Science.gov

Sample records for magnetron ion source

  1. Linear ion source with magnetron hollow cathode discharge

    SciTech Connect

    Tang, D.L.; Pu, S.H.; Wang, L.S.; Qiu, X.M.; Chu, Paul K.

    2005-11-15

    A linear ion source with magnetron hollow cathode discharge is described in this paper. The linear ion source is based on an anode layer thruster with closed-drift electrons that move in a closed path in the ExB fields. An open slit configuration is designed at the end of the ion source for the extraction of the linear ion beam produced by the magnetron hollow cathode discharge. The special configurations enable uninterrupted and expanded operation with oxygen as well as other reactive gases because of the absence of an electron source in the ion source. The ion current density and uniformity were experimentally evaluated. Using the ion source, surface modification was conducted on polyethylene terephthalate polymer films to improve the adhesion strength with ZnS coatings.

  2. ION MAGNETRON

    DOEpatents

    Gow, J.D.; Layman, R.W.

    1962-10-31

    A magnetohydrodynamic device or plasma generator of the ion magnetron class is described wherein a long central electrode is disposed along the axis of an evacuated cylinder. A radial electric field and an axial magnetic field are provided between the cylsnder and the electrode, forming a plasma trapping and heating region. For maximum effectiveness, neutral particles from the cylinder wall must be prevented from entering such region This is effected by forming a cylindrical sheath of electrons near the cylinder wall for ionizing undesired neutral particles, which are then trapped and removed by the magnetic field. An annular filament at one end of the device provides the electrons, which follow the axial magnetic field to a reflecting electrode at the opposite end of the device. (AEC)

  3. An inverted cylindrical sputter magnetron as metal vapor supply for electron cyclotron resonance ion sources

    SciTech Connect

    Weichsel, T. Hartung, U.; Kopte, T.; Zschornack, G.; Kreller, M.; Silze, A.

    2014-05-15

    An inverted cylindrical sputter magnetron device has been developed. The magnetron is acting as a metal vapor supply for an electron cyclotron resonance (ECR) ion source. FEM simulation of magnetic flux density was used to ensure that there is no critical interaction between both magnetic fields of magnetron and ECR ion source. Spatially resolved double Langmuir probe and optical emission spectroscopy measurements show an increase in electron density by one order of magnitude from 1 × 10{sup 10} cm{sup −3} to 1 × 10{sup 11} cm{sup −3}, when the magnetron plasma is exposed to the magnetic mirror field of the ECR ion source. Electron density enhancement is also indicated by magnetron plasma emission photography with a CCD camera. Furthermore, photographs visualize the formation of a localized loss-cone - area, when the magnetron is operated at magnetic mirror field conditions. The inverted cylindrical magnetron supplies a metal atom load rate of R > 1 × 10{sup 18} atoms/s for aluminum, which meets the demand for the production of a milliampere Al{sup +} ion beam.

  4. Hollow metal target magnetron sputter type radio frequency ion source

    SciTech Connect

    Yamada, N. Kasuya, T.; Wada, M.; Tsubouchi, N.

    2014-02-15

    A 70 mm diameter 70 mm long compact ion source equipped with a hollow sputtering target has been designed and tested. The hollow sputtering target serves as the radio frequency (RF) plasma excitation electrode at 13.56 MHz. A stable beam of Cu{sup +} has been extracted when Ar was used as the discharge support gas. In the extracted beam, Cu{sup +} had occupied more than 85% of the total ion current. Further increase in Cu{sup +} ions in the beam is anticipated by increasing the RF power and Ar pressure.

  5. Boron ion source based on planar magnetron discharge in self-sputtering mode.

    PubMed

    Gushenets, V I; Hershcovitch, A; Kulevoy, T V; Oks, E M; Savkin, K P; Vizir, A V; Yushkov, G Yu

    2010-02-01

    An ion source based on a planar magnetron sputtering device with thermally isolated target has been designed and demonstrated. For a boron sputtering target, high target temperature is required because boron has low electrical conductivity at room temperature, increasing with temperature. The target is well-insulated thermally and can be heated by an initial low-current, high-voltage discharge mode. A discharge power of 16 W was adequate to attain the required surface temperature (400 degrees C), followed by transition of the discharge to a high-current, low-voltage mode for which the magnetron enters a self-sputtering operational mode. Beam analysis was performed with a time-of-flight system; the maximum boron ion fraction in the beam is greater than 99%, and the mean boron ion fraction, time-integrated over the whole pulse length, is about 95%. We have plans to make the ion source steady state and test with a bending magnet. This kind of boron ion source could be competitive to conventional boron ion sources that utilize compounds such as BF(3), and could be useful for semiconductor industry application.

  6. Reduction of Beam Current Noise in the FNAL Magnetron Ion Source

    SciTech Connect

    Bollinger, D. S.; Karns, P. R.; Tan, C. Y.

    2014-01-01

    The new FNAL Injector Line with a circular dimple magnetron ion source has been operational since December of 2013. Since the new injector came on line there have been variations in the H- beam current flattop observed near the downstream end of the linac. Several different cathode geometries including a hollow cathode suggested by Dudnikov [1] were tried. We expanded on those studies by trying mixtures ranging from 0.25%N, 99.75%H to 3%N, 97%H. The results of these studies in our test stand will be presented in this paper.

  7. Magnetron sputtering source

    DOEpatents

    Makowiecki, D.M.; McKernan, M.A.; Grabner, R.F.; Ramsey, P.B.

    1994-08-02

    A magnetron sputtering source for sputtering coating substrates includes a high thermal conductivity electrically insulating ceramic and magnetically attached sputter target which can eliminate vacuum sealing and direct fluid cooling of the cathode assembly. The magnetron sputtering source design results in greater compactness, improved operating characteristics, greater versatility, and low fabrication cost. The design easily retrofits most sputtering apparatuses and provides for safe, easy, and cost effective target replacement, installation, and removal. 12 figs.

  8. Magnetron sputtering source

    DOEpatents

    Makowiecki, Daniel M.; McKernan, Mark A.; Grabner, R. Fred; Ramsey, Philip B.

    1994-01-01

    A magnetron sputtering source for sputtering coating substrates includes a high thermal conductivity electrically insulating ceramic and magnetically attached sputter target which can eliminate vacuum sealing and direct fluid cooling of the cathode assembly. The magnetron sputtering source design results in greater compactness, improved operating characteristics, greater versatility, and low fabrication cost. The design easily retrofits most sputtering apparatuses and provides for safe, easy, and cost effective target replacement, installation, and removal.

  9. A new solid state extractor pulser for the FNAL magnetron ion source

    SciTech Connect

    Bollinger, D. S.; Lackey, J.; Larson, J.; Triplett, K.

    2015-10-05

    A new solid state extractor pulser has been installed on the Fermi National Accelerator Laboratory (FNAL) magnetron ion source, replacing a vacuum tube style pulser that was used for over 40 years. The required ion source extraction voltage is 35 kV for injection into the radio frequency quadrupole. At this voltage, the old pulser had a rise time of over 150 μs due to the current limit of the vacuum tube. The new solid state pulsers are capable of 50 kV, 100 A peak current pulses and have a rise time of 9 μs when installed in the operational system. This paper will discuss the pulser design and operational experience to date.

  10. Development of metal nanocluster ion source based on dc magnetron plasma sputtering at room temperature

    SciTech Connect

    Majumdar, Abhijit; Koepp, Daniel; Ganeva, Marina; Hippler, Rainer; Datta, Debasish; Bhattacharyya, Satyaranjan

    2009-09-15

    A simple and cost effective nanocluster ion source for the deposition of size selected metal nanocluster has been developed based on the dc magnetron discharge (including pulsed dc discharge). The most important and interesting feature of this cluster source is that it is working at room temperature, cooled by chilled water during the experiment. There is no extraction unit in this device and the cluster streams flow only due to the pressure gradient from source chamber to substrate via quadrupole mass filter. It has provision of multiple substrate holders in the deposition chamber, which can be controlled manually. The facility consists of quadrupole mass filter (QMF 200), which can select masses in the range of 2-125 000 atoms depending on the target materials, with a constant mass resolution (M/{Delta}M{approx}25). The dc magnetron discharge at a power of about 130 W with Ar as feed/buffer gas was used to produce the Cu nanocluster in an aggregation tube and deposited on Si (100) wafer temperature.

  11. A hybrid electron cyclotron resonance metal ion source with integrated sputter magnetron for the production of an intense Al⁺ ion beam.

    PubMed

    Weichsel, T; Hartung, U; Kopte, T; Zschornack, G; Kreller, M; Philipp, A

    2015-09-01

    A metal ion source prototype has been developed: a combination of magnetron sputter technology with 2.45 GHz electron cyclotron resonance (ECR) ion source technology-a so called magnetron ECR ion source (MECRIS). An integrated ring-shaped sputter magnetron with an Al target is acting as a powerful metal atom supply in order to produce an intense current of singly charged metal ions. Preliminary experiments show that an Al(+) ion current with a density of 167 μA/cm(2) is extracted from the source at an acceleration voltage of 27 kV. Spatially resolved double Langmuir probe measurements and optical emission spectroscopy were used to study the plasma states of the ion source: sputter magnetron, ECR, and MECRIS plasma. Electron density and temperature as well as Al atom density were determined as a function of microwave and sputter magnetron power. The effect of ECR heating is strongly pronounced in the center of the source. There the electron density is increased by one order of magnitude from 6 × 10(9) cm(-3) to 6 × 10(10) cm(-3) and the electron temperature is enhanced from about 5 eV to 12 eV, when the ECR plasma is ignited to the magnetron plasma. Operating the magnetron at constant power, it was observed that its discharge current is raised from 1.8 A to 4.8 A, when the ECR discharge was superimposed with a microwave power of 2 kW. At the same time, the discharge voltage decreased from about 560 V to 210 V, clearly indicating a higher plasma density of the MECRIS mode. The optical emission spectrum of the MECRIS plasma is dominated by lines of excited Al atoms and shows a significant contribution of lines arising from singly ionized Al. Plasma emission photography with a CCD camera was used to prove probe measurements and to identify separated plasma emission zones originating from the ECR and magnetron discharge.

  12. A hybrid electron cyclotron resonance metal ion source with integrated sputter magnetron for the production of an intense Al+ ion beam

    NASA Astrophysics Data System (ADS)

    Weichsel, T.; Hartung, U.; Kopte, T.; Zschornack, G.; Kreller, M.; Philipp, A.

    2015-09-01

    A metal ion source prototype has been developed: a combination of magnetron sputter technology with 2.45 GHz electron cyclotron resonance (ECR) ion source technology—a so called magnetron ECR ion source (MECRIS). An integrated ring-shaped sputter magnetron with an Al target is acting as a powerful metal atom supply in order to produce an intense current of singly charged metal ions. Preliminary experiments show that an Al+ ion current with a density of 167 μA/cm2 is extracted from the source at an acceleration voltage of 27 kV. Spatially resolved double Langmuir probe measurements and optical emission spectroscopy were used to study the plasma states of the ion source: sputter magnetron, ECR, and MECRIS plasma. Electron density and temperature as well as Al atom density were determined as a function of microwave and sputter magnetron power. The effect of ECR heating is strongly pronounced in the center of the source. There the electron density is increased by one order of magnitude from 6 × 109 cm-3 to 6 × 1010 cm-3 and the electron temperature is enhanced from about 5 eV to 12 eV, when the ECR plasma is ignited to the magnetron plasma. Operating the magnetron at constant power, it was observed that its discharge current is raised from 1.8 A to 4.8 A, when the ECR discharge was superimposed with a microwave power of 2 kW. At the same time, the discharge voltage decreased from about 560 V to 210 V, clearly indicating a higher plasma density of the MECRIS mode. The optical emission spectrum of the MECRIS plasma is dominated by lines of excited Al atoms and shows a significant contribution of lines arising from singly ionized Al. Plasma emission photography with a CCD camera was used to prove probe measurements and to identify separated plasma emission zones originating from the ECR and magnetron discharge.

  13. Reduction of beam current noise in the FNAL magnetron ion source

    SciTech Connect

    Bollinger, D. S. Karns, P. R. Tan, C. Y.

    2015-04-08

    The new FNAL Injector Line with a circular dimple magnetron ion source has been operational since December of 2012. Since the new injector came on line there have been variations in the H- beam current flattop observed near the downstream end of the Linac. Several different cathode geometries including a hollow cathode suggested by Dudnikov [1] were tried. Previous studies also showed that different mixtures of hydrogen and nitrogen had an effect on beam current noise [2]. We expanded on those studies by trying mixtures ranging from (0.25% nitrogen, 99.75% hydrogen) to (3% nitrogen, 97% hydrogen). The results of these studies in our test stand will be presented in this paper.

  14. A hybrid electron cyclotron resonance metal ion source with integrated sputter magnetron for the production of an intense Al{sup +} ion beam

    SciTech Connect

    Weichsel, T. Hartung, U.; Kopte, T.; Zschornack, G.; Kreller, M.; Philipp, A.

    2015-09-15

    A metal ion source prototype has been developed: a combination of magnetron sputter technology with 2.45 GHz electron cyclotron resonance (ECR) ion source technology—a so called magnetron ECR ion source (MECRIS). An integrated ring-shaped sputter magnetron with an Al target is acting as a powerful metal atom supply in order to produce an intense current of singly charged metal ions. Preliminary experiments show that an Al{sup +} ion current with a density of 167 μA/cm{sup 2} is extracted from the source at an acceleration voltage of 27 kV. Spatially resolved double Langmuir probe measurements and optical emission spectroscopy were used to study the plasma states of the ion source: sputter magnetron, ECR, and MECRIS plasma. Electron density and temperature as well as Al atom density were determined as a function of microwave and sputter magnetron power. The effect of ECR heating is strongly pronounced in the center of the source. There the electron density is increased by one order of magnitude from 6 × 10{sup 9} cm{sup −3} to 6 × 10{sup 10} cm{sup −3} and the electron temperature is enhanced from about 5 eV to 12 eV, when the ECR plasma is ignited to the magnetron plasma. Operating the magnetron at constant power, it was observed that its discharge current is raised from 1.8 A to 4.8 A, when the ECR discharge was superimposed with a microwave power of 2 kW. At the same time, the discharge voltage decreased from about 560 V to 210 V, clearly indicating a higher plasma density of the MECRIS mode. The optical emission spectrum of the MECRIS plasma is dominated by lines of excited Al atoms and shows a significant contribution of lines arising from singly ionized Al. Plasma emission photography with a CCD camera was used to prove probe measurements and to identify separated plasma emission zones originating from the ECR and magnetron discharge.

  15. A hybrid electron cyclotron resonance metal ion source with integrated sputter magnetron for the production of an intense Al⁺ ion beam.

    PubMed

    Weichsel, T; Hartung, U; Kopte, T; Zschornack, G; Kreller, M; Philipp, A

    2015-09-01

    A metal ion source prototype has been developed: a combination of magnetron sputter technology with 2.45 GHz electron cyclotron resonance (ECR) ion source technology-a so called magnetron ECR ion source (MECRIS). An integrated ring-shaped sputter magnetron with an Al target is acting as a powerful metal atom supply in order to produce an intense current of singly charged metal ions. Preliminary experiments show that an Al(+) ion current with a density of 167 μA/cm(2) is extracted from the source at an acceleration voltage of 27 kV. Spatially resolved double Langmuir probe measurements and optical emission spectroscopy were used to study the plasma states of the ion source: sputter magnetron, ECR, and MECRIS plasma. Electron density and temperature as well as Al atom density were determined as a function of microwave and sputter magnetron power. The effect of ECR heating is strongly pronounced in the center of the source. There the electron density is increased by one order of magnitude from 6 × 10(9) cm(-3) to 6 × 10(10) cm(-3) and the electron temperature is enhanced from about 5 eV to 12 eV, when the ECR plasma is ignited to the magnetron plasma. Operating the magnetron at constant power, it was observed that its discharge current is raised from 1.8 A to 4.8 A, when the ECR discharge was superimposed with a microwave power of 2 kW. At the same time, the discharge voltage decreased from about 560 V to 210 V, clearly indicating a higher plasma density of the MECRIS mode. The optical emission spectrum of the MECRIS plasma is dominated by lines of excited Al atoms and shows a significant contribution of lines arising from singly ionized Al. Plasma emission photography with a CCD camera was used to prove probe measurements and to identify separated plasma emission zones originating from the ECR and magnetron discharge. PMID:26429434

  16. Sub microsecond notching of a negative hydrogen beam at low energy utilizing a magnetron ion source with a split extractor

    SciTech Connect

    Moehs, Douglas; /Fermilab

    2004-12-01

    A technique for sub-microsecond beam notching is being developed at 20 keV utilizing a Magnetron ion source with a slit extraction system and a split extractor. Each half of the extractor is treated as part of a 50 ohm transmission line which can be pulsed at {+-}700 volts creating a 1400 volt gradient. This system along with the associated electronics is electrically floated on top of a pulsed extraction voltage. A beam reduction of 95% has been observed at the end of the Fermilab 400 MeV Linac and 35% notching has recently been achieved in the Booster.

  17. High power impulse magnetron sputtering and related discharges: scalable plasma sources for plasma-based ion implantation and deposition

    SciTech Connect

    Anders, Andre

    2009-09-01

    High power impulse magnetron sputtering (HIPIMS) and related self-sputtering techniques are reviewed from a viewpoint of plasma-based ion implantation and deposition (PBII&D). HIPIMS combines the classical, scalable sputtering technology with pulsed power, which is an elegant way of ionizing the sputtered atoms. Related approaches, such as sustained self-sputtering, are also considered. The resulting intense flux of ions to the substrate consists of a mixture of metal and gas ions when using a process gas, or of metal ions only when using `gasless? or pure self-sputtering. In many respects, processing with HIPIMS plasmas is similar to processing with filtered cathodic arc plasmas, though the former is easier to scale to large areas. Both ion implantation and etching (high bias voltage, without deposition) and thin film deposition (low bias, or bias of low duty cycle) have been demonstrated.

  18. Deposition and characterization of zirconium nitride (ZrN) thin films by reactive magnetron sputtering with linear gas ion source and bias voltage

    NASA Astrophysics Data System (ADS)

    Kavitha, A.; Subramanian, N. Sankara; Loganathan, S.; Kannan, R.

    2014-04-01

    Zirconium nitride thin films have been prepared on stainless steel substrate (304L grade) by reactive cylindrical magnetron sputtering method with Gas Ion Source (GIS) and bias voltage using optimized coating parameters. The structure and surface morphologies of the ZrN films were characterized using X-ray diffraction, atomic microscopy and scanning electron microscopy. The adhesion property of ZrN thin film has been increased due to the GIS. The coating exhibits better adhesion strength up to 10 N whereas the ZrN thin film with bias voltage exhibits adhesion up to 500 mN.

  19. Deposition and characterization of zirconium nitride (ZrN) thin films by reactive magnetron sputtering with linear gas ion source and bias voltage

    SciTech Connect

    Kavitha, A.; Kannan, R.; Subramanian, N. Sankara; Loganathan, S.

    2014-04-24

    Zirconium nitride thin films have been prepared on stainless steel substrate (304L grade) by reactive cylindrical magnetron sputtering method with Gas Ion Source (GIS) and bias voltage using optimized coating parameters. The structure and surface morphologies of the ZrN films were characterized using X-ray diffraction, atomic microscopy and scanning electron microscopy. The adhesion property of ZrN thin film has been increased due to the GIS. The coating exhibits better adhesion strength up to 10 N whereas the ZrN thin film with bias voltage exhibits adhesion up to 500 mN.

  20. Ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.

    1984-01-01

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

  1. Phase and Frequency Locked Magnetrons for SRF Sources

    SciTech Connect

    Neubauer, M.; Johnson, R.P.; Popovic, M.; Moretti, A.; /Fermilab

    2009-05-01

    Magnetrons are low-cost highly-efficient microwave sources, but they have several limitations, primarily centered about the phase and frequency stability of their output. When the stability requirements are low, such as for medical accelerators or kitchen ovens, magnetrons are the very efficient power source of choice. But for high energy accelerators, because of the need for frequency and phase stability - proton accelerators need 1-2 degrees source phase stability, and electron accelerators need .1-.2 degrees of phase stability - they have rarely been used. We describe a novel variable frequency cavity technique which will be utilized to phase and frequency lock magnetrons.

  2. ION SOURCE

    DOEpatents

    Martina, E.F.

    1958-04-22

    An improved ion source particularly adapted to provide an intense beam of ions with minimum neutral molecule egress from the source is described. The ion source structure includes means for establishing an oscillating electron discharge, including an apertured cathode at one end of the discharge. The egress of ions from the source is in a pencil like beam. This desirable form of withdrawal of the ions from the plasma created by the discharge is achieved by shaping the field at the aperture of the cathode. A tubular insulator is extended into the plasma from the aperture and in cooperation with the electric fields at the cathode end of the discharge focuses the ions from the source,

  3. Development of negative ion source at the IPP Nagoya University

    SciTech Connect

    Kuroda, T; Okamura, H; Kaneko, O; Oka, Y

    1980-01-01

    Preliminary experiments have been made to develop a high current H/sup -/ ion surface for a neutral beam injector. Initially, an H/sup -/ ion source of the magnetron type has been investigated in order to determine its physical and technical problems. A second plasma source for negative ion production is under construction, which is based on controlled plasma production. This paper describes preliminary experimental results of the magnetron ion source and some features in the new type of plasma source.

  4. ION SOURCE

    DOEpatents

    Leland, W.T.

    1960-01-01

    The ion source described essentially eliminater the problem of deposits of nonconducting materials forming on parts of the ion source by certain corrosive gases. This problem is met by removing both filament and trap from the ion chamber, spacing them apart and outside the chamber end walls, placing a focusing cylinder about the filament tip to form a thin collimated electron stream, aligning the cylinder, slits in the walls, and trap so that the electron stream does not bombard any part in the source, and heating the trap, which is bombarded by electrons, to a temperature hotter than that in the ion chamber, so that the tendency to build up a deposit caused by electron bombardment is offset by the extra heating supplied only to the trap.

  5. ION SOURCE

    DOEpatents

    Blue, C.W.; Luce, J.S.

    1960-07-19

    An ion source is described and comprises an arc discharge parallel to the direction of and inside of a magnetic field. an accelerating electrode surrounding substantially all of the discharge except for ion exit apertures, and means for establishing an electric field between that electrode and the arc discharge. the electric field being oriented at an acute angle to the magnetic field. Ions are drawn through the exit apertures in the accelrating electrcde in a direction substantially divergent to the direction of the magnetic field and so will travel in a spiral orbit along the magnetic field such that the ions will not strike the source at any point in their orbit within the magnetic field.

  6. ION SOURCE

    DOEpatents

    Bell, W.A. Jr.; Love, L.O.; Prater, W.K.

    1958-01-28

    An ion source is presented capable of producing ions of elements which vaporize only at exceedingly high temperatures, i.e.,--1500 degrees to 3000 deg C. The ion source utilizes beams of electrons focused into a first chamber housing the material to be ionized to heat the material and thereby cause it to vaporize. An adjacent second chamber receives the vaporized material through an interconnecting passage, and ionization of the vaporized material occurs in this chamber. The ionization action is produced by an arc discharge sustained between a second clectron emitting filament and the walls of the chamber which are at different potentials. The resultant ionized material egresses from a passageway in the second chamber. Using this device, materials which in the past could not be processed in mass spectometers may be satisfactorily ionized for such applications.

  7. Phase and Frequency Locked Magnetrons for SRF Sources

    SciTech Connect

    Neubauer, Michael; Johnson, Rolland

    2014-09-12

    There is great potential for a magnetron power source that can be controlled both in phase and frequency. Such a power source could revolutionize many particle accelerator systems that require lower capital cost and/or higher power efficiency. Beyond the accelerator community, phase and frequency locked magnetons could improve radar systems around the world and make affordable phased arrays for wireless power transmission for solar powered satellites. This joint project of Muons, Inc., Fermilab, and L-3 CTL was supported by an STTR grant monitored by the Nuclear Physics Office of the DOE Office of Science. The object of the program was to incorporate ferrite materials into the anode of a magnetron and, with appropriate biasing of the ferrites, to maintain frequency lock and to allow for frequency adjustment of the magnetron without mechanical tuners. If successful, this device would have a dual use both as a source for SRF linacs and for military applications where fast tuning of the frequency is a requirement. In order to place the materials in the proper location, several attributes needed to be modeled. First the impact of the magnetron’s magnetic field needed to be shielded from the ferrites so that they were not saturated. And second, the magnetic field required to change the frequency of the magnetron at the ferrites needed to be shielded from the region containing the circulating electrons. ANSYS calculations of the magnetic field were used to optimize both of these parameters. Once the design for these elements was concluded, parts were fabricated and a complete test assembly built to confirm the predictions of the computer models. The ferrite material was also tested to determine its compatibility with magnetron tube processing temperatures. This required a vacuum bake out of the chosen material to determine the cleanliness of the material in terms of outgassing characteristics, and a subsequent room temperature test to verify that the characteristics of

  8. Negative ion source

    DOEpatents

    Delmore, James E.

    1987-01-01

    A method and apparatus for providing a negative ion source accelerates electrons away from a hot filament electron emitter into a region of crossed electric and magnetic fields arranged in a magnetron configuration. During a portion of the resulting cycloidal path, the electron velocity is reduced below its initial value. The electron accelerates as it leaves the surface at a rate of only slightly less than if there were no magnetic field, thereby preventing a charge buildup at the surface of the emitter. As the electron traverses the cycloid, it is decelerated during the second, third, and fourth quadrants, then reeccelerated as it approaches the end of the fourth quadrant to regain its original velocity. The minimum velocity occurs during the fourth quadrant, and corresponds to an electron temperature of 200.degree. to 500.degree. for the electric and magnetic fields commonly encountered in the ion sources of magnetic sector mass spectrometers. An ion source using the above-described thermalized electrons is also disclosed.

  9. ION SOURCE

    DOEpatents

    Brobeck, W.M.

    1959-04-14

    This patent deals with calutrons and more particularly to an arrangement therein whereby charged bottles in a calutron source unit may be replaced without admitting atmospheric air to the calutron vacuum chamber. As described, an ion unit is disposed within a vacuum tank and has a reservoir open toward a wall of the tank. A spike projects from thc source into the reservoir. When a charge bottle is placed in the reservoir, the spike breaks a frangible seal on the bottle. After the contents of the bottle are expended the bottle may be withdrawn and replaced with another charge bottle by a varuum lock arrangement in conjunction with an arm for manipulating the bottle.

  10. Ion source

    DOEpatents

    Brobeck, W. M.

    1959-04-14

    This patent deals with calutrons and more particularly to an arrangement therein whereby charged bottles in a calutron source unit may be replaced without admitting atmospheric air to the calutron vacuum chamber. As described, an ion unit is disposed within a vacuum tank and has a reservoir open toward a wall of the tank. A spike projects from the source into the reservoir. When a charge bottle is placed in the reservoir, the spike breaks a frangible seal on the bottle. After the contents of the bottle are expended the bottle may be withdrawn and replaced with another charge bottle by a vacuum lock arrangement in conjunction with an arm for manipulating the bottle.

  11. Ion-induced oxidation of aluminum during reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kreiter, Oliver; Grosse-Kreul, Simon; Corbella, Carles; von Keudell, Achim

    2013-04-01

    Particle beam experiments were conducted in an ultra-high-vacuum vessel to mimic target poisoning during reactive magnetron sputtering of aluminum. Aluminum targets were exposed to quantified beams of argon ions, oxygen atoms and molecules, and aluminum vapour. The growth and etch rates were measured in situ by means of an Al-coated quartz crystal microbalance. The chemical state of the target surface was monitored in-situ by real-time Fourier transform infrared spectroscopy. The surface processes were modelled through a set of balance equations providing sputter yields and sticking coefficients. The results indicate that the oxygen uptake of the aluminum surface is enhanced by a factor 1 to 2 by knock-on implantation and that the deposition of aluminum is not affected by the oxidation state of the surface.

  12. Cesium in hydrogen negative-ion sources

    SciTech Connect

    Belchenko, Yu.I.; Davydenko, V.I.

    2006-03-15

    Experimental data on the dynamics of cesium particles in the pulsed magnetron and Penning surface-plasma ion sources are presented. Cesium escape from the source emission apertures and the cesium ion current to discharge electrodes was measured. The low value of cesium flux from the source was detected. An intense cesium ion current to the cathode (up to 0.8 A/cm{sup 2}) was measured. The high value of cesium ion current to surface-plasma source cathode confirms the cesium circulation near the cathode.

  13. Linac4 H⁻ ion sources.

    PubMed

    Lettry, J; Aguglia, D; Alessi, J; Andersson, P; Bertolo, S; Briefi, S; Butterworth, A; Coutron, Y; Dallocchio, A; David, N; Chaudet, E; Faircloth, D; Fantz, U; Fink, D A; Garlasche, M; Grudiev, A; Guida, R; Hansen, J; Haase, M; Hatayama, A; Jones, A; Koszar, I; Lallement, J-B; Lombardi, A M; Machado, C; Mastrostefano, C; Mathot, S; Mattei, S; Moyret, P; Nisbet, D; Nishida, K; O'Neil, M; Paoluzzi, M; Scrivens, R; Shibata, T; Steyaert, D; Thaus, N; Voulgarakis, G

    2016-02-01

    CERN's 160 MeV H(-) linear accelerator (Linac4) is a key constituent of the injector chain upgrade of the Large Hadron Collider that is being installed and commissioned. A cesiated surface ion source prototype is being tested and has delivered a beam intensity of 45 mA within an emittance of 0.3 π ⋅ mm ⋅ mrad. The optimum ratio of the co-extracted electron- to ion-current is below 1 and the best production efficiency, defined as the ratio of the beam current to the 2 MHz RF-power transmitted to the plasma, reached 1.1 mA/kW. The H(-) source prototype and the first tests of the new ion source optics, electron-dump, and front end developed to minimize the beam emittance are presented. A temperature regulated magnetron H(-) source developed by the Brookhaven National Laboratory was built at CERN. The first tests of the magnetron operated at 0.8 Hz repetition rate are described. PMID:26932021

  14. Linac4 H- ion sources

    NASA Astrophysics Data System (ADS)

    Lettry, J.; Aguglia, D.; Alessi, J.; Andersson, P.; Bertolo, S.; Briefi, S.; Butterworth, A.; Coutron, Y.; Dallocchio, A.; David, N.; Chaudet, E.; Faircloth, D.; Fantz, U.; Fink, D. A.; Garlasche, M.; Grudiev, A.; Guida, R.; Hansen, J.; Haase, M.; Hatayama, A.; Jones, A.; Koszar, I.; Lallement, J.-B.; Lombardi, A. M.; Machado, C.; Mastrostefano, C.; Mathot, S.; Mattei, S.; Moyret, P.; Nisbet, D.; Nishida, K.; O'Neil, M.; Paoluzzi, M.; Scrivens, R.; Shibata, T.; Steyaert, D.; Thaus, N.; Voulgarakis, G.

    2016-02-01

    CERN's 160 MeV H- linear accelerator (Linac4) is a key constituent of the injector chain upgrade of the Large Hadron Collider that is being installed and commissioned. A cesiated surface ion source prototype is being tested and has delivered a beam intensity of 45 mA within an emittance of 0.3 π ṡ mm ṡ mrad. The optimum ratio of the co-extracted electron- to ion-current is below 1 and the best production efficiency, defined as the ratio of the beam current to the 2 MHz RF-power transmitted to the plasma, reached 1.1 mA/kW. The H- source prototype and the first tests of the new ion source optics, electron-dump, and front end developed to minimize the beam emittance are presented. A temperature regulated magnetron H- source developed by the Brookhaven National Laboratory was built at CERN. The first tests of the magnetron operated at 0.8 Hz repetition rate are described.

  15. EMI shielding using composite materials with two sources magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ziaja, J.; Jaroszewski, M.; Lewandowski, M.

    2016-02-01

    In this study, the preparation composite materials for electromagnetic shields using two sources magnetron sputtering DC-M is presented. A composite material was prepared by coating a nonwoven polypropylene metallic layer in sputtering process of targets Ti (purity 99%) and brass alloy MO58 (58%Cu, 40%Zn, 2%Pb) and ϕ diameter targets = 50 mm, under argon atmosphere. The system with magnetron sputtering sources was powered using switch-mode power supply DPS (Dora Power System) with a maximum power of 16 kW and a maximum voltage of 1.2 kV with group frequency from 50 Hz to 5 kHz. The influence of sputtering time of individual targets on the value of the EM field attenuation SE [dB] was investigated for the following supply conditions: pressure pp = 2x10-3 Torr, sputtering power P = 750 W, the time of applying a layer t = 5 min, group frequency fg = 2 kHz, the frequency of switching between targets fp = 1 Hz.

  16. Microstructural comparisons of ultrathin Cu films deposited by ion-beam and dc-magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Prater, W. L.; Allen, E. L.; Lee, W.-Y.; Toney, M. F.; Kellock, A.; Daniels, J. S.; Hedstrom, J. A.; Harrell, T.

    2005-05-01

    We report and contrast both the electrical resistance and the microstructure of copper thin films deposited in an oxygen-containing atmosphere by ion-beam and dc-magnetron sputtering. For films with thicknesses of 5 nm or less, the resistivity of the Cu films is minimized at oxygen concentrations ranging from 0.2% to 1% for dc-magnetron sputtering and 6%-10% for ion-beam sputtering. Films sputtered under both conditions show a similar decrease of interface roughness with increasing oxygen concentration, although the magnetron-deposited films are smoother. The dc-magnetron-produced films have higher resistivity, have smaller Cu grains, and contain a higher concentration of cuprous oxide particles. We discuss the mechanisms leading to the grain refinement and the consequent reduced resistivity in both types of films.

  17. Improved ion source

    DOEpatents

    Leung, K.N.; Ehlers, K.W.

    1982-05-04

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species,

  18. Negative ion source with hollow cathode discharge plasma

    DOEpatents

    Hershcovitch, Ady; Prelec, Krsto

    1983-01-01

    A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.

  19. Negative ion source with hollow cathode discharge plasma

    DOEpatents

    Hershcovitch, A.; Prelec, K.

    1980-12-12

    A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface is described. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.

  20. Closed field unbalanced magnetron sputtering ion plating of Ni/Al thin films: influence of the magnetron power.

    PubMed

    Said, R; Ahmed, W; Gracio, J

    2010-04-01

    In this study NiAl thin films have been deposited using closed field unbalanced magnetron sputtering Ion plating (CFUBMSIP). The influence of magnetron power has been investigated using dense and humongous NiAl compound targets onto stainless steel and glass substrates. Potential applications include tribological, electronic media and bond coatings in thermal barrier coatings system. Several techniques has been used to characterise the films including surface stylus profilometry, energy dispersive spectroscopy (EDAX), X-Ray diffraction (XRD) Composition analysis of the samples was carried out using VGTOF SIMS (IX23LS) and Atomic force microscopy (AFM). Scratch tester (CSM) combined with acoustic emission singles during loading in order to compare the coating adhesion. The acoustic emission signals emitted during the indentation process were used to determine the critical load, under which the film begins to crack and/or break off the substrate. The average thickness of the films was approximately 1 um. EDAX results of NiAl thin films coating with various magnetron power exhibited the near equal atomic% Ni:Al. The best result being obtained using 300 W and 400 W DC power for Ni and Al targets respectively. XRD revealed the presence of beta NiAl phase for all the films coatings. AFM analysis of the films deposited on glass substrates exhibited quite a smooth surface with surface roughness values in the nanometre range. CSM results indicate that best adhesion was achieved at 300 W for Ni, and 400 W for Al targets compared to sample other power values. SIMS depth profile showed a uniform distribution of the Ni and Al component from the surface of the film to the interface.

  1. Comparative analysis of continuous-wave surface-plasma negative ion sources with various discharge geometry

    SciTech Connect

    Belchenko, Yu; Sanin, A.; Sotnikov, O.

    2014-02-15

    Negative ion extraction from continuous-wave (CW) magnetron and semiplanotron discharges was studied and it was compared with that for the source with Penning electrode geometry. The CW negative ion beam up current to 13 mA was extracted from the magnetron source with emission aperture of 3.5 mm in diameter, while the beam with current up to 8 mA was obtained from the semiplanotron source modification. Characteristics of CW magnetron and semiplanotron sources are presented and analyzed.

  2. Industrial ion source technology

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1976-01-01

    A 30 cm electron bombardment ion source was designed and fabricated for micromachining and sputtering applications. This source has a multipole magnetic field that employs permanent magnets between permeable pole pieces. An average ion current density of 1 ma/sq cm with 500 eV argon ions was selected as a design operating condition. The ion beam at this operating condition was uniform and well collimated, with an average variation of plus or minus 5 percent over the center 20 cm of the beam at distances up to 30 cm from the ion source. A variety of sputtering applications were undertaken with a small 10 cm ion source to better understand the ion source requirements in these applications. The results of these experimental studies are also included.

  3. PULSED ION SOURCE

    DOEpatents

    Ford, F.C.; Ruff, J.W.; Zizzo, S.G.; Cook, B.

    1958-11-11

    An ion source is described adapted for pulsed operation and producing copious quantities of ions with a particular ion egress geometry. The particular source construction comprises a conical member having a conducting surface formed of a metal with a gas occladed therein and narrow non-conducting portions hereon dividing the conducting surface. A high voltage pulse is applied across the conducting surface or producing a discharge across the surface. After the gas ions have been produced by the discharge, the ions are drawn from the source in a diverging conical beam by a specially constructed accelerating electrode.

  4. A cookbook for building a high-current dimpled H– magnetron source for accelerators

    DOE PAGES

    Bollinger, Daniel S.; Karns, Patrick R.; Tan, Cheng -Yang

    2015-10-30

    A high-current (>50 mA) dimpled H– magnetron source has been built at Fermilab for supplying H– beam to the entire accelerator complex. Despite many decades of expertise with slit H– magnetron sources at Fermilab, we were faced with many challenges from the dimpled H– magnetron source, which needed to be overcome in order to make it operational. Dimpled H– sources for high-energy physics are not new: Brookhaven National Laboratory has operated a dimpled H- source for more than two decades. However, the transference of that experience to Fermilab took about two years because a cookbook for building this type ofmore » source did not exist and seemingly innocuous or undocumented choices had a huge impact on the success or failure for this type of source. Moreover, it is the goal of this paper to document the reasons for these choices and to present a cookbook for building and operating dimpled H– magnetron sources.« less

  5. Argon–oxygen dc magnetron discharge plasma probed with ion acoustic waves

    SciTech Connect

    Saikia, Partha Saikia, Bipul Kumar; Goswami, Kalyan Sindhu; Phukan, Arindam

    2014-05-15

    The precise determination of the relative concentration of negative ions is very important for the optimization of magnetron sputtering processes, especially for those undertaken in a multicomponent background produced by adding electronegative gases, such as oxygen, to the discharge. The temporal behavior of an ion acoustic wave excited from a stainless steel grid inside the plasma chamber is used to determine the relative negative ion concentration in the magnetron discharge plasma. The phase velocity of the ion acoustic wave in the presence of negative ions is found to be faster than in a pure argon plasma, and the phase velocity increases with the oxygen partial pressure. Optical emission spectroscopy further confirms the increase in the oxygen negative ion density, along with a decrease in the argon positive ion density under the same discharge conditions. The relative negative ion concentration values measured by ion acoustic waves are compared with those measured by a single Langmuir probe, and a similarity in the results obtained by both techniques is observed.

  6. CALUTRON ION SOURCE

    DOEpatents

    Oppenheimer, F.F.

    1959-06-01

    A shielding arrangement for eliminating oscillating electrons in the ion source region of calutrons is offered. Metal plates are attached to the ion generator so as to intercept the magnetic field between ion generator and accelerating electrode. The oscillating electrons are discharged on the plates. (T.R.H.)

  7. Peristaltic ion source

    SciTech Connect

    Brown, I.G.; Anders, A.; Anders, S.; Dickinson, M.R.; MacGill, R.A.

    1995-08-01

    Conventional ion sources generate energetic ion beams by accelerating the plasma-produced ions through a voltage drop at the extractor, and since it is usual that the ion beam is to propagate in a space which is at ground potential, the plasma source is biased at extractor voltage. For high ion beam energy the plasma source and electrical systems need to be raised to high voltage, a task that adds considerable complexity and expense to the total ion source system. The authors have developed a system which though forming energetic ion beams at ground potential as usual, operates with the plasma source and electronics at ground potential also. Plasma produced by a nearby source streams into a grided chamber that is repetitively pulsed from ground to high positive potential, sequentially accepting plasma into its interior region and ejecting it energetically. They call the device a peristaltic ion source. In preliminary tests they`ve produced nitrogen and titanium ion beams at energies from 1 to 40 keV. Here they describe the philosophy behind the approach, the test embodiment that they have made, and some preliminary results.

  8. PULSED ION SOURCE

    DOEpatents

    Anderson, C.E.; Ehlers, K.W.

    1958-06-17

    An ion source is described for producing very short high density pulses of ions without bcam scattering. The ions are created by an oscillating electron discharge within a magnetic field. After the ions are drawn from the ionization chamber by an accelerating electrode the ion beam is under the influence of the magnetic field for separation of the ions according to mass and, at the same time, passes between two neutralizing plntes maintained nt equal negative potentials. As the plates are formed of a material having a high ratio of secondary electrons to impinging ions, the ion bombardment of the plntes emits electrons which neutralize the frirge space-charge of the beam and tend to prevent widening of the beam cross section due to the mutual repulsion of the ions.

  9. Pulsed ion beam source

    DOEpatents

    Greenly, John B.

    1997-01-01

    An improved pulsed ion beam source having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center.

  10. Ion energies in high power impulse magnetron sputtering with and without localized ionization zones

    SciTech Connect

    Yang, Yuchen; Tanaka, Koichi; Liu, Jason; Anders, André

    2015-03-23

    High speed imaging of high power impulse magnetron sputtering discharges has revealed that ionization is localized in moving ionization zones but localization disappears at high currents for high yield targets. This offers an opportunity to study the effect ionization zones have on ion energies. We measure that ions have generally higher energies when ionization zones are present, supporting the concept that these zones are associated with moving potential humps. We propose that the disappearance of ionization zones is caused by an increased supply of atoms from the target which cools electrons and reduces depletion of atoms to be ionized.

  11. Microwave ion source

    SciTech Connect

    Leung, Ka-Ngo; Reijonen, Jani; Thomae, Rainer W.

    2005-07-26

    A compact microwave ion source has a permanent magnet dipole field, a microwave launcher, and an extractor parallel to the source axis. The dipole field is in the form of a ring. The microwaves are launched from the middle of the dipole ring using a coaxial waveguide. Electrons are heated using ECR in the magnetic field. The ions are extracted from the side of the source from the middle of the dipole perpendicular to the source axis. The plasma density can be increased by boosting the microwave ion source by the addition of an RF antenna. Higher charge states can be achieved by increasing the microwave frequency. A xenon source with a magnetic pinch can be used to produce intense EUV radiation.

  12. Selective ion source

    DOEpatents

    Leung, K.N.

    1996-05-14

    A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P{sup +} from PH{sub 3}. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P{sup +}, As{sup +}, and B{sup +} without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices. 6 figs.

  13. Selective ion source

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P.sup.+ from PH.sub.3. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P.sup.+, AS.sup.+, and B.sup.+ without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices.

  14. HIGH VOLTAGE ION SOURCE

    DOEpatents

    Luce, J.S.

    1960-04-19

    A device is described for providing a source of molecular ions having a large output current and with an accelerated energy of the order of 600 kv. Ions are produced in an ion source which is provided with a water-cooled source grid of metal to effect maximum recombination of atomic ions to molecular ions. A very high accelerating voltage is applied to withdraw and accelerate the molecular ions from the source, and means are provided for dumping the excess electrons at the lowest possible potentials. An accelerating grid is placed adjacent to the source grid and a slotted, grounded accelerating electrode is placed adjacent to the accelerating grid. A potential of about 35 kv is maintained between the source grid and accelerating grid, and a potential of about 600 kv is maintained between the accelerating grid and accelerating electrode. In order to keep at a minimum the large number of oscillating electrons which are created when such high voltages are employed in the vicinity of a strong magnetic field, a plurality of high voltage cascaded shields are employed with a conventional electron dumping system being employed between each shield so as to dump the electrons at the lowest possible potential rather than at 600 kv.

  15. Negative hydrogen ion sources for accelerators

    SciTech Connect

    Moehs, D.P.; Peters, J.; Sherman, J.; /Los Alamos

    2005-08-01

    A variety of H{sup -} ion sources are in use at accelerator laboratories around the world. A list of these ion sources includes surface plasma sources with magnetron, Penning and surface converter geometries as well as magnetic-multipole volume sources with and without cesium. Just as varied is the means of igniting and maintaining magnetically confined plasmas. Hot and cold cathodes, radio frequency, and microwave power are all in use, as well as electron tandem source ignition. The extraction systems of accelerator H{sup -} ion sources are highly specialized utilizing magnetic and electric fields in their low energy beam transport systems to produce direct current, as well as pulsed and/or chopped beams with a variety of time structures. Within this paper, specific ion sources utilized at accelerator laboratories shall be reviewed along with the physics of surface and volume H{sup -} production in regard to source emittance. Current research trends including aperture modeling, thermal modeling, surface conditioning, and laser diagnostics will also be discussed.

  16. Ion sources for use in ion implantation

    NASA Astrophysics Data System (ADS)

    White, Nicholas R.

    1989-02-01

    This paper reviews high current ion sources suitable for commercial use. Although the production of high currents of a variety of ions is a vital consideration, this paper focuses on other aspects of ion source performance. The modern ion implanter is a major item of expensive capital equipment, with the ion source being its least reliable component. So, the most critical issues today are reliability and lifetime, as well as safety, flexibility, and ease of service. The Freeman ion source has clearly dominated the field, yet a number of alternative sources have found commercial acceptance, including microwave sources. Factors affecting the ultimate usefulness of various sources in different implantation applications are discussed.

  17. Industrial ion source technology

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1979-01-01

    In reactive ion etching of Si, varying amounts of O2 were added to the CF4 background. The experimental results indicated an etch rate less than that for Ar up to an O2 partial pressure of about .00006 Torr. Above this O2 pressure, the etch rate with CF4 exceeded that with Ar alone. For comparison the random arrival rate of O2 was approximately equal to the ion arrival rate at a partial pressure of about .00002 Torr. There were also ion source and ion pressure gauge maintenance problems as a result of the use of CF4. Large scale (4 sq cm) texturing of Si was accomplished using both Cu and stainless steel seed. The most effective seeding method for this texturing was to surround the sample with large inclined planes. Designing, fabricating, and testing a 200 sq cm rectangular beam ion source was emphasized. The design current density was 6 mA/sq cm with 500 eV argon ions, although power supply limitations permitted operation to only 2 mA/sq cm. The use of multiple rectangular beam ion sources for continuous processing of wider areas than would be possible with a single source was also studied. In all cases investigated, the most uniform coverage was obtained with 0 to 2 cm beam overlay. The maximum departure from uniform processing at optimum beam overlap was found to be +15%.

  18. COASTING ARC ION SOURCE

    DOEpatents

    Foster, J.S. Jr.

    1957-09-10

    An improved ion source is described and in particular a source in which the ions are efficiently removed. The plasma is generated in a tubular amode structure by the oscillation of electrons in an axial magnetic field, as in the Phillips Ion Gage. The novel aspect of the source is the expansion of the plasma as it leaves the anode structure, so as to reduce the ion density at the axis of the anode and present a uniform area of plasma to an extraction grid. The structure utilized in the present patent to expand the plasma comprises flange members of high permeability at the exitgrid end of the amode to diverge the magnetic field adjacent the exit.

  19. CALUTRON ION SOURCE

    DOEpatents

    Lofgren, E.J.

    1959-02-17

    An improvement is described in ion source mechanisms whereby the source structure is better adapted to withstanid the ravages of heat, erosion, and deterioration concomitant with operation of an ion source of the calutron type. A pair of molybdenum plates define the exit opening of the arc chamber and are in thermal contact with the walls of the chamber. These plates are maintained at a reduced temperature by a pair of copper blocks in thermal conducting contact therewith to form subsequent diverging margins for the exit opening.

  20. Pulsed ion beam source

    DOEpatents

    Greenly, J.B.

    1997-08-12

    An improved pulsed ion beam source is disclosed having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center. 12 figs.

  1. Hydrogen and Cesium Monitor for H- Magnetron Sources

    SciTech Connect

    Tan, Cheng-Yang; Bollinger, Dan; Schupbach, Brian; Seiya, Kiyomi

    2014-07-01

    The relative concentration of cesium to hydrogen in the plasma of a H- magnetron source is an important parameter for reliable operations. If there is too much cesium, the surfaces of the source become contaminated with it and sparking occurs. If there is too little cesium then the plasma cannot be sustained. In order to monitor these two elements, a spectrometer has been built and installed on a test and operating source that looks at the plasma. It is hypothesized that the concentration of each element in the plasma is proportional to the intensity of their spectral lines.

  2. Optical properties of ITO films obtained by high-frequency magnetron sputtering with accompanying ion treatment

    SciTech Connect

    Krylov, P. N. Zakirova, R. M.; Fedotova, I. V.

    2013-10-15

    A variation in the properties of indium-tin-oxide (ITO) films obtained by the method of reactive magnetron sputtering with simultaneous ion treatment is reported. The ITO films feature the following parameters in the optical range of 450-1100 nm: a transmission coefficient of 80%, band gap of 3.50-3.60 eV, and a refractive index of 1.97-2.06. All characteristics of the films depend on the ion-treatment current. The latter, during the course of deposition, reduces the resistivity of the ITO films with the smallest value of the resistivity being equal to 2 Multiplication-Sign 10{sup -3} {Omega} cm. The degradation of films with a high resistivity when kept in air is observed.

  3. C/CrC nanocomposite coating deposited by magnetron sputtering at high ion irradiation conditions

    SciTech Connect

    Zhou, Z.; Rainforth, W. M.; Gass, M. H.; Bleloch, A.; Ehiassarian, A. P.; Hovsepian, P. Eh.

    2011-10-01

    CrC with the fcc NaCl (B1) structure is a metastable phase that can be obtained under the non-equilibrium conditions of high ion irradiation. A nano-composite coating consisting of amorphous carbon embedded in a CrC matrix was prepared via the unbalanced magnetron sputtering of graphite and Cr metal targets in Ar gas with a high ionized flux (ion-to-neutral ratio Ji/Jn = 6). The nanoscale amorphous carbon clusters self-assembled into layers alternated by CrC, giving the composite a multilayer structure. The phase, microstructure, and composition of the coating were characterized using x-ray diffraction, transmission electron microscopy, and aberration corrected scanning transmission electron microscopy coupled with electron energy loss spectroscopy. The interpretation of the true coating structure, in particular the carbide type, is discussed.

  4. H- ion sources for CERN's Linac4

    NASA Astrophysics Data System (ADS)

    Lettry, J.; Aguglia, D.; Coutron, Y.; Chaudet, E.; Dallocchio, A.; Gil Flores, J.; Hansen, J.; Mahner, E.; Mathot, S.; Mattei, S.; Midttun, O.; Moyret, P.; Nisbet, D.; O'Neil, M.; Paoluzzi, M.; Pasquino, C.; Pereira, H.; Arias, J. Sanchez; Schmitzer, C.; Scrivens, R.; Steyaert, D.

    2013-02-01

    The specifications set to the Linac4 ion source are: H- ion pulses of 0.5 ms duration, 80 mA intensity and 45 keV energy within a normalized emittance of 0.25 mmmrad RMS at a repetition rate of 2 Hz. In 2010, during the commissioning of a prototype based on H- production from the plasma volume, it was observed that the powerful co-extracted electron beam inherent to this type of ion source could destroy its electron beam dump well before reaching nominal parameters. However, the same source was able to provide 80 mA of protons mixed with a small fraction of H2+ and H3+ molecular ions. The commissioning of the radio frequency quadrupole accelerator (RFQ), beam chopper and H- beam diagnostics of the Linac4 are scheduled for 2012 and its final installation in the underground building is to start in 2013. Therefore, a crash program was launched in 2010 and reviewed in 2011 aiming at keeping the original Linac4 schedule with the following deliverables: Design and production of a volume ion source prototype suitable for 20-30 mA H- and 80 mA proton pulses at 45 keV by mid-2012. This first prototype will be dedicated to the commissioning of the low energy components of the Linac4. Design and production of a second prototype suitable for 40-50 mA H- based on an external RF solenoid plasma heating and cesiated-surface production mechanism in 2013 and a third prototype based on BNL's Magnetron aiming at reliable 2 Hz and 80 mA H- operations in 2014. In order to ease the future maintenance and allow operation with Ion sources based on three different production principles, an ion source "front end" providing alignment features, pulsed gas injection, pumping units, beam tuning capabilities and pulsed bipolar high voltage acceleration was designed and is being produced. This paper describes the progress of the Linac4 ion source program, the design of the Front end and first ion source prototype. Preliminary results of the summer 2012 commissioning are presented. The outlook on

  5. The spatial distribution of negative oxygen ion densities in a dc reactive magnetron discharge

    NASA Astrophysics Data System (ADS)

    Scribbins, Steven; Bowes, Michael; Bradley, James W.

    2013-01-01

    Using Langmuir probe-assisted eclipse laser photodetachment, the spatial distribution of O- densities in the bulk plasma of magnetron sputter tool has been determined for a range of pressures, 0.79 to 2.40 Pa. The discharge was operated in dc (200 W) with a Ti target and a fixed oxygen-argon pressure ratio of 0.2, in poisoned mode. Measurements show significant O- densities occupying an annulus downstream from the magnetic trap in regions of most positive plasma potential. With increasing pressure the region of high O- density expands and the peak densities increase reaching ˜1.5 × 1016 m-3 at 2.40 Pa, corresponding to an O- to electron density ratio (electronegativity α) of ˜2. Outside the area of dense negative ions, and in regions of the magnetic trap accessible to our probe we measure α < 0.2. The results show that these reactive magnetron plasmas, utilized for oxide film production, to be highly electronegative in regions close to the substrate.

  6. Effect of pulse frequency on the ion fluxes during pulsed dc magnetron sputtering

    SciTech Connect

    Rahamathunnisa, M.; Cameron, D. C.

    2009-03-15

    The ion fluxes and energies which impinge on the substrate during the deposition of chromium nitride by asymmetric bipolar pulsed dc reactive magnetron sputtering have been analyzed using energy resolved mass spectrometry. It has been found that there is a remarkable increase in ion flux at higher pulse frequencies and that the peak ion energy is directly related to the positive voltage overshoot of the target voltage. The magnitude of the metal flux depositing on the substrate is consistent with a 'dead time' of {approx}0.7 {mu}s at the start of the on period. The variation of the ion flux with pulse frequency has been explained by a simple model in which the ion density during the on period has a large peak which is slightly delayed from the large negative voltage overshoot which occurs at the start of the on pulse due to increased ionization at that time. This is consistent with the previously observed phenomena in pulsed sputtering.

  7. Industrial ion source technology

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1978-01-01

    An analytical model was developed to describe the development of a coned surface texture with ion bombardment and simultaneous deposition of an impurity. A mathematical model of sputter deposition rate from a beveled target was developed in conjuction with the texturing models to provide an important input to that model. The establishment of a general procedure that will allow the treatment of manay different sputtering configurations is outlined. Calculation of cross sections for energetic binary collisions was extened to Ar, Kr.. and Xe with total cross sections for viscosity and diffusion calculated for the interaction energy range from leV to 1000eV. Physical sputtering and reactive ion etching experiments provided experimental data on the operating limits of a broad beam ion source using CF4 as a working gas to produce reactive species in a sputtering beam. Magnetic clustering effects are observed when Al is seeded with Fe and sputtered with Ar(?) ions. Silicon was textured at a micron scale by using a substrate temperature of 600 C.

  8. Charge exchange molecular ion source

    DOEpatents

    Vella, Michael C.

    2003-06-03

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  9. Metal negative ion beam extraction from a radio frequency ion source

    SciTech Connect

    Kanda, S.; Yamada, N.; Kasuya, T.; Romero, C. F. P.; Wada, M.

    2015-04-08

    A metal ion source of magnetron magnetic field geometry has been designed and operated with a Cu hollow target. Radio frequency power at 13.56 MHz is directly supplied to the hollow target to maintain plasma discharge and induce self-bias to the target for sputtering. The extraction of positive and negative Cu ion beams have been tested. The ion beam current ratio of Cu{sup +} to Ar{sup +} has reached up to 140% when Ar was used as the discharge support gas. Cu{sup −} ion beam was observed at 50 W RF discharge power and at a higher Ar gas pressure in the ion source. Improvement of poor RF power matching and suppression of electron current is indispensable for a stable Cu{sup −} ion beam production from the source.

  10. Compact ion accelerator source

    DOEpatents

    Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali

    2014-04-29

    An ion source includes a conductive substrate, the substrate including a plurality of conductive nanostructures with free-standing tips formed on the substrate. A conductive catalytic coating is formed on the nanostructures and substrate for dissociation of a molecular species into an atomic species, the molecular species being brought in contact with the catalytic coating. A target electrode placed apart from the substrate, the target electrode being biased relative to the substrate with a first bias voltage to ionize the atomic species in proximity to the free-standing tips and attract the ionized atomic species from the substrate in the direction of the target electrode.

  11. A Cold Strontium Ion Source

    NASA Astrophysics Data System (ADS)

    Erickson, Christopher J.; Lyon, Mary; Blaser, Kelvin; Harper, Stuart; Durfee, Dallin

    2010-03-01

    We present a cold ion source for strontium 87. The source is based off of a standard Low-Velocity-Intense-Source (LVIS) for strontium using permanent magnets in place of anti-Helmholtz coils. Atoms from the LVIS are then ionized in a two photon process as they pass a 20kV anode plate. The result is a mono-energetic beam of ions whose velocity is tunable. Applications for the ions include spectroscopy and ion interferometry.

  12. Ion sources for ion implantation technology (invited)

    SciTech Connect

    Sakai, Shigeki Hamamoto, Nariaki; Inouchi, Yutaka; Umisedo, Sei; Miyamoto, Naoki

    2014-02-15

    Ion sources for ion implantation are introduced. The technique is applied not only to large scale integration (LSI) devices but also to flat panel display. For LSI fabrication, ion source scheduled maintenance cycle is most important. For CMOS image sensor devices, metal contamination at implanted wafer is most important. On the other hand, to fabricate miniaturized devices, cluster ion implantation has been proposed to make shallow PN junction. While for power devices such as silicon carbide, aluminum ion is required. For doping processes of LCD fabrication, a large ion source is required. The extraction area is about 150 cm × 10 cm, and the beam uniformity is important as well as the total target beam current.

  13. A cookbook for building a high-current dimpled H magnetron source for accelerators

    SciTech Connect

    Bollinger, Daniel S.; Karns, Patrick R.; Tan, Cheng -Yang

    2015-10-30

    A high-current (>50 mA) dimpled H magnetron source has been built at Fermilab for supplying H beam to the entire accelerator complex. Despite many decades of expertise with slit H magnetron sources at Fermilab, we were faced with many challenges from the dimpled H magnetron source, which needed to be overcome in order to make it operational. Dimpled H sources for high-energy physics are not new: Brookhaven National Laboratory has operated a dimpled H- source for more than two decades. However, the transference of that experience to Fermilab took about two years because a cookbook for building this type of source did not exist and seemingly innocuous or undocumented choices had a huge impact on the success or failure for this type of source. Moreover, it is the goal of this paper to document the reasons for these choices and to present a cookbook for building and operating dimpled H magnetron sources.

  14. Review of Magnetron Developments

    NASA Astrophysics Data System (ADS)

    Vyas, Sandeep Kumar; Verma, Rajendra Kumar; Maurya, Shivendra; Singh, V. V. P.

    2016-09-01

    Magnetrons have been the most efficient high power microwave sources for decades. In the twenty-first century, many of the development works are headed towards the performance improvement of CW industrial magnetrons. In this review article, the development works and techniques, used on different types of magnetrons, for the performance enhancement in the past two decades have been discussed. The article focuses on the state of the art of CW magnetron and the direction it will take in foreseeable future. In addition it also glimpses some of the major variants of magnetron which have further opened up scope in mm-THz spectrum of electromagnetism.

  15. Emittance Characteristics of High-Brightness H- Ion Sources

    NASA Astrophysics Data System (ADS)

    Welton, R. F.; Stockli, M. P.; Keller, R.; Thomae, R. W.; Thomason, J.; Sherman, J.; Alessi, J.

    2002-11-01

    A survey of emittance characteristics from high-brightness, H- ion sources has been undertaken. Representative examples of each important type of H- source for accelerator application are investigated: A magnetron surface plasma source (BNL) a multi-cusp-surface-conversion source (LANL) a Penning source (RAL-ISIS) and a multi-cusp-volume source (LBNL). Presently, comparisons between published emittance values from different ion sources are difficult largely because of different definitions used in reported emittances and the use of different data reduction techniques in analyzing data. Although seldom discussed in the literature, rms-emittance values often depend strongly on the method employed to separate real beam from background. In this work, the problem of data reduction along with software developed for emittance analysis is discussed. Raw emittance data, obtained from the above laboratories, is analyzed using a single technique and normalized rms and 90% area-emittance values are determined along with characteristic emittance versus beam fraction curves.

  16. Sources of radioactive ions

    SciTech Connect

    Alonso, J.R.

    1985-05-01

    Beams of unstable nuclei can be formed by direct injection of the radioactive atoms into an ion source, or by using the momentum of the primary production beam as the basis for the secondary beam. The effectiveness of this latter mechanism in secondary beam formation, i.e., the quality of the emerging beam (emittance, intensity, energy spread), depends critically on the nuclear reaction kinematics, and on the magnitude of the incident beam energy. When this beam energy significantly exceeds the energies typical of the nuclear reaction process, many of the qualities of the incident beam can be passed on to the secondary beam. Factors affecting secondary beam quality are discussed, along with techniques for isolating and purifying a specific secondary product. The ongoing radioactive beam program at the Bevalac is used as an example, with applications, present performance and plans for improvements.

  17. Ion dynamics in a DC magnetron microdischarge measured with laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Young, Christopher; Gascon, Nicolas; Lucca Fabris, Andrea; Ito, Tsuyohito; Cappelli, Mark

    2015-11-01

    We present evidence of coherent rotating azimuthal wave structures in a planar DC magnetron microdischarge operated with argon and xenon. The dominant stable mode structure varies with discharge voltage, and high frame rate camera imaging of plasma emission reveals propagating azimuthal waves in the negative E-> × B-> direction. This negative drift direction is attributed to a local field reversal arising from strong density gradients that drive excess ions towards the anode. Observed mode transitions are shown to be consistent with models of gradient drift-wave dispersion in such a field reversal when the fluid representation includes ambipolar diffusion parallel to the magnetic field direction. Time-averaged and time-resolved laser-induced fluorescence measurements interrogate xenon ion dynamics under the action of the field reversal. Time resolution is obtained by synchronizing with the coherent azimuthal wave frequency at fixed mode number. This work is sponsored by the U.S. Air Force Office of Scientific Research with Dr. Mitat Birkan as program manager. C.Y. acknowledges support from the DOE NNSA Stewardship Science Graduate Fellowship under Contract DE-FC52-08NA28752.

  18. Reducing the impurity incorporation from residual gas by ion bombardment during high vacuum magnetron sputtering

    SciTech Connect

    Rosen, Johanna; Widenkvist, Erika; Larsson, Karin; Kreissig, Ulrich; Mraz, Stanislav; Martinez, Carlos; Music, Denis; Schneider, J. M.

    2006-05-08

    The influence of ion energy on the hydrogen incorporation has been investigated for alumina thin films, deposited by reactive magnetron sputtering in an Ar/O{sub 2}/H{sub 2}O environment. Ar{sup +} with an average kinetic energy of {approx}5 eV was determined to be the dominating species in the plasma. The films were analyzed with x-ray diffraction, x-ray photoelectron spectroscopy, and elastic recoil detection analysis, demonstrating evidence for amorphous films with stoichiometric O/Al ratio. As the substrate bias potential was increased from -15 V (floating potential) to -100 V, the hydrogen content decreased by {approx}70%, from 9.1 to 2.8 at. %. Based on ab initio calculations, these results may be understood by thermodynamic principles, where a supply of energy enables surface diffusion, H{sub 2} formation, and desorption [Rosen et al., J. Phys.: Condens. Matter 17, L137 (2005)]. These findings are of importance for the understanding of the correlation between ion energy and film composition and also show a pathway to reduce impurity incorporation during film growth in a high vacuum ambient.

  19. ULTRA-LOW-ENERGY HIGH-CURRENT ION SOURCE

    SciTech Connect

    Anders, Andre; Yushkov, Georgy Yu.; Baldwin, David A.

    2009-11-20

    The technical objective of the project was to develop an ultra-low-energy, high-intensity ion source (ULEHIIS) for materials processing in high-technology fields including semiconductors, micro-magnetics and optics/opto-electronics. In its primary application, this ion source can be incorporated into the 4Wave thin-film deposition technique called biased target ion-beam deposition (BTIBD), which is a deposition technique based on sputtering (without magnetic field, i.e., not the typical magnetron sputtering). It is a technological challenge because the laws of space charge limited current (Child-Langmuir) set strict limits of how much current can be extracted from a reservoir of ions, such as a suitable discharge plasma. The solution to the problem was an innovative dual-discharge system without the use of extraction grids.

  20. ECR ion source

    SciTech Connect

    Billquist, P.J.; Harkewicz, R.; Pardo, R.C.

    1995-08-01

    The feasibility of using a 30-watt pulsed NdYAG laser to ablate or evaporate material directly into the ECR had some initial exploratory runs and produced two distinctly interesting results. This technique holds the possibility of using small quantities of material, with a high efficiency, and being applicable to all solids. The laser illuminates a sample through one of the radial ports in the ECR main plasma chamber. The off-line tests indicated that our surplus (free) laser is capable of ablating significant quantities of interesting materials. The first tests of the laser ablation idea were carried out using a bismuth sample. The inherent pulsed nature of the technique allowed us to immediately study the time evolution of charge states in the ECR plasma. The results are directly comparable to model calculations and are completely consistent with the sequential stepwise stripping process which was assumed to dominate the high charge state production process. A paper describing our results will be presented at the 1995 International Ion Source Conference.

  1. Compositionally graded SiCu thin film anode by magnetron sputtering for lithium ion battery

    SciTech Connect

    Polat, B. D.; Eryilmaz, O. L.; Keles, O; Erdemir, A; Amine, Khalil

    2015-10-22

    Compositionally graded and non-graded composite SiCu thin films were deposited by magnetron sputtering technique on Cu disks for investigation of their potentials in lithium ion battery applications. The compositionally graded thin film electrodes with 30 at.% Cu delivered a 1400 mAh g-1 capacity with 80% Coulombic efficiency in the first cycle and still retained its capacity at around 600 mAh g-1 (with 99.9% Coulombic efficiency) even after 100 cycles. On the other hand, the non-graded thin film electrodes with 30 at.% Cu exhibited 1100 mAh g-1 as the first discharge capacity with 78% Coulombic efficiency but the cycle life of this film degraded very quickly, delivering only 250 mAh g-1 capacity after 100th cycles. Not only the Cu content but also the graded film thickness were believed to be the main contributors to the much superior performance of the compositionally graded SiCu films. We also believe that the Cu-rich region of the graded film helped reduce internal stress build-up and thus prevented film delamination during cycling. In particular, the decrease of Cu content from interface region to the top of the coating reduced the possibility of stress build-up across the film during cycling, thus leading to a high electrochemical performance.

  2. Visualization of Trajectories of Electron Beams Emitted by an IonSource with Closed Electron Drift

    SciTech Connect

    Institue of Physics, National Academy of Sciences of Ukraine; Brown, Ian G.; Bordenjuk, Ian V.; Panchenko, Oleg A.; Sologub, Sergei V.; Brown, Ian G.

    2007-10-01

    Trajectories of electron beams emitted by an ion source with an anode layer and Hall electron closed drift orbits were visualized using light emission from a working gas excited by electrons. Gas discharge of magnetron type, arising in the beam drift region under the influence of an electric field of a target bias potential, was visualized.

  3. Investigation of ISIS and Brookhaven National Laboratory ion source electrodes after extended operationa)

    NASA Astrophysics Data System (ADS)

    Lettry, J.; Alessi, J.; Faircloth, D.; Gerardin, A.; Kalvas, T.; Pereira, H.; Sgobba, S.

    2012-02-01

    Linac4 accelerator of Centre Européen de Recherches Nucléaires is under construction and a RF-driven H- ion source is being developed. The beam current requirement for Linac4 is very challenging: 80 mA must be provided. Cesiated plasma discharge ion sources such as Penning or magnetron sources are also potential candidates. Accelerator ion sources must achieve typical reliability figures of 95% and above. Investigating and understanding the underlying mechanisms involved with source failure or ageing is critical when selecting the ion source technology. Plasma discharge driven surface ion sources rely on molybdenum cathodes. Deformation of the cathode surfaces is visible after extended operation periods. A metallurgical investigation of an ISIS ion source is presented. The origin of the deformation is twofold: Molybdenum sputtering by cesium ions digs few tenths of mm cavities while a growth of molybdenum is observed in the immediate vicinity. The molybdenum growth under hydrogen atmosphere is hard and loosely bound to the bulk. It is, therefore, likely to peel off and be transported within the plasma volume. The observation of the cathode, anode, and extraction electrodes of the magnetron source operated at BNL for two years are presented. A beam simulation of H-, electrons, and Cs- ions was performed with the IBSimu code package to qualitatively explain the observations. This paper describes the operation conditions of the ion sources and discusses the metallurgical analysis and beam simulation results.

  4. Investigation of ISIS and Brookhaven National Laboratory ion source electrodes after extended operation

    SciTech Connect

    Lettry J.; Alessi J.; Faircloth, D.; Gerardin, A.; Kalvas, T.; Pereira, H.; Sgobba, S.

    2012-02-23

    Linac4 accelerator of Centre Europeen de Recherches Nucleaires is under construction and a RF-driven H{sup -} ion source is being developed. The beam current requirement for Linac4 is very challenging: 80 mA must be provided. Cesiated plasma discharge ion sources such as Penning or magnetron sources are also potential candidates. Accelerator ion sources must achieve typical reliability figures of 95% and above. Investigating and understanding the underlying mechanisms involved with source failure or ageing is critical when selecting the ion source technology. Plasma discharge driven surface ion sources rely on molybdenum cathodes. Deformation of the cathode surfaces is visible after extended operation periods. A metallurgical investigation of an ISIS ion source is presented. The origin of the deformation is twofold: Molybdenum sputtering by cesium ions digs few tenths of mm cavities while a growth of molybdenum is observed in the immediate vicinity. The molybdenum growth under hydrogen atmosphere is hard and loosely bound to the bulk. It is, therefore, likely to peel off and be transported within the plasma volume. The observation of the cathode, anode, and extraction electrodes of the magnetron source operated at BNL for two years are presented. A beam simulation of H{sup -}, electrons, and Cs{sup -} ions was performed with the IBSimu code package to qualitatively explain the observations. This paper describes the operation conditions of the ion sources and discusses the metallurgical analysis and beam simulation results.

  5. Investigation of ISIS and Brookhaven National Laboratory ion source electrodes after extended operation.

    PubMed

    Lettry, J; Alessi, J; Faircloth, D; Gerardin, A; Kalvas, T; Pereira, H; Sgobba, S

    2012-02-01

    Linac4 accelerator of Centre Européen de Recherches Nucléaires is under construction and a RF-driven H(-) ion source is being developed. The beam current requirement for Linac4 is very challenging: 80 mA must be provided. Cesiated plasma discharge ion sources such as Penning or magnetron sources are also potential candidates. Accelerator ion sources must achieve typical reliability figures of 95% and above. Investigating and understanding the underlying mechanisms involved with source failure or ageing is critical when selecting the ion source technology. Plasma discharge driven surface ion sources rely on molybdenum cathodes. Deformation of the cathode surfaces is visible after extended operation periods. A metallurgical investigation of an ISIS ion source is presented. The origin of the deformation is twofold: Molybdenum sputtering by cesium ions digs few tenths of mm cavities while a growth of molybdenum is observed in the immediate vicinity. The molybdenum growth under hydrogen atmosphere is hard and loosely bound to the bulk. It is, therefore, likely to peel off and be transported within the plasma volume. The observation of the cathode, anode, and extraction electrodes of the magnetron source operated at BNL for two years are presented. A beam simulation of H(-), electrons, and Cs(-) ions was performed with the IBSimu code package to qualitatively explain the observations. This paper describes the operation conditions of the ion sources and discusses the metallurgical analysis and beam simulation results.

  6. Investigation of ISIS and Brookhaven National Laboratory ion source electrodes after extended operation

    SciTech Connect

    Lettry, J.; Gerardin, A.; Pereira, H.; Sgobba, S.; Alessi, J.; Faircloth, D.; Kalvas, T.

    2012-02-15

    Linac4 accelerator of Centre Europeen de Recherches Nucleaires is under construction and a RF-driven H{sup -} ion source is being developed. The beam current requirement for Linac4 is very challenging: 80 mA must be provided. Cesiated plasma discharge ion sources such as Penning or magnetron sources are also potential candidates. Accelerator ion sources must achieve typical reliability figures of 95% and above. Investigating and understanding the underlying mechanisms involved with source failure or ageing is critical when selecting the ion source technology. Plasma discharge driven surface ion sources rely on molybdenum cathodes. Deformation of the cathode surfaces is visible after extended operation periods. A metallurgical investigation of an ISIS ion source is presented. The origin of the deformation is twofold: Molybdenum sputtering by cesium ions digs few tenths of mm cavities while a growth of molybdenum is observed in the immediate vicinity. The molybdenum growth under hydrogen atmosphere is hard and loosely bound to the bulk. It is, therefore, likely to peel off and be transported within the plasma volume. The observation of the cathode, anode, and extraction electrodes of the magnetron source operated at BNL for two years are presented. A beam simulation of H{sup -}, electrons, and Cs{sup -} ions was performed with the IBSimu code package to qualitatively explain the observations. This paper describes the operation conditions of the ion sources and discusses the metallurgical analysis and beam simulation results.

  7. Gas and metal ion sources

    SciTech Connect

    Oaks, E. |; Yushkov, G.

    1996-08-01

    The positive ion sources are now of interest owing to both their conventional use, e.g., as injectors in charged-particle accelerators and the promising capabilities of intense ion beams in the processes related to the action of ions on various solid surfaces. For industrial use, the sources of intense ion beams and their power supplies should meet the specific requirements as follows: They should be simple, technologically effective, reliable, and relatively low-cost. Since the scanning of an intense ion beam is a complicated problem, broad ion beams hold the greatest promise. For the best use of such beams it is desirable that the ion current density be uniformly distributed over the beam cross section. The ion beam current density should be high enough for the treatment process be accomplished for an acceptable time. Thus, the ion sources used for high-current, high-dose metallurgical implantation should provide for gaining an exposure dose of {approximately} 10{sup 17} cm{sup {minus}2} in some tens of minutes. So the average ion current density at the surface under treatment should be over 10{sup {minus}5} A/cm{sup 2}. The upper limit of the current density depends on the admissible heating of the surface under treatment. The accelerating voltage of an ion source is dictated by its specific use; it seems to lie in the range from {approximately}1 kV (for the ion source used for surface sputtering) to {approximately}100 kV and over (for the ion sources used for high-current, high-dose metallurgical implantation).

  8. Negative ion source

    DOEpatents

    Leung, K.N.; Ehlers, K.W.

    1982-08-06

    An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field.

  9. Negative ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.

    1984-01-01

    An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field.

  10. Negative ion source

    DOEpatents

    Leung, K.N.; Ehlers, K.W.

    1984-12-04

    An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field. 14 figs.

  11. Simulation Study Using an Injection Phase-locked Magnetron as an Alternative Source for SRF Accelerators

    SciTech Connect

    Wang, Haipeng; Plawski, Tomasz E.; Rimmer, Robert A.

    2015-09-01

    As a drop-in replacement for the CEBAF CW klystron system, a 1497 MHz, CW-type high-efficiency magnetron using injection phase lock and amplitude variation is attractive. Amplitude control using magnetic field trimming and anode voltage modulation has been studied using analytical models and MATLAB/Simulink simulations. Since the 1497 MHz magnetron has not been built yet, previously measured characteristics of a 2.45GHz cooker magnetron are used as reference. The results of linear responses to the amplitude and phase control of a superconducting RF (SRF) cavity, and the expected overall benefit for the current CEBAF and future MEIC RF systems are presented in this paper.

  12. ION SOURCE UNIT FOR CALUTRON

    DOEpatents

    Sloan, D.H.; Yockey, H.P.; Schmidt, F.H.

    1959-04-14

    An improvement in the mounting arrangement for an ion source within the vacuum tank of a calutron device is reported. The cathode and arc block of the source are independently supported from a stem passing through the tank wall. The arc block may be pivoted and moved longitudinally with respect to the stem to thereby align the arc chamber in the biock with the cathode and magnetic field in the tank. With this arrangement the elements of the ion source are capable of precise adjustment with respect to one another, promoting increased source efficiency.

  13. Cold Strontium Ion Source for Ion Interferometry

    NASA Astrophysics Data System (ADS)

    Jackson, Jarom; Durfee, Dallin

    2015-05-01

    We are working on a cold source of Sr Ions to be used in an ion interferometer. The beam will be generated from a magneto-optical trap (MOT) of Sr atoms by optically ionizing atoms leaking out a carefully prepared hole in the MOT. A single laser cooling on the resonant transition (461 nm) in Sr should be sufficient for trapping, as we've calculated that losses to the atom beam will outweigh losses to dark states. Another laser (405 nm), together with light from the trapping laser, will drive a two photon transition in the atom beam to an autoionizing state. Supported by NSF Award No. 1205736.

  14. Laser ion source for high brightness heavy ion beam

    NASA Astrophysics Data System (ADS)

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. However we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. In 2014, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory. Now most of all the solid based heavy ions are being provided from the laser ion source for regular operation.

  15. Solenoid and monocusp ion source

    SciTech Connect

    Brainard, J.P.; Burns, E.J.T.; Draper, C.H.

    1995-12-31

    An ion source which generates ions having high atomic purity incorporates a solenoidal magnetic field to increase the electron path length. In a sealed envelope, electrons emitted from a cathode traverse the magnetic field lines of a solenoid and a monocusp magnet between the cathode and a reflector at the monocusp. As electrons collide with gas, the molecular gas forms a plasma. An anode grazes the outer boundary of the plasma. Molecular ions and high energy electrons remain substantially on the cathode side of the cusp, but as the ions and electrons are scattered to the aperture side of the cusp, additional collisions create atomic ions. The increased electron path length allows for smaller diameters and lower operating pressures.

  16. Solenoid and monocusp ion source

    DOEpatents

    Brainard, J.P.; Burns, E.J.T.; Draper, C.H.

    1997-10-07

    An ion source which generates hydrogen ions having high atomic purity incorporates a solenoidal permanent magnets to increase the electron path length. In a sealed envelope, electrons emitted from a cathode traverse the magnetic field lines of a solenoid and a monocusp magnet between the cathode and a reflector at the monocusp. As electrons collide with gas, the molecular gas forms a plasma. An anode grazes the outer boundary of the plasma. Molecular ions and high energy electrons remain substantially on the cathode side of the cusp, but as the ions and electrons are scattered to the aperture side of the cusp, additional collisions create atomic ions. The increased electron path length allows for smaller diameters and lower operating pressures. 6 figs.

  17. Solenoid and monocusp ion source

    DOEpatents

    Brainard, John Paul; Burns, Erskine John Thomas; Draper, Charles Hadley

    1997-01-01

    An ion source which generates hydrogen ions having high atomic purity incorporates a solenoidal permanent magnets to increase the electron path length. In a sealed envelope, electrons emitted from a cathode traverse the magnetic field lines of a solenoid and a monocusp magnet between the cathode and a reflector at the monocusp. As electrons collide with gas, the molecular gas forms a plasma. An anode grazes the outer boundary of the plasma. Molecular ions and high energy electrons remain substantially on the cathode side of the cusp, but as the ions and electrons are scattered to the aperture side of the cusp, additional collisions create atomic ions. The increased electron path length allows for smaller diameters and lower operating pressures.

  18. STATUS OF ITEP DECABORANE ION SOURCE PROGRAM.

    SciTech Connect

    KULEVOY,T.V.; PETRENKO, S.V.; KUIBEDA, R.P.; SELEZNEV, D.N.; KOZLOV, A.V.; STASEVICH, YU.B.; SITNIKOV, A.L.; SHAMAILOV, I.M.; PERSHIN, V.I.; HERSHCOVITCH, A.; JOHNSON, B.M.; GUSHENETS, V.I.; OKS, E.M.; POOLE, H.J.; MASUNOV, E.S.; POLOZOV, S.M.

    2007-08-26

    The joint research and development program is continued to develop steady-state ion source of decaborane beam for ion implantation industry. Both Freeman and Bemas ion sources for decaborane ion beam generation were investigated. Decaborane negative ion beam as well as positive ion beam were generated and delivered to the output of mass separator. Experimental results obtained in ITEP are presented.

  19. Multi-source ion funnel

    DOEpatents

    Tang, Keqi; Belov, Mikhail B.; Tolmachev, Aleksey V.; Udseth, Harold R.; Smith, Richard D.

    2005-12-27

    A method for introducing ions generated in a region of relatively high pressure into a region of relatively low pressure by providing at least two electrospray ion sources, providing at least two capillary inlets configured to direct ions generated by the electrospray sources into and through each of the capillary inlets, providing at least two sets of primary elements having apertures, each set of elements having a receiving end and an emitting end, the primary sets of elements configured to receive a ions from the capillary inlets at the receiving ends, and providing a secondary set of elements having apertures having a receiving end and an emitting end, the secondary set of elements configured to receive said ions from the emitting end of the primary sets of elements and emit said ions from said emitting end of the secondary set of elements. The method may further include the step of providing at least one jet disturber positioned within at least one of the sets of primary elements, providing a voltage, such as a dc voltage, in the jet disturber, thereby adjusting the transmission of ions through at least one of the sets of primary elements.

  20. Silicon oxynitride films deposited by reactive high power impulse magnetron sputtering using nitrous oxide as a single-source precursor

    SciTech Connect

    Hänninen, Tuomas Schmidt, Susann; Jensen, Jens; Hultman, Lars; Högberg, Hans

    2015-09-15

    Silicon oxynitride thin films were synthesized by reactive high power impulse magnetron sputtering of silicon in argon/nitrous oxide plasmas. Nitrous oxide was employed as a single-source precursor supplying oxygen and nitrogen for the film growth. The films were characterized by elastic recoil detection analysis, x-ray photoelectron spectroscopy, x-ray diffraction, x-ray reflectivity, scanning electron microscopy, and spectroscopic ellipsometry. Results show that the films are silicon rich, amorphous, and exhibit a random chemical bonding structure. The optical properties with the refractive index and the extinction coefficient correlate with the film elemental composition, showing decreasing values with increasing film oxygen and nitrogen content. The total percentage of oxygen and nitrogen in the films is controlled by adjusting the gas flow ratio in the deposition processes. Furthermore, it is shown that the film oxygen-to-nitrogen ratio can be tailored by the high power impulse magnetron sputtering-specific parameters pulse frequency and energy per pulse.

  1. Ion Source Development For The Proposed FNAL 750 keV Injector Upgrade

    SciTech Connect

    Bollinger, D. S.

    2011-09-26

    Currently there is a Proposed FNAL 750 keV Injector Upgrade for the replacement of the 40 year old Fermi National Laboratory (FNAL) Cockcroft-Walton accelerators with a new ion source and 200 MHz Radio Frequency Quadruple (RFQ). The slit type magnetron being used now will be replaced with a round aperture magnetron similar to the one used at Brookhaven National Lab (BNL). Operational experience from BNL has shown that this type of source is more reliable with a longer lifetime due to better power efficiency. The current source development effort is to produce a reliable source with >60 mA of H{sup -} beam current, 15 Hz rep-rate, 100 {mu}s pulse width, and a duty factor of 0.15%. The source will be based on the BNL design along with development done at FNAL for the High Intensity Neutrino Source (HINS).

  2. Ion source development for the proposed FNAL 750keV injector upgrade

    SciTech Connect

    Bollinger, D.S.; /Fermilab

    2010-11-01

    Currently there is a Proposed FNAL 750keV Injector Upgrade for the replacement of the 40 year old Fermi National Laboratory (FNAL) Cockcroft-Walton accelerators with a new ion source and 200MHz Radio Frequency Quadruple (RFQ). The slit type magnetron being used now will be replaced with a round aperture magnetron similar to the one used at Brookhaven National Lab (BNL). Operational experience from BNL has shown that this type of source is more reliable with a longer lifetime due to better power efficiency. The current source development effort is to produce a reliable source with >60mA of H- beam current, 15Hz rep-rate, 100s pulse width, and a duty factor of 0.15%. The source will be based on the BNL design along with development done at FNAL for the High Intensity Neutrino Source (HINS).

  3. Effects of nitrogen ion implantation time on tungsten films deposited by DC magnetron sputtering on AISI 410 martensitic stainless steel

    NASA Astrophysics Data System (ADS)

    Malau, Viktor; Ilman, Mochammad Noer; Iswanto, Priyo Tri; Jatisukamto, Gaguk

    2016-03-01

    Nitrogen ion implantation time on tungsten thin film deposited on surface of AISI 410 steel has been performed. Tungsten thin film produced by dc magnetron sputtering method was deposited on AISI 410 martensitic stainless steel substrates, and then the nitrogen ions were implanted on tungsten thin film. The objective of this research is to investigate the effects of implantation deposition time on surface roughness, microhardness, specific wear and corrosion rate of nitrogen implanted on tungsten film. Magnetron sputtering process was performed by using plasma gas of argon (Ar) to bombardier tungsten target (W) in a vacuum chamber with a pressure of 7.6 x 10-2 torr, a voltage of 300 V, a sputter current of 80 mA for sputtered time of 10 minutes. Nitrogen implantation on tungsten film was done with an initial pressure of 3x10-6 mbar, a fluence of 2 x 1017 ions/cm2, an energy of 100 keV and implantation deposition times of 0, 20, 30 and 40 minutes. The surface roughness, microhardness, specific wear and corrosion rate of the films were evaluated by surfcorder test, Vickers microhardness test, wear test and potentiostat (galvanostat) test respectively. The results show that the nitrogen ions implanted deposition time on tungsten film can modify the surface roughness, microhardness, specific wear and corrosion rate. The minimum surface roughness, specific wear and corrosion rate can be obtained for implantation time of 20 minutes and the maximum microhardness of the film is 329 VHN (Vickers Hardness Number) for implantation time of 30 minutes. The specific wear and corrosion rate of the film depend directly on the surface roughness.

  4. Study on the microwave ion source of the 100-MeV proton linac

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeok-Jung

    2016-09-01

    A microwave ion source is used as an ion source for the 100-MeV proton accelerator at the Korea Multi-purpose Accelerator Complex (KOMAC). The specifications of the ion source are a 50-keV energy and a 20-mA peak current. The plasma is operated in the CW mode by using a magnetron, and the pulse beam is extracted using a semiconductor switch located in the extraction power supply. The beam characteristics were measured based on the pulse voltage and current. A test stand was also installed to study the beam characteristics of the ion source off-line. In this paper, the pulse beam characteristics of the ion source are presented, and the installation of the test stand is reported.

  5. Design of a new electron cyclotron resonance ion source at Oshima National College of Maritime Technology

    SciTech Connect

    Asaji, T. Hirabara, N.; Izumihara, T.; Nakamizu, T.; Ohba, T.; Nakamura, T.; Furuse, M.; Hitobo, T.; Kato, Y.

    2014-02-15

    A new electron cyclotron resonance ion/plasma source has been designed and will be built at Oshima National College of Maritime Technology by early 2014. We have developed an ion source that allows the control of the plasma parameters over a wide range of electron temperatures for material research. A minimum-B magnetic field composed of axial mirror fields and radial cusp fields was designed using mainly Nd-Fe-B permanent magnets. The axial magnetic field can be varied by three solenoid coils. The apparatus has 2.45 GHz magnetron and 2.5–6.0 GHz solid-state microwave sources.

  6. ION SOURCE FOR A CALUTRON

    DOEpatents

    Backus, J.G.

    1957-12-24

    This patent relates to ion sources and more particularly describes an ion source for a calutron which has the advantage of efficient production of an ion beam and long operation time without recharging. The source comprises an arc block provided with an arc chamber connected to a plurality of series-connected charge chambers and means for heating the charge within the chambers. A cathode is disposed at one end of the arc chamber and enclosed hy a vapor tight housing to protect the cathode. The arc discharge is set up between the cathode and the block due to a difference in potentials placed on these parts, and a magnetic field is aligned with the arc discharge. Cooling of the arc block is accomplished by passing coolant through a hollow stem secured at one end to the block and rotatably mounted at the other end through the wall of the calutron. The ions are removed through a slit in the arc chamber by accelerating electrodes.

  7. Relating to monitoring ion sources

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan

    2002-01-01

    The apparatus and method provide techniques for monitoring the position on alpha contamination in or on items or locations. The technique is particularly applicable to pipes, conduits and other locations to which access is difficult. The technique uses indirect monitoring of alpha emissions by detecting ions generated by the alpha emissions. The medium containing the ions is moved in a controlled manner frog in proximity with the item or location to the detecting unit and the signals achieved over time are used to generate alpha source position information.

  8. ION SOURCE FOR A CALUTRON

    DOEpatents

    Lofgren, E.J.

    1959-04-14

    This patcnt relates to calutron devices and deals particularly with the mechanism used to produce the beam of ions wherein a charge material which is a vapor at room temperature is used. A charge container located outside the tank is connected through several conduits to various points along the arc chamber of the ion source. In addition, the rate of flow of the vapor to the arc chamber is controlled by a throttle valve in each conduit. By this arrangement the arc can be regulated accurately and without appreciable time lag, inasmuch as the rate of vapor flow is immediately responsive to the manipulation of the throttle valves.

  9. Application of Extended Smoluchowski Equations to Formation of Silver Nanoclusters Generated by Direct Current Magnetron Sputtering Source

    NASA Astrophysics Data System (ADS)

    Zhang, Chuhang; Feng, Yuanxin

    2016-09-01

    We apply the extended Smoluchowski rate equations with neutralization process between nanocluster (NC) anion and cation to study the formation of silver NCs generated by direct current magnetron sputtering (DC-MSP). By comparing the experimental and simulation results, it was found that the origin of size tuning by the cell length was prolonged aggregation time. Size tuning by DC power (P) was attributed to the enhanced initial number density and ionization fraction of the sputtered materials. It was revealed that parts of NC ions were "lost" after aggregation and the amount of lost ions increased with power (20 W < P < 100 W), which was caused by the accelerated neutralization process. The high consistency between experiment and simulation suggests that the extended Smoluchowski rate equations are capable to describe the NC formation in gas phase.

  10. Comparison of AlN films grown by RF magnetron sputtering and ion-assisted molecular beam epitaxy

    SciTech Connect

    Chan, J.; Fu, T.; Cheung, N.W.; Ross, J.; Newman, N.; Rubin, M.

    1993-04-01

    Crystalline aluminum nitride (AlN) thin films were formed on various substrates by using RF magnetron sputtering of an A1 target in a nitrogen plasma and also by ion-assisted molecular beam epitaxy (IAMBE). Basal-oriented AlN/(111) Si showed a degradation of crystallinity with increased substrate temperature from 550 to 770 C, while the crystallinity of AlN/(0001) A1{sub 2}O{sub 3} samples improved from 700 to 850 C. The optical absorption characteristics of the AlN/(0001) A1{sub 2}O{sub 3} films as grown by both deposition methods revealed a decrease in subbandgap absorption with increased substrate temperature.

  11. Ion-enhanced oxidation of aluminum as a fundamental surface process during target poisoning in reactive magnetron sputtering

    SciTech Connect

    Kuschel, Thomas; Keudell, Achim von

    2010-05-15

    Plasma deposition of aluminum oxide by reactive magnetron sputtering (RMS) using an aluminum target and argon and oxygen as working gases is an important technological process. The undesired oxidation of the target itself, however, causes the so-called target poisoning, which leads to strong hysteresis effects during RMS operation. The oxidation occurs by chemisorption of oxygen atoms and molecules with a simultaneous ion bombardment being present. This heterogenous surface reaction is studied in a quantified particle beam experiment employing beams of oxygen molecules and argon ions impinging onto an aluminum-coated quartz microbalance. The oxidation and/or sputtering rates are measured with this microbalance and the resulting oxide layers are analyzed by x-ray photoelectron spectroscopy. The sticking coefficient of oxygen molecules is determined to 0.015 in the zero coverage limit. The sputtering yields of pure aluminum by argon ions are determined to 0.4, 0.62, and 0.8 at 200, 300, and 400 eV. The variation in the effective sticking coefficient and sputtering yield during the combined impact of argon ions and oxygen molecules is modeled with a set of rate equations. A good agreement is achieved if one postulates an ion-induced surface activation process, which facilitates oxygen chemisorption. This process may be identified with knock-on implantation of surface-bonded oxygen, with an electric-field-driven in-diffusion of oxygen or with an ion-enhanced surface activation process. Based on these fundamental processes, a robust set of balance equations is proposed to describe target poisoning effects in RMS.

  12. Characterization of an RF plasma ion source for ion implantation

    SciTech Connect

    Kopalidis, Peter M.; Wan Zhimin

    2012-11-06

    A novel inductively coupled RF plasma ion source has been developed for use in a beamline ion implanter. Ion density data have been taken with an array of four Langmuir probes spaced equally at the source extraction arc slit. These provide ion density uniformity information as a function of source pressure, RF power and gas mixture composition. In addition, total extracted ion beam current data are presented for the same conditions. The comparative advantages of the RF source in terms of higher beam current, reduced maintenance and overall productivity improvement compared to a hot cathode source are discussed.

  13. Investigation of the physical properties of ion assisted ZrN thin films deposited by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Signore, M. A.; Valerini, D.; Rizzo, A.; Tapfer, L.; Capodieci, L.; Cappello, A.

    2010-06-01

    Ion bombardment during thin film growth is known to cause structural and morphological changes in the deposited films, thus affecting their physical properties. In this work zirconium nitride films have been deposited by the ion assisted magnetron sputtering technique. The ion energy is controlled by varying the voltage applied to the substrate in the range 0-25 V. The deposited ZrN films are characterized for their structure, surface roughness, oxygen contamination, optical reflectance and electrical resistivity. With increasing substrate voltage crystallinity of the films is enhanced with a preferential orientation of the ZrN grains having the (1 1 1) axis perpendicular to the substrate surface. At the same time, a decrease in electrical resistivity and oxygen contamination content is observed up to 20 V. A higher substrate voltage (25 V) causes an inversion in the observed experimental trends. The role of oxygen contamination decrease and generation of nitrogen vacancies due to ionic assistance have been considered as a possible explanation for the experimental results.

  14. Physics of Plasma-Based Ion Implantation&Deposition (PBIID)and High Power Impulse Magnetron Sputtering (HIPIMS): A Comparison

    SciTech Connect

    Anders, Andre

    2007-08-28

    The emerging technology of High Power Impulse MagnetronSputtering (HIPIMS) has much in common with the more establishedtechnology of Plasma Based Ion Implantation&Deposition (PBIID):both use pulsed plasmas, the pulsed sheath periodically evolves andcollapses, the plasma-sheath system interacts with the pulse-drivingpower supply, the plasma parameters are affected by the power dissipated,surface atoms are sputtered and secondary electrons are emitted, etc.Therefore, both fields of science and technology could learn from eachother, which has not been fully explored. On the other hand, there aresignificant differences, too. Most importantly, the operation of HIPIMSheavilyrelies on the presence of a strong magnetic field, confiningelectrons and causing their ExB drift, which is closed for typicalmagnetron configurations. Second, at the high peak power levels used forHIPIMS, 1 kW/cm2 or greater averaged over the target area, the sputteredmaterial greatly affects plasma generation. For PBIID, in contrast,plasma generation and ion processing of the surface (ion implantation,etching, and deposition) are considered rela-tively independentprocesses. Third, secondary electron emission is generally considered anuisance for PBIID, especially at high voltages, whereas it is a criticalingredient to the operation of HIPIMS. Fourth, the voltages in PBIID areoften higher than in HIPIMS. For the first three reasons listed above,modelling of PBIID seems to be easier and could give some guidance forfuture HIPIMS models, which, clearly, will be more involved.

  15. Liquid metal ion source and alloy

    DOEpatents

    Clark, Jr., William M.; Utlaut, Mark W.; Behrens, Robert G.; Szklarz, Eugene G.; Storms, Edmund K.; Santandrea, Robert P.; Swanson, Lynwood W.

    1988-10-04

    A liquid metal ion source and alloy, wherein the species to be emitted from the ion source is contained in a congruently vaporizing alloy. In one embodiment, the liquid metal ion source acts as a source of arsenic, and in a source alloy the arsenic is combined with palladium, preferably in a liquid alloy having a range of compositions from about 24 to about 33 atomic percent arsenic. Such an alloy may be readily prepared by a combustion synthesis technique. Liquid metal ion sources thus prepared produce arsenic ions for implantation, have long lifetimes, and are highly stable in operation.

  16. Liquid metal ion source assembly for external ion injection into an electron string ion source (ESIS).

    PubMed

    Segal, M J; Bark, R A; Thomae, R; Donets, E E; Donets, E D; Boytsov, A; Ponkin, D; Ramsdorf, A

    2016-02-01

    An assembly for a commercial Ga(+) liquid metal ion source in combination with an ion transportation and focusing system, a pulse high-voltage quadrupole deflector, and a beam diagnostics system has been constructed in the framework of the iThemba LABS (Cape Town, South Africa)-JINR (Dubna, Russia) collaboration. First, results on Ga(+) ion beam commissioning will be presented. Outlook of further experiments for measurements of charge breeding efficiency in the electron string ion source with the use of external injection of Ga(+) and Au(+) ion beams will be reported as well.

  17. Development of Electron Cyclotron Resonance Ion Source for Synthesis of Endohedral Metallofullerenes

    SciTech Connect

    Tanaka, K.; Muramatsu, M.; Uchida, T.; Hanajiri, T.; Yoshida, Y.; Biri, S.; Kitagawa, A.; Kato, Y.

    2008-11-03

    A new electron cyclotron resonance ion source (ECRIS) has been constructed for synthesis of endohedral metallofullerenes. The main purpose of the ion source is to produce new biological and medical materials. The design is based on ECRIS for production of multicharged ion beams with a traditional minimum-B magnetic field. An 8-10 GHz traveling wave tube (TWT) amplifier and a 2.45 GHz magnetron have been applied as microwave sources. Fullerene and metal vapor are introduced with a filament heating micro-oven and an induction heating oven, respectively. In preliminary ion-extraction test, Ar{sup +} is 54 {mu}A. Many broken fullerenes such as C{sub 58} and C{sub 56} are observed in fullerene ion beams.

  18. Development of Electron Cyclotron Resonance Ion Source for Synthesis of Endohedral Metallofullerenes

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Muramatsu, M.; Uchida, T.; Biri, S.; Asaji, T.; Shima, K.; Hanajiri, T.; Kitagawa, A.; Kato, Y.; Yoshida, Y.

    2008-11-01

    A new electron cyclotron resonance ion source (ECRIS) has been constructed for synthesis of endohedral metallofullerenes. The main purpose of the ion source is to produce new biological and medical materials. The design is based on ECRIS for production of multicharged ion beams with a traditional minimum-B magnetic field. An 8-10 GHz traveling wave tube (TWT) amplifier and a 2.45 GHz magnetron have been applied as microwave sources. Fullerene and metal vapor are introduced with a filament heating micro-oven and an induction heating oven, respectively. In preliminary ion-extraction test, Ar+ is 54 μA. Many broken fullerenes such as C58 and C56 are observed in fullerene ion beams.

  19. Hydrogen hollow cathode ion source

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J., Jr.; Sovey, J. S.; Roman, R. F. (Inventor)

    1980-01-01

    A source of hydrogen ions is disclosed and includes a chamber having at one end a cathode which provides electrons and through which hydrogen gas flows into the chamber. Screen and accelerator grids are provided at the other end of the chamber. A baffle plate is disposed between the cathode and the grids and a cylindrical baffle is disposed coaxially with the cathode at the one end of the chamber. The cylindrical baffle is of greater diameter than the baffle plate to provide discharge impedance and also to protect the cathode from ion flux. An anode electrode draws the electrons away from the cathode. The hollow cathode includes a tubular insert of tungsten impregnated with a low work function material to provide ample electrons. A heater is provided around the hollow cathode to initiate electron emission from the low work function material.

  20. Laser ion source for isobaric heavy ion collider experiment.

    PubMed

    Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M

    2016-02-01

    Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is (96)Ru + (96)Zr. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions.

  1. PdPt catalyst synthesized using a gas aggregation source and magnetron sputtering for fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Caillard, A.; Cuynet, S.; Lecas, T.; Andreazza, P.; Mikikian, M.; Thomann, A.-L.; Brault, P.

    2015-12-01

    PdPt catalysts with different morphologies and atomic ratios have been synthesized on native SiO2/Si and on proton exchange membranes. The combination of the gas aggregation source and magnetron sputtering techniques allows the formation of quasi core-shell Pd0.97Pt0.03@Pt nanoclusters. Transmission electron microscopy and grazing incidence wide-angle x-ray scattering measurements of the Pd-rich core reveal a mean diameter of 4 nm and a face-centered cubic structure. The Pt shell around half of the Pd-rich core is formed by magnetron sputtering, and increases the nanocluster diameter (up to 10 nm) and the overall Pt content (up to 85%). Membranes coated by the PdPt core catalyst and PdPt@Pt catalyst (resulting in the formation of catalyst-coated membranes) are incorporated into fuel cells and their electrical characteristics are measured. The association of the two deposition techniques results in the formation of quasi core-shell PdPt@Pt nanoclusters, improving the start-up step of the fuel cell.

  2. Distribution of Fe atom density in a dc magnetron sputtering plasma source measured by laser-induced fluorescence imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Shibagaki, K.; Nafarizal, N.; Sasaki, K.; Toyoda, H.; Iwata, S.; Kato, T.; Tsunashima, S.; Sugai, H.

    2003-10-01

    Magnetron sputtering discharge is widely used as an efficient method for thin film fabrication. In order to achieve the optimized fabrication, understanding of the kinetics in plasmas is essential. In the present work, we measured the density distribution of sputtered Fe atoms using laser-induced fluorescence imaging spectroscopy. A dc magnetron plasma source with a Fe target was used. An area of 20 × 2 mm in front of the target was irradiated by a tunable laser beam having a planar shape. The picture of laser-induced fluorescence on the laser beam was taken using an ICCD camera. In this way, we obtained the two-dimensional image of the Fe atom density. As a result, it has been found that the Fe atom density observed at a distance of several centimeters from the target is higher than that adjacent to the target, when the Ar gas pressure was relatively high. It is suggested from this result that some gas-phase production processes of Fe atoms are available in the plasma. This work has been performed under the 21st Century COE Program by the Ministry of Education, Culture, Sports, Science and Technology in Japan.

  3. Resonant Ionization Laser Ion Source for Radioactive Ion Beams

    SciTech Connect

    Liu, Yuan; Beene, James R; Havener, Charles C; Vane, C Randy; Gottwald, T.; Wendt, K.; Mattolat, C.; Lassen, J.

    2009-01-01

    A resonant ionization laser ion source based on all-solid-state, tunable Ti:Sapphire lasers is being developed for the production of pure radioactive ion beams. It consists of a hot-cavity ion source and three pulsed Ti:Sapphire lasers operating at a 10 kHz pulse repetition rate. Spectroscopic studies are being conducted to develop ionization schemes that lead to ionizing an excited atom through an auto-ionization or a Rydberg state for numerous elements of interest. Three-photon resonant ionization of 12 elements has been recently demonstrated. The overall efficiency of the laser ion source measured for some of these elements ranges from 1 to 40%. The results indicate that Ti:Sapphire lasers could be well suited for laser ion source applications. The time structures of the ions produced by the pulsed lasers are investigated. The information may help to improve the laser ion source performance.

  4. Compact RF ion source for industrial electrostatic ion accelerator

    NASA Astrophysics Data System (ADS)

    Kwon, Hyeok-Jung; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub

    2016-02-01

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  5. Compact RF ion source for industrial electrostatic ion accelerator.

    PubMed

    Kwon, Hyeok-Jung; Park, Sae-Hoon; Kim, Dae-Il; Cho, Yong-Sub

    2016-02-01

    Korea Multi-purpose Accelerator Complex is developing a single-ended electrostatic ion accelerator to irradiate gaseous ions, such as hydrogen and nitrogen, on materials for industrial applications. ELV type high voltage power supply has been selected. Because of the limited space, electrical power, and robust operation, a 200 MHz RF ion source has been developed. In this paper, the accelerator system, test stand of the ion source, and its test results are described.

  6. Inductively generated streaming plasma ion source

    DOEpatents

    Glidden, Steven C.; Sanders, Howard D.; Greenly, John B.

    2006-07-25

    A novel pulsed, neutralized ion beam source is provided. The source uses pulsed inductive breakdown of neutral gas, and magnetic acceleration and control of the resulting plasma, to form a beam. The beam supplies ions for applications requiring excellent control of ion species, low remittance, high current density, and spatial uniformity.

  7. High Current Ion Sources and Injectors for Heavy Ion Fusion

    SciTech Connect

    Kwan, Joe W.

    2005-02-15

    Heavy ion beam driven inertial fusion requires short ion beam pulses with high current and high brightness. Depending on the beam current and the number of beams in the driver system, the injector can use a large diameter surface ionization source or merge an array of small beamlets from a plasma source. In this paper, we review the scaling laws that govern the injector design and the various ion source options including the contact ionizer, the aluminosilicate source, the multicusp plasma source, and the MEVVA source.

  8. Laser ion source with solenoid field

    SciTech Connect

    Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; Okamura, Masahiro

    2014-11-12

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. In this study, the laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  9. Laser ion source with solenoid field

    DOE PAGES

    Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; Okamura, Masahiro

    2014-11-12

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. In this study, the laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, whichmore » was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.« less

  10. Laser ion source with solenoid field

    SciTech Connect

    Kanesue, Takeshi Okamura, Masahiro; Fuwa, Yasuhiro; Kondo, Kotaro

    2014-11-10

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 10{sup 11}, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  11. The Electron Beam Ion Source (EBIS)

    ScienceCinema

    Brookhaven Lab

    2016-07-12

    Brookhaven National Lab has successfully developed a new pre-injector system, called the Electron Beam Ion Source, for the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. The first of several planned improvemen

  12. The Electron Beam Ion Source (EBIS)

    SciTech Connect

    Brookhaven Lab

    2009-06-09

    Brookhaven National Lab has successfully developed a new pre-injector system, called the Electron Beam Ion Source, for the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. The first of several planned improvemen

  13. Polycrystalline CuInSe2 thin films for solar cells by three-source magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Nakada, Tokio; Migita, Kazuo; Kunioka, Akio

    1993-08-01

    Polycrystalline CuInSe2 films were deposited in a wide range of Cu/In ratios by three-source magnetron sputtering technique onto soda-lime glass and Mo-coated glass substrates at elevated substrate temperatures. Good run-to-run reproductibility was achieved in our sputtering system using melt-grown polycrystalline selenium target. In excess films which are desirable for solar cells were obtained in the temperature range of 400 to 500 C. These films showed a preferential (112) orientation of the chalcopyrite structure and possessed an excellent adhesion property to the substrates. Preliminary solar cells with ZnO:Al/CdS/CuInSe2 structure resulted in a conversion efficiency of 6.3% under AM 1.5 illumination.

  14. Development of light source using micro hollow cathode plasma for monitoring absolute densities of metal atoms in magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ohta, Takayuki; Tachibana, Yoshihiro; Ito, Masafumi; Takashima, Seigo; Higashijima, Yasuhiro; Kano, Hiroyuki; den, Shoji; Hori, Masaru

    2007-10-01

    The quantitative analysis of metal atoms is important for understanding the chemistry and controlling the conditions in sputtering process. The light source, which emits multi-atomic lines simultaneously, is required for diagnostics of behaviors of many kind of metallic atom at the same time. In this study, a multi-micro hollow cathode lamp for simultaneous monitoring of multi-metal atoms in sputtering process was developed. The emissions of Cu, Zn, Fe, and Mo for analysis were simultaneously obtained from 4 hollows. The Cu and Mo densities in the magnetron sputtering were measured using absorption spectroscopy employing the multi-micro hollow cathode lamp. Those densities were measured to be from 10^9 to 10^10 cm-3 in the RF power range from 0 to 100 W at a pressure of 5 Pa. The simultaneous measurement of the atomic densities in the sputtering plasma has been performed.

  15. Upgraded vacuum arc ion source for metal ion implantation

    SciTech Connect

    Nikolaev, A. G.; Oks, E. M.; Savkin, K. P.; Yushkov, G. Yu.; Brown, I. G.

    2012-02-15

    Vacuum arc ion sources have been made and used by a large number of research groups around the world over the past twenty years. The first generation of vacuum arc ion sources (dubbed ''Mevva,'' for metal vapor vacuum arc) was developed at Lawrence Berkeley National Laboratory in the 1980s. This paper considers the design, performance parameters, and some applications of a new modified version of this kind of source which we have called Mevva-V.Ru. The source produces broad beams of metal ions at an extraction voltage of up to 60 kV and a time-averaged ion beam current in the milliampere range. Here, we describe the Mevva-V.Ru vacuum arc ion source that we have developed at Tomsk and summarize its beam characteristics along with some of the applications to which we have put it. We also describe the source performance using compound cathodes.

  16. High-intensity sources for light ions

    SciTech Connect

    Leung, K.N.

    1995-10-01

    The use of the multicusp plasma generator as a source of light ions is described. By employing radio-frequency induction discharge, the performance of the multicusp source is greatly improved, both in lifetime and in high brightness H{sup +} and H{sup {minus}} beam production. A new technique for generating multiply-charged ions in this type of ion source is also presented.

  17. Molecular ion sources for low energy semiconductor ion implantation (invited)

    NASA Astrophysics Data System (ADS)

    Hershcovitch, A.; Gushenets, V. I.; Seleznev, D. N.; Bugaev, A. S.; Dugin, S.; Oks, E. M.; Kulevoy, T. V.; Alexeyenko, O.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S.; Vizir, A.; Yushkov, G. Yu.

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4+ ion beams were extracted. Results from devices and some additional concepts are described.

  18. Molecular ion sources for low energy semiconductor ion implantation (invited).

    PubMed

    Hershcovitch, A; Gushenets, V I; Seleznev, D N; Bugaev, A S; Dugin, S; Oks, E M; Kulevoy, T V; Alexeyenko, O; Kozlov, A; Kropachev, G N; Kuibeda, R P; Minaev, S; Vizir, A; Yushkov, G Yu

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4(+) ion beams were extracted. Results from devices and some additional concepts are described.

  19. Electron beam ion source and electron beam ion trap (invited)

    SciTech Connect

    Becker, Reinard; Kester, Oliver

    2010-02-15

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not ''sorcery'' but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  20. Ionization phenomena and sources of negative ions

    SciTech Connect

    Alton, G.D.

    1983-01-01

    Negative ion source technology has rapidly advanced during the past several years as a direct consequence of the discovery of Krohn that negative ion yields can be greatly enhanced by sputtering in the presence of Group IA elements. Today, most negative ion sources use this discovery directly or the principles implied to effect negative ion formation through surface ionization. As a consequence, the more traditional direct extraction plasma and charge exchange sources are being used less frequently. However, the charge exchange generation mechanism appears to be as universal, is very competitive in terms of efficiency and has the advantage in terms of metastable ion formation. In this review, an attempt has been made to briefly describe the principal processes involved in negative ion formation and sources which are representative of a particular principle. The reader is referred to the literature for specific details concerning the operational characteristics, emittances, brightnesses, species and intensity capabilities of particular sources. 100 references.

  1. An overview of the new test stand for H⁻ ion sources at FNAL.

    PubMed

    Sosa, A; Bollinger, D S; Duel, K; Karns, P R; Pellico, W; Tan, C Y

    2016-02-01

    A new test stand at Fermi National Accelerator Laboratory (FNAL) is being constructed to carry out experiments to develop and upgrade the present magnetron-type sources of H(-) ions of up to 80 mA at 35 keV in the context of the Proton Improvement Plan. The aim of this plan is to provide high-power proton beams for the experiments at FNAL. The technical details of the construction and layout of this test stand are presented, along with a prospective set of diagnostics to monitor the sources. PMID:26931987

  2. Enhanced life ion source for germanium and carbon ion implantation

    SciTech Connect

    Hsieh, Tseh-Jen; Colvin, Neil; Kondratenko, Serguei

    2012-11-06

    Germanium and carbon ions represent a significant portion of total ion implantation steps in the process flow. Very often ion source materials that used to produce ions are chemically aggressive, especially at higher temperatures, and result in fast ion source performance degradation and a very limited lifetime [B.S. Freer, et. al., 2002 14th Intl. Conf. on Ion Implantation Technology Proc, IEEE Conf. Proc., p. 420 (2003)]. GeF{sub 4} and CO{sub 2} are commonly used to generate germanium and carbon beams. In the case of GeF{sub 4} controlling the tungsten deposition due to the de-composition of WF{sub 6} (halogen cycle) is critical to ion source life. With CO{sub 2}, the materials oxidation and carbon deposition must be controlled as both will affect cathode thermionic emission and anti-cathode (repeller) efficiencies due to the formation of volatile metal oxides. The improved ion source design Extended Life Source 3 (Eterna ELS3) together with its proprietary co-gas material implementation has demonstrated >300 hours of stable continuous operation when using carbon and germanium ion beams. Optimizing cogas chemistries retard the cathode erosion rate for germanium and carbon minimizes the adverse effects of oxygen when reducing gas is introduced for carbon. The proprietary combination of hardware and co-gas has improved source stability and the results of the hardware and co-gas development are discussed.

  3. Ion sources for energy extremes of ion implantation.

    PubMed

    Hershcovitch, A; Johnson, B M; Batalin, V A; Kropachev, G N; Kuibeda, R P; Kulevoy, T V; Kolomiets, A A; Pershin, V I; Petrenko, S V; Rudskoy, I; Seleznev, D N; Bugaev, A S; Gushenets, V I; Litovko, I V; Oks, E M; Yushkov, G Yu; Masunov, E S; Polozov, S M; Poole, H J; Storozhenko, P A; Svarovski, A Ya

    2008-02-01

    For the past four years a joint research and development effort designed to develop steady state, intense ion sources has been in progress with the ultimate goal to develop ion sources and techniques that meet the two energy extreme range needs of meV and hundreads of eV ion implanters. This endeavor has already resulted in record steady state output currents of high charge state of antimony and phosphorus ions: P(2+) [8.6 pmA (particle milliampere)], P(3+) (1.9 pmA), and P(4+) (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb(3+)Sb(4+), Sb(5+), and Sb(6+) respectively. For low energy ion implantation, our efforts involve molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA (electrical milliampere) of positive decaborane ions was extracted at 10 keV and smaller currents of negative decaborane ions were also extracted. Additionally, boron current fraction of over 70% was extracted from a Bernas-Calutron ion source, which represents a factor of 3.5 improvement over currently employed ion sources.

  4. ION SOURCES FOR ENERGY EXTREMES OF ION IMPLANTATION.

    SciTech Connect

    HERSCHCOVITCH,A.; JOHNSON, B.M.; BATALIN, V.A.; KROPACHEV, G.N.; KUIBEDA, R.P.; KULEVOY, T.V.; KOLOMIETS, A.A.; PERSHIN, V.I.; PETRENKO, S.V.; RUDSKOY, I.; SELEZNEV, D.N.; BUGAEV, A.S.; GUSHENETS, V.I.; LITOVKO, I.V.; OKS, E.M.; YUSHKOV, G. YU.; MASEUNOV, E.S.; POLOZOV, S.M.; POOLE, H.J.; STOROZHENKO, P.A.; SVAROVSKI, YA.

    2007-08-26

    For the past four years a joint research and development effort designed to develop steady state, intense ion sources has been in progress with the ultimate goal to develop ion sources and techniques, which meet the two energy extreme range needs of mega-electron-volt and 100's of electron-volt ion implanters. This endeavor has already resulted in record steady state output currents of high charge state of Antimony and Phosphorous ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb{sup 4+}, Sb{sup 5+}, and Sb{sup 6+} respectively. For low energy ion implantation our efforts involve molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA of positive Decaborane ions were extracted at 10 keV and smaller currents of negative Decaborane ions were also extracted. Additionally, Boron current fraction of over 70% was extracted from a Bemas-Calutron ion source, which represents a factor of 3.5 improvement over currently employed ion sources.

  5. Molecular phosphorus ion source for semiconductor technologya)

    NASA Astrophysics Data System (ADS)

    Gushenets, V. I.; Bugaev, A. S.; Oks, E. M.; Hershcovitch, A.; Kulevoy, T. V.

    2012-02-01

    This paper presents results on the generation of molecular phosphorus ion beams in a hot filament ion source. Solid red phosphorous is evaporated mainly as tetra-atomic molecules up to a temperature of 800°C. Thus, one of the main conditions for producing maximum P4+ fraction in the beam is to keep the temperature of the phosphorous oven, the steam line and the discharge chamber walls no greater than 800°C. The prior version of our ion source was equipped with a discharge chamber cooling system. The modified source ensured a P4+ ion beam current greater than 30% of the total beam current.

  6. Molecular phosphorus ion source for semiconductor technology

    SciTech Connect

    Gushenets V. I.; Hershcovitch A.; Bugaev, A.S.; Oks, E.M.; Kulevoy, T.V.

    2012-02-15

    This paper presents results on the generation of molecular phosphorus ion beams in a hot filament ion source. Solid red phosphorous is evaporated mainly as tetra-atomic molecules up to a temperature of 800 C. Thus, one of the main conditions for producing maximum P{sub 4}{sup +} fraction in the beam is to keep the temperature of the phosphorous oven, the steam line and the discharge chamber walls no greater than 800 C. The prior version of our ion source was equipped with a discharge chamber cooling system. The modified source ensured a P{sub 4}{sup +} ion beam current greater than 30% of the total beam current.

  7. Sample inlet tube for ion source

    DOEpatents

    Prior, David [Hermiston, OR; Price, John [Richland, WA; Bruce, Jim [Oceanside, CA

    2002-09-24

    An improved inlet tube is positioned within an aperture through the device to allow the passage of ions from the ion source, through the improved inlet tube, and into the interior of the device. The inlet tube is designed with a larger end and a smaller end wherein the larger end has a larger interior diameter than the interior diameter of the smaller end. The inlet tube is positioned within the aperture such that the larger end is pointed towards the ion source, to receive ions therefrom, and the smaller end is directed towards the interior of the device, to deliver the ions thereto. Preferably, the ion source utilized in the operation of the present invention is a standard electrospray ionization source. Similarly, the present invention finds particular utility in conjunction with analytical devices such as mass spectrometers.

  8. Effects of Processing Variables on Tantalum Nitride by Reactive-Ion-Assisted Magnetron Sputtering Deposition

    NASA Astrophysics Data System (ADS)

    Wei, Chao‑Tsang; Shieh, Han‑Ping D.

    2006-08-01

    The binary compound tantalum nitride (TaN) and ternary compounds tantalum tungsten nitrides (Ta1-xWxNy) exhibit interesting properties such as high melting point, high hardness, and chemical inertness. Such nitrides were deposited on a tungsten carbide (WC) die and silicon wafers by ion-beam-sputter evaporation of the respective metal under nitrogen ion-assisted deposition (IAD). The effects of N2/Ar flux ratio, post annealing, ion-assisted deposition, deposition rate, and W doping in coating processing variables on hardness, load critical scratching, oxidation resistance, stress and surface roughness were investigated. The optimum N2/Ar flux ratios in view of the hardness and critical load of TaN and Ta1-xWxNy films were ranged from 0.9 to 1.0. Doping W into TaN to form Ta1-xWxNy films led significant increases in hardness, critical load, oxidation resistance, and reduced surface roughness. The optimum doping ratio was [W/(W+Ta)]=0.85. From the deposition rate and IAD experiments, the stress in the films is mainly contributed by sputtering atoms. The lower deposition rate at a high N2/Ar flux ratio resulted in a higher compressive stress. A high compressive residual stress accounts for a high hardness. The relatively high compressive stress was attributed primarily to peening by atoms, ions and electrons during film growth, the Ta1-xWxNy films showed excellent hardness and strength against a high temperature, and sticking phenomena can essentially be avoided through their use. Ta1-xWxNy films showed better performance than the TaN film in terms of mechanical properties and oxidation resistance.

  9. Electron-cyclotron-resonance ion sources (review)

    SciTech Connect

    Golovanivskii, K.S.; Dougar-Jabon, V.D.

    1992-01-01

    The physical principles are described and a brief survey of the present state is given of ion sources based on electron-cyclotron heating of plasma in a mirror trap. The characteristics of ECR sources of positive and negative ions used chiefly in accelerator technology are presented. 20 refs., 10 figs., 3 tabs.

  10. Note: Ion source design for ion trap systems

    NASA Astrophysics Data System (ADS)

    Noriega, J. R.; Quevedo, M.; Gnade, B.; Vasselli, J.

    2013-06-01

    A small plasma (glow discharge) based ion source and circuit are described in this work. The ion source works by producing a high voltage pulsed discharge between two electrodes in a pressure range of 50-100 mTorr. A third mesh electrode is used for ion extraction. The electrodes are small stainless steel screws mounted in a MACOR ionization chamber in a linear arrangement. The electrode arrangement is driven by a circuit, design for low power operation. This design is a proof of concept intended for applications on small cylindrical ion traps.

  11. Radio frequency multicusp ion source development (invited)

    SciTech Connect

    Leung, K.N.

    1996-03-01

    The radio-frequency (rf) driven multicusp source was originally developed for use in the Superconducting Super Collider injector. It has been demonstrated that the source can meet the H{sup {minus}} beam current and emittance requirements for this application. By employing a porcelain-coated antenna, a clean plasma discharge with very long-life operation can be achieved. Today, the rf source is used to generate both positive and negative hydrogen ion beams and has been tested in various particle accelerator laboratories throughout the world. Applications of this ion source have been extended to other fields such as ion beam lithography, oil-well logging, ion implantation, accelerator mass spectrometry and medical therapy machines. This paper summarizes the latest rf ion source technology and development at the Lawrence Berkeley National Laboratory. {copyright} {ital 1996 American Institute of Physics.}

  12. Performance of an inverted ion source

    SciTech Connect

    Salvadori, M. C.; Teixeira, F. S.; Sgubin, L. G.; Araujo, W. W. R.; Spirin, R. E.; Oks, E. M.; Brown, I. G.

    2013-02-15

    Whereas energetic ion beams are conventionally produced by extracting ions (say, positive ions) from a plasma that is held at high (positive) potential, with ion energy determined by the potential drop through which the ions fall in the beam formation electrode system, in the device described here the plasma and its electronics are held at ground potential and the ion beam is formed and injected energetically into a space maintained at high (negative) potential. We refer to this configuration as an 'inverted ion source.' This approach allows considerable savings both technologically and economically, rendering feasible some ion beam applications, in particular small-scale ion implantation, that might otherwise not be possible for many researchers and laboratories. We have developed a device of this kind utilizing a metal vapor vacuum arc plasma source, and explored its operation and beam characteristics over a range of parameter variation. The downstream beam current has been measured as a function of extraction voltage (5-35 kV), arc current (50-230 A), metal ion species (Ti, Nb, Au), and extractor grid spacing and beamlet aperture size (3, 4, and 5 mm). The downstream ion beam current as measured by a magnetically-suppressed Faraday cup was up to as high as 600 mA, and with parametric variation quite similar to that found for the more conventional metal vapor vacuum arc ion source.

  13. Pseudo ribbon metal ion beam source

    SciTech Connect

    Stepanov, Igor B. Ryabchikov, Alexander I.; Sivin, Denis O.; Verigin, Dan A.

    2014-02-15

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.

  14. ION SOURCE WITH SPACE CHARGE NEUTRALIZATION

    DOEpatents

    Flowers, J.W.; Luce, J.S.; Stirling, W.L.

    1963-01-22

    This patent relates to a space charge neutralized ion source in which a refluxing gas-fed arc discharge is provided between a cathode and a gas-fed anode to provide ions. An electron gun directs a controlled, monoenergetic electron beam through the discharge. A space charge neutralization is effected in the ion source and accelerating gap by oscillating low energy electrons, and a space charge neutralization of the source exit beam is effected by the monoenergetic electron beam beyond the source exit end. The neutralized beam may be accelerated to any desired energy at densities well above the limitation imposed by Langmuir-Child' s law. (AEC)

  15. Electron string ion sources for carbon ion cancer therapy accelerators.

    PubMed

    Boytsov, A Yu; Donets, D E; Donets, E D; Donets, E E; Katagiri, K; Noda, K; Ponkin, D O; Ramzdorf, A Yu; Salnikov, V V; Shutov, V B

    2015-08-01

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C(4+) and C(6+) ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 10(10) C(4+) ions per pulse and about 5 × 10(9) C(6+) ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 10(11) C(6+) ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the (11)C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C(4+) ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of (11)C, transporting to the tumor with the primary accelerated (11)C(4+) beam, this efficiency is preliminarily considered to be large enough to produce the (11)C(4+) beam from radioactive methane and to inject this beam into synchrotrons.

  16. Electron string ion sources for carbon ion cancer therapy accelerators.

    PubMed

    Boytsov, A Yu; Donets, D E; Donets, E D; Donets, E E; Katagiri, K; Noda, K; Ponkin, D O; Ramzdorf, A Yu; Salnikov, V V; Shutov, V B

    2015-08-01

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C(4+) and C(6+) ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 10(10) C(4+) ions per pulse and about 5 × 10(9) C(6+) ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 10(11) C(6+) ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the (11)C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C(4+) ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of (11)C, transporting to the tumor with the primary accelerated (11)C(4+) beam, this efficiency is preliminarily considered to be large enough to produce the (11)C(4+) beam from radioactive methane and to inject this beam into synchrotrons. PMID:26329182

  17. Cold atomic beam ion source for focused ion beam applications

    SciTech Connect

    Knuffman, B.; Steele, A. V.; McClelland, J. J.

    2013-07-28

    We report measurements and modeling of an ion source that is based on ionization of a laser-cooled atomic beam. We show a high brightness and a low energy spread, suitable for use in next-generation, high-resolution focused ion beam systems. Our measurements of total ion current as a function of ionization conditions support an analytical model that also predicts the cross-sectional current density and spatial distribution of ions created in the source. The model predicts a peak brightness of 2 × 10{sup 7} A m{sup −2} sr{sup −1} eV{sup −1} and an energy spread less than 0.34 eV. The model is also combined with Monte-Carlo simulations of the inter-ion Coulomb forces to show that the source can be operated at several picoamperes with a brightness above 1 × 10{sup 7} A m{sup −2} sr{sup −1} eV{sup −1}. We estimate that when combined with a conventional ion focusing column, an ion source with these properties could focus a 1 pA beam into a spot smaller than 1 nm. A total current greater than 5 nA was measured in a lower-brightness configuration of the ion source, demonstrating the possibility of a high current mode of operation.

  18. Excellent vacuum tribological properties of Pb/PbS film deposited by RF magnetron sputtering and ion sulfurizing.

    PubMed

    Guozheng, Ma; Binshi, Xu; Haidou, Wang; Shuying, Chen; Zhiguo, Xing

    2014-01-01

    Soft metal Pb film of 3 μm in thickness was deposited on AISI 440C steel by RF magnetron sputtering, and then some of the Pb film samples were treated by low-temperature ion sulfurizing (LTIS) and formed Pb/PbS composite film. Tribological properties of the Pb and Pb/PbS films were tested contrastively in vacuum and air condition using a self-developed tribometer (model of MSTS-1). Scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were adopted to analyze the microstructure and chemical construction of the films and their worn surfaces. The results show that a mass of Pb was changed to PbS during the process of LTIS. In air condition, owing to the severe oxidation effect, pure Pb film showed relatively high friction coefficients (0.6), and Pb/PbS composite film also lost its friction-reduction property after sliding for a short time. In a vacuum, the average friction coefficients of Pb film were about 0.1, but the friction coefficient curve fluctuated obviously. And the Pb/PbS composite film exhibited excellent tribological properties in vacuum condition. Its friction coefficients keep stable at a low value of about 0.07 for a long time. If takes the value of friction coefficients exceeding 0.2 continuously as a criterion of lubrication failure, the sliding friction life of Pb/PbS film was as long as 3.2 × 10(5) r, which is 8 times of that of the Pb film. It can be concluded that the Pb/PbS film has excellent vacuum tribological properties and important foreground for applying in space solid lubrication related fields.

  19. Surface free energy of non-stick coatings deposited using closed field unbalanced magnetron sputter ion plating

    NASA Astrophysics Data System (ADS)

    Sun, Chen-Cheng; Lee, Shih-Chin; Dai, Shyue-Bin; Tien, Shein-Long; Chang, Chung-Chih; Fu, Yaw-Shyan

    2007-02-01

    Semiconductor IC packaging molding dies require wear resistance, corrosion resistance and non-sticking (with a low surface free energy). The molding releasing capability and performance are directly associated with the surface free energy between the coating and product material. The serious sticking problem reduces productivity and reliability. Depositing TiN, TiMoS, ZrN, CrC, CrN, NiCr, NiCrN, CrTiAlN and CrNiTiAlN coatings using closed field unbalanced magnetron sputter ion plating, and characterizing their surface free energy are the main object in developing a non-stick coating system for semiconductor IC molding tools. The contact angle of water, diiodomethane and ethylene glycol on the coated surfaces were measured at temperature in 20 °C using a Dataphysics OCA-20 contact angle analyzer. The surface free energy of the coatings and their components (dispersion and polar) were calculated using the Owens-Wendt geometric mean approach. The surface roughness was investigated by atomic force microscopy (AFM). The adhesion force of these coatings was measured using direct tensile pull-off test apparatus. The experimental results showed that NiCrN, CrN and NiCrTiAlN coatings outperformed TiN, ZrN, NiCr, CiTiAlN, CrC and TiMoS coatings in terms of non-sticking, and thus have the potential as working layers for injection molding industrial equipment, especially in semiconductor IC packaging molding applications.

  20. Influence of plasma-generated negative oxygen ion impingement on magnetron sputtered amorphous SiO{sub 2} thin films during growth at low temperatures

    SciTech Connect

    Macias-Montero, M.; Garcia-Garcia, F. J.; Alvarez, R.; Gil-Rostra, J.; Gonzalez, J. C.; Gonzalez-Elipe, A. R.; Palmero, A.; Cotrino, J.

    2012-03-01

    Growth of amorphous SiO{sub 2} thin films deposited by reactive magnetron sputtering at low temperatures has been studied under different oxygen partial pressure conditions. Film microstructures varied from coalescent vertical column-like to homogeneous compact microstructures, possessing all similar refractive indexes. A discussion on the process responsible for the different microstructures is carried out focusing on the influence of (i) the surface shadowing mechanism, (ii) the positive ion impingement on the film, and (iii) the negative ion impingement. We conclude that only the trend followed by the latter and, in particular, the impingement of O{sup -} ions with kinetic energies between 20 and 200 eV, agrees with the resulting microstructural changes. Overall, it is also demonstrated that there are two main microstructuring regimes in the growth of amorphous SiO{sub 2} thin films by magnetron sputtering at low temperatures, controlled by the amount of O{sub 2} in the deposition reactor, which stem from the competition between surface shadowing and ion-induced adatom surface mobility.

  1. ECR ion source with electron gun

    DOEpatents

    Xie, Z.Q.; Lyneis, C.M.

    1993-10-26

    An Advanced Electron Cyclotron Resonance ion source having an electron gun for introducing electrons into the plasma chamber of the ion source is described. The ion source has a injection enclosure and a plasma chamber tank. The plasma chamber is defined by a plurality of longitudinal magnets. The electron gun injects electrons axially into the plasma chamber such that ionization within the plasma chamber occurs in the presence of the additional electrons produced by the electron gun. The electron gun has a cathode for emitting electrons therefrom which is heated by current supplied from an AC power supply while bias potential is provided by a bias power supply. A concentric inner conductor and outer conductor carry heating current to a carbon chuck and carbon pusher which hold the cathode in place and also heat the cathode. In the Advanced Electron Cyclotron Resonance ion source, the electron gun replaces the conventional first stage used in prior electron cyclotron resonance ion generators. 5 figures.

  2. Key issues in plasma source ion implantation

    SciTech Connect

    Rej, D.J.; Faehl, R.J.; Matossian, J.N.

    1996-09-01

    Plasma source ion implantation (PSII) is a scaleable, non-line-of-sight method for the surface modification of materials. In this paper, we consider three important issues that should be addressed before wide-scale commercialization of PSII: (1) implant conformality; (2) ion sources; and (3) secondary electron emission. To insure uniform implanted dose over complex shapes, the ion sheath thickness must be kept sufficiently small. This criterion places demands on ion sources and pulsed-power supplies. Another limitation to date is the availability of additional ion species beyond B, C, N, and 0. Possible solutions are the use of metal arc vaporization sources and plasma discharges in high-vapor-pressure organometallic precursors. Finally, secondary electron emission presents a potential efficiency and x-ray hazard issue since for many metallurgic applications, the emission coefficient can be as large as 20. Techniques to suppress secondary electron emission are discussed.

  3. Microwave ion source for low charge state ion production

    NASA Astrophysics Data System (ADS)

    Reijonen, J.; Eardley, M.; Gough, R.; Leung, K.; Thomae, R.

    2003-10-01

    The Plasma and Ion Source Technology Group at LBNL have developed a microwave ion source. The source consists of a stainless-steel plasma chamber, a permanent-magnet dipole structure and a coaxial microwave feed. Measurements were carried out to characterize the plasma and the ion beam produced in the ion source. These measurements included current density, charge state distribution, gas efficiency and accelerated beam emittance measurements. Using a computer controlled data acquisition system a new method of determining the saturation ion current was developed. Current density of 3-6 mA/cm 2 was measured with the source operating in the over dense mode. The highest measured charge-states were Ar 5+, O 3+ and Xe 7+. Gas efficiency was measured using a calibrated argon leak. Depending on the source pressure and discharge power, more than 20% total gas efficiency was achieved. The emittance of the ion beam was measured by using a pepper-pot device. Certain spread was noticed in the beam emittance in the perpendicular direction to the source dipole field. For the parallel direction to the magnetic field, the normalized rr' emittance of 0.032 π-mm-mrad at 13 kV of acceleration voltage and beam exit aperture of 3-mm-in-diameter was measured. This compares relatively well with the simulated value of 4 rms, normalized emittance value of 0.024 π-mm-mrad.

  4. Inert gas ion source program

    NASA Technical Reports Server (NTRS)

    Ramsey, W. D.

    1978-01-01

    THe original 12 cm hexagonal magneto-electrostatic containment discharge chamber has been optimized for argon and xenon operation. Argon mass utilization efficiencies of 65 to 77 percent were achieved at keeper-plus-main discharge energy consumptions of 200 to 458 eV/ion, respectively. Xenon performance of 84 to 96 percent mass utilization was realized at 203 to 350 eV/ion. The optimization process and test results are discussed.

  5. Ion source design for industrial applications

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1981-01-01

    The design of broad-beam industrial ion sources is described. The approach used emphasizes refractory metal cathodes and permanent-magnet multipole discharge chambers. Design procedures and sample calculations are given for the discharge chamber, ion optics, cathodes, and magnetic circuit. Hardware designs are included for the isolator, cathode supports, anode supports, pole-piece assembly, and ion-optics supports. There are other ways of designing most ion source components, but the designs presented are representative of current technology and adaptable to a wide range of configurations.

  6. Progress in ISOL target ion source systems

    NASA Astrophysics Data System (ADS)

    Köster, U.; Arndt, O.; Bouquerel, E.; Fedoseyev, V. N.; Frånberg, H.; Joinet, A.; Jost, C.; Kerkines, I. S. K.; Kirchner, R.; Targisol Collaboration

    2008-10-01

    The heart of every ISOL (isotope separation on-line) facility is its target and ion source system. Its efficiency, selectivity and rapidity is decisive for the production of intense and pure ion beams of short-lived isotopes. Recent progress in ISOL target and ion source technology is discussed at the examples of radioactive ion beams of exotic zinc and tin isotopes that were purified by isothermal chromatography and molecular sideband separation respectively. An outlook is given to which other elements these purification methods are applicable.

  7. Negative-hydrogen-ion sources

    SciTech Connect

    Prelec, K.

    1983-01-01

    There are two main areas of negative hydrogen ion applications: injection into high energy accelerators and production of beams of energetic hydrogen atoms for fusion devices. In both cases, the ease with which the charge state of negative ions can be changed by either single or double electron stripping is the reason that made their application attractive. In tandem accelerators, the final energy of H/sup +/ ions is twice as high as it would correspond to the terminal voltage, in circular accelerators (synchrotrons, storage rings) injection of H/sup +/ ions by full stripping of H/sup -/ ions in a foil inside the ring is not limited by the Liouville's theorem and results in a higher phase space density than achieved by direct H/sup +/ injection. Finally, beams of hydrogen atoms at energies above 100 keV, which will be required for plasma heating and current drive in future fusion devices, can efficiently be produced only by acceleration of negative ions and their subsequent neutralization.

  8. Review of polarized ion sources (invited).

    PubMed

    Zelenski, A

    2010-02-01

    Recent progress in polarized ion sources development is reviewed. New techniques for production of polarized H(-) ion (proton), D(-) (D(+)), and (3)He(++) ion beams are discussed. Feasibility studies of these techniques are in progress at BNL and other laboratories. Polarized deuteron beams will be required for the polarization program at the Dubna Nuclotron and at the deuteron electric dipole moment experiment at BNL. Experiments with polarized (3)He(++) ion beams are a part of the experimental program at the future electron ion collider.

  9. Electrospray ion source with reduced analyte electrochemistry

    DOEpatents

    Kertesz, Vilmos; Van Berkel, Gary J

    2013-07-30

    An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.

  10. Electrospray ion source with reduced analyte electrochemistry

    DOEpatents

    Kertesz, Vilmos [Knoxville, TN; Van Berkel, Gary [Clinton, TN

    2011-08-23

    An electrospray ion (ESI) source and method capable of ionizing an analyte molecule without oxidizing or reducing the analyte of interest. The ESI source can include an emitter having a liquid conduit, a working electrode having a liquid contacting surface, a spray tip, a secondary working electrode, and a charge storage coating covering partially or fully the liquid contacting surface of the working electrode. The liquid conduit, the working electrode and the secondary working electrode can be in liquid communication. The electrospray ion source can also include a counter electrode proximate to, but separated from, said spray tip. The electrospray ion source can also include a power system for applying a voltage difference between the working electrodes and a counter-electrode. The power system can deliver pulsed voltage changes to the working electrodes during operation of said electrospray ion source to minimize the surface potential of the charge storage coating.

  11. Ion source with external RF antenna

    DOEpatents

    Leung, Ka-Ngo; Ji, Qing; Wilde, Stephen

    2005-12-13

    A radio frequency (RF) driven plasma ion source has an external RF antenna, i.e. the RF antenna is positioned outside the plasma generating chamber rather than inside. The RF antenna is typically formed of a small diameter metal tube coated with an insulator. An external RF antenna assembly is used to mount the external RF antenna to the ion source. The RF antenna tubing is wound around the external RF antenna assembly to form a coil. The external RF antenna assembly is formed of a material, e.g. quartz, which is essentially transparent to the RF waves. The external RF antenna assembly is attached to and forms a part of the plasma source chamber so that the RF waves emitted by the RF antenna enter into the inside of the plasma chamber and ionize a gas contained therein. The plasma ion source is typically a multi-cusp ion source.

  12. Three chamber negative ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.; Hiskes, John R.

    1985-01-01

    A negative ion vessel is divided into an excitation chamber, a negative ionization chamber and an extraction chamber by two magnetic filters. Input means introduces neutral molecules into a first chamber where a first electron discharge means vibrationally excites the molecules which migrate to a second chamber. In the second chamber a second electron discharge means ionizes the molecules, producing negative ions which are extracted into or by a third chamber. A first magnetic filter prevents high energy electrons from entering the negative ionization chamber from the excitation chamber. A second magnetic filter prevents high energy electrons from entering the extraction chamber from the negative ionizing chamber. An extraction grid at the end of the negative ion vessel attracts negative ions into the third chamber and accelerates them. Another grid, located adjacent to the extraction grid, carries a small positive voltage in order to inhibit positive ions from migrating into the extraction chamber and contour the plasma potential. Additional electrons can be suppressed from the output flux using ExB forces provided by magnetic field means and the extractor grid electric potential.

  13. Ion production from solid state laser ion sources

    SciTech Connect

    Gottwald, T.; Mattolat, C.; Raeder, S.; Wendt, K.; Havener, C.; Liu, Y.; Lassen, J.; Rothe, S.

    2010-02-15

    Laser ion sources based on resonant excitation and ionization of atoms are well-established tools for selective and efficient production of radioactive ion beams. Recent developments are focused on the use of the state-of-the-art all solid-state laser systems. To date, 35 elements of the periodic table are available from laser ion sources based on tunable Ti:sapphire lasers. Recent progress in this field regarding the establishment of suitable optical excitation schemes for Ti:sapphire lasers are reported.

  14. Metal versus rare-gas ion irradiation during Ti{sub 1-x}Al{sub x}N film growth by hybrid high power pulsed magnetron/dc magnetron co-sputtering using synchronized pulsed substrate bias

    SciTech Connect

    Greczynski, Grzegorz; Lu Jun; Jensen, Jens; Petrov, Ivan; Greene, Joseph E.; Bolz, Stephan; Koelker, Werner; Schiffers, Christoph; Lemmer, Oliver; Hultman, Lars

    2012-11-15

    Metastable NaCl-structure Ti{sub 1-x}Al{sub x}N is employed as a model system to probe the effects of metal versus rare-gas ion irradiation during film growth using reactive high-power pulsed magnetron sputtering (HIPIMS) of Al and dc magnetron sputtering of Ti. The alloy film composition is chosen to be x = 0.61, near the kinetic solubility limit at the growth temperature of 500 Degree-Sign C. Three sets of experiments are carried out: a -60 V substrate bias is applied either continuously, in synchronous with the full HIPIMS pulse, or in synchronous only with the metal-rich-plasma portion of the HIPIMS pulse. Alloy films grown under continuous dc bias exhibit a thickness-invariant small-grain, two-phase nanostructure (wurtzite AlN and cubic Ti{sub 1-x}Al{sub x}N) with random orientation, due primarily to intense Ar{sup +} irradiation leading to Ar incorporation (0.2 at. %), high compressive stress (-4.6 GPa), and material loss by resputtering. Synchronizing the bias with the full HIPIMS pulse results in films that exhibit much lower stress levels (-1.8 GPa) with no measureable Ar incorporation, larger grains elongated in the growth direction, a very small volume fraction of wurtzite AlN, and random orientation. By synchronizing the bias with the metal-plasma phase of the HIPIMS pulses, energetic Ar{sup +} ion bombardment is greatly reduced in favor of irradiation predominantly by Al{sup +} ions. The resulting films are single phase with a dense competitive columnar structure, strong 111 orientation, no measureable trapped Ar concentration, and even lower stress (-0.9 GPa). Thus, switching from Ar{sup +} to Al{sup +} bombardment, while maintaining the same integrated incident ion/metal ratio, eliminates phase separation, minimizes renucleation during growth, and reduces the high concentration of residual point defects, which give rise to compressive stress.

  15. Highly Stripped Ion Sources for MeV Ion Implantation

    SciTech Connect

    Hershcovitch, Ady

    2009-06-30

    Original technical objectives of CRADA number PVI C-03-09 between BNL and Poole Ventura, Inc. (PVI) were to develop an intense, high charge state, ion source for MeV ion implanters. Present day high-energy ion implanters utilize low charge state (usually single charge) ion sources in combination with rf accelerators. Usually, a MV LINAC is used for acceleration of a few rnA. It is desirable to have instead an intense, high charge state ion source on a relatively low energy platform (de acceleration) to generate high-energy ion beams for implantation. This de acceleration of ions will be far more efficient (in energy utilization). The resultant implanter will be smaller in size. It will generate higher quality ion beams (with lower emittance) for fabrication of superior semiconductor products. In addition to energy and cost savings, the implanter will operate at a lower level of health risks associated with ion implantation. An additional aim of the project was to producing a product that can lead to long­ term job creation in Russia and/or in the US. R&D was conducted in two Russian Centers (one in Tomsk and Seversk, the other in Moscow) under the guidance ofPVI personnel and the BNL PI. Multiple approaches were pursued, developed, and tested at various locations with the best candidate for commercialization delivered and tested at on an implanter at the PVI client Axcelis. Technical developments were exciting: record output currents of high charge state phosphorus and antimony were achieved; a Calutron-Bemas ion source with a 70% output of boron ion current (compared to 25% in present state-of-the-art). Record steady state output currents of higher charge state phosphorous and antimony and P ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb {sup 4 +}, Sb{sup 5+}, and Sb{sup 6+} respectively. Ultimate commercialization goals did not succeed (even though a number of the products like high

  16. Carbon/Carbon Grids For Ion Sources

    NASA Technical Reports Server (NTRS)

    Garner, Charles E.

    1995-01-01

    Ion-extraction grids made of carbon/carbon composites used in spacecraft ion engines and industrial ion sources in place of molybdenum grids. In principle, carbon/carbon grids offer greater extraction efficiency and longer life. Grid fabricated by mechanical drilling, laser drilling, or electrical-discharge machining of array of holes in sheet of carbon/carbon. Advantages; better alignment and slower erosion.

  17. ION SOURCE (R.F. INDUCTION TYPE)

    DOEpatents

    Mills, C.B.

    1963-04-01

    A method is given for producing energetic ions by ionizing a gas with an oscillating electric field which is parallel to a confining magnetic field, then reorienting the fields perpendicular to each other to accelerate the ions to higher energies. An ion source is described wherein a secondary coil threads the bottom of a rectangular ionization chamber and induces an oscillating field parallel to a fixed intense magnetic field through the chamber. (AEC)

  18. H- ion source developments at the SNS

    SciTech Connect

    Welton, Robert F; Stockli, Martin P; Murray Jr, S N; Pennisi, Terry R; Han, Baoxi; Kang, Yoon W; Goulding, Richard Howell; Crisp, Danny W; Sparks, Dennis O; Luciano, Nicholas P; Carmichael, Justin R; Carr, Jr, Jerry

    2008-01-01

    The U.S. Spallation Neutron Source (SNS) will require substantially higher average and pulse H- beam currents than can be produced from conventional ion sources such as the base line SNS source. H- currents of 40-50 mA (SNS operations) and 70-100 mA (power upgrade project) with an rms emittance of 0.20-0.35 Pi mm mrad and a ~7% duty factor will be needed. We are therefore investigating several advanced ion source concepts based on RF excitation. First, the performance characteristics of an external antenna source based on an Al2O3 plasma chamber combined with an external multicusp magnetic configuration, an elemental Cs system, and plasma gun will be discussed. Second, the first plasma measurements of a helicon-driven H- ion source will also be presented.

  19. Enhanced quality of epitaxial AlN thin films on 6H-SiC by ultra-high-vacuum ion-assisted reactive dc magnetron sputter deposition

    NASA Astrophysics Data System (ADS)

    Tungasmita, S.; Birch, J.; Persson, P. O. A.˚.; Järrendahl, K.; Hultman, L.

    2000-01-01

    Epitaxial AlN thin films have been grown on 6H-SiC substrates by ultra-high-vacuum (UHV) ion-assisted reactive dc magnetron sputtering. The low-energy ion-assisted growth (Ei=17-27 eV) results in an increasing surface mobility, promoting domain-boundary annihilation and epitaxial growth. Domain widths increased from 42 to 135 nm and strained-layer epitaxy was observed in this energy range. For Ei>52 eV, an amorphous interfacial layer of AlN was formed on the SiC, which inhibited epitaxial growth. Using UHV condition and very pure nitrogen sputtering gas yielded reduced impurity levels in the films (O: 3.5×1018cm-3). Analysis techniques used in this study are in situ reflection high-energy electron diffraction, secondary-ion-mass spectroscopy, atomic-force microscopy, x-ray diffraction, and cross-section high-resolution electron microscopy.

  20. Ion Heating in Pulsed Helicon Sources

    NASA Astrophysics Data System (ADS)

    Scime, Earl; Magee, Richard; Carr, Jerry, Jr.; Galante, Matthew; Lusk, Greg; McCarren, Dustin; Reynolds, Eric; Sears, Stephanie; Vandervort, Robert; Hardin, Robert

    2011-10-01

    Previous measurements demonstrated a strong correlation between ion temperature and the ratio of the antenna frequency to the local lower hybrid frequency. When strong ion heating occurs, the ion temperature profile in steady-state helicon sources is flat or peaked at the edge; suggesting an edge localized ion heating mechanism. The same parameters that yield the largest ion temperatures are also predicted to have the strongest damping of slow waves in the edge. Here we present observations that further support the conclusion that short wavelength slow waves parametrically decay into electrostatic modes and also directly heat ions. Collective Thomson scattering measurements indicate significant wave power at frequencies of f ~ 100 kHz and perpendicular wave numbers of ~ 89 rad/cm. The waves are localized to the same region as lower frequency ion acoustic waves are observed with probes. By pulsing the helicon source and observing the time evolution of the ion temperature profile, we find that the ion temperature profile flattens out and then becomes hollow at the same time the parametrically driven ion acoustic waves appear.

  1. Simulation and analysis of solenoidal ion sources

    SciTech Connect

    Alderwick, A. R.; Jardine, A. P.; Hedgeland, H.; MacLaren, D. A.; Allison, W.; Ellis, J.

    2008-12-15

    We present a detailed analysis and simulation of solenoidal, magnetically confined electron bombardment ion sources, aimed at molecular beam detection. The aim is to achieve high efficiency for singly ionized species while minimizing multiple ionization. Electron space charge plays a major role and we apply combined ray tracing and finite element simulations to determine the properties of a realistic geometry. The factors controlling electron injection and ion extraction are discussed. The results from simulations are benchmarked against experimental measurements on a prototype source.

  2. An advanced negative hydrogen ion source.

    PubMed

    Goncharov, Alexey A; Dobrovolsky, Andrey N; Goretskii, Victor P

    2016-02-01

    The results of investigation of emission productivity of negative particles source with cesiated combined discharge are presented. A cylindrical beam of negative hydrogen ions with density about 2 A/cm(2) in low noise mode on source emission aperture is obtained. The total beam current values are up to 200 mA for negative hydrogen ions and up to 1.5 A for all negative particles with high divergence after source. The source has simple design and can produce stable discharge with low level of oscillation. PMID:26931996

  3. Negative ion source with external RF antenna

    DOEpatents

    Leung, Ka-Ngo; Hahto, Sami K.; Hahto, Sari T.

    2007-02-13

    A radio frequency (RF) driven plasma ion source has an external RF antenna, i.e. the RF antenna is positioned outside the plasma generating chamber rather than inside. The RF antenna is typically formed of a small diameter metal tube coated with an insulator. An external RF antenna assembly is used to mount the external RF antenna to the ion source. The RF antenna tubing is wound around the external RF antenna assembly to form a coil. The external RF antenna assembly is formed of a material, e.g. quartz, which is essentially transparent to the RF waves. The external RF antenna assembly is attached to and forms a part of the plasma source chamber so that the RF waves emitted by the RF antenna enter into the inside of the plasma chamber and ionize a gas contained therein. The plasma ion source is typically a multi-cusp ion source. A converter can be included in the ion source to produce negative ions.

  4. Electron string ion sources for carbon ion cancer therapy accelerators

    SciTech Connect

    Boytsov, A. Yu.; Donets, D. E.; Donets, E. D.; Donets, E. E.; Ponkin, D. O.; Ramzdorf, A. Yu.; Salnikov, V. V.; Shutov, V. B.; Katagiri, K.; Noda, K.

    2015-08-15

    The type of the Electron String Ion Sources (ESIS) is considered to be the appropriate one to produce pulsed C{sup 4+} and C{sup 6+} ion beams for cancer therapy accelerators. In fact, the new test ESIS Krion-6T already now provides more than 10{sup 10} C{sup 4+} ions per pulse and about 5 × 10{sup 9} C{sup 6+} ions per pulse. Such ion sources could be suitable to apply at synchrotrons. It has also been found that Krion-6T can provide more than 10{sup 11} C{sup 6+} ions per second at the 100 Hz repetition rate, and the repetition rate can be increased at the same or larger ion output per second. This makes ESIS applicable at cyclotrons as well. ESIS can be also a suitable type of ion source to produce the {sup 11}C radioactive ion beams. A specialized cryogenic cell was experimentally tested at the Krion-2M ESIS for pulse injection of gaseous species into the electron string. It has been shown in experiments with stable methane that the total conversion efficiency of methane molecules to C{sup 4+} ions reached 5%÷10%. For cancer therapy with simultaneous irradiation and precise dose control (positron emission tomography) by means of {sup 11}C, transporting to the tumor with the primary accelerated {sup 11}C{sup 4+} beam, this efficiency is preliminarily considered to be large enough to produce the {sup 11}C{sup 4+} beam from radioactive methane and to inject this beam into synchrotrons.

  5. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source.

    PubMed

    Kondo, K; Yamamoto, T; Sekine, M; Okamura, M

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  6. Molecular phosphorus ion source for semiconductor technology

    SciTech Connect

    Gushenets, V. I.; Bugaev, A. S.; Oks, E. M.; Hershcovitch, A.; Kulevoy, T. V.

    2012-02-15

    This paper presents results on the generation of molecular phosphorus ion beams in a hot filament ion source. Solid red phosphorous is evaporated mainly as tetra-atomic molecules up to a temperature of 800 deg. C. Thus, one of the main conditions for producing maximum P{sub 4}{sup +} fraction in the beam is to keep the temperature of the phosphorous oven, the steam line and the discharge chamber walls no greater than 800 deg. C. The prior version of our ion source was equipped with a discharge chamber cooling system. The modified source ensured a P{sub 4}{sup +} ion beam current greater than 30% of the total beam current.

  7. New Cs sputter ion source with polyatomic ion beams for secondary ion mass spectrometry applications

    NASA Astrophysics Data System (ADS)

    Belykh, S. F.; Palitsin, V. V.; Veryovkin, I. V.; Kovarsky, A. P.; Chang, R. J. H.; Adriaens, A.; Dowsett, M. G.; Adams, F.

    2007-08-01

    A simple design for a cesium sputter ion source compatible with vacuum and ion-optical systems as well as with electronics of the commercially available Cameca IMS-4f instrument is reported. This ion source has been tested with the cluster primary ions of Sin- and Cun-. Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of the analytical capabilities of the secondary ion mass spectrometry instrument due to the nonadditive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ones with the same impact energy.

  8. A subnanosecond pulsed ion source for micrometer focused ion beams.

    PubMed

    Höhr, C; Fischer, D; Moshammer, R; Dorn, A; Ullrich, J

    2008-05-01

    A new, compact design of an ion source delivers nanosecond pulsed ion beams with low emittance, which can be focused to micrometer size. By using a high-power, 25 fs laser pulse focused into a gas region of 10(-6) mbar, ions at very low temperatures are produced in the small laser focal volume of 5 mum diameter by 20 mum length through multiphoton ionization. These ions are created in a cold environment, not in a hot plasma, and, since the ionization process itself does not significantly heat them, have as a result essentially room temperature. The generated ion pulse, up to several thousand ions per pulse, is extracted from the source volume with ion optical elements that have been carefully designed by simulation calculations. Externally triggered, its subnanosecond duration and even smaller time jitter allow it to be superimposed with other pulsed particle or laser beams. It therefore can be combined with any type of collision experiment where the size and the time structure of the projectile beam crucially affect the achievable experimental resolution.

  9. Low temperature ion source for calutrons

    DOEpatents

    Veach, A.M.; Bell, W.A. Jr.; Howell, G.D. Jr.

    1979-10-10

    A new ion source assembly for calutrons has been provided for the efficient separation of elements having high vapor pressures. The strategic location of cooling pads and improved insulation permits operation of the source at lower temperatures. A vapor valve constructed of graphite and located in a constantly increasing temperature gradient provides reliable control of the vapor flow from the charge bottle to the arc chamber. A pronounced saving in calutron operating time and equipment maintenance has been achieved with the use of the present ion source.

  10. Low temperature ion source for calutrons

    DOEpatents

    Veach, Allen M.; Bell, Jr., William A.; Howell, Jr., George D.

    1981-01-01

    A new ion source assembly for calutrons has been provided for the efficient separation of elements having high vapor pressures. The strategic location of cooling pads and improved insulation permits operation of the source at lower temperatures. A vapor valve constructed of graphite and located in a constantly increasing temperature gradient provides reliable control of the vapor flow from the charge bottle to the arc chamber. A pronounced saving in calutron operating time and equipment maintenance has been achieved with the use of the present ion source.

  11. CALUTRON ION SOURCE SLIT CLEANER

    DOEpatents

    Starr, A.M.

    1959-08-25

    >An apparatus is described for removing deposits from the beam forming slits of the source without affecting the vacuum. A scraper element having a configuration conforming to the cross section of the slit is posttioned therein, and linkage is provided for moving the scraper along the slit and for retracting the scraper to one end during normal operation.

  12. Saddle antenna radio frequency ion sources.

    PubMed

    Dudnikov, V; Johnson, R; Murray, S; Pennisi, T; Santana, M; Piller, C; Stockli, M; Welton, R; Breitschopf, J; Dudnikova, G

    2016-02-01

    Existing RF ion sources for accelerators have specific efficiencies for H(+) and H(-) ion generation ∼3-5 mA/cm(2) kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) surface plasma source (SPS) described here was developed to improve H(-) ion production efficiency, reliability, and availability. In SA RF ion source, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm(2) kW. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power ∼1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with ∼4 kW RF. Continuous wave (CW) operation of the SA SPS has been tested on the test stand. The general design of the CW SA SPS is based on the pulsed version. Some modifications were made to improve the cooling and cesiation stability. CW operation with negative ion extraction was tested with RF power up to ∼1.2 kW in the plasma with production up to Ic = 7 mA. A stable long time generation of H(-) beam without degradation was demonstrated in RF discharge with AlN discharge chamber. PMID:26931988

  13. Ion Source Development at the SNS

    SciTech Connect

    Welton, Robert F; Desai, Nandishkumar J; Han, Baoxi; Kenik, Edward A; Murray Jr, S N; Pennisi, Terry R; Potter, Kerry G; Lang, Bonnie R; Santana, Manuel; Stockli, Martin P

    2011-01-01

    The Spallation Neutron Source (SNS) now routinely operates near 1 MW of beam power on target with a highly-persistent ~38 mA peak current in the linac and an availability of ~90%. The ~1 ms-long, 60 Hz, ~50 mA H- beam pulses are extracted from a Cs-enhanced, multi-cusp, RF-driven, internal-antenna ion source. An electrostatic LEBT (Low Energy Beam Transport) focuses the 65 kV beam into the RFQ accelerator. The ion source and LEBT have normally a combined availability of ~99%. Although much progress has been made over the last years to achieve this level of availability further improvements are desirable. Failures of the internal antenna and occasionally impaired electron dump insulators require several source replacements per year. An attempt to overcome the antenna issues with an AlN external antenna source early in 2009 had to be terminated due to availability issues. This report provides a comprehensive review of the design, experimental history, status, and description of recently updated components and future plans for this ion source. The mechanical design for improved electron dump vacuum feedthroughs is also presented, which is compatible with the baseline and both external antenna ion sources.

  14. Ion Source Development at the SNS

    SciTech Connect

    Welton, R. F.; Han, B. X.; Kenik, E. A.; Murray, S. N.; Pennisi, T. R.; Potter, K. G.; Lang, B. R.; Santana, M.; Stockli, M. P.; Desai, N. J.

    2011-09-26

    The Spallation Neutron Source (SNS) now routinely operates near 1 MW of beam power on target with a highly-persistent {approx}38 mA peak current in the linac and an availability of {approx}90%. The {approx}1 ms-long, 60 Hz, {approx}50 mA H{sup -} beam pulses are extracted from a Cs-enhanced, multi-cusp, RF-driven, internal-antenna ion source. An electrostatic LEBT (Low Energy Beam Transport) focuses the 65 kV beam into the RFQ accelerator. The ion source and LEBT have normally a combined availability of {approx}99%. Although much progress has been made over the last years to achieve this level of availability further improvements are desirable. Failures of the internal antenna and occasionally impaired electron dump insulators require several source replacements per year. An attempt to overcome the antenna issues with an AlN external antenna source early in 2009 had to be terminated due to availability issues. This report provides a comprehensive review of the design, experimental history, status, and description of recently updated components and future plans for this ion source. The mechanical design for improved electron dump vacuum feedthroughs is also presented, which is compatible with the baseline and both external antenna ion sources.

  15. Measurement of deposition rate and ion energy distribution in a pulsed dc magnetron sputtering system using a retarding field analyzer with embedded quartz crystal microbalance.

    PubMed

    Sharma, Shailesh; Gahan, David; Scullin, Paul; Doyle, James; Lennon, Jj; Vijayaraghavan, Rajani K; Daniels, Stephen; Hopkins, M B

    2016-04-01

    A compact retarding field analyzer with embedded quartz crystal microbalance has been developed to measure deposition rate, ionized flux fraction, and ion energy distribution arriving at the substrate location. The sensor can be placed on grounded, electrically floating, or radio frequency (rf) biased electrodes. A calibration method is presented to compensate for temperature effects in the quartz crystal. The metal deposition rate, metal ionization fraction, and energy distribution of the ions arriving at the substrate location are investigated in an asymmetric bipolar pulsed dc magnetron sputtering reactor under grounded, floating, and rf biased conditions. The diagnostic presented in this research work does not suffer from complications caused by water cooling arrangements to maintain constant temperature and is an attractive technique for characterizing a thin film deposition system.

  16. Measurement of deposition rate and ion energy distribution in a pulsed dc magnetron sputtering system using a retarding field analyzer with embedded quartz crystal microbalance

    NASA Astrophysics Data System (ADS)

    Sharma, Shailesh; Gahan, David; Scullin, Paul; Doyle, James; Lennon, Jj; Vijayaraghavan, Rajani K.; Daniels, Stephen; Hopkins, M. B.

    2016-04-01

    A compact retarding field analyzer with embedded quartz crystal microbalance has been developed to measure deposition rate, ionized flux fraction, and ion energy distribution arriving at the substrate location. The sensor can be placed on grounded, electrically floating, or radio frequency (rf) biased electrodes. A calibration method is presented to compensate for temperature effects in the quartz crystal. The metal deposition rate, metal ionization fraction, and energy distribution of the ions arriving at the substrate location are investigated in an asymmetric bipolar pulsed dc magnetron sputtering reactor under grounded, floating, and rf biased conditions. The diagnostic presented in this research work does not suffer from complications caused by water cooling arrangements to maintain constant temperature and is an attractive technique for characterizing a thin film deposition system.

  17. DUAL HEATED ION SOURCE STRUCTURE HAVING ARC SHIFTING MEANS

    DOEpatents

    Lawrence, E.O.

    1959-04-14

    An ion source is presented for calutrons, particularly an electrode arrangement for the ion generator of a calutron ion source. The ion source arc chamber is heated and an exit opening with thermally conductive plates defines the margins of the opening. These plates are electrically insulated from the body of the ion source and are connected to a suitable source of voltage to serve as electrodes for shaping the ion beam egressing from the arc chamber.

  18. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.

    PubMed

    Kondo, K; Kanesue, T; Tamura, J; Okamura, M

    2010-02-01

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.

  19. BETSI, a new test bench for ion sources optimization at CEA SACLAY.

    PubMed

    Tuske, O; Adroit, G; Delferrière, O; De Menezes, D; Gauthier, Y; Gobin, R; Harrault, F

    2008-02-01

    In the framework of several International HPPA projects (such as IFMIF, IPHI, and Spiral2) the CEA handles the design and the developments of several electron cyclotron resonance (ECR) ion sources. For the IFMIF EVEDA demonstrator, a 140 mA cw extracted deuteron beam will be required for high yield of neutron production. For radioactive ion production in the Spiral2 project, several milliamperes of deuterons will be delivered with a permanent magnet source. The optimization of the beam quality at the entrance of the radio frequency quadropole (RFQ) accelerator system triggered the need of a new test bench for ion source optimization and beam qualification. The BETSI ion source test bench will operate up to 50 kV and ignite cw or pulsed hydrogen plasma with a 2.45 GHz magnetron. Great care has already been taken to design electrostatic optics of the extraction system to minimize the emittance growth. Plasma diagnostics will be inserted in the source chamber and several beam diagnostics (emittance and current measurements, beam species analysis) will also be implemented on the low energy beam line transport (LEBT). These diagnostics allow the simultaneous analysis of the beam quality with the plasma parameters of the source. Regional funding request will also be needed to improve the LEBT for space charge compensation measurements. The design of the present and upgraded test bench will be reported as well as the first extracted beam analysis.

  20. Vacuum arc ion source development at GSI

    SciTech Connect

    Spaedtke, P.; Emig, H.; Wolf, B.H.

    1996-08-01

    Ion beams produced by the Mevva ion source are well suited for the injection into a synchrotron accelerator due to the low repetition rate (0.2 ... 5 Hz, the higher repetition rate is for the optimization of the linear accelerator only) and the short pulse length (up to 0.5ms). From the beginning of the authors experience with the Mevva ion source at GSI they tried to improve the reliability of pulse-to-pulse reproducibility and to minimize the noise on the extracted ion beam. For accelerator application this is highly necessary, otherwise the accelerator tuning and optimization becomes very difficult or even impossible. Already the beam transport becomes difficult for a noisy beam, because space charge compensation can be destroyed (at least partially). Furthermore a noisy dc-beam results in some rf-buckets which might be even empty.

  1. Compact ion source neutron generator

    SciTech Connect

    Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali; Chang-Hasnain, Constance; Rangelow, Ivo; Kwan, Joe

    2015-10-13

    A neutron generator includes a conductive substrate comprising a plurality of conductive nanostructures with free-standing tips and a source of an atomic species to introduce the atomic species in proximity to the free-standing tips. A target placed apart from the substrate is voltage biased relative to the substrate to ionize and accelerate the ionized atomic species toward the target. The target includes an element capable of a nuclear fusion reaction with the ionized atomic species to produce a one or more neutrons as a reaction by-product.

  2. Pulsed source ion implantation apparatus and method

    DOEpatents

    Leung, K.N.

    1996-09-24

    A new pulsed plasma-immersion ion-implantation apparatus that implants ions in large irregularly shaped objects to controllable depth without overheating the target, minimizing voltage breakdown, and using a constant electrical bias applied to the target. Instead of pulsing the voltage applied to the target, the plasma source, for example a tungsten filament or a RF antenna, is pulsed. Both electrically conducting and insulating targets can be implanted. 16 figs.

  3. Pulsed source ion implantation apparatus and method

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    A new pulsed plasma-immersion ion-implantation apparatus that implants ions in large irregularly shaped objects to controllable depth without overheating the target, minimizing voltage breakdown, and using a constant electrical bias applied to the target. Instead of pulsing the voltage applied to the target, the plasma source, for example a tungsten filament or a RF antenna, is pulsed. Both electrically conducting and insulating targets can be implanted.

  4. 4th Generation ECR Ion Sources

    SciTech Connect

    Lyneis, Claude M.; Leitner, D.; Todd, D.S.; Sabbi, G.; Prestemon, S.; Caspi, S.; Ferracin, P.

    2008-12-01

    The concepts and technical challenges related to developing a 4th generation ECR ion source with an RF frequency greater than 40 GHz and magnetic confinement fields greater than twice Becr will be explored in this paper. Based on the semi-empirical frequency scaling of ECR plasma density with the square of operating frequency, there should be significant gains in performance over current 3rd generation ECR ion sources, which operate at RF frequencies between 20 and 30 GHz. While the 3rd generation ECR ion sources use NbTi superconducting solenoid and sextupole coils, the new sources will need to use different superconducting materials such as Nb3Sn to reach the required magnetic confinement, which scales linearly with RF frequency. Additional technical challenges include increased bremsstrahlung production, which may increase faster than the plasma density, bremsstrahlung heating of the cold mass and the availability of high power continuous wave microwave sources at these frequencies. With each generation of ECR ion sources, there are new challenges to be mastered, but the potential for higher performance and reduced cost of the associated accelerator continue to make this a promising avenue for development.

  5. Plasma ion sources and ion beam technology inmicrofabrications

    SciTech Connect

    Ji, Lili

    2007-01-01

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 μm-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance (25

  6. Focused Ion beam source method and Apparatus

    SciTech Connect

    Pellin, Michael J.; Lykke, Keith R.; Lill, Thorsten B.

    1998-08-17

    A focused ion beam having a cross section of submicron diameter, a high ion current, and a narrow energy range is generated from a target comprised of particle source material by laser ablation. The method involves directing a laser beam having a cross section of critical diameter onto the target, producing a cloud of laser ablated particles having unique characteristics, and extracting and focusing a charged particle beam from the laser ablated cloud. The method is especially suited for producing focused ion beams for semiconductor device analysis and modification.

  7. Ion source design for industrial applications

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1981-01-01

    The more frequently used design techniques for the components of broad-beam electron bombardment ion sources are discussed. The approach used emphasizes refractory metal cathodes and permanent-magnet multipole discharge chambers. Design procedures and sample calculations are given for the discharge chamber, ion optics, the cathodes, and the magnetic circuit. Hardware designs are included for the isolator, cathode supports, anode supports, pole-piece assembly, and ion-optics supports. A comparison is made between two-grid and three-grid optics. The designs presented are representative of current technology and are adaptable to a wide range of configurations.

  8. Focused ion beam source method and apparatus

    DOEpatents

    Pellin, Michael J.; Lykke, Keith R.; Lill, Thorsten B.

    2000-01-01

    A focused ion beam having a cross section of submicron diameter, a high ion current, and a narrow energy range is generated from a target comprised of particle source material by laser ablation. The method involves directing a laser beam having a cross section of critical diameter onto the target, producing a cloud of laser ablated particles having unique characteristics, and extracting and focusing a charged particle beam from the laser ablated cloud. The method is especially suited for producing focused ion beams for semiconductor device analysis and modification.

  9. Ion sources and targets for radioactive beams

    SciTech Connect

    Schiffer, J.P.; Back, B.B.; Ahmad, I.

    1995-08-01

    A high-intensity ISOL-type radioactive beam facility depends critically on the performance of the target/ion source system. We developed a concept for producing high-intensity secondary beams of fission fragments, such as {sup 132}Sn, using a two-part target and ion source combination. The idea involves stopping a 1000-kW beam of 200-MeV deuterons in a target of Be or U to produce a secondary beam of neutrons. Just behind the neutron production target is a second target, typically a porous form of UC, coupled to an ISOL-type ion source. In December 1994, we tested this concept with 200-MeV deuterons at low intensity in an experiment at the NSCL. The yields of characteristic gamma rays were measured and confirmed our predictions.

  10. The RHIC polarized H- ion source

    NASA Astrophysics Data System (ADS)

    Zelenski, A.; Atoian, G.; Raparia, D.; Ritter, J.; Steski, D.

    2016-02-01

    A novel polarization technique had been successfully implemented for the Relativistic Heavy Ion Collider (RHIC) polarized H- ion source upgrade to higher intensity and polarization. In this technique, a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gaseous ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically pumped Rb vapor. The use of high-brightness primary beam and large cross sections of charge-exchange cross sections resulted in production of high intensity H- ion beam of 85% polarization. The source very reliably delivered polarized beam in the RHIC Run-2013 and Run-2015. High beam current, brightness, and polarization resulted in 75% polarization at 23 GeV out of Alternating Gradient Synchrotron (AGS) and 60%-65% beam polarization at 100-250 GeV colliding beams in RHIC.

  11. The correlation between the radial distribution of high-energetic ions and the structural as well as electrical properties of magnetron sputtered ZnO:Al films

    SciTech Connect

    Bikowski, André; Welzel, Thomas; Ellmer, Klaus

    2013-12-14

    The origin of the pronounced radial distributions of structural and electrical properties of magnetron sputtered ZnO:Al films has been investigated. The film properties were correlated with the radially resolved ion-distribution functions. While the positive ions exhibit low energies and a radial distribution with a maximum intensity opposite the center of the target, the negative ions can have energies up to several hundred eV, depending on the target potential, with a radial distribution with two maxima opposite the erosion tracks. The most prominent positive ion is that of the working gas (Ar{sup +}), while the highest flux of the negative ions is measured for negative oxygen O{sup −}. The radial distribution of the flux of the high-energetic negative ions can clearly be related to the radial variations of the structural (c-axis lattice parameter, crystallite size) and electronic (resistivity) properties for sputtering from the planar target, which points to the decisive role of the high-energetic negative oxygen ions for the film quality. The relation between the negative ion bombardment and the structural as well as electronic properties can be explained by a qualitative model recently developed by us. The same target has also been investigated in the eroded state. In this case, the limited acceptance angle of the mass spectrometer leads to a misinterpretation of the radial distribution of the flux of the high-energetic negative ions. This effect can be explained by a simulation, based on the assumption that the high-energetic negative ions are mainly accelerated in the cathode (target) sheath perpendicular to the uneven substrate surface.

  12. Liquid metal alloy ion source based metal ion injection into a room-temperature electron beam ion source

    SciTech Connect

    Thorn, A.; Ritter, E.; Zschornack, G.; Ullmann, F.; Pilz, W.; Bischoff, L.

    2012-02-15

    We have carried out a series of measurements demonstrating the feasibility of using the Dresden electron beam ion source (EBIS)-A, a table-top sized, permanent magnet technology based electron beam ion source, as a charge breeder. Low charged gold ions from an AuGe liquid metal alloy ion source were injected into the EBIS and re-extracted as highly charged ions, thereby producing charge states as high as Au{sup 60+}. The setup, the charge breeding technique, breeding efficiencies as well as acceptance and emittance studies are presented.

  13. Optimization of the beam extraction systems for the Linac4 H{sup −} ion source

    SciTech Connect

    Fink, D. A.; Lettry, J.; Scrivens, R.; Steyaert, D.; Midttun, Ø.; Valerio-Lizarraga, C. A.

    2015-04-08

    The development of the Linac 4 and its integration into CERN’s acceleration complex is part of the foreseen luminosity upgrade of the Large Hadron Collider (LHC). The goal is to inject a 160 MeV H{sup −} beam into the CERN PS Booster (PSB) in order to increase the beam brightness by a factor of 2 compared to the 50 MeV proton linac, Linac 2, that is currently in operation. The requirements for the ion source are a 45 keV H{sup −} beam of 80 mA intensity, 2 Hz repetition rate and 0.5 ms pulse length within a normalized rms-emittance of 0.25 mm· mrad. The previously installed beam extraction system has been designed for an H{sup −} ion beam intensity of 20 mA produced by an RF-volume source with an electron to H{sup −} ratio of up to 50. For the required intensity upgrades of the Linac4 ion source, a new beam extraction system is being produced and tested; it is optimized for a cesiated surface RF-source with a nominal beam current of 40 mA and an electron to H{sup −} ratio of 4. The simulations, based on the IBSIMU code, are presented. At the Brookhaven National Laboratory (BNL), a peak beam current of more than 100 mA was demonstrated with a magnetron H{sup −} source at an energy of 35 keV and a repetition rate of 2 Hz. A new extraction system is required to operate at an energy of 45 keV; simulation of a two stage extraction system dedicated to the magnetron is presented.

  14. ECR ion source with electron gun

    DOEpatents

    Xie, Zu Q.; Lyneis, Claude M.

    1993-01-01

    An Advanced Electron Cyclotron Resonance ion source (10) having an electron gun (52) for introducing electrons into the plasma chamber (18) of the ion source (10). The ion source (10) has a injection enclosure (12) and a plasma chamber tank (14). The plasma chamber (18) is defined by a plurality of longitudinal magnets (16). The electron gun (52) injects electrons axially into the plasma chamber (18) such that ionization within the plasma chamber (18) occurs in the presence of the additional electrons produced by the electron gun (52). The electron gun (52) has a cathode (116) for emitting electrons therefrom which is heated by current supplied from an AC power supply (96) while bias potential is provided by a bias power supply (118). A concentric inner conductor (60) and Outer conductor (62) carry heating current to a carbon chuck (104) and carbon pusher (114) Which hold the cathode (116) in place and also heat the cathode (16). In the Advanced Electron Cyclotron Resonance ion source (10), the electron gun (52) replaces the conventional first stage used in prior art electron cyclotron resonance ion generators.

  15. Low energy ion beam dynamics of NANOGAN ECR ion source

    NASA Astrophysics Data System (ADS)

    Kumar, Sarvesh; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  16. A negative ion source test facility.

    PubMed

    Melanson, S; Dehnel, M; Potkins, D; Theroux, J; Hollinger, C; Martin, J; Philpott, C; Stewart, T; Jackle, P; Williams, P; Brown, S; Jones, T; Coad, B; Withington, S

    2016-02-01

    Progress is being made in the development of an Ion Source Test Facility (ISTF) by D-Pace Inc. in collaboration with Buckley Systems Ltd. in Auckland, NZ. The first phase of the ISTF is to be commissioned in October 2015 with the second phase being commissioned in March 2016. The facility will primarily be used for the development and the commercialization of ion sources. It will also be used to characterize and further develop various D-Pace Inc. beam diagnostic devices. PMID:26931991

  17. Negative ion source with low temperature transverse divergence optical system

    DOEpatents

    Whealton, John H.; Stirling, William L.

    1986-01-01

    A negative ion source is provided which has extremely low transverse divergence as a result of a unique ion focusing system in which the focal line of an ion beam emanating from an elongated, concave converter surface is outside of the ion exit slit of the source and the path of the exiting ions. The beam source operates with a minimum ion temperature which makes possible a sharply focused (extremely low transverse divergence) ribbon like negative ion beam.

  18. Negative ion source with low temperature transverse divergence optical system

    DOEpatents

    Whealton, J.H.; Stirling, W.L.

    1985-03-04

    A negative ion source is provided which has extremely low transverse divergence as a result of a unique ion focusing system in which the focal line of an ion beam emanating from an elongated, concave converter surface is outside of the ion exit slit of the source and the path of the exiting ions. The beam source operates with a minimum ion temperature which makes possible a sharply focused (extremely low transverse divergence) ribbon like negative ion beam.

  19. Growth of fullerene-like carbon nitride thin solid films by reactive magnetron sputtering; role of low-energy ion irradiation in determining microstructure and mechanical properties

    NASA Astrophysics Data System (ADS)

    Neidhardt, J.; Czigány, Zs.; Brunell, I. F.; Hultman, L.

    2003-03-01

    Fullerene-like (FL) carbon nitride (CNx) films were deposited on Si (100) substrates by dc reactive, unbalanced, magnetron sputtering in a N2/Ar mixture from a high-purity pyrolythic graphite cathode in a dual-magnetron system with coupled magnetic fields. The N2 fraction in the discharge gas (0%-100%) and substrate bias (-25 V; -40 V) was varied, while the total pressure (0.4 Pa) and substrate temperature (450 °C) was kept constant. The coupled configuration of the magnetrons resulted in a reduced ion flux density, leading to a much lower average energy per incorporated particle, due to a less focused plasma as compared to a single magnetron. This enabled the evolution of a pronounced FL microstructure. The nitrogen concentration in the films saturated rapidly at 14-18 at. %, as determined by elastic recoil analysis, with a minor dependence on the discharge conditions. No correlations were detected between the photoelectron N1s core level spectra and the different microstructures, as observed by high-resolution electron microscopy. A variety of distinct FL structures were obtained, ranging from structures with elongated and aligned nitrogen-containing graphitic sheets to disordered structures, however, not exclusively linked to the total N concentration in the films. The microstructure evolution has rather to be seen as in equilibrium between the two competing processes of adsorption and desorption of nitrogen-containing species at the substrate. This balance is shifted by the energy and number of arriving species as well as by the substrate temperature. The most exceptional structure, for lower N2 fractions, consists of well-aligned, multi-layered circular features (nano-onions) with an inner diameter of approximately 0.7 nm and successive shells at a distance of ˜0.35 nm up to a diameter of 5 nm. It is shown that the intrinsic stress formation is closely linked with the evolution and accommodation of the heavily bent fullerene-like sheets. The FL CNx

  20. Structural and tribological properties of CrTiAlN coatings on Mg alloy by closed-field unbalanced magnetron sputtering ion plating

    NASA Astrophysics Data System (ADS)

    Shi, Yongjing; Long, Siyuan; Yang, Shicai; Pan, Fusheng

    2008-09-01

    In this paper, a series of multi-layer hard coating system of CrTiAlN has been prepared by closed-field unbalanced magnetron sputtering ion plating (CFUBMSIP) technique in a gas mixture of Ar + N 2. The coatings were deposited onto AZ31 Mg alloy substrates. During deposition step, technological temperature and metallic atom concentration of coatings were controlled by adjusting the currents of different metal magnetron targets. The nitrogen level was varied by using the feedback control of plasma optical emission monitor (OEM). The structural, mechanical and tribological properties of coatings were characterized by means of X-ray photoelectron spectrometry, high-resolution transmission electron microscope, field emission scanning electron microscope (FESEM), micro-hardness tester, and scratch and ball-on-disc tester. The experimental results show that the N atomic concentration increases and the oxide on the top of coatings decreases; furthermore the modulation period and the friction coefficient decrease with the N 2 level increasing. The outstanding mechanical property can be acquired at medium N 2 level, and the CrTiAlN coatings on AZ31 Mg alloy substrates outperform the uncoated M42 high speed steel (HSS) and the uncoated 316 stainless steel (SS).

  1. RF H- Ion Source with Saddle Antenna

    SciTech Connect

    Dudnikov, Vadim G; Johnson, Rolland P; Murray Jr, S N; Pennisi, Terry R; Santana, Manuel; Stockli, Martin P; Welton, Robert F

    2010-01-01

    In this project we are developing an RF H- surface plasma source (SPS) which will synthesize the most important developments in the field of negative ion sources to provide high pulsed and average current, higher brightness, longer lifetime and higher reliability by improving a power efficiency. Several versions of new plasma generators with different antennas and magnetic field configurations were tested in a small AlN test chamber in the SNS ion source Test Stand. Then a prototype saddle antenna was installed in the Test Stand with a larger, normal-sized SNS AlN chamber that achieved a peak current of 67 mA and an apparent efficiency of 1.6 mA/kW. These values are comparable to those of the present SNS sources and can be expected to be improved when the prototype is developed into an operational version in the next phase of the project.

  2. New types of negative ion sources

    SciTech Connect

    Borisko, V.N.; Lapshin, V.I.

    1995-12-31

    The plasma sources of negative ions which were elaborated in Kharkov State University are considered in this paper. These sources use the mechanism of dissociative stick of electrons with low energies to molecules of a working gas. The effective work of such sources needs a special system of low energy electrons formation. The effect of secondary electron emission used in negative ion sources is considered. The electrode material with a great coefficient of secondary electron emission allows one to obtain a few slow electrons per one bombarding electron. A plasma of Penning discharge is an emitter of initial elections. The electron electromagnetic trap in the secondary electron emission region allows one to enlarge volume of interaction of low energy electrons with the working gas molecules. The lifetime of slow electrons grows in this trap.

  3. Ion sources for induction linac driven heavy ion fusion

    SciTech Connect

    Rutkowski, H.L.; Eylon, S.; Chupp, W.W.

    1993-08-01

    The use of ion sources in induction linacs for heavy ion fusion is fundamentally different from their use in the rf linac-storage rings approach. Induction linacs require very high current, short pulse extraction usually with large apertures which are dictated by the injector design. One is faced with the problem of extracting beams in a pulsed fashion while maintaining high beam quality during the pulse (low-emittance). Four types of sources have been studied for this application. The vacuum arc and the rf cusp field source are the plasma types and the porous plug and hot alumino-silicate surface source are the thermal types. The hot alumino-silicate potassium source has proved to be the best candidate for the next generation of scaled experiments. The porous plug for potassium is somewhat more difficult to use. The vacuum arc suffers from noise and lifetime problems and the rf cusp field source is difficult to use with very short pulses. Operational experience with all of these types of sources is presented.

  4. Development of versatile multiaperture negative ion sources

    SciTech Connect

    Cavenago, M.; Minarello, A.; Sattin, M.; Serianni, G.; Antoni, V.; Bigi, M.; Pasqualotto, R.; Recchia, M.; Veltri, P.; Agostinetti, P.; Barbisan, M.; Baseggio, L.; Cervaro, V.; Degli Agostini, F.; Franchin, L.; Laterza, B.; Ravarotto, D.; Rossetto, F.; Zaniol, B.; Zucchetti, S.; and others

    2015-04-08

    Enhancement of negative ion sources for production of large ion beams is a very active research field nowadays, driven from demand of plasma heating in nuclear fusion devices and accelerator applications. As a versatile test bench, the ion source NIO1 (Negative Ion Optimization 1) is being commissioned by Consorzio RFX and INFN. The nominal beam current of 135 mA at −60 kV is divided into 9 beamlets, with multiaperture extraction electrodes. The plasma is sustained by a 2 MHz radiofrequency power supply, with a standard matching box. A High Voltage Deck (HVD) placed inside the lead shielding surrounding NIO1 contains the radiofrequency generator, the gas control, electronics and power supplies for the ion source. An autonomous closed circuit water cooling system was installed for the whole system, with a branch towards the HVD, using carefully optimized helical tubing. Insulation transformer is installed in a nearby box. Tests of several magnetic configurations can be performed. Status of experiments, measured spectra and plasma luminosity are described. Upgrades of magnetic filter, beam calorimeter and extraction grid and related theoretical issues are reviewed.

  5. Development of versatile multiaperture negative ion sources

    NASA Astrophysics Data System (ADS)

    Cavenago, M.; Serianni, G.; Antoni, V.; Bigi, M.; De Muri, M.; Pasqualotto, R.; Recchia, M.; Veltri, P.; Agostinetti, P.; Barbisan, M.; Baseggio, L.; Cervaro, V.; Cazzador, M.; Degli Agostini, F.; Franchin, L.; Kulevoy, T.; Laterza, B.; Mimo, A.; Minarello, A.; Petrenko, S.; Ravarotto, D.; Rossetto, F.; Sattin, M.; Zaniol, B.; Zucchetti, S.

    2015-04-01

    Enhancement of negative ion sources for production of large ion beams is a very active research field nowadays, driven from demand of plasma heating in nuclear fusion devices and accelerator applications. As a versatile test bench, the ion source NIO1 (Negative Ion Optimization 1) is being commissioned by Consorzio RFX and INFN. The nominal beam current of 135 mA at -60 kV is divided into 9 beamlets, with multiaperture extraction electrodes. The plasma is sustained by a 2 MHz radiofrequency power supply, with a standard matching box. A High Voltage Deck (HVD) placed inside the lead shielding surrounding NIO1 contains the radiofrequency generator, the gas control, electronics and power supplies for the ion source. An autonomous closed circuit water cooling system was installed for the whole system, with a branch towards the HVD, using carefully optimized helical tubing. Insulation transformer is installed in a nearby box. Tests of several magnetic configurations can be performed. Status of experiments, measured spectra and plasma luminosity are described. Upgrades of magnetic filter, beam calorimeter and extraction grid and related theoretical issues are reviewed.

  6. Lithium alumino-silicate ion source development

    NASA Astrophysics Data System (ADS)

    Roy, Prabir Kumar; Seidl, Peter A.; Kwan, Joe W.; Greenway, Wayne G.; Waldron, William L.; Wu, James K.; Mazaheri, Kavous

    2009-11-01

    We report experimental progress on Li+ source development in preparation for warm dense matter heating experiments. To uniformly heat targets to electron-volt temperatures for the study of warm dense matter, we are pursuing the use of a low (E < 5 MeV) kinetic energy singly ionized lithium beam and a thin target. Two kinds of lithium (Li+) alumino-silicate ion sources, β-spodumene and β-eucryptite, each of area 0.31 cm2, have been fabricated for ion emission measurements. These surface ionization sources are heated to 1200 to 1300 C where they preferentially emit singly ionized alkali ions. Tight process controls were necessary in preparing and sintering the alumino-silicate to the porous tungsten substrate to produce an emitter that gives uniform ion emission, sufficient current density and low beam emittance. Current density limit of the two kinds have been measured, and ion species identification of possible contaminants has been verified with a Wien (E x B) filter.

  7. Survey of ion plating sources. [conferences

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1979-01-01

    Based on the type of evaporation source, gaseous media and mode of transport, the following is discussed: resistance, electron beam, sputtering, reactive and ion beam evaporation. Ionization efficiencies and ion energies in the glow discharge determine the percentage of atoms which are ionized under typical ion plating conditions. The plating flux consists of a small number of energetic ions and a large number of energetic neutrals. The energy distribution ranges from thermal energies up to a maximum energy of the discharge. The various reaction mechanisms which contribute to the exceptionally strong adherence - formation of a graded sustrate/coating interface are not fully understood, however the controlling factors are evaluated. The influence of process variables on the nucleation and growth characteristics are illustrated in terms of morphological changes which affect the mechanical and tribological properties of the coating.

  8. Secondary electron ion source neutron generator

    DOEpatents

    Brainard, J.P.; McCollister, D.R.

    1998-04-28

    A neutron generator employing an electron emitter, an ion source bombarded by the electrons from the electron emitter, a plasma containment zone, and a target situated between the plasma containment zone and the electron emitter is disclosed. The target contains occluded deuterium, tritium, or a mixture thereof. 4 figs.

  9. Secondary electron ion source neutron generator

    DOEpatents

    Brainard, John P.; McCollister, Daryl R.

    1998-01-01

    A neutron generator employing an electron emitter, an ion source bombarded by the electrons from the electron emitter, a plasma containment zone, and a target situated between the plasma containment zone and the electron emitter. The target contains occluded deuterium, tritium, or a mixture thereof

  10. Installation and commissioning of the new Fermi National Accelerator Laboratory H- Magnetron

    SciTech Connect

    Bollinger, D. S.

    2014-02-15

    The Fermi National Accelerator Laboratory (FNAL) 40 year old Cockcroft-Walton 750 keV injectors with slit aperture magnetron ion sources have been replaced with a circular aperture magnetron, Low Energy Beam Transport, Radio Frequency Quadrupole Accelerator, and Medium Energy Beam Transport, as part of the FNAL Proton Improvement Plan. The injector design is based on a similar system at Brookhaven National Laboratory. The installation, commissioning efforts, and source operations to date will be covered in this paper along with plans for additional changes to the original design to improve reliability by reducing extractor spark rates and arc current duty factor.

  11. The SNS External Antenna H- Ion Source

    SciTech Connect

    Welton, Robert F; Stockli, Martin P; Murray Jr, S N; Crisp, Danny W; Carmichael, Justin R; Goulding, Richard Howell; Han, Baoxi; Pennisi, Terry R; Santana, Manuel

    2010-01-01

    The U.S. Spallation Neutron Source (SNS) is an accelerator-based, pulsed neutron-scattering facility, currently in the process of ramping up neutron production. In order to insure that we will meet our operational commitments as well as provide for future facility upgrades with high reliability, we have developed an RF-driven, H- ion source based on a ceramic aluminum nitride (AlN) plasma chamber [1]. This source is expected to be utilized by the SNS for neutron production starting in 2009. This report details the design of the production source which features an AlN plasma chamber, 2-layer external antenna, cooled-multicusp magnet array, Cs2CrO4 cesium system and a Molybdenum plasma ignition gun. Performance of the production source both on the SNS accelerator and SNS test stand is reported. The source has also been designed to accommodate an elemental Cs system with an external reservoir which has demonstrated unanalyzed beam currents up to ~100mA (60Hz, 1ms) on the SNS ion source test stand.

  12. Fullerenes in electron cyclotron resonance ion sources

    SciTech Connect

    Biri, S.; Fekete, E.; Kitagawa, A.; Muramatsu, M.; Janossy, A.; Palinkas, J.

    2006-03-15

    Fullerene plasmas and beams have been produced in our electron cyclotron resonance ion sources (ECRIS) originally designed for other purposes. The ATOMKI-ECRIS is a traditional ion source with solenoid mirror coils to generate highly charged ions. The variable frequencies NIRS-KEI-1 and NIRS-KEI-2 are ECR ion sources built from permanent magnets and specialized for the production of carbon beams. The paper summarizes the experiments and results obtained by these facilities with fullerenes. Continuous effort has been made to get the highest C{sub 60} beam intensities. Surprisingly, the best result was obtained by moving the C{sub 60} oven deep inside the plasma chamber, very close to the resonance zone. Record intensity singly and doubly charged fullerene beams were obtained (600 and 1600 nA, respectively) at lower C{sub 60} material consumption. Fullerene derivatives were also produced. We mixed fullerenes with other plasmas (N, Fe) with the aim of making new materials. Nitrogen encapsulated fullerenes (mass: 720+14=734) were successfully produced. In the case of iron, two methods (ferrocene, oven) were tested. Molecules with mass of 720+56=776 were detected in the extracted beam spectra.

  13. A laser ablation source for offline ion production at LEBIT

    NASA Astrophysics Data System (ADS)

    Izzo, C.; Bollen, G.; Bustabad, S.; Eibach, M.; Gulyuz, K.; Morrissey, D. J.; Redshaw, M.; Ringle, R.; Sandler, R.; Schwarz, S.; Valverde, A. A.

    2016-06-01

    A laser ablation ion source has been developed and implemented at the Low-Energy Beam and Ion Trap (LEBIT) facility at the National Superconducting Cyclotron Laboratory. This offline ion source enhances the capabilities of LEBIT by providing increased access to ions used for calibration measurements and checks of systematic effects as well as stable and long-lived ions of scientific interest. The design of the laser ablation ion source and a demonstration of its successful operation are presented.

  14. Extracted current saturation in negative ion sources

    SciTech Connect

    Mochalskyy, S.; Lifschitz, A. F.; Minea, T.

    2012-06-01

    The extraction of negatively charged particles from a negative ion source is one of the crucial issues in the development of the neutral beam injector system for future experimental reactor ITER. Full 3D electrostatic particle-in-cell Monte Carlo collision code - ONIX [S. Mochalskyy et al., Nucl. Fusion 50, 105011 (2010)] - is used to simulate the hydrogen plasma behaviour and the extracted particle features in the vicinity of the plasma grid, both sides of the aperture. It is found that the contribution to the extracted negative ion current of ions born in the volume is small compared with that of ions created at the plasma grid walls. The parametric study with respect to the rate of negative ions released from the walls shows an optimum rate. Beyond this optimum, a double layer builds-up by the negative ion charge density close to the grid aperture surface reducing thus extraction probability, and therefore the extracted current. The effect of the extraction potential and magnetic field magnitudes on the extraction is also discussed. Results are in good agreement with available experimental data.

  15. HIGH CURRENT RADIO FREQUENCY ION SOURCE

    DOEpatents

    Abdelaziz, M.E.

    1963-04-01

    This patent relates to a high current radio frequency ion source. A cylindrical plasma container has a coil disposed around the exterior surface thereof along the longitudinal axis. Means are provided for the injection of an unionized gas into the container and for applying a radio frequency signal to the coil whereby a radio frequency field is generated within the container parallel to the longitudinal axis thereof to ionize the injected gas. Cathode and anode means are provided for extracting transverse to the radio frequency field from an area midway between the ends of the container along the longitudinal axis thereof the ions created by said radio frequency field. (AEC)

  16. Ion source development for various applications in Korea (invited) (abstract)

    SciTech Connect

    Hwang, Y. S.

    2008-02-15

    Ion source development in Korea has been related with various applications from accelerator to nanotechnology. Conventional ion sources such as Duoplasmatron and PIG ion sources were developed for high power proton accelerator and small cyclotron accelerators. To improve lifetime of the high current proton ion source, helicon plasma ion sources were developed with external rf antenna and applied for neutron generation in drive-in-target configuration. Negative hydrogen ion sources were also developed for tandem and cyclotron accelerators by using both rf and filament discharges. Large-area high-current ion sources for the KSTAR NBI system were developed and successfully tested for long-pulse operation of up to 300 s. Several broad beam ion sources for industrial applications such as ion implantation and surface treatment were also developed by using arc, rf, and microwave discharges. Recently, ion source applications become diversified to the area of nano- and biotechnologies. For example, C60 ion source was developed for the use of bioapplications in nanometer scale. For focused ion beam as a nanofabrication tool, liquid metal ion sources were improved and a novel plasma ion source was developed by utilizing localized sheath discharges. Research and development activities of these ion sources will be discussed with short description of appropriate applications.

  17. Experimental Evaluation of a Negative Ion Source for a Heavy Ion Fusion Negative Ion Driver

    SciTech Connect

    Grisham, L. R.; Hahto, S. K.; Hahto, S. T.; Kwan, J. W.; Leung, K. N.

    2004-06-16

    Negative halogen ions have recently been proposed as a possible alternative to positive ions for heavy ion fusion drivers because electron accumulation would not be a problem in the accelerator, and if desired, the beams could be photo-detached to neutrals. To test the ability to make suitable quality beams, an experiment was conducted at Lawrence Berkeley National Laboratory using chlorine in an RF-driven ion source. Without introducing any cesium (which is required to enhance negative ion production in hydrogen ion sources) a negative chlorine current density of 45 mA/cm{sup 2} was obtained under the same conditions that gave 57 45 mA/cm{sup 2} of positive chlorine, suggesting the presence of nearly as many negative ions as positive ions in the plasma near the extraction plane. The negative ion spectrum was 99.5% atomic chlorine ions, with only 0.5% molecular chlorine, and essentially no impurities. Although this experiment did not incorporate the type of electron suppression technology that i s used in negative hydrogen beam extraction, the ratio of co-extracted electrons to Cl{sup -} was as low as 7 to 1, many times lower than the ratio of their mobilities, suggesting that few electrons are present in the near-extractor plasma. This, along with the near-equivalence of the positive and negative ion currents, suggests that the plasma in this region was mostly an ion-ion plasma. The negative chlorine current density was relatively insensitive to pressure, and scaled linearly with RF power. If this linear scaling continues to hold at higher RF powers, it should permit current densities of 100 45 mA/cm{sup 2}, sufficient for present heavy ion fusion injector concepts. The effective ion temperatures of the positive and negative ions appeared to be similar and relatively low for a plasma source.

  18. MULTIPLE ELECTRON BEAM ION PUMP AND SOURCE

    DOEpatents

    Ellis, R.E.

    1962-02-27

    A vacuum pump is designed which operates by ionizing incoming air and by withdrawing the ions from the system by means of electrical fields. The apparatus comprises a cylindrical housing communicable with the vessel to be evacuated and having a thin wall section in one end. Suitable coils provide a longitudinal magnetic field within the cylinder. A broad cathode and an anode structure is provided to establish a plurality of adjacent electron beams which are parallel to the cylinder axis. Electron reflector means are provided so that each of the beams constitutes a PIG or reflex discharge. Such structure provides a large region in which incoming gas molecules may be ionized by electron bombardment. A charged electrode assembly accelerates the ions through the thin window, thereby removing the gas from the system. The invention may also be utilized as a highly efficient ion source. (AEC)

  19. Chromium plating pollution source reduction by plasma source ion implantation

    SciTech Connect

    Chen, A.; Sridharan, K.; Dodd, R.A.; Conrad, J.R.; Qiu, X.; Hamdi, A.H.; Elmoursi, A.A.; Malaczynski, G.W.; Horne, W.G.

    1995-12-31

    There is growing concern over the environmental toxicity and workers` health issues due to the chemical baths and rinse water used in the hard chromium plating process. In this regard the significant hardening response of chromium to nitrogen ion implantation can be environmentally beneficial from the standpoint of decreasing the thickness and the frequency of application of chromium plating. In this paper the results of a study of nitrogen ion implantation of chrome plated test flats using the non-line-of-sight Plasma Source Ion Implantation (PSII) process, are discussed. Surface characterization was performed using Scanning Electron Microscopy (SEM), Auger Electron Spectroscopy (AES), and Electron Spectroscopy for Chemical Analysis (ESCA). The surface properties were evaluated using a microhardness tester, a pin-on-disk wear tester, and a corrosion measurement system. Industrial field testing of nitrogen PSII treated chromium plated parts showed an improvement by a factor of two compared to the unimplanted case.

  20. Field ion source development for neutron generators

    NASA Astrophysics Data System (ADS)

    Bargsten Johnson, B.; Schwoebel, P. R.; Holland, C. E.; Resnick, P. J.; Hertz, K. L.; Chichester, D. L.

    2012-01-01

    An ion source based on the principles of electrostatic field desorption is being developed to improve the performance of existing compact neutron generators. The ion source is an array of gated metal tips derived from field electron emitter array microfabrication technology. A comprehensive summary of development and experimental activities is presented. Many structural modifications to the arrays have been incorporated to achieve higher tip operating fields, while lowering fields at the gate electrode to prevent gate field electron emission which initiates electrical breakdown in the array. The latest focus of fabrication activities has been on rounding the gate electrode edge and surrounding the gate electrode with dielectric material. Array testing results have indicated a steady progression of increased array tip operating fields with each new design tested. The latest arrays have consistently achieved fields beyond those required for the onset of deuterium desorption (˜20 V/nm), and have demonstrated the desorption of deuterium at fields up to 36 V/nm. The number of ions desorbed from an array has been quantified, and field desorption of metal tip substrate material from array tips has been observed for the first time. Gas-phase field ionization studies with ˜10,000 tip arrays have achieved deuterium ion currents of ˜50 nA. Neutron production by field ionization has yielded ˜10 2 n/s from ˜1 mm 2 of array area using the deuterium-deuterium fusion reaction at 90 kV.

  1. Field Ion Source Development for Neutron Generators

    SciTech Connect

    B. Bargsten Johnson; P. R. Schwoebel; C. E. Holland; P. J. Resnick; K. L. Hertz; D. L. Chichester

    2012-01-01

    An ion source based on the principles of electrostatic field desorption is being developed to improve the performance of existing compact neutron generators. The ion source is an array of gated metal tips derived from field electron emitter array microfabrication technology. A comprehensive summary of development and experimental activities is presented. Many structural modifications to the arrays have been incorporated to achieve higher tip operating fields, while lowering fields at the gate electrode to prevent gate field electron emission which initiates electrical breakdown in the array. The latest focus of fabrication activities has been on rounding the gate electrode edge and surrounding the gate electrode with dielectric material. Array testing results have indicated a steady progression of increased array tip operating fields with each new design tested. The latest arrays have consistently achieved fields beyond those required for the onset of deuterium desorption ({approx}20 V/nm), and have demonstrated the desorption of deuterium at fields up to 36 V/nm. The number of ions desorbed from an array has been quantified, and field desorption of metal tip substrate material from array tips has been observed for the first time. Gas-phase field ionization studies with {approx}10,000 tip arrays have achieved deuterium ion currents of {approx}50 nA. Neutron production by field ionization has yielded {approx}10{sup 2} n/s from {approx}1 mm{sup 2} of array area using the deuterium-deuterium fusion reaction at 90 kV.

  2. ION SOURCE UNIT FOR A CALUTRON

    DOEpatents

    Brobeck, W.M.

    1958-08-19

    An improvement in the ion-producing mechanism for use in a calutron is described. In its broad aspects the improvement comprises the addition of shieid plates between the electron emitting filannent of the ion source and the ionization chamber. An aperture in one of the shields provides a path for electrons from the filament to enter the ionization chamber of the source block. As the shield members are electrically connected to the negative side of the filament power supply, the favorable action of the upper shield is to prevent the electron bombardment of all the elements of the calutron which overlie the filannent, and the lower shield member con fines the emission of electrons from the filannent to a relatively short segnnent, thereby increasing the life of the filannent.

  3. ECR ion sources: present status and prospects

    NASA Astrophysics Data System (ADS)

    Melin, G.

    1997-01-01

    Although now widely used for many applications, the electron cyclotron resonance ion sources (ECRIS), an outgrowth of the fusion plasma research, still suffer from some mystification, or at least from a lack of understanding. This article is an attempt to give a broad overview of the today ECRIS activity devoted to the production of highly charged ions: it therefore describes both physics and theory efforts, technology, performances, plans and prospects as well. An important chapter gives the status of understanding the ECRIS behavior, both the current thinking on how they operate and the experimental evidences whenever it is possible. The various existing sources, their design and main features, are then surveyed. At last the present trends of development, the potential directions for future improvement are examined.

  4. Adhesion improvement of TiN film on tool steel by a hybrid process of unbalanced magnetron sputtering and plasma-based ion implantation

    NASA Astrophysics Data System (ADS)

    Ono, T.; Uemura, M.; Yatsuzuka, M.

    2007-04-01

    An interfacial mixing layer and a titanium (Ti) layer between the titanium-nitride (TiN) film and the substrate material was produced to improve the adhesion of TiN film on tool substrates by a hybrid process of unbalanced magnetron sputtering (UBM) and plasma-based ion implantation (PBII). Before TiN deposition by UBM, the negative high-voltage pulse and DC-bias were applied to the substrate immersed in the Ti plasma, resulting in implantation as well as deposition of Ti ions to the substrate. As a result, a Ti layer and a graded mixing layer of Ti and substrate materials was produced to work as a buffer interface between substrate and TiN film. The adhesion strength of TiN film with the interfacial treatment on tool steel substrates was evaluated by scratch and indentation tests, showing the considerable improvement of adhesion by the formation of the Ti and the interfacial mixing layers. The suitable ion implantation energy for the improvement of adhesion strength was found.

  5. Measurements of sputtered neutrals and ions and investigation of their roles on the plasma properties during rf magnetron sputtering of Zn and ZnO targets

    SciTech Connect

    Maaloul, L.; Stafford, L.

    2013-11-15

    Langmuir probe and optical absorption spectroscopy measurements were used to determine the line-integrated electron density, electron temperature, and number density of Ar atoms in metastable {sup 3}P{sub 2} and {sup 3}P{sub 0} levels in a 5 mTorr, rf magnetron sputtering plasmas used for the deposition of ZnO-based thin films. While the average electron energy and density of Ar atoms in {sup 3}P{sub 2} and {sup 3}P{sub 0} excited states were fairly independent of self-bias voltage, the Ar {sup 3}P{sub 2}-to-electron number density ratio decreased by approximately a factor of 5 when going from −115 V to −300 V. This decrease was correlated to an increase by about one order of magnitude of the number density of sputtered Zn atoms determined by absolute actinometry measurements on Zn I using either Ar or Xe as the actinometer gas. These results were also found to be in excellent agreement with the predictions of a global model accounting for Penning ionization of sputtered Zn particles. The importance of the latter reactions was further confirmed by plasma sampling mass spectrometry showing a double peak structure for Zn ions: a low-energy component ascribed to thermalized ions created in the gas phase (by direct electron impact and by Penning ionization) and a high-energy tail due to ions ejected from the target and reaching quasi-collisionlessly the substrate surface.

  6. Proton emission from a laser ion source

    SciTech Connect

    Torrisi, L.; Cavallaro, S.; Gammino, S.; Cutroneo, M.; Margarone, D.

    2012-02-15

    At intensities of the order of 10{sup 10} W/cm{sup 2}, ns pulsed lasers can be employed to ablate solid bulk targets in order to produce high emission of ions at different charge state and kinetic energy. A special interest is devoted to the production of protons with controllable energy and current from a roto-translating target irradiated in repetition rate at 1-10 Hz by a Nd:Yag pulsed laser beam. Different hydrogenated targets based on polymers and hydrates were irradiated in high vacuum. Special nanostrucutres can be embedded in the polymers in order to modify the laser absorption properties and the amount of protons to be accelerated in the plasma. For example, carbon nanotubes may increase the laser absorption and the hydrogen absorption to generate high proton yields from the plasma. Metallic nanostrucutres may increase the electron density of the plasma and the kinetic energy of the accelerated protons. Ion collectors, ion energy analyzer, and mass spectrometers, used in time-of-flight configuration, were employed to characterize the ion beam properties. A comparison with traditional proton ion source is presented and discussed.

  7. Improved Ambient Pressure Pyroelectric Ion Source

    NASA Technical Reports Server (NTRS)

    Beegle, Luther W.; Kim, Hugh I.; Kanik, Isik; Ryu, Ernest K.; Beckett, Brett

    2011-01-01

    The detection of volatile vapors of unknown species in a complex field environment is required in many different applications. Mass spectroscopic techniques require subsystems including an ionization unit and sample transport mechanism. All of these subsystems must have low mass, small volume, low power, and be rugged. A volatile molecular detector, an ambient pressure pyroelectric ion source (APPIS) that met these requirements, was recently reported by Caltech researchers to be used in in situ environments.

  8. Electrochemical and microstructural characterization of magnetron-sputtered ATO thin films as Li–ion storage materials

    SciTech Connect

    Ouyang, Pan; Zhang, Hong; Chen, Wenhao; Wang, Ying; Zhang, Yu; Li, Zhicheng

    2015-01-15

    Highlights: • Nano-structured ATO thin films prepared by RF magnetron sputtering at 25 °C, 100 °C and 200 °C, respectively. • ATO thin films show a high reversible capacity and high rate performance. • Electrochemical reaction mechanism of the ATO thin film was revealed by transmission electron microscopy. - Abstract: Sb-doped SnO{sub 2} (ATO) nanostructured thin films were prepared by using radio frequency magnetron sputtering at the substrate temperatures of 25 °C, 100 °C and 200 °C, respectively. All the ATO thin films have the similar redox characteristics in the cyclic voltammetry measurements. The ATO thin film sputtered at 200 °C shows the lowest charge transfer resistance and best electrochemical performance, and has a high reversible capacity of 679 mA h g{sup −1} at 100 mA g{sup −1} after 200 charge–discharge cycles and high rate performance of 483 mA h g{sup −1} at 800 mA g{sup −1}. The electrochemical mechanisms were investigated by analyzing the phase evolution of the ATO electrodes that had been electrochemically induced at various stages. The results reveal that the ATO underwent reversible lithiation/delithiation processes during the electrochemical cycles, i.e., the SnO{sub 2} reacted with Li{sup +} to produce metallic Sn and followed by the formation of the Li{sub x}Sn alloys during discharge process, and then Li{sub x}Sn alloys de-alloyed, Sn reacted with Li{sub 2}O, and even partially formed SnO{sub 2} during charge process.

  9. HIGH-INTENSITY, HIGH CHARGE-STATE HEAVY ION SOURCES

    SciTech Connect

    ALESSI,J.G.

    2004-08-16

    There are many accelerator applications for high intensity heavy ion sources, with recent needs including dc beams for RIA, and pulsed beams for injection into synchrotrons such as RHIC and LHC. The present status of sources producing high currents of high charge state heavy ions is reviewed. These sources include ECR, EBIS, and Laser ion sources. Benefits and limitations for these type sources are described. Possible future improvements in these sources are also mentioned.

  10. A commercial plasma source ion implantation facility

    SciTech Connect

    Scheuer, J.T.; Adler, R.A.; Horne, W.G.

    1996-10-01

    Empire Hard Chrome has recently installed commercial plasma source ion implantation (PSU) equipment built by North Star Research Corporation. Los Alamos National Laboratory has assisted in this commercialization effort via two Cooperative Research and Development Agreements to develop the plasma source for the equipment and to identify low-risk commercial PSII applications. The PSII system consists of a 1 m x 1 m cylindrical vacuum chamber with a rf plasma source. The pulse modulator is capable of delivering pulses kV and peak currents of 300 A at maximum repetition rate of 400 Hz. thyratron tube to switch a pulse forming network which is tailored to match the dynamic PSII load. In this paper we discuss the PSII system, process facility, and early commercial applications to production tooling.

  11. 2D accelerator design for SITEX negative ion source

    SciTech Connect

    Whealton, J.H.; Raridon, R.J.; McGaffey, R.W.; McCollough, D.H.; Stirling, W.L.; Dagenhart, W.K.

    1983-01-01

    Solving the Poisson-Vlasov equations where the magnetic field, B, is assumed constant, we optimize the optical system of a SITEX negative ion source in infinite slot geometry. Algorithms designed to solve the above equations were modified to include the curved emitter boundary data appropriate to a negative ion source. Other configurations relevant to negative ion sources are examined.

  12. Ion source with improved primary arc collimation

    DOEpatents

    Dagenhart, W.K.

    1983-12-16

    An improved negative ion source is provided in which a self-biasing, molybdenum collimator is used to define the primary electron stream arc discharge from a filament operated at a negative potential. The collimator is located between the anode and the filament. It is electrically connected to the anode by means of an appropriate size resistor such that the collimator is biased at essentially the filament voltage during operation. Initially, the full arc voltage appears across the filament to collimator until the arc discharge strikes. Then the collimator biases itself to essentially filament potential due to current flow through the resistor thus defining the primary electron stream without intercepting any appreciable arc power. The collimator aperture is slightly smaller than the anode aperture to shield the anode from the arc power which, in the past, has caused overheating and erosion of the anode collimator during extended time pulsed-beam operation of the source. With the self-biasing collimator of this invention, the ion source may be operated from short pulse periods to steady-state without destroying the anode.

  13. Ion source with improved primary arc collimation

    DOEpatents

    Dagenhart, William K.

    1985-01-01

    An improved negative ion source is provided in which a self-biasing, molybdenum collimator is used to define the primary electron stream arc discharge from a filament operated at a negative potential. The collimator is located between the anode and the filament. It is electrically connected to the anode by means of an appropriate size resistor such that the collimator is biased at essentially the filament voltage during operation. Initially, the full arc voltage appears across the filament to collimator until the arc discharge strikes. Then the collimator biases itself to essentially filament potential due to current flow through the resistor thus defining the primary electron stream without intercepting any appreciable arc power. The collimator aperture is slightly smaller than the anode aperture to shield the anode from the arc power, thereby preventing the exposure of the anode to the full arc power which, in the past, has caused overheating and erosion of the anode collimator during extended time pulsed-beam operation of the source. With the self-biasing collimator of this invention, the ion source may be operated from short pulse periods to steady-state without destroying the anode.

  14. Development of a high current H(-) ion source for cyclotrons.

    PubMed

    Etoh, H; Aoki, Y; Mitsubori, H; Arakawa, Y; Mitsumoto, T; Yajima, S; Sakuraba, J; Kato, T; Okumura, Y

    2014-02-01

    A multi-cusp DC H(-) ion source has been designed and fabricated for medical applications of cyclotrons. Optimization of the ion source is in progress, such as the improvement of the filament configuration, magnetic filter strength, extraction electrode's shape, configuration of electron suppression magnets, and plasma electrode material. A small quantity of Cs has been introduced into the ion source to enhance the negative ion beam current. The ion source produced 16 mA of DC H(-) ion beam with the Cs-seeded operation at a low arc discharge power of 2.8 kW.

  15. A hollow cathode ion source for production of primary ions for the BNL electron beam ion source

    SciTech Connect

    Alessi, James Beebe, Edward; Carlson, Charles; McCafferty, Daniel; Pikin, Alexander; Ritter, John

    2014-02-15

    A hollow cathode ion source, based on one developed at Saclay, has been modified significantly and used for several years to produce all primary 1+ ions injected into the Relativistic Heavy Ion Collider Electron Beam Ion Source (EBIS) at Brookhaven. Currents of tens to hundreds of microamperes have been produced for 1+ ions of He, C, O, Ne, Si, Ar, Ti, Fe, Cu, Kr, Xe, Ta, Au, and U. The source is very simple, relying on a glow discharge using a noble gas, between anode and a solid cathode containing the desired species. Ions of both the working gas and ionized sputtered cathode material are extracted, and then the desired species is selected using an ExB filter before being transported into the EBIS trap for charge breeding. The source operates pulsed with long life and excellent stability for most species. Reliable ignition of the discharge at low gas pressure is facilitated by the use of capacitive coupling from a simple toy plasma globe. The source design, and operating experience for the various species, is presented.

  16. Development of hollow anode penning ion source for laboratory application

    NASA Astrophysics Data System (ADS)

    Das, B. K.; Shyam, A.; Das, R.; Rao, A. D. P.

    2012-03-01

    The research work presented here focuses for the development of miniature penning type ion source. One hollow anode penning type ion source was developed in our laboratory. The size of the ion source is 38 mm diameter and 55 mm length. The ion source consists of two cathodes, a hollow anode and one piece of rare earth permanent magnet. The plasma was created in the plasma region between cathodes and the hollow anode. The J × B force in the region helps for efficient ionization of the gas even in the high vacuum region˜1×10 -5 Torr. The ions were extracted in the axial direction with help of the potential difference between the electrodes and the geometry of the extraction angle. The effect of the extraction electrode geometry for efficient extraction of the ions from the plasma region was examined. This ion source is a self extracted ion source. The self extracted phenomena reduce the cost and the size of the ion source. The extracted ion current was measured by a graphite probe. An ion current of more than 200 μA was observed at the probe placed 70 mm apart from the extraction electrode. In this paper, the structure of the ion source, effect of operating pressure, potential difference and the magnetic field on the extracted ion current is reported.

  17. Progress of resonant ionization laser ion source development at GANIL

    SciTech Connect

    Henares, J. L. Huguet, Y.; Lecesne, N.; Leroy, R.; Osmond, B.; Sjödin, A. M.; Kron, T.; Schneider, F.; Wendt, K.

    2014-02-15

    SPIRAL2 (Système de Production d’Ions Radioactifs Accélérés en Ligne) is a research facility under construction at GANIL (Grand Accélérateur National d’Ions Lourds) for the production of radioactive ion beams by isotope separation on-line methods and low-energy in-flight techniques. A resonant ionization laser ion source will be one of the main techniques to produce the radioactive ion beams. GISELE (GANIL Ion Source using Electron Laser Excitation) is a test bench developed to study a fully operational laser ion source available for Day 1 operations at SPIRAL2 Phase 2. The aim of this project is to find the best technical solution which combines high selectivity and ionization efficiency with small ion beam emittance and stable long term operation. Latest results about the new ion source geometry will be presented.

  18. Ion Source Development for Ultratrace Detection of Uranium and Thorium

    SciTech Connect

    Liu, Yuan; Batchelder, Jon Charles; Galindo-Uribarri, Alfredo {nmn}; Stracener, Daniel W

    2015-01-01

    A hot-cavity surface ionization source and a hot-cavity laser ion source are evaluated in terms of ionization efficiencies for generating ion beams of U and Th. The work is motivated by the need for more efficient ion sources for detecting ultratrace U and Th impurities in a copper matrix by mass spectrometry techniques such as accelerator mass spectrometry (AMS). The performances of the ion sources are characterized using uranyl nitrate and thorium nitrate sample materials and sample sizes of 20 - 40 g of U or Th. For the surface source, the dominant ion beams observed are UO+ or ThO+ and ionization efficiencies of 2-4% have been obtained with W and Re cavities. Three-step resonant photoionization of U atoms is studied and an ionization efficiency of 8.7% has been obtained with the laser ion source. The positive ion sources promise more than an order of magnitude more efficient than conventional Cs-sputter negative ion sources used for AMS. In addition, the laser ion source is highly selective and effective in suppressing interfering and ions. Work is in progress to improve the efficiencies of both positive ion sources.

  19. Numerical model of electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Mironov, V.; Bogomolov, S.; Bondarchenko, A.; Efremov, A.; Loginov, V.

    2015-12-01

    Important features of the electron cyclotron resonance ion source (ECRIS) operation are accurately reproduced with a numerical code. The code uses the particle-in-cell technique to model the dynamics of ions in ECRIS plasma. It is shown that a gas dynamical ion confinement mechanism is sufficient to provide the ion production rates in ECRIS close to the experimentally observed values. Extracted ion currents are calculated and compared to the experiment for a few sources. Changes in the simulated extracted ion currents are obtained with varying the gas flow into the source chamber and the microwave power. Empirical scaling laws for ECRIS design are studied and the underlying physical effects are discussed.

  20. Differential turbulent heating of different ions in electron cyclotron resonance ion source plasma

    SciTech Connect

    Elizarov, L.I.; Ivanov, A.A.; Serebrennikov, K.S.; Vostrikova, E.A.

    2006-03-15

    The article considers the collisionless ion sound turbulent heating of different ions in an electron cyclotron resonance ion source (ECRIS). The ion sound arises due to parametric instability of pumping wave propagating along the magnetic field with the frequency close to that of electron cyclotron. Within the framework of turbulent heating model the different ions temperatures are calculated in gas-mixing ECRIS plasma.

  1. The effect of substrate bias voltages on impact resistance of CrAlN coatings deposited by modified ion beam enhanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Chunyan, Yu; Linhai, Tian; Yinghui, Wei; Shebin, Wang; Tianbao, Li; Bingshe, Xu

    2009-01-01

    CrAlN coatings were deposited on silicon and AISI H13 steel substrates using a modified ion beam enhanced magnetron sputtering system. The effect of substrate negative bias voltages on the impact property of the CrAlN coatings was studied. The X-ray diffraction (XRD) data show that all CrAlN coatings were crystallized in the cubic NaCl B1 structure, with the (1 1 1), (2 0 0) (2 2 0) and (2 2 2) diffraction peaks observed. Two-dimensional surface morphologies of CrAlN coatings were investigated by atomic force microscope (AFM). The results show that with increasing substrate bias voltage the coatings became more compact and denser, and the microhardness and fracture toughness of the coatings increased correspondingly. In the dynamic impact resistance tests, the CrAlN coatings displayed better impact resistance with the increase of bias voltage, due to the reduced emergence and propagation of the cracks in coatings with a very dense structure and the increase of hardness and fracture toughness in coatings.

  2. Development of a lithium liquid metal ion source for MeV ion beam analysis

    SciTech Connect

    Read, P.M.; Maskrey, J.T.; Alton, G.D.

    1988-01-01

    Lithium liquid metal ion sources are an attractive complement to the existing gaseous ion sources that are extensively used for ion beam analysis. This is due in part to the high brightness of the liquid metal ion source and in part to the availability of a lithium ion beam. High brightness is of particular importance to MeV ion microprobes which are now approaching current density limitations on targets determined by the ion source. The availability of a lithium beam provides increased capabilities for hydrogen profiling and high resolution Rutherford backscattering spectrometry. This paper describes the design and performance of a lithium liquid metal ion source suitable for use on a 5MV Laddertron accelerator. Operational experience with the source and some of its uses for ion beam analysis are discussed. 8 refs., 2 figs.

  3. A singly charged ion source for radioactive 11C ion acceleration

    NASA Astrophysics Data System (ADS)

    Katagiri, K.; Noda, A.; Nagatsu, K.; Nakao, M.; Hojo, S.; Muramatsu, M.; Suzuki, K.; Wakui, T.; Noda, K.

    2016-02-01

    A new singly charged ion source using electron impact ionization has been developed to realize an isotope separation on-line system for simultaneous positron emission tomography imaging and heavy-ion cancer therapy using radioactive 11C ion beams. Low-energy electron beams are used in the electron impact ion source to produce singly charged ions. Ionization efficiency was calculated in order to decide the geometric parameters of the ion source and to determine the required electron emission current for obtaining high ionization efficiency. Based on these considerations, the singly charged ion source was designed and fabricated. In testing, the fabricated ion source was found to have favorable performance as a singly charged ion source.

  4. Emission source functions in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Shapoval, V. M.; Sinyukov, Yu. M.; Karpenko, Iu. A.

    2013-12-01

    Three-dimensional pion and kaon emission source functions are extracted from hydrokinetic model (HKM) simulations of central Au+Au collisions at the top Relativistic Heavy Ion Collider (RHIC) energy sNN=200 GeV. The model describes well the experimental data, previously obtained by the PHENIX and STAR collaborations using the imaging technique. In particular, the HKM reproduces the non-Gaussian heavy tails of the source function in the pair transverse momentum (out) and beam (long) directions, observed in the pion case and practically absent for kaons. The role of rescatterings and long-lived resonance decays in forming the mentioned long-range tails is investigated. The particle rescattering contribution to the out tail seems to be dominating. The model calculations also show substantial relative emission times between pions (with mean value 13 fm/c in the longitudinally comoving system), including those coming from resonance decays and rescatterings. A prediction is made for the source functions in Large Hadron Collider (LHC) Pb+Pb collisions at sNN=2.76 TeV, which are still not extracted from the measured correlation functions.

  5. Magnetic plasma confinement for laser ion source.

    PubMed

    Okamura, M; Adeyemi, A; Kanesue, T; Tamura, J; Kondo, K; Dabrowski, R

    2010-02-01

    A laser ion source (LIS) can easily provide a high current beam. However, it has been difficult to obtain a longer beam pulse while keeping a high current. On occasion, longer beam pulses are required by certain applications. For example, more than 10 micros of beam pulse is required for injecting highly charged beams to a large sized synchrotron. To extend beam pulse width, a solenoid field was applied at the drift space of the LIS at Brookhaven National Laboratory. The solenoid field suppressed the diverging angle of the expanding plasma and the beam pulse was widened. Also, it was observed that the plasma state was conserved after passing through a few hundred gauss of the 480 mm length solenoid field.

  6. Side extraction duoPIGatron-type ion source.

    SciTech Connect

    GUSHENETS,V.I.; OKS, E.M.; HERSCHOVITCH, A.; JOHNSON, B.M.

    2007-08-26

    We have designed and constructed a compact duoPIGatron-type ion source, for possible use in ion implanters, in such the ion can be extracted from side aperture in contrast to conventional duoPIGatron sources with axial ion extraction. The size of the side extraction aperture is 1x40 mm. The ion source was developed to study physical and technological aspects relevant to an industrial ion source. The side extraction duoPIGatron has stable arc, uniformly bright illumination, and dense plasma. The present work describes some of preliminary operating parameters of the ion source using Argon, BF3. The total unanalyzed beam currents are 23 mA using Ar at an arc current 5 A and 13 mA using BF3 gas at an arc current 6 A.

  7. Ion source for high-precision mass spectrometry

    DOEpatents

    Todd, Peter J.; McKown, Henry S.; Smith, David H.

    1984-01-01

    The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit.

  8. Ion source for high-precision mass spectrometry

    DOEpatents

    Todd, P.J.; McKown, H.S.; Smith, D.H.

    1982-04-26

    The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit. 2 figures, 3 tables.

  9. Performance of positive ion based high power ion source of EAST neutral beam injector.

    PubMed

    Hu, Chundong; Xie, Yahong; Xie, Yuanlai; Liu, Sheng; Xu, Yongjian; Liang, Lizhen; Jiang, Caichao; Li, Jun; Liu, Zhimin

    2016-02-01

    The positive ion based source with a hot cathode based arc chamber and a tetrode accelerator was employed for a neutral beam injector on the experimental advanced superconducting tokamak (EAST). Four ion sources were developed and each ion source has produced 4 MW @ 80 keV hydrogen beam on the test bed. 100 s long pulse operation with modulated beam has also been tested on the test bed. The accelerator was upgraded from circular shaped to diamond shaped in the latest two ion sources. In the latest campaign of EAST experiment, four ion sources injected more than 4 MW deuterium beam with beam energy of 60 keV into EAST.

  10. Production of negative hydrogen and deuterium ions in microwave-driven ion sources.

    SciTech Connect

    Spence, D.

    1998-09-11

    The authors report progress they have made in the production of negative hydrogen and deuterium atomic ions in magnetically-confined microwave-driven (2.45 GHz) ion sources. The influence of source surface material, microwave power, source gas pressure and magnetic field configuration on the resulting ion current is discussed. Results strongly suggest that, at least in the source, vibrationally excited molecular hydrogen, the precursor to atomic negative ion production, is produced via a surface mechanism suggested by Hall et al. rather than via a gas phase reaction as is generally believed to be the case in most ion sources.

  11. Fermilab HINS Proton Ion Source Beam Measurements

    SciTech Connect

    Tam, W.M.; Apollinari, G.; Chaurize, S.; Hays, S.; Romanov, G.; Scarpine, V.; Schmidt, C.; Webber, R.; /Fermilab

    2009-05-01

    The proton ion source for the High Intensity Neutrino Source (HINS) Linac front-end at Fermilab has been successfully commissioned. It produces a 50 keV, 3 msec beam pulse with a peak current greater than 20mA at 2.5Hz. The beam is transported to the radio-frequency quadrupole (RFQ) by a low energy beam transport (LEBT) that consists of two focusing solenoids, four steering dipole magnets and a beam current transformer. To understand beam transmission through the RFQ, it is important to characterize the 50 keV beam before connecting the LEBT to the RFQ. A wire scanner and a Faraday cup are temporarily installed at the exit of the LEBT to study the beam parameters. Beam profile measurements are made for different LEBT settings and results are compared to those from computer simulations. In lieu of direct emittance measurements, solenoid variation method based on profile measurements is used to reconstruct the beam emittance.

  12. ECR sources for the production of highly charged ions

    SciTech Connect

    Lyneis, C.M.; Antaya, T.A; Michigan State Univ., East Lansing, MI )

    1989-09-01

    Electron Cyclotron Resonance Ion Sources (ECRIS) using RF between 5 and 16 GHz have been developed into stable, reliable sources of highly charged ions produced from a wide range of elements. These devices are currently used as ion sources for cyclotrons, synchrotrons, and heavy-ion linacs for nuclear and relativistic heavy-ion physics. They also serve the atomic physics community as a source of low energy multiply-charged ions. In order to improve their performance both with respect to maximum charge state and beam intensity, ECRIS builders are now designing and constructing sources which will operate at frequencies up to 30 GHz. In this paper we review the present status of operating ECRIS, review recent experimental measurements on plasma parameters, and look at the technology and potential of sources operating at frequencies up to 30 GHz. 14 refs., 4 figs., 1 tab.

  13. A field evaporation deuterium ion source for neutron generators

    SciTech Connect

    Reichenbach, Birk; Solano, I.; Schwoebel, P. R.

    2008-05-01

    Proof-of-principle experiments have demonstrated an electrostatic field evaporation based deuterium ion source for use in compact, high-output deuterium-tritium neutron generators. The ion source produces principally atomic deuterium and titanium ions. More than 100 ML of deuterated titanium thin film can be removed and ionized from a single tip in less than 20 ns. The measurements indicate that with the use of microfabricated tip arrays the deuterium ion source could provide sufficient ion current to produce 10{sup 9}-10{sup 10} n/cm{sup 2} of tip array area.

  14. A field evaporation deuterium ion source for neutron generators

    NASA Astrophysics Data System (ADS)

    Reichenbach, Birk; Solano, I.; Schwoebel, P. R.

    2008-05-01

    Proof-of-principle experiments have demonstrated an electrostatic field evaporation based deuterium ion source for use in compact, high-output deuterium-tritium neutron generators. The ion source produces principally atomic deuterium and titanium ions. More than 100 ML of deuterated titanium thin film can be removed and ionized from a single tip in less than 20 ns. The measurements indicate that with the use of microfabricated tip arrays the deuterium ion source could provide sufficient ion current to produce 109-1010 n/cm2 of tip array area.

  15. Vacuum ARC ion sources - activities & developments at LBL

    SciTech Connect

    Brown, I.

    1996-08-01

    The author describes work at LBL on the development and application of vacuum arc ion sources. Work has been done on vacuum spark sources - to produce very high charge states, studies of high charge states in magnetic field, hybrid ion source operation on metal/gas plasma, multipole operation, work on MEVVA V for implantation applications, development of broad beam sources, and removal of particles from the output of the source.

  16. Ion source development for ultratrace detection of uranium and thorium

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Batchelder, J. C.; Galindo-Uribarri, A.; Chu, R.; Fan, S.; Romero-Romero, E.; Stracener, D. W.

    2015-10-01

    Efficient ion sources are needed for detecting ultratrace U and Th impurities in a copper matrix by mass spectrometry techniques such as accelerator mass spectrometry (AMS). Two positive ion sources, a hot-cavity surface ionization source and a resonant ionization laser ion source, are evaluated in terms of ionization efficiencies for generating ion beams of U and Th. The performances of the ion sources are characterized using uranyl nitrate and thorium nitrate sample materials with sample sizes between 20 and 40 μg of U or Th. For the surface ion source, the dominant ion beams observed are UO+ or ThO+ and ionization efficiencies of 2-4% have been obtained with W and Re cavities. With the laser ion source, three-step resonant photoionization of U atoms has been studied and only atomic U ions are observed. An ionization efficiency of about 9% has been demonstrated. The performances of both ion sources are expected to be further improved.

  17. A new Cs sputter ion source with polyatomic ion beams for SIMS applications.

    SciTech Connect

    Belykh, S. F.; Palitsin, V. V.; Veryovkin, I. V.; Kovarsky, A. P.; Chang, R. J. H.; Adriaens, A.; Dowsett, M. G.; Adams, F.; Materials Science Division; Univ. Warwick; Ioffe Phys.-Tech. Inst.; Ghent Univ.; Univ. Antwerp

    2007-08-02

    A simple design for a cesium sputter ion source compatible with vacuum and ion-optical systems as well as with electronics of the commercially available Cameca IMS-4f instrument is reported. This ion source has been tested with the cluster primary ions of Si{sub n}{sup -} and Cu{sub n}{sup -}. Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of the analytical capabilities of the secondary ion mass spectrometry instrument due to the nonadditive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ones with the same impact energy.

  18. Ion source for tests of ion behavior in the Karlsruhe tritium neutrino experiment beam line

    SciTech Connect

    Lukic, S.; Bornschein, B.; Drexlin, G.; Glueck, F.; Kazachenko, O.; Zoll, M. C. R.; Schoeppner, M.; Weinheimer, Ch.

    2011-01-15

    An electron-impact ion source based on photoelectron emission was developed for ionization of gases at pressures below 10{sup -4} mbar in an axial magnetic field in the order of 5 T. The ion source applies only dc fields, which makes it suitable for use in the presence of equipment sensitive to radio-frequency (RF) fields. The ion source was successfully tested under varying conditions regarding pressure, magnetic field, and magnetic-field gradient, and the results were studied with the help of simulations. The processes in the ion source are well understood, and possibilities for further optimization of generated ion currents are clarified.

  19. An ion source module for the Beijing Radioactive Ion-beam Facility

    SciTech Connect

    Cui, B. Huang, Q.; Tang, B.; Ma, R.; Chen, L.; Ma, Y.

    2014-02-15

    An ion source module is developed for Beijing Radioactive Ion-beam Facility. The ion source module is designed to meet the requirements of remote handling. The connection and disconnection of the electricity, cooling and vacuum between the module and peripheral units can be executed without on-site manual work. The primary test of the target ion source has been carried out and a Li{sup +} beam has been extracted. Details of the ion source module and its primary test results are described.

  20. Recent developments and upgrades in ion source technology and ion beam systems at HVE

    NASA Astrophysics Data System (ADS)

    Podaru, Nicolae C.; Mous, Dirk J. W.

    2016-03-01

    In this paper we discuss various ion sources used in particle accelerator systems dedicated to ion beam analysis techniques. Key performance and characteristics of some ion sources are discussed: emittance, brightness, gas consumption, sample consumption efficiency, lifetime, etc. For negative ion sources, we focus on the performance of volume H- ion sources (e.g. HVE model 358), the duoplasmatron negative ion source and the magnetically filtered multicusp volume sources (e.g. HVE model SO-120). The duoplasmatron ion source has been recently upgraded with a Ta filament to deliver up to 150 μA H- ion beams and in conjunction with the Na charge exchange canal up to 20 μA of He-. The available brightness from the duoplasmatron increased from 2 to 6 A m-2 rad-2 eV-1. The ion source has been incorporated in a stand-alone light ion injector, well suited to deliver 20-30 keV negative ion beams of H-, He-, C-, NHx- and O- to accelerate for most ion beam analysis techniques.

  1. Commissioning and Operation of the FNAL Front end Injection Line and Ion Sources.

    SciTech Connect

    Karns, Patrick R.

    2015-09-01

    This thesis documents the efforts made in commissioning and operating the RFQ Injection Line (RIL) as a replacement for the Cockcroft Walton front end. The Low Energy Beam Transport (LEBT) was assembled and tested with multiwire position and emittance monitor measurements. The Radio Frequency Quadrupole (RFQ) commissioning was completed with the same measurements as well as output beam energy measurements that showed it initially accelerated beam only to 700 keV, which was 50 keV lower than the design energy. Working with the manufacturer solutions were found and instituted to continue testing. The Medium Energy Beam Transport (MEBT) was then connected as the RIL was installed as the new front end of Linac. Testing gave way to operation when the new front end was used as the source of all High Energy Physics (HEP) beam for Fermi National Accelerator Laboratory (FNAL). The magnetron ion source that provides the H- beam for the front end required several changes and eventual upgrades to operate well; such as new source operating points for vacuum pressure and cesium admixture, and new materials for critical source components. Further research was conducted on the cathode geometry and nitrogen doping of the hydrogen gas as well as using solid state switches for the extractor system high voltage.

  2. Commissioning and operation of the FNAL front end injection line and ion sources

    NASA Astrophysics Data System (ADS)

    Karns, Patrick R.

    This thesis documents the efforts made in commissioning and operating the RFQ Injection Line (RIL) as a replacement for the Cockcroft Walton front end. The Low Energy Beam Transport (LEBT) was assembled and tested with multiwire position and emittance monitor measurements. The Radio Frequency Quadrupole (RFQ) commissioning was completed with the same measurements as well as output beam energy measurements that showed it initially accelerated beam only to 700 keV, which was 50 keV lower than the design energy. Working with the manufacturer solutions were found and instituted to continue testing. The Medium Energy Beam Transport (MEBT) was then connected as the RIL was installed as the new front end of Linac. Testing gave way to operation when the new front end was used as the source of all High Energy Physics (HEP) beam for Fermi National Accelerator Laboratory (FNAL). The magnetron ion source that provides the H- beam for the front end required several changes and eventual upgrades to operate well; such as new source operating points for vacuum pressure and cesium admixture, and new materials for critical source components. Further research was conducted on the cathode geometry and nitrogen doping of the hydrogen gas as well as using solid state switches for the extractor system high voltage.

  3. New versions of sources for nuclear polarized negative ion production

    SciTech Connect

    Dudnikov, V.G.; Shabalin, A.L. ); Wojtsekhowski, B.B. ); Belov, A.S.; Kuzik, V.E.; Plohinsky, Y.V.; Yakushev, V.P. )

    1992-10-05

    Several variants of sources for nuclear polarized negative ion production have been proposed and tested. The simple adaptation of a high intensity polarized proton source for nuclear polarized H[sup [minus

  4. A double-plasma source of continuous bipolar ion-ion beam

    SciTech Connect

    Dudin, S. V.; Rafalskyi, D. V.

    2013-01-21

    A double-plasma source capable of the generation of a continuous bipolar ion-ion beam is described. The quasi-neutral ion-ion flow to an extraction electrode is formed in the system containing primary inductively coupled plasma separated from a secondary plasma by an electrostatic grid-type filter. The total current of each ion species to the 250 mm diameter extraction electrode is about 80 mA; the electron current does not exceed 30% of the ion current. Method of positive/negative ion current ratio control is proposed, allowing the ion currents ratio variation in wide range.

  5. ECR Ion Source Developments at the Oak Ridge National Laboratory

    SciTech Connect

    Alton, G.D.; Liu, Y.; Meyer, F.W.

    1998-10-05

    New techniques for enhancing the performances of electron cyclotron resonance (ECR) ion sources are being investigated at the Oak Ridge National Laboratory. We have utilized the multiple discrete frequency technique to improve the charge state distributions extracted from conventional magnetic field geometry ECR source by injecting three frequencies into the source. A new flat central magnetic field concept, has been incorporated in the designs of a compact all-permanent-magnet source for high charge-state ion beam generation and a compact electromagnetic source for singly ionized radioactive ion beam generation for use in the Holifield Radioactive Ion Beam Facility (HRIBF) research program. A review of the three frequency injection experiments and descriptions of the design aspects of the "volume-type" ECR ion sources will be given in this report.

  6. High-efficiency target-ion sources for RIB generation

    SciTech Connect

    Alton, G.D.

    1993-12-31

    A brief review is given of high-efficiency ion sources which have been developed or are under development at ISOL facilities which show particular promise for use at existing, future, or radioactive ion beam (RIB) facilities now under construction. Emphasis will be placed on those sources which have demonstrated high ionization efficiency, species versatility, and operational reliability and which have been carefully designed for safe handling in the high level radioactivity radiation fields incumbent at such facilities. Brief discussions will also be made of the fundamental processes which affect the realizable beam intensities in target-ion sources. Among the sources which will be reviewed will be selected examples of state-of-the-art electron-beam plasma-type ion sources, thermal-ionization, surface-ionization, ECR, and selectively chosen ion source concepts which show promise for radioactive ion beam generation. A few advanced, chemically selective target-ion sources will be described, such as sources based on the use of laser-resonance ionization, which, in principle, offer a more satisfactory solution to isobaric contamination problems than conventional electromagnetic techniques. Particular attention will be given to the sources which have been selected for initial or future use at the Holifield Radioactive Ion Beam Facility now under construction at the Oak Ridge National Laboratory.

  7. Characterization of an 8-cm Diameter Ion Source System

    NASA Technical Reports Server (NTRS)

    Li, Zhongmin; Hawk, C. W.; Hawk, Clark W.; Buttweiler, Mark S.; Williams, John D.; Buchholtz, Brett

    2005-01-01

    Results of tests characterizing an 8-cm diameter ion source are presented. The tests were conducted in three separate vacuum test facilities at the University of Alabama-Huntsville, Colorado State University, and L3 Communications' ETI division. Standard ion optics tests describing electron backstreaming and total-voltage-limited impingement current behavior as a function of beam current were used as guidelines for selecting operating conditions where more detailed ion beam measurements were performed. The ion beam was profiled using an in-vacuum actuating probe system to determine the total ion current density and the ion charge state distribution variation across the face of the ion source. Both current density and ExB probes were utilized. The ion current density data were used to obtain integrated beam current, beam flatness parameters, and general beam profile shapes. The ExB probe data were used to determine the ratio of doubly to singly charged ion current. The ion beam profile tests were performed at over six different operating points that spanned the expected operating range of the DAWN thrusters being developed at L3. The characterization tests described herein reveal that the 8-cm ion source is suitable for use in (a) validating plasma diagnostic equipment, (b) xenon ion sputtering and etching studies of spacecraft materials, (c) plasma physics research, and (d) the study of ion thruster optics at varying conditions.

  8. New tandem type ion source based on electron cyclotron resonance for universal source of synthesized ion beams

    SciTech Connect

    Kato, Yushi Kurisu, Yosuke; Nozaki, Dai; Yano, Keisuke; Kimura, Daiju; Kumakura, Sho; Imai, Youta; Nishiokada, Takuya; Sato, Fuminobu; Iida, Toshiyuki

    2014-02-15

    A new tandem type source has been constructed on the basis of electron cyclotron resonance (ECR) plasma for producing synthesized ion beams. We investigate feasibility and hope to realize the device which has wide range operation window in a single device to produce many kinds of ion beams based on ECR ion source (ECRIS). It is considered that ECR plasmas are necessary to be available to individual operations with different plasma parameters. Both of analysis of ion beams and investigation of plasma parameters are conducted on produced plasmas. We describe construction of the new tandem type ion source based on ECRIS with wide operation window for aiming at producing synthesized ion beams as this new source can be a universal source.

  9. Low energy spread ion source with a coaxial magnetic filter

    DOEpatents

    Leung, Ka-Ngo; Lee, Yung-Hee Yvette

    2000-01-01

    Multicusp ion sources are capable of producing ions with low axial energy spread which are necessary in applications such as ion projection lithography (IPL) and radioactive ion beam production. The addition of a radially extending magnetic filter consisting of a pair of permanent magnets to the multicusp source reduces the energy spread considerably due to the improvement in the uniformity of the axial plasma potential distribution in the discharge region. A coaxial multicusp ion source designed to further reduce the energy spread utilizes a cylindrical magnetic filter to achieve a more uniform axial plasma potential distribution. The coaxial magnetic filter divides the source chamber into an outer annular discharge region in which the plasma is produced and a coaxial inner ion extraction region into which the ions radially diffuse but from which ionizing electrons are excluded. The energy spread in the coaxial source has been measured to be 0.6 eV. Unlike other ion sources, the coaxial source has the capability of adjusting the radial plasma potential distribution and therefore the transverse ion temperature (or beam emittance).

  10. Electron energy recovery system for negative ion sources

    DOEpatents

    Dagenhart, W.K.; Stirling, W.L.

    1979-10-25

    An electron energy recovery system for negative ion sources is provided. The system, employing crossed electric and magnetic fields, separates the electrons from the ions as they are extracted from the ion source plasma generator and before the ions are accelerated to their full energy. With the electric and magnetic fields oriented 90/sup 0/ to each other, the electrons remain at approximately the electrical potential at which they were generated. The electromagnetic forces cause the ions to be accelerated to the full accelerating supply voltage energy while being deflected through an angle of less than 90/sup 0/. The electrons precess out of the accelerating field region into an electron recovery region where they are collected at a small fraction of the full accelerating supply energy. It is possible, by this method, to collect > 90% of the electrons extracted along with the negative ions from a negative ion source beam at < 4% of full energy.

  11. Verification of high efficient broad beam cold cathode ion source

    NASA Astrophysics Data System (ADS)

    Abdel Reheem, A. M.; Ahmed, M. M.; Abdelhamid, M. M.; Ashour, A. H.

    2016-08-01

    An improved form of cold cathode ion source has been designed and constructed. It consists of stainless steel hollow cylinder anode and stainless steel cathode disc, which are separated by a Teflon flange. The electrical discharge and output characteristics have been measured at different pressures using argon, nitrogen, and oxygen gases. The ion exit aperture shape and optimum distance between ion collector plate and cathode disc are studied. The stable discharge current and maximum output ion beam current have been obtained using grid exit aperture. It was found that the optimum distance between ion collector plate and ion exit aperture is equal to 6.25 cm. The cold cathode ion source is used to deposit aluminum coating layer on AZ31 magnesium alloy using argon ion beam current which equals 600 μA. Scanning electron microscope and X-ray diffraction techniques used for characterizing samples before and after aluminum deposition.

  12. Verification of high efficient broad beam cold cathode ion source.

    PubMed

    Abdel Reheem, A M; Ahmed, M M; Abdelhamid, M M; Ashour, A H

    2016-08-01

    An improved form of cold cathode ion source has been designed and constructed. It consists of stainless steel hollow cylinder anode and stainless steel cathode disc, which are separated by a Teflon flange. The electrical discharge and output characteristics have been measured at different pressures using argon, nitrogen, and oxygen gases. The ion exit aperture shape and optimum distance between ion collector plate and cathode disc are studied. The stable discharge current and maximum output ion beam current have been obtained using grid exit aperture. It was found that the optimum distance between ion collector plate and ion exit aperture is equal to 6.25 cm. The cold cathode ion source is used to deposit aluminum coating layer on AZ31 magnesium alloy using argon ion beam current which equals 600 μA. Scanning electron microscope and X-ray diffraction techniques used for characterizing samples before and after aluminum deposition. PMID:27587108

  13. Application of a compact microwave ion source to radiocarbon analysis

    SciTech Connect

    Schneider, R. J.; Reden, K. F. von; Hayes, J. M.; Wills, J. S. C.

    1999-04-26

    The compact, high current, 2.45 GHz microwave-driven plasma ion source which was built for the Chalk River TASCC facility is presently being adapted for testing as a gas ion source for accelerator mass spectrometry, at the Woods Hole Oceanographic Institution accelerator mass spectrometer. The special requirements for producing carbon-ion beams from micromole quantities of carbon dioxide produced from environmental samples will be discussed. These samples will be introduced into the ion source by means of argon carrier gas and a silicon capillary injection system. Following the extraction of positive ions from the source, negative ion formation in a charge exchange vapor will effectively remove the argon from the carbon beam. Simultaneous injection of the three carbon isotopes into the accelerator is planned.

  14. Physics research and technology developments of electron string ion sources

    SciTech Connect

    Donets, D. E.; Donets, E. E.; Ramzdorf, A. Yu.; Salnikov, V. V.; Shutov, V. B.; Donets, E. D.; Honma, T.; Noda, K.

    2012-02-15

    The most recent experimental information on electron string phenomenon, such as two step transition to electron string state, stability of e-strings in condition of electron energy recuperation, are described. The new technology developments of electron string ion sources (ESIS) include pulse injection of gaseous species in e-string and its efficient conversion to ion beams, slow ion extraction, ion-ion cooling of heavy ions with CH{sub 4} coolant, and a progress in the construction of the new Joint Institute for Nuclear Research ESIS with 6 T solenoid are briefly considered.

  15. Review on heavy ion radiotherapy facilities and related ion sources (invited)

    SciTech Connect

    Kitagawa, A.; Fujita, T.; Muramatsu, M.; Biri, S.

    2010-02-15

    Heavy ion radiotherapy awakens worldwide interest recently. The clinical results obtained by the Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences in Japan have clearly demonstrated the advantages of carbon ion radiotherapy. Presently, there are four facilities for heavy ion radiotherapy in operation, and several new facilities are under construction or being planned. The most common requests for ion sources are a long lifetime and good stability and reproducibility. Sufficient intensity has been achieved by electron cyclotron resonance ion sources at the present facilities.

  16. Arc modulator for the TFTR neutral-beam ion source--

    SciTech Connect

    Dawson, F.P.; Dewan, S.B. )

    1990-02-01

    Power-conditioning systems are being increasingly used to provide specialized protection capabilities. This paper discusses the protection of the tokomak fusion reactor neutral-beam ion source, located at the Princeton Plasma Physics Laboratory. The system design is based on thee operational protection requirements. The protection requirements include provisions for ion-source current pulse matching, ion-source fault current extinction, and metallic fault current extinction. A power circuit configuration satisfying these requirements is illustrated and briefly described. Simplified analytical expressions relating the protection requirements to the circuit parameters are developed. The circuit configuration is implemented using SCR's. Testing and operational verification of the circuit implementation has been conducted. The side effects observed include ion-source current overshoot and the existence of a negative ion source current. Modifications to counteract these side effects are briefly described.

  17. Design and construction of four-hole ECR ion source

    NASA Astrophysics Data System (ADS)

    Kashiwagi, H.; Hattori, T.; Okamura, M.; Takahashi, Y.; Hata, T.; Yamamoto, K.; Okada, S.; Sugita, T.

    2002-02-01

    When a large current is accelerated, many radio frequency quadrupole (RFQ) LINAC are needed, because the acceleration limit of a RFQ LINAC is 20 mA-30 mA. Therefore the same number of ion source are needed. But the limit is not the current limit of ion source. If the RFQ LINAC has many RFQ channels, it can accelerate large currents. We designed an accelerator with four RFQ channels to prove this principle. An ion source which extracts four equal beams from one chamber is needed for this RFQ LINAC. A four-hole ECR ion source was designed and manufactured after calculating the magnetic fields by OPERA, and simulating beam trajectory using the program FUGUN. In this ion source, since four extraction holes are located off axis by about 50 mm, the beam is deflected. We calculated this deviation.

  18. Production of C58 and C56 Ions by Using Electron Cyclotron Resonance Ion Source

    NASA Astrophysics Data System (ADS)

    Tanaka, Kiyokatsu; Uchida, Takashi; Minezaki, Hidekazu; Muramatsu, Masayuki; Biri, Sandor; Asaji, Toyohisa; Shima, Kazushi; Kitagawa, Atsushi; Kato, Yushi; Yoshida, Yoshikazu

    An electron cyclotron resonance ion source (ECRIS) has been developed for a synthesis of endohedral metallofullerenes. The ECRIS has a traditional minimum-B magnetic field and an 8-10 GHz traveling wave tube (TWT) amplifier as a microwave source. C60 plasmas have been generated at the first experiment. Many broken fullerenes C58 and C56 are observed in fullerene ion beams. We investigated the fullerene ion beams against pressures in the ion source. From the results, these fullerene ion currents increase as the decrease of the pressure and the maximum current is 0.81 μA of C602+.

  19. Small radio frequency driven multicusp ion source for positive hydrogen ion beam production

    SciTech Connect

    Perkins, L.T.; Herz, P.R.; Leung, K.N.; Pickard, D.S. )

    1994-04-01

    A compact, 2.5 cm diam rf-driven multicusp ion source has been developed and tested for H[sup +] ion production in pulse mode operation. The source is optimized for atomic hydrogen ion species and extractable current. It is found that hydrogen ion beam current densities in excess of 650 mA/cm[sup 2] can be achieved with H[sup +] species above 80%. The geometry and position of the porcelain-coated copper antenna were found to be of great significance in relation to the efficiency of the ion source.

  20. Preparation of diamond-like carbon films using reactive Ar/CH4 high power impulse magnetron sputtering system with negative pulse voltage source for substrate

    NASA Astrophysics Data System (ADS)

    Kimura, Takashi; Kamata, Hikaru

    2016-04-01

    Diamond-like carbon films were prepared using a reactive Ar/CH4 high-power impulse magnetron sputtering system with a negative pulse voltage source for the substrate, changing the CH4 fraction up to 15% in the total pressure range from 0.3 to 2 Pa. The magnitude of the negative pulse voltage for the substrate was also varied up to about 500 V. The hardness of films monotonically increased with increasing magnitude of the negative pulse voltage. The films with hardnesses between 16.5 and 23 GPa were prepared at total pressures less than 0.5 Pa and CH4 fractions less than 10% by applying an appropriate negative pulse voltage of 300-400 V. In X-ray photoelectron spectroscopy, the area ratio C-C sp3/(C-C sp2 + C-C sp3) in the C 1s core level was higher than 30% at pressures less than 0.5 Pa and CH4 fractions less than 15%. On the other hand, the films with hardnesses between 5 and 10 GPa were prepared with a relatively high growth rate at the partial pressures of CH4 higher than 0.1 Pa. However, the observation of the photoluminescence background in Raman spectroscopy indicated a relatively high hydrogen content.

  1. Numerical simulation of oscillating magnetrons

    NASA Astrophysics Data System (ADS)

    Palevsky, A.; Bekefi, G.; Drobot, A. T.

    1981-08-01

    The temporal evolution of the current, voltage, and RF fields in magnetron-type devices is simulated by a two-dimensional, electromagnetic, fully relativistic particle-in-cell code. The simulation allows for the complete geometry of the anode vane structure, space-charge-limited cathode emission and the external power source, and is applied to a 54-vane inverted relativistic magnetron at a voltage of 300 kV and a magnetic field of 0.17 T. Fields in the RF structure and the anode-cathode gap are solved from Maxwell's equations so that results contain all the two-dimensional resonances of the system, and the numerical solution yields a complete space-time history of the particle momenta. In the presence of strong RF fields, the conventional definition of voltages is found to be inappropriate, and a definition is developed to reduce to the conventional results.

  2. Pantechnik new superconducting ion source: PantechniK Indian Superconducting Ion Source

    SciTech Connect

    Gaubert, G.; Bieth, C.; Bougy, W.; Brionne, N.; Donzel, X.; Leroy, R.; Sineau, A.; Vallerand, C.; Villari, A. C. C.; Thuillier, T.

    2012-02-15

    The new ECR ion source PantechniK Indian Superconducting Ion Source (PKISIS) was recently commissioned at Pantechnik. Three superconducting coils generate the axial magnetic field configuration, while the radial magnetic field is done with the multi-layer permanent magnets. Special care was devoted to the design of the hexapolar structure, allowing a maximum magnetic field of 1.32 T at the wall of the 82 mm diameter plasma chamber. The three superconducting coils using low temperature superconducting wires are cooled by a single double stage cryo-cooler (4.2 K). Cryogen-free technology is used, providing reliability and easy maintenance at low cost. The maximum installed RF power (18.0 GHz) is of 2 kW. Metallic beams can be produced with an oven (T{sub max}= 1400 deg. C) installed with an angle of 5 deg. with respect to the source axis or a sputtering system, mounted on the axis of the source. The beam extraction system is constituted of three electrodes in accel-decel configuration. The new source of Pantechnik is conceived for reaching optimum performances at 18 GHz RF frequencies. PKISIS magnetic fields are 2.1 T axial B{sub inj} and 1.32 T radial field in the wall, variable B{sub min} with an independent coil and a large and opened extraction region. Moreover, PKISIS integrates modern design concepts, like RF direct injection (2 kW availability), dc-bias moving disk, out-of-axis oven and axial sputtering facility for metal beams. Finally, PKISIS is also conceived in order to operate in a high-voltage platform with minor power consumption.

  3. Molecular and negative ion production by a standard electron cyclotron resonance ion source

    SciTech Connect

    Racz, R.; Biri, S.; Juhasz, Z.; Sulik, B.

    2012-02-15

    Molecular and negative ion beams, usually produced in special ion sources, play an increasingly important role in fundamental and applied atomic physics. The ATOMKI-ECRIS is a standard ECR ion source, designed to provide highly charged ion (HCI) plasmas and beams. In the present work, H{sup -}, O{sup -}, OH{sup -}, O{sub 2}{sup -}, C{sup -}, C{sub 60}{sup -} negative ions and H{sub 2}{sup +}, H{sub 3}{sup +}, OH{sup +}, H{sub 2}O{sup +}, H{sub 3}O{sup +}, O{sub 2}{sup +} positive molecular ions were generated in this HCI-ECRIS. Without any major modification in the source and without any commonly applied tricks (such as usage of cesium or magnetic filter), negative ion beams of several {mu}A and positive molecular ion beams in the mA range were successfully obtained.

  4. Some plasma aspects and plasma diagnostics of ion sources (invited)

    SciTech Connect

    Wiesemann, Klaus

    2008-02-15

    We consider plasma properties in the most advanced type of plasma ion sources, electron cyclotron resonance ion sources for highly charged ions. Depending on the operation conditions the plasma in these sources may be highly ionized, which completely changes its transport properties. The most striking difference to weakly ionized plasma is that diffusion will become intrinsically ambipolar. We further discuss means of plasma diagnostics. As noninvasive diagnostic methods we will discuss analysis of the ion beam, optical spectroscopy, and measurement of the x-ray bremsstrahlung continuum. From beam analysis and optical spectroscopy one may deduce ion densities, and electron densities and distribution functions as a mean over the line of sight along the axis (optical spectroscopy) or at the plasma edge (ion beam). From x-ray spectra one obtains information about the population of highly energetic electrons and the energy transfer from the driving electromagnetic waves to the plasma--basic data for plasma modeling.

  5. Some plasma aspects and plasma diagnostics of ion sources.

    PubMed

    Wiesemann, Klaus

    2008-02-01

    We consider plasma properties in the most advanced type of plasma ion sources, electron cyclotron resonance ion sources for highly charged ions. Depending on the operation conditions the plasma in these sources may be highly ionized, which completely changes its transport properties. The most striking difference to weakly ionized plasma is that diffusion will become intrinsically ambipolar. We further discuss means of plasma diagnostics. As noninvasive diagnostic methods we will discuss analysis of the ion beam, optical spectroscopy, and measurement of the x-ray bremsstrahlung continuum. From beam analysis and optical spectroscopy one may deduce ion densities, and electron densities and distribution functions as a mean over the line of sight along the axis (optical spectroscopy) or at the plasma edge (ion beam). From x-ray spectra one obtains information about the population of highly energetic electrons and the energy transfer from the driving electromagnetic waves to the plasma -- basic data for plasma modeling.

  6. Status of ion sources at National Institute of Radiological Sciences.

    PubMed

    Kitagawa, A; Fujita, T; Goto, A; Hattori, T; Hamano, T; Hojo, S; Honma, T; Imaseki, H; Katagiri, K; Muramatsu, M; Sakamoto, Y; Sekiguchi, M; Suda, M; Sugiura, A; Suya, N

    2012-02-01

    The National Institute of Radiological Sciences (NIRS) maintains various ion accelerators in order to study the effects of radiation of the human body and medical uses of radiation. Two electrostatic tandem accelerators and three cyclotrons delivered by commercial companies have offered various life science tools; these include proton-induced x-ray emission analysis (PIXE), micro beam irradiation, neutron exposure, and radioisotope tracers and probes. A duoplasmatron, a multicusp ion source, a penning ion source (PIG), and an electron cyclotron resonance ion source (ECRIS) are in operation for these purposes. The Heavy-Ion Medical Accelerator in Chiba (HIMAC) is an accelerator complex for heavy-ion radiotherapy, fully developed by NIRS. HIMAC is utilized not only for daily treatment with the carbon beam but also for fundamental experiments. Several ECRISs and a PIG at HIMAC satisfy various research and clinical requirements.

  7. Sources and Losses of Ring Current Ions

    NASA Technical Reports Server (NTRS)

    Chen, Sheng-Hsien; Fok, Mei-Ching H.; Angeloupoulos, Vassilis

    2010-01-01

    During geomagnetic quiet times, in-situ measurements of ring current energetic ions (few to few tens of keVs) from THEMIS spacecraft often exhibit multiple ion populations at discrete energies that extend from the inner magnetosphere to the magnetopause at dayside or plasma sheet at nightside. During geomagnetic storm times, the levels of fluxes as well as the mean energies of these ions elevated dramatically and the more smooth distributions in energies and distances during quiet times are disrupted into clusters of ion populations with more confined spatial extends. This reveals local plasma heating processes that might have come into play. Several processes have been proposed. Magnetotail dipolarization, sudden enhancement of field-aligned current, local current disruptions, and plasma waves are possible mechanisms to heat the ions locally as well as strong convections of energetic ions directly from the magnetotail due to reconnections. We will examine two geomagnetic storms on October 11, 2008 and July 22, 2009 to reveal possible heating mechanisms. We will analyze in-situ plasma and magnetic field measurements from THEMIS, GOES, and DMSP for the events to study the ion pitch angle distributions and magnetic field perturbations in the auroral ionosphere and inner magnetosphere where the plasma heating processes occur.

  8. Caesium sputter ion source compatible with commercial SIMS instruments.

    SciTech Connect

    Belykh, S. F.; Palitsin, V. V.; Veryovkin, I. V.; Kovarsky, A. P.; Chang, R. J. H.; Adriaens, A.; Dowsett, M. G.; Adams, F.; Materials Science Division; Univ. Warwick; Ioffe Physical-Technical Inst.; Ghent Univ.; Univ. Antwerp

    2006-01-01

    A simple design for a caesium sputter cluster ion source compatible with commercially available secondary ion mass spectrometers is reported. This source has been tested with the Cameca IMS 4f instrument using the cluster Si{sub n}{sup -} and Cu{sub n}{sup -} ions, and will shortly be retrofitted to the floating low energy ion gun (FLIG) of the type used on the Cameca 4500/4550 quadruple instruments. Our experiments with surface characterization and depth profiling conducted to date demonstrate improvements of analytical capabilities of the SIMS instrument due to the non-additive enhancement of secondary ion emission and shorter ion ranges of polyatomic projectiles compared to atomic ions with the same impact energy.

  9. Expansion Discharge Source for Ion Beam Laser Spectroscopy of Cold Molecular Ions

    NASA Astrophysics Data System (ADS)

    Porambo, Michael; Pearson, Jessica; Riccardo, Craig; McCall, Benjamin J.

    2013-06-01

    Molecular ions are important in several fields of research, and spectroscopy acts as a key tool in the study of these ions. However, problems such as low ion abundance, ion-neutral confusion, and spectral congestion due to high internal temperatures can hinder effective spectroscopic studies. To circumvent these problems, we are developing a technique called Sensitive, Cooled, Resolved, Ion BEam Spectroscopy (SCRIBES). This ion beam spectrometer will feature a continuous supersonic expansion discharge source to produce cold molecular ions, electrostatic ion optics to focus the ions into an ion beam and bend the beam away from co-produced neutral molecules, an overlap region for cavity enhanced spectroscopy, and a time-of-flight mass spectrometer. When completed, SCRIBES will be an effective tool for the study of large, fluxional, and complex molecular ions that are difficult to study with other means. The ion beam spectrometer has been successfully implemented with a hot ion source. This talk will focus on the work of integrating a supersonic expansion discharge source into the instrument. To better understand how the source would work in the whole ion beam instrument, characterization studies are being performed with spectroscopy of HN_2^+ in a section of the system to ascertain the rotational temperature of the ion expansion. Attempts are also underway to measure the ion current from a beam formed from the expansion. Once the source in this environment is properly understood, we will reintegrate it to the rest of the ion beam system, completing SCRIBES. A. A. Mills, B. M. Siller, M. W. Porambo, M. Perera, H. Kreckel and B. J. McCall J. Chem. Phys., 135, 224201, (2011). K. N. Crabtree, C. A. Kauffman and B. J. McCall Rev. Sci. Instrum. 81, 086103, (2010).

  10. Ion sources for initial use at the Holifield Radioactive Ion Beam Facility

    SciTech Connect

    Alton, G.D.

    1993-12-31

    The Holifield Radioactive Ion Beam Facility (HRIBF) now under construction at the Oak Ridge National Laboratory will use the 25-MV tandem accelerator for the acceleration of radioactive ion beams to energies appropriate for research in nuclear physics; negative ion beams are, therefore, required for injection into the tandem accelerator. Because charge exchange is an efficient means for converting initially positive ion beams to negative ion beams, both positive and negative ion sources are viable options for use at the facility; the choice of the type of ion source will depend on the overall efficiency for generating the radioactive species of interest. A high-temperature version of the CERN-ISOLDE positive ion source has been selected and a modified version of the source designed and fabricated for initial use at the HRIBF because of its low emittance, relatively high ionization efficiencies and species versatility, and because it has been engineered for remote installation, removal and servicing as required for safe handling in a high-radiation-level ISOL facility. Prototype plasma-sputter negative ion sources and negative surface-ionization sources are also under design consideration for generating negative radioactive ion beams from high-electron-affinity elements. The design features of these sources and expected efficiencies and beam qualities (emittances) will be described in this report.

  11. Liquid metal ion source and alloy for ion emission of multiple ionic species

    DOEpatents

    Clark, Jr., William M.; Utlaut, Mark W.; Wysocki, Joseph A.; Storms, Edmund K.; Szklarz, Eugene G.; Behrens, Robert G.; Swanson, Lynwood W.; Bell, Anthony E.

    1987-06-02

    A liquid metal ion source and alloy for the simultaneous ion evaporation of arsenic and boron, arsenic and phosphorus, or arsenic, boron and phosphorus. The ionic species to be evaporated are contained in palladium-arsenic-boron and palladium-arsenic-boron-phosphorus alloys. The ion source, including an emitter means such as a needle emitter and a source means such as U-shaped heater element, is preferably constructed of rhenium and tungsten, both of which are readily fabricated. The ion sources emit continuous beams of ions having sufficiently high currents of the desired species to be useful in ion implantation of semiconductor wafers for preparing integrated circuit devices. The sources are stable in operation, experience little corrosion during operation, and have long operating lifetimes.

  12. ECR (electron cyclotron resonance) ion sources and applications with heavy-ion linacs

    SciTech Connect

    Pardo, R.C.

    1990-01-01

    The electron cyclotron resonance (ECR) ion source has been developed in the last few years into a reliable source of high charge-state heavy ions. The availability of heavy ions with relatively large charge-to-mass ratios (0.1--0.5) has made it possible to contemplate essentially new classes of heavy-ion linear accelerators. In this talk, I shall review the state-of-the-art in ECR source performance and describe some of the implications this performance level has for heavy-ion linear accelerator design. The present linear accelerator projects using ECR ion sources will be noted and the performance requirements of the ECR source for these projects will be reviewed. 30 refs., 3 figs.

  13. High brilliance negative ion and neutral beam source

    DOEpatents

    Compton, Robert N.

    1991-01-01

    A high brilliance mass selected (Z-selected) negative ion and neutral beam source having good energy resolution. The source is based upon laser resonance ionization of atoms or molecules in a small gaseous medium followed by charge exchange through an alkali oven. The source is capable of producing microampere beams of an extremely wide variety of negative ions, and milliampere beams when operated in the pulsed mode.

  14. ECR (Electron Cyclotron Resonance) ion sources for cyclotrons

    SciTech Connect

    Lyneis, C.M.

    1986-10-01

    In the last decade ECR (Electron Cyclotron Resonance) ion sources have evolved from a single large, power consuming, complex prototype into a variety of compact, simple, reliable, efficient, high performance sources of high charge state ions for accelerators and atomic physics. The coupling of ECR sources to cyclotrons has resulted in significant performance gains in energy, intensity, reliability, and variety of ion species. Seven ECR sources are in regular operation with cyclotrons and numerous other projects are under development or in the planning stag. At least four laboratories have ECR sources dedicated for atomic physics research and other atomic physics programs share ECR sources with cyclotrons. An ECR source is now installed on the injector for the CERN SPS synchrotron to accelerate O/sup 8 +/ to relativistic energies. A project is underway at Argonne to couple an ECR source to a superconducting heavy-ion linac. Although tremendous progress has been made, the field of ECR sources is still a relatively young technology and there is still the potential for further advances both in source development and understanding of the plasma physics. The development of ECR sources is reviewed. The important physics mechanisms which come into play in the operation of ECR Sources are discussed, along with various models for charge state distributions (CSD). The design and performance of several ECR sources are compared. The 88-Inch Cyclotron and the LBL ECR is used as an example of cyclotron+ECR operation. The future of ECR sources is considered.

  15. Negative hydrogen ion source for TOKAMAK neutral beam injector (invited)

    NASA Astrophysics Data System (ADS)

    Okumura, Y.; Fujiwara, Y.; Kashiwagi, M.; Kitagawa, T.; Miyamoto, K.; Morishita, T.; Hanada, M.; Takayanagi, T.; Taniguchi, M.; Watanabe, K.

    2000-02-01

    Intense negative ion source producing multimegawatt hydrogen/deuterium negative ion beams has been developed for the neutral beam injector (NBI) in TOKAMAK thermonuclear fusion machines. Negative ions are produced in a cesium seeded multi-cusp plasma generator via volume and surface processes, and accelerated with a multistage electrostatic accelerator. The negative ion source for JT-60U has produced 18.5 A/360 keV (6.7 MW) H- and 14.3 A/380 keV (5.4 MW) D- ion beams at average current densities of 11 mA/cm2 (H-) and 8.5 mA/cm2 (D-). A high energy negative ion source has been developed for the next generation TOKAMAK such as the International Thermonuclear Experimental Reactor (ITER). The source has demonstrated to accelerate negative ions up to 1 MeV, the energy required for ITER. Higher negative ion current density of more than 20 mA/cm2 was obtained in the ITER concept sources. It was confirmed that the consumption rate of cesium is small enough to operate the source for a half year in ITER-NBI without maintenance.

  16. Ion source issues for the DAEδALUS neutrino experiment

    SciTech Connect

    Alonso, Jose R. Barletta, William A.; Toups, Matthew H.; Conrad, Janet; Liu, Y.; Bannister, Mark E.; Havener, C. C.; Vane, Randy

    2014-02-15

    The DAEδALUS experiment calls for 10 mA of protons at 800 MeV on a neutrino-producing target. To achieve this record-setting current from a cyclotron system, H{sub 2}{sup +} ions will be accelerated. Loosely bound vibrationally excited H{sub 2}{sup +} ions inevitably produced in conventional ion sources will be Lorentz stripped at the highest energies. Presence of these states was confirmed at the Oak Ridge National Laboratory and strategies were investigated to quench them, leading to a proposed R and D effort towards a suitable ion source for these high-power cyclotrons.

  17. Ion source and injection line for high intensity medical cyclotron

    SciTech Connect

    Jia, XianLu Guan, Fengping; Yao, Hongjuan; Zhang, TianJue; Yang, Jianjun; Song, Guofang; Ge, Tao; Qin, Jiuchang

    2014-02-15

    A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H− ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H− ion source (CIAE-CH-I type) and a short injection line, which the H− ion source of 3 mA/25 keV H− beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from the extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.

  18. Ion source and injection line for high intensity medical cyclotron

    NASA Astrophysics Data System (ADS)

    Jia, XianLu; Guan, Fengping; Yao, Hongjuan; Zhang, TianJue; Yang, Jianjun; Song, Guofang; Ge, Tao; Qin, Jiuchang

    2014-02-01

    A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H- ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H- ion source (CIAE-CH-I type) and a short injection line, which the H- ion source of 3 mA/25 keV H- beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from the extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.

  19. Electric Potential Near The Extraction Region In Negative Ion Sources With Surface Produced Negative Ions

    SciTech Connect

    Fukano, A.; Hatayama, A.

    2011-09-26

    The potential distribution near the extraction region in negative ion sources for the plasma with the surface produced negative ions is studied analytically. The potential is derived analytically by using a plasma-sheath equation, where negative ions produced on the Plasma Grid (PG) surface are considered in addition to positive ions and electrons. A negative potential peak is formed in the sheath region near the PG surface for the case of strong surface production of negative ions or for low energy negative ions. Negative ions are reflected by the negative potential peak near the PG and returned to the PG surface. This reflection mechanism by the negative potential peak possibly becomes a factor in negative ion extraction. It is also indicated that the potential difference between the plasma region and the wall decreases by the surface produced negative ions. This also has the possibility to contribute to the negative ion extraction.

  20. A vacuum spark ion source: High charge state metal ion beams

    NASA Astrophysics Data System (ADS)

    Yushkov, G. Yu.; Nikolaev, A. G.; Oks, E. M.; Frolova, V. P.

    2016-02-01

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.

  1. Possible source of intermediate ions over marine environment.

    PubMed

    Pawar, Sunil D; Gopalakrishnan, V

    2012-01-01

    Measurements of small, intermediate and large ions made onboard ORV Sagarkanya over the Arabian Sea in May-June 2003 during Arabian Sea Monsoon Experiment (ARMEX) are reported here. The daily averaged values of small-, intermediate-, and large-ion concentrations measured for 36 days during this cruise have been used for analysis. The analysis shows a weak positive correlation of 0.14 between intermediate- and large-ion concentrations, which indicates that the sources of these two types of ions are different over ocean surface. The negative correlation is observed between small- and intermediate-ion concentration for entire period of cruise. In addition, it is seen that the intermediate-ion concentration shows a very good (r = 0.58) and significant positive correlation with sea surface pressure. Based on good negative correlation between small- and intermediate-ion concentrations and good positive correlation between intermediate-ion concentration and sea surface pressure, it has been proposed that attachment of small ions to the ultrafine particles transported from upper troposphere to marine boundary layer is the main source of intermediate ions over ocean surface. This study supports the idea that the main source of ultrafine particles over marine boundary layer (MBL) is entrainment of aerosol particles from the free troposphere. PMID:22701357

  2. Possible source of intermediate ions over marine environment.

    PubMed

    Pawar, Sunil D; Gopalakrishnan, V

    2012-01-01

    Measurements of small, intermediate and large ions made onboard ORV Sagarkanya over the Arabian Sea in May-June 2003 during Arabian Sea Monsoon Experiment (ARMEX) are reported here. The daily averaged values of small-, intermediate-, and large-ion concentrations measured for 36 days during this cruise have been used for analysis. The analysis shows a weak positive correlation of 0.14 between intermediate- and large-ion concentrations, which indicates that the sources of these two types of ions are different over ocean surface. The negative correlation is observed between small- and intermediate-ion concentration for entire period of cruise. In addition, it is seen that the intermediate-ion concentration shows a very good (r = 0.58) and significant positive correlation with sea surface pressure. Based on good negative correlation between small- and intermediate-ion concentrations and good positive correlation between intermediate-ion concentration and sea surface pressure, it has been proposed that attachment of small ions to the ultrafine particles transported from upper troposphere to marine boundary layer is the main source of intermediate ions over ocean surface. This study supports the idea that the main source of ultrafine particles over marine boundary layer (MBL) is entrainment of aerosol particles from the free troposphere.

  3. Polarized 3He− ion source with hyperfine state selection

    SciTech Connect

    Dudnikov, V.; Morozov, Vasiliy; Dudnikov, A.

    2015-04-01

    High beam polarization is essential to the scientific productivity of a collider. Polarized 3He ions are an essential part of the nuclear physics programs at existing and future ion-ion and electron-ion colliders such as BNL's RHIC and eRHIC and JLab's ELIC. Ion sources with performance exceeding that achieved today are a key requirement for the development of these next generation high-luminosity high-polarization colliders. The development of high-intensity high-brightness arc-discharge ion sources at the Budker Institute of Nuclear Physics (BINP) has opened up an opportunity for realization of a new type of a polarized 3He− ion source. This report discusses a polarized 3He− ion source based on the large difference of extra-electron auto-detachment lifetimes of the different 3He− ion hyperfine states. The highest momentum state of 5/2 has the largest lifetime of τ ∼ 350 µs while the lower momentum states have lifetimes of τ ~ 10 µs. By producing 3He− ion beam composed of only the |5/2, ±5/2> hyperfine states and then quenching one of the states by an RF resonant field, 3He− beam polarization of 90% can be achieved. Such a method of polarized 3He− production has been considered before; however, due to low intensities of the He+ ion sources existing at that time, it was not possible to produce any interesting intensity of polarized 3He− ions. The high-brightness arc-discharge ion source developed at BINP can produce a high-brightness 3He+ beam with an intensity of up to 2 A allowing for selection of up to ∼1-4 mA of 3He− ions with ∼90% polarization. The high gas efficiency of an arc-discharge source is important due to the high cost of 3He gas. Some features of such a PIS as well as prototype designs are considered. An integrated 3He− ion source design providing high beam polarization could be prepared using existing BNL equipment with incorporation of new designs of the 1) arc discharge plasma generator, 2) extraction system, 3) charge

  4. Polarized 3He- ion source with hyperfine state selection

    NASA Astrophysics Data System (ADS)

    Dudnikov, V.; Morozov, V.; Dudnikov, A.

    2015-04-01

    High beam polarization is essential to the scientific productivity of a collider. Polarized 3He ions are an essential part of the nuclear physics programs at existing and future ion-ion and electron-ion colliders such as BNL's RHIC and eRHIC and JLab's ELIC. Ion sources with performance exceeding that achieved today are a key requirement for the development of these next generation high-luminosity high-polarization colliders. The development of high-intensity high-brightness arc-discharge ion sources at the Budker Institute of Nuclear Physics (BINP) has opened up an opportunity for realization of a new type of a polarized 3He- ion source. This report discusses a polarized 3He- ion source based on the large difference of extra-electron auto-detachment lifetimes of the different 3He- ion hyperfine states. The highest momentum state of 5/2 has the largest lifetime of τ ˜ 350 µs while the lower momentum states have lifetimes of τ ~ 10 µs. By producing 3He- ion beam composed of only the |5/2, ±5/2> hyperfine states and then quenching one of the states by an RF resonant field, 3He- beam polarization of 90% can be achieved. Such a method of polarized 3He- production has been considered before; however, due to low intensities of the He+ ion sources existing at that time, it was not possible to produce any interesting intensity of polarized 3He- ions. The high-brightness arc-discharge ion source developed at BINP can produce a high-brightness 3He+ beam with an intensity of up to 2 A allowing for selection of up to ˜1-4 mA of 3He- ions with ˜90% polarization. The high gas efficiency of an arc-discharge source is important due to the high cost of 3He gas. Some features of such a PIS as well as prototype designs are considered. An integrated 3He- ion source design providing high beam polarization could be prepared using existing BNL equipment with incorporation of new designs of the 1) arc discharge plasma generator, 2) extraction system, 3) charge exchange jet, and 4

  5. The influence of electrospray ion source design on matrix effects.

    PubMed

    Stahnke, Helen; Kittlaus, Stefan; Kempe, Günther; Hemmerling, Christlieb; Alder, Lutz

    2012-07-01

    This study investigates to which extent the design of electrospray ion sources influences the susceptibility to matrix effects (MEs) in liquid chromatography-tandem mass spectrometry (LC-MS/MS). For this purpose, MEs were measured under comparable conditions (identical sample extracts, identical LC column, same chromatographic method and always positive ion mode) on four LC-MS/MS instrument platforms. The instruments were combined with five electrospray ion sources, viz. Turbo Ion Spray, Turbo V(TM) Source, Standard ESI, Jet Stream ESI and Standard Z-Spray Source. The comparison of MEs could be made at all retention times because the method of permanent postcolumn infusion was applied. The MEs ascertained for 45 pesticides showed for each electrospray ion source the same pattern, i.e. the same number of characteristic signal suppressions at equivalent retention times in the chromatogram. The Turbo Ion Spray (off-axis geometry), Turbo V(TM) Source (orthogonal geometry) and the Standard Z-Spray Source (double orthogonal geometry) did not differ much in their susceptibility to MEs. The Jet Stream ESI (orthogonal geometry) reaches a higher sensitivity by an additional heated sheath gas, but suffers at the same time from significantly stronger signal suppressions than the comparable Standard ESI (orthogonal geometry) without sheath gas. No relation between source geometry and extent of signal suppression was found in this study.

  6. Vacuum Arc Ion Sources: Recent Developments and Applications

    SciTech Connect

    Brown, Ian; Oks, Efim

    2005-05-01

    The vacuum arc ion source has evolved over the past twenty years into a standard laboratory tool for the production of high current beams of metal ions, and is now used in a number of different embodiments at many laboratories around the world. The primary application of this kind of source has evolved to be ion implantation for material surface modification. Another important use is for injection of high current beams of heavy metal ions into the front ends of particle accelerators, and much excellent work has been carried out in recent years in optimizing the source for reliable accelerator application. The source also provides a valuable tool for the investigation of the fundamental plasma physics of vacuum arc plasma discharges. As the use of the source has grown and diversified, at the same time the ion source performance and operational characteristics have been improved in a variety of different ways also. Here we review the growth and status of vacuum arc ion sources around the world, and summarize some of the applications for which the sources have been used.

  7. Means for obtaining a metal ion beam from a heavy-ion cyclotron source

    DOEpatents

    Hudson, E.D.; Mallory, M.L.

    1975-08-01

    A description is given of a modification to a cyclotron ion source used in producing a high intensity metal ion beam. A small amount of an inert support gas maintains the usual plasma arc, except that it is necessary for the support gas to have a heavy mass, e.g., xenon or krypton as opposed to neon. A plate, fabricated from the metal (or anything that can be sputtered) to be ionized, is mounted on the back wall of the ion source arc chamber and is bombarded by returning energetic low-charged gas ions that fail to cross the initial accelerating gap between the ion source and the accelerating electrode. Some of the atoms that are dislodged from the plate by the returning gas ions become ionized and are extracted as a useful beam of heavy ions. (auth)

  8. An ion guide laser ion source for isobar-suppressed rare isotope beams

    SciTech Connect

    Raeder, Sebastian Ames, Friedhelm; Bishop, Daryl; Bricault, Pierre; Kunz, Peter; Mjøs, Anders; Heggen, Henning; Lassen, Jens Teigelhöfer, Andrea

    2014-03-15

    Modern experiments at isotope separator on-line (ISOL) facilities like ISAC at TRIUMF often depend critically on the purity of the delivered rare isotope beams. Therefore, highly selective ion sources are essential. This article presents the development and successful on-line operation of an ion guide laser ion source (IG-LIS) for the production of ion beams free of isobaric contamination. Thermionic ions from the hot ISOL target are suppressed by an electrostatic potential barrier, while neutral radio nuclides effusing out are resonantly ionized by laser radiation within a quadrupole ion guide behind this barrier. The IG-LIS was developed through detailed thermal and ion optics simulation studies and off-line tests with stable isotopes. In a first on-line run with a SiC target a suppression of surface-ionized Na contaminants in the ion beam of up to six orders of magnitude was demonstrated.

  9. Electron beam ion source and electron beam ion trap (invited)a)

    NASA Astrophysics Data System (ADS)

    Becker, Reinard; Kester, Oliver

    2010-02-01

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not "sorcery" but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  10. Ion current detector for high pressure ion sources for monitoring separations

    DOEpatents

    Smith, Richard D.; Wahl, Jon H.; Hofstadler, Steven A.

    1996-01-01

    The present invention relates generally to any application involving the monitoring of signal arising from ions produced by electrospray or other high pressure (>100 torr) ion sources. The present invention relates specifically to an apparatus and method for the detection of ions emitted from a capillary electrophoresis (CE) system, liquid chromatography, or other small-scale separation methods. And further, the invention provides a very simple diagnostic as to the quality of the separation and the operation of an electrospray source.

  11. Ion current detector for high pressure ion sources for monitoring separations

    DOEpatents

    Smith, R.D.; Wahl, J.H.; Hofstadler, S.A.

    1996-08-13

    The present invention relates generally to any application involving the monitoring of signal arising from ions produced by electrospray or other high pressure (>100 torr) ion sources. The present invention relates specifically to an apparatus and method for the detection of ions emitted from a capillary electrophoresis (CE) system, liquid chromatography, or other small-scale separation methods. And further, the invention provides a very simple diagnostic as to the quality of the separation and the operation of an electrospray source. 7 figs.

  12. Ionization efficiency estimations for the SPES surface ion source

    NASA Astrophysics Data System (ADS)

    Manzolaro, M.; Andrighetto, A.; Meneghetti, G.; Rossignoli, M.; Corradetti, S.; Biasetto, L.; Scarpa, D.; Monetti, A.; Carturan, S.; Maggioni, G.

    2013-12-01

    Ion sources play a crucial role in ISOL (Isotope Separation On Line) facilities determining, with the target production system, the ion beam types available for experiments. In the framework of the SPES (Selective Production of Exotic Species) INFN (Istituto Nazionale di Fisica Nucleare) project, a preliminary study of the alkali metal isotopes ionization process was performed, by means of a surface ion source prototype. In particular, taking into consideration the specific SPES in-target isotope production, Cs and Rb ion beams were produced, using a dedicated test bench at LNL (Laboratori Nazionali di Legnaro). In this work the ionization efficiency test results for the SPES Ta surface ion source prototype are presented and discussed.

  13. A review of ion sources for medical accelerators (invited).

    PubMed

    Muramatsu, M; Kitagawa, A

    2012-02-01

    There are two major medical applications of ion accelerators. One is a production of short-lived isotopes for radionuclide imaging with positron emission tomography and single photon emission computer tomography. Generally, a combination of a source for negative ions (usually H- and/or D-) and a cyclotron is used; this system is well established and distributed over the world. Other important medical application is charged-particle radiotherapy, where the accelerated ion beam itself is being used for patient treatment. Two distinctly different methods are being applied: either with protons or with heavy-ions (mostly carbon ions). Proton radiotherapy for deep-seated tumors has become widespread since the 1990s. The energy and intensity are typically over 200 MeV and several 10(10) pps, respectively. Cyclotrons as well as synchrotrons are utilized. The ion source for the cyclotron is generally similar to the type for production of radioisotopes. For a synchrotron, one applies a positive ion source in combination with an injector linac. Carbon ion radiotherapy awakens a worldwide interest. About 6000 cancer patients have already been treated with carbon beams from the Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences in Japan. These clinical results have clearly verified the advantages of carbon ions. Heidelberg Ion Therapy Center and Gunma University Heavy Ion Medical Center have been successfully launched. Several new facilities are under commissioning or construction. The beam energy is adjusted to the depth of tumors. It is usually between 140 and 430 MeV∕u. Although the beam intensity depends on the irradiation method, it is typically several 10(8) or 10(9) pps. Synchrotrons are only utilized for carbon ion radiotherapy. An ECR ion source supplies multi-charged carbon ions for this requirement. Some other medical applications with ion beams attract developer's interests. For example, the several types of accelerators are

  14. Experimental results of a dual-beam ion source for 200 keV ion implanter

    SciTech Connect

    Chen, L. H. Cui, B. Q.; Ma, R. G.; Ma, Y. J.; Tang, B.; Huang, Q. H.; Jiang, W. S.; Zheng, Y. N.

    2014-02-15

    A dual beam ion source for 200 keV ion implanter aimed to produce 200 keV H{sub 2}{sup +} and He{sup +} beams simultaneously has been developed. Not suitable to use the analyzing magnet, the purity of beam extracted from the source becomes important to the performance of implanter. The performance of ion source was measured. The results of experiments show that the materials of inlet tube of ion source, the time of arc ionization in ion source, and the amount of gas flow have significant influence on the purity of beam. The measures by using copper as inlet tube material, long time of arc ionization, and increasing the inlet of gas flow could effectively reduce the impurity of beam. And the method using the gas mass flow controller to adjust the proportion of H{sub 2}{sup +} and He{sup +} is feasible.

  15. Effect of resonant microwave power on a PIG ion source

    SciTech Connect

    Brown, I.G.; Galvin, J.E.; Gavin, B.F.; MacGill, R.A.

    1984-08-01

    We have investigated the effect of applying microwave power at the electron cyclotron frequency on the characteristics of the ion beam extracted from a hot-cathode PIG ion source. No change was seen in the ion charge state distribution. A small but significant reduction in the beam noise level was seen, and it is possible that the technique may find application in situations where beam quiescence is important. 29 references, 2 figures.

  16. The ionization length in plasmas with finite temperature ion sources

    NASA Astrophysics Data System (ADS)

    Jelić, N.; Kos, L.; Tskhakaya, D. D.; Duhovnik, J.

    2009-12-01

    The ionization length is an important quantity which up to now has been precisely determined only in plasmas which assume that the ions are born at rest, i.e., in discharges known as "cold ion-source" plasmas. Presented here are the results of our calculations of the ionization lengths in plasmas with an arbitrary ion source temperature. Harrison and Thompson (H&T) [Proc. Phys. Soc. 74, 145 (1959)] found the values of this quantity for the cases of several ion strength potential profiles in the well-known Tonks-Langmuir [Phys. Rev. 34, 876 (1929)] discharge, which is characterized by "cold" ion temperature. This scenario is also known as the "singular" ion-source discharge. The H&T analytic result covers cases of ion sources proportional to exp(βΦ) with Φ the normalized plasma potential and β =0,1,2 values, which correspond to particular physical scenarios. Many years following H&T's work, Bissell and Johnson (B&J) [Phys. Fluids 30, 779 (1987)] developed a model with the so-called "warm" ion-source temperature, i.e., "regular" ion source, under B&J's particular assumption that the ionization strength is proportional to the local electron density. However, it appears that B&J were not interested in determining the ionization length at all. The importance of this quantity to theoretical modeling was recognized by Riemann, who recently answered all the questions of the most advanced up-to-date plasma-sheath boundary theory with cold ions [K.-U. Riemann, Phys. Plasmas 13, 063508 (2006)] but still without the stiff warm ion-source case solution, which is highly resistant to solution via any available analytic method. The present article is an extension of H&T's results obtained for a single point only with ion source temperature Tn=0 to arbitrary finite ion source temperatures. The approach applied in this work is based on the method recently developed by Kos et al. [Phys. Plasmas 16, 093503 (2009)].

  17. Artificially Structured Boundary for a high purity ion trap or ion source

    NASA Astrophysics Data System (ADS)

    Pacheco, J. L.; Ordonez, C. A.; Weathers, D. L.

    2014-08-01

    A plasma enclosed by an Artificially Structured Boundary (ASB) is proposed here as an alternative to existing ion source assemblies. In accelerator applications, many ion sources can have a limited lifetime or frequent service intervals due to sputtering and eventual degradation of the ion source assembly. Ions are accelerated towards the exit canal of positive ion sources, whereas, due to the biasing scheme, electrons or negative ions are accelerated towards the back of the ion source assembly. This can either adversely affect the experiment in progress due to sputtered contamination or compromise the integrity of the ion source assembly. Charged particle trajectories in the proximity of an ASB experience electromagnetic fields that are designed to hinder ion-surface interactions. Away from the ASB there is an essentially field free region. The field produced by an ASB is considered to consist of a periodic sequence of electrostatically plugged magnetic field cusps. A classical trajectory Monte Carlo simulation is extended to include electrostatic plugging of magnetic field cusps. The conditions necessary for charged particles to be reflected by the ASB are presented and quantified in terms of normalized parameters.

  18. H{sup -} ion source developments at the SNS

    SciTech Connect

    Welton, R. F.; Stockli, M. P.; Murray, S. N.; Pennisi, T. R.; Han, B.; Kang, Y.; Goulding, R. H.; Crisp, D. W.; Sparks, D. O.; Luciano, N. P.; Carmichael, J. R.; Carr, J.

    2008-02-15

    The U.S. Spallation Neutron Source (SNS) will require substantially higher average and pulse H{sup -} beam currents than can be produced from conventional ion sources such as the base line SNS source. H{sup -} currents of 40-50 mA (SNS operations) and 70-100 mA (power upgrade project) with a rms emittance of 0.20-0.35{pi} mm mrad and a {approx}7% duty factor will be needed. We are therefore investigating several advanced ion source concepts based on rf plasma excitation. First, the performance characteristics of an external antenna source based on an Al{sub 2}O{sub 3} plasma chamber combined with an external multicusp magnetic configuration, an elemental Cs system, and plasma gun will be discussed. Second, the first plasma measurements of a helicon-driven H{sup -} ion source will also be presented.

  19. Electrohydrodynamically driven large-area liquid ion sources

    DOEpatents

    Pregenzer, Arian L.

    1988-01-01

    A large-area liquid ion source comprises means for generating, over a large area of the surface of a liquid, an electric field of a strength sufficient to induce emission of ions from a large area of said liquid. Large areas in this context are those distinct from emitting areas in unidimensional emitters.

  20. Offline Ion Source Developments for the BECOLA Facility at NSCL

    NASA Astrophysics Data System (ADS)

    Klose, Andrew; Mantica, Paul; Minamisono, Kei

    2013-04-01

    Singly-charged beams of the stable isotope(s) of K, Ca, Mn, and Fe have been produced using either a commercial plasma ion source or a home-built electron ionization source for the BEam COoler and LAser spectroscopy (BECOLA) facility at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. For each element, collinear laser spectroscopy was performed to confirm the presence of the respective element. Production of stable ion beams for a given element is necessary to obtain reference hyperfine spectra of species with known electromagnetic moments before such nuclear properties can be deduced from the laser hyperfine-structure measurements of rare isotopes that are planned at NSCL. The results from the commissioning tests of the plasma and electron ionization sources will be presented, and development of a new Penning Ion Gauge (PIG) ion source will be discussed.

  1. Conditioning of ion sources for mass spectrometry of plasmas

    SciTech Connect

    Dylla, H.F.; Blanchard, W.R.

    1983-02-01

    Mass spectrometry is a useful diagnostic technique for monitoring plasma species and plasma-surface interactions. In order to maximize the sensitivity of measurements of hydrogen-fueled fusion plasmas or hydrogen-based discharge cleaning and etching plasmas, the ion sources of mass spectrometers are operated at or near the high pressure limit of 10/sup -4/ Torr (10/sup -2/ Pa). Such high ambient pressures of hydrogen give rise to high background levels of residual gases such as H/sub 2/O, CO, and CH/sub 4/, due to surface reactions on the ion source electrodes. For a commonly used ion source configuration, the residual gas production is a linear function of the ambient H/sub 2/ pressure. Hydrogen conditioning can reduce the absolute residual gas levels. Steady-state residual gas production is observed in a conditioned ion source, which is related to a balance of diffusion and sorption on the electrode surfaces.

  2. Pulsed, Inductively Generated, Streaming Plasma Ion Source for Heavy Ion Fusion Linacs

    SciTech Connect

    Steven C. Glidden; Howard D Sanders; John B. Greenly; Daniel L. Dongwoo

    2006-04-28

    This report describes a compact, high current density, pulsed ion source, based on electrodeless, inductively driven gas breakdown, developed to meet the requirements on normalized emittance, current density, uniformity and pulse duration for an ion injector in a heavy-ion fusion driver. The plasma source produces >10 μs pulse of Argon plasma with ion current densities >100 mA/cm2 at 30 cm from the source and with strongly axially directed ion energy of about 80 eV, and sub-eV transverse temperature. The source has good reproducibility and spatial uniformity. Control of the current density during the pulse has been demonstrated with a novel modulator coil method which allows attenuation of the ion current density without significantly affecting the beam quality. This project was carried out in two phases. Phase 1 used source configurations adapted from light ion sources to demonstrate the feasibility of the concept. In Phase 2 the performance of the source was enhanced and quantified in greater detail, a modulator for controlling the pulse shape was developed, and experiments were conducted with the ions accelerated to >40 kV.

  3. Multiple species beam production on laser ion source for electron beam ion source in Brookhaven National Laboratory

    SciTech Connect

    Sekine, M.; Ikeda, S.; Hayashizaki, N.; Kanesue, T.; Okamura, M.

    2014-02-15

    Extracted ion beams from the test laser ion source (LIS) were transported through a test beam transport line which is almost identical to the actual primary beam transport in the current electron beam ion source apparatus. The tested species were C, Al, Si, Cr, Fe, Cu, Ag, Ta, and Au. The all measured beam currents fulfilled the requirements. However, in the case of light mass ions, the recorded emittance shapes have larger aberrations and the RMS values are higher than 0.06 π mm mrad, which is the design goal. Since we have margin to enhance the beam current, if we then allow some beam losses at the injection point, the number of the single charged ions within the acceptance can be supplied. For heaver ions like Ag, Ta, and Au, the LIS showed very good performance.

  4. Experimental evaluation of a negative ion source for a heavy ionfusion negative ion driver

    SciTech Connect

    Grisham, L.R.; Hahto, S.K.; Hahto, S.T.; Kwan, J.W.; Leung, K.N.

    2005-01-18

    Negative halogen ions have recently been proposed as a possible alternative to positive ions for heavy ion fusion drivers because electron accumulation would not be a problem in the accelerator, and if desired, the beams could be photodetached to neutrals [1,2,3]. To test the ability to make suitable quality beams, an experiment was conducted at Lawrence Berkeley National Laboratory using chlorine in an RF-driven ion source. Without introducing any cesium (which is required to enhance negative ion production in hydrogen ion sources) a negative chlorine current density of 45 mA/cm{sup 2} was obtained under the same conditions that gave 57 mA/cm{sup 2} of positive chlorine, suggesting the presence of nearly as many negative ions as positive ions in the plasma near the extraction plane. The negative ion spectrum was 99.5% atomic chlorine ions, with only 0.5% molecular chlorine, and essentially no impurities. Although this experiment did not incorporate the type of electron suppression technology that is used in negative hydrogen beam extraction, the ratio of co-extracted electrons to Cl{sup -} was as low as 7 to 1, many times lower than the ratio of their mobilities, suggesting that few electrons are present in the near-extractor plasma. This, along with the near-equivalence of the positive and negative ion currents, suggests that the plasma in this region was mostly an ion-ion plasma. The negative chlorine current density was relatively insensitive to pressure, and scaled linearly with RF power. If this linear scaling continues to hold at higher RF powers, it should permit current densities of 100 mA/cm{sup 2}, sufficient for present heavy ion fusion injector concepts. The effective ion temperatures of the positive and negative ions appeared to be similar and relatively low for a plasma source.

  5. Negative hydrogen ion beam extracted from a Bernas-type ion source

    SciTech Connect

    Miyamoto, N.; Wada, M.

    2011-09-26

    Negative hydrogen (H{sup -}) ion beam was produced without cesium seeding by a Bernas-type ion source with a coaxial hot cathode. The amount of H{sup -} ion beam current extracted from an original Bernas-type ion source using a hairpin shape filament as a hot cathode was 1 {mu}A with the 0.4 A arc current, while that 300 eV beam energy. In the other hand, H{sup -} ion beam current using the Bernas-type ion source with a coaxial hot cathode reached 4 {mu}A under the same condition. Production efficiency was enhanced by the focused plasma produced by a coaxial hot cathode.

  6. DUHOCAMIS: a dual hollow cathode ion source for metal ion beams.

    PubMed

    Zhao, W J; Müller, M W O; Janik, J; Liu, K X; Ren, X T

    2008-02-01

    In this paper we describe a novel ion source named DUHOCAMIS for multiply charged metal ion beams. This ion source is derived from the hot cathode Penning ion gauge ion source (JINR, Dubna, 1957). A notable characteristic is the modified Penning geometry in the form of a hollow sputter electrode, coaxially positioned in a compact bottle-magnetic field along the central magnetic line of force. The interaction of the discharge geometry with the inhomogeneous but symmetrical magnetic field enables this device to be operated as hollow cathode discharge and Penning discharge as well. The main features of the ion source are the very high metal ion efficiency (up to 25%), good operational reproducibility, flexible and efficient operations for low charged as well as highly charged ions, compact setup, and easy maintenance. For light ions, e.g., up to titanium, well-collimated beams in the range of several tens of milliamperes of pulsed ion current (1 ms, 10/s) have been reliably performed in long time runs.

  7. DUHOCAMIS: a dual hollow cathode ion source for metal ion beams.

    PubMed

    Zhao, W J; Müller, M W O; Janik, J; Liu, K X; Ren, X T

    2008-02-01

    In this paper we describe a novel ion source named DUHOCAMIS for multiply charged metal ion beams. This ion source is derived from the hot cathode Penning ion gauge ion source (JINR, Dubna, 1957). A notable characteristic is the modified Penning geometry in the form of a hollow sputter electrode, coaxially positioned in a compact bottle-magnetic field along the central magnetic line of force. The interaction of the discharge geometry with the inhomogeneous but symmetrical magnetic field enables this device to be operated as hollow cathode discharge and Penning discharge as well. The main features of the ion source are the very high metal ion efficiency (up to 25%), good operational reproducibility, flexible and efficient operations for low charged as well as highly charged ions, compact setup, and easy maintenance. For light ions, e.g., up to titanium, well-collimated beams in the range of several tens of milliamperes of pulsed ion current (1 ms, 10/s) have been reliably performed in long time runs. PMID:18315181

  8. Laser induced fluorescence measurements of ion velocity in a DC magnetron microdischarge with self-organized drift wave modes propagating in the direction opposite the E x B electron drift velocity

    NASA Astrophysics Data System (ADS)

    Young, Chris; Gascon, Nicolas; Lucca Fabris, Andrea; Cappelli, Mark; Ito, Tsuyohito; Stanford Plasma Physics Laboratory Collaboration; Osaka University CenterAtomic; Molecular Technologies Collaboration

    2015-09-01

    Evidence is presented of rotating azimuthal wave structures in a planar DC magnetron microdischarge operating in argon and xenon. Plasma emission captured using a high frame rate camera reveals waves of varying azimuthal modes propagating in the negative E x B direction. The dominant stable mode structure depends on discharge voltage. The negative drift direction is attributed to a local field reversal arising from strong density gradients that drive excess ions towards the anode. The transition between modes is shown to be consistent with models of gradient drift-wave dispersion in the presence of such a field reversal when the fluid representation includes ambipolar diffusion along the direction parallel to the magnetic field. Time-average and time-synchronized laser induced fluorescence measurements are carried out to elucidate the anode-bound ion dynamics driven by the field reversal. This research is supported by the Air Force Office of Scientific Research.

  9. Mo layer thickness requirement on the ion source back plate for the HNB and DNB ion sources in ITER

    SciTech Connect

    Singh, M. J.; Hemsworth, R.; Boilson, D.; De Esch, H. P. L.

    2015-04-08

    All the inner surfaces of the ion sources and the upstream surface of the plasma grid of the ITER neutral beam ion sources are proposed to be coated with molybdenum. This is done to avoid sputtering of the base material (Cu or CuCrZr) by the ions in the source plasma (D{sup +}, D{sub 2}{sup +}, D{sub 3}{sup +} or H{sup +}, H{sub 2}{sup +}, H{sub 3}{sup +}). The sputtering of Mo by the ions in the source plasma is low compared to that from Cu, and the threshold energy for sputtering ∼80 eV) is high compared to the energy of the ions in the source. However the D{sub 2}{sup +}, H{sub 2}{sup +} and D{sup +}, H{sup +} ions backstreaming from the accelerators will have energies that substantially exceed that threshold and it is important that the Mo layer is not eroded such that the base material is exposed to the source plasma. In the case of the HNB, the backstreaming ion power is calculated to be in the order of ∼1 MW, and the average energy of the backstreaming ions is calculated to be ∼300 keV. The ion sources in the HNB beam lines, 40 A 1 MeV D and 46 A 870 keV H beams, are supposed to operate for a period of 2 x 10{sup 7} s. For the DNB, 60 A 100 keV H beams, the corresponding number is 1.4 × 10{sup 6} s considering a beam duty cycle of 3s ON/20s OFF with 5 Hz modulation. The Mo layer on the ion source back plate should be thick enough to survive this operational time. Thickness estimation has been carried out taking into account the sputtering yields (atoms/ion), the energy spectrum of the backstreaming ions and the estimated profiles on the ion source back plate.

  10. ALLIGATOR - An apparatus for ion beam assisted deposition with a broad-beam ion source

    NASA Astrophysics Data System (ADS)

    Wituschek, H.; Barth, M.; Ensinger, W.; Frech, G.; Rück, D. M.; Leible, K. D.; Wolf, G. K.

    1992-04-01

    Ion beam assisted deposition is a versatile technique for preparing thin films and coatings for various applications. Up to now a prototype setup for research purposes has been used in our laboratory. Processing of industrial standard workpieces requires a high current ion source with broad beam and high uniformity for homogeneous bombardment. In this contribution a new apparatus for large area samples will be described. It is named ALLIGATOR (German acronym of facility for ion assisted evaporation on transverse movable or rotary targets). In order to have a wide energy range available two ion sources are used. One delivers a beam energy up to 1.3 keV. The other is suitable for energies from 5 keV up to 40 keV. The ``high-energy'' ion source is a multicusp multiaperture source with 180-mA total current and a beam diameter of 280 mm at the target position.

  11. A Helicon Ion Source for the SNS Power Upgrade

    NASA Astrophysics Data System (ADS)

    Baity, F. W.; Goulding, R. H.; Welton, R. F.; Stockli, M. P.; Kang, Y.

    2006-10-01

    The SNS Power Upgrade will require an ion source capable of producing negative hydrogen ion (H--) beams of 70-95 mA, depending on source emittance, with a duty factor of 7.4%. Presently no sources in operation at existing accelerator facilities can simultaneously meet these requirements of beam current, emittance, duty factor with a reasonable lifetime. The possibility of meeting these requirements by combining a helicon hydrogen plasma generator previously developed in the Fusion Energy Division (FED) at ORNL with the existing SNS-LBNL H-- ion source will be discussed. Both these systems have been highly optimized and reflect the current state-of-the-art in high-density hydrogen plasma production and high-brightness H-- generation. The helicon plasma generator has demonstrated the capability of producing hydrogen plasma densities up to an order of magnitude greater than in the current SNS-LBNL source.

  12. Operation of the CSNS Penning surface H- ion source

    NASA Astrophysics Data System (ADS)

    Wu, XiaoBing; Ouyang, HuaFu; Chi, YunLong; He, Wei; Huang, Tao; Li, Gang; Liu, YingMan; Lu, YanHua; Xu, TaoGuang; Zhang, JunSong; Zhang, HuaShun; Zhao, FuXiang

    2011-12-01

    The accelerator complex of the China Spallation Neutron Source (CSNS) consists of a H- linear accelerator (linac) and a rapid cycling synchrotron (RCS). The linac contains a Penning surface H- ion source. The designed energy and the beam current of the source are 50 keV and 20 mA respectively, with a normalized root mean square (norm. rms.) emittance of 0.2π mm mrad. The manufactures and tests of the discharge chamber are in great progress. The construction of H- ion source test stand has been completed, and the operation of the source is also in progress. Stable H- ion beams with energy of 50 keV and current up to 50 mA are attained. Emittance measurement for the H- beam is being prepared.

  13. Efficient cesiation in RF driven surface plasma negative ion source.

    PubMed

    Belchenko, Yu; Ivanov, A; Konstantinov, S; Sanin, A; Sotnikov, O

    2016-02-01

    Experiments on hydrogen negative ions production in the large radio-frequency negative ion source with cesium seed are described. The system of directed cesium deposition to the plasma grid periphery was used. The small cesium seed (∼0.5 G) provides an enhanced H(-) production during a 2 month long experimental cycle. The gradual increase of negative ion yield during the long-term source runs was observed after cesium addition to the source. The degraded H(-) production was recorded after air filling to the source or after the cesium washing away from the driver and plasma chamber walls. The following source conditioning by beam shots produces the gradual recovery of H(-) yield to the high value. The effect of H(-) yield recovery after cesium coverage passivation by air fill was studied. The concept of cesium coverage replenishment and of H(-) yield recovery due to sputtering of cesium from the deteriorated layers is discussed. PMID:26932015

  14. Alumino-silicate ion sources for accelerator applications

    SciTech Connect

    Warwick, A.I.

    1985-04-01

    As part of the program of Heavy Ion Fusion Accelerator Research at the Lawrence Berkeley Laboratory, ion sources have been developed using thermionic emitters of singly charged alkali metal ions. These emitters are flat surfaces of alumino-silicate, loaded with the appropriate ion. They have become convenient and reliable sources producing pulsed beams of very low emittance. Thermionic emission of ions from alumino-silicates has been known for a very long time. Here the author focuses on the practical application as accelerator ion sources. The author discusses the fabrication and heating of large area emitters, uniformity of emission and the maximum ion current density which can be extracted under space charge limited conditions, with zero electric field on the emitter surface. Results are presented for Na, K and Cs ions showing maximum space charge limited current densities of 25, 40 and 120 mAcm/sup -2/ respectively. In the case of cesium the author has produced a 5 mA beam at a kinetic energy of 200 keV with normalized emittance 1.2 x 10/sup -7/ ..pi.. m rad.

  15. Mevva ion source operated in purely gaseous mode

    SciTech Connect

    Yushkov, G.Y.; MacGill, R.A.; Brown, I. G.

    2003-03-27

    We have operated a vacuum arc ion source in such a way as to form beams of purely gaseous ions. The vacuum arc configuration that is conventionally used to produce intense beams of metal ions was altered so as to form gaseous ion beams, with only minimal changes to the external circuitry and no changes at all internally to the ion source. In our experiments we formed beams from oxygen (O{sup +} and O{sub 2}{sup +}), nitrogen (N{sup +} and N{sub 2}{sup +}), argon (Ar{sup +}) and carbon dioxide (C{sup +}, CO{sub 2}{sup +}, O{sup +} and O{sub 2}{sup +}) at extraction voltage of 2 to 50 kV. We used a pulsed mode of operation, with beam pulses approximately 50 milliseconds long and repetition rate 10 pulses per second, for a duty cycle of about 50%. Downstream ion beam current as measured by a 5 cm diameter Faraday cup was typically 0.5 mA pulse or about 250 {micro}A time averaged. This time averaged beam current is very similar to that obtained for metal ions when the source is operated in the usual vacuum arc mode. Here we describe the modifications made to the source and the results of our investigations.

  16. Highly charged ion X-rays from Electron Cyclotron Resonance Ion Sources

    NASA Astrophysics Data System (ADS)

    Indelicato, P.; Boucard, S.; Covita, D. S.; Gotta, D.; Gruber, A.; Hirtl, A.; Fuhrmann, H.; Le Bigot, E.-O.; Schlesser, S.; dos Santos, J. M. F.; Simons, L. M.; Stingelin, L.; Trassinelli, M.; Veloso, J.; Wasser, A.; Zmeskal, J.

    2007-09-01

    Radiation from the highly charged ions contained in the plasma of Electron-Cyclotron Resonance Ion Sources (ECRISs) constitutes a very bright source of X-rays. Because the ions have a relatively low kinetic energy (≈1 eV) transitions can be very narrow, containing only a small Doppler broadening. We describe preliminary accurate measurements of two and three-electron ions with Z=16-18. We show how these measurement can test sensitively many-body relativistic calculations or can be used as X-ray standards for precise measurements of X-ray transitions in exotic atoms.

  17. Preliminary result of rapid solenoid for controlling heavy-ion beam parameters of laser ion source

    DOE PAGES

    Okamura, M.; Sekine, M.; Ikeda, S.; Kanesue, T.; Kumaki, M.; Fuwa, Y.

    2015-03-13

    To realize a heavy ion inertial fusion driver, we have studied a possibility of laser ion source (LIS). A LIS can provide high current high brightness heavy ion beams, however it was difficult to manipulate the beam parameters. To overcome the issue, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The rapid ramping magnetic field could enhance limited time slice of the current and simultaneously the beam emittance changed accordingly. This approach may also useful to realize an ion source for HIF power plant.

  18. Long-pulse ion source for neutral-beam applications

    NASA Astrophysics Data System (ADS)

    Tsai, C. C.; Menon, M. M.; Ryan, P. M.; Schechter, D. E.; Stirling, W. L.; Haselton, H. H.

    1982-04-01

    A rectangular ion source is being developed for producing 120-keV/25-A hydrogen ion beams for pulse durations up to 10 s. It consists of a plasma generator with a rectangular arc chamber (25×35 cm cross section) and an ion accelerator with rectangular grids (10×25 cm hole pattern). The plasma generator is a modified duoPIGatron type. It has been operated at 120 V, 1100 A, and 10 s arc durations to produce a dense and uniform plasma sufficient for supplying a 25-A ion beam current. The electron emitter used is either a LaB6 hollow cathode or a LM (molybdenum doped with La2O3) indirectly heated cathode. The ion accelerator having four (or three) rectangular grids with multiple circular apertures has been utilized to form high-energy ion beams above (or below) 80 keV. With substantial improvements in water cooling and mechanical stability, this ion accelerator has been operated reliably to deliver long-pulse ion beams with energies in excess of 100 keV and pulse lengths of many seconds. The results of measurements made on the power transmission efficiency (70%-80%), power density profile at the target (±0.5% HWHM near the focal plane), and grid loadings (≲1% for each grid) are elaborated. The important characteristics associated with this long-pulse ion source are also presented and discussed.

  19. Erosion of Extraction Electrodes of Ion Sources due to Sputtering

    SciTech Connect

    Kenmotsu, Takahiro; Wada, Motoi; Miyamoto, Naoki

    2011-01-07

    The effects upon erosion due to implanted atoms in extraction electrodes of an ion source have been investigated through calculating the sputtering yields with a Monte Carlo simulation code, ACAT. The results obtained with ACAT have indicated that the sputtering yields of extraction electrodes are substantially affected by the retention of implanted atoms depending upon the mass ratio of electrode materials and extracted ions from the source plasma. The enhanced erosion takes place as the heavier ion beam species like phosphor is implanted into lighter electrode material like carbon. Additional mixing of materials arising from ion source operation, such as hot cathode materials evaporation onto a carbon extraction electrode, can shorten the lifetime of the extraction electrodes.

  20. Transverse coupling property of beam from ECR ion sources

    SciTech Connect

    Yang, Y.; Yuan, Y. J.; Sun, L. T.; Feng, Y. C.; Fang, X.; Cao, Y.; Lu, W.; Zhang, X. Z.; Zhao, H. W.

    2014-11-15

    Experimental evidence of the property of transverse coupling of beam from Electron Cyclotron Resonance (ECR) ion source is presented. It is especially of interest for an ECR ion source, where the cross section of extracted beam is not round along transport path due to the magnetic confinement configuration. When the ions are extracted and accelerated through the descending axial magnetic field at the extraction region, the horizontal and vertical phase space strongly coupled. In this study, the coupling configuration between the transverse phase spaces of the beam from ECR ion source is achieved by beam back-tracking simulation based on the measurements. The reasonability of this coupling configuration has been proven by a series of subsequent simulations.

  1. Simple Penning ion source for laboratory research and development applications.

    PubMed

    Rovey, Joshua L; Ruzic, Brandon P; Houlahan, Thomas J

    2007-10-01

    A simple Penning ion generator (PIG) that can be easily fabricated with simple machining skills and standard laboratory accessories is described. The PIG source uses an iron cathode body, samarium cobalt permanent magnet, stainless steel anode, and iron cathode faceplate to generate a plasma discharge that yields a continuous 1 mA beam of positively charged hydrogen ions at 1 mTorr of pressure. This operating condition requires 5.4 kV and 32.4 W of power. Operation with helium is similar to hydrogen. The ion source is being designed and investigated for use in a sealed-tube neutron generator; however, this ion source is thoroughly described so that it can be easily implemented by other researchers for other laboratory research and development applications.

  2. POLARIZED ION SOURCES FOR HIGH ENERGY ACCELERATORS AND COLLIDERS

    SciTech Connect

    ZELENSKI,A.N.

    2000-10-16

    The recent progress in polarized ion source development is reviewed. In dc operation a 1.0 mA polarized H{sup -} ion current is now available from the Optically-Pumped Polarized Ion Source (OPPIS) . In pulsed operation a 10 mA polarized H{sup -} ion current was demonstrated at the TRIUMF pulsed OPPIS test bench and a 3.5 mA peak current was obtained from an Atomic Beam Source (ABS) at the INR Moscow test bench. The possibilities for future improvements with both techniques are discussed. A new OPPIS for RHIC spin physics is described. The OPPIS reliably delivered polarized beam for the polarized run at RHIC. The results obtained with a new pulsed ABS injector for the IUCF Cooler Ring are also discussed.

  3. POLARIZED ION SOURCES FOR HIGH ENERGY ACCELERATORS AND COLLIDERS

    SciTech Connect

    ZELENSKI,A.N.

    2000-10-16

    The recent progress in polarized ion source development is reviewed. In dc operation a 1.0 mA polarized H{sup -} ion current is now available from the Optically-Pumped Polarized Ion Source (OPPIS). In pulsed operation a 10 mA polarized H{sup -} ion current was demonstrated at the TRIUMF pulsed OPPIS test bench and a 3.5 mA peak current was obtained from an Atomic Beam Source (ABS) at the INR Moscow test bench. The possibilities for future improvements with both techniques are discussed. A new OPPIS for RHIC spin physics is described. The OPPIS reliably delivered polarized beam for the polarized run at RHIC. The results obtained with a new pulsed ABS injector for the IUCF Cooler Ring are also discussed.

  4. Calcium and lithium ion production for laser ion source

    SciTech Connect

    Okamura, M.; Palm, K.; Stifler, C.; Steski, D.; Ikeda, S.; Kumaki, M.; Kanesue, T.

    2015-08-23

    Calcium and lithium ion beams are required by NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL) to simulate the effects of cosmic radiation. To find out difficulties to provide such high reactive material as laser targets, the both species were experimentally tested. Plate-shaped lithium and calcium targets were fabricated to create ablation plasmas with a 6ns, 1064nm Nd:YAG laser. We found significant oxygen contamination in both the Ca and Li high-charge-state beams due to the rapid oxidation of the surfaces. A large-spot-size, low-power-density laser was then used to analyze the low-charge-state beams without scanning the targets. The low-charge-state Ca beam did not have any apparent oxygen contamination, showing the potential to clean the target entirely with a low-power beam once in the chamber. The Li target was clearly still oxidizing in the chamber after each low-power shot. To measure the rate of oxidation, we shot the low-power laser at the target repeatedly at 10sec, 30sec, 60sec, and 120sec interval lengths, showing a linear relation between the interval time and the amount of oxygen in the beam.

  5. Calcium and lithium ion production for laser ion source

    NASA Astrophysics Data System (ADS)

    Okamura, M.; Palm, K.; Stifler, C.; Steski, D.; Ikeda, S.; Kumaki, M.; Kanesue, T.

    2016-02-01

    Calcium and lithium ion beams are required by NASA Space Radiation Laboratory at Brookhaven National Laboratory to simulate the effects of cosmic radiation. To identify the difficulties in providing such highly reactive materials as laser targets, both species were experimentally tested. Plate shaped lithium and calcium targets were fabricated to create ablation plasmas with a 6 ns 1064 nm neodymium-doped yttrium aluminum garnet laser. We found significant oxygen contamination in both the Ca and Li high charge state beams due to the rapid oxidation of the surfaces. A large spot size, low power density laser was used to create low charge state beams without scanning the targets. The low charge state Ca beam did not have any apparent oxygen contamination, showing the potential to clean the target entirely of oxide with a low power beam once in the chamber. The Li target was clearly still oxidizing in the chamber after each low power shot. To measure the rate of oxidation, we shot the low power laser at the target repeatedly at 10 s, 30 s, 60 s, and 120 s interval lengths, showing a linear relation between the interval time and the amount of oxygen in the beam.

  6. Calcium and lithium ion production for laser ion source.

    PubMed

    Okamura, M; Palm, K; Stifler, C; Steski, D; Ikeda, S; Kumaki, M; Kanesue, T

    2016-02-01

    Calcium and lithium ion beams are required by NASA Space Radiation Laboratory at Brookhaven National Laboratory to simulate the effects of cosmic radiation. To identify the difficulties in providing such highly reactive materials as laser targets, both species were experimentally tested. Plate shaped lithium and calcium targets were fabricated to create ablation plasmas with a 6 ns 1064 nm neodymium-doped yttrium aluminum garnet laser. We found significant oxygen contamination in both the Ca and Li high charge state beams due to the rapid oxidation of the surfaces. A large spot size, low power density laser was used to create low charge state beams without scanning the targets. The low charge state Ca beam did not have any apparent oxygen contamination, showing the potential to clean the target entirely of oxide with a low power beam once in the chamber. The Li target was clearly still oxidizing in the chamber after each low power shot. To measure the rate of oxidation, we shot the low power laser at the target repeatedly at 10 s, 30 s, 60 s, and 120 s interval lengths, showing a linear relation between the interval time and the amount of oxygen in the beam. PMID:26931962

  7. Proton Ratio of HL-2A Bucket Ion Source

    NASA Astrophysics Data System (ADS)

    Yu, Li-Ming; Lei, Guang-Jiu; Cao, Jian-Yong; Yang, Li-Mei; Jiang, Shao-Feng; Han, Xiao-Yu; Zhang, Xian-Ming; Sun, Ping; Zou, Gui-Qing; Lu, Da-Lun; Liu, He; Jiang, Tao; Duan, Xu-Ru

    2010-04-01

    For heating the tokamak plasma effectively, the ion source must be capable of producing ions with high proton ratio. The proton ratio, which is found to be more than 65.6% at the ion current of 19.6 A with the extraction voltage of 39.6 kV, is measured with an image spectrograph by Doppler shift effect of Balmer-α-radiation spectrum emitted from fast hydrogen particles. The tendency of proton ratio with the ion density in experiment is almost the same as the mode devised by Zhang et al. Okumura et al. only gave the affection of the plasma volume and ion loss area on the proton ratio, but the relationship between the ion density in chamber and the proton ratio was not presented. We give the relationship.

  8. Electron source for a mini ion trap mass spectrometer

    DOEpatents

    Dietrich, D.D.; Keville, R.F.

    1995-12-19

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  9. Electron source for a mini ion trap mass spectrometer

    DOEpatents

    Dietrich, Daniel D.; Keville, Robert F.

    1995-01-01

    An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.

  10. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy

    SciTech Connect

    Cao, Yun Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia

    2014-02-15

    A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C{sup 5+} ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C{sup 5+} ion beam was got when work gas was CH{sub 4} while about 262 eμA of C{sup 5+} ion beam was obtained when work gas was C{sub 2}H{sub 2} gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.

  11. Volume production of negative ions in the reflex type ion source

    SciTech Connect

    Jimbo, K.

    1982-01-01

    The production of negative hydrogen ions is investigated in the reflex-type negative ion source. The extracted negative hydrogen currents of 9.7 mA (100 mA/cm/sup 2/) for H/sup -/ and of 4.1 mA (42 mA/cm/sup 2/) for D/sup -/ are obtained continuously. The impurity is less then 1%. An isotope effect of negative ion production is observed. When anomalous diffusion in the positive column was found by Lehnert and Hoh (1960), it was pointed out that the large particle loss produced by anomalous diffusion is compensated by the large particle production inside the plasma, i.e., the plasma tries to maintain itself. The self-sustaining property of the plasma is applied to the reflex-type negative ion source. Anomalous diffusion was artificially encouraged by changing the radial electric field inside the reflex discharge. The apparent encouragement of negative ion diffusion by the increase of density fluctuation amplitude is observed. Twice as much negative ion current was obtained with the artificial encouragement as without. It is found from the quasilinear theory that the inwardly directed radial electric field destabilizes the plasma in the reflex-type ion source. The nonlinear theory based on Yoshikawa method (1962) is extended, and the anomalous diffusion coefficient in a weakly ionized plasma is obtained. The electrostatic sheath trap, which increases the confinement of negative ions in the reflex-type ion source, is also discussed.

  12. Development of ion beams for space effects testing using an ECR ion source

    SciTech Connect

    Benitez, Janilee; Hodgkinson, Adrian; Johnson, Mike; Loew, Tim; Lyneis, Claude; Phair, Larry

    2013-04-19

    At LBNL's 88-Inch Cyclotron and Berkeley Accelerator Space Effects (BASE) Facility, a range of ion beams at energies from 1 to 55 MeV/nucleon are used for radiation space effects testing. By bombarding a component with ion beams the radiation component of the space environment can be simulated and single event effects (SEEs) determined. The performance of electronic components used in space flight and high altitude aircraft can then be evaluated. The 88- Inch Cyclotron is coupled to the three electron cyclotron resonance ion sources (ECR, AECR-U, VENUS). These ion sources provide a variety of ion species, ranging from protons to heavy ions such as bismuth, for these tests. In particular the ion sources have been developed to provide {sup c}ocktails{sup ,} a mixture of ions of similar mass-to-charge ratio, which can be simultaneously injected into the cyclotron, but selectively extracted from it. The ions differ in both their linear energy transfer (LET) deposited to the part and in their penetration depth into the tested part. The current heavy ion cocktails available are the 4.5, 10, 16, and 30 MeV per nucleon.

  13. Injected 1+ ion beam as a diagnostics tool of charge breeder ECR ion source plasmas

    NASA Astrophysics Data System (ADS)

    Tarvainen, O.; Lamy, T.; Angot, J.; Thuillier, T.; Delahaye, P.; Maunoury, L.; Choinski, J.; Standylo, L.; Galatà, A.; Patti, G.; Koivisto, H.

    2015-06-01

    Charge breeder electron cyclotron resonance ion sources (CB-ECRIS) are used as 1+  →n+  charge multiplication devices of post-accelerated radioactive ion beams. The charge breeding process involves thermalization of the injected 1+  ions with the plasma ions in ion-ion collisions, subsequent ionization by electron impact and extraction of the n+  ions. Charge breeding experiments of 85Rb and 133Cs ion beams with the 14.5 GHz PHOENIX CB-ECRIS operating with oxygen gas demonstrate the plasma diagnostics capabilities of the 1+  injection method. Two populations can be distinguished in the m/q-spectrum of the extracted ion beams, the low (1+  and 2+) charge states representing the uncaptured fraction of the incident 1+  ion beam and the high charge states that have been captured in ion-ion collisions and subsequently charge bred through electron impact ionization. Identification of the uncaptured fraction of the 1+  ions allows estimating the lower limit of ion-ion collision frequency of various charge states in the ECRIS plasma. The collision frequencies of highly charged ions (˜107 Hz) are shown to exceed their gyrofrequencies (˜106 Hz) at least by an order of magnitude, which implies that the dynamics of high charge state ions are dictated by magnetically confined electrons and ambipolar diffusion and only low charge state ions can be considered magnetized. Furthermore, it is concluded that the plasma density of the ECRIS charge breeder is most likely on the order of 1011 cm-3 i.e. well below the critical density for 14.5 GHz microwaves.

  14. Recent advances in high current vacuum arc ion sources for heavy ion fusion

    NASA Astrophysics Data System (ADS)

    Qi, Niansheng; Schein, Jochen; Prasad, Rahul R.; Krishnan, Mahadevan; Anders, Andre; Kwan, Joe; Brown, Ian

    2001-05-01

    For a heavy ion fusion induction linac driver, a source of heavy ions with charge states 1+-3+, ≈0.5 A current beams, ≈20 μs pulse widths and ˜10 Hz repetition rates is required. Thermionic sources have been the workhorse for the Heavy Ion Fusion (HIF) program to date, but suffer from heating problems for large areas and contamination. They are limited to low (contact) ionization potential elements and offer relatively low ion fluxes with a charge state limited to 1+. Gas injection sources suffer from partial ionization and deleterious neutral gas effects. The above shortcomings of the thermionic ion sources can be overcome by a vacuum arc ion source. The vacuum arc ion source is a good candidate for HIF applications. It is capable of providing ions of various elements and different charge states in short and long pulse bursts and high beam current density. Under a Phase-I STTR from DOE, the feasibility of the vacuum arc ion source for the HIF applications was investigated. We have modified an existing vacuum arc ion source at LBNL to produce a gadolinium ( A≈158) ion beam with >0.5 A beam current, 120 keV beam energy, ≈6 cm diameter extraction aperture and ≈20 μs pulse width. The average beam current density at the extraction grids was ≈17 mA/cm 2. We have measured that >85% Gd ions were in the 3+ charge state, the beam current fluctuation level (rms) was ≈3%, pulse-to-pulse variation of the beam (rms) was about 3%, the uniformity of the beam density over its 6 cm diameter was ⩾98% and the ion longitudinal energy spread was ⩽1%. Additional measurements were made to improve charge state purity by using other materials and employing an axial magnetic field close to the cathode. Yttrium ( A≈89), lead ( A≈207), and Ba ( A≈137) were tested at similar current parameters with Ba delivering nearly a pure charge state with >95% being in 2+ state. The results of the experiments indicate that the vacuum arc ion source is a good candidate for HIF

  15. RF Driven Multicusp H- Ion Source

    SciTech Connect

    Leung, K.N.; DeVries, G.J.; DiVergilio, W.F.; Hamm, R.W.; Hauck, C.A.; Kunkel, W.B.; McDonald, D.S.; Williams, M.D.

    1990-06-01

    An rf driven multicusp source capable of generating 1-ms H{sup -} beam pulses with a repetition rate as high as 150 Hz has been developed. This source can be operated with a filament or other types of starter. There is almost no lifetime limitation and a clean plasma can be maintained for a long period of operation. It is demonstrated that rf power as high as 25 kW could be coupled inductively to the plasma via a glass-coated copper-coil antenna. The extracted H{sup -} current density achieved is about 200 mA/cm{sup 2}.

  16. RF Negative Ion Source Development at IPP Garching

    SciTech Connect

    Kraus, W.; McNeely, P.; Berger, M.; Christ-Koch, S.; Falter, H. D.; Fantz, U.; Franzen, P.; Froeschle, M.; Heinemann, B.; Leyer, S.; Riedl, R.; Speth, E.; Wuenderlich, D.

    2007-08-10

    IPP Garching is heavily involved in the development of an ion source for Neutral Beam Heating of the ITER Tokamak. RF driven ion sources have been successfully developed and are in operation on the ASDEX-Upgrade Tokamak for positive ion based NBH by the NB Heating group at IPP Garching. Building on this experience a RF driven H- ion source has been under development at IPP Garching as an alternative to the ITER reference design ion source. The number of test beds devoted to source development for ITER has increased from one (BATMAN) by the addition of two test beds (MANITU, RADI). This paper contains descriptions of the three test beds. Results on diagnostic development using laser photodetachment and cavity ringdown spectroscopy are given for BATMAN. The latest results for long pulse development on MANITU are presented including the to date longest pulse (600 s). As well, details of source modifications necessitated for pulses in excess of 100 s are given. The newest test bed RADI is still being commissioned and only technical details of the test bed are included in this paper. The final topic of the paper is an investigation into the effects of biasing the plasma grid.

  17. RF Negative Ion Source Development at IPP Garching

    NASA Astrophysics Data System (ADS)

    Kraus, W.; McNeely, P.; Berger, M.; Christ-Koch, S.; Falter, H. D.; Fantz, U.; Franzen, P.; Fröschle, M.; Heinemann, B.; Leyer, S.; Riedl, R.; Speth, E.; Wünderlich, D.

    2007-08-01

    IPP Garching is heavily involved in the development of an ion source for Neutral Beam Heating of the ITER Tokamak. RF driven ion sources have been successfully developed and are in operation on the ASDEX-Upgrade Tokamak for positive ion based NBH by the NB Heating group at IPP Garching. Building on this experience a RF driven H- ion source has been under development at IPP Garching as an alternative to the ITER reference design ion source. The number of test beds devoted to source development for ITER has increased from one (BATMAN) by the addition of two test beds (MANITU, RADI). This paper contains descriptions of the three test beds. Results on diagnostic development using laser photodetachment and cavity ringdown spectroscopy are given for BATMAN. The latest results for long pulse development on MANITU are presented including the to date longest pulse (600 s). As well, details of source modifications necessitated for pulses in excess of 100 s are given. The newest test bed RADI is still being commissioned and only technical details of the test bed are included in this paper. The final topic of the paper is an investigation into the effects of biasing the plasma grid.

  18. Plasma Ion Sources for Atmospheric Pressure Ionization Mass Spectrometry.

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Guo

    1994-01-01

    Atmospheric pressure ionization (API) sources using direct-current (DC) and radio-frequency (RF) plasma have been developed in this thesis work. These ion sources can provide stable discharge currents of ~ 1 mA, 2-3 orders of magnitude larger than that of the corona discharge, a widely used API source. The plasmas can be generated and maintained in 1 atm of various buffer gases by applying -500 to -1000 V (DC plasma) or 1-15 W with a frequency of 165 kHz (RF plasma) on the needle electrode. These ion sources have been used with liquid injection to detect various organic compounds of pharmaceutical, biotechnological and environmental interest. Key features of these ion sources include soft ionization with the protonated molecule as the largest peak, and superb sensitivity with detection limits in the low picogram or femtomole range and a linear dynamic range over ~4 orders of magnitude. The RF plasma has advantages over the DC plasma in its ability to operate in various buffer gases and to produce a more stable plasma. Factors influencing the performance of the ion sources have been studied, including RF power level, liquid flow rate, chamber temperature, solvent composition, and voltage affecting the collision induced dissociation (CID). Ionization of hydrocarbons by the RF plasma API source was also studied. Soft ionization is generally produced. To obtain high sensitivity, the ion source must be very dry and the needle-to-orifice distance must be small. Nitric oxide was used to enhance the sensitivity. The RF plasma source was then used for the analysis of hydrocarbons in auto emissions. Comparisons between the corona discharge and the RF plasma have been made in terms of discharge current, ion residence time, and the ion source model. The RF plasma source provides larger linear dynamic range and higher sensitivity than the corona discharge, due to its much larger discharge current. The RF plasma was also observed to provide longer ion residence times and was not

  19. Ion source metal-arc fault current protection circuit

    SciTech Connect

    deVries, G.J.; Lietzke, A.F.; van Os, C.F.A.; Stearns, J.W. )

    1991-12-01

    Ion sources can be damaged by arcs between metallic components of the source if these arcs are permitted to last. The negative-biased low-work-function converter in a surface conversion negative ion source is especially susceptible to metal-arc breakdown damage. Here an electronic circuit for minimizing the damage caused by such an arc is described. The circuit uses a transistor switch and an inductor in series with the converter bias power supply to limit the damage during the metal-arc breakdown.

  20. Recent advancements in sputter-type heavy negative ion sources

    SciTech Connect

    Alton, G.D.

    1989-01-01

    Significant advancement have been made in sputter-type negative ion sources which utilize direct surface ionization, or a plasma to form the positive ion beam used to effect sputtering of samples containing the material of interest. Typically, such sources can be used to generate usable beam intensities of a few ..mu..A to several mA from all chemically active elements, depending on the particular source and the electron affinity of the element in question. The presentation will include an introduction to the fundamental processes underlying negative ion formation by sputtering from a low work function surface and several sources will be described which reflect the progress made in this technology. 21 refs., 9 figs., 1 tab.

  1. Measurement of ion beam from laser ion source for RHIC EBIS.

    SciTech Connect

    Kanesue,T.; Tamura, J.; Okamura, M.

    2008-06-23

    Laser ion source (LIS) is a candidate of the primary ion source for the RHIC EBIS. LIS will provide intense charge state 1+ ions to the EBIS for further ionization. We measured plasma properties of a variety of atomic species from C to Au using the second harmonics of Nd:YAG laser (532 nm wave length, up to 0.5 J/6 ns). Since properties of laser produced plasma is different from different species, laser power density for singly charged ion production should be verified experimentally for each atomic species. After plasma analysis experiments, Au ions was extracted from plasma and emittance of the ion beam was measured using a pepper pot type emittance monitor.

  2. Development of C⁶⁺ laser ion source and RFQ linac for carbon ion radiotherapy.

    PubMed

    Sako, T; Yamaguchi, A; Sato, K; Goto, A; Iwai, T; Nayuki, T; Nemoto, K; Kayama, T; Takeuchi, T

    2016-02-01

    A prototype C(6+) injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4. PMID:26932119

  3. Use of predissociation to enhance the atomic hydrogen ion fraction in ion sources

    DOEpatents

    Kim, Jinchoon

    1979-01-01

    A duopigatron ion source is modified by replacing the normal oxide-coated wire filament cathode of the ion source with a hot tungsten oven through which hydrogen gas is fed into the arc chamber. The hydrogen gas is predissociated in the hot oven prior to the arc discharge, and the recombination rate is minimized by hot walls inside of the arc chamber. With the use of the above modifications, the atomic H.sub.1.sup.+ ion fraction output can be increased from the normal 50% to greater than 70% with a corresponding decrease in the H.sub.2.sup.+ and H.sub.3.sup.+ molecular ion fraction outputs from the ion source.

  4. Negative hydrogen ion beam extraction from an AC heated cathode driven Bernas-type ion source

    SciTech Connect

    Okano, Y.; Miyamoto, N.; Kasuya, T.; Wada, M.

    2015-04-08

    A plasma grid structure was installed to a Bernas-type ion source used for ion implantation equipment. A negative hydrogen (H{sup −}) ion beam was extracted by an AC driven ion source by adjusting the bias to the plasma grid. The extracted electron current was reduced by positively biasing the plasma grid, while an optimum plasma grid bias voltage for negative ion beam extraction was found to be positive 3 V with respect to the arc chamber. Source operations with AC cathode heating show extraction characteristics almost identical to that with DC cathode heating, except a minute increase in H{sup −} current at higher frequency of cathode heating current.

  5. Development of C⁶⁺ laser ion source and RFQ linac for carbon ion radiotherapy.

    PubMed

    Sako, T; Yamaguchi, A; Sato, K; Goto, A; Iwai, T; Nayuki, T; Nemoto, K; Kayama, T; Takeuchi, T

    2016-02-01

    A prototype C(6+) injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.

  6. Electrical shielding box measurement of the negative hydrogen beam from Penning ion gauge ion source

    SciTech Connect

    Wang, T.; Yang, Z.; Dong, P.; Long, J. D.; He, X. Z.; Zhang, K. Z.; Zhang, L. W.; Wang, X.

    2012-06-15

    The cold-cathode Penning ion gauge (PIG) type ion source has been used for generation of negative hydrogen (H{sup -}) ions as the internal ion source of a compact cyclotron. A novel method called electrical shielding box dc beam measurement is described in this paper, and the beam intensity was measured under dc extraction inside an electrical shielding box. The results of the trajectory simulation and dc H{sup -} beam extraction measurement were presented. The effect of gas flow rate, magnetic field strength, arc current, and extraction voltage were also discussed. In conclusion, the dc H{sup -} beam current of about 4 mA from the PIG ion source with the puller voltage of 40 kV and arc current of 1.31 A was extrapolated from the measurement at low extraction dc voltages.

  7. Electron energy recovery system for negative ion sources

    DOEpatents

    Dagenhart, William K.; Stirling, William L.

    1982-01-01

    An electron energy recovery system for negative ion sources is provided. The system, employs crossed electric and magnetic fields to separate the electrons from ions as they are extracted from a negative ion source plasma generator and before the ions are accelerated to their full kinetic energy. With the electric and magnetic fields oriented 90.degree. to each other, the electrons are separated from the plasma and remain at approximately the electrical potential of the generator in which they were generated. The electrons migrate from the ion beam path in a precessing motion out of the ion accelerating field region into an electron recovery region provided by a specially designed electron collector electrode. The electron collector electrode is uniformly spaced from a surface of the ion generator which is transverse to the direction of migration of the electrons and the two surfaces are contoured in a matching relationship which departs from a planar configuration to provide an electric field component in the recovery region which is parallel to the magnetic field thereby forcing the electrons to be directed into and collected by the electron collector electrode. The collector electrode is maintained at a potential slightly positive with respect to the ion generator so that the electrons are collected at a small fraction of the full accelerating supply voltage energy.

  8. Overview of ion source characterization diagnostics in INTF

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, M.; Sudhir, Dass; Bhuyan, M.; Soni, J.; Tyagi, H.; Joshi, J.; Yadav, A.; Rotti, C.; Parmar, Deepak; Patel, H.; Pillai, S.; Chakraborty, A.

    2016-02-01

    INdian Test Facility (INTF) is envisaged to characterize ITER diagnostic neutral beam system and to establish the functionality of its eight inductively coupled RF plasma driver based negative hydrogen ion source and its beamline components. The beam quality mainly depends on the ion source performance and therefore, its diagnostics plays an important role for its safe and optimized operation. A number of diagnostics are planned in INTF to characterize the ion source performance. Negative ions and its cesium contents in the source will be monitored by optical emission spectroscopy (OES) and cavity ring down spectroscopy. Plasma near the extraction region will be studied using standard electrostatic probes. The beam divergence and negative ion stripping losses are planned to be measured using Doppler shift spectroscopy. During initial phase of ion beam characterization, carbon fiber composite based infrared imaging diagnostics will be used. Safe operation of the beam will be ensured by using standard thermocouples and electrical voltage-current measurement sensors. A novel concept, based on plasma density dependent plasma impedance measurement using RF electrical impedance matching parameters to characterize the RF driver plasma, will be tested in INTF and will be validated with OES data. The paper will discuss about the overview of the complete INTF diagnostics including its present status of procurement, experimentation, interface with mechanical systems in INTF, and integration with INTF data acquisition and control systems.

  9. Modeling of negative ion transport in a plasma source

    NASA Astrophysics Data System (ADS)

    Riz, David; Paméla, Jérôme

    1998-08-01

    A code called NIETZSCHE has been developed to simulate the negative ion transport in a plasma source, from their birth place to the extraction holes. The ion trajectory is calculated by numerically solving the 3-D motion equation, while the atomic processes of destruction, of elastic collision H-/H+ and of charge exchange H-/H0 are handled at each time step by a Monte-Carlo procedure. This code can be used to calculate the extraction probability of a negative ion produced at any location inside the source. Calculations performed with NIETZSCHE have allowed to explain, either quantitatively or qualitatively, several phenomena observed in negative ion sources, such as the isotopic H-/D- effect, and the influence of the plasma grid bias or of the magnetic filter on the negative ion extraction. The code has also shown that in the type of sources contemplated for ITER, which operate at large arc power densities (>1 W cm-3), negative ions can reach the extraction region provided if they are produced at a distance lower than 2 cm from the plasma grid in the case of «volume production» (dissociative attachment processes), or if they are produced at the plasma grid surface, in the vicinity of the extraction holes.

  10. Construction of the Superconducting ECR Ion Source Venus

    NASA Astrophysics Data System (ADS)

    Leitner, M. A.; Lyneis, C. M.; Wutte, D. C.; Taylor, C. E.; Abbot, S. R.

    A new, very high magnetic field superconducting ECR ion source, VENUS, is under development at the LBNL 88-Inch Cyclotron. It will boost the maximum energies and intensities for heavy ions from the cyclotron particularly for ions with mass greater than 60. It will also serve as R&D ion source for the proposed Rare Isotope Accelerator (RIA) project in the US, which requires up to 10 pμA of U30+. The superconducting magnet structure consists of three solenoids and six racetrack coils with iron poles forming the sextupole. The coils are designed to generate a 4 T axial mirror field at injection and 3 T at extraction and a radial sextupole field of 2.4 T at the plasma chamber wall. Test results of the magnet coils, which exceeded design requirements with minimum training, are presented. The magnet assembly with its cryostat will be enclosed by an iron shield and therefore must be designed to withstand any possible forces between coils and iron, which can be as high as 3.4·105 (35,000 kgf). The low energy beam transport line (LEBT) and mass analyzing system of the ion source is designed to transport a proton- equivalent current of 25 mA at 20 kV extraction voltage. The design of the ion source and LEBT will be discussed.

  11. Overview of ion source characterization diagnostics in INTF.

    PubMed

    Bandyopadhyay, M; Sudhir, Dass; Bhuyan, M; Soni, J; Tyagi, H; Joshi, J; Yadav, A; Rotti, C; Parmar, Deepak; Patel, H; Pillai, S; Chakraborty, A

    2016-02-01

    INdian Test Facility (INTF) is envisaged to characterize ITER diagnostic neutral beam system and to establish the functionality of its eight inductively coupled RF plasma driver based negative hydrogen ion source and its beamline components. The beam quality mainly depends on the ion source performance and therefore, its diagnostics plays an important role for its safe and optimized operation. A number of diagnostics are planned in INTF to characterize the ion source performance. Negative ions and its cesium contents in the source will be monitored by optical emission spectroscopy (OES) and cavity ring down spectroscopy. Plasma near the extraction region will be studied using standard electrostatic probes. The beam divergence and negative ion stripping losses are planned to be measured using Doppler shift spectroscopy. During initial phase of ion beam characterization, carbon fiber composite based infrared imaging diagnostics will be used. Safe operation of the beam will be ensured by using standard thermocouples and electrical voltage-current measurement sensors. A novel concept, based on plasma density dependent plasma impedance measurement using RF electrical impedance matching parameters to characterize the RF driver plasma, will be tested in INTF and will be validated with OES data. The paper will discuss about the overview of the complete INTF diagnostics including its present status of procurement, experimentation, interface with mechanical systems in INTF, and integration with INTF data acquisition and control systems.

  12. Overview of ion source characterization diagnostics in INTF.

    PubMed

    Bandyopadhyay, M; Sudhir, Dass; Bhuyan, M; Soni, J; Tyagi, H; Joshi, J; Yadav, A; Rotti, C; Parmar, Deepak; Patel, H; Pillai, S; Chakraborty, A

    2016-02-01

    INdian Test Facility (INTF) is envisaged to characterize ITER diagnostic neutral beam system and to establish the functionality of its eight inductively coupled RF plasma driver based negative hydrogen ion source and its beamline components. The beam quality mainly depends on the ion source performance and therefore, its diagnostics plays an important role for its safe and optimized operation. A number of diagnostics are planned in INTF to characterize the ion source performance. Negative ions and its cesium contents in the source will be monitored by optical emission spectroscopy (OES) and cavity ring down spectroscopy. Plasma near the extraction region will be studied using standard electrostatic probes. The beam divergence and negative ion stripping losses are planned to be measured using Doppler shift spectroscopy. During initial phase of ion beam characterization, carbon fiber composite based infrared imaging diagnostics will be used. Safe operation of the beam will be ensured by using standard thermocouples and electrical voltage-current measurement sensors. A novel concept, based on plasma density dependent plasma impedance measurement using RF electrical impedance matching parameters to characterize the RF driver plasma, will be tested in INTF and will be validated with OES data. The paper will discuss about the overview of the complete INTF diagnostics including its present status of procurement, experimentation, interface with mechanical systems in INTF, and integration with INTF data acquisition and control systems. PMID:26932078

  13. Review of MEVVA ion source performance for accelerator injection

    SciTech Connect

    Brown, I.G.; Godechot, X. ); Spaedtke, P.; Emig, H.; Rueck, D.M.; Wolf, B.H. )

    1991-05-01

    The Mevva (metal vapor vacuum arc) ion source provides high current beams of multiply-charged metal ions suitable for use in heavy ion synchrotrons as well as for metallurgical ion implantation. Pulsed beam currents of up to several amperes can be produced at ion energies of up to several hundred keV. Operation has been demonstrate for 48 metallic ion species: Li, C, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, Sr, Y, Zr, Nb, Mo, Pd, Ag, Cd, In, Sn, Ba, La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, Er, Yb, Hf, Ta, W, Ir, Pt, Au, Pb, Bi, Th and U. When the source is operated optimally the rms fractional beam noise can be as low as 7% of the mean beam current; and when properly triggered the source operates reliably and reproducibly for many tens of thousands of pulses without failure. In this paper we review the source performance referred specifically to its use for synchrotron injection. 15 refs., 3 figs.

  14. Effect of electric field in the course of obtaining a-SiO{sub x}:H(Er, O) films by dc magnetron sputtering on their composition and photoluminescence intensity of erbium ions

    SciTech Connect

    Undalov, Yu. K. Terukov, E. I.; Gusev, O. B.; Lebedev, V. M.; Trapeznikova, I. N.

    2008-11-15

    The effect of electric field on the elemental composition and photoluminescence of films of amorphous hydrogenated silicon doped with erbium and oxygen (a-SiO{sub x}:H(Er, O)) in the course of obtaining these films by dc magnetron sputtering is studied. Two series of films were studied in relation to the electric-field strength in the magnetron, the area of the metallic erbium target, and oxygen content in the working chamber. The first series of films was obtained using an electrically insulated substrate holder, and the second series was obtained with a positive potential at the substrate holder with respect to the cathode. It is shown that, although the character of variation in the elemental composition and photoluminescence intensity for erbium Er{sup 3+} ions differ appreciably in the films of the two series, both of these factors are determined, as a result, by the processes of sputtering oxidation of the Si and Er targets that represent the cathode.

  15. Volume production of negative ions in the reflex-type ion source

    SciTech Connect

    Jimbo, K.

    1982-06-01

    The production of negative hydrogen ions is investigated in the reflex-type negative ion source. The extracted negative hydrogen currents of 9.7 mA (100 mA/cm/sup 2/) for H/sup -/ and of 4.1 mA(42 mA/cm/sup 2/) for D/sup -/ are obtained continuously. The impurity is less than 1%. An isotope effect of negative ion production is observed.

  16. Development of a compact ECR ion source for various ion production.

    PubMed

    Muramatsu, M; Hojo, S; Iwata, Y; Katagiri, K; Sakamoto, Y; Takahashi, N; Sasaki, N; Fukushima, K; Takahashi, K; Suzuki, T; Sasano, T; Uchida, T; Yoshida, Y; Hagino, S; Nishiokada, T; Kato, Y; Kitagawa, A

    2016-02-01

    There is a desire that a carbon-ion radiotherapy facility will produce various ion species for fundamental research. Although the present Kei2-type ion sources are dedicated for the carbon-ion production, a future ion source is expected that could provide: (1) carbon-ion production for medical use, (2) various ions with a charge-to-mass ratio of 1/3 for the existing Linac injector, and (3) low cost for modification. A prototype compact electron cyclotron resonance (ECR) ion source, named Kei3, based on the Kei series has been developed to correspond to the Kei2 type and to produce these various ions at the National Institute of Radiological Sciences (NIRS). The Kei3 has an outer diameter of 280 mm and a length of 1120 mm. The magnetic field is formed by the same permanent magnet as Kei2. The movable extraction electrode has been installed in order to optimize the beam extraction with various current densities. The gas-injection side of the vacuum chamber has enough space for an oven system. We measured dependence of microwave frequency, extraction voltage, and puller position. Charge state distributions of helium, carbon, nitrogen, oxygen, and neon were also measured. PMID:26932120

  17. Development of a compact ECR ion source for various ion production

    NASA Astrophysics Data System (ADS)

    Muramatsu, M.; Hojo, S.; Iwata, Y.; Katagiri, K.; Sakamoto, Y.; Takahashi, N.; Sasaki, N.; Fukushima, K.; Takahashi, K.; Suzuki, T.; Sasano, T.; Uchida, T.; Yoshida, Y.; Hagino, S.; Nishiokada, T.; Kato, Y.; Kitagawa, A.

    2016-02-01

    There is a desire that a carbon-ion radiotherapy facility will produce various ion species for fundamental research. Although the present Kei2-type ion sources are dedicated for the carbon-ion production, a future ion source is expected that could provide: (1) carbon-ion production for medical use, (2) various ions with a charge-to-mass ratio of 1/3 for the existing Linac injector, and (3) low cost for modification. A prototype compact electron cyclotron resonance (ECR) ion source, named Kei3, based on the Kei series has been developed to correspond to the Kei2 type and to produce these various ions at the National Institute of Radiological Sciences (NIRS). The Kei3 has an outer diameter of 280 mm and a length of 1120 mm. The magnetic field is formed by the same permanent magnet as Kei2. The movable extraction electrode has been installed in order to optimize the beam extraction with various current densities. The gas-injection side of the vacuum chamber has enough space for an oven system. We measured dependence of microwave frequency, extraction voltage, and puller position. Charge state distributions of helium, carbon, nitrogen, oxygen, and neon were also measured.

  18. Effect of Coulomb collision on the negative ion extraction mechanism in negative ion sources.

    PubMed

    Goto, I; Miyamoto, K; Nishioka, S; Mattei, S; Lettry, J; Abe, S; Hatayama, A

    2016-02-01

    To improve the H(-) ion beam optics, it is necessary to understand the energy relaxation process of surface produced H(-) ions in the extraction region of Cs seeded H(-) ion sources. Coulomb collisions of charged particles have been introduced to the 2D3V-PIC (two dimension in real space and three dimension in velocity space particle-in-cell) model for the H(-) extraction by using the binary collision model. Due to Coulomb collision, the lower energy part of the ion energy distribution function of H(-) ions has been greatly increased. The mean kinetic energy of the surface produced H(-) ions has been reduced to 0.65 eV from 1.5 eV. It has been suggested that the beam optics of the extracted H(-) ion beam is strongly affected by the energy relaxation process due to Coulomb collision. PMID:26932090

  19. LEVIS ion source and beam characterization on PBFA-II

    SciTech Connect

    Renk, T.J.; Tisone, G.C.; Adams, R.G.; Bailey, J.E.; Filuk, A.B.; Johnson, D.J.; Pointon, T.D.

    1993-12-31

    We report on the continuing development of the LEVIS (Laser Evaporation Ion Source) lithium active ion source for the 15-cm radial focussing ion diode on PBFA-11. We found previously that DC-heating of the anode surface to 150{degrees}C maximum for 5 hours resulted in a pure lithium beam. This paper discusses the characterization of LEVIS source uniformity by Faraday cup arrays and multiple lines of sight for visible light spectroscopy. These diagnostics give some evidence of nonuniformity in both A-K gap electric fields and ion current density. Despite this, however, the measured focal spot size appears smaller than with a passive LiF source operated in the same magnetic field topology. Experiments using a curved anode for vertical beam focussing show reduced ion beam turn-on delay by 5 ns by altering the magnetic field topology as well as anode curvature. Another 3--5 ns reduction was achieved by switching from a passive LiF to the active LEVIS source.

  20. Simulations of ionization in a hot cavity surface ion source

    SciTech Connect

    Turek, M.; Drozdziel, A.; Pyszniak, K.; MaPczka, D.; Slowinski, B.

    2012-02-15

    A new numerical Monte Carlo method based model of a hot cavity surface ionization ion source is presented in this paper. The model, intended to support the studies on ionization phenomena in a widely used class of ion sources, takes into account geometry of the ion source and extraction system, ionizer temperature and other features. The results of ion source efficiency calculations for various configurations of the extraction field are reviewed. The dominant role of the ionizer region near the extraction opening is described. Simulated dependences of ionization efficiency on the working parameters like ionizer length and temperature, ionization potential of the substance, and extraction voltage are discussed. A good agreement of the experimental data (e.g., influence of ionizer temperature, current-voltage curve) and the predictions of the model is found. It is also shown that the contribution to the ionization yield from impact of thermionic electrons accelerated by the extraction field may be significant, especially for the substances of small surface ionization coefficient. The simulation results are compared to the predictions of different theoretical models of the ion source--the obtained simulation data are in accordance both with a well-known Kirchner formula and the so called spherical ionizer model.

  1. Development of Li+ alumino-silicate ion source

    SciTech Connect

    Roy, P.K.; Seidl, P.A.; Waldron, W.; Greenway, W.; Lidia, S.; Anders, A.; Kwan, J.

    2009-04-21

    To uniformly heat targets to electron-volt temperatures for the study of warm dense matter, one strategy is to deposit most of the ion energy at the peak of energy loss (dE/dx) with a low (E< 5 MeV) kinetic energy beam and a thin target[1]. Lower mass ions have a peak dE/dx at a lower kinetic energy. To this end, a small lithium (Li+) alumino-silicate source has been fabricated, and its emission limit has been measured. These surface ionization sources are heated to 1000-1150 C where they preferentially emit singly ionized alkali ions. Alumino-silicates sources of K+ and Cs+ have been used extensively in beam experiments, but there are additional challenges for the preparation of high-quality Li+ sources: There are tighter tolerances in preparing and sintering the alumino-silicate to the substrate to produce an emitter that gives uniform ion emission, sufficient current density and low beam emittance. We report on recent measurements ofhigh ( up to 35 mA/cm2) current density from a Li+ source. Ion species identification of possible contaminants is being verified with a Wien (E x B) filter, and via time-of-flight.

  2. A Test Stand for Ion Sources of Ultimate Reliability

    SciTech Connect

    Enparantza, R.; Uriarte, L.; Romano, P.; Alonso, J.; Ariz, I.; Egiraun, M.; Bermejo, F. J.; Etxebarria, V.; Lucas, J.; Del Rio, J. M.; Letchford, A.; Faircloth, D.; Stockli, M.

    2009-03-12

    The rationale behind the ITUR project is to perform a comparison between different kinds of H{sup -} ion sources using the same beam diagnostics setup. In particular, a direct comparison will be made in terms of the emittance characteristics of Penning Type sources such as those currently in use in the injector for the ISIS (UK) Pulsed Neutron Source and those of volumetric type such as that driving the injector for the ORNL Spallation Neutron Source (TN, U.S.A.). The endeavour here pursued is thus to build an Ion Source Test Stand where virtually any type of source can be tested and its features measured and, thus compared to the results of other sources under the same gauge. It would be possible then to establish a common ground for effectively comparing different ion sources. The long term objectives are thus to contribute towards building compact sources of minimum emittance, maximum performance, high reliability-availability, high percentage of desired particle production, stability and high brightness. The project consortium is lead by Tekniker-IK4 research centre and partners are companies Elytt Energy and Jema Group. The technical viability is guaranteed by the collaboration between the project consortium and several scientific institutions, such the CSIC (Spain), the University of the Basque Country (Spain), ISIS (STFC-UK), SNS (ORNL-USA) and CEA in Saclay (France)

  3. Low fragment polyatomic molecular ion source by using permanent magnets

    NASA Astrophysics Data System (ADS)

    Takeuchi, Mitsuaki; Hayashi, Kyouhei; Imanaka, Kousuke; Ryuto, Hiromichi; Takaoka, Gikan H.

    2014-02-01

    Electron-ionization-type polyatomic molecular ion source with low fragment was developed by using a pair of ring-shaped Sm-Co magnets. The magnets were placed forward and backward side of ionization part to confine electrons extracted from a thermionic cathode. Calculated electron trajectory of the developed ion source was 20 times longer than that of an ordinary outer filament configuration that has no magnetic confinement. Mass spectra of the molecular ions generated from n-tetradecane (C14H30) gas exhibited 4 times larger intensity than that of the ordinary configuration in a range of mass/charge from 93 to 210 u. This indicates that suppression of fragment ion was obtained by increase of low energy electrons resulted from the electron confinement.

  4. Low fragment polyatomic molecular ion source by using permanent magnets.

    PubMed

    Takeuchi, Mitsuaki; Hayashi, Kyouhei; Imanaka, Kousuke; Ryuto, Hiromichi; Takaoka, Gikan H

    2014-02-01

    Electron-ionization-type polyatomic molecular ion source with low fragment was developed by using a pair of ring-shaped Sm-Co magnets. The magnets were placed forward and backward side of ionization part to confine electrons extracted from a thermionic cathode. Calculated electron trajectory of the developed ion source was 20 times longer than that of an ordinary outer filament configuration that has no magnetic confinement. Mass spectra of the molecular ions generated from n-tetradecane (C14H30) gas exhibited 4 times larger intensity than that of the ordinary configuration in a range of mass/charge from 93 to 210 u. This indicates that suppression of fragment ion was obtained by increase of low energy electrons resulted from the electron confinement. PMID:24593425

  5. A resonant ionization laser ion source at ORNL

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Stracener, D. W.

    2016-06-01

    Multi-step resonance laser ionization has become an essential tool for the production of isobarically pure radioactive ion beams at the isotope separator on-line (ISOL) facilities around the world. A resonant ionization laser ion source (RILIS) has been developed for the former Holifield Radioactive Ion Beam Facility (HRIBF) of Oak Ridge National Laboratory. The RILIS employs a hot-cavity ion source and a laser system featuring three grating-tuned and individually pumped Ti:Sapphire lasers, especially designed for stable and simple operation. The RILIS has been installed at the second ISOL production platform of former HRIBF and has successfully provided beams of exotic neutron-rich Ga isotopes for beta decay studies. This paper reports the features, advantages, limitations, and on-line and off-line performance of the RILIS.

  6. Intense polarized /sup 3/He ion source

    SciTech Connect

    Slobodrian, R.J.; Bertrand, R.; Grioux, J.; Labrie, R.; Lapainte, R.; Meunier, J.F.; Pigeon, G.; Pouliot, L.; Rioux, C.; Roy, R.

    1985-10-01

    This source is based on the atomic polarization of the 2/sup 3/S/sub 1/ metastable state of the neutral atom. A version suitable for operation on the high voltage terminal of a CN Van de Graaff has been constructed, bench tested and installed in the terminal of a 7.5 MV machine. The polarization of the atomic beam is higher than 90%. It is now fully operational and a current of /sup 3/He/sup +/ of 300 nA has been measured after acceleration.

  7. Sources of chlorate ion in US drinking water

    SciTech Connect

    Bolyard, M. ); Fair, P.S. ); Hautman, D.P. )

    1993-09-01

    Samples of untreated source water and finished drinking water were obtained from 42 water utilities which treated their water with oxidants-disinfectants that included chlorine dioxide (ClO[sub 2]), gaseous chlorine, hypochlorite solutions, and chloramines. Chlorite ion was only detected in water from utilities that used ClO[sub 2]. Finished water from utilities that used ClO[sub 2] or hypochlorite solutions contained comparable concentrations of chlorate ion (ClO[sub 3][sup [minus

  8. Status and special features of the Atomki ECR ion source

    SciTech Connect

    Biri, S.; Palinkas, J.

    2012-02-15

    The ECR ion source has been operating in ATOMKI (Debrecen) since 1996. During the past 15 years lots of minor and numerous major technical modifications have been carried out on the ECRIS. Many of these changes aimed the increasing of beams charge, intensity, and the widening of the ion choice. Another group of the modifications were performed to develop special, non-standard operation modes or to produce peculiar plasmas and beams.

  9. Planar flow-by electrode capacitive electrospray ion source

    DOEpatents

    Van Berkel, Gary J.

    2004-01-13

    An electrospray ion source includes a chamber including a channel region therein, the channel including at least one inlet for directing a solution into the channel and at least a first and a second outlet for transmitting the solution or derivatives therefrom out from channel. Structure for separating ions in the solution is provided from separating the solution into at least a first and a second flow stream portion. The first flow stream portion is enriched in negative ions and the second flow stream portion is enriched in positive ions. The first flow stream portion is adapted to exit the chamber through the first outlet while the second flow stream portion is adapted to exit the chamber through the second outlet. A method of charge separation can include the step of simultaneously providing at least two gas phase ion stream portions having opposite polarity.

  10. Emission Characteristics and Stability of Laser Ion Sources

    SciTech Connect

    Krasa, J.; Velyhan, A.; Krousky, E.; Laska, L.; Rohlena, K.; Jungwirth, K.; Ullschmied, J.; Lorusso, A.; Velardi, L.; Nassisi, V.; Czarnecka, A.; Ryc, L.; Parys, P.; Wolowksi, J.

    2010-10-13

    A new classification of laser ion sources concerning their pulse-to-pulse reproducibility in the ion emission is proposed. In particular, we distinguish between plasmas according to the electron distribution changing its characteristics at a laser intensity threshold of 10{sup 14} W/cm{sup 2}. Well reproducible continuous pulsed ion currents are typical for the intensity below the threshold. In contrast to this plasma the 'two-temperature' plasma arising for the intensity above this threshold shows not only a separation of charges in space and time but it also shows irregular and intense outbursts of ions similar to a self pulsing instability leading to a chaos. The sequence of fast ion outbursts visible on time-of-flight spectra is sensitive to details of non-linear interaction of the sub-nanosecond laser beam with the generated plasma.

  11. ECR plasma source for heavy ion beam charge neutralization

    SciTech Connect

    Efthimion, P.C.; Gilson, E.; Grisham, L.; Kolchin, P.; Davidson, E.C.; Yu, S.S.; Logan, B.G.

    2002-05-01

    Highly ionized plasmas are being considered as a medium for charge neutralizing heavy ion beams in order to focus beyond the space-charge limit. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length {approx} 0.1-2 m would be suitable for achieving a high level of charge neutralization. An ECR source has been built at the Princeton Plasma Physics Laboratory (PPPL) to support a joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 1-10 gauss. The goal is to operate the source at pressures {approx} 10{sup -6} Torr at full ionization. The initial operation of the source has been at pressures of 10{sup -4}-10{sup -1} Torr. Electron densities in the range of 10{sup 8}-10{sup 11} cm{sup -3} have been achieved. Low-pressure operation is important to reduce ion beam ionization. A cusp magnetic field has been installed to improve radial confinement and reduce the field strength on the beam axis. In addition, axial confinement is believed to be important to achieve lower-pressure operation. To further improve breakdown at low pressure, a weak electron source will be placed near the end of the ECR source.

  12. Focused ion beams using a high-brightness plasma source

    NASA Astrophysics Data System (ADS)

    Guharay, Samar

    2002-10-01

    High-brightness ion beams, with low energy spread, have merits for many new applications in microelectronics, materials science, and biology. Negative ions are especially attractive for the applications that involve beam-solid interactions. When negative ions strike a surface, especially an electrically isolated surface, the surface charging voltage is limited to few volts [1]. This property can be effectively utilized to circumvent problems due to surface charging, such as device damage and beam defocusing. A compact plasma source, with the capability to deliver either positive or negative ion beams, has been developed. H- beams from this pulsed source showed brightness within an order of magnitude of the value for beams from liquid-metal ion sources. The beam angular intensity is > 40 mAsr-1 and the corresponding energy spread is <2.5 eV [2]. Using a simple Einzel lens with magnification of about 0.1, a focused current density of about 40 mAcm-2 is obtained. It is estimated that an additional magnification of about 0.1 can yield a focused current density of > 1 Acm-2 and a spot size of 100 nm. Such characteristics of focused beam parameters, using a dc source, will immediately open up a large area of new applications. [1] P. N. Guzdar, A. S. Sharma, S. K. Guharay, "Charging of substrates irradiated by particle beams" Appl. Phys. Lett. 71, 3302 (1997). [2] S. K. Guharay, E. Sokolovsky, J. Orloff, "Characteristics of ion beams from a Penning source for focused ion beam applications" J. Vac. Sci Technol. B17, 2779 (1999).

  13. Tracking the Magnetron Motion in FT-ICR Mass Spectrometry.

    PubMed

    Jertz, Roland; Friedrich, Jochen; Kriete, Claudia; Nikolaev, Evgeny N; Baykut, Gökhan

    2015-08-01

    In Fourier transform ion cyclotron resonance spectrometry (FT-ICR MS) the ion magnetron motion is not usually directly measured, yet its contribution to the performance of the FT-ICR cell is important. Its presence is manifested primarily by the appearance of even-numbered harmonics in the spectra. In this work, the relationship between the ion magnetron motion in the ICR cell and the intensities of the second harmonic signal and its sideband peak in the FT-ICR spectrum is studied. Ion motion simulations show that during a cyclotron motion excitation of ions which are offset to the cell axis, a position-dependent radial drift of the cyclotron center takes place. This radial drift can be directed outwards if the ion is initially offset towards one of the detection electrodes, or it can be directed inwards if the ion is initially offset towards one of the excitation electrodes. Consequently, a magnetron orbit diameter can increase or decrease during a resonant cyclotron excitation. A method has been developed to study this behavior of the magnetron motion by acquiring a series of FT-ICR spectra using varied post-capture delay (PCD) time intervals. PCD is the delay time after the capture of the ions in the cell before the cyclotron excitation of the ion is started. Plotting the relative intensity of the second harmonic sideband peak versus the PCD in each mass spectrum leads to an oscillating "PCD curve". The position and height of minima and maxima of this curve can be used to interpret the size and the position of the magnetron orbit. Ion motion simulations show that an off-axis magnetron orbit generates even-numbered harmonic peaks with sidebands at a distance of one magnetron frequency and multiples of it. This magnetron offset is due to a radial offset of the electric field axis versus the geometric cell axis. In this work, we also show how this offset of the radial electric field center can be corrected by applying appropriate DC correction voltages to the

  14. Alternative modeling methods for plasma-based Rf ion sources

    NASA Astrophysics Data System (ADS)

    Veitzer, Seth A.; Kundrapu, Madhusudhan; Stoltz, Peter H.; Beckwith, Kristian R. C.

    2016-02-01

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H- source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H- ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD models

  15. Alternative modeling methods for plasma-based Rf ion sources.

    PubMed

    Veitzer, Seth A; Kundrapu, Madhusudhan; Stoltz, Peter H; Beckwith, Kristian R C

    2016-02-01

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H(-) source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H(-) ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD

  16. DEVELOPMENT OF THE SNS EXTERNAL ANTENNA H- ION SOURCE

    SciTech Connect

    Welton, Robert F; Carmichael, Justin R; Crisp, Danny W; Han, Baoxi; Murray Jr, S N; Pennisi, Terry R; Santana, Manuel; Stockli, Martin P

    2010-01-01

    The U.S. Spallation Neutron Source (SNS) is an accelerator-based, pulsed neutron-scattering facility currently in the process of ramping up neutron production. To meet present and future beam current and reliability requirements we are developing an RF-driven, H- ion source based on a ceramic aluminium nitride (AlN) plasma chamber surrounded by an external RF antenna. This report recounts the design of the prototype source, describes the Cs collar variations tested, enumerates recent modifications made to the source to prepare a production version, and summarizes the results of runs on the SNS test stand and Front End (FE) of the SNS accelerator. Up to ~100 mA unanalyzed beam currents (60Hz, 1ms) have been measured on the SNS ion source test stand, and up to 42mA have been successfully accelerated by the RFQ on the SNS front-end at lower RF power.

  17. Shunting arc plasma source for pure carbon ion beam.

    PubMed

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse.

  18. Shunting arc plasma source for pure carbon ion beama)

    NASA Astrophysics Data System (ADS)

    Koguchi, H.; Sakakita, H.; Kiyama, S.; Shimada, T.; Sato, Y.; Hirano, Y.

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm2 at the peak of the pulse.

  19. Multi-cathode metal vapor arc ion source

    DOEpatents

    Brown, Ian G.; MacGill, Robert A.

    1988-01-01

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. One embodiment of the appaatus utilizes a multi-cathode arrangement for interaction with the anode.

  20. Plasma and Ion Sources in Large Area Coatings: A Review

    SciTech Connect

    Anders, Andre

    2005-02-28

    Efficient deposition of high-quality coatings often requires controlled application of excited or ionized particles. These particles are either condensing (film-forming) or assisting by providing energy and momentum to the film growth process, resulting in densification, sputtering/etching, modification of stress, roughness, texture, etc. In this review, the technical means are surveyed enabling large area application of ions and plasmas, with ion energies ranging from a few eV to a few keV. Both semiconductortype large area (single wafer or batch processing with {approx} 1000 cm{sup 2}) and in-line web and glass-coating-type large area (> 10{sup 7} m{sup 2} annually) are considered. Characteristics and differences between plasma and ion sources are explained. The latter include gridded and gridless sources. Many examples are given, including sources based on DC, RF, and microwave discharges, some with special geometries like hollow cathodes and E x B configurations.

  1. Development work with the JYFL ECR ion sources

    NASA Astrophysics Data System (ADS)

    Koivisto, H.; Heikkinen, P.; Ranttila, K.; ńrje, J.; Liukkonen, E.

    2001-12-01

    Two ECR ion sources are presently operational at the Accelerator Laboratory of the Department of Physics, University of Jyväskylä. The former JYFL 6.4 GHz ECRIS has worked reliably since its construction in 1989-90. It has been used approximately 4500 h/year for the production of heavy ion beams and more than 46 000 plasma-on hours have been achieved. Presently this source is also used for the experiments of material physics and it will be upgraded to better meet the ion beam requirements set by the new programs. The magnetic field calculations have shown that the known rules for the magnetic field configuration can be fulfilled by better iron and coil configuration. New power supplies for the coils are not needed. The new JYFL 14 GHz ECRIS was completed in spring 2000. Since that, several ion beams have been developed-for example 45 μA of Ti11+ ion beam using the MIVOC method. The internal oven for the production of calcium ion beams has been developed. In the first test, 75 μA of Ca11+ ion beam was obtained with a microwave power of 500 W.

  2. Ferroelectric Plasma Source for Heavy Ion Beam ChargeNeutralization

    SciTech Connect

    Efthimion, Philip C.; Gilson, Erik P.; Grisham, Larry; Davidson,Ronald C.; Yu, Simon; Waldron, William; Logan, B. Grant

    2005-10-01

    Plasmas are employed as a source of unbound electrons for charge neutralizing heavy ion beams to allow them to focus to a small spot size. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length {approx} 0.1-1 m would be suitable. To produce one-meter plasma, large-volume plasma sources based upon ferroelectric ceramics are being developed. These sources have the advantage of being able to increase the length of the plasma and operate at low neutral pressures. The source utilizes the ferroelectric ceramic BaTiO{sub 3} to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) will be covered with ceramic, and high voltage ({approx} 1-5 kV) applied between the drift tube and the front surface of the ceramic by placing a wire grid on the front surface. A prototype ferroelectric source 20 cm long has produced plasma densities of 5 x 10{sup 11} cm{sup -3}. The source was integrated into the previous Neutralized Transport Experiment (NTX), and successfully charge neutralized the K{sup +} ion beam. Presently, the one-meter source is being fabricated. The source is being characterized and will be integrated into NDCX for charge neutralization experiments.

  3. Production of a highly charged uranium ion beam with RIKEN superconducting electron cyclotron resonance ion source

    SciTech Connect

    Higurashi, Y.; Ohnishi, J.; Nakagawa, T.; Haba, H.; Fujimaki, M.; Komiyama, M.; Kamigaito, O.; Tamura, M.; Aihara, T.; Uchiyama, A.

    2012-02-15

    A highly charged uranium (U) ion beam is produced from the RIKEN superconducting electron cyclotron resonance ion source using 18 and 28 GHz microwaves. The sputtering method is used to produce this U ion beam. The beam intensity is strongly dependent on the rod position and sputtering voltage. We observe that the emittance of U{sup 35+} for 28 GHz microwaves is almost the same as that for 18 GHz microwaves. It seems that the beam intensity of U ions produced using 28 GHz microwaves is higher than that produced using 18 GHz microwaves at the same Radio Frequency (RF) power.

  4. Selection of targets and ion sources for RIB generation at the Holifield Radioactive Ion Beam Facility

    SciTech Connect

    Alton, G.D.

    1995-12-31

    In this report, the authors describe the performance characteristics for a selected number of target ion sources that will be employed for initial use at the Holifield Radioactive Ion Beam Facility (HRIBF) as well as prototype ion sources that show promise for future use for RIB applications. A brief review of present efforts to select target materials and to design composite target matrix/heat-sink systems that simultaneously incorporate the short diffusion lengths, high permeabilities, and controllable temperatures required to effect fast and efficient diffusion release of the short-lived species is also given.

  5. First experiments with gasdynamic ion source in CW mode.

    PubMed

    Skalyga, V; Izotov, I; Golubev, S; Vodopyanov, A; Tarvainen, O

    2016-02-01

    A new type of ECR ion source-a gasdynamic ECR ion source-has been recently developed at the Institute of Applied Physics. The main advantages of such device are extremely high ion beam current with a current density up to 600-700 emA/cm(2) in combination with low emittance, i.e., normalized RMS emittance below 0.1 π mm mrad. Previous investigations were carried out in pulsed operation with 37.5 or 75 GHz gyrotron radiation with power up to 100 kW at SMIS 37 experimental facility. The present work demonstrates the first experience of operating the gasdynamic ECR ion source in CW mode. A test bench of SMIS 24 facility has been developed at IAP RAS. 24 GHz radiation of CW gyrotron was used for plasma heating in a magnetic trap with simple mirror configuration. Initial studies of plasma parameters were performed. Ion beams with pulsed and CW high voltage were successfully extracted from the CW discharge. Obtained experimental results demonstrate that all advantages of the gasdynamic source can be realized also in CW operation. PMID:26931933

  6. Modeling of negative ion transport in a plasma source (invited)

    NASA Astrophysics Data System (ADS)

    Riz, David; Paméla, Jérôme

    1998-02-01

    A code called NIETZSCHE has been developed to simulate the negative ion transport in a plasma source, from their birth place to the extraction holes. The H-/D- trajectory is calculated by numerically solving the 3D motion equation, while the atomic processes of destruction, of elastic collision with H+/D+ and of charge exchange with H0/D0 are handled at each time step by a Monte Carlo procedure. This code can be used to calculate the extraction probability of a negative ion produced at any location inside the source. Calculations performed with NIETZSCHE have been allowed to explain, either quantitatively or qualitatively, several phenomena observed in negative ion sources, such as the isotopic H-/D- effect, and the influence of the plasma grid bias or of the magnetic filter on the negative ion extraction. The code has also shown that, in the type of sources contemplated for ITER, which operate at large arc power densities (>1 W cm-3), negative ions can reach the extraction region provided they are produced at a distance lower than 2 cm from the plasma grid in the case of volume production (dissociative attachment processes), or if they are produced at the plasma grid surface, in the vicinity of the extraction holes.

  7. Accessibility condition of wave propagation and multicharged ion production in electron cyclotron resonance ion source plasma

    NASA Astrophysics Data System (ADS)

    Kato, Yushi; Yano, Keisuke; Nishiokada, Takuya; Nagaya, Tomoki; Kimura, Daiju; Kumakura, Sho; Imai, Youta; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu

    2016-02-01

    A new tandem type source of electron cyclotron resonance (ECR) plasmas has been constructing for producing synthesized ion beams in Osaka University. Magnetic mirror field configuration with octupole magnets can be controlled to various shape of ECR zones, namely, in the 2nd stage plasma to be available by a pair mirror and a supplemental coil. Noteworthy correlations between these magnetic configurations and production of multicharged ions are investigated in detail, as well as their optimum conditions. We have been considering accessibility condition of electromagnetic and electrostatic waves propagating in ECR ion source plasma, and then investigated their correspondence relationships with production of multicharged ions. It has been clarified that there exits efficient configuration of ECR zones for producing multicharged ion beams experimentally, and then has been suggested from detail accessibility conditions on the ECR plasma that new resonance, i.e., upper hybrid resonance, must have occurred.

  8. Accessibility condition of wave propagation and multicharged ion production in electron cyclotron resonance ion source plasma.

    PubMed

    Kato, Yushi; Yano, Keisuke; Nishiokada, Takuya; Nagaya, Tomoki; Kimura, Daiju; Kumakura, Sho; Imai, Youta; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu

    2016-02-01

    A new tandem type source of electron cyclotron resonance (ECR) plasmas has been constructing for producing synthesized ion beams in Osaka University. Magnetic mirror field configuration with octupole magnets can be controlled to various shape of ECR zones, namely, in the 2nd stage plasma to be available by a pair mirror and a supplemental coil. Noteworthy correlations between these magnetic configurations and production of multicharged ions are investigated in detail, as well as their optimum conditions. We have been considering accessibility condition of electromagnetic and electrostatic waves propagating in ECR ion source plasma, and then investigated their correspondence relationships with production of multicharged ions. It has been clarified that there exits efficient configuration of ECR zones for producing multicharged ion beams experimentally, and then has been suggested from detail accessibility conditions on the ECR plasma that new resonance, i.e., upper hybrid resonance, must have occurred. PMID:26931928

  9. Subcutoff microwave driven plasma ion sources for multielemental focused ion beam systems.

    PubMed

    Mathew, Jose V; Chowdhury, Abhishek; Bhattacharjee, Sudeep

    2008-06-01

    A compact microwave driven plasma ion source for focused ion beam applications has been developed. Several gas species have been experimented including argon, krypton, and hydrogen. The plasma, confined by a minimum B multicusp magnetic field, has good radial and axial uniformity. The octupole multicusp configuration shows a superior performance in terms of plasma density (~1.3 x 10(11) cm(-3)) and electron temperature (7-15 eV) at a power density of 5-10 Wcm(2). Ion current densities ranging from a few hundreds to over 1000 mA/cm(2) have been obtained with different plasma electrode apertures. The ion source will be combined with electrostatic Einzel lenses and should be capable of producing multielemental focused ion beams for nanostructuring and implantations. The initial simulation results for the focused beams have been presented.

  10. Field evaporation ion source with possible application to electrostatic propulsion

    NASA Technical Reports Server (NTRS)

    Weizer, V. G.

    1971-01-01

    Field evaporation of solid metal electrodes has been proposed as an ion source for an electrostatic propulsion device. The chief advantage over existing ion sources is the prospect of 100 percent fuel utilization efficiency. This advantage arises as a result of the elimination of the need for a gaseous precursor state for propellant ionization. The attainment of required high surface field strengths is achieved through field-induced extrusion of the electrode geometry at elevated temperatures. Contributions of both surface and bulk transport mechanisms are taken into account.

  11. Note: flowing ion population from a resonance cavity source.

    PubMed

    Gayetsky, Lisa E; Lynch, Kristina A

    2011-04-01

    The experimental low energy plasma for hemispherical analyzers nominal testing thermal plasma facility of Dartmouth College uses a microwave plasma source which generates an ionosphere-like plasma through a two-step process. The plasma is initially generated inside a cylindrical, insulated, resonance cavity. This initial plasma must pass through a sheath in order to enter the main experimental region. This process imparts a significant flow velocity to the ions which has been neglected in previous analysis of this plasma source. We predict the flow energy of the ions to be between 12-15 eV depending on conservation laws and show agreement with experimental results. PMID:21529056

  12. Development of exploding wire ion source for intense pulsed heavy ion beam accelerator

    NASA Astrophysics Data System (ADS)

    Ito, Hiroaki; Ochiai, Yasushi; Murata, Takuya; Masugata, Katsumi

    2012-10-01

    A Novel exploding wire type ion source device is proposed as a metallic ion source of intense pulsed heavy ion beam (PHIB) accelerator. In the device, multiple shot operations are realized without breaking the vacuum. The basic characteristics of the device are evaluated experimentally with an aluminum wire of diameter 0.2 mm and length 25 mm. A capacitor bank of capacitance 3 μF and a charging voltage of 30 kV was used, and the wire was successfully exploded by a discharge current of 15 kA with a rise time of 5.3 μs. Plasma flux of ion current density around 70 A/cm2 was obtained at 150 mm downstream from the device. The drift velocity of ions evaluated by a time-of-flight method was 2.7×104 m/ s, which corresponds to the kinetic energy of 100 eV for aluminum ions. From the measurement of the ion current density distribution, the ion flow is found to be concentrated toward the direction where the ion acceleration gap is placed. From the experiment, the device is found to be acceptable for applying the PHIB accelerator.

  13. Ionic liquid ion sources: characterization of externally wetted emitters.

    PubMed

    Lozano, Paulo; Martínez-Sánchez, Manuel

    2005-02-15

    The feasibility of electrostatically extracting and accelerating ions from room temperature ionic liquids in a high vacuum environment is investigated using externally wetted emitters similar to those manufactured for liquid metal ion sources, made out of tungsten wire and electrochemically treated to produce a sharp tip and to increase surface wettability. The ionic liquid EMI-BF4 is used as a prototypical example. The temperature dependence on emission current suggests that liquid flow over the metallic surface is limited by viscosity. Time-of-flight spectrometry indicates that the beam is composed of EMI+ and (EMI-BF4)EMI+ ions in the positive polarity and BF4- and (EMI-BF4)BF4- ions in the negative polarity, and that these ions are emitted with energies very close to their applied potentials. Angular distribution measurements in positive and negative polarities show that ions travel near the propagation axis, diverging by not more than 18 degrees from the centerline. Thanks to the extraordinary variety of ionic liquids it should be possible to generate a correspondingly large number of bipolar nonmetallic ion beams each with unique properties and applicability in fields as diverse as ion lithography, analytical equipment and space propulsion.

  14. Blind Source Separation For Ion Mobility Spectra

    SciTech Connect

    Marco, S.; Pomareda, V.

    2009-05-23

    Miniaturization is a powerful trend for smart chemical instrumentation in a diversity of applications. It is know that miniaturization in IMS leads to a degradation of the system characteristics. For the present work, we are interested in signal processing solutions to mitigate limitations introduced by limited drift tube length that basically involve a loss of chemical selectivity. While blind source separation techniques (BSS) are popular in other domains, their application for smart chemical instrumentation is limited. However, in some conditions, basically linearity, BSS may fully recover the concentration time evolution and the pure spectra with few underlying hypothesis. This is extremely helpful in conditions where non-expected chemical interferents may appear, or unwanted perturbations may pollute the spectra. SIMPLISMA has been advocated by Harrington et al. in several papers. However, more modern methods of BSS for bilinear decomposition with the restriction of positiveness have appeared in the last decade. In order to explore and compare the performances of those methods a series of experiments were performed.

  15. A Microfabricated Deuterium Ion Source for Compact Neutron Generators

    NASA Astrophysics Data System (ADS)

    Johnson, Benjamin Bargsten

    Active neutron interrogation is generally accepted as a reliable means of detecting the illicit transportation of special nuclear materials, in particular highly enriched uranium. The development of portable active neutron interrogation systems for field detection applications could be facilitated by the use of a new deuterium ion source which has the potential to advance many of the performance limiting aspects of exiting compact, accelerator-driven neutron generators. The ion source being investigated is a gated array of sharp metal tips that uses high electric fields to generate deuterium ion currents through the physical processes of field ionization and field desorption. The deuterium ions produced by the source are extracted and used to drive a D-D (or D-T) fusion reaction to create neutrons. The basic microstructure for the ion source array is derived from modern semiconductor microfabrication technology for field emitter arrays, though many structural modifications have been made in an attempt to reach the required operating fields of the ion generation processes. Pulsed (field desorption) and d.c. (field ionization) tests conducted with each array design type developed thus far indicate a steady improvement in array tip operating fields. Field ionization studies were conducted with arrays at source temperatures of 77 K and 293 K. Newly developed arrays have demonstrated field ionization currents upwards of ˜50 nA, which is roughly 50% of the maximum ion production possible, as presently fabricated. Neutron production by field ionization was demonstrated for the first time from the microfabricated arrays. A maximum neutron yield of 95 n/s (6300 n/s/cm2 of array active area) was observed from a 1.5 mm2 array using a D-D fusion reaction at -90 kV. Field desorption studies at 77 K and 293 K were conducted in parallel with field ionization testing. To date, the arrays have consistently demonstrated the field desorption of deuterium ions from array tip surfaces

  16. Plasma emission spectroscopy for operating and developing the Spallation Neutron Source (SNS) H- ion sources

    SciTech Connect

    Han, Baoxi; Welton, Robert F; Murray Jr, S N; Pennisi, Terry R; Santana, Manuel; Stockli, Martin P

    2014-01-01

    An RF-driven, Cs-enhanced H- ion source feeds the SNS accelerator with a high current (typically >50 mA), ~1.0 ms pulsed beam at 60 Hz. To achieve the persistent high current beam for several weeks long service cycles, each newly installed ion source undergoes a rigorous conditioning and cesiation processes. Plasma conditioning outgases the system and sputter-cleans the ion conversion surfaces. A cesiation process immediately following the plasma conditioning releases Cs to provide coverage on the ion conversion surfaces. The effectiveness of the ion source conditioning and cesiation is monitored with plasma emission spectroscopy using a high-sensitivity optical spectrometer. Plasma emission spectroscopy is also used to provide a mean for diagnosing and confirming a failure of the insulating coating of the ion source RF antenna which is immersed in the plasma. Emissions of composition elements of the antenna coating material, Na emission being the most significant, drastically elevate to signal a failure when it happens. Plasma spectra of the developmental ion source with an AlN chamber and an external RF antenna are also briefly discussed.

  17. rf improvements for Spallation Neutron Source H- ion sourcea)

    NASA Astrophysics Data System (ADS)

    Kang, Y. W.; Fuja, R.; Goulding, R. H.; Hardek, T.; Lee, S.-W.; McCarthy, M. P.; Piller, M. C.; Shin, K.; Stockli, M. P.; Welton, R. F.

    2010-02-01

    The Spallation Neutron Source at Oak Ridge National Laboratory is ramping up the accelerated proton beam power to 1.4 MW and just reached 1 MW. The rf-driven multicusp ion source that originates from the Lawrence Berkeley National Laboratory has been delivering ˜38 mA H- beam in the linac at 60 Hz, 0.9 ms. To improve availability, a rf-driven external antenna multicusp ion source with a water-cooled ceramic aluminum nitride (AlN) plasma chamber is developed. Computer modeling and simulations have been made to analyze and optimize the rf performance of the new ion source. Operational statistics and test runs with up to 56 mA medium energy beam transport beam current identify the 2 MHz rf system as a limiting factor in the system availability and beam production. Plasma ignition system is under development by using a separate 13 MHz system. To improve the availability of the rf power system with easier maintenance, we tested a 70 kV isolation transformer for the 80 kW, 6% duty cycle 2 MHz amplifier to power the ion source from a grounded solid-state amplifier.

  18. Recent progress on the superconducting ion source VENUS

    SciTech Connect

    Benitez, J. Y.; Franzen, K. Y.; Hodgkinson, A.; Loew, T.; Lyneis, C. M.; Phair, L.; Saba, J.; Strohmeier, M.; Tarvainen, O.

    2012-02-15

    The 28 GHz Ion Source VENUS (versatile ECR for nuclear science) is back in operation after the superconducting sextupole leads were repaired and a fourth cryocooler was added. VENUS serves as an R and D device to explore the limits of electron cyclotron resonance source performance at 28 GHz with its 10 kW gryotron and optimum magnetic fields and as an ion source to increase the capabilities of the 88-Inch Cyclotron both for nuclear physics research and applications. The development and testing of ovens and sputtering techniques cover a wide range of applications. Recent experiments on bismuth demonstrated stable operation at 300 e{mu}A of Bi{sup 31+}, which is in the intensity range of interest for high performance heavy-ion drivers such as FRIB (Facility for Rare Isotope Beams). In addition, the space radiation effects testing program at the cyclotron relies on the production of a cocktail beam with many species produced simultaneously in the ion source and this can be done with a combination of gases, sputter probes, and an oven. These capabilities are being developed with VENUS by adding a low temperature oven, sputter probes, as well as studying the RF coupling into the source.

  19. Recent progress on the superconducting ion source VENUS.

    PubMed

    Benitez, J Y; Franzen, K Y; Hodgkinson, A; Loew, T; Lyneis, C M; Phair, L; Saba, J; Strohmeier, M; Tarvainen, O

    2012-02-01

    The 28 GHz Ion Source VENUS (versatile ECR for nuclear science) is back in operation after the superconducting sextupole leads were repaired and a fourth cryocooler was added. VENUS serves as an R&D device to explore the limits of electron cyclotron resonance source performance at 28 GHz with its 10 kW gryotron and optimum magnetic fields and as an ion source to increase the capabilities of the 88-Inch Cyclotron both for nuclear physics research and applications. The development and testing of ovens and sputtering techniques cover a wide range of applications. Recent experiments on bismuth demonstrated stable operation at 300 eμA of Bi(31+), which is in the intensity range of interest for high performance heavy-ion drivers such as FRIB (Facility for Rare Isotope Beams). In addition, the space radiation effects testing program at the cyclotron relies on the production of a cocktail beam with many species produced simultaneously in the ion source and this can be done with a combination of gases, sputter probes, and an oven. These capabilities are being developed with VENUS by adding a low temperature oven, sputter probes, as well as studying the RF coupling into the source.

  20. Plasma spectroscopy of metal ions for hyper-electron cyclotron resonance ion source.

    PubMed

    Muto, Hideshi; Ohshiro, Yukimitsu; Yamaka, Shoichi; Watanabe, Shin-ichi; Oyaizu, Michihiro; Kubono, Shigeru; Yamaguchi, Hidetoshi; Kase, Masayuki; Hattori, Toshiyuki; Shimoura, Susumu

    2014-02-01

    In this research, the optical line spectra of metal ions from ECR plasma were observed using a grating monochromator with a photomultiplier. The light intensity of line spectrum from the ECR plasma had a strong correlation with ion beam intensity measured by a magnetic mass analyzer. This correlation is a significant information for the beam tuning process, because it allows to conduct the extraction of the desired metal ion species from the ECR plasma. Separation of ion species of the same charge to mass ratio with an electromagnetic mass analyzer is known to be an exceptionally complex process, but this research provides a new approach for its simplification. In this paper the grating monochromator method for metal ion beam tuning such as (40)Ca(12+), (56)Fe(15+), and (85)Rb(20+) of hyper-ECR ion source as an injector for RIKEN Azimuthal Varying Field cyclotron is described.

  1. Collisional electrostatic ion cyclotron waves as a possible source of energetic heavy ions in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Providakes, Jason; Seyler, Charles E.

    1990-01-01

    A new mechanism is proposed for the source of energetic heavy ions (NO/+/, O2/+/, and O/+/) found in the magnetosphere. Simulations using a multispecies particle simulation code for resistive current-driven electrostatic ion cyclotron waves show transverse and parallel bulk heating of bottomside ionospheric heavy ion populations. The dominant mechanism for the transverse bulk heating is resonant ion heating by wave-particle ion trapping. Using a linear kinetic dispersion relation for a magnetized, collisional, homogenous, and multiion plasma, it is found that collisional electrostatic ion cyclotron waves near the NO(+), O2(+), and O(+) gyrofrequencies are unstable to field-aligned currents of 50 microA/sq m for a typical bottomside ionosphere.

  2. Performance of a modified Calutron-Bernas ion source

    NASA Astrophysics Data System (ADS)

    Pratap, R.; Lal, K. B.; Salvi, V. P.

    1990-01-01

    The Calutron-Bernas ion source has been modified for high-dose ion implantation (>1016 ions/cm2). The modified ion source has stable arc, uniformly bright illumination, and dense plasma. It consists of a hairpin-shaped tungsten (W) filament as a hot cathode at one end, and a disk-type graphite anode at the other end about 8 cm away; both the electrodes are fitted in an arc discharge chamber made of graphite only. The anode potential of 150-200 V and filament current of about 60 A initiates a stable bright arc. A magnetic field (0.1-0.5 kG) along the cathode-anode axis enhances the electron ionizing efficiency, helps in collimating the electrons, and contributes also in the plasma confinement near the aperture. The operational life of W filament (1.2 mm diam) in an ambient of oxygen or nitrogen at pressure 10-3-10-4 Torr varies from 25 to 35 h. Further, a needle valve or an in-built minioven is used, respectively, when the feed material is a gas/liquid or a solid charge. The gas/vapors is/are admitted at a proper location into the arc chamber so as to be conducive for the generation of high-density plasma. One rectangular face of the arc chamber (graphite box) is provided with an aperture (8 cm×0.2 cm) for lateral extraction of ions. For most elements, the extracted ion beam that is subsequently accelerated through a mass analyzing 60° magnetic sector is quite intense at the target; the nitrogen ion-beam current has been achieved up to 60 μA/cm2. Consequently, high-dose implantation (≳1017 ions/cm2) of singly charged 30-keV ions has been carried out for surface modification of materials.

  3. 3D modelling of negative ion extraction from a negative ion source

    NASA Astrophysics Data System (ADS)

    Mochalskyy, S.; Lifschitz, A. F.; Minea, T.

    2010-10-01

    The development of a suitable negative ion source constitutes a crucial step in the construction of the neutral beam injector of ITER. To fulfil the ITER requirements in terms of heating and current drive, the negative ion source should deliver 40 A of D-. The achievement of such a source constitutes a technical and scientific challenge, and it requires a deeper understanding of the underlying physics of the source. The present knowledge of the ion extraction mechanism from the negative ion source is limited. It constitutes a complex problem that involves understanding the behaviour of magnetized plasma sheaths when negative ions and electrons are pulled out from the plasma. Moreover, due to the asymmetry induced by the crossed magnetic configuration used to filter the electrons, any realistic study of this problem must consider the three spatial dimensions. To address this problem in a realistic way, a 3D particles-in-cell electrostatic code specifically designed for this system was developed. The code uses a Cartesian coordinate system and it can deal with complex boundary geometry as it is the case of the extraction apertures (Hemsworth et al 2009 Nucl. Fusion 49 045006). The complex magnetic field that is applied to deflect electrons is also taken into account. This code, called ONIX, was used to investigate the plasma properties and the transport of negative ions and electrons close to a source extraction aperture. Results in the collisionless approach on the formation of the plasma meniscus and the screening of the extraction field by the plasma are presented here, as well as negative ions trajectories. Negative ion extraction efficiency from volume and surfaces is discussed.

  4. Quartz antenna for radio frequency ion source operation

    SciTech Connect

    Lee, Y.; Gough, R.A.; Leung, K.N.; Perkins, L.T.; Pickard, D.S.; Vujic, J.; Wu, L.K.; Olivo, M.; Einenkel, H.

    1998-02-01

    Radio-frequency (rf) driven multicusp ion sources developed at the Lawrence Berkeley National Laboratory use an internal induction coil (antenna) for plasma generation. The copper rf-antenna with a thin layer of porcelain coating, which is presently used, cannot fully satisfy the increasing demands on source cleanliness and antenna lifetime under high power cw or pulsed operation in applications where water cooling is not possible. A quartz antenna has been designed and operated in the multicusp ion source. It has been demonstrated that the overall performance of the new antenna exceeds that of the regular porcelain-coated antenna. It can be operated with a long lifetime in different discharge plasmas. The quartz antenna has also been tested at the Paul Scherrer Institute for cw source operation at rf power higher than 5 kW. Results demonstrated that the antenna can survive under dense plasma discharge operations. {copyright} {ital 1998 American Institute of Physics.}

  5. A simple radionuclide-driven single-ion source

    SciTech Connect

    Montero Diez, M.; Twelker, K.; Gratta, G.; Barbeau, P. S.; Barry, K.; DeVoe, R.; Dolinski, M. J.; Green, M.; LePort, F.; Mueller, A. R.; Neilson, R.; O'Sullivan, K.; Fairbank, W. Jr.; Benitez-Medina, C.; Cook, S.; Hall, K.; Mong, B.; Ackerman, N.; Breidenbach, M.; Herrin, S.; and others

    2010-11-15

    We describe a source capable of producing single barium ions through nuclear recoils in radioactive decay. The source is fabricated by electroplating {sup 148}Gd onto a silicon {alpha}-particle detector and vapor depositing a layer of BaF{sub 2} over it. {sup 144}Sm recoils from the alpha decay of {sup 148}Gd are used to dislodge Ba{sup +} ions from the BaF{sub 2} layer and emit them in the surrounding environment. The simultaneous detection of an {alpha} particle in the substrate detector allows for tagging of the nuclear decay and of the Ba{sup +} emission. The source is simple, durable, and can be manipulated and used in different environments. We discuss the fabrication process, which can be easily adapted to emit most other chemical species, and the performance of the source.

  6. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    SciTech Connect

    Hill, N.C.; Limbach, P.A.; Shomo, R.E. II; Marshall, A.G. ); Appelhans, A.D.; Delmore, J.E. )

    1991-11-01

    The coupling of an autoneutralizing SF{sup {minus}}{sub 6} fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis (e.g., production of abundant pseudomolecular (M+H){sup +} ions) of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with {ital tetra}-butylammonium bromide and a Tylenol{sup ( )} sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon{sup ( )}. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  7. Fast neutral beam ion source coupled to a Fourier transform ion cyclotron resonance mass spectrometer

    NASA Astrophysics Data System (ADS)

    Hill, Nicholas C.; Limbach, Patrick A.; Shomo, Ronald E., II; Marshall, Alan G.; Appelhans, Anthony D.; Delmore, James E.

    1991-11-01

    The coupling of an autoneutralizing SF-6 fast ion-beam gun to a Fourier transform ion cyclotron resonance (FT/ICR) mass spectrometer is described. The fast neutral beam provides for secondary-ion-type FT/ICR mass analysis [e.g., production of abundant pseudomolecular (M+H)+ ions] of involatile samples without the need for external ion injection, since ions are formed at the entrance to the ICR ion trap. The design, construction, and testing of the hybrid instrument are described. The feasibility of the experiment (for both broadband and high-resolution FT/ICR positive-ion mass spectra) is demonstrated with tetra-butylammonium bromide and a Tylenol■ sample. The ability to analyze high molecular weight polymers with high mass resolution is demonstrated for Teflon■. All of the advantages of the fast neutral beam ion source previously demonstrated with quadrupole mass analysis are preserved, and the additional advantages of FT/ICR mass analysis (e.g., high mass resolving power, ion trapping) are retained.

  8. Studies in High Current Density Ion Sources for Heavy Ion FusionApplications

    SciTech Connect

    Chacon-Golcher, E.

    2002-06-01

    This dissertation develops diverse research on small (diameter {approx} few mm), high current density (J {approx} several tens of mA/cm{sup 2}) heavy ion sources. The research has been developed in the context of a programmatic interest within the Heavy Ion Fusion (HIF) Program to explore alternative architectures in the beam injection systems that use the merging of small, bright beams. An ion gun was designed and built for these experiments. Results of average current density yield () at different operating conditions are presented for K{sup +} and Cs{sup +} contact ionization sources and potassium aluminum silicate sources. Maximum values for a K{sup +} beam of {approx}90 mA/cm{sup 2} were observed in 2.3 {micro}s pulses. Measurements of beam intensity profiles and emittances are included. Measurements of neutral particle desorption are presented at different operating conditions which lead to a better understanding of the underlying atomic diffusion processes that determine the lifetime of the emitter. Estimates of diffusion times consistent with measurements are presented, as well as estimates of maximum repetition rates achievable. Diverse studies performed on the composition and preparation of alkali aluminosilicate ion sources are also presented. In addition, this work includes preliminary work carried out exploring the viability of an argon plasma ion source and a bismuth metal vapor vacuum arc (MEVVA) ion source. For the former ion source, fast rise-times ({approx} 1 {micro}s), high current densities ({approx} 100 mA/cm{sup 2}) and low operating pressures (< 2 mtorr) were verified. For the latter, high but acceptable levels of beam emittance were measured ({var_epsilon}{sub n} {le} 0.006 {pi} mm {center_dot} mrad) although measured currents differed from the desired ones (I {approx} 5mA) by about a factor of 10.

  9. Discrimination of ionic species from broad-beam ion sources

    NASA Technical Reports Server (NTRS)

    Anderson, J. R.

    1993-01-01

    The performance of a broad-beam, three-grid, ion extraction system incorporating radio frequency (RF) mass discrimination was investigated experimentally. This testing demonstrated that the system, based on a modified single-stage Bennett mass spectrometer, can discriminate between ionic species having about a 2-to-1 mass ratio while producing a broad-beam of ions with low kinetic energy (less than 15 eV). Testing was conducted using either argon and krypton ions or atomic and diatomic oxygen ions. A simple one-dimensional model, which ignores magnetic field and space-charge effects, was developed to predict the species separation capabilities as well as the kinetic energies of the extracted ions. The experimental results correlated well with the model predictions. This RF mass discrimination system can be used in applications where both atomic and diatomic ions are produced, but a beam of only one of the species is desired. An example of such an application is a 5 eV atomic oxygen source. This source would produce a beam of atomic oxygen with 5 eV kinetic energy, which would be directed onto a material specimen, to simulate the interaction between the surface of a satellite and the rarefied atmosphere encountered in low-Earth orbit.

  10. Electron Transport across Magnetic Filter in Negative Hydrogen Ion Source

    NASA Astrophysics Data System (ADS)

    Fukano, Azusa; Ogasawara, Masatada

    2001-12-01

    Profiles of electron temperature and number density in a negative-ion source are investigated theoretically. Spatial dependence over the magnetic filter region is obtained using the equations of electron flux and electron heat flux that include the effect of interference of forces by the density gradient and temperature gradient. Due to the effect of the magnetic filter, temperature and density of the electron decrease from the source chamber to the extraction chamber, and the decrease depends on the magnitude of the magnetic flux. The effect of the magnetic filter on the production and destruction rates of the negative hydrogen ion is examined. The reaction rate for the dissociative attachment reaction which produces the negative hydrogen ion increases with the decrease of the electron temperature. However, the production rate per one vibrationally excited hydrogen molecule decreases with the decrease of electron density. On the other hand, the destruction probability of the negative ion by the electron detachment reaction decreases significantly by the decrease of the electron density and temperature. The magnetic filter does not enhance the production of the negative hydrogen ion, but it reduces the destruction of the negative ion because of the decrease of the electron density.

  11. A high-performance electron beam ion source

    SciTech Connect

    Alessi,J.; Beebe, E.; Bellavia, S.; Gould, O.; Kponou, A.; Lambiase, R.; Lockey, R.; McCafferty, D.; Okamura, M.; Pikin, A. I.; Raparia, D.; Ritter, J.; Syndstrup, L.

    2009-06-08

    At Brookhaven National Laboratory, a high current Electron Beam Ion Source (EBIS) has been developed as part of a new preinjector that is under construction to replace the Tandem Van de Graaffs as the heavy ion preinjector for the RHIC and NASA experimental programs. This preinjector will produce milliampere-level currents of essentially any ion species, with q/A {ge} 1/6, in short pulses, for injection into the Booster synchrotron. In order to produce the required intensities, this EBIS uses a 10A electron gun, and an electron collector designed to handle 300 kW of pulsed electron beam power. The EBIS trap region is 1.5 m long, inside a 5T, 2m long, 8-inch bore superconducting solenoid. The source is designed to switch ion species on a pulse-to-pulse basis, at a 5 Hz repetition rate. Singly-charged ions of the appropriate species, produced external to the EBIS, are injected into the trap and confined until the desired charge state is reached via stepwise ionization by the electron beam. Ions are then extracted and matched into an RFQ, followed by a short IH Linac, for acceleration to 2 MeV/A, prior to injection into the Booster synchrotron. An overview of the preinjector is presented, along with experimental results from the prototype EBIS, where all essential requirements have already been demonstrated. Design features and status of construction of the final high intensity EBIS is also be presented.

  12. A compact, versatile low-energy electron beam ion source

    SciTech Connect

    Zschornack, G.; König, J.; Schmidt, M.; Thorn, A.

    2014-02-15

    A new compact Electron Beam Ion Source, the Dresden EBIT-LE, is introduced as an ion source working at low electron beam energies. The EBIT-LE operates at an electron energy ranging from 100 eV to some keV and can easily be modified to an EBIT also working at higher electron beam energies of up to 15 keV. We show that, depending on the electron beam energy, electron beam currents from a few mA in the low-energy regime up to about 40 mA in the high-energy regime are possible. Technical solutions as well as first experimental results of the EBIT-LE are presented. In ion extraction experiments, a stable production of low and intermediate charged ions at electron beam energies below 2 keV is demonstrated. Furthermore, X-ray spectroscopy measurements confirm the possibility of using the machine as a source of X-rays from ions excited at low electron energies.

  13. Commissioning of the superconducting ECR ion source VENUS

    SciTech Connect

    Leitner, Daniela; Abbott, Steve R.; Dwinell, Roger D.; Leitner, Matthaeus; Taylor, Clyde; Lyneis, Claude M.

    2003-05-15

    VENUS (Versatile ECR ion source for NUclear Science) is a next generation superconducting ECR ion source, designed to produce high current, high charge state ions for the 88-Inch Cyclotron at the Lawrence Berkeley National Laboratory. VENUS also serves as the prototype ion source for the RIA (Rare Isotope Accelerator) front end. The magnetic confinement configuration consists of three superconducting axial coils and six superconducting radial coils in a sextupole configuration. The nominal design fields of the axial magnets are 4T at injection and 3T at extraction; the nominal radial design field strength at the plasma chamber wall is 2T, making VENUS the world most powerful ECR plasma confinement structure. The magnetic field strength has been designed for optimum operation at 28 GHz. The four-year VENUS project has recently achieved two major milestones: The first plasma was ignited in June, the first mass-analyzed high charge state ion beam was extracted in September of 2002. The pa per describes the ongoing commissioning. Initial results including first emittance measurements are presented.

  14. Laser Cooled Strontium Source for an Ion Interferometer

    NASA Astrophysics Data System (ADS)

    Lyon, Mary; Archibald, James; Erickson, Christopher; Durfee, Dallin

    2010-10-01

    We present a Strontium-87 magneto-optical trap (MOT) in a Low-Velocity-Intense-Source (LVIS) as the source of cooled, collimated atoms for an ion interferometer. Laser cooling and trapping is accomplished with a 461 nm frequency doubled laser and a pair of permanent magnets. A beam of cooled atoms is produced by passing the atoms through a hole drilled in one of the retroreflecting optics. The atoms are then photo-ionized in a two photon process.

  15. High electric field deuterium ion sources for neutron generators

    NASA Astrophysics Data System (ADS)

    Reichenbach, Birk

    Active interrogation systems for highly enriched uranium require improved fieldable neutron sources. The target technology for deuterium-tritium neutron generators is well understood and the most significant improvement can be achieved by improving the deuterium ion source through increased output and, in some cases, lifetime of the ion source. We are developing a new approach to a deuterium ion sources based upon the field desorption/evaporation of deuterium from the surfaces of metal tips. Electrostatic field desorption (EFD) desorbs previously adsorbed deuterium as ions under the influence of high electric fields (several V/A), without removing tip material. Single etched wire tip experiments have been performed and have shown that this is difficult but can be achieved with molybdenum and tungsten tips. Electrostatic field evaporation (EFE) evaporates ultra thin deuterated titanium films as ions. It has been shown that several 10s of atomic layers can be removed within a few nanoseconds from etched tungsten tips. In the course of these studies titanium deposition and deuteration methods were studied and new detection methods developed. Space charge effects resulting from the large ion currents were identified to be the most likely cause of some unusual ion emission characteristics. In addition, on W < 110 > oriented substrates a surprising body-centered cubic crystal structure of the titanium film was found and studied. The ion currents required for neutron generator applications can be achieved by microfabrication of metal tip arrays. Field desorption studies of microfabricated field emitter tip arrays have been conducted for the first time. Maximum fields of 3 V/A have been applied to the array tip surfaces to date, although fields of ˜ 2 V/A to ˜ 2.5 V/A are more typical. Desorption of atomic deuterium ions has been observed at fields of roughly 2 V/A at room temperature. The desorption of common surface adsorbates, such as hydrogen, carbon, water, and

  16. Laser ion source activities at Brookhaven National Laboratory

    DOE PAGES

    Kanesue, Takeshi; Okamura, Masahiro

    2015-07-31

    In Brookhaven National Laboratory (BNL), we have been developing laser ion sources for diverse accelerators. Tabletop Nd:YAG lasers with up to several Joules of energy are mainly used to create ablation plasmas for stable operations. The obtained charge states depend on laser power density and target species. Two types of ion extraction schemes, Direct Plasma Injection Scheme (DPIS) and conventional static extraction, are used depending on application. We optimized and select a suitable laser irradiation condition and a beam extraction scheme to meet the requirement of the following accelerator system. We have demonstrated to accelerate more than 5 x 1010more » of C6+ ions using the DPIS. We successfully commissioned low charge ion beam provider to the user facilities in BNL. As a result, to achieve higher current, higher charge state and lower emittance, further studies will continue.« less

  17. Laser ion source activities at Brookhaven National Laboratory

    SciTech Connect

    Kanesue, Takeshi; Okamura, Masahiro

    2015-07-31

    In Brookhaven National Laboratory (BNL), we have been developing laser ion sources for diverse accelerators. Tabletop Nd:YAG lasers with up to several Joules of energy are mainly used to create ablation plasmas for stable operations. The obtained charge states depend on laser power density and target species. Two types of ion extraction schemes, Direct Plasma Injection Scheme (DPIS) and conventional static extraction, are used depending on application. We optimized and select a suitable laser irradiation condition and a beam extraction scheme to meet the requirement of the following accelerator system. We have demonstrated to accelerate more than 5 x 1010 of C6+ ions using the DPIS. We successfully commissioned low charge ion beam provider to the user facilities in BNL. As a result, to achieve higher current, higher charge state and lower emittance, further studies will continue.

  18. Note: A pulsed laser ion source for linear induction accelerators

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Zhang, K.; Shen, Y.; Jiang, X.; Dong, P.; Liu, Y.; Wang, Y.; Chen, D.; Pan, H.; Wang, W.; Jiang, W.; Long, J.; Xia, L.; Shi, J.; Zhang, L.; Deng, J.

    2015-01-01

    We have developed a high-current laser ion source for induction accelerators. A copper target was irradiated by a frequency-quadrupled Nd:YAG laser (266 nm) with relatively low intensities of 108 W/cm2. The laser-produced plasma supplied a large number of Cu+ ions (˜1012 ions/pulse) during several microseconds. Emission spectra of the plasma were observed and the calculated electron temperature was about 1 eV. An induction voltage adder extracted high-current ion beams over 0.5 A/cm2 from a plasma-prefilled gap. The normalized beam emittance measured by a pepper-pot method was smaller than 1 π mm mrad.

  19. Grating monochromator for electron cyclotron resonance ion source operation

    SciTech Connect

    Muto, Hideshi; Ohshiro, Yukimitsu; Yamaka, Shouichi; Watanabe, Shin-ichi; Yamaguchi, Hidetoshi; Shimoura, Susumu; Oyaizu, Michihiro; Kase, Masayuki; Kubono, Shigeru; Hattori, Toshiyuki

    2013-07-15

    Recently, we started to observe optical line spectra from an ECR plasma using a grating monochromator with a photomultiplier. The light intensity of line spectrum from the ECR plasma had a strong correlation with ion beam intensity measured by a magnetic mass analyzer. This correlation is a significant information for beam tuning because it allows the extraction of the desired ion species from the ECR plasma. Separation of ion species of the same charge to mass ratio with an electromagnetic mass analyzer is known to be an exceptionally complex process, but this research gives new insights into its simplification. In this paper, the grating monochromator method for beam tuning of a Hyper-ECR ion source as an injector for RIKEN azimuthal varying field (AVF) cyclotron is described.

  20. Method and apparatus for plasma source ion implantation

    DOEpatents

    Conrad, John R.

    1988-01-01

    Ion implantation into surfaces of three-dimensional targets is achieved by forming an ionized plasma about the target within an enclosing chamber and applying a pulse of high voltage between the target and the conductive walls of the chamber. Ions from the plasma are driven into the target object surfaces from all sides simultaneously without the need for manipulation of the target object. Repetitive pulses of high voltage, typically 20 kilovolts or higher, causes the ions to be driven deeply into the target. The plasma may be formed of a neutral gas introduced into the evacuated chamber and ionized therein with ionizing radiation so that a constant source of plasma is provided which surrounds the target object during the implantation process. Significant increases in the surface hardness and wear characteristics of various materials are obtained with ion implantation in this manner.

  1. Method and apparatus for plasma source ion implantation

    DOEpatents

    Conrad, J.R.

    1988-08-16

    Ion implantation into surfaces of three-dimensional targets is achieved by forming an ionized plasma about the target within an enclosing chamber and applying a pulse of high voltage between the target and the conductive walls of the chamber. Ions from the plasma are driven into the target object surfaces from all sides simultaneously without the need for manipulation of the target object. Repetitive pulses of high voltage, typically 20 kilovolts or higher, causes the ions to be driven deeply into the target. The plasma may be formed of a neutral gas introduced into the evacuated chamber and ionized therein with ionizing radiation so that a constant source of plasma is provided which surrounds the target object during the implantation process. Significant increases in the surface hardness and wear characteristics of various materials are obtained with ion implantation in this manner. 7 figs.

  2. Note: A pulsed laser ion source for linear induction accelerators

    SciTech Connect

    Zhang, H.; Zhang, K.; Shen, Y.; Jiang, X.; Dong, P.; Liu, Y.; Wang, Y.; Chen, D.; Pan, H.; Wang, W.; Jiang, W.; Long, J.; Xia, L.; Shi, J.; Zhang, L.; Deng, J.

    2015-01-15

    We have developed a high-current laser ion source for induction accelerators. A copper target was irradiated by a frequency-quadrupled Nd:YAG laser (266 nm) with relatively low intensities of 10{sup 8} W/cm{sup 2}. The laser-produced plasma supplied a large number of Cu{sup +} ions (∼10{sup 12} ions/pulse) during several microseconds. Emission spectra of the plasma were observed and the calculated electron temperature was about 1 eV. An induction voltage adder extracted high-current ion beams over 0.5 A/cm{sup 2} from a plasma-prefilled gap. The normalized beam emittance measured by a pepper-pot method was smaller than 1 π mm mrad.

  3. Production of multiply charge-state ions in a multicusp ion source

    SciTech Connect

    Williams, M.D.; deVries, G.J.; Gough, R.A.; Leung, K.N.; Monroy, M.

    1996-03-01

    High charge state ion beams are commonly used in atomic and nuclear physics experiments. Multiply charged ions are normally produced in an ECR or in an EBIS. Multicusp generators can confine primary electrons very efficiently. Therefore, the electrical and gas efficiencies of these devices are high. Since the magnetic cusp fields are localized near the chamber wall, large volumes of uniform and high density plasmas can be obtained at low pressure, conditions favorable for the formation of multiply charged state ions. Attempts have been made at LBNL to generate multiply charged ion beams by employing a 25-cm diam by 25-cm long multicusp source. Experimental results demonstrated that charge states as high as 7+ can be obtained with argon or xenon plasmas. Multiply charged metallic ions such as tungsten and titanium have also been successfully formed in the multicusp source by evaporation and sputtering processes. In order to extend the charge state to higher values, a novel technique of injecting high energy electrons into the source plasma is proposed. If this is successful, the multicusp source will become very useful for radioactive beam accelerators, ion implantation, and nuclear physics applications. {copyright} {ital 1996 American Institute of Physics.}

  4. Pulsed magnetic field-electron cyclotron resonance ion source operation

    SciTech Connect

    Muehle, C.; Ratzinger, U.; Joest, G.; Leible, K.; Schennach, S.; Wolf, B.H.

    1996-03-01

    The pulsed magnetic field (PuMa)-electron cyclotron resonance (ECR) ion source uses a pulsed coil to improve the peak current by opening the magnetic bottle along the beam axis. After demonstration of the principle of the pulsed magnetic extraction, the ion source was tested with different gases. We received promising results from helium to krypton. The influence of the current in the pulsed coil on the analyzed ion current was measured. With increased current levels within the pulsed coil not only the pulse height of the PuMa pulse, but the pulse length can also be controlled. By using the pulsed coil the maximum of the charge state distribution can be shifted to higher charge states. {copyright} {ital 1996 American Institute of Physics.}

  5. Pulsed magnetic field-electron cyclotron resonance ion source operation

    NASA Astrophysics Data System (ADS)

    Mühle, C.; Ratzinger, U.; Jöst, G.; Leible, K.; Schennach, S.; Wolf, B. H.

    1996-03-01

    The pulsed magnetic field (PuMa)-electron cyclotron resonance (ECR) ion source uses a pulsed coil to improve the peak current by opening the magnetic bottle along the beam axis. After demonstration of the principle of the pulsed magnetic extraction, the ion source was tested with different gases. We received promising results from helium to krypton. The influence of the current in the pulsed coil on the analyzed ion current was measured. With increased current levels within the pulsed coil not only the pulse height of the PuMa pulse, but the pulse length can also be controlled. By using the pulsed coil the maximum of the charge state distribution can be shifted to higher charge states.

  6. Fundamental studies on the Cs dynamics under ion source conditions

    SciTech Connect

    Friedl, R. Fantz, U.

    2014-02-15

    The performance of surface conversion based negative hydrogen ion sources is mainly determined by the caesium dynamics. Therefore, fundamental investigations in vacuum and plasma are performed at a flexible laboratory setup with ion source parameters. Studies on the influence of Cs on the plasma parameters of H{sub 2} and D{sub 2} plasmas showed that n{sub e} and T{sub e} in the bulk plasma are not affected by relevant amounts of Cs and no isotopic differences could be observed. The coating of the vessel surfaces with Cs, however, leads to a considerable gettering of hydrogen atoms from the plasma volume and to the decrease of n{sub e} close to a sample surface due to the formation of negative ions.

  7. Handling radiation generated during an ion source commissioning

    SciTech Connect

    Ren, H. T.; Zhao, J. Peng, S. X.; Lu, P. N.; Zhou, Q. F.; Xu, Y.; Chen, J.; Zhang, T.; Zhang, A. L.; Guo, Z. Y.; Chen, J. E.

    2014-02-15

    Radiation is an important issue, which should be carefully treated during the design and commissioning of an ion source. Measurements show that X-rays are generated around the ceramics column of an extraction system when the source is powered up to 30 kV. The X-ray dose increases greatly when a beam is extracted. Inserting the ceramic column into a metal vacuum box is a good way to block X-ray emission for those cases. Moreover, this makes the online test of an intense H{sup +} ion beam with energy up to 100 keV possible. However, for deuteron ion source commissioning, neutron and gamma-ray radiation become a serious topic. In this paper, we will describe the design of the extraction system and the radiation doses of neutrons and gamma-rays measured at different D{sup +} beam energy during our 2.45 GHz deuteron electron cyclotron resonance ion source commissioning for PKUNIFTY (PeKing University Neutron Imaging FaciliTY) project at Peking University.

  8. Frequency scaling with miniature COmpact MIcrowave and Coaxial ion sources

    NASA Astrophysics Data System (ADS)

    Sortais, Pascal; André, Thomas; Angot, Julien; Bouat, Sophie; Jacob, Josua; Lamy, Thierry; Sole, Patrick

    2014-02-01

    We will present recent basic developments about possible extension of the COMIC (for COmpact MIcrowave and Coaxial) devices up to 5.8 GHz in place of the present 2.45 GHz operation [P. Sortais, T. Lamy, J. Médard, J. Angot, L. Latrasse, and T. Thuillier, Rev. Sci. Instrum. 81, 02B314 (2010)]. New applications associating multiple COMIC devices for thin film deposition will be described and we will explain why an increase of the current density delivered by each individual ion source could lead to the increase of the deposition rate. For this purpose, we will present results of about two devices working at 5.8 GHz. The first one is a tiny ion source, the world smallest microwave ion source, exactly similar to COMIC but operating at 5.8 GHz with a quarter wave cavity structure and a few watts microwave power consumption. We will show that the frequency scaling effect is effective inside such small machines. The second one is a more ambitious ion source designed around a three quarter wave structure that works with a few tens of watts at 5.8 GHz.

  9. Progress in Polarized 3He Ion Source at RCNP

    SciTech Connect

    Tanaka, M.; Takahashi, Y.; Shimoda, T.; Yasui, S.; Yosoi, M.; Takahisa, K.; Shimakura, N.; Plis, Yu. A.; Donets, E. D.

    2007-06-13

    A long history on the polarized 3He ion source developed at RCNP is presented. We started with an 'OPPIS' (Optical Pumping Polarized Ion Source) and later found the fundamental difficulties in the OPPIS. To overcome them an 'EPPIS' (Electron Pumping Polarized Ion Source) was proposed and its validity was experimentally proven. However, a serious technical disadvantage was also found in the EPPIS. To avoid this disadvantage we proposed a new concept, 'SEPIS' (Spin Exchange Polarized Ion Source), which uses an enhanced spin-exchange cross section theoretically expected at low 3He+ incident energies in the 3He+ + Rb system. Next, we describe the present status of the SEPIS development: construction of a bench test device allowing the measurements of not only the spin-exchange cross sections {sigma}se but also the electron capture cross sections {sigma}ec for the 3He+ + Rb system. The latest experimental data on {sigma}ec are presented and compared with other previous experimental data and the theoretical calculations.Finally, a design study of the SEPIS for practical use in nuclear (cyclotron) and particle physics (synchrotron) is shortly mentioned.

  10. Handling radiation generated during an ion source commissioning

    NASA Astrophysics Data System (ADS)

    Ren, H. T.; Zhao, J.; Peng, S. X.; Lu, P. N.; Zhou, Q. F.; Xu, Y.; Chen, J.; Zhang, T.; Zhang, A. L.; Guo, Z. Y.; Chen, J. E.

    2014-02-01

    Radiation is an important issue, which should be carefully treated during the design and commissioning of an ion source. Measurements show that X-rays are generated around the ceramics column of an extraction system when the source is powered up to 30 kV. The X-ray dose increases greatly when a beam is extracted. Inserting the ceramic column into a metal vacuum box is a good way to block X-ray emission for those cases. Moreover, this makes the online test of an intense H+ ion beam with energy up to 100 keV possible. However, for deuteron ion source commissioning, neutron and gamma-ray radiation become a serious topic. In this paper, we will describe the design of the extraction system and the radiation doses of neutrons and gamma-rays measured at different D+ beam energy during our 2.45 GHz deuteron electron cyclotron resonance ion source commissioning for PKUNIFTY (PeKing University Neutron Imaging FaciliTY) project at Peking University.

  11. Cesium Delivery System for Negative Ion Source at IPR

    SciTech Connect

    Bansal, G.; Pandya, K.; Soni, J.; Gahlaut, A.; Parmar, K. G.; Bandyopadhyay, M.; Chakraborty, A.; Singh, M. J.

    2011-09-26

    The technique of surface production of negative ions using cesium, Cs, has been efficiently exploited over the years for producing negative ion beams with increased current densities from negative ion sources used on neutral beam lines. Deposition of Cs on the source walls and the plasma grid lowers the work function and therefore enables a higher yield of H{sup -}, when hydrogen particles (H and/or H{sub x}{sup +}) strike these surfaces.A single driver RF based (100 kW, 1 MHz) negative ion source test bed, ROBIN, is being set up at IPR under a technical collaboration between IPR and IPP, Germany. The optimization of the Cs oven design to be used on this facility as well as multidriver sources is underway. The characterization experiments of such a Cs delivery system with a 1 g Cs inventory have been carried out using surface ionization technique. The experiments have been carried by delivering Cs into a vacuum chamber without plasma. The linear motion of the surface ionization detector, SID, attached with a linear motion feedthrough allows measuring the angular distribution of the Cs coming out of the oven. Based on the experimental results, a Cs oven for ROBIN has been proposed. The Cs oven design and experimental results of the prototype Cs oven are reported and discussed in the paper.

  12. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Shin, Chang Seouk; Lee, Byoung-Seob; Choi, Seyong; Yoon, Jang-Hee; Kim, Hyun Gyu; Ok, Jung-Woo; Park, Jin Yong; Kim, Seong Jun; Bahng, Jungbae; Hong, Jonggi; Lee, Seung Wook; Won, Mi-Sook

    2016-02-01

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1-10 mm2. The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research.

  13. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source.

    PubMed

    Shin, Chang Seouk; Lee, Byoung-Seob; Choi, Seyong; Yoon, Jang-Hee; Kim, Hyun Gyu; Ok, Jung-Woo; Park, Jin Yong; Kim, Seong Jun; Bahng, Jungbae; Hong, Jonggi; Lee, Seung Wook; Won, Mi-Sook

    2016-02-01

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1-10 mm(2). The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research.

  14. Nitrogen ion implantation into various materials using 28 GHz electron cyclotron resonance ion source.

    PubMed

    Shin, Chang Seouk; Lee, Byoung-Seob; Choi, Seyong; Yoon, Jang-Hee; Kim, Hyun Gyu; Ok, Jung-Woo; Park, Jin Yong; Kim, Seong Jun; Bahng, Jungbae; Hong, Jonggi; Lee, Seung Wook; Won, Mi-Sook

    2016-02-01

    The installation of the 28 GHz electron cyclotron resonance ion source (ECRIS) ion implantation beamline was recently completed at the Korea Basic Science Institute. The apparatus contains a beam monitoring system and a sample holder for the ion implantation process. The new implantation system can function as a multipurpose tool since it can implant a variety of ions, ranging hydrogen to uranium, into different materials with precise control and with implantation areas as large as 1-10 mm(2). The implantation chamber was designed to measure the beam properties with a diagnostic system as well as to perform ion implantation with an in situ system including a mass spectrometer. This advanced implantation system can be employed in novel applications, including the production of a variety of new materials such as metals, polymers, and ceramics and the irradiation testing and fabrication of structural and functional materials to be used in future nuclear fusion reactors. In this investigation, the first nitrogen ion implantation experiments were conducted using the new system. The 28 GHz ECRIS implanted low-energy, multi-charged nitrogen ions into copper, zinc, and cobalt substrates, and the ion implantation depth profiles were obtained. SRIM 2013 code was used to calculate the profiles under identical conditions, and the experimental and simulation results are presented and compared in this report. The depths and ranges of the ion distributions in the experimental and simulation results agree closely and demonstrate that the new system will enable the treatment of various substrates for advanced materials research. PMID:26931931

  15. Production of He-like light and medium mass ions in laser ion source

    NASA Astrophysics Data System (ADS)

    Kondrashev, S.; Mescheryakov, N.; Sharkov, B.; Shumshurov, A.; Khomenko, S.; Makarov, K.; Satov, Yu.; Smakovskii, Yu.

    2000-03-01

    Operation of the laser ion source of He-like light ions designed for the first stage of the ITEP Terra Watt Accumulator (TWAC) project is discussed. A 5 J/0.5 Hz rep-rate CO2 laser was used for generation of highly charged light ions. The absolute number of ions with different charge states for carbon and aluminum ion beams has been measured. The obtained number of C+4 ions (˜1011ions/pulse) is sufficient to start the experimental proof of the accelerator scheme of the TWAC project. The investigation of shot to shot stability indicates significant increasing (˜2-3 times) of highly charged ion yield for the first shot onto the fresh target surface with respect to the next shots onto the same spot of aluminum target. This effect was not observed for the carbon target. Experimental results for highly charged light and medium mass (F, Mg, Al, Ca, Ti) ions produced by of 75 J single pulse CO2 laser consisting of a master oscillator and power amplifier are also presented.

  16. New Results with the superconducting ECR ion source VENUS

    SciTech Connect

    Lyneis, C.M.; Leitner, D.; Abbott, S.R.; Dwinell, R.D.; Leitner,M.; Silver, C.S.; Taylor, C.

    2004-05-13

    During the last year, the VENUS ECR ion source was commissioned at 18 GHz and preparations for 28 GHz operation, which is set to begin early in 2004, are now underway. The goal of the VENUS ECR ion source project as the RIA R&D injector is the production of 240emA of U30+, a high current medium charge state beam. On the other hand, as an injector ion source for the 88-Inch Cyclotron the design objective is the production of 5emA of U48+, a low current, very high charge state beam. During the commissioning phase with 18 GHz, tests with various gases and recently metals have been performed with up to 2000 W RF power and the performance is very promising. For example, 1100 e mu A of O6+,180 e mu A of Ar12+, 150 emA of Xe20+ and 100 emA of Bi24+ were produced in the early commissioning phase, ranking VENUS among the currently highest performance 18 GHz ECR ion sources. The emittance of the beams produced at 18 GHz was measured with a two axis emittance scanner. In FY04 a 10 kW, 28 GHz gyrotron system will be added, which will enable VENUS to reach full performance. The performance of the VENUS ion source, low energy beam transport (LEBT) and its closed loop cryogenic system are described in the paper. Recently, a new high temperature axial oven has been installed in the source and the first results on metal beams such as bismuth are given. The design of the 28 GHz, 10 kW gyrotron system is also be described. During the last year, the VENUS ECR ion source was commissioned at 18 GHz and preparations for 28 GHz operation, which is set to begin early in 2004, are now underway. The goal of the VENUS ECR+, a high current medium charge state beam. On the other hand, as an injector ion source for the 88-Inch Cyclotron the design objective is the production of 5 emA of U48+, a low current, very high charge state beam. During the commissioning phase with 18 GHz, tests with various gases and recently metals have been performed with up to 2000 W RF power and the performance is

  17. Review of laser-driven ion sources and their applications.

    PubMed

    Daido, Hiroyuki; Nishiuchi, Mamiko; Pirozhkov, Alexander S

    2012-05-01

    For many years, laser-driven ion acceleration, mainly proton acceleration, has been proposed and a number of proof-of-principle experiments have been carried out with lasers whose pulse duration was in the nanosecond range. In the 1990s, ion acceleration in a relativistic plasma was demonstrated with ultra-short pulse lasers based on the chirped pulse amplification technique which can provide not only picosecond or femtosecond laser pulse duration, but simultaneously ultra-high peak power of terawatt to petawatt levels. Starting from the year 2000, several groups demonstrated low transverse emittance, tens of MeV proton beams with a conversion efficiency of up to several percent. The laser-accelerated particle beams have a duration of the order of a few picoseconds at the source, an ultra-high peak current and a broad energy spectrum, which make them suitable for many, including several unique, applications. This paper reviews, firstly, the historical background including the early laser-matter interaction studies on energetic ion acceleration relevant to inertial confinement fusion. Secondly, we describe several implemented and proposed mechanisms of proton and/or ion acceleration driven by ultra-short high-intensity lasers. We pay special attention to relatively simple models of several acceleration regimes. The models connect the laser, plasma and proton/ion beam parameters, predicting important features, such as energy spectral shape, optimum conditions and scalings under these conditions for maximum ion energy, conversion efficiency, etc. The models also suggest possible ways to manipulate the proton/ion beams by tailoring the target and irradiation conditions. Thirdly, we review experimental results on proton/ion acceleration, starting with the description of driving lasers. We list experimental results and show general trends of parameter dependences and compare them with the theoretical predictions and simulations. The fourth topic includes a review of

  18. Rotating cylindrical magnetron sputtering: Simulation of the reactive process

    SciTech Connect

    Depla, D.; Mahieu, S.; Van Aeken, K.; Leroy, W. P.; Haemers, J.; De Gryse, R.; Li, X. Y.; Bogaerts, A.

    2010-06-15

    A rotating cylindrical magnetron consists of a cylindrical tube, functioning as the cathode, which rotates around a stationary magnet assembly. In stationary mode, the cylindrical magnetron behaves similar to a planar magnetron with respect to the influence of reactive gas addition to the plasma. However, the transition from metallic mode to poisoned mode and vice versa depends on the rotation speed. An existing model has been modified to simulate the influence of target rotation on the well known hysteresis behavior during reactive magnetron sputtering. The model shows that the existing poisoning mechanisms, i.e., chemisorption, direct reactive ion implantation and knock on implantation, are insufficient to describe the poisoning behavior of the rotating target. A better description of the process is only possible by including the deposition of sputtered material on the target.

  19. Lithium ion sources for investigations of fast ion transport in magnetized plasmas

    SciTech Connect

    Zhang, Y.; Boehmer, H.; Heidbrink, W. W.; McWilliams, R.; Leneman, D.; Vincena, S.

    2007-01-15

    In order to study the interaction of ions of intermediate energies with plasma fluctuations, two plasma immersible lithium ion sources, based on solid-state thermionic emitters (Li aluminosilicate) were developed. Compared to discharge based ion sources, they are compact, have zero gas load, small energy dispersion, and can be operated at any angle with respect to an ambient magnetic field of up to 4.0 kG. Beam energies range from 400 eV to 2.0 keV with typical beam current densities in the 1 mA/cm{sup 2} range. Because of the low ion mass, beam velocities of 100-300 km/s are in the range of Alfven speeds in typical helium plasmas in the large plasma device.

  20. Lithium ion sources for investigations of fast ion transport in magnetized plasmas.

    PubMed

    Zhang, Y; Boehmer, H; Heidbrink, W W; McWilliams, R; Leneman, D; Vincena, S

    2007-01-01

    In order to study the interaction of ions of intermediate energies with plasma fluctuations, two plasma immersible lithium ion sources, based on solid-state thermionic emitters (Li aluminosilicate) were developed. Compared to discharge based ion sources, they are compact, have zero gas load, small energy dispersion, and can be operated at any angle with respect to an ambient magnetic field of up to 4.0 kG. Beam energies range from 400 eV to 2.0 keV with typical beam current densities in the 1 mAcm(2) range. Because of the low ion mass, beam velocities of 100-300 kms are in the range of Alfven speeds in typical helium plasmas in the large plasma device.

  1. Initial tests of the Spallation Neutron Source H{sup -} ion source with an external antenna

    SciTech Connect

    Welton, R.F.; Stockli, M.P.; Murray, S.N.; Kang, Y.; Peters, J.

    2006-03-15

    The ion source for the Spallation Neutron Source (SNS) is a radio-frequency (rf) multicusp source designed to deliver H{sup -} beam pulses of 40 mA to the SNS accelerator with a normalized root-mean-square emittance of less than 0.2{pi} mm mrad, with a pulse length of 1 ms and a repetition rate of 60 Hz. In order to achieve this performance the source must operate with both high-pulse rf power, {approx}50 kW, and high average rf power, {approx}3.5 kW, over a continuous operational period of 3 weeks. During operation at these power levels the plasma-immersed, porcelain-coated rf antenna is susceptible to damage, limiting source lifetime. We are therefore developing an ion source where the plasma is separated from the Cu antenna by an Al{sub 2}O{sub 3} discharge chamber. This article describes the ion source, presents initial beam extraction measurements, and details our ongoing effort to develop this concept into a suitable ion source for the SNS.

  2. H/sup -/ ion source research at Los Alamos

    SciTech Connect

    Allison, P.; Smith, H.V. Jr.; Sherman, J.D.

    1980-01-01

    Up to 160 mA of H/sup -/ ions has been extracted at 20 kV from a 10 by 0.5-mm/sup 2/ slit in a Penning surface-plasma source. Typically, 70% of the beam can be transported through a bending magnet to a Faraday cup or emittance scanner. Up to 90% transmission has been observed for some neutralizing gases. Average and pulsed cesium flows from the source were measured with a surface-ionization gauge. Operating parameters of the source and measurements of the emittance are reported.

  3. Power supply system for negative ion source at IPR

    NASA Astrophysics Data System (ADS)

    Gahlaut, Agrajit; Sonara, Jashwant; Parmar, K. G.; Soni, Jignesh; Bandyopadhyay, M.; Singh, Mahendrajit; Bansal, Gourab; Pandya, Kaushal; Chakraborty, Arun

    2010-02-01

    The first step in the Indian program on negative ion beams is the setting up of Negative ion Experimental Assembly - RF based, where 100 kW of RF power shall be coupled to a plasma source producing plasma of density ~5 × 1012 cm-3, from which ~ 10 A of negative ion beam shall be produced and accelerated to 35 kV, through an electrostatic ion accelerator. The experimental system is modelled similar to the RF based negative ion source, BATMAN presently operating at IPP, Garching, Germany. The mechanical system for Negative Ion Source Assembly is close to the IPP source, remaining systems are designed and procured principally from indigenous sources, keeping the IPP configuration as a base line. High voltage (HV) and low voltage (LV) power supplies are two key constituents of the experimental setup. The HV power supplies for extraction and acceleration are rated for high voltage (~15 to 35kV), and high current (~ 15 to 35A). Other attributes are, fast rate of voltage rise (< 5ms), good regulation (< ±1%), low ripple (< ±2%), isolation (~50kV), low energy content (< 10J) and fast cut-off (< 100μs). The low voltage (LV) supplies required for biasing and providing heating power to the Cesium oven and the plasma grids; have attributes of low ripple, high stability, fast and precise regulation, programmability and remote operation. These power supplies are also equipped with over-voltage, over-current and current limit (CC Mode) protections. Fault diagnostics, to distinguish abnormal rise in currents (breakdown faults) with over-currents is enabled using fast response breakdown and over-current protection scheme. To restrict the fault energy deposited on the ion source, specially designed snubbers are implemented in each (extraction and acceleration) high voltage path to swap the surge energy. Moreover, the monitoring status and control signals from these power supplies are required to be electrically (~ 50kV) isolated from the system. The paper shall present the

  4. Review of highly charged heavy ion production with electron cyclotron resonance ion source (invited)

    SciTech Connect

    Nakagawa, T.

    2014-02-15

    The electron cyclotron resonance ion source (ECRIS) plays an important role in the advancement of heavy ion accelerators and other ion beam applications worldwide, thanks to its remarkable ability to produce a great variety of intense highly charged heavy ion beams. Great efforts over the past decade have led to significant ECRIS performance improvements in both the beam intensity and quality. A number of high-performance ECRISs have been built and are in daily operation or are under construction to meet the continuously increasing demand. In addition, comprehension of the detailed and complex physical processes in high-charge-state ECR plasmas has been enhanced experimentally and theoretically. This review covers and discusses the key components, leading-edge developments, and enhanced ECRIS performance in the production of highly charged heavy ion beams.

  5. Numerical simulation of ion charge breeding in electron beam ion source

    SciTech Connect

    Zhao, L. Kim, Jin-Soo

    2014-02-15

    The Electron Beam Ion Source particle-in-cell code (EBIS-PIC) tracks ions in an EBIS electron beam while updating electric potential self-consistently and atomic processes by the Monte Carlo method. Recent improvements to the code are reported in this paper. The ionization module has been improved by using experimental ionization energies and shell effects. The acceptance of injected ions and the emittance of extracted ion beam are calculated by extending EBIS-PIC to the beam line transport region. An EBIS-PIC simulation is performed for a Cs charge-breeding experiment at BNL. The charge state distribution agrees well with experiments, and additional simulation results of radial profiles and velocity space distributions of the trapped ions are presented.

  6. Emittance studies of the Spallation Neutron Source external-antenna H{sup -} ion source

    SciTech Connect

    Han, B. X.; Stockli, M. P.; Welton, R. F.; Pennisi, T. R.; Murray, S. N.; Santana, M.; Long, C. D.

    2010-02-15

    A new Allison-type emittance scanner has been built to characterize the ion sources and low energy beam transport systems at Spallation Neutron Source. In this work, the emittance characteristics of the H{sup -} beam produced with the external-antenna rf-driven ion source and transported through the two-lens electrostatic low energy beam transport are studied. The beam emittance dependence on beam intensity, extraction parameters, and the evolution of the emittance and twiss parameters over beam pulse duration are presented.

  7. Ion beam analysis and co-sputtering simulation (CO-SS) of bi-metal films produced by magnetron co-sputtering

    NASA Astrophysics Data System (ADS)

    Cruz, J.; Andrade, E.; Muhl, S.; Canto, C.; de Lucio, O.; Chávez, E.; Rocha, M. F.; Garcés-Medina, E.

    2016-03-01

    Magnetron sputtering is widely used to deposit thin films on different types of substrates. An important application of this method is to make multicomponent thin films using co-sputtering, where two or more elements are included in the target. The thickness and elemental composition of the films depend on the experimental parameters used, the system geometry and the spatial distribution of the elements in the target. If the target is made of two spatially separate pieces of the materials, then the composition of the deposit depends on a combination of the relative areas, the sputtering yield and the angular distribution of the emission of the sputtered flux of each material. In this work, a co-sputtering simulation program, known as CO-SS, was developed to simulate the thickness and composition of metal films produced by DC magnetron sputtering (Al) and co-sputtering (Al + Ti). The CO-SS code models the angular distribution of particles ejected by sputtering from the target, where this is assumed to vary as cosn β , where n is a free parameter and β is the angle of ejection relative to the normal to the surface of the target, and the sputtering yield of each material. The program also takes into account other geometry factors such as the distance between the target and the substrate, and the size of the substrate. Rutherford backscattering (RBS) using 4He was employed to measure the thickness and the composition of the films deposited on glass cover slides in order to assess the CO-SS program. The film thickness was also measured by profilometry. The CO-SS code was found to accurately model the experimental results for both the Al and Ti/Al films. The CO-SS code is freely available for use from http://demonstrations.wolfram.com/CoSputteringSimulationCOSS/.

  8. K{sup +} ion source for the heavy ion Induction Linac System Experiment ILSE

    SciTech Connect

    Eylon, S.; Henestroza, E.; Chupp, W.W.; Yu, S.

    1993-05-01

    Low emittance singly charged potassium thermionic ion sources are being developed for the ILSE injector. The ILSE, now under study at LBL, will address the physics issues of particle beams in a heavy ion fusion driver scenario. The K{sup +} ion beam is emitted thermionically into a diode gap from alumina-silicate layers (zeolite) coated uniformly on a porous tungsten cup. The Injector diode design requires a large diameter (4in. to 7in.) source able to deliver high current ({approximately}800 mA) low emittance (E{sub n} < .5 {pi} mm-mr) beam. The SBTE (Single Beam Test Experiment) 120 keV gun was redesigned and modified with the aid of diode optics calculations using the EGUN code to enable the extraction of high currents of about 90 mA out of a one-inch diameter source. We report on the 1in. source fabrication technique and performance, including total current and current density profile measurements using Faraday cups, emittance and phase space profile measurements using the double slit scanning technique, and life time measurements. Furthermore, we shall report on the extension of the fabricating technique to large diameter sources (up to 7in.), measured ion emission performance, measured surface temperature uniform heating power considerations for large sources.

  9. Fluctuation of an ion beam extracted from an AC filament driven Bernas-type ion source

    SciTech Connect

    Miyamoto, N. Okajima, Y.; Wada, M.

    2014-02-15

    Argon ion beam fluctuation from an AC filament driven Bernas-type ion source is observed. The ion beam was measured by an 8 measurement elements beam profile monitor. The amplitude of the beam current fluctuation stayed in the same level from 100 Hz to 1 kHz of the filament heating frequency. The beam current fluctuation frequency measured by the beam profile monitor was equal to the frequency of the AC filament operation. The fluctuation amplitudes of the beam current by AC operation were less than 7% and were in the same level of the DC operation.

  10. High power impulse magnetron sputtering using a rotating cylindrical magnetron

    SciTech Connect

    Leroy, W. P.; Mahieu, S.; Depla, D.; Ehiasarian, A. P.

    2010-01-15

    Both the industrially favorable deposition technique, high power impulse magnetron sputtering (HIPIMS), and the industrially popular rotating cylindrical magnetron have been successfully combined. A stable operation without arcing, leaks, or other complications for the rotatable magnetron was attained, with current densities around 11 A cm{sup -2}. For Ti and Al, a much higher degree in ionization in the plasma region was observed for the HIPIMS mode compared to the direct current mode.

  11. Cavity Ring-Down System for Density Measurement of Negative Hydrogen Ion on Negative Ion Source

    SciTech Connect

    Nakano, Haruhisa; Tsumori, Katsuyoshi; Nagaoka, Kenichi; Shibuya, Masayuki; Kisaki, Masashi; Ikeda, Katsunori; Osakabe, Masaki; Kaneko, Osamu; Asano, Eiji; Kondo, Tomoki; Sato, Mamoru; Komada, Seiji; Sekiguchi, Haruo; Takeiri, Yasuhiko; Fantz, Ursel

    2011-09-26

    A Cavity Ring-Down (CRD) system was applied to measure the density of negative hydrogen ion (H{sup -}) in vicinity of extraction surface in the H{sup -} source for the development of neutral beam injector on Large Helical Device (LHD). The density measurement with sampling time of 50 ms was carried out. The measured density with the CRD system is relatively good agreement with the density evaluated from extracted beam-current with applying a similar relation of positive ion sources. In cesium seeded into ion-source plasma, the linearity between an arc power of the discharge and the measured density with the CRD system was observed. Additionally, the measured density was proportional to the extracted beam current. These characteristics indicate the CRD system worked well for H{sup -} density measurement in the region of H{sup -} and extraction.

  12. Volume Production of Negative Hydrogen and Deuterium Ions in aReflex-Type Ion Source

    SciTech Connect

    Jimbo, K.; Ehlers, K.W.; Leung, K.N.; Pyle, R.V.

    1986-01-01

    The extraction of negative and positive hydrogen and deuterium ions from a reflex-type negative ion source has been investigated. Extracted positive and negative ion currents were measured as functions of the gas flow rate, the axial magnetic field, and the bias potential of the cylindrical wall of the arc-chamber. By biasing the cylindrical wall several volts negative relative to the anode, a maximum H{sup -} current of 9.7 mA(J{sup -} {approx_equal} 100 mA/cm{sup 2}) and D{sup -} current of 4.1 mA (J{sup -} {approx_equal} 42 mA/cm{sup 2})were obtained in steady state operation. This result shows a factor of two improvement over previous data. The total impurity negative ion content was less than 1%. When the source was arranged for positive ion extraction, a high proton ratio (90%) was observed. The extracted negative ion current was approximately as large as the positive ion current.

  13. Gas feeding molecular phosphorous ion source for semiconductor implanters

    NASA Astrophysics Data System (ADS)

    Gushenets, V. I.; Oks, E. M.; Bugaev, A. S.; Kulevoy, T. V.; Hershcovitch, A.

    2014-02-01

    Phosphorus is a much used dopant in semiconductor technology. Its vapors represent a rather stable tetratomic molecular compound and are produced from one of the most thermodynamically stable allotropic forms of phosphorus—red phosphorus. At vacuum heating temperatures ranging from 325 °C, red phosphorus evaporates solely as P4 molecules (P4/P2 ˜ 2 × 105, P4/P ˜ 1021). It is for this reason that red phosphorus is best suited as a source of polyatomic molecular ion beams. The paper reports on experimental research in the generation of polyatomic phosphorus ion beams with an alternative P vapor source for which a gaseous compound of phosphorus with hydrogen - phosphine - is used. The ion source is equipped with a specially designed dissociator in which phosphine heated to temperatures close to 700 °C decomposes into molecular hydrogen and phosphorus (P4) and then the reaction products are delivered through a vapor line to the discharge chamber. Experimental data are presented reflecting the influence of the discharge parameters and temperature of the dissociator heater on the mass-charge state of the ion beam.

  14. Development of the 3rd Generation ECR ion source

    SciTech Connect

    Lyneis, C.M.; Xie, Z.Q.; Taylor, C.E.

    1997-09-01

    The LBNL 3rd Generation ECR ion source has progressed from a concept to the fabrication of a full scale prototype superconducting magnet structure. This new ECR ion source will combine the recent ECR ion source techniques that significantly enhance the production of high charge state ions. The design includes a plasma chamber made from aluminum to provide additional cold electrons, three separate microwave feeds to allow multiple-frequency plasma heating (at 10, 14 and 18 GHz or at 6, 10 and 14 GHz) and very high magnetic mirror fields. The design calls for mirror fields of 4 T at injection and 3 T at extraction and for a radial field strength at the wall of 2.4 T. The prototype superconducting magnet structure which consists of three solenoid coils and six race track coils with iron poles forming the sextupole has been tested in a vertical dewar. After training, the sextupole magnet reached 105% of its design current with the solenoids off. With the solenoids operating at approximately 70% of their full design field, the sextuple coils operated at 95% of the design value which corresponds to a sextupole field strength at the plasma wall of more than 2.1 T.

  15. Gas feeding molecular phosphorous ion source for semiconductor implanters.

    PubMed

    Gushenets, V I; Oks, E M; Bugaev, A S; Kulevoy, T V; Hershcovitch, A

    2014-02-01

    Phosphorus is a much used dopant in semiconductor technology. Its vapors represent a rather stable tetratomic molecular compound and are produced from one of the most thermodynamically stable allotropic forms of phosphorus-red phosphorus. At vacuum heating temperatures ranging from 325 °C, red phosphorus evaporates solely as P4 molecules (P4/P2 ∼ 2 × 10(5), P4/P ∼ 10(21)). It is for this reason that red phosphorus is best suited as a source of polyatomic molecular ion beams. The paper reports on experimental research in the generation of polyatomic phosphorus ion beams with an alternative P vapor source for which a gaseous compound of phosphorus with hydrogen - phosphine - is used. The ion source is equipped with a specially designed dissociator in which phosphine heated to temperatures close to 700 °C decomposes into molecular hydrogen and phosphorus (P4) and then the reaction products are delivered through a vapor line to the discharge chamber. Experimental data are presented reflecting the influence of the discharge parameters and temperature of the dissociator heater on the mass-charge state of the ion beam. PMID:24593641

  16. Numerical modeling of the SNS H- ion source

    NASA Astrophysics Data System (ADS)

    Veitzer, Seth A.; Beckwith, Kristian R. C.; Kundrapu, Madhusudhan; Stoltz, Peter H.

    2015-04-01

    Ion source rf antennas that produce H- ions can fail when plasma heating causes ablation of the insulating coating due to small structural defects such as cracks. Reducing antenna failures that reduce the operating capabilities of the Spallation Neutron Source (SNS) accelerator is one of the top priorities of the SNS H- Source Program at ORNL. Numerical modeling of ion sources can provide techniques for optimizing design in order to reduce antenna failures. There are a number of difficulties in developing accurate models of rf inductive plasmas. First, a large range of spatial and temporal scales must be resolved in order to accurately capture the physics of plasma motion, including the Debye length, rf frequencies on the order of tens of MHz, simulation time scales of many hundreds of rf periods, large device sizes on tens of cm, and ion motions that are thousands of times slower than electrons. This results in large simulation domains with many computational cells for solving plasma and electromagnetic equations, short time steps, and long-duration simulations. In order to reduce the computational requirements, one can develop implicit models for both fields and particle motions (e.g. divergence-preserving ADI methods), various electrostatic models, or magnetohydrodynamic models. We have performed simulations using all three of these methods and have found that fluid models have the greatest potential for giving accurate solutions while still being fast enough to perform long timescale simulations in a reasonable amount of time. We have implemented a number of fluid models with electromagnetics using the simulation tool USim and applied them to modeling the SNS H- ion source. We found that a reduced, single-fluid MHD model with an imposed magnetic field due to the rf antenna current and the confining multi-cusp field generated increased bulk plasma velocities of > 200 m/s in the region of the antenna where ablation is often observed in the SNS source. We report

  17. Fundamental characteristics of liquid cluster ion source for surface modification

    NASA Astrophysics Data System (ADS)

    Takaoka, G. H.; Noguchi, H.; Nakayama, K.; Hironaka, Y.; Kawashita, M.

    2005-08-01

    We have developed a cluster ion source using liquid organic materials, which has several advantages for surface modification based on the different properties of liquid cluster ions. When vapors of liquid materials such as ethanol were ejected through a nozzle into a high-vacuum region, clusters were produced by an adiabatic expansion phenomenon. The clusters produced were ionized by an electron bombardment method, and the cluster ion current increased with increase of an electron current for ionization. In order to achieve the effective transport of cluster ion beams, a unipotential or einzel lens was used. The current density was much larger than that without using the lens. Furthermore, the beam diameter could be controlled by adjusting the lens voltage, and it was changed between 5 mm and 20 mm. In addition, several kinds of substrates such as Si, SiO2, PC substrates were irradiated at different acceleration voltages with ethanol cluster ion beams, and chemical and physical sputtering with a high sputtering yield was achieved. The sputtered surfaces were very smooth at an atomic level. The liquid cluster ion beams have a high potential for surface etching with the atomic level flatness, which is not obtained by a conventional wet process.

  18. A low energy ion source for electron capture spectroscopy

    SciTech Connect

    Tusche, C.; Kirschner, J.

    2014-06-15

    We report on the design of an ion source for the production of single and double charged Helium ions with kinetic energies in the range from 300 eV down to 5 eV. The construction is based on a commercial sputter ion gun equipped with a Wien-filter for mass/charge separation. Retardation of the ions from the ionizer potential (2 keV) takes place completely within the lens system of the sputter gun, without modification of original parts. For 15 eV He{sup +} ions, the design allows for beam currents up to 30 nA, limited by the space charge repulsion in the beam. For He{sup 2+} operation, we obtain a beam current of 320 pA at 30 eV, and 46 pA at 5 eV beam energy, respectively. In addition, operating parameters can be optimized for a significant contribution of metastable He*{sup +} (2s) ions.

  19. Operation and Applications of the Boron Cathodic Arc Ion Source

    SciTech Connect

    Williams, J. M.; Freeman, J. H.; Klepper, C. C.; Chivers, D. J.; Hazelton, R. C.

    2008-11-03

    The boron cathodic arc ion source has been developed with a view to several applications, particularly the problem of shallow junction doping in semiconductors. Research has included not only development and operation of the boron cathode, but other cathode materials as well. Applications have included a large deposition directed toward development of a neutron detector and another deposition for an orthopedic coating, as well as the shallow ion implantation function. Operational experience is described and information pertinent to commercial operation, extracted from these experiments, is presented.

  20. Magnetron sputtered boron films

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1998-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence.