Sample records for magnification variable dispersion

  1. Variable magnification variable dispersion glancing incidence imaging x-ray spectroscopic telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1991-01-01

    A variable magnification variable dispersion glancing incidence x-ray spectroscopic telescope capable of multiple high spatial revolution imaging at precise spectral lines of solar and stellar x-ray and extreme ultraviolet radiation sources includes a pirmary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable carries each providing a different magnification are positioned behind the primary focus at an inclination to the optical axis, each carrier carrying a series of ellipsoidal diffraction grating mirrors each having a concave surface on which the gratings are ruled and coated with a mutlilayer coating to reflect by diffraction a different desired wavelength. The diffraction grating mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A contoured detector such as an x-ray sensitive photogrpahic film is positioned at the second respective focus of each diffraction grating so that each grating may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected grating on the second carrier to receive radiation.

  2. Variable magnification variable dispersion glancing incidence imaging x ray spectroscopic telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard (Inventor)

    1990-01-01

    A variable magnification variable dispersion glancing incidence x ray spectroscopic telescope capable of multiple high spatial revolution imaging at precise spectral lines of solar and stellar x ray and extreme ultraviolet radiation sources includes a primary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable carriers each providing a different magnification are positioned behind the primary focus at an inclination to the optical axis, each carrier carrying a series of ellipsoidal diffraction grating mirrors each having a concave surface on which the gratings are ruled and coated with a multilayer coating to reflect by diffraction a different desired wavelength. The diffraction grating mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A contoured detector such as an x ray sensitive photographic film is positioned at the second respective focus of each diffraction grating so that each grating may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected grating on the second carrier to receive radiation.

  3. Microlensing of an extended source by a power-law mass distribution

    NASA Astrophysics Data System (ADS)

    Congdon, Arthur B.; Keeton, Charles R.; Osmer, S. J.

    2007-03-01

    Microlensing promises to be a powerful tool for studying distant galaxies and quasars. As the data and models improve, there are systematic effects that need to be explored. Quasar continuum and broad-line regions may respond differently to microlensing due to their different sizes; to understand this effect, we study microlensing of finite sources by a mass function of stars. We find that microlensing is insensitive to the slope of the mass function but does depend on the mass range. For negative-parity images, diluting the stellar population with dark matter increases the magnification dispersion for small sources and decreases it for large sources. This implies that the quasar continuum and broad-line regions may experience very different microlensing in negative-parity lensed images. We confirm earlier conclusions that the surface brightness profile and geometry of the source have little effect on microlensing. Finally, we consider non-circular sources. We show that elliptical sources that are aligned with the direction of shear have larger magnification dispersions than sources with perpendicular alignment, an effect that becomes more prominent as the ellipticity increases. Elongated sources can lead to more rapid variability than circular sources, which raises the prospect of using microlensing to probe source shape.

  4. MEASURING LENSING MAGNIFICATION OF QUASARS BY LARGE SCALE STRUCTURE USING THE VARIABILITY-LUMINOSITY RELATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Anne H.; Seitz, Stella; Jerke, Jonathan

    2011-05-10

    We introduce a technique to measure gravitational lensing magnification using the variability of type I quasars. Quasars' variability amplitudes and luminosities are tightly correlated, on average. Magnification due to gravitational lensing increases the quasars' apparent luminosity, while leaving the variability amplitude unchanged. Therefore, the mean magnification of an ensemble of quasars can be measured through the mean shift in the variability-luminosity relation. As a proof of principle, we use this technique to measure the magnification of quasars spectroscopically identified in the Sloan Digital Sky Survey (SDSS), due to gravitational lensing by galaxy clusters in the SDSS MaxBCG catalog. The Palomar-QUESTmore » Variability Survey, reduced using the DeepSky pipeline, provides variability data for the sources. We measure the average quasar magnification as a function of scaled distance (r/R{sub 200}) from the nearest cluster; our measurements are consistent with expectations assuming Navarro-Frenk-White cluster profiles, particularly after accounting for the known uncertainty in the clusters' centers. Variability-based lensing measurements are a valuable complement to shape-based techniques because their systematic errors are very different, and also because the variability measurements are amenable to photometric errors of a few percent and to depths seen in current wide-field surveys. Given the volume data of the expected from current and upcoming surveys, this new technique has the potential to be competitive with weak lensing shear measurements of large-scale structure.« less

  5. BIASES IN PHYSICAL PARAMETER ESTIMATES THROUGH DIFFERENTIAL LENSING MAGNIFICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Er Xinzhong; Ge Junqiang; Mao Shude, E-mail: xer@nao.cas.cn

    2013-06-20

    We study the lensing magnification effect on background galaxies. Differential magnification due to different magnifications of different source regions of a galaxy will change the lensed composite spectra. The derived properties of the background galaxies are therefore biased. For simplicity, we model galaxies as a superposition of an axis-symmetric bulge and a face-on disk in order to study the differential magnification effect on the composite spectra. We find that some properties derived from the spectra (e.g., velocity dispersion, star formation rate, and metallicity) are modified. Depending on the relative positions of the source and the lens, the inferred results canmore » be either over- or underestimates of the true values. In general, for an extended source at strong lensing regions with high magnifications, the inferred physical parameters (e.g., metallicity) can be strongly biased. Therefore, detailed lens modeling is necessary to obtain the true properties of the lensed galaxies.« less

  6. Development and application of variable-magnification x-ray Bragg optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirano, Keiichi, E-mail: keiichi.hirano@kek.jp; Takahashi, Yumiko; Sugiyama, Hiroshi

    2016-07-27

    A novel x-ray Bragg optics was developed for variable-magnification of an x-ray beam, and was combined with a module of the PILATUS pixel detector. A feasibility test of this optical system was carried out at the vertical-wiggler beamline BL-14B of the Photon Factory. By tuning the magnification factor, we could successfully control the spatial resolution of the optical system between 28 μm and 280 μm. X-ray absorption-contrast images of a leaf were observed at various magnification factors.

  7. Development of variable-magnification X-ray Bragg optics.

    PubMed

    Hirano, Keiichi; Yamashita, Yoshiki; Takahashi, Yumiko; Sugiyama, Hiroshi

    2015-07-01

    A novel X-ray Bragg optics is proposed for variable-magnification of an X-ray beam. This X-ray Bragg optics is composed of two magnifiers in a crossed arrangement, and the magnification factor, M, is controlled through the azimuth angle of each magnifier. The basic properties of the X-ray optics such as the magnification factor, image transformation matrix and intrinsic acceptance angle are described based on the dynamical theory of X-ray diffraction. The feasibility of the variable-magnification X-ray Bragg optics was verified at the vertical-wiggler beamline BL-14B of the Photon Factory. For X-ray Bragg magnifiers, Si(220) crystals with an asymmetric angle of 14° were used. The magnification factor was calculated to be tunable between 0.1 and 10.0 at a wavelength of 0.112 nm. At various magnification factors (M ≥ 1.0), X-ray images of a nylon mesh were observed with an air-cooled X-ray CCD camera. Image deformation caused by the optics could be corrected by using a 2 × 2 transformation matrix and bilinear interpolation method. Not only absorption-contrast but also edge-contrast due to Fresnel diffraction was observed in the magnified images.

  8. Lens models under the microscope: comparison of Hubble Frontier Field cluster magnification maps

    NASA Astrophysics Data System (ADS)

    Priewe, Jett; Williams, Liliya L. R.; Liesenborgs, Jori; Coe, Dan; Rodney, Steven A.

    2017-02-01

    Using the power of gravitational lensing magnification by massive galaxy clusters, the Hubble Frontier Fields provide deep views of six patches of the high-redshift Universe. The combination of deep Hubble imaging and exceptional lensing strength has revealed the greatest numbers of multiply-imaged galaxies available to constrain models of cluster mass distributions. However, even with O(100) images per cluster, the uncertainties associated with the reconstructions are not negligible. The goal of this paper is to show the diversity of model magnification predictions. We examine seven and nine mass models of Abell 2744 and MACS J0416, respectively, submitted to the Mikulski Archive for Space Telescopes for public distribution in 2015 September. The dispersion between model predictions increases from 30 per cent at common low magnifications (μ ˜ 2) to 70 per cent at rare high magnifications (μ ˜ 40). MACS J0416 exhibits smaller dispersions than Abell 2744 for 2 < μ < 10. We show that magnification maps based on different lens inversion techniques typically differ from each other by more than their quoted statistical errors. This suggests that some models underestimate the true uncertainties, which are primarily due to various lensing degeneracies. Though the exact mass sheet degeneracy is broken, its generalized counterpart is not broken at least in Abell 2744. Other local degeneracies are also present in both clusters. Our comparison of models is complementary to the comparison of reconstructions of known synthetic mass distributions. By focusing on observed clusters, we can identify those that are best constrained, and therefore provide the clearest view of the distant Universe.

  9. Composition measurement in substitutionally disordered materials by atomic resolution energy dispersive X-ray spectroscopy in scanning transmission electron microscopy.

    PubMed

    Chen, Z; Taplin, D J; Weyland, M; Allen, L J; Findlay, S D

    2017-05-01

    The increasing use of energy dispersive X-ray spectroscopy in atomic resolution scanning transmission electron microscopy invites the question of whether its success in precision composition determination at lower magnifications can be replicated in the atomic resolution regime. In this paper, we explore, through simulation, the prospects for composition measurement via the model system of Al x Ga 1-x As, discussing the approximations used in the modelling, the variability in the signal due to changes in configuration at constant composition, and the ability to distinguish between different compositions. Results are presented in such a way that the number of X-ray counts, and thus the expected variation due to counting statistics, can be gauged for a range of operating conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Magnification of digital hip radiographs differs between clinical workplaces.

    PubMed

    Hornová, Jana; Růžička, Pavel; Hrubina, Maroš; Šťastný, Eduard; Košková, Andrea; Fulín, Petr; Gallo, Jiří; Daniel, Matej

    2017-01-01

    Preoperative planning for total hip arthroplasty includes templating on anteroposterior radiographs. It is necessary to consider radiographic magnification in order to scale templates accurately. Studies dealing with hip templating report different values of radiographic magnification. It is not clear if the observed difference in magnification between the studies is caused by variability in studied groups, methodology or instrumentation. We hypothesize that there is a difference in magnification between clinical workplaces. Within this study, radiographic magnification was estimated on 337 radiographs of patients after total hip surgery from five orthopaedic departments in the Czech Republic. Magnification was determined for each patient as a ratio between diameter of implanted femoral head measured on radiogram and its true size. One-way ANOVA revealed significant differences in magnification between workplaces (F(4,332) = 132, p≤0.001). These results suggest that radiographic magnification depends on the workplace where it is taken or more precisely on radiographic device. It indicates potential limits in generalizability of results of studies dealing with preoperative planning accuracy to other institutions.

  11. Video-microscopy for use in microsurgical aspects of complex hepatobiliary and pancreatic surgery: a preliminary report

    PubMed Central

    Nissen, Nicholas N; Menon, Vijay; Williams, James; Berci, George

    2011-01-01

    Background The use of loupe magnification during complex hepatobiliary and pancreatic (HBP) surgery has become routine. Unfortunately, loupe magnification has several disadvantages including limited magnification, a fixed field and non-variable magnification parameters. The aim of this report is to describe a simple system of video-microscopy for use in open surgery as an alternative to loupe magnification. Methods In video-microscopy, the operative field is displayed on a TV monitor using a high-definition (HD) camera with a special optic mounted on an adjustable mechanical arm. The set-up and application of this system are described and illustrated using examples drawn from pancreaticoduodenectomy, bile duct repair and liver transplantation. Results This system is easy to use and can provide variable magnification of ×4–12 at a camera distance of 25–35 cm from the operative field and a depth of field of 15 mm. This system allows the surgeon and assistant to work from a HD TV screen during critical phases of microsurgery. Conclusions The system described here provides better magnification than loupe lenses and thus may be beneficial during complex HPB procedures. Other benefits of this system include the fact that its use decreases neck strain and postural fatigue in the surgeon and it can be used as a tool for documentation and teaching. PMID:21929677

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaka, Fowzia

    This method describes the characterization of HE powders by Scanning Electron Microscopy (SEM). HE particles are dispersed onto an aluminum standard SEM specimen mount. Electron micrographs are collected at various magnifications (150 to 10,000 X) depending on HE particle size.

  13. Influence of Clinical Factors and Magnification Correction on Normal Thickness Profiles of Macular Retinal Layers Using Optical Coherence Tomography.

    PubMed

    Higashide, Tomomi; Ohkubo, Shinji; Hangai, Masanori; Ito, Yasuki; Shimada, Noriaki; Ohno-Matsui, Kyoko; Terasaki, Hiroko; Sugiyama, Kazuhisa; Chew, Paul; Li, Kenneth K W; Yoshimura, Nagahisa

    2016-01-01

    To identify the factors which significantly contribute to the thickness variabilities in macular retinal layers measured by optical coherence tomography with or without magnification correction of analytical areas in normal subjects. The thickness of retinal layers {retinal nerve fiber layer (RNFL), ganglion cell layer plus inner plexiform layer (GCLIPL), RNFL plus GCLIPL (ganglion cell complex, GCC), total retina, total retina minus GCC (outer retina)} were measured by macular scans (RS-3000, NIDEK) in 202 eyes of 202 normal Asian subjects aged 20 to 60 years. The analytical areas were defined by three concentric circles (1-, 3- and 6-mm nominal diameters) with or without magnification correction. For each layer thickness, a semipartial correlation (sr) was calculated for explanatory variables including age, gender, axial length, corneal curvature, and signal strength index. Outer retinal thickness was significantly thinner in females than in males (sr2, 0.07 to 0.13) regardless of analytical areas or magnification correction. Without magnification correction, axial length had a significant positive sr with RNFL (sr2, 0.12 to 0.33) and a negative sr with GCLIPL (sr2, 0.22 to 0.31), GCC (sr2, 0.03 to 0.17), total retina (sr2, 0.07 to 0.17) and outer retina (sr2, 0.16 to 0.29) in multiple analytical areas. The significant sr in RNFL, GCLIPL and GCC became mostly insignificant following magnification correction. The strong correlation between the thickness of inner retinal layers and axial length appeared to result from magnification effects. Outer retinal thickness may differ by gender and axial length independently of magnification correction.

  14. Influence of Clinical Factors and Magnification Correction on Normal Thickness Profiles of Macular Retinal Layers Using Optical Coherence Tomography

    PubMed Central

    Higashide, Tomomi; Ohkubo, Shinji; Hangai, Masanori; Ito, Yasuki; Shimada, Noriaki; Ohno-Matsui, Kyoko; Terasaki, Hiroko; Sugiyama, Kazuhisa; Chew, Paul; Li, Kenneth K. W.; Yoshimura, Nagahisa

    2016-01-01

    Purpose To identify the factors which significantly contribute to the thickness variabilities in macular retinal layers measured by optical coherence tomography with or without magnification correction of analytical areas in normal subjects. Methods The thickness of retinal layers {retinal nerve fiber layer (RNFL), ganglion cell layer plus inner plexiform layer (GCLIPL), RNFL plus GCLIPL (ganglion cell complex, GCC), total retina, total retina minus GCC (outer retina)} were measured by macular scans (RS-3000, NIDEK) in 202 eyes of 202 normal Asian subjects aged 20 to 60 years. The analytical areas were defined by three concentric circles (1-, 3- and 6-mm nominal diameters) with or without magnification correction. For each layer thickness, a semipartial correlation (sr) was calculated for explanatory variables including age, gender, axial length, corneal curvature, and signal strength index. Results Outer retinal thickness was significantly thinner in females than in males (sr2, 0.07 to 0.13) regardless of analytical areas or magnification correction. Without magnification correction, axial length had a significant positive sr with RNFL (sr2, 0.12 to 0.33) and a negative sr with GCLIPL (sr2, 0.22 to 0.31), GCC (sr2, 0.03 to 0.17), total retina (sr2, 0.07 to 0.17) and outer retina (sr2, 0.16 to 0.29) in multiple analytical areas. The significant sr in RNFL, GCLIPL and GCC became mostly insignificant following magnification correction. Conclusions The strong correlation between the thickness of inner retinal layers and axial length appeared to result from magnification effects. Outer retinal thickness may differ by gender and axial length independently of magnification correction. PMID:26814541

  15. Monte Carlo-based assessment of the trade-off between spatial resolution, field-of-view and scattered radiation in the variable resolution X-ray CT scanner.

    PubMed

    Arabi, Hossein; Kamali Asl, Ali Reza; Ay, Mohammad Reza; Zaidi, Habib

    2015-07-01

    The purpose of this work is to evaluate the impact of optimization of magnification on performance parameters of the variable resolution X-ray (VRX) CT scanner. A realistic model based on an actual VRX CT scanner was implemented in the GATE Monte Carlo simulation platform. To evaluate the influence of system magnification, spatial resolution, field-of-view (FOV) and scatter-to-primary ratio of the scanner were estimated for both fixed and optimum object magnification at each detector rotation angle. Comparison and inference between these performance parameters were performed angle by angle to determine appropriate object position at each opening half angle. Optimization of magnification resulted in a trade-off between spatial resolution and FOV of the scanner at opening half angles of 90°-12°, where the spatial resolution increased up to 50% and the scatter-to-primary ratio decreased from 4.8% to 3.8% at a detector angle of about 90° for the same FOV and X-ray energy spectrum. The disadvantage of magnification optimization at these angles is the significant reduction of the FOV (up to 50%). Moreover, magnification optimization was definitely beneficial for opening half angles below 12° improving the spatial resolution from 7.5 cy/mm to 20 cy/mm. Meanwhile, the FOV increased by more than 50% at these angles. It can be concluded that optimization of magnification is essential for opening half angles below 12°. For opening half angles between 90° and 12°, the VRX CT scanner magnification should be set according to the desired spatial resolution and FOV. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. Electronic magnification for astronomical camera tubes

    NASA Technical Reports Server (NTRS)

    Vine, J.; Hansen, J. R.; Pietrzyk, J. P.

    1974-01-01

    Definitions, test schemes, and analyses used to provide variable magnification in the image section of the television sensor for large space telescopes are outlined. Experimental results show a definite form of magnetic field distribution is necessary to achieve magnification in the range 3X to 4X. Coil systems to establish the required field shapes were built, and both image intensifiers and camera tubes were operated at high magnification. The experiments confirm that such operation is practical and can provide satisfactory image quality. The main problem with such a system was identified as heating of the photocathode due to concentration of coil power dissipation in that vicinity. Suggestions for overcoming this disadvantage are included.

  17. Awareness and attitude toward using dental magnification among dental students and residents at King Abdulaziz University, Faculty of Dentistry.

    PubMed

    Alhazzazi, Turki Y; Alzebiani, Nouran A; Alotaibi, Samaher K; Bogari, Dania F; Bakalka, Ghaida T; Hazzazi, Loai W; Jan, Ahmed M; McDonald, Neville J

    2016-07-19

    The authors conducted a study aimed to assess the awareness and attitude among dental students and residents at King Abdulaziz University, Faculty of Dentistry (KAUFD) toward using dental magnification. An e-questionnaire was formulated then sent to dental students and residents (n = 651). The questionnaire included questions that assessed both the awareness and attitude toward using dental magnification. Data were analyzed using IBM SPSS version 22. The chi-square test was used to establish relationships between categorical variables. The response rate was 69.7 % (n = 454). Of those, 78.1 % did not use magnification during dental procedures. However, 81.8 % agreed that dental magnification could enhance the accuracy and quality of their dental work. Thus, 91.6 % thought it would be useful in endodontics and 46.3 % voted for surgery. Of the 21.9 % that used magnification, dental loupes were mostly used, 55.9 %. The majority (59.4 %) of the participants believed that using dental magnification should be introduced by faculty beginning in Year I of dental school. Among our respondents, most of the undergraduate students did not use dental magnification nor attended courses in the use of dental magnifications. However, most of the students were aware of its significance in improving the accuracy and quality of their work.

  18. Active optical zoom system

    DOEpatents

    Wick, David V.

    2005-12-20

    An active optical zoom system changes the magnification (or effective focal length) of an optical imaging system by utilizing two or more active optics in a conventional optical system. The system can create relatively large changes in system magnification with very small changes in the focal lengths of individual active elements by leveraging the optical power of the conventional optical elements (e.g., passive lenses and mirrors) surrounding the active optics. The active optics serve primarily as variable focal-length lenses or mirrors, although adding other aberrations enables increased utility. The active optics can either be LC SLMs, used in a transmissive optical zoom system, or DMs, used in a reflective optical zoom system. By appropriately designing the optical system, the variable focal-length lenses or mirrors can provide the flexibility necessary to change the overall system focal length (i.e., effective focal length), and therefore magnification, that is normally accomplished with mechanical motion in conventional zoom lenses. The active optics can provide additional flexibility by allowing magnification to occur anywhere within the FOV of the system, not just on-axis as in a conventional system.

  19. A Closed Circuit TV System for the Visually Handicapped and Prospects for Future Research.

    ERIC Educational Resources Information Center

    Genensky, S. M.; And Others

    Some visually handicapped persons have difficulty reading or writing even with the aid of eyeglasses, but could be helped by visual aids which increase image magnification, light intensity or brightness, or some combination of these factors. The system described here uses closed circuit television (CCTV) to provide variable magnification from 1.4x…

  20. THE MASS-RICHNESS RELATION OF MaxBCG CLUSTERS FROM QUASAR LENSING MAGNIFICATION USING VARIABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Anne H.; Baltay, Charles; Ellman, Nancy

    2012-04-10

    Accurate measurement of galaxy cluster masses is an essential component not only in studies of cluster physics but also for probes of cosmology. However, different mass measurement techniques frequently yield discrepant results. The Sloan Digital Sky Survey MaxBCG catalog's mass-richness relation has previously been constrained using weak lensing shear, Sunyaev-Zeldovich (SZ), and X-ray measurements. The mass normalization of the clusters as measured by weak lensing shear is {approx}>25% higher than that measured using SZ and X-ray methods, a difference much larger than the stated measurement errors in the analyses. We constrain the mass-richness relation of the MaxBCG galaxy cluster catalogmore » by measuring the gravitational lensing magnification of type I quasars in the background of the clusters. The magnification is determined using the quasars' variability and the correlation between quasars' variability amplitude and intrinsic luminosity. The mass-richness relation determined through magnification is in agreement with that measured using shear, confirming that the lensing strength of the clusters implies a high mass normalization and that the discrepancy with other methods is not due to a shear-related systematic measurement error. We study the dependence of the measured mass normalization on the cluster halo orientation. As expected, line-of-sight clusters yield a higher normalization; however, this minority of haloes does not significantly bias the average mass-richness relation of the catalog.« less

  1. Magnified reconstruction of digitally recorded holograms by Fresnel-Bluestein transform.

    PubMed

    Restrepo, John F; Garcia-Sucerquia, Jorge

    2010-11-20

    A method for numerical reconstruction of digitally recorded holograms with variable magnification is presented. The proposed strategy allows for smaller, equal, or larger magnification than that achieved with Fresnel transform by introducing the Bluestein substitution into the Fresnel kernel. The magnification is obtained independent of distance, wavelength, and number of pixels, which enables the method to be applied in color digital holography and metrological applications. The approach is supported by experimental and simulation results in digital holography of objects of comparable dimensions with the recording device and in the reconstruction of holograms from digital in-line holographic microscopy.

  2. Speed but not amplitude of visual feedback exacerbates force variability in older adults.

    PubMed

    Kim, Changki; Yacoubi, Basma; Christou, Evangelos A

    2018-06-23

    Magnification of visual feedback (VF) impairs force control in older adults. In this study, we aimed to determine whether the age-associated increase in force variability with magnification of visual feedback is a consequence of increased amplitude or speed of visual feedback. Seventeen young and 18 older adults performed a constant isometric force task with the index finger at 5% of MVC. We manipulated the vertical (force gain) and horizontal (time gain) aspect of the visual feedback so participants performed the task with the following VF conditions: (1) high amplitude-fast speed; (2) low amplitude-slow speed; (3) high amplitude-slow speed. Changing the visual feedback from low amplitude-slow speed to high amplitude-fast speed increased force variability in older adults but decreased it in young adults (P < 0.01). Changing the visual feedback from low amplitude-slow speed to high amplitude-slow speed did not alter force variability in older adults (P > 0.2), but decreased it in young adults (P < 0.01). Changing the visual feedback from high amplitude-slow speed to high amplitude-fast speed increased force variability in older adults (P < 0.01) but did not alter force variability in young adults (P > 0.2). In summary, increased force variability in older adults with magnification of visual feedback was evident only when the speed of visual feedback increased. Thus, we conclude that in older adults deficits in the rate of processing visual information and not deficits in the processing of more visual information impair force control.

  3. Virtual reality microscope versus conventional microscope regarding time to diagnosis: an experimental study.

    PubMed

    Randell, Rebecca; Ruddle, Roy A; Mello-Thoms, Claudia; Thomas, Rhys G; Quirke, Phil; Treanor, Darren

    2013-01-01

      To create and evaluate a virtual reality (VR) microscope that is as efficient as the conventional microscope, seeking to support the introduction of digital slides into routine practice.   A VR microscope was designed and implemented by combining ultra-high-resolution displays with VR technology, techniques for fast interaction, and high usability. It was evaluated using a mixed factorial experimental design with technology and task as within-participant variables and grade of histopathologist as a between-participant variable. Time to diagnosis was similar for the conventional and VR microscopes. However, there was a significant difference in the mean magnification used between the two technologies, with participants working at a higher level of magnification on the VR microscope.   The results suggest that, with the right technology, efficient use of digital pathology for routine practice is a realistic possibility. Further work is required to explore what magnification is required on the VR microscope for histopathologists to identify diagnostic features, and the effect on this of the digital slide production process. © 2012 Blackwell Publishing Limited.

  4. Crystallography and Morphology of Niobium Carbide in As-Cast HP-Niobium Reformer Tubes

    NASA Astrophysics Data System (ADS)

    Buchanan, Karl G.; Kral, Milo V.

    2012-06-01

    The microstructures of two as-cast heats of niobium-modified HP stainless steels were characterized. Particular attention was paid to the interdendritic niobium-rich carbides formed during solidification of these alloys. At low magnifications, these precipitates are grouped in colonies of similar lamellae. Higher magnifications revealed that the lamellae actually obtain two distinct morphologies. The type I morphology exhibits broad planar interfaces with a smooth platelike shape. Type II lamellae have undulating interfaces and an overall reticulated shape. To provide further insight into the origin of these two different morphologies, the microstructure and crystallography of each have been studied in detail using high resolution scanning electron microscopy, transmission electron microscopy, various electron diffraction methods (electron backscatter diffraction (EBSD), selected area diffraction (SAD), and convergent beam electron diffraction (CBED)), and energy dispersive X-ray spectroscopy.

  5. Variable Magnification With Kirkpatrick-Baez Optics for Synchrotron X-Ray Microscopy

    PubMed Central

    Jach, Terrence; Bakulin, Alex S.; Durbin, Stephen M.; Pedulla, Joseph; Macrander, Albert

    2006-01-01

    We describe the distinction between the operation of a short focal length x-ray microscope forming a real image with a laboratory source (convergent illumination) and with a highly collimated intense beam from a synchrotron light source (Köhler illumination). We demonstrate the distinction with a Kirkpatrick-Baez microscope consisting of short focal length multilayer mirrors operating at an energy of 8 keV. In addition to realizing improvements in the resolution of the optics, the synchrotron radiation microscope is not limited to the usual single magnification at a fixed image plane. Higher magnification images are produced by projection in the limit of geometrical optics with a collimated beam. However, in distinction to the common method of placing the sample behind the optical source of a diverging beam, we describe the situation in which the sample is located in the collimated beam before the optical element. The ultimate limits of this magnification result from diffraction by the specimen and are determined by the sample position relative to the focal point of the optic. We present criteria by which the diffraction is minimized. PMID:27274930

  6. Multispectral variable magnification glancing incidence x ray telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1992-01-01

    A multispectral, variable magnification, glancing incidence, x-ray telescope capable of broadband, high resolution imaging of solar and stellar x-ray and extreme ultraviolet radiation sources is discussed. The telescope includes a primary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable mirror carriers, each providing a different magnification, are positioned behind the primary focus at an inclination to the optical axis. Each carrier has a series of ellipsoidal mirrors, and each mirror has a concave surface covered with a multilayer (layered synthetic microstructure) coating to reflect a different desired wavelength. The mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A detector such as an x-ray sensitive photographic film is positioned at the second respective focus of each mirror so that each mirror may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected mirror on the second carrier to receive the radiation.

  7. Variable-Size Bead Layer as Standard Reference for Endothelial Microscopes.

    PubMed

    Tufo, Simona; Prazzoli, Erica; Ferraro, Lorenzo; Cozza, Federica; Borghesi, Alessandro; Tavazzi, Silvia

    2017-02-01

    For morphometric analysis of the cell mosaic of corneal endothelium, checking accuracy and precision of instrumentation is a key step. In this study, a standard reference sample is proposed, developed to reproduce the cornea with its shape and the endothelium with its intrinsic variability in the cell size. A polystyrene bead layer (representing the endothelium) was deposited on a lens (representing the cornea). Bead diameters were 20, 25, and 30 μm (fractions in number 55%, 30%, and 15%, respectively). Bead density and hexagonality were simulated to obtain the expected true values and measured using a slit-lamp endothelial microscope applied to 1) a Takagi 700GL slit lamp at 40× magnification (recommended standard setup) and 2) a Takagi 2ZL slit lamp at 25× magnification. The simulation provided the expected bead density 2001 mm and hexagonality 47%. At 40×, density and hexagonality were measured to be 2009 mm (SD 93 mm) and 45% (SD 3%). At 25× on a different slit lamp, the comparison between measured and expected densities provided the factor 1.526 to resize the image and to use the current algorithms of the slit-lamp endothelial microscope for cell recognition. A variable-size polystyrene bead layer on a lens is proposed as a standard sample mimicking the real shape of the cornea and the variability of cell size and cell arrangement of corneal endothelium. The sample is suggested to evaluate accuracy and precision of cell density and hexagonality obtained by different endothelial microscopes, including a slit-lamp endothelial microscope applied to different slit lamps, also at different magnifications.

  8. The ratio of effective building height to street width governs dispersion of local vehicle emissions

    NASA Astrophysics Data System (ADS)

    Schulte, Nico; Tan, Si; Venkatram, Akula

    2015-07-01

    Analysis of data collected in street canyons located in Hanover, Germany and Los Angeles, USA, suggests that street-level concentrations of vehicle-related pollutants can be estimated with a model that assumes that vertical turbulent transport of emissions dominates the governing processes. The dispersion model relates surface concentrations to traffic flow rate, the effective aspect ratio of the street, and roof level turbulence. The dispersion model indicates that magnification of concentrations relative to those in the absence of buildings is most sensitive to the aspect ratio of the street, which is the ratio of the effective height of the buildings on the street to the width of the street. This result can be useful in the design of transit oriented developments that increase building density to reduce emissions from transportation.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gofron, K. J., E-mail: kgofron@bnl.gov; Cai, Y. Q.; Coburn, D. S.

    A novel on-axis X-ray microscope with 3 µm resolution, 3x magnification, and a working distance of 600 mm for in-situ sample alignment and X-ray beam visualization for the Inelastic X-ray Scattering (IXS) beamline at NSLS-II is presented. The microscope uses reflective optics, which minimizes dispersion, and allows imaging from Ultraviolet (UV) to Infrared (IR) with specifically chosen objective components (coatings, etc.). Additionally, a portable high resolution X-ray microscope for KB mirror alignment and X-ray beam characterization was developed.

  10. Ultrafast electrical spectrum analyzer based on all-optical Fourier transform and temporal magnification.

    PubMed

    Duan, Yuhua; Chen, Liao; Zhou, Haidong; Zhou, Xi; Zhang, Chi; Zhang, Xinliang

    2017-04-03

    Real-time electrical spectrum analysis is of great significance for applications involving radio astronomy and electronic warfare, e.g. the dynamic spectrum monitoring of outer space signal, and the instantaneous capture of frequency from other electronic systems. However, conventional electrical spectrum analyzer (ESA) has limited operation speed and observation bandwidth due to the electronic bottleneck. Therefore, a variety of photonics-assisted methods have been extensively explored due to the bandwidth advantage of the optical domain. Alternatively, we proposed and experimentally demonstrated an ultrafast ESA based on all-optical Fourier transform and temporal magnification in this paper. The radio-frequency (RF) signal under test is temporally multiplexed to the spectrum of an ultrashort pulse, thus the frequency information is converted to the time axis. Moreover, since the bandwidth of this ultrashort pulse is far beyond that of the state-of-the-art photo-detector, a temporal magnification system is applied to stretch the time axis, and capture the RF spectrum with 1-GHz resolution. The observation bandwidth of this ultrafast ESA is over 20 GHz, limited by that of the electro-optic modulator. Since all the signal processing is in the optical domain, the acquisition frame rate can be as high as 50 MHz. This ultrafast ESA scheme can be further improved with better dispersive engineering, and is promising for some ultrafast spectral information acquisition applications.

  11. Atomic force microscopy and scanning electron microscopy evaluation of efficacy of scaling and root planing using magnification: A randomized controlled clinical study

    PubMed Central

    Mohan, Ranjana; Agrawal, Sudhanshu; Gundappa, Mohan

    2013-01-01

    Aim: A randomized controlled clinical study was undertaken to evaluate the effectiveness of scaling and root planing (SRP) by using Magnifying Loupes (ML) and dental operating microscope (DOM). Materials and Methods: A total of 90 human teeth scheduled for extraction from 18 patients aged between 25 and 65 years suffering from generalized chronic severe periodontitis were randomly assigned to three treatment groups. Group 1 consisted SRP performed without using magnification (unaided), Group 2-SRP with ML and Group 3-SRP with DOM. Following extractions, samples were prepared for (i) evaluation of surface topography by atomic force microscopy, (ii) presence of smear layer, debris by scanning electron microscopy (iii) elemental analysis by energy dispersive X-ray analysis. Data was subjected to statistical analysis using analysis of variance, post-hoc (Tukey-HSD) and Chi-square test. Results: Statistically significant (P < 0.001) difference was found among the different treatment groups. Group 3 was the best while Group 1 was the least effective technique for SRP. Order of efficacy in terms of the surface was found to be - Palatal < Lingual < Distal ≃ Mesial < Buccal. Efficiency in mandibular to maxillary teeth was found to be significant (P < 0.05), also anterior to posterior teeth (P < 0.05). Conclusion: Magnification tools significantly enhance the efficacy of supragingival and subgingival SRP. PMID:24124292

  12. Nano-material and method of fabrication

    DOEpatents

    Menchhofer, Paul A; Seals, Roland D; Howe, Jane Y; Wang, Wei

    2015-02-03

    A fluffy nano-material and method of manufacture are described. At 2000.times. magnification the fluffy nanomaterial has the appearance of raw, uncarded wool, with individual fiber lengths ranging from approximately four microns to twenty microns. Powder-based nanocatalysts are dispersed in the fluffy nanomaterial. The production of fluffy nanomaterial typically involves flowing about 125 cc/min of organic vapor at a pressure of about 400 torr over powder-based nano-catalysts for a period of time that may range from approximately thirty minutes to twenty-four hours.

  13. Experimental task-based optimization of a four-camera variable-pinhole small-animal SPECT system

    NASA Astrophysics Data System (ADS)

    Hesterman, Jacob Y.; Kupinski, Matthew A.; Furenlid, Lars R.; Wilson, Donald W.

    2005-04-01

    We have previously utilized lumpy object models and simulated imaging systems in conjunction with the ideal observer to compute figures of merit for hardware optimization. In this paper, we describe the development of methods and phantoms necessary to validate or experimentally carry out these optimizations. Our study was conducted on a four-camera small-animal SPECT system that employs interchangeable pinhole plates to operate under a variety of pinhole configurations and magnifications (representing optimizable system parameters). We developed a small-animal phantom capable of producing random backgrounds for each image sequence. The task chosen for the study was the detection of a 2mm diameter sphere within the phantom-generated random background. A total of 138 projection images were used, half of which included the signal. As our observer, we employed the channelized Hotelling observer (CHO) with Laguerre-Gauss channels. The signal-to-noise (SNR) of this observer was used to compare different system configurations. Results indicate agreement between experimental and simulated data with higher detectability rates found for multiple-camera, multiple-pinhole, and high-magnification systems, although it was found that mixtures of magnifications often outperform systems employing a single magnification. This work will serve as a basis for future studies pertaining to system hardware optimization.

  14. Influence of magnification and superimposition of structures on cephalometric diagnosis.

    PubMed

    Paula, Leonardo Koerich de; Solon-de-Mello, Priscilla de Almeida; Mattos, Claudia Trindade; Ruellas, Antônio Carlos de Oliveira; Sant'Anna, Eduardo Franzotti

    2015-01-01

    The purpose of this study was to assess the influence of magnification and superimposition of structures on CBCT-generated lateral cephalometric radiographs (LCR) using different segments of the cranium. CBCT scans of 10 patients were selected. Four LCR were generated using Dolphin Imaging(r) software: full-face, right side, left side and center of the head. A total of 40 images were imported into Radiocef Studio 2(r), and the angles of the most common cephalometric analyses were traced by the same observer twice and within a 10-day interval. Statistical analyses included intraexaminer agreement and comparison between methods by means of intraclass correlation coefficient (ICC) and Bland-Altman agreement tests. Intraexaminer agreement of the angles assessed by ICC was excellent (> 0.90) for 83% of measurements, good (between 0.75 and 0.90) for 15%, and moderate (between 0.50 and 0.75) for 2% of measurements. The comparison between methods by ICC was excellent for 68% of measurements, good for 26%, and moderate for 6%. Variables presenting wider confidence intervals (> 6o) in the Bland-Altman tests, in intraexaminer assessment, were: mandibular incisor angle, maxillary incisor angle, and occlusal plane angle. And in comparison methods the variables with wider confidence interval were: mandibular incisor, maxillary incisor, GoGn, occlusal plane angle, Frankfort horizontal plane (FHP), and CoA. Superimposition of structures seemed to influence the results more than magnification, and neither one of them significantly influenced the measurements. Considerable individual variability may occur, especially for mandibular and maxillary incisors, FHP and occlusal plane.

  15. Effects of magnification and visual accommodation on aimpoint estimation in simulated landings with real and virtual image displays

    NASA Technical Reports Server (NTRS)

    Randle, R. J.; Roscoe, S. N.; Petitt, J. C.

    1980-01-01

    Twenty professional pilots observed a computer-generated airport scene during simulated autopilot-coupled night landing approaches and at two points (20 sec and 10 sec before touchdown) judged whether the airplane would undershoot or overshoot the aimpoint. Visual accommodation was continuously measured using an automatic infrared optometer. Experimental variables included approach slope angle, display magnification, visual focus demand (using ophthalmic lenses), and presentation of the display as either a real (direct view) or a virtual (collimated) image. Aimpoint judgments shifted predictably with actual approach slope and display magnification. Both pilot judgments and measured accommodation interacted with focus demand with real-image displays but not with virtual-image displays. With either type of display, measured accommodation lagged far behind focus demand and was reliably less responsive to the virtual images. Pilot judgments shifted dramatically from an overwhelming perceived-overshoot bias 20 sec before touchdown to a reliable undershoot bias 10 sec later.

  16. Toxicological and mutagenic analysis of Artemisia dracunculus (tarragon) extract.

    PubMed

    Kalantari, Heibatullah; Galehdari, Hamid; Zaree, Zahra; Gesztelyi, Rudolf; Varga, Balazs; Haines, David; Bombicz, Mariann; Tosaki, Arpad; Juhasz, Bela

    2013-01-01

    Mutagenicity and liver toxicity of the herb tarragon (Artemisia dracunculus) were evaluated using single cell gel (comet) electrophoresis. Ten microlitres aliquots of peripheral venous human blood were incubated with tarragon extract, saline, or the mutagen sodium dichromate. Cell suspensions dispersed in low-melting agarose were electrophoresed in ethidium bromide. The resulting DNA migration trails were obtained using fluorescent microscopy at 400× magnification, and graded according to the mutagenicity index (MI) for each cell incubation condition. The in vivo liver toxicity of Artemisia dracunculus was assessed in the blood of mice treated orally with the extract of the herb, using alanine aminotransferase (ALT) and aspartate aminotransferase (AST) as liver function indicators. Liver morphology was assessed using hematoxylin and eosin (HE) staining of liver tissue. The present study demonstrated a direct correlation between tarragon extract dosage and three major outcome variables: MI; serum liver enzyme activity; and liver histopathology. These outcomes are possibly due to the presence in tarragon of methylchavicol and other genotoxic compounds. These findings provide a preliminary guide for risk assessment of tarragon in diet and in possible therapeutic applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Determination of Frequency of the Second Mesiobuccal Canal in the Permanent Maxillary First Molar Teeth with Magnification Loupes (× 3.5)

    PubMed Central

    Hasan, Muhammad; Raza Khan, Farhan

    2014-01-01

    INTRODUCTION: The mesiobuccal root of the maxillary first molar has generated more research and clinical investigation than any root. An inability to detect and treat a second mesiobuccal (MB2) canal is a reason for endodontic failure in maxillary first molars. Modifications in the endodontic access and detection techniques, along with advancements in illumination and magnification technology, have aided in the location and treatment with the second mesiobuccal canal of maxillary first molars. OBJECTIVE: To determine the frequency of the second mesiobuccal canal in the permanent maxillary first molars with magnification loupes (× 3.5). MATERIALS AND METHODS: A total of 53 teeth were assessed using a moderate magnification for second mesiobuccal canal in mesiobuccal root of first permanent maxillary molars in vivo. Detection of this canal in maxillary first molars was done through a clinical access cavity preparation under magnification loupes (× 3.5). Data was analyzed using SPSS 15.0. Frequency distribution of variables was determined and the level of significance was kept at 0.05. RESULTS: We were able to detect second mesiobuccal canal in 27 out of 53 (50.9%) of the permanent maxillary first molars that were studied. It was found that the males tend to have a higher proportion of second mesiobuccal canals (up to 31%) as compared to the females in whom the second mesiobuccal canals could be identified only 19% of the time. Whilst, there was no association found between age, gender and chamber obliteration with the presence of second mesiobuccal canal. CONCLUSIONS: In conclusion, within its limitations, this study suggested that the use of magnification loupes enhanced both the detection (50.9%) and negotiation (86.8%) of the second mesiobuccal canals in the permanent maxillary first molars beyond what could be achieved with naked eye. PMID:25324702

  18. Presentation Annotated

    NASA Technical Reports Server (NTRS)

    Ditto, Thomas

    2017-01-01

    This Report is not the latest word on an old idea but the first word on a new one. The new idea reverses the old one, the axiom that the best primary objective for an astronomical telescope exhibits the least chromatic aberration. That axiomatic distinction goes back to a young Isaac Newton who knew from experiments with prisms and mirrors in the 1660's that magnification with a reflection primary was completely free of the dispersion he saw with refraction. The superiority of reflection primary objectives for eyeball or photographic viewing is now considered obvious. It was this piece of wisdom on achromatic primary objectives that led to the dominance of the parabolic mirror as the means to collect star light. Newton was aware of the problem when he introduced his telescope to the scientific world in 1670.This Report is not the latest word on an old idea but the first word on a new one. The new idea reverses the old one, the axiom that the best primary objective for an astronomical telescope exhibits the least chromatic aberration. That axiomatic distinction goes back to a young Isaac Newton who knew from experiments with prisms and mirrors in the 1660's that magnification with a reflection primary was completely free of the dispersion he saw with refraction. The superiority of reflection primary objectives for eyeball or photographic viewing is now considered obvious. Actually, Newton's design innovation was in a secondary mirror, a plane mirror far more easily fabricated than Gregory's embodiment of 1663 which required two curved mirrors.

  19. Bradycardia alters Ca2+ dynamics enhancing dispersion of repolarization and arrhythmia risk

    PubMed Central

    Kim, Jong J.; Němec, Jan; Papp, Rita; Strongin, Robert; Abramson, Jonathan J.

    2013-01-01

    Bradycardia prolongs action potential (AP) durations (APD adaptation), enhances dispersion of repolarization (DOR), and promotes tachyarrhythmias. Yet, the mechanisms responsible for enhanced DOR and tachyarrhythmias remain largely unexplored. Ca2+ transients and APs were measured optically from Langendorff rabbit hearts at high (150 × 150 μm2) or low (1.5 × 1.5 cm2) magnification while pacing at a physiological (120 beats/min) or a slow heart rate (SHR = 50 beats/min). Western blots and pharmacological interventions were used to elucidate the regional effects of bradycardia. As a result, bradycardia (SHR 50 beats/min) increased APDs gradually (time constant τf→s = 48 ± 9.2 s) and caused a secondary Ca2+ release (SCR) from the sarcoplasmic reticulum during AP plateaus, occurring at the base on average of 184.4 ± 9.7 ms after the Ca2+ transient upstroke. In subcellular imaging, SCRs were temporally synchronous and spatially homogeneous within myocytes. In diastole, SHR elicited variable asynchronous sarcoplasmic reticulum Ca2+ release events leading to subcellular Ca2+ waves, detectable only at high magnification. SCR was regionally heterogeneous, correlated with APD prolongation (P < 0.01, n = 5), enhanced DOR (r = 0.9277 ± 0.03, n = 7), and was gradually reversed by pacing at 120 beats/min along with APD shortening (P < 0.05, n = 5). A stabilizer of leaky ryanodine receptors (RyR2), 3-(4-benzylcyclohexyl)-1-(7-methoxy-2,3-dihydrobenzo[f][1,4]thiazepin-4(5H)-yl)propan-1-one (K201; 1 μM), suppressed SCR and reduced APD at the base, thereby reducing DOR (P < 0.02, n = 5). Ventricular ectopy induced by bradycardia (n = 5/15) was suppressed by K201. Western blot analysis revealed spatial differences of voltage-gated L-type Ca2+ channel protein (Cav1.2α), Na+-Ca2+ exchange (NCX1), voltage-gated Na+ channel (Nav1.5), and rabbit ether-a-go-go-related (rERG) protein [but not RyR2 or sarcoplasmic reticulum Ca2+ ATPase 2a] that correlate with the SCR distribution and explain the molecular basis for SCR heterogeneities. In conclusion, acute bradycardia elicits synchronized subcellular SCRs of sufficient magnitude to overcome the source-sink mismatch and to promote afterdepolarizations. PMID:23316064

  20. Comparison of techniques for correction of magnification of pelvic X-rays for hip surgery planning.

    PubMed

    The, Bertram; Kootstra, Johan W J; Hosman, Anton H; Verdonschot, Nico; Gerritsma, Carina L E; Diercks, Ron L

    2007-12-01

    The aim of this study was to develop an accurate method for correction of magnification of pelvic x-rays to enhance accuracy of hip surgery planning. All investigated methods aim at estimating the anteroposterior location of the hip joint in supine position to correctly position a reference object for correction of magnification. An existing method-which is currently being used in clinical practice in our clinics-is based on estimating the position of the hip joint by palpation of the greater trochanter. It is only moderately accurate and difficult to execute reliably in clinical practice. To develop a new method, 99 patients who already had a hip implant in situ were included; this enabled determining the true location of the hip joint deducted from the magnification of the prosthesis. Physical examination was used to obtain predictor variables possibly associated with the height of the hip joint. This included a simple dynamic hip joint examination to estimate the position of the center of rotation. Prediction equations were then constructed using regression analysis. The performance of these prediction equations was compared with the performance of the existing protocol. The mean absolute error in predicting the height of the hip joint center using the old method was 20 mm (range -79 mm to +46 mm). This was 11 mm for the new method (-32 mm to +39 mm). The prediction equation is: height (mm) = 34 + 1/2 abdominal circumference (cm). The newly developed prediction equation is a superior method for predicting the height of the hip joint center for correction of magnification of pelvic x-rays. We recommend its implementation in the departments of radiology and orthopedic surgery.

  1. Variable magnification with Kirkpatrick-Baez optics for synchrotron X-ray microscopy

    DOE PAGES

    Jach, Terrence; Bakulin, Alex S.; Durbin, Stephen M.; ...

    2006-05-01

    In this study, we describe the distinction between the operation of a short focal length x-ray microscope forming a real image with a laboratory source (convergent illumination) and with a highly collimated intense beam from a synchrotron light source (Kohler illumination).

  2. Sectioning Coated Specimens Without Edge Rounding

    NASA Technical Reports Server (NTRS)

    Mckechnie, Timothy N.

    1988-01-01

    New method devised for preparation of cross sections of coated specimens for scanning electron microscopy or energy-dispersive analysis without rounding edges of coatings. After cutting and polishing, specimen section remains smooth and flat so it can be examined under high magnification out to edge of coating. Sectioned blade first electroplated with hard nickel 0.003 in., then encapsulated in two layers of material: soft conductive material at bottom and 0.25 in. of hard diallyl phthalate at top. Nickel plate provides electrical path from surface of section to conductive material below.

  3. Microlensing makes lensed quasar time delays significantly time variable

    NASA Astrophysics Data System (ADS)

    Tie, S. S.; Kochanek, C. S.

    2018-01-01

    The time delays of gravitationally lensed quasars are generally believed to be unique numbers whose measurement is limited only by the quality of the light curves and the models for the contaminating contribution of gravitational microlensing to the light curves. This belief is incorrect - gravitational microlensing also produces changes in the actual time delays on the ∼day(s) light-crossing time-scale of the emission region. This is due to a combination of the inclination of the disc relative to the line of sight and the differential magnification of the temperature fluctuations producing the variability. We demonstrate this both mathematically and with direct calculations using microlensing magnification patterns. Measuring these delay fluctuations can provide a physical scale for microlensing observations, removing the need for priors on either the microlens masses or the component velocities. That time delays in lensed quasars are themselves time variable likely explains why repeated delay measurements of individual lensed quasars appear to vary by more than their estimated uncertainties. This effect is also a new important systematic problem for attempts to use time delays in lensed quasars for cosmology or to detect substructures (satellites) in lens galaxies.

  4. An Externally Dispersed Interferometer for Sensitive Doppler Extrasolar Planet Searches

    NASA Astrophysics Data System (ADS)

    Ge, Jian; Erskine, David J.; Rushford, Mike

    2002-09-01

    A new kind of instrument for sensitive Doppler extrasolar planet searches, called an externally dispersed interferometer, is described in this paper. It is a combination of an optical Michelson-type interferometer and an intermediate-resolution grating spectrometer. The interferometer measures Doppler radial velocity (RV) variations of starlight through the phase shifts of moiré fringes, created by multiplication of the interferometer fringes with stellar absorption lines. The intermediate-resolution spectrograph disperses the moiré fringes into thousands of parallel-wavelength channels. This increases the instrument bandwidth and fringe visibility by preventing fringe cross-talk between neighboring spectral lines. This results in a net increase in the signal-to-noise ratio over an interferometer used alone with broadband light. Compared to current echelle spectrometers for extrasolar planet searches, this instrument offers two unique instrument properties: a simple, stable, well-defined sinusoidal instrument response function (point-spread function) and magnification of Doppler motion through moiré fringe techniques. Since instrument noise is chiefly limited by the ability to characterize the instrument response, this new technique provides unprecedented low instrumental noise in an economical compact apparatus, enabling higher precision for Doppler RV measurements. In practice, the moiré magnification can be 5-10 times depending on the interferometer comb angle. This instrument has better sensitivity for smaller Doppler shifts than echelle spectrometers. The instrument can be designed with much lower spectral resolving power without losing Doppler sensitivity and optimized for higher throughput than echelle spectrometers to allow a potential survey for planets around fainter stars than current magnitude limits. Lab-based experiments with a prototype instrument with a spectral resolution of R~20,000 demonstrated ~0.7 m s-1 precision for short-term RV measurements. A fiber-fed version of the prototype with R~5600 was tested with starlight at the Lick 1 m telescope and demonstrated ~7 m s-1 RV precision at 340 Å bandwidth. The increased velocity noise is attributed to the lower spectral resolution, lower fringe visibility, and uncontrolled instrument environment.

  5. Ultrathin forward-imaging short multimode fiber probe for full-field optical coherence microscopy

    NASA Astrophysics Data System (ADS)

    Sato, Manabu; Saito, Daisuke; Shouji, Kou; Kurotani, Reiko; Abe, Hiroyuki; Nishidate, Izumi

    2016-12-01

    To extend the applications of optical coherence tomography (OCT) to the fields of physiology and clinical medicine, less invasive, robust, and reliable optical probes are required. Thus, we demonstrate an ultrathin forward-imaging short multimode fiber (SMMF) optical coherence microscopy (OCM) probe with a 50 μm core diameter, 125 μm total diameter, and 5.12 mm length. Imaging conditions and magnification were analyzed, and they correspond closely to the measured results. The dispersion of the SMMF was investigated, and the modal dispersion coefficient was found to be 2.3% of the material dispersion coefficient. The axial resolution was minimized at 2.15 μm using a 0.885-mm-thick dispersion compensator. The lateral resolution was evaluated to be 4.38 μm using a test pattern. The contrast of the OCM images was 5.7 times higher than that of the signal images owing to the coherence gate. The depth of focus and diameter of the field of view were measured to be 60 μm and 40-50 μm, respectively. OCM images of the dried fins of small fish (Medaka) were measured and internal structures could be recognized.

  6. Predicting prescribed magnification.

    PubMed

    Wolffsohn, James S; Eperjesi, Frank

    2004-07-01

    To determine the best method of estimating the optimum magnification needed by visually impaired patients. The magnification of low vision aids prescribed to 187 presbyopic visually impaired patients for reading newspapers or books was compared with logMAR distance and near acuity (at 25 cm) and magnification predicted by +4 D step near additions. Distance letter (r = 0.58) and near word visual acuity (r = 0.67) were strongly correlated to the prescribed magnification as were predictive formulae based on these measures. Prediction using the effect of proximal magnification resulted in a similar correlation (r = 0.67) and prediction was poorer in those who did not benefit from proximal magnification. The difference between prescribed and predicted magnification was found to be unrelated to the condition causing visual impairment (F = 2.57, p = 0.08), the central visual field status (F = 0.57, p = 0.57) and patient psychology (F = 0.44, p = 0.51), but was higher in those prescribed stand magnifiers than high near additions (F = 5.99, p < 0.01). The magnification necessary to perform normal visual tasks can be predicted in the majority of cases using visual acuity measures, although measuring the effect of proximal magnification demonstrates the effect of stronger glasses and identifies those in whom prescribed magnification is more difficult to predict.

  7. VLBI observations of the 0957 + 561 gravitational lens system

    NASA Technical Reports Server (NTRS)

    Gorenstein, M. V.; Falco, E. E.; Shapiro, I. I.; Bartel, N.; Bonometti, R. J.; Cohen, N. L.; Rogers, A. E. E.; Marcaide, J. M.; Clark, T. A.

    1988-01-01

    A series of VLBI observations of the gravitational lens system 0957 + 561 at a wavelength of 13 cm has yielded the positions of the A and B images, the relative magnification of their largest discernible radio structures, and the time variability of their smallest discernible radio structures. These observations have also allowed upper limits to be placed on the flux density of an expected third image. The positions and relative magnification of the A and B images provide new information with which to constrain models of the lens that forms the images. The detection of variations in the flux densities of the cores of A and B suggests that observations at shorter wavelengths may reveal superluminal motion, which may in turn provide a means to measure the relative time delay.

  8. Variable porosity in siliceous skeletons: Determination and importance

    USGS Publications Warehouse

    Hurd, D.C.; Wenkam, C.; Pankratz, H.S.; Fugate, J.

    1979-01-01

    Gas adsorption data were used to obtain the specific surface area and specific pore volume for a variety of biogenically precipitated silica semples. The results suggest that this material is finely divided and porous. This interp tation was corroborated by the use of transmission electron microscopy at magnifications up to 180,000. Copyright ?? 1979 AAAS.

  9. Acoustic and perceptual effects of magnifying interaural difference cues in a simulated "binaural" hearing aid.

    PubMed

    de Taillez, Tobias; Grimm, Giso; Kollmeier, Birger; Neher, Tobias

    2018-06-01

    To investigate the influence of an algorithm designed to enhance or magnify interaural difference cues on speech signals in noisy, spatially complex conditions using both technical and perceptual measurements. To also investigate the combination of interaural magnification (IM), monaural microphone directionality (DIR), and binaural coherence-based noise reduction (BC). Speech-in-noise stimuli were generated using virtual acoustics. A computational model of binaural hearing was used to analyse the spatial effects of IM. Predicted speech quality changes and signal-to-noise-ratio (SNR) improvements were also considered. Additionally, a listening test was carried out to assess speech intelligibility and quality. Listeners aged 65-79 years with and without sensorineural hearing loss (N = 10 each). IM increased the horizontal separation of concurrent directional sound sources without introducing any major artefacts. In situations with diffuse noise, however, the interaural difference cues were distorted. Preprocessing the binaural input signals with DIR reduced distortion. IM influenced neither speech intelligibility nor speech quality. The IM algorithm tested here failed to improve speech perception in noise, probably because of the dispersion and inconsistent magnification of interaural difference cues in complex environments.

  10. Solar Imaging UV/EUV Spectrometers Using TVLS Gratings

    NASA Astrophysics Data System (ADS)

    Thomas, R. J.

    2003-05-01

    It is a particular challenge to develop a stigmatic spectrograph for UV/EUV wavelengths since the very low normal-incidence reflectance of standard materials most often requires that the design be restricted to a single optical element which must simultaneously provide both re-imaging and spectral dispersion. This problem has been solved in the past by the use of toroidal gratings with uniform line-spaced rulings (TULS). A number of solar EUV spectrometers have been based on such designs, including SOHO/CDS, Solar-B/EIS, and the sounding rockets SERTS and EUNIS. More recently, Kita, Harada, and collaborators have developed the theory of spherical gratings with varied line-space rulings (SVLS) operated at unity magnification, which have been flown on several astronomical satellite missions. We now combine these ideas into a spectrometer concept that puts varied-line space rulings onto toroidal gratings. Such TVLS designs are found to provide excellent imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. Optical characteristics of three new solar spectrometers based on this concept are described: SUMI and RAISE, two sounding rocket payloads, and NEXUS, currently being proposed as a Small-Explorer (SMEX) mission.

  11. Toroidal varied-line space (TVLS) gratings

    NASA Astrophysics Data System (ADS)

    Thomas, Roger J.

    2003-02-01

    It is a particular challenge to develop a stigmatic spectrograph for EUV wavelengths since the very low normal-incidence reflectance of standard materials most often requires that the design be restricted to a single optical element which must simultaneously provide both re-imaging and spectral dispersion. This problem has been solved in the past by the use of toroidal gratings with uniform line-space rulings (TULS). A number of solar EUV spectrographs have been based on such designs, including SOHO/CDS, Solar-B/EIS, and the sounding rockets SERTS and EUNIS. More recently, Kita, Harada, and collaborators have developed the theory of spherical gratings with varied line-space rulings (SVLS) operated at unity magnification, which have been flown on several astronomical satellite missions. These ideas are now combined into a spectrograph concept that considers varied-line space grooves ruled onto toroidal gratings. Such TVLS designs are found to provide excellent imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. Optical characteristics of two solar spectrographs based on this concept are described: SUMI, proposed as a sounding rocket experiment, and NEXUS, proposed for the Solar Dynamics Observatory mission.

  12. Toroidal Varied-Line Space (TVLS) Gratings

    NASA Technical Reports Server (NTRS)

    Thomas, Roger J.; Oegerle, William (Technical Monitor)

    2002-01-01

    It is a particular challenge to develop a stigmatic spectrograph for XUV wavelengths since the very low normal-incidence reflectance of standard materials most often requires that the design be restricted to a single optical element which must simultaneously provide both re-imaging and spectral dispersion. This problem has been solved in the past by the use of toroidal gratings with uniform line-spaced rulings (TULS). A number of solar EUV (Extreme Ultraviolet) spectrometers have been based on such designs, including SOHO/CDS, Solar-B/EIS, and the sounding rockets SERTS and EUNIS. More recently, Kita, Harada, and collaborators have developed the theory of spherical gratings with varied line-space rulings (SVLS) operated at unity magnification, which have been flown on several astronomical satellite missions. We now combine these ideas into a spectrometer concept that puts varied-line space rulings onto toroidal gratings. Such TVLS designs are found to provide excellent imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. Optical characteristics of two solar spectrometers based on this concept are described: SUMI, proposed as a sounding rocket experiment, and NEXUS, proposed for the Solar Dynamics Observatory mission.

  13. Regression Analysis of Optical Coherence Tomography Disc Variables for Glaucoma Diagnosis.

    PubMed

    Richter, Grace M; Zhang, Xinbo; Tan, Ou; Francis, Brian A; Chopra, Vikas; Greenfield, David S; Varma, Rohit; Schuman, Joel S; Huang, David

    2016-08-01

    To report diagnostic accuracy of optical coherence tomography (OCT) disc variables using both time-domain (TD) and Fourier-domain (FD) OCT, and to improve the use of OCT disc variable measurements for glaucoma diagnosis through regression analyses that adjust for optic disc size and axial length-based magnification error. Observational, cross-sectional. In total, 180 normal eyes of 112 participants and 180 eyes of 138 participants with perimetric glaucoma from the Advanced Imaging for Glaucoma Study. Diagnostic variables evaluated from TD-OCT and FD-OCT were: disc area, rim area, rim volume, optic nerve head volume, vertical cup-to-disc ratio (CDR), and horizontal CDR. These were compared with overall retinal nerve fiber layer thickness and ganglion cell complex. Regression analyses were performed that corrected for optic disc size and axial length. Area-under-receiver-operating curves (AUROC) were used to assess diagnostic accuracy before and after the adjustments. An index based on multiple logistic regression that combined optic disc variables with axial length was also explored with the aim of improving diagnostic accuracy of disc variables. Comparison of diagnostic accuracy of disc variables, as measured by AUROC. The unadjusted disc variables with the highest diagnostic accuracies were: rim volume for TD-OCT (AUROC=0.864) and vertical CDR (AUROC=0.874) for FD-OCT. Magnification correction significantly worsened diagnostic accuracy for rim variables, and while optic disc size adjustments partially restored diagnostic accuracy, the adjusted AUROCs were still lower. Axial length adjustments to disc variables in the form of multiple logistic regression indices led to a slight but insignificant improvement in diagnostic accuracy. Our various regression approaches were not able to significantly improve disc-based OCT glaucoma diagnosis. However, disc rim area and vertical CDR had very high diagnostic accuracy, and these disc variables can serve to complement additional OCT measurements for diagnosis of glaucoma.

  14. Vision though afocal instruments: generalized magnification and eye-instrument interaction

    NASA Astrophysics Data System (ADS)

    Harris, William F.; Evans, Tanya

    2018-04-01

    In Gaussian optics all observers experience the same magnification, the instrument's angular magnification, when viewing distant objects though a telescope or other afocal instruments. However, analysis in linear optics shows that this is not necessarily so in the presence of astigmatism. Because astigmatism may distort and rotate images it is appropriate to work with generalized angular magnification represented by a 2 × 2 matrix. An expression is derived for the generalized magnification for an arbitrary eye looking through an arbitrary afocal instrument. With afocal instruments containing astigmatic refracting elements not all eyes experience the same generalized magnification; there is interaction between eye and instrument. Eye-instrument interaction may change as the instrument is rotated about its longitudinal axis, there being no interaction in particular orientations. A simple numerical example is given. For sake of completeness, expressions for generalized magnification are also presented in the case of instruments that are not afocal and objects that are not distant.

  15. Conceptualizing Magnification and Scale: The Roles of Spatial Visualization and Logical Thinking

    ERIC Educational Resources Information Center

    Jones, M. Gail; Gardner, Grant; Taylor, Amy R.; Wiebe, Eric; Forrester, Jennifer

    2011-01-01

    This study explored factors that contribute to students' concepts of magnification and scale. Spatial visualization, logical thinking, and concepts of magnification and scale were measured for 46 middle school students. Scores on the "Zoom Assessment" (an assessment of knowledge of magnification and scale) were correlated with the "Test of Logical…

  16. Investigating the effect of pixel size of high spatial resolution FTIR imaging for detection of colorectal cancer

    NASA Astrophysics Data System (ADS)

    Lloyd, G. R.; Nallala, J.; Stone, N.

    2016-03-01

    FTIR is a well-established technique and there is significant interest in applying this technique to medical diagnostics e.g. to detect cancer. The introduction of focal plane array (FPA) detectors means that FTIR is particularly suited to rapid imaging of biopsy sections as an adjunct to digital pathology. Until recently however each pixel in the image has been limited to a minimum of 5.5 µm which results in a comparatively low magnification image or histology applications and potentially the loss of important diagnostic information. The recent introduction of higher magnification optics gives image pixels that cover approx. 1.1 µm. This reduction in image pixel size gives images of higher magnification and improved spatial detail can be observed. However, the effect of increasing the magnification on spectral quality and the ability to discriminate between disease states is not well studied. In this work we test the discriminatory performance of FTIR imaging using both standard (5.5 µm) and high (1.1 µm) magnification for the detection of colorectal cancer and explore the effect of binning to degrade high resolution images to determine whether similar diagnostic information and performance can be obtained using both magnifications. Results indicate that diagnostic performance using high magnification may be reduced as compared to standard magnification when using existing multivariate approaches. Reduction of the high magnification data to standard magnification via binning can potentially recover some of the lost performance.

  17. Scanning Electron Microscopy (SEM) Procedure for HE Powders on a Zeiss Sigma HD VP SEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaka, F.

    This method describes the characterization of inert and HE materials by the Zeiss Sigma HD VP field emission Scanning Electron Microscope (SEM). The SEM uses an accelerated electron beam to generate high-magnification images of explosives and other materials. It is fitted with five detectors (SE, Inlens, STEM, VPSE, HDBSD) to enable imaging of the sample via different secondary electron signatures, angles, and energies. In addition to imaging through electron detection, the microscope is also fitted with two Oxford Instrument Energy Dispersive Spectrometer (EDS) 80 mm detectors to generate elemental constituent spectra and two-dimensional maps of the material being scanned.

  18. Artificial neural network-aided image analysis system for cell counting.

    PubMed

    Sjöström, P J; Frydel, B R; Wahlberg, L U

    1999-05-01

    In histological preparations containing debris and synthetic materials, it is difficult to automate cell counting using standard image analysis tools, i.e., systems that rely on boundary contours, histogram thresholding, etc. In an attempt to mimic manual cell recognition, an automated cell counter was constructed using a combination of artificial intelligence and standard image analysis methods. Artificial neural network (ANN) methods were applied on digitized microscopy fields without pre-ANN feature extraction. A three-layer feed-forward network with extensive weight sharing in the first hidden layer was employed and trained on 1,830 examples using the error back-propagation algorithm on a Power Macintosh 7300/180 desktop computer. The optimal number of hidden neurons was determined and the trained system was validated by comparison with blinded human counts. System performance at 50x and lO0x magnification was evaluated. The correlation index at 100x magnification neared person-to-person variability, while 50x magnification was not useful. The system was approximately six times faster than an experienced human. ANN-based automated cell counting in noisy histological preparations is feasible. Consistent histology and computer power are crucial for system performance. The system provides several benefits, such as speed of analysis and consistency, and frees up personnel for other tasks.

  19. Variable magnification glancing incidence x ray telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard (Inventor)

    1990-01-01

    A multispectral glancing incidence x ray telescope is disclosed, which capable of broadband, high resolution imaging of solar and stellar x ray and extreme ultraviolet radiation sources includes a primary optical system which focuses the incoming radiation to a primary focus. Two or more ellipsoidal mirrors are positioned behind the primary focus at an inclination to the optical axis, each mirror having a concave surface coated with a multilayer synthetic microstructure coating to reflect a desired wavelength. The ellipsoidal mirrors are segments of respective ellipsoids having a common first focus coincident with the primary focus. A detector such as an x ray sensitive photographic film is positioned at the second focus of each of the ellipsoids so that each of the ellipsoidal mirrors may reflect the image at the first focus to the detector. In one embodiment the mirrors are inclined at different angles and has its respective second focus at a different location, separate detectors being located at the respective second focus. The mirrors are arranged so that the magnification and field of view differ, and a solenoid activated arm may withdraw at least one mirror from the beam to select the mirror upon which the beam is to impinge so that selected magnifications and fields of view may be detected.

  20. LED Light Characteristics for Surgical Shadowless Lamps and Surgical Loupes

    PubMed Central

    Kinugawa, Yoshitaka; Nobae, Yuichi; Suzuki, Toshihiro; Tanaka, Yoshiyuki; Toda, Ikuko; Tsubota, Kazuo

    2015-01-01

    Background: Blue light has more energy than longer wavelength light and can penetrate the eye to reach the retina. When surgeons use magnifying loupes under intensive surgical shadowless lamps for better view of the surgical field, the total luminance is about 200 times brighter than that of typical office lighting. In this study, the effects of 2 types of shadowless lamps were compared. Moreover, the effect of various eyeglasses, which support magnifying loupes, on both the light energy and color rendering was considered. Methods: The light intensity and color rendering were measured on 3 variables: light transmittance, light intensity, and color rendering. Results: Under shadowless lamps, the light energy increased with low-magnification loupes and decreased with high-magnification loupes. Filtering eyeglasses reduced the energy, especially in conditions where the low-magnification loupe was used. The best color-rendering index values were obtained with computer eyeglasses under conventional light-emitting diode shadowless lamps and with no glass and with lightly yellow-tinted lenses under less-blue light-emitting diode. Conclusions: Microsurgeons are exposed to strong lighting throughout their career, and proper color rendering must be considered for easier recognition. Light toxicity and loss of color rendering can be reduced with an appropriate combination of shadowless lamps and colored eyeglasses. PMID:26893987

  1. Loupe magnification for small incision cataract surgery--an alternative to microscope magnification?

    PubMed

    Singh, S K; Winter, I; Hennig, A

    2008-01-01

    A Prospective randomized controlled study was conducted to compare outcome of Small Incision Cataract Surgery (SICS) using microscope or loupe magnification. Two hundred fifty one patient with mature cataract were randomly allocated to SICS-Fishhook Technique with either microscope (127 eyes) or loupe (124 eyes) magnification. Intra- and postoperative complications and immediate visual outcome were analyzed. Nearly two third (microscope 65% and magnifying loupe 62.9%) of all patients had good visual outcome on first postoperative day. Poor outcome (<6/60) was recorded in 8% (microscope group) and 7% (magnifying loupe group). Mean visual acuity with Snellen was 0.39 (SD 0.2) in microscope group and 0.38 (SD 0.2) in magnifying loupe group. Intra operative complications were comparable in both groups. Mean surgery time with loupe magnification was significantly shorter. Comparatively equivalent good surgical outcome was achieved with loupe as well as with microscope magnification. However performing SICS with loupe magnification is significantly faster. Small incision cataract surgery with loupe magnification is safe and effective procedure for cataract surgery so it can play a role in reducing cataract blindness in developing countries of the world.

  2. A comparison of digitized frozen section and smear preparations for intraoperative neurotelepathology.

    PubMed

    Gould, Peter V; Saikali, Stephan

    2012-01-01

    Intraoperative consultations in neuropathology are often assessed by smear preparations rather than by frozen sections. Both techniques are standard practice for light microscopic examination on site, but there is little data comparing these techniques in a telepathology setting. Thirty cases of brain tumours submitted for intraoperative consultation at our institution between July and December 2010 were identified in which both frozen section and tissue smear preparations were available for digitization at 20× magnification. Slides were digitized using a Hamamatsu Nanozoomer 2.0 HT whole slide scanner, and resulting digital images were visualized at 1680 × 1050 pixel resolution with NDP. view software. The original intraoperative diagnosis was concordant with the sign out diagnosis in 29/30 cases; one tumeur was initially interpreted as a high grade glioma but proved to be a lymphoma at sign out. Digitized frozen section slides were sufficient for diagnosis at 10× magnification in 27/30 cases. Digitized tissue smears were sufficient for diagnosis at 10× magnification in 28/30 cases. In two cases tumour was present on the tissue smear but not the frozen section (one case of recurrent astrocytoma, one case of meningeal carcinomatosis). In one case of lymphoma, tumour was present on frozen section only. These discrepancies were attributed to tissue sampling rather than image quality. Examination of digitized slides at higher magnfication (20×) permitted confirmation of mitoses and Rosenthal fibers on tissue smear preparations, but did not change the primary diagnosis. Intra-slide variations in tissue thickness on smear preparations led to variable loss of focus in digitized images, but did not affect image quality in thinner areas of the smear or impede diagnosis. Digitized tissue smears are suitable for intraoperative neurotelepathology and provide comparable information to digitized frozen sections at medium power magnification.

  3. Estimation of cortical magnification from positional error in normally sighted and amblyopic subjects

    PubMed Central

    Hussain, Zahra; Svensson, Carl-Magnus; Besle, Julien; Webb, Ben S.; Barrett, Brendan T.; McGraw, Paul V.

    2015-01-01

    We describe a method for deriving the linear cortical magnification factor from positional error across the visual field. We compared magnification obtained from this method between normally sighted individuals and amblyopic individuals, who receive atypical visual input during development. The cortical magnification factor was derived for each subject from positional error at 32 locations in the visual field, using an established model of conformal mapping between retinal and cortical coordinates. Magnification of the normally sighted group matched estimates from previous physiological and neuroimaging studies in humans, confirming the validity of the approach. The estimate of magnification for the amblyopic group was significantly lower than the normal group: by 4.4 mm deg−1 at 1° eccentricity, assuming a constant scaling factor for both groups. These estimates, if correct, suggest a role for early visual experience in establishing retinotopic mapping in cortex. We discuss the implications of altered cortical magnification for cortical size, and consider other neural changes that may account for the amblyopic results. PMID:25761341

  4. Long-working-distance fluorescence microscope with high-numerical-aperture objectives for variable-magnification imaging in live mice from macro- to subcellular

    NASA Astrophysics Data System (ADS)

    Kimura, Hiroaki; Momiyama, Masashi; Tomita, Katsuro; Tsuchiya, Hiroyuki; Hoffman, Robert M.

    2010-11-01

    We demonstrate the development of a long-working-distance fluorescence microscope with high-numerical-aperture objectives for variable-magnification imaging in live mice from macro- to subcellular. To observe cytoplasmic and nuclear dynamics of cancer cells in the living mouse, 143B human osteosarcoma cells are labeled with green fluorescent protein in the nucleus and red fluorescent protein in the cytoplasm. These dual-color cells are injected by a vascular route in an abdominal skin flap in nude mice. The mice are then imaged with the Olympus MVX10 macroview fluorescence microscope. With the MVX10, the nuclear and cytoplasmic behavior of cancer cells trafficking in blood vessels of live mice is observed. We also image lung metastases in live mice from the macro- to the subcellular level by opening the chest wall and imaging the exposed lung in live mice. Injected splenocytes, expressing cyan fluorescent protein, could also be imaged on the lung of live mice. We demonstrate that the MVX10 microscope offers the possibility of full-range in vivo fluorescence imaging from macro- to subcellular and should enable widespread use of powerful imaging technologies enabled by genetic reporters and other fluorophores.

  5. Dynamic Magnification Factor in a Box-Shape Steel Girder

    NASA Astrophysics Data System (ADS)

    Rahbar-Ranji, A.

    2014-01-01

    The dynamic effect of moving loads on structures is treated as a dynamic magnification factor when resonant is not imminent. Studies have shown that the calculated magnification factors from field measurements could be higher than the values specified in design codes. It is the main aim of present paper to investigate the applicability and accuracy of a rule-based expression for calculation of dynamic magnification factor for lifting appliances used in marine industry. A steel box shape girder of a crane is considered and transient dynamic analysis using computer code ANSYS is implemented. Dynamic magnification factor is calculated for different loading conditions and compared with rule-based equation. The effects of lifting speeds, acceleration, damping ratio and position of cargo are examined. It is found that rule-based expression underestimate dynamic magnification factor.

  6. Probability of lensing magnification by cosmologically distributed galaxies

    NASA Technical Reports Server (NTRS)

    Pei, Yichuan C.

    1993-01-01

    We present the analytical formulae for computing the magnification probability caused by cosmologically distributed galaxies. The galaxies are assumed to be singular, truncated-isothermal spheres without both evolution and clustering in redshift. We find that, for a fixed total mass, extended galaxies produce a broader shape in the magnification probability distribution and hence are less efficient as gravitational lenses than compact galaxies. The high-magnification tail caused by large galaxies is well approximated by an A exp -3 form, while the tail by small galaxies is slightly shallower. The mean magnification as a function of redshift is, however, found to be independent of the size of the lensing galaxies. In terms of the flux conservation, our formulae for the isothermal galaxy model predict a mean magnification to within a few percent with the Dyer-Roeder model of a clumpy universe.

  7. Clinical Factors Associated with Sperm DNA Fragmentation in Male Patients with Infertility

    PubMed Central

    Komiya, Akira; Kato, Tomonori; Kawauchi, Yoko; Watanabe, Akihiko; Fuse, Hideki

    2014-01-01

    Objective. The clinical factors associated with sperm DNA fragmentation (SDF) were investigated in male patients with infertility. Materials and Methods. Fifty-four ejaculates from infertile Japanese males were used. Thirty-three and twenty-one were from the patients with varicoceles and idiopathic causes of infertility, respectively. We performed blood tests, including the serum sex hormone levels, and conventional and computer-assisted semen analyses. The sperm nuclear vacuolization (SNV) was evaluated using a high-magnification microscope. The SDF was evaluated using the sperm chromatin dispersion test (SCDt) to determine the SDF index (SDFI). The SDFI was compared with semen parameters and other clinical variables, including lifestyle factors. Results. The SDFI was 41.3 ± 22.2% (mean ± standard deviation) and did not depend on the cause of infertility. Chronic alcohol use increased the SDFI to 49.6 ± 23.3% compared with 33.9 ± 18.0% in nondrinkers. The SDFI was related to adverse conventional semen parameters and sperm motion characteristics and correlated with the serum FSH level. The SNV showed a tendency to increase with the SDFI. The multivariate analysis revealed that the sperm progressive motility and chronic alcohol use were significant predictors of the SDF. Conclusion. The SCDt should be offered to chronic alcohol users and those with decreased sperm progressive motility. PMID:25165747

  8. Solar Imaging UV/EUV Spectrometers Using TVLS Gratings

    NASA Technical Reports Server (NTRS)

    Thomas, Roger J.

    2003-01-01

    It is a particular challenge to develop a stigmatic spectrograph for UV, EUV wavelengths since the very low normal-incidence reflectance of standard materials most often requires that the design be restricted to a single optical element which must simultaneously provide both reimaging and spectral dispersion. This problem has been solved in the past by the use of toroidal gratings with uniform line-spaced rulings (TULS). A number of solar extreme ultraviolet (EUV) spectrometers have been based on such designs, including SOHO/CDS, Solar-B/EIS, and the sounding rockets Solar Extreme ultraviolet Research Telescope and Spectrograph (SERTS) and Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS). More recently, Kita, Harada, and collaborators have developed the theory of spherical gratings with varied line-space rulings (SVLS) operated at unity magnification, which have been flown on several astronomical satellite missions. We now combine these ideas into a spectrometer concept that puts varied-line space rulings onto toroidal gratings. Such TVLS designs are found to provide excellent imaging even at very large spectrograph magnifications and beam-speeds, permitting extremely high-quality performance in remarkably compact instrument packages. Optical characteristics of three new solar spectrometers based on this concept are described: SUMI and RAISE, two sounding rocket payloads, and NEXUS, currently being proposed as a Small-Explorer (SMEX) mission.

  9. Analysis of Bi Distribution in Epitaxial GaAsBi by Aberration-Corrected HAADF-STEM

    NASA Astrophysics Data System (ADS)

    Baladés, N.; Sales, D. L.; Herrera, M.; Tan, C. H.; Liu, Y.; Richards, R. D.; Molina, S. I.

    2018-04-01

    The Bi content in GaAs/GaAs1 - x Bi x /GaAs heterostructures grown by molecular beam epitaxy at a substrate temperature close to 340 °C is investigated by aberration-corrected high-angle annular dark-field techniques. The analysis at low magnification of high-angle annular dark-field scanning transmission electron microscopy images, corroborated by EDX analysis, revealed planar defect-free layers and a non-homogeneous Bi distribution at the interfaces and within the GaAsBi layer. At high magnification, the qHAADF analysis confirmed the inhomogeneous distribution and Bi segregation at the GaAsBi/GaAs interface at low Bi flux and distorted dumbbell shape in areas with higher Bi content. At higher Bi flux, the size of the Bi gathering increases leading to roughly equiaxial Bi-rich particles faceted along zinc blende {111} and uniformly dispersed around the matrix and interfaces. FFT analysis checks the coexistence of two phases in some clusters: a rhombohedral pure Bi (rh-Bi) one surrounded by a zinc blende GaAs1 - x Bi x matrix. Clusters may be affecting to the local lattice relaxation and leading to a partially relaxed GaAsBi/GaAs system, in good agreement with XRD analysis.

  10. Improving the Quality and Scientific Understanding of Trophic Magnification Factors (TMFs)

    EPA Science Inventory

    This short 1000 word report presents a series of research needs for improving the measurement and understanding of trophic magnification factors (TMFs). TMFs are useful measures of trophic magnification and represent the diet-weighted average biomagnification factor (BMF) of che...

  11. Aplanatic Three-Mirror Objective for High-Magnification Soft X-Ray Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toyoda, M.; Jinno, T.; Yanagihara, M.

    2011-09-09

    An innovative solution for high-magnification microscopy, based on attaching afocal optics for focal length reduction, is proposed. The solution, consisting of three spherical mirrors, allows one to enhance a magnification of a laboratory based soft x-ray microscope over 1000x, where movies with diffraction-limited resolution can be observed with an x-ray CCD. The design example, having a numerical aperture of 0.25, was successfully demonstrated both a high magnification and a large field of view.

  12. Automated magnification calibration in transmission electron microscopy using Fourier analysis of replica images.

    PubMed

    van der Laak, Jeroen A W M; Dijkman, Henry B P M; Pahlplatz, Martin M M

    2006-03-01

    The magnification factor in transmission electron microscopy is not very precise, hampering for instance quantitative analysis of specimens. Calibration of the magnification is usually performed interactively using replica specimens, containing line or grating patterns with known spacing. In the present study, a procedure is described for automated magnification calibration using digital images of a line replica. This procedure is based on analysis of the power spectrum of Fourier transformed replica images, and is compared to interactive measurement in the same images. Images were used with magnification ranging from 1,000 x to 200,000 x. The automated procedure deviated on average 0.10% from interactive measurements. Especially for catalase replicas, the coefficient of variation of automated measurement was considerably smaller (average 0.28%) compared to that of interactive measurement (average 3.5%). In conclusion, calibration of the magnification in digital images from transmission electron microscopy may be performed automatically, using the procedure presented here, with high precision and accuracy.

  13. Cluster mass profile reconstruction with size and flux magnification on the HST STAGES survey.

    PubMed

    Duncan, Christopher A J; Heymans, Catherine; Heavens, Alan F; Joachimi, Benjamin

    2016-03-21

    We present the first measurement of individual cluster mass estimates using weak lensing size and flux magnification. Using data from the HST STAGES (Space Telescope A901/902 Galaxy Evolution Survey) survey of the A901/902 supercluster we detect the four known groups in the supercluster at high significance using magnification alone. We discuss the application of a fully Bayesian inference analysis, and investigate a broad range of potential systematics in the application of the method. We compare our results to a previous weak lensing shear analysis of the same field finding the recovered signal-to-noise of our magnification-only analysis to range from 45 to 110 per cent of the signal-to-noise in the shear-only analysis. On a case-by-case basis we find consistent magnification and shear constraints on cluster virial radius, and finding that for the full sample, magnification constraints to be a factor 0.77 ± 0.18 lower than the shear measurements.

  14. Contrast-to-noise ratio in magnification mammography: a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Koutalonis, M.; Delis, H.; Spyrou, G.; Costaridou, L.; Tzanakos, G.; Panayiotakis, G.

    2007-06-01

    Magnification views are a common way to perform a secondary examination when suspicious abnormalities are found in a screening mammogram. The visibility of microcalcifications and breast lesions is restricted by the compromise between the image quality and the absorbed dose. In this study, image quality characteristics in magnification mammography were evaluated based on Monte Carlo techniques. A breast phantom was utilized, simulating a homogeneous mixture of adipose and glandular tissue in various percentages of glandularity, containing inhomogeneities of various sizes and compositions. The effect of the magnification degree, breast glandularity, tube voltage and anode/filter material combination on image quality characteristics was investigated in terms of a contrast-to-noise ratio (CNR). A performance index PIν was introduced in order to study the overall performance of various anode/filter combinations under different exposure parameters. Results demonstrate that CNR is improved with the degree of magnification and degraded as the breast glandularity is increased. Degree of magnification 1.3 offers the best overall performance for most of the anode/filter combinations utilized. Under magnification conditions, the role of dose is demoted against the image quality, as magnification views are secondary, diagnostic examinations and not screening procedures oriented to non-symptomatic women. For decreased image quality weighting, some anode/filter combinations different from Mo/0.030mmMo can be utilized as they offer a similar performance index. However, if the desired weighting for the image quality is high, the Mo/0.030mmMo combination has the best overall performance.

  15. Highly Sophisticated Virtual Laboratory Instruments in Education

    NASA Astrophysics Data System (ADS)

    Gaskins, T.

    2006-12-01

    Many areas of Science have advanced or stalled according to the ability to see what can not normally be seen. Visual understanding has been key to many of the world's greatest breakthroughs, such as discovery of DNAs double helix. Scientists use sophisticated instruments to see what the human eye can not. Light microscopes, scanning electron microscopes (SEM), spectrometers and atomic force microscopes are employed to examine and learn the details of the extremely minute. It's rare that students prior to university have access to such instruments, or are granted full ability to probe and magnify as desired. Virtual Lab, by providing highly authentic software instruments and comprehensive imagery of real specimens, provides them this opportunity. Virtual Lab's instruments let explorers operate virtual devices on a personal computer to examine real specimens. Exhaustive sets of images systematically and robotically photographed at thousands of positions and multiple magnifications and focal points allow students to zoom in and focus on the most minute detail of each specimen. Controls on each Virtual Lab device interactively and smoothly move the viewer through these images to display the specimen as the instrument saw it. Users control position, magnification, focal length, filters and other parameters. Energy dispersion spectrometry is combined with SEM imagery to enable exploration of chemical composition at minute scale and arbitrary location. Annotation capabilities allow scientists, teachers and students to indicate important features or areas. Virtual Lab is a joint project of NASA and the Beckman Institute at the University of Illinois at Urbana- Champaign. Four instruments currently compose the Virtual Lab suite: A scanning electron microscope and companion energy dispersion spectrometer, a high-power light microscope, and a scanning probe microscope that captures surface properties to the level of atoms. Descriptions of instrument operating principles and uses are also part of Virtual Lab. The Virtual Lab software and its increasingly rich collection of specimens are free to anyone. This presentation describes Virtual Lab and its uses in formal and informal education.

  16. Is Magnification Consistent?

    ERIC Educational Resources Information Center

    Graney, Christopher M.

    2010-01-01

    Is the phenomenon of magnification by a converging lens inconsistent and therefore unreliable? Can a lens magnify one part of an object but not another? Physics teachers and even students familiar with basic optics would answer "no," yet many answer "yes." Numerous telescope users believe that magnification is not a reliable phenomenon in that it…

  17. 49 CFR 571.111 - Standard No. 111; Rearview mirrors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... applies to passenger cars, multipurpose passenger vehicles, trucks, buses, schoolbuses and motorcycles. S4... magnification is considered a unit magnification mirror. S5. Requirements for passenger cars. S5.1Inside rearview mirror. Each passenger car shall have an inside rearview mirror of unit magnification. S5.1.1Field...

  18. 49 CFR 571.111 - Standard No. 111; Rearview mirrors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... applies to passenger cars, multipurpose passenger vehicles, trucks, buses, schoolbuses and motorcycles. S4... magnification is considered a unit magnification mirror. S5. Requirements for passenger cars. S5.1Inside rearview mirror. Each passenger car shall have an inside rearview mirror of unit magnification. S5.1.1Field...

  19. Effects of dental magnification lenses on indirect vision: a pilot study.

    PubMed

    Hoerler, Sarah B; Branson, Bonnie G; High, Anne M; Mitchell, Tanya Villalpando

    2012-01-01

    The purpose of this pilot study was to evaluate the effect of magnification lenses on the indirect vision skills of dental hygiene students. This pilot study examined the accuracy and efficiency of dental hygiene students' indirect vision skills while using traditional safety lenses and magnification lenses. The sample was comprised of 14 students in their final semester of a dental hygiene program. A crossover study approach was utilized, with each participant randomly assigned to a specific order of eyewear. The study included evaluation of each participant taking part in 2 separate clinical sessions. During the first session, each participant completed a clinical exercise on a dental manikin marked with 15 dots throughout the oral cavity while wearing the randomly as signed eyewear, and then completed a similar exercise on a differently marked dental manikin while wearing the randomly assigned eyewear. This procedure was repeated at a second clinical session, however, the dental manikin and eyewear pairings were reversed. Accuracy was measured on the number of correctly identified dots and efficiency was measured by the time it took to identify the dots. Perceptions of the participants' use of magnification lenses and the participants' opinion of the use of magnification lenses in a dental hygiene curriculum were evaluated using a questionnaire. Comparing the mean of the efficiency scores, students are more efficient at identifying indirect vision points with the use of magnification lenses (3 minutes, 36 seconds) than with traditional safety lenses (3 minutes, 56 seconds). Comparing the measurement of accuracy, students are more accurate at identifying indirect vision points with traditional safety lenses (84%) as com pared to magnification lenses (79%). Overall, the students report ed an increased quality of dental hygiene treatment provided in the clinical setting and an improved clinical posture while treating patients with the use of magnification lenses. This study did not produce statistically significant data to support the use of magnification lenses to enhance indirect vision skills among dental hygiene students, however, students perceived that their indirect vision skills were enhanced by the use of magnification lenses.

  20. Design for an aberration corrected scanning electron microscope using miniature electron mirrors.

    PubMed

    Dohi, Hideto; Kruit, Pieter

    2018-06-01

    Resolution of scanning electron microscopes (SEMs) is determined by aberrations of the objective lens. It is well known that both spherical and chromatic aberrations can be compensated by placing a 90-degree bending magnet and an electron mirror in the beam path before the objective lens. Nevertheless, this approach has not led to wide use of these aberration correctors, partly because aberrations of the bending magnet can be a serious problem. A mirror corrector with two mirrors placed perpendicularly to the optic axis of an SEM and facing each other is proposed. As a result, only small-angle magnetic deflection is necessary to guide the electron beam around the top mirror to the bottom mirror and around the bottom mirror to the objective lens. The deflection angle, in the order of 50 mrad, is sufficiently small to avoid deflection aberrations. In addition, lateral dispersion at the sample plane can be avoided by making the deflection fields symmetric. Such a corrector system is only possible if the incoming beam can pass the top mirror at a distance in the order of millimeters, without being disturbed by the electric fields of electrodes of the mirror. It is proposed that condition can be satisfied with micro-scale electron optical elements fabricated by using MEMS technology. In the proposed corrector system, the micro-mirrors have to provide the exact negative spherical and chromatic aberrations for correcting the aberration of the objective lens. This exact tuning is accomplished by variable magnification between the micro-mirrors and the objective lens using an additional transfer lens. Extensive optical calculations are reported. Aberrations of the micro-mirrors were analyzed by numerical calculation. Dispersion and aberrations of the deflectors were calculated by using an analytical field model. Combination aberrations caused by the off-axis position of dispersive rays in the mirrors and objective lens were also analyzed. It is concluded that the proposed corrector system will be a promising candidate for simple and low-cost aberration correction in low-voltage SEMs. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. ANALYTICAL SOLUTIONS OF SINGULAR ISOTHERMAL QUADRUPOLE LENS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu Zhe; Lin, W. P.; Yang Xiaofeng, E-mail: chuzhe@shao.ac.cn, E-mail: linwp@shao.ac.cn

    Using an analytical method, we study the singular isothermal quadrupole (SIQ) lens system, which is the simplest lens model that can produce four images. In this case, the radial mass distribution is in accord with the profile of the singular isothermal sphere lens, and the tangential distribution is given by adding a quadrupole on the monopole component. The basic properties of the SIQ lens have been studied in this Letter, including the deflection potential, deflection angle, magnification, critical curve, caustic, pseudo-caustic, and transition locus. Analytical solutions of the image positions and magnifications for the source on axes are derived. Wemore » find that naked cusps will appear when the relative intensity k of quadrupole to monopole is larger than 0.6. According to the magnification invariant theory of the SIQ lens, the sum of the signed magnifications of the four images should be equal to unity, as found by Dalal. However, if a source lies in the naked cusp, the summed magnification of the left three images is smaller than the invariant 1. With this simple lens system, we study the situations where a point source infinitely approaches a cusp or a fold. The sum of the magnifications of the cusp image triplet is usually not equal to 0, and it is usually positive for major cusps while negative for minor cusps. Similarly, the sum of magnifications of the fold image pair is usually not equal to 0 either. Nevertheless, the cusp and fold relations are still equal to 0 in that the sum values are divided by infinite absolute magnifications by definition.« less

  2. Weak lensing magnification in the Dark Energy Survey Science Verification Data

    DOE PAGES

    Garcia-Fernandez, M.; et al.

    2018-02-02

    In this paper the effect of weak lensing magnification on galaxy number counts is studied by cross-correlating the positions of two galaxy samples, separated by redshift, using data from the Dark Energy Survey Science Verification dataset. The analysis is carried out for two photometrically-selected galaxy samples, with mean photometric redshifts in themore » $0.2 < z < 0.4$ and $0.7 < z < 1.0$ ranges, in the riz bands. A signal is detected with a $$3.5\\sigma$$ significance level in each of the bands tested, and is compatible with the magnification predicted by the $$\\Lambda$$CDM model. After an extensive analysis, it cannot be attributed to any known systematic effect. The detection of the magnification signal is robust to estimated uncertainties in the outlier rate of the pho- tometric redshifts, but this will be an important issue for use of photometric redshifts in magnification mesurements from larger samples. In addition to the detection of the magnification signal, a method to select the sample with the maximum signal-to-noise is proposed and validated with data.« less

  3. Weak lensing magnification in the Dark Energy Survey Science Verification Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Fernandez, M.; et al.

    In this paper the effect of weak lensing magnification on galaxy number counts is studied by cross-correlating the positions of two galaxy samples, separated by redshift, using data from the Dark Energy Survey Science Verification dataset. The analysis is carried out for two photometrically-selected galaxy samples, with mean photometric redshifts in themore » $0.2 < z < 0.4$ and $0.7 < z < 1.0$ ranges, in the riz bands. A signal is detected with a $$3.5\\sigma$$ significance level in each of the bands tested, and is compatible with the magnification predicted by the $$\\Lambda$$CDM model. After an extensive analysis, it cannot be attributed to any known systematic effect. The detection of the magnification signal is robust to estimated uncertainties in the outlier rate of the pho- tometric redshifts, but this will be an important issue for use of photometric redshifts in magnification mesurements from larger samples. In addition to the detection of the magnification signal, a method to select the sample with the maximum signal-to-noise is proposed and validated with data.« less

  4. Weak lensing magnification in the Dark Energy Survey Science Verification Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Fernandez, M.; et al.

    2016-11-30

    In this paper the effect of weak lensing magnification on galaxy number counts is studied by cross-correlating the positions of two galaxy samples, separated by redshift, using data from the Dark Energy Survey Science Verification dataset. The analysis is carried out for two photometrically-selected galaxy samples, with mean photometric redshifts in themore » $0.2 < z < 0.4$ and $0.7 < z < 1.0$ ranges, in the riz bands. A signal is detected with a $$3.5\\sigma$$ significance level in each of the bands tested, and is compatible with the magnification predicted by the $$\\Lambda$$CDM model. After an extensive analysis, it cannot be attributed to any known systematic effect. The detection of the magnification signal is robust to estimated uncertainties in the outlier rate of the pho- tometric redshifts, but this will be an important issue for use of photometric redshifts in magnification mesurements from larger samples. In addition to the detection of the magnification signal, a method to select the sample with the maximum signal-to-noise is proposed and validated with data.« less

  5. Dipolar modulation in the size of galaxies: the effect of Doppler magnification

    NASA Astrophysics Data System (ADS)

    Bonvin, Camille; Andrianomena, Sambatra; Bacon, David; Clarkson, Chris; Maartens, Roy; Moloi, Teboho; Bull, Philip

    2017-12-01

    Objects falling into an overdensity appear larger on its near side and smaller on its far side than other objects at the same redshift. This produces a dipolar pattern of magnification, primarily as a consequence of the Doppler effect. At low redshift, this Doppler magnification completely dominates the usual integrated gravitational lensing contribution to the lensing magnification. We show that one can optimally observe this pattern by extracting the dipole in the cross-correlation of number counts and galaxy sizes. This dipole allows us to almost completely remove the contribution from gravitational lensing up to redshift ≲0.5, and even at high redshift z ≃ 1, the dipole picks up the Doppler magnification predominantly. Doppler magnification should be easily detectable in current and upcoming optical and radio surveys; by forecasting for telescopes such as the SKA, we show that this technique is competitive with using peculiar velocities via redshift-space distortions to constrain dark energy. It produces similar yet complementary constraints on the cosmological model to those found using measurements of the cosmic shear.

  6. Anisotropic magnification distortion of the 3D galaxy correlation. I. Real space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui, Lam; LoVerde, Marilena; Department of Physics, Columbia University, New York, New York 10027

    2007-11-15

    It has long been known that gravitational lensing, primarily via magnification bias, modifies the observed galaxy (or quasar) clustering. Such discussions have largely focused on the 2D angular correlation function. Here and in paper II [L. Hui, E. Gaztanaga, and M. LoVerde, arXiv:0710.4191] we explore how magnification bias distorts the 3D correlation function and power spectrum, as first considered by Matsubara [Astrophys. J. Lett. 537, L77 (2000).]. The interesting point is that the distortion is anisotropic. Magnification bias in general preferentially enhances the observed correlation in the line-of-sight (LOS) orientation, especially on large scales. For instance, at a LOS separationmore » of {approx}100 Mpc/h, where the intrinsic galaxy-galaxy correlation is rather weak, the observed correlation can be enhanced by lensing by a factor of a few, even at a modest redshift of z{approx}0.35. This effect presents an interesting opportunity as well as a challenge. The opportunity: this lensing anisotropy is distinctive, making it possible to separately measure the galaxy-galaxy, galaxy-magnification, and magnification-magnification correlations, without measuring galaxy shapes. The anisotropy is distinguishable from the well-known distortion due to peculiar motions, as will be discussed in paper II. The challenge: the magnification distortion of the galaxy correlation must be accounted for in interpreting data as precision improves. For instance, the {approx}100 Mpc/h baryon acoustic oscillation scale in the correlation function is shifted by up to {approx}3% in the LOS orientation, and up to {approx}0.6% in the monopole, depending on the galaxy bias, redshift, and number count slope. The corresponding shifts in the inferred Hubble parameter and angular diameter distance, if ignored, could significantly bias measurements of the dark energy equation of state. Lastly, magnification distortion offers a plausible explanation for the well-known excess correlations seen in pencil beam surveys.« less

  7. Acceptable distortion and magnification of images on reflective surfaces in an augmented reality system

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shoji; Hosokawa, Natsumi; Yokoya, Mayu; Tsumura, Norimichi

    2016-12-01

    In this paper, we investigated the consistency of visual perception for the change of reflection images in an augmented reality setting. Reflection images with distortion and magnification were generated by changing the capture position of the environment map. Observers evaluated the distortion and magnification in reflection images where the reflected objects were arranged symmetrically or asymmetrically. Our results confirmed that the observers' visual perception was more sensitive to changes in distortion than in magnification in the reflection images. Moreover, the asymmetrical arrangement of reflected objects effectively expands the acceptable range of distortion compared with the symmetrical arrangement.

  8. A simple method for detection of gunshot residue particles from hands, hair, face, and clothing using scanning electron microscopy/wavelength dispersive X-ray (SEM/WDX).

    PubMed

    Kage, S; Kudo, K; Kaizoji, A; Ryumoto, J; Ikeda, H; Ikeda, N

    2001-07-01

    We devised a simple and rapid method for detection of gunshot residue (GSR) particles, using scanning electron microscopy/wavelength dispersive X-ray (SEM/WDX) analysis. Experiments were done on samples containing GSR particles obtained from hands, hair, face, and clothing, using double-sided adhesive coated aluminum stubs (tape-lift method). SEM/WDX analyses for GSR were carried out in three steps: the first step was map analysis for barium (Ba) to search for GSR particles from lead styphnate primed ammunition, or tin (Sn) to search for GSR particles from mercury fulminate primed ammunition. The second step was determination of the location of GSR particles by X-ray imaging of Ba or Sn at a magnification of x 1000-2000 in the SEM, using data of map analysis, and the third step was identification of GSR particles, using WDX spectrometers. Analysis of samples from each primer of a stub took about 3 h. Practical applications were shown for utility of this method.

  9. Magnifying the View of the Hand Changes Its Cortical Representation. A Transcranial Magnetic Stimulation Study.

    PubMed

    Ambron, Elisabetta; White, Nicole; Faseyitan, Olufunsho; Kessler, Sudha K; Medina, Jared; Coslett, H Branch

    2018-04-18

    Changes in the perceived size of a body part using magnifying lenses influence tactile perception and pain. We investigated whether the visual magnification of one's hand also influences the motor system, as indexed by transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEPs). In Experiment 1, MEPs were measured while participants gazed at their hand with and without magnification of the hand. MEPs were significantly larger when participants gazed at a magnified image of their hand. In Experiment 2, we demonstrated that this effect is specific to the hand that is visually magnified. TMS of the left motor cortex did not induce an increase of MEPs when participants looked at their magnified left hand. Experiment 3 was performed to determine if magnification altered the topography of the cortical representation of the hand. To that end, a 3 × 5 grid centered on the cortical hot spot (cortical location at which a motor threshold is obtained with the lowest level of stimulation) was overlaid on the participant's MRI image, and all 15 sites in the grid were stimulated with and without magnification of the hand. We confirmed the increase in the MEPs at the hot spot with magnification and demonstrated that MEPs significantly increased with magnification at sites up to 16.5 mm from the cortical hot spot. In Experiment 4, we used paired-pulse TMS to measure short-interval intracortical inhibition and intracortical facilitation. Magnification was associated with an increase in short-interval intracortical inhibition. These experiments demonstrate that the visual magnification of one's hand induces changes in motor cortex excitability and generates a rapid remapping of the cortical representation of the hand that may, at least in part, be mediated by changes in short-interval intracortical inhibition.

  10. Awareness, Attitude, and Prevalence of usage of magnification devices among the dental practitioners in the state of Andhra Pradesh – A questionnaire-based study

    PubMed Central

    Penmetsa, Gautami Subhadra; Mani, Loda Princee; Praveen, Gadde; Dwarakanath, Chini Dorai; Suresh, S.

    2017-01-01

    Background: Dentistry, dealing with teeth and supporting tissues in the oral cavity is not only an ever-evolving science but also an art combined with good eye-hand coordination. It not only encompasses clinical and theoretical skills which play a crucial role in the success of therapy but also a lot of intrinsic work is accomplished in dentistry. In a journey to fulfill the above accomplishments and for facilitating early diagnosis of pathologies which usually go unnoticed, a clearer and magnified field of vision are also essential. The purpose of this study is to evaluate the awareness, attitude, and prevalence of the usage of magnification devices among the dental practitioners in the state of Andhra Pradesh. Materials and Methods: A questionnaire-based study was conducted to assess the awareness, attitude, and prevalence of magnification devices among the 370 dental practitioners in Andhra Pradesh. All the participants were provided with a prestructured questionnaire comprising of 24 questions and answering was completely self-based. Results: Among the participants, majority were aware about magnification in dentistry (91.1%), and also of the different types of magnification devices available (90.5%). On the other hand, when the reason for not using magnification devices was taken into consideration, 32.7% attributed that they have not experienced the devices and 32.4% felt that devices were too expensive. Moreover, when regarding the usage of devices was taken into account, only 23.8% of the total participants were exposed to the usage of magnification aids. Conclusion: Among the selected group of participants, even though majority were aware of magnification in dentistry its application in practice was very less. PMID:29491587

  11. Wind loads on flat plate photovoltaic array fields (nonsteady winds)

    NASA Technical Reports Server (NTRS)

    Miller, R. D.; Zimmerman, D. K.

    1981-01-01

    Techniques to predict the dynamic response and the structural dynamic loads of flat plate photovoltaic arrays due to wind turbulence were analyzed. Guidelines for use in predicting the turbulent portion of the wind loading on future similar arrays are presented. The dynamic response and the loads dynamic magnification factor of the two array configurations are similar. The magnification factors at a mid chord and outer chord location on the array illustrated and at four points on the chord are shown. The wind tunnel test experimental rms pressure coefficient on which magnification factors are based is shown. It is found that the largest response and dynamic magnification factor occur at a mid chord location on an array and near the trailing edge. A technique employing these magnification factors and the wind tunnel test rms fluctuating pressure coefficients to calculate design pressure loads due to wind turbulence is presented.

  12. Mediated-reality magnification for macular degeneration rehabilitation

    NASA Astrophysics Data System (ADS)

    Martin-Gonzalez, Anabel; Kotliar, Konstantin; Rios-Martinez, Jorge; Lanzl, Ines; Navab, Nassir

    2014-10-01

    Age-related macular degeneration (AMD) is a gradually progressive eye condition, which is one of the leading causes of blindness and low vision in the Western world. Prevailing optical visual aids compensate part of the lost visual function, but omitting helpful complementary information. This paper proposes an efficient magnification technique, which can be implemented on a head-mounted display, for improving vision of patients with AMD, by preserving global information of the scene. Performance of the magnification approach is evaluated by simulating central vision loss in normally sighted subjects. Visual perception was measured as a function of text reading speed and map route following speed. Statistical analysis of experimental results suggests that our magnification method improves reading speed 1.2 times and spatial orientation to find routes on a map 1.5 times compared to a conventional magnification approach, being capable to enhance peripheral vision of AMD subjects along with their life quality.

  13. Motion magnification using the Hermite transform

    NASA Astrophysics Data System (ADS)

    Brieva, Jorge; Moya-Albor, Ernesto; Gomez-Coronel, Sandra L.; Escalante-Ramírez, Boris; Ponce, Hiram; Mora Esquivel, Juan I.

    2015-12-01

    We present an Eulerian motion magnification technique with a spatial decomposition based on the Hermite Transform (HT). We compare our results to the approach presented in.1 We test our method in one sequence of the breathing of a newborn baby and on an MRI left ventricle sequence. Methods are compared using quantitative and qualitative metrics after the application of the motion magnification algorithm.

  14. Dependence of Microlensing on Source Size and Lens Mass

    NASA Astrophysics Data System (ADS)

    Congdon, A. B.; Keeton, C. R.

    2007-11-01

    In gravitational lensed quasars, the magnification of an image depends on the configuration of stars in the lensing galaxy. We study the statistics of the magnification distribution for random star fields. The width of the distribution characterizes the amount by which the observed magnification is likely to differ from models in which the mass is smoothly distributed. We use numerical simulations to explore how the width of the magnification distribution depends on the mass function of stars, and on the size of the source quasar. We then propose a semi-analytic model to describe the distribution width for different source sizes and stellar mass functions.

  15. Intraindividual variability across cognitive domains: investigation of dispersion levels and performance profiles in older adults.

    PubMed

    Hilborn, Jennifer V; Strauss, Esther; Hultsch, David F; Hunter, Michael A

    2009-05-01

    A growing body of research suggests that substantial variability exists among cognitive abilities within individuals. This within-person variability across cognitive domains is termed dispersion. The present study investigated the relationship between aging and dispersion of cognitive functions both quantitatively (overall levels of dispersion) and qualitatively (patterns of dispersion) in a sample of 304 nondemented, older adults aged 64 to 92 years (M = 74.02). Quantitatively, higher levels of dispersion were observed in the old-old adults (aged 75-92 years) and those identified as having experienced cognitive decline, suggesting that dispersion level may serve as a marker of cognitive integrity. Qualitatively, three distinct dispersion profiles were identified through clustering methods, and these were found to be related to demographic, health, and performance characteristics of the individuals, suggesting that patterns of dispersion may be meaningful indicators of individual differences.

  16. Magnification Bias in Gravitational Arc Statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caminha, G. B.; Estrada, J.; Makler, M.

    2013-08-29

    The statistics of gravitational arcs in galaxy clusters is a powerful probe of cluster structure and may provide complementary cosmological constraints. Despite recent progresses, discrepancies still remain among modelling and observations of arc abundance, specially regarding the redshift distribution of strong lensing clusters. Besides, fast "semi-analytic" methods still have to incorporate the success obtained with simulations. In this paper we discuss the contribution of the magnification in gravitational arc statistics. Although lensing conserves surface brightness, the magnification increases the signal-to-noise ratio of the arcs, enhancing their detectability. We present an approach to include this and other observational effects in semi-analyticmore » calculations for arc statistics. The cross section for arc formation ({\\sigma}) is computed through a semi-analytic method based on the ratio of the eigenvalues of the magnification tensor. Using this approach we obtained the scaling of {\\sigma} with respect to the magnification, and other parameters, allowing for a fast computation of the cross section. We apply this method to evaluate the expected number of arcs per cluster using an elliptical Navarro--Frenk--White matter distribution. Our results show that the magnification has a strong effect on the arc abundance, enhancing the fraction of arcs, moving the peak of the arc fraction to higher redshifts, and softening its decrease at high redshifts. We argue that the effect of magnification should be included in arc statistics modelling and that it could help to reconcile arcs statistics predictions with the observational data.« less

  17. Examining the Relationship Between Pain Catastrophizing and Suicide Risk in Patients with Rheumatic Disease: the Mediating Role of Depression, Perceived Social Support, and Perceived Burdensomeness.

    PubMed

    Shim, Eun -Jung; Song, Yeong Wook; Park, Seung-Hee; Lee, Kwang-Min; Go, Dong Jin; Hahm, Bong-Jin

    2017-08-01

    Little research has examined the role of pain catastrophizing (PC) in predicting suicide among patients with rheumatic disease or the mechanisms through which it works. This study examines whether depression, perceived social support (PSS), and perceived burdensomeness (PB) mediate the relationship between PC and suicide risk. It also examines the relative importance of sociodemographic, clinical, and psychological factors in predicting suicide risk. Three hundred sixty patients from a rheumatology clinic in Korea completed measures of pain catastrophizing, social support, depression, and perceived burdensomeness. In hierarchical multiple regression analysis, the PC magnification, PB, physical disability, and PSS were significantly related to suicide risk. Results of the serial multiple mediation analysis indicated that the total indirect effect of PC magnification on suicide risk was significant while the direct effect was not. Four specific indirect effects of PC magnification were found to be statistically significant. First of all, PC magnification was associated with suicide risk through PB and through depression and PB. PC magnification was also associated with suicide risk through depression and PSS. Lastly, PC magnification was associated with suicide risk through depression, PSS, and PB. The identified pathways through which PC affects suicide risk suggest the importance of depression, PSS, and PB. Evaluation and intervention targeted at physical disability and the psychological factors of PC magnification, depression, PSS, and PB may be integrated into the management of suicide risk in patients with rheumatic disease.

  18. The effect of magnification loupes on the performance of preclinical dental students.

    PubMed

    Maggio, Margrit P; Villegas, Hilda; Blatz, Markus B

    2011-01-01

    optical magnifying devices such as magnification loupes are increasingly used in clinical practice and educational settings. However, scientific evidence to validate their benefits is limited. This study assessed the effect of dental magnification loupes on psychomotor skill acquisition during a preclinical operative dentistry course. the performance of first-year dental students was assessed during an Advanced Simulation Course (AS) using virtual reality-based technology (VRBT) training. The test group consisted of 116 dental students using magnification loupes (+MAG), while students not using them (-MAG, n = 116) served as the control. The following parameters were evaluated: number of successfully passing preparation procedures per course rotation, amount of time per tooth preparation, number of times students needed computer assistance and evaluation, and amount of time spent in the computer assistance and evaluation mode per procedure. Data were collected on each student through VRBT during the preparation procedure and stored on a closed network server computer. Unpaired t tests were used to analyze mean differences between the groups. In addition, student acceptance of magnification loupes was measured and evaluated through survey interpretation. +MAG students completed more preparations, worked faster per procedure, and used the computer-assisted evaluation less frequently and for shorter periods, therefore displaying greater overall performance. The survey revealed a high degree of student acceptance of using magnification. dental magnification loupes significantly enhanced student performance during preclinical dental education and were considered an effective adjunct by the students who used them.

  19. The effects of velocities and lensing on moments of the Hubble diagram

    NASA Astrophysics Data System (ADS)

    Macaulay, E.; Davis, T. M.; Scovacricchi, D.; Bacon, D.; Collett, T.; Nichol, R. C.

    2017-05-01

    We consider the dispersion on the supernova distance-redshift relation due to peculiar velocities and gravitational lensing, and the sensitivity of these effects to the amplitude of the matter power spectrum. We use the Method-of-the-Moments (MeMo) lensing likelihood developed by Quartin et al., which accounts for the characteristic non-Gaussian distribution caused by lensing magnification with measurements of the first four central moments of the distribution of magnitudes. We build on the MeMo likelihood by including the effects of peculiar velocities directly into the model for the moments. In order to measure the moments from sparse numbers of supernovae, we take a new approach using Kernel density estimation to estimate the underlying probability density function of the magnitude residuals. We also describe a bootstrap re-sampling approach to estimate the data covariance matrix. We then apply the method to the joint light-curve analysis (JLA) supernova catalogue. When we impose only that the intrinsic dispersion in magnitudes is independent of redshift, we find σ _8=0.44^{+0.63}_{-0.44} at the one standard deviation level, although we note that in tests on simulations, this model tends to overestimate the magnitude of the intrinsic dispersion, and underestimate σ8. We note that the degeneracy between intrinsic dispersion and the effects of σ8 is more pronounced when lensing and velocity effects are considered simultaneously, due to a cancellation of redshift dependence when both effects are included. Keeping the model of the intrinsic dispersion fixed as a Gaussian distribution of width 0.14 mag, we find σ _8 = 1.07^{+0.50}_{-0.76}.

  20. Dispersal kernels and their drivers captured with a hydrodynamic model and spatial indices: A case study on anchovy ( Engraulis encrasicolus) early life stages in the Bay of Biscay

    NASA Astrophysics Data System (ADS)

    Huret, M.; Petitgas, P.; Woillez, M.

    2010-10-01

    Dispersal of fish early life stages explains part of the recruitment success, through interannual variability in spawning, transport and survival. Dispersal results from a complex interaction between physical and biological processes acting at different temporal and spatial scales, and at the individual or population level. In this paper we quantify the response of anchovy egg and larval dispersal in the Bay of Biscay to the following sources of variability: vertical larval behaviour, drift duration, adult spawning location and timing, and spatio-temporal variability in the hydrodynamics. We use simulations of Lagrangian trajectories in a 3-dimensional hydrodynamic model, as well as spatial indices describing different properties of the dispersal kernel: the mean transport (distance, direction), its variance, occupation of space by particles and their aggregation. We show that larval drift duration has a major impact on the dispersion at scales of ˜100 km, but that vertical behaviour becomes dominant reducing dispersion at scales of ˜1-10 km. Spawning location plays a major role in explaining connectivity patterns, in conjunction with spawning temporal variability. Interannual variability in the circulation dominates over seasonal variability. However, seasonal patterns become predominant for coastal spawning locations, revealing a recurrent shift in the direction of dispersal during the anchovy spawning season.

  1. Magnification of starting torques of dc motors by maximum power point trackers in photovoltaic systems

    NASA Technical Reports Server (NTRS)

    Appelbaum, J.; Singer, S.

    1989-01-01

    A calculation of the starting torque ratio of permanent magnet, series, and shunt-excited dc motors powered by solar cell arrays is presented for two cases, i.e., with and without a maximum-power-point tracker (MPPT). Defining motor torque magnification by the ratio of the motor torque with an MPPT to the motor torque without an MPPT, a magnification of 3 for the permanent magnet motor and a magnification of 7 for both the series and shunt motors are obtained. The study also shows that all motor types are less sensitive to solar insolation variation in systems including MPPTs as compared to systems without MPPTs.

  2. Phase-based motion magnification video for monitoring of vital signals using the Hermite transform

    NASA Astrophysics Data System (ADS)

    Brieva, Jorge; Moya-Albor, Ernesto

    2017-11-01

    In this paper we present a new Eulerian phase-based motion magnification technique using the Hermite Transform (HT) decomposition that is inspired in the Human Vision System (HVS). We test our method in one sequence of the breathing of a newborn baby and on a video sequence that shows the heartbeat on the wrist. We detect and magnify the heart pulse applying our technique. Our motion magnification approach is compared to the Laplacian phase based approach by means of quantitative metrics (based on the RMS error and the Fourier transform) to measure the quality of both reconstruction and magnification. In addition a noise robustness analysis is performed for the two methods.

  3. Using motion capture technology to measure the effects of magnification loupes on dental operator posture: A pilot study.

    PubMed

    Branson, B G; Abnos, R M; Simmer-Beck, M L; King, G W; Siddicky, S F

    2018-01-01

    Motion analysis has great potential for quantitatively evaluating dental operator posture and the impact of interventions such as magnification loupes on posture and subsequent development of musculoskeletal disorders. This study sought to determine the feasibility of motion capture technology for measurement of dental operator posture and examine the impact that different styles of magnification loupes had on dental operator posture. Forward and lateral head flexion were measured for two different operators while completing a periodontal probing procedure. Each was measured while wearing magnification loupes (flip up-FL and through the lens-TTL) and basic safety lenses. Operators both exhibited reduced forward flexion range of motion (ROM) when using loupes (TTL or FL) compared to a baseline lens (BL). In contrast to forward flexion, no consistent trends were observed for lateral flexion between subjects. The researchers can report that it is possible to measure dental operator posture using motion capture technology. More study is needed to determine which type of magnification loupes (FL or TTL) are superior in improving dental operator posture. Some evidence was found supporting that the quality of operator posture may more likely be related to the use of magnification loupes, rather than the specific type of lenses worn.

  4. Newly described features resulting from high-magnification dermoscopy of tinea capitis.

    PubMed

    Lacarrubba, Francesco; Verzì, Anna Elisa; Micali, Giuseppe

    2015-03-01

    Recent studies have reported "comma hairs" as a typical dermoscopic feature of tinea capitis observed at low magnification (×10). The aim of this study was to evaluate the dermoscopic aspects of tinea capitis at high magnification (×150) and its diagnostic role. Five children (2 boys and 3 girls; aged 4-10 years) with multiple scaly patches of alopecia underwent scalp dermoscopy, direct microscopic examinations, and mycological cultures of skin scrapings. Using low magnification (×30), typical comma hairs, "Morse code-like" hairs, and "zigzag" hairs were observed. When using high magnification (×150), additional features were horizontal white bands that appear as empty bands that are likely related to localized areas of fungal infection. These horizontal white bands are usually multiple and may cause the hair to bend and break. We also identified a new dermoscopic feature consisting of translucent, easily deformable hairs that look weakened and transparent and show unusual bends; they are likely the result of a massive fungal invasion involving the whole hair shaft. Direct microscopic examination showed fungal infection and results of mycological culture were positive for Microsporum canis in all cases. The identification of new findings using higher-magnification dermoscopy may enhance the diagnosis of tinea capitis and be of help to better understand some pathogenetic mechanisms.

  5. A PLANETARY LENSING FEATURE IN CAUSTIC-CROSSING HIGH-MAGNIFICATION MICROLENSING EVENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Sun-Ju; Hwang, Kyu-Ha; Ryu, Yoon-Hyun

    Current microlensing follow-up observations focus on high-magnification events because of the high efficiency of planet detection. However, central perturbations of high-magnification events caused by a planet can also be produced by a very close or a very wide binary companion, and the two kinds of central perturbations are not generally distinguished without time consuming detailed modeling (a planet-binary degeneracy). Hence, it is important to resolve the planet-binary degeneracy that occurs in high-magnification events. In this paper, we investigate caustic-crossing high-magnification events caused by a planet and a wide binary companion. From this investigation, we find that because of the differentmore » magnification excess patterns inside the central caustics induced by the planet and the binary companion, the light curves of the caustic-crossing planetary-lensing events exhibit a feature that is discriminated from those of the caustic-crossing binary-lensing events, and the feature can be used to immediately distinguish between the planetary and binary companions. The planetary-lensing feature appears in the interpeak region between the two peaks of the caustic-crossings. The structure of the interpeak region for the planetary-lensing events is smooth and convex or boxy, whereas the structure for the binary-lensing events is smooth and concave. We also investigate the effect of a finite background source star on the planetary-lensing feature in the caustic-crossing high-magnification events. From this, we find that the convex-shaped interpeak structure appears in a certain range that changes with the mass ratio of the planet to the planet-hosting star.« less

  6. The Systematics of Strong Lens Modeling Quantified: The Effects of Constraint Selection and Redshift Information on Magnification, Mass, and Multiple Image Predictability

    NASA Astrophysics Data System (ADS)

    Johnson, Traci L.; Sharon, Keren

    2016-11-01

    Until now, systematic errors in strong gravitational lens modeling have been acknowledged but have never been fully quantified. Here, we launch an investigation into the systematics induced by constraint selection. We model the simulated cluster Ares 362 times using random selections of image systems with and without spectroscopic redshifts and quantify the systematics using several diagnostics: image predictability, accuracy of model-predicted redshifts, enclosed mass, and magnification. We find that for models with >15 image systems, the image plane rms does not decrease significantly when more systems are added; however, the rms values quoted in the literature may be misleading as to the ability of a model to predict new multiple images. The mass is well constrained near the Einstein radius in all cases, and systematic error drops to <2% for models using >10 image systems. Magnification errors are smallest along the straight portions of the critical curve, and the value of the magnification is systematically lower near curved portions. For >15 systems, the systematic error on magnification is ∼2%. We report no trend in magnification error with the fraction of spectroscopic image systems when selecting constraints at random; however, when using the same selection of constraints, increasing this fraction up to ∼0.5 will increase model accuracy. The results suggest that the selection of constraints, rather than quantity alone, determines the accuracy of the magnification. We note that spectroscopic follow-up of at least a few image systems is crucial because models without any spectroscopic redshifts are inaccurate across all of our diagnostics.

  7. Multi-tissue and multi-scale approach for nuclei segmentation in H&E stained images.

    PubMed

    Salvi, Massimo; Molinari, Filippo

    2018-06-20

    Accurate nuclei detection and segmentation in histological images is essential for many clinical purposes. While manual annotations are time-consuming and operator-dependent, full automated segmentation remains a challenging task due to the high variability of cells intensity, size and morphology. Most of the proposed algorithms for the automated segmentation of nuclei were designed for specific organ or tissues. The aim of this study was to develop and validate a fully multiscale method, named MANA (Multiscale Adaptive Nuclei Analysis), for nuclei segmentation in different tissues and magnifications. MANA was tested on a dataset of H&E stained tissue images with more than 59,000 annotated nuclei, taken from six organs (colon, liver, bone, prostate, adrenal gland and thyroid) and three magnifications (10×, 20×, 40×). Automatic results were compared with manual segmentations and three open-source software designed for nuclei detection. For each organ, MANA obtained always an F1-score higher than 0.91, with an average F1 of 0.9305 ± 0.0161. The average computational time was about 20 s independently of the number of nuclei to be detected (anyway, higher than 1000), indicating the efficiency of the proposed technique. To the best of our knowledge, MANA is the first fully automated multi-scale and multi-tissue algorithm for nuclei detection. Overall, the robustness and versatility of MANA allowed to achieve, on different organs and magnifications, performances in line or better than those of state-of-art algorithms optimized for single tissues.

  8. Magnifications of Single and Dual Element Accommodative Intraocular Lenses: Paraxial Optics Analysis

    PubMed Central

    Ale, Jit B; Manns, Fabrice; Ho, Arthur

    2010-01-01

    Purpose Using an analytical approach of paraxial optics, we evaluated the magnification of a model eye implanted with single-element (1E) and dual-element (2E) translating-optics accommodative intraocular lenses (AIOL) with an objective of understanding key control parameters relevant to their design. Potential clinical implications of the results arising from pseudophakic accommodation were also considered. Methods Lateral and angular magnifications in a pseudophakic model eye were analyzed using the matrix method of paraxial optics. The effects of key control parameters such as direction (forward or backward) and distance (0 to 2 mm) of translation, power combinations of the 2E-AIOL elements (front element power range +20.0 D to +40.0 D), and amplitudes of accommodation (0 to 4 D) were tested. Relative magnification, defined as the ratio of the retinal image size of the accommodated eye to that of unaccommodated phakic (rLM1) or pseudophakic (rLM2) model eyes, was computed to determine how retinal image size changes with pseudophakic accommodation. Results Both lateral and angular magnifications increased with increased power of the front element in 2E-AIOL and amplitude of accommodation. For a 2E-AIOL with front element power of +35 D, rLM1 and rLM2 increased by 17.0% and 16.3%, respectively, per millimetre of forward translation of the element, compared to the magnification at distance focus (unaccommodated). These changes correspond to a change of 9.4% and 6.5% per dioptre of accommodation, respectively. Angular magnification also increased with pseudophakic accommodation. 1E-AIOLs produced consistently less magnification than 2E-AIOLs. Relative retinal image size decreased at a rate of 0.25% with each dioptre of accommodation in the phakic model eye. The position of the image space nodal point shifted away from the retina (towards the cornea) with both phakic and pseudophakic accommodation. Conclusion Power of the mobile element, and amount and direction of the translation (or the achieved accommodative amplitude) are important parameters in determining the magnifications of the AIOLs. The results highlight the need for caution in the prescribing of AIOL. Aniso-accommodation or inter-ocular differences in AIOL designs (or relative to the natural lens of the contralateral eye) may introduce dynamic aniseikonia and consequent impaired binocular vision. Nevertheless, some designs, offering greater increases in magnification on accommodation, may provide enhanced near vision depending on patient needs. PMID:21054469

  9. Modelling and simulation of temperature and concentration dispersion in a couple stress nanofluid flow through stenotic tapered arteries

    NASA Astrophysics Data System (ADS)

    Ramana Reddy, J. V.; Srikanth, D.; Das, Samir K.

    2017-08-01

    A couple stress fluid model with the suspension of silver nanoparticles is proposed in order to investigate theoretically the natural convection of temperature and concentration. In particular, the flow is considered in an artery with an obstruction wherein the rheology of blood is taken as a couple stress fluid. The effects of the permeability of the stenosis and the treatment procedure involving a catheter are also considered in the model. The obtained non-linear momentum, temperature and concentration equations are solved using the homotopy perturbation method. Nanoparticles and the two viscosities of the couple stress fluid seem to play a significant role in the flow regime. The pressure drop, flow rate, resistance to the fluid flow and shear stress are computed and their effects are analyzed with respect to various fluids and geometric parameters. Convergence of the temperature and its dependency on the degree of deformation is effectively depicted. It is observed that the Nusselt number increases as the volume fraction increases. Hence magnification of molecular thermal dispersion can be achieved by increasing the nanoparticle concentration. It is also observed that concentration dispersion is greater for severe stenosis and it is maximum at the first extrema. The secondary flow of the axial velocity in the stenotic region is observed and is asymmetric in the tapered artery. The obtained results can be utilized in understanding the increase in heat transfer and enhancement of mass dispersion, which could be used for drug delivery in the treatment of stenotic conditions.

  10. Size Distribution and Dispersion of Droplets Generated by Impingement of Breaking Waves on Oil Slicks

    NASA Astrophysics Data System (ADS)

    Li, C.; Miller, J.; Wang, J.; Koley, S. S.; Katz, J.

    2017-10-01

    This laboratory experimental study investigates the temporal evolution of the size distribution of subsurface oil droplets generated as breaking waves entrain oil slicks. The measurements are performed for varying wave energy, as well as large variations in oil viscosity and oil-water interfacial tension, the latter achieved by premixing the oil with dispersant. In situ measurements using digital inline holography at two magnifications are applied for measuring the droplet sizes and Particle Image Velocimetry (PIV) for determining the temporal evolution of turbulence after wave breaking. All early (2-10 s) size distributions have two distinct size ranges with different slopes. For low dispersant to oil ratios (DOR), the transition between them could be predicted based on a turbulent Weber (We) number in the 2-4 range, suggesting that turbulence plays an important role. For smaller droplets, all the number size distributions have power of about -2.1, and for larger droplets, the power decreases well below -3. The measured steepening of the size distribution over time is predicted by a simple model involving buoyant rise and turbulence dispersion. Conversely, for DOR 1:100 and 1:25 oils, the diameter of slope transition decreases from ˜1 mm to 46 and 14 µm, respectively, much faster than the We-based prediction, and the size distribution steepens with increasing DOR. Furthermore, the concentration of micron-sized droplets of DOR 1:25 oil increases for the first 10 min after entrainment. These phenomena are presumably caused by the observed formation and breakup oil microthreads associated with tip streaming.

  11. A Bayesian Measurment Error Model for Misaligned Radiographic Data

    DOE PAGES

    Lennox, Kristin P.; Glascoe, Lee G.

    2013-09-06

    An understanding of the inherent variability in micro-computed tomography (micro-CT) data is essential to tasks such as statistical process control and the validation of radiographic simulation tools. The data present unique challenges to variability analysis due to the relatively low resolution of radiographs, and also due to minor variations from run to run which can result in misalignment or magnification changes between repeated measurements of a sample. Positioning changes artificially inflate the variability of the data in ways that mask true physical phenomena. We present a novel Bayesian nonparametric regression model that incorporates both additive and multiplicative measurement error inmore » addition to heteroscedasticity to address this problem. We also use this model to assess the effects of sample thickness and sample position on measurement variability for an aluminum specimen. Supplementary materials for this article are available online.« less

  12. Between Domain Cognitive Dispersion and Functional Abilities in Older Adults

    PubMed Central

    Fellows, Robert P.; Schmitter-Edgecombe, Maureen

    2016-01-01

    Objective Within-person variability in cognitive performance is related to neurological integrity, but the association with functional abilities is less clear. The primary aim of this study was to examine the association between cognitive dispersion, or within-person variability, and everyday multitasking and the way in which these variables may influence performance on a naturalistic assessment of functional abilities. Method Participants were 156 community-dwelling adults, age 50 or older. Cognitive dispersion was calculated by measuring within-person variability in cognitive domains, established through principal components analysis. Path analysis was used to determine the independent contribution of cognitive dispersion to functional ability, mediated by multitasking. Results Results of the path analysis revealed that the number of subtasks interweaved (i.e., multitasked) mediated the association between cognitive dispersion and task sequencing and accuracy. Although increased multitasking was associated with worse task performance in the path model, secondary analyses revealed that for individuals with low cognitive dispersion, increased multitasking was associated with better task performance, whereas for those with higher levels of dispersion multitasking was negatively correlated with task performance. Conclusion These results suggest that cognitive dispersion between domains may be a useful indicator of multitasking and daily living skills among older adults. PMID:26300441

  13. Anisotropic magnification distortion of the 3D galaxy correlation. II. Fourier and redshift space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui Lam; Department of Physics, Columbia University, New York, New York 10027; Institute of Theoretical Physics, Chinese University of Hong Kong

    2008-03-15

    In paper I of this series we discuss how magnification bias distorts the 3D correlation function by enhancing the observed correlation in the line-of-sight (LOS) orientation, especially on large scales. This lensing anisotropy is distinctive, making it possible to separately measure the galaxy-galaxy, galaxy-magnification and magnification-magnification correlations. Here we extend the discussion to the power spectrum and also to redshift space. In real space, pairs oriented close to the LOS direction are not protected against nonlinearity even if the pair separation is large; this is because nonlinear fluctuations can enter through gravitational lensing at a small transverse separation (or i.e.more » impact parameter). The situation in Fourier space is different: by focusing on a small wave number k, as is usually done, linearity is guaranteed because both the LOS and transverse wave numbers must be small. This is why magnification distortion of the galaxy correlation appears less severe in Fourier space. Nonetheless, the effect is non-negligible, especially for the transverse Fourier modes, and should be taken into account in interpreting precision measurements of the galaxy power spectrum, for instance those that focus on the baryon oscillations. The lensing induced anisotropy of the power spectrum has a shape that is distinct from the more well-known redshift space anisotropies due to peculiar motions and the Alcock-Paczynski effect. The lensing anisotropy is highly localized in Fourier space while redshift space distortions are more spread out. This means that one could separate the magnification bias component in real observations, implying that potentially it is possible to perform a gravitational lensing measurement without measuring galaxy shapes.« less

  14. Effect of coriolis force on forced response magnification of intentionally mistuned bladed disk

    NASA Astrophysics Data System (ADS)

    Kan, Xuanen; Xu, Zili; Zhao, Bo; Zhong, Jize

    2017-07-01

    Blade manufacturing tolerance and wear in operation may induce mistuning, and mistuning will lead to vibration localization which will result in destruction of bladed disk. Generally, intentional mistuning has been widely investigated to control the maximum forced response. On the other hand, it should be noted that the bladed disk with high rotational speed is obviously subjected to the Coriolis force. However, the Coriolis force is not included in intentionally mistuned bladed disk in previous studies. Therefore, this paper is to study the effect of the Coriolis force on forced response magnification of intentionally mistuned bladed disk. Finite element method is used to calculate the harmonic response of the intentionally mistuned bladed disk with and without the Coriolis force. The effects of intentional mistuning strength and different integer harmonic order on the response magnification factor with the Coriolis force are discussed. It should be pointed out that, when the integer harmonic order is 1, 3 and 5, the response magnification factor with the effect of the Coriolis force increase by 3.9%, 3.53% and 3.76% respectively compared to the system of non-Coriolis force. In addition, forced response magnification factor of intentionally mistuned bladed disk with and without the Coriolis force under different rotational speed is researched in contrast. It shows that, when the rotational speed is 3000 rpm, the response magnification factor with the Coriolis force increases by 0.65% compared to the system of non-Coriolis force, while the response magnification factor with the Coriolis force decreases by 6.28% compared to the system of non-Coriolis force when the rotational speed is 12000 rpm.

  15. THE SYSTEMATICS OF STRONG LENS MODELING QUANTIFIED: THE EFFECTS OF CONSTRAINT SELECTION AND REDSHIFT INFORMATION ON MAGNIFICATION, MASS, AND MULTIPLE IMAGE PREDICTABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Traci L.; Sharon, Keren, E-mail: tljohn@umich.edu

    Until now, systematic errors in strong gravitational lens modeling have been acknowledged but have never been fully quantified. Here, we launch an investigation into the systematics induced by constraint selection. We model the simulated cluster Ares 362 times using random selections of image systems with and without spectroscopic redshifts and quantify the systematics using several diagnostics: image predictability, accuracy of model-predicted redshifts, enclosed mass, and magnification. We find that for models with >15 image systems, the image plane rms does not decrease significantly when more systems are added; however, the rms values quoted in the literature may be misleading asmore » to the ability of a model to predict new multiple images. The mass is well constrained near the Einstein radius in all cases, and systematic error drops to <2% for models using >10 image systems. Magnification errors are smallest along the straight portions of the critical curve, and the value of the magnification is systematically lower near curved portions. For >15 systems, the systematic error on magnification is ∼2%. We report no trend in magnification error with the fraction of spectroscopic image systems when selecting constraints at random; however, when using the same selection of constraints, increasing this fraction up to ∼0.5 will increase model accuracy. The results suggest that the selection of constraints, rather than quantity alone, determines the accuracy of the magnification. We note that spectroscopic follow-up of at least a few image systems is crucial because models without any spectroscopic redshifts are inaccurate across all of our diagnostics.« less

  16. Monte Carlo generated conversion factors for the estimation of average glandular dose in contact and magnification mammography

    NASA Astrophysics Data System (ADS)

    Koutalonis, M.; Delis, H.; Spyrou, G.; Costaridou, L.; Tzanakos, G.; Panayiotakis, G.

    2006-11-01

    Magnification mammography is a special technique used in the cases where breast complaints are noted by a woman or when an abnormality is found in a screening mammogram. The carcinogenic risk in mammography is related to the dose deposited in the glandular tissue of the breast rather than the adipose, and average glandular dose (AGD) is the quantity taken into consideration during a mammographic examination. Direct measurement of the AGD is not feasible during clinical practice and thus, the incident air KERMA on the breast surface is used to estimate the glandular dose, with the help of proper conversion factors. Additional conversion factors adapted for magnification and tube voltage are calculated, using Monte Carlo simulation. The effect of magnification degree, tube voltage, various anode/filter material combinations and glandularity on AGD is also studied, considering partial breast irradiation. Results demonstrate that the estimation of AGD utilizing conversion factors depends on these parameters, while the omission of correction factors for magnification and tube voltage can lead to significant underestimation or overestimation of AGD. AGD was found to increase with filter material's k-absorption edge, anode material's k-emission edge, tube voltage and magnification. Decrease of the glandularity of the breast leads to higher AGD due to the increased penetrating ability of the photon beam in thick breasts with low glandularity.

  17. Electronic magnification and perceived contrast of video

    PubMed Central

    Haun, Andrew; Woods, Russell L; Peli, Eli

    2012-01-01

    Electronic magnification of an image results in a decrease in its perceived contrast. The decrease in perceived contrast could be due to a perceived blur or to limited sampling of the range of contrasts in the original image. We measured the effect on perceived contrast of magnification in two contexts: either a small video was enlarged to fill a larger area, or a portion of a larger video was enlarged to fill the same area as the original. Subjects attenuated the source video contrast to match the perceived contrast of the magnified videos, with the effect increasing with magnification and decreasing with viewing distance. These effects are consistent with expectations based on both the contrast statistics of natural images and the contrast sensitivity of the human visual system. We demonstrate that local regions within videos usually have lower physical contrast than the whole, and that this difference accounts for a minor part of the perceived differences. Instead, visibility of ‘missing content’ (blur) in a video is misinterpreted as a decrease in contrast. We detail how the effects of magnification on perceived contrast can be measured while avoiding confounding factors. PMID:23483111

  18. Spatial resolution of a spherical x-ray crystal spectrometer at various magnifications

    DOE PAGES

    Gao, Lan; Hill, K. W.; Bitter, M.; ...

    2016-08-23

    Here, a high spatial resolution of a few μm is often required for probing small-scale high-energy-density plasmas using high resolution x-ray imaging spectroscopy. This resolution can be achieved by adjusting system magnification to overcome the inherent limitation of the detector pixel size. Laboratory experiments on investigating the relation between spatial resolution and system magnification for a spherical crystal spectrometer are presented. Tungsten Lβ 2 rays from a tungsten-target micro-focus x-ray tube were diffracted by a Ge 440 crystal, which was spherically bent to a radius of 223 mm, and imaged onto an x-ray CCD with 13-μm pixel size. The source-to-crystalmore » (p) and crystal-to-detector (q) distances were varied to produce spatial magnifications ( M = q/p) ranging from 2 to 10. The inferred instrumental spatial width reduces with increasing system magnification M. However, the experimental measurement at each M is larger than the theoretical value of pixel size divided by M. Future work will focus on investigating possible broadening mechanisms that limit the spatial resolution.« less

  19. Three-dimensional motion-picture imaging of dynamic object by parallel-phase-shifting digital holographic microscopy using an inverted magnification optical system

    NASA Astrophysics Data System (ADS)

    Fukuda, Takahito; Shinomura, Masato; Xia, Peng; Awatsuji, Yasuhiro; Nishio, Kenzo; Matoba, Osamu

    2017-04-01

    We constructed a parallel-phase-shifting digital holographic microscopy (PPSDHM) system using an inverted magnification optical system, and succeeded in three-dimensional (3D) motion-picture imaging for 3D displacement of a microscopic object. In the PPSDHM system, the inverted and afocal magnification optical system consisted of a microscope objective (16.56 mm focal length and 0.25 numerical aperture) and a convex lens (300 mm focal length and 82 mm aperture diameter). A polarization-imaging camera was used to record multiple phase-shifted holograms with a single-shot exposure. We recorded an alum crystal, sinking down in aqueous solution of alum, by the constructed PPSDHM system at 60 frames/s for about 20 s and reconstructed high-quality 3D motion-picture image of the crystal. Then, we calculated amounts of displacement of the crystal from the amounts in the focus plane and the magnifications of the magnification optical system, and obtained the 3D trajectory of the crystal by that amounts.

  20. Effect of inhomogeneities on high precision measurements of cosmological distances

    NASA Astrophysics Data System (ADS)

    Peel, Austin; Troxel, M. A.; Ishak, Mustapha

    2014-12-01

    We study effects of inhomogeneities on distance measures in an exact relativistic Swiss-cheese model of the Universe, focusing on the distance modulus. The model has Λ CDM background dynamics, and the "holes" are nonsymmetric structures described by the Szekeres metric. The Szekeres exact solution of Einstein's equations, which is inhomogeneous and anisotropic, allows us to capture potentially relevant effects on light propagation due to nontrivial evolution of structures in an exact framework. Light beams traversing a single Szekeres structure in different ways can experience either magnification or demagnification, depending on the particular path. Consistent with expectations, we find a shift in the distance modulus μ to distant sources due to demagnification when the light beam travels primarily through the void regions of our model. Conversely, beams are magnified when they propagate mainly through the overdense regions of the structures, and we explore a small additional effect due to time evolution of the structures. We then study the probability distributions of Δ μ =μΛ CDM-μSC for sources at different redshifts in various Swiss-cheese constructions, where the light beams travel through a large number of randomly oriented Szekeres holes with random impact parameters. We find for Δ μ the dispersions 0.004 ≤σΔ μ≤0.008 mag for sources with redshifts 1.0 ≤z ≤1.5 , which are smaller than the intrinsic dispersion of, for example, magnitudes of type Ia supernovae. The shapes of the distributions we obtain for our Swiss-cheese constructions are peculiar in the sense that they are not consistently skewed toward the demagnification side, as they are in analyses of lensing in cosmological simulations. Depending on the source redshift, the distributions for our models can be skewed to either the demagnification or the magnification side, reflecting a limitation of these constructions. This could be the result of requiring the continuity of Einstein's equations throughout the overall spacetime patchwork, which imposes the condition that compensating overdense shells must accompany the underdense void regions in the holes. The possibility to explore other uses of these constructions that could circumvent this limitation and lead to different statistics remains open.

  1. Wearable optical-digital assistive device for low vision students.

    PubMed

    Afinogenov, Boris I; Coles, James B; Parthasarathy, Sailashri; Press-Williams, Jessica; Tsykunova, Ralina; Vasilenko, Anastasia; Narain, Jaya; Hanumara, Nevan C; Winter, Amos; Satgunam, PremNandhini

    2016-08-01

    People with low vision have limited residual vision that can be greatly enhanced through high levels of magnification. Current assistive technologies are tailored for far field or near field magnification but not both. In collaboration with L.V. Prasad Eye Institute (LVPEI), a wearable, optical-digital assistive device was developed to meet the near and far field magnification needs of students. The critical requirements, system architecture and design decisions for each module were analyzed and quantified. A proof-of-concept prototype was fabricated that can achieve magnification up to 8x and a battery life of up to 8 hours. Potential user evaluation with a Snellen chart showed identification of characters not previously discernible. Further feedback suggested that the system could be used as a general accessibility aid.

  2. Gravitational microlensing - The effect of random motion of individual stars in the lensing galaxy

    NASA Technical Reports Server (NTRS)

    Kundic, Tomislav; Wambsganss, Joachim

    1993-01-01

    We investigate the influence of random motion of individual stars in the lensing galaxy on the light curve of a gravitationally lensed background quasar. We compare this with the effects of the transverse motion of the galaxy. We find that three-dimensional random motion of stars with a velocity dispersion sigma in each dimension is more effective in producing 'peaks' in a microlensed light curve by a factor a about 1.3 than motion of the galaxy with a transverse velocity v(t) = sigma. This effectiveness parameter a seems to depend only weakly on the surface mass density. With an assumed transverse velocity of v(t) = 600 km/s of the galaxy lensing the QSO 2237+0305 and a measured velocity dispersion of sigma = 215 km/s, the expected rate of maxima in the light curves calculated for bulk motion alone has to be increased by about 10 percent due to the random motion of stars. As a consequence, the average time interval Delta t between two high-magnification events is smaller than the time interval Delta(t) bulk, calculated for bulk motion alone, Delta t about 0.9 Delta(t) bulk.

  3. Note: Magnification of a polarization angle with a Littrow layout brazed grating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasao, H., E-mail: sasao.hajime@jaea.go.jp; Kubo, H.; Kawano, Y.

    A new method to magnify a small polarization angle with brazed gratings has been developed. In the method, difference in diffraction efficiency for S and P polarization components is used. The magnification dependence on the incident angle can be small by arranging the grating in Littrow layout. A magnification with a factor ∼2.7 has been demonstrated for a 10.6 μm CO{sub 2} laser beam as expected from a calculation. The method is applicable in many polarimetry fields.

  4. Weather explains high annual variation in butterfly dispersal

    PubMed Central

    Rytteri, Susu; Heikkinen, Risto K.; Heliölä, Janne; von Bagh, Peter

    2016-01-01

    Weather conditions fundamentally affect the activity of short-lived insects. Annual variation in weather is therefore likely to be an important determinant of their between-year variation in dispersal, but conclusive empirical studies are lacking. We studied whether the annual variation of dispersal can be explained by the flight season's weather conditions in a Clouded Apollo (Parnassius mnemosyne) metapopulation. This metapopulation was monitored using the mark–release–recapture method for 12 years. Dispersal was quantified for each monitoring year using three complementary measures: emigration rate (fraction of individuals moving between habitat patches), average residence time in the natal patch, and average distance moved. There was much variation both in dispersal and average weather conditions among the years. Weather variables significantly affected the three measures of dispersal and together with adjusting variables explained 79–91% of the variation observed in dispersal. Different weather variables became selected in the models explaining variation in three dispersal measures apparently because of the notable intercorrelations. In general, dispersal rate increased with increasing temperature, solar radiation, proportion of especially warm days, and butterfly density, and decreased with increasing cloudiness, rainfall, and wind speed. These results help to understand and model annually varying dispersal dynamics of species affected by global warming. PMID:27440662

  5. Estimation of Fine-Scale Histologic Features at Low Magnification.

    PubMed

    Zarella, Mark D; Quaschnick, Matthew R; Breen, David E; Garcia, Fernando U

    2018-06-18

    - Whole-slide imaging has ushered in a new era of technology that has fostered the use of computational image analysis for diagnostic support and has begun to transfer the act of analyzing a slide to computer monitors. Due to the overwhelming amount of detail available in whole-slide images, analytic procedures-whether computational or visual-often operate at magnifications lower than the magnification at which the image was acquired. As a result, a corresponding reduction in image resolution occurs. It is unclear how much information is lost when magnification is reduced, and whether the rich color attributes of histologic slides can aid in reconstructing some of that information. - To examine the correspondence between the color and spatial properties of whole-slide images to elucidate the impact of resolution reduction on the histologic attributes of the slide. - We simulated image resolution reduction and modeled its effect on classification of the underlying histologic structure. By harnessing measured histologic features and the intrinsic spatial relationships between histologic structures, we developed a predictive model to estimate the histologic composition of tissue in a manner that exceeds the resolution of the image. - Reduction in resolution resulted in a significant loss of the ability to accurately characterize histologic components at magnifications less than ×10. By utilizing pixel color, this ability was improved at all magnifications. - Multiscale analysis of histologic images requires an adequate understanding of the limitations imposed by image resolution. Our findings suggest that some of these limitations may be overcome with computational modeling.

  6. Leaf vein length per unit area is not intrinsically dependent on image magnification: avoiding measurement artifacts for accuracy and precision.

    PubMed

    Sack, Lawren; Caringella, Marissa; Scoffoni, Christine; Mason, Chase; Rawls, Michael; Markesteijn, Lars; Poorter, Lourens

    2014-10-01

    Leaf vein length per unit leaf area (VLA; also known as vein density) is an important determinant of water and sugar transport, photosynthetic function, and biomechanical support. A range of software methods are in use to visualize and measure vein systems in cleared leaf images; typically, users locate veins by digital tracing, but recent articles introduced software by which users can locate veins using thresholding (i.e. based on the contrasting of veins in the image). Based on the use of this method, a recent study argued against the existence of a fixed VLA value for a given leaf, proposing instead that VLA increases with the magnification of the image due to intrinsic properties of the vein system, and recommended that future measurements use a common, low image magnification for measurements. We tested these claims with new measurements using the software LEAFGUI in comparison with digital tracing using ImageJ software. We found that the apparent increase of VLA with magnification was an artifact of (1) using low-quality and low-magnification images and (2) errors in the algorithms of LEAFGUI. Given the use of images of sufficient magnification and quality, and analysis with error-free software, the VLA can be measured precisely and accurately. These findings point to important principles for improving the quantity and quality of important information gathered from leaf vein systems. © 2014 American Society of Plant Biologists. All Rights Reserved.

  7. Illuminating a Dark Lens : A Type Ia Supernova Magnified by the Frontier Fields Galaxy Cluster Abell 2744

    NASA Astrophysics Data System (ADS)

    Rodney, Steven A.; Patel, Brandon; Scolnic, Daniel; Foley, Ryan J.; Molino, Alberto; Brammer, Gabriel; Jauzac, Mathilde; Bradač, Maruša; Broadhurst, Tom; Coe, Dan; Diego, Jose M.; Graur, Or; Hjorth, Jens; Hoag, Austin; Jha, Saurabh W.; Johnson, Traci L.; Kelly, Patrick; Lam, Daniel; McCully, Curtis; Medezinski, Elinor; Meneghetti, Massimo; Merten, Julian; Richard, Johan; Riess, Adam; Sharon, Keren; Strolger, Louis-Gregory; Treu, Tommaso; Wang, Xin; Williams, Liliya L. R.; Zitrin, Adi

    2015-09-01

    SN HFF14Tom is a Type Ia SN discovered at z=1.3457+/- 0.0001 behind the galaxy cluster Abell 2744 (z = 0.308). In a cosmology-independent analysis, we find that HFF14Tom is 0.77 ± 0.15 mag brighter than unlensed Type Ia SNe at similar redshift, implying a lensing magnification of {μ }{obs}=2.03+/- 0.29. This observed magnification provides a rare opportunity for a direct empirical test of galaxy cluster lens models. Here we test 17 lens models, 13 of which were generated before the SN magnification was known, qualifying as pure “blind tests.” The models are collectively fairly accurate: 8 of the models deliver median magnifications that are consistent with the measured μ to within 1σ. However, there is a subtle systematic bias: the significant disagreements all involve models overpredicting the magnification. We evaluate possible causes for this mild bias, and find no single physical or methodological explanation to account for it. We do find that model accuracy can be improved to some extent with stringent quality cuts on multiply imaged systems, such as requiring that a large fraction have spectroscopic redshifts. In addition to testing model accuracies as we have done here, Type Ia SN magnifications could also be used as inputs for future lens models of Abell 2744 and other clusters, providing valuable constraints in regions where traditional strong- and weak-lensing information is unavailable.

  8. Aerosol Measurements of the Fine and Ultrafine Particle Content of Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.; Chen, Da-Ren; Smith, Sally A.

    2007-01-01

    We report the first quantitative measurements of the ultrafine (20 to 100 nm) and fine (100 nm to 20 m) particulate components of Lunar surface regolith. The measurements were performed by gas-phase dispersal of the samples, and analysis using aerosol diagnostic techniques. This approach makes no a priori assumptions about the particle size distribution function as required by ensemble optical scattering methods, and is independent of refractive index and density. The method provides direct evaluation of effective transport diameters, in contrast to indirect scattering techniques or size information derived from two-dimensional projections of high magnification-images. The results demonstrate considerable populations in these size regimes. In light of the numerous difficulties attributed to dust exposure during the Apollo program, this outcome is of significant importance to the design of mitigation technologies for future Lunar exploration.

  9. CHAMP (Camera, Handlens, and Microscope Probe)

    NASA Technical Reports Server (NTRS)

    Mungas, Greg S.; Boynton, John E.; Balzer, Mark A.; Beegle, Luther; Sobel, Harold R.; Fisher, Ted; Klein, Dan; Deans, Matthew; Lee, Pascal; Sepulveda, Cesar A.

    2005-01-01

    CHAMP (Camera, Handlens And Microscope Probe)is a novel field microscope capable of color imaging with continuously variable spatial resolution from infinity imaging down to diffraction-limited microscopy (3 micron/pixel). As a robotic arm-mounted imager, CHAMP supports stereo imaging with variable baselines, can continuously image targets at an increasing magnification during an arm approach, can provide precision rangefinding estimates to targets, and can accommodate microscopic imaging of rough surfaces through a image filtering process called z-stacking. CHAMP was originally developed through the Mars Instrument Development Program (MIDP) in support of robotic field investigations, but may also find application in new areas such as robotic in-orbit servicing and maintenance operations associated with spacecraft and human operations. We overview CHAMP'S instrument performance and basic design considerations below.

  10. MAGNIFICENT MAGNIFICATION: EXPLOITING THE OTHER HALF OF THE LENSING SIGNAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huff, Eric M.; Graves, Genevieve J.

    2014-01-10

    We describe a new method for measuring galaxy magnification due to weak gravitational lensing. Our method makes use of a tight scaling relation between galaxy properties that are modified by gravitational lensing, such as apparent size, and other properties that are not, such as surface brightness. In particular, we use a version of the well-known fundamental plane relation for early-type galaxies. This modified ''photometric fundamental plane'' uses only photometric galaxy properties, eliminating the need for spectroscopic data. We present the first detection of magnification using this method by applying it to photometric catalogs from the Sloan Digital Sky Survey. Thismore » analysis shows that the derived magnification signal is within a factor of three of that available from conventional methods using gravitational shear. We suppress the dominant sources of systematic error and discuss modest improvements that may further enhance the lensing signal-to-noise available with this method. Moreover, some of the dominant sources of systematic error are substantially different from those of shear-based techniques. With this new technique, magnification becomes a useful measurement tool for the coming era of large ground-based surveys intending to measure gravitational lensing.« less

  11. Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications.

    PubMed

    Zhang, Yu Shrike; Chang, Jae-Byum; Alvarez, Mario Moisés; Trujillo-de Santiago, Grissel; Aleman, Julio; Batzaya, Byambaa; Krishnadoss, Vaishali; Ramanujam, Aishwarya Aravamudhan; Kazemzadeh-Narbat, Mehdi; Chen, Fei; Tillberg, Paul W; Dokmeci, Mehmet Remzi; Boyden, Edward S; Khademhosseini, Ali

    2016-03-15

    To date, much effort has been expended on making high-performance microscopes through better instrumentation. Recently, it was discovered that physical magnification of specimens was possible, through a technique called expansion microscopy (ExM), raising the question of whether physical magnification, coupled to inexpensive optics, could together match the performance of high-end optical equipment, at a tiny fraction of the price. Here we show that such "hybrid microscopy" methods--combining physical and optical magnifications--can indeed achieve high performance at low cost. By physically magnifying objects, then imaging them on cheap miniature fluorescence microscopes ("mini-microscopes"), it is possible to image at a resolution comparable to that previously attainable only with benchtop microscopes that present costs orders of magnitude higher. We believe that this unprecedented hybrid technology that combines expansion microscopy, based on physical magnification, and mini-microscopy, relying on conventional optics--a process we refer to as Expansion Mini-Microscopy (ExMM)--is a highly promising alternative method for performing cost-effective, high-resolution imaging of biological samples. With further advancement of the technology, we believe that ExMM will find widespread applications for high-resolution imaging particularly in research and healthcare scenarios in undeveloped countries or remote places.

  12. Spectral and raw quasi in-situ energy dispersive X-ray data captured via a TEM analysis of an ODS austenitic stainless steel sample under 1 MeV Kr2+ high temperature irradiation.

    PubMed

    Brooks, Adam J; Yao, Zhongwen

    2017-10-01

    The data presented in this article is related to the research experiment, titled: ' Quasi in-situ energy dispersive X-ray spectroscopy observation of matrix and solute interactions on Y-Ti-O oxide particles in an austenitic stainless steel under 1 MeV Kr 2+ high temperature irradiation' (Brooks et al., 2017) [1]. Quasi in-situ analysis during 1 MeV Kr 2+ 520 °C irradiation allowed the same microstructural area to be observed using a transmission electron microscope (TEM), on an oxide dispersion strengthened (ODS) austenitic stainless steel sample. The data presented contains two sets of energy dispersive X-ray spectroscopy (EDX) data collected before and after irradiation to 1.5 displacements-per-atom (~1.25×10 -3  dpa/s with 7.5×10 14  ions cm -2 ). The vendor software used to process and output the data is the Bruker Esprit v1.9 suite. The data includes the spectral (counts vs. keV energy) of the quasi in-situ scanned region (512×512 pixels at 56k magnification), along with the EDX scanning parameters. The.raw files from the Bruker Esprit v1.9 output are additionally included along with the.rpl data information files. Furthermore included are the two quasi in-situ HAADF images for visual comparison of the regions before and after irradiation. This in-situ experiment is deemed ' quasi' due to the thin foil irradiation taking place at an external TEM facility. We present this data for critical and/or extended analysis from the scientific community, with applications applying to: experimental data correlation, confirmation of results, and as computer based modeling inputs.

  13. Magnifying image intensifier

    NASA Technical Reports Server (NTRS)

    Vine, J.

    1977-01-01

    Coil assembly for zoom operation produces axial magnetic flux density that decreases in strength from photocathode to target. This results in magnification factor greater than unity. To extend magnification range, field is reversed in direction between object and image planes.

  14. Improved real-time imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor); Chao, Tien-Hsin (Inventor); Yu, Jeffrey W. (Inventor); Cheng, Li-Jen (Inventor)

    1993-01-01

    An improved AOTF-based imaging spectrometer that offers several advantages over prior art AOTF imaging spectrometers is presented. The ability to electronically set the bandpass wavelength provides observational flexibility. Various improvements in optical architecture provide simplified magnification variability, improved image resolution and light throughput efficiency and reduced sensitivity to ambient light. Two embodiments of the invention are: (1) operation in the visible/near-infrared domain of wavelength range 0.48 to 0.76 microns; and (2) infrared configuration which operates in the wavelength range of 1.2 to 2.5 microns.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gould, A.; Yee, J. C.; Pinsonneault, M. H.

    The Galactic bulge source MOA-2010-BLG-523S exhibited short-term deviations from a standard microlensing light curve near the peak of an A {sub max} {approx} 265 high-magnification microlensing event. The deviations originally seemed consistent with expectations for a planetary companion to the principal lens. We combine long-term photometric monitoring with a previously published high-resolution spectrum taken near peak to demonstrate that this is an RS CVn variable, so that planetary microlensing is not required to explain the light-curve deviations. This is the first spectroscopically confirmed RS CVn star discovered in the Galactic bulge.

  16. Comparison of the diagnostic ability of blue laser imaging magnification versus pit pattern analysis for colorectal polyps.

    PubMed

    Nakano, Arihiro; Hirooka, Yoshiki; Yamamura, Takeshi; Watanabe, Osamu; Nakamura, Masanao; Funasaka, Kohei; Ohno, Eizaburo; Kawashima, Hiroki; Miyahara, Ryoji; Goto, Hidemi

    2017-04-01

    Background and study aims  There have been few evaluations of the diagnostic ability of new narrow band light observation blue laser imaging (BLI). The present prospective study compared the diagnostic ability of BLI magnification and pit pattern analysis for colorectal polyps. Patients and methods  We collected lesions prospectively, and the analysis of images was made by two endoscopists, retrospectively. A total of 799 colorectal polyps were examined by BLI magnification and pit pattern analysis at Nagoya University Hospital. The Hiroshima narrow-band imaging classification was used for BLI. Differentiation of neoplastic from non-neoplastic lesions and diagnosis of deeply invasive submucosal cancer (dSM) were compared between BLI magnification and pit pattern analysis. Type C2 in the Hiroshima classification was evaluated separately, because application of this category as an index of the depth of cancer invasion was considered difficult. Results  We analyzed 748 colorectal polyps, excluding 51 polyps that were inflammatory polyps, sessile serrated adenoma/polyps, serrated adenomas, advanced colorectal cancers, or other lesions. The accuracy of differential diagnosis between neoplastic and non-neoplastic lesions was 98.4 % using BLI magnification and 98.7 % with pit pattern analysis. In addition, the diagnostic accuracy of BLI magnification and pit pattern analysis for dSM for cancer was 89.5 % and 92.1 %, respectively. When type C2 lesions were excluded, the diagnostic accuracy of BLI for dSM was 95.9 %. The 18 type C2 lesions comprised 1 adenoma, 9 intramucosal or slightly invasive submucosal cancers, and 8 dSM. Pit pattern analysis allowed accurate diagnosis of the depth of invasion in 13 lesions (72.2 %). Conclusions  Most colorectal polyps could be diagnosed accurately by BLI magnification without pit pattern analysis, but we should add pit pattern analysis for type C2 lesions in the Hiroshima classification.

  17. Weak lensing magnification of SpARCS galaxy clusters

    NASA Astrophysics Data System (ADS)

    Tudorica, A.; Hildebrandt, H.; Tewes, M.; Hoekstra, H.; Morrison, C. B.; Muzzin, A.; Wilson, G.; Yee, H. K. C.; Lidman, C.; Hicks, A.; Nantais, J.; Erben, T.; van der Burg, R. F. J.; Demarco, R.

    2017-12-01

    Context. Measuring and calibrating relations between cluster observables is critical for resource-limited studies. The mass-richness relation of clusters offers an observationally inexpensive way of estimating masses. Its calibration is essential for cluster and cosmological studies, especially for high-redshift clusters. Weak gravitational lensing magnification is a promising and complementary method to shear studies, that can be applied at higher redshifts. Aims: We aim to employ the weak lensing magnification method to calibrate the mass-richness relation up to a redshift of 1.4. We used the Spitzer Adaptation of the Red-Sequence Cluster Survey (SpARCS) galaxy cluster candidates (0.2 < z < 1.4) and optical data from the Canada France Hawaii Telescope (CFHT) to test whether magnification can be effectively used to constrain the mass of high-redshift clusters. Methods: Lyman-break galaxies (LBGs) selected using the u-band dropout technique and their colours were used as a background sample of sources. LBG positions were cross-correlated with the centres of the sample of SpARCS clusters to estimate the magnification signal, which was optimally-weighted using an externally-calibrated LBG luminosity function. The signal was measured for cluster sub-samples, binned in both redshift and richness. Results: We measured the cross-correlation between the positions of galaxy cluster candidates and LBGs and detected a weak lensing magnification signal for all bins at a detection significance of 2.6-5.5σ. In particular, the significance of the measurement for clusters with z> 1.0 is 4.1σ; for the entire cluster sample we obtained an average M200 of 1.28 -0.21+0.23 × 1014 M⊙. Conclusions: Our measurements demonstrated the feasibility of using weak lensing magnification as a viable tool for determining the average halo masses for samples of high redshift galaxy clusters. The results also established the success of using galaxy over-densities to select massive clusters at z > 1. Additional studies are necessary for further modelling of the various systematic effects we discussed.

  18. CHARACTERIZATION OF THE RESONANT CAUSTIC PERTURBATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Sun-Ju, E-mail: sjchung@kasi.re.k

    Four of nine exoplanets found by microlensing were detected by the resonant caustic, which represents the merging of the planetary and central caustics at the position when the projected separation of a host star and a bounded planet is s approx 1. One of the resonant caustic lensing events, OGLE-2005-BLG-169, was a caustic-crossing high-magnification event with A {sub max}approx 800 and the source star was much smaller than the caustic, nevertheless the perturbation was not obviously apparent on the light curve of the event. In this paper, we investigate the perturbation pattern of the resonant caustic to understand why themore » perturbations induced by the caustic do not leave strong traces on the light curves of high-magnification events despite a small source/caustic size ratio. From this study, we find that the regions with small magnification excess around the center of the resonant caustic are rather widely formed, and the event passing the small-excess region produces a high-magnification event with a weak perturbation that is small relative to the amplification caused by the star and thus does not noticeably appear on the light curve of the event. We also find that the positive excess of the inside edge of the resonant caustic and the negative excess inside the caustic become stronger and wider as q increases, and thus the resonant caustic-crossing high-magnification events with the weak perturbation occur in the range of q <= 10{sup -4}. We determine the probability of the occurrence of events with the small excess |epsilon| <= 3% in high-magnification events induced by a resonant caustic. As a result, we find that for Earth-mass planets with a separation of approx2.5 AU the resonant caustic high-magnification events with the weak perturbation can occur with a significant frequency.« less

  19. Weather explains high annual variation in butterfly dispersal.

    PubMed

    Kuussaari, Mikko; Rytteri, Susu; Heikkinen, Risto K; Heliölä, Janne; von Bagh, Peter

    2016-07-27

    Weather conditions fundamentally affect the activity of short-lived insects. Annual variation in weather is therefore likely to be an important determinant of their between-year variation in dispersal, but conclusive empirical studies are lacking. We studied whether the annual variation of dispersal can be explained by the flight season's weather conditions in a Clouded Apollo (Parnassius mnemosyne) metapopulation. This metapopulation was monitored using the mark-release-recapture method for 12 years. Dispersal was quantified for each monitoring year using three complementary measures: emigration rate (fraction of individuals moving between habitat patches), average residence time in the natal patch, and average distance moved. There was much variation both in dispersal and average weather conditions among the years. Weather variables significantly affected the three measures of dispersal and together with adjusting variables explained 79-91% of the variation observed in dispersal. Different weather variables became selected in the models explaining variation in three dispersal measures apparently because of the notable intercorrelations. In general, dispersal rate increased with increasing temperature, solar radiation, proportion of especially warm days, and butterfly density, and decreased with increasing cloudiness, rainfall, and wind speed. These results help to understand and model annually varying dispersal dynamics of species affected by global warming. © 2016 The Author(s).

  20. Trophic magnification of organic chemicals: A global synthesis

    USGS Publications Warehouse

    Walters, David; Jardine, T.D.; Cade, Brian S.; Kidd, K.A.; Muir, D.C.G.; Leipzig-Scott, Peter C.

    2016-01-01

    Production of organic chemicals (OCs) is increasing exponentially, and some OCs biomagnify through food webs to potentially toxic levels. Biomagnification under field conditions is best described by trophic magnification factors (TMFs; per trophic level change in log-concentration of a chemical) which have been measured for more than two decades. Syntheses of TMF behavior relative to chemical traits and ecosystem properties are lacking. We analyzed >1500 TMFs to identify OCs predisposed to biomagnify and to assess ecosystem vulnerability. The highest TMFs were for OCs that are slowly metabolized by animals (metabolic rate kM < 0.01 day–1) and are moderately hydrophobic (log KOW 6–8). TMFs were more variable in marine than freshwaters, unrelated to latitude, and highest in food webs containing endotherms. We modeled the probability that any OC would biomagnify as a combined function of KOW and kM. Probability is greatest (∼100%) for slowly metabolized compounds, regardless of KOW, and lowest for chemicals with rapid transformation rates (kM > 0.2 day–1). This probabilistic model provides a new global tool for screening existing and new OCs for their biomagnification potential.

  1. Cluster structure of anaerobic aggregates of an expanded granular sludge bed reactor.

    PubMed

    Gonzalez-Gil, G; Lens, P N; Van Aelst, A; Van As, H; Versprille, A I; Lettinga, G

    2001-08-01

    The metabolic properties and ultrastructure of mesophilic aggregates from a full-scale expanded granular sludge bed reactor treating brewery wastewater are described. The aggregates had a very high methanogenic activity on acetate (17.19 mmol of CH(4)/g of volatile suspended solids [VSS].day or 1.1 g of CH(4) chemical oxygen demand/g of VSS.day). Fluorescent in situ hybridization using 16S rRNA probes of crushed granules showed that 70 and 30% of the cells belonged to the archaebacterial and eubacterial domains, respectively. The spherical aggregates were black but contained numerous whitish spots on their surfaces. Cross-sectioning these aggregates revealed that the white spots appeared to be white clusters embedded in a black matrix. The white clusters were found to develop simultaneously with the increase in diameter. Energy-dispersed X-ray analysis and back-scattered electron microscopy showed that the whitish clusters contained mainly organic matter and no inorganic calcium precipitates. The white clusters had a higher density than the black matrix, as evidenced by the denser cell arrangement observed by high-magnification electron microscopy and the significantly higher effective diffusion coefficient determined by nuclear magnetic resonance imaging. High-magnification electron microscopy indicated a segregation of acetate-utilizing methanogens (Methanosaeta spp.) in the white clusters from syntrophic species and hydrogenotrophic methanogens (Methanobacterium-like and Methanospirillum-like organisms) in the black matrix. A number of physical and microbial ecology reasons for the observed structure are proposed, including the advantage of segregation for high-rate degradation of syntrophic substrates.

  2. Cluster Structure of Anaerobic Aggregates of an Expanded Granular Sludge Bed Reactor

    PubMed Central

    Gonzalez-Gil, G.; Lens, P. N. L.; Van Aelst, A.; Van As, H.; Versprille, A. I.; Lettinga, G.

    2001-01-01

    The metabolic properties and ultrastructure of mesophilic aggregates from a full-scale expanded granular sludge bed reactor treating brewery wastewater are described. The aggregates had a very high methanogenic activity on acetate (17.19 mmol of CH4/g of volatile suspended solids [VSS]·day or 1.1 g of CH4 chemical oxygen demand/g of VSS·day). Fluorescent in situ hybridization using 16S rRNA probes of crushed granules showed that 70 and 30% of the cells belonged to the archaebacterial and eubacterial domains, respectively. The spherical aggregates were black but contained numerous whitish spots on their surfaces. Cross-sectioning these aggregates revealed that the white spots appeared to be white clusters embedded in a black matrix. The white clusters were found to develop simultaneously with the increase in diameter. Energy-dispersed X-ray analysis and back-scattered electron microscopy showed that the whitish clusters contained mainly organic matter and no inorganic calcium precipitates. The white clusters had a higher density than the black matrix, as evidenced by the denser cell arrangement observed by high-magnification electron microscopy and the significantly higher effective diffusion coefficient determined by nuclear magnetic resonance imaging. High-magnification electron microscopy indicated a segregation of acetate-utilizing methanogens (Methanosaeta spp.) in the white clusters from syntrophic species and hydrogenotrophic methanogens (Methanobacterium-like and Methanospirillum-like organisms) in the black matrix. A number of physical and microbial ecology reasons for the observed structure are proposed, including the advantage of segregation for high-rate degradation of syntrophic substrates. PMID:11472948

  3. Comparing the imaging performance of computed super resolution and magnification tomosynthesis

    NASA Astrophysics Data System (ADS)

    Maidment, Tristan D.; Vent, Trevor L.; Ferris, William S.; Wurtele, David E.; Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2017-03-01

    Computed super-resolution (SR) is a method of reconstructing images with pixels that are smaller than the detector element size; superior spatial resolution is achieved through the elimination of aliasing and alteration of the sampling function imposed by the reconstructed pixel aperture. By comparison, magnification mammography is a method of projection imaging that uses geometric magnification to increase spatial resolution. This study explores the development and application of magnification digital breast tomosynthesis (MDBT). Four different acquisition geometries are compared in terms of various image metrics. High-contrast spatial resolution was measured in various axes using a lead star pattern. A modified Defrise phantom was used to determine the low-frequency spatial resolution. An anthropomorphic phantom was used to simulate clinical imaging. Each experiment was conducted at three different magnifications: contact (1.04x), MAG1 (1.3x), and MAG2 (1.6x). All images were taken on our next generation tomosynthesis system, an in-house solution designed to optimize SR. It is demonstrated that both computed SR and MDBT (MAG1 and MAG2) provide improved spatial resolution over non-SR contact imaging. To achieve the highest resolution, SR and MDBT should be combined. However, MDBT is adversely affected by patient motion at higher magnifications. In addition, MDBT requires more radiation dose and delays diagnosis, since MDBT would be conducted upon recall. By comparison, SR can be conducted with the original screening data. In conclusion, this study demonstrates that computed SR and MDBT are both viable methods of imaging the breast.

  4. Magnification of photometric LRGs by foreground LRGs and clusters in the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Bauer, Anne H.; Gaztañaga, Enrique; Martí, Pol; Miquel, Ramon

    2014-06-01

    The magnification effect of gravitational lensing is a powerful probe of the distribution of matter in the universe, yet it is frequently overlooked due to the fact that its signal-to-noise ratio is smaller than that of lensing shear. Because its systematic errors are quite different from those of shear, magnification is nevertheless an important approach with which to study the distribution of large-scale structure. We present lensing mass profiles of spectroscopic luminous red galaxies (LRGs) and galaxy clusters determined through measurements of the weak lensing magnification of photometric LRGs in their background. We measure the change in detected galaxy counts as well as the increased average galaxy flux behind the lenses. In addition, we examine the average change in source colour due to extinction by dust in the lenses. By simultaneously fitting these three probes we constrain the mass profiles and dust-to-mass ratios of the lenses in six bins of lens richness. For each richness bin we fit a Navarro-Frenk-White halo mass, brightest cluster galaxy mass, second halo term, and dust-to-mass ratio. The resulting mass-richness relation is consistent with previous analyses of the catalogues, and limits on the dust-to-mass ratio in the lenses are in agreement with expectations. We explore the effects of including the (low signal-to-noise ratio) flux magnification and reddening measurements in the analysis compared to using only the counts magnification data; the additional probes significantly improve the agreement between our measured mass-richness relation and previous results.

  5. Duodenal villous morphology assessed using magnification narrow band imaging correlates well with histology in patients with suspected malabsorption syndrome.

    PubMed

    Dutta, Amit Kumar; Sajith, Kattiparambil Gangadharan; Shah, Gautam; Pulimood, Anna Benjamin; Simon, Ebby George; Joseph, Anjilivelil Joseph; Chacko, Ashok

    2014-11-01

    Narrow band imaging with magnification enables detailed assessment of duodenal villi and may be useful in predicting the presence of villous atrophy or normal villi. We aimed to assess the morphology of duodenal villi using magnification narrow band imaging and correlate it with histology findings in patients with clinically suspected malabsorption syndrome. Patients with clinical suspicion of malabsorption presenting at a tertiary care center were prospectively recruited in this diagnostic intervention study. Patients underwent upper gastrointestinal endoscopy using magnification narrow band imaging. The villous morphology in the second part of the duodenum was assessed independently by two endoscopists and the presence of normal or atrophic villi was recorded. Biopsy specimen was obtained from the same area and was examined by two pathologists together. The sensitivity and specificity of magnification narrow band imaging in detecting the presence of duodenal villous atrophy was calculated and compared to the histology. One hundred patients with clinically suspected malabsorption were included in this study. Sixteen patients had histologically confirmed villous atrophy. The sensitivity and specificity of narrow band imaging in predicting villous atrophy was 87.5% and 95.2%, respectively, for one endoscopist. The corresponding figures for the second endoscopist were 81.3% and 92.9%, respectively. The interobserver agreement was very good with a kappa value of 0.87. Magnification narrow band imaging performed very well in predicting duodenal villous morphology. This may help in carrying out targeted biopsies and avoiding unnecessary biopsies in patients with suspected malabsorption. © 2014 The Authors. Digestive Endoscopy © 2014 Japan Gastroenterological Endoscopy Society.

  6. Optical Magnification Should Be Mandatory for Microsurgery: Scientific Basis and Clinical Data Contributing to Quality Assurance

    PubMed Central

    Schoeffl, Harald; Lazzeri, Davide; Schnelzer, Richard; Froschauer, Stefan M.

    2013-01-01

    Background Microsurgical techniques are considered standard procedures in reconstructive surgery. Although microsurgery by itself is defined as surgery aided by optical magnification, there are no guidelines for determining in which clinical situations a microscope or loupe should be used. Therefore, we conducted standardized experiments to objectively assess the impact of optical magnification in microsurgery. Methods Sixteen participants of microsurgical training courses had to complete 2 sets of experiments. Each set had to be performed with an unaided eye, surgical loupes, and a regular operating microscope. The first set of experiments included coaptation of a chicken femoral nerve, and the second set consisted of anastomosing porcine coronary arteries. Evaluation of the sutured nerves and vessels were performed by 2 experienced microsurgeons using an operating microscope. Results The 16 participants of the study completed all of the experiments. The nerve coaptation and vascular anastomoses exercises showed a direct relationship of error frequency and lower optical magnification, meaning that the highest number of microsurgical errors occurred with the unaided eye. For nerve coaptation, there was a strong relationship (P<0.05) between the number of mistakes and magnification, and this relationship was very strong (P<0.01) for vascular anastomoses. Conclusions We were able to prove that microsurgical success is directly related to optical magnification. The human eye's ability to discriminate potentially important anatomical structures is limited, which might be detrimental for clinical results. Although not legally mandatory, surgeries such as reparative surgery after hand trauma should be conducted with magnifying devices for achieving optimal patient outcomes. PMID:23532716

  7. Detection of enhancement in number densities of background galaxies due to magnification by massive galaxy clusters

    DOE PAGES

    Chiu, I.; Dietrich, J. P.; Mohr, J.; ...

    2016-02-18

    We present a detection of the enhancement in the number densities of background galaxies induced from lensing magnification and use it to test the Sunyaev-Zel'dovich effect (SZE) inferred masses in a sample of 19 galaxy clusters with median redshift z≃0.42 selected from the South Pole Telescope SPT-SZ survey. Two background galaxy populations are selected for this study through their photometric colours; they have median redshifts z median≃0.9 (low-z background) and z median≃1.8 (high-z background). Stacking these populations, we detect the magnification bias effect at 3.3σ and 1.3σ for the low- and high-z backgrounds, respectively. We fit NFW models simultaneously tomore » all observed magnification bias profiles to estimate the multiplicative factor η that describes the ratio of the weak lensing mass to the mass inferred from the SZE observable-mass relation. We further quantify systematic uncertainties in η resulting from the photometric noise and bias, the cluster galaxy contamination and the estimations of the background properties. The resulting η for the combined background populations with 1σ uncertainties is 0.83 ± 0.24(stat) ± 0.074(sys), indicating good consistency between the lensing and the SZE-inferred masses. We also use our best-fit η to predict the weak lensing shear profiles and compare these predictions with observations, showing agreement between the magnification and shear mass constraints. Our work demonstrates the promise of using the magnification as a complementary method to estimate cluster masses in large surveys.« less

  8. Radiation dose and magnification in pelvic X-ray: EOS™ imaging system versus plain radiographs.

    PubMed

    Chiron, P; Demoulin, L; Wytrykowski, K; Cavaignac, E; Reina, N; Murgier, J

    2017-12-01

    In plain pelvic X-ray, magnification makes measurement unreliable. The EOS™ (EOS Imaging, Paris France) imaging system is reputed to reproduce patient anatomy exactly, with a lower radiation dose. This, however, has not been assessed according to patient weight, although both magnification and irradiation are known to vary with weight. We therefore conducted a prospective comparative study, to compare: (1) image magnification and (2) radiation dose between the EOS imaging system and plain X-ray. The EOS imaging system reproduces patient anatomy exactly, regardless of weight, unlike plain X-ray. A single-center comparative study of plain pelvic X-ray and 2D EOS radiography was performed in 183 patients: 186 arthroplasties; 104 male, 81 female; mean age 61.3±13.7years (range, 24-87years). Magnification and radiation dose (dose-area product [DAP]) were compared between the two systems in 186 hips in patients with a mean body-mass index (BMI) of 27.1±5.3kg/m 2 (range, 17.6-42.3kg/m 2 ), including 7 with morbid obesity. Mean magnification was zero using the EOS system, regardless of patient weight, compared to 1.15±0.05 (range, 1-1.32) on plain X-ray (P<10 -5 ). In patients with BMI<25, mean magnification on plain X-ray was 1.15±0.05 (range, 1-1.25) and, in patients with morbid obesity, 1.22±0.06 (range, 1.18-1.32). The mean radiation dose was 8.19±2.63dGy/cm 2 (range, 1.77-14.24) with the EOS system, versus 19.38±12.37dGy/cm 2 (range, 4.77-81.75) with plain X-ray (P<10 -4 ). For BMI >40, mean radiation dose was 9.36±2.57dGy/cm 2 (range, 7.4-14.2) with the EOS system, versus 44.76±22.21 (range, 25.2-81.7) with plain X-ray. Radiation dose increased by 0.20dGy with each extra BMI point for the EOS system, versus 0.74dGy for plain X-ray. Magnification did not vary with patient weight using the EOS system, unlike plain X-ray, and radiation dose was 2.5-fold lower. 3, prospective case-control study. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Climatic variability, plasticity, and dispersal: A case study from Lake Tana, Ethiopia.

    PubMed

    Grove, Matt; Lamb, Henry; Roberts, Helen; Davies, Sarah; Marshall, Mike; Bates, Richard; Huws, Dei

    2015-10-01

    The numerous dispersal events that have occurred during the prehistory of hominin lineages are the subject of longstanding and increasingly active debate in evolutionary anthropology. As well as research into the dating and geographic extent of such dispersals, there is an increasing focus on the factors that may have been responsible for dispersal. The growing body of detailed regional palaeoclimatic data is invaluable in demonstrating the often close relationship between changes in prehistoric environments and the movements of hominin populations. The scenarios constructed from such data are often overly simplistic, however, concentrating on the dynamics of cyclical contraction and expansion during severe and ameliorated conditions respectively. This contribution proposes a two-stage hypothesis of hominin dispersal in which populations (1) accumulate high levels of climatic tolerance during highly variable climatic phases, and (2) express such heightened tolerance via dispersal in subsequent low-variability phases. Likely dispersal phases are thus proposed to occur during stable climatic phases that immediately follow phases of high climatic variability. Employing high resolution palaeoclimatic data from Lake Tana, Ethiopia, the hypothesis is examined in relation to the early dispersal of Homo sapiens out of East Africa and into the Levant. A dispersal phase is identified in the Lake Tana record between c. 112,550 and c. 96,975 years ago, a date bracket that accords well with the dating evidence for H. sapiens occupation at the sites of Qafzeh and Skhul. Results are discussed in relation to the complex pattern of H. sapiens dispersal out of East Africa, with particular attention paid to the implications of recent genetic chronologies for the origin of non-African modern humans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. [P wave dispersion increased in childhood depending on blood pressure, weight, height, and cardiac structure and function].

    PubMed

    Chávez-González, Elibet; González-Rodríguez, Emilio; Llanes-Camacho, María Del Carmen; Garí-Llanes, Merlin; García-Nóbrega, Yosvany; García-Sáez, Julieta

    2014-01-01

    Increased P wave dispersion are identified as a predictor of atrial fibrillation. There are associations between hypertension, P wave dispersion, constitutional and echocardiographic variables. These relationships have been scarcely studied in pediatrics. The aim of this study was to determine the relationship between P wave dispersion, blood pressure, echocardiographic and constitutional variables, and determine the most influential variables on P wave dispersion increases in pediatrics. In the frame of the PROCDEC II project, children from 8 to 11 years old, without known heart conditions were studied. Arterial blood pressure was measured in all the children; a 12-lead surface electrocardiogram and an echocardiogram were done as well. Left ventricular mass index mean values for normotensive (25.91±5.96g/m(2.7)) and hypertensive (30.34±8.48g/m(2.7)) showed significant differences P=.000. When we add prehypertensive and hypertensive there are 50.38% with normal left ventricular mass index and P wave dispersion was increased versus 13.36% of normotensive. Multiple regression demonstrated that the mean blood pressure, duration of A wave of mitral inflow, weight and height have a value of r=0.88 as related to P wave dispersion. P wave dispersion is increased in pre- and hypertensive children compared to normotensive. There are pre- and hypertensive patients with normal left ventricular mass index and increased P wave dispersion. Mean arterial pressure, duration of the A wave of mitral inflow, weight and height are the variables with the highest influence on increased P wave dispersion. Copyright © 2013 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  11. Cell death induced by Morarah and Khaltita in hepatoma cancer cells (Huh-7).

    PubMed

    Baig, Saeeda; Alamgir, Mohiuddin

    2009-10-01

    To compare the combined and isolated growth inhibitory effects of Morarah and Khaltita (herbs) on hepatoma cell lines (Huh-7), through induction of apoptosis or necrosis. Comparative controlled in-vitro study. The Molecular Biology Laboratory, The Aga Khan University, Karachi, from June to December 2006. The growth of hepatoma cell lines (Huh-7) was checked by adding Khaltita and Morarah to the cells before culture in a 24 well plate. Six wells were selected and labeled for each of the four variables (controls, Khaltita, Morarah and mixture). After 2 days, cells were studied under an inverted phase contrast microscope and fields were recorded. Approximately four fields per slide of higher intensity were selected randomly to determine the dead cell density, and the procedure was repeated 10 or more times. Frequency and percentages were calculated for dead or alive cells in controls, Morarah, Khaltita and their mixture. Chi-square was used to compare the qualitative variables. P-values < 0.05 were considered significant. Morarah and Khaltita were found to induce statistically significant (p < 0.001) cell death in hepatoma cell lines (Huh-7). At a magnification of 40x, the controls showed 1% dead cells compared to 91% in Morarah, 83% in Khaltita and 73% in combined mixture of Khaltita and Morarah. At magnification of 20x, the controls showed 4% dead cells compared to 44% in Morarah, 47% in Khaltita and 49% in the combined mixture of Khaltita and Morarah. Morarah and Khaltita induced cell death in cultured hepatoma cells (Huh-7).

  12. Artificial submicron or nanometer speckle fabricating technique and electron microscope speckle photography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Zhanwei; Xie Huimin; Fang Daining

    2007-03-15

    In this article, a novel artificial submicro- or nanometer speckle fabricating technique is proposed by taking advantage of submicro or nanometer particles. In the technique, submicron or nanometer particles were adhered to an object surface by using ultrasonic dispersing technique. The particles on the object surface can be regarded as submicro or nanometer speckle by using a scanning electronic microscope at a special magnification. In addition, an electron microscope speckle photography (EMSP) method is developed to measure in-plane submicron or nanometer deformation of the object coated with the artificial submicro or nanometer speckles. The principle of artificial submicro or nanometermore » speckle fabricating technique and the EMSP method are discussed in detail in this article. Some typical applications of this method are offered. The experimental results verified that the artificial submicro or nanometer speckle fabricating technique and EMSP method is feasible.« less

  13. Lamb Shift in the Near Field of Hyperbolic Metamaterial Half Space

    NASA Astrophysics Data System (ADS)

    Deng, Nai Jing; Yu, Kin Wah

    2013-03-01

    Hyperbolic metamaterials give a large magnification of the density of states in a specific frequency ranges, and has motivated various applications in emission lifetime reduction, strong absorption, and extraordinary black body radiation, etc. The boost of vacuum energy, which is proportional to the density of states, is expected in hyperbolic metamaterial. We have studied the Lamb shift in vacuum-hyperbolic-metamterial half spaces and shown the non-trivial role of vacuum energy. In our calculation, the easy-fabricated multilayer structure is employed to generate a hyperbolic dispersion relation. The spectrum of hydrogen atoms is calculated with a perturbation method after quantizing the half spaces with a complete mode expansion. It appears that the shift of spectrum is mainly contributed by the terahertz response of materials, which has been well described and predicted in both theories and experiments. Work supported by the General Research Fund of the Hong Kong SAR Government

  14. Temporal lenses for attosecond and femtosecond electron pulses

    PubMed Central

    Hilbert, Shawn A.; Uiterwaal, Cornelis; Barwick, Brett; Batelaan, Herman; Zewail, Ahmed H.

    2009-01-01

    Here, we describe the “temporal lens” concept that can be used for the focus and magnification of ultrashort electron packets in the time domain. The temporal lenses are created by appropriately synthesizing optical pulses that interact with electrons through the ponderomotive force. With such an arrangement, a temporal lens equation with a form identical to that of conventional light optics is derived. The analog of ray diagrams, but for electrons, are constructed to help the visualization of the process of compressing electron packets. It is shown that such temporal lenses not only compensate for electron pulse broadening due to velocity dispersion but also allow compression of the packets to durations much shorter than their initial widths. With these capabilities, ultrafast electron diffraction and microscopy can be extended to new domains,and, just as importantly, electron pulses can be delivered directly on an ultrafast techniques target specimen. PMID:19541639

  15. Magnification-temperature correlation: The dark side of integrated Sachs-Wolfe measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LoVerde, Marilena; Hui, Lam; Gaztanaga, Enrique

    2007-02-15

    Integrated Sachs-Wolfe (ISW) measurements, which involve cross-correlating the microwave background anisotropies with the foreground large-scale structure (e.g. traced by galaxies/quasars), have proven to be an interesting probe of dark energy. We show that magnification bias, which is the inevitable modulation of the foreground number counts by gravitational lensing, alters both the scale dependence and amplitude of the observed ISW signal. This is true especially at high redshifts because (1) the intrinsic galaxy-temperature signal diminishes greatly back in the matter-dominated era, (2) the lensing efficiency increases with redshift and (3) the number count slope generally steepens with redshift in a magnitudemore » limited sample. At z > or approx. 2, the magnification-temperature correlation dominates over the intrinsic galaxy-temperature correlation and causes the observed ISW signal to increase with redshift, despite dark energy subdominance--a result of the fact that magnification probes structures all the way from the observer to the sources. Ignoring magnification bias therefore can lead to (significantly) erroneous conclusions about dark energy. While the lensing modulation opens up an interesting high z window for ISW measurements, high redshift measurements are not expected to add much new information to low redshift ones if dark energy is indeed the cosmological constant. This is because lensing introduces significant covariance across redshifts. The most compelling reasons for pursuing high redshift ISW measurements are to look for potential surprises such as early dark energy domination or signatures of modified gravity. We conclude with a discussion of existing measurements, the highest redshift of which is at the margin of being sensitive to the magnification effect. We also develop a formalism which might be of more general interest: to predict biases in estimating parameters when certain physical effects are ignored in interpreting observations.« less

  16. Anisotropic extinction distortion of the galaxy correlation function

    NASA Astrophysics Data System (ADS)

    Fang, Wenjuan; Hui, Lam; Ménard, Brice; May, Morgan; Scranton, Ryan

    2011-09-01

    Similar to the magnification of the galaxies’ fluxes by gravitational lensing, the extinction of the fluxes by comic dust, whose existence is recently detected by [B. Ménard, R. Scranton, M. Fukugita, and G. Richards, Mon. Not. R. Astron. Soc.MNRAA40035-8711 405, 1025 (2010)DOI: 10.1111/j.1365-2966.2010.16486.x.], also modifies the distribution of a flux-selected galaxy sample. We study the anisotropic distortion by dust extinction to the 3D galaxy correlation function, including magnification bias and redshift distortion at the same time. We find the extinction distortion is most significant along the line of sight and at large separations, similar to that by magnification bias. The correction from dust extinction is negative except at sufficiently large transverse separations, which is almost always opposite to that from magnification bias (we consider a number count slope s>0.4). Hence, the distortions from these two effects tend to reduce each other. At low z (≲1), the distortion by extinction is stronger than that by magnification bias, but at high z, the reverse holds. We also study how dust extinction affects probes in real space of the baryon acoustic oscillations (BAO) and the linear redshift distortion parameter β. We find its effect on BAO is negligible. However, it introduces a positive scale-dependent correction to β that can be as large as a few percent. At the same time, we also find a negative scale-dependent correction from magnification bias, which is up to percent level at low z, but to ˜40% at high z. These corrections are non-negligible for precision cosmology, and should be considered when testing General Relativity through the scale-dependence of β.

  17. Detection of enhancement in number densities of background galaxies due to magnification by massive galaxy clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, I.; Dietrich, J. P.; Mohr, J.

    2016-02-18

    We present a detection of the enhancement in the number densities of background galaxies induced from lensing magnification and use it to test the Sunyaev-Zel'dovich effect (SZE-) inferred masses in a sample of 19 galaxy clusters with median redshift z similar or equal to 0.42 selected from the South Pole Telescope SPT-SZ survey. These clusters are observed by the Megacam on the Magellan Clay Telescope though gri filters. Two background galaxy populations are selected for this study through their photometric colours; they have median redshifts zmedian similar or equal to 0.9 (low-z background) and z(median) similar or equal to 1.8more » (high-z background). Stacking these populations, we detect the magnification bias effect at 3.3 sigma and 1.3 sigma for the low-and high-z backgrounds, respectively. We fit Navarro, Frenk and White models simultaneously to all observed magnification bias profiles to estimate the multiplicative factor. that describes the ratio of the weak lensing mass to the mass inferred from the SZE observable-mass relation. We further quantify systematic uncertainties in. resulting from the photometric noise and bias, the cluster galaxy contamination and the estimations of the background properties. The resulting. for the combined background populations with 1 sigma uncertainties is 0.83 +/- 0.24(stat) +/- 0.074(sys), indicating good consistency between the lensing and the SZE-inferred masses. We use our best-fitting eta to predict the weak lensing shear profiles and compare these predictions with observations, showing agreement between the magnification and shear mass constraints. This work demonstrates the promise of using the magnification as a complementary method to estimate cluster masses in large surveys.« less

  18. Magnification bias as a novel probe for primordial magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camera, S.; Fedeli, C.; Moscardini, L., E-mail: stefano.camera@tecnico.ulisboa.pt, E-mail: cosimo.fedeli@oabo.inaf.it, E-mail: lauro.moscardini@unibo.it

    2014-03-01

    In this paper we investigate magnetic fields generated in the early Universe. These fields are important candidates at explaining the origin of astrophysical magnetism observed in galaxies and galaxy clusters, whose genesis is still by and large unclear. Compared to the standard inflationary power spectrum, intermediate to small scales would experience further substantial matter clustering, were a cosmological magnetic field present prior to recombination. As a consequence, the bias and redshift distribution of galaxies would also be modified. Hitherto, primordial magnetic fields (PMFs) have been tested and constrained with a number of cosmological observables, e.g. the cosmic microwave background radiation,more » galaxy clustering and, more recently, weak gravitational lensing. Here, we explore the constraining potential of the density fluctuation bias induced by gravitational lensing magnification onto the galaxy-galaxy angular power spectrum. Such an effect is known as magnification bias. Compared to the usual galaxy clustering approach, magnification bias helps in lifting the pathological degeneracy present amongst power spectrum normalisation and galaxy bias. This is because magnification bias cross-correlates galaxy number density fluctuations of nearby objects with weak lensing distortions of high-redshift sources. Thus, it takes advantage of the gravitational deflection of light, which is insensitive to galaxy bias but powerful in constraining the density fluctuation amplitude. To scrutinise the potentiality of this method, we adopt a deep and wide-field spectroscopic galaxy survey. We show that magnification bias does contain important information on primordial magnetism, which will be useful in combination with galaxy clustering and shear. We find we shall be able to rule out at 95.4% CL amplitudes of PMFs larger than 5 × 10{sup −4} nG for values of the PMF power spectral index n{sub B} ∼ 0.« less

  19. Introduction to magnification in endodontics.

    PubMed

    Arens, Donald E

    2003-01-01

    Dentistry has recently recognized the practicality and benefits of treating damaged and diseased oral tissues under high magnification levels. Initially, enhanced vision was more-or-less restricted to the use of prescription bifocals, awkward magnifying loops, and heavy cumbersome telephoto glasses; the microscope drew little interest and was quickly viewed as another useless and expensive dental gadget. However, owing to the very nature and demands of the therapy, endodontists were quick to accept and adopt this technology, and the manufacturers were quick to adapt and market their surgical microscopes to the endodontic office. Since acceptance leads to progression, we are currently witnessing manufacturers adapting the microscopic and other magnifying lenses to other areas of dentistry. However, choosing and purchasing a microscope involves a great number of issues, including the adequacy of one's present vision, the type of practice conducted, the demands one places on the quality of his or her dentistry, and the amount of time and expense one wishes to devote to becoming competent in using magnification. In addition, one must become familiar with what the different levels of magnification offer, what different depths and widths of field meet their normal practice needs, the amount of space required for the equipment, and whether the investment is cost effective. This article details all of the benefits as well as the difficulties encountered when embarking on a magnification journey. The art of dentistry is based on precision. The human naked eye is capable of distinguishing fine detail, but it is no match for what can be accomplished when an image is sharpened and enlarged. The microscope and other forms of magnification fill that need, especially for accomplishing endodontic procedures.

  20. Dual-focus Magnification, High-Definition Endoscopy Improves Pathology Detection in Direct-to-Test Diagnostic Upper Gastrointestinal Endoscopy.

    PubMed

    Bond, Ashley; Burkitt, Michael D; Cox, Trevor; Smart, Howard L; Probert, Chris; Haslam, Neil; Sarkar, Sanchoy

    2017-03-01

    In the UK, the majority of diagnostic upper gastrointestinal (UGI) endoscopies are a result of direct-to-test referral from the primary care physician. The diagnostic yield of these tests is relatively low, and the burden high on endoscopy services. Dual-focus magnification, high-definition endoscopy is expected to improve detection and classification of UGI mucosal lesions and also help minimize biopsies by allowing better targeting. This is a retrospective study of patients attending for direct-to-test UGI endoscopy from January 2015 to June 2015. The primary outcome of interest was the identification of significant pathology. Detection of significant pathology was modelled using logistic regression. 500 procedures were included. The mean age of patients was 61.5 (±15.6) years; 60.8% of patients were female. Ninety-four gastroscopies were performed using dual-focus magnification high-definition endoscopy. Increasing age, male gender, type of endoscope, and type of operator were all identified as significant factors influencing the odds of detecting significant mucosal pathology. Use of dual-focus magnification, high-definition endoscopy was associated with an odds ratio of 1.87 (95%CI 1.11-3.12) favouring the detection of significant pathology. Subsequent analysis suggested that the increased detection of pathology during dual-focus magnification, high-definition endoscopy also influenced patient follow-up and led to a 3.0 fold (p=0.04) increase in the proportion of patients entered into an UGI endoscopic surveillance program. Dual-focus magnification, high-definition endoscopy improved the diagnostic yield for significant mucosal pathology in patients referred for direct-to-test endoscopy. If this finding is recapitulated elsewhere it will have substantial impact on the provision of UGI endoscopic services.

  1. An analytical formulation of two‐dimensional groundwater dispersion induced by surficial recharge variability

    USGS Publications Warehouse

    Swain, Eric D.; Chin, David A.

    2003-01-01

    A predominant cause of dispersion in groundwater is advective mixing due to variability in seepage rates. Hydraulic conductivity variations have been extensively researched as a cause of this seepage variability. In this paper the effect of variations in surface recharge to a shallow surficial aquifer is investigated as an important additional effect. An analytical formulation has been developed that relates aquifer parameters and the statistics of recharge variability to increases in the dispersivity. This is accomplished by solving Fourier transforms of the small perturbation forms of the groundwater flow equations. Two field studies are presented in this paper to determine the statistics of recharge variability for input to the analytical formulation. A time series of water levels at a continuous groundwater recorder is used to investigate the temporal statistics of hydraulic head caused by recharge, and a series of infiltrometer measurements are used to define the spatial variability in the recharge parameters. With these field statistics representing head fluctuations due to recharge, the analytical formulation can be used to compute the dispersivity without an explicit representation of the recharge boundary. Results from a series of numerical experiments are used to define the limits of this analytical formulation and to provide some comparison. A sophisticated model has been developed using a particle‐tracking algorithm (modified to account for temporal variations) to estimate groundwater dispersion. Dispersivity increases of 9 percent are indicated by the analytical formulation for the aquifer at the field site. A comparison with numerical model results indicates that the analytical results are reasonable for shallow surficial aquifers in which two‐dimensional flow can be assumed.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Lan; Hill, K. W.; Bitter, M.

    Here, a high spatial resolution of a few μm is often required for probing small-scale high-energy-density plasmas using high resolution x-ray imaging spectroscopy. This resolution can be achieved by adjusting system magnification to overcome the inherent limitation of the detector pixel size. Laboratory experiments on investigating the relation between spatial resolution and system magnification for a spherical crystal spectrometer are presented. Tungsten Lβ 2 rays from a tungsten-target micro-focus x-ray tube were diffracted by a Ge 440 crystal, which was spherically bent to a radius of 223 mm, and imaged onto an x-ray CCD with 13-μm pixel size. The source-to-crystalmore » (p) and crystal-to-detector (q) distances were varied to produce spatial magnifications ( M = q/p) ranging from 2 to 10. The inferred instrumental spatial width reduces with increasing system magnification M. However, the experimental measurement at each M is larger than the theoretical value of pixel size divided by M. Future work will focus on investigating possible broadening mechanisms that limit the spatial resolution.« less

  3. Cascaded plasmonic superlens for far-field imaging with magnification at visible wavelength.

    PubMed

    Li, Huiyu; Fu, Liwei; Frenner, Karsten; Osten, Wolfgang

    2018-04-16

    We experimentally demonstrate a novel design of a cascaded plasmonic superlens, which can directly image subwavelength objects with magnification in the far field at visible wavelengths. The lens consists of two cascaded plasmonic slabs. One is a plasmonic metasurface used for near field coupling, and the other one is a planar plasmonic lens used for phase compensation and thus image magnification. First, we show numerical calculations about the performance of the lens. Based on these results we then describe the fabrication of both sub-structures and their combination. Finally, we demonstrate imaging performance of the lens for a subwavelength double-slit object as an example. The fabricated superlens exhibits a lateral resolution down to 180 nm at a wavelength of 640 nm, as predicted by numerical calculations. This might be the first experimental demonstration in which a planar plasmonic lens is employed for near-field image magnification. Our results could open a way for designing and fabricating novel miniaturized plasmonic superlenses in the future.

  4. Parallel, exhaustive processing underlies logarithmic search functions: Visual search with cortical magnification.

    PubMed

    Wang, Zhiyuan; Lleras, Alejandro; Buetti, Simona

    2018-04-17

    Our lab recently found evidence that efficient visual search (with a fixed target) is characterized by logarithmic Reaction Time (RT) × Set Size functions whose steepness is modulated by the similarity between target and distractors. To determine whether this pattern of results was based on low-level visual factors uncontrolled by previous experiments, we minimized the possibility of crowding effects in the display, compensated for the cortical magnification factor by magnifying search items based on their eccentricity, and compared search performance on such displays to performance on displays without magnification compensation. In both cases, the RT × Set Size functions were found to be logarithmic, and the modulation of the log slopes by target-distractor similarity was replicated. Consistent with previous results in the literature, cortical magnification compensation eliminated most target eccentricity effects. We conclude that the log functions and their modulation by target-distractor similarity relations reflect a parallel exhaustive processing architecture for early vision.

  5. Measurement system of the refractive power of spherical and sphero-cylindrical lenses with the magnification ellipse fitting method.

    PubMed

    Ko, Wooseok; Kim, Soohyun

    2009-11-01

    This paper proposes a new measurement system for measuring the refractive power of spherical and sphero-cylindrical lenses with a six-point light source, which is composed of a light emitting diode and a six-hole pattern aperture, and magnification ellipse fitting method. The position of the six light sources is changed into a circular or elliptical form subjected to the lens refractive power and meridian rotation angle. The magnification ellipse fitting method calculates the lens refractive power based on the ellipse equation with magnifications that are the ratios between initial diagonal lengths and measured diagonal lengths of the conjugated light sources changed by the target lens. The refractive powers of the spherical and sphero-cylindrical lenses certified in the Korea Research Institute of Standard and Science were measured to verify the measurement performance. The proposed method is estimated to have a repeatability of +/-0.01 D and an error value below 1%.

  6. Physical characterization and optimal magnification of a portal imaging system

    NASA Astrophysics Data System (ADS)

    Bissonnette, Jean-Pierre; Jaffray, David A.; Fenster, Aaron; Munro, Peter

    1992-06-01

    One problem in radiation therapy is ensuring accurate positioning of the patient so that the prescribed dose is delivered to the diseased regions while healthy tissues are spared. Positioning is usually assessed by exposing film to the high-energy treatment beam. Unfortunately, these films exhibit poor image quality (primarily due to low subject contrast) and the development delays make film impractical to check patient positioning routinely. Therefore, we have been developing a digital video-based imaging system to replace film. The system consists of a copper plate/fluorescent screen detector, a 45 degree(s) mirror, and a TV camera equipped with a large aperture lens. We have determined the signal and noise transfer properties of the imaging system by measuring its MTF(f) and NPS(f) and used these valued to estimate the optimal magnification for the imaging system. We have found that the optimal magnification is 2.3 - 2.5 when optimizing signal transfer (spatial resolution) alone; however, the optimal magnification is only 1.5 - 2.0 if SNR transfer is considered.

  7. Effective DQE (eDQE) for monoscopic and stereoscopic chest radiography imaging systems with the incorporation of anatomical noise.

    PubMed

    Boyce, Sarah J; Choudhury, Kingshuk Roy; Samei, Ehsan

    2013-09-01

    Stereoscopic chest biplane correlation imaging (stereo∕BCI) has been proposed as an alternative modality to single view chest x-ray (CXR). The metrics effective modulation transfer function (eMTF), effective normalized noise power spectrum (eNNPS), and effective detective quantum efficiency (eDQE) have been proposed as clinically relevant metrics for assessing clinical system performance taking into consideration the magnification and scatter effects. This study compared the metrics eMTF, eNNPS, eDQE, and detectability index for stereo∕BCI and single view CXR under isodose conditions at two magnifications for two anthropomorphic phantoms of differing sizes. Measurements for the eMTF were taken for two phantom sizes with an opaque edge test device using established techniques. The eNNPS was measured at two isodose conditions for two phantoms using established techniques. The scatter was measured for two phantoms using an established beam stop method. All measurements were also taken at two different magnifications with two phantoms. A geometrical phantom was used for comparison with prior results for CXR although the results for an anatomy free phantom are not expected to vary for BCI. Stereo∕BCI resulted in improved metrics compared to single view CXR. Results indicated that magnification can potentially improve the detection performance primarily due to the air gap which reduced scatter by ∼20%. For both phantoms, at isodose, eDQE(0) for stereo∕BCI was ∼100 times higher than that for CXR. Magnification at isodose improved eDQE(0) by ∼10 times for stereo∕BCI. Increasing the dose did not improve eDQE. The detectability index for stereo∕BCI was ∼100 times better than single view CXR for all conditions. The detectability index was also not improved with increased dose. The findings indicate that stereo∕BCI with magnification may improve detectability of subtle lung nodules compared to single view CXR. Results were improved with magnification for the smaller phantom but not for the larger phantom. The effective DQE and the detectability index did not improve with increasing dose.

  8. Constraining the geometry and kinematics of the quasar broad emission line region using gravitational microlensing. I. Models and simulations

    NASA Astrophysics Data System (ADS)

    Braibant, L.; Hutsemékers, D.; Sluse, D.; Goosmann, R.

    2017-11-01

    Recent studies have shown that line profile distortions are commonly observed in gravitationally lensed quasar spectra. Often attributed to microlensing differential magnification, line profile distortions can provide information on the geometry and kinematics of the broad emission line region (BLR) in quasars. We investigate the effect of gravitational microlensing on quasar broad emission line profiles and their underlying continuum, combining the emission from simple representative BLR models with generic microlensing magnification maps. Specifically, we considered Keplerian disk, polar, and equatorial wind BLR models of various sizes. The effect of microlensing has been quantified with four observables: μBLR, the total magnification of the broad emission line; μcont, the magnification of the underlying continuum; as well as red/blue, RBI and wings/core, WCI, indices that characterize the line profile distortions. The simulations showed that distortions of line profiles, such as those recently observed in lensed quasars, can indeed be reproduced and attributed to the differential effect of microlensing on spatially separated regions of the BLR. While the magnification of the emission line μBLR sets an upper limit on the BLR size and, similarly, the magnification of the continuum μcont sets an upper limit on the size of the continuum source, the line profile distortions mainly depend on the BLR geometry and kinematics. We thus built (WCI,RBI) diagrams that can serve as diagnostic diagrams to discriminate between the various BLR models on the basis of quantitative measurements. It appears that a strong microlensing effect puts important constraints on the size of the BLR and on its distance to the high-magnification caustic. In that case, BLR models with different geometries and kinematics are more prone to produce distinctive line profile distortions for a limited number of caustic configurations, which facilitates their discrimination. When the microlensing effect is weak, there is a larger overlap between the characteristics of the line profile distortions produced by the different models, and constraints can only be derived on a statistical basis.

  9. Effective DQE (eDQE) for monoscopic and stereoscopic chest radiography imaging systems with the incorporation of anatomical noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyce, Sarah J.; Choudhury, Kingshuk Roy; Samei, Ehsan

    2013-09-15

    Purpose: Stereoscopic chest biplane correlation imaging (stereo/BCI) has been proposed as an alternative modality to single view chest x-ray (CXR). The metrics effective modulation transfer function (eMTF), effective normalized noise power spectrum (eNNPS), and effective detective quantum efficiency (eDQE) have been proposed as clinically relevant metrics for assessing clinical system performance taking into consideration the magnification and scatter effects. This study compared the metrics eMTF, eNNPS, eDQE, and detectability index for stereo/BCI and single view CXR under isodose conditions at two magnifications for two anthropomorphic phantoms of differing sizes.Methods: Measurements for the eMTF were taken for two phantom sizes withmore » an opaque edge test device using established techniques. The eNNPS was measured at two isodose conditions for two phantoms using established techniques. The scatter was measured for two phantoms using an established beam stop method. All measurements were also taken at two different magnifications with two phantoms. A geometrical phantom was used for comparison with prior results for CXR although the results for an anatomy free phantom are not expected to vary for BCI.Results: Stereo/BCI resulted in improved metrics compared to single view CXR. Results indicated that magnification can potentially improve the detection performance primarily due to the air gap which reduced scatter by ∼20%. For both phantoms, at isodose, eDQE(0) for stereo/BCI was ∼100 times higher than that for CXR. Magnification at isodose improved eDQE(0) by ∼10 times for stereo/BCI. Increasing the dose did not improve eDQE. The detectability index for stereo/BCI was ∼100 times better than single view CXR for all conditions. The detectability index was also not improved with increased dose.Conclusions: The findings indicate that stereo/BCI with magnification may improve detectability of subtle lung nodules compared to single view CXR. Results were improved with magnification for the smaller phantom but not for the larger phantom. The effective DQE and the detectability index did not improve with increasing dose.« less

  10. Optical configuration with fixed transverse magnification for self-interference incoherent digital holography.

    PubMed

    Imbe, Masatoshi

    2018-03-20

    The optical configuration proposed in this paper consists of a 4-f optical setup with the wavefront modulation device on the Fourier plane, such as a concave mirror and a spatial light modulator. The transverse magnification of reconstructed images with the proposed configuration is independent of locations of an object and an image sensor; therefore, reconstructed images of object(s) at different distances can be scaled with a fixed transverse magnification. It is yielded based on Fourier optics and mathematically verified with the optical matrix method. Numerical simulation results and experimental results are also given to confirm the fixity of the reconstructed images.

  11. Image-Enhancement Aid For The Partially Sighted

    NASA Technical Reports Server (NTRS)

    Lawton, T. A.; Gennery, D. B.

    1989-01-01

    Digital filtering enhances ability to read and to recognize objects. Possible to construct portable vision aid by combining miniature video equipment to observe scene and display images with very-large-scale integrated circuits to implement real-time digital image-data processing. Afflicted observer views scene through magnifier to shift spatial frequencies downward and thereby improves perceived image. However, less magnification needed, larger the scene observed. Thus, one measure of effectiveness of new system is amount of magnification required with and without it. In series of tests, found 27 to 70 percent more magnification needed for afflicted observers to recognize unfiltered words than to recognize filtered words.

  12. Weak-lensing magnification as a probe for the dark Universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    García Fernández, Manuel

    This Thesis is devoted to the analysis of weak-lensing magnification on the Dark Energy Survey. Two analysis with different goals each are made on different data-sets: the Science Verification (DES-SV) and the Year 1 (DES-Y1). The DES-SV analysis aims the development of techniques to detect the weak-lensing number count magnification signal and the mitigation of systematic errors. The DES-Y1 analysis employs the methods used with the DES-SV data to measure the convergence profile of the emptiest regions of the Universe –voids and troughs–to use them as a new cosmological probe.

  13. Mineral content changes in bone associated with damage induced by the electron beam.

    PubMed

    Bloebaum, Roy D; Holmes, Jennifer L; Skedros, John G

    2005-01-01

    Energy-dispersive x-ray (EDX) spectroscopy and backscattered electron (BSE) imaging are finding increased use for determining mineral content in microscopic regions of bone. Electron beam bombardment, however, can damage the tissue, leading to erroneous interpretations of mineral content. We performed elemental (EDX) and mineral content (BSE) analyses on bone tissue in order to quantify observable deleterious effects in the context of (1) prolonged scanning time, (2) scan versus point (spot) mode, (3) low versus high magnification, and (4) embedding in poly-methylmethacrylate (PMMA). Undemineralized cortical bone specimens from adult human femora were examined in three groups: 200x embedded, 200x unembedded, and 1000x embedded. Coupled BSE/EDX analyses were conducted five consecutive times, with no location analyzed more than five times. Variation in the relative proportions of calcium (Ca), phosphorous (P), and carbon (C) were measured using EDX spectroscopy, and mineral content variations were inferred from changes in mean gray levels ("atomic number contrast") in BSE images captured at 20 keV. In point mode at 200x, the embedded specimens exhibited a significant increase in Ca by the second measurement (7.2%, p < 0.05); in scan mode, a small and statistically nonsignificant increase (1.0%) was seen by the second measurement. Changes in P were similar, although the increases were less. The apparent increases in Ca and P likely result from decreases in C: -3.2% (p < 0.05) in point mode and -0.3% in scan mode by the second measurement. Analysis of unembedded specimens showed similar results. In contrast to embedded specimens at 200x, 1000x data showed significantly larger variations in the proportions of Ca, P, and C by the second or third measurement in scan and point mode. At both magnifications, BSE image gray level values increased (suggesting increased mineral content) by the second measurement, with increases up to 23% in point mode. These results show that mineral content measurements can be reliable when using coupled BSE/EDX analyses in PMMA-embedded bone if lower magnifications are used in scan mode and if prolonged exposure to the electron beam is avoided. When point mode is used to analyze minute regions, adjustments in accelerating voltages and probe current may be required to minimize damage.

  14. Processing of CT sinograms acquired using a VRX detector

    NASA Astrophysics Data System (ADS)

    Jordan, Lawrence M.; DiBianca, Frank A.; Zou, Ping; Laughter, Joseph S.; Zeman, Herbert D.

    2000-04-01

    A 'variable resolution x-ray detector' (VRX) capable of resolving beyond 100 cycles/main a single dimension has been proposed by DiBianca, et al. The use of detectors of this design for computed-tomography (CT) imaging requires novel preprocessing of data to correct for the detector's non- uniform imaging characteristics over its range of view. This paper describes algorithms developed specifically to adjust VRX data for varying magnification, source-to-detector range and beam obliquity and to sharpen reconstructions by deconvolving the ray impulse function. The preprocessing also incorporates nonlinear interpolation of VRX raw data into canonical CT sinogram formats.

  15. Asymmetric patch size distribution leads to disruptive selection on dispersal.

    PubMed

    Massol, François; Duputié, Anne; David, Patrice; Jarne, Philippe

    2011-02-01

    Numerous models have been designed to understand how dispersal ability evolves when organisms live in a fragmented landscape. Most of them predict a single dispersal rate at evolutionary equilibrium, and when diversification of dispersal rates has been predicted, it occurs as a response to perturbation or environmental fluctuation regimes. Yet abundant variation in dispersal ability is observed in natural populations and communities, even in relatively stable environments. We show that this diversification can operate in a simple island model without temporal variability: disruptive selection on dispersal occurs when the environment consists of many small and few large patches, a common feature in natural spatial systems. This heterogeneity in patch size results in a high variability in the number of related patch mates by individual, which, in turn, triggers disruptive selection through a high per capita variance of inclusive fitness. Our study provides a likely, parsimonious and testable explanation for the diversity of dispersal rates encountered in nature. It also suggests that biological conservation policies aiming at preserving ecological communities should strive to keep the distribution of patch size sufficiently asymmetric and variable. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.

  16. Pure and Poetic: Butterfly in the Quantum World

    NASA Astrophysics Data System (ADS)

    Satija, Indubala

    Story of the Hofstadter butterfly is a magical occurrence in a quantum flatland of two-dimensional crystals in a magnetic field. In this drama, the magnetic flux plays the role of Planck constant, linking the variables x and p in the butterfly Hamiltonian H = cosx + cosp as [ x , p ] = iℏ . It is a story of reunion of Descartes and Pythagoras and tale of this quantum fractal is related to Integral Apollonian gaskets. Integers rule the butterfly landscape as quantum numbers of Hall conductivity while irrational numbers emerge as the asymptotic magnification of these topological integers in the kaleidoscopic images of the butterfly. Simple variations of the above Hamiltonian generates a wide spectrum of physical phenomenon. For example, the Hamiltonian H = cosx + λcosp with the parameter λ ≠ 1 in its zero energy solution hides the critical point of a topological transition in a superconducting chain and thus barely misses the Majorana fermions. Another example is the Hamiltonian obtained by including terms like cos (x +/- p) which for flux half exhibits Dirac semi-metallic states in addition to all integer quantum Hall states corresponding to all possible solutions of the Diophantine equation for this value of the magnetic flux. In this analytically tractable model where the parameter λ varies periodically with time, the topological states are described by edge modes whose dispersion is given by a pure cosine function. Finally, nature has composed beautiful variations of the Hofstadter butterfly not only in systems such as Penrose and Kagame lattices and also in the relativistic colorful world of quarks and antiquarks.

  17. Multidepth imaging by chromatic dispersion confocal microscopy

    NASA Astrophysics Data System (ADS)

    Olsovsky, Cory A.; Shelton, Ryan L.; Saldua, Meagan A.; Carrasco-Zevallos, Oscar; Applegate, Brian E.; Maitland, Kristen C.

    2012-03-01

    Confocal microscopy has shown potential as an imaging technique to detect precancer. Imaging cellular features throughout the depth of epithelial tissue may provide useful information for diagnosis. However, the current in vivo axial scanning techniques for confocal microscopy are cumbersome, time-consuming, and restrictive when attempting to reconstruct volumetric images acquired in breathing patients. Chromatic dispersion confocal microscopy (CDCM) exploits severe longitudinal chromatic aberration in the system to axially disperse light from a broadband source and, ultimately, spectrally encode high resolution images along the depth of the object. Hyperchromat lenses are designed to have severe and linear longitudinal chromatic aberration, but have not yet been used in confocal microscopy. We use a hyperchromat lens in a stage scanning confocal microscope to demonstrate the capability to simultaneously capture information at multiple depths without mechanical scanning. A photonic crystal fiber pumped with a 830nm wavelength Ti:Sapphire laser was used as a supercontinuum source, and a spectrometer was used as the detector. The chromatic aberration and magnification in the system give a focal shift of 140μm after the objective lens and an axial resolution of 5.2-7.6μm over the wavelength range from 585nm to 830nm. A 400x400x140μm3 volume of pig cheek epithelium was imaged in a single X-Y scan. Nuclei can be seen at several depths within the epithelium. The capability of this technique to achieve simultaneous high resolution confocal imaging at multiple depths may reduce imaging time and motion artifacts and enable volumetric reconstruction of in vivo confocal images of the epithelium.

  18. Exploring the Use of Multimedia Fate and Bioaccumulation Models to Calculate Trophic Magnification Factors (TMFs)

    EPA Science Inventory

    The trophic magnification factor (TMF) is considered to be a key metric for assessing the bioaccumulation potential of organic chemicals in food webs. Fugacity is an equilibrium criterion and thus reflects the relative thermodynamic status of a chemical in the environment and in ...

  19. Experimental Demonstration of Longitudinal Magnification

    ERIC Educational Resources Information Center

    Razpet, Nada; Susman, Katarina; Cepic, Mojca

    2009-01-01

    We describe an experiment which enables the observation of longitudinal magnification for the real image of a three-dimensional (3D) object formed by a converging lens. The experiment also shows the absence of longitudinal inversion. Possible reasons for misconceptions with respect to real images and longitudinal inversions are discussed and a…

  20. Comparison of removal torques between laser-treated and SLA-treated implant surfaces in rabbit tibiae

    PubMed Central

    Kang, Nam-Seok; Li, Lin-Jie

    2014-01-01

    PURPOSE The purpose of this study was to compare removal torques and surface topography between laser treated and sandblasted, large-grit, acid-etched (SLA) treated implants. MATERIALS AND METHODS Laser-treated implants (experimental group) and SLA-treated implants (control group) 8 mm in length and 3.4 mm in diameter were inserted into both sides of the tibiae of 12 rabbits. Surface analysis was accomplished using a field emission scanning electron microscope (FE-SEM; Hitachi S-4800; Japan) under ×25, ×150 and ×1,000 magnification. Surface components were analyzed using energy dispersive spectroscopy (EDS). Rabbits were sacrificed after a 6-week healing period. The removal torque was measured using the MGT-12 digital torque meter (Mark-10 Co., Copiague, NY, USA). RESULTS In the experimental group, the surface analysis showed uniform porous structures under ×25, ×150 and ×1,000 magnification. Pore sizes in the experimental group were 20-40 mm and consisted of numerous small pores, whereas pore sizes in the control group were 0.5-2.0 mm. EDS analysis showed no significant difference between the two groups. The mean removal torque in the laser-treated and the SLA-treated implant groups were 79.4 Ncm (SD = 20.4; range 34.6-104.3 Ncm) and 52.7 Ncm (SD = 17.2; range 18.7-73.8 Ncm), respectively. The removal torque in the laser-treated surface implant group was significantly higher than that in the control group (P=.004). CONCLUSION In this study, removal torque values were significantly higher for laser-treated surface implants than for SLA-treated surface implants. PMID:25177474

  1. Normal forms of dispersive scalar Poisson brackets with two independent variables

    NASA Astrophysics Data System (ADS)

    Carlet, Guido; Casati, Matteo; Shadrin, Sergey

    2018-03-01

    We classify the dispersive Poisson brackets with one dependent variable and two independent variables, with leading order of hydrodynamic type, up to Miura transformations. We show that, in contrast to the case of a single independent variable for which a well-known triviality result exists, the Miura equivalence classes are parametrised by an infinite number of constants, which we call numerical invariants of the brackets. We obtain explicit formulas for the first few numerical invariants.

  2. Socket Preservation Using a Biomimetic Nanostructured Matrix and Atraumatic Surgical Extraction Technique.

    PubMed

    Mozzati, Marco; Gallesio, Giorgia; Staiti, Giorgio; Iezzi, Giovanna; Piattelli, Adriano; Mortellaro, Carmen

    2017-06-01

    The aim of the present study was to evaluate the efficacy of biomimetic composite bone substitute composed of equine collagen I and Mg-hydroxyapatite in improving socket preservation after tooth extraction in humans. Thirty-two patients were subjected to a single tooth extraction, performed without elevation of the full-thickness flap. In each patient, socket was grafted with the bone substitute and specimens were retrieved 2 months after surgery and processed for histological observations. The clinical outcome variables were healing index, visual analog score for pain, postsurgery complications, and patient satisfaction evaluated through a questionnaire. No adverse reaction or infection occurred, in which healing index averaged 5.8 (range 4-7). Pain scores were lower. The patients' questionnaire outcomes were unanimously in favor of the test treatment. At low-power magnification, it was possible to see a portion of native bone with small marrow spaces and many areas of bone remodeling. At high-power magnification, it could be observed that small newly formed trabeculae originated from the preexisting bone and bone spicules in the middle of the defect. Grafting the postextraction socket with composite bone substitute may improve the healing process by accelerating socket closure and tissue maturation. Such a product demonstrated excellent biocompatibility as no inflammatory reaction could be detected histologically and was well accepted by patients.

  3. A cutting-edge solution for 1µm laser metal processing

    NASA Astrophysics Data System (ADS)

    Baumbach, N.; Kühl, P.; Karam, J.; Jonkers, J.; Villarreal-Saucedo, F.; Reyes, M.

    2017-02-01

    The recent 1μm-laser cutting market is dominated by fiber and disk lasers due to their excellent beam quality of below 4mm*mrad. Teradiode's 4kW direct diode laser source achieves similar beam quality while having a different beam shape and shorter wavelengths which are known for higher absorption rates at the inclined front of the cutting keyhole. Research projects, such as the HALO Project, have additionally shown that polarized radiation and beams with shapes different from the typical LG00 lead to improved cut quality for ferrous and non-ferrous metals. [1] Diode laser have the inherent property of not being sensitive to back reflection which brings advantages in cutting high-reflective materials. The II-VI HIGHYAG laser cutting head BIMO-FSC offers the unique feature of machine controlled and continuous adjustment of both the focus diameter and the focus position. This feature is proven to be beneficial for cutting and piercing with high speed and small hole diameters. In addition, the optics are designed for lowest focus shift. As a leading laser processing head manufacturer, II-VI HIGHYAG qualified its BIMO-FSC MZ (M=magnification, Z=focus position) cutting head for Teradiode's 4kW direct diode laser source to offer a cutting-edge solution for highpower laser cutting. Combining the magnification ability of the cutting head with this laser source, customers experience strong advantages in cutting metals in broad thickness ranges. Thicknesses up to 25mm mild steel can easily be cut with excellent edge quality. Furthermore, a new optical setup equivalent to an axicon with a variable axicon angle is demonstrated which generates variable sized ring spots. The setup provides new degrees of freedom to tailor the energy distribution for even higher productivity and quality.

  4. Microfilm Viewer Experiments. Final Report.

    ERIC Educational Resources Information Center

    Reintjes, J. F.; And Others

    Two new designs for microfilm viewers are described. Both viewers are front projection viewers utilizing matte surface display screens. One viewer with an adjustable horizontal screen has a normal magnification rate and is mounted on a desk top. The other viewer has a high (4x) magnification rate in a mini-theater configuration with remote…

  5. Evaluation of a gaze-controlled vision enhancement system for reading in visually impaired people

    PubMed Central

    Aguilar, Carlos; Castet, Eric

    2017-01-01

    People with low vision, especially those with Central Field Loss (CFL), need magnification to read. The flexibility of Electronic Vision Enhancement Systems (EVES) offers several ways of magnifying text. Due to the restricted field of view of EVES, the need for magnification is conflicting with the need to navigate through text (panning). We have developed and implemented a real-time gaze-controlled system whose goal is to optimize the possibility of magnifying a portion of text while maintaining global viewing of the other portions of the text (condition 1). Two other conditions were implemented that mimicked commercially available advanced systems known as CCTV (closed-circuit television systems)—conditions 2 and 3. In these two conditions, magnification was uniformly applied to the whole text without any possibility to specifically select a region of interest. The three conditions were implemented on the same computer to remove differences that might have been induced by dissimilar equipment. A gaze-contingent artificial 10° scotoma (a mask continuously displayed in real time on the screen at the gaze location) was used in the three conditions in order to simulate macular degeneration. Ten healthy subjects with a gaze-contingent scotoma read aloud sentences from a French newspaper in nine experimental one-hour sessions. Reading speed was measured and constituted the main dependent variable to compare the three conditions. All subjects were able to use condition 1 and they found it slightly more comfortable to use than condition 2 (and similar to condition 3). Importantly, reading speed results did not show any significant difference between the three systems. In addition, learning curves were similar in the three conditions. This proof of concept study suggests that the principles underlying the gaze-controlled enhanced system might be further developed and fruitfully incorporated in different kinds of EVES for low vision reading. PMID:28380004

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Lan, E-mail: lgao@pppl.gov; Hill, K. W.; Bitter, M.

    A high spatial resolution of a few μm is often required for probing small-scale high-energy-density plasmas using high resolution x-ray imaging spectroscopy. This resolution can be achieved by adjusting system magnification to overcome the inherent limitation of the detector pixel size. Laboratory experiments on investigating the relation between spatial resolution and system magnification for a spherical crystal spectrometer are presented. Tungsten Lβ{sub 2} rays from a tungsten-target micro-focus x-ray tube were diffracted by a Ge 440 crystal, which was spherically bent to a radius of 223 mm, and imaged onto an x-ray CCD with 13-μm pixel size. The source-to-crystal (p)more » and crystal-to-detector (q) distances were varied to produce spatial magnifications (M = q/p) ranging from 2 to 10. The inferred instrumental spatial width reduces with increasing system magnification M. However, the experimental measurement at each M is larger than the theoretical value of pixel size divided by M. Future work will focus on investigating possible broadening mechanisms that limit the spatial resolution.« less

  7. Videodermoscopy compared to reflectance confocal microscopy for the diagnosis of scabies.

    PubMed

    Cinotti, E; Labeille, B; Cambazard, F; Biron, A C; Chol, C; Leclerq, A; Jaffelin, C; Perrot, J L

    2016-09-01

    Reflectance confocal microscopy (RCM) and dermoscopy have recently been suggested for non-invasive diagnosis of scabies. However, there are large studies on diagnostic accuracy for scabies only with dermoscopy at low (10×) and high (100-1000×) magnification. Our study evaluated the diagnostic accuracy, for the diagnosis of scabies, of RCM and videodermoscopy at intermediate (20× and 70×) magnification, which is usually found in commercially available videodermoscopes. Patients with a presumptive diagnosis of scabies were prospectively enrolled during 20 months and examined by RCM and videodermoscopy at intermediate magnification. The specificity of RCM was considered 100% because RCM can identify the anatomical details of the parasites. A total of 148 patients were enrolled. Videodermoscopy showed a higher sensitivity for scabies than RCM (95% vs. 92%) and a specificity of 97%. Videodermoscopy at intermediate magnification, and RCM are both highly accurate for the diagnosis of scabies. If the two devices are available, it would be better to perform videodermoscopy first, that is more sensitive, and then RCM to confirm the diagnosis. © 2016 European Academy of Dermatology and Venereology.

  8. Investigation of computer-aided colonic crypt pattern analysis

    NASA Astrophysics Data System (ADS)

    Qi, Xin; Pan, Yinsheng; Sivak, Michael V., Jr.; Olowe, Kayode; Rollins, Andrew M.

    2007-02-01

    Colorectal cancer is the second leading cause of cancer-related death in the United States. Approximately 50% of these deaths could be prevented by earlier detection through screening. Magnification chromoendoscopy is a technique which utilizes tissue stains applied to the gastrointestinal mucosa and high-magnification endoscopy to better visualize and characterize lesions. Prior studies have shown that shapes of colonic crypts change with disease and show characteristic patterns. Current methods for assessing colonic crypt patterns are somewhat subjective and not standardized. Computerized algorithms could be used to standardize colonic crypt pattern assessment. We have imaged resected colonic mucosa in vitro (N = 70) using methylene blue dye and a surgical microscope to approximately simulate in vivo imaging with magnification chromoendoscopy. We have developed a method of computerized processing to analyze the crypt patterns in the images. The quantitative image analysis consists of three steps. First, the crypts within the region of interest of colonic tissue are semi-automatically segmented using watershed morphological processing. Second, crypt size and shape parameters are extracted from the segmented crypts. Third, each sample is assigned to a category according to the Kudo criteria. The computerized classification is validated by comparison with human classification using the Kudo classification criteria. The computerized colonic crypt pattern analysis algorithm will enable a study of in vivo magnification chromoendoscopy of colonic crypt pattern correlated with risk of colorectal cancer. This study will assess the feasibility of screening and surveillance of the colon using magnification chromoendoscopy.

  9. Use of loupes magnification and microsurgical technique in thyroid surgery: ten years experience in a single center

    PubMed Central

    D’ORAZI, V.; PANUNZI, A.; DI LORENZO, E.; ORTENSI, AL.; CIALINI, M.; ANICHINI, S.; ORTENSI, A.

    2016-01-01

    Aim The use of microsurgical technique and loupes magnification as a support to traditional surgery can help surgical performance and prevent complications in thyroid surgery. Patients and methods Between January 2004 and December 2014, 782 patients with thyroid diseases were operated by our team with microsurgical technique and loupes magnification 4.5x. All patients had pre and postoperative vocal cords assessment and calcemia and the collected data were analysed. Results Among the 782 patients, only six patients (0.77%) had unilateral vocal fold immobility treated with medical therapy, phoniatric and neck physiotherapy. All six patients showed complete laryngeal recovery of motility 6/8 weeks after treatment. There were not cases of permanent monolateral or bilateral vocal cord palsy. In 84 patients there were signs and symptoms of hypocalcemia. In 81 patients (10.36%) the restoring of biochemical parameters and the resolution of symptoms occurred between 2 and 6 weeks and in 3 cases (0.38%) there was permanent hypocalcemia more than six months. Conclusion The use of microsurgical technique and loupes magnification in thyroid surgery are safety and effective procedures, that require an appropriate training in reconstructive microsurgery, but may significantly reduce post-operative complications. Here, we report for the first time the largest series of thyroid surgery performed with the use of microsurgical technique and loupes magnification, analysing the postoperative morbidity. In view of our results, we suggest the routine use of 4.5X loupes and microsurgical technique in thyroid surgery. PMID:27734792

  10. Postural Assessment of Students Evaluating the Need of Ergonomic Seat and Magnification in Dentistry.

    PubMed

    Dable, Rajani A; Wasnik, Pradnya B; Yeshwante, Babita J; Musani, Smita I; Patil, Ashishkumar K; Nagmode, Sunilkumar N

    2014-12-01

    Dental students using conventional chairs need immediate change in their posture. Implementing an ergonomic posture is necessary as they are at high risk for developing musculoskeletal disorders. This study recommends the use of an ergonomic seat and magnification system to enhance the visibility and the posture of an operator. The aim of this study is to make a foray into the hazards caused by inappropriate posture of dental students while working. It also aims at creating a cognizance about the related health implications among the dental fraternity at large, and to understand the significance of adopting an ergonomic posture since the beginning of the professional course. In the present study, postures have been assessed by using rapid upper limb assessment (RULA). This method uses diagrams of body postures and three scoring tables to evaluate ones exposure to risk factors. Ninety students from II BDS (preclinical students in the second year of dental school) were assessed in three groups using three different seats with and without magnification system. The results recorded significantly higher RULA scores for the conventional seats without using the magnification system compared to the SSC (Salli Saddle Chair-an ergonomic seat) with the use of magnification system. A poor ergonomic posture can make the dental students get habituated to the wrong working style which might lead to MSDs (Musculoskeletal diseases). It is advisable to acclimatize to good habits at the inception of the course, to prevent MSDs later in life.

  11. [Study of the reliability in one dimensional size measurement with digital slit lamp microscope].

    PubMed

    Wang, Tao; Qi, Chaoxiu; Li, Qigen; Dong, Lijie; Yang, Jiezheng

    2010-11-01

    To study the reliability of digital slit lamp microscope as a tool for quantitative analysis in one dimensional size measurement. Three single-blinded observers acquired and repeatedly measured the images with a size of 4.00 mm and 10.00 mm on the vernier caliper, which simulatated the human eye pupil and cornea diameter under China-made digital slit lamp microscope in the objective magnification of 4 times, 10 times, 16 times, 25 times, 40 times and 4 times, 10 times, 16 times, respectively. The correctness and precision of measurement were compared. The images with 4 mm size were measured by three investigators and the average values were located between 3.98 to 4.06. For the images with 10.00 mm size, the average values fell within 10.00 ~ 10.04. Measurement results of 4.00 mm images showed, except A4, B25, C16 and C25, significant difference was noted between the measured value and the true value. Regarding measurement results of 10.00 mm iamges indicated, except A10, statistical significance was found between the measured value and the true value. In terms of comparing the results of the same size measured at different magnifications by the same investigator, except for investigators A's measurements of 10.00 mm dimension, the measurement results by all the remaining investigators presented statistical significance at different magnifications. Compared measurements of the same size with different magnifications, measurements of 4.00 mm in 4-fold magnification had no significant difference among the investigators', the remaining results were statistically significant. The coefficient of variation of all measurement results were less than 5%; as magnification increased, the coefficient of variation decreased. The measurement of digital slit lamp microscope in one-dimensional size has good reliability,and should be performed for reliability analysis before used for quantitative analysis to reduce systematic errors.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagesh, S Setlur; Rana, R; Russ, M

    Purpose: CMOS-based aSe detectors compared to CsI-TFT-based flat panels have the advantages of higher spatial sampling due to smaller pixel size and decreased blurring characteristic of direct rather than indirect detection. For systems with such detectors, the limiting factor degrading image resolution then becomes the focal-spot geometric unsharpness. This effect can seriously limit the use of such detectors in areas such as cone beam computed tomography, clinical fluoroscopy and angiography. In this work a technique to remove the effect of focal-spot blur is presented for a simulated aSe detector. Method: To simulate images from an aSe detector affected with focal-spotmore » blur, first a set of high-resolution images of a stent (FRED from Microvention, Inc.) were acquired using a 75µm pixel size Dexela-Perkin-Elmer detector and averaged to reduce quantum noise. Then the averaged image was blurred with a known Gaussian blur at two different magnifications to simulate an idealized focal spot. The blurred images were then deconvolved with a set of different Gaussian blurs to remove the effect of focal-spot blurring using a threshold-based, inverse-filtering method. Results: The blur was removed by deconvolving the images using a set of Gaussian functions for both magnifications. Selecting the correct function resulted in an image close to the original; however, selection of too wide a function would cause severe artifacts. Conclusion: Experimentally, focal-spot blur at different magnifications can be measured using a pin hole with a high resolution detector. This spread function can be used to deblur the input images that are acquired at corresponding magnifications to correct for the focal spot blur. For CBCT applications, the magnification of specific objects can be obtained using initial reconstructions then corrected for focal-spot blurring to improve resolution. Similarly, if object magnification can be determined such correction may be applied in fluoroscopy and angiography.« less

  13. TU-D-209-01: Dosimetry of Diagnostic Work Up Mammography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jallow, N; Sechopoulos, I

    2016-06-15

    Purpose: To investigate patient average glandular dose (AGD) characteristics of diagnostic mammography. Methods: The techniques used to image 14420 patients who received diagnostic work up mammography from October 2008 to December 2014 at one academic hospital were retrospectively collected. The most common diagnostic views and the techniques used for each according to compressed breast thickness were determined. For all techniques, 1st half value layer and air kerma output per tube current-exposure time product were measured; then the incident air kerma for each acquisition was calculated. The values for normalized glandular dose (DgN) were obtained with a validated Monte Carlo simulationmore » of mammographic acquisition. The mono-energetic DgN results were combined according to relative fluence using the TASMICS model to obtain DgN coefficients for each spectrum. The spectral DgN and calculated incident air kerma were used to estimate AGD of patients with breast thickness ranging from 2 to 8 cm. Results: The most common views utilized during diagnostic mammography were magnification craniocaudal (24%), magnification mediolateral (19%), spot craniocaudal (28%), and spot mediolateral oblique (24%). The AGD increased with increasing breast thickness for both the magnification and spot views. The AGD for a 5.5 cm thick breast was approximately 6.8 mGy and 2.2 mGy for the magnification and spot views, respectively. The AGD ranged from 3.6 mGy to 6.8 mGy for the magnification views and from 1.0 mGy to 3.1 mGy for spot views. The difference in AGD between the two magnification views or the two spot views was not significant. Conclusion: These results provide information on breast dose to which screening recalled women are exposed to. In addition to understanding the dose used for common clinical imaging tests, this data could be used when comparing use of mammography for diagnostic workup to other potential modalities, such as breast tomosynthesis and breast CT.« less

  14. Dark solitons for a variable-coefficient higher-order nonlinear Schrödinger equation in the inhomogeneous optical fiber

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Tian, Bo; Wu, Xiao-Yu; Liu, Lei; Yuan, Yu-Qiang

    2017-04-01

    Under investigation in this paper is a variable-coefficient higher-order nonlinear Schrödinger equation, which has certain applications in the inhomogeneous optical fiber communication. Through the Hirota method, bilinear forms, dark one- and two-soliton solutions for such an equation are obtained. We graphically study the solitons with d1(z), d2(z) and d3(z), which represent the variable coefficients of the group-velocity dispersion, third-order dispersion and fourth-order dispersion, respectively. With the different choices of the variable coefficients, we obtain the parabolic, periodic and V-shaped dark solitons. Head-on and overtaking collisions are depicted via the dark two soliton solutions. Velocities of the dark solitons are linearly related to d1(z), d2(z) and d3(z), respectively, while the amplitudes of the dark solitons are not related to such variable coefficients.

  15. Soliton interactions, Bäcklund transformations, Lax pair for a variable-coefficient generalized dispersive water-wave system

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Tian, Bo; Zhen, Hui-Ling; Liu, De-Yin; Xie, Xi-Yang

    2018-04-01

    Under investigation in this paper is a variable-coefficient generalized dispersive water-wave system, which can simulate the propagation of the long weakly non-linear and weakly dispersive surface waves of variable depth in the shallow water. Under certain variable-coefficient constraints, by virtue of the Bell polynomials, Hirota method and symbolic computation, the bilinear forms, one- and two-soliton solutions are obtained. Bäcklund transformations and new Lax pair are also obtained. Our Lax pair is different from that previously reported. Based on the asymptotic and graphic analysis, with different forms of the variable coefficients, we find that there exist the elastic interactions for u, while either the elastic or inelastic interactions for v, with u and v as the horizontal velocity field and deviation height from the equilibrium position of the water, respectively. When the interactions are inelastic, we see the fission and fusion phenomena.

  16. The relative roles of environment, history and local dispersal in controlling the distributions of common tree and shrub species in a tropical forest landscape, Panama

    USGS Publications Warehouse

    Svenning, J.-C.; Engelbrecht, B.M.J.; Kinner, D.A.; Kursar, T.A.; Stallard, R.F.; Wright, S.J.

    2006-01-01

    We used regression models and information-theoretic model selection to assess the relative importance of environment, local dispersal and historical contingency as controls of the distributions of 26 common plant species in tropical forest on Barro Colorado Island (BCI), Panama. We censused eighty-eight 0.09-ha plots scattered across the landscape. Environmental control, local dispersal and historical contingency were represented by environmental variables (soil moisture, slope, soil type, distance to shore, old-forest presence), a spatial autoregressive parameter (??), and four spatial trend variables, respectively. We built regression models, representing all combinations of the three hypotheses, for each species. The probability that the best model included the environmental variables, spatial trend variables and ?? averaged 33%, 64% and 50% across the study species, respectively. The environmental variables, spatial trend variables, ??, and a simple intercept model received the strongest support for 4, 15, 5 and 2 species, respectively. Comparing the model results to information on species traits showed that species with strong spatial trends produced few and heavy diaspores, while species with strong soil moisture relationships were particularly drought-sensitive. In conclusion, history and local dispersal appeared to be the dominant controls of the distributions of common plant species on BCI. Copyright ?? 2006 Cambridge University Press.

  17. Conservation laws and rogue waves for a higher-order nonlinear Schrödinger equation with variable coefficients in the inhomogeneous fiber

    NASA Astrophysics Data System (ADS)

    Du, Zhong; Tian, Bo; Wu, Xiao-Yu; Liu, Lei; Sun, Yan

    2017-07-01

    Subpicosecond or femtosecond optical pulse propagation in the inhomogeneous fiber can be described by a higher-order nonlinear Schrödinger equation with variable coefficients, which is investigated in the paper. Via the Ablowitz-Kaup-Newell-Segur system and symbolic computation, the Lax pair and infinitely-many conservation laws are deduced. Based on the Lax pair and a modified Darboux transformation technique, the first- and second-order rogue wave solutions are constructed. Effects of the groupvelocity dispersion and third-order dispersion on the properties of the first- and second-order rouge waves are graphically presented and analyzed: The groupvelocity dispersion and third-order dispersion both affect the ranges and shapes of the first- and second-order rogue waves: The third-order dispersion can produce a skew angle of the first-order rogue wave and the skew angle rotates counterclockwise with the increase of the groupvelocity dispersion, when the groupvelocity dispersion and third-order dispersion are chosen as the constants; When the groupvelocity dispersion and third-order dispersion are taken as the functions of the propagation distance, the linear, X-shaped and parabolic trajectories of the rogue waves are obtained.

  18. The Jordy Electronic Magnification Device: Opinions, Observations, and Commentary

    ERIC Educational Resources Information Center

    Francis, Barry

    2005-01-01

    The Jordy electronic magnification device is one of a small number of electronic headborne devices designed to provide people with low vision the capability to perform near-range, intermediate-range, and distance viewing tasks. This report seeks to define the benefits of using the Jordy as a low vision device by people who are legally blind. The…

  19. Placing Local Aggregations in a Larger-Scale Context: Hierarchical Modeling of Black-Footed Albatross Dispersion.

    PubMed

    Michael, P E; Jahncke, J; Hyrenbach, K D

    2016-01-01

    At-sea surveys facilitate the study of the distribution and abundance of marine birds along standardized transects, in relation to changes in the local environmental conditions and large-scale oceanographic forcing. We analyzed the form and the intensity of black-footed albatross (Phoebastria nigripes: BFAL) spatial dispersion off central California, using five years (2004-2008) of vessel-based surveys of seven replicated survey lines. We related BFAL patchiness to local, regional and basin-wide oceanographic variability using two complementary approaches: a hypothesis-based model and an exploratory analysis. The former tested the strength and sign of hypothesized BFAL responses to environmental variability, within a hierarchical atmosphere-ocean context. The latter explored BFAL cross-correlations with atmospheric / oceanographic variables. While albatross dispersion was not significantly explained by the hierarchical model, the exploratory analysis revealed that aggregations were influenced by static (latitude, depth) and dynamic (wind speed, upwelling) environmental variables. Moreover, the largest BFAL patches occurred along the survey lines with the highest densities, and in association with shallow banks. In turn, the highest BFAL densities occurred during periods of negative Pacific Decadal Oscillation index values and low atmospheric pressure. The exploratory analyses suggest that BFAL dispersion is influenced by basin-wide, regional-scale and local environmental variability. Furthermore, the hypothesis-based model highlights that BFAL do not respond to oceanographic variability in a hierarchical fashion. Instead, their distributions shift more strongly in response to large-scale ocean-atmosphere forcing. Thus, interpreting local changes in BFAL abundance and dispersion requires considering diverse environmental forcing operating at multiple scales.

  20. Passive advection-dispersion in networks of pipes: Effect of connectivity and relationship to permeability

    NASA Astrophysics Data System (ADS)

    Bernabé, Y.; Wang, Y.; Qi, T.; Li, M.

    2016-02-01

    The main purpose of this work is to investigate the relationship between passive advection-dispersion and permeability in porous materials presumed to be statistically homogeneous at scales larger than the pore scale but smaller than the reservoir scale. We simulated fluid flow through pipe network realizations with different pipe radius distributions and different levels of connectivity. The flow simulations used periodic boundary conditions, allowing monitoring of the advective motion of solute particles in a large periodic array of identical network realizations. In order to simulate dispersion, we assumed that the solute particles obeyed Taylor dispersion in individual pipes. When a particle entered a pipe, a residence time consistent with local Taylor dispersion was randomly assigned to it. When exiting the pipe, the particle randomly proceeded into one of the pipes connected to the original one according to probabilities proportional to the outgoing volumetric flow in each pipe. For each simulation we tracked the motion of at least 6000 solute particles. The mean fluid velocity was 10-3 ms-1, and the distance traveled was on the order of 10 m. Macroscopic dispersion was quantified using the method of moments. Despite differences arising from using different types of lattices (simple cubic, body-centered cubic, and face-centered cubic), a number of general observations were made. Longitudinal dispersion was at least 1 order of magnitude greater than transverse dispersion, and both strongly increased with decreasing pore connectivity and/or pore size variability. In conditions of variable hydraulic radius and fixed pore connectivity and pore size variability, the simulated dispersivities increased as power laws of the hydraulic radius and, consequently, of permeability, in agreement with previously published experimental results. Based on these observations, we were able to resolve some of the complexity of the relationship between dispersivity and permeability.

  1. Model-Derived Dispersal Pathways from Multiple Source Populations Explain Variability of Invertebrate Larval Supply

    PubMed Central

    Domingues, Carla P.; Nolasco, Rita; Dubert, Jesus; Queiroga, Henrique

    2012-01-01

    Background Predicting the spatial and temporal patterns of marine larval dispersal and supply is a challenging task due to the small size of the larvae and the variability of oceanographic processes. Addressing this problem requires the use of novel approaches capable of capturing the inherent variability in the mechanisms involved. Methodology/Principal Findings In this study we test whether dispersal and connectivity patterns generated from a bio-physical model of larval dispersal of the crab Carcinus maenas, along the west coast of the Iberian Peninsula, can predict the highly variable daily pattern of wind-driven larval supply to an estuary observed during the peak reproductive season (March–June) in 2006 and 2007. Cross-correlations between observed and predicted supply were significant (p<0.05) and strong, ranging from 0.34 to 0.81 at time lags of −6 to +5 d. Importantly, the model correctly predicted observed cross-shelf distributions (Pearson r = 0.82, p<0.001, and r = 0.79, p<0.01, in 2006 and 2007) and indicated that all supply events were comprised of larvae that had been retained within the inner shelf; larvae transported to the outer shelf and beyond never recruited. Estimated average dispersal distances ranged from 57 to 198 km and were only marginally affected by mortality. Conclusions/Significance The high degree of predicted demographic connectivity over relatively large geographic scales is consistent with the lack of genetic structuring in C. maenas along the Iberian Peninsula. These findings indicate that the dynamic nature of larval dispersal can be captured by mechanistic biophysical models, which can be used to provide meaningful predictions of the patterns and causes of fine-scale variability in larval supply to marine populations. PMID:22558225

  2. Investigation of various factors influencing Raman spectra interpretation with the use of likelihood ratio approach.

    PubMed

    Michalska, Aleksandra; Martyna, Agnieszka; Zadora, Grzegorz

    2018-01-01

    The main aim of this study was to verify whether selected analytical parameters may affect solving the comparison problem of Raman spectra with the use of the likelihood ratio (LR) approach. Firstly the LR methodologies developed for Raman spectra of blue automotive paints obtained with the use of 785nm laser source (results published by the authors previously) were implemented for good quality spectra recorded for these paints with the use of 514.5nm laser source. For LR models construction two types of variables were used i.e. areas under selected pigments bands and coefficients derived from discrete wavelet transform procedure (DWT). Few experiments were designed for 785nm and 514.5nm Raman spectra databases after constructing well performing LR models (low rates of false positive and false negative answers and acceptable results of empirical cross entropy approach). In order to verify whether objective magnification described by its numerical aperture affects spectra interpretation, three objective magnifications -20×(N.A.=0.4.), 50×(N.A.=0.75) and 100×(N.A.=0.85) within each of the applied laser sources (514.5nm and 785nm) were tested for a group of blue solid and metallic automotive paints having the same sets of pigments depending on the applied laser source. The findings obtained by two types of LR models indicate the importance of this parameter for solving the comparison problem of both solid and metallic automotive paints regardless of the laser source used for measuring Raman signal. Hence, the same objective magnification, preferably 50× (established based on the analysis of within- and between-samples variability and F-factor value), should be used when focusing the laser on samples during Raman measurements. Then the influence of parameters (laser power and time of irradiation) of one of the recommended fluorescence suppression techniques, namely photobleaching, was under investigation. Analysis performed on a group of solid automotive paint samples showed that time of irradiation upon established laser power does not affect solving the comparison problem with the use of LR test. Likewise upon established time of irradiation 5% or 10% laser power could be used interchangeably without changing conclusions within this problem. However, upon the established time of irradiation changes in laser power between control and recovered sample from 5% or 10% to 50% may cause erroneous conclusions. Additionally it was also proved that prolonged irradiation of paint does not quantitatively affect pigments bands areas revealed after such a pre-treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Assessment of the Apple iPad as a low-vision reading aid.

    PubMed

    Morrice, E; Johnson, A P; Marinier, J-A; Wittich, W

    2017-06-01

    PurposeLow-vision clients frequently report having problems with reading. Using magnification, reading performance (as measured by reading speed) can be improved by up to 200%. Current magnification aids can be expensive or bulky; therefore, we explored if the Apple iPad offers comparable performance in improving reading speeds, in comparison with a closed-circuit television (CCTV) video magnifier, or other magnification devices.MethodsWe recruited 100 participants between the ages of 24-97 years, with low vision who were literate and cognitively capable, of whom 57 had age-related macular degeneration. To assess reading, participants read standardized iReST texts and were tested for comprehension. We compared reading speed on the Apple iPad (10 inch) with that of the CCTV, home magnification devices, and baseline measures.ResultsAll assistive devices improved reading rates in comparison to baseline (P<0.001, Hedge's g>1), however, there was no difference in improvement across devices (P>0.05, Hedge's g<0.1). When experience was taken into account, those with iPad experience read, on average, 30 words per minute faster than first time iPad users, whereas CCTV experience did not influence reading speed.ConclusionsIn our sample, the Apple iPad was as effective as currently used technologies for improving reading rates. Moreover, exposure to, and experience with the Apple iPad might increase reading speed with that device. A larger sample size, however, is needed to do subgroup analysis on who would optimally benefit from each type of magnification device.

  4. Assessment of the Apple iPad as a low-vision reading aid

    PubMed Central

    Morrice, E; Johnson, A P; Marinier, J-A; Wittich, W

    2017-01-01

    Purpose Low-vision clients frequently report having problems with reading. Using magnification, reading performance (as measured by reading speed) can be improved by up to 200%. Current magnification aids can be expensive or bulky; therefore, we explored if the Apple iPad offers comparable performance in improving reading speeds, in comparison with a closed-circuit television (CCTV) video magnifier, or other magnification devices. Methods We recruited 100 participants between the ages of 24–97 years, with low vision who were literate and cognitively capable, of whom 57 had age-related macular degeneration. To assess reading, participants read standardized iReST texts and were tested for comprehension. We compared reading speed on the Apple iPad (10 inch) with that of the CCTV, home magnification devices, and baseline measures. Results All assistive devices improved reading rates in comparison to baseline (P<0.001, Hedge’s g>1), however, there was no difference in improvement across devices (P>0.05, Hedge’s g<0.1). When experience was taken into account, those with iPad experience read, on average, 30 words per minute faster than first time iPad users, whereas CCTV experience did not influence reading speed. Conclusions In our sample, the Apple iPad was as effective as currently used technologies for improving reading rates. Moreover, exposure to, and experience with the Apple iPad might increase reading speed with that device. A larger sample size, however, is needed to do subgroup analysis on who would optimally benefit from each type of magnification device. PMID:28157222

  5. Estimating and mapping ecological processes influencing microbial community assembly

    PubMed Central

    Stegen, James C.; Lin, Xueju; Fredrickson, Jim K.; Konopka, Allan E.

    2015-01-01

    Ecological community assembly is governed by a combination of (i) selection resulting from among-taxa differences in performance; (ii) dispersal resulting from organismal movement; and (iii) ecological drift resulting from stochastic changes in population sizes. The relative importance and nature of these processes can vary across environments. Selection can be homogeneous or variable, and while dispersal is a rate, we conceptualize extreme dispersal rates as two categories; dispersal limitation results from limited exchange of organisms among communities, and homogenizing dispersal results from high levels of organism exchange. To estimate the influence and spatial variation of each process we extend a recently developed statistical framework, use a simulation model to evaluate the accuracy of the extended framework, and use the framework to examine subsurface microbial communities over two geologic formations. For each subsurface community we estimate the degree to which it is influenced by homogeneous selection, variable selection, dispersal limitation, and homogenizing dispersal. Our analyses revealed that the relative influences of these ecological processes vary substantially across communities even within a geologic formation. We further identify environmental and spatial features associated with each ecological process, which allowed mapping of spatial variation in ecological-process-influences. The resulting maps provide a new lens through which ecological systems can be understood; in the subsurface system investigated here they revealed that the influence of variable selection was associated with the rate at which redox conditions change with subsurface depth. PMID:25983725

  6. The Effects of Visual Magnification and Physical Movement Scale on the Manipulation of a Tool with Indirect Vision

    ERIC Educational Resources Information Center

    Bohan, Michael; McConnell, Daniel S.; Chaparro, Alex; Thompson, Shelby G.

    2010-01-01

    Modern tools often separate the visual and physical aspects of operation, requiring users to manipulate an instrument while viewing the results indirectly on a display. This can pose usability challenges particularly in applications, such as laparoscopic surgery, that require a high degree of movement precision. Magnification used to augment the…

  7. Smaller than We Normally See: The Fascination of Microscopy Is Not Restricted to Biology

    ERIC Educational Resources Information Center

    Evennett, Peter

    2011-01-01

    Microscopes are especially useful for observing fine detail in biological specimens. However, there are many other small items that may be examined with microscopes, and it is important to introduce children to low-magnification images of items they can recognise before moving on to such large magnification that what they observe has no obvious…

  8. The Effects of Various Mounting Systems of near Magnification on Reading Performance and Preference in School-Age Students with Low Vision

    ERIC Educational Resources Information Center

    Lusk, Kelly E.

    2012-01-01

    This single-subject study explored the effects of different mounting systems of prescribed near magnification (handheld, stand-mounted, spectacle-mounted, and electronic) on reading performance and preference in students with low vision. Participants included five students ranging from 3rd to 11th grade, and with various etiologies. Reading…

  9. Defocus and magnification dependent variation of TEM image astigmatism.

    PubMed

    Yan, Rui; Li, Kunpeng; Jiang, Wen

    2018-01-10

    Daily alignment of the microscope is a prerequisite to reaching optimal lens conditions for high resolution imaging in cryo-EM. In this study, we have investigated how image astigmatism varies with the imaging conditions (e.g. defocus, magnification). We have found that the large change of defocus/magnification between visual correction of astigmatism and subsequent data collection tasks, or during data collection, will inevitably result in undesirable astigmatism in the final images. The dependence of astigmatism on the imaging conditions varies significantly from time to time, so that it cannot be reliably compensated by pre-calibration of the microscope. Based on these findings, we recommend that the same magnification and the median defocus of the intended defocus range for final data collection are used in the objective lens astigmatism correction task during microscope alignment and in the focus mode of the iterative low-dose imaging. It is also desirable to develop a fast, accurate method that can perform dynamic correction of the astigmatism for different intended defocuses during automated imaging. Our findings also suggest that the slope of astigmatism changes caused by varying defocuses can be used as a convenient measurement of objective lens rotation symmetry and potentially an acceptance test of new electron microscopes.

  10. Analysis of Soot Propensity in Combustion Processes Using Optical Sensors and Video Magnification.

    PubMed

    Garcés, Hugo O; Fuentes, Andrés; Reszka, Pedro; Carvajal, Gonzalo

    2018-05-11

    Industrial combustion processes are an important source of particulate matter, causing significant pollution problems that affect human health, and are a major contributor to global warming. The most common method for analyzing the soot emission propensity in flames is the Smoke Point Height (SPH) analysis, which relates the fuel flow rate to a critical flame height at which soot particles begin to leave the reactive zone through the tip of the flame. The SPH and is marked by morphological changes on the flame tip. SPH analysis is normally done through flame observations with the naked eye, leading to high bias. Other techniques are more accurate, but are not practical to implement in industrial settings, such as the Line Of Sight Attenuation (LOSA), which obtains soot volume fractions within the flame from the attenuation of a laser beam. We propose the use of Video Magnification techniques to detect the flame morphological changes and thus determine the SPH minimizing observation bias. We have applied for the first time Eulerian Video Magnification (EVM) and Phase-based Video Magnification (PVM) on an ethylene laminar diffusion flame. The results were compared with LOSA measurements, and indicate that EVM is the most accurate method for SPH determination.

  11. Can we see photosynthesis? Magnifying the tiny color changes of plant green leaves using Eulerian video magnification

    NASA Astrophysics Data System (ADS)

    Taj-Eddin, Islam A. T. F.; Afifi, Mahmoud; Korashy, Mostafa; Ahmed, Ali H.; Cheng, Ng Yoke; Hernandez, Evelyng; Abdel-Latif, Salma M.

    2017-11-01

    Plant aliveness is proven through laboratory experiments and special scientific instruments. We aim to detect the degree of animation of plants based on the magnification of the small color changes in the plant's green leaves using the Eulerian video magnification. Capturing the video under a controlled environment, e.g., using a tripod and direct current light sources, reduces camera movements and minimizes light fluctuations; we aim to reduce the external factors as much as possible. The acquired video is then stabilized and a proposed algorithm is used to reduce the illumination variations. Finally, the Euler magnification is utilized to magnify the color changes on the light invariant video. The proposed system does not require any special purpose instruments as it uses a digital camera with a regular frame rate. The results of magnified color changes on both natural and plastic leaves show that the live green leaves have color changes in contrast to the plastic leaves. Hence, we can argue that the color changes of the leaves are due to biological operations, such as photosynthesis. To date, this is possibly the first work that focuses on interpreting visually, some biological operations of plants without any special purpose instruments.

  12. Validation of Fujinon intelligent chromoendoscopy with high definition endoscopes in colonoscopy.

    PubMed

    Parra-Blanco, Adolfo; Jiménez, Alejandro; Rembacken, Björn; González, Nicolás; Nicolás-Pérez, David; Gimeno-García, Antonio Z; Carrillo-Palau, Marta; Matsuda, Takahisa; Quintero, Enrique

    2009-11-14

    To validate high definition endoscopes with Fujinon intelligent chromoendoscopy (FICE) in colonoscopy. The image quality of normal white light endoscopy (WLE), that of the 10 available FICE filters and that of a gold standard (0.2% indigo carmine dye) were compared. FICE-filter 4 [red, green, and blue (RGB) wavelengths of 520, 500, and 405 nm, respectively] provided the best images for evaluating the vascular pattern compared to white light. The mucosal surface was best assessed using filter 4. However, the views obtained were not rated significantly better than those observed with white light. The "gold standard", indigo carmine (IC) dye, was found to be superior to both white light and filter 4. Filter 6 (RGB wavelengths of 580, 520, and 460 nm, respectively) allowed for exploration of the IC-stained mucosa. When assessing mucosal polyps, both FICE with magnification, and magnification following dye spraying were superior to the same techniques without magnification and to white light imaging. In the presence of suboptimal bowel preparation, observation with the FICE mode was possible, and endoscopists considered it to be superior to observation with white light. FICE-filter 4 with magnification improves the image quality of the colonic vascular patterns obtained with WLE.

  13. Point Analysis in Java applied to histological images of the perforant pathway: a user's account.

    PubMed

    Scorcioni, Ruggero; Wright, Susan N; Patrick Card, J; Ascoli, Giorgio A; Barrionuevo, Germán

    2008-01-01

    The freeware Java tool Point Analysis in Java (PAJ), created to perform 3D point analysis, was tested in an independent laboratory setting. The input data consisted of images of the hippocampal perforant pathway from serial immunocytochemical localizations of the rat brain in multiple views at different resolutions. The low magnification set (x2 objective) comprised the entire perforant pathway, while the high magnification set (x100 objective) allowed the identification of individual fibers. A preliminary stereological study revealed a striking linear relationship between the fiber count at high magnification and the optical density at low magnification. PAJ enabled fast analysis for down-sampled data sets and a friendly interface with automated plot drawings. Noted strengths included the multi-platform support as well as the free availability of the source code, conducive to a broad user base and maximum flexibility for ad hoc requirements. PAJ has great potential to extend its usability by (a) improving its graphical user interface, (b) increasing its input size limit, (c) improving response time for large data sets, and (d) potentially being integrated with other Java graphical tools such as ImageJ.

  14. Environmental factors prevail over dispersal constraints in determining the distribution and assembly of Trichoptera species in mountain lakes.

    PubMed

    de Mendoza, Guillermo; Ventura, Marc; Catalan, Jordi

    2015-07-01

    Aiming to elucidate whether large-scale dispersal factors or environmental species sorting prevail in determining patterns of Trichoptera species composition in mountain lakes, we analyzed the distribution and assembly of the most common Trichoptera (Plectrocnemia laetabilis, Polycentropus flavomaculatus, Drusus rectus, Annitella pyrenaea, and Mystacides azurea) in the mountain lakes of the Pyrenees (Spain, France, Andorra) based on a survey of 82 lakes covering the geographical and environmental extremes of the lake district. Spatial autocorrelation in species composition was determined using Moran's eigenvector maps (MEM). Redundancy analysis (RDA) was applied to explore the influence of MEM variables and in-lake, and catchment environmental variables on Trichoptera assemblages. Variance partitioning analysis (partial RDA) revealed the fraction of species composition variation that could be attributed uniquely to either environmental variability or MEM variables. Finally, the distribution of individual species was analyzed in relation to specific environmental factors using binomial generalized linear models (GLM). Trichoptera assemblages showed spatial structure. However, the most relevant environmental variables in the RDA (i.e., temperature and woody vegetation in-lake catchments) were also related with spatial variables (i.e., altitude and longitude). Partial RDA revealed that the fraction of variation in species composition that was uniquely explained by environmental variability was larger than that uniquely explained by MEM variables. GLM results showed that the distribution of species with longitudinal bias is related to specific environmental factors with geographical trend. The environmental dependence found agrees with the particular traits of each species. We conclude that Trichoptera species distribution and composition in the lakes of the Pyrenees are governed predominantly by local environmental factors, rather than by dispersal constraints. For boreal lakes, with similar environmental conditions, a strong role of dispersal capacity has been suggested. Further investigation should address the role of spatial scaling, namely absolute geographical distances constraining dispersal and steepness of environmental gradients at short distances.

  15. Environmental factors prevail over dispersal constraints in determining the distribution and assembly of Trichoptera species in mountain lakes

    PubMed Central

    de Mendoza, Guillermo; Ventura, Marc; Catalan, Jordi

    2015-01-01

    Aiming to elucidate whether large-scale dispersal factors or environmental species sorting prevail in determining patterns of Trichoptera species composition in mountain lakes, we analyzed the distribution and assembly of the most common Trichoptera (Plectrocnemia laetabilis, Polycentropus flavomaculatus, Drusus rectus, Annitella pyrenaea, and Mystacides azurea) in the mountain lakes of the Pyrenees (Spain, France, Andorra) based on a survey of 82 lakes covering the geographical and environmental extremes of the lake district. Spatial autocorrelation in species composition was determined using Moran’s eigenvector maps (MEM). Redundancy analysis (RDA) was applied to explore the influence of MEM variables and in-lake, and catchment environmental variables on Trichoptera assemblages. Variance partitioning analysis (partial RDA) revealed the fraction of species composition variation that could be attributed uniquely to either environmental variability or MEM variables. Finally, the distribution of individual species was analyzed in relation to specific environmental factors using binomial generalized linear models (GLM). Trichoptera assemblages showed spatial structure. However, the most relevant environmental variables in the RDA (i.e., temperature and woody vegetation in-lake catchments) were also related with spatial variables (i.e., altitude and longitude). Partial RDA revealed that the fraction of variation in species composition that was uniquely explained by environmental variability was larger than that uniquely explained by MEM variables. GLM results showed that the distribution of species with longitudinal bias is related to specific environmental factors with geographical trend. The environmental dependence found agrees with the particular traits of each species. We conclude that Trichoptera species distribution and composition in the lakes of the Pyrenees are governed predominantly by local environmental factors, rather than by dispersal constraints. For boreal lakes, with similar environmental conditions, a strong role of dispersal capacity has been suggested. Further investigation should address the role of spatial scaling, namely absolute geographical distances constraining dispersal and steepness of environmental gradients at short distances. PMID:26257867

  16. CHAMP - Camera, Handlens, and Microscope Probe

    NASA Technical Reports Server (NTRS)

    Mungas, G. S.; Beegle, L. W.; Boynton, J.; Sepulveda, C. A.; Balzer, M. A.; Sobel, H. R.; Fisher, T. A.; Deans, M.; Lee, P.

    2005-01-01

    CHAMP (Camera, Handlens And Microscope Probe) is a novel field microscope capable of color imaging with continuously variable spatial resolution from infinity imaging down to diffraction-limited microscopy (3 micron/pixel). As an arm-mounted imager, CHAMP supports stereo-imaging with variable baselines, can continuously image targets at an increasing magnification during an arm approach, can provide precision range-finding estimates to targets, and can accommodate microscopic imaging of rough surfaces through a image filtering process called z-stacking. Currently designed with a filter wheel with 4 different filters, so that color and black and white images can be obtained over the entire Field-of-View, future designs will increase the number of filter positions to include 8 different filters. Finally, CHAMP incorporates controlled white and UV illumination so that images can be obtained regardless of sun position, and any potential fluorescent species can be identified so the most astrobiologically interesting samples can be identified.

  17. Detecting imperceptible movements in structures by means of video magnification

    NASA Astrophysics Data System (ADS)

    Ordóñez, Celestino; Cabo, Carlos; García-Cortés, Silverio; Menéndez, Agustín.

    2017-06-01

    The naked eye is not able to perceive very slow movements such as those occurring in certain structures under external forces. This might be the case of metallic or concrete bridges, tower cranes or steel beams. However, sometimes it is of interest to view such movements, since they can provide useful information regarding the mechanical state of those structures. In this work, we analyze the utility of video magnification to detect imperceptible movements in several types of structures. First, laboratory experiments were conducted to validate the method. Then, two different tests were carried out on real structures: one on a water slide and another on a tower crane. The results obtained allow us to conclude that image cross-correlation and video magnification is indeed a promising low-cost technique for structure health monitoring.

  18. Mathematics of gravitational lensing: multiple imaging and magnification

    NASA Astrophysics Data System (ADS)

    Petters, A. O.; Werner, M. C.

    2010-09-01

    The mathematical theory of gravitational lensing has revealed many generic and global properties. Beginning with multiple imaging, we review Morse-theoretic image counting formulas and lower bound results, and complex-algebraic upper bounds in the case of single and multiple lens planes. We discuss recent advances in the mathematics of stochastic lensing, discussing a general formula for the global expected number of minimum lensed images as well as asymptotic formulas for the probability densities of the microlensing random time delay functions, random lensing maps, and random shear, and an asymptotic expression for the global expected number of micro-minima. Multiple imaging in optical geometry and a spacetime setting are treated. We review global magnification relation results for model-dependent scenarios and cover recent developments on universal local magnification relations for higher order caustics.

  19. Evolution of dispersal in spatially and temporally variable environments: The importance of life cycles.

    PubMed

    Massol, François; Débarre, Florence

    2015-07-01

    Spatiotemporal variability of the environment is bound to affect the evolution of dispersal, and yet model predictions strongly differ on this particular effect. Recent studies on the evolution of local adaptation have shown that the life cycle chosen to model the selective effects of spatiotemporal variability of the environment is a critical factor determining evolutionary outcomes. Here, we investigate the effect of the order of events in the life cycle on the evolution of unconditional dispersal in a spatially heterogeneous, temporally varying landscape. Our results show that the occurrence of intermediate singular strategies and disruptive selection are conditioned by the temporal autocorrelation of the environment and by the life cycle. Life cycles with dispersal of adults versus dispersal of juveniles, local versus global density regulation, give radically different evolutionary outcomes that include selection for total philopatry, evolutionary bistability, selection for intermediate stable states, and evolutionary branching points. Our results highlight the importance of accounting for life-cycle specifics when predicting the effects of the environment on evolutionarily selected trait values, such as dispersal, as well as the need to check the robustness of model conclusions against modifications of the life cycle. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  20. Chromoendoscopy and magnification endoscopy in Barrett's esophagus.

    PubMed

    Connor, Michael J; Sharma, Prateek

    2003-04-01

    Chromoendoscopy and magnification endoscopy appear to be a valuable adjuncts for the detection and classification of BE. These techniques may also prove to be useful aids in surveillance protocols for identifying dysplastic epithelium or early cancer within a segment of BE. Ideally, the use of these techniques would enable the endoscopist to rule in or out the presence of IM and of dysplastic or cancerous epithelium by obtaining only a minimal number of targeted biopsy specimens, or potentially performing no biopsies at all. This could transform upper endoscopy into a much more effective screening and surveillance tool for BE. Several problems currently exist for the use of chromoendoscopy for BE. Results of studies reporting the accuracy of chromoendoscopy remain mixed,and are likely explained by the wide range of techniques and materials used in the investigations. Staining adds several steps, and likely several minutes, to an upper endoscopy. Staining within the esophagus is often patchy and uneven. In addition, poor spraying technique exaggerates the irregular uptake by the mucosa. There is a high false-positive rate when staining gastric-type epithelium and denuded epithelium. Areas of dysplasia or cancer may take up stain in an irregular manner, or may not stain at all. Chromoendoscopy is a relatively new technique in the management of BE and depends on the skill and experience of the endoscopist. Magnification, however, only allows the endoscopist to observe small areas of mucosa at a time, increasing the overall complexity and length of the procedure. The learning curve for this procedure is relatively short, however, and endoscopists can usually become proficient in the technique quickly. Currently, the greatest body of literature exists concerning the use of methylene blue for diagnosing BE. At the present time, chromoendoscopy and magnification endoscopy appear to be most beneficial in detecting IM in short segments of esophageal columnar-appearing mucosa. If used consistently by practicing physicians, the accuracy of biopsies for IM could be improved. If endoscopic ablative therapy for HGD and early adenocarcinoma becomes accepted, sensitive methods of detecting residual BE after ablation will be needed to help guide additional endoscopic therapy. Chromoendoscopy and magnification endoscopy could prove helpful in this setting. Further research in this field remains to be performed. As a first step, a uniform classification system for staining and magnification patterns should be devised. If investigators can reach a consensus, and validate classification, terminology, and pattern-types, future studies could be performed using "common and similar language." More controlled investigations with larger numbers of patients must be performed before tissue staining and magnification endoscopy become a part of the practicing endoscopist's armamentarium. The ultimate aims of chromoendoscopy and magnification endoscopy in the setting of BE are to show improved outcomes--namely, early detection of cancer and improved survival rates. These goals have not yet been realized and meeting them will require well-designed studies in the future.

  1. Safety of Microsurgery Under Loupes Versus Microscope: A Head-to-Head Comparison of 2 Surgeons With Similar Experiences.

    PubMed

    Ehanire, Tosan; Singhal, Dhruv; Mast, Bruce; Leyngold, Mark

    2018-01-24

    Microsurgery is performed using either the operating microscope or loupe magnification. Use of the operating microscope is considered the "criterion standard"; however, loupes are emerging as a safe and reliable technique to perform microsurgery. The purpose of this study was to analyze the safety of microsurgery under loupe magnification compared with the microscope. Previous studies discussing the safety of loupe magnification during microsurgery have been published; however, this is the first study to compare free flap outcomes from 2 surgeons at the same institution, each using their respective technique. The outcomes were compared by retrospective chart review of 116 patients, and 148 microvascular free tissue transfers were performed between January 1, 2013, and July 15, 2016, by 2 surgeons (D.S.) and (M.L.). Patients' demographics, free flap failure rate, and other surgical complications were analyzed. Statistical significance was determined by unpaired t test, and χ analysis was used to determine statistical significance in proportions between groups. Thirty-eight percent of flaps were performed under ×3.5 loupe magnification and 62% under the operating microscope. Most free flaps used were deep inferior epigastric perforator or muscle sparing transverse rectus abdominis flaps (52%) for breast reconstruction, remainder of free flaps included ALT, radial forearm, and latissimus dorsi for a variety of reconstructive applications. There was no significant difference between the loupes and microscope groups in intraoperative anastomotic revision rate (27% vs 17%), postoperative arterial or venous thrombosis (4.4% vs 2.6%, 5.4% vs 2.2%), flap loss (3.6% vs 2.2%), or median length of stay (6 days vs 6.5 days). The loupe magnification group had statistically significant shorter setup time (20 minutes, P < 0.01). Consistent with previously reported studies, we found no statistical difference in free flap outcomes and safety under loupe magnification compared with the operating microscope. This is the first study to demonstrate these findings with 2 microsurgeons both in their first 3 years in practice, with similar training and experience, operating at the same institution and given the same resources, each using either microscopes or loupes for microsurgery.

  2. Improved mass constraints for two nearby strong-lensing elliptical galaxies from Hubble Space Telescope imaging

    NASA Astrophysics Data System (ADS)

    Collier, William P.; Smith, Russell J.; Lucey, John R.

    2018-01-01

    We analyse newly obtained Hubble Space Telescope imaging for two nearby strong lensing elliptical galaxies, SNL-1 (z = 0.03) and SNL-2 (z = 0.05), in order to improve the lensing mass constraints. The imaging reveals previously unseen structure in both the lens galaxies and lensed images. For SNL-1, which has a well resolved source, we break the mass-versus-shear degeneracy using the relative magnification information, and measure a lensing mass of 9.49 ± 0.15 × 1010 M⊙, a 7 per cent increase on the previous estimate. For SNL-2, the imaging reveals a bright unresolved component to the source and this presents additional complexity due to possible active galactic nucleus microlensing or variability. We tentatively use the relative magnification information to constrain the contribution from SNL-2's nearby companion galaxy, measuring a lensing mass of 12.59 ± 0.30 × 1010 M⊙, a 9 per cent increase in mass. Our improved lens modelling reduces the mass uncertainty from 5 and 10 per cent to 2 and 3 per cent, respectively. Our results support the conclusions of the previous analysis, with newly measured mass excess parameters of 1.17 ± 0.09 and 0.96 ± 0.10 for SNL-1 and SNL-2, relative to a Milky Way like (Kroupa) initial mass function.

  3. Crystalline lens thickness determines the perceived chromatic difference in magnification.

    PubMed

    Chen, Yun; Schaeffel, Frank

    2014-03-01

    Since the origin of the high interindividual variability of the chromatic difference in retinal image magnification (CDM) in the human eye is not well understood, optical parameters that might determine its magnitude were studied in 21 healthy subjects with ages ranging from 21 to 58 years. Two psychophysical procedures were used to quantify CDM. They produced highly correlated results. First, a red and a blue square, presented on a black screen, had to be matched in size by the subjects with their right eyes. Second, a filled red and blue square, flickering on top of each other at 2 Hz, had to be adjusted in perceived brightness and then in size to minimize the impression of flicker. CDM varied widely among subjects from 0.0% to 3.6%. Biometric ocular parameters were measured with low coherence interferometry and crystalline lens tilt and decentration with a custom-built Purkinjemeter. Correlations were studied between CDM and corneal power, anterior chamber depth, lens thickness, lens tilt and lens decentration, and vitreous chamber depths. Lens thickness was found significantly correlated with CDM and accounted for 64% of its variance. Vertical lens tilt and decentration were also significantly correlated. It was also found that CDM increased by 3.5% per year, and part of this change can be attributed to the age-related increase in lens thickness.

  4. A fisheye viewer for microarray-based gene expression data

    PubMed Central

    Wu, Min; Thao, Cheng; Mu, Xiangming; Munson, Ethan V

    2006-01-01

    Background Microarray has been widely used to measure the relative amounts of every mRNA transcript from the genome in a single scan. Biologists have been accustomed to reading their experimental data directly from tables. However, microarray data are quite large and are stored in a series of files in a machine-readable format, so direct reading of the full data set is not feasible. The challenge is to design a user interface that allows biologists to usefully view large tables of raw microarray-based gene expression data. This paper presents one such interface – an electronic table (E-table) that uses fisheye distortion technology. Results The Fisheye Viewer for microarray-based gene expression data has been successfully developed to view MIAME data stored in the MAGE-ML format. The viewer can be downloaded from the project web site . The fisheye viewer was implemented in Java so that it could run on multiple platforms. We implemented the E-table by adapting JTable, a default table implementation in the Java Swing user interface library. Fisheye views use variable magnification to balance magnification for easy viewing and compression for maximizing the amount of data on the screen. Conclusion This Fisheye Viewer is a lightweight but useful tool for biologists to quickly overview the raw microarray-based gene expression data in an E-table. PMID:17038193

  5. X-ray tests of a two-dimensional stigmatic imaging scheme with variable magnifications

    DOE PAGES

    Lu, J.; Bitter, M.; Hill, K. W.; ...

    2014-07-22

    A two-dimensional stigmatic x-ray imaging scheme, consisting of two spherically bent crystals, one concave and one convex, was recently proposed [M. Bitter et al., Rev. Sci. Instrum. 83, 10E527 (2012)]. We report that the Bragg angles and the radii of curvature of the two crystals of this imaging scheme are matched to eliminate the astigmatism and to satisfy the Bragg condition across both crystal surfaces for a given x-ray energy. In this paper, we consider more general configurations of this imaging scheme, which allow us to vary the magnification for a given pair of crystals and x-ray energy. The stigmaticmore » imaging scheme has been validated for the first time by imaging x-rays generated by a micro-focus x-ray source with source size of 8.4 μm validated by knife-edge measurements. Results are presented from imaging the tungsten Lα1 emission at 8.3976 keV, using a convex Si-422 crystal and a concave Si-533 crystal with 2d-spacings of 2.21707 Å and 1.65635 Å and radii of curvature of 500 ± 1 mm and 823 ± 1 mm, respectively, showing a spatial resolution of 54.9 μm. Finally, this imaging scheme is expected to be of interest for the two-dimensional imaging of laser produced plasmas.« less

  6. The effect of magnification lenses on reducing musculoskeletal discomfort among dentists.

    PubMed

    Aghilinejad, Mashallah; Kabir-Mokamelkhah, Elaheh; Talebi, Atefeh; Soleimani, Roghayeh; Dehghan, Naser

    2016-01-01

    Background: Work-related musculoskeletal disorders are the most important problems in the health workforce. These discomforts cause many working days losses, increase absenteeism from work, and impose annual economic costs. Awkward posture is the most important factor among the risk factors for work-related musculoskeletal disorders. This study aimed at implementing an interventional ergonomic program to minimize musculoskeletal disorder among dentists. Methods: This semi- experimental study was conducted on 75 dentists of Milad hospital using a census method. The Nordic Questionnaire was used to determine the prevalence of musculoskeletal disorders. In this study, the intervention was to apply optical magnification lens whose impact on reducing musculoskeletal disorder had been previously investigated. Corlett and Bishop Scale was used to evaluate musculoskeletal disorders before and after the intervention. Paired t-test was conducted to compare the discomfort intensity before and after the intervention. Results: The results revealed that the prevalence of musculoskeletal disorders in neck, back, shoulder, and arm were higher than other areas of the body in dentists. There was a significant difference in discomfort intensity of the neck, shoulder, arm, back, elbow, forearm, and the whole body after the ergonomic intervention (p<0.05). Surveys on improving working conditions using the magnification lens revealed that more than 89% of the individuals expressed that the use of the lens increased the ease while working. Conclusion: The present study revealed that the use of optical magnification loupes, because of providing a suitable posture while working, could reduce musculoskeletal disorders in different areas of the body. Thus, we can predict that the prevalence of musculoskeletal disorders will be reduced in dentists in a long run if they use optical magnification loupes.

  7. Does Optic Nerve Head Size Variation Affect Circumpapillary Retinal Nerve Fiber Layer Thickness Measurement by Optical Coherence Tomography?

    PubMed Central

    Huang, David; Chopra, Vikas; Lu, Ake Tzu-Hui; Tan, Ou; Francis, Brian; Varma, Rohit

    2012-01-01

    Purpose. To determine the relationship between retinal nerve fiber layer (RNFL) thickness, optic disc size, and image magnification. Methods. The cohort consisted of 196 normal eyes of 101 participants in the Advanced Imaging for Glaucoma Study (AIGS), a multicenter, prospective, longitudinal study to develop advanced imaging technologies for glaucoma diagnosis. Scanning laser tomography was used to measure disc size. Optical coherence tomography (OCT) was used to perform circumpapillary RNFL thickness measurements using the standard fixed 3.46-mm nominal scan diameter. A theoretical model of magnification effects was developed to relate RNFL thickness (overall average) with axial length and magnification. Results. Multivariate regression showed no significant correlation between RNFL thickness and optic disc area (95% confidence interval [CI] = −0.9 to 4.1 μm/mm2, P = 0.21). Linear regression showed that RNFL thickness depended significantly on axial length (slope = −3.1 μm/mm, 95% CI = −4.9 to −1.3, P = 0.001) and age (slope = −0.3 μm/y, 95% CI = −0.5 to −0.2, P = 0.0002). The slope values agreed closely with the values predicted by the magnification model. Conclusions. There is no significant association between RNFL thickness and optic disc area. Previous publications that showed such an association may have been biased by the effect of axial length on fundus image magnification and, therefore, both measured RNFL thickness and apparent disc area. The true diameter of the circumpapillary OCT scan is larger for a longer eye (more myopic eye), leading to a thinner RNFL measurement. Adjustment of measured RNFL thickness by axial length, in addition to age, may lead to a tighter normative range and improve the detection of RNFL thinning due to glaucoma. PMID:22743319

  8. Lens models and magnification maps of the six Hubble Frontier Fields clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Traci L.; Sharon, Keren; Bayliss, Matthew B.

    2014-12-10

    We present strong-lensing models as well as mass and magnification maps for the cores of the six Hubble Space Telescope (HST) Frontier Fields galaxy clusters. Our parametric lens models are constrained by the locations and redshifts of multiple image systems of lensed background galaxies. We use a combination of photometric redshifts and spectroscopic redshifts of the lensed background sources obtained by us (for A2744 and AS1063), collected from the literature, or kindly provided by the lensing community. Using our results, we (1) compare the derived mass distribution of each cluster to its light distribution, (2) quantify the cumulative magnification powermore » of the HST Frontier Fields clusters, (3) describe how our models can be used to estimate the magnification and image multiplicity of lensed background sources at all redshifts and at any position within the cluster cores, and (4) discuss systematic effects and caveats resulting from our modeling methods. We specifically investigate the effect of the use of spectroscopic and photometric redshift constraints on the uncertainties of the resulting models. We find that the photometric redshift estimates of lensed galaxies are generally in excellent agreement with spectroscopic redshifts, where available. However, the flexibility associated with relaxed redshift priors may cause the complexity of large-scale structure that is needed to account for the lensing signal to be underestimated. Our findings thus underline the importance of spectroscopic arc redshifts, or tight photometric redshift constraints, for high precision lens models. All products from our best-fit lens models (magnification, convergence, shear, deflection field) and model simulations for estimating errors are made available via the Mikulski Archive for Space Telescopes.« less

  9. A systematic assessment of goblet cell sampling of the bulbar conjunctiva by impression cytology.

    PubMed

    Doughty, Michael J

    2015-07-01

    The purpose of this study was to assess the apparent goblet cell density (GCD) from conjunctival impression cytology (CIC) samples in relation to the number of conjunctival cells collected onto the filters. CIC specimens were collected from the superior-temporal bulbar conjunctiva of 16 pigmented rabbits onto Biopore (Millicell-CM) membranes, fixed with buffered glutaraldehyde and stained with Giemsa. Different numbers of microscope fields of view in each of the specimens were imaged by light microscopy using a 20× magnification objective lens (200× final magnification), and the goblet cells marked and counted. The GCD values/sq. mm were calculated. The same conjunctival region of 3 other rabbits was also prepared for transmission electron microscopy (TEM) by fixation, in situ, with the same buffered glutaraldehyde. Mean values for GCD estimates were found to vary from 399 to 1576 cells/sq. mm, depending on the image sampling and analysis strategy chosen, with the lowest inter-sample variance of around 10% being found if a maximum goblet cell count was taken on substantially multilayered regions of the CIC specimens. Counts of the number of goblet cells per 1000 visible conjunctival epithelial cells yielded a value of close to 90 (range 36-151), with modest inter-sample variability of around 30%. A three or ten 200× microscope field and random sampling strategy yielded mean GCD values between 542 and 670 cells/sq. mm, but with very high intra- and inter-sample variance of at least 60% and sometimes higher than 100%. TEM confirmed the multilayered organization of the conjunctiva and the deeper lying goblet cells. The general use of a goblet cell count as an objective marker for conjunctival normality or health is likely to be highly variable unless a more specific strategy is adopted. Beyond providing details of exactly the counting strategy used, it would be very useful to provide full details of the actual microscope field size used as well as information on the intra-sample variability in goblet cell counts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Flat liquid crystal diffractive lenses with variable focus and magnification

    NASA Astrophysics Data System (ADS)

    Valley, Pouria

    Non-mechanical variable lenses are important for creating compact imaging devices. Various methods employing dielectrically actuated lenses, membrane lenses, and liquid crystal lenses were previously proposed [1-4]. In This dissertation the design, fabrication, and characterization of innovative flat tunable-focus liquid crystal diffractive lenses (LCDL) are presented. LCDL employ binary Fresnel zone electrodes fabricated on Indium-Tin-Oxide using conventional micro-photolithography. The light phase can be adjusted by varying the effective refractive index of a nematic liquid crystal sandwiched between the electrodes and a reference substrate. Using a proper voltage distribution across various electrodes the focal length can be changed between several discrete values. Electrodes are shunted such that the correct phase retardation step sequence is achieved. If the number of 2pi zone boundaries is increased by a factor of m the focal length is changed from f to f/m based on the digitized Fresnel zone equation: f = rm2/2mlambda, where r m is mth zone radius, and lambda is the wavelength. The chromatic aberration of the diffractive lens is addressed and corrected by adding a variable fluidic lens. These LCDL operate at very low voltage levels (+/-2.5V ac input), exhibit fast switching times (20-150 ms), can have large apertures (>10 mm), and small form factor, and are robust and insensitive to vibrations, gravity, and capillary effects that limit membrane and dielectrically actuated lenses. Several tests were performed on the LCDL including diffraction efficiency measurement, switching dynamics, and hybrid imaging with a refractive lens. Negative focal lengths are achieved by adjusting the voltages across electrodes. Using these lenses in combination, magnification can be changed and zoom lenses can be formed. These characteristics make LCDL a good candidate for a variety of applications including auto-focus and zoom lenses in compact imaging devices such as camera phones. A business plan centered on this technology was developed as part of the requirements for the minor in entrepreneurship from the Eller College of Management. An industrial analysis is presented in this study that involves product development, marketing, and financial analyses (Appendix I).

  11. Estimating and mapping ecological processes influencing microbial community assembly

    DOE PAGES

    Stegen, James C.; Lin, Xueju; Fredrickson, Jim K.; ...

    2015-05-01

    Ecological community assembly is governed by a combination of (i) selection resulting from among-taxa differences in performance; (ii) dispersal resulting from organismal movement; and (iii) ecological drift resulting from stochastic changes in population sizes. The relative importance and nature of these processes can vary across environments. Selection can be homogeneous or variable, and while dispersal is a rate, we conceptualize extreme dispersal rates as two categories; dispersal limitation results from limited exchange of organisms among communities, and homogenizing dispersal results from high levels of organism exchange. To estimate the influence and spatial variation of each process we extend a recentlymore » developed statistical framework, use a simulation model to evaluate the accuracy of the extended framework, and use the framework to examine subsurface microbial communities over two geologic formations. For each subsurface community we estimate the degree to which it is influenced by homogeneous selection, variable selection, dispersal limitation, and homogenizing dispersal. Our analyses revealed that the relative influences of these ecological processes vary substantially across communities even within a geologic formation. We further identify environmental and spatial features associated with each ecological process, which allowed mapping of spatial variation in ecological-process-influences. The resulting maps provide a new lens through which ecological systems can be understood; in the subsurface system investigated here they revealed that the influence of variable selection was associated with the rate at which redox conditions change with subsurface depth.« less

  12. Dispersion in deep polar firn driven by synoptic-scale surface pressure variability

    NASA Astrophysics Data System (ADS)

    Buizert, Christo; Severinghaus, Jeffrey P.

    2016-09-01

    Commonly, three mechanisms of firn air transport are distinguished: molecular diffusion, advection, and near-surface convective mixing. Here we identify and describe a fourth mechanism, namely dispersion driven by synoptic-scale surface pressure variability (or barometric pumping). We use published gas chromatography experiments on firn samples to derive the along-flow dispersivity of firn, and combine this dispersivity with a dynamical air pressure propagation model forced by surface air pressure time series to estimate the magnitude of dispersive mixing in the firn. We show that dispersion dominates mixing within the firn lock-in zone. Trace gas concentrations measured in firn air samples from various polar sites confirm that dispersive mixing occurs. Including dispersive mixing in a firn air transport model suggests that our theoretical estimates have the correct order of magnitude, yet may overestimate the true dispersion. We further show that strong barometric pumping, such as at the Law Dome site, may reduce the gravitational enrichment of δ15N-N2 and other tracers below gravitational equilibrium, questioning the traditional definition of the lock-in depth as the depth where δ15N enrichment ceases. Last, we propose that 86Kr excess may act as a proxy for past synoptic activity (or paleo-storminess) at the site.

  13. Rapid biodiagnostic ex vivo imaging at 1 μm pixel resolution with thermal source FTIR FPA.

    PubMed

    Findlay, C R; Wiens, R; Rak, M; Sedlmair, J; Hirschmugl, C J; Morrison, Jason; Mundy, C J; Kansiz, M; Gough, K M

    2015-04-07

    A recent upgrade to the optics configuration of a thermal source FTIR microscope equipped with a focal plane array detector has enabled rapid acquisition of high magnification spectrochemical images, in transmission, with an effective geometric pixel size of ∼1 × 1 μm(2) at the sample plane. Examples, including standard imaging targets for scale and accuracy, as well as biomedical tissues and microorganisms, have been imaged with the new system and contrasted with data acquired at normal magnification and with a high magnification multi-beam synchrotron instrument. With this optics upgrade, one can now conduct rapid biodiagnostic ex vivo tissue imaging in-house, with images collected over larger areas, in less time (minutes) and with comparable quality and resolution to the best synchrotron source FTIR imaging capabilities.

  14. Atmospheric Dispersion Capability for T2VOC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldenburg, Curtis M.

    2005-09-19

    Atmospheric transport by variable-K theory dispersion has been added to T2VOC. The new code, T2VOCA, models flow and transport in the subsurface identically to T2VOC, but includes also the capability for modeling passive multicomponent variable-K theory dispersion in an atmospheric region assumed to be flat, horizontal, and with a logarithmic wind profile. The specification of the logarithmic wind profile in the T2VOC input file is automated through the use of a build code called ATMDISPV. The new capability is demonstrated on 2-D and 3-D example problems described in this report.

  15. The Morphology of Smoke Inhalation Injury in Sheep,

    DTIC Science & Technology

    1991-01-01

    exposure. Segments of intact epithelium (E) areethane. The specimens were dried by the critical point method adjacent to necrotic areas ( N ). The tracheal...magnification: X325. essentially normal lung ( N ). Original magnification: x125. 1484 The Journal of Trauma November 1991 The extent and severity of the injury...obstruction by desqapate netic endofronclia n tise acuand esulant ypoxa.’by desquamated necrotic endobronchial tissue. Accu- and resultant hypoxia.5 mulation

  16. The Modulation of Fibrosis in Scleroderma by 3-Deoxyglucosone

    DTIC Science & Technology

    2010-06-01

    stained and analyzed for expression of GADD153 in the nucleus by immunofluorescence analysis using Cy3- conjugated secondary antibody . Mean...with the anti-Nox4 polyclonal antibody and Cy2-conjugated secondary antibody . Images were taken at 40 X magnification on an epi-fluorescence...GADD153 in the nucleus by immunofluorescence using a Cy3-conjugated secondary antibody . Representative images were taken at 40 X magnification on an

  17. Bias magnification in ecologic studies: a methodological investigation

    PubMed Central

    Webster, Thomas F

    2007-01-01

    Background As ecologic studies are often inexpensive to conduct, consideration of the magnitude and direction of ecologic biases may be useful in both study design and sensitivity analysis of results. This paper examines three types of ecologic bias: confounding by group, effect measure modification by group, and non-differential exposure misclassification. Methods Bias of the risk difference on the individual and ecologic levels are compared using two-by-two tables, simple equations, and risk diagrams. Risk diagrams provide a convenient way to simultaneously display information from both levels. Results Confounding by group and effect measure modification by group act in the same direction on the individual and group levels, but have larger impact on the latter. The reduction in exposure variance caused by aggregation magnifies the individual level bias due to ignoring groups. For some studies, the magnification factor can be calculated from the ecologic data alone. Small magnification factors indicate little bias beyond that occurring at the individual level. Aggregation is also responsible for the different impacts of non-differential exposure misclassification on individual and ecologic studies. Conclusion The analytical tools developed here are useful in analyzing ecologic bias. The concept of bias magnification may be helpful in designing ecologic studies and performing sensitivity analysis of their results. PMID:17615079

  18. Development and Optical Testing of the Camera, Hand Lens, and Microscope Probe with Scannable Laser Spectroscopy (CHAMP-SLS)

    NASA Technical Reports Server (NTRS)

    Mungas, Greg S.; Gursel, Yekta; Sepulveda, Cesar A.; Anderson, Mark; La Baw, Clayton; Johnson, Kenneth R.; Deans, Matthew; Beegle, Luther; Boynton, John

    2008-01-01

    Conducting high resolution field microscopy with coupled laser spectroscopy that can be used to selectively analyze the surface chemistry of individual pixels in a scene is an enabling capability for next generation robotic and manned spaceflight missions, civil, and military applications. In the laboratory, we use a range of imaging and surface preparation tools that provide us with in-focus images, context imaging for identifying features that we want to investigate at high magnification, and surface-optical coupling that allows us to apply optical spectroscopic analysis techniques for analyzing surface chemistry particularly at high magnifications. The camera, hand lens, and microscope probe with scannable laser spectroscopy (CHAMP-SLS) is an imaging/spectroscopy instrument capable of imaging continuously from infinity down to high resolution microscopy (resolution of approx. 1 micron/pixel in a final camera format), the closer CHAMP-SLS is placed to a feature, the higher the resultant magnification. At hand lens to microscopic magnifications, the imaged scene can be selectively interrogated with point spectroscopic techniques such as Raman spectroscopy, microscopic Laser Induced Breakdown Spectroscopy (micro-LIBS), laser ablation mass-spectrometry, Fluorescence spectroscopy, and/or Reflectance spectroscopy. This paper summarizes the optical design, development, and testing of the CHAMP-SLS optics.

  19. Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications

    NASA Astrophysics Data System (ADS)

    Zhang, Yu Shrike; Chang, Jae-Byum; Alvarez, Mario Moisés; Trujillo-de Santiago, Grissel; Aleman, Julio; Batzaya, Byambaa; Krishnadoss, Vaishali; Ramanujam, Aishwarya Aravamudhan; Kazemzadeh-Narbat, Mehdi; Chen, Fei; Tillberg, Paul W.; Dokmeci, Mehmet Remzi; Boyden, Edward S.; Khademhosseini, Ali

    2016-03-01

    To date, much effort has been expended on making high-performance microscopes through better instrumentation. Recently, it was discovered that physical magnification of specimens was possible, through a technique called expansion microscopy (ExM), raising the question of whether physical magnification, coupled to inexpensive optics, could together match the performance of high-end optical equipment, at a tiny fraction of the price. Here we show that such “hybrid microscopy” methods—combining physical and optical magnifications—can indeed achieve high performance at low cost. By physically magnifying objects, then imaging them on cheap miniature fluorescence microscopes (“mini-microscopes”), it is possible to image at a resolution comparable to that previously attainable only with benchtop microscopes that present costs orders of magnitude higher. We believe that this unprecedented hybrid technology that combines expansion microscopy, based on physical magnification, and mini-microscopy, relying on conventional optics—a process we refer to as Expansion Mini-Microscopy (ExMM)—is a highly promising alternative method for performing cost-effective, high-resolution imaging of biological samples. With further advancement of the technology, we believe that ExMM will find widespread applications for high-resolution imaging particularly in research and healthcare scenarios in undeveloped countries or remote places.

  20. Analysis of Soot Propensity in Combustion Processes Using Optical Sensors and Video Magnification

    PubMed Central

    Fuentes, Andrés; Reszka, Pedro; Carvajal, Gonzalo

    2018-01-01

    Industrial combustion processes are an important source of particulate matter, causing significant pollution problems that affect human health, and are a major contributor to global warming. The most common method for analyzing the soot emission propensity in flames is the Smoke Point Height (SPH) analysis, which relates the fuel flow rate to a critical flame height at which soot particles begin to leave the reactive zone through the tip of the flame. The SPH and is marked by morphological changes on the flame tip. SPH analysis is normally done through flame observations with the naked eye, leading to high bias. Other techniques are more accurate, but are not practical to implement in industrial settings, such as the Line Of Sight Attenuation (LOSA), which obtains soot volume fractions within the flame from the attenuation of a laser beam. We propose the use of Video Magnification techniques to detect the flame morphological changes and thus determine the SPH minimizing observation bias. We have applied for the first time Eulerian Video Magnification (EVM) and Phase-based Video Magnification (PVM) on an ethylene laminar diffusion flame. The results were compared with LOSA measurements, and indicate that EVM is the most accurate method for SPH determination. PMID:29751625

  1. A soft X-ray beamline for transmission X-ray microscopy at ALBA.

    PubMed

    Pereiro, E; Nicolás, J; Ferrer, S; Howells, M R

    2009-07-01

    The MISTRAL beamline is one of the seven phase-I beamlines at the ALBA synchrotron light source (Barcelona, Spain) that will be opened to users at the end of 2010. MISTRAL will be devoted to cryotomography in the water window and multi-keV spectral regions for biological applications. The optics design consists of a plane-grating monochromator that has been implemented using variable-line-spacing gratings to fulfil the requirements of X-ray microscopy using a reflective condenser. For instance, a fixed-focus condition independent of the included angle, constant magnification as well as coma and spherical aberration corrections are achieved with this system. The reported design is of wider use.

  2. Using the Quirk-Schofield Diagram to Explain Environmental Colloid Dispersion Phenomena

    ERIC Educational Resources Information Center

    Mays, David C.

    2007-01-01

    Colloid dispersion, through its role in soil science, hydrology, and contaminant transport, is a basic component of many natural resources and environmental education programs. However, comprehension of colloid dispersion phenomena is limited by the numerous variables involved. This article demonstrates how the Quirk-Schofield diagram can be used…

  3. Characterization of the pollen beetle, Brassicogethes aeneus, dispersal from woodlands to winter oilseed rape fields

    PubMed Central

    Barbu, Corentin Mario; Franck, Pierre; Roger-Estrade, Jean; Butier, Arnaud; Bazot, Mathieu; Valantin-Morison, Muriel

    2017-01-01

    Many crop pests rely on resources out of crop fields; understanding how they colonize the fields is an important factor to develop integrated pest management. In particular, the time of crop colonization and damage severity might be determined by pest movements between fields and non-crop areas. Notably, the pollen beetle, Brassicogethes aeneus, previously named Meligethes aeneus, one of the most important pests of winter oilseed rape, overwinters in woodlands. As a result, its abundance increases in oilseed rape fields near wooded areas. Here, we assessed the spatio-temporal patterns of the dispersal from woodlands to oilseed rape fields in diversified landscapes of a same region. We observed on four dates the abundance of pollen beetles in 24 fields spread in the Eure department, France. We modeled the abundance as a result of the dispersal from the neighboring woodlands. We compared the modalities of dispersal corresponding to different hypotheses on the dispersal origin, kernel shape and sources of variability. Within oilseed rape the distance to the edges of woodlands is not the main determinant of pollen beetle abundance. On the contrary, the variability of the abundance between fields is largely explained by the dispersal from neighboring woodlands but there is considerable variability between dates, sites and, to a lesser extent, between fields. The two dispersal kernels received similar support from the data and lead to similar conclusions. The mean dispersal distance is 1.2 km but seems to increase from a few hundred meters the first week to more than two kilometers the fourth, allowing the pollen beetles to reach more distant OSR fields. These results suggest that early varieties away from woodlands and late varieties close to the woodlands may limit attacks at the time when oilseed rape is the most sensitive. PMID:28841712

  4. Total airborne mold particle sampling: evaluation of sample collection, preparation and counting procedures, and collection devices.

    PubMed

    Godish, Diana; Godish, Thad

    2008-02-01

    This study was conducted to evaluate (i) procedures used to collect, prepare, and count total airborne mold spore/particle concentrations, and (ii) the relative field performance of three commercially available total airborne mold spore/particle sampling devices. Differences between factory and laboratory airflow calibration values of axial fan-driven sampling instruments (used in the study) indicated a need for laboratory calibration using a mass flow meter to ensure that sample results were accurately calculated. An aniline blue-amended Calberla's solution adjusted to a pH of 4.2-4.4 provided good sample mounting/counting results using Dow Corning high vacuum grease, Dow Corning 280A adhesive, and Dow Corning 316 silicone release spray for samples collected using mini-Burkard and Allergenco samplers. Count variability among analysts was most pronounced in 5% counts of relatively low mold particle deposition density samples and trended downward with increased count percentage and particle deposition density. No significant differences were observed among means of 5, 10, and 20% counts and among analysts; a significant interaction effect was observed between analysts' counts and particle deposition densities. Significantly higher mini-Burkard and Air-O-Cell total mold spore/particle counts for 600x vs. 400x (1.9 and 2.3 x higher, respectively), 1000x vs. 600x (1.9 and 2.2 x higher, respectively) and 1000x vs. 400x (3.6 and 4.6 x higher, respectively) comparisons indicated that 1000x magnification counts best quantified total airborne mold spore/particles using light microscopy, and that lower magnification counts may result in unacceptable underreporting of airborne mold spore/particle concentrations. Modest but significantly higher (1.2x) total mold spore concentrations were observed with Allergenco vs. mini-Burkard samples collected in co-located, concurrently operated sampler studies; moderate but significantly higher mini-Burkard count values (1.4x) were observed in similar studies with Air-O-Cell samplers. These count differences were relatively small compared with the large differences observed among three count magnifications.

  5. Submillimeter Galaxy Number Counts and Magnification by Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Lima, Marcos; Jain, Bhuvnesh; Devlin, Mark; Aguirre, James

    2010-07-01

    We present an analytical model that reproduces measured galaxy number counts from surveys in the wavelength range of 500 μm-2 mm. The model involves a single high-redshift galaxy population with a Schechter luminosity function that has been gravitationally lensed by galaxy clusters in the mass range 1013-1015 M sun. This simple model reproduces both the low-flux and the high-flux end of the number counts reported by the BLAST, SCUBA, AzTEC, and South Pole Telescope (SPT) surveys. In particular, our model accounts for the most luminous galaxies detected by SPT as the result of high magnifications by galaxy clusters (magnification factors of 10-30). This interpretation implies that submillimeter (submm) and millimeter surveys of this population may prove to be a useful addition to ongoing cluster detection surveys. The model also implies that the bulk of submm galaxies detected at wavelengths larger than 500 μm lie at redshifts greater than 2.

  6. Preparing and Restoring Composite Resin Restorations. The Advantage of High Magnification Loupes or the Dental Surgical Operating Microscope.

    PubMed

    Mamoun, John

    2015-01-01

    Use of magnification, such as 6x to 8x binocular surgical loupes or the surgical operating microscope, combined with co-axial illumination, may facilitate the creation of stable composite resin restorations that are less likely to develop caries, cracks or margin stains over years of service. Microscopes facilitate observation of clinically relevant microscopic visual details, such as microscopic amounts of demineralization or caries at preparation margins; microscopic areas of soft, decayed tooth structure; microscopic amounts of moisture contamination of the preparation during bonding; or microscopic marginal gaps in the composite. Preventing microscope-level errors in composite fabrication can result in a composite restoration that, at initial placement, appears perfect when viewed under 6x to 8x magnification and which also is free of secondary caries, marginal staining or cracks at multi-year follow-up visits.

  7. Fractal evaluation of drug amorphicity from optical and scanning electron microscope images

    NASA Astrophysics Data System (ADS)

    Gavriloaia, Bogdan-Mihai G.; Vizireanu, Radu C.; Neamtu, Catalin I.; Gavriloaia, Gheorghe V.

    2013-09-01

    Amorphous materials are metastable, more reactive than the crystalline ones, and have to be evaluated before pharmaceutical compound formulation. Amorphicity is interpreted as a spatial chaos, and patterns of molecular aggregates of dexamethasone, D, were investigated in this paper by using fractal dimension, FD. Images having three magnifications of D were taken from an optical microscope, OM, and with eight magnifications, from a scanning electron microscope, SEM, were analyzed. The average FD for pattern irregularities of OM images was 1.538, and about 1.692 for SEM images. The FDs of the two kinds of images are less sensitive of threshold level. 3D images were shown to illustrate dependence of FD of threshold and magnification level. As a result, optical image of single scale is enough to characterize the drug amorphicity. As a result, the OM image at a single scale is enough to characterize the amorphicity of D.

  8. T-wave alternans and dispersion of the QT interval as risk stratification markers in patients susceptible to sustained ventricular arrhythmias

    NASA Technical Reports Server (NTRS)

    Armoundas, A. A.; Osaka, M.; Mela, T.; Rosenbaum, D. S.; Ruskin, J. N.; Garan, H.; Cohen, R. J.

    1998-01-01

    T-wave alternans and QT dispersion were compared as predictors of the outcome of electrophysiologic study and arrhythmia-free survival in patients undergoing electrophysiologic evaluation. T-wave alternans was a highly significant predictor of these 2 outcome variables, whereas QT dispersion was not.

  9. Modelling larval dispersal dynamics of common sole (Solea solea) along the western Iberian coast

    NASA Astrophysics Data System (ADS)

    Tanner, Susanne E.; Teles-Machado, Ana; Martinho, Filipe; Peliz, Álvaro; Cabral, Henrique N.

    2017-08-01

    Individual-based coupled physical-biological models have become the standard tool for studying ichthyoplankton dynamics and assessing fish recruitment. Here, common sole (Solea solea L.), a flatfish of high commercial importance in Europe was used to evaluate transport of eggs and larvae and investigate the connectivity between spawning and nursery areas along the western Iberian coast as spatio-temporal variability in dispersal and recruitment patterns can result in very strong or weak year-classes causing large fluctuations in stock size. A three-dimensional particle tracking model coupled to Regional Ocean Modelling System model was used to investigate variability of sole larvae dispersal along the western Iberian coast over a five-year period (2004-2009). A sensitivity analysis evaluating: (1) the importance of diel vertical migrations of larvae and (2) the size of designated recruitment areas was performed. Results suggested that connectivity patterns of sole larvae dispersal and their spatio-temporal variability are influenced by the configuration of the coast with its topographical structures and thus the suitable recruitment area available as well as the wind-driven mesoscale circulation along the Iberian coast.

  10. Modified cataract surgery with telescopic magnification for patients with age-related macular degeneration.

    PubMed

    Iizuka, Megumi; Gorfinkel, John; Mandelcorn, Mark; Lam, Wai-Ching; Devenyi, Robert; Markowitz, Samuel N

    2007-12-01

    The most desirable effect following cataract surgery in the presence of age-related macular degeneration (AMD) is to obtain an improvement in distance resolution acuity, and the only optical solution to this is the use of telescopic magnification. The purpose of the study was to develop and verify the clinical utility of inducing low-grade telescopic magnification (<33%) at the time of cataract surgery by the choice of an appropriate intraocular lens power and spectacle glasses in patients with AMD and cataract. The design was a prospective, nonrandomized, interventional case series involving 6 patients aged 74-86 (mean 80; SD 4) years with AMD and cataract. Participants were males and females, equal in number, who had visual acuity of less than 20/400 in the weaker eye. Standard cataract surgery was performed in the weaker eye. The power of the intraocular lens was derived from the reduced Gullstrand model of the eye in such a way that at the intraocular lens plane a minus lens was created, which, together with a plus lens in matching glasses, formed a Galilean telescopic system with magnification of up to 33%. Outcome measures were visual acuity, contrast sensitivity, and activities of daily living (ADL) scores. The mean power of the implanted intraocular lenses was 6.31 (SD 2.42) diopters and, according to the theoretical derivations, achieved magnification between 20% and 30% (mean 26%; SD 4.92%). Visual acuity improved for the group from a mean of 20/525 (logMAR 1.48; SD 0.13) to a mean of 20/290 (logMAR 1.20; SD 0.21). Contrast sensitivity improved significantly (p < 0.001) only in the lower spatial frequencies. Postoperatively, ADL scores improved significantly in all patients except one. At the end of the follow-up period, 3 patients reported that they would like to proceed with similar surgery for the other eye. An optimal surgical telescopic device based on low-grade telescopic magnification may improve functional vision for usage in all tasks in AMD patients. All patients from this study were satisfied following surgery and viewed study outcomes as positive and beneficial, and some patients responded with enthusiasm. Surgeons are encouraged to use this modified technique of cataract surgery in low-vision patients with AMD and cataract.

  11. FGF Signaling and Dietary Factors in the Prostate

    DTIC Science & Technology

    2006-09-01

    with the anti-AR antibody . e-h, Fgfr2f/f prostate. e, low magnification view of the prostate; f and g, high magnification view of e, showing...dorsolateral and ventral prostatic lobes, respectively; h, immunohistochemistry staining with the anti-AR antibody . i-m, H&E staining of prostatic tissue of...PBS. The lysates equivalent to 20 μg proteins were separated on SDS-PAGE, and cytokeratins were detected with anti-pan cytokeratin antibodies . M, 1

  12. Algorithm-Based Motion Magnification for Video Processing in Urological Laparoscopy.

    PubMed

    Adams, Fabian; Schoelly, Reto; Schlager, Daniel; Schoenthaler, Martin; Schoeb, Dominik S; Wilhelm, Konrad; Hein, Simon; Wetterauer, Ulrich; Miernik, Arkadiusz

    2017-06-01

    Minimally invasive surgery is in constant further development and has replaced many conventional operative procedures. If vascular structure movement could be detected during these procedures, it could reduce the risk of vascular injury and conversion to open surgery. The recently proposed motion-amplifying algorithm, Eulerian Video Magnification (EVM), has been shown to substantially enhance minimal object changes in digitally recorded video that is barely perceptible to the human eye. We adapted and examined this technology for use in urological laparoscopy. Video sequences of routine urological laparoscopic interventions were recorded and further processed using spatial decomposition and filtering algorithms. The freely available EVM algorithm was investigated for its usability in real-time processing. In addition, a new image processing technology, the CRS iimotion Motion Magnification (CRSMM) algorithm, was specifically adjusted for endoscopic requirements, applied, and validated by our working group. Using EVM, no significant motion enhancement could be detected without severe impairment of the image resolution, motion, and color presentation. The CRSMM algorithm significantly improved image quality in terms of motion enhancement. In particular, the pulsation of vascular structures could be displayed more accurately than in EVM. Motion magnification image processing technology has the potential for clinical importance as a video optimizing modality in endoscopic and laparoscopic surgery. Barely detectable (micro)movements can be visualized using this noninvasive marker-free method. Despite these optimistic results, the technology requires considerable further technical development and clinical tests.

  13. Trophic magnification of PCBs and its relationship to the octanol-water partition coefficient

    USGS Publications Warehouse

    Walters, D.M.; Mills, M.A.; Cade, B.S.; Burkard, L.P.

    2011-01-01

    We investigated polychlorinated biphenyl (PCB) bioaccumulation relative to octanol-water partition coefficient (KOW) and organism trophic position (TP) at the Lake Hartwell Superfund site (South Carolina). We measured PCBs (127 congeners) and stable isotopes (??15N) in sediment, organic matter, phytoplankton, zooplankton, macroinvertebrates, and fish. TP, as calculated from ??15N, was significantly, positively related to PCB concentrations, and food web trophic magnification factors (TMFs) ranged from 1.5-6.6 among congeners. TMFs of individual congeners increased strongly with log KOW, as did the predictive power (r2) of individual TP-PCB regression models used to calculate TMFs. We developed log KOW-TMF models for eight food webs with vastly different environments (freshwater, marine, arctic, temperate) and species composition (cold- vs warmblooded consumers). The effect of KOW on congener TMFs varied strongly across food webs (model slopes 0.0-15.0) because the range of TMFs among studies was also highly variable. We standardized TMFs within studies to mean = 0, standard deviation (SD) = 1 to normalize for scale differences and found a remarkably consistent KOW effect on TMFs (no difference in model slopes among food webs). Our findings underscore the importance of hydrophobicity (as characterized by KOW) in regulating bioaccumulation of recalcitrant compounds in aquatic systems, and demonstrate that relationships between chemical KOW and bioaccumulation from field studies are more generalized than previously recognized. ?? This article not subject to U.S. Copyright. Published 2011 by the American Chemical Society.

  14. Trophic magnification of PCBs and Its relationship to the octanol-water partition coefficient.

    PubMed

    Walters, David M; Mills, Marc A; Cade, Brian S; Burkard, Lawrence P

    2011-05-01

    We investigated polychlorinated biphenyl (PCB) bioaccumulation relative to octanol-water partition coefficient (K(OW)) and organism trophic position (TP) at the Lake Hartwell Superfund site (South Carolina). We measured PCBs (127 congeners) and stable isotopes (δ¹⁵N) in sediment, organic matter, phytoplankton, zooplankton, macroinvertebrates, and fish. TP, as calculated from δ¹⁵N, was significantly, positively related to PCB concentrations, and food web trophic magnification factors (TMFs) ranged from 1.5-6.6 among congeners. TMFs of individual congeners increased strongly with log K(OW), as did the predictive power (r²) of individual TP-PCB regression models used to calculate TMFs. We developed log K(OW)-TMF models for eight food webs with vastly different environments (freshwater, marine, arctic, temperate) and species composition (cold- vs warmblooded consumers). The effect of K(OW) on congener TMFs varied strongly across food webs (model slopes 0.0-15.0) because the range of TMFs among studies was also highly variable. We standardized TMFs within studies to mean = 0, standard deviation (SD) = 1 to normalize for scale differences and found a remarkably consistent K(OW) effect on TMFs (no difference in model slopes among food webs). Our findings underscore the importance of hydrophobicity (as characterized by K(OW)) in regulating bioaccumulation of recalcitrant compounds in aquatic systems, and demonstrate that relationships between chemical K(OW) and bioaccumulation from field studies are more generalized than previously recognized.

  15. Concentrations and trophic magnification of polychlorinated naphthalenes (PCNs) in marine fish from the Bohai coastal area, China.

    PubMed

    Cui, Lili; Wang, Shasha; Gao, Lirong; Huang, Huiting; Xia, Dan; Qiao, Lin; Liu, Wenbin

    2018-03-01

    Polychlorinated naphthalenes (PCNs) have been found widely in the aquatic environment and can be transferred through food chains, which can magnify or dilute their toxic effects on humans. In this study, PCNs were analyzed in samples of 17 species of fish with different dietary habits collected in the Bohai coastal area in China. Dichloronaphthalenes, which have rarely been quantified in previous studies, were determined. The total PCN concentrations were from 7.3 to 214 pg/g wet weight, and the highest concentration was found in ditrema. The trichloronaphthalenes were the most abundant PCNs, followed by the dichloronaphthalenes and pentachloronaphthalenes. The relatively high contributions of the less-chlorinated homologs to the total PCN concentrations indicated that the main PCN sources around the Bohai were industrial thermal process emissions rather than technical PCN formulations. The trophic magnification factors of the PCN homologs were from 3.1 to 9.9, indicating that PCNs were biomagnified by fish. The trophic magnification factor of dichloronaphthalene and trichloronaphthalenes was 5.8 and 6.4, respectively, indicating for the first time that dichloronaphthalene and trichloronaphthalenes can undergo trophic magnification by fish. The two highest trophic magnification factors were for the pentachloronaphthalenes and hexachloronaphthalenes, probably because these PCNs having fewer vicinal carbon atoms without chlorine atoms attached are less easily biotransformed than the other homologs. The dioxin-like toxicities of the PCNs in the samples, expressed as potential toxic equivalences (TEQs), were assessed. The highest total TEQ was 0.0090 pg/g ww, in Pacific herring, and the hexachloronaphthalenes were the dominant contributors to the total TEQs in the fish samples. The PCN TEQs were much lower than the polychlorinated dibenzo-p-dioxin and dibenzofuran and dioxin-like polychlorinated biphenyl TEQs found in fish from the Bohai in previous studies, and made marginal contributions to overall human exposure to dioxin-like TEQs, suggesting that PCNs pose no toxicological concerns. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Cardiac dimensional analysis by use of biplane cineradiography: description and validation of method.

    PubMed

    Lipscomb, K

    1980-01-01

    Biplane cineradiography is a potentially powerful tool for precise measurement of intracardiac dimensions. The most systematic approach to these measurements is the creation of a three-dimensional coordinate system within the x-ray field. Using this system, interpoint distances, such as between radiopaque clips or coronary artery bifurcations, can be calculated by use of the Pythagoras theorem. Alternatively, calibration factors can be calculated in order to determine the absolute dimensions of a structure, such as a ventricle or coronary artery. However, cineradiography has two problems that have precluded widespread use of the system. These problems are pincushion distortion and variable image magnification. In this paper, methodology to quantitate and compensate for these variables is presented. The method uses radiopaque beads permanently mounted in the x-ray field. The position of the bead images on the x-ray film determine the compensation factors. Using this system, measurements are made with a standard deviation of approximately 1% of the true value.

  17. Variability in reaction time performance of younger and older adults.

    PubMed

    Hultsch, David F; MacDonald, Stuart W S; Dixon, Roger A

    2002-03-01

    Age differences in three basic types of variability were examined: variability between persons (diversity), variability within persons across tasks (dispersion), and variability within persons across time (inconsistency). Measures of variability were based on latency performance from four measures of reaction time (RT) performed by a total of 99 younger adults (ages 17--36 years) and 763 older adults (ages 54--94 years). Results indicated that all three types of variability were greater in older compared with younger participants even when group differences in speed were statistically controlled. Quantile-quantile plots showed age and task differences in the shape of the inconsistency distributions. Measures of within-person variability (dispersion and inconsistency) were positively correlated. Individual differences in RT inconsistency correlated negatively with level of performance on measures of perceptual speed, working memory, episodic memory, and crystallized abilities. Partial set correlation analyses indicated that inconsistency predicted cognitive performance independent of level of performance. The results indicate that variability of performance is an important indicator of cognitive functioning and aging.

  18. High Interannual Variability in Connectivity and Genetic Pool of a Temperate Clingfish Matches Oceanographic Transport Predictions

    PubMed Central

    Teixeira, Sara; Assis, Jorge; Serrão, Ester A.; Gonçalves, Emanuel J.; Borges, Rita

    2016-01-01

    Adults of most marine benthic and demersal fish are site-attached, with the dispersal of their larval stages ensuring connectivity among populations. In this study we aimed to infer spatial and temporal variation in population connectivity and dispersal of a marine fish species, using genetic tools and comparing these with oceanographic transport. We focused on an intertidal rocky reef fish species, the shore clingfish Lepadogaster lepadogaster, along the southwest Iberian Peninsula, in 2011 and 2012. We predicted high levels of self-recruitment and distinct populations, due to short pelagic larval duration and because all its developmental stages have previously been found near adult habitats. Genetic analyses based on microsatellites countered our prediction and a biophysical dispersal model showed that oceanographic transport was a good explanation for the patterns observed. Adult sub-populations separated by up to 300 km of coastline displayed no genetic differentiation, revealing a single connected population with larvae potentially dispersing long distances over hundreds of km. Despite this, parentage analysis performed on recruits from one focal site within the Marine Park of Arrábida (Portugal), revealed self-recruitment levels of 2.5% and 7.7% in 2011 and 2012, respectively, suggesting that both long- and short-distance dispersal play an important role in the replenishment of these populations. Population differentiation and patterns of dispersal, which were highly variable between years, could be linked to the variability inherent in local oceanographic processes. Overall, our measures of connectivity based on genetic and oceanographic data highlight the relevance of long-distance dispersal in determining the degree of connectivity, even in species with short pelagic larval durations. PMID:27911952

  19. Fine scale relationships between sex, life history, and dispersal of masu salmon

    USGS Publications Warehouse

    Kitanishi, Shigeru; Yamamoto, Toshiaki; Koizumi, Itsuro; Dunham, Jason B.; Higashi, Seigo

    2012-01-01

    Identifying the patterns and processes driving dispersal is critical for understanding population structure and dynamics. In many organisms, sex-biased dispersal is related to the type of mating system. Considerably less is known about the influence of life history variability on dispersal. Here we investigated patterns of dispersal in masu salmon (Oncorhynchus masou) to evaluate influences of sex and life history on dispersal. As expected, assignment tests and isolation by distance analysis revealed that dispersal of marine-migratory masu salmon was male-biased. However, dispersal of resident and migratory males did not follow our expectation and marine-migratory individuals dispersed more than residents. This may be because direct competition between marine-migratory and resident males is weak or that the cost of dispersal is smaller for marine-migratory individuals. This study revealed that both sex and migratory life history influence patterns of dispersal at a local scale in masu salmon.

  20. Weak lensing magnification in the Dark Energy Survey Science Verification data

    NASA Astrophysics Data System (ADS)

    Garcia-Fernandez, M.; Sanchez, E.; Sevilla-Noarbe, I.; Suchyta, E.; Huff, E. M.; Gaztanaga, E.; Aleksić, J.; Ponce, R.; Castander, F. J.; Hoyle, B.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bernstein, G. M.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Diehl, H. T.; Eifler, T. F.; Evrard, A. E.; Fernandez, E.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Giannantonio, T.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; James, D. J.; Jarvis, M.; Kirk, D.; Krause, E.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Lima, M.; MacCrann, N.; Maia, M. A. G.; March, M.; Marshall, J. L.; Melchior, P.; Miquel, R.; Mohr, J. J.; Plazas, A. A.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Scarpine, V.; Schubnell, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Tarle, G.; Thomas, D.; Walker, A. R.; Wester, W.; DES Collaboration

    2018-05-01

    In this paper, the effect of weak lensing magnification on galaxy number counts is studied by cross-correlating the positions of two galaxy samples, separated by redshift, using the Dark Energy Survey Science Verification data set. This analysis is carried out for galaxies that are selected only by its photometric redshift. An extensive analysis of the systematic effects, using new methods based on simulations is performed, including a Monte Carlo sampling of the selection function of the survey.

  1. Autostereoscopic projection viewer

    DOEpatents

    Toeppen, John S [Livermore, CA

    2006-12-19

    An autostereoscopic viewer is employed to produce aberration corrected images to simulate a virtual presence by employing pairs of projector optical components coupled with an image corrector plate and a field lens. Images are designed with magnifications and optical qualities and positioned at predetermined eyezones having controlled directional properties. The viewer's eyes are positioned in these eyezones. The size of these zones is related to the aperture of the projection lenses, the magnification produced by the Fresnel(s), and the optical properties and position of the image corrector plate.

  2. Enhanced Healing of Segmental Bone Defects by Modulation of the Mechanical Environment

    DTIC Science & Technology

    2012-10-01

    5.5 µg BMP-2, it was largely disorganized, woven bone with non-osseous soft tissue interspersed. The highest 4 dose (11 µg) of BMP-2, in contrast...various doses of BMP-2. Top row: 16x magnification Bottom row: 100x magnification N= new cortex M= marrow T=trabecular bone F= fibrous tissue ...areas of cartilagenous tissue (figure 5) it was clear that substantial areas of cartilage remained in the defects treated with 5.5 µg BMP-2. These may

  3. Solid Lubricated Rolling Element Bearings

    DTIC Science & Technology

    1980-02-15

    ball paths (as received), at various SEM magnifications and EDX scrutiny 17 i. ■.- ■■ ••.■■ ■? • r 8. TMI TiC/MoS^ sputtered...MoS? removed with Oakite 126 HD), at various SEM magmtications and EDX scrutiny 19 10. TMI TiC/MoS^ sputtered 52100 gyro bearing inner race...ball path (MoS^ removed with Oakite 126 HD), at various SEM magnifications and EDX scrutiny 20 11. TMI TiC/MoS^ sputtered 52100 gyro bearing

  4. Probing dark energy with lensing magnification in photometric surveys.

    PubMed

    Schneider, Michael D

    2014-02-14

    I present an estimator for the angular cross correlation of two tracers of the cosmological large-scale structure that utilizes redshift information to isolate separate physical contributions. The estimator is derived by solving the Limber equation for a reweighting of the foreground tracer that nulls either clustering or lensing contributions to the cross correlation function. Applied to future photometric surveys, the estimator can enhance the measurement of gravitational lensing magnification effects to provide a competitive independent constraint on the dark energy equation of state.

  5. Life-stage differences in spatial genetic structure in an irruptive forest insect: implications for dispersal and spatial synchrony

    Treesearch

    Patrick M.A. James; Barry Cooke; Bryan M.T. Brunet; Lisa M. Lumley; Felix A.H. Sperling; Marie-Josee Fortin; Vanessa S. Quinn; Brian R. Sturtevant

    2015-01-01

    Dispersal determines the flux of individuals, energy and information and is therefore a key determinant of ecological and evolutionary dynamics. Yet, it remains difficult to quantify its importance relative to other factors. This is particularly true in cyclic populations in which demography, drift and dispersal contribute to spatio-temporal variability in genetic...

  6. Effect of tidal fluctuations on transient dispersion of simulated contaminant concentrations in coastal aquifers

    USGS Publications Warehouse

    La Licata, Ivana; Langevin, Christian D.; Dausman, Alyssa M.; Alberti, Luca

    2011-01-01

    Variable-density groundwater models require extensive computational resources, particularly for simulations representing short-term hydrologic variability such as tidal fluctuations. Saltwater-intrusion models usually neglect tidal fluctuations and this may introduce errors in simulated concentrations. The effects of tides on simulated concentrations in a coastal aquifer were assessed. Three analyses are reported: in the first, simulations with and without tides were compared for three different dispersivity values. Tides do not significantly affect the transfer of a hypothetical contaminant into the ocean; however, the concentration difference between tidal and non-tidal simulations could be as much as 15%. In the second analysis, the dispersivity value for the model without tides was increased in a zone near the ocean boundary. By slightly increasing dispersivity in this zone, the maximum concentration difference between the simulations with and without tides was reduced to as low as 7%. In the last analysis, an apparent dispersivity value was calculated for each model cell using the simulated velocity variations from the model with tides. Use of apparent dispersivity values in models with a constant ocean boundary seems to provide a reasonable approach for approximating tidal effects in simulations where explicit representation of tidal fluctuations is not feasible.

  7. Effect of tidal fluctuations on transient dispersion of simulated contaminant concentrations in coastal aquifers

    USGS Publications Warehouse

    La Licata, Ivana; Langevin, Christian D.; Dausman, Alyssa M.; Alberti, Luca

    2013-01-01

    Variable-density groundwater models require extensive computational resources, particularly for simulations representing short-term hydrologic variability such as tidal fluctuations. Saltwater-intrusion models usually neglect tidal fluctuations and this may introduce errors in simulated concentrations. The effects of tides on simulated concentrations in a coastal aquifer were assessed. Three analyses are reported: in the first, simulations with and without tides were compared for three different dispersivity values. Tides do not significantly affect the transfer of a hypothetical contaminant into the ocean; however, the concentration difference between tidal and non-tidal simulations could be as much as 15%. In the second analysis, the dispersivity value for the model without tides was increased in a zone near the ocean boundary. By slightly increasing dispersivity in this zone, the maximum concentration difference between the simulations with and without tides was reduced to as low as 7%. In the last analysis, an apparent dispersivity value was calculated for each model cell using the simulated velocity variations from the model with tides. Use of apparent dispersivity values in models with a constant ocean boundary seems to provide a reasonable approach for approximating tidal effects in simulations where explicit representation of tidal fluctuations is not feasible.

  8. Density dependence in demography and dispersal generates fluctuating invasion speeds

    PubMed Central

    Li, Bingtuan; Miller, Tom E. X.

    2017-01-01

    Density dependence plays an important role in population regulation and is known to generate temporal fluctuations in population density. However, the ways in which density dependence affects spatial population processes, such as species invasions, are less understood. Although classical ecological theory suggests that invasions should advance at a constant speed, empirical work is illuminating the highly variable nature of biological invasions, which often exhibit nonconstant spreading speeds, even in simple, controlled settings. Here, we explore endogenous density dependence as a mechanism for inducing variability in biological invasions with a set of population models that incorporate density dependence in demographic and dispersal parameters. We show that density dependence in demography at low population densities—i.e., an Allee effect—combined with spatiotemporal variability in population density behind the invasion front can produce fluctuations in spreading speed. The density fluctuations behind the front can arise from either overcompensatory population growth or density-dependent dispersal, both of which are common in nature. Our results show that simple rules can generate complex spread dynamics and highlight a source of variability in biological invasions that may aid in ecological forecasting. PMID:28442569

  9. SUBMILLIMETER GALAXY NUMBER COUNTS AND MAGNIFICATION BY GALAXY CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lima, Marcos; Jain, Bhuvnesh; Devlin, Mark

    2010-07-01

    We present an analytical model that reproduces measured galaxy number counts from surveys in the wavelength range of 500 {mu}m-2 mm. The model involves a single high-redshift galaxy population with a Schechter luminosity function that has been gravitationally lensed by galaxy clusters in the mass range 10{sup 13}-10{sup 15} M{sub sun}. This simple model reproduces both the low-flux and the high-flux end of the number counts reported by the BLAST, SCUBA, AzTEC, and South Pole Telescope (SPT) surveys. In particular, our model accounts for the most luminous galaxies detected by SPT as the result of high magnifications by galaxy clustersmore » (magnification factors of 10-30). This interpretation implies that submillimeter (submm) and millimeter surveys of this population may prove to be a useful addition to ongoing cluster detection surveys. The model also implies that the bulk of submm galaxies detected at wavelengths larger than 500 {mu}m lie at redshifts greater than 2.« less

  10. Exploring gravitational lensing model variations in the Frontier Fields galaxy clusters

    NASA Astrophysics Data System (ADS)

    Harris James, Nicholas John; Raney, Catie; Brennan, Sean; Keeton, Charles

    2018-01-01

    Multiple groups have been working on modeling the mass distributions of the six lensing galaxy clusters in the Hubble Space Telescope Frontier Fields data set. The magnification maps produced from these mass models will be important for the future study of the lensed background galaxies, but there exists significant variation in the different groups’ models and magnification maps. We explore the use of two-dimensional histograms as a tool for visualizing these magnification map variations. Using a number of simple, one- or two-halo singular isothermal sphere models, we explore the features that are produced in 2D histogram model comparisons when parameters such as halo mass, ellipticity, and location are allowed to vary. Our analysis demonstrates the potential of 2D histograms as a means of observing the full range of differences between the Frontier Fields groups’ models.This work has been supported by funding from National Science Foundation grants PHY-1560077 and AST-1211385, and from the Space Telescope Science Institute.

  11. Applications of Phase-Based Motion Processing

    NASA Technical Reports Server (NTRS)

    Branch, Nicholas A.; Stewart, Eric C.

    2018-01-01

    Image pyramids provide useful information in determining structural response at low cost using commercially available cameras. The current effort applies previous work on the complex steerable pyramid to analyze and identify imperceptible linear motions in video. Instead of implicitly computing motion spectra through phase analysis of the complex steerable pyramid and magnifying the associated motions, instead present a visual technique and the necessary software to display the phase changes of high frequency signals within video. The present technique quickly identifies regions of largest motion within a video with a single phase visualization and without the artifacts of motion magnification, but requires use of the computationally intensive Fourier transform. While Riesz pyramids present an alternative to the computationally intensive complex steerable pyramid for motion magnification, the Riesz formulation contains significant noise, and motion magnification still presents large amounts of data that cannot be quickly assessed by the human eye. Thus, user-friendly software is presented for quickly identifying structural response through optical flow and phase visualization in both Python and MATLAB.

  12. Definitive diagnosis of early enamel and dentin cracks based on microscopic evaluation.

    PubMed

    Clark, David J; Sheets, Cherilyn G; Paquette, Jacinthe M

    2003-01-01

    The diagnoses of cracked teeth and incomplete coronal fracture have historically been symptom based. The dental operating microscope at 16x magnification can fundamentally change a clinician's ability to diagnose such conditions. Clinicians have been observing cracks under extreme magnification for nearly a decade. Patterns have become clear that can lead to appropriate treatment prior to symptoms or to devastation to tooth structure. Conversely, many cracks are not structural and can lead to misdiagnosis and overtreatment. Methodic microscopic examination, an understanding of crack progression, and an appreciation of the types of cracks will guide a doctor to make appropriate decisions. Teeth can have structural cracks in various stages. To date, diagnosis and treatment are very often at end stage of crack development. This article gives new guidelines for recognition, visualization, classification, and treatment of cracked teeth based on the routine use of 16x magnification. The significance of enamel cracks as they relate to dentinal cracks is detailed.

  13. Scaling digital radiographs for templating in total hip arthroplasty using conventional acetate templates independent of calibration markers.

    PubMed

    Brew, Christopher J; Simpson, Philip M; Whitehouse, Sarah L; Donnelly, William; Crawford, Ross W; Hubble, Matthew J W

    2012-04-01

    We describe a scaling method for templating digital radiographs using conventional acetate templates independent of template magnification without the need for a calibration marker. The mean magnification factor for the radiology department was determined (119.8%; range, 117%-123.4%). This fixed magnification factor was used to scale the radiographs by the method described. Thirty-two femoral heads on postoperative total hip arthroplasty radiographs were then measured and compared with the actual size. The mean absolute accuracy was within 0.5% of actual head size (range, 0%-3%) with a mean absolute difference of 0.16 mm (range, 0-1 mm; SD, 0.26 mm). Intraclass correlation coefficient showed excellent reliability for both interobserver and intraobserver measurements with intraclass correlation coefficient scores of 0.993 (95% CI, 0.988-0.996) for interobserver measurements and intraobserver measurements ranging between 0.990 and 0.993 (95% CI, 0.980-0.997). Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  14. Noisy image magnification with total variation regularization and order-changed dictionary learning

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Chang, Zhiguo; Fan, Jiulun; Zhao, Xiaoqiang; Wu, Xiaomin; Wang, Yanzi

    2015-12-01

    Noisy low resolution (LR) images are always obtained in real applications, but many existing image magnification algorithms can not get good result from a noisy LR image. We propose a two-step image magnification algorithm to solve this problem. The proposed algorithm takes the advantages of both regularization-based method and learning-based method. The first step is based on total variation (TV) regularization and the second step is based on sparse representation. In the first step, we add a constraint on the TV regularization model to magnify the LR image and at the same time to suppress the noise in it. In the second step, we propose an order-changed dictionary training algorithm to train the dictionaries which is dominated by texture details. Experimental results demonstrate that the proposed algorithm performs better than many other algorithms when the noise is not serious. The proposed algorithm can also provide better visual quality on natural LR images.

  15. Contact microspherical nanoscopy: from fundamentals to biomedical applications

    NASA Astrophysics Data System (ADS)

    Astratov, V. N.; Maslov, A. V.; Brettin, A.; Blanchette, K. F.; Nesmelov, Y. E.; Limberopoulos, N. I.; Walker, D. E.; Urbas, A. M.

    2017-02-01

    The mechanisms of super-resolution imaging by contact microspherical or microcylindrical nanoscopy remain an enigmatic question since these lenses neither have an ability to amplify the near-fields like in the case of far-field superlens, nor they have a hyperbolic dispersion similar to hyperlenses. In this work, we present results along two lines. First, we performed numerical modeling of super-resolution properties of two-dimensional (2-D) circular lens in the limit of wavelength-scale diameters, λ <= D <= 2λ, and relatively high indices of refraction, n=2. Our preliminary results on imaging point dipoles indicate that the resolution is generally close to λ/4 however on resonance with whispering gallery modes it may be slightly higher. Second, experimentally, we used actin protein filaments for the resolution quantification in microspherical nanoscopy. The critical feature of our approach is based on using arrayed cladding layer with strong localized surface plasmon resonances. This layer is used for enhancing plasmonic near-field illumination of our objects. In combination with the magnification of virtual image, this technique resulted in the lateral resolution of actin protein filaments on the order of λ/7.

  16. Demonstration of vessels in CNS and other organs by AMG silver enhancement of colloidal gold particles dispersed in gelatine.

    PubMed

    Danscher, G; Andreasen, A

    1997-12-01

    We present a new autometallographic technique for demonstrating vessels and other small cavities at light microscopy (LM) and electron microscopy (EM) levels. It is possible to obtain detailed knowledge of the 3-D appearance of the vascular system by exchanging blood with a 40 degrees C, 8% gelatine solution containing colloidal gold particles (gold gelatine solution, GGS) and ensuing silver enhancement of the gold particles by autometallography (AMG). The GGS-AMG technique demonstrates the vascular system as a dark web that can be studied in cryostat, vibratome, methacrylate, paraffin and Epon sections at all magnifications. The infused GGS becomes increasingly viscous and finally becomes rigid when the temperature falls below 20 degrees C. An additional advantage of this technique is the fact that none of the tested counterstains or immunotechniques interfere with this AMG approach. The GGS-AMG technique is demonstrated on rat brains but can be applied to any organ. We believe that the present technique is valuable for both experimental studies and routine pathology.

  17. Complex effect of projected sea temperature and wind change on flatfish dispersal.

    PubMed

    Lacroix, Geneviève; Barbut, Léo; Volckaert, Filip A M

    2018-01-01

    Climate change not only alters ocean physics and chemistry but also affects the biota. Larval dispersal patterns from spawning to nursery grounds and larval survival are driven by hydrodynamic processes and shaped by (a)biotic environmental factors. Therefore, it is important to understand the impacts of increased temperature rise and changes in wind speed and direction on larval drift and survival. We apply a particle-tracking model coupled to a 3D-hydrodynamic model of the English Channel and the North Sea to study the dispersal dynamics of the exploited flatfish (common) sole (Solea solea). We first assess model robustness and interannual variability in larval transport over the period 1995-2011. Then, using a subset of representative years (2003-2011), we investigate the impact of climate change on larval dispersal, connectivity patterns and recruitment at the nursery grounds. The impacts of five scenarios inspired by the 2040 projections of the Intergovernmental Panel on Climate Change are discussed and compared with interannual variability. The results suggest that 33% of the year-to-year recruitment variability is explained at a regional scale and that a 9-year period is sufficient to capture interannual variability in dispersal dynamics. In the scenario involving a temperature increase, early spawning and a wind change, the model predicts that (i) dispersal distance (+70%) and pelagic larval duration (+22%) will increase in response to the reduced temperature (-9%) experienced by early hatched larvae, (ii) larval recruitment at the nursery grounds will increase in some areas (36%) and decrease in others (-58%) and (iii) connectivity will show contrasting changes between areas. At the regional scale, our model predicts considerable changes in larval recruitment (+9%) and connectivity (retention -4% and seeding +37%) due to global change. All of these factors affect the distribution and productivity of sole and therefore the functioning of the demersal ecosystem and fisheries management. © 2017 John Wiley & Sons Ltd.

  18. Ribosomal DNA Organization Before and After Magnification in Drosophila melanogaster

    PubMed Central

    Bianciardi, Alessio; Boschi, Manuela; Swanson, Ellen E.; Belloni, Massimo; Robbins, Leonard G.

    2012-01-01

    In all eukaryotes, the ribosomal RNA genes are stably inherited redundant elements. In Drosophila melanogaster, the presence of a Ybb− chromosome in males, or the maternal presence of the Ribosomal exchange (Rex) element, induces magnification: a heritable increase of rDNA copy number. To date, several alternative classes of mechanisms have been proposed for magnification: in situ replication or extra-chromosomal replication, either of which might act on short or extended strings of rDNA units, or unequal sister chromatid exchange. To eliminate some of these hypotheses, none of which has been clearly proven, we examined molecular-variant composition and compared genetic maps of the rDNA in the bb2 mutant and in some magnified bb+ alleles. The genetic markers used are molecular-length variants of IGS sequences and of R1 and R2 mobile elements present in many 28S sequences. Direct comparison of PCR products does not reveal any particularly intensified electrophoretic bands in magnified alleles compared to the nonmagnified bb2 allele. Hence, the increase of rDNA copy number is diluted among multiple variants. We can therefore reject mechanisms of magnification based on multiple rounds of replication of short strings. Moreover, we find no changes of marker order when pre- and postmagnification maps are compared. Thus, we can further restrict the possible mechanisms to two: replication in situ of an extended string of rDNA units or unequal exchange between sister chromatids. PMID:22505623

  19. Time delay and magnification centroid due to gravitational lensing by black holes and naked singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virbhadra, K. S.; Keeton, C. R.; Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854

    We model the massive dark object at the center of the Galaxy as a Schwarzschild black hole as well as Janis-Newman-Winicour naked singularities, characterized by the mass and scalar charge parameters, and study gravitational lensing (particularly time delay, magnification centroid, and total magnification) by them. We find that the lensing features are qualitatively similar (though quantitatively different) for Schwarzschild black holes, weakly naked, and marginally strongly naked singularities. However, the lensing characteristics of strongly naked singularities are qualitatively very different from those due to Schwarzschild black holes. The images produced by Schwarzschild black hole lenses and weakly naked and marginallymore » strongly naked singularity lenses always have positive time delays. On the other hand, strongly naked singularity lenses can give rise to images with positive, zero, or negative time delays. In particular, for a large angular source position the direct image (the outermost image on the same side as the source) due to strongly naked singularity lensing always has a negative time delay. We also found that the scalar field decreases the time delay and increases the total magnification of images; this result could have important implications for cosmology. As the Janis-Newman-Winicour metric also describes the exterior gravitational field of a scalar star, naked singularities as well as scalar star lenses, if these exist in nature, will serve as more efficient cosmic telescopes than regular gravitational lenses.« less

  20. Fast and precise dense grid size measurement method based on coaxial dual optical imaging system

    NASA Astrophysics Data System (ADS)

    Guo, Jiping; Peng, Xiang; Yu, Jiping; Hao, Jian; Diao, Yan; Song, Tao; Li, Ameng; Lu, Xiaowei

    2015-10-01

    Test sieves with dense grid structure are widely used in many fields, accurate gird size calibration is rather critical for success of grading analysis and test sieving. But traditional calibration methods suffer from the disadvantages of low measurement efficiency and shortage of sampling number of grids which could lead to quality judgment risk. Here, a fast and precise test sieve inspection method is presented. Firstly, a coaxial imaging system with low and high optical magnification probe is designed to capture the grid images of the test sieve. Then, a scaling ratio between low and high magnification probes can be obtained by the corresponding grids in captured images. With this, all grid dimensions in low magnification image can be obtained by measuring few corresponding grids in high magnification image with high accuracy. Finally, by scanning the stage of the tri-axis platform of the measuring apparatus, whole surface of the test sieve can be quickly inspected. Experiment results show that the proposed method can measure the test sieves with higher efficiency compare to traditional methods, which can measure 0.15 million grids (gird size 0.1mm) within only 60 seconds, and it can measure grid size range from 20μm to 5mm precisely. In a word, the presented method can calibrate the grid size of test sieve automatically with high efficiency and accuracy. By which, surface evaluation based on statistical method can be effectively implemented, and the quality judgment will be more reasonable.

  1. Examination of soldier target recognition with direct view optics

    NASA Astrophysics Data System (ADS)

    Long, Frederick H.; Larkin, Gabriella; Bisordi, Danielle; Dorsey, Shauna; Marianucci, Damien; Goss, Lashawnta; Bastawros, Michael; Misiuda, Paul; Rodgers, Glenn; Mazz, John P.

    2017-10-01

    Target recognition and identification is a problem of great military and scientific importance. To examine the correlation between target recognition and optical magnification, ten U.S. Army soldiers were tasked with identifying letters on targets at 800 and 1300 meters away. Letters were used since they are a standard method for measuring visual acuity. The letters were approximately 90 cm high, which is the size of a well-known rifle. Four direct view optics with angular magnifications of 1.5x, 4x, 6x, and 9x were used. The goal of this approach was to measure actual probabilities for correct target identification. Previous scientific literature suggests that target recognition can be modeled as a linear response problem in angular frequency space using the established values for the contrast sensitivity function for a healthy human eye and the experimentally measured modulation transfer function of the optic. At the 9x magnification, the soldiers could identify the letters with almost no errors (i.e., 97% probability of correct identification). At lower magnification, errors in letter identification were more frequent. The identification errors were not random but occurred most frequently with a few pairs of letters (e.g., O and Q), which is consistent with the literature for letter recognition. In addition, in the small subject sample of ten soldiers, there was considerable variation in the observer recognition capability at 1.5x and a range of 800 meters. This can be directly attributed to the variation in the observer visual acuity.

  2. PROBABILISTIC CHARACTERIZATION OF ATMOSPHERIC TRANSPORT AND DISPERSION

    EPA Science Inventory

    Dispersion models are used to assess the possible extent and severity of accidental or terrorist releases of toxic materials. Most operational models only provide a characterization of average concentrations and conditions following a release. Knowledge of the variability about...

  3. Correcting the effect of refraction and dispersion of light in FT-IR spectroscopic imaging in transmission through thick infrared windows.

    PubMed

    Chan, K L Andrew; Kazarian, Sergei G

    2013-01-15

    Transmission mode is one of the most common sampling methods for FT-IR spectroscopic imaging because the spectra obtained generally have a reasonable signal-to-noise ratio. However, dispersion and refraction of infrared light occurs when samples are sandwiched between infrared windows or placed underneath a layer of liquid. Dispersion and refraction cause infrared light to focus with different focal lengths depending on the wavelength (wavenumber) of the light. As a result, images obtained are in focus only at a particular wavenumber while they are defocused at other wavenumber values. In this work, a solution to correct this spread of focus by means of adding a lens on top of the infrared transparent window, such that a pseudo hemisphere is formed, has been investigated. Through this lens (or pseudo hemisphere), refraction of light is removed and the light across the spectral range has the same focal depth. Furthermore, the lens acts as a solid immersion objective and an increase of both magnification and spatial resolution (by 1.4 times) is demonstrated. The spatial resolution was investigated using an USAF resolution target, showing that the Rayleigh criterion can be achieved, as well as a sample with a sharp polymer interface to indicate the spatial resolution that can be expected in real samples. The reported approach was used to obtain chemical images of cross sections of cancer tissue and hair samples sandwiched between infrared windows showing the versatility and applicability of the method. In addition to the improved spatial resolution, the results reported herein also demonstrate that the lens can reduce the effect of scattering near the edges of tissue samples. The advantages of the presented approach, obtaining FT-IR spectroscopic images in transmission mode with the same focus across all wavenumber values and simultaneous improvement in spatial resolution, will have wide implications ranging from studies of live cells to sorption of drugs into tissues.

  4. Points of view: where do we look when we watch TV?

    PubMed

    Brasel, S Adam; Gips, James

    2008-01-01

    How is our gaze dispersed across the screen when watching television? An exploratory eyetracker study with a custom-designed show indicated a very strong center-of-screen bias with gaze points following a roughly normal distribution peaked near screen center. Examining the show across time revealed that people were rarely all looking at the same location, and the amount of gaze dispersion within frames was highly variable. Different forms of programming yielded different levels of dispersion: static network 'bumpers' created the tightest visual groupings, and gaze dispersion for frames with show content was less than the dispersion for commercials. Advertising frames with brand logos generated higher dispersion than the non-branded advertisement portions, and repeated advertisements generated higher dispersion than their first-run counterparts.

  5. Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid-crystal layers.

    PubMed

    Kim, Yunhee; Choi, Heejin; Kim, Joohwan; Cho, Seong-Woo; Kim, Youngmin; Park, Gilbae; Lee, Byoungho

    2007-06-20

    A depth-enhanced three-dimensional integral imaging system with electrically variable image planes is proposed. For implementing the variable image planes, polymer-dispersed liquid-crystal (PDLC) films and a projector are adopted as a new display system in the integral imaging. Since the transparencies of PDLC films are electrically controllable, we can make each film diffuse the projected light successively with a different depth from the lens array. As a result, the proposed method enables control of the location of image planes electrically and enhances the depth. The principle of the proposed method is described, and experimental results are also presented.

  6. Intraindividual Variability in Executive Function Performance in Healthy Adults: Cross-Sectional Analysis of the NAB Executive Functions Module.

    PubMed

    Buczylowska, Dorota; Petermann, Franz

    2018-01-01

    The current study was aimed at investigating across-tasks intraindividual variability, also termed dispersion, in EF performance. The German adaptation of the Neuropsychological Assessment Battery (NAB) was used as a measure of EFs. Data of 444 participants aged 18-99 from six NAB Executive Functions Module subtests (i.e., Planning, Mazes, Letter Fluency, Judgment, Categories, and Word Generation) along with the NAB Total Index score as a measure of overall cognitive ability were analyzed. Maximum discrepancy (MD) was applied as a measure of dispersion. MD values ranged from 0.47 to 5.20 indicating substantial across-tasks dispersion in EF performance. Furthermore, dispersion moderately decreased with advancing age. Taking overall cognitive ability into account revealed that dispersion might be lower at older ages; especially, when associated with low overall ability levels. The dedifferentiation hypothesis offers a plausible explanation for these findings. That is, the cognitive profiles of older people might be less heterogenous than that of younger people, which may be due to age-related central nervous system constraints.

  7. Intraindividual Variability in Executive Function Performance in Healthy Adults: Cross-Sectional Analysis of the NAB Executive Functions Module

    PubMed Central

    Buczylowska, Dorota; Petermann, Franz

    2018-01-01

    The current study was aimed at investigating across-tasks intraindividual variability, also termed dispersion, in EF performance. The German adaptation of the Neuropsychological Assessment Battery (NAB) was used as a measure of EFs. Data of 444 participants aged 18–99 from six NAB Executive Functions Module subtests (i.e., Planning, Mazes, Letter Fluency, Judgment, Categories, and Word Generation) along with the NAB Total Index score as a measure of overall cognitive ability were analyzed. Maximum discrepancy (MD) was applied as a measure of dispersion. MD values ranged from 0.47 to 5.20 indicating substantial across-tasks dispersion in EF performance. Furthermore, dispersion moderately decreased with advancing age. Taking overall cognitive ability into account revealed that dispersion might be lower at older ages; especially, when associated with low overall ability levels. The dedifferentiation hypothesis offers a plausible explanation for these findings. That is, the cognitive profiles of older people might be less heterogenous than that of younger people, which may be due to age-related central nervous system constraints. PMID:29593624

  8. Geographic distance affects dispersal of the patchy distributed greater long-tailed hamster (Tscherskia triton).

    PubMed

    Xue, Huiliang; Zhong, Min; Xu, Jinhui; Xu, Laixiang

    2014-01-01

    Dispersal is a fundamental process in ecology influencing the genetic structure and the viability of populations. Understanding how variable factors influence the dispersal of the population is becoming an important question in animal ecology. To date, geographic distance and geographic barriers are often considered as main factors impacting dispersal, but their effects are variable depending on different conditions. In general, geographic barriers affect more significantly than geographic distance on dispersal. In rapidly expanding populations, however, geographic barriers have less effect on dispersal than geographic distance. The effects of both geographic distance and geographic barriers in low-density populations with patchy distributions are poorly understood. By using a panel of 10 microsatellite loci we investigated the genetic structure of three patchy-distributed populations of the Greater long-tailed hamster (Tscherskia triton) from Raoyang, Guan and Shunyi counties of the North China Plain. The results showed that (i) high genetic diversity and differentiation exist in three geographic populations with patchy distributions; (ii) gene flow occurs among these three populations with physical barriers of Beijing city and Hutuo River, which potentially restricted the dispersal of the animal; (iii) the gene flow is negatively correlated with the geographic distance, while the genetic distance shows the positive correlation. Our results suggest that the effect of the physical barriers is conditional-dependent, including barrier capacity or individual potentially dispersal ability. Geographic distance also acts as an important factor affecting dispersal for the patchy distributed geographic populations. So, gene flow is effective, even at relatively long distances, in balancing the effect of geographic barrier in this study.

  9. Turbulent dispersal promotes species coexistence

    PubMed Central

    Berkley, Heather A; Kendall, Bruce E; Mitarai, Satoshi; Siegel, David A

    2010-01-01

    Several recent advances in coexistence theory emphasize the importance of space and dispersal, but focus on average dispersal rates and require spatial heterogeneity, spatio-temporal variability or dispersal-competition tradeoffs to allow coexistence. We analyse a model with stochastic juvenile dispersal (driven by turbulent flow in the coastal ocean) and show that a low-productivity species can coexist with a high-productivity species by having dispersal patterns sufficiently uncorrelated from those of its competitor, even though, on average, dispersal statistics are identical and subsequent demography and competition is spatially homogeneous. This produces a spatial storage effect, with an ephemeral partitioning of a ‘spatial niche’, and is the first demonstration of a physical mechanism for a pure spatiotemporal environmental response. ‘Turbulent coexistence’ is widely applicable to marine species with pelagic larval dispersal and relatively sessile adult life stages (and perhaps some wind-dispersed species) and complements other spatial and temporal storage effects previously documented for such species. PMID:20455921

  10. [Changes in heart rate variability after myocardial infarction. Value of Poincareé's diagram].

    PubMed

    Copie, X; Le Heuzey, J Y; Iliou, M C; Pousset, F; Lavergne, T; Guize, L

    1995-11-01

    The variability of the heart rate is reduced after myocardial infarction. It then progressively increases, to return to near normal values after several months. However, these changes in heart rate variability occur at the same time as slowing of the heart rate which makes interpretation difficult. Poincaré's diagram is constructed from a Holter recording plotting each RR interval against the preceding RR interval. The authors have developed a geometric approach to this diagram to evaluate parasympathetic tone for a given heart rate. By measuring the dispersion in height of the Poincaré's diagram, the authors evaluate the shor-term variability for a given RR interval. Two 24 hr Holter recordings were performed in 52 patients at one and two weeks after a myocardial infarction. The dispersion in the height of the Poincaré's diagrams was measured at the 10th, 25th, 50th, 75th and 90th percentiles of the total dispersion. The authors have shown an increase in the short-term variability of the shortest RR intervals (1th, 25th and 50th percentiles) which is not observed in the longer RR intervals (75th and 90th percentiles). In conclusion, theres is an increase in the heart rate variability at the shortest RR intervals. This suggests that the recovery of parasympathic tone after myocardial infarction occurs mainly at the fastest heart rates.

  11. How Internally Coupled Ears Generate Temporal and Amplitude Cues for Sound Localization.

    PubMed

    Vedurmudi, A P; Goulet, J; Christensen-Dalsgaard, J; Young, B A; Williams, R; van Hemmen, J L

    2016-01-15

    In internally coupled ears, displacement of one eardrum creates pressure waves that propagate through air-filled passages in the skull and cause displacement of the opposing eardrum, and conversely. By modeling the membrane, passages, and propagating pressure waves, we show that internally coupled ears generate unique amplitude and temporal cues for sound localization. The magnitudes of both these cues are directionally dependent. The tympanic fundamental frequency segregates a low-frequency regime with constant time-difference magnification from a high-frequency domain with considerable amplitude magnification.

  12. Dynamic magnification factors for tree blow-down by powder snow avalanche air blasts

    NASA Astrophysics Data System (ADS)

    Bartelt, Perry; Bebi, Peter; Feistl, Thomas; Buser, Othmar; Caviezel, Andrin

    2018-03-01

    We study how short duration powder avalanche blasts can break and overturn tall trees. Tree blow-down is often used to back-calculate avalanche pressure and therefore constrain avalanche flow velocity and motion. We find that tall trees are susceptible to avalanche air blasts because the duration of the air blast is near to the period of vibration of tall trees, both in bending and root-plate overturning. Dynamic magnification factors for bending and overturning failures should therefore be considered when back-calculating avalanche impact pressures.

  13. Modelling solute dispersion in periodic heterogeneous porous media: Model benchmarking against intermediate scale experiments

    NASA Astrophysics Data System (ADS)

    Majdalani, Samer; Guinot, Vincent; Delenne, Carole; Gebran, Hicham

    2018-06-01

    This paper is devoted to theoretical and experimental investigations of solute dispersion in heterogeneous porous media. Dispersion in heterogenous porous media has been reported to be scale-dependent, a likely indication that the proposed dispersion models are incompletely formulated. A high quality experimental data set of breakthrough curves in periodic model heterogeneous porous media is presented. In contrast with most previously published experiments, the present experiments involve numerous replicates. This allows the statistical variability of experimental data to be accounted for. Several models are benchmarked against the data set: the Fickian-based advection-dispersion, mobile-immobile, multirate, multiple region advection dispersion models, and a newly proposed transport model based on pure advection. A salient property of the latter model is that its solutions exhibit a ballistic behaviour for small times, while tending to the Fickian behaviour for large time scales. Model performance is assessed using a novel objective function accounting for the statistical variability of the experimental data set, while putting equal emphasis on both small and large time scale behaviours. Besides being as accurate as the other models, the new purely advective model has the advantages that (i) it does not exhibit the undesirable effects associated with the usual Fickian operator (namely the infinite solute front propagation speed), and (ii) it allows dispersive transport to be simulated on every heterogeneity scale using scale-independent parameters.

  14. Dispersion of deep-sea hydrothermal vent effluents and larvae by submesoscale and tidal currents

    NASA Astrophysics Data System (ADS)

    Vic, Clément; Gula, Jonathan; Roullet, Guillaume; Pradillon, Florence

    2018-03-01

    Deep-sea hydrothermal vents provide sources of geochemical materials that impact the global ocean heat and chemical budgets, and support complex biological communities. Vent effluents and larvae are dispersed and transported long distances by deep ocean currents, but these currents are largely undersampled and little is known about their variability. Submesoscale (0.1-10 km) currents are known to play an important role for the dispersion of biogeochemical materials in the ocean surface layer, but their impact for the dispersion in the deep ocean is unknown. Here, we use a series of nested regional oceanic numerical simulations with increasing resolution (from δx = 6 km to δx = 0.75 km) to investigate the structure and variability of highly-resolved deep currents over the Mid-Atlantic Ridge (MAR) and their role on the dispersion of the Lucky Strike hydrothermal vent effluents and larvae. We shed light on a submesoscale regime of oceanic turbulence over the MAR at 1500 m depth, contrasting with open-ocean - i.e., far from topographic features - regimes of turbulence, dominated by mesoscales. Impacts of submesoscale and tidal currents on larval dispersion and connectivity among vent populations are investigated by releasing neutrally buoyant Lagrangian particles at the Lucky Strike hydrothermal vent. Although the absolute dispersion is overall not sensitive to the model resolution, submesoscale currents are found to significantly increase both the horizontal and vertical relative dispersion of particles at O(1-10) km and O(1-10) days, resulting in an increased mixing of the cloud of particles. A fraction of particles are trapped in submesoscale coherent vortices, which enable transport over long time and distances. Tidal currents and internal tides do not significantly impact the horizontal relative dispersion. However, they roughly double the vertical dispersion. Specifically, particles undergo strong tidally-induced mixing close to rough topographic features, which allows them to rise up in the water column and to cross topographic obstacles. The mesoscale variability controls at first order the connectivity between hydrothermal sites and we do not have long enough simulations to conclude on the connectivity between the different MAR hydrothermal sites. However, our simulations suggest that the connectivity might be increased by submesoscale and tidal currents, which act to spread the cloud of particles and help them cross topographic barriers.

  15. Using the Wiener estimator to determine optimal imaging parameters in a synthetic-collimator SPECT system used for small animal imaging

    NASA Astrophysics Data System (ADS)

    Lin, Alexander; Johnson, Lindsay C.; Shokouhi, Sepideh; Peterson, Todd E.; Kupinski, Matthew A.

    2015-03-01

    In synthetic-collimator SPECT imaging, two detectors are placed at different distances behind a multi-pinhole aperture. This configuration allows for image detection at different magnifications and photon energies, resulting in higher overall sensitivity while maintaining high resolution. Image multiplexing the undesired overlapping between images due to photon origin uncertainty may occur in both detector planes and is often present in the second detector plane due to greater magnification. However, artifact-free image reconstruction is possible by combining data from both the front detector (little to no multiplexing) and the back detector (noticeable multiplexing). When the two detectors are used in tandem, spatial resolution is increased, allowing for a higher sensitivity-to-detector-area ratio. Due to variability in detector distances and pinhole spacings found in synthetic-collimator SPECT systems, a large parameter space must be examined to determine optimal imaging configurations. We chose to assess image quality based on the task of estimating activity in various regions of a mouse brain. Phantom objects were simulated using mouse brain data from the Magnetic Resonance Microimaging Neurological Atlas (MRM NeAt) and projected at different angles through models of a synthetic-collimator SPECT system, which was developed by collaborators at Vanderbilt University. Uptake in the different brain regions was modeled as being normally distributed about predetermined means and variances. We computed the performance of the Wiener estimator for the task of estimating activity in different regions of the mouse brain. Our results demonstrate the utility of the method for optimizing synthetic-collimator system design.

  16. Trophic dilution of cyclic volatile methylsiloxanes (cVMS) in the pelagic marine food web of Tokyo Bay, Japan.

    PubMed

    Powell, David E; Suganuma, Noriyuki; Kobayashi, Keiji; Nakamura, Tsutomu; Ninomiya, Kouzo; Matsumura, Kozaburo; Omura, Naoki; Ushioka, Satoshi

    2017-02-01

    Bioaccumulation and trophic transfer of cyclic volatile methylsiloxanes (cVMS), specifically octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6), were evaluated in the pelagic marine food web of Tokyo Bay, Japan. Polychlorinated biphenyl (PCB) congeners that are "legacy" chemicals known to bioaccumulate in aquatic organisms and biomagnify across aquatic food webs were used as a benchmark chemical (CB-180) to calibrate the sampled food web and as a reference chemical (CB-153) to validate the results. Trophic magnification factors (TMFs) were calculated from slopes of ordinary least-squares (OLS) regression models and slopes of bootstrap regression models, which were used as robust alternatives to the OLS models. Various regression models were developed that incorporated benchmarking to control bias associated with experimental design, food web dynamics, and trophic level structure. There was no evidence from any of the regression models to suggest biomagnification of cVMS in Tokyo Bay. Rather, the regression models indicated that trophic dilution of cVMS, not trophic magnification, occurred across the sampled food web. Comparison of results for Tokyo Bay to results from other studies indicated that bioaccumulation of cVMS was not related to type of food web (pelagic vs demersal), environment (marine vs freshwater), species composition, or location. Rather, results suggested that differences between study areas was likely related to food web dynamics and variable conditions of exposure resulting from non-uniform patterns of organism movement across spatial concentration gradients. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Maximizing the quantitative accuracy and reproducibility of Förster resonance energy transfer measurement for screening by high throughput widefield microscopy

    PubMed Central

    Schaufele, Fred

    2013-01-01

    Förster resonance energy transfer (FRET) between fluorescent proteins (FPs) provides insights into the proximities and orientations of FPs as surrogates of the biochemical interactions and structures of the factors to which the FPs are genetically fused. As powerful as FRET methods are, technical issues have impeded their broad adoption in the biologic sciences. One hurdle to accurate and reproducible FRET microscopy measurement stems from variable fluorescence backgrounds both within a field and between different fields. Those variations introduce errors into the precise quantification of fluorescence levels on which the quantitative accuracy of FRET measurement is highly dependent. This measurement error is particularly problematic for screening campaigns since minimal well-to-well variation is necessary to faithfully identify wells with altered values. High content screening depends also upon maximizing the numbers of cells imaged, which is best achieved by low magnification high throughput microscopy. But, low magnification introduces flat-field correction issues that degrade the accuracy of background correction to cause poor reproducibility in FRET measurement. For live cell imaging, fluorescence of cell culture media in the fluorescence collection channels for the FPs commonly used for FRET analysis is a high source of background error. These signal-to-noise problems are compounded by the desire to express proteins at biologically meaningful levels that may only be marginally above the strong fluorescence background. Here, techniques are presented that correct for background fluctuations. Accurate calculation of FRET is realized even from images in which a non-flat background is 10-fold higher than the signal. PMID:23927839

  18. Nanomodulated electron beams via electron diffraction and emittance exchange for coherent x-ray generation

    NASA Astrophysics Data System (ADS)

    Nanni, E. A.; Graves, W. S.; Moncton, D. E.

    2018-01-01

    We present a new method for generation of relativistic electron beams with current modulation on the nanometer scale and below. The current modulation is produced by diffracting relativistic electrons in single crystal Si, accelerating the diffracted beam and imaging the crystal structure, then transferring the image into the temporal dimension via emittance exchange. The modulation period can be tuned by adjusting electron optics after diffraction. This tunable longitudinal modulation can have a period as short as a few angstroms, enabling production of coherent hard x-rays from a source based on inverse Compton scattering with total accelerator length of approximately ten meters. Electron beam simulations from cathode emission through diffraction, acceleration, and image formation with variable magnification are presented along with estimates of the coherent x-ray output properties.

  19. The quality mammographic image. A review of its components.

    PubMed

    Rickard, M T

    1989-11-01

    Seven major factors resulting in a quality or high contrast and high resolution mammographic image have been discussed. The following is a summary of their key features: 1) Dedicated mammographic equipment. --Molybdenum target material --Molybdenum filter, beryllium window --Low kVp usage, in range of 24 to 30 --Routine contact mammography performed at 25 kVp --Slightly lower kVp for coned compression --Slightly higher kVp for microfocus magnification 2) Film density --Phototimer with adjustable position --Calibration of phototimer to optimal optical density of approx. 1.4 over full kVp range 3) Breast Compression --General and focal (coned compression). --Essential to achieve proper contrast, resolution and breast immobility. --Foot controls preferable. 4) Focal Spot. --Size recommendation for contact work 0.3 mm. --Minimum power output of 100 mA at 25 kVp desirable to avoid movement blurring in contact grid work. --Size recommendation for magnification work 0.1 mm. 5) Grid. --Usage recommended as routine in all but magnification work. 6) Film-screen Combination. --High contrast--high speed film. --High resolution screen. --Specifically designed cassette for close film-screen contact and low radiation absorption. --Use of faster screens for magnification techniques. 7) Dedicated processing. --Increased developing time--40 to 45 seconds. --Increased developer temperature--35 to 38 degrees. --Adjusted replenishment rate and dryer temperature. All seven factors contributing to image contrast and resolution affect radiation dosage to the breast. The risk of increased dosage associated with the use of various techniques needs to be balanced against the risks of incorrect diagnosis associated with their non-use.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Comparison of two methods of visual magnification for removal of adhesive flash during bracket placement using two types of orthodontic bonding agents

    PubMed Central

    Alencar, Estefania Queiroga de Santana e; Nobrega, Maria de Lourdes Martins; Dametto, Fabio Roberto; dos Santos, Patrícia Bittencourt Dutra; Pinheiro, Fabio Henrique de Sá Leitão

    2016-01-01

    ABSTRACT Objective: This study aimed to evaluate the effectiveness of two methods of visual magnification (operating microscope and light head magnifying glass) for removal of composite flash around orthodontic metal brackets. Material and Methods: Brackets were bonded in the center of the clinical crown of sixty well-preserved human premolars. Half of the sample was bonded with conventional Transbond XT (3M Unitek TM, USA), whereas the other half was bonded with Transbond TM Plus Color Change (3M Unitek TM, USA). For each type of composite, the choice of method to remove the flash was determined by randomly distributing the teeth into the following subgroups: A (removal by naked eye, n = 10), B (removal with the aid of light head magnifying glass, under 4x magnification, n = 10), and C (removal with the aid of an operating microscope, under 40x magnification, n = 10). Brackets were debonded and teeth taken to a scanning electron microscope (SS-x-550, Shimadzu, Japan) for visualization of their buccal surface. Quantification of composite flash was performed with Image Pro Plus software, and values were compared by Kruskal-Wallis test and Dunn’s post-hoc test at 5% significance level. Results: Removal of pigmented orthodontic adhesive with the aid of light head magnifying glass proved, in general, to be advantageous in comparison to all other methods. Conclusion: There was no advantage in using Transbond TM Plus Color Change alone. Further studies are necessary to draw a more definitive conclusion in regards to the benefits of using an operating microscope. PMID:28125139

  1. Actively adjustable step-type ultrasonic horns in longitudinal vibration

    NASA Astrophysics Data System (ADS)

    Lin, Shuyu; Guo, Hao; Xu, Jie

    2018-04-01

    Actively adjustable longitudinal step-type ultrasonic horns are proposed and studied. The horn is composed of a traditional ultrasonic horn and piezoelectric material. In practical applications, this kind of step-type ultrasonic horn is mechanically excited by an ultrasonic transducer and the piezoelectric material is connected to an adjustable electric impedance. In this research, the effects of the electric impedance and of the location of the piezoelectric material on the performance of the horn are studied. It is shown that when the electric resistance is increased, the resonance frequency of the horn is increased; the displacement magnification is increased when the piezoelectric material is located in the large end and decreased when the piezoelectric material is located in the small end of the horn. The displacement magnification for the piezoelectric material in the large end is larger than that for the piezoelectric material in the small end of the horn. Some step-type ultrasonic horns are designed and manufactured; the resonance frequency and the displacement magnification are measured by means of POLYTEC Laser Scanning vibrometer. It is shown that the theoretical resonance frequency and the displacement magnification are in good agreement with the measured results. It is concluded that by means of the insertion of the piezoelectric material in the longitudinal horn, the horn performance can be adjusted by changing the electric impedance and the location of the piezoelectric material in the horn. It is expected that this kind of adjustable ultrasonic horns can be used in traditional and potential ultrasonic technologies where the vibrational performance adjustment is needed.

  2. Retuning the DARHT Axis-II Linear Induction Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekdahl, Carl August Jr.; Schulze, Martin E.; Carlson, Carl A.

    2015-03-31

    The Dual-Axis Radiographic Hydrodynamic Test (DARHT) facility uses bremsstrahlung radiation source spots produced by the focused electron beams from two linear induction accelerators (LIAs) to radiograph large hydrodynamic experiments driven by high explosives. The Axis-II 1.7-kA, 1600-ns beam pulse is transported through the LIA by the magnetic field from 91 solenoids as it is accelerated to ~16.5 MeV. The magnetic field produced by the solenoids and 80 steering dipole pairs for a given set of magnet currents is known as the “tune” of the accelerator [1]. From June, 2013 through September, 2014 a single tune was used. This tune wasmore » based on measurements of LIA element positions made over several years [2], and models of solenoidal fields derived from actual field measurements [3] [4]. Based on the focus scan technique, changing the tune of the accelerator and downstream transport had no effect on the beam emittance, to within the uncertainties of the measurement. Beam sizes appear to have been overestimated in all prior measurements because of the low magnification of the imaging system. This has resulted in overestimates of emittance by ~50%. The high magnification imaging should be repeated with the old tune for direct comparison with the new tune. High magnification imaging with the new accelerator tune should be repeated after retuning the downstream to produce a much more symmetric beam to reduce the uncertainty of this measurement. Thus, these results should be considered preliminary until we can effect a new tune to produce symmetric spots at our imaging station, for high magnification images.« less

  3. OIL SPILL DISPERSANT EFFECTIVENESS PROTOCOL. I: IMPACT OF OPERATIONAL VARIABLES

    EPA Science Inventory

    The current U.S. Environmental Protection Agency protocol for testing the effectiveness of dispersants, the swirling flask test, has been found to give widely varying results in the hands of different testing laboratories. The sources of the ambiguities in the test were determin...

  4. Effect of a Dispersant Agent in Fine Coal Recovery from Washery Tailings by Oil Agglomeration (Preliminary Study)

    NASA Astrophysics Data System (ADS)

    Yasar, Özüm; Uslu, Tuncay

    2017-12-01

    Among the fine coal cleaning methods, the oil agglomeration process has important advantages such as high process recovery, more clean product, simple dewatering stage. Several coal agglomeration studies have been undertaken recently and effects of different variables on the process performance have been investigated. However, unlike flotation studies, most of the previous agglomeration studies have not used dispersing agents to minimize slime coating effects of clays. In this study, agglomeration process was applied for recovery of fine coals from coal washery tailings containing remarkable amount of fine coal. Negative effect of fine clays during recovery was tried to be eliminated by using dispersing agent instead of de-sliming. Although ash reductions over 90 % were achieved, performance remained below expectations in terms of combustible matter recovery. However, this study is a preliminary one. It is considered that more satisfied results will be obtained in the next studies by changing the variables such as solid ratio, oil dosage, dispersant type and dosage.

  5. Evaluation of g seat augmentation of fixed-base/moving base simulation for transport landings under two visually imposed runway width conditions

    NASA Technical Reports Server (NTRS)

    Parrish, R. V.; Steinmetz, G. G.

    1983-01-01

    Vertical-motion cues supplied by a g-seat to augment platform motion cues in the other five degrees of freedom were evaluated in terms of their effect on objective performance measures obtained during simulated transport landings under visual conditions. In addition to evaluating the effects of the vertical cueing, runway width and magnification effects were investigated. The g-seat was evaluated during fixed base and moving-base operations. Although performance with the g-seat only improved slightly over that with fixed-base operation, combined g-seat platform operation showed no improvement over improvement over platform-only operation. When one runway width at one magnification factor was compared with another width at a different factor, the visual results indicated that the runway width probably had no effect on pilot-vehicle performance. The new performance differences that were detected may be more readily attributed to the extant (existing throughout) increase in vertical velocity induced by the magnification factor used to change the runway width, rather than to the width itself.

  6. Robotic assisted andrological surgery

    PubMed Central

    Parekattil, Sijo J; Gudeloglu, Ahmet

    2013-01-01

    The introduction of the operative microscope for andrological surgery in the 1970s provided enhanced magnification and accuracy, unparalleled to any previous visual loop or magnification techniques. This technology revolutionized techniques for microsurgery in andrology. Today, we may be on the verge of a second such revolution by the incorporation of robotic assisted platforms for microsurgery in andrology. Robotic assisted microsurgery is being utilized to a greater degree in andrology and a number of other microsurgical fields, such as ophthalmology, hand surgery, plastics and reconstructive surgery. The potential advantages of robotic assisted platforms include elimination of tremor, improved stability, surgeon ergonomics, scalability of motion, multi-input visual interphases with up to three simultaneous visual views, enhanced magnification, and the ability to manipulate three surgical instruments and cameras simultaneously. This review paper begins with the historical development of robotic microsurgery. It then provides an in-depth presentation of the technique and outcomes of common robotic microsurgical andrological procedures, such as vasectomy reversal, subinguinal varicocelectomy, targeted spermatic cord denervation (for chronic orchialgia) and robotic assisted microsurgical testicular sperm extraction (microTESE). PMID:23241637

  7. Gravitational lensing by ring-like structures

    NASA Astrophysics Data System (ADS)

    Lake, Ethan; Zheng, Zheng

    2017-02-01

    We study a class of gravitational lensing systems consisting of an inclined ring/belt, with and without an added point mass at the centre. We show that a common feature of such systems are so-called pseudo-caustics, across which the magnification of a point source changes discontinuously and yet remains finite. Such a magnification change can be associated with either a change in image multiplicity or a sudden change in the size of a lensed image. The existence of pseudo-caustics and the complex interplay between them and the formal caustics (which correspond to points of infinite magnification) can lead to interesting consequences, such as truncated or open caustics and a non-conservation of total image parity. The origin of the pseudo-caustics is found to be the non-differentiability of the solutions to the lens equation across the ring/belt boundaries, with the pseudo-caustics corresponding to ring/belt boundaries mapped into the source plane. We provide a few illustrative examples to understand the pseudo-caustic features, and in a separate paper consider a specific astronomical application of our results to study microlensing by extrasolar asteroid belts.

  8. New software tools for enhanced precision in robot-assisted laser phonomicrosurgery.

    PubMed

    Dagnino, Giulio; Mattos, Leonardo S; Caldwell, Darwin G

    2012-01-01

    This paper describes a new software package created to enhance precision during robot-assisted laser phonomicrosurgery procedures. The new software is composed of three tools for camera calibration, automatic tumor segmentation, and laser tracking. These were designed and developed to improve the outcome of this demanding microsurgical technique, and were tested herein to produce quantitative performance data. The experimental setup was based on the motorized laser micromanipulator created by Istituto Italiano di Tecnologia and the experimental protocols followed are fully described in this paper. The results show the new tools are robust and effective: The camera calibration tool reduced residual errors (RMSE) to 0.009 ± 0.002 mm under 40× microscope magnification; the automatic tumor segmentation tool resulted in deep lesion segmentations comparable to manual segmentations (RMSE= 0.160 ± 0.028 mm under 40× magnification); and the laser tracker tool proved to be reliable even during cutting procedures (RMSE= 0.073 ± 0.023 mm under 40× magnification). These results demonstrate the new software package can provide excellent improvements to the previous microsurgical system, leading to important enhancements in surgical outcome.

  9. Improvement in Visual Target Tracking for a Mobile Robot

    NASA Technical Reports Server (NTRS)

    Kim, Won; Ansar, Adnan; Madison, Richard

    2006-01-01

    In an improvement of the visual-target-tracking software used aboard a mobile robot (rover) of the type used to explore the Martian surface, an affine-matching algorithm has been replaced by a combination of a normalized- cross-correlation (NCC) algorithm and a template-image-magnification algorithm. Although neither NCC nor template-image magnification is new, the use of both of them to increase the degree of reliability with which features can be matched is new. In operation, a template image of a target is obtained from a previous rover position, then the magnification of the template image is based on the estimated change in the target distance from the previous rover position to the current rover position (see figure). For this purpose, the target distance at the previous rover position is determined by stereoscopy, while the target distance at the current rover position is calculated from an estimate of the current pose of the rover. The template image is then magnified by an amount corresponding to the estimated target distance to obtain a best template image to match with the image acquired at the current rover position.

  10. [The WHO/ISUP grading system for renal carcinoma].

    PubMed

    Moch, H

    2016-07-01

    Histological tumor grading is an accepted prognostic parameter of renal cell carcinoma (RCC). In 2012, the International Society of Urologic Pathologists (ISUP) proposed a novel grading system for RCC, mainly based on the evaluation of nucleoli: grade 1 tumors have nucleoli that are inconspicuous and basophilic at ×400 magnification; grade 2 tumors have nucleoli that are clearly visible at ×400 magnification and eosinophilic; grade 3 tumors have clearly visible nucleoli at ×100 magnification; and grade 4 tumors have extreme pleomorphism or rhabdoid and/or sarcomatoid morphology. This grading system was validated for clear cell renal cell carcinoma and papillary renal cell carcinoma. At the same time, the ISUP proposed not grading chromophobe renal cell carcinomas according to this system. At a consensus conference in Zurich the World Health Organization (WHO) recommended the ISUP grading system; thus, the WHO/ISUP grading system is now going to be implemented internationally. The ISUP/WHO grading system has not been validated as a prognostic parameter for other tumor subtypes, but can be used for descriptive purposes.

  11. Saturation-dependent solute dispersivity in porous media: Pore-scale processes

    NASA Astrophysics Data System (ADS)

    Raoof, A.; Hassanizadeh, S. M.

    2013-04-01

    It is known that in variably saturated porous media, dispersion coefficient depends on Darcy velocity and water saturation. In one-dimensional flow, it is commonly assumed that the dispersion coefficient is a linear function of velocity. The coefficient of proportionality, called the dispersivity, is considered to depend on saturation. However, there is not much known about its dependence on saturation. In this study, we investigate, using a pore network model, how the longitudinal dispersivity varies nonlinearly with saturation. We schematize the porous medium as a network of pore bodies and pore throats with finite volumes. The pore space is modeled using the multidirectional pore-network concept, which allows for a distribution of pore coordination numbers. This topological property together with the distribution of pore sizes are used to mimic the microstructure of real porous media. The dispersivity is calculated by solving the mass balance equations for solute concentration in all network elements and averaging the concentrations over a large number of pores. We have introduced a new formulation of solute transport within pore space, where we account for different compartments of residual water within drained pores. This formulation makes it possible to capture the effect of limited mixing due to partial filling of the pores under variably saturated conditions. We found that dispersivity increases with the decrease in saturation, it reaches a maximum value, and then decreases with further decrease in saturation. To show the capability of our formulation to properly capture the effect of saturation on solute dispersion, we applied it to model the results of a reported experimental study.

  12. Lung volume is a determinant of aerosol bolus dispersion.

    PubMed

    Schulz, Holger; Eder, Gunter; Heyder, Joachim

    2003-01-01

    The technique of inhaling a small volume element labeled with particles ("aerosol bolus") can be used to assess convective gas mixing in the lung. While a bolus undergoes mixing in the lung, particles are dispersed in an increasing volume of the respired air. However, determining factors of bolus dispersion are not yet completely understood. The present study tested the hypothesis that bolus dispersion is related, among others, to the total volume in which the bolus is allowed to mix--i.e., to the individual lung size. Bolus dispersion was measured in 32 anesthetized, mechanically ventilated dogs with total lung capacities (TLCs) of 1.1-2.5 L. Six-milliliter aerosol boluses were introduced at various preselected time-points during inspiration to probe different volumetric lung depths. Dispersion (SD) was determined by moment analysis of particle concentrations in the expired air. We found linear correlations between SD at a given lung depth and the individual end-inspiratory lung volume (V(L)). The relationship was tightest for boluses inhaled deepest into the lungs: SD(40) = 0.068 V(L) - 1.77, r(2) = 0.59. Normalizing SD to V(L) abolished this dependency and resulted in a considerable reduction of inter-individual variability as compared to the uncorrected measurements. These data indicate that lung size influences measurements of bolus dispersion. It therefore appears reasonable to apply a normalization procedure before interpreting the data. Apart from a reduction in measurement variability, this should help to separate the effects on bolus dispersion of altered lung volumes and altered mixing processes in diseased lungs.

  13. Optical properties, morphology and elemental chemical composition of atmospheric particles at T1 supersite on MILAGRO campaign

    NASA Astrophysics Data System (ADS)

    Carabali, G.; Mamani-Paco, R.; Castro, T.; Peralta, O.; Herrera, E.; Trujillo, B.

    2011-05-01

    Atmospheric particles were sampled at T1 supersite (19°43' N latitude, 98°58' W longitude, and 2340 m above sea level) during MILAGRO campaign. T1 was located at the north of Mexico City Metropolitan Area (MCMA). Aerosol sampling was done by placing transmission electron microscope (TEM) copper grids on the last 5 stages of an 8-stage MOUDI cascade impactor (d50 = 1.8, 1.0, 0.56, 0.32, and 0.18 μm). Samples were obtained at morning (06:00-09:00), noon (11:00-14:00), afternoon (16:00-19:00) and evening (21:00-24:00) local time. Absorption and scattering coefficients, and particles concentration (0.01-3 μm aerodynamic diameter) were measured simultaneously using a PASP absorption photometer (operated at 550 nm), a portable integrating nephelometer (at 530 nm) and a CNI particle counter. TEM images of particles were acquired at different magnifications using a CM 200 Phillips TEM-EDAX system. The morphology of atmospheric particles for two aerodynamic diameters (0.18 and 1.8 μm) was compared using border-based fractal dimension. Particles sampled under Mexico City pollution influence showed not much variability, suggesting the presence of more compact particles in smaller sizes (d50 = 1.8 μm) at the site. The presence of higher numbers of compact particles can be attributed to aerosol aging and secondary aerosol formation, among others. Under early morning conditions, smaller particles (d50 = 0.18 μm) had more irregular features resulting in a higher average fractal dimension. Energy dispersive X-ray spectroscopy (EDS) was used to determine the elemental composition of particles. EDS analysis in particles with d50 = 0.18 μm showed a higher content of carbonaceous material and relevant amounts of Si, Fe, K, and Co. This may indicate an impact from industrial and vehicle's emissions on atmospheric particles.

  14. Optical properties, morphology and elemental composition of atmospheric particles at T1 supersite on MILAGRO campaign

    NASA Astrophysics Data System (ADS)

    Carabali, G.; Mamani-Paco, R.; Castro, T.; Peralta, O.; Herrera, E.; Trujillo, B.

    2012-03-01

    Atmospheric particles were sampled at T1 supersite during MILAGRO campaign, in March 2006. T1 was located at the north of Mexico City (MC). Aerosol sampling was done by placing copper grids for Transmission Electron Microscope (TEM) on the last five of an 8-stage MOUDI cascade impactor. Samples were obtained at different periods to observe possible variations on morphology. Absorption and scattering coefficients, as well as particle concentrations (0.01-3 μm aerodynamic diameter) were measured simultaneously using a PSAP absorption photometer, a portable integrating nephelometer, and a CPC particle counter. Particle images were acquired at different magnifications using a CM 200 Phillips TEM-EDAX system, and then calculated the border-based fractal dimension. Also, Energy Dispersive X-Ray Spectroscopy (EDS) was used to determine the elemental composition of particles. The morphology of atmospheric particles for two aerodynamic diameters (0.18 and 1.8 μm) was compared using border-based fractal dimension to relate it to the other particle properties, because T1-generated particles have optical, morphological and chemical properties different from those transported by the MC plume. Particles sampled under MC pollution influence showed not much variability, suggesting that more spherical particles (border-based fractal dimension close to 1.0) are more common in larger sizes (d50 = 1.8 μm), which may be attributed to aerosol aging and secondary aerosol formation. Between 06:00 and 09:00 a.m., smaller particles (d50 = 0.18 μm) had more irregular shapes resulting in higher border-based fractal dimensions (1.2-1.3) for samples with more local influence. EDS analysis in d50 = 0.18 μm particles showed high contents of carbonaceous material, Si, Fe, K, and Co. Perhaps, this indicates an impact from industrial and vehicle emissions on atmospheric particles at T1.

  15. The influence of spatially and temporally varying oceanographic conditions on meroplanktonic metapopulations

    NASA Astrophysics Data System (ADS)

    Botsford, L. W.; Moloney, C. L.; Hastings, A.; Largier, J. L.; Powell, T. M.; Higgins, K.; Quinn, J. F.

    We synthesize the results of several modelling studies that address the influence of variability in larval transport and survival on the dynamics of marine metapopulations distributed along a coast. Two important benthic invertebrates in the California Current System (CCS), the Dungeness crab and the red sea urchin, are used as examples of the way in which physical oceanographic conditions can influence stability, synchrony and persistence of meroplanktonic metapopulations. We first explore population dynamics of subpopulations and metapopulations. Even without environmental forcing, isolated local subpopulations with density-dependence can vary on time scales roughly twice the generation time at high adult survival, shifting to annual time scales at low survivals. The high frequency behavior is not seen in models of the Dungeness crab, because of their high adult survival rates. Metapopulations with density-dependent recruitment and deterministic larval dispersal fluctuate in an asynchronous fashion. Along the coast, abundance varies on spatial scales which increase with dispersal distance. Coastwide, synchronous, random environmental variability tends to synchronize these metapopulations. Climate change could cause a long-term increase or decrease in mean larval survival, which in this model leads to greater synchrony or extinction respectively. Spatially managed metapopulations of red sea urchins go extinct when distances between harvest refugia become greater than the scale of larval dispersal. All assessments of population dynamics indicate that metapopulation behavior in general dependes critically on the temporal and spatial nature of larval dispersal, which is largely determined by physical oceanographic conditions. We therfore explore physical influences on larval dispersal patterns. Observed trends in temperature and salinity applied to laboratory-determined responses indicate that natural variability in temperature and salinity can lead to variability in larval development period on interannual (50%), intra-annual (20%) and latitudinal (200%) scales. Variability in development period significantly influences larval survival and, thus, net transport. Larval drifters that undertake diel vertical migration in a primitive equation model of coastal circulation (SPEM) demonstrate the importance of vertical migration in determining horizontal transport. Empirically derived estimates of the effects of wind forcing on larval transport of vertically migrating larvae (wind drift when near the surface and Ekman transport below the surface) match cross-shelf distributions in 4 years of existing larval data. We use a one-dimensional advection-diffusion model, which includes intra-annual timing of cross-shelf flows in the CCS, to explore the combined effects on settlement: (1) temperature- and salinity-dependent development and survival rates and (2) possible horizontal transport due to vertical migration of crab larvae. Natural variability in temperature, wind forcing, and the timing of the spring transition can cause the observed variability in recruitment. We conclude that understanding the dynamics of coastally distributed metapopulations in response to physically-induced variability in larval dispersal will be a critical step in assessing the effects of climate change on marine populations.

  16. Understanding the relative role of dispersion mechanisms across basin scales

    NASA Astrophysics Data System (ADS)

    Di Lazzaro, M.; Zarlenga, A.; Volpi, E.

    2016-05-01

    Different mechanisms are understood to represent the primary sources of the variance of travel time distribution in natural catchments. To quantify the fraction of variance introduced by each component, dispersion coefficients have been earlier defined in the framework of geomorphology-based rainfall-runoff models. In this paper we compare over a wide range of basin sizes and for a variety of runoff conditions the relative role of geomorphological dispersion, related to the heterogeneity of path lengths, and hillslope kinematic dispersion, generated by flow processes within the hillslopes. Unlike previous works, our approach does not focus on a specific study case; instead, we try to generalize results already obtained in previous literature stemming from the definition of a few significant parameters related to the metrics of the catchment and flow dynamics. We further extend this conceptual framework considering the effects of two additional variance-producing processes: the first covers the random variability of hillslope velocities (i.e. of travel times over hillslopes); the second deals with non-uniform production of runoff over the basin (specifically related to drainage density). Results are useful to clarify the role of hillslope kinematic dispersion and define under which conditions it counteracts or reinforces geomorphological dispersion. We show how its sign is ruled by the specific spatial distribution of hillslope lengths within the basin, as well as by flow conditions. Interestingly, while negative in a wide range of cases, kinematic dispersion is expected to become invariantly positive when the variability of hillslope velocity is large.

  17. Simulated effects of host fish distribution on juvenile unionid mussel dispersal in a large river

    USGS Publications Warehouse

    Daraio, J.A.; Weber, L.J.; Zigler, S.J.; Newton, T.J.; Nestler, J.M.

    2012-01-01

    Larval mussels (Family Unionidae) are obligate parasites on fish, and after excystment from their host, as juveniles, they are transported with flow. We know relatively little about the mechanisms that affect dispersal and subsequent settlement of juvenile mussels in large rivers. We used a three-dimensional hydrodynamic model of a reach of the Upper Mississippi River with stochastic Lagrangian particle tracking to simulate juvenile dispersal. Sensitivity analyses were used to determine the importance of excystment location in two-dimensional space (lateral and longitudinal) and to assess the effects of vertical location (depth in the water column) on dispersal distances and juvenile settling distributions. In our simulations, greater than 50% of juveniles mussels settled on the river bottom within 500 m of their point of excystment, regardless of the vertical location of the fish in the water column. Dispersal distances were most variable in environments with higher velocity and high gradients in velocity, such as along channel margins, near the channel bed, or where effects of river bed morphology caused large changes in hydraulics. Dispersal distance was greater and variance was greater when juvenile excystment occurred in areas where vertical velocity (w) was positive (indicating an upward velocity) than when w was negative. Juvenile dispersal distance is likely to be more variable for mussels species whose hosts inhabit areas with steeper velocity gradients (e.g. channel margins) than a host that generally inhabits low-flow environments (e.g. impounded areas).

  18. Axial length variation impacts on retinal vessel density and foveal avascular zone area measurement using optical coherence tomography angiography

    NASA Astrophysics Data System (ADS)

    Sampson, Danuta M.; Gong, Peijun; An, Di; Menghini, Moreno; Hansen, Alex; Mackey, David A.; Sampson, David D.; Chen, Fred K.

    2017-04-01

    We examined the impact of axial length on superficial retinal vessel density (SRVD) and foveal avascular zone area (FAZA) measurement using optical coherence tomography angiography. The SRVD and FAZA were quantified before and after correction for magnification error associated with axial length variation. Although SRVD did not differ before and after correction for magnification error in the parafoveal region, change in foveal SRVD and FAZA were significant. This has implications for clinical trials outcome in diseased eyes where significant capillary dropout may occur in the parafovea.

  19. Beyond concordance cosmology with magnification of gravitational-wave standard sirens.

    PubMed

    Camera, Stefano; Nishizawa, Atsushi

    2013-04-12

    We show how future gravitational-wave detectors would be able to discriminate between the concordance Λ cold dark matter cosmological model and up-to-date competing alternatives, e.g., dynamical dark energy (DE) models or modified gravity (MG) theories. Our method consists of using the weak-lensing magnification effect that affects a standard-siren signal because of its traveling through the Universe's large scale structure. As a demonstration, we present constraints on DE and MG from proposed gravitational-wave detectors, namely Einstein Telescope and DECI-Hertz Interferometer Gravitational-Wave Observatory and Big-Bang Observer.

  20. Precision technique for trimming dies using a magnification device.

    PubMed

    Beck, D B

    1980-05-01

    This article described a technique for trimming a die under magnification. However, the microscope is also useful for checking (1) margins of wax patterns for completeness, (2) the internal surfaces of castings for imperfections, bubbles, or retained investment particles which could prevent proper seating of the castings on the dies, (3) for cracks or contamination in dental porcelain as well as porcelain flash on margins; and (4) precision attachment operation after casting or soldering procedures. Attention to detail in these laboratory procedures greatly improves the final fit of dental castings and saves subsequent chairside adjustments and remakes.

  1. Scanning electron microscopy of a blister roof in dystrophic epidermolysis bullosa*

    PubMed Central

    de Almeida Jr., Hiram Larangeira; Monteiro, Luciane; Silva, Ricardo Marques e; Rocha, Nara Moreira; Scheffer, Hans

    2013-01-01

    In dystrophic epidermolysis bullosa the genetic defect of anchoring fibrils leads to cleavage beneath the basement membrane, with its consequent loss. We performed scanning electron microscopy of an inverted blister roof of a case of dystrophic epidermolysis bullosa, confirmed by immunomapping and gene sequencing. With a magnification of 2000 times a net attached to the blister roof could be easily identified. This net was composed of intertwined flat fibers. With higher magnifications, different fiber sizes could be observed, some thin fibers measuring around 80 nm and thicker ones measuring between 200 and 300 nm. PMID:24474107

  2. Proximate causes of natal dispersal in female yellow-bellied marmots, Marmota flaviventris.

    PubMed

    Armitage, Kenneth B; Van Vuren, Dirk H; Ozgul, Arpat; Oli, Madan K

    2011-01-01

    We investigated factors influencing natal dispersal in 231 female yearling yellow-bellied marmots (Marmota flaviventris) using comprehensive analysis of 10 years (1983-1993) of radiotelemetry and 37 years (1963-1999) of capture-mark-recapture data. Only individuals whose dispersal status was verified, primarily by radiotelemetry, were considered. Univariate analyses revealed that six of the 24 variables we studied significantly influenced dispersal: dispersal was less likely when the mother was present, amicable behavior with the mother and play behavior were more frequent, and spatial overlap was greater with the mother, with matriline females, and with other yearling females. Using both univariate and multivariate analyses, we tested several hypotheses proposed as proximate causes of dispersal. We rejected inbreeding avoidance, population density, body size, social intolerance, and kin competition as factors influencing dispersal. Instead, our results indicate that kin cooperation, expressed via cohesive behaviors and with a focus on the mother, influenced dispersal by promoting philopatry. Kin cooperation may be an underappreciated factor influencing dispersal in both social and nonsocial species.

  3. GERLUMPH Data Release 2: 2.5 Billion Simulated Microlensing Light Curves

    NASA Astrophysics Data System (ADS)

    Vernardos, G.; Fluke, C. J.; Bate, N. F.; Croton, D.; Vohl, D.

    2015-04-01

    In the upcoming synoptic all-sky survey era of astronomy, thousands of new multiply imaged quasars are expected to be discovered and monitored regularly. Light curves from the images of gravitationally lensed quasars are further affected by superimposed variability due to microlensing. In order to disentangle the microlensing from the intrinsic variability of the light curves, the time delays between the multiple images have to be accurately measured. The resulting microlensing light curves can then be analyzed to reveal information about the background source, such as the size of the quasar accretion disk. In this paper we present the most extensive and coherent collection of simulated microlensing light curves; we have generated \\gt 2.5 billion light curves using the GERLUMPH high resolution microlensing magnification maps. Our simulations can be used to train algorithms to measure lensed quasar time delays, plan future monitoring campaigns, and study light curve properties throughout parameter space. Our data are openly available to the community and are complemented by online eResearch tools, located at http://gerlumph.swin.edu.au.

  4. Task Validation for Studies on Fragmented Sleep and Cognitive Efficiency under Stress

    DTIC Science & Technology

    1982-11-01

    43 10 Interactions Between Sex and Xenoid Dispersion ........ ... 48 11 Percent Weapon Commands Issued Without Adequate Shield...42 15 Variables Showing Significant Main Effects for Sex of Subject...45 H16 Significant Interactions Between Sex and Xenoid Dispersion .. ............................................46 17 Experimental Design of the

  5. Apatite (U-Th-Sm)/He age dispersion arising from analysis of variable grain sizes and broken crystals - examples from the Scottish Southern Uplands

    NASA Astrophysics Data System (ADS)

    Łuszczak, Katarzyna; Persano, Cristina; Stuart, Finlay; Brown, Roderick

    2016-04-01

    Apatite (U-Th-Sm)/He (AHe) thermochronometry is a powerful technique for deciphering denudation of the uppermost crust. However, the age dispersion of single grains from the same rock is typical, and this hampers establishing accurate thermal histories when low grain numbers are analysed. Dispersion arising from the analysis of broken crystal fragments[1] has been proposed as an important cause of age dispersion, along with grain size and radiation damage. A new tool, Helfrag[2], allows constraints to be placed on the low temperature history derived from the analysis of apatite crystal fragments. However, the age dispersion model has not been fully tested on natural samples yet. We have performed AHe analysis of multiple (n = 20-25) grains from four rock samples from the Scottish Southern Uplands, which were subjected to the same exhumation episodes, although, the amount of exhumation varied between the localities. This is evident from the range of AFT ages (˜60 to ˜200 Ma) and variable thermal histories showing either strong, moderate and no support for a rapid cooling event at ˜60 Ma. Different apatite size and fragment geometry were analysed in order to maximise age dispersion. In general, the age dispersion increases with increasing AFT age (from 47% to 127%), consistent with the prediction from the fragmentation model. Thermal histories obtained using Helfrag were compared with those obtained by standard codes based on the spherical approximation. In one case, the Helfrag model was capable of resolving the higher complexity of the thermal history of the rock, constraining several heating/cooling events that are not predicted by the standard models, but are in good agreement with the regional geology. In other cases, the thermal histories are similar for both Helfrag and standard models and the age predictions for the Helfrag are only slightly better than for standard model, implying that the grain size has the dominant role in generating the age dispersion. Rather than suggesting that grain size is the predominant factor in controlling age dispersion in all data sets, our results may be linked to the actual size of the picked grains; for grain widths smaller than 100 μm, the He profile within the crystal may not be differentiated enough to produce a dispersion measureable outside the uncertainty associated with the age. It is also easier for long-thin and short-thick than long-thick and short-thin grains to be preserved; this minimises the age dispersion that can be generated from fragmentation. We suggest, that in order to obtain valuable information from both fragmentation and grain size >20 large (width >100 μm) grain fragments of variable length have to be analyzed, together with a few smaller grains. Our results point to a strategy that favours multiple single-grain AHe ages determinations on carefully selected samples, with good quality apatite crystals of variable dimensions rather than fewer determinations on many samples. [1] Brown, R. et al. 2013.Geochim. Cosmochim. Acta.122, 478-497 [2] Beucher, R. et al. 2013.Geochim. Cosmochim. Acta. 120, 395-416.

  6. FDTD modelling of induced polarization phenomena in transient electromagnetics

    NASA Astrophysics Data System (ADS)

    Commer, Michael; Petrov, Peter V.; Newman, Gregory A.

    2017-04-01

    The finite-difference time-domain scheme is augmented in order to treat the modelling of transient electromagnetic signals containing induced polarization effects from 3-D distributions of polarizable media. Compared to the non-dispersive problem, the discrete dispersive Maxwell system contains costly convolution operators. Key components to our solution for highly digitized model meshes are Debye decomposition and composite memory variables. We revert to the popular Cole-Cole model of dispersion to describe the frequency-dependent behaviour of electrical conductivity. Its inversely Laplace-transformed Debye decomposition results in a series of time convolutions between electric field and exponential decay functions, with the latter reflecting each Debye constituents' individual relaxation time. These function types in the discrete-time convolution allow for their substitution by memory variables, annihilating the otherwise prohibitive computing demands. Numerical examples demonstrate the efficiency and practicality of our algorithm.

  7. Effect of Loss of Heart Rate Variability on T-Wave Heterogeneity and QT Variability in Heart Failure Patients: Implications in Ventricular Arrhythmogenesis.

    PubMed

    Nayyar, Sachin; Hasan, Muhammad A; Roberts-Thomson, Kurt C; Sullivan, Thomas; Baumert, Mathias

    2017-06-01

    Heart rate variability (HRV) modulates dynamics of ventricular repolarization. A diminishing value of HRV is associated with increased vulnerability to life-threatening ventricular arrhythmias, however the causal relationship is not well-defined. We evaluated if fixed-rate atrial pacing that abolishes the effect of physiological HRV, will alter ventricular repolarization wavefronts and is relevant to ventricular arrhythmogenesis. The study was performed in 16 subjects: 8 heart failure patients with spontaneous ventricular tachycardia [HFVT], and 8 subjects with structurally normal hearts (H Norm ). The T-wave heterogeneity descriptors [total cosine angle between QRS and T-wave loop vectors (TCRT, negative value corresponds to large difference in the 2 loops), T-wave morphology dispersion, T-wave loop dispersion] and QT intervals were analyzed in a beat-to-beat manner on 3-min records of 12-lead surface ECG at baseline and during atrial pacing at 80 and 100 bpm. The global T-wave heterogeneity was expressed as mean values of each of the T-wave morphology descriptors and variability in QT intervals (QTV) as standard deviation of QT intervals. Baseline T-wave morphology dispersion and QTV were higher in HFVT compared to H Norm subjects (p ≤ 0.02). While group differences in T-wave morphology dispersion and T-wave loop dispersion remained unaltered with atrial pacing, TCRT tended to fall more in HFVT patients compared to H Norm subjects (interaction p value = 0.086). Atrial pacing failed to reduce QTV in both groups, however group differences were augmented (p < 0.0001). Atrial pacing and consequent loss of HRV appears to introduce unfavorable changes in ventricular repolarization in HFVT subjects. It widens the spatial relationship between wavefronts of ventricular depolarization and repolarization. This may partly explain the concerning relation between poorer HRV and the risk of ventricular arrhythmias.

  8. Magnification of starting torques of dc motors by maximum power point trackers in photovoltaic systems

    NASA Technical Reports Server (NTRS)

    Appelbaum, Joseph; Singer, S.

    1989-01-01

    Direct current (dc) motors are used in terrestrial photovoltaic (PV) systems such as in water-pumping systems for irrigation and water supply. Direct current motors may also be used for space applications. Simple and low weight systems including dc motors may be of special interest in space where the motors are directly coupled to the solar cell array (with no storage). The system will operate only during times when sufficient insolation is available. An important performance characteristic of electric motors is the starting to rated torque ratio. Different types of dc motors have different starting torque ratios. These ratios are dictated by the size of solar cell array, and the developed motor torque may not be sufficient to overcome the load starting torque. By including a maximum power point tracker (MPPT) in the PV system, the starting to rated torque ratio will increase, the amount of which depends on the motor type. The starting torque ratio is calculated for the permanent magnet, series and shunt excited dc motors when powered by solar cell arrays for two cases: with and without MPPT's. Defining a motor torque magnification by the ratio of the motor torque with an MPPT to the motor torque without an MPPT, a magnification of 3 was obtained for the permanent magnet motor and a magnification of 7 for both the series and shunt motors. The effect of the variation of solar insolation on the motor starting torque was covered. All motor types are less sensitive to insolation variation in systems including MPPT's as compared to systems with MPPT's. The analysis of this paper will assist the PV system designed to determine whether or not to include an MPPT in the system for a specific motor type.

  9. Galactic Distribution of Planets From High-Magnification Microlensing Events

    NASA Astrophysics Data System (ADS)

    Gould, Andrew; Yee, Jennifer; Carey, Sean

    2015-10-01

    We will use Spitzer to measure microlens parallaxes for ~14 microlensing events that are high-magnification (as seen from Earth), in order to determine the Galactic distribution of planets. Simultaneous observations from Spitzer and Earth yield parallaxes because they are separated by ~1 AU, which is of order the size of the Einstein radius projected on the observer plane. Hence, Earth and Spitzer see substantially different lightcurves for the same event. These Spitzer parallaxes enable measurements of the distances to the lenses (and their masses), which is a crucial element for measuring the Galactic distribution of planets. High-mag events are exceptionally sensitive to planets: Gould+ (2010) detected 6 planets from 13 high-mag events. However, previously it was believed impossible to measure their parallaxes using Spitzer: scheduling constraints imply a 3-10 day delay from event recognition to first observation, while high-mag events are typically recognized only 1-2 days before peak. By combining aggressive observing protocols, a completely new photometry pipeline, and new mathematical techniques, we successfully measured parallaxes for 7 events with peak magnification A>100 and another ~7 with 50

  10. Slit-lamp photography and videography with high magnifications

    PubMed Central

    Yuan, Jin; Jiang, Hong; Mao, Xinjie; Ke, Bilian; Yan, Wentao; Liu, Che; Cintrón-Colón, Hector R; Perez, Victor L; Wang, Jianhua

    2015-01-01

    Purpose To demonstrate the use of the slit-lamp photography and videography with extremely high magnifications for visualizing structures of the anterior segment of the eye. Methods A Canon 60D digital camera with Movie Crop Function was adapted into a Nikon FS-2 slit-lamp to capture still images and video clips of the structures of the anterior segment of the eye. Images obtained using the slit-lamp were tested for spatial resolution. The cornea of human eyes was imaged with the slit-lamp and the structures were compared with the pictures captured using the ultra-high resolution optical coherence tomography (UHR-OCT). The central thickness of the corneal epithelium and total cornea was obtained using the slit-lamp and the results were compared with the thickness obtained using UHR-OCT. Results High-quality ocular images and higher spatial resolutions were obtained by using the slit-lamp with extremely high magnifications and Movie Crop Function, rather than the traditional slit-lamp. The structures and characteristics of the cornea, such as the normal epithelium, abnormal epithelium of corneal intraepithelial neoplasia, LASIK interface, and contact lenses, were clearly visualized using this device. These features were confirmed by comparing the obtained images with those acquired using UHR-OCT. Moreover, the tear film debris on the ocular surface and the corneal nerve in the anterior corneal stroma were also visualized. The thicknesses of the corneal epithelium and total cornea were similar to that measured using UHR-OCT (P < 0.05). Conclusions We demonstrated that the slit-lamp photography and videography with extremely high magnifications allows better visualization of the anterior segment structures of the eye, especially of the epithelium, when compared with the traditional slit-lamp. PMID:26020484

  11. Piercing Ear Keloid: Excision Using Loupe Magnification and Topical Liquid Silicone Gel as Adjuvant

    PubMed Central

    Ramesh, Bellam A.; Mohan, J.

    2018-01-01

    Background: Keloid is an abnormal growth of scar at the site of skin injury, which usually does not regress. It proliferates beyond the original scar. The ear keloid usually develops after piercing injury to wear ornaments. A patient usually asks for removal of keloid, as it is aesthetically unpleasant. Patient may sometimes complain of itching and pain. Aim: The study was conducted to analyze results following excision of keloid with its tract and topical silicone gel as the postsurgical adjuvant. Materials and Methods: Ear keloids measuring less than 0.5cm or more than 5cm in maximum dimension were excluded from the study. Nonpiercing causes such as burns, trauma, and recurrent keloid were excluded from the study. The study was carried out on 22 patients who had keloid because of piercing injury, including 4 cases with both ear keloids. Of 26 ear keloids, 19 had the tract or connecting tissue. The lesion was excised under anesthesia using magnification. For all the operated cases, topical liquid silicone gel was used as postsurgical adjuvant therapy. The method of application of topical silicone gel was taught to each patient and was considered significant. Result: The magnification helped in identification of tract in 73% of the cases in this study. Twenty patients had successfully responded to proposed treatment, and two patients developed recurrence while using topical silicone gel as the adjuvant. These two patients were managed with conventional triamcinolone injection. Conclusion: The topical silicone gel as postsurgical adjuvant therapy avoided the use of painful postsurgical injection or radiotherapy for the 1–3cm primary ear keloids. The advantages of magnification were better clearance of keloid tissue, easier identification of tract and removal of keloid pseudopods, meticulous suturing, and comfortable elevation of a small local flap. PMID:29731586

  12. Is the Cortical Deficit in Amblyopia Due to Reduced Cortical Magnification, Loss of Neural Resolution, or Neural Disorganization?

    PubMed

    Clavagnier, Simon; Dumoulin, Serge O; Hess, Robert F

    2015-11-04

    The neural basis of amblyopia is a matter of debate. The following possibilities have been suggested: loss of foveal cells, reduced cortical magnification, loss of spatial resolution of foveal cells, and topographical disarray in the cellular map. To resolve this we undertook a population receptive field (pRF) functional magnetic resonance imaging analysis in the central field in humans with moderate-to-severe amblyopia. We measured the relationship between averaged pRF size and retinal eccentricity in retinotopic visual areas. Results showed that cortical magnification is normal in the foveal field of strabismic amblyopes. However, the pRF sizes are enlarged for the amblyopic eye. We speculate that the pRF enlargement reflects loss of cellular resolution or an increased cellular positional disarray within the representation of the amblyopic eye. The neural basis of amblyopia, a visual deficit affecting 3% of the human population, remains a matter of debate. We undertook the first population receptive field functional magnetic resonance imaging analysis in participants with amblyopia and compared the projections from the amblyopic and fellow normal eye in the visual cortex. The projection from the amblyopic eye was found to have a normal cortical magnification factor, enlarged population receptive field sizes, and topographic disorganization in all early visual areas. This is consistent with an explanation of amblyopia as an immature system with a normal complement of cells whose spatial resolution is reduced and whose topographical map is disordered. This bears upon a number of competing theories for the psychophysical defect and affects future treatment therapies. Copyright © 2015 the authors 0270-6474/15/3514740-16$15.00/0.

  13. NEW DEVELOPMENTS ON INVERSE POLYGON MAPPING TO CALCULATE GRAVITATIONAL LENSING MAGNIFICATION MAPS: OPTIMIZED COMPUTATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mediavilla, E.; Lopez, P.; Mediavilla, T.

    2011-11-01

    We derive an exact solution (in the form of a series expansion) to compute gravitational lensing magnification maps. It is based on the backward gravitational lens mapping of a partition of the image plane in polygonal cells (inverse polygon mapping, IPM), not including critical points (except perhaps at the cell boundaries). The zeroth-order term of the series expansion leads to the method described by Mediavilla et al. The first-order term is used to study the error induced by the truncation of the series at zeroth order, explaining the high accuracy of the IPM even at this low order of approximation.more » Interpreting the Inverse Ray Shooting (IRS) method in terms of IPM, we explain the previously reported N {sup -3/4} dependence of the IRS error with the number of collected rays per pixel. Cells intersected by critical curves (critical cells) transform to non-simply connected regions with topological pathologies like auto-overlapping or non-preservation of the boundary under the transformation. To define a non-critical partition, we use a linear approximation of the critical curve to divide each critical cell into two non-critical subcells. The optimal choice of the cell size depends basically on the curvature of the critical curves. For typical applications in which the pixel of the magnification map is a small fraction of the Einstein radius, a one-to-one relationship between the cell and pixel sizes in the absence of lensing guarantees both the consistence of the method and a very high accuracy. This prescription is simple but very conservative. We show that substantially larger cells can be used to obtain magnification maps with huge savings in computation time.« less

  14. Pain-Related Rumination, But Not Magnification or Helplessness, Mediates Race and Sex Differences in Experimental Pain.

    PubMed

    Meints, Samantha M; Stout, Madison; Abplanalp, Samuel; Hirsh, Adam T

    2017-03-01

    Compared with white individuals and men, black individuals and women show a lower tolerance for experimental pain stimuli. Previous studies suggest that pain catastrophizing is important in this context, but little is known about which components of catastrophizing contribute to these race and sex differences. The purpose of the current study was to examine the individual components of catastrophizing (rumination, magnification, and helplessness) as candidate mediators of race and sex differences in experimental pain tolerance. Healthy undergraduates (N = 172, 74% female, 43.2% black) participated in a cold pressor task and completed a situation-specific version of the Pain Catastrophizing Scale. Black and female participants showed a lower pain tolerance than white (P < .01, d = .70) and male (P < .01, d = .55) participants, respectively. Multiple mediation analyses indicated that these race and sex differences were mediated by the rumination component of catastrophizing (indirect effect = -7.13, 95% confidence interval (CI), -16.20 to -1.96, and 5.75, 95% CI, .81-15.57, respectively) but not by the magnification (95% CI, -2.91 to 3.65 and -1.54 to 1.85, respectively) or helplessness (95% CI, -5.53 to 3.31 and -.72 to 5.38, respectively) components. This study provides new information about race and sex differences in pain and suggests that treatments targeting the rumination component of catastrophizing may help mitigate pain-related disparities. This study suggests that differences in pain-related rumination, but not magnification or helplessness, are important contributors to race and sex differences in the pain experience. Interventions that target this maladaptive cognitive style may help reduce disparities in pain. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  15. Effective doses in children: association with common complex imaging techniques used during interventional radiology procedures.

    PubMed

    Lai, Priscilla; McNeil, Sarah M; Gordon, Christopher L; Connolly, Bairbre L

    2014-12-01

    The purpose of this study was to determine the range of effective doses associated with imaging techniques used during interventional radiology procedures on children. A pediatric phantom set (1, 5, and 10 years) coupled with high-sensitivity metal oxide semiconductor field effect transistor (MOSFET) dosimeters was used to calculate effective doses. Twenty MOSFETs were inserted into each phantom at radiosensitive organ locations. The phantoms were exposed to mock head, chest, and abdominal interventional radiology procedures performed with different geometries and magnifications. Fluoroscopy, digital subtraction angiography (DSA), and spin angiography were simulated on each phantom. Road mapping was conducted only on the 5-year-old phantom. International Commission on Radiological Protection publication 103 tissue weights were applied to the organ doses recorded with the MOSFETs to determine effective dose. For easy application to clinical cases, doses were normalized per minute of fluoroscopy and per 10 frames of DSA or spin angiography. Effective doses from DSA, angiography, and fluoroscopy were higher for younger ages because of magnification use and were largest for abdominal procedures. DSA of the head, chest, and abdomen (normalized per 10 frames) imparted doses 2-3 times as high as corresponding doses per minute of fluoroscopy while all other factors remained unchanged (age, projection, collimation, magnification). Three to five frames of DSA imparted an effective dose equal to doses from 1 minute of fluoroscopy. Doses from spin angiography were almost one-half the doses received from an equivalent number of frames of DSA. Patient effective doses during interventional procedures vary substantially depending on procedure type but tend to be higher because of magnification use in younger children and higher in the abdomen.

  16. Experimental characterization of the imaging properties of multifocal intraocular lenses

    NASA Astrophysics Data System (ADS)

    Gobbi, Pier Giorgio; Fasce, Francesco; Bozza, Stefano; Brancato, Rosario

    2003-07-01

    Many different types of intraocular lenses (IOL) are currently available for implantation, both as crystalline lens replacements and as phakic refractive elements. Their optical design is increasingly sophisticated, including aspherical surface profiles and multi-zone multifocal structures, however a quantitative and comparative characterization of their imaging properties is lacking. Also a qualitative visualization of their properties would be very useful for patients in the lens choice process. To this end an experimental eye model has been developed to allow for simulated in-vivo testing of IOLs. The model cornea is made of PMMA with a dioptric power of 43 D, and it has an aspherical profile designed to minimize spherical aberration across the visible spectrum. The eye model has a variable iris and a mechanical support to accomodate IOLs, immersed in physiological solution. The eye length is variable and the retina is replaced by a glass plate. The image formed on this "retina" is optically conjugated to a CCD camera, with a suitable magnification in order to mimic the human fovea resolution, and displayed onto a monitor. With such an opto-mechanical eye model, two types of images have been used to characterize IOLs: letter charts and variable contrast gratings, in order to directly simulate human visual acuity and contrast sensitivity.

  17. Soil resources and topography shape local tree community structure in tropical forests

    PubMed Central

    Baldeck, Claire A.; Harms, Kyle E.; Yavitt, Joseph B.; John, Robert; Turner, Benjamin L.; Valencia, Renato; Navarrete, Hugo; Davies, Stuart J.; Chuyong, George B.; Kenfack, David; Thomas, Duncan W.; Madawala, Sumedha; Gunatilleke, Nimal; Gunatilleke, Savitri; Bunyavejchewin, Sarayudh; Kiratiprayoon, Somboon; Yaacob, Adzmi; Supardi, Mohd N. Nur; Dalling, James W.

    2013-01-01

    Both habitat filtering and dispersal limitation influence the compositional structure of forest communities, but previous studies examining the relative contributions of these processes with variation partitioning have primarily used topography to represent the influence of the environment. Here, we bring together data on both topography and soil resource variation within eight large (24–50 ha) tropical forest plots, and use variation partitioning to decompose community compositional variation into fractions explained by spatial, soil resource and topographic variables. Both soil resources and topography account for significant and approximately equal variation in tree community composition (9–34% and 5–29%, respectively), and all environmental variables together explain 13–39% of compositional variation within a plot. A large fraction of variation (19–37%) was spatially structured, yet unexplained by the environment, suggesting an important role for dispersal processes and unmeasured environmental variables. For the majority of sites, adding soil resource variables to topography nearly doubled the inferred role of habitat filtering, accounting for variation in compositional structure that would previously have been attributable to dispersal. Our results, illustrated using a new graphical depiction of community structure within these plots, demonstrate the importance of small-scale environmental variation in shaping local community structure in diverse tropical forests around the globe. PMID:23256196

  18. Statistical characteristics of cloud variability. Part 1: Retrieved cloud liquid water path at three ARM sites: Observed cloud variability at ARM sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Dong; Campos, Edwin; Liu, Yangang

    2014-09-17

    Statistical characteristics of cloud variability are examined for their dependence on averaging scales and best representation of probability density function with the decade-long retrieval products of cloud liquid water path (LWP) from the tropical western Pacific (TWP), Southern Great Plains (SGP), and North Slope of Alaska (NSA) sites of the Department of Energy’s Atmospheric Radiation Measurement Program. The statistical moments of LWP show some seasonal variation at the SGP and NSA sites but not much at the TWP site. It is found that the standard deviation, relative dispersion (the ratio of the standard deviation to the mean), and skewness allmore » quickly increase with the averaging window size when the window size is small and become more or less flat when the window size exceeds 12 h. On average, the cloud LWP at the TWP site has the largest values of standard deviation, relative dispersion, and skewness, whereas the NSA site exhibits the least. Correlation analysis shows that there is a positive correlation between the mean LWP and the standard deviation. The skewness is found to be closely related to the relative dispersion with a correlation coefficient of 0.6. The comparison further shows that the log normal, Weibull, and gamma distributions reasonably explain the observed relationship between skewness and relative dispersion over a wide range of scales.« less

  19. Dispersal Ability Determines the Role of Environmental, Spatial and Temporal Drivers of Metacommunity Structure

    PubMed Central

    Padial, André A.; Ceschin, Fernanda; Declerck, Steven A. J.; De Meester, Luc; Bonecker, Cláudia C.; Lansac-Tôha, Fabio A.; Rodrigues, Liliana; Rodrigues, Luzia C.; Train, Sueli; Velho, Luiz F. M.; Bini, Luis M.

    2014-01-01

    Recently, community ecologists are focusing on the relative importance of local environmental factors and proxies to dispersal limitation to explain spatial variation in community structure. Albeit less explored, temporal processes may also be important in explaining species composition variation in metacommunities occupying dynamic systems. We aimed to evaluate the relative role of environmental, spatial and temporal variables on the metacommunity structure of different organism groups in the Upper Paraná River floodplain (Brazil). We used data on macrophytes, fish, benthic macroinvertebrates, zooplankton, periphyton, and phytoplankton collected in up to 36 habitats during a total of eight sampling campaigns over two years. According to variation partitioning results, the importance of predictors varied among biological groups. Spatial predictors were particularly important for organisms with comparatively lower dispersal ability, such as aquatic macrophytes and fish. On the other hand, environmental predictors were particularly important for organisms with high dispersal ability, such as microalgae, indicating the importance of species sorting processes in shaping the community structure of these organisms. The importance of watercourse distances increased when spatial variables were the main predictors of metacommunity structure. The contribution of temporal predictors was low. Our results emphasize the strength of a trait-based analysis and of better defining spatial variables. More importantly, they supported the view that “all-or- nothing” interpretations on the mechanisms structuring metacommunities are rather the exception than the rule. PMID:25340577

  20. A dispersion relationship governing incompressible wall turbulence

    NASA Technical Reports Server (NTRS)

    Tsuge, S.

    1978-01-01

    The method of separation of variables is shown to make turbulent correlation equations of Karman-Howarth type tractable for shear turbulence as well under the condition of neglected triple correlation. The separated dependent variable obeys an Orr-Sommerfeld equation. A new analytical method is developed using a scaling law different from the classical one due to Heisenberg and Lin and more appropriate for wall turbulent profiles. A dispersion relationship between the wave number and the separation constant which has the dimension of a frequency is derived in support of experimental observations of wave or coherent structure of wall turbulence.

  1. Accurate and fiducial-marker-free correction for three-dimensional chromatic shift in biological fluorescence microscopy.

    PubMed

    Matsuda, Atsushi; Schermelleh, Lothar; Hirano, Yasuhiro; Haraguchi, Tokuko; Hiraoka, Yasushi

    2018-05-15

    Correction of chromatic shift is necessary for precise registration of multicolor fluorescence images of biological specimens. New emerging technologies in fluorescence microscopy with increasing spatial resolution and penetration depth have prompted the need for more accurate methods to correct chromatic aberration. However, the amount of chromatic shift of the region of interest in biological samples often deviates from the theoretical prediction because of unknown dispersion in the biological samples. To measure and correct chromatic shift in biological samples, we developed a quadrisection phase correlation approach to computationally calculate translation, rotation, and magnification from reference images. Furthermore, to account for local chromatic shifts, images are split into smaller elements, for which the phase correlation between channels is measured individually and corrected accordingly. We implemented this method in an easy-to-use open-source software package, called Chromagnon, that is able to correct shifts with a 3D accuracy of approximately 15 nm. Applying this software, we quantified the level of uncertainty in chromatic shift correction, depending on the imaging modality used, and for different existing calibration methods, along with the proposed one. Finally, we provide guidelines to choose the optimal chromatic shift registration method for any given situation.

  2. Quality of human spermatozoa: relationship between high-magnification sperm morphology and DNA integrity.

    PubMed

    Maettner, R; Sterzik, K; Isachenko, V; Strehler, E; Rahimi, G; Alabart, J L; Sánchez, R; Mallmann, P; Isachenko, E

    2014-06-01

    The aim of this work is to establish the relationship between the morphology of Intracytoplasmic Morphologically Selected Sperm Injection (IMSI)-selected spermatozoa and their DNA integrity. The 45 ejaculates were randomly distributed into three treatment groups: normozoospermic, oligoasthenozoospermic and oligoasthenotheratozoospermic samples. The evaluation of DNA integrity was performed using the sperm chromatin dispersion test. It was established that DNA integrity of spermatozoa is strongly dependent on ejaculate quality (P < 0.05). The count of spermatozoa with nonfragmented DNA in normozoospermic samples was high and independent from IMSI-morphological classes (Class 1 versus Class 3, respectively) (P > 0.1). With decreased ejaculate quality, the percentage of spermatozoa with nonfragmented DNA decreased significantly (P < 0.05) independent from morphological class. Nevertheless, the rate of IMSI-selected spermatozoa with fragmented DNA within of Class 1 in normozoospermic (Group 1), in oligoasthenozoospermic (Group 2) and in oligoasthenotheratozoospermic (Group 3) samples was 21.1%, 31.8% and 54.1%, respectively. In conclusion, there is a direct relationship between morphological parameters of spermatozoa and their DNA integrity. However, the IMSI technique alone is not enough for the selection of spermatozoa with intact nuclei. © 2013 Blackwell Verlag GmbH.

  3. Nanomodulated electron beams via electron diffraction and emittance exchange for coherent x-ray generation

    DOE PAGES

    Nanni, E. A.; Graves, W. S.; Moncton, D. E.

    2018-01-19

    We present a new method for generation of relativistic electron beams with current modulation on the nanometer scale and below. The current modulation is produced by diffracting relativistic electrons in single crystal Si, accelerating the diffracted beam and imaging the crystal structure, then transferring the image into the temporal dimension via emittance exchange. The modulation period can be tuned by adjusting electron optics after diffraction. This tunable longitudinal modulation can have a period as short as a few angstroms, enabling production of coherent hard x-rays from a source based on inverse Compton scattering with total accelerator length of approximately tenmore » meters. Electron beam simulations from cathode emission through diffraction, acceleration, and image formation with variable magnification are presented along with estimates of the coherent x-ray output properties.« less

  4. Environmental and toxicological planning in polymer production and disposal.

    PubMed Central

    Levinskas, G J

    1975-01-01

    There is neither a prescribed format nor a rigid sequence of testing to follow for the assessment of health and environmental effects of chemicals. Conventional animal toxicity tests plus medical surveillance and monitoring of exposed human populations will provide knowledge of the biological effects of chemicals and assurance that they can be handled safely. Useful information also can be derived from other test procedures. These include extraction studies to measure the amounts of additives which can leach from polymers, toxicity tests using aquatic organisms and birds, and determination of the biodegradability of materials and their potential for accumulation and magnification in biological systems. Current concern over pyrolysis products of polymers points up the need for defining the variables involved and development of test procedures by which meaningful evaluations of potential health hazards can be made. PMID:1175554

  5. Design of laser afocal zoom expander system

    NASA Astrophysics Data System (ADS)

    Jiang, Lian; Zeng, Chun-Mei; Hu, Tian-Tian

    2018-01-01

    Laser afocal zoom expander system due to the beam diameter variable, can be used in the light sheet illumination microscope to observe the samples of different sizes. Based on the principle of afocal zoom system, the laser collimation and beam expander system with a total length of less than 110mm, 6 pieces of spherical lens and a beam expander ratio of 10 is designed by using Zemax software. The system is focused on laser with a wavelength of 532nm, divergence angle of less than 4mrad and incident diameter of 4mm. With the combination of 6 spherical lens, the beam divergence angle is 0.4mrad at the maximum magnification ratio, and the RMS values at different rates are less than λ/4. This design is simple in structure and easy to process and adjust. It has certain practical value.

  6. Nanomodulated electron beams via electron diffraction and emittance exchange for coherent x-ray generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanni, E. A.; Graves, W. S.; Moncton, D. E.

    We present a new method for generation of relativistic electron beams with current modulation on the nanometer scale and below. The current modulation is produced by diffracting relativistic electrons in single crystal Si, accelerating the diffracted beam and imaging the crystal structure, then transferring the image into the temporal dimension via emittance exchange. The modulation period can be tuned by adjusting electron optics after diffraction. This tunable longitudinal modulation can have a period as short as a few angstroms, enabling production of coherent hard x-rays from a source based on inverse Compton scattering with total accelerator length of approximately tenmore » meters. Electron beam simulations from cathode emission through diffraction, acceleration, and image formation with variable magnification are presented along with estimates of the coherent x-ray output properties.« less

  7. The transition from isolated patches to a metapopulation in the eastern collared lizard in response to prescribed fires.

    PubMed

    Templeton, Alan R; Brazeal, Hilary; Neuwald, Jennifer L

    2011-09-01

    Habitat fragmentation often arises from human-induced alterations to the matrix that reduce or eliminate dispersal between habitat patches. Elimination of dispersal increases local extinction and decreases recolonization. These phenomena were observed in the eastern collared lizard (Crotaphytus collaris collaris), which lives in the mid-continental highland region of the Ozarks (Missouri, USA) on glades: habitats of exposed bedrock that form desert-like habitats imbedded in a woodland matrix. With the onset of woodland fire suppression, glade habitats degenerated and the woodland matrix was altered to create a strong barrier to dispersal. By 1980, lizard populations in the Ozarks were rapidly going extinct. In response to this decline, some glades were restored by clearing and burning. Starting in 1984, collared lizard populations were translocated onto these restored habitats. The translocated populations persisted but did not colonize nearby glades or disperse among one another. In 1994 prescribed woodland fires were initiated, which unleashed much dispersal and colonizing behavior. Dispersal was highly nonrandom by both intrinsic variables (age, gender) and extrinsic variables (overall demography, glade population sizes, glade areas, landscape features), resulting in different classes of lizards being dominant in creating demographic cohesiveness among glades, colonizing new glades on a mountain, and colonizing new mountain systems. A dramatic transition was documented from isolated fragments, to a nonequilibrium colonizing metapopulation, and finally to a stable metapopulation. This transition is characterized by the convergence of rates of extinction and recolonization and a major alteration of dispersal probabilities and pattern in going from the nonequilibrium to stable metapopulation states.

  8. Habitat and Vegetation Variables Are Not Enough When Predicting Tick Populations in the Southeastern United States

    PubMed Central

    Trout Fryxell, R. T.; Moore, J. E.; Collins, M. D.; Kwon, Y.; Jean-Philippe, S. R.; Schaeffer, S. M.; Odoi, A.; Kennedy, M.; Houston, A. E.

    2015-01-01

    Two tick-borne diseases with expanding case and vector distributions are ehrlichiosis (transmitted by Amblyomma americanum) and rickettiosis (transmitted by A. maculatum and Dermacentor variabilis). There is a critical need to identify the specific habitats where each of these species is likely to be encountered to classify and pinpoint risk areas. Consequently, an in-depth tick prevalence study was conducted on the dominant ticks in the southeast. Vegetation, soil, and remote sensing data were used to test the hypothesis that habitat and vegetation variables can predict tick abundances. No variables were significant predictors of A. americanum adult and nymph tick abundance, and no clustering was evident because this species was found throughout the study area. For A. maculatum adult tick abundance was predicted by NDVI and by the interaction between habitat type and plant diversity; two significant population clusters were identified in a heterogeneous area suitable for quail habitat. For D. variabilis no environmental variables were significant predictors of adult abundance; however, D. variabilis collections clustered in three significant areas best described as agriculture areas with defined edges. This study identified few landscape and vegetation variables associated with tick presence. While some variables were significantly associated with tick populations, the amount of explained variation was not useful for predicting reliably where ticks occur; consequently, additional research that includes multiple sampling seasons and locations throughout the southeast are warranted. This low amount of explained variation may also be due to the use of hosts for dispersal, and potentially to other abiotic and biotic variables. Host species play a large role in the establishment, maintenance, and dispersal of a tick species, as well as the maintenance of disease cycles, dispersal to new areas, and identification of risk areas. PMID:26656122

  9. S-F graphic representation analysis of photoelectric facula focometer poroo-plate glass

    NASA Astrophysics Data System (ADS)

    Tong, Yilin; Han, Xuecai

    2016-10-01

    Optical system focal length is usually based on the magnification method with focal length measurement poroo-plate glass is used as base element measuring focal length of focometer. On the basis of using analysis of magnification method to measure the accuracy of optical lens focal length, an expression between the ruling span of poroo-plate glass and the focal length of measured optical system was deduced, an efficient method to work out S-F graph with AUTOCAD was developed, the selecting principle of focometer parameter was analyzed, and Applied examples for designing poroo-plate glass in S-F figure was obtained.

  10. Multi-pinhole SPECT Imaging with Silicon Strip Detectors

    PubMed Central

    Peterson, Todd E.; Shokouhi, Sepideh; Furenlid, Lars R.; Wilson, Donald W.

    2010-01-01

    Silicon double-sided strip detectors offer outstanding instrinsic spatial resolution with reasonable detection efficiency for iodine-125 emissions. This spatial resolution allows for multiple-pinhole imaging at low magnification, minimizing the problem of multiplexing. We have conducted imaging studies using a prototype system that utilizes a detector of 300-micrometer thickness and 50-micrometer strip pitch together with a 23-pinhole collimator. These studies include an investigation of the synthetic-collimator imaging approach, which combines multiple-pinhole projections acquired at multiple magnifications to obtain tomographic reconstructions from limited-angle data using the ML-EM algorithm. Sub-millimeter spatial resolution was obtained, demonstrating the basic validity of this approach. PMID:20953300

  11. [Corrigendum] Death receptor 5 expression is inversely correlated with prostate cancer progression.

    PubMed

    Hernandez-Cueto, Angeles; Hernandez-Cueto, Daniel; Antonio-Andres, Gabriela; Mendoza-Marin, Marisela; Jimenez-Gutierrez, Carlos; Sandoval-Mejia, Ana Lilia; Mora-Campos, Rosario; Gonzalez-Bonilla, Cesar; Vega, Mario I; Bonavida, Benjamin; Huerta-Yepez, Sara

    2017-10-01

    During the preparation of the figures in the above article, the authors inadvertently duplicated in Fig. 1B, a and b (high and low magnification images) the images that had already appeared as Figs. 5A, a and c (high and low magnification images), respectively, of the following paper: Huerta-Yepez S, Baritaki S, Baay-Guzman G, Hernandez-Luna MA, Hernandez-Cueto A, Vega MI and Bonavida B: Contribution of either YY1 or BclXL-induced inhibition by the NO-donor DETANONOate in the reversal of drug resistance, both in vitro and in vivo. Nitric Oxide 29: 17-24, 2013. The revised version of Fig. 1 containing the corrected data for Fig. 1B, a and b (high and low magnification images; the YY1 data) is shown opposite protein expression. All those authors whom the corresponding author was able to contact have agreed to this Corrigendum. The authors regret this error, and apologize for any confusion that it may have caused. [the original article was published in the Molecular Medicine Reports 10: 2279-2286, 2014; DOI: 10.3892/mmr.2014.2504 ].

  12. Effect of Autoclave Cycles on Surface Characteristics of S-File Evaluated by Scanning Electron Microscopy.

    PubMed

    Razavian, Hamid; Iranmanesh, Pedram; Mojtahedi, Hamid; Nazeri, Rahman

    2016-01-01

    Presence of surface defects in endodontic instruments can lead to unwanted complications such as instrument fracture and incomplete preparation of the canal. The current study was conducted to evaluate the effect of autoclave cycles on surface characteristics of S-File by scanning electron microscopy (SEM). In this experimental study, 17 brand new S-Files (#30) were used. The surface characteristics of the files were examined in four steps (without autoclave, 1 autoclave cycle, 5 autoclave cycles and 10 autoclave cycles) by SEM under 200× and 1000× magnifications. Data were analyzed using the SPSS software and the paired sample t-test, independent sample t-test and multifactorial repeated measures ANOVA. The level of significance was set at 0.05. New files had debris and pitting on their surfaces. When the autoclave cycles were increased, the mean of surface roughness also increased at both magnifications (P<0.05). Moreover, under 1000× magnification the multifactorial repeated measures ANOVA showed more surface roughness (P<0.001). Sterilization by autoclave increased the surface roughness of the files and this had was directly related to the number of autoclave cycles.

  13. Effect of Autoclave Cycles on Surface Characteristics of S-File Evaluated by Scanning Electron Microscopy

    PubMed Central

    Razavian, Hamid; Iranmanesh, Pedram; Mojtahedi, Hamid; Nazeri, Rahman

    2016-01-01

    Introduction: Presence of surface defects in endodontic instruments can lead to unwanted complications such as instrument fracture and incomplete preparation of the canal. The current study was conducted to evaluate the effect of autoclave cycles on surface characteristics of S-File by scanning electron microscopy (SEM). Methods and Materials: In this experimental study, 17 brand new S-Files (#30) were used. The surface characteristics of the files were examined in four steps (without autoclave, 1 autoclave cycle, 5 autoclave cycles and 10 autoclave cycles) by SEM under 200× and 1000× magnifications. Data were analyzed using the SPSS software and the paired sample t-test, independent sample t-test and multifactorial repeated measures ANOVA. The level of significance was set at 0.05. Results: New files had debris and pitting on their surfaces. When the autoclave cycles were increased, the mean of surface roughness also increased at both magnifications (P<0.05). Moreover, under 1000× magnification the multifactorial repeated measures ANOVA showed more surface roughness (P<0.001). Conclusion: Sterilization by autoclave increased the surface roughness of the files and this had was directly related to the number of autoclave cycles. PMID:26843874

  14. Inhibition of return in the visual field: the eccentricity effect is independent of cortical magnification.

    PubMed

    Bao, Yan; Lei, Quan; Fang, Yuan; Tong, Yu; Schill, Kerstin; Pöppel, Ernst; Strasburger, Hans

    2013-01-01

    Inhibition of return (IOR) as an indicator of attentional control is characterized by an eccentricity effect, that is, the more peripheral visual field shows a stronger IOR magnitude relative to the perifoveal visual field. However, it could be argued that this eccentricity effect may not be an attention effect, but due to cortical magnification. To test this possibility, we examined this eccentricity effect in two conditions: the same-size condition in which identical stimuli were used at different eccentricities, and the size-scaling condition in which stimuli were scaled according to the cortical magnification factor (M-scaling), thus stimuli being larger at the more peripheral locations. The results showed that the magnitude of IOR was significantly stronger in the peripheral relative to the perifoveal visual field, and this eccentricity effect was independent of the manipulation of stimulus size (same-size or size-scaling). These results suggest a robust eccentricity effect of IOR which cannot be eliminated by M-scaling. Underlying neural mechanisms of the eccentricity effect of IOR are discussed with respect to both cortical and subcortical structures mediating attentional control in the perifoveal and peripheral visual field.

  15. A Cost-Effective Fluorescence Mini-Microscope with Adjustable Magnifications for Biomedical Applications

    PubMed Central

    Zhang, Yu Shrike; Ribas, João; Nadhman, Akhtar; Aleman, Julio; Selimović, Šeila; Lesher-Perez, Sasha Cai; Wang, Ting; Manoharan, Vijayan; Shin, Su-Ryon; Damilano, Alessia; Annabi, Nasim; Dokmeci, Mehmet Remzi; Takayama, Shuichi; Khademhosseini, Ali

    2015-01-01

    We have designed and fabricated a miniature microscope from off-the-shelf components and webcam, with built-in fluorescence capability for biomedical applications. The mini-microscope was able to detect both biochemical parameters such as cell/tissue viability (e.g. Live/Dead assay), and biophysical properties of the microenvironment such as oxygen levels in microfabricated tissues based on an oxygen-sensitive fluorescent dye. This mini-microscope has adjustable magnifications from 8-60X, achieves a resolution as high as <2 μm, and possesses a long working distance of 4.5 mm (at a magnification of 8X). The mini-microscope was able to chronologically monitor cell migration and analyze beating of microfluidic liver and cardiac bioreactors in real time, respectively. The mini-microscope system is cheap, and its modularity allows convenient integration with a wide variety of pre-existing platforms including but not limited to, cell culture plates, microfluidic devices, and organs-on-a-chip systems. Therefore, we envision its widespread applications in cell biology, tissue engineering, biosensing, microfluidics, and organs-on-chips, which can potentially replace conventional bench-top microscopy where long-term in situ and large-scale imaging/analysis is required. PMID:26282117

  16. Gravitational lens optical scalars in terms of energy-momentum distributions in the cosmological framework

    NASA Astrophysics Data System (ADS)

    Boero, Ezequiel F.; Moreschi, Osvaldo M.

    2018-04-01

    We present new results on gravitational lensing over cosmological Robertson-Walker backgrounds which extend and generalize previous works. Our expressions show the presence of new terms and factors which have been neglected in the literature on the subject. The new equations derived here for the optical scalars allow to deal with more general matter content including sources with non-Newtonian components of the energy-momentum tensor and arbitrary motion. Our treatment is within the framework of weak gravitational lenses in which first-order effects of the curvature are considered. We have been able to make all calculations without referring to the concept of deviation angle. This in turn, makes the presentation shorter but also allows for the consideration of global effects on the Robertson-Walker background that have been neglected in the literature. We also discuss two intensity magnifications that we define in this article; one coming from a natural geometrical construction in terms of the affine distance, that we here call \\tilde{μ }, and the other adapted to cosmological discussions in terms of the redshift, that we call μ΄. We show that the natural intensity magnification \\tilde{μ } coincides with the standard angular magnification (μ).

  17. CLASH: Weak-lensing shear-and-magnification analysis of 20 galaxy clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umetsu, Keiichi; Czakon, Nicole; Medezinski, Elinor

    2014-11-10

    We present a joint shear-and-magnification weak-lensing analysis of a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters at 0.19 ≲ z ≲ 0.69 selected from the Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis uses wide-field multi-color imaging, taken primarily with Suprime-Cam on the Subaru Telescope. From a stacked-shear-only analysis of the X-ray-selected subsample, we detect the ensemble-averaged lensing signal with a total signal-to-noise ratio of ≅ 25 in the radial range of 200-3500 kpc h {sup –1}, providing integrated constraints on the halo profile shape and concentration-mass relation. The stacked tangential-shear signal is well described bymore » a family of standard density profiles predicted for dark-matter-dominated halos in gravitational equilibrium, namely, the Navarro-Frenk-White (NFW), truncated variants of NFW, and Einasto models. For the NFW model, we measure a mean concentration of c{sub 200c}=4.01{sub −0.32}{sup +0.35} at an effective halo mass of M{sub 200c}=1.34{sub −0.09}{sup +0.10}×10{sup 15} M{sub ⊙}. We show that this is in excellent agreement with Λ cold dark matter (ΛCDM) predictions when the CLASH X-ray selection function and projection effects are taken into account. The best-fit Einasto shape parameter is α{sub E}=0.191{sub −0.068}{sup +0.071}, which is consistent with the NFW-equivalent Einasto parameter of ∼0.18. We reconstruct projected mass density profiles of all CLASH clusters from a joint likelihood analysis of shear-and-magnification data and measure cluster masses at several characteristic radii assuming an NFW density profile. We also derive an ensemble-averaged total projected mass profile of the X-ray-selected subsample by stacking their individual mass profiles. The stacked total mass profile, constrained by the shear+magnification data, is shown to be consistent with our shear-based halo-model predictions, including the effects of surrounding large-scale structure as a two-halo term, establishing further consistency in the context of the ΛCDM model.« less

  18. The Most Ancient Spiral Galaxy: A 2.6-Gyr-old Disk with a Tranquil Velocity Field

    NASA Astrophysics Data System (ADS)

    Yuan, Tiantian; Richard, Johan; Gupta, Anshu; Federrath, Christoph; Sharma, Soniya; Groves, Brent A.; Kewley, Lisa J.; Cen, Renyue; Birnboim, Yuval; Fisher, David B.

    2017-11-01

    We report an integral-field spectroscopic (IFS) observation of a gravitationally lensed spiral galaxy A1689B11 at redshift z = 2.54. It is the most ancient spiral galaxy discovered to date and the second kinematically confirmed spiral at z≳ 2. Thanks to gravitational lensing, this is also by far the deepest IFS observation with the highest spatial resolution (˜400 pc) on a spiral galaxy at a cosmic time when the Hubble sequence is about to emerge. After correcting for a lensing magnification of 7.2 ± 0.8, this primitive spiral disk has an intrinsic star formation rate of 22 ± 2 M ⊙ yr-1, a stellar mass of {10}9.8+/- 0.3 M ⊙, and a half-light radius of {r}1/2=2.6+/- 0.7 {kpc}, typical of a main-sequence star-forming galaxy at z˜ 2. However, the Hα kinematics show a surprisingly tranquil velocity field with an ordered rotation ({V}{{c}}=200+/- 12 km s-1) and uniformly small velocity dispersions ({V}σ ,{mean}=23 +/- 4 km s-1 and {V}σ ,{outer - {disk}}=15+/- 2 km s-1). The low gas velocity dispersion is similar to local spiral galaxies and is consistent with the classic density wave theory where spiral arms form in dynamically cold and thin disks. We speculate that A1689B11 belongs to a population of rare spiral galaxies at z≳ 2 that mark the formation epoch of thin disks. Future observations with the James Webb Space Telescope will greatly increase the sample of these rare galaxies and unveil the earliest onset of spiral arms.

  19. Developing approaches for linear mixed modeling in landscape genetics through landscape-directed dispersal simulations

    USGS Publications Warehouse

    Row, Jeffrey R.; Knick, Steven T.; Oyler-McCance, Sara J.; Lougheed, Stephen C.; Fedy, Bradley C.

    2017-01-01

    Dispersal can impact population dynamics and geographic variation, and thus, genetic approaches that can establish which landscape factors influence population connectivity have ecological and evolutionary importance. Mixed models that account for the error structure of pairwise datasets are increasingly used to compare models relating genetic differentiation to pairwise measures of landscape resistance. A model selection framework based on information criteria metrics or explained variance may help disentangle the ecological and landscape factors influencing genetic structure, yet there are currently no consensus for the best protocols. Here, we develop landscape-directed simulations and test a series of replicates that emulate independent empirical datasets of two species with different life history characteristics (greater sage-grouse; eastern foxsnake). We determined that in our simulated scenarios, AIC and BIC were the best model selection indices and that marginal R2 values were biased toward more complex models. The model coefficients for landscape variables generally reflected the underlying dispersal model with confidence intervals that did not overlap with zero across the entire model set. When we controlled for geographic distance, variables not in the underlying dispersal models (i.e., nontrue) typically overlapped zero. Our study helps establish methods for using linear mixed models to identify the features underlying patterns of dispersal across a variety of landscapes.

  20. Improved sliced velocity map imaging apparatus optimized for H photofragments.

    PubMed

    Ryazanov, Mikhail; Reisler, Hanna

    2013-04-14

    Time-sliced velocity map imaging (SVMI), a high-resolution method for measuring kinetic energy distributions of products in scattering and photodissociation reactions, is challenging to implement for atomic hydrogen products. We describe an ion optics design aimed at achieving SVMI of H fragments in a broad range of kinetic energies (KE), from a fraction of an electronvolt to a few electronvolts. In order to enable consistently thin slicing for any imaged KE range, an additional electrostatic lens is introduced in the drift region for radial magnification control without affecting temporal stretching of the ion cloud. Time slices of ∼5 ns out of a cloud stretched to ⩾50 ns are used. An accelerator region with variable dimensions (using multiple electrodes) is employed for better optimization of radial and temporal space focusing characteristics at each magnification level. The implemented system was successfully tested by recording images of H fragments from the photodissociation of HBr, H2S, and the CH2OH radical, with kinetic energies ranging from <0.4 eV to >3 eV. It demonstrated KE resolution ≲1%-2%, similar to that obtained in traditional velocity map imaging followed by reconstruction, and to KE resolution achieved previously in SVMI of heavier products. We expect it to perform just as well up to at least 6 eV of kinetic energy. The tests showed that numerical simulations of the electric fields and ion trajectories in the system, used for optimization of the design and operating parameters, provide an accurate and reliable description of all aspects of system performance. This offers the advantage of selecting the best operating conditions in each measurement without the need for additional calibration experiments.

  1. Depth-of-Interaction Compensation Using a Focused-Cut Scintillator for a Pinhole Gamma Camera.

    PubMed

    Alhassen, Fares; Kudrolli, Haris; Singh, Bipin; Kim, Sangtaek; Seo, Youngho; Gould, Robert G; Nagarkar, Vivek V

    2011-06-01

    Preclinical SPECT offers a powerful means to understand the molecular pathways of drug interactions in animal models by discovering and testing new pharmaceuticals and therapies for potential clinical applications. A combination of high spatial resolution and sensitivity are required in order to map radiotracer uptake within small animals. Pinhole collimators have been investigated, as they offer high resolution by means of image magnification. One of the limitations of pinhole geometries is that increased magnification causes some rays to travel through the detection scintillator at steep angles, introducing parallax errors due to variable depth-of-interaction in scintillator material, especially towards the edges of the detector field of view. These parallax errors ultimately limit the resolution of pinhole preclinical SPECT systems, especially for higher energy isotopes that can easily penetrate through millimeters of scintillator material. A pixellated, focused-cut (FC) scintillator, with its pixels laser-cut so that they are collinear with incoming rays, can potentially compensate for these parallax errors and thus improve the system resolution. We performed the first experimental evaluation of a newly developed focused-cut scintillator. We scanned a Tc-99m source across the field of view of pinhole gamma camera with a continuous scintillator, a conventional "straight-cut" (SC) pixellated scintillator, and a focused-cut scintillator, each coupled to an electron-multiplying charge coupled device (EMCCD) detector by a fiber-optic taper, and compared the measured full-width half-maximum (FWHM) values. We show that the FWHMs of the focused-cut scintillator projections are comparable to the FWHMs of the thinner SC scintillator, indicating the effectiveness of the focused-cut scintillator in compensating parallax errors.

  2. Depth-of-Interaction Compensation Using a Focused-Cut Scintillator for a Pinhole Gamma Camera

    PubMed Central

    Alhassen, Fares; Kudrolli, Haris; Singh, Bipin; Kim, Sangtaek; Seo, Youngho; Gould, Robert G.; Nagarkar, Vivek V.

    2011-01-01

    Preclinical SPECT offers a powerful means to understand the molecular pathways of drug interactions in animal models by discovering and testing new pharmaceuticals and therapies for potential clinical applications. A combination of high spatial resolution and sensitivity are required in order to map radiotracer uptake within small animals. Pinhole collimators have been investigated, as they offer high resolution by means of image magnification. One of the limitations of pinhole geometries is that increased magnification causes some rays to travel through the detection scintillator at steep angles, introducing parallax errors due to variable depth-of-interaction in scintillator material, especially towards the edges of the detector field of view. These parallax errors ultimately limit the resolution of pinhole preclinical SPECT systems, especially for higher energy isotopes that can easily penetrate through millimeters of scintillator material. A pixellated, focused-cut (FC) scintillator, with its pixels laser-cut so that they are collinear with incoming rays, can potentially compensate for these parallax errors and thus improve the system resolution. We performed the first experimental evaluation of a newly developed focused-cut scintillator. We scanned a Tc-99m source across the field of view of pinhole gamma camera with a continuous scintillator, a conventional “straight-cut” (SC) pixellated scintillator, and a focused-cut scintillator, each coupled to an electron-multiplying charge coupled device (EMCCD) detector by a fiber-optic taper, and compared the measured full-width half-maximum (FWHM) values. We show that the FWHMs of the focused-cut scintillator projections are comparable to the FWHMs of the thinner SC scintillator, indicating the effectiveness of the focused-cut scintillator in compensating parallax errors. PMID:21731108

  3. Adding access to a video magnifier to standard vision rehabilitation: initial results on reading performance and well-being from a prospective, randomized study.

    PubMed

    Jackson, Mary Lou; Schoessow, Kimberly A; Selivanova, Alexandra; Wallis, Jennifer

    2017-01-01

    Both optical and electronic magnification are available to patients with low vision. Electronic video magnifiers are more expensive than optical magnifiers, but they offer additional benefits, including variable magnification and contrast. This study aimed to evaluate the effect of access to a video magnifier (VM) added to standard comprehensive vision rehabilitation (VR). In this prospective study, 37 subjects with central field loss were randomized to receive standard VR (VR group, 18 subjects) or standard VR plus VM (VM group, 19 subjects). Subjects read the International Reading Speed Texts (IReST), a bank check, and a phone number at enrollment, at 1 month, and after occupational therapy (OT) as indicated to address patient goals. The Impact of Vision Impairment (IVI) questionnaire, a version of the Activity Inventory (AI), and the Depression Anxiety and Stress Scale (DASS) were administered at enrollment, 1 month, after OT, 1 month later, and 1 year after enrollment. Assessments at enrollment and 1 month later were evaluated. At 1 month, the VM group displayed significant improvement in reading continuous print as measured by the IReST ( P = 0.01) but did not differ on IVI, AI, or DASS. From enrollment to 1 month all subjects improved in their ability to spot read (phone number and check; P < 0.01 for both). The VM group improved in their ability to find and read a number in a phone book more than the VR group at 1 month after initial consultation ( P = 0.02). All reported better well-being ( P = 0.02). All subjects reported better well-being on the IVI. The VM group read faster and was better at two spot reading tasks but did not differ from the VR group in other outcome measures.

  4. A Novel Marking Reader for Progressive Addition Lenses Based on Gabor Holography.

    PubMed

    Perucho, Beatriz; Picazo-Bueno, José Angel; Micó, Vicente

    2016-05-01

    Progressive addition lenses (PALs) are marked with permanent engraved marks (PEMs) at standardized locations. Permanent engraved marks are very useful through the manufacturing and mounting processes, act as locator marks to re-ink the removable marks, and contain useful information about the PAL. However, PEMs are often faint and weak, obscured by scratches, partially occluded, and difficult to recognize on tinted lenses or with antireflection or scratch-resistant coatings. The aim of this article is to present a new generation of portable marking reader based on an extremely simplified concept for visualization and identification of PEMs in PALs. Permanent engraved marks on different PALs are visualized using classical Gabor holography as underlying principle. Gabor holography allows phase sample visualization with adjustable magnification and can be implemented in either classical or digital versions. Here, visual Gabor holography is used to provide a magnified defocused image of the PEMs onto a translucent visualization screen where the PEM is clearly identified. Different types of PALs (conventional, personalized, old and scratched, sunglasses, etc.) have been tested to visualize PEMs with the proposed marking reader. The PEMs are visible in every case, and variable magnification factor can be achieved simply moving up and down the PAL in the instrument. In addition, a second illumination wavelength is also tested, showing the applicability of this novel marking reader for different illuminations. A new concept of marking reader ophthalmic instrument has been presented and validated in the laboratory. The configuration involves only a commercial-grade laser diode and a visualization screen for PEM identification. The instrument is portable, economic, and easy to use, and it can be used for identifying patient's current PAL model and for marking removable PALs again or finding test points regardless of the age of the PAL, its scratches, tints, or coatings.

  5. Comparison of high-resolution magnification narrow-band imaging and white-light endoscopy in the prediction of histology in Barrett's oesophagus.

    PubMed

    Singh, Rajvinder; Karageorgiou, Haris; Owen, Victoria; Garsed, Klara; Fortun, Paul J; Fogden, Edward; Subramaniam, Venkataraman; Shonde, Anthony; Kaye, Philip; Hawkey, Christopher J; Ragunath, Krish

    2009-01-01

    To evaluate whether there is any appreciable difference in imaging characteristics between high-resolution magnification white-light endoscopy (WLE-Z) and narrow-band imaging (NBI-Z) in Barrett's oesophagus (BE) and if this translates into superior prediction of histology. This was a prospective single-centre study involving 21 patients (75 areas, corresponding NBI-Z and WLE-Z images) with BE. Mucosal patterns (pit pattern and microvascular morphology) were evaluated for their image quality on a visual analogue scale (VAS) of 1-10 by five expert endoscopists. The endoscopists then predicted mucosal morphology based on four subtypes which can be visualized in BE. Type A: round pits, regular microvasculature; type B: villous/ridge pits, regular microvasculature; type C: absent pits, regular microvasculature; type D: distorted pits, irregular microvasculature. The sensitivity (Sn), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV) and accuracy (Acc) were then compared with the final histopathological analysis and the interobserver variability calculated. The overall pit and microvasculature quality was significantly higher for NBI-Z, pit: NBI-Z=6, WLE-Z=4.5, p < 0.001; microvasculature: NBI-Z=7.3, WLE-Z=4.9, p < 0.001. This translated into a superior prediction of histology (Sn: NBI-Z: 88.9, WLE-Z: 71.9, p < 0.001). For the prediction of dysplasia, NBI-Z was superior to WLE-Z (chi(2)=10.3, p < 0.05). The overall kappa agreement among the five endoscopists for NBI-Z and WLE-Z, respectively, was 0.59 and 0.31 (p < 0.001). NBI-Z is superior to WLE-Z in the prediction of histology in BE, with good reproducibility. This novel imaging modality could be an important tool for surveillance of patients with BE.

  6. Depth-of-Interaction Compensation Using a Focused-Cut Scintillator for a Pinhole Gamma Camera

    NASA Astrophysics Data System (ADS)

    Alhassen, Fares; Kudrolli, Haris; Singh, Bipin; Kim, Sangtaek; Seo, Youngho; Gould, Robert G.; Nagarkar, Vivek V.

    2011-06-01

    Preclinical SPECT offers a powerful means to understand the molecular pathways of drug interactions in animal models by discovering and testing new pharmaceuticals and therapies for potential clinical applications. A combination of high spatial resolution and sensitivity are required in order to map radiotracer uptake within small animals. Pinhole collimators have been investigated, as they offer high resolution by means of image magnification. One of the limitations of pinhole geometries is that increased magnification causes some rays to travel through the detection scintillator at steep angles, introducing parallax errors due to variable depth-of-interaction in scintillator material, especially towards the edges of the detector field of view. These parallax errors ultimately limit the resolution of pinhole preclinical SPECT systems, especially for higher energy isotopes that can easily penetrate through millimeters of scintillator material. A pixellated, focused-cut (FC) scintillator, with its pixels laser-cut so that they are collinear with incoming rays, can potentially compensate for these parallax errors and thus improve the system resolution. We performed the first experimental evaluation of a newly developed focused-cut scintillator. We scanned a Tc-99 m source across the field of view of pinhole gamma camera with a continuous scintillator, a conventional “straight-cut” (SC) pixellated scintillator, and a focused-cut scintillator, each coupled to an electron-multiplying charge coupled device (EMCCD) detector by a fiber-optic taper, and compared the measured full-width half-maximum (FWHM) values. We show that the FWHMs of the focused-cut scintillator projections are comparable to the FWHMs of the thinner SC scintillator, indicating the effectiveness of the focused-cut scintillator in compensating parallax errors.

  7. Lexical Ambiguity: Making a Case against Spread

    ERIC Educational Resources Information Center

    Kaplan, Jennifer J.; Rogness, Neal T.; Fisher, Diane G.

    2012-01-01

    We argue for decreasing the use of the word "spread" when describing the statistical idea of dispersion or variability in introductory statistics courses. In addition, we argue for increasing the use of the word "variability" as a replacement for "spread."

  8. Investigation on nonautonomous soliton management in generalized external potentials via dispersion and nonlinearity

    NASA Astrophysics Data System (ADS)

    Vijayalekshmi, S.; Mani Rajan, M. S.; Mahalingam, A.; Uthayakumar, A.

    2015-09-01

    We investigate the controllable behavior of nonautonomous soliton in external potentials with variable dispersion and nonlinearity management functions, which describes the propagation of optical pulses in an inhomogeneous fiber system. We derive the Lax pair with a variable spectral parameter and the exact multi-soliton solution is generated via Darboux transformation. Based on these solutions, several novel optical solitons are constructed by selecting appropriate functions and the main evolution features of these waves are shown by some interesting figures with computer simulation. As few examples, breathers in periodic potential, soliton compression in an exponentially dispersion decreasing fiber and interaction of boomerang solitons are discussed. The presented results have applications in the study of nonautonomous soliton birefringence-managed switching architecture. These results are potentially useful in the management of nonautonomous soliton with external potentials in the optical soliton communications and long-haul telecommunication networks.

  9. Application and System Design of Elastomer Based Optofluidic Lenses

    NASA Astrophysics Data System (ADS)

    Savidis, Nickolaos

    Adaptive optic technology has revolutionized real time correction of wavefront aberrations. Optofluidic based applied optic devices have offered an opportunity to produce flexible refractive lenses in the correction of wavefronts. Fluidic lenses have superiority relative to their solid lens counterparts in their capabilities of producing tunable optical systems, that when synchronized, can produce real time variable systems with no moving parts. We have developed optofluidic fluidic lenses for applications of applied optical devices, as well as ophthalmic optic devices. The first half of this dissertation discusses the production of fluidic lenses as optical devices. In addition, the design and testing of various fluidic systems made with these components are evaluated. We begin with the creation of spherical or defocus singlet fluidic lenses. We then produced zoom optical systems with no moving parts by synchronizing combinations of these fluidic spherical lenses. The variable power zoom system incorporates two singlet fluidic lenses that are synchronized. The coupled device has no moving parts and has produced a magnification range of 0.1 x to 10 x or a 20 x magnification range. The chapter after fluidic zoom technology focuses on producing achromatic lens designs. We offer an analysis of a hybrid diffractive and refractive achromat that offers discrete achromatized variable focal lengths. In addition, we offer a design of a fully optofluidic based achromatic lens. By synchronizing the two membrane surfaces of the fluidic achromat we develop a design for a fluidic achromatic lens. The second half of this dissertation discusses the production of optofluidic technology in ophthalmic applications. We begin with an introduction to an optofluidic phoropter system. A fluidic phoropter is designed through the combination of a defocus lens with two cylindrical fluidic lenses that are orientated 45° relative to each other. Here we discuss the designs of the fluidic cylindrical lens coupled with a previously discussed defocus singlet lens. We then couple this optofluidic phoropter with relay optics and Shack-Hartmann wavefront sensing technology to produce an auto-phoropter device. The auto-phoropter system combines a refractometer designed Shack-Hartmann wavefront sensor with the compact refractive fluidic lens phoropter. This combination allows for the identification and control of ophthalmic cylinder, cylinder axis, as well as refractive error. The closed loop system of the fluidic phoropter with refractometer enables for the creation of our see-through auto-phoropter system. The design and testing of several generations of transmissive see-through auto-phoropter devices are presented in this section.

  10. Response surface methodology based on central composite design as a chemometric tool for optimization of dispersive-solidification liquid-liquid microextraction for speciation of inorganic arsenic in environmental water samples.

    PubMed

    Asadollahzadeh, Mehdi; Tavakoli, Hamed; Torab-Mostaedi, Meisam; Hosseini, Ghaffar; Hemmati, Alireza

    2014-06-01

    Dispersive-solidification liquid-liquid microextraction (DSLLME) coupled with electrothermal atomic absorption spectrometry (ETAAS) was developed for preconcentration and determination of inorganic arsenic (III, V) in water samples. At pH=1, As(III) formed complex with ammonium pyrrolidine dithiocarbamate (APDC) and extracted into the fine droplets of 1-dodecanol (extraction solvent) which were dispersed with ethanol (disperser solvent) into the water sample solution. After extraction, the organic phase was separated by centrifugation, and was solidified by transferring into an ice bath. The solidified solvent was transferred to a conical vial and melted quickly at room temperature. As(III) was determined in the melted organic phase while As(V) remained in the aqueous layer. Total inorganic As was determined after the reduction of the pentavalent forms of arsenic with sodium thiosulphate and potassium iodide. As(V) was calculated by difference between the concentration of total inorganic As and As(III). The variable of interest in the DSLLME method, such as the volume of extraction solvent and disperser solvent, pH, concentration of APDC (chelating agent), extraction time and salt effect, was optimized with the aid of chemometric approaches. First, in screening experiments, fractional factorial design (FFD) was used for selecting the variables which significantly affected the extraction procedure. Afterwards, the significant variables were optimized using response surface methodology (RSM) based on central composite design (CCD). In the optimum conditions, the proposed method has been successfully applied to the determination of inorganic arsenic in different environmental water samples and certified reference material (NIST RSM 1643e). Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Early detection of emerging forest disease using dispersal estimation and ecological niche modeling.

    PubMed

    Meentemeyer, Ross K; Anacker, Brian L; Mark, Walter; Rizzo, David M

    2008-03-01

    Distinguishing the manner in which dispersal limitation and niche requirements control the spread of invasive pathogens is important for prediction and early detection of disease outbreaks. Here, we use niche modeling augmented by dispersal estimation to examine the degree to which local habitat conditions vs. force of infection predict invasion of Phytophthora ramorum, the causal agent of the emerging infectious tree disease sudden oak death. We sampled 890 field plots for the presence of P. ramorum over a three-year period (2003-2005) across a range of host and abiotic conditions with variable proximities to known infections in California, USA. We developed and validated generalized linear models of invasion probability to analyze the relative predictive power of 12 niche variables and a negative exponential dispersal kernel estimated by likelihood profiling. Models were developed incrementally each year (2003, 2003-2004, 2003-2005) to examine annual variability in model parameters and to create realistic scenarios for using models to predict future infections and to guide early-detection sampling. Overall, 78 new infections were observed up to 33.5 km from the nearest known site of infection, with slightly increasing rates of prevalence across time windows (2003, 6.5%; 2003-2004, 7.1%; 2003-2005, 9.6%). The pathogen was not detected in many field plots that contained susceptible host vegetation. The generalized linear modeling indicated that the probability of invasion is limited by both dispersal and niche constraints. Probability of invasion was positively related to precipitation and temperature in the wet season and the presence of the inoculum-producing foliar host Umbellularia californica and decreased exponentially with distance to inoculum sources. Models that incorporated niche and dispersal parameters best predicted the locations of new infections, with accuracies ranging from 0.86 to 0.90, suggesting that the modeling approach can be used to forecast locations of disease spread. Application of the combined niche plus dispersal models in a geographic information system predicted the presence of P. ramorum across approximately 8228 km2 of California's 84785 km2 (9.7%) of land area with susceptible host species. This research illustrates how probabilistic modeling can be used to analyze the relative roles of niche and dispersal limitation in controlling the distribution of invasive pathogens.

  12. Gene expression models for prediction of longitudinal dispersion coefficient in streams

    NASA Astrophysics Data System (ADS)

    Sattar, Ahmed M. A.; Gharabaghi, Bahram

    2015-05-01

    Longitudinal dispersion is the key hydrologic process that governs transport of pollutants in natural streams. It is critical for spill action centers to be able to predict the pollutant travel time and break-through curves accurately following accidental spills in urban streams. This study presents a novel gene expression model for longitudinal dispersion developed using 150 published data sets of geometric and hydraulic parameters in natural streams in the United States, Canada, Europe, and New Zealand. The training and testing of the model were accomplished using randomly-selected 67% (100 data sets) and 33% (50 data sets) of the data sets, respectively. Gene expression programming (GEP) is used to develop empirical relations between the longitudinal dispersion coefficient and various control variables, including the Froude number which reflects the effect of reach slope, aspect ratio, and the bed material roughness on the dispersion coefficient. Two GEP models have been developed, and the prediction uncertainties of the developed GEP models are quantified and compared with those of existing models, showing improved prediction accuracy in favor of GEP models. Finally, a parametric analysis is performed for further verification of the developed GEP models. The main reason for the higher accuracy of the GEP models compared to the existing regression models is that exponents of the key variables (aspect ratio and bed material roughness) are not constants but a function of the Froude number. The proposed relations are both simple and accurate and can be effectively used to predict the longitudinal dispersion coefficients in natural streams.

  13. On the spatial decorrelation of stochastic solar resource variability at long timescales

    DOE PAGES

    Perez, Marc J. R.; Fthenakis, Vasilis M.

    2015-05-16

    Understanding the spatial and temporal characteristics of solar resource variability is important because it helps inform the discussion surrounding the merits of geographic dispersion and subsequent electrical interconnection of photovoltaics as part of a portfolio of future solutions for coping with this variability. The unpredictable resource variability arising from the stochastic nature of meteorological phenomena (from the passage of clouds to the movement of weather systems) is of most concern for achieving high PV penetration because unlike the passage of seasons or the shift from day to night, the uncertainty makes planning a challenge. A suitable proxy for unpredictable solarmore » resource variability at any given location is the series of variations in the clearness index from one time period to the next because the clearness index is largely independent of the predictable influence of solar geometry. At timescales shorter than one day, the correlation between these variations in clearness index at pairs of distinct geographic locations decreases with spatial extent and with timescale. As the aggregate variability across N decorrelated locations decreases as 1/√N, identifying the distance required to achieve this decorrelation is critical to quantifying the expected reduction in variability from geographic dispersion.« less

  14. Pre-dispersal seed predation in a species-rich forest community: Patterns and the interplay with determinants

    Treesearch

    Yue Xu; Zehao Shen; Daoxin Li; Qinfeng Guo

    2015-01-01

    Pre-dispersal seed predation (PDSP) is commonly observed in woody plants, and recognized as a driver of seed production variability that is critical for successful regeneration. Earlier studies on PDSP and its determinants were mostly species specific, with community- level PDSP rarely estimated; and the interactions between the temporal...

  15. Scale-Dependent Solute Dispersion in Variably Saturated Porous Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rockhold, Mark L.; Zhang, Z. F.; Bott, Yi-Ju

    2016-03-29

    This work was performed to support performance assessment (PA) calculations for the Integrated Disposal Facility (IDF) at the Hanford Site. PA calculations require defensible estimates of physical, hydraulic, and transport parameters to simulate subsurface water flow and contaminant transport in both the near- and far-field environments. Dispersivity is one of the required transport parameters.

  16. The link between behavioural type and natal dispersal propensity reveals a dispersal syndrome in a large herbivore

    PubMed Central

    Debeffe, L.; Morellet, N.; Bonnot, N.; Gaillard, J. M.; Cargnelutti, B.; Verheyden-Tixier, H.; Vanpé, C.; Coulon, A.; Clobert, J.; Bon, R.; Hewison, A. J. M.

    2014-01-01

    When individuals disperse, they modify the physical and social composition of their reproductive environment, potentially impacting their fitness. The choice an individual makes between dispersal and philopatry is thus critical, hence a better understanding of the mechanisms involved in the decision to leave the natal area is crucial. We explored how combinations of behavioural (exploration, mobility, activity and stress response) and morphological (body mass) traits measured prior to dispersal were linked to the subsequent dispersal decision in 77 roe deer Capreolus capreolus fawns. Using an unusually detailed multi-trait approach, we identified two independent behavioural continuums related to dispersal. First, a continuum of energetic expenditure contrasted individuals of low mobility, low variability in head activity and low body temperature with those that displayed opposite traits. Second, a continuum of neophobia contrasted individuals that explored more prior to dispersal and were more tolerant of capture with those that displayed opposite traits. While accounting for possible confounding effects of condition-dependence (body mass), we showed that future dispersers were less neophobic and had higher energetic budgets than future philopatric individuals, providing strong support for a dispersal syndrome in this species. PMID:25030983

  17. How cooperatively breeding birds identify relatives and avoid incest: New insights into dispersal and kin recognition.

    PubMed

    Riehl, Christina; Stern, Caitlin A

    2015-12-01

    Cooperative breeding in birds typically occurs when offspring - usually males - delay dispersal from their natal group, remaining with the family to help rear younger kin. Sex-biased dispersal is thought to have evolved in order to reduce the risk of inbreeding, resulting in low relatedness between mates and the loss of indirect fitness benefits for the dispersing sex. In this review, we discuss several recent studies showing that dispersal patterns are more variable than previously thought, often leading to complex genetic structure within cooperative avian societies. These empirical findings accord with recent theoretical models suggesting that sex- biased dispersal is neither necessary, nor always sufficient, to prevent inbreeding. The ability to recognize relatives, primarily by learning individual or group-specific vocalizations, may play a more important role in incest avoidance than currently appreciated. © 2015 WILEY Periodicals, Inc.

  18. Long anterior zonules and pigment dispersion.

    PubMed

    Moroi, Sayoko E; Lark, Kurt K; Sieving, Paul A; Nouri-Mahdavi, Kouros; Schlötzer-Schrehardt, Ursula; Katz, Gregory J; Ritch, Robert

    2003-12-01

    To describe pigment dispersion associated with long anterior zonules. Multicenter observational case series. Fifteen patients, seven of whom were treated for glaucoma or ocular hypertension, were identified with long anterior zonules and pigment dispersion. Transmission electron microscopy was performed on one anterior capsule specimen. All patients had anterior zonules that inserted centrally on the lens capsule. Signs of pigment dispersion included corneal endothelial pigmentation, loss of the pupillary ruff, and variable trabecular meshwork pigmentation. Ultrasound biomicroscopy verified the lack of posterior iris insertion and concavity. There was no exfoliation material. Transmission electron microscopy showed zonular lamellae with adherent pigment granules, and no exfoliation material. Long anterior zonules inserted onto the central lens capsule may cause mechanical disruption of the pigment epithelium at the pupillary ruff and central iris leading to pigment dispersion.

  19. Consequences of variable reproduction for seedling recruitment in three neotropical tree species

    Treesearch

    Diane De Steven; S. Joesph Wright

    2002-01-01

    Variable seed production may have important consequences for recruitment but poorly documented for frugivore-dispersed tropical trees. Recruitment limitation may also may be a critical spatial process affectng forest dynamics, but it is rarely assessed at the scale of individual trees. Over an 11-yr period, we studied the consequences of variable seed production for...

  20. Community assembly processes underlying phytoplankton and bacterioplankton across a hydrologic change in a human-impacted river.

    PubMed

    Isabwe, Alain; Yang, Jun R; Wang, Yongming; Liu, Lemian; Chen, Huihuang; Yang, Jun

    2018-07-15

    Although the influence of microbial community assembly processes on aquatic ecosystem function and biodiversity is well known, the processes that govern planktonic communities in human-impacted rivers remain largely unstudied. Here, we used multivariate statistics and a null model approach to test the hypothesis that environmental conditions and obstructed dispersal opportunities, dictate a deterministic community assembly for phytoplankton and bacterioplankton across contrasting hydrographic conditions in a subtropical mid-sized river (Jiulong River, southeast China). Variation partitioning analysis showed that the explanatory power of local environmental variables was larger than that of the spatial variables for both plankton communities during the dry season. During the wet season, phytoplankton community variation was mainly explained by local environmental variables, whereas the variance in bacterioplankton was explained by both environmental and spatial predictors. The null model based on Raup-Crick coefficients for both planktonic groups suggested little evidences of the stochastic processes involving dispersal and random distribution. Our results showed that hydrological change and landscape structure act together to cause divergence in communities along the river channel, thereby dictating a deterministic assembly and that selection exceeds dispersal limitation during the dry season. Therefore, to protect the ecological integrity of human-impacted rivers, watershed managers should not only consider local environmental conditions but also dispersal routes to account for the effect of regional species pool on local communities. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Dispersal, environmental niches and oceanic-scale turnover in deep-sea bivalves

    PubMed Central

    McClain, Craig R.; Stegen, James C.; Hurlbert, Allen H.

    2012-01-01

    Patterns of beta-diversity or distance decay at oceanic scales are completely unknown for deep-sea communities. Even when appropriate data exist, methodological problems have made it difficult to discern the relative roles of environmental filtering and dispersal limitation for generating faunal turnover patterns. Here, we combine a spatially extensive dataset on deep-sea bivalves with a model incorporating ecological dynamics and shared evolutionary history to quantify the effects of environmental filtering and dispersal limitation. Both the model and empirical data are used to relate functional, taxonomic and phylogenetic similarity between communities to environmental and spatial distances separating them for 270 sites across the Atlantic Ocean. This study represents the first ocean-wide analysis examining distance decay as a function of a broad suite of explanatory variables. We find that both strong environmental filtering and dispersal limitation drive turnover in taxonomic, functional and phylogenetic composition in deep-sea bivalves, explaining 26 per cent, 34 per cent and 9 per cent of the variation, respectively. This contrasts with previous suggestions that dispersal is not limiting in broad-scale biogeographic and biodiversity patterning in marine systems. However, rates of decay in similarity with environmental distance were eightfold to 44-fold steeper than with spatial distance. Energy availability is the most influential environmental variable evaluated, accounting for 3.9 per cent, 9.4 per cent and 22.3 per cent of the variation in functional, phylogenetic and taxonomic similarity, respectively. Comparing empirical patterns with process-based theoretical predictions provided quantitative estimates of dispersal limitation and niche breadth, indicating that 95 per cent of deep-sea bivalve propagules will be able to persist in environments that deviate from their optimum by up to 2.1 g m−2 yr−1 and typically disperse 749 km from their natal site. PMID:22189399

  2. Optical design of low cost imaging systems for mobile medical applications

    NASA Astrophysics Data System (ADS)

    Kass, Alexander; Slyper, Ronit; Levitz, David

    2015-03-01

    Colposcopes, the gold standard devices for imaging the cervix at high magnfication, are expensive and sparse in low resource settings. Using a lens attachment, any smartphone camera can be turned into an imaging device for tissues such as the cervix. We create a smartphone-based colposcope using a simple lens design for high magnification. This particular design is useful because it allows parameters such as F-number, depth of field, and magnification to be controlled easily. We were therefore able to determine a set of design steps which are general to mobile medical imaging devices and allow them to maintain requisite image quality while still being rugged and affordable.

  3. AMO Teledioptric System for age-related macular degeneration

    NASA Astrophysics Data System (ADS)

    Chou, Jim-Son; Ting, Albert C.

    1994-05-01

    A 2.5 X magnification system consisting of a two-zone intraocular implant and a spectacle was developed, tested, and clinically tried by fifty patients with cataract ad age-related macular degeneration. Optical bench testing results and clinical data confirmed that the field of view of the system was 2.6 times wider than an equivalent external telescope. The study also demonstrated that the implant itself was clinically equivalent to a standard monofocal intraocular lens for cataract. The clinical study indicated that higher magnification without compromising the compactness and optical quality was needed as the disease progressed. Also, a sound vision rehabilitation process is important to provide patients the full benefits of the system.

  4. Helicobacter pylori-negative gastric mucosa-associated lymphoid tissue lymphoma: magnifying endoscopy findings.

    PubMed

    Law, T T; Tong, Daniel; Wong, Sam W H; Chan, S Y; Law, Simon

    2015-04-01

    Gastric mucosa-associated lymphoid tissue lymphoma is uncommon and most patients have an indolent clinical course. The clinical presentation and endoscopic findings can be subtle and diagnosis can be missed on white light endoscopy. Magnifying endoscopy may help identify the abnormal microstructural and microvascular patterns, and target biopsies can be performed. We describe herein the case of a 64-year-old woman with Helicobacter pylori-negative gastric mucosa-associated lymphoid tissue lymphoma diagnosed by screening magnification endoscopy. Helicobacter pylori-eradication therapy was given and she received biological therapy. She is in clinical remission after treatment. The use of magnification endoscopy in gastric mucosa-associated lymphoid tissue lymphoma and its management are reviewed.

  5. Computer simulation models as tools for identifying research needs: A black duck population model

    USGS Publications Warehouse

    Ringelman, J.K.; Longcore, J.R.

    1980-01-01

    Existing data on the mortality and production rates of the black duck (Anas rubripes) were used to construct a WATFIV computer simulation model. The yearly cycle was divided into 8 phases: hunting, wintering, reproductive, molt, post-molt, and juvenile dispersal mortality, and production from original and renesting attempts. The program computes population changes for sex and age classes during each phase. After completion of a standard simulation run with all variable default values in effect, a sensitivity analysis was conducted by changing each of 50 input variables, 1 at a time, to assess the responsiveness of the model to changes in each variable. Thirteen variables resulted in a substantial change in population level. Adult mortality factors were important during hunting and wintering phases. All production and mortality associated with original nesting attempts were sensitive, as was juvenile dispersal mortality. By identifying those factors which invoke the greatest population change, and providing an indication of the accuracy required in estimating these factors, the model helps to identify those variables which would be most profitable topics for future research.

  6. Derivation of a Multiparameter Gamma Model for Analyzing the Residence-Time Distribution Function for Nonideal Flow Systems as an Alternative to the Advection-Dispersion Equation

    DOE PAGES

    Embry, Irucka; Roland, Victor; Agbaje, Oluropo; ...

    2013-01-01

    A new residence-time distribution (RTD) function has been developed and applied to quantitative dye studies as an alternative to the traditional advection-dispersion equation (AdDE). The new method is based on a jointly combined four-parameter gamma probability density function (PDF). The gamma residence-time distribution (RTD) function and its first and second moments are derived from the individual two-parameter gamma distributions of randomly distributed variables, tracer travel distance, and linear velocity, which are based on their relationship with time. The gamma RTD function was used on a steady-state, nonideal system modeled as a plug-flow reactor (PFR) in the laboratory to validate themore » effectiveness of the model. The normalized forms of the gamma RTD and the advection-dispersion equation RTD were compared with the normalized tracer RTD. The normalized gamma RTD had a lower mean-absolute deviation (MAD) (0.16) than the normalized form of the advection-dispersion equation (0.26) when compared to the normalized tracer RTD. The gamma RTD function is tied back to the actual physical site due to its randomly distributed variables. The results validate using the gamma RTD as a suitable alternative to the advection-dispersion equation for quantitative tracer studies of non-ideal flow systems.« less

  7. Long-distance dispersal of the gypsy moth (Lepidoptera: Lymantriidae) facilitated its initial invasion of Wisconsin

    Treesearch

    Patrick C. Tobin; Laura M. Blackburn

    2008-01-01

    Gypsy moth (Lymantria dispar L.) spread is dominated by stratified dispersal, and, although spread rates are variable in space and time, the gypsy moth has invaded Wisconsin at a consistently higher rate than in other regions. Allee effects, which act on low-density populations ahead of the moving population that contribute to gypsy moth spread, have...

  8. Polychlorinated Biphenyls

    ERIC Educational Resources Information Center

    Peakall, David B.; Lincer, Jeffrey L.

    1970-01-01

    Describes structure, use, analysis, and toxicological properties of polychlorinated biphenyls. Provides data on occurrence and biological magnification in ecosystems. Significance, and synergistic relationships with DDT summarized. (AL)

  9. Impacts of maintenance dredged material disposal on macrobenthic structure and secondary productivity.

    PubMed

    Bolam, S G; Barry, J; Bolam, T; Mason, C; Rumney, H S; Thain, J E; Law, R J

    2011-10-01

    The results of a monitoring programme to assess the spatial impacts associated with ongoing dredged material disposal activity at a dispersive, coastal disposal site (southwest UK) are described. Benthic impacts were assessed using benthic community structure and secondary productivity estimates. Analyses of univariate indices (including secondary production) and multivariate community structure revealed differences between stations inside and those outside the disposal site were minimal. Generally, stations within and outside the disposal site were characterised by the same species. Regression models indicated that the variability in biological structure and secondary production was predominantly accounted for by natural variables (e.g., depth, sediment granulometry) with only a small amount of residual variability being due to contaminant variables. Thus, the elevated levels of certain contaminants in the vicinity of the disposal area were not sufficient to result in significant ecological or ecotoxicological changes. We ascribe such findings partly to the dispersive nature of the disposal site. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  10. Impact of Holocene climate variability on Arctic vegetation

    NASA Astrophysics Data System (ADS)

    Gajewski, K.

    2015-10-01

    This paper summarizes current knowledge about the postglacial history of the vegetation of the Canadian Arctic Archipelago (CAA) and Greenland. Available pollen data were used to understand the initial migration of taxa across the Arctic, how the plant biodiversity responded to Holocene climate variability, and how past climate variability affected primary production of the vegetation. Current evidence suggests that most of the flora arrived in the area during the Holocene from Europe or refugia south or west of the region immediately after local deglaciation, indicating rapid dispersal of propagules to the region from distant sources. There is some evidence of shrub species arriving later in Greenland, but it is not clear if this is dispersal limited or a response to past climates. Subsequent climate variability had little effect on biodiversity across the CAA, with some evidence of local extinctions in areas of Greenland in the late Holocene. The most significant impact of climate changes is on vegetation density and/or plant production.

  11. Clinical utility of wavelet compression for resolution-enhanced chest radiography

    NASA Astrophysics Data System (ADS)

    Andriole, Katherine P.; Hovanes, Michael E.; Rowberg, Alan H.

    2000-05-01

    This study evaluates the usefulness of wavelet compression for resolution-enhanced storage phosphor chest radiographs in the detection of subtle interstitial disease, pneumothorax and other abnormalities. A wavelet compression technique, MrSIDTM (LizardTech, Inc., Seattle, WA), is implemented which compresses the images from their original 2,000 by 2,000 (2K) matrix size, and then decompresses the image data for display at optimal resolution by matching the spatial frequency characteristics of image objects using a 4,000- square matrix. The 2K-matrix computed radiography (CR) chest images are magnified to a 4K-matrix using wavelet series expansion. The magnified images are compared with the original uncompressed 2K radiographs and with two-times magnification of the original images. Preliminary results show radiologist preference for MrSIDTM wavelet-based magnification over magnification of original data, and suggest that the compressed/decompressed images may provide an enhancement to the original. Data collection for clinical trials of 100 chest radiographs including subtle interstitial abnormalities and/or subtle pneumothoraces and normal cases, are in progress. Three experienced thoracic radiologists will view images side-by- side on calibrated softcopy workstations under controlled viewing conditions, and rank order preference tests will be performed. This technique combines image compression with image enhancement, and suggests that compressed/decompressed images can actually improve the originals.

  12. MODEL-FREE MULTI-PROBE LENSING RECONSTRUCTION OF CLUSTER MASS PROFILES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umetsu, Keiichi

    2013-05-20

    Lens magnification by galaxy clusters induces characteristic spatial variations in the number counts of background sources, amplifying their observed fluxes and expanding the area of sky, the net effect of which, known as magnification bias, depends on the intrinsic faint-end slope of the source luminosity function. The bias is strongly negative for red galaxies, dominated by the geometric area distortion, whereas it is mildly positive for blue galaxies, enhancing the blue counts toward the cluster center. We generalize the Bayesian approach of Umetsu et al. for reconstructing projected cluster mass profiles, by incorporating multiple populations of background sources for magnification-biasmore » measurements and combining them with complementary lens-distortion measurements, effectively breaking the mass-sheet degeneracy and improving the statistical precision of cluster mass measurements. The approach can be further extended to include strong-lensing projected mass estimates, thus allowing for non-parametric absolute mass determinations in both the weak and strong regimes. We apply this method to our recent CLASH lensing measurements of MACS J1206.2-0847, and demonstrate how combining multi-probe lensing constraints can improve the reconstruction of cluster mass profiles. This method will also be useful for a stacked lensing analysis, combining all lensing-related effects in the cluster regime, for a definitive determination of the averaged mass profile.« less

  13. Curvature constraints from large scale structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dio, Enea Di; Montanari, Francesco; Raccanelli, Alvise

    We modified the CLASS code in order to include relativistic galaxy number counts in spatially curved geometries; we present the formalism and study the effect of relativistic corrections on spatial curvature. The new version of the code is now publicly available. Using a Fisher matrix analysis, we investigate how measurements of the spatial curvature parameter Ω {sub K} with future galaxy surveys are affected by relativistic effects, which influence observations of the large scale galaxy distribution. These effects include contributions from cosmic magnification, Doppler terms and terms involving the gravitational potential. As an application, we consider angle and redshift dependentmore » power spectra, which are especially well suited for model independent cosmological constraints. We compute our results for a representative deep, wide and spectroscopic survey, and our results show the impact of relativistic corrections on spatial curvature parameter estimation. We show that constraints on the curvature parameter may be strongly biased if, in particular, cosmic magnification is not included in the analysis. Other relativistic effects turn out to be subdominant in the studied configuration. We analyze how the shift in the estimated best-fit value for the curvature and other cosmological parameters depends on the magnification bias parameter, and find that significant biases are to be expected if this term is not properly considered in the analysis.« less

  14. The influence of viewing conditions on radiological diagnosis of periapical inflammation.

    PubMed

    Patel, N; Rushton, V E; Macfarlane, T V; Horner, K

    2000-07-08

    To determine the effect of viewing conditions upon diagnosis of early periapical inflammatory pathosis on intra-oral radiographs, and to examine the effect of observer experience upon diagnostic performance in this task. 50 observers examined 18 periapical radiographs using three different viewing conditions (room lighting; viewing box; viewing box with x2 magnification and masking). Their diagnoses were compared with an 'expert' diagnosis provided by repeated viewings of the films by two dental radiologists. Sensitivities and specificities were determined. When 'ideal' viewing conditions were used, optimal sensitivity (78%) and specificity (78%) were obtained. Use of a viewing box was associated with significantly higher specificity than the use of room lighting (P = 0.0016). Use of masking and x2 magnification was associated with significantly higher sensitivity than a viewing box alone (P = 0.004). There were few significant differences in diagnostic performance between observers, but qualified dental staff had significantly higher specificities than 4th year (P = 0.01) and 5th year (P = 0.01) students when a viewing box was used alone. This study on early periapical inflammatory pathosis gives support to guidelines which recommend the use of a viewing box, x2 magnification and masking for interpreting intra-oral radiographs. It also suggests that observer experience may influence interpretation of early periapical pathosis.

  15. Qualification of security printing features

    NASA Astrophysics Data System (ADS)

    Simske, Steven J.; Aronoff, Jason S.; Arnabat, Jordi

    2006-02-01

    This paper describes the statistical and hardware processes involved in qualifying two related printing features for their deployment in product (e.g. document and package) security. The first is a multi-colored tiling feature that can also be combined with microtext to provide additional forms of security protection. The color information is authenticated automatically with a variety of handheld, desktop and production scanners. The microtext is authenticated either following magnification or manually by a field inspector. The second security feature can also be tile-based. It involves the use of two inks that provide the same visual color, but differ in their transparency to infrared (IR) wavelengths. One of the inks is effectively transparent to IR wavelengths, allowing emitted IR light to pass through. The other ink is effectively opaque to IR wavelengths. These inks allow the printing of a seemingly uniform, or spot, color over a (truly) uniform IR emitting ink layer. The combination converts a uniform covert ink and a spot color to a variable data region capable of encoding identification sequences with high density. Also, it allows the extension of variable data printing for security to ostensibly static printed regions, affording greater security protection while meeting branding and marketing specifications.

  16. Trait-based Modeling of Larval Dispersal in the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Jones, B.; Richardson, D.; Follows, M. J.; Hill, C. N.; Solow, A.; Ji, R.

    2016-02-01

    Population connectivity of marine species is the inter-generational movement of individuals among geographically separated subpopulations and is a crucial determinant of population dynamics, community structure, and optimal management strategies. For many marine species, population connectivity is largely determined by the dispersal patterns that emerge from a pelagic larval phase. These dispersal patterns are a result of interactions between the physical environment, adult spawning strategy, and larval ecology. Using a generalized trait-based model that represents the adult spawning strategy as a distribution of larval releases in time and space and the larval trait space with the pelagic larval duration, vertical swimming behavior, and settlement habitat preferences, we simulate dispersal patterns in the Gulf of Maine and surrounding regions. We implement this model as an individual-based simulation that tracks Lagrangian particles on a graphics processing unit as they move through hourly archived output from the Finite-Volume Community Ocean Model. The particles are released between the Hudson Canyon and Nova Scotia and the release distributions are determined using a novel method that minimizes the number of simulations required to achieve a predetermined level of precision for the connectivity matrices. The simulated larvae have a variable pelagic larval duration and exhibit multiple forms of dynamic depth-keeping behavior. We describe how these traits influence the dispersal trajectories and connectivity patterns among regions in the northwest Atlantic. Our description includes the probability of successful recruitment, patchiness of larval distributions, and the variability of these properties in time and space under a variety of larval dispersal strategies.

  17. Effects of landscape matrix on population connectivity of an arboreal mammal, Petaurus breviceps.

    PubMed

    Malekian, Mansoureh; Cooper, Steven J B; Saint, Kathleen M; Lancaster, Melanie L; Taylor, Andrea C; Carthew, Susan M

    2015-09-01

    Ongoing habitat loss and fragmentation is considered a threat to biodiversity as it can create small, isolated populations that are at increased risk of extinction. Tree-dependent species are predicted to be highly sensitive to forest and woodland loss and fragmentation, but few studies have tested the influence of different types of landscape matrix on gene flow and population structure of arboreal species. Here, we examine the effects of landscape matrix on population structure of the sugar glider (Petaurus breviceps) in a fragmented landscape in southeastern South Australia. We collected 250 individuals across 12 native Eucalyptus forest remnants surrounded by cleared agricultural land or exotic Pinus radiata plantations and a large continuous eucalypt forest. Fifteen microsatellite loci were genotyped and analyzed to infer levels of population differentiation and dispersal. Genetic differentiation among most forest patches was evident. We found evidence for female philopatry and restricted dispersal distances for females relative to males, suggesting there is male-biased dispersal. Among the environmental variables, spatial variables including geographic location, minimum distance to neighboring patch, and degree of isolation were the most important in explaining genetic variation. The permeability of a cleared agricultural matrix to dispersing gliders was significantly higher than that of a pine matrix, with the gliders dispersing shorter distances across the latter. Our results added to previous findings for other species of restricted dispersal and connectivity due to habitat fragmentation in the same region, providing valuable information for the development of strategies to improve the connectivity of populations in the future.

  18. PHOTOMICROPHOTOGRAPHY- GEOLOGY ( SEM)

    NASA Image and Video Library

    1972-10-13

    PHOTOMICROPHOTOGRAPHY -GEOLOGY (SEM) High magnification and resolution views of lunar, meteorite and terrestrial materials using the Scanning Electron MIcroscope (SEM), Bldg. 31 Planetary and Earth Science Laboratory.

  19. Mate-finding as an overlooked critical determinant of dispersal variation in sexually-reproducing animals.

    PubMed

    Gilroy, James J; Lockwood, Julie L

    2012-01-01

    Dispersal is a critically important process in ecology, but robust predictive models of animal dispersal remain elusive. We identify a potentially ubiquitous component of variation in animal dispersal that has been largely overlooked until now: the influence of mate encounters on settlement probability. We use an individual-based model to simulate dispersal in sexually-reproducing organisms that follow a simple set of movement rules based on conspecific encounters, within an environment lacking spatial habitat heterogeneity. We show that dispersal distances vary dramatically with fluctuations in population density in such a model, even in the absence of variation in dispersive traits between individuals. In a simple random-walk model with promiscuous mating, dispersal distributions become increasingly 'fat-tailed' at low population densities due to the increasing scarcity of mates. Similar variation arises in models incorporating territoriality. In a model with polygynous mating, we show that patterns of sex-biased dispersal can even be reversed across a gradient of population density, despite underlying dispersal mechanisms remaining unchanged. We show that some widespread dispersal patterns found in nature (e.g. fat tailed distributions) can arise as a result of demographic variability in the absence of heterogeneity in dispersive traits across the population. This implies that models in which individual dispersal distances are considered to be fixed traits might be unrealistic, as dispersal distances vary widely under a single dispersal mechanism when settlement is influenced by mate encounters. Mechanistic models offer a promising means of advancing our understanding of dispersal in sexually-reproducing organisms.

  20. Lensing corrections to features in the angular two-point correlation function and power spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LoVerde, Marilena; Department of Physics, Columbia University, New York, New York 10027; Hui, Lam

    2008-01-15

    It is well known that magnification bias, the modulation of galaxy or quasar source counts by gravitational lensing, can change the observed angular correlation function. We investigate magnification-induced changes to the shape of the observed correlation function w({theta}), and the angular power spectrum C{sub l}, paying special attention to the matter-radiation equality peak and the baryon wiggles. Lensing effectively mixes the correlation function of the source galaxies with that of the matter correlation at the lower redshifts of the lenses distorting the observed correlation function. We quantify how the lensing corrections depend on the width of the selection function, themore » galaxy bias b, and the number count slope s. The lensing correction increases with redshift and larger corrections are present for sources with steep number count slopes and/or broad redshift distributions. The most drastic changes to C{sub l} occur for measurements at high redshifts (z > or approx. 1.5) and low multipole moment (l < or approx. 100). For the source distributions we consider, magnification bias can shift the location of the matter-radiation equality scale by 1%-6% at z{approx}1.5 and by z{approx}3.5 the shift can be as large as 30%. The baryon bump in {theta}{sup 2}w({theta}) is shifted by < or approx. 1% and the width is typically increased by {approx}10%. Shifts of > or approx. 0.5% and broadening > or approx. 20% occur only for very broad selection functions and/or galaxies with (5s-2)/b > or approx. 2. However, near the baryon bump the magnification correction is not constant but is a gently varying function which depends on the source population. Depending on how the w({theta}) data is fitted, this correction may need to be accounted for when using the baryon acoustic scale for precision cosmology.« less

  1. High magnification bronchovideoscopy combined with narrow band imaging could detect capillary loops of angiogenic squamous dysplasia in heavy smokers at high risk for lung cancer.

    PubMed

    Shibuya, K; Hoshino, H; Chiyo, M; Iyoda, A; Yoshida, S; Sekine, Y; Iizasa, T; Saitoh, Y; Baba, M; Hiroshima, K; Ohwada, H; Fujisawa, T

    2003-11-01

    We investigated the use of high magnification bronchovideoscopy combined with narrow band imaging (NBI) for the detailed examination of angiogenic squamous dysplasia (ASD). This was carried out in relation to bronchial vascular patterns with abnormal mucosal fluorescence in heavy smokers at high risk for lung cancer. Forty eight patients with sputum cytology specimens suspicious or positive for malignancy were entered into the study. Conventional white light and fluorescence bronchoscopic examination was first performed. Observations by high magnification bronchovideoscopy with conventional white light were made primarily at sites of abnormal fluorescence, and then repeated with NBI light to examine microvascular networks in the bronchial mucosa. Spectral features on the RGB (Red/Green/Blue) sequential videoscope system were changed from the conventional RGB broadband filter to the new NBI filter. The wavelength ranges of the new NBI filter were B1: 400-430 nm, B2: 420-470 nm, and G: 560-590 nm. ASD tissues were also examined using a confocal laser scanning microscope equipped with argon-krypton (488 nm) and argon (514 nm) laser sources. The microvessels, vascular networks of various grades, and dotted vessels in ASD tissues were clearly observed in NBI-B1 images. Diameters of the dotted vessels visible on NBI-B1 images agreed with the diameters of ASD capillary blood vessels diagnosed by pathological examination. Capillary blood vessels were also clearly visualised by green fluorescence by confocal laser scanning microscopy. There was a significant association between the frequency of dotted vessels by NBI-B1 imaging and tissues confirmed as ASD pathologically (p=0.002). High magnification bronchovideoscopy combined with NBI was useful in the detection of capillary blood vessels in ASD lesions at sites of abnormal fluorescence. This may enable the discrimination between ASD and another pre-invasive bronchial lesion.

  2. Binary Sources and Binary Lenses in Microlensing Surveys of MACHOs

    NASA Astrophysics Data System (ADS)

    Petrovic, N.; Di Stefano, R.; Perna, R.

    2003-12-01

    Microlensing is an intriguing phenomenon which may yield information about the nature of dark matter. Early observational searches identified hundreds of microlensing light curves. The data set consisted mainly of point-lens light curves and binary-lens events in which the light curves exhibit caustic crossings. Very few mildly perturbed light curves were observed, although this latter type should constitute the majority of binary lens light curves. Di Stefano (2001) has suggested that the failure to take binary effects into account may have influenced the estimates of optical depth derived from microlensing surveys. The work we report on here is the first step in a systematic analysis of binary lenses and binary sources and their impact on the results of statistical microlensing surveys. In order to asses the problem, we ran Monte-Carlo simulations of various microlensing events involving binary stars (both as the source and as the lens). For each event with peak magnification > 1.34, we sampled the characteristic light curve and recorded the chi squared value when fitting the curve with a point lens model; we used this to asses the perturbation rate. We also recorded the parameters of each system, the maximum magnification, the times at which each light curve started and ended and the number of caustic crossings. We found that both the binarity of sources and the binarity of lenses increased the lensing rate. While the binarity of sources had a negligible effect on the perturbation rates of the light curves, the binarity of lenses had a notable effect. The combination of binary sources and binary lenses produces an observable rate of interesting events exhibiting multiple "repeats" in which the magnification rises above and dips below 1.34 several times. Finally, the binarity of lenses impacted both the durations of the events and the maximum magnifications. This work was supported in part by the SAO intern program (NSF grant AST-9731923) and NASA contracts NAS8-39073 and NAS8-38248 (CXC).

  3. Three gravitationally lensed supernovae behind clash galaxy clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Brandon; McCully, Curtis; Jha, Saurabh W.

    2014-05-01

    We report observations of three gravitationally lensed supernovae (SNe) in the Cluster Lensing And Supernova survey with Hubble (CLASH) Multi-Cycle Treasury program. These objects, SN CLO12Car (z = 1.28), SN CLN12Did (z = 0.85), and SN CLA11Tib (z = 1.14), are located behind three different clusters, MACSJ1720.2+3536 (z = 0.391), RXJ1532.9+3021 (z = 0.345), and A383 (z = 0.187), respectively. Each SN was detected in Hubble Space Telescope optical and infrared images. Based on photometric classification, we find that SNe CLO12Car and CLN12Did are likely to be Type Ia supernovae (SNe Ia), while the classification of SN CLA11Tib is inconclusive.more » Using multi-color light-curve fits to determine a standardized SN Ia luminosity distance, we infer that SN CLO12Car was ∼1.0 ± 0.2 mag brighter than field SNe Ia at a similar redshift and ascribe this to gravitational lens magnification. Similarly, SN CLN12Did is ∼0.2 ± 0.2 mag brighter than field SNe Ia. We derive independent estimates of the predicted magnification from CLASH strong+weak-lensing maps of the clusters (in magnitude units, 2.5 log{sub 10}μ): 0.83 ± 0.16 mag for SN CLO12Car, 0.28 ± 0.08 mag for SN CLN12Did, and 0.43 ± 0.11 mag for SN CLA11Tib. The two SNe Ia provide a new test of the cluster lens model predictions: we find that the magnifications based on the SN Ia brightness and those predicted by the lens maps are consistent. Our results herald the promise of future observations of samples of cluster-lensed SNe Ia (from the ground or space) to help illuminate the dark-matter distribution in clusters of galaxies, through the direct determination of absolute magnifications.« less

  4. Three Gravitationally Lensed Supernovae Behind Clash Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    Patel, Brandon; McCully, Curtis; Jha, Saurbh W.; Rodney, Steven A.; Jones, David O.; Graur, Or; Merten, Julian; Zitrin, Adi; Riess, Adam G.; Matheson, Thomas; hide

    2014-01-01

    We report observations of three gravitationally lensed supernovae (SNe) in the Cluster Lensing And Supernova survey with Hubble (CLASH) Multi-Cycle Treasury program. These objects, SN CLO12Car (z = 1.28), SN CLN12Did (z = 0.85), and SN CLA11Tib (z = 1.14), are located behind three different clusters, MACSJ1720.2+3536 (z = 0.391), RXJ1532.9+3021 (z = 0.345), and A383 (z = 0.187), respectively. Each SN was detected in Hubble Space Telescope optical and infrared images. Based on photometric classification, we find that SNe CLO12Car and CLN12Did are likely to be Type Ia supernovae (SNe Ia), while the classification of SN CLA11Tib is inconclusive. Using multi-color light-curve fits to determine a standardized SN Ia luminosity distance, we infer that SN CLO12Car was approx. 1.0 +/- 0.2 mag brighter than field SNe Ia at a similar redshift and ascribe this to gravitational lens magnification. Similarly, SN CLN12Did is approx. 0.2 +/- 0.2 mag brighter than field SNe Ia. We derive independent estimates of the predicted magnification from CLASH strong+weak-lensing maps of the clusters (in magnitude units, 2.5 log10 µ): 0.83 +/- 0.16 mag for SN CLO12Car, 0.28 +/- 0.08 mag for SN CLN12Did, and 0.43 +/- 0.11 mag for SN CLA11Tib. The two SNe Ia provide a new test of the cluster lens model predictions: we find that the magnifications based on the SN Ia brightness and those predicted by the lens maps are consistent. Our results herald the promise of future observations of samples of cluster-lensed SNe Ia (from the ground or space) to help illuminate the dark-matter distribution in clusters of galaxies, through the direct determination of absolute magnifications.

  5. Gas Dispersion Coefficients in Variably Saturated and Differently Textured Porous Media Muhammad Naveed (1), Shoichiro Hamamoto (1), Ken Kawamoto (1,2), Toshihiro Sakaki (3), Per Moldrup (4), and Toshiko Komatsu (1,2) (1) Graduate School of Science and Engineering, Saitama University, Saitama, Japan (2) Institute of Environmental Science and Technology, Saitama University, Saitama, Japan (3) Center for Experimental Study of Subsurface Environmental Processes, Colorado School of Mines, Golden, CO, USA (4) Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Aalborg, Denmark

    NASA Astrophysics Data System (ADS)

    Naveed, M.; Kawamoto, K.; Hamamoto, S.; Sakaki, T.; Moldrup, P.; Komatsu, T.

    2010-12-01

    The transport and fate of gases in the soil are governed by gas advection, diffusion and dispersion phenomena. Among three gas transport phenomena, gas dispersion is least understood. Main objective of this study is to investigate the gas dispersion phenomena, emphasising on the effect of moisture content, sand particle shape, particle size, particle size distribution, and scale dependency on gas dispersion. One dimensional laboratory column experiments, in an apparatus consisting of an acrylic column attached to inlet and outlet chambers (Hamamoto et al., SSAJ, 2009), were conducted for the measurements of gas dispersion coefficient (DH). Various types of sands (Narita and Toyoura sands from Japan, and Granusils and Accusands from United States) and glass beads with variable moisture contents were used as porous media. Shape of the sand particles were characterized in terms of sphericity and roundness. The changes in the oxygen concentration within the soil column and in the inlet and outlet chambers were monitored. In addition the air pressure at inlet and middle of the soil column was also monitored to ensure the uniform density of porous media along the column. The measured breakthrough curves were fitted with the analytical solution of the advection dispersion equation to determine dispersion coefficients. The measured dispersion coefficient (DH) showed linear increase with pore velocity (u0). Measured dispersivity (λ= DH/u0) increases with decrease in air filled porosity induced by adding moisture contents in sands. Its values varies from 0 to 3 cm on decreasing air filled porosity from 0.50 (air dry) to 0.25 (field capacity). Shape of the sand particles has no significant effect on gas dispersion. When gas dispersion phenomena was studied on different shape of the sand particles at various air filled porosities, it was found that for angular sand particles initially gas dispersivity increases more rapidly as compared to rounded sand particles and finally both attains nearly same values at field capacity. Particle size has no significant effect on gas dispersion but particle size distribution has considerable effect on it. For the same sand when a coefficient of uniformity (Uc) increases from 1 to 4, gas dispersivity increases by 1.5 times. Gas dispersion coefficient was measured with two different sized columns and it was found that there is no effect of diameter and length of the column on gas dispersion for sandy soils. Therefore it can be concluded that only air filled porosity and particle size distribution should be considered for modeling the gas dispersivity in porous media.

  6. Instruments for Imaging from Far to Near

    NASA Technical Reports Server (NTRS)

    Mungas, Greg; Boynton, John; Sepulveda, Cesar

    2009-01-01

    The acronym CHAMP (signifying camera, hand lens, and microscope ) denotes any of several proposed optoelectronic instruments that would be capable of color imaging at working distances that could be varied continuously through a range from infinity down to several millimeters. As in any optical instrument, the magnification, depth of field, and spatial resolution would vary with the working distance. For example, in one CHAMP version, at a working distance of 2.5 m, the instrument would function as an electronic camera with a magnification of 1/100, whereas at a working distance of 7 mm, the instrument would function as a microscope/electronic camera with a magnification of 4.4. Moreover, as described below, when operating at or near the shortest-working-distance/highest-magnification combination, a CHAMP could be made to perform one or more spectral imaging functions. CHAMPs were originally intended to be used in robotic geological exploration of the Moon and Mars. The CHAMP concept also has potential for diverse terrestrial applications that could include remotely controlled or robotic geological exploration, prospecting, field microbiology, environmental surveying, and assembly- line inspection. A CHAMP (see figure) would include two lens cells: (1) a distal cell corresponding to the objective lens assembly of a conventional telescope or microscope and (2) a proximal cell that would contain the focusing camera lens assembly and the camera electronic image-detector chip, which would be of the active-pixel-sensor (APS) type. The distal lens cell would face outward from a housing, while the proximal lens cell would lie in a clean environment inside the housing. The proximal lens cell would contain a beam splitter that would enable simultaneous use of the imaging optics (that is, proximal and distal lens assemblies) for imaging and illumination of the field of view. The APS chip would be mounted on a focal plane on a side face of the beam splitter, while light for illuminating the field of view would enter the imaging optics via the end face of the beam splitter. The proximal lens cell would be mounted on a sled that could be translated along the optical axis for focus adjustment. The position of the CHAMP would initially be chosen at the desired working distance of the distal lens from (corresponding to an approximate desired magnification of) an object to be examined. During subsequent operation, the working distance would ordinarily remain fixed at the chosen value and the position of the proximal lens cell within the instrument would be adjusted for focus as needed.

  7. Selfing ability and dispersal are positively related, but not affected by range position: a multispecies study on southern African Asteraceae.

    PubMed

    de Waal, C; Rodger, J G; Anderson, B; Ellis, A G

    2014-05-01

    Dispersal and breeding system traits are thought to affect colonization success. As species have attained their present distribution ranges through colonization, these traits may vary geographically. Although several theories predict associations between dispersal ability, selfing ability and the relative position of a population within its geographic range, there is little theoretical or empirical consensus on exactly how these three variables are related. We investigated relationships between dispersal ability, selfing ability and range position across 28 populations of 13 annual, wind-dispersed Asteraceae species from the Namaqualand region of South Africa. Controlling for phylogeny, relative dispersal ability--assessed from vertical fall time of fruits--was positively related to an index of autofertility--determined from hand-pollination experiments. These findings support the existence of two discrete syndromes: high selfing ability associated with good dispersal and obligate outcrossing associated with lower dispersal ability. This is consistent with the hypothesis that selection for colonization success drives the evolution of an association between these traits. However, no general effect of range position on dispersal or breeding system traits was evident. This suggests selection on both breeding system and dispersal traits acts consistently across distribution ranges. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  8. USING CMAQ FOR EXPOSURE MODELING AND CHARACTERIZING THE SUB-GRID VARIABILITY FOR EXPOSURE ESTIMATES

    EPA Science Inventory

    Atmospheric processes and the associated transport and dispersion of atmospheric pollutants are known to be highly variable in time and space. Current air quality models that characterize atmospheric chemistry effects, e.g. the Community Multi-scale Air Quality (CMAQ), provide vo...

  9. Modelling the role of groundwater hydro-refugia in East African hominin evolution and dispersal

    PubMed Central

    Cuthbert, M. O.; Gleeson, T.; Reynolds, S. C.; Bennett, M. R.; Newton, A. C.; McCormack, C. J.; Ashley, G. M.

    2017-01-01

    Water is a fundamental resource, yet its spatiotemporal availability in East Africa is poorly understood. This is the area where most hominin first occurrences are located, and consequently the potential role of water in hominin evolution and dispersal remains unresolved. Here, we show that hundreds of springs currently distributed across East Africa could function as persistent groundwater hydro-refugia through orbital-scale climate cycles. Groundwater buffers climate variability according to spatially variable groundwater response times determined by geology and topography. Using an agent-based model, grounded on the present day landscape, we show that groundwater availability would have been critical to supporting isolated networks of hydro-refugia during dry periods when potable surface water was scarce. This may have facilitated unexpected variations in isolation and dispersal of hominin populations in the past. Our results therefore provide a new environmental framework in which to understand how patterns of taxonomic diversity in hominins may have developed. PMID:28556825

  10. Modelling the role of groundwater hydro-refugia in East African hominin evolution and dispersal

    NASA Astrophysics Data System (ADS)

    Cuthbert, M. O.; Gleeson, T.; Reynolds, S. C.; Bennett, M. R.; Newton, A. C.; McCormack, C. J.; Ashley, G. M.

    2017-05-01

    Water is a fundamental resource, yet its spatiotemporal availability in East Africa is poorly understood. This is the area where most hominin first occurrences are located, and consequently the potential role of water in hominin evolution and dispersal remains unresolved. Here, we show that hundreds of springs currently distributed across East Africa could function as persistent groundwater hydro-refugia through orbital-scale climate cycles. Groundwater buffers climate variability according to spatially variable groundwater response times determined by geology and topography. Using an agent-based model, grounded on the present day landscape, we show that groundwater availability would have been critical to supporting isolated networks of hydro-refugia during dry periods when potable surface water was scarce. This may have facilitated unexpected variations in isolation and dispersal of hominin populations in the past. Our results therefore provide a new environmental framework in which to understand how patterns of taxonomic diversity in hominins may have developed.

  11. Dark-dark solitons for a coupled variable-coefficient higher-order nonlinear Schrödinger system in an inhomogeneous optical fiber

    NASA Astrophysics Data System (ADS)

    Li, Ming-Zhen; Tian, Bo; Qu, Qi-Xing; Chai, Han-Peng; Liu, Lei; Du, Zhong

    2017-12-01

    In this paper, under investigation is a coupled variable-coefficient higher-order nonlinear Schrödinger system, which describes the simultaneous propagation of optical pulses in an inhomogeneous optical fiber. Based on the Lax pair and binary Darboux transformation, we present the nondegenerate N-dark-dark soliton solutions. With the graphical simulation, soliton propagation and interaction are discussed with the group velocity dispersion and fourth-order dispersion effects, which affect the velocity but have no effect on the amplitude. Linear, parabolic and periodic one dark-dark solitons are displayed. Interactions between the two solitons are presented as well, which are all elastic.

  12. White-Light, Dispersed-Fringe Interferometric Keratometer

    NASA Technical Reports Server (NTRS)

    Hochberg, Eric B.; Baroth, Edmund C.

    1992-01-01

    Proposed keratometer based on scheme involving spectral dispersal of white-light interference fringes. Instrument operates in "snapshot" mode: no scanning necessary, not necessary to immobilize patient's eye. Insensitive to vibration, involves no phase shifting, and has variable sensitivity. Intended primarily for use in medical assessments of human corneas, also used to measure shapes of animal corneas, lenses, and other aspherical or spherical reflective or partly reflective surfaces.

  13. Bifurcation of rupture path by linear and cubic damping force

    NASA Astrophysics Data System (ADS)

    Dennis L. C., C.; Chew X., Y.; Lee Y., C.

    2014-06-01

    Bifurcation of rupture path is studied for the effect of linear and cubic damping. Momentum equation with Rayleigh factor was transformed into ordinary differential form. Bernoulli differential equation was obtained and solved by the separation of variables. Analytical or exact solutions yielded the bifurcation was visible at imaginary part when the wave was non dispersive. For the dispersive wave, bifurcation of rupture path was invisible.

  14. Optimal variable-grid finite-difference modeling for porous media

    NASA Astrophysics Data System (ADS)

    Liu, Xinxin; Yin, Xingyao; Li, Haishan

    2014-12-01

    Numerical modeling of poroelastic waves by the finite-difference (FD) method is more expensive than that of acoustic or elastic waves. To improve the accuracy and computational efficiency of seismic modeling, variable-grid FD methods have been developed. In this paper, we derived optimal staggered-grid finite difference schemes with variable grid-spacing and time-step for seismic modeling in porous media. FD operators with small grid-spacing and time-step are adopted for low-velocity or small-scale geological bodies, while FD operators with big grid-spacing and time-step are adopted for high-velocity or large-scale regions. The dispersion relations of FD schemes were derived based on the plane wave theory, then the FD coefficients were obtained using the Taylor expansion. Dispersion analysis and modeling results demonstrated that the proposed method has higher accuracy with lower computational cost for poroelastic wave simulation in heterogeneous reservoirs.

  15. Analytical Method of Approximating the Motion of a Spinning Vehicle with Variable Mass and Inertia Properties Acted Upon by Several Disturbing Parameters

    NASA Technical Reports Server (NTRS)

    Buglia, James J.; Young, George R.; Timmons, Jesse D.; Brinkworth, Helen S.

    1961-01-01

    An analytical method has been developed which approximates the dispersion of a spinning symmetrical body in a vacuum, with time-varying mass and inertia characteristics, under the action of several external disturbances-initial pitching rate, thrust misalignment, and dynamic unbalance. The ratio of the roll inertia to the pitch or yaw inertia is assumed constant. Spin was found to be very effective in reducing the dispersion due to an initial pitch rate or thrust misalignment, but was completely Ineffective in reducing the dispersion of a dynamically unbalanced body.

  16. Compact high-pulse-energy passively Q-switched Nd:YLF laser with an ultra-low-magnification unstable resonator: application for efficient optical parametric oscillator.

    PubMed

    Cho, C Y; Huang, Y P; Huang, Y J; Chen, Y C; Su, K W; Chen, Y F

    2013-01-28

    We exploit an ultra-low-magnification unstable resonator to develop a high-pulse-energy side-pumped passively Q-switched Nd:YLF/Cr⁴⁺:YAG laser with improving beam quality. A wedged laser crystal is employed in the cavity to control the emissions at 1047 nm and 1053 nm independently through the cavity alignment. The pulse energies at 1047 nm and 1053 nm are found to be 19 mJ and 23 mJ, respectively. The peak powers for both wavelengths are higher than 2 MW. Furthermore, the developed Nd:YLF lasers are employed to pump a monolithic optical parametric oscillator for confirming the applicability in nonlinear wavelength conversions.

  17. Sensitivity enhanced strain and temperature measurements based on FBG and frequency chirp magnification.

    PubMed

    Du, Jiangbing; He, Zuyuan

    2013-11-04

    In this work, highly sensitive measurements of strain and temperature have been demonstrated using a fiber Bragg grating (FBG) sensor with significantly enhance sensitivity by all-optical signal processing. The sensitivity enhancement is achieved by degenerated Four Wave Mixing (FWM) for frequency chirp magnification (FCM), which can be used for magnifying the wavelength drift of the FBG sensor induced by strain and temperature change. Highly sensitive measurements of static strain and temperature have been experimentally demonstrated with strain sensitivity of 5.36 pm/με and temperature sensitivity of 54.09 pm/°C. The sensitivity has been enhanced by a factor of five based on a 4-order FWM in a highly nonlinear fiber (HNLF).

  18. Strong Lens Models for 10 Galaxy Clusters from the Sloan Giant Arcs Survey

    NASA Astrophysics Data System (ADS)

    Dunham, Samuel; Sharon, Keren; Bayliss, Matthew; Dahle, Hakon; Florian, Michael; Gladders, Michael; Johnson, Traci; Murray, Katherine; Rigby, Jane R.; Whitaker, Katherine E.; Wuyts, Eva

    2016-01-01

    We present the results from modeling several strong gravitational lenses as part of the Sloan Giant Arcs Survey (SGAS). HST cannot resolve star-formation in galaxies at redshifts >~1 because they are too far away, but by using the magnification by galaxy clusters at these redshifts (1

  19. Long working distance incoherent interference microscope

    DOEpatents

    Sinclair, Michael B [Albuquerque, NM; De Boer, Maarten P [Albuquerque, NM

    2006-04-25

    A full-field imaging, long working distance, incoherent interference microscope suitable for three-dimensional imaging and metrology of MEMS devices and test structures on a standard microelectronics probe station. A long working distance greater than 10 mm allows standard probes or probe cards to be used. This enables nanometer-scale 3-dimensional height profiles of MEMS test structures to be acquired across an entire wafer while being actively probed, and, optionally, through a transparent window. An optically identical pair of sample and reference arm objectives is not required, which reduces the overall system cost, and also the cost and time required to change sample magnifications. Using a LED source, high magnification (e.g., 50.times.) can be obtained having excellent image quality, straight fringes, and high fringe contrast.

  20. New method: calculation of magnification factor from an intracardiac marker.

    PubMed

    Cha, S D; Incarvito, J; Maranhao, V

    1983-01-01

    In order to calculate a magnification factor (MF), an intracardiac marker (pigtail catheter with markers) was evaluated using a new formula and correlated with the conventional grid method. By applying the Pythagorean theorem and trigonometry, a new formula was developed, which is (formula; see text) In an experimental study, MF by the intracardiac markers was 0.71 +/- 0.15 (M +/- SD) and one by the grid method was 0.72 +/- 0.15, with a correlation coefficient of 0.96. In patients study, MF by the intracardiac markers was 0.77 +/- 0.06 and one by the grid method was 0.77 +/- 0.05. We conclude that this new method is simple and the results were comparable to the conventional grid method at mid-chest level.

  1. Eulerian-Lagrangian solution of the convection-dispersion equation in natural coordinates

    USGS Publications Warehouse

    Cheng, Ralph T.; Casulli, Vincenzo; Milford, S. Nevil

    1984-01-01

    The vast majority of numerical investigations of transport phenomena use an Eulerian formulation for the convenience that the computational grids are fixed in space. An Eulerian-Lagrangian method (ELM) of solution for the convection-dispersion equation is discussed and analyzed. The ELM uses the Lagrangian concept in an Eulerian computational grid system. The values of the dependent variable off the grid are calculated by interpolation. When a linear interpolation is used, the method is a slight improvement over the upwind difference method. At this level of approximation both the ELM and the upwind difference method suffer from large numerical dispersion. However, if second-order Lagrangian polynomials are used in the interpolation, the ELM is proven to be free of artificial numerical dispersion for the convection-dispersion equation. The concept of the ELM is extended for treatment of anisotropic dispersion in natural coordinates. In this approach the anisotropic properties of dispersion can be conveniently related to the properties of the flow field. Several numerical examples are given to further substantiate the results of the present analysis.

  2. Dependence of Halo Bias and Kinematics on Assembly Variables

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoju; Zheng, Zheng

    2018-06-01

    Using dark matter haloes identified in a large N-body simulation, we study halo assembly bias, with halo formation time, peak maximum circular velocity, concentration, and spin as the assembly variables. Instead of grouping haloes at fixed mass into different percentiles of each assembly variable, we present the joint dependence of halo bias on the values of halo mass and each assembly variable. In the plane of halo mass and one assembly variable, the joint dependence can be largely described as halo bias increasing outward from a global minimum. We find it unlikely to have a combination of halo variables to absorb all assembly bias effects. We then present the joint dependence of halo bias on two assembly variables at fixed halo mass. The gradient of halo bias does not necessarily follow the correlation direction of the two assembly variables and it varies with halo mass. Therefore in general for two correlated assembly variables one cannot be used as a proxy for the other in predicting halo assembly bias trend. Finally, halo assembly is found to affect the kinematics of haloes. Low-mass haloes formed earlier can have much higher pairwise velocity dispersion than those of massive haloes. In general, halo assembly leads to a correlation between halo bias and halo pairwise velocity distribution, with more strongly clustered haloes having higher pairwise velocity and velocity dispersion. However, the correlation is not tight, and the kinematics of haloes at fixed halo bias still depends on halo mass and assembly variables.

  3. Combining landscape variables and species traits can improve the utility of climate change vulnerability assessments

    USGS Publications Warehouse

    Nadeau, Christopher P.; Fuller, Angela K.

    2016-01-01

    Conservation organizations worldwide are investing in climate change vulnerability assessments. Most vulnerability assessment methods focus on either landscape features or species traits that can affect a species vulnerability to climate change. However, landscape features and species traits likely interact to affect vulnerability. We compare a landscape-based assessment, a trait-based assessment, and an assessment that combines landscape variables and species traits for 113 species of birds, herpetofauna, and mammals in the northeastern United States. Our aim is to better understand which species traits and landscape variables have the largest influence on assessment results and which types of vulnerability assessments are most useful for different objectives. Species traits were most important for determining which species will be most vulnerable to climate change. The sensitivity of species to dispersal barriers and the species average natal dispersal distance were the most important traits. Landscape features were most important for determining where species will be most vulnerable because species were most vulnerable in areas where multiple landscape features combined to increase vulnerability, regardless of species traits. The interaction between landscape variables and species traits was important when determining how to reduce climate change vulnerability. For example, an assessment that combines information on landscape connectivity, climate change velocity, and natal dispersal distance suggests that increasing landscape connectivity may not reduce the vulnerability of many species. Assessments that include landscape features and species traits will likely be most useful in guiding conservation under climate change.

  4. Evaluating within-population variability in behavior and demography for the adaptive potential of a dispersal-limited species to climate change

    USGS Publications Warehouse

    Muñoz, David J.; Miller Hesed, Kyle; Grant, Evan H. Campbell; Miller, David A.W.

    2016-01-01

    Multiple pathways exist for species to respond to changing climates. However, responses of dispersal-limited species will be more strongly tied to ability to adapt within existing populations as rates of environmental change will likely exceed movement rates. Here, we assess adaptive capacity in Plethodon cinereus, a dispersal-limited woodland salamander. We quantify plasticity in behavior and variation in demography to observed variation in environmental variables over a 5-year period. We found strong evidence that temperature and rainfall influence P. cinereus surface presence, indicating changes in climate are likely to affect seasonal activity patterns. We also found that warmer summer temperatures reduced individual growth rates into the autumn, which is likely to have negative demographic consequences. Reduced growth rates may delay reproductive maturity and lead to reductions in size-specific fecundity, potentially reducing population-level persistence. To better understand within-population variability in responses, we examined differences between two common color morphs. Previous evidence suggests that the color polymorphism may be linked to physiological differences in heat and moisture tolerance. We found only moderate support for morph-specific differences for the relationship between individual growth and temperature. Measuring environmental sensitivity to climatic variability is the first step in predicting species' responses to climate change. Our results suggest phenological shifts and changes in growth rates are likely responses under scenarios where further warming occurs, and we discuss possible adaptive strategies for resulting selective pressures.

  5. Statistical optimisation of diclofenac sustained release pellets coated with polymethacrylic films.

    PubMed

    Kramar, A; Turk, S; Vrecer, F

    2003-04-30

    The objective of the present study was to evaluate three formulation parameters for the application of polymethacrylic films from aqueous dispersions in order to obtain multiparticulate sustained release of diclofenac sodium. Film coating of pellet cores was performed in a laboratory fluid bed apparatus. The chosen independent variables, i.e. the concentration of plasticizer (triethyl citrate), methacrylate polymers ratio (Eudragit RS:Eudragit RL) and the quantity of coating dispersion were optimised with a three-factor, three-level Box-Behnken design. The chosen dependent variables were cumulative percentage values of diclofenac dissolved in 3, 4 and 6 h. Based on the experimental design, different diclofenac release profiles were obtained. Response surface plots were used to relate the dependent and the independent variables. The optimisation procedure generated an optimum of 40% release in 3 h. The levels of plasticizer concentration, quantity of coating dispersion and polymer to polymer ratio (Eudragit RS:Eudragit RL) were 25% w/w, 400 g and 3/1, respectively. The optimised formulation prepared according to computer-determined levels provided a release profile, which was close to the predicted values. We also studied thermal and surface characteristics of the polymethacrylic films to understand the influence of plasticizer concentration on the drug release from the pellets.

  6. Exploring the full natural variability of eruption sizes within probabilistic hazard assessment of tephra dispersal

    NASA Astrophysics Data System (ADS)

    Selva, Jacopo; Sandri, Laura; Costa, Antonio; Tonini, Roberto; Folch, Arnau; Macedonio, Giovanni

    2014-05-01

    The intrinsic uncertainty and variability associated to the size of next eruption strongly affects short to long-term tephra hazard assessment. Often, emergency plans are established accounting for the effects of one or a few representative scenarios (meant as a specific combination of eruptive size and vent position), selected with subjective criteria. On the other hand, probabilistic hazard assessments (PHA) consistently explore the natural variability of such scenarios. PHA for tephra dispersal needs the definition of eruptive scenarios (usually by grouping possible eruption sizes and vent positions in classes) with associated probabilities, a meteorological dataset covering a representative time period, and a tephra dispersal model. PHA results from combining simulations considering different volcanological and meteorological conditions through a weight given by their specific probability of occurrence. However, volcanological parameters, such as erupted mass, eruption column height and duration, bulk granulometry, fraction of aggregates, typically encompass a wide range of values. Because of such a variability, single representative scenarios or size classes cannot be adequately defined using single values for the volcanological inputs. Here we propose a method that accounts for this within-size-class variability in the framework of Event Trees. The variability of each parameter is modeled with specific Probability Density Functions, and meteorological and volcanological inputs are chosen by using a stratified sampling method. This procedure allows avoiding the bias introduced by selecting single representative scenarios and thus neglecting most of the intrinsic eruptive variability. When considering within-size-class variability, attention must be paid to appropriately weight events falling within the same size class. While a uniform weight to all the events belonging to a size class is the most straightforward idea, this implies a strong dependence on the thresholds dividing classes: under this choice, the largest event of a size class has a much larger weight than the smallest event of the subsequent size class. In order to overcome this problem, in this study, we propose an innovative solution able to smoothly link the weight variability within each size class to the variability among the size classes through a common power law, and, simultaneously, respect the probability of different size classes conditional to the occurrence of an eruption. Embedding this procedure into the Bayesian Event Tree scheme enables for tephra fall PHA, quantified through hazard curves and maps representing readable results applicable in planning risk mitigation actions, and for the quantification of its epistemic uncertainties. As examples, we analyze long-term tephra fall PHA at Vesuvius and Campi Flegrei. We integrate two tephra dispersal models (the analytical HAZMAP and the numerical FALL3D) into BET_VH. The ECMWF reanalysis dataset are used for exploring different meteorological conditions. The results obtained clearly show that PHA accounting for the whole natural variability significantly differs from that based on a representative scenarios, as in volcanic hazard common practice.

  7. The Interplay among Acorn Abundance and Rodent Behavior Drives the Spatial Pattern of Seedling Recruitment in Mature Mediterranean Oak Forests.

    PubMed

    Sunyer, Pau; Boixadera, Ester; Muñoz, Alberto; Bonal, Raúl; Espelta, Josep Maria

    2015-01-01

    The patterns of seedling recruitment in animal-dispersed plants result from the interactions among environmental and behavioral variables. However, we know little on the contribution and combined effect of both kinds of variables. We designed a field study to assess the interplay between environment (vegetation structure, seed abundance, rodent abundance) and behavior (seed dispersal and predation by rodents, and rooting by wild boars), and their contribution to the spatial patterns of seedling recruitment in a Mediterranean mixed-oak forest. In a spatially explicit design, we monitored intensively all environmental and behavioral variables in fixed points at a small spatial scale from autumn to spring, as well as seedling emergence and survival. Our results revealed that the spatial patterns of seedling emergence were strongly related to acorn availability on the ground, but not by a facilitation effect of vegetation cover. Rodents changed seed shadows generated by mother trees by dispersing most seeds from shrubby to open areas, but the spatial patterns of acorn dispersal/predation had no direct effect on recruitment. By contrast, rodents had a strong impact on recruitment as pilferers of cached seeds. Rooting by wild boars also reduced recruitment by reducing seed abundance, but also by changing rodent's behavior towards higher consumption of acorns in situ. Hence, seed abundance and the foraging behavior of scatter-hoarding rodents and wild boars are driving the spatial patterns of seedling recruitment in this mature oak forest, rather than vegetation features. The contribution of vegetation to seedling recruitment (e.g. facilitation by shrubs) may be context dependent, having a little role in closed forests, or being overridden by directed seed dispersal from shrubby to open areas. We warn about the need of using broad approaches that consider the combined action of environment and behavior to improve our knowledge on the dynamics of natural regeneration in forests.

  8. The Interplay among Acorn Abundance and Rodent Behavior Drives the Spatial Pattern of Seedling Recruitment in Mature Mediterranean Oak Forests

    PubMed Central

    Boixadera, Ester; Bonal, Raúl

    2015-01-01

    The patterns of seedling recruitment in animal-dispersed plants result from the interactions among environmental and behavioral variables. However, we know little on the contribution and combined effect of both kinds of variables. We designed a field study to assess the interplay between environment (vegetation structure, seed abundance, rodent abundance) and behavior (seed dispersal and predation by rodents, and rooting by wild boars), and their contribution to the spatial patterns of seedling recruitment in a Mediterranean mixed-oak forest. In a spatially explicit design, we monitored intensively all environmental and behavioral variables in fixed points at a small spatial scale from autumn to spring, as well as seedling emergence and survival. Our results revealed that the spatial patterns of seedling emergence were strongly related to acorn availability on the ground, but not by a facilitationeffect of vegetation cover. Rodents changed seed shadows generated by mother trees by dispersing most seeds from shrubby to open areas, but the spatial patterns of acorn dispersal/predation had no direct effect on recruitment. By contrast, rodents had a strong impact on recruitment as pilferers of cached seeds. Rooting by wild boars also reduced recruitment by reducing seed abundance, but also by changing rodent’s behavior towards higher consumption of acorns in situ. Hence, seed abundance and the foraging behavior of scatter-hoarding rodents and wild boars are driving the spatial patterns of seedling recruitment in this mature oak forest, rather than vegetation features. The contribution of vegetation to seedling recruitment (e.g. facilitation by shrubs) may be context dependent, having a little role in closed forests, or being overridden by directed seed dispersal from shrubby to open areas. We warn about the need of using broad approaches that consider the combined action of environment and behavior to improve our knowledge on the dynamics of natural regeneration in forests. PMID:26070129

  9. Wind-tunnel Modelling of Dispersion from a Scalar Area Source in Urban-Like Roughness

    NASA Astrophysics Data System (ADS)

    Pascheke, Frauke; Barlow, Janet F.; Robins, Alan

    2008-01-01

    A wind-tunnel study was conducted to investigate ventilation of scalars from urban-like geometries at neighbourhood scale by exploring two different geometries a uniform height roughness and a non-uniform height roughness, both with an equal plan and frontal density of λ p = λ f = 25%. In both configurations a sub-unit of the idealized urban surface was coated with a thin layer of naphthalene to represent area sources. The naphthalene sublimation method was used to measure directly total area-averaged transport of scalars out of the complex geometries. At the same time, naphthalene vapour concentrations controlled by the turbulent fluxes were detected using a fast Flame Ionisation Detection (FID) technique. This paper describes the novel use of a naphthalene coated surface as an area source in dispersion studies. Particular emphasis was also given to testing whether the concentration measurements were independent of Reynolds number. For low wind speeds, transfer from the naphthalene surface is determined by a combination of forced and natural convection. Compared with a propane point source release, a 25% higher free stream velocity was needed for the naphthalene area source to yield Reynolds-number-independent concentration fields. Ventilation transfer coefficients w T / U derived from the naphthalene sublimation method showed that, whilst there was enhanced vertical momentum exchange due to obstacle height variability, advection was reduced and dispersion from the source area was not enhanced. Thus, the height variability of a canopy is an important parameter when generalising urban dispersion. Fine resolution concentration measurements in the canopy showed the effect of height variability on dispersion at street scale. Rapid vertical transport in the wake of individual high-rise obstacles was found to generate elevated point-like sources. A Gaussian plume model was used to analyse differences in the downstream plumes. Intensified lateral and vertical plume spread and plume dilution with height was found for the non-uniform height roughness.

  10. Consecutive five-year analysis of paternal and maternal gene flow and contributions of gametic heterogeneities to overall genetic composition of dispersed seeds of Pinus densiflora (Pinaceae).

    PubMed

    Iwaizumi, Masakazu G; Takahashi, Makoto; Isoda, Keiya; Austerlitz, Frédéric

    2013-09-01

    Genetic variability in monoecious woody plant populations results from the assemblage of individuals issued from asymmetrical male and female reproductive functions, produced during spatially and temporarily heterogeneous reproductive and dispersal events. Here we investigated the dispersal patterns and levels of genetic diversity and differentiation of both paternal and maternal gametes in a natural population of Pinus densiflora at the multiple-year scale as long as five consecutive years. • We analyzed the paternity and maternity for 1576 seeds and 454 candidate adult trees using nuclear DNA polymorphisms of diploid biparental embryos and haploid maternal megagametophytes at eight microsatellite loci. • Despite the low levels of genetic differentiation among gamete groups, a two-way AMOVA analysis showed that the parental origin (paternal vs. maternal gametes), the year of gamete production and their interaction had significant effects on the genetic composition of the seeds. While maternal gamete groups showed a significant FST value across the 5 years, this was not true for their paternal counterparts. Within the population, we found that the relative reproductive contributions of the paternal vs. the maternal parent differed among adult trees, the maternal contributions showing a larger year-to-year fluctuation. • The overall genetic variability of dispersed seeds appeared to result from two sources of heterogeneity: the difference between paternal and maternal patterns of reproduction and gamete dispersal and year-to-year heterogeneity of reproduction of adult trees, especially in their maternal reproduction.

  11. Calculation of dispersion curves and amplitude-depth distributions of Love channel waves in horizontally-layered media. [In seam; various boundary conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rader, D.; Dresen, L.; Ruter, H.

    We present dispersion curves, and amplitude-depth distributions of the fundamental and first higher mode of Love seam waves for two characteristic seam models. The first model consists of four layers, representing a coal seam underlain by a root clay of variable thickness. The second model consists of five layers, representing coal seams containing a dirt band with variable position and thickness. The simple three-layer model is used for reference. It is shown that at higher frequencies, depending on the thickness of the root clay and the dirt band, the coal layers alone act as a wave guide, whereas at lowmore » frequencies all layers act together as a channel. Depending on the thickness, and position of the dirt band and the root clay, in the dispersion curves of the group velocity, secondary minima grow in addition to the absolute minima. Furthermore, the dispersion curves of the group velocity of the two modes can overlap. In all these cases, wave groups in addition to the Airy phase of the fundamental mode (propagating with minimum group velocity) occur on the seismograms recorded in in-seam seismic surveys, thus impeding their interpretation. Hence, we suggest the estimation of the dispersion characteristics of Love seam waves in coal seams under investigation preceding actual field surveys. All numerical calculations were performed using a fast and stable phase recursion algorithm.« less

  12. Nano characterization of gunshot residues from Brazilian ammunition.

    PubMed

    Melo, Lis G A; Martiny, Andrea; Pinto, André L

    2014-07-01

    Gunshot residues (GSR) from a total of nine different caliber ammunitions produced in Brazil were analyzed and characterized by transmission (TEM) and scanning electron microscopy (SEM). GSR particles are composed of spherical particles of several micrometers of diameter containing distinct amounts of lead, barium and antimony, along with other organic and inorganic elements arising from the primer, gunpowder, the gun and the bullet itself. This study was carried out to obtain additional information on the properties of GSR nanoparticles originated from different types of regular ammunition produced in Brazil by CBC. Besides the SEM, we have used a TEM, exploring its high magnification capability and ability to explore internal structure and chemical composition of submicron particles. We observed that CBC ammunition generated smaller particles than usually reported for other ammunitions and that the three component particles are not a majority. TEM analysis revealed that GSR are partially composed of sub-micron particles as well. The electron diffraction pattern from these particles confirmed them to be mainly composed of lead oxides crystalline nanoparticles that may be agglomerated into larger particles. Energy dispersive X-ray spectroscopy revealed that most of them were composed of two elements, especially PbSb. Ba was not a common element found in the nanoparticles. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Experimental investigation on the combustion characteristics of aluminum in air

    NASA Astrophysics Data System (ADS)

    Feng, Yunchao; Xia, Zhixun; Huang, Liya; Yan, Xiaoting

    2016-12-01

    With the aim of revealing the detailed process of aluminum combustion in air, this paper reports an experimental study on the combustion of aluminum droplets. In this work, the aluminum wires were exposed and heated by a CO2 laser to produce aluminum droplets, and then these droplets were ignited and burnt in air. The changing processes of aluminum wires, droplets and flames were directly recorded by a high-speed camera, which was equipped with a high magnification zoom lens. Meanwhile, the spectrum distribution of the flame was also registered by an optical spectrometer. Besides, burning residuals were collected and analyzed by the methods of Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometer (EDS). Experimental results show that, during combustion, the aluminum droplet is covered by a spherical vapor-phase flame, and the diameter of this flame is about 1.4 times of the droplet diameter, statistically. In the later stages of combustion, the molten aluminum and condensed oxide products can react to generate gaseous Al and Al2O spontaneously. Little holes are found on the surface of residuals, which are the transport channels of gaseous products, namely the gaseous Al and Al2O. The combustion residuals are consisted by lots of aluminum oxide particles with diameters less than 1 μm.

  14. High-speed visualization of fuel spray impingement in the near-wall region using a DISI injector

    NASA Astrophysics Data System (ADS)

    Kawahara, N.; Kintaka, K.; Tomita, E.

    2017-02-01

    We used a multi-hole injector to spray isooctane under atmospheric conditions and observed droplet impingement behaviors. It is generally known that droplet impact regimes such as splashing, deposition, or bouncing are governed by the Weber number. However, owing to its complexity, little has been reported on microscopic visualization of poly-dispersed spray. During the spray impingement process, a large number of droplets approach, hit, then interact with the wall. It is therefore difficult to focus on a single droplet and observe the impingement process. We solved this difficulty using high-speed microscopic visualization. The spray/wall interaction processes were recorded by a high-speed camera (Shimadzu HPV-X2) with a long-distance microscope. We captured several impinging microscopic droplets. After optimizing the magnification and frame rate, the atomization behaviors, splashing and deposition, were recorded. Then, we processed the images obtained to determine droplet parameters such as the diameter, velocity, and impingement angle. Based on this information, the critical threshold between splashing and deposition was investigated in terms of the normal and parallel components of the Weber number with respect to the wall. The results suggested that, on a dry wall, we should set the normal critical Weber number to 300.

  15. Swept source optical coherence microscopy using a 1310 nm VCSEL light source

    PubMed Central

    Ahsen, Osman O.; Tao, Yuankai K.; Potsaid, Benjamin M.; Sheikine, Yuri; Jiang, James; Grulkowski, Ireneusz; Tsai, Tsung-Han; Jayaraman, Vijaysekhar; Kraus, Martin F.; Connolly, James L.; Hornegger, Joachim; Cable, Alex; Fujimoto, James G.

    2013-01-01

    We demonstrate high speed, swept source optical coherence microscopy (OCM) using a MEMS tunable vertical cavity surface-emitting laser (VCSEL) light source. The light source had a sweep rate of 280 kHz, providing a bidirectional axial scan rate of 560 kHz. The sweep bandwidth was 117 nm centered at 1310 nm, corresponding to an axial resolution of 13.1 µm in air, corresponding to 8.1 µm (9.6 µm spectrally shaped) in tissue. Dispersion mismatch from different objectives was compensated numerically, enabling magnification and field of view to be easily changed. OCM images were acquired with transverse resolutions between 0.86 µm - 3.42 µm using interchangeable 40X, 20X and 10X objectives with ~600 µm x 600 µm, ~1 mm x 1 mm and ~2 mm x 2 mm field-of-view (FOV), respectively. Parasitic variations in path length with beam scanning were corrected numerically. These features enable swept source OCM to be integrated with a wide range of existing scanning microscopes. Large FOV mosaics were generated by serially acquiring adjacent overlapping microscopic fields and combining them in post-processing. Fresh human colon, thyroid and kidney specimens were imaged ex vivo and compared to matching histology sections, demonstrating the ability of OCM to image tissue specimens. PMID:23938673

  16. Invertebrate Metacommunity Structure and Dynamics in an Andean Glacial Stream Network Facing Climate Change

    PubMed Central

    Cauvy-Fraunié, Sophie; Espinosa, Rodrigo; Andino, Patricio; Jacobsen, Dean; Dangles, Olivier

    2015-01-01

    Under the ongoing climate change, understanding the mechanisms structuring the spatial distribution of aquatic species in glacial stream networks is of critical importance to predict the response of aquatic biodiversity in the face of glacier melting. In this study, we propose to use metacommunity theory as a conceptual framework to better understand how river network structure influences the spatial organization of aquatic communities in glacierized catchments. At 51 stream sites in an Andean glacierized catchment (Ecuador), we sampled benthic macroinvertebrates, measured physico-chemical and food resource conditions, and calculated geographical, altitudinal and glaciality distances among all sites. Using partial redundancy analysis, we partitioned community variation to evaluate the relative strength of environmental conditions (e.g., glaciality, food resource) vs. spatial processes (e.g., overland, watercourse, and downstream directional dispersal) in organizing the aquatic metacommunity. Results revealed that both environmental and spatial variables significantly explained community variation among sites. Among all environmental variables, the glacial influence component best explained community variation. Overland spatial variables based on geographical and altitudinal distances significantly affected community variation. Watercourse spatial variables based on glaciality distances had a unique significant effect on community variation. Within alpine catchment, glacial meltwater affects macroinvertebrate metacommunity structure in many ways. Indeed, the harsh environmental conditions characterizing glacial influence not only constitute the primary environmental filter but also, limit water-borne macroinvertebrate dispersal. Therefore, glacier runoff acts as an aquatic dispersal barrier, isolating species in headwater streams, and preventing non-adapted species to colonize throughout the entire stream network. Under a scenario of glacier runoff decrease, we expect a reduction in both environmental filtering and dispersal limitation, inducing a taxonomic homogenization of the aquatic fauna in glacierized catchments as well as the extinction of specialized species in headwater groundwater and glacier-fed streams, and consequently an irreversible reduction in regional diversity. PMID:26308853

  17. Separating the effects of environment and space on tree species distribution: from population to community.

    PubMed

    Lin, Guojun; Stralberg, Diana; Gong, Guiquan; Huang, Zhongliang; Ye, Wanhui; Wu, Linfang

    2013-01-01

    Quantifying the relative contributions of environmental conditions and spatial factors to species distribution can help improve our understanding of the processes that drive diversity patterns. In this study, based on tree inventory, topography and soil data from a 20-ha stem-mapped permanent forest plot in Guangdong Province, China, we evaluated the influence of different ecological processes at different spatial scales using canonical redundancy analysis (RDA) at the community level and multiple linear regression at the species level. At the community level, the proportion of explained variation in species distribution increased with grid-cell sizes, primarily due to a monotonic increase in the explanatory power of environmental variables. At the species level, neither environmental nor spatial factors were important determinants of overstory species' distributions at small cell sizes. However, purely spatial variables explained most of the variation in the distributions of understory species at fine and intermediate cell sizes. Midstory species showed patterns that were intermediate between those of overstory and understory species. At the 20-m cell size, the influence of spatial factors was stronger for more dispersal-limited species, suggesting that much of the spatial structuring in this community can be explained by dispersal limitation. Comparing environmental factors, soil variables had higher explanatory power than did topography for species distribution. However, both topographic and edaphic variables were highly spatial structured. Our results suggested that dispersal limitation has an important influence on fine-intermediate scale (from several to tens of meters) species distribution, while environmental variability facilitates species distribution at intermediate (from ten to tens of meters) and broad (from tens to hundreds of meters) scales.

  18. Tree foliar chemistry in an African savanna and its relation to life history strategies and environmental filters.

    PubMed

    Colgan, Matthew S; Martin, Roberta E; Baldeck, Claire A; Asner, Gregory P

    2015-01-01

    Understanding the relative importance of environment and life history strategies in determining leaf chemical traits remains a key objective of plant ecology. We assessed 20 foliar chemical properties among 12 African savanna woody plant species and their relation to environmental variables (hillslope position, precipitation, geology) and two functional traits (thorn type and seed dispersal mechanism). We found that combinations of six leaf chemical traits (lignin, hemi-cellulose, zinc, boron, magnesium, and manganese) predicted the species with 91% accuracy. Hillslope position, precipitation, and geology accounted for only 12% of the total variance in these six chemical traits. However, thorn type and seed dispersal mechanism accounted for 46% of variance in these chemical traits. The physically defended species had the highest concentrations of hemi-cellulose and boron. Species without physical defense had the highest lignin content if dispersed by vertebrates, but threefold lower lignin content if dispersed by wind. One of the most abundant woody species in southern Africa, Colophospermum mopane, was found to have the highest foliar concentrations of zinc, phosphorus, and δ(13)C, suggesting that zinc chelation may be used by this species to bind metallic toxins and increase uptake of soil phosphorus. Across all studied species, taxonomy and physical traits accounted for the majority of variability in leaf chemistry.

  19. Magnetic stirrer induced dispersive ionic-liquid microextraction for the determination of vanadium in water and food samples prior to graphite furnace atomic absorption spectrometry.

    PubMed

    Naeemullah; Kazi, Tasneem Gul; Tuzen, Mustafa

    2015-04-01

    A new dispersive liquid-liquid microextraction, magnetic stirrer induced dispersive ionic-liquid microextraction (MS-IL-DLLME) was developed to quantify the trace level of vanadium in real water and food samples by graphite furnace atomic absorption spectrometry (GFAAS). In this extraction method magnetic stirrer was applied to obtained a dispersive medium of 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6] in aqueous solution of (real water samples and digested food samples) to increase phase transfer ratio, which significantly enhance the recovery of vanadium - 4-(2-pyridylazo) resorcinol (PAR) chelate. Variables having vital role on desired microextraction methods were optimised to obtain the maximum recovery of study analyte. Under the optimised experimental variables, enhancement factor (EF) and limit of detection (LOD) were achieved to be 125 and 18 ng L(-1), respectively. Validity and accuracy of the desired method was checked by analysis of certified reference materials (SLRS-4 Riverine water and NIST SRM 1515 Apple leaves). The relative standard deviation (RSD) for 10 replicate determinations at 0.5 μg L(-1) of vanadium level was found to be <5.0%. This method was successfully applied to real water and acid digested food samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. City scale pollen concentration variability

    NASA Astrophysics Data System (ADS)

    van der Molen, Michiel; van Vliet, Arnold; Krol, Maarten

    2016-04-01

    Pollen are emitted in the atmosphere both in the country-side and in cities. Yet the majority of the population is exposed to pollen in cities. Allergic reactions may be induced by short-term exposure to pollen. This raises the question how variable pollen concentration in cities are in temporally and spatially, and how much of the pollen in cities are actually produced in the urban region itself. We built a high resolution (1 × 1 km) pollen dispersion model based on WRF-Chem to study a city's pollen budget and the spatial and temporal variability in concentration. It shows that the concentrations are highly variable, as a result of source distribution, wind direction and boundary layer mixing, as well as the release rate as a function of temperature, turbulence intensity and humidity. Hay Fever Forecasts based on such high resolution emission and physical dispersion modelling surpass traditional hay fever warning methods based on temperature sum methods. The model gives new insights in concentration variability, personal and community level exposure and prevention. The model will be developped into a new forecast tool to serve allergic people to minimize their exposure and reduce nuisance, coast of medication and sick leave. This is an innovative approach in hay fever warning systems.

  1. Assessing geotechnical centrifuge modelling in addressing variably saturated flow in soil and fractured rock.

    PubMed

    Jones, Brendon R; Brouwers, Luke B; Van Tonder, Warren D; Dippenaar, Matthys A

    2017-05-01

    The vadose zone typically comprises soil underlain by fractured rock. Often, surface water and groundwater parameters are readily available, but variably saturated flow through soil and rock are oversimplified or estimated as input for hydrological models. In this paper, a series of geotechnical centrifuge experiments are conducted to contribute to the knowledge gaps in: (i) variably saturated flow and dispersion in soil and (ii) variably saturated flow in discrete vertical and horizontal fractures. Findings from the research show that the hydraulic gradient, and not the hydraulic conductivity, is scaled for seepage flow in the geotechnical centrifuge. Furthermore, geotechnical centrifuge modelling has been proven as a viable experimental tool for the modelling of hydrodynamic dispersion as well as the replication of similar flow mechanisms for unsaturated fracture flow, as previously observed in literature. Despite the imminent challenges of modelling variable saturation in the vadose zone, the geotechnical centrifuge offers a powerful experimental tool to physically model and observe variably saturated flow. This can be used to give valuable insight into mechanisms associated with solid-fluid interaction problems under these conditions. Findings from future research can be used to validate current numerical modelling techniques and address the subsequent influence on aquifer recharge and vulnerability, contaminant transport, waste disposal, dam construction, slope stability and seepage into subsurface excavations.

  2. [An alternative to the usual operating microscope and loupe magnification for free microvascular tissue transfer. Varioscope AF3-A].

    PubMed

    Chiummariello, S; Alfano, C; Fioramonti, P; Scuderi, N

    2005-12-01

    Free microvascular tissue transfers have become today a key instrument for the surgical treatment of wide loss of tissue, but their employment implies mandatory use of the right visual magnification means. Until now these instruments were mainly loupes and operating microscopes. Our study is focusing on the use of a new visual system--Varioscope AF3-A--in the reconstructive microsurgery field. Varioscope AF3-A (Life Optics, Vienna, Austria) has been employed in our Institute in 10 microvascular reconstructions, where different free flaps were used in head and neck reconstruction. All the flaps took and only one developed a partial necrosis. We have also noticed, by using this new instrument, a learning curve with a progressive contraction of the operating time. In all cases we have operated on 2 mm caliber vessels or more and on tissues that didn't previously undergo radiation therapy. The employment of a visual magnification mean, as Varioscope AF3-A, allows autofocus (from 3.6X to 7.2X) and a wide vision. It can be easily used with substantial advantages for the surgeon in performing microvascular anastomosis. Partial drawbacks are the equipment high cost and weight, compared to the loupes and a stronger ocular stress due to the continuous autofocus compared to the static operating microscopes.

  3. MATTER IN THE BEAM: WEAK LENSING, SUBSTRUCTURES, AND THE TEMPERATURE OF DARK MATTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahdi, Hareth S.; Elahi, Pascal J.; Lewis, Geraint F.

    2016-08-01

    Warm dark matter (WDM) models offer an attractive alternative to the current cold dark matter (CDM) cosmological model. We present a novel method to differentiate between WDM and CDM cosmologies, namely, using weak lensing; this provides a unique probe as it is sensitive to all of the “matter in the beam,” not just dark matter haloes and the galaxies that reside in them, but also the diffuse material between haloes. We compare the weak lensing maps of CDM clusters to those in a WDM model corresponding to a thermally produced 0.5 keV dark matter particle. Our analysis clearly shows thatmore » the weak lensing magnification, convergence, and shear distributions can be used to distinguish between CDM and WDM models. WDM models increase the probability of weak magnifications, with the differences being significant to ≳5 σ , while leaving no significant imprint on the shear distribution. WDM clusters analyzed in this work are more homogeneous than CDM ones, and the fractional decrease in the amount of material in haloes is proportional to the average increase in the magnification. This difference arises from matter that would be bound in compact haloes in CDM being smoothly distributed over much larger volumes at lower densities in WDM. Moreover, the signature does not solely lie in the probability distribution function but in the full spatial distribution of the convergence field.« less

  4. Clinical magnification and residual refraction after implantation of a double intraocular lens system in patients with macular degeneration.

    PubMed

    Amselem, Luis; Diaz-Llopis, Manuel; Felipe, Adelina; Artigas, Jose M; Navea, Amparo; García-Delpech, Salvador

    2008-09-01

    To evaluate the efficacy of a standard double intraocular lens (IOL) system (IOL-Vip) in patients with low vision and central scotoma due to macular degeneration and assess the predictability of the residual refraction and magnification. Ophthalmology Department, Hospital General Universitario, Valencia, Spain. This interventional prospective noncomparative case series comprised 13 consecutive surgical procedures in 10 patients with central scotoma. Follow-up was 12 months. Evaluation included the difference between preoperative and postoperative best corrected visual acuity (BCVA), refraction, position of the IOLs, endothelial cell density, and occurrence of postoperative complications. Residual refraction and eye magnification were calculated using a theory developed in a previous study, and the values were compared with the clinical results. The mean BCVA was 1.37 logMAR preoperatively and 0.68 logMAR 1 year postoperatively. The mean best corrected clinical gain was 44%. There was no statistically significant difference between the clinically evaluated and theoretically calculated residual refractions (P = .17). No intraoperative or postoperative complications occurred. Implantation of the double IOL system improved BCVA in patients with low vision due to advanced maculopathy. The results were best in myopic patients (long eyes); patients with hyperopia (short eyes) had high residual refraction. The postoperative clinical gain and residual refraction were predictable, showing the feasibility of implanting a customized double IOL.

  5. Three-dimensional image analysis as a tool for embryology

    NASA Astrophysics Data System (ADS)

    Verweij, Andre

    1992-06-01

    In the study of cell fate, cell lineage, and morphogenetic transformation it is necessary to obtain 3-D data. Serial sections of glutaraldehyde fixed and glycol methacrylate embedded material provide high resolution data. Clonal spread during germ layer formation in the mouse embryo has been followed by labeling a progenitor epiblast cell with horseradish peroxidase and staining its descendants one or two days later, followed by histological processing. Reconstruction of a 3-D image from histological sections must provide a solution for the alignment problem. As we want to study images at different magnification levels, we have chosen a method in which the sections are aligned under the microscope. Positioning is possible through a translation and a rotation stage. The first step for reconstruction is a coarse alignment on the basis of the moments in a binary, low magnification image of the embedding block. Thereafter, images of higher magnification levels are aligned by optimizing a similarity measure between the images. To analyze, first a global 3-D second order surface is fitted on the image to obtain the orientation of the embryo. The coefficients of this fit are used to normalize the size of the different embryos. Thereafter, the image is resampled with respect to the surface to create a 2-D mapping of the embryo and to guide the segmentation of the different cell layers which make up the embryo.

  6. Two families of astrophysical diverging lens models

    NASA Astrophysics Data System (ADS)

    Er, Xinzhong; Rogers, Adam

    2018-03-01

    In the standard gravitational lensing scenario, rays from a background source are bent in the direction of a foreground lensing mass distribution. Diverging lens behaviour produces deflections in the opposite sense to gravitational lensing, and is also of astrophysical interest. In fact, diverging lensing due to compact distributions of plasma has been proposed as an explanation for the extreme scattering events that produce frequency-dependent dimming of extragalactic radio sources, and may also be related to the refractive radio wave phenomena observed to affect the flux density of pulsars. In this work we study the behaviour of two families of astrophysical diverging lenses in the geometric optics limit, the power law, and the exponential plasma lenses. Generally, the members of these model families show distinct behaviour in terms of image formation and magnification, however the inclusion of a finite core for certain power-law lenses can produce a caustic and critical curve morphology that is similar to the well-studied Gaussian plasma lens. Both model families can produce dual radial critical curves, a novel distinction from the tangential distortion usually produced by gravitational (converging) lenses. The deflection angle and magnification of a plasma lens vary with the observational frequency, producing wavelength-dependent magnifications that alter the amplitudes and the shape of the light curves. Thus, multiwavelength observations can be used to physically constrain the distribution of the electron density in such lenses.

  7. In situ fatigue loading stage inside scanning electron microscope

    NASA Technical Reports Server (NTRS)

    Telesman, Jack; Kantzos, Peter; Brewer, David

    1988-01-01

    A fatigue loading stage inside a scanning electron microscopy (SEM) was developed. The stage allows dynamic and static high-magnification and high-resolution viewing of the fatigue crack initiation and crack propagation processes. The loading stage is controlled by a closed-loop servohydraulic system. Maximum load is 1000 lb (4450 N) with test frequencies ranging up to 30 Hz. The stage accommodates specimens up to 2 inches (50 mm) in length and tolerates substantial specimen translation to view the propagating crack. At room temperature, acceptable working resolution is obtainable for magnifications ranging up to 10,000X. The system is equipped with a high-temperature setup designed for temperatures up to 2000 F (1100 C). The signal can be videotaped for further analysis of the pertinent fatigue damage mechanisms. The design allows for quick and easy interchange and conversion of the SEM from a loading stage configuration to its normal operational configuration and vice versa. Tests are performed entirely in the in-situ mode. In contrast to other designs, the NASA design has greatly extended the life of the loading stage by not exposing the bellows to cyclic loading. The loading stage was used to investigate the fatigue crack growth mechanisms in the (100)-oriented PWA 1480 single-crystal, nickel-based supperalloy. The high-magnification observations revealed the details of the crack growth processes.

  8. A Wild Weasel Penetration Model.

    DTIC Science & Technology

    1982-03-01

    event 13, and node WM. Global variable XX(48) counts the WWs as they reach the home point. The network logic for WWI and WW2 is identical. Each WW...the same no matter if the aircraft is WWI or WW2 . Radar-Attack Profile In the radar-attack po. tion of the network threat radars engage both attack...Systems Dispersion on LOC XX(52) *State Variable--see text. * 94 variable. (The entry positions of WW1 and WW2 are changed with state variables SS(25) and

  9. On N. Park's Analytical solution for steady state density- and mixing regime—dependent solute transport in a vertical soil column

    NASA Astrophysics Data System (ADS)

    Thiele, Michael

    1998-04-01

    Recently, Park [1996] presented an analytical solution for stationary one-dimensional solute transport in a variable-density fluid flow through a vertical soil column. He used the widespread Bear-Scheidegger dispersion model describing solute mixing as a sum of molecular diffusion and velocity-proportional mechanical dispersion effects. His closed-form implicit concentration and pressure distributions thus allow for a discussion of the combined impact of molecular diffusion and mechanical dispersion in a variable-density environment. Whereas Park only considered the example of vanishing molecular diffusion in detail, both phenomena are taken into account simultaneously in the present study in order to elucidate their different influences on concentration distribution characteristics. The boundary value problem dealt with herein is based on an upward inflow of high-density fluid of constant solute concentration and corresponding outflow of a lower constant concentration fluid at the upper end of the column when dispersivity does not change along the flow path. The thickness of the transition zone between the two fluids appeared to strongly depend on the prevailing share of the molecular diffusion and mechanical dispersion mechanisms. The latter can be characterized by a molecular Peclet number Pe, which here is defined as the ratio of the column outflow velocity multiplied by a characteristic pore size and the molecular diffusion coefficient. For very small values of Pe, when molecular diffusion represents the exclusive mixing process, density differences have no impact on transition zone thicknesses. A relative density-;dependent thickness increases with flow velocities (increasing Pe values) very rapidly compared to the density-independent case, and after having passed a maximum decreases asymptotically to a constant value for the large Peclet number limit when mechanical dispersion is the only mixing mechanism. Hence the special transport problem analyzed gives further evidence for the importance of simultaneously considering molecular diffusion and mechanical dispersion in gravity-affected solute transport in porous media.

  10. A Study of ESEA, Title I Impact Components on Urban Elementary Schools and Their Pupils.

    ERIC Educational Resources Information Center

    Brown, Edward K.

    A systematic study of the composition and dispersement of Title I projects assigned to elementary schools in Philadelphia was conducted. Categorical variables were identified from four major derived variables (program density code, school aggregate fund, pupil service component, achievement-growth differential score) and four major demographic…

  11. Video Image Stabilization and Registration

    NASA Technical Reports Server (NTRS)

    Hathaway, David H. (Inventor); Meyer, Paul J. (Inventor)

    2002-01-01

    A method of stabilizing and registering a video image in multiple video fields of a video sequence provides accurate determination of the image change in magnification, rotation and translation between video fields, so that the video fields may be accurately corrected for these changes in the image in the video sequence. In a described embodiment, a key area of a key video field is selected which contains an image which it is desired to stabilize in a video sequence. The key area is subdivided into nested pixel blocks and the translation of each of the pixel blocks from the key video field to a new video field is determined as a precursor to determining change in magnification, rotation and translation of the image from the key video field to the new video field.

  12. Video Image Stabilization and Registration

    NASA Technical Reports Server (NTRS)

    Hathaway, David H. (Inventor); Meyer, Paul J. (Inventor)

    2003-01-01

    A method of stabilizing and registering a video image in multiple video fields of a video sequence provides accurate determination of the image change in magnification, rotation and translation between video fields, so that the video fields may be accurately corrected for these changes in the image in the video sequence. In a described embodiment, a key area of a key video field is selected which contains an image which it is desired to stabilize in a video sequence. The key area is subdivided into nested pixel blocks and the translation of each of the pixel blocks from the key video field to a new video field is determined as a precursor to determining change in magnification, rotation and translation of the image from the key video field to the new video field.

  13. Seronegative inflammations of the ankle and foot: diagnostic challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capen, D.; Scheck, M.

    Seronegative inflammatory disease was diagnosed in seven patients who had pain, swelling, and redness of the foot and/or ankle. Since the clinical findings mimicked infection, tendinitis, fasciitis, or chronic strain, the initial diagnosis was erroneous and treatment ineffective. In addition to the test for the HLA-B27 antigen, technetium-99m-diphosphonate scintigraphy and magnification roentgenograms have proved valuable tools. Increased isotope uptake was found in all involved extremities, and magnification roentgenograms helped to detect early and subtle lesions of bone. The lesions comprised cortical erosion, increased intracortical absorption of bone, periosteal reactions, and osteoporosis. The response to anti-inflammatory drugs was good in allmore » seven patients. Limited and preliminary follow-up data, including repeat bone scans, suggest that the inflammation may be of a transient nature.« less

  14. Thermal Buckling Analysis of Rectangular Panels Subjected to Humped Temperature Profile Heating

    NASA Technical Reports Server (NTRS)

    Ko, William I.

    2004-01-01

    This research investigates thermal buckling characteristics of rectangular panels subjected to different types of humped temperature profile heating. Minimum potential energy and finite-element methods are used to calculate the panel buckling temperatures. The two methods give fairly close thermal buckling solutions. 'Buckling temperature magnification factor of the first kind, eta' is established for the fixed panel edges to scale up the buckling solution of uniform temperature loading case to give the buckling solution of the humped temperature profile loading cases. Also, 'buckling temperature magnification factor of the second kind, xi' is established for the free panel edges to scale up the buckling solution of humped temperature profile loading cases with unheated boundary heat sinks to give the buckling solutions when the boundary heat sinks are heated up.

  15. Land use mapping and modelling for the Phoenix quadrangle

    NASA Technical Reports Server (NTRS)

    Place, J. L. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. Experimentation with 70mm squares cut from ERTS-1 9.5 inch MSS positive transparencies in an I2S color additive viewer, a Richardson film production viewer at 10X magnification, and in a microfiche viewer at 12X and 18X magnification has indicated that band 5 photography provides the most useful interpretable data. In the I2S viewer high intensities of blue and red light in bands 4 and 6 respectively enhance faint vegetation patterns not easily detectable. Slides produced from 35mm color transparencies made by photographing the I2S viewing screen are suitable visual aids for use during presentation. Interpretation of MSS transparencies allowed compilation of a map of land use change in the Phoenix quadrangle.

  16. Search for low-mass exoplanets by gravitational microlensing at high magnification.

    PubMed

    Abe, F; Bennett, D P; Bond, I A; Eguchi, S; Furuta, Y; Hearnshaw, J B; Kamiya, K; Kilmartin, P M; Kurata, Y; Masuda, K; Matsubara, Y; Muraki, Y; Noda, S; Okajima, K; Rakich, A; Rattenbury, N J; Sako, T; Sekiguchi, T; Sullivan, D J; Sumi, T; Tristram, P J; Yanagisawa, T; Yock, P C M; Gal-Yam, A; Lipkin, Y; Maoz, D; Ofek, E O; Udalski, A; Szewczyk, O; Zebrun, K; Soszynski, I; Szymanski, M K; Kubiak, M; Pietrzynski, G; Wyrzykowski, L

    2004-08-27

    Observations of the gravitational microlensing event MOA 2003-BLG-32/OGLE 2003-BLG-219 are presented, for which the peak magnification was over 500, the highest yet reported. Continuous observations around the peak enabled a sensitive search for planets orbiting the lens star. No planets were detected. Planets 1.3 times heavier than Earth were excluded from more than 50% of the projected annular region from approximately 2.3 to 3.6 astronomical units surrounding the lens star, Uranus-mass planets were excluded from 0.9 to 8.7 astronomical units, and planets 1.3 times heavier than Saturn were excluded from 0.2 to 60 astronomical units. These are the largest regions of sensitivity yet achieved in searches for extrasolar planets orbiting any star.

  17. Experimental far-field imaging properties of a ~5-μm diameter spherical lens.

    PubMed

    Ye, Ran; Ye, Yong-Hong; Ma, Hui Feng; Ma, Jun; Wang, Bin; Yao, Jie; Liu, Shuai; Cao, Lingling; Xu, Huanhuan; Zhang, Jia-Yu

    2013-06-01

    Microscale lenses are mostly used as near-sighted lenses. The far-field imaging properties of a microscale spherical lens, where the lens is spatially separated from the object, are experimentally studied. Our experimental results show that, for a blu-ray disc (an object) whose spacing is 300 nm, the lens can magnify the stripe patterns of the disc when the lens is spatially separated from the object. In the experimentally tested range (0-14 μm), all the magnified images are virtual images. When the distance is increased from 0 to 14 μm the magnification decreases from 1.47× to 1.20× and the field of view increases from 3.8 to 12.2 μm. The image magnification cannot be described by standard geometrical optics.

  18. Search for Low-Mass Exoplanets by Gravitational Microlensing at High Magnification

    NASA Astrophysics Data System (ADS)

    Abe, F.; Bennett, D. P.; Bond, I. A.; Eguchi, S.; Furuta, Y.; Hearnshaw, J. B.; Kamiya, K.; Kilmartin, P. M.; Kurata, Y.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Noda, S.; Okajima, K.; Rakich, A.; Rattenbury, N. J.; Sako, T.; Sekiguchi, T.; Sullivan, D. J.; Sumi, T.; Tristram, P. J.; Yanagisawa, T.; Yock, P. C. M.; Gal-Yam, A.; Lipkin, Y.; Maoz, D.; Ofek, E. O.; Udalski, A.; Szewczyk, O.; Żebruń, K.; Soszyński, I.; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Wyrzykowski, L.

    2004-08-01

    Observations of the gravitational microlensing event MOA 2003-BLG-32/OGLE 2003-BLG-219 are presented, for which the peak magnification was over 500, the highest yet reported. Continuous observations around the peak enabled a sensitive search for planets orbiting the lens star. No planets were detected. Planets 1.3 times heavier than Earth were excluded from more than 50% of the projected annular region from approximately 2.3 to 3.6 astronomical units surrounding the lens star, Uranus-mass planets were excluded from 0.9 to 8.7 astronomical units, and planets 1.3 times heavier than Saturn were excluded from 0.2 to 60 astronomical units. These are the largest regions of sensitivity yet achieved in searches for extrasolar planets orbiting any star.

  19. Experimental Observation and Theoretical Description of Multisoliton Fission in Shallow Water

    NASA Astrophysics Data System (ADS)

    Trillo, S.; Deng, G.; Biondini, G.; Klein, M.; Clauss, G. F.; Chabchoub, A.; Onorato, M.

    2016-09-01

    We observe the dispersive breaking of cosine-type long waves [Phys. Rev. Lett. 15, 240 (1965)] in shallow water, characterizing the highly nonlinear "multisoliton" fission over variable conditions. We provide new insight into the interpretation of the results by analyzing the data in terms of the periodic inverse scattering transform for the Korteweg-de Vries equation. In a wide range of dispersion and nonlinearity, the data compare favorably with our analytical estimate, based on a rigorous WKB approach, of the number of emerging solitons. We are also able to observe experimentally the universal Fermi-Pasta-Ulam recurrence in the regime of moderately weak dispersion.

  20. Dispersion, Mixing, and Combustion in Uniform- and Variable-Density Air-Breathing High-Speed Propulsion Flows

    DTIC Science & Technology

    2013-08-28

    and dispersion whose behavior is relevant to fuel-injection in propulsion devices. The latter investigations were conducted in water that allows...initially sharp scalar gradients in this high Schmidt-number fluid medium ( water : ⁄ ). Generally, such scalar plumes re reported to exhibit... Flowmetering : The Characteristics of Cylindrical Nozzles with Sharp Upstream Edges. Int. J. Heat and Fluid Flow 1(3):123-132. 3. Research personnel

  1. The impact of land use change and hydroclimatic variability on landscape connectivity dynamics across surface water networks at subcontinental scale

    NASA Astrophysics Data System (ADS)

    Tulbure, M. G.; Bishop-Taylor, R.; Broich, M.

    2017-12-01

    Land use (LU) change and hydroclimatic variability affect spatiotemporal landscape connectivity dynamics, important for species movement and dispersal. Despite the fact that LU change can strongly influence dispersal potential over time, prior research has only focused on the impacts of dynamic changes in the distribution of potential habitats. We used 8 time-steps of historical LU together with a Landsat-derived time-series of surface water habitat dynamics (1986-2011) over the Murray-Darling Basin (MDB), a region with extreme hydroclimatic variability, impacted by LU changes. To assess how changing LU and hydroclimatic variability affect landscape connectivity across time, we compared 4 scenarios, namely one where both climate and LU are dynamic over time, one where climate is kept steady (i.e. a median surface water extent layer), and two scenarios where LU is kept steady (i.e. resistance values associated with the most recent or the first LU layer). We used circuit theory to assign landscape features with `resistance' costs and graph theory network analysis, with surface water habitats as `nodes' connected by dispersal paths or `edges' Findings comparing a dry and an average season show high differences in number of nodes (14581 vs 21544) and resistance distances. The combined effect of LU change and landscape wetness was lower than expected, likely a function of the large, MDB-wide, aggregation scale. Spatially explicit analyses are expected to identify areas where the synergistic effect of LU change and landscape wetness greatly reduce or increase landscape connectivity, as well as areas where the two effects cancel each other out.

  2. An Experiment of GMPLS-Based Dispersion Compensation Control over In-Field Fibers

    NASA Astrophysics Data System (ADS)

    Seno, Shoichiro; Horiuchi, Eiichi; Yoshida, Sota; Sugihara, Takashi; Onohara, Kiyoshi; Kamei, Misato; Baba, Yoshimasa; Kubo, Kazuo; Mizuochi, Takashi

    As ROADMs (Reconfigurable Optical Add/Drop Multiplexers) are becoming widely used in metro/core networks, distributed control of wavelength paths by extended GMPLS (Generalized MultiProtocol Label Switching) protocols has attracted much attention. For the automatic establishment of an arbitrary wavelength path satisfying dynamic traffic demands over a ROADM or WXC (Wavelength Cross Connect)-based network, precise determination of chromatic dispersion over the path and optimized assignment of dispersion compensation capabilities at related nodes are essential. This paper reports an experiment over in-field fibers where GMPLS-based control was applied for the automatic discovery of chromatic dispersion, path computation, and wavelength path establishment with dynamic adjustment of variable dispersion compensation. The GMPLS-based control scheme, which the authors called GMPLS-Plus, extended GMPLS's distributed control architecture with attributes for automatic discovery, advertisement, and signaling of chromatic dispersion. In this experiment, wavelength paths with distances of 24km and 360km were successfully established and error-free data transmission was verified. The experiment also confirmed path restoration with dynamic compensation adjustment upon fiber failure.

  3. 42 CFR 411.15 - Particular services excluded from coverage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... magnification of images for impaired vision. (2) Exceptions. (i) Post-surgical prosthetic lenses customarily... condition and clinical status. (j) Personal comfort services, except as necessary for the palliation or...

  4. 42 CFR 411.15 - Particular services excluded from coverage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... magnification of images for impaired vision. (2) Exceptions. (i) Post-surgical prosthetic lenses customarily... condition and clinical status. (j) Personal comfort services, except as necessary for the palliation or...

  5. 42 CFR 411.15 - Particular services excluded from coverage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... magnification of images for impaired vision. (2) Exceptions. (i) Post-surgical prosthetic lenses customarily... condition and clinical status. (j) Personal comfort services, except as necessary for the palliation or...

  6. 42 CFR 411.15 - Particular services excluded from coverage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... magnification of images for impaired vision. (2) Exceptions. (i) Post-surgical prosthetic lenses customarily... condition and clinical status. (j) Personal comfort services, except as necessary for the palliation or...

  7. Adding access to a video magnifier to standard vision rehabilitation: initial results on reading performance and well-being from a prospective, randomized study

    PubMed Central

    Jackson, Mary Lou; Schoessow, Kimberly A.; Selivanova, Alexandra; Wallis, Jennifer

    2017-01-01

    Purpose Both optical and electronic magnification are available to patients with low vision. Electronic video magnifiers are more expensive than optical magnifiers, but they offer additional benefits, including variable magnification and contrast. This study aimed to evaluate the effect of access to a video magnifier (VM) added to standard comprehensive vision rehabilitation (VR). Methods In this prospective study, 37 subjects with central field loss were randomized to receive standard VR (VR group, 18 subjects) or standard VR plus VM (VM group, 19 subjects). Subjects read the International Reading Speed Texts (IReST), a bank check, and a phone number at enrollment, at 1 month, and after occupational therapy (OT) as indicated to address patient goals. The Impact of Vision Impairment (IVI) questionnaire, a version of the Activity Inventory (AI), and the Depression Anxiety and Stress Scale (DASS) were administered at enrollment, 1 month, after OT, 1 month later, and 1 year after enrollment. Assessments at enrollment and 1 month later were evaluated. Results At 1 month, the VM group displayed significant improvement in reading continuous print as measured by the IReST (P = 0.01) but did not differ on IVI, AI, or DASS. From enrollment to 1 month all subjects improved in their ability to spot read (phone number and check; P < 0.01 for both). The VM group improved in their ability to find and read a number in a phone book more than the VR group at 1 month after initial consultation (P = 0.02). All reported better well-being (P = 0.02). Conclusions All subjects reported better well-being on the IVI. The VM group read faster and was better at two spot reading tasks but did not differ from the VR group in other outcome measures. PMID:28924412

  8. Importance of methodology on (99m)technetium dimercapto-succinic acid scintigraphic image quality: imaging pilot study for RIVUR (Randomized Intervention for Children With Vesicoureteral Reflux) multicenter investigation.

    PubMed

    Ziessman, Harvey A; Majd, Massoud

    2009-07-01

    We reviewed our experience with (99m)technetium dimercapto-succinic acid scintigraphy obtained during an imaging pilot study for a multicenter investigation (Randomized Intervention for Children With Vesicoureteral Reflux) of the effectiveness of daily antimicrobial prophylaxis for preventing recurrent urinary tract infection and renal scarring. We analyzed imaging methodology and its relation to diagnostic image quality. (99m)Technetium dimercapto-succinic acid imaging guidelines were provided to participating sites. High-resolution planar imaging with parallel hole or pinhole collimation was required. Two core reviewers evaluated all submitted images. Analysis included appropriate views, presence or lack of patient motion, adequate magnification, sufficient counts and diagnostic image quality. Inter-reader agreement was evaluated. We evaluated 70, (99m)technetium dimercapto-succinic acid studies from 14 institutions. Variability was noted in methodology and image quality. Correlation (r value) between dose administered and patient age was 0.780. For parallel hole collimator imaging good correlation was noted between activity administered and counts (r = 0.800). For pinhole imaging the correlation was poor (r = 0.110). A total of 10 studies (17%) were rejected for quality issues of motion, kidney overlap, inadequate magnification, inadequate counts and poor quality images. The submitting institution was informed and provided with recommendations for improving quality, and resubmission of another study was required. Only 4 studies (6%) were judged differently by the 2 reviewers, and the differences were minor. Methodology and image quality for (99m)technetium dimercapto-succinic acid scintigraphy varied more than expected between institutions. The most common reason for poor image quality was inadequate count acquisition with insufficient attention to the tradeoff between administered dose, length of image acquisition, start time of imaging and resulting image quality. Inter-observer core reader agreement was high. The pilot study ensured good diagnostic quality standardized images for the Randomized Intervention for Children With Vesicoureteral Reflux investigation.

  9. Vascular density of superficial esophageal squamous cell carcinoma determined by direct observation of resected specimen using narrow band imaging with magnifying endoscopy.

    PubMed

    Kikuchi, D; Iizuka, T; Hoteya, S; Nomura, K; Kuribayashi, Y; Toba, T; Tanaka, M; Yamashita, S; Furuhata, T; Matsui, A; Mitani, T; Inoshita, N; Kaise, M

    2017-11-01

    Observation of the microvasculature using narrow band imaging (NBI) with magnifying endoscopy is useful for diagnosing superficial squamous cell carcinoma. Increased vascular density is indicative of cancer, but not many studies have reported differences between cancerous and noncancerous areas based on an objective comparison. We observed specimens of endoscopic submucosal dissection (ESD) using NBI magnification, and determined the vascular density of cancerous and noncancerous areas. A total of 25 lesions of esophageal squamous cell carcinoma that were dissected en bloc by ESD between July 2013 and December 2013 were subjected to NBI magnification. We constructed a device that holds an endoscope and precisely controls the movement along the vertical axis in order to observe submerged specimens by NBI magnification. NBI image files of both cancerous (pathologically determined invasion depth, m1/2) and surrounding noncancerous areas were created and subjected to vascular density assessment by two endoscopists who were blinded to clinical information. The invasion depth was m1/2 in 20, m3/sm1 in four and sm2 in one esophageal cancer lesion. Mean vascular density was significantly increased in cancerous areas (37.6 ± 16.3 vessels/mm2) compared with noncancerous areas (17.6 ± 10.0 vessels/mm2) (P < 0.05). The correlation coefficients between vascular density determined by two endoscopists were 0.86 and 0.81 in cancerous and noncancerous areas, respectively. Receiver operating curve (ROC) analysis revealed that the area under the curve (AUC) of vascular density was 0.895 (95% CI, 0.804-0.986). For this ROC curve, sensitivity was 78.3% and specificity was 87.0% when the cutoff value of vascular density was 26 vessels/mm2. NBI magnification confirmed significant increases in vascular density in cancerous areas compared with noncancerous areas in esophageal squamous cell carcinoma. The rates of agreement between vascular density values determined by two independent operators were high. © The Authors 2017. Published by Oxford University Press on behalf of International Society for Diseases of the Esophagus. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Blinded evaluation of the effects of high definition and magnification on perceived image quality in laryngeal imaging.

    PubMed

    Otto, Kristen J; Hapner, Edie R; Baker, Michael; Johns, Michael M

    2006-02-01

    Advances in commercial video technology have improved office-based laryngeal imaging. This study investigates the perceived image quality of a true high-definition (HD) video camera and the effect of magnification on laryngeal videostroboscopy. We performed a prospective, dual-armed, single-blinded analysis of a standard laryngeal videostroboscopic examination comparing 3 separate add-on camera systems: a 1-chip charge-coupled device (CCD) camera, a 3-chip CCD camera, and a true 720p (progressive scan) HD camera. Displayed images were controlled for magnification and image size (20-inch [50-cm] display, red-green-blue, and S-video cable for 1-chip and 3-chip cameras; digital visual interface cable and HD monitor for HD camera). Ten blinded observers were then asked to rate the following 5 items on a 0-to-100 visual analog scale: resolution, color, ability to see vocal fold vibration, sense of depth perception, and clarity of blood vessels. Eight unblinded observers were then asked to rate the difference in perceived resolution and clarity of laryngeal examination images when displayed on a 10-inch (25-cm) monitor versus a 42-inch (105-cm) monitor. A visual analog scale was used. These monitors were controlled for actual resolution capacity. For each item evaluated, randomized block design analysis demonstrated that the 3-chip camera scored significantly better than the 1-chip camera (p < .05). For the categories of color and blood vessel discrimination, the 3-chip camera scored significantly better than the HD camera (p < .05). For magnification alone, observers rated the 42-inch monitor statistically better than the 10-inch monitor. The expense of new medical technology must be judged against its added value. This study suggests that HD laryngeal imaging may not add significant value over currently available video systems, in perceived image quality, when a small monitor is used. Although differences in clarity between standard and HD cameras may not be readily apparent on small displays, a large display size coupled with HD technology may impart improved diagnosis of subtle vocal fold lesions and vibratory anomalies.

  11. First among Others? Cohen's "d" vs. Alternative Standardized Mean Group Difference Measures

    ERIC Educational Resources Information Center

    Cahan, Sorel; Gamliel, Eyal

    2011-01-01

    Standardized effect size measures typically employed in behavioral and social sciences research in the multi-group case (e.g., [eta][superscript 2], f[superscript 2]) evaluate between-group variability in terms of either total or within-group variability, such as variance or standard deviation--that is, measures of dispersion about the mean. In…

  12. Dynamics in species composition of stream fish assemblages: environmental variability and nested subsets

    Treesearch

    Christopher M. Taylor; Melvin L. Warren

    2001-01-01

    Stream landscapes are highly variable in space and time and, like terrestrial landscapes, the resources they contain are patchily distributed. Organisms may disperse among patches to fulfill life-history requirements, but biotic and abiotic factors may limit patch or locality occupancy. Thus, the dynamics of immigration and extinction determine, in part, the local...

  13. Velocity fields and spectrum peculiarities in Beta Cephei stars

    NASA Technical Reports Server (NTRS)

    Lesh, J. R.

    1980-01-01

    The acquisition of short wavelength spectra of Beta Cephei variable stars from the International Ultraviolet Explorer is reported. A total of 122 images of 10 variable stars and 3 comparison stars were obtained. All of the images were observed in the high dispersion mode through a small aperture. The development of image processing methods is also briefly discussed.

  14. CFRP variable curvature mirror used for realizing non-moving-element optical zoom imaging

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Fan, Xuewu; Pang, Zhihai; Ren, Guorui; Wang, Wei; Xie, Yongjie; Ma, Zhen; Du, Yunfei; Su, Yu; Wei, Jingxuan

    2014-12-01

    In recent years, how to eliminate moving elements while realizing optical zoom imaging has been paid much attention. Compared with the conventional optical zooming techniques, removing moving elements would bring in many benefits such as reduction in weight, volume and power cost and so on. The key to implement non-moving-element optical zooming lies in the design of variable curvature mirror (VCM). In order to obtain big enough optical magnification, the VCM should be capable of generating a large variation of saggitus. Hence, the mirror material should not be brittle, in other words the corresponding ultimate strength should be high enough to ensure that mirror surface would not be broken during large curvature variation. Besides that, the material should have a not too big Young's modulus because in this case less force is required to generate a deformation. Among all available materials, for instance SiC, Zerodur and et.al, CFRP (carbon fiber reinforced polymer) satisfies all these requirements and many related research have proven this. In this paper, a CFRP VCM is designed, fabricated and tested. With a diameter of 100mm, a thickness of 2mm and an initial curvature radius of 1740mm, this component could change its curvature radius from 1705mm to 1760mm, which correspond to a saggitus variation of nearly 23μm. The work reported further proves the suitability of CFRP in constructing variable curvature mirror which could generate a large variation of saggitus.

  15. Gravity flow and solute dispersion in variably saturated sand

    NASA Astrophysics Data System (ADS)

    Kumahor, Samuel K.; de Rooij, Gerrit H.; Vogel, Hans-Joerg

    2014-05-01

    Solute dispersion in porous media depends on the structure of the velocity field at the pore scale. Hence, dispersion is expected to change with water content and with mean flow velocity. We performed laboratory experiments using a column of repacked fine-grained quartz sand (0.1-0.3 mm grain size) with a porous plate at the bottom to controle the water potential at the lower boundary. We established gravity flow conditions - i.e. constant matric potential and water content throughout the column - for a number of different irrigation rates. We measured breakthrough curves during unit gradient flow for an inert tracer which could be described by the convection-dispersion equation. As the soil water content decreased we observed an initially gradual increase in dispersivity followed by an abrupt increase below a threshold water content (0.19) and pressure head (-38 hPa). This phenomena can be explained by the geometry of phase distribution which was simulated based on Xray-CT images of the porous structure.

  16. Initial community and environment determine the response of bacterial communities to dispersant and oil contamination.

    PubMed

    Ortmann, Alice C; Lu, YueHan

    2015-01-15

    Bioremediation of seawater by natural bacterial communities is one potential response to coastal oil spills, but the success of the approach may vary, depending on geographical location, oil composition and the timing of spill. The short term response of coastal bacteria to dispersant, oil and dispersed oil was characterized using 16S rRNA gene tags in two mesocosm experiments conducted two months apart. Despite differences in the amount of oil-derived alkanes across the treatments and experiments, increases in the contributions of hydrocarbon degrading taxa and decreases in common estuarine bacteria were observed in response to dispersant and/or oil. Between the two experiments, the direction and rates of changes in particulate alkane concentrations differed, as did the magnitude of the bacterial response to oil and/or dispersant. Together, our data underscore large variability in bacterial responses to hydrocarbon pollutants, implying that bioremediation success varies with starting biological and environmental conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Computer Recreations.

    ERIC Educational Resources Information Center

    Dewdney, A. K.

    1989-01-01

    Reviews the performance of computer programs for writing poetry and prose, including MARK V. SHANEY, MELL, POETRY GENERATOR, THUNDER THOUGHT, and ORPHEUS. Discusses the writing principles of the programs. Provides additional information on computer magnification techniques. (YP)

  18. Cosmic flashing lights

    NASA Astrophysics Data System (ADS)

    Di Stefano, Rosanne

    2018-04-01

    Gravitational lensing is becoming increasingly important to the study of distant galaxies and dark matter. Two groups have recently detected transient events emanating from far-away lensed galaxies, apparently due to extreme magnification of individual stars.

  19. Simple and fast spectral domain algorithm for quantitative phase imaging of living cells with digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Min, Junwei; Yao, Baoli; Ketelhut, Steffi; Kemper, Björn

    2017-02-01

    The modular combination of optical microscopes with digital holographic microscopy (DHM) has been proven to be a powerful tool for quantitative live cell imaging. The introduction of condenser and different microscope objectives (MO) simplifies the usage of the technique and makes it easier to measure different kinds of specimens with different magnifications. However, the high flexibility of illumination and imaging also causes variable phase aberrations that need to be eliminated for high resolution quantitative phase imaging. The existent phase aberrations compensation methods either require add additional elements into the reference arm or need specimen free reference areas or separate reference holograms to build up suitable digital phase masks. These inherent requirements make them unpractical for usage with highly variable illumination and imaging systems and prevent on-line monitoring of living cells. In this paper, we present a simple numerical method for phase aberration compensation based on the analysis of holograms in spatial frequency domain with capabilities for on-line quantitative phase imaging. From a single shot off-axis hologram, the whole phase aberration can be eliminated automatically without numerical fitting or pre-knowledge of the setup. The capabilities and robustness for quantitative phase imaging of living cancer cells are demonstrated.

  20. Short range shooting distance estimation using variable pressure SEM images of the surroundings of bullet holes in textiles.

    PubMed

    Hinrichs, Ruth; Frank, Paulo Ricardo Ost; Vasconcellos, M A Z

    2017-03-01

    Modifications of cotton and polyester textiles due to shots fired at short range were analyzed with a variable pressure scanning electron microscope (VP-SEM). Different mechanisms of fiber rupture as a function of fiber type and shooting distance were detected, namely fusing, melting, scorching, and mechanical breakage. To estimate the firing distance, the approximately exponential decay of GSR coverage as a function of radial distance from the entrance hole was determined from image analysis, instead of relying on chemical analysis with EDX, which is problematic in the VP-SEM. A set of backscattered electron images, with sufficient magnification to discriminate micrometer wide GSR particles, was acquired at different radial distances from the entrance hole. The atomic number contrast between the GSR particles and the organic fibers allowed to find a robust procedure to segment the micrographs into binary images, in which the white pixel count was attributed to GSR coverage. The decrease of the white pixel count followed an exponential decay, and it was found that the reciprocal of the decay constant, obtained from the least-square fitting of the coverage data, showed a linear dependence on the shooting distance. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  1. Kinematics of the SN Refsdal host revealed by MUSE: a regularly rotating spiral galaxy at z ≃ 1.5

    NASA Astrophysics Data System (ADS)

    Di Teodoro, E. M.; Grillo, C.; Fraternali, F.; Gobat, R.; Karman, W.; Mercurio, A.; Rosati, P.; Balestra, I.; Caminha, G. B.; Caputi, K. I.; Lombardi, M.; Suyu, S. H.; Treu, T.; Vanzella, E.

    2018-05-01

    We use Multi Unit Spectroscopic Explorer (MUSE) observations of the galaxy cluster MACS J1149.5+2223 to explore the kinematics of the grand-design spiral galaxy (Sp1149) hosting the supernova `Refsdal'. Sp1149 lies at z ≃ 1.49, has a stellar mass M* ≃ 5 × 109 M⊙, has a star formation rate (SFR) ˜eq 1-6 M_{⊙} yr^{-1}, and represents a likely progenitor of a Milky Way-like galaxy. All the four multiple images of Sp1149 in our data show strong [O II}-line emissions pointing to a clear rotation pattern. We take advantage of the gravitational lensing magnification effect (≃4×) on the [O II} emission of the least distorted image to fit three-dimensional kinematic models to the MUSE data cube and derive the rotation curve and the velocity dispersion profile of Sp1149. We find that the rotation curve steeply rises, peaks at R ≃ 1 kpc, and then (initially) declines and flattens to an average {V_flat}= 128^{+29}_{-19} km s-1. The shape of the rotation curve is well determined, but the actual value of Vflat is quite uncertain because of the nearly face-on configuration of the galaxy. The intrinsic velocity dispersion due to gas turbulence is almost constant across the entire disc with an average of 27 ± 5 km s-1. This value is consistent with z = 0 measurements in the ionized gas component and a factor of 2-4 lower than other estimates in different galaxies at similar redshifts. The average stellar-to-total mass fraction is of the order of one-fifth. Our kinematic analysis returns the picture of a regular star-forming, mildly turbulent, rotation-dominated (V/σ ≃ 5) spiral galaxy in a 4-Gyr-old Universe.

  2. Effects of Salinity on Oil Spill Dispersant Toxicity in Estuarine Organisms

    NASA Astrophysics Data System (ADS)

    Eckmann, C. A.

    2016-02-01

    Chemical dispersants can be a useful tool to mitigate oil spills, but the potential risks to sensitive estuarine species should be carefully considered. To improve the decision making process, more information is needed regarding the effects of oil spill dispersants on the health of coastal ecosystems under variable environmental conditions such as salinity. The two oil dispersants used in this study were Corexit ® 9500 and Finasol ® OSR 52. Corexit ® 9500 was the primary dispersant used during the 2010 Deepwater Horizon oil spill event, while Finasol® OSR 52 is another dispersant approved for oil spill response in the U.S., yet considerably less is known regarding its toxicity to estuarine species. The grass shrimp, Palaemonetes pugio, was used as a model estuarine species. It is a euryhaline species that tolerates salinities from brackish to full strength seawater. Adult and larval life stages were tested with each dispersant at three salinities, 5ppt, 20ppt, and 30ppt. Median acute lethal toxicity thresholds were calculated. Lipid peroxidation assays were conducted on surviving shrimp to investigate sublethal effects. The toxicity of both dispersants was significantly influenced by salinity, with greatest toxicity observed at the lowest salinity tested. Larval shrimp were significantly more sensitive than adult shrimp to both dispersants, and both life stages were significantly more sensitive to Finasol than to Corexit. Furthermore, significant sublethal effects were seen at higher concentrations of both dispersants compared to the control. These data will enable environmental managers to make informed decisions regarding dispersant use in future oil spills.

  3. Effects of Salinity on Oil Spill Dispersant Toxicity in Estuarine Organisms

    NASA Astrophysics Data System (ADS)

    Eckmann, C. A.

    2015-12-01

    Chemical dispersants can be a useful tool to mitigate oil spills, but the potential risks to sensitive estuarine species should be carefully considered. To improve the decision making process, more information is needed regarding the effects of oil spill dispersants on the health of coastal ecosystems under variable environmental conditions such as salinity. The two oil dispersants used in this study were Corexit ® 9500 and Finasol ® OSR 52. Corexit ® 9500 was the primary dispersant used during the 2010 Deepwater Horizon oil spill event, while Finasol® OSR 52 is another dispersant approved for oil spill response in the U.S., yet considerably less is known regarding its toxicity to estuarine species. The grass shrimp, Palaemonetes pugio, was used as a model estuarine species. It is a euryhaline species that tolerates salinities from brackish to full strength seawater. Adult and larval life stages were tested with each dispersant at three salinities, 5ppt, 20ppt, and 30ppt. Median acute lethal toxicity thresholds were calculated. Lipid peroxidation assays were conducted on surviving shrimp to investigate sublethal effects. The toxicity of both dispersants was significantly influenced by salinity, with greatest toxicity observed at the lowest salinity tested. Larval shrimp were significantly more sensitive than adult shrimp to both dispersants, and both life stages were significantly more sensitive to Finasol than to Corexit. Furthermore, significant sublethal effects were seen at higher concentrations of both dispersants compared to the control. These data will enable environmental managers to make informed decisions regarding dispersant use in future oil spills.

  4. Using Supercritical Fluid Technology (SFT) in Preparation of Tacrolimus Solid Dispersions.

    PubMed

    Obaidat, Rana M; Tashtoush, Bassam M; Awad, Alaa Abu; Al Bustami, Rana T

    2017-02-01

    Tacrolimus is an immunosuppressant agent that suffers from poor and variable bioavailability. This can be related to limited solubility and dissolution. The main objective of this study is to use SFT to prepare solid dispersions of tacrolimus in order to enhance its dissolution. SFT was selected since it offers several advantages over conventional techniques such as efficiency and stability. Several solid dispersions of tacrolimus were prepared using SFT to enhance its dissolution. The selected polymers included soluplus, PVP, HPMC, and porous chitosan. TPGS was used as a surfactant additive with chitosan, HPMC, and PVP. Soluplus dispersions were used to study the effect of processing parameters (time, temperature, and pressure) on loading efficiency (LE) and dissolution of the preparation. Physicochemical characterization was performed using DSC, X-ray diffraction, FTIR analysis, SEM, and in vitro drug release. Stability testing was evaluated after 3 months for selected dispersions. Significant improvement for the release profile was achieved for the prepared dispersions. Better release achieved in the soluplus dispersions which reached maximum cumulative release equal to 98.76% after 24 h. Drug precipitated in its amorphous form in all prepared dispersions except those prepared from chitosan. All dispersions were physically stable except for PVP preparations that contained TPGS which started to re-crystallize after one month. Prepared dispersions were proved to be affected by supercritical processing parameters. In conclusion, SFT was successfully used to prepare dispersions of tacrolimus that exhibited higher dissolution than raw drug. Dissolution rate and stability are affected by the type of the polymer.

  5. Statistical characteristics of cloud variability. Part 1: Retrieved cloud liquid water path at three ARM sites

    NASA Astrophysics Data System (ADS)

    Huang, Dong; Campos, Edwin; Liu, Yangang

    2014-09-01

    Statistical characteristics of cloud variability are examined for their dependence on averaging scales and best representation of probability density function with the decade-long retrieval products of cloud liquid water path (LWP) from the tropical western Pacific (TWP), Southern Great Plains (SGP), and North Slope of Alaska (NSA) sites of the Department of Energy's Atmospheric Radiation Measurement Program. The statistical moments of LWP show some seasonal variation at the SGP and NSA sites but not much at the TWP site. It is found that the standard deviation, relative dispersion (the ratio of the standard deviation to the mean), and skewness all quickly increase with the averaging window size when the window size is small and become more or less flat when the window size exceeds 12 h. On average, the cloud LWP at the TWP site has the largest values of standard deviation, relative dispersion, and skewness, whereas the NSA site exhibits the least. Correlation analysis shows that there is a positive correlation between the mean LWP and the standard deviation. The skewness is found to be closely related to the relative dispersion with a correlation coefficient of 0.6. The comparison further shows that the lognormal, Weibull, and gamma distributions reasonably explain the observed relationship between skewness and relative dispersion over a wide range of scales.

  6. Seasonal and Inter-annual Variability in Modeled Larval Dispersal and Population Connectivity of Blue Crabs (Callinectes sapidus) in the Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Gyory, J.; Jones, B.; Ko, D. S.; Taylor, C.

    2016-02-01

    Larval dispersal trajectories and their resulting population connectivity patterns are known to be key drivers of population dynamics for many marine organisms. However, few studies to date have examined the temporal variability in population connectivity. Here, we model the larval dispersal and population connectivity of blue crabs in the northern Gulf of Mexico from 2003-2012 and use network analyses to understand how they vary over seasonal and inter-annual scales. We found that in all years, the Mississippi River Delta is a barrier to dispersal. Few larvae cross it and settle successfully. In some years (2004, 2007, 2008, and 2009), 1-2 locations (Adams Bay and Chandeleur Sound) had high (> 0.3) betweenness centrality. These locations are likely to be important for maintaining population connectivity in the region, since more than 30% of larval pathways are predicted to pass through them. Connectivity matrices suggest that some estuaries have consistently high larval retention rates. These include West Cote Blanche Bay, Chandeleur Sound, and, in some years, Pensacola Bay and Atchafalaya Bay. Within the spawning season, we observe a decline in average vertex degree and average source strength in every year. This suggests that seasonal declines in the strength of along-shore currents produce consistent reductions in population connectivity through the spawning season.

  7. Climate-driven vital rates do not always mean climate-driven population.

    PubMed

    Tavecchia, Giacomo; Tenan, Simone; Pradel, Roger; Igual, José-Manuel; Genovart, Meritxell; Oro, Daniel

    2016-12-01

    Current climatic changes have increased the need to forecast population responses to climate variability. A common approach to address this question is through models that project current population state using the functional relationship between demographic rates and climatic variables. We argue that this approach can lead to erroneous conclusions when interpopulation dispersal is not considered. We found that immigration can release the population from climate-driven trajectories even when local vital rates are climate dependent. We illustrated this using individual-based data on a trans-equatorial migratory seabird, the Scopoli's shearwater Calonectris diomedea, in which the variation of vital rates has been associated with large-scale climatic indices. We compared the population annual growth rate λ i , estimated using local climate-driven parameters with ρ i , a population growth rate directly estimated from individual information and that accounts for immigration. While λ i varied as a function of climatic variables, reflecting the climate-dependent parameters, ρ i did not, indicating that dispersal decouples the relationship between population growth and climate variables from that between climatic variables and vital rates. Our results suggest caution when assessing demographic effects of climatic variability especially in open populations for very mobile organisms such as fish, marine mammals, bats, or birds. When a population model cannot be validated or it is not detailed enough, ignoring immigration might lead to misleading climate-driven projections. © 2016 John Wiley & Sons Ltd.

  8. Image Formation in Lenses and Mirrors, a Complete Representation

    ERIC Educational Resources Information Center

    Bartlett, Albert A.

    1976-01-01

    Provides tables and graphs that give a complete and simple picture of the relationships of image distance, object distance, and magnification in all formations of images by simple lenses and mirrors. (CP)

  9. Pattern recognition technique

    NASA Technical Reports Server (NTRS)

    Hong, J. P.

    1971-01-01

    Technique operates regardless of pattern rotation, translation or magnification and successfully detects out-of-register patterns. It improves accuracy and reduces cost of various optical character recognition devices and page readers and provides data input to computer.

  10. HERCULES/MSI: a multispectral imager with geolocation for STS-70

    NASA Astrophysics Data System (ADS)

    Simi, Christopher G.; Kindsfather, Randy; Pickard, Henry; Howard, William, III; Norton, Mark C.; Dixon, Roberta

    1995-11-01

    A multispectral intensified CCD imager combined with a ring laser gyroscope based inertial measurement unit was flown on the Space Shuttle Discovery from July 13-22, 1995 (Space Transport System Flight No. 70, STS-70). The camera includes a six position filter wheel, a third generation image intensifier, and a CCD camera. The camera is integrated with a laser gyroscope system that determines the ground position of the imagery to an accuracy of better than three nautical miles. The camera has two modes of operation; a panchromatic mode for high-magnification imaging [ground sample distance (GSD) of 4 m], or a multispectral mode consisting of six different user-selectable spectral ranges at reduced magnification (12 m GSD). This paper discusses the system hardware and technical trade-offs involved with camera optimization, and presents imagery observed during the shuttle mission.

  11. Smartphone Magnification Attachment: Microscope or Magnifying Glass

    NASA Astrophysics Data System (ADS)

    Hergemöller, Timo; Laumann, Daniel

    2017-09-01

    Today smartphones and tablets do not merely pervade our daily life, but also play a major role in STEM education in general, and in experimental investigations in particular. Enabling teachers and students to make use of these new techniques in physics lessons requires supplying capable and affordable applications. Our article presents the improvement of a low-cost technique turning smartphones into powerful magnifying glasses or microscopes. Adding only a 3D-printed clip attached to the smartphone's camera and inserting a small glass bead in this clip enables smartphones to take pictures with up to 780x magnification (see Fig. 1). In addition, the construction of the smartphone attachments helps to explain and examine the differences between magnifying glasses and microscopes, and shows that the widespread term "smartphone microscope" for this technique is inaccurate from a physics educational perspective.

  12. A new scheme for stigmatic x-ray imaging with large magnification.

    PubMed

    Bitter, M; Hill, K W; Delgado-Aparicio, L F; Pablant, N A; Scott, S; Jones, F; Beiersdorfer, P; Wang, E; del Rio, M Sanchez; Caughey, T A; Brunner, J

    2012-10-01

    This paper describes a new x-ray scheme for stigmatic imaging. The scheme consists of one convex spherically bent crystal and one concave spherically bent crystal. The radii of curvature and Bragg reflecting lattice planes of the two crystals are properly matched to eliminate the astigmatism, so that the conditions for stigmatic imaging are met for a particular wavelength. The magnification is adjustable and solely a function of the two Bragg angles or angles of incidence. Although the choice of Bragg angles is constrained by the availability of crystals, this is not a severe limitation for the imaging of plasmas, since a particular wavelength can be selected from the bremsstrahlung continuum. The working principle of this imaging scheme has been verified with visible light. Further tests with x rays are planned for the near future.

  13. liger: mock relativistic light cones from Newtonian simulations

    NASA Astrophysics Data System (ADS)

    Borzyszkowski, Mikolaj; Bertacca, Daniele; Porciani, Cristiano

    2017-11-01

    We introduce a method to create mock galaxy catalogues in redshift space including general relativistic effects to linear order in the cosmological perturbations. We dub our method liger, short for `light cones with general relativity'. liger takes a (N-body or hydrodynamic) Newtonian simulation as an input and outputs the distribution of galaxies in comoving redshift space. This result is achieved making use of a coordinate transformation and simultaneously accounting for lensing magnification. The calculation includes both local corrections and terms that have been integrated along the line of sight. Our fast implementation allows the production of many realizations that can be used to forecast the performance of forthcoming wide-angle surveys and to estimate the covariance matrix of the observables. To facilitate this use, we also present a variant of liger designed for large-volume simulations with low-mass resolution. In this case, the galaxy distribution on large scales is obtained by biasing the matter-density field. Finally, we present two sample applications of liger. First, we discuss the impact of weak gravitational lensing on to the angular clustering of galaxies in a Euclid-like survey. In agreement with previous analytical studies, we find that magnification bias can be measured with high confidence. Secondly, we focus on two generally neglected Doppler-induced effects: magnification and the change of number counts with redshift. We show that the corresponding redshift-space distortions can be detected at 5.5σ significance with the completed Square Kilometre Array.

  14. GERLUMPH DATA RELEASE 1: HIGH-RESOLUTION COSMOLOGICAL MICROLENSING MAGNIFICATION MAPS AND eResearch TOOLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vernardos, G.; Fluke, C. J.; Croton, D.

    2014-03-01

    As synoptic all-sky surveys begin to discover new multiply lensed quasars, the flow of data will enable statistical cosmological microlensing studies of sufficient size to constrain quasar accretion disk and supermassive black hole properties. In preparation for this new era, we are undertaking the GPU-Enabled, High Resolution cosmological MicroLensing parameter survey (GERLUMPH). We present here the GERLUMPH Data Release 1, which consists of 12,342 high resolution cosmological microlensing magnification maps and provides the first uniform coverage of the convergence, shear, and smooth matter fraction parameter space. We use these maps to perform a comprehensive numerical investigation of the mass-sheet degeneracy,more » finding excellent agreement with its predictions. We study the effect of smooth matter on microlensing induced magnification fluctuations. In particular, in the minima and saddle-point regions, fluctuations are enhanced only along the critical line, while in the maxima region they are always enhanced for high smooth matter fractions (≈0.9). We describe our approach to data management, including the use of an SQL database with a Web interface for data access and online analysis, obviating the need for individuals to download large volumes of data. In combination with existing observational databases and online applications, the GERLUMPH archive represents a fundamental component of a new microlensing eResearch cloud. Our maps and tools are publicly available at http://gerlumph.swin.edu.au/.« less

  15. Assessing SPO techniques to constrain magma flow: Examples from sills of the Karoo Igneous Province, South Africa

    NASA Astrophysics Data System (ADS)

    Hoyer, Lauren; Watkeys, Michael K.

    2015-08-01

    Shape ellipsoids that define the petrofabrics of plagioclase in Jurassic Karoo dolerite sills in KwaZulu-Natal, South Africa are rigorously constrained using the long axis lengths of plagioclase crystals and ellipse incompatibility. This has been undertaken in order to determine the most effective technique to determine petrofabrics when using the SPO-2003 programme (Launeau and Robin, 2005). The technique of segmenting an image for analysis is scrutinised and as a process is found redundant. A grain size threshold is defined to assist with the varying grain sizes observed within and between sills. Where grains exceed the 0.2 mm size threshold, images should be acquired at a high magnification (i.e., 10 × magnification). Petrofabrics are determined using the foliation and the lineation of the ellipsoid as defined by the maximum and minimum principal axes (respectively) of the resultant ellipsoid. Samples with strongly prolate fabrics are isolated allowing further constraint on the petrofabric to be made. Once the efficacy of the petrofabric determination process has been determined, the resultant foliations (and lineations) then elucidate the most accurate petrofabric attainable. The most accurate petrofabrics will be determined by using the correct magnification when the images are obtained and to run the analyses without segmenting the image. The fabrics of the upper and lower contacts of the Karoo dolerite sills are analysed in detail using these techniques and the fabrics are used as a proxy for magma flow.

  16. Fan-beam densitometry of the growing skeleton: are we measuring what we think we are?

    PubMed

    Cole, Jacqueline H; Scerpella, Tamara A; van der Meulen, Marjolein C H

    2005-01-01

    Magnification error in fan-beam densitometers varies with distance from the X-ray source to the bone measured and might obscure bone mineral changes in the growing skeleton. Magnification was examined by scanning aluminum rods of different shapes (square, rectangular, solid round, and hollow round) at four distances above the X-ray source in two orientations, with rods aligned parallel (SI) and perpendicular (ML) to the longitudinal axis of the scanning table. Measured area (cm(2)) decreased linearly with distance above the X-ray source for all rods in the SI orientation (p < 0.005). Measured mineral content (g) decreased linearly with distance but only for SI round rods (p < 0.0001) and for ML hollow round rods (p < 0.005). Area and mineral content decreased 1.6-1.8% per centimeter above the source for round rods. Measured mineral density (g/cm(2)) decreased linearly with distance from the source only for ML hollow round rods (p < 0.005). Variation in area, mineral content, and mineral density measurements was 6.6-6.9%, 6.9-7.5%, and 1.9-2.3%, respectively, for SI round rods. Magnification errors of this magnitude are problematic for clinical studies using fan-beam densitometry. Particularly in pediatric subjects, increases in soft tissue during normal growth could increase a bone's distance from the fan-beam source and result in apparent reductions in area and bone mineral content.

  17. Effect of light-emitting diode colour temperature on magnifier reading performance of the visually impaired.

    PubMed

    Wolffsohn, James S; Palmer, Eshmael; Rubinstein, Martin; Eperjesi, Frank

    2012-09-01

    As light-emitting diodes become more common as the light source for low vision aids, the effect of illumination colour temperature on magnifier reading performance was investigated. Reading ability (maximum reading speed, critical print size, threshold near visual acuity) using Radner charts and subjective preference was assessed for 107 participants with visual impairment using three stand magnifiers with light emitting diode illumination colour temperatures of 2,700 K, 4,500 K and 6,000 K. The results were compared with distance visual acuity, prescribed magnification, age and the primary cause of visual impairment. Reading speed, critical print size and near visual acuity were unaffected by illumination colour temperature (p > 0.05). Reading metrics decreased with worsening acuity and higher levels of prescribed magnification but acuity was unaffected by age. Each colour temperature was preferred and disliked by a similar number of patients and was unrelated to distance visual acuity, prescribed magnification and age (p > 0.05). Patients had better near acuity (p = 0.002), critical print size (p = 0.034) and maximum reading speed (p < 0.001), and the improvement in near from distance acuity was greater (p = 0.004) with their preferred rather than least-liked colour temperature illumination. A range of colour temperature illuminations should be offered to all visually impaired individuals prescribed with an optical magnifier for near tasks to optimise subjective and objective benefits. © 2012 The Authors. Clinical and Experimental Optometry © 2012 Optometrists Association Australia.

  18. Size of the Lesions of Superficial Punctate Keratitis in Dry Eye Syndrome Observed With a Slit Lamp.

    PubMed

    Courrier, Emilie; Lépine, Thierry; Hor, Guillaume; Fournier, Corinne; He, Zhiguo; Chikh, Mehdi; Urrea, Caroline; Al Anazi, Fahran-Falgi; Thuret, Gilles; Gain, Philippe

    2016-07-01

    To evaluate the size distribution of epithelial lesions of superficial punctate keratitis (SPK) in dry eye after staining of the ocular surface by sodium fluorescein. Fluorescein was instilled in 10 patients with dry eye graded using the Oxford Scheme. Pictures were taken using a standard Topcon slit lamp with cobalt blue light, without barrier filter. Two magnifications (×10 and ×16) were used and calibrated using a certified standard reference grating, allowing the diameter of the observed objects to be determined with ImageJ software. The most visible and isolated SPK lesions (green dots) were selected. The size of 254 SPK lesions was measured by tracing the irradiance profile and manually measuring the full width at half maximum. For all patients, with the 2 magnifications combined, the median diameter was 20.9 μm (15.2-26.6 μm, 10-90 percentile). There was a significant difference between the size of SPK lesions measured with ×10 and ×16 magnifications, respectively, 24.3 μm (18.2-29.8) versus 19.0 μm (15.2-26.6) (P < 0.001). Lesions seem to be smaller than normal superficial epithelial cells (which are approximately 25 × 50 μm) and might correspond to the staining of dying shrunken cells, according to recent investigations. These new quantitative data will help in developing automated recognition algorithms to obtain reliable objective classification of corneal staining.

  19. Nasendoscopy: an analysis of measurement uncertainties.

    PubMed

    Gilleard, Onur; Sommerlad, Brian; Sell, Debbie; Ghanem, Ali; Birch, Malcolm

    2013-05-01

    Objective : The purpose of this study was to analyze the optical characteristics of two different nasendoscopes used to assess velopharyngeal insufficiency and to quantify the measurement uncertainties that will occur in a typical set of clinical data. Design : The magnification and barrel distortion associated with nasendoscopy was estimated by using computer software to analyze the apparent dimensions of a spatially calibrated test object at varying object-lens distances. In addition, a method of semiquantitative analysis of velopharyngeal closure using nasendoscopy and computer software is described. To calculate the reliability of this method, 10 nasendoscopy examinations were analyzed two times by three separate operators. The measure of intraoperator and interoperator agreement was evaluated using Pearson's r correlation coefficient. Results : Over an object lens distance of 9 mm, magnification caused the visualized dimensions of the test object to increase by 80%. In addition, dimensions of objects visualized in the far-peripheral field of the nasendoscopic examinations appeared approximately 40% smaller than those visualized in the central field. Using computer software to analyze velopharyngeal closure, the mean correlation coefficient for intrarater reliability was .94 and for interrater reliability was .90. Conclusion : Using a custom-designed apparatus, the effect object-lens distance has on the magnification of nasendoscopic images has been quantified. Barrel distortion has also been quantified and was found to be independent of object-lens distance. Using computer software to analyze clinical images, the intraoperator and interoperator correlation appears to show that ratio-metric measurements are reliable.

  20. Microlensing of Extremely Magnified Stars near Caustics of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Venumadhav, Tejaswi; Dai, Liang; Miralda-Escudé, Jordi

    2017-11-01

    Recent observations of lensed galaxies at cosmological distances have detected individual stars that are extremely magnified when crossing the caustics of lensing clusters. In idealized cluster lenses with smooth mass distributions, two images of a star of radius R approaching a caustic brighten as {t}-1/2 and reach a peak magnification ˜ {10}6{(10{R}⊙ /R)}1/2 before merging on the critical curve. We show that a mass fraction ({κ }\\star ≳ {10}-4.5) in microlenses inevitably disrupts the smooth caustic into a network of corrugated microcaustics and produces light curves with numerous peaks. Using analytical calculations and numerical simulations, we derive the characteristic width of the network, caustic-crossing frequencies, and peak magnifications. For the lens parameters of a recent detection and a population of intracluster stars with {κ }\\star ˜ 0.01, we find a source-plane width of ˜ 20 {pc} for the caustic network, which spans 0.2 {arcsec} on the image plane. A source star takes ˜ 2× {10}4 years to cross this width, with a total of ˜ 6× {10}4 crossings, each one lasting for ˜ 5 {hr} (R/10 {R}⊙ ) with typical peak magnifications of ˜ {10}4 {(R/10{R}⊙ )}-1/2. The exquisite sensitivity of caustic-crossing events to the granularity of the lens-mass distribution makes them ideal probes of dark matter components, such as compact halo objects and ultralight axion dark matter.

Top