivity of the nanocomposites was determined by impedance spectroscopy. The oxidative reagent that gives higher conductivity is ammonium persulfate. The temperature dependence of the conductivity was studied.

  12. Unravelling aquifer-wetland interaction using CSAMT and gravity methods: the Mollina-Camorra aquifer and the Fuente de Piedra playa-lake, southern Spain

    NASA Astrophysics Data System (ADS)

    Pedrera, A.; Martos-Rosillo, S.; Galindo-Zaldívar, J.; Rodríguez-Rodríguez, M.; Benavente, J.; Martín-Rodríguez, J. F.; Zúñiga-López, M. I.

    2016-06-01

    The hydrological regime of Fuente de Piedra playa-lake (Málaga, southern Spain) has been significantly affected by the intensive exploitation of groundwater in the area. The playa-lake is situated above clays, marls, and gypsum, and under unaltered conditions received surface-subsurface runoff within the watershed as well as groundwater discharge from two carbonate aquifers. We have analyzed the structure of the main one, the Mollina-Camorra carbonate aquifer, by combining controlled source audio magnetotellurics (CSAMT), gravity prospecting, and time-domain electromagnetic (TDEM) soundings. This geophysical information, together with new structural and hydrogeological data, was gathered to develop a new conceptual hydrogeological model. This model allows the hydrological linkage of the carbonate aquifer with the playa-lake system to be established. Moreover, the intensive exploitation in the carbonate aquifer, even outside the watershed of the playa-lake, has affected the hydrological regime of the system. This multidisciplinary work demonstrates the potential of geophysical methods for understanding wetland-aquifer interaction, having important groundwater management implications.

  13. Thermal regimes of major volcanic centers: Magnetotelluric constraints

    SciTech Connect

    Hermance, J.F.

    1989-10-02

    The interpretation of geophysical/electromagnetic field data has been used to study dynamical processes in the crust beneath three of the major tectono-volcanic features in North America: the Long Valley/Mono Craters Volcanic Complex in eastern California, the Cascades Volcanic Belt in Oregon, and the Rio Grande Rift in the area of Socorro, New Mexico. Primary accomplishments have been in the area of creating and implementing a variety of 2-D generalized inverse computer codes, and the application of these codes to fields studies on the basin structures and he deep thermal regimes of the above areas. In order to more fully explore the space of allowable models (i.e. those inverse solutions that fit the data equally well), several distinctly different approaches to the 2-D inverse problem have been developed: (1) an overdetermined block inversion; (2) an overdetermined spline inverstion; (3) a generalized underdetermined total inverse which allows one to tradeoff certain attributes of their model, such as minimum structure (flat models), roughness (smooth models), or length (small models). Moreover, we are exploring various approaches for evaluating the resolution model parameters for the above algorithms. 33 refs.

  14. The distortion tensor of magnetotellurics: a tutorial on some properties

    NASA Astrophysics Data System (ADS)

    Lilley, Frederick E. M.

    2016-05-01

    A 2 × 2 matrix is introduced which relates the electric field at an observing site where geological distortion applies to the regional electric field, which is unaffected by the distortion. For the student of linear algebra this matrix provides a practical example with which to demonstrate the basic and important procedures of eigenvalue analysis and singular value decomposition. The significance of the results can be visualised because the eigenvectors of such a telluric distortion matrix have a clear practical meaning, as do their eigenvalues. A Mohr diagram for the distortion matrix displays when real eigenvectors exist, and tells their magnitudes and directions. The results of singular value decomposition (SVD) also have a clear practical meaning. These results too can be displayed on a Mohr diagram. Whereas real eigenvectors may or may not exist, SVD is always possible. The ratio of the two singular values of the matrix gives a condition number, useful to quantify distortion. Strong distortion causes the matrix to approach the condition known as `singularity'. A closely-related anisotropy number may also be useful, as it tells when a 2 × 2 matrix has a negative determinant by then having a value greater than unity.

  15. Magnetotelluric Responces of Three-Dimentional Bodies in Layered Earths

    SciTech Connect

    Wannamaker, Phillip E.; Ward, Stanley H.; Hohmann, Gerald W.

    1982-11-01

    The electric and magnetic fields scattered by a three-dimensional inhomogeneity in a conducting earth result largely from current-gathering, a boundary polarization charge phenomenon that becomes increasingly important as frequency falls. Boundary charges cause normalized electric field magnitudes, and thus tensor apparent resistivities and magnitudes of vertical admittance elements, to remain anomalous as frequency approaches zero. However, these E-field distortions below certain frequencies are essentially in-phase with the incident electric field. In addition, secondary magnetic field amplitudes over a body ultimately decline in proportion to the layered host impedance. It follows that tipper element magnitudes and all MT function phases become minimally affected at low frequencies by an inhomogeneity. Resistivity structure in nature is a collection of inhomogeneities of various scales, and the small structures in this collection can have MT responses as strong as those of the large structures. Hence, a severe distortion due to current-gathering in any nearby, small-scale geological noise can be superimposed to arbitrarily low frequencies upon the apparent resistivities and vertical admittance magnitudes of buried targets. On the other hand, the MT responses of small and large bodies have frequency dependencies that are, in general, separated as the square of the geometric scale factor distinguishing the different bodies.

  16. Axial structures within the Reelfoot Rift delineated with magnetotelluric surveys

    USGS Publications Warehouse

    Rodriguez, B.D.; Stanley, W.D.; Williams, J.M.

    1996-01-01

    In the winter of 1811-12, three of the largest historic earthquakes in the United States occurred near New Madrid, Mo. Seismicity continues to the present day throughout a tightly clustered pattern of epicenters centered on the bootheel of Missouri, including parts of northeastern Arkansas, northwestern Tennessee, western Kentucky, and southern Illinois. In 1990, the New Madrid seismic zone/Central United States became the first seismically active region east of the Rocky Mountains to be designated a priority research area within the Natural Earthquake Hazards Reduction Program (NEHRP). This Professional Paper is a collection of papers, some published separately, presenting results of the newly intensified research program in this area. Major components of this research program include tectonic framework studies, seismicity and deformation monitoring and modeling, improved seismic hazard and risk assessments, and cooperative hazard mitigation studies.

  17. POLICE BRIBERY AND ACCESS TO METHADONE MAINTENANCE THERAPY WITHIN THE CONTEXT OF DRUG POLICY REFORM IN TIJUANA, MEXICO

    PubMed Central

    Werb, D; Wagner, KD; Beletsky, L; Gonzalez-Zuniga, Patricia; Rangel, Gudelia; Strathdee, SA

    2015-01-01

    Aims In 2009, Mexico passed legislation to decriminalize drug possession and improve access to addiction treatment. We undertook research to assess the implementation of the reform among a cohort of people who inject drugs (PWID) in Tijuana. This study specifically sought to determine whether discretionary policing practices like extortion impact access to methadone maintenance therapy (MMT) in Tijuana, a city characterized by high levels of drug-related harms. Methods Generalized estimating equation analyses were used to construct longitudinal confounding models to determine the association between paying a police bribe and MMT enrolment among PWID in Tijuana enrolled in a prospective cohort study. Outcome of interest was MMT enrolment in the past six months. Data on police interactions and MMT enrolment were also obtained. Results Between October, 2011 and September, 2013, 637 participants provided 1,825 observations, with 143 (7.8%) reports of MMT enrolment during the study period. In a final confounding model, recently reporting being forced to pay a bribe to police was significantly associated with an increased likelihood of accessing MMT (Adjusted Odds Ratio = 1.69, 95% Confidence Interval: 1.02 – 2.81, p = 0.043). However, in 56 (39.2%) cases, MMT enrolment ceased within six months. The majority of participant responses cited the fact that MMT was too expensive (69.1%). Discussion Levels of MMT access were low. PWID who experienced police extortion were more likely to access MMT at baseline, though this association decreased during the study period. Coupled with the costs of MMT, this may compromise MMT retention among PWID. PMID:25655577

  18. Fabrication of composite poly(d,l-lactide)/montmorillonite nanoparticles for controlled delivery of acetaminophen by solvent-displacement method using glass capillary microfluidics.

    PubMed

    Othman, Rahimah; Vladisavljević, Goran T; Thomas, Noreen L; Nagy, Zoltan K

    2016-05-01

    Paracetamol (PCM)-loaded composite nanoparticles (NPs) composed of a biodegradable poly(d,l-lactide) (PLA) polymer matrix filled with organically modified montmorillonite (MMT) nanoparticles were fabricated by antisolvent nanoprecipitation in a microfluidic co-flow glass capillary device. The incorporation of MMT in the polymer improved both the drug encapsulation efficiency and the drug loading, and extended the rate of drug release in simulated intestinal fluid (pH 7.4). The particle size increased on increasing both the drug loading and the concentration of MMT in the polymer matrix, and decreased on increasing the aqueous to organic flow rate ratio. The drug encapsulation efficiency in the NPs was higher at higher aqueous to organic flow rate ratio due to faster formation of the NPs. The PCM-loaded PLA NPs containing 2 wt% MMT in PLA prepared at an aqueous to organic flow rate ratio of 10 with an orifice size of 200 μm exhibited a spherical shape with a mean size of 296 nm, a drug encapsulation efficiency of 38.5% and a drug loading of 5.4%. The encapsulation of MMT and PCM in the NPs was confirmed by transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis and attenuated total reflection-Fourier transform infrared spectroscopy. PMID:26852102

  19. Geothermal Geophysical Research in Electrical Methods at UURI

    SciTech Connect

    Wannamaker, Philip E.; Wright, Phillip M.

    1992-03-24

    The principal objective of electrical geophysical research at UURI has been to provide reliable exploration and reservoir assessment tools for the shallowest to the deepest levels of interest in geothermal fields. Three diverse methods are being considered currently: magnetotellurics (MT, and CSAMT), self-potential, and borehole resistivity. Primary shortcomings in the methods addressed have included a lack of proper interpretation tools to treat the effects of the inhomogeneous structures often encountered in geothermal systems, a lack of field data of sufficient accuracy and quantity to provide well-focused models of subsurface resistivity structure, and a poor understanding of the relation of resistivity to geothermal systems and physicochemical conditions in the earth generally. In MT, for example, interpretation research has focused successfully on the applicability of 2-D models in 3-D areas which show a preferred structural grain. Leading computer algorithms for 2-D and 3-D simulation have resulted and are combined with modern methods of regularized inversion. However, 3-D data coverage and interpretation is seen as a high priority. High data quality in our own research surveys has been assured by implementing a fully remote reference with digital FM telemetry and real-time processing with data coherence sorting. A detailed MT profile across Long Valley has mapped a caldera-wide altered tuff unit serving as the primary hydrothermal aquifer, and identified a low-resistivity body in the middle crust under the west moat which corresponds closely with teleseismic delay and low density models. In the CSAMT method, our extensive tensor survey over the Sulphur Springs geothermal system provides valuable structural information on this important thermal regime and allows a fundamental analysis of the CSAMT method in heterogeneous areas. The self-potential (SP) method is promoted as an early-stage, cost-effective, exploration technique for covered hydrothermal

  20. Evolution of Minimum Mortality Temperature in Stockholm, Sweden, 1901–2009

    PubMed Central

    Åström, Daniel Oudin; Tornevi, Andreas; Ebi, Kristie L.; Rocklöv, Joacim; Forsberg, Bertil

    2015-01-01

    Background: The mortality impacts of hot and cold temperatures have been thoroughly documented, with most locations reporting a U-shaped relationship with a minimum mortality temperature (MMT) at which mortality is lowest. How MMT may have evolved over previous decades as the global mean surface temperature has increased has not been thoroughly explored. Objective: We used observations of daily mean temperatures to investigate whether MMT changed in Stockholm, Sweden, from the beginning of the 20th century until 2009. Methods: Daily mortality and temperature data for the period 1901–2009 in Stockholm, Sweden, were used to model the temperature–mortality relationship. We estimated MMT using distributed lag nonlinear Poisson regression models considering lags up to 21 days of daily mean temperature as the exposure variable. To avoid large influences on the MMT from intra- and interannual climatic variability, we estimated MMT based on 30-year periods. Furthermore, we investigated whether there were trends in the absolute value of the MMT and in the relative value of the MMT (the corresponding percentile of the same-day temperature distribution) over the study period. Results: Our findings suggest that both the absolute MMT and the relative MMT increased in Stockholm, Sweden, over the course of the 20th century. Conclusions: The increase in the MMT over the course of the 20th century suggests autonomous adaptation within the context of the large epidemiological, demographical, and societal changes that occurred. Whether the rate of increase will be sustained with climate change is an open question. Citation: Oudin Åström D, Tornevi A, Ebi KL, Rocklöv J, Forsberg B. 2016. Evolution of minimum mortality temperature in Stockholm, Sweden, 1901–2009. Environ Health Perspect 124:740–744; http://dx.doi.org/10.1289/ehp.1509692 PMID:26566270

  1. Spectroscopic study of silver halides in montmorillonite and their antibacterial activity.

    PubMed

    Sohrabnezhad, Sh; Rassa, M; Mohammadi Dahanesari, E

    2016-10-01

    In this study silver halides (AgX, X=Cl, Br, I) in montmorillonite (MMT) were prepared by dispersion method in dark. AgNO3 was used as a silver precursor. The nanocomposites (NCs) (AgX-MMT) were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and ultraviolet-visible diffuse reflectance spectroscopy (DRS). The powder X-ray diffraction showed intercalation of AgCl and AgBr nanoparticles (NPs) into the clay interlayer space. The diffuse reflectance spectra indicated a broad surface plasmon resonance (SPR) absorption band in the visible region for AgCl-MMT and AgBr-MMT NCs, resulting of metallic Ag nanoparticles (Ag NPs). But the results were opposite in case of AgI-MMT NC. The antibacterial activity of NCs was investigated against Gram-positive bacteria, i.e., Staphylococcus aureus and Micrococcus luteus and Gram-negative bacteria, i.e., Escherichia coli, Pseudomonas aeruginosa, by the well diffusion method. The antibacterial effects on Staphylococcus aureus, Micrococcus luteus and Escherichia coli decrease in the order: AgCl-MMT>AgBr-MMT>AgI-MMT. No antibacterial activity was detected for Pseudomonas aeruginosa.

  2. Vortex methods

    SciTech Connect

    Chorin, A.J. |

    1993-06-01

    Vortex methods originated from the observation that in incompressible inviscid flow vorticity (or, more accurately, circulation) is a conserved quantity, as can be readily deduced from the absence of tangential stresses. Thus, if the vorticity is known at time t=0, one can find the flow at a later time by simply following the vorticity. In this narrow context, a vortex method is a numerical method that follows vorticity. The author restricts himself in these lectures to a special class of numerical vortex methods, those that are based on a Lagrangian transport of vorticity in hydrodynamics by smoothed particles (blobs) and those whose analysis contributes to the understanding of blob methods. Blob methods started in the 1930`s.

  3. RESISTIVITY METHODS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistivity methods were among the first geophysical techniques developed. The basic concept originated with Conrad Schlumberger, who conducted the initial resistivity field tests in Normandy, France during 1912. The resistivity method, employed in its earliest and most conventional form, uses an ex...

  4. Cross-sectional study of the severity of self-reported depressive symptoms in heroin users who participate in a methadone maintenance treatment program

    PubMed Central

    WU, Yafei; YAN, Shiyan; BAO, Yanping; LIAN, Zhi; QU, Zhi; LIU, Zhimin

    2016-01-01

    Background Methadone maintenance treatment (MMT) is widely recognized as an effective method of combatting narcotic addiction. MMT reduces heroin withdrawal symptoms and, thus, makes it possible to provide the psychological and social support that is essential to the rehabilitation of drug users. Aim Compare the severity of depressive symptoms in heroin users who are currently receiving MMT to that of heroin users who are not receiving MMT. Methods We administered the 13-item version of the Beck Depression Inventory (BDI-13) and a demographic history form to 929 heroin users who had been receiving MMT at nine methadone treatment clinics in three Chinese cities for an average of 9 months and to 238 heroin users who had enrolled in a MMT program at the centers but had not yet begun MMT. Results Seventy-nine percent (188/238) of the untreated individuals reported depressive symptoms compared to 68% (628/929) of the individuals receiving MMT (χ2=11.69, p<0.001). The median (interquartile range) BDI score in the untreated group was 10.4 (7.9-11.4) compared to 8.0 (5.7-11.6) in the MMT group (Z=2.75, p=0.006). In the MMT group, there was a negative correlation between the severity of reported depressive symptoms and the duration of participation in the MMT program (rs=-0.24, Z=2.88, p=0.004). Multivariate linear regression analysis showed that after adjusting for all demographic variables the treated group still had less severe depressive symptoms than the untreated group. After adjusting for the effect of MMT treatment, depressive symptoms were more severe in heroin users who self-reported poor family relationships (standardized regression coefficient β=0.118, t=6.56, p<0.001) and in those who were divorced (β=0.120, t=3.73, p<0.001). Conclusions Moderate to severe depressive symptoms are common in heroin users. MMT is associated with lower levels of depressive symptoms in heroin users, but prospective randomized controlled trials are needed to determine whether or

  5. Cross-sectional study of the severity of self-reported depressive symptoms in heroin users who participate in a methadone maintenance treatment program

    PubMed Central

    WU, Yafei; YAN, Shiyan; BAO, Yanping; LIAN, Zhi; QU, Zhi; LIU, Zhimin

    2016-01-01

    Background Methadone maintenance treatment (MMT) is widely recognized as an effective method of combatting narcotic addiction. MMT reduces heroin withdrawal symptoms and, thus, makes it possible to provide the psychological and social support that is essential to the rehabilitation of drug users. Aim Compare the severity of depressive symptoms in heroin users who are currently receiving MMT to that of heroin users who are not receiving MMT. Methods We administered the 13-item version of the Beck Depression Inventory (BDI-13) and a demographic history form to 929 heroin users who had been receiving MMT at nine methadone treatment clinics in three Chinese cities for an average of 9 months and to 238 heroin users who had enrolled in a MMT program at the centers but had not yet begun MMT. Results Seventy-nine percent (188/238) of the untreated individuals reported depressive symptoms compared to 68% (628/929) of the individuals receiving MMT (χ2=11.69, p<0.001). The median (interquartile range) BDI score in the untreated group was 10.4 (7.9-11.4) compared to 8.0 (5.7-11.6) in the MMT group (Z=2.75, p=0.006). In the MMT group, there was a negative correlation between the severity of reported depressive symptoms and the duration of participation in the MMT program (rs=-0.24, Z=2.88, p=0.004). Multivariate linear regression analysis showed that after adjusting for all demographic variables the treated group still had less severe depressive symptoms than the untreated group. After adjusting for the effect of MMT treatment, depressive symptoms were more severe in heroin users who self-reported poor family relationships (standardized regression coefficient β=0.118, t=6.56, p<0.001) and in those who were divorced (β=0.120, t=3.73, p<0.001). Conclusions Moderate to severe depressive symptoms are common in heroin users. MMT is associated with lower levels of depressive symptoms in heroin users, but prospective randomized controlled trials are needed to determine whether or

  6. Enhanced proton conductivity by the influence of modified montmorillonite on poly (vinyl alcohol) based blend composite membranes

    NASA Astrophysics Data System (ADS)

    Palani, P. Bahavan; Abidin, K. Sainul; Kannan, R.; Rajashabala, S.; Sivakumar, M.

    2016-05-01

    The highest proton conductivity value of 0.0802 Scm-1 is obtained at 6wt% of protonated MMT added to the PVA/PEG blends. The polymer blend composite membranes are prepared with varied concentration of Poly vinyl alcohol (PVA), Poly ethylene glycol (PEG) and Montmorillonite (MMT) by solution casting method. The Na+ MMT was modified (protonated) to H+ MMT with ion exchange process. The prepared membranes were characterized by using TGA, FTIR, XRD, Ion Exchange Capacity, Water/Methanol uptake, swelling ratio and proton conductivity. The significant improvements in the hydrolytic stability were observed. In addition, thermal stability of the composite membranes were improved and controlled by the addition of MMT. All the prepared membranes are shown appreciable values of proton conductivity at room temperature with 100% relative humidity.

  7. Are Repeated Single-Limb Heel Raises and Manual Muscle Testing Associated With Peak Plantar-Flexor Force in People With Inclusion Body Myositis?

    PubMed Central

    Shrader, Joseph A.; Davenport, Todd E.; Joe, Galen; Rakocevic, Goran; McElroy, Beverly; Dalakas, Marinos

    2014-01-01

    Background Repeated heel raises have been proposed as a method of ankle plantar-flexor strength testing that circumvents the limitations of manual muscle testing (MMT). Objective The study objective was to examine the relationships among ankle plantar-flexion isometric maximum voluntary contraction (MVC), repeated single-limb heel raises (SLHRs), and MMT in people with myositis. Design This was a cross-sectional study with a between-group design. The ability to complete 1 SLHR determined group assignment (SLHR group, n=24; no-SLHR group, n=19). Methods Forty-three participants with myositis (13 women; median age=64.9 years) participated. Outcome measures included MVC, predicted MVC, Kendall MMT, and Daniels-Worthingham MMT. Results The Kendall MMT was unable to detect significant ankle plantar-flexor weakness established by quantitative methods and was unable to discriminate between participants who could and those who could not perform the SLHR task. Ankle plantar-flexion MVC was not associated with the number of heel-raise repetitions in the SLHR group (pseudo R2=.13). No significant relationship was observed between MVC values and MMT grades in the SLHR and no-SLHR groups. However, a moderate relationship between MVC values and MMT grades was evident in a combined-group analysis (ρ=.50–.67). Limitations The lower half of both MMT grading scales was not represented in the study despite the profound weakness of the participants. Conclusions Both Kendall MMT and Daniels-Worthingham MMT had limited utility in the assessment of ankle plantar-flexor strength. Repeated SLHRs should not be used as a proxy measure of ankle plantar-flexion MVC in people with myositis. PMID:24309617

  8. Electrodeionization method

    DOEpatents

    Lin, YuPo J.; Hestekin, Jamie; Arora, Michelle; St. Martin, Edward J.

    2004-09-28

    An electrodeionization method for continuously producing and or separating and/or concentrating ionizable organics present in dilute concentrations in an ionic solution while controlling the pH to within one to one-half pH unit method for continuously producing and or separating and/or concentrating ionizable organics present in dilute concentrations in an ionic solution while controlling the pH to within one to one-half pH unit.

  9. Ensemble Methods

    NASA Astrophysics Data System (ADS)

    Re, Matteo; Valentini, Giorgio

    2012-03-01

    Ensemble methods are statistical and computational learning procedures reminiscent of the human social learning behavior of seeking several opinions before making any crucial decision. The idea of combining the opinions of different "experts" to obtain an overall “ensemble” decision is rooted in our culture at least from the classical age of ancient Greece, and it has been formalized during the Enlightenment with the Condorcet Jury Theorem[45]), which proved that the judgment of a committee is superior to those of individuals, provided the individuals have reasonable competence. Ensembles are sets of learning machines that combine in some way their decisions, or their learning algorithms, or different views of data, or other specific characteristics to obtain more reliable and more accurate predictions in supervised and unsupervised learning problems [48,116]. A simple example is represented by the majority vote ensemble, by which the decisions of different learning machines are combined, and the class that receives the majority of “votes” (i.e., the class predicted by the majority of the learning machines) is the class predicted by the overall ensemble [158]. In the literature, a plethora of terms other than ensembles has been used, such as fusion, combination, aggregation, and committee, to indicate sets of learning machines that work together to solve a machine learning problem [19,40,56,66,99,108,123], but in this chapter we maintain the term ensemble in its widest meaning, in order to include the whole range of combination methods. Nowadays, ensemble methods represent one of the main current research lines in machine learning [48,116], and the interest of the research community on ensemble methods is witnessed by conferences and workshops specifically devoted to ensembles, first of all the multiple classifier systems (MCS) conference organized by Roli, Kittler, Windeatt, and other researchers of this area [14,62,85,149,173]. Several theories have been

  10. Ensemble Methods

    NASA Astrophysics Data System (ADS)

    Re, Matteo; Valentini, Giorgio

    2012-03-01

    Ensemble methods are statistical and computational learning procedures reminiscent of the human social learning behavior of seeking several opinions before making any crucial decision. The idea of combining the opinions of different "experts" to obtain an overall “ensemble” decision is rooted in our culture at least from the classical age of ancient Greece, and it has been formalized during the Enlightenment with the Condorcet Jury Theorem[45]), which proved that the judgment of a committee is superior to those of individuals, provided the individuals have reasonable competence. Ensembles are sets of learning machines that combine in some way their decisions, or their learning algorithms, or different views of data, or other specific characteristics to obtain more reliable and more accurate predictions in supervised and unsupervised learning problems [48,116]. A simple example is represented by the majority vote ensemble, by which the decisions of different learning machines are combined, and the class that receives the majority of “votes” (i.e., the class predicted by the majority of the learning machines) is the class predicted by the overall ensemble [158]. In the literature, a plethora of terms other than ensembles has been used, such as fusion, combination, aggregation, and committee, to indicate sets of learning machines that work together to solve a machine learning problem [19,40,56,66,99,108,123], but in this chapter we maintain the term ensemble in its widest meaning, in order to include the whole range of combination methods. Nowadays, ensemble methods represent one of the main current research lines in machine learning [48,116], and the interest of the research community on ensemble methods is witnessed by conferences and workshops specifically devoted to ensembles, first of all the multiple classifier systems (MCS) conference organized by Roli, Kittler, Windeatt, and other researchers of this area [14,62,85,149,173]. Several theories have been

  11. Radioactivity method.

    USGS Publications Warehouse

    Duval, J.S.

    1980-01-01

    Radioactivity measurements have played an important role in geophysics since about 1935, and they have increased in importance to the present. The most important areas of application have been in petroleum and uranium exploration. Radioactivity measurements have proved useful in geologic mapping, as well as in specialized applications such as reactor-site monitoring. The technological development of the method has reached a plateau, and the future of the method for some applications will depend upon development of more sophisticated data processing and interpretation. -Author

  12. Characterization methods

    SciTech Connect

    Glass, J.T.

    1993-01-01

    Methods discussed in this compilation of notes and diagrams are Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and other surface analysis techniques (auger electron spectroscopy, x-ray photoelectron spectroscopy, electron energy loss spectroscopy, and scanning tunnelling microscopy). A comparative evaluation of different techniques is performed. In-vacuo and in-situ analyses are described.

  13. Comparison of Fracture Gradient Methods for the FutureGen 2.0 Carbon Storage Site, Ill., USA.

    NASA Astrophysics Data System (ADS)

    Appriou, D.; Spane, F.; Wurstner White, S.; Kelley, M. E.; Sullivan, E. C.; Bonneville, A.; Gilmore, T. J.

    2014-12-01

    As part of a first-of-its-kind carbon dioxide storage project, FutureGen Industrial Alliance is planning to inject 1.1 MMt/yr of supercritical CO2 over a 20-year period within a 1240 m deep saline aquifer (Mount Simon Sandstone) located in Morgan County, Illinois, USA. Numerous aspects of the design and operational activities of the CO2 storage site are dependent on the geomechanical properties of the targeted reservoir zone, as well as of the overlying confining zone and the underlying crystalline Precambrian basement. Detailed determination of the state-of-stress within the subsurface is of paramount importance in successfully designing well drilling/completion aspects, as well as assessing the risk of induced seismicity and the potential for creating and/or reopening pre-existing fractures; all of which help ensure the safe long-term storage of injected CO2. The quantitative determination of the subsurface fracture gradient is one of the key geomechanical parameters for the site injection design and operational limits (e.g., maximum safe injection pressure). A characterization well drilled in 2011 provides subsurface geomechanical characterization information for the FutureGen 2.0 site, and includes: 1) continuous elastic properties inferred from sonic/acoustic wireline logs 2) discrete depth geomechanical laboratory core measurements and 3) results obtained from hydraulic fracturing tests of selected borehole/depth-intervals. In this paper, the precise fracture gradients derived from borehole geomechanical test results are compared with semi-empirical, fracture gradient calculation/relationships based on elastic property wireline surveys and laboratory geomechanical core test results. Implications for using various fracture-gradients obtained from the different methods are assessed using PNNL's subsurface multiphase flow and transport simulator STOMP-CO2. The implications for operational activities at the site (based on using different fracture gradients) are

  14. COATING METHOD

    DOEpatents

    Townsend, R.G.

    1959-08-25

    A method is described for protectively coating beryllium metal by etching the metal in an acid bath, immersing the etched beryllium in a solution of sodium zincate for a brief period of time, immersing the beryllium in concentrated nitric acid, immersing the beryhlium in a second solution of sodium zincate, electroplating a thin layer of copper over the beryllium, and finally electroplating a layer of chromium over the copper layer.

  15. SINTERING METHOD

    DOEpatents

    Googin, J.M.

    1963-11-01

    Methods of making articles by powder metallurgy techniques are presented. An article is made by packing a metal powder into a desired shape, raising the temperature of the powder compact to a sintering temperature in the presence of a reducing gas, and alternately increasing and decreasing the pressure of the gas while the temperatume is being raised. The product has a greater density than can be achieved by sintering for the same length of time at a constant gas pressure. (AEC)

  16. Evaluation of the potential of the Clare Basin, SW Ireland, for onshore carbon sequestration using electromagnetic geophysical methods

    NASA Astrophysics Data System (ADS)

    Llovet, Joan Campanya i.; Ogaya, Xenia; Jones, Alan G.; Rath, Volker; Ledo, Juanjo; McConnell, Brian

    2015-04-01

    Carbon capture, sequestration and long-term storage (CCS) is a critically important and intellectually and technologically challenging bridging technology for assisting humanity to migrate from its dependence on fossil fuels to green energy over the next half century. The IRECCSEM project (www.ireccsem.ie) is a Science Foundation Ireland Investigator Project to evaluate Ireland's potential for onshore carbon sequestration in saline aquifers by integrating new electromagnetic geophysical data with existing geophysical and geological data. The main goals of the project are to determine porosity and permeability values of the potential reservoir formation as well as to evaluate the integrity of the seal formation. During the summer of 2014, a magnetotelluric (MT) survey was carried out in the Carboniferous Clare Basin (SW Ireland). Data from a total of 140 sites were acquired, including audio-magnetotelluric (AMT), broadband magnetotelluric (BBMT) and long period magnetotelluric (LMT) data. These new data added to existing MT data acquired at 32 sites during a feasibility pilot survey conducted in 2010. The nominal space between the 2014 sites was 0.6 km between AMT sites, 1.2 km between BBMT sites and 8 km between LMT sites. The electrical resistivity distribution beneath the survey area was constrained using three different types of electromagnetic data: MT impedance tensor responses (Z), geomagnetic transfer functions (GTF) and inter-station horizontal magnetic transfer-functions (HMT). A newly-computed code based on the Generalized Archie's Law and available data from boreholes were used to relate the obtained geoelectrical model to rock properties (i.e. porosity and permeability). The results are compared to independent geological and geophysical data for superior interpretation.

  17. Gelcasting methods

    DOEpatents

    Walls, Claudia A.; Kirby, Glen H.; Janney, Mark A.; Omatete, Ogbemi O.; Nunn, Stephen D.; McMillan, April D.

    2000-01-01

    A method of gelcasting includes the steps of providing a solution of at least hydroxymethylacrylamide (HMAM) and water. At least one inorganic powder is added to the mixture. At least one initiator system is provided to polymerize the HMAM. The initiator polymerizes the HMAM and water, to form a firm hydrogel that contains the inorganic powder. One or more comonomers can be polymerized with the HMAM monomer, to alter the final properties of the gelcast material. Additionally, one or more additives can be included in the polymerization mixture, to alter the properties of the gelcast material.

  18. QSAR Methods.

    PubMed

    Gini, Giuseppina

    2016-01-01

    In this chapter, we introduce the basis of computational chemistry and discuss how computational methods have been extended to some biological properties and toxicology, in particular. Since about 20 years, chemical experimentation is more and more replaced by modeling and virtual experimentation, using a large core of mathematics, chemistry, physics, and algorithms. Then we see how animal experiments, aimed at providing a standardized result about a biological property, can be mimicked by new in silico methods. Our emphasis here is on toxicology and on predicting properties through chemical structures. Two main streams of such models are available: models that consider the whole molecular structure to predict a value, namely QSAR (Quantitative Structure Activity Relationships), and models that find relevant substructures to predict a class, namely SAR. The term in silico discovery is applied to chemical design, to computational toxicology, and to drug discovery. We discuss how the experimental practice in biological science is moving more and more toward modeling and simulation. Such virtual experiments confirm hypotheses, provide data for regulation, and help in designing new chemicals. PMID:27311459

  19. Effect of the addition order and amylose content on mechanical, barrier and structural properties of films made with starch and montmorillonite.

    PubMed

    Romero-Bastida, C A; Bello-Pérez, L A; Velazquez, G; Alvarez-Ramirez, J

    2015-01-01

    This study considered the effect of amylose content (30% and 70%), montmorillonite (MMT) fraction (5 and 15%) and preparation method on mechanical and barrier properties of starch/clay nanocomposites prepared by casting. In Method 1, (30% w/w) glycerol was incorporated before starch gelatinization and MMT addition, while in Method 2 after gelatinization and MMT addition. Nanocomposites with higher amount of MMT showed the highest tensile strength and Young's modulus for both preparation methods. Method 1 favored nanocomposite properties of films with less amylose content, meanwhile Method 2 favored nanocomposites properties with higher amylose content. Water vapor permeability did not decrease significantly in starch films with different amylose content with the two different preparation methods. X-ray diffraction of the starch films indicated intercalated structures. Higher melting temperature (Tm) was found for nanocomposites with Method 2, indicating more ordered structures. Films with 70% amylose content have higher Tm than films with 30% amylose.

  20. Casting methods

    DOEpatents

    Marsden, Kenneth C.; Meyer, Mitchell K.; Grover, Blair K.; Fielding, Randall S.; Wolfensberger, Billy W.

    2012-12-18

    A casting device includes a covered crucible having a top opening and a bottom orifice, a lid covering the top opening, a stopper rod sealing the bottom orifice, and a reusable mold having at least one chamber, a top end of the chamber being open to and positioned below the bottom orifice and a vacuum tap into the chamber being below the top end of the chamber. A casting method includes charging a crucible with a solid material and covering the crucible, heating the crucible, melting the material, evacuating a chamber of a mold to less than 1 atm absolute through a vacuum tap into the chamber, draining the melted material into the evacuated chamber, solidifying the material in the chamber, and removing the solidified material from the chamber without damaging the chamber.

  1. WELDING METHOD

    DOEpatents

    Cornell, A.A.; Dunbar, J.V.; Ruffner, J.H.

    1959-09-29

    A semi-automatic method is described for the weld joining of pipes and fittings which utilizes the inert gasshielded consumable electrode electric arc welding technique, comprising laying down the root pass at a first peripheral velocity and thereafter laying down the filler passes over the root pass necessary to complete the weld by revolving the pipes and fittings at a second peripheral velocity different from the first peripheral velocity, maintaining the welding head in a fixed position as to the specific direction of revolution, while the longitudinal axis of the welding head is disposed angularly in the direction of revolution at amounts between twenty minutas and about four degrees from the first position.

  2. Tensiometer methods

    DOEpatents

    Grover, Blair K.; Hubbell, Joel M.; Sisson, James B.; Casper, William L.

    2005-12-20

    A method for collecting data regarding a matric potential of a media includes providing a tensiometer having a stainless steel tensiometer casing, the stainless steel tensiometer casing comprising a tip portion which includes a wetted porous stainless steel membrane through which a matric potential of a media is sensed; driving the tensiometer into the media using an insertion tube comprising a plurality of probe casing which are selectively coupled to form the insertion tube as the tensiometer is progressively driven deeper into the media, wherein the wetted porous stainless steel membrane is in contact with the media; and sensing the matric potential the media exerts on the wetted porous stainless steel membrane by a pressure sensor in fluid hydraulic connection with the porous stainless steel membrane. A tensiometer includes a stainless steel casing.

  3. Effect of amylose content and nanoclay incorporation order in physicochemical properties of starch/montmorillonite composites.

    PubMed

    Romero-Bastida, C A; Tapia-Blácido, D R; Méndez-Montealvo, G; Bello-Pérez, L A; Velázquez, G; Alvarez-Ramirez, J

    2016-11-01

    The effects of the amylose content and the preparation sequence in physicochemical properties of starch/montmorillonite (MMT) composites were studied in this work. Native (30%) and high amylose Hylon VII (70%) starches were considered for assessing the effects of amylose content. Glycerol and MMT were used as additives to evaluate the effects of the former as plasticizer and the latter as reinforcer. The glycerol was incorporated before (Method M1) and after (Method M2) the addition of MMT. FTIR studies indicated that water bonding was affected by amylose content. Sorption isotherms indicated that method M2 favoured water adsorption and method M1 reduced water adsorption due to competition for active sites for interaction. TGA showed that method M1 induced a higher degradation rate than method M2. Wettability analysis by contact angle measurements showed that plasticizer promoted the hydrophilicity of the film, whereas MMT promoted a hydrophobic surface for both cases of amylose content. PMID:27516282

  4. Effect of amylose content and nanoclay incorporation order in physicochemical properties of starch/montmorillonite composites.

    PubMed

    Romero-Bastida, C A; Tapia-Blácido, D R; Méndez-Montealvo, G; Bello-Pérez, L A; Velázquez, G; Alvarez-Ramirez, J

    2016-11-01

    The effects of the amylose content and the preparation sequence in physicochemical properties of starch/montmorillonite (MMT) composites were studied in this work. Native (30%) and high amylose Hylon VII (70%) starches were considered for assessing the effects of amylose content. Glycerol and MMT were used as additives to evaluate the effects of the former as plasticizer and the latter as reinforcer. The glycerol was incorporated before (Method M1) and after (Method M2) the addition of MMT. FTIR studies indicated that water bonding was affected by amylose content. Sorption isotherms indicated that method M2 favoured water adsorption and method M1 reduced water adsorption due to competition for active sites for interaction. TGA showed that method M1 induced a higher degradation rate than method M2. Wettability analysis by contact angle measurements showed that plasticizer promoted the hydrophilicity of the film, whereas MMT promoted a hydrophobic surface for both cases of amylose content.

  5. Slow-released NPK fertilizer encapsulated by NaAlg-g-poly(AA-co-AAm)/MMT superabsorbent nanocomposite.

    PubMed

    Rashidzadeh, Azam; Olad, Ali

    2014-12-19

    A novel slow released NPK fertilizer encapsulated by superabsorbent nanocomposite was prepared via in-situ free radical polymerization of sodium alginate, acrylic acid, acrylamide, and montmorillonite in the presence of fertilizer compounds. Evidence of grafting and component interactions, superabsorbent nanocomposite structure and morphology was obtained by a FT-IR, XRD and SEM techniques. The water absorbency behavior of superabsorbent nanocomposite was investigated. After those characterizations, the potential application was verified through the study of fertilizer release from prepared formulations. Results indicated that the presence of the montmorillonite caused the system to liberate the nutrient in a more controlled manner than that with the neat superabsorbent. The good slow release fertilizer property as well as good water retention capacity showed that this formulation is potentially viable for application in agriculture as a fertilizer carrier vehicle. PMID:25263891

  6. An updated T-series thermocouple measurement system for high-accuracy temperature measurements of the MMT primary mirror

    NASA Astrophysics Data System (ADS)

    Clark, D.; Gibson, J. D.

    2012-09-01

    Starting in 2009, MMTO began design and installation of a new set of electronics to measure a set of radiallydistributed type T thermocouples installed after the primary mirror polishing was completed. These thermocouples are arranged in both single measurement points and as thermopiles for differential temperature sensing. Since the goal of the primary mirror temperature control system is to minimize mirror seeing and mirror figure errors induced by temperature variation across the primary mirror, it depends on excellent accuracy from the temperature sensing system. The new electronics encompass on-board cold-junction compensation, real-time ITS-90 curve fitting, and Ethernet connectivity to the data servers running in the MMTO software infrastructure. We describe the hardware design, system wiring, and software used in this system.

  7. Chandra and MMT observations of low-mass black hole active galactic nuclei accreting at low rates in dwarf galaxies

    SciTech Connect

    Yuan, W.; Zhou, H.; Dou, L.; Dong, X.-B.; Wang, T.-G.; Fan, X.

    2014-02-10

    We report on Chandra X-ray observations of four candidate low-mass black hole (M {sub bh} ≲ 10{sup 6} M {sub ☉}) active galactic nuclei (AGNs) that have the estimated Eddington ratios among the lowest (∼10{sup –2}) found for this class. The aims are to validate the nature of their AGNs and to confirm the low Eddington ratios that are derived from the broad Hα line, and to explore this poorly studied regime in the AGN parameter space. Among them, two objects with the lowest significance of the broad lines are also observed with the Multi-Mirror Telescope, and the high-quality optical spectra taken confirm them as Seyfert 1 AGNs and as having small black hole masses. X-ray emission is detected from the nuclei of two of the galaxies, which is variable on timescales of ∼10{sup 3} s, whereas no significant (or only marginal at best) detection is found for the remaining two. The X-ray luminosities are on the order of 10{sup 41} erg s{sup –1} or even lower, on the order of 10{sup 40} erg s{sup –1} for non-detections, which are among the lowest regimes ever probed for Seyfert galaxies. The low X-ray luminosities, compared to their black hole masses derived from Hα, confirm their low accretion rates assuming typical bolometric corrections. Our results hint at the existence of a possibly large population of under-luminous low-mass black holes in the local universe. An off-nucleus ultra-luminous X-ray source in one of the dwarf galaxies is detected serendipitously, with a luminosity (6-9)× 10{sup 39} erg s{sup –1} in 2-10 keV.

  8. Slow-released NPK fertilizer encapsulated by NaAlg-g-poly(AA-co-AAm)/MMT superabsorbent nanocomposite.

    PubMed

    Rashidzadeh, Azam; Olad, Ali

    2014-12-19

    A novel slow released NPK fertilizer encapsulated by superabsorbent nanocomposite was prepared via in-situ free radical polymerization of sodium alginate, acrylic acid, acrylamide, and montmorillonite in the presence of fertilizer compounds. Evidence of grafting and component interactions, superabsorbent nanocomposite structure and morphology was obtained by a FT-IR, XRD and SEM techniques. The water absorbency behavior of superabsorbent nanocomposite was investigated. After those characterizations, the potential application was verified through the study of fertilizer release from prepared formulations. Results indicated that the presence of the montmorillonite caused the system to liberate the nutrient in a more controlled manner than that with the neat superabsorbent. The good slow release fertilizer property as well as good water retention capacity showed that this formulation is potentially viable for application in agriculture as a fertilizer carrier vehicle.

  9. Methadone maintenance treatment program in prisons from the perspective of medical and non-medical prison staff: a qualitative study in Iran

    PubMed Central

    Moradi, Ghobad; Farnia, Marzieh; Shokoohi, Mostafa; Shahbazi, Mohammad; Moazen, Babak; Rahmani, Khaled

    2015-01-01

    Background: As one of the most important components of harm reduction strategy for high-risk groups, following the HIV epidemics, Methadone Maintenance Treatment (MMT) has been initiated in prisoners since 2003. In this paper, we aimed to assess the advantages and shortcomings of the MMT program from the perspective of people who were involved with the delivery of prison healthcare in Iran. Methods: On the basis of grounded theory and through conducting 14 Focus Group Discussions (FGDs), 7 FGDs among physicians, consultants, experts, and 7 FGDs among directors and managers of prisons (n= 140) have been performed. The respondents were asked about positive and negative elements of the MMT program in Iranian prisons. Results: This study included a total of 48 themes, of which 22 themes were related to advantages and the other 26 were about shortcomings of MMT programs in the prisons. According to participants’ views "reduction of illegal drug use and high-risk injection", "reduction of potentially high-risk behaviors" and "making positive attitudes" were the main advantages of MMT in prisons, while issues such as "inaccurate implementation", "lack of skilled manpower" and "poor care after release from prison" were among the main shortcomings of MMT program. Conclusions: MMT program in Iran’s prisons has achieved remarkable success in the field of harm reduction, but to obtain much more significant results, its shortcomings and weaknesses must be also taken into account by policy-makers. PMID:26340487

  10. Synergistic reinforcing effect of TiO2 and montmorillonite on potato starch nanocomposite films: Thermal, mechanical and barrier properties.

    PubMed

    Oleyaei, Seyed Amir; Almasi, Hadi; Ghanbarzadeh, Babak; Moayedi, Ali Akbar

    2016-11-01

    In this study, ternary potato starch (PS) bionanocomposite films containing two types of nanoparticles, sodium montmorillonite (MMT), one-dimensional (1D) clay platelets, (3 and 5wt%) and TiO2, three-dimensional (3D) nanospheres, (0.5, 1 and 2wt%), are prepared using solvent casting method. X-ray diffraction (XRD) test confirms the completely exfoliated structure formed in the PS-MMT nanocomposites containing 3 and 5% MMT. The success of the formation of new hydrogen bonds between the hydroxyl groups of starch and nanofillers is confirmed by Fourier transform infrared (FTIR) spectroscopy. Tensile strength (TS), elongation at break (EB), glass transition temperature (Tg), and melting point (Tm) of the films are also enhanced after MMT and TiO2 incorporation. The water vapor permeability (WVP) and the visible, UVA, UVB and UVC lights transmittance decreases upon TiO2 and MMT content increasing. Generally, a synergistic effect is observed between MMT and TiO2 at lower concentrations of MMT. PMID:27516271

  11. Sonocatalytic removal of an organic dye using TiO2/Montmorillonite nanocomposite.

    PubMed

    Khataee, Alireza; Sheydaei, Mohsen; Hassani, Aydin; Taseidifar, Mojtaba; Karaca, Semra

    2015-01-01

    The sonocatalytic performance of the synthesized TiO2/Montmorillonite K10 (TiO2/MMT) nanocomposite was studied in removal of Basic Blue 3 (BB3) from water. The TiO2/MMT nanocomposite was prepared by hydrothermal method. Scanning electron microscope, X-ray diffraction and Fourier transform infrared were used to characterize the synthesized nanocomposite. The average size of TiO2 nanoparticles decreased from 60-80nm to 40-60nm through the immobilization of this semiconductor on the surface of MMT. The obtained results indicated that the sonocatalytic activity of TiO2/MMT nanocomposite was higher than that of pure TiO2 nanoparticles and MMT particles. Furthermore, the main influence factors on the sonocatalytic activity such as the BB3 concentration, pH of solution, TiO2/MMT dose, power of ultrasonic generator, and inorganic salts were studied. The intermediates of BB3 degradation during the sonocatalytic process in the presence of the TiO2/MMT nanocomposite have been monitored by gas chromatography-mass spectrometry. PMID:25060118

  12. Illicit Heroin and Methamphetamine Use among Methadone Maintenance Treatment Patients in Dehong Prefecture of Yunnan Province, China

    PubMed Central

    Duan, Song; Ye, Runhua; Yang, Yuecheng; Wang, Jibao; Tang, Renhai; Gao, Meiyang; He, Na

    2015-01-01

    Objective Methadone maintenance treatment (MMT) was introduced to China in 2004 to reduce the harm of injecting drug users (IDUs). However, little is known about continued drug use, especially methamphetamine (MAMP), among MMT patients. Methods A survey was conducted among patients attending five major MMT clinics in Dehong Prefecture in 2014 to investigate the heroin and MAMP use and their associated risk factors. Participants were administered with face-to-face interviews, and urine tests for morphine and MAMP. Results A total of 2,121 were eligible and participated in the study. Among them, 220 (10.4%) were only positive for morphine, 12.9% were only positive for MAMP, and 196 (9.2%) were positive for both morphine and MAMP. Compared with neither use of heroin nor MAMP during MMT, heroin use (not using MAMP) was associated with ethnicity, shorter duration of MMT, lower dose of methadone, and having had no more than two sex partners in the past year; MAMP use (not using heroin) was associated with ethnicity, longer duration of MMT, higher dose of methadone and being aged <30 years (vs. ≥50 years); use of both heroin and MAMP was associated with being Dai minority (vs. Han), a marital status of divorced or widowed, having used drugs for ≥10 years and shorter duration of MMT. Conclusion These findings indicate the complexity in the treatment of heroin users and underscore the importance in prescribing appropriate methadone dosages in order to reduce both heroin and MAMP use. PMID:26196394

  13. Directional Solidification and Characterization of Hg(0.89) Mn(0.11)Te

    NASA Technical Reports Server (NTRS)

    Price, M. W.; Scripa, R. N.; Lehoczky. S. L.; Szofran, F. R.; Su, C.-H.

    1998-01-01

    Two boules of Hg(0.89)Mn(0.11)Te(MMT) were solidified using the vertical Bridgman-Stockbarger method. Translation rates of 0.09 and 0. 18 microns/s were used. The influence of growth rate on axial compositional homogeneity in the MMT boules was evaluated experimentally by conducting precision density measurements on radial slices taken from each boule. In addition, Plane Front Solidification theory and segregation coefficient (k) data for the Hg(1-x)Mn(x)Te system were used to fit theoretical composition profiles to the measured MMT axial composition profiles. The strong correlation between the measured and calculated MMT axial composition profiles indicates diffusion dominated axial solute redistribution in the boules under the applied growth conditions. The analysis of the MMT axial composition profiles by Plane Front Solidification theory allowed the calculation of the effective diffusion coefficient (D(eff) = 3.5 x l0(exp -5) sq cm/s). The k-values for the Hg(1-x)Mn(x)Te system and the D(sub eff) - value were then used to verify that both boules were solidified under conditions which did not exceed the Constitutional Supercooling Criteria under ideal conditions. Finally, a preliminary examination of the radial compositional variation in each MMT was made using Fourier Transform Infra-Red Spectroscopy (FTIR). The radial homogeneity in the MMT boules was found to be comparable for both translation rates.

  14. A new approach of enhancing the shear stress of electrorheological fluids of montmorillonite nanocomposite by emulsion intercalation of poly-N-methaniline.

    PubMed

    Lu, Jun; Zhao, Xiaopeng

    2004-05-15

    Poly-N-methaniline/montmorillonite (PNMA-MMT) nanocomposite particles with high dielectric constant as well as suitable conductivity were synthesized by an emulsion intercalation method and characterized by FT-IR, XRD, and TEM spectrometry, respectively. The electrorheological (ER) properties of the suspensions of PNMA-MMT particles in silicone oil (20 wt%) were investigated under DC electric fields. It was found that the shear stress of poly-N-methaniline/montmorillonite electrorheological fluid (ERF) is 6.0 kPa in 3 kV/mm (74.5 s(-1)), which is 3.6 times that of electrorheological fluid at zero field, and also much higher than that of pure poly-N-methaniline (PNMA) and montmorillonite (MMT). In the range of 10-90 degrees C, the shear stress changes slightly with the temperature. The sedimentation ratio of PNMA-MMT ERF was about 97% after 60 days. Furthermore, the dielectric constant of PNMA-MMT nanocomposite was increased 3.74 times that of PNMA and 1.99 times that of MMT at 1000 Hz, the dielectric loss tangent also increased about 1.58 times that of PNMA. It is apparent that the notable ER effect of PNMA-MMT ER fluid was attributed to the prominent dielectric property of the poly-N-methaniline/montmorillonite nanocomposite particles.

  15. The reliability of the seismo-magnetic method derived from ULF/ELF observations by the South European Geomagnetic Array (SEGMA)

    NASA Astrophysics Data System (ADS)

    Schwingenschuh, Konrad; Prattes, Gustav; Eichelberger, Hans Ulrich; Magnes, Werner; Berghofer, Gerhard; Aydogar, Özer; Besser, Bruno P.; Boudjada, Mohammed; Stangl, Günter; Zhang, Tie Long; Wolbang, Daniel; Vellante, Massimo; Villante, Umberto; Rozhnoi, Alexander; Solovieva, Maria; Nenovski, Petko; Veztergom, Victor; Szendrői, Judith

    2013-04-01

    In the frame of the South European GeoMagnetic Array (SEGMA) project magnetic field variations are studied in the frequency range from several milli-Hz to several Hz. The fluxgate and induction coil magnetometers are located in Italy, Bulgaria and Hungary. The scientific objectives comprises field-line resonances, space weather phenomena and seismo-magnetic (SM) studies. In our present study on the reliability of the seismo-magnetic method we emphasize on the influence of external non-seismic sources on the quality of seismo-magnetic studies. External magnetic sources include lightning, power lines, railway and traffic as well as geomagnetic variations of magnetospheric origin. We observe anomalies of the ratio of the vertical to horizontal magnetic field component in the ultra/extreme-low-frequency (ULF/ELF) frequency range up to several Hz [2]. These signals can be produced in the lithosphere near a seismic active region and are interpreted as earthquake precursors. In order to differentiate geomagnetic from seismo-magnetic fluctuations, we use mainly observations around midnight because the night time geomagnetic fluctuations are much smaller than during day time. The SEGMA network provides the unique opportunity to use multipoint observations, which are also useful to distinguish local from global phenomena. In order to get undisturbed magnetic field observations, the stations are located outside populated areas [2]. The electrical conductivity of the soil in the vicinity of magnetometers on the terrestrial surface is a further source for interferences. This type of disturbances caused by induced electrical currents can be minimized either by a careful selection of the magnetometer site ans/or by the measurement of the conductivity profile in the vicinity of the instrument site. In the frame of the investigation of the April 6, 2009 L'Aquila earthquake magneto-telluric methods have been used to measure the conductivity profile near the epicenter of the

  16. The catalytic activity of Ag2S-montmorillonites as peroxidase mimetic toward colorimetric detection of H2O2.

    PubMed

    Liu, Qingyun; Jiang, Yanling; Zhang, Leyou; Zhou, Xinpei; Lv, Xintian; Ding, Yanyuan; Sun, Lifang; Chen, Pengpeng; Yin, Hailiang

    2016-08-01

    Nanocomposites based on silver sulfide (Ag2S) and Ca-montmorillonite (Ca(2+)-MMT) were synthesized by a simple hydrothermal method. The nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared spectra (FTIR). The as-prepared Ag2S-MMT nanocomposites were firstly demonstrated to possess intrinsic peroxidase-like activity and could rapidly catalytically oxidize the substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2 to produce a blue product which can be seen by the naked eye in only one minute. The experimental results revealed that the Ag2S-MMT nanocomposites exhibit higher thermal durance. Based on the TMB-H2O2 catalyzed color reaction, the Ag2S-MMT nanocomposites were exploited as a new type of biosensor for detection and estimation of H2O2 through a simple, cheap and selective colorimetric method. PMID:27157733

  17. Physical Effects of Methadone Maintenance Treatment from the Standpoint of Clients

    PubMed Central

    Kheradmand, Ali; Banazadeh, Nabi; Abedi, Heidarali

    2010-01-01

    Background Studies have shown that methadone maintenance treatment (MMT) iseffective in improving the client’s quality of life and physical health.This study aimed to describe the nature and structure of drugdependents' experiences and the physical effects of MMT. Methods The present study is a qualitative and a phenomenology study on 32clients referred to methadone clinics in the city of Kerman in 2008.Colaizzi’s method was used for data analysis and to evaluate the data,validity and reliability criteria were used. Findings Encoded concepts were categorized in general groups of effectiveness ongeneral health, sleep, appetite and weight, sexual desire, appearance andother effects. These six categories showed the main structure of experienceand physical effects of MMT. Conclusion The clients' viewpoints towards this treatment had a role in theirexperience expression and feelings, but MMT had an overall positivephysical effect on the clients. PMID:24494103

  18. Application des methodes electromagnetiques transitoires a la prospection des aquiferes profonds

    NASA Astrophysics Data System (ADS)

    Krivochieva, Stefka

    This work is aimed by the application of transient electromagnetic methods (TDEM) to the prospection of deep aquifers. The objectives of the present study are: (1) to develop a technique of TDEM data processing to improve the quality of interpretation; (2) to evaluate the TDEM response in stratified media, when both the transmitter and the receiver are in mine galleries; and (3) to establish the simultaneous application of TDEM and magnetotelluric (MT) methods as essential tools for groundwater prospection. Two techniques are addressed here. The first technique concerns simultaneous inversion performed on data from central loop and offset receiver TDEM soundings. Simultaneous inversion of central loop and different offset data sets are performed over a series of layered earth models, over a layered earth with a polarizable surface layer, and over a 3D conductive body embedded in layered host. It is demonstrated that central loop and offset soundings complement each other and that the simultaneous 1D inversion of both data sets yields rapid convergence and better resolution of the model parameters, reduces the importance of distortion caused by induced polarization on interpretation, and provides a good indication of the subsurface geometry in the measurement zone. MT and TDEM surveys were undertaken in the Chalco Sub-Basin (Mexico) and a hydrogeological model is proposed. It allows to constrain the geometry of the fresh water aquifer, and to confirm the continuity of the basaltic flows between the volcano and the sedimentary basin. The second technique concerns the underground applications of TDEM method. In-mine time-domain electromagnetic survey responses are affected by simultaneous induction caused by conductive zones located either in the sequence above the mine drift, in the sequence below or in both. The proposed technique allows to distinguish the effects of the upper and/or lower conductors depending on the anomalies in the recorded response. A computer

  19. Preparation and Characterization of Nanocomposites from Whey Protein Concentrate Activated with Lycopene.

    PubMed

    Pereira, Rafaela Corrêa; de Deus Souza Carneiro, João; Borges, Soraia Vilela; Assis, Odílio Benedito Garrido; Alvarenga, Gabriela Lara

    2016-03-01

    The production and characterization of nanocomposites based on whey protein concentrate (WPC) and montmorilonite (MMT) incorporated with lycopene as a functional substance is presented and discussed as an alternative biomaterial for potential uses in foodstuff applications. A full factorial design with varying levels of MMT (0% and 2% in w/w) and lycopene (0%, 6%, and 12% in w/w) was used. Color, light transmission, film transparency, moisture, density, solubility, water vapor permeability, and antioxidant activity of the resulting materials were evaluated. Results indicated that lycopene and MMT nanoparticles were successfully included in WPC films using the casting/evaporation method. Inclusion of 2% w/w of MMT in the polymeric matrix significantly improved barrier property against water vapor. Lycopene, besides its good red coloring ability, provided to the films antioxidant activity and UV-vis light protection. These findings open a new perspective for the use of materials for bioactive packaging applications. PMID:26814439

  20. Novel hydrophilic carboxymethyl starch/montmorillonite nanocomposite films.

    PubMed

    Wilpiszewska, Katarzyna; Antosik, Adrian Krzysztof; Spychaj, Tadeusz

    2015-09-01

    Preparation of novel carboxymethyl starch (CMS)-based biodegradable films with calcium montmorillonite has been described. The biocomposites were obtained by casting method, glycerol and citric acid were used as plasticizer and crosslinking agent, respectively. The effect of calcium montmorillonite (MMT-Ca) on hydrophilicity (moisture absorption, solubility in water as well as contact angle measurements) was evaluated. Moreover, thermomechanical and mechanical properties of nanocomposites were determined. For all the systems tested intercalated structure of MMT-Ca was revealed, however the most efficient clay platelets dispersion was noted for film containing 5 wt.% MMT-Ca. Such biodegradable CMS/MMT-Ca films exhibiting relatively good mechanical properties could find application in controlled delivery systems as well as in agriculture for seed tapes production where hydrophilicity of polymer carrier is strongly advantageous. PMID:26005142

  1. Preparation and Characterization of Nanocomposites from Whey Protein Concentrate Activated with Lycopene.

    PubMed

    Pereira, Rafaela Corrêa; de Deus Souza Carneiro, João; Borges, Soraia Vilela; Assis, Odílio Benedito Garrido; Alvarenga, Gabriela Lara

    2016-03-01

    The production and characterization of nanocomposites based on whey protein concentrate (WPC) and montmorilonite (MMT) incorporated with lycopene as a functional substance is presented and discussed as an alternative biomaterial for potential uses in foodstuff applications. A full factorial design with varying levels of MMT (0% and 2% in w/w) and lycopene (0%, 6%, and 12% in w/w) was used. Color, light transmission, film transparency, moisture, density, solubility, water vapor permeability, and antioxidant activity of the resulting materials were evaluated. Results indicated that lycopene and MMT nanoparticles were successfully included in WPC films using the casting/evaporation method. Inclusion of 2% w/w of MMT in the polymeric matrix significantly improved barrier property against water vapor. Lycopene, besides its good red coloring ability, provided to the films antioxidant activity and UV-vis light protection. These findings open a new perspective for the use of materials for bioactive packaging applications.

  2. Synthesis of silver nanoparticles in montmorillonite and their antibacterial behavior

    PubMed Central

    Shameli, Kamyar; Ahmad, Mansor Bin; Zargar, Mohsen; Yunus, Wan Md Zin Wan; Rustaiyan, Abdolhossein; Ibrahim, Nor Azowa

    2011-01-01

    Silver nanoparticles (Ag NPs) were synthesized by the chemical reducing method in the external and interlamellar space of montmorillonite (MMT) as a solid support at room temperature. AgNO3 and NaBH4 were used as a silver precursor and reducing agent, respectively. The most favorable experimental conditions for synthesizing Ag NPs in the MMT are described in terms of the initial concentration of AgNO3. The interlamellar space limits changed little (d-spacing = 1.24–1.47 nm); therefore, Ag NPs formed on the MMT suspension with d-average = 4.19–8.53 nm diameter. The Ag/MMT nanocomposites (NCs), formed from AgNO3/MMT suspension, were characterizations with different instruments, for example UV-visible, PXRD, TEM, SEM, EDXRF, FT-IR, and ICP-OES analyzer. The antibacterial activity of different sizes of Ag NPs in MMT were investigated against Gram-positive, ie, Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) and Gram-negative bacteria, ie, Escherichia coli, Escherichia coli O157:H7, and Klebsiella pneumoniae, by the disk diffusion method using Mueller-Hinton agar (MHA). The smaller Ag NPs were found to have significantly higher antibacterial activity. These results showed that Ag NPs can be used as effective growth inhibitors in different biological systems, making them applicable to medical applications. PMID:21674015

  3. Highly-sensitive and rapid determination of sunset yellow using functionalized montmorillonite-modified electrode.

    PubMed

    Songyang, Yiyan; Yang, Xiaoqing; Xie, Shunlan; Hao, Haohua; Song, Jinchun

    2015-04-15

    Montmorillonite calcium (MMT-Ca) was functionalized with cetyltrimethylammonium bromide (CTAB) via cationic exchange effects. Compared with MMT-Ca, the resulting CTAB functionalized MMT-Ca (CTAB/MMT-Ca) greatly increased the oxidation peak current of sunset yellow, indicative of strong signal enhancement effects. The oxidation mechanism was studied, and one electron was transferred during the oxidation of sunset yellow. The influences of pH value, mass ratio of CTAB to MMT-Ca, amount of CTAB/MMT-Ca, and accumulation time were studied on the oxidation signal of sunset yellow. As a result, a highly-sensitive, rapid and simple electrochemical method was newly developed for the determination of sunset yellow. The linear ranger was from 2.5 to 200 nM, and the detection limit was as low as 0.71 nM after 1-min accumulation. This method was applied in soft drink samples, and the detected results consisted with the values that obtained by high-performance liquid chromatography. PMID:25466070

  4. Prospects of electromagnetic methods application for evaluation of deep geothermal resources of intraplate regions

    NASA Astrophysics Data System (ADS)

    Pushkarev, P.; Khmelevskoy, V.; Golubtsova, N.

    2013-12-01

    Due to increase of demand for energy resources and development of technologies of their extraction, the number of regions, where geothermal resources are used, is growing. These resources were used in the areas with surface indications of geothermal activity, but now geothermal energy is exploited in the regions with no such indications and, which is more important, where deep temperatures are lower in most cases. Hereafter, usage of the Earth's deep heat may become effective everywhere, including intraplate regions and, in particular, cratons. However, here the depth of boreholes, required to reach temperatures 250 - 350 0C, making electricity production possible, should be about 10 km. Geothermal resources can be divided to hydrothermal and petrothermal. The former are connected with thermal groundwater. As soon as some groundwater deposits were depleted, recharge of reservoirs using reinjection boreholes was applied. Petrothermal resources are connected with deep hot dry rocks of intraplate regions, for their exploitation closed-loop petrothermal circulation systems (PCS) can be used. In such a system water is pumped into injecting well(s), gets hot in the reservoir, created by means of hydrofracturing, and is pumped out from exploitation well(s). When choosing a location for a PCS, the main criterion is proximity to a consumer of energy and, especially, of hot water for heating. However, efficiency of choice depends on structure, state and thermal regime of the interiors and can be increased by application of geophysical methods, including electromagnetic (EM). In general, application of EM methods is possible at three stages: 1) Regional studies, when zones of probable increase of deep temperatures are revealed; 2) Detailed explorations, near-surface and deep, in the area, selected for PCS construction; 3) Monitoring, for imaging of the reservoir during its creation and exploitation. Here we will concentrate on the first stage. The depth range of our interest

  5. Efficient approach to improving the flame retardancy of poly(vinyl alcohol)/clay aerogels: incorporating piperazine-modified ammonium polyphosphate.

    PubMed

    Wang, Yu-Tao; Liao, Shi-Fu; Shang, Ke; Chen, Ming-Jun; Huang, Jian-Qian; Wang, Yu-Zhong; Schiraldi, David A

    2015-01-28

    Ammonium polyphosphates (APP) modified with piperazine (PA-APP) was used to improve the flame retardancy of poly(vinyl alcohol) (PVA)/montmorillonite (MMT) aerogels, which were prepared via an environmentally friendly freeze-drying method. The thermal stabilities of the samples were evaluated by thermogravimetric analysis (TG); the flammability behaviors of samples were investigated by limiting oxygen index (LOI), vertical burning test (UL-94) and cone calorimeter (CC) tests. TG test results showed that the 5% weight loss temperature (T5%) of PVA/MMT/PA-APP was 10 °C higher than that of PVA/MMT/APP. In combustion testing, all of PVA/MMT/PA-APP aerogels achieved V-0 ratings and have a higher LOI values than the unmodified PVA/MMT aerogel. Moreover, the aerogel with 1% PA-APP5, which means that the content of piperazine is 5% in PA-APP, decreased the cone calorimetry THR value to 5.71 MJ/m(2), and increased the char residue to 52%. The compressive modulus of PVA/MMT/PA-APP was increased by 93.4% compared with PVA/MMT/APP because of the increase in interfacial adhesion between matrix and PA-APP fillers. The densities of the PVA/MMT/PA-APP samples were slightly lower than those of the unmodified aerogels because of reduced shrinkage in the presence of PA-APP. All the tests results indicated that the incorporation of PA-APP not only improved the thermal stability and flame retardancy of aerogels but also maintained their mechanical properties. PMID:25588129

  6. Patient Satisfaction with Methadone Maintenance Treatment in Vietnam: A Comparison of Different Integrative-Service Delivery Models

    PubMed Central

    Tran, Bach Xuan; Nguyen, Long Hoang; Phan, Huong Thu Thi; Latkin, Carl A.

    2015-01-01

    Background Patient satisfaction is an important component of quality in healthcare delivery. To inform the expansion of Methadone Maintenance Treatment (MMT) services in Vietnam, we examined the satisfaction of patients with regards to different services delivery models and identified its associated factors. Methods We interviewed 1,016