Sample records for magnitud del problema

  1. Estructura orbital en el Problema Restringido Rectilíneo Isósceles

    NASA Astrophysics Data System (ADS)

    Orellana, R. B.

    Para definir problemas en Mecánica Celeste se utilizan diferentes parámetros. El conocimiento de la dinámica del problema para valores particulares de estos parámetros nos permite entender el comportamiento en casos más generales. El Problema Restringido Rectilíneo Isósceles puede ser considerado como el caso límite del Problema de Sitnikov cuando la excentricidad tiende a uno o como el Problema Isósceles cuando la masa central tiende a cero. Se ha compactificado el espacio de fases y analizado la dinámica en el límite. Esto ha permitido separar el espacio de fases en diferentes regiones dependiendo de las clases de órbitas.

  2. Local magnitude scale for Valle Medio del Magdalena region, Colombia

    NASA Astrophysics Data System (ADS)

    Londoño, John Makario; Romero, Jaime A.

    2017-12-01

    A local Magnitude (ML) scale for Valle Medio del Magdalena (VMM) region was defined by using 514 high quality earthquakes located at VMM area and inversion of 2797 amplitude values of horizontal components of 17 stations seismic broad band stations, simulated in a Wood-Anderson seismograph. The derived local magnitude scale for VMM region was: ML =log(A) + 1.3744 ∗ log(r) + 0.0014776 ∗ r - 2.397 + S Where A is the zero-to-peak amplitude in nm in horizontal components, r is the hypocentral distance in km, and S is the station correction. Higher values of ML were obtained for VMM region compared with those obtained with the current formula used for ML determination, and with California formula. With this new scale ML values are adjusted to local conditions beneath VMM region leading to more realistic ML values. Moreover, with this new ML scale the seismicity caused by tectonic or fracking activity at VMM region can be monitored more accurately.

  3. Adaptación al español y validación de criterio de una escala para la tamización de problemas emocionales y del comportamiento en la primera infancia.

    PubMed

    Cano, Luz Helena; Acosta, María Natalia; Pulido, Adriana

    2018-05-01

    Introducción. La detección temprana del riesgo de problemas emocionales y del comportamiento en niños puede contribuir al desarrollo de estrategias que promuevan la salud mental desde la primera infancia. En Colombia no existe una herramienta validada para dicha detección.Objetivos. Seleccionar, adaptar y establecer la validez de criterio de una escala de tamización de problemas emocionales y del comportamiento en niños menores de seis años.Materiales y métodos. A partir de una revisión de la literatura y un consenso de expertos, se seleccionó la herramienta Early Childhood Screening Assessment (ECSA). Posteriormente, se llevó a cabo su adaptación lingüística y se determinó la validez de criterio mediante una curva de características de recibidor-operador (Receiver Operating Characteristic, ROC), y se la comparó con el cuestionario Child Behavior Checklist (CBCL 1,5-5). En el estudio participaron 206 cuidadores de niños entre el año y medio y los seis años de edad de la ciudad de Tunja y el municipio de Sopó.Resultados. La puntuación del ECSA presentó una buena correlación con la puntuación t total del CBCL 1,5-5 (ro de Spearman=0,75; p<0,01). La escala ECSA tuvo una sensibilidad de 86 % y una especificidad de 82 % al establecer un punto de corte de 24 para la población estudiada.Conclusión. En este primer estudio de adaptación y validación de la versión en español de la escala ECSA, se detectaron buenos valores de sensibilidad y especificidad para la tamización de problemas emocionales y del comportamiento en la primera infancia.

  4. Memorias del tercer simposio internacional sobre economía, planificación, y políticas de los incendios forestales: problemas y enfoques comunes

    Treesearch

    Armando González-Cabán

    2009-01-01

    Estas memorias resumen el resultado de un simposio diseñado para discutir los problemas actuales que confrontan las agencias con responsabilidad para la proteccion contra incendios forestales a nivel federal y estadual en los EE.UU., al igual que agencias en la comunidad internacional. Los temas discutidos en el simposio incluyen economía del fuego, teoría y modelos...

  5. El problema de estabilidad de los sistemas Hamiltonianos multidimensionales

    NASA Astrophysics Data System (ADS)

    Cincotta, P. M.

    Se revisarán los aspectos básicos del problema de estabilidad de sistemans Hamiltonianos N-dimensionales, haciendo especial énfasis en los posibles mecanismos que dan lugar a la aparición de ``caos": overlap de resonancias, difusión de Arnol'd y otros procesos difusivos alternativos. Se mencionarán los aspectos aún no resueltos sobre la estabilidad de los sistemas con N > 2. Finalmente, se discutirá cuáles de estos mecanismos podrían tener alguna relevancia en la dinámica de sistemas estelares y planetarios.

  6. CONTAMINACIÓN AMBIENTAL, VARIABILIDAD CLIMÁTICA Y CAMBIO CLIMÁTICO: UNA REVISIÓN DEL IMPACTO EN LA SALUD DE LA POBLACIÓN PERUANA

    PubMed Central

    Gonzales, Gustavo F.; Zevallos, Alisson; Gonzales-Castañeda, Cynthia; Nuñez, Denisse; Gastañaga, Carmen; Cabezas, César; Naeher, Luke; Levy, Karen; Steenland, Kyle

    2015-01-01

    RESUMEN El presente artículo es una revisión sobre la contaminación del agua, el aire y el efecto del cambio climático en la salud de la población peruana. Uno de los principales contaminantes del aire es el material particulado menor de 2,5 μ (PM 2,5), en la ciudad de Lima, anualmente 2300 muertes prematuras son atribuibles a este contaminante. Otro problema es la contaminación del aire domiciliario por el uso de cocinas con combustible de biomasa, donde la exposición excesiva a PM 2,5 dentro de las casas es responsable de aproximadamente 3000 muertes prematuras anuales entre adultos, con otro número desconocido de muertes entre niños debido a infecciones respiratorias. La contaminación del agua tiene como principales causas los desagües vertidos directamente a los ríos, minerales (arsénico) de varias fuentes, y fallas de las plantas de tratamiento. En el Perú, el cambio climático puede impactar en la frecuencia y severidad del fenómeno de El Niño oscilación del sur (ENSO) que se ha asociado con un incremento en los casos de enfermedades como cólera, malaria y dengue. El cambio climático incrementa la temperatura y puede extender las áreas afectadas por enfermedades transmitidas por vectores, además de tener efecto en la disponibilidad del agua y en la contaminación del aire. En conclusión, el Perú, pasa por una transición de factores de riesgo ambientales, donde coexisten riesgos tradicionales y modernos, y persisten los problemas infecciosos y crónicos, algunos de los cuales se asocian con problemas de contaminación de agua y de aire. PMID:25418656

  7. Problemas de nervos: a multivocal symbol of distress for Portuguese immigrants.

    PubMed

    James, Susan; Fernandes, Mark; Navara, Geoffrey S; Harris, Sara; Foster, Durwin

    2009-06-01

    This article outlines research on a previous unstudied form of suffering specific to the Portugese immigrant community: problemas de nervos. Thirty-two Portuguese immigrant women (in Waterloo, ON and Boston, MA) were interviewed and each completed a questionnaire. Cluster analysis demonstrated that problemas de nervos has many meanings. The study profiled symptoms, causes and therapies associated with four variations of this culture-specific form of distress: "mal da cabeca" meaning problems with/in the head (e.g., lack of control, visions); " aflição" meaning affliction (e.g., nervous attacks, heart problems); immigration stress (causing sleep disturbances); and, conflicts with others (resulting in pressure within the body). None of the symptom clusters reported matched criteria for a DSM-IV-TR diagnosis, suggesting that problemas de nervos represents an idiomatic rather than universal expression of distress.

  8. The absolute magnitudes of RR Lyrae stars. II - DX Delphini

    NASA Astrophysics Data System (ADS)

    Skillen, I.; Fernley, J. A.; Jameson, R. F.; Lynas-Gray, A. E.; Longmore, A. J.

    1989-11-01

    UV, IR and visual photometry of the short-period RR Lyrae star DX Del is presented and treated by means of the Blackwell and Shallis (1977) IR Flux Method-based formulation of the Baade-Wesselink method. Upon correcting to common reddening, extinction, and radial-velocity conversion factors, as well as applying the Baade-Wesselink analysis of Burki and Meylan (1986), it proved impossible to reproduce their results. It is suggested that the present methods are inherently more stable than those of Burki and Meylan, given their reliance on optical colors and magnitudes to derive effective temperatures and radii.

  9. Aplicación del Teorema de Nekhorochev para tiempos de estabilidad en Mecánica Celeste

    NASA Astrophysics Data System (ADS)

    Miloni, O.; Núñez, J.; Brunini, A.

    En Mecánica Celeste, uno de los problemas centrales consiste en la determinación de los tiempos de estabilidad. El teorema de Nekhorochev proporciona un método para dicho estudio, para un sistema determinado por un hamiltoniano descripto en las variables acción-ángulo. El trabajo consiste en la acotación tanto del potencial perturbador y de la matriz hessiana del hamiltoniano integrable para determinar luego el tiempo de estabilidad de dicho sistema, donde por estabilidad se entiende la separación en norma infinito en el espacio de las acciones.

  10. Determination of the Limiting Magnitude

    NASA Technical Reports Server (NTRS)

    Kingery, Aaron; Blaauw, Rhiannon

    2017-01-01

    The limiting magnitude of an optical camera system is an important property to understand since it is used to find the completeness limit of observations. Limiting magnitude depends on the hardware and software of the system, current weather conditions, and the angular speed of the objects observed. If an object exhibits a substantial angular rate during the exposure, its light spreads out over more pixels than the stationary stars. This spreading causes the limiting magnitude to be brighter when compared to the stellar limiting magnitude. The effect, which begins to become important when the object moves a full width at half max during a single exposure or video frame. For targets with high angular speeds or camera systems with narrow field of view or long exposures, this correction can be significant, up to several magnitudes. The stars in an image are often used to measure the limiting magnitude since they are stationary, have known brightness, and are present in large numbers, making the determination of the limiting magnitude fairly simple. In order to transform stellar limiting magnitude to object limiting magnitude, a correction must be applied accounting for the angular velocity. This technique is adopted in meteor and other fast-moving object observations, as the lack of a statistically significant sample of targets makes it virtually impossible to determine the limiting magnitude before the weather conditions change. While the weather is the dominant factor in observing satellites, the limiting magnitude for meteors also changes throughout the night due to the motion of a meteor shower or sporadic source radiant across the sky. This paper presents methods for determining the limiting stellar magnitude and the conversion to the target limiting magnitude.

  11. Individual Impact Magnitude vs. Cumulative Magnitude for Estimating Concussion Odds.

    PubMed

    O'Connor, Kathryn L; Peeters, Thomas; Szymanski, Stefan; Broglio, Steven P

    2017-08-01

    Helmeted impact devices have allowed researchers to investigate the biomechanics of head impacts in vivo. While increased impact magnitude has been associated with greater concussion risk, a definitive concussive threshold has not been established. It is likely that concussion risk is not determined by a single impact itself, but a host of predisposing factors. These factors may include genetics, fatigue, and/or prior head impact exposure. The objective of the current paper is to investigate the association between cumulative head impact magnitude and concussion risk. It is hypothesized that increased cumulative magnitudes will be associated with greater concussion risk. This retrospective analysis included participants that were recruited from regional high-schools in Illinois and Michigan from 2007 to 2014 as part of an ongoing study on concussion biomechanics. Across seven seasons, 185 high school football athletes were instrumented with the Head Impact Telemetry system. Out of 185 athletes, 31 (17%) sustained a concussion, with two athletes sustaining two concussions over the study period, yielding 33 concussive events. The system recorded 78,204 impacts for all concussed players. Linear acceleration, rotational acceleration, and head impact telemetry severity profile (HITsp) magnitudes were summed within five timeframes: the day of injury, three days prior to injury, seven days prior to injury, 30 days prior to injury, and prior in-season exposure. Logistic regressions were modeled to explain concussive events based on the singular linear acceleration, rotational acceleration, and HITsp event along with the calculated summations over time. Linear acceleration, rotational acceleration, and HITsp all produced significant models estimating concussion (p < 0.05). The strongest estimators of a concussive impact were the linear acceleration (OR = 1.040, p < 0.05), rotational acceleration (OR = 1.001, p < 0.05), and HITsp (OR = 1.003, p < 0.05) for the

  12. Descripción de la zona de alta difusión en un modelo bidimensional para hojas de corriente

    NASA Astrophysics Data System (ADS)

    Montero, M. F.; Paola, C. A.; Platzeck, A. M.

    Los modelos bidimensionales para describir hojas de corriente de alta simetría no suministran una descripción detallada de las regiones donde la difusión es considerablemente importante. Tal es el caso de los modelos desarrollados en la década del '60 por Sweet, Parker, Petschek y Sonnerup. En esta comunicación presentamos una solución de las ecuaciones MHD en el entorno del origen, construyendo series bidimensionales para todas las magnitudes físicas involucradas. Valiéndonos de la alta simetría y de las características del problema, logramos reducir el número de coeficientes a calcular. Utilizamos un programa autoconsistente para extender el cálculo a regiones vecinas con difusión moderada o despreciable.

  13. Conversion of Local and Surface-Wave Magnitudes to Moment Magnitude for Earthquakes in the Chinese Mainland

    NASA Astrophysics Data System (ADS)

    Li, X.; Gao, M.

    2017-12-01

    The magnitude of an earthquake is one of its basic parameters and is a measure of its scale. It plays a significant role in seismology and earthquake engineering research, particularly in the calculations of the seismic rate and b value in earthquake prediction and seismic hazard analysis. However, several current types of magnitudes used in seismology research, such as local magnitude (ML), surface wave magnitude (MS), and body-wave magnitude (MB), have a common limitation, which is the magnitude saturation phenomenon. Fortunately, the problem of magnitude saturation was solved by a formula for calculating the seismic moment magnitude (MW) based on the seismic moment, which describes the seismic source strength. Now the moment magnitude is very commonly used in seismology research. However, in China, the earthquake scale is primarily based on local and surface-wave magnitudes. In the present work, we studied the empirical relationships between moment magnitude (MW) and local magnitude (ML) as well as surface wave magnitude (MS) in the Chinese Mainland. The China Earthquake Networks Center (CENC) ML catalog, China Seismograph Network (CSN) MS catalog, ANSS Comprehensive Earthquake Catalog (ComCat), and Global Centroid Moment Tensor (GCMT) are adopted to regress the relationships using the orthogonal regression method. The obtained relationships are as follows: MW=0.64+0.87MS; MW=1.16+0.75ML. Therefore, in China, if the moment magnitude of an earthquake is not reported by any agency in the world, we can use the equations mentioned above for converting ML to MW and MS to MW. These relationships are very important, because they will allow the China earthquake catalogs to be used more effectively for seismic hazard analysis, earthquake prediction, and other seismology research. We also computed the relationships of and (where Mo is the seismic moment) by linear regression using the Global Centroid Moment Tensor. The obtained relationships are as follows: logMo=18

  14. Moment Magnitude discussion in Austria

    NASA Astrophysics Data System (ADS)

    Weginger, Stefan; Jia, Yan; Hausmann, Helmut; Lenhardt, Wolfgang

    2017-04-01

    We implemented and tested the Moment Magnitude estimation „dbmw" from the University of Trieste in our Antelope near real-time System. It is used to get a fast Moment Magnitude solutions and Ground Motion Parameter (PGA, PGV, PSA 0.3, PSA 1.0 and PSA 3.0) to calculate Shake and Interactive maps. A Moment Magnitude Catalogue was generated and compared with the Austrian Earthquake Catalogue and all available Magnitude solution of the neighbouring agencies. Relations of Mw to Ml and Ground Motion to Intensity are presented.

  15. A Bayesian perspective on magnitude estimation.

    PubMed

    Petzschner, Frederike H; Glasauer, Stefan; Stephan, Klaas E

    2015-05-01

    Our representation of the physical world requires judgments of magnitudes, such as loudness, distance, or time. Interestingly, magnitude estimates are often not veridical but subject to characteristic biases. These biases are strikingly similar across different sensory modalities, suggesting common processing mechanisms that are shared by different sensory systems. However, the search for universal neurobiological principles of magnitude judgments requires guidance by formal theories. Here, we discuss a unifying Bayesian framework for understanding biases in magnitude estimation. This Bayesian perspective enables a re-interpretation of a range of established psychophysical findings, reconciles seemingly incompatible classical views on magnitude estimation, and can guide future investigations of magnitude estimation and its neurobiological mechanisms in health and in psychiatric diseases, such as schizophrenia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Adolescents with Developmental Dyscalculia Do Not Have a Generalized Magnitude Deficit - Processing of Discrete and Continuous Magnitudes.

    PubMed

    McCaskey, Ursina; von Aster, Michael; O'Gorman Tuura, Ruth; Kucian, Karin

    2017-01-01

    The link between number and space has been discussed in the literature for some time, resulting in the theory that number, space and time might be part of a generalized magnitude system. To date, several behavioral and neuroimaging findings support the notion of a generalized magnitude system, although contradictory results showing a partial overlap or separate magnitude systems are also found. The possible existence of a generalized magnitude processing area leads to the question how individuals with developmental dyscalculia (DD), known for deficits in numerical-arithmetical abilities, process magnitudes. By means of neuropsychological tests and functional magnetic resonance imaging (fMRI) we aimed to examine the relationship between number and space in typical and atypical development. Participants were 16 adolescents with DD (14.1 years) and 14 typically developing (TD) peers (13.8 years). In the fMRI paradigm participants had to perform discrete (arrays of dots) and continuous magnitude (angles) comparisons as well as a mental rotation task. In the neuropsychological tests, adolescents with dyscalculia performed significantly worse in numerical and complex visuo-spatial tasks. However, they showed similar results to TD peers when making discrete and continuous magnitude decisions during the neuropsychological tests and the fMRI paradigm. A conjunction analysis of the fMRI data revealed commonly activated higher order visual (inferior and middle occipital gyrus) and parietal (inferior and superior parietal lobe) magnitude areas for the discrete and continuous magnitude tasks. Moreover, no differences were found when contrasting both magnitude processing conditions, favoring the possibility of a generalized magnitude system. Group comparisons further revealed that dyscalculic subjects showed increased activation in domain general regions, whilst TD peers activate domain specific areas to a greater extent. In conclusion, our results point to the existence of a

  17. Developmental Foundations of Children's Fraction Magnitude Knowledge.

    PubMed

    Mou, Yi; Li, Yaoran; Hoard, Mary K; Nugent, Lara D; Chu, Felicia W; Rouder, Jeffrey N; Geary, David C

    2016-01-01

    The conceptual insight that fractions represent magnitudes is a critical yet daunting step in children's mathematical development, and the knowledge of fraction magnitudes influences children's later mathematics learning including algebra. In this study, longitudinal data were analyzed to identify the mathematical knowledge and domain-general competencies that predicted 8 th and 9 th graders' (n=122) knowledge of fraction magnitudes and its cross-grade gains. Performance on the fraction magnitude measures predicted 9 th grade algebra achievement. Understanding and fluently identifying the numerator-denominator relation in 7 th grade emerged as the key predictor of later fraction magnitudes knowledge in both 8 th and 9 th grades. Competence at using fraction procedures, knowledge of whole number magnitudes, and the central executive contributed to 9 th but not 8 th graders' fraction magnitude knowledge, and knowledge of whole number magnitude contributed to cross-grade gains. The key results suggest fluent processing of numerator-denominator relations presages students' understanding of fractions as magnitudes and that the integration of whole number and fraction magnitudes occurs gradually.

  18. Absolute Magnitude Calibration for Dwarfs Based on the Colour-Magnitude Diagrams of Galactic Clusters

    NASA Astrophysics Data System (ADS)

    Karaali, S.; Gökçe, E. Yaz; Bilir, S.; Güçtekin, S. Tunçel

    2014-07-01

    We present two absolute magnitude calibrations for dwarfs based on colour-magnitude diagrams of Galactic clusters. The combination of the Mg absolute magnitudes of the dwarf fiducial sequences of the clusters M92, M13, M5, NGC 2420, M67, and NGC 6791 with the corresponding metallicities provides absolute magnitude calibration for a given (g - r)0 colour. The calibration is defined in the colour interval 0.25 ≤ (g - r)0 ≤ 1.25 mag and it covers the metallicity interval - 2.15 ≤ [Fe/H] ≤ +0.37 dex. The absolute magnitude residuals obtained by the application of the procedure to another set of Galactic clusters lie in the interval - 0.15 ≤ ΔMg ≤ +0.12 mag. The mean and standard deviation of the residuals are < ΔMg > = - 0.002 and σ = 0.065 mag, respectively. The calibration of the MJ absolute magnitude in terms of metallicity is carried out by using the fiducial sequences of the clusters M92, M13, 47 Tuc, NGC 2158, and NGC 6791. It is defined in the colour interval 0.90 ≤ (V - J)0 ≤ 1.75 mag and it covers the same metallicity interval of the Mg calibration. The absolute magnitude residuals obtained by the application of the procedure to the cluster M5 ([Fe/H] = -1.40 dex) and 46 solar metallicity, - 0.45 ≤ [Fe/H] ≤ +0.35 dex, field stars lie in the interval - 0.29 and + 0.35 mag. However, the range of 87% of them is rather shorter, - 0.20 ≤ ΔMJ ≤ +0.20 mag. The mean and standard deviation of all residuals are < ΔMJ > =0.05 and σ = 0.13 mag, respectively. The derived relations are applicable to stars older than 4 Gyr for the Mg calibration, and older than 2 Gyr for the MJ calibration. The cited limits are the ages of the youngest calibration clusters in the two systems.

  19. Adolescents with Developmental Dyscalculia Do Not Have a Generalized Magnitude Deficit – Processing of Discrete and Continuous Magnitudes

    PubMed Central

    McCaskey, Ursina; von Aster, Michael; O’Gorman Tuura, Ruth; Kucian, Karin

    2017-01-01

    The link between number and space has been discussed in the literature for some time, resulting in the theory that number, space and time might be part of a generalized magnitude system. To date, several behavioral and neuroimaging findings support the notion of a generalized magnitude system, although contradictory results showing a partial overlap or separate magnitude systems are also found. The possible existence of a generalized magnitude processing area leads to the question how individuals with developmental dyscalculia (DD), known for deficits in numerical-arithmetical abilities, process magnitudes. By means of neuropsychological tests and functional magnetic resonance imaging (fMRI) we aimed to examine the relationship between number and space in typical and atypical development. Participants were 16 adolescents with DD (14.1 years) and 14 typically developing (TD) peers (13.8 years). In the fMRI paradigm participants had to perform discrete (arrays of dots) and continuous magnitude (angles) comparisons as well as a mental rotation task. In the neuropsychological tests, adolescents with dyscalculia performed significantly worse in numerical and complex visuo-spatial tasks. However, they showed similar results to TD peers when making discrete and continuous magnitude decisions during the neuropsychological tests and the fMRI paradigm. A conjunction analysis of the fMRI data revealed commonly activated higher order visual (inferior and middle occipital gyrus) and parietal (inferior and superior parietal lobe) magnitude areas for the discrete and continuous magnitude tasks. Moreover, no differences were found when contrasting both magnitude processing conditions, favoring the possibility of a generalized magnitude system. Group comparisons further revealed that dyscalculic subjects showed increased activation in domain general regions, whilst TD peers activate domain specific areas to a greater extent. In conclusion, our results point to the existence of a

  20. Moment Magnitudes and Local Magnitudes for Small Earthquakes: Implications for Ground-Motion Prediction and b-values

    NASA Astrophysics Data System (ADS)

    Baltay, A.; Hanks, T. C.; Vernon, F.

    2016-12-01

    We illustrate two essential consequences of the systematic difference between moment magnitude and local magnitude for small earthquakes, illuminating the underlying earthquake physics. Moment magnitude, M 2/3 log M0, is uniformly valid for all earthquake sizes [Hanks and Kanamori, 1979]. However, the relationship between local magnitude ML and moment is itself magnitude dependent. For moderate events, 3< M < 7, M and M­L are coincident; for earthquakes smaller than M3, ML log M0 [Hanks and Boore, 1984]. This is a consequence of the saturation of the apparent corner frequency fc as it becoming greater than the largest observable frequency, fmax; In this regime, stress drop no longer controls ground motion. This implies that ML and M differ by a factor of 1.5 for these small events. While this idea is not new, its implications are important as more small-magnitude data are incorporated into earthquake hazard research. With a large dataset of M<3 earthquakes recorded on the ANZA network, we demonstrate striking consequences of the difference between M and ML. ML scales as the log peak ground motions (e.g., PGA or PGV) for these small earthquakes, which yields log PGA log M0 [Boore, 1986]. We plot nearly 15,000 records of PGA and PGV at close stations, adjusted for site conditions and for geometrical spreading to 10 km. The slope of the log of ground motion is 1.0*ML­, or 1.5*M, confirming the relationship, and that fc >> fmax. Just as importantly, if this relation is overlooked, prediction of large-magnitude ground motion from small earthquakes will be misguided. We also consider the effect of this magnitude scale difference on b-value. The oft-cited b-value of 1 should hold for small magnitudes, given M. Use of ML necessitates b=2/3 for the same data set; use of mixed, or unknown, magnitudes complicates the matter further. This is of particular import when estimating the rate of large earthquakes when one has limited data on their recurrence, as is the case for

  1. Integrated Circuit Stellar Magnitude Simulator

    ERIC Educational Resources Information Center

    Blackburn, James A.

    1978-01-01

    Describes an electronic circuit which can be used to demonstrate the stellar magnitude scale. Six rectangular light-emitting diodes with independently adjustable duty cycles represent stars of magnitudes 1 through 6. Experimentally verifies the logarithmic response of the eye. (Author/GA)

  2. El contexto de la familia y el vecindario en la salud de los ancianos del estudio EPESE hispano

    PubMed Central

    Reyes-Ortiz, Carlos A.; Camacho, María E.; Eschbach, Karl; Markides, Kyriakos S.

    2014-01-01

    RESUMEN En este artículo se discute el papel de la familia y el vecindario en la salud de los ancianos méjico-americanos del estudio EPESE (Established Populations for Epidemiologic Studies of the Elderly) hispano. La paradoja epidemiológica consiste en que, a pesar de estar en desventaja socioeconómica, los ancianos hispanos tienen mortalidad relativamente menor que los ancianos de raza blanca. Esto es especialmente cierto cuando el anciano vive en los vecindarios donde hay un porcentaje alto de méjico-americanos. La familia también juega un papel importante en estos ancianos al disminuir el riesgo de institucionalización o de morbilidad. Asimismo, el estrés originado en problemas económicos o al depender económicamente de la familia, habiendo inmigrado en edades tardías, puede sobrepasar la capacidad de amortiguamiento del estrés y afectar la salud del anciano méjico-americano. PMID:25190897

  3. Estrategia innovadora enfocada en parejas del mismo sexo para disminuir la infección del VIH en hombres Latinos

    PubMed Central

    Martinez, Omar; Wu, Elwin; Sandfort, Theo; Shultz, Andrew Z.; Capote, Jonathan; Chávez, Silvia; Moya, Eva; Dodge, Brian; Morales, Gabriel; Porras, Antonio; Ovejero, Hugo

    2014-01-01

    Resumen El VIH es un problema de salud importante dentro de la comunidad latina de los Estados Unidos. Gracias a los esfuerzos de prevención, los niveles de contagio entre los latinos se han mantenido estables por más de una década. Sin embargo, esta población sigue siendo afectada a niveles muy altos, en particular entre hombres que tienen sexo con hombres (HSH), de origen latino y que hablan principalmente el idioma español. Existen varios factores que contribuyen a la transmisión del VIH entre esta población, como son: el uso de drogas; la violencia dentro de la pareja; la presencia de infecciones de transmisión sexual; relaciones sexuales sin protección, dentro y fuera de la pareja; el evadir la búsqueda de recursos (prueba y tratamiento adecuado) por temor a ser discriminado o por su estatus migratorio; la escasez de recursos económicos o estado de pobreza y los patrones relacionados a la migración. En particular, Investigaciones Epidemiológicas de Comportamientos han determinado: cómo algunas dinámicas en parejas están directamente asociadas a los comportamientos sexuales de riesgos. En consecuencia, es necesaria mayor investigación para identificar esas dinámicas, y a su vez, realizar intervenciones dirigidas a la reducción de conductas de riesgo enfocadas en parejas de hombres del mismo sexo. En este escrito, se describe la importancia del uso de las relaciones de pareja como estrategia en la reducción de la trasmisión del VIH/SIDA en HSH de origen latino y que hablan principalmente el idioma español en los Estados Unidos. PMID:25580466

  4. Sign-And-Magnitude Up/Down Counter

    NASA Technical Reports Server (NTRS)

    Cole, Steven W.

    1991-01-01

    Magnitude-and-sign counter includes conventional up/down counter for magnitude part and special additional circuitry for sign part. Negative numbers indicated more directly. Counter implemented by programming erasable programmable logic device (EPLD) or programmable logic array (PLA). Used in place of conventional up/down counter to provide sign and magnitude values directly to other circuits.

  5. Astronomía para ciegos y amblíopes. Proyecto de construcción de un planetario especial en la ciudad de Mar del Plata

    NASA Astrophysics Data System (ADS)

    Musso, S.

    ?`Qué es la Astronomía para Ciegos?. El trabajo es una adaptación en base a la escala de magnitudes de Hipparco que cambia el concepto de luz por una adaptación sonora, donde las estrellas de magnitud 6 se escuchan en 10 dB, más o menos lo que consideramos el umbral de la audición humana. Quienes no escuchan muy bien no pueden escuchar las magnitudes 6, de la misma manera que muchos de nosotros, que no poseemos una visión perfecta, no podemos observar esas mismas estrellas en el cielo (más allá de la polución). A los astros de magnitud 5 vamos a relacionarlos a un sonido en 20 dB. Y así sucesivamente. También los colores estarán representados en una convención de graves a agudos y lo mismo algunas características del cielo. Por ejemplo, la Vía Láctea se mostrará como un ``ruido", como bien nos lo hicieron ver nuestros futuros destinatarios. En Mar del Plata nos encontramos ya trabajando en un proyecto que tiene como objetivo final la construcción del Primer Planetario Acústico del Mundo, una herramienta para la enseñanza de la astronomía, un espacio para la lucha contra la discriminación del discapacitado y una posibilidad de ``ver el cielo de un modo diferente".

  6. Developmental Foundations of Children’s Fraction Magnitude Knowledge

    PubMed Central

    Mou, Yi; Li, Yaoran; Hoard, Mary K.; Nugent, Lara D.; Chu, Felicia W.; Rouder, Jeffrey N.; Geary, David C.

    2016-01-01

    The conceptual insight that fractions represent magnitudes is a critical yet daunting step in children’s mathematical development, and the knowledge of fraction magnitudes influences children’s later mathematics learning including algebra. In this study, longitudinal data were analyzed to identify the mathematical knowledge and domain-general competencies that predicted 8th and 9th graders’ (n=122) knowledge of fraction magnitudes and its cross-grade gains. Performance on the fraction magnitude measures predicted 9th grade algebra achievement. Understanding and fluently identifying the numerator-denominator relation in 7th grade emerged as the key predictor of later fraction magnitudes knowledge in both 8th and 9th grades. Competence at using fraction procedures, knowledge of whole number magnitudes, and the central executive contributed to 9th but not 8th graders’ fraction magnitude knowledge, and knowledge of whole number magnitude contributed to cross-grade gains. The key results suggest fluent processing of numerator-denominator relations presages students’ understanding of fractions as magnitudes and that the integration of whole number and fraction magnitudes occurs gradually. PMID:27773965

  7. Valence and magnitude ambiguity in feedback processing.

    PubMed

    Gu, Ruolei; Feng, Xue; Broster, Lucas S; Yuan, Lu; Xu, Pengfei; Luo, Yue-Jia

    2017-05-01

    Outcome feedback which indicates behavioral consequences are crucial for reinforcement learning and environmental adaptation. Nevertheless, outcome information in daily life is often totally or partially ambiguous. Studying how people interpret this kind of information would provide important knowledge about the human evaluative system. This study concentrates on the neural processing of partially ambiguous feedback, that is, either its valence or magnitude is unknown to participants. To address this topic, we sequentially presented valence and magnitude information; electroencephalography (EEG) response to each kind of presentation was recorded and analyzed. The event-related potential components feedback-related negativity (FRN) and P3 were used as indices of neural activity. Consistent with previous literature, the FRN elicited by ambiguous valence was not significantly different from that elicited by negative valence. On the other hand, the FRN elicited by ambiguous magnitude was larger than both the large and small magnitude, indicating the motivation to seek unambiguous magnitude information. The P3 elicited by ambiguous valence and ambiguous magnitude was not significantly different from that elicited by negative valence and small magnitude, respectively, indicating the emotional significance of feedback ambiguity. Finally, the aforementioned effects also manifested in the stage of information integration. These findings indicate both similarities and discrepancies between the processing of valence ambiguity and that of magnitude ambiguity, which may help understand the mechanisms of ambiguous information processing.

  8. Magnitude Estimation for Large Earthquakes from Borehole Recordings

    NASA Astrophysics Data System (ADS)

    Eshaghi, A.; Tiampo, K. F.; Ghofrani, H.; Atkinson, G.

    2012-12-01

    We present a simple and fast method for magnitude determination technique for earthquake and tsunami early warning systems based on strong ground motion prediction equations (GMPEs) in Japan. This method incorporates borehole strong motion records provided by the Kiban Kyoshin network (KiK-net) stations. We analyzed strong ground motion data from large magnitude earthquakes (5.0 ≤ M ≤ 8.1) with focal depths < 50 km and epicentral distances of up to 400 km from 1996 to 2010. Using both peak ground acceleration (PGA) and peak ground velocity (PGV) we derived GMPEs in Japan. These GMPEs are used as the basis for regional magnitude determination. Predicted magnitudes from PGA values (Mpga) and predicted magnitudes from PGV values (Mpgv) were defined. Mpga and Mpgv strongly correlate with the moment magnitude of the event, provided sufficient records for each event are available. The results show that Mpgv has a smaller standard deviation in comparison to Mpga when compared with the estimated magnitudes and provides a more accurate early assessment of earthquake magnitude. We test this new method to estimate the magnitude of the 2011 Tohoku earthquake and we present the results of this estimation. PGA and PGV from borehole recordings allow us to estimate the magnitude of this event 156 s and 105 s after the earthquake onset, respectively. We demonstrate that the incorporation of borehole strong ground-motion records immediately available after the occurrence of large earthquakes significantly increases the accuracy of earthquake magnitude estimation and the associated improvement in earthquake and tsunami early warning systems performance. Moment magnitude versus predicted magnitude (Mpga and Mpgv).

  9. Pain from the life cycle perspective: Evaluation and Measurement through psychophysical methods of category estimation and magnitude estimation.

    PubMed

    Sousa, Fátima Aparecida Emm Faleiros; Silva, Talita de Cássia Raminelli da; Siqueira, Hilze Benigno de Oliveira Moura; Saltareli, Simone; Gomez, Rodrigo Ramon Falconi; Hortense, Priscilla

    2016-08-18

    to describe acute and chronic pain from the perspective of the life cycle. participants: 861 people in pain. The Multidimensional Pain Evaluation Scale (MPES) was used. in the category estimation method the highest descriptors of chronic pain for children/ adolescents were "Annoying" and for adults "Uncomfortable". The highest descriptors of acute pain for children/adolescents was "Complicated"; and for adults was "Unbearable". In magnitude estimation method, the highest descriptors of chronic pain was "Desperate" and for descriptors of acute pain was "Terrible". the MPES is a reliable scale it can be applied during different stages of development. descrever a dor aguda e a crônica na perspectiva do ciclo vital. Métodos: participaram 861 pessoas com dor. Foi utilizada a Escala Multidimensional de Avaliação da Dor (EMADOR). Resultados: no método da estimação de categoria o descritor da dor crônica de maior atribuição para crianças e adolescentes foi "Chata" e para adultos foi "Desconfortável". Os descritores de maior atribuição para dor aguda em crianças e adolescentes foram "Complicada" e em adultos "Insuportável". No método de estimação de magnitude, o descritor de maior atribuição na dor crônica foi "Atormentadora" e na dor aguda foi "Terrível". a EMADOR é uma escala confiável e pode ser utilizada nas diferentes etapas do desenvolvimento humano. la descripción del dolor agudo y crónico desde las perspectiva del ciclo de vida. participaron 861 personas con dolor. Se utilizó la Escala Multidimensional de Evaluación del Dolor (EMEDOR). en el método de estimación de categoría el descriptor de dolor crónico más alto para niños y adolescentes fue de Molesto y para adultos fue Incómodo. Los descriptores mayores de dolor agudo para niños y adolescentes fueron Complejo y para adultos Insoportable. En el método de estimación de magnitud, el mayor descriptor de dolor crónico fueron Atormentador y el mayor de dolor agudo fue Terrible

  10. Magnitude scale for the Central American tsunamis

    NASA Astrophysics Data System (ADS)

    Hatori, Tokutaro

    1995-09-01

    Based on the tsunami data in the Central American region, the regional characteristic of tsunami magnitude scales is discussed in relation to earthquake magnitudes during the period from 1900 to 1993. Tsunami magnitudes on the Imamura-Iida scale of the 1985 Mexico and 1992 Nicaragua tsunamis are determined to be m=2.5, judging from the tsunami height-distance diagram. The magnitude values of the Central American tsunamis are relatively small compared to earthquakes with similar size in other regions. However, there are a few large tsunamis generated by low-frequency earthquakes such as the 1992 Nicaragua earthquake. Inundation heights of these unusual tsunamis are about 10 times higher than those of normal tsunamis for the same earthquake magnitude ( M s =6.9 7.2). The Central American tsunamis having magnitude m>1 have been observed by the Japanese tide stations, but the effect of directivity toward Japan is very small compared to that of the South American tsunamis.

  11. "Magnitude-based inference": a statistical review.

    PubMed

    Welsh, Alan H; Knight, Emma J

    2015-04-01

    We consider "magnitude-based inference" and its interpretation by examining in detail its use in the problem of comparing two means. We extract from the spreadsheets, which are provided to users of the analysis (http://www.sportsci.org/), a precise description of how "magnitude-based inference" is implemented. We compare the implemented version of the method with general descriptions of it and interpret the method in familiar statistical terms. We show that "magnitude-based inference" is not a progressive improvement on modern statistics. The additional probabilities introduced are not directly related to the confidence interval but, rather, are interpretable either as P values for two different nonstandard tests (for different null hypotheses) or as approximate Bayesian calculations, which also lead to a type of test. We also discuss sample size calculations associated with "magnitude-based inference" and show that the substantial reduction in sample sizes claimed for the method (30% of the sample size obtained from standard frequentist calculations) is not justifiable so the sample size calculations should not be used. Rather than using "magnitude-based inference," a better solution is to be realistic about the limitations of the data and use either confidence intervals or a fully Bayesian analysis.

  12. Estrategia de Aprendizaje Basado en Problemas (ABP) para explorar las concepciones alternativas relacionadas al tema estados de agregacion de la materia en estudiantes de nivel elemental =

    NASA Astrophysics Data System (ADS)

    Rosado Olivieri, Wilda Y.

    Gran parte de la investigacion acerca de la ensenanza de las ciencias se dedica a estudiar la forma o manera en que los estudiantes visualizan los conceptos cientificos. Para Driver (1983) esas ideas o concepciones se conocen como concepciones alternativas; las cuales pueden ocasionar dificultad para comprender los conceptos de las diferentes areas del conocimiento. El proposito de este estudio fue: (a) indagar como las distintas etapas del ABP permiten explorar las concepciones alternativas que poseen los estudiantes de nivel elemental acerca de los estados de agregacion de la materia y, (b) explorar en que medida el ABP permite identificar e incorporar las concepciones alternativas que poseen los estudiantes de nivel elemental con relacion al concepto de estados de agregacion de la materia para facilitar su aprendizaje. Con el fin de explorar las concepciones alternativas en el tema de los estados agregados de la materia se implanto la estrategia de Aprendizaje Basado en Problemas (ABP) con estudiantes de quinto grado de nivel elemental. Se utilizo la metodologia mixta con varias estrategias de recopilacion de datos, como una pre y pos prueba para elucidar el conocimiento previo y al mismo tiempo las concepciones alternativas sobre el tema bajo estudio y luego verificar el aprendizaje en los estudiantes. Asimismo, el uso de mapas conceptuales para determinar la profundidad del tema estudiado y el entrelazamiento de los conceptos Una tercera estrategia fue el grupo focal para tomar en cuenta la impresion de los estudiantes acerca del proyecto ABP. El aspecto colaborativo y cooperativo fue un factor fundamental, ya que el aprendizaje ocurrio en ese contexto educativo. Para los hallazgos de esta investigacion fue tan importante el conocimiento previo como los procesos que se generaban para que la adquisicion del mismo fuera de forma significativa y funcional (Escribano & Del Valle, 2010). La estrategia de ABP constituyo en este estudio una forma para indagar las

  13. Is Order the Defining Feature of Magnitude Representation? An ERP Study on Learning Numerical Magnitude and Spatial Order of Artificial Symbols

    PubMed Central

    Zhao, Hui; Chen, Chuansheng; Zhang, Hongchuan; Zhou, Xinlin; Mei, Leilei; Chen, Chunhui; Chen, Lan; Cao, Zhongyu; Dong, Qi

    2012-01-01

    Using an artificial-number learning paradigm and the ERP technique, the present study investigated neural mechanisms involved in the learning of magnitude and spatial order. 54 college students were divided into 2 groups matched in age, gender, and school major. One group was asked to learn the associations between magnitude (dot patterns) and the meaningless Gibson symbols, and the other group learned the associations between spatial order (horizontal positions on the screen) and the same set of symbols. Results revealed differentiated neural mechanisms underlying the learning processes of symbolic magnitude and spatial order. Compared to magnitude learning, spatial-order learning showed a later and reversed distance effect. Furthermore, an analysis of the order-priming effect showed that order was not inherent to the learning of magnitude. Results of this study showed a dissociation between magnitude and order, which supports the numerosity code hypothesis of mental representations of magnitude. PMID:23185363

  14. Extensión del Formalismo de Orbitales de Defecto Cuántico al tratamiento del efecto Stark (SQDO).

    NASA Astrophysics Data System (ADS)

    Menéndez, J. M.; Martín, I.; Velasco, A. M.

    El estudio experimental de las interacciones de átomos Rydberg altamente excitados con campos eléctricos ha experimentado un creciente interés durante las dos últimas décadas debido, en gran medida, al desarrollo de nuevas técnicas para crear y estudiar átomos Rydberg en el laboratorio. Acompañando a estas nuevas técnicas experimentales, es necesario el desarrollo de modelos teóricos que nos permitan contrastar sus medidas y conocer mejor los fundamentos de los mismos. Desde el punto de vista teórico el conocimiento del desdoblamiento de los niveles energéticos de un átomo en función de la magnitud del campo eléctrico aplicado (lo que se conoce como mapa Stark) es el mejor punto de partida para la descripción del sistema y un prerrequisito fundamental para el cálculo de distintas propiedades atómicas en presencia del campo eléctrico tales como intensidades de transición, umbrales de ionización de campo eléctrico, tiempos de vida, posición y anchura de cruces evitados, etc. En este trabajo presentamos la adaptación del método de orbitales de defecto cuántico [1,2,3] al tratamiento del efecto Stark (SQDO) [4] y su aplicación al cálculo de los desdoblamientos energéticos y fuerzas de oscilador de estados Rydberg en los átomos de Li, Na y K. El propósito de este estudio es, por un lado, desarrollar métodos fiables para la determinación de propiedades atómicas en presencia de campos eléctricos y, por otro, mostrar la fiabilidad de las funciones de onda QDO en la descripción del efecto Stark en sistemas atómicos.

  15. Rapid Earthquake Magnitude Estimation for Early Warning Applications

    NASA Astrophysics Data System (ADS)

    Goldberg, Dara; Bock, Yehuda; Melgar, Diego

    2017-04-01

    Earthquake magnitude is a concise metric that provides invaluable information about the destructive potential of a seismic event. Rapid estimation of magnitude for earthquake and tsunami early warning purposes requires reliance on near-field instrumentation. For large magnitude events, ground motions can exceed the dynamic range of near-field broadband seismic instrumentation (clipping). Strong motion accelerometers are designed with low gains to better capture strong shaking. Estimating earthquake magnitude rapidly from near-source strong-motion data requires integration of acceleration waveforms to displacement. However, integration amplifies small errors, creating unphysical drift that must be eliminated with a high pass filter. The loss of the long period information due to filtering is an impediment to magnitude estimation in real-time; the relation between ground motion measured with strong-motion instrumentation and magnitude saturates, leading to underestimation of earthquake magnitude. Using station displacements from Global Navigation Satellite System (GNSS) observations, we can supplement the high frequency information recorded by traditional seismic systems with long-period observations to better inform rapid response. Unlike seismic-only instrumentation, ground motions measured with GNSS scale with magnitude without saturation [Crowell et al., 2013; Melgar et al., 2015]. We refine the current magnitude scaling relations using peak ground displacement (PGD) by adding a large GNSS dataset of earthquakes in Japan. Because it does not suffer from saturation, GNSS alone has significant advantages over seismic-only instrumentation for rapid magnitude estimation of large events. The earthquake's magnitude can be estimated within 2-3 minutes of earthquake onset time [Melgar et al., 2013]. We demonstrate that seismogeodesy, the optimal combination of GNSS and seismic data at collocated stations, provides the added benefit of improving the sensitivity of

  16. Reward Magnitude Effects on Temporal Discrimination

    ERIC Educational Resources Information Center

    Galtress, Tiffany; Kirkpatrick, Kimberly

    2010-01-01

    Changes in reward magnitude or value have been reported to produce effects on timing behavior, which have been attributed to changes in the speed of an internal pacemaker in some instances and to attentional factors in other cases. The present experiments therefore aimed to clarify the effects of reward magnitude on timing processes. In Experiment…

  17. Asymmetry in power-law magnitude correlations.

    PubMed

    Podobnik, Boris; Horvatić, Davor; Tenenbaum, Joel N; Stanley, H Eugene

    2009-07-01

    Time series of increments can be created in a number of different ways from a variety of physical phenomena. For example, in the phenomenon of volatility clustering-well-known in finance-magnitudes of adjacent increments are correlated. Moreover, in some time series, magnitude correlations display asymmetry with respect to an increment's sign: the magnitude of |x_{i}| depends on the sign of the previous increment x_{i-1} . Here we define a model-independent test to measure the statistical significance of any observed asymmetry. We propose a simple stochastic process characterized by a an asymmetry parameter lambda and a method for estimating lambda . We illustrate both the test and process by analyzing physiological data.

  18. Developmental Dyscalculia in Adults: Beyond Numerical Magnitude Impairment.

    PubMed

    De Visscher, Alice; Noël, Marie-Pascale; Pesenti, Mauro; Dormal, Valérie

    2017-09-01

    Numerous studies have tried to identify the core deficit of developmental dyscalculia (DD), mainly by assessing a possible deficit of the mental representation of numerical magnitude. Research in healthy adults has shown that numerosity, duration, and space share a partly common system of magnitude processing and representation. However, in DD, numerosity processing has until now received much more attention than the processing of other non-numerical magnitudes. To assess whether or not the processing of non-numerical magnitudes is impaired in DD, the performance of 15 adults with DD and 15 control participants was compared in four categorization tasks using numerosities, lengths, durations, and faces (as non-magnitude-based control stimuli). Results showed that adults with DD were impaired in processing numerosity and duration, while their performance in length and face categorization did not differ from controls' performance. Our findings support the idea of a nonsymbolic magnitude deficit in DD, affecting numerosity and duration processing but not length processing.

  19. Segundo Catálogo Estelar del Hemisferio Sur con Astrolabio Fotoeléctrico PAII

    NASA Astrophysics Data System (ADS)

    Manrique, W. T.; Podestá, R. C.; Alonso, E.; Actis, E. V.; Pacheco, A. M.; Bustos, G.; Lizhi, L.; Zezhi, W.; Fanmiao, Z.; Hongqi, W.; Perdomo, R.

    Recordamos que entre el Observatorio Astronómico ``Félix Aguilar'', el Observatorio Astronómico de Beijing y el Observatorio Astronómico de La Plata, se ha convenido en desarrollar un Proyecto de Investigación conjunto, para la observación sistemática de estrellas en el Hemisferio Sur, con el objeto de la elaboración de un Catálogo Estelar Global utilizando un Astrolabio Fotoeléctrico PAII del Observatorio de Beijing, que ha sido usado con éxito en la República de China. En este trabajo se presenta el Segundo Catálogo Estelar del Hemisferio Sur, derivado de las observaciones realizadas con el PAII instalado en el OAFA, durante el períiodo Febrero de 1992 a Marzo de 1997. En este lapso se han observado mas de 400000 pasajes estelares, obteniéndose las correcciones Δ α y Δ δ de 5241 estrellas del FK4, FK5, FK5 Ext., SRS, CAMC y GC. Las precisiones medias son del orden de ± 3,2 ms en ascensión recta y ±0."057 en declinación. Rango de magnitudes : 2,0 a 11,5 Rango de declinaciones : -3o a -60o Epoca Media : 1994.9 Se analizan los residuos en función de la magnitud y tipo espectral, correcciones de grupo y frecuencia de distribución Δ α y Δ δ.

  20. Bias in Magnitude Estimation Following Left Hemisphere Injury

    PubMed Central

    Woods, Adam J.; Mennemeier, Mark; Garcia-Rill, Edgar; Meythaler, Jay; Mark, Victor W.; Jewel, George R.; Murphy, Heather

    2015-01-01

    There is a growing interest both in identifying the neural mechanisms of magnitude estimation and in identifying forms of bias that can explain aspects of behavioral syndromes like unilateral neglect. Magnitude estimation is associated with activation of temporo-parietal cortex in both cerebral hemispheres of normal subjects; however, it is unclear if and how left hemisphere lesions bias magnitude estimation because the infrequency of neglect and the presence of aphasia in these subjects confound examination. In contrast, we examined magnitude estimation using 12 different types of sensory stimuli that spanned five sensory domains in two patients with very different clinical presentations following unilateral left hemisphere stroke. One patient had neglect sub-acutely without aphasia. The other had aphasia chronically after a temporo-parietal lesion but not neglect. The neglect patient was re-examined 48 hours after being treated with modafinil (Provigil) for decreased arousal. Both patients demonstrated bias in magnitude estimation relative to normal subjects (n=83). Alertness improved in the neglect patient after taking modafinil. His neglect also resolved and his magnitude estimates more closely resembled those of normal subjects. This is the first evidence, to our knowledge, that the left hemisphere injury can bias magnitude estimation in a manner similar but not identical to that associated with right hemisphere injury. PMID:16434066

  1. Defining Tsunami Magnitude as Measure of Potential Impact

    NASA Astrophysics Data System (ADS)

    Titov, V. V.; Tang, L.

    2016-12-01

    The goal of tsunami forecast, as a system for predicting potential impact of a tsunami at coastlines, requires quick estimate of a tsunami magnitude. This goal has been recognized since the beginning of tsunami research. The work of Kajiura, Soloviev, Abe, Murty, and many others discussed several scales for tsunami magnitude based on estimates of tsunami energy. However, difficulties of estimating tsunami energy based on available tsunami measurements at coastal sea-level stations has carried significant uncertainties and has been virtually impossible in real time, before tsunami impacts coastlines. The slow process of tsunami magnitude estimates, including collection of vast amount of available coastal sea-level data from affected coastlines, made it impractical to use any tsunami magnitude scales in tsunami warning operations. Uncertainties of estimates made tsunami magnitudes difficult to use as universal scale for tsunami analysis. Historically, the earthquake magnitude has been used as a proxy of tsunami impact estimates, since real-time seismic data is available of real-time processing and ample amount of seismic data is available for an elaborate post event analysis. This measure of tsunami impact carries significant uncertainties in quantitative tsunami impact estimates, since the relation between the earthquake and generated tsunami energy varies from case to case. In this work, we argue that current tsunami measurement capabilities and real-time modeling tools allow for establishing robust tsunami magnitude that will be useful for tsunami warning as a quick estimate for tsunami impact and for post-event analysis as a universal scale for tsunamis inter-comparison. We present a method for estimating the tsunami magnitude based on tsunami energy and present application of the magnitude analysis for several historical events for inter-comparison with existing methods.

  2. Magnitude knowledge: the common core of numerical development.

    PubMed

    Siegler, Robert S

    2016-05-01

    The integrated theory of numerical development posits that a central theme of numerical development from infancy to adulthood is progressive broadening of the types and ranges of numbers whose magnitudes are accurately represented. The process includes four overlapping trends: (1) representing increasingly precisely the magnitudes of non-symbolic numbers, (2) connecting small symbolic numbers to their non-symbolic referents, (3) extending understanding from smaller to larger whole numbers, and (4) accurately representing the magnitudes of rational numbers. The present review identifies substantial commonalities, as well as differences, in these four aspects of numerical development. With both whole and rational numbers, numerical magnitude knowledge is concurrently correlated with, longitudinally predictive of, and causally related to multiple aspects of mathematical understanding, including arithmetic and overall math achievement. Moreover, interventions focused on increasing numerical magnitude knowledge often generalize to other aspects of mathematics. The cognitive processes of association and analogy seem to play especially large roles in this development. Thus, acquisition of numerical magnitude knowledge can be seen as the common core of numerical development. © 2016 John Wiley & Sons Ltd.

  3. Magnitude and intensity: Measures of earthquake size and severity

    USGS Publications Warehouse

    Spall, Henry

    1982-01-01

    Earthquakes can be measured in terms of either the amount of energy they release (magnitude) or the degree of ground shaking they cause at a particular locality (intensity).  Although magnitude and intensity are basically different measures of an earthquake, they are frequently confused by the public and new reports of earthquakes.  Part of the confusion probably arises from the general similarity of scales used express these quantities.  The various magnitude scales represent logarithmic expressions of the energy released by an earthquake.  Magnitude is calculated from the record made by an earthquake on a calibrated seismograph.  There are no upper or lower limits to magnitude, although no measured earthquakes have exceeded magnitude 8.9.

  4. Magnitude-based Inference”: A Statistical Review

    PubMed Central

    Welsh, Alan H.; Knight, Emma J.

    2015-01-01

    ABSTRACT Purpose We consider “magnitude-based inference” and its interpretation by examining in detail its use in the problem of comparing two means. Methods We extract from the spreadsheets, which are provided to users of the analysis (http://www.sportsci.org/), a precise description of how “magnitude-based inference” is implemented. We compare the implemented version of the method with general descriptions of it and interpret the method in familiar statistical terms. Results and Conclusions We show that “magnitude-based inference” is not a progressive improvement on modern statistics. The additional probabilities introduced are not directly related to the confidence interval but, rather, are interpretable either as P values for two different nonstandard tests (for different null hypotheses) or as approximate Bayesian calculations, which also lead to a type of test. We also discuss sample size calculations associated with “magnitude-based inference” and show that the substantial reduction in sample sizes claimed for the method (30% of the sample size obtained from standard frequentist calculations) is not justifiable so the sample size calculations should not be used. Rather than using “magnitude-based inference,” a better solution is to be realistic about the limitations of the data and use either confidence intervals or a fully Bayesian analysis. PMID:25051387

  5. Fourier transform magnitudes are unique pattern recognition templates.

    PubMed

    Gardenier, P H; McCallum, B C; Bates, R H

    1986-01-01

    Fourier transform magnitudes are commonly used in the generation of templates in pattern recognition applications. We report on recent advances in Fourier phase retrieval which are relevant to pattern recognition. We emphasise in particular that the intrinsic form of a finite, positive image is, in general, uniquely related to the magnitude of its Fourier transform. We state conditions under which the Fourier phase can be reconstructed from samples of the Fourier magnitude, and describe a method of achieving this. Computational examples of restoration of Fourier phase (and hence, by Fourier transformation, the intrinsic form of the image) from samples of the Fourier magnitude are also presented.

  6. Development of an Empirical Local Magnitude Formula for Northern Oklahoma

    NASA Astrophysics Data System (ADS)

    Spriggs, N.; Karimi, S.; Moores, A. O.

    2015-12-01

    In this paper we focus on determining a local magnitude formula for northern Oklahoma that is unbiased with distance by empirically constraining the attenuation properties within the region of interest based on the amplitude of observed seismograms. For regional networks detecting events over several hundred kilometres, distance correction terms play an important role in determining the magnitude of an event. Standard distance correction terms such as Hutton and Boore (1987) may have a significant bias with distance if applied in a region with different attenuation properties, resulting in an incorrect magnitude. We have presented data from a regional network of broadband seismometers installed in bedrock in northern Oklahoma. The events with magnitude in the range of 2.0 and 4.5, distributed evenly across this network are considered. We find that existing models show a bias with respect to hypocentral distance. Observed amplitude measurements demonstrate that there is a significant Moho bounce effect that mandates the use of a trilinear attenuation model in order to avoid bias in the distance correction terms. We present two different approaches of local magnitude calibration. The first maintains the classic definition of local magnitude as proposed by Richter. The second method calibrates local magnitude so that it agrees with moment magnitude where a regional moment tensor can be computed. To this end, regional moment tensor solutions and moment magnitudes are computed for events with magnitude larger than 3.5 to allow calibration of local magnitude to moment magnitude. For both methods the new formula results in magnitudes systematically lower than previous values computed with Eaton's (1992) model. We compare the resulting magnitudes and discuss the benefits and drawbacks of each method. Our results highlight the importance of correct calibration of the distance correction terms for accurate local magnitude assessment in regional networks.

  7. Landslide seismic magnitude

    NASA Astrophysics Data System (ADS)

    Lin, C. H.; Jan, J. C.; Pu, H. C.; Tu, Y.; Chen, C. C.; Wu, Y. M.

    2015-11-01

    Landslides have become one of the most deadly natural disasters on earth, not only due to a significant increase in extreme climate change caused by global warming, but also rapid economic development in topographic relief areas. How to detect landslides using a real-time system has become an important question for reducing possible landslide impacts on human society. However, traditional detection of landslides, either through direct surveys in the field or remote sensing images obtained via aircraft or satellites, is highly time consuming. Here we analyze very long period seismic signals (20-50 s) generated by large landslides such as Typhoon Morakot, which passed though Taiwan in August 2009. In addition to successfully locating 109 large landslides, we define landslide seismic magnitude based on an empirical formula: Lm = log ⁡ (A) + 0.55 log ⁡ (Δ) + 2.44, where A is the maximum displacement (μm) recorded at one seismic station and Δ is its distance (km) from the landslide. We conclude that both the location and seismic magnitude of large landslides can be rapidly estimated from broadband seismic networks for both academic and applied purposes, similar to earthquake monitoring. We suggest a real-time algorithm be set up for routine monitoring of landslides in places where they pose a frequent threat.

  8. Reward magnitude tracking by neural populations in ventral striatum

    PubMed Central

    Fiallos, Ana M.; Bricault, Sarah J.; Cai, Lili X.; Worku, Hermoon A.; Colonnese, Matthew T.; Westmeyer, Gil; Jasanoff, Alan

    2017-01-01

    Evaluation of the magnitudes of intrinsically rewarding stimuli is essential for assigning value and guiding behavior. By combining parametric manipulation of a primary reward, medial forebrain bundle (MFB) microstimulation, with functional magnetic imaging (fMRI) in rodents, we delineated a broad network of structures activated by behaviorally characterized levels of rewarding stimulation. Correlation of psychometric behavioral measurements with fMRI response magnitudes revealed regions whose activity corresponded closely to the subjective magnitude of rewards. The largest and most reliable focus of reward magnitude tracking was observed in the shell region of the nucleus accumbens (NAc). Although the nonlinear nature of neurovascular coupling complicates interpretation of fMRI findings in precise neurophysiological terms, reward magnitude tracking was not observed in vascular compartments and could not be explained by saturation of region-specific hemodynamic responses. In addition, local pharmacological inactivation of NAc changed the profile of animals’ responses to rewards of different magnitudes without altering mean reward response rates, further supporting a hypothesis that neural population activity in this region contributes to assessment of reward magnitudes. PMID:27789262

  9. Reinforcement magnitude: an evaluation of preference and reinforcer efficacy.

    PubMed

    Trosclair-Lasserre, Nicole M; Lerman, Dorothea C; Call, Nathan A; Addison, Laura R; Kodak, Tiffany

    2008-01-01

    Consideration of reinforcer magnitude may be important for maximizing the efficacy of treatment for problem behavior. Nonetheless, relatively little is known about children's preferences for different magnitudes of social reinforcement or the extent to which preference is related to differences in reinforcer efficacy. The purpose of the current study was to evaluate the relations among reinforcer magnitude, preference, and efficacy by drawing on the procedures and results of basic experimentation in this area. Three children who engaged in problem behavior that was maintained by social positive reinforcement (attention, access to tangible items) participated. Results indicated that preference for different magnitudes of social reinforcement may predict reinforcer efficacy and that magnitude effects may be mediated by the schedule requirement.

  10. Reinforcement Magnitude: An Evaluation of Preference and Reinforcer Efficacy

    PubMed Central

    Trosclair-Lasserre, Nicole M; Lerman, Dorothea C; Call, Nathan A; Addison, Laura R; Kodak, Tiffany

    2008-01-01

    Consideration of reinforcer magnitude may be important for maximizing the efficacy of treatment for problem behavior. Nonetheless, relatively little is known about children's preferences for different magnitudes of social reinforcement or the extent to which preference is related to differences in reinforcer efficacy. The purpose of the current study was to evaluate the relations among reinforcer magnitude, preference, and efficacy by drawing on the procedures and results of basic experimentation in this area. Three children who engaged in problem behavior that was maintained by social positive reinforcement (attention, access to tangible items) participated. Results indicated that preference for different magnitudes of social reinforcement may predict reinforcer efficacy and that magnitude effects may be mediated by the schedule requirement. PMID:18595284

  11. Impact of magnitude uncertainties on seismic catalogue properties

    NASA Astrophysics Data System (ADS)

    Leptokaropoulos, K. M.; Adamaki, A. K.; Roberts, R. G.; Gkarlaouni, C. G.; Paradisopoulou, P. M.

    2018-05-01

    Catalogue-based studies are of central importance in seismological research, to investigate the temporal, spatial and size distribution of earthquakes in specified study areas. Methods for estimating the fundamental catalogue parameters like the Gutenberg-Richter (G-R) b-value and the completeness magnitude (Mc) are well established and routinely applied. However, the magnitudes reported in seismicity catalogues contain measurement uncertainties which may significantly distort the estimation of the derived parameters. In this study, we use numerical simulations of synthetic data sets to assess the reliability of different methods for determining b-value and Mc, assuming the G-R law validity. After contaminating the synthetic catalogues with Gaussian noise (with selected standard deviations), the analysis is performed for numerous data sets of different sample size (N). The noise introduced to the data generally leads to a systematic overestimation of magnitudes close to and above Mc. This fact causes an increase of the average number of events above Mc, which in turn leads to an apparent decrease of the b-value. This may result to a significant overestimation of seismicity rate even well above the actual completeness level. The b-value can in general be reliably estimated even for relatively small data sets (N < 1000) when only magnitudes higher than the actual completeness level are used. Nevertheless, a correction of the total number of events belonging in each magnitude class (i.e. 0.1 unit) should be considered, to deal with the magnitude uncertainty effect. Because magnitude uncertainties (here with the form of Gaussian noise) are inevitable in all instrumental catalogues, this finding is fundamental for seismicity rate and seismic hazard assessment analyses. Also important is that for some data analyses significant bias cannot necessarily be avoided by choosing a high Mc value for analysis. In such cases, there may be a risk of severe miscalculation of

  12. The active quiescence of HR Del (Nova Del 1967). The ex-nova HR Del

    NASA Astrophysics Data System (ADS)

    Selvelli, P.; Friedjung, M.

    2003-04-01

    This new UV study of the ex-nova HR Del is based on all of the data obtained with the International Ultraviolet Explorer (IUE) satellite, and includes the important series of spectra taken in 1988 and 1992 that have not been analyzed so far. This has allowed us to make a detailed study of both the long-timescale and the short-timescale UV variations, after the return of the nova, around 1981-1982, to the pre-outburst optical magnitude. After the correction for the reddening (EB-V=0.16), adopting a distance d =850 pc we have derived a mean UV luminosity close to LUV ~ 56 Lsun, the highest value among classical novae in ``quiescence". Also the ``average" optical absolute magnitude (Mv=+2.30) is indicative of a bright object. The UV continuum luminosity, the HeII 1640 Å emission line luminosity, and the optical absolute magnitude all give a mass accretion rate dot {M} very close to 1.4x 10-7 Msun yr-1, if one assumes that the luminosity of the old nova is due to a non-irradiated accretion disk. The UV continuum has declined by a factor less than 1.2 over the 13 years of the IUE observations, while the UV emission lines have faded by larger factors. The continuum distribution is well fitted with either a black body of 33 900 K, or a power-law Flambda ~ lambda -2.20. A comparison with the grid of models of Wade & Hubeny (\\cite{Wade}) indicates a low M1 value and a relatively high dot {M} but the best fittings to the continuum and the line spectrum come from different models. We show that the ``quiescent" optical magnitude at mv ~ 12 comes from the hot component and not from the companion star. Since most IUE observations correspond to the ``quiescent" magnitude at mv ~ 12, the same as in the pre-eruption stage, we infer that the pre-nova, for at least 70 years prior to eruption, was also very bright at near the same LUV, Mv, dot {M}, and T values as derived in the present study for the ex-nova. The wind components in the P Cyg profiles of the CIV 1550 Å and NV 1240

  13. Magnitude and Frequency of Floods on Nontidal Streams in Delaware

    USGS Publications Warehouse

    Ries, Kernell G.; Dillow, Jonathan J.A.

    2006-01-01

    Reliable estimates of the magnitude and frequency of annual peak flows are required for the economical and safe design of transportation and water-conveyance structures. This report, done in cooperation with the Delaware Department of Transportation (DelDOT) and the Delaware Geological Survey (DGS), presents methods for estimating the magnitude and frequency of floods on nontidal streams in Delaware at locations where streamgaging stations monitor streamflow continuously and at ungaged sites. Methods are presented for estimating the magnitude of floods for return frequencies ranging from 2 through 500 years. These methods are applicable to watersheds exhibiting a full range of urban development conditions. The report also describes StreamStats, a web application that makes it easy to obtain flood-frequency estimates for user-selected locations on Delaware streams. Flood-frequency estimates for ungaged sites are obtained through a process known as regionalization, using statistical regression analysis, where information determined for a group of streamgaging stations within a region forms the basis for estimates for ungaged sites within the region. One hundred and sixteen streamgaging stations in and near Delaware with at least 10 years of non-regulated annual peak-flow data available were used in the regional analysis. Estimates for gaged sites are obtained by combining the station peak-flow statistics (mean, standard deviation, and skew) and peak-flow estimates with regional estimates of skew and flood-frequency magnitudes. Example flood-frequency estimate calculations using the methods presented in the report are given for: (1) ungaged sites, (2) gaged locations, (3) sites upstream or downstream from a gaged location, and (4) sites between gaged locations. Regional regression equations applicable to ungaged sites in the Piedmont and Coastal Plain Physiographic Provinces of Delaware are presented. The equations incorporate drainage area, forest cover, impervious

  14. Comparison of magnetic probe calibration at nano and millitesla magnitudes

    NASA Astrophysics Data System (ADS)

    Pahl, Ryan A.; Rovey, Joshua L.; Pommerenke, David J.

    2014-01-01

    Magnetic field probes are invaluable diagnostics for pulsed inductive plasma devices where field magnitudes on the order of tenths of tesla or larger are common. Typical methods of providing a broadband calibration of dot{{B}} probes involve either a Helmholtz coil driven by a function generator or a network analyzer. Both calibration methods typically produce field magnitudes of tens of microtesla or less, at least three and as many as six orders of magnitude lower than their intended use. This calibration factor is then assumed constant regardless of magnetic field magnitude and the effects of experimental setup are ignored. This work quantifies the variation in calibration factor observed when calibrating magnetic field probes in low field magnitudes. Calibration of two dot{{B}} probe designs as functions of frequency and field magnitude are presented. The first dot{{B}} probe design is the most commonly used design and is constructed from two hand-wound inductors in a differential configuration. The second probe uses surface mounted inductors in a differential configuration with balanced shielding to further reduce common mode noise. Calibration factors are determined experimentally using an 80.4 mm radius Helmholtz coil in two separate configurations over a frequency range of 100-1000 kHz. A conventional low magnitude calibration using a vector network analyzer produced a field magnitude of 158 nT and yielded calibration factors of 15 663 ± 1.7% and 4920 ± 0.6% {T}/{V {s}} at 457 kHz for the surface mounted and hand-wound probes, respectively. A relevant magnitude calibration using a pulsed-power setup with field magnitudes of 8.7-354 mT yielded calibration factors of 14 615 ± 0.3% and 4507 ± 0.4% {T}/{V {s}} at 457 kHz for the surface mounted inductor and hand-wound probe, respectively. Low-magnitude calibration resulted in a larger calibration factor, with an average difference of 9.7% for the surface mounted probe and 12.0% for the hand-wound probe. The

  15. Fourier Magnitude-Based Privacy-Preserving Clustering on Time-Series Data

    NASA Astrophysics Data System (ADS)

    Kim, Hea-Suk; Moon, Yang-Sae

    Privacy-preserving clustering (PPC in short) is important in publishing sensitive time-series data. Previous PPC solutions, however, have a problem of not preserving distance orders or incurring privacy breach. To solve this problem, we propose a new PPC approach that exploits Fourier magnitudes of time-series. Our magnitude-based method does not cause privacy breach even though its techniques or related parameters are publicly revealed. Using magnitudes only, however, incurs the distance order problem, and we thus present magnitude selection strategies to preserve as many Euclidean distance orders as possible. Through extensive experiments, we showcase the superiority of our magnitude-based approach.

  16. Numerical magnitude processing in children with mild intellectual disabilities.

    PubMed

    Brankaer, Carmen; Ghesquière, Pol; De Smedt, Bert

    2011-01-01

    The present study investigated numerical magnitude processing in children with mild intellectual disabilities (MID) and examined whether these children have difficulties in the ability to represent numerical magnitudes and/or difficulties in the ability to access numerical magnitudes from formal symbols. We compared the performance of 26 children with MID on a symbolic (digits) and a non-symbolic (dot-arrays) comparison task with the performance of two control groups of typically developing children: one group matched on chronological age and one group matched on mathematical ability level. Findings revealed that children with MID performed more poorly than their typically developing chronological age-matched peers on both the symbolic and non-symbolic comparison tasks, while their performance did not substantially differ from the ability-matched control group. These findings suggest that the development of numerical magnitude representation in children with MID is marked by a delay. This performance pattern was observed for both symbolic and non-symbolic comparison tasks, although difficulties on the former task were more prominent. Interventions in children with MID should therefore foster both the development of magnitude representations and the connections between symbols and the magnitudes they represent. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Constraints on the frequency-magnitude relation and maximum magnitudes in the UK from observed seismicity and glacio-isostatic recovery rates

    NASA Astrophysics Data System (ADS)

    Main, Ian; Irving, Duncan; Musson, Roger; Reading, Anya

    1999-05-01

    Earthquake populations have recently been shown to have many similarities with critical-point phenomena, with fractal scaling of source sizes (energy or seismic moment) corresponding to the observed Gutenberg-Richter (G-R) frequency-magnitude law holding at low magnitudes. At high magnitudes, the form of the distribution depends on the seismic moment release rate Msolar and the maximum magnitude m_max . The G-R law requires a sharp truncation at an absolute maximum magnitude for finite Msolar. In contrast, the gamma distribution has an exponential tail which allows a soft or `credible' maximum to be determined by negligible contribution to the total seismic moment release. Here we apply both distributions to seismic hazard in the mainland UK and its immediate continental shelf, constrained by a mixture of instrumental, historical and neotectonic data. Tectonic moment release rates for the seismogenic part of the lithosphere are calculated from a flexural-plate model for glacio-isostatic recovery, constrained by vertical deformation rates from tide-gauge and geomorphological data. Earthquake focal mechanisms in the UK show near-vertical strike-slip faulting, with implied directions of maximum compressive stress approximately in the NNW-SSE direction, consistent with the tectonic model. Maximum magnitudes are found to be in the range 6.3-7.5 for the G-R law, or 7.0-8.2 m_L for the gamma distribution, which compare with a maximum observed in the time period of interest of 6.1 m_L . The upper bounds are conservative estimates, based on 100 per cent seismic release of the observed vertical neotectonic deformation. Glacio-isostatic recovery is predominantly an elastic rather than a seismic process, so the true value of m_max is likely to be nearer the lower end of the quoted range.

  18. Induced earthquake magnitudes are as large as (statistically) expected

    USGS Publications Warehouse

    Van Der Elst, Nicholas; Page, Morgan T.; Weiser, Deborah A.; Goebel, Thomas; Hosseini, S. Mehran

    2016-01-01

    A major question for the hazard posed by injection-induced seismicity is how large induced earthquakes can be. Are their maximum magnitudes determined by injection parameters or by tectonics? Deterministic limits on induced earthquake magnitudes have been proposed based on the size of the reservoir or the volume of fluid injected. However, if induced earthquakes occur on tectonic faults oriented favorably with respect to the tectonic stress field, then they may be limited only by the regional tectonics and connectivity of the fault network. In this study, we show that the largest magnitudes observed at fluid injection sites are consistent with the sampling statistics of the Gutenberg-Richter distribution for tectonic earthquakes, assuming no upper magnitude bound. The data pass three specific tests: (1) the largest observed earthquake at each site scales with the log of the total number of induced earthquakes, (2) the order of occurrence of the largest event is random within the induced sequence, and (3) the injected volume controls the total number of earthquakes rather than the total seismic moment. All three tests point to an injection control on earthquake nucleation but a tectonic control on earthquake magnitude. Given that the largest observed earthquakes are exactly as large as expected from the sampling statistics, we should not conclude that these are the largest earthquakes possible. Instead, the results imply that induced earthquake magnitudes should be treated with the same maximum magnitude bound that is currently used to treat seismic hazard from tectonic earthquakes.

  19. The Ml Magnitude Scale In Italy

    NASA Astrophysics Data System (ADS)

    Gasperini, P.; Lolli, B.; Filippucci, M.; de Simoni, B.

    To improve the reliability of Ml magnitude estimates in Italy, we have updated the database of real Wood-Anderson (WA) and of simulated Wood Anderson (SWA) am- plitudes recently revised by Gasperini (2002). This was done by the re-reading of orig- inal WA seismograms, made available by the SISMOS Project of the Istituto Nazionale di Geofisica (INGV), as well as by the analysis of further Very Broad Band (VBB) recordings of the MEDNET network of INGV for the period from 1996 to 1998. The full operability, in the last five years, of a VBB station located exactly at the same site (TRI) of a former WA instrument allowed us to reliably infer a new attenuation function from the joined WA and SWA dataset. We found a significant deviation of the attenuation law from the standard Richter table at distances larger than 400 km where the latter overestimates the magnitude up to about 0.3 units. We also computed regionalized attenuation functions accounting for the differences in the propagation properties of seismic waves between the Adriatic (less attenuating) and Tyrrhenian (more attenuating) sides of the Italian peninsula. Using this improved Ml magnitude database we were also able to further improve the computation of duration (Md) and amplitude (Ma) magnitudes computed from short period vertical seismometers of the INGV as well as to analyze the time variation of the station calibrations. We found that the absolute amplification of INGV stations is underestimated almost exactly by a factor 2 starting from the entering upon in operation of the digital acquisition system at INGV in middle 1984.

  20. Memorias del segundo simposio internacional sobre políticas, planificación y economía de los programas de protección contra incendios forestales: una visión global; 2004 Abril 19–22; Córdoba, España

    Treesearch

    Armando González-Cabán

    2008-01-01

    Estas memorias resumen el resultado de un simposio diseñado para discutir los problemas actuales que confrontan las agencias con responsabilidad para la protección contra incendios forestales a nivel federal y estadual en los EE.UU., al igual que agencias en la comunidad internacional. Los temas discutidos en el simposio incluyen economía del fuego, teoría y modelos...

  1. Magnitude Knowledge: The Common Core of Numerical Development

    ERIC Educational Resources Information Center

    Siegler, Robert S.

    2016-01-01

    The integrated theory of numerical development posits that a central theme of numerical development from infancy to adulthood is progressive broadening of the types and ranges of numbers whose magnitudes are accurately represented. The process includes four overlapping trends: (1) representing increasingly precisely the magnitudes of non-symbolic…

  2. Magnitude Knowledge: The Common Core of Numerical Development

    ERIC Educational Resources Information Center

    Siegler, Robert S.

    2016-01-01

    The integrated theory of numerical development posits that a central theme of numerical development from infancy to adulthood is progressive broadening of the types and ranges of numbers whose magnitudes are accurately represented. The process includes four overlapping trends: 1) representing increasingly precisely the magnitudes of non-symbolic…

  3. Magnitude comparison with different types of rational numbers.

    PubMed

    DeWolf, Melissa; Grounds, Margaret A; Bassok, Miriam; Holyoak, Keith J

    2014-02-01

    An important issue in understanding mathematical cognition involves the similarities and differences between the magnitude representations associated with various types of rational numbers. For single-digit integers, evidence indicates that magnitudes are represented as analog values on a mental number line, such that magnitude comparisons are made more quickly and accurately as the numerical distance between numbers increases (the distance effect). Evidence concerning a distance effect for compositional numbers (e.g., multidigit whole numbers, fractions and decimals) is mixed. We compared the patterns of response times and errors for college students in magnitude comparison tasks across closely matched sets of rational numbers (e.g., 22/37, 0.595, 595). In Experiment 1, a distance effect was found for both fractions and decimals, but response times were dramatically slower for fractions than for decimals. Experiments 2 and 3 compared performance across fractions, decimals, and 3-digit integers. Response patterns for decimals and integers were extremely similar but, as in Experiment 1, magnitude comparisons based on fractions were dramatically slower, even when the decimals varied in precision (i.e., number of place digits) and could not be compared in the same way as multidigit integers (Experiment 3). Our findings indicate that comparisons of all three types of numbers exhibit a distance effect, but that processing often involves strategic focus on components of numbers. Fractions impose an especially high processing burden due to their bipartite (a/b) structure. In contrast to the other number types, the magnitude values associated with fractions appear to be less precise, and more dependent on explicit calculation. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  4. Local magnitude calibration of the Hellenic Unified Seismic Network

    NASA Astrophysics Data System (ADS)

    Scordilis, E. M.; Kementzetzidou, D.; Papazachos, B. C.

    2016-01-01

    A new relation is proposed for accurate determination of local magnitudes in Greece. This relation is based on a large number of synthetic Wood-Anderson (SWA) seismograms corresponding to 782 regional shallow earthquakes which occurred during the period 2007-2013 and recorded by 98 digital broad-band stations. These stations are installed and operated by the following: (a) the National Observatory of Athens (HL), (b) the Department of Geophysics of the Aristotle University of Thessaloniki (HT), (c) the Seismological Laboratory of the University of Athens (HA), and (d) the Seismological Laboratory of the Patras University (HP). The seismological networks of the above institutions constitute the recently (2004) established Hellenic Unified Seismic Network (HUSN). These records are used to calculate a refined geometrical spreading factor and an anelastic attenuation coefficient, representative for Greece and surrounding areas, proper for accurate calculation of local magnitudes in this region. Individual station corrections depending on the crustal structure variations in their vicinity and possible inconsistencies in instruments responses are also considered in order to further ameliorate magnitude estimation accuracy. Comparison of such calculated local magnitudes with corresponding original moment magnitudes, based on an independent dataset, revealed that these magnitude scales are equivalent for a wide range of values.

  5. Joint maximum-likelihood magnitudes of presumed underground nuclear test explosions

    NASA Astrophysics Data System (ADS)

    Peacock, Sheila; Douglas, Alan; Bowers, David

    2017-08-01

    Body-wave magnitudes (mb) of 606 seismic disturbances caused by presumed underground nuclear test explosions at specific test sites between 1964 and 1996 have been derived from station amplitudes collected by the International Seismological Centre (ISC), by a joint inversion for mb and station-specific magnitude corrections. A maximum-likelihood method was used to reduce the upward bias of network mean magnitudes caused by data censoring, where arrivals at stations that do not report arrivals are assumed to be hidden by the ambient noise at the time. Threshold noise levels at each station were derived from the ISC amplitudes using the method of Kelly and Lacoss, which fits to the observed magnitude-frequency distribution a Gutenberg-Richter exponential decay truncated at low magnitudes by an error function representing the low-magnitude threshold of the station. The joint maximum-likelihood inversion is applied to arrivals from the sites: Semipalatinsk (Kazakhstan) and Novaya Zemlya, former Soviet Union; Singer (Lop Nor), China; Mururoa and Fangataufa, French Polynesia; and Nevada, USA. At sites where eight or more arrivals could be used to derive magnitudes and station terms for 25 or more explosions (Nevada, Semipalatinsk and Mururoa), the resulting magnitudes and station terms were fixed and a second inversion carried out to derive magnitudes for additional explosions with three or more arrivals. 93 more magnitudes were thus derived. During processing for station thresholds, many stations were rejected for sparsity of data, obvious errors in reported amplitude, or great departure of the reported amplitude-frequency distribution from the expected left-truncated exponential decay. Abrupt changes in monthly mean amplitude at a station apparently coincide with changes in recording equipment and/or analysis method at the station.

  6. High-magnitude head impact exposure in youth football.

    PubMed

    Campolettano, Eamon T; Gellner, Ryan A; Rowson, Steven

    2017-12-01

    OBJECTIVE Even in the absence of a clinically diagnosed concussion, research suggests that neurocognitive changes may develop in football players as a result of frequent head impacts that occur during football games and practices. The objectives of this study were to determine the specific situations in which high-magnitude impacts (accelerations exceeding 40 g) occur in youth football games and practices and to assess how representative practice activities are of games with regard to high-magnitude head impact exposure. METHODS A total of 45 players (mean age 10.7 ± 1.1 years) on 2 youth teams (Juniors [mean age 9.9 ± 0.6 years; mean body mass 38.9 ± 9.9 kg] and Seniors [mean age 11.9 ± 0.6 years; mean body mass 51.4 ± 11.8 kg]) wore helmets instrumented with accelerometer arrays to record head impact accelerations for all practices and games. Video recordings from practices and games were used to verify all high-magnitude head impacts, identify specific impact characteristics, and determine the amount of time spent in each activity. RESULTS A total of 7590 impacts were recorded, of which 571 resulted in high-magnitude head impact accelerations exceeding 40 g (8%). Impacts were characterized based on the position played by the team member who received the impact, the part of the field where the impact occurred, whether the impact occurred during a game or practice play, and the cause of the impact. High-magnitude impacts occurred most frequently in the open field in both games (59.4%) and practices (67.5%). "Back" position players experienced a greater proportion of high-magnitude head impacts than players at other positions. The 2 teams in this study structured their practice sessions similarly with respect to time spent in each drill, but impact rates differed for each drill between the teams. CONCLUSIONS High-magnitude head impact exposure in games and practice drills was quantified and used as the basis for comparison of exposure in the 2 settings. In

  7. High-magnitude head impact exposure in youth football

    PubMed Central

    Campolettano, Eamon T.; Gellner, Ryan A.; Rowson, Steven

    2018-01-01

    OBJECTIVE Even in the absence of a clinically diagnosed concussion, research suggests that neurocognitive changes may develop in football players as a result of frequent head impacts that occur during football games and practices. The objectives of this study were to determine the specific situations in which high-magnitude impacts (accelerations exceeding 40g) occur in youth football games and practices and to assess how representative practice activities are of games with regard to high-magnitude head impact exposure. METHODS A total of 45 players (mean age 10.7 ± 1.1 years) on 2 youth teams (Juniors [mean age 9.9 ± 0.6 years; mean body mass 38.9 ± 9.9 kg] and Seniors [mean age 11.9 ± 0.6 years; mean body mass 51.4 ± 11.8 kg]) wore helmets instrumented with accelerometer arrays to record head impact accelerations for all practices and games. Video recordings from practices and games were used to verify all high-magnitude head impacts, identify specific impact characteristics, and determine the amount of time spent in each activity. RESULTS A total of 7590 impacts were recorded, of which 571 resulted in high-magnitude head impact accelerations exceeding 40g (8%). Impacts were characterized based on the position played by the team member who received the impact, the part of the field where the impact occurred, whether the impact occurred during a game or practice play, and the cause of the impact. High-magnitude impacts occurred most frequently in the open field in both games (59.4%) and practices (67.5%). “Back” position players experienced a greater proportion of high-magnitude head impacts than players at other positions. The 2 teams in this study structured their practice sessions similarly with respect to time spent in each drill, but impact rates differed for each drill between the teams. CONCLUSIONS High-magnitude head impact exposure in games and practice drills was quantified and used as the basis for comparison of exposure in the 2 settings. In

  8. Using Magnitude Estimation Scaling in Business Communication Research.

    ERIC Educational Resources Information Center

    Sturges, David L.

    1990-01-01

    Critically analyzes magnitude estimation scaling for its potential use in business communication research. Finds that the 12-15 percent increase in explained variance by magnitude estimation over categorical scaling methods may be useful in theory building but may not be sufficient to justify its added expense in applied business communication…

  9. Achieving continuity: a story of stellar magnitude

    NASA Astrophysics Data System (ADS)

    Evans, Michael S.

    2010-03-01

    Scientists tell a story of 2,000 years of stellar magnitude research that traces back to Hipparchus. This story of continuity in practices serves an important role in scientific education and outreach. STS scholars point out many ways that stories of continuity, like many narratives about science, are disconnected from practices. Yet the story of continuity in stellar magnitude is a powerful scientific achievement precisely because of its connection to practice. The historical development of star catalogues shows how specific recording practices connected past and present in a useful way. The narrative of continuity in stellar magnitude, however else it might be subject to STS critique of narrative, maintains its power because of its connection to practice. I suggest that more attention be paid to connections between practice and narrative in STS, and in particular to the ways that historical practices sustain narratives by connecting past and present.

  10. [Low magnitude whole-body vibration and postmenopausal osteoporosis].

    PubMed

    Li, Huiming; Li, Liang

    2018-04-01

    Postmenopausal osteoporosis is a type of osteoporosis with high bone transformation rate, caused by a decrease of estrogen in the body, which is a systemic bone disease characterized by decreased bone mass and increased risk of fracture. In recent years, as a kind of non-pharmacologic treatment of osteoporosis, defined by whole-body vibration less than 1 g ( g = 9.81 m/s 2 ), low magnitude whole-body vibration is widely concerned, mainly because of its small side effects, simple operation and relative safety. Studies have shown that low magnitude whole-body vibration can improve bone strength, bone volume and bone density. But a lot of research found that, the therapeutic effects of low magnitude whole-body vibration are different depending on ages and hormone levels of subjects for animal models or human patients. There has been no definite vibration therapy can be applied to each subject so far. Studies of whole-body and cellular level suggest that low magnitude whole-body vibration stimulation is likely to be associated with changes of hormone levels and directed differentiation of stem cells. Based on the analysis of related literature in recent years, this paper made a review from vibration parameters, vibration effects and the mechanisms, to provide scientific basis and clinical guidance for the treatment of postmenopausal osteoporosis with low magnitude whole-body vibration.

  11. Representation of numerical magnitude in math-anxious individuals.

    PubMed

    Colomé, Àngels

    2018-01-01

    Larger distance effects in high math-anxious individuals (HMA) performing comparison tasks have previously been interpreted as indicating less precise magnitude representation in this population. A recent study by Dietrich, Huber, Moeller, and Klein limited the effects of math anxiety to symbolic comparison, in which they found larger distance effects for HMA, despite equivalent size effects. However, the question of whether distance effects in symbolic comparison reflect the properties of the magnitude representation or decisional processes is currently under debate. This study was designed to further explore the relation between math anxiety and magnitude representation through three different tasks. HMA and low math-anxious individuals (LMA) performed a non-symbolic comparison, in which no group differences were found. Furthermore, we did not replicate previous findings in an Arabic digit comparison, in which HMA individuals showed equivalent distance effects to their LMA peers. Lastly, there were no group differences in a counting Stroop task. Altogether, an explanation of math anxiety differences in terms of less precise magnitude representation is not supported.

  12. Characteristics of North Korea nuclear test and KMA magnitude scale

    NASA Astrophysics Data System (ADS)

    Jeon, Y. S.; Lee, D.; Min, K.; Hwang, E. H.; Lee, J.; Park, E.; Jo, E.; Lee, M. S.

    2017-12-01

    Democratic People's Republic of Korea(DPRK) carried out 6th nuclear test on 3 Sep. 2017 at 03:30 UTC. Korea Meteorological Administration(KMA) announced to the public that the event took place in the DPRK's test site, Punggye-ri with the magnitude 5.7. This event is larger than previous one in terms of magnitude and showed that measured magnitude strongly depends on the frequency band of data. After we applied several magnitude scales such as Everdon(1967), Nuttli(1967), and Hong & Lee(2012) to this event, we found that magnitude ranges from 5.3 to 6.7 which depends on frequency band and epicentral distance of signal. 6th DPRK test experiment indicated that spectral amplitude ratio of 6th/5th near 2.37 Hz shows similar amplification compatible to relative spectral magnitude 5.7, while spectral amplitude ratio of 6th/5th near 1.0 Hz marks relative spectral magnitude about 6.1. Relative spectral magnitude varies with frequencies and decreases as frequency increase. We found that systematic non-linearity exists for spectral amplitude ratio of 6th/5th from 1.0 to 10.0 Hz, while it's characteristic is not found at 5th/4th and 4th/3th. A methodology is presented for determining mb(Pn) magnitude of underground nuclear explosions from local Pn phase. 582 waveforms from vertical component of broadband and acceleration seismographs at 120 stations in the epicenter distance from 340 to 800 km are used to calibrate mb(Pn) magnitude scaling for DPRK's nuclear tests. The mb(Pn) estimates of regional events for Korean Peninsula are determined to be mb(Pn) ? = log10(A) + 2.1164×log10(d) - 0.2721, where A is the peak-to-peak Pn amplitude in μm and d is the epicentral distance in km. Systematic non-linearity does not observed at frequency band from 0.1 to 1.0 Hz. The magnitude of 6th event is mb(Pn) 6.08 and mb(Pn) 4.52, 4.92, 4.84 and 5.03 for 2nd, 3rd, 4th and 5th respectively. Further research of applicable mb(Pn) magnitude scaling is required for all frequency band and

  13. Understanding Magnitudes to Understand Fractions

    ERIC Educational Resources Information Center

    Gabriel, Florence

    2016-01-01

    Fractions are known to be difficult to learn and difficult to teach, yet they are vital for students to have access to further mathematical concepts. This article uses evidence to support teachers employing teaching methods that focus on the conceptual understanding of the magnitude of fractions.

  14. Improving Children’s Knowledge of Fraction Magnitudes

    PubMed Central

    Fazio, Lisa K.; Kennedy, Casey A.; Siegler, Robert S.

    2016-01-01

    We examined whether playing a computerized fraction game, based on the integrated theory of numerical development and on the Common Core State Standards’ suggestions for teaching fractions, would improve children’s fraction magnitude understanding. Fourth and fifth-graders were given brief instruction about unit fractions and played Catch the Monster with Fractions, a game in which they estimated fraction locations on a number line and received feedback on the accuracy of their estimates. The intervention lasted less than 15 minutes. In our initial study, children showed large gains from pretest to posttest in their fraction number line estimates, magnitude comparisons, and recall accuracy. In a more rigorous second study, the experimental group showed similarly large improvements, whereas a control group showed no improvement from practicing fraction number line estimates without feedback. The results provide evidence for the effectiveness of interventions emphasizing fraction magnitudes and indicate how psychological theories and research can be used to evaluate specific recommendations of the Common Core State Standards. PMID:27768756

  15. Fresnel transform phase retrieval from magnitude.

    PubMed

    Pitts, Todd A; Greenleaf, James F

    2003-08-01

    This report presents a generalized projection method for recovering the phase of a finite support, two-dimensional signal from knowledge of its magnitude in the spatial position and Fresnel transform domains. We establish the uniqueness of sampled monochromatic scalar field phase given Fresnel transform magnitude and finite region of support constraints for complex signals. We derive an optimally relaxed version of the algorithm resulting in a significant reduction in the number of iterations needed to obtain useful results. An advantage of using the Fresnel transform (as opposed to Fourier) for measurement is that the shift-invariance of the transform operator implies retention of object location information in the transformed image magnitude. As a practical application in the context of ultrasound beam measurement we discuss the determination of small optical phase shifts from near field optical intensity distributions. Experimental data are used to reconstruct the phase shape of an optical field immediately after propagating through a wide bandwidth ultrasonic pulse. The phase of each point on the optical wavefront is proportional to the ray sum of pressure through the ultrasound pulse (assuming low ultrasonic intensity). An entire pressure field was reconstructed in three dimensions and compared with a calibrated hydrophone measurement. The comparison is excellent, demonstrating that the phase retrieval is quantitative.

  16. Reinforcer magnitude and rate dependency: evaluation of resistance-to-change mechanisms.

    PubMed

    Pinkston, Jonathan W; Ginsburg, Brett C; Lamb, Richard J

    2014-10-01

    Under many circumstances, reinforcer magnitude appears to modulate the rate-dependent effects of drugs such that when schedules arrange for relatively larger reinforcer magnitudes rate dependency is attenuated compared with behavior maintained by smaller magnitudes. The current literature on resistance to change suggests that increased reinforcer density strengthens operant behavior, and such strengthening effects appear to extend to the temporal control of behavior. As rate dependency may be understood as a loss of temporal control, the effects of reinforcer magnitude on rate dependency may be due to increased resistance to disruption of temporally controlled behavior. In the present experiments, pigeons earned different magnitudes of grain during signaled components of a multiple FI schedule. Three drugs, clonidine, haloperidol, and morphine, were examined. All three decreased overall rates of key pecking; however, only the effects of clonidine were attenuated as reinforcer magnitude increased. An analysis of within-interval performance found rate-dependent effects for clonidine and morphine; however, these effects were not modulated by reinforcer magnitude. In addition, we included prefeeding and extinction conditions, standard tests used to measure resistance to change. In general, rate-decreasing effects of prefeeding and extinction were attenuated by increasing reinforcer magnitudes. Rate-dependent analyses of prefeeding showed rate-dependency following those tests, but in no case were these effects modulated by reinforcer magnitude. The results suggest that a resistance-to-change interpretation of the effects of reinforcer magnitude on rate dependency is not viable.

  17. SNARC-like Congruency Based on Number Magnitude and Response Duration

    ERIC Educational Resources Information Center

    Kiesel, Andrea; Vierck, Esther

    2009-01-01

    Recent findings demonstrated that number magnitude affects the perception of display time (B. Xuan, D. Zhang, S. He, & X. Chen, 2007). Participants made fewer errors when display time (e.g., short) and magnitude (e.g., small) matched, suggesting an influence of magnitude on time perception. With the present experiment, the authors aimed to extend…

  18. Resurgence and alternative-reinforcer magnitude.

    PubMed

    Craig, Andrew R; Browning, Kaitlyn O; Nall, Rusty W; Marshall, Ciara M; Shahan, Timothy A

    2017-03-01

    Resurgence is defined as an increase in the frequency of a previously reinforced target response when an alternative source of reinforcement is suspended. Despite an extensive body of research examining factors that affect resurgence, the effects of alternative-reinforcer magnitude have not been examined. Thus, the present experiments aimed to fill this gap in the literature. In Experiment 1, rats pressed levers for single-pellet reinforcers during Phase 1. In Phase 2, target-lever pressing was extinguished, and alternative-lever pressing produced either five-pellet, one-pellet, or no alternative reinforcement. In Phase 3, alternative reinforcement was suspended to test for resurgence. Five-pellet alternative reinforcement produced faster elimination and greater resurgence of target-lever pressing than one-pellet alternative reinforcement. In Experiment 2, effects of decreasing alternative-reinforcer magnitude on resurgence were examined. Rats pressed levers and pulled chains for six-pellet reinforcers during Phases 1 and 2, respectively. In Phase 3, alternative reinforcement was decreased to three pellets for one group, one pellet for a second group, and suspended altogether for a third group. Shifting from six-pellet to one-pellet alternative reinforcement produced as much resurgence as suspending alternative reinforcement altogether, while shifting from six pellets to three pellets did not produce resurgence. These results suggest that alternative-reinforcer magnitude has effects on elimination and resurgence of target behavior that are similar to those of alternative-reinforcer rate. Thus, both suppression of target behavior during alternative reinforcement and resurgence when conditions of alternative reinforcement are altered may be related to variables that affect the value of the alternative-reinforcement source. © 2017 Society for the Experimental Analysis of Behavior.

  19. Resurgence and Alternative-Reinforcer Magnitude

    PubMed Central

    Craig, Andrew R.; Browning, Kaitlyn O.; Nall, Rusty W.; Marshall, Ciara M.; Shahan, Timothy A.

    2017-01-01

    Resurgence is defined as an increase in the frequency of a previously reinforced target response when an alternative source of reinforcement is suspended. Despite an extensive body of research examining factors that affect resurgence, the effects of alternative-reinforcer magnitude have not been examined. Thus, the present experiments aimed to fill this gap in the literature. In Experiment 1, rats pressed levers for single-pellet reinforcers during Phase 1. In Phase 2, target-lever pressing was extinguished, and alternative-lever pressing produced either five-pellet, one-pellet, or no alternative reinforcement. In Phase 3, alternative reinforcement was suspended to test for resurgence. Five-pellet alternative reinforcement produced faster elimination and greater resurgence of target-lever pressing than one-pellet alternative reinforcement. In Experiment 2, effects of decreasing alternative-reinforcer magnitude on resurgence were examined. Rats pressed levers and pulled chains for six-pellet reinforcers during Phases 1 and 2, respectively. In Phase 3, alternative reinforcement was decreased to three pellets for one group, one pellet for a second group, and suspended altogether for a third group. Shifting from six-pellet to one-pellet alternative reinforcement produced as much resurgence as suspending alternative reinforcement altogether, while shifting from six pellets to three pellets did not produce resurgence. These results suggest that alternative-reinforcer magnitude has effects on elimination and resurgence of target behavior that are similar to those of alternative-reinforcer rate. Thus, both suppression of target behavior during alternative reinforcement and resurgence when conditions of alternative reinforcement are altered may be related to variables that affect the value of the alternative-reinforcement source. PMID:28194793

  20. Identificación de los miembros del cúmulo NGC 2516

    NASA Astrophysics Data System (ADS)

    de Elía, G. C.; Orellana, R. B.

    El cúmulo abierto NGC 2516 (α = 7h 58m y δ = -60o 45') tiene una edad de, aproximadamente, 150 Myr. El análisis de este sistema es particularmente importante en el Hemisferio Sur debido a su abundancia de estrellas peculiares y muy estudiado aplicando técnicas fotométricas, pero muy poco analizado desde el punto de vista astrométrico. A partir de una placa obtenida en el Observatorio Astronómico de La Plata y observaciones más actuales, nos hemos abocado al estudio de los movimientos propios de este cúmulo con el fin de determinar la pertenencia al mismo de las estrellas del campo de dicho cúmulo. Luego de llevar a cabo la determinación de los movimientos propios de todas las estrellas a partir de las posiciones obtenidas de la placa existente en el Observatorio de La Plata de 1914 y leídas con la MAMA en París, las observaciones realizadas con el círculo meridiano de San Fernando que se encuentra en el Observatorio Félix Aguilar de San Juan y las posiciones existentes en los catálogos AC 2000, Tycho, USNO y UCAC, programamos el método de Vasilevsky y Sanders para determinar la pertenencia de las estrellas de la región al cúmulo en cuestión. En un paso posterior, se realizó una modificación al método anterior para la determinación de los miembros. En esta modificación se consideró la densidad de las estrellas del cúmulo y la densidad de estrellas de campo. Esto permitió evaluar la pertenencia, no sólo a partir del movimiento propio de las estrellas, sino también a partir de la posición de las mismas con respecto al centro del cúmulo. También se consideró la dependencia de los parámetros con la magnitud. Los resultados así obtenidos fueron comparados con otras investigaciones de movimientos propios de la región del cúmulo. El movimiento propio absoluto del cúmulo fue comparado con el obtenido a partir de los catálogos estelares. Se encontró que los resultados coincidían para estrellas brillantes (magnitud más brillante que

  1. Color-magnitude relations in nearby galaxy clusters

    NASA Astrophysics Data System (ADS)

    Rasheed, Mariwan A.; Mohammad, Khalid K.

    2018-06-01

    The rest-frame (g-r) /Mr color-magnitude relations of 12 Abell-type clusters are analyzed in the redshift range (0.02≲ z ≲ 0.10) and within a projected radius of 0.75 Mpc using photometric data from SDSS-DR9. We show that the color-magnitude relation parameters (slope, zero-point, and scatter) do not exhibit significant evolution within this low-redshift range. Thus, we can say that during the look-back time of z ˜ 0.1 all red sequence galaxies evolve passively, without any star formation activity.

  2. Maximum magnitude in the Lower Rhine Graben

    NASA Astrophysics Data System (ADS)

    Vanneste, Kris; Merino, Miguel; Stein, Seth; Vleminckx, Bart; Brooks, Eddie; Camelbeeck, Thierry

    2014-05-01

    Estimating Mmax, the assumed magnitude of the largest future earthquakes expected on a fault or in an area, involves large uncertainties. No theoretical basis exists to infer Mmax because even where we know the long-term rate of motion across a plate boundary fault, or the deformation rate across an intraplate zone, neither predict how strain will be released. As a result, quite different estimates can be made based on the assumptions used. All one can say with certainty is that Mmax is at least as large as the largest earthquake in the available record. However, because catalogs are often short relative to the average recurrence time of large earthquakes, larger earthquakes than anticipated often occur. Estimating Mmax is especially challenging within plates, where deformation rates are poorly constrained, large earthquakes are rarer and variable in space and time, and often occur on previously unrecognized faults. We explore this issue for the Lower Rhine Graben seismic zone where the largest known earthquake, the 1756 Düren earthquake, has magnitude 5.7 and should occur on average about every 400 years. However, paleoseismic studies suggest that earthquakes with magnitudes up to 6.7 occurred during the Late Pleistocene and Holocene. What to assume for Mmax is crucial for critical facilities like nuclear power plants that should be designed to withstand the maximum shaking in 10,000 years. Using the observed earthquake frequency-magnitude data, we generate synthetic earthquake histories, and sample them over shorter intervals corresponding to the real catalog's completeness. The maximum magnitudes appearing most often in the simulations tend to be those of earthquakes with mean recurrence time equal to the catalog length. Because catalogs are often short relative to the average recurrence time of large earthquakes, we expect larger earthquakes than observed to date to occur. In a next step, we will compute hazard maps for different return periods based on the

  3. The population, magnitudes, and sizes of Jupiter family comets

    NASA Astrophysics Data System (ADS)

    Fernández, J. A.; Tancredi, G.; Rickman, H.; Licandro, J.

    1999-12-01

    We analyze the sample of measured nuclear magnitudes of the observed Jupiter family (JF) comets (taken as those with orbital periods P < 20 years and Tisserand parameters T > 2). We find a tendency of the measured nuclear magnitudes to be fainter as JF comets are observed with CCD detectors attached to medium- and large-size telescopes (e.g. Spacewatch Telescope). However, a few JF comets observed very far from the Sun (4-7 AU) show a wide dispersion of their derived absolute nuclear magnitudes which suggests that either these JF comets keep active all along the orbit, so the reported unusually bright distant magnitudes were strongly contaminated by a coma, or some of the measured ``nuclear magnitudes'' were grossly overestimated (i.e. their brightness underestimated). The cumulative mass distribution of JF comets is found to follow a power-law of index s = - 0.88 +/- 0.08, suggesting a distribution significantly steeper than that for both small main-belt asteroids and near-Earth asteroids. The cumulative mass distribution of JF comets with q < 2 AU tends to flatten for absolute (visual) nuclear magnitudes H_N > 16, which is probably due to incompleteness of discovery of fainter comets and/or a real scarcity of small comets due, perhaps, to much shorter physical lifetimes. In particular, no JF comets fainter than H_N ~ 19.5 are found in the sample, suggesting that the critical size for a comet to be still active may be of about 0.4 km radius for an assumed geometric albedo of 0.04. Possibly, smaller comet nuclei disintegrate very quickly into meteor streams. Most absolute nuclear magnitudes are found in the range 15-18, corresponding to nuclear radii in the range 0.8-3.3 km (for the same geometric albedo). We find that a large majority of JF comets with perihelion distances q > 2.5 AU are brighter than absolute nuclear magnitude H_N = 16, suggesting that only a very small fraction (a few percent) of the population of the JF comets with large q has so far been

  4. Puertorriquenos En Chicago: El Problema Educativo Del Dropout

    ERIC Educational Resources Information Center

    Lucas, Isidro

    1974-01-01

    Article written in Spanish. Defines the term "dropout," discusses the characteristics and motivations of Puerto Rican school dropouts in Chicago, and outlines the problems in educating them. (Author/RJ)

  5. The effects of reinforcement magnitude on skill acquisition for children with autism.

    PubMed

    Paden, Amber R; Kodak, Tiffany

    2015-12-01

    We examined the effects of reinforcement magnitude on skill acquisition during discrete-trial training. After conducting a magnitude preference assessment, we compared acquisition during conditions with large and small magnitudes of edible reinforcement to a praise-only condition. Although all participants showed a preference for the large-magnitude reinforcer, preference did not predict the magnitude that produced the fastest skill acquisition. © Society for the Experimental Analysis of Behavior.

  6. Magnitude processing of symbolic and non-symbolic proportions: an fMRI study.

    PubMed

    Mock, Julia; Huber, Stefan; Bloechle, Johannes; Dietrich, Julia F; Bahnmueller, Julia; Rennig, Johannes; Klein, Elise; Moeller, Korbinian

    2018-05-10

    Recent research indicates that processing proportion magnitude is associated with activation in the intraparietal sulcus. Thus, brain areas associated with the processing of numbers (i.e., absolute magnitude) were activated during processing symbolic fractions as well as non-symbolic proportions. Here, we investigated systematically the cognitive processing of symbolic (e.g., fractions and decimals) and non-symbolic proportions (e.g., dot patterns and pie charts) in a two-stage procedure. First, we investigated relative magnitude-related activations of proportion processing. Second, we evaluated whether symbolic and non-symbolic proportions share common neural substrates. We conducted an fMRI study using magnitude comparison tasks with symbolic and non-symbolic proportions, respectively. As an indicator for magnitude-related processing of proportions, the distance effect was evaluated. A conjunction analysis indicated joint activation of specific occipito-parietal areas including right intraparietal sulcus (IPS) during proportion magnitude processing. More specifically, results indicate that the IPS, which is commonly associated with absolute magnitude processing, is involved in processing relative magnitude information as well, irrespective of symbolic or non-symbolic presentation format. However, we also found distinct activation patterns for the magnitude processing of the different presentation formats. Our findings suggest that processing for the separate presentation formats is not only associated with magnitude manipulations in the IPS, but also increasing demands on executive functions and strategy use associated with frontal brain regions as well as visual attention and encoding in occipital regions. Thus, the magnitude processing of proportions may not exclusively reflect processing of number magnitude information but also rather domain-general processes.

  7. Linear Numerical-Magnitude Representations Aid Children's Memory for Numbers

    ERIC Educational Resources Information Center

    Thompson, Clarissa A.; Siegler, Robert S.

    2010-01-01

    We investigated the relation between children's numerical-magnitude representations and their memory for numbers. Results of three experiments indicated that the more linear children's magnitude representations were, the more closely their memory of the numbers approximated the numbers presented. This relation was present for preschoolers and…

  8. What controls the maximum magnitude of injection-induced earthquakes?

    NASA Astrophysics Data System (ADS)

    Eaton, D. W. S.

    2017-12-01

    Three different approaches for estimation of maximum magnitude are considered here, along with their implications for managing risk. The first approach is based on a deterministic limit for seismic moment proposed by McGarr (1976), which was originally designed for application to mining-induced seismicity. This approach has since been reformulated for earthquakes induced by fluid injection (McGarr, 2014). In essence, this method assumes that the upper limit for seismic moment release is constrained by the pressure-induced stress change. A deterministic limit is given by the product of shear modulus and the net injected fluid volume. This method is based on the assumptions that the medium is fully saturated and in a state of incipient failure. An alternative geometrical approach was proposed by Shapiro et al. (2011), who postulated that the rupture area for an induced earthquake falls entirely within the stimulated volume. This assumption reduces the maximum-magnitude problem to one of estimating the largest potential slip surface area within a given stimulated volume. Finally, van der Elst et al. (2016) proposed that the maximum observed magnitude, statistically speaking, is the expected maximum value for a finite sample drawn from an unbounded Gutenberg-Richter distribution. These three models imply different approaches for risk management. The deterministic method proposed by McGarr (2014) implies that a ceiling on the maximum magnitude can be imposed by limiting the net injected volume, whereas the approach developed by Shapiro et al. (2011) implies that the time-dependent maximum magnitude is governed by the spatial size of the microseismic event cloud. Finally, the sample-size hypothesis of Van der Elst et al. (2016) implies that the best available estimate of the maximum magnitude is based upon observed seismicity rate. The latter two approaches suggest that real-time monitoring is essential for effective management of risk. A reliable estimate of maximum

  9. The magnitude of innovation and its evolution in social animals.

    PubMed

    Arbilly, Michal; Laland, Kevin N

    2017-02-08

    Innovative behaviour in animals, ranging from invertebrates to humans, is increasingly recognized as an important topic for investigation by behavioural researchers. However, what constitutes an innovation remains controversial, and difficult to quantify. Drawing on a broad definition whereby any behaviour with a new component to it is an innovation, we propose a quantitative measure, which we call the magnitude of innovation , to describe the extent to which an innovative behaviour is novel. This allows us to distinguish between innovations that are a slight change to existing behaviours (low magnitude), and innovations that are substantially different (high magnitude). Using mathematical modelling and evolutionary computer simulations, we explored how aspects of social interaction, cognition and natural selection affect the frequency and magnitude of innovation. We show that high-magnitude innovations are likely to arise regularly even if the frequency of innovation is low, as long as this frequency is relatively constant, and that the selectivity of social learning and the existence of social rewards, such as prestige and royalties, are crucial for innovative behaviour to evolve. We suggest that consideration of the magnitude of innovation may prove a useful tool in the study of the evolution of cognition and of culture. © 2017 The Author(s).

  10. The magnitude of innovation and its evolution in social animals

    PubMed Central

    2017-01-01

    Innovative behaviour in animals, ranging from invertebrates to humans, is increasingly recognized as an important topic for investigation by behavioural researchers. However, what constitutes an innovation remains controversial, and difficult to quantify. Drawing on a broad definition whereby any behaviour with a new component to it is an innovation, we propose a quantitative measure, which we call the magnitude of innovation, to describe the extent to which an innovative behaviour is novel. This allows us to distinguish between innovations that are a slight change to existing behaviours (low magnitude), and innovations that are substantially different (high magnitude). Using mathematical modelling and evolutionary computer simulations, we explored how aspects of social interaction, cognition and natural selection affect the frequency and magnitude of innovation. We show that high-magnitude innovations are likely to arise regularly even if the frequency of innovation is low, as long as this frequency is relatively constant, and that the selectivity of social learning and the existence of social rewards, such as prestige and royalties, are crucial for innovative behaviour to evolve. We suggest that consideration of the magnitude of innovation may prove a useful tool in the study of the evolution of cognition and of culture. PMID:28179515

  11. Reinforcement Magnitude: An Evaluation of Preference and Reinforcer Efficacy

    ERIC Educational Resources Information Center

    Trosclair-Lasserre, Nicole M.; Lerman, Dorothea C.; Call, Nathan A.; Addison, Laura R.; Kodak, Tiffany

    2008-01-01

    Consideration of reinforcer magnitude may be important for maximizing the efficacy of treatment for problem behavior. Nonetheless, relatively little is known about children's preferences for different magnitudes of social reinforcement or the extent to which preference is related to differences in reinforcer efficacy. The purpose of the current…

  12. Stability of individual loudness functions obtained by magnitude estimation and production

    NASA Technical Reports Server (NTRS)

    Hellman, R. P.

    1981-01-01

    A correlational analysis of individual magnitude estimation and production exponents at the same frequency is performed, as is an analysis of individual exponents produced in different sessions by the same procedure across frequency (250, 1000, and 3000 Hz). Taken as a whole, the results show that individual exponent differences do not decrease by counterbalancing magnitude estimation with magnitude production and that individual exponent differences remain stable over time despite changes in stimulus frequency. Further results show that although individual magnitude estimation and production exponents do not necessarily obey the .6 power law, it is possible to predict the slope of an equal-sensation function averaged for a group of listeners from individual magnitude estimation and production data. On the assumption that individual listeners with sensorineural hearing also produce stable and reliable magnitude functions, it is also shown that the slope of the loudness-recruitment function measured by magnitude estimation and production can be predicted for individuals with bilateral losses of long duration. Results obtained in normal and pathological ears thus suggest that individual listeners can produce loudness judgements that reveal, although indirectly, the input-output characteristic of the auditory system.

  13. Local magnitude scale for earthquakes in Turkey

    NASA Astrophysics Data System (ADS)

    Kılıç, T.; Ottemöller, L.; Havskov, J.; Yanık, K.; Kılıçarslan, Ö.; Alver, F.; Özyazıcıoğlu, M.

    2017-01-01

    Based on the earthquake event data accumulated by the Turkish National Seismic Network between 2007 and 2013, the local magnitude (Richter, Ml) scale is calibrated for Turkey and the close neighborhood. A total of 137 earthquakes (Mw > 3.5) are used for the Ml inversion for the whole country. Three Ml scales, whole country, East, and West Turkey, are developed, and the scales also include the station correction terms. Since the scales for the two parts of the country are very similar, it is concluded that a single Ml scale is suitable for the whole country. Available data indicate the new scale to suffer from saturation beyond magnitude 6.5. For this data set, the horizontal amplitudes are on average larger than vertical amplitudes by a factor of 1.8. The recommendation made is to measure Ml amplitudes on the vertical channels and then add the logarithm scale factor to have a measure of maximum amplitude on the horizontal. The new Ml is compared to Mw from EMSC, and there is almost a 1:1 relationship, indicating that the new scale gives reliable magnitudes for Turkey.

  14. Dissociable processes for orientation discrimination learning and contextual illusion magnitude.

    PubMed

    Wilks, Charlotte Elizabeth Holmes; Rees, Geraint; Schwarzkopf, Dietrich Samuel

    2014-01-01

    Previous research suggests an inverse relationship between human orientation discrimination sensitivity and tilt illusion magnitude. To test whether these perceptual functions are inherently linked, we measured both orientation discrimination sensitivity and the magnitude of the tilt illusion before and after participants had been trained for three days on an orientation discrimination task. Discrimination sensitivity improved with training and this improvement remained one month after the initial learning. However, tilt illusion magnitude remained unchanged before and after orientation training, at either trained or untrained orientations. Our results suggest that orientation discrimination sensitivity and illusion magnitude are not inherently linked. They also provide further evidence that, at least for the training periods we employed, perceptual learning of orientation discrimination may involve high-level processes.

  15. Dissociable Processes for Orientation Discrimination Learning and Contextual Illusion Magnitude

    PubMed Central

    Wilks, Charlotte Elizabeth Holmes; Rees, Geraint; Schwarzkopf, Dietrich Samuel

    2014-01-01

    Previous research suggests an inverse relationship between human orientation discrimination sensitivity and tilt illusion magnitude. To test whether these perceptual functions are inherently linked, we measured both orientation discrimination sensitivity and the magnitude of the tilt illusion before and after participants had been trained for three days on an orientation discrimination task. Discrimination sensitivity improved with training and this improvement remained one month after the initial learning. However, tilt illusion magnitude remained unchanged before and after orientation training, at either trained or untrained orientations. Our results suggest that orientation discrimination sensitivity and illusion magnitude are not inherently linked. They also provide further evidence that, at least for the training periods we employed, perceptual learning of orientation discrimination may involve high-level processes. PMID:25061816

  16. Number games, magnitude representation, and basic number skills in preschoolers.

    PubMed

    Whyte, Jemma Catherine; Bull, Rebecca

    2008-03-01

    The effect of 3 intervention board games (linear number, linear color, and nonlinear number) on young children's (mean age = 3.8 years) counting abilities, number naming, magnitude comprehension, accuracy in number-to-position estimation tasks, and best-fit numerical magnitude representations was examined. Pre- and posttest performance was compared following four 25-min intervention sessions. The linear number board game significantly improved children's performance in all posttest measures and facilitated a shift from a logarithmic to a linear representation of numerical magnitude, emphasizing the importance of spatial cues in estimation. Exposure to the number card games involving nonsymbolic magnitude judgments and association of symbolic and nonsymbolic quantities, but without any linear spatial cues, improved some aspects of children's basic number skills but not numerical estimation precision.

  17. Prediabetes

    MedlinePlus

    ... riesgo más alto de tener diabetes tipo 2, enfermedades del corazón, accidentes cerebrovasculares y otros problemas de ... del Instituto Nacional de la Diabetes y las Enfermedades Digestivas y Renales (NIDDK, por sus siglas en ...

  18. The Effects of Reinforcer Magnitude on Timing in Rats

    ERIC Educational Resources Information Center

    Ludvig, Elliot A.; Conover, Kent; Shizgal, Peter

    2007-01-01

    The relation between reinforcer magnitude and timing behavior was studied using a peak procedure. Four rats received multiple consecutive sessions with both low and high levels of brain stimulation reward (BSR). Rats paused longer and had later start times during sessions when their responses were reinforced with low-magnitude BSR. When estimated…

  19. Executive Function and Magnitude Skills in Preschool Children

    PubMed Central

    Prager, Emily O.; Sera, Maria D.; Carlson, Stephanie M.

    2016-01-01

    Executive Function (EF) has been highlighted as a potentially important factor for mathematical understanding. The relation has been well established in school-aged children but has been less explored at younger ages. The current study investigated the relation between EF and mathematics in preschool aged children. Participants were 142 typically developing 3- and 4-year-olds. Controlling for verbal ability, a significant positive correlation was found between EF and general math abilities in this age group. Importantly, we further examined this relation causally by varying the EF load on a magnitude comparison task. Results suggested a developmental pattern wherein 3-year-olds’ performance on the magnitude comparison task was worst when EF was taxed the most. Conversely, 4-year-olds performed well on the magnitude task despite varying EF demands, suggesting that EF might play a critical role in the development of math concepts. PMID:27082019

  20. Improved rapid magnitude estimation for a community-based, low-cost MEMS accelerometer network

    USGS Publications Warehouse

    Chung, Angela I.; Cochran, Elizabeth S.; Kaiser, Anna E.; Christensen, Carl M.; Yildirim, Battalgazi; Lawrence, Jesse F.

    2015-01-01

    Immediately following the Mw 7.2 Darfield, New Zealand, earthquake, over 180 Quake‐Catcher Network (QCN) low‐cost micro‐electro‐mechanical systems accelerometers were deployed in the Canterbury region. Using data recorded by this dense network from 2010 to 2013, we significantly improved the QCN rapid magnitude estimation relationship. The previous scaling relationship (Lawrence et al., 2014) did not accurately estimate the magnitudes of nearby (<35  km) events. The new scaling relationship estimates earthquake magnitudes within 1 magnitude unit of the GNS Science GeoNet earthquake catalog magnitudes for 99% of the events tested, within 0.5 magnitude units for 90% of the events, and within 0.25 magnitude units for 57% of the events. These magnitudes are reliably estimated within 3 s of the initial trigger recorded on at least seven stations. In this report, we present the methods used to calculate a new scaling relationship and demonstrate the accuracy of the revised magnitude estimates using a program that is able to retrospectively estimate event magnitudes using archived data.

  1. Absolute magnitude calibration using trigonometric parallax - Incomplete, spectroscopic samples

    NASA Technical Reports Server (NTRS)

    Ratnatunga, Kavan U.; Casertano, Stefano

    1991-01-01

    A new numerical algorithm is used to calibrate the absolute magnitude of spectroscopically selected stars from their observed trigonometric parallax. This procedure, based on maximum-likelihood estimation, can retrieve unbiased estimates of the intrinsic absolute magnitude and its dispersion even from incomplete samples suffering from selection biases in apparent magnitude and color. It can also make full use of low accuracy and negative parallaxes and incorporate censorship on reported parallax values. Accurate error estimates are derived for each of the fitted parameters. The algorithm allows an a posteriori check of whether the fitted model gives a good representation of the observations. The procedure is described in general and applied to both real and simulated data.

  2. Rapid determination of the energy magnitude Me

    NASA Astrophysics Data System (ADS)

    di Giacomo, D.; Parolai, S.; Bormann, P.; Saul, J.; Grosser, H.; Wang, R.; Zschau, J.

    2009-04-01

    The magnitude of an earthquake is one of the most used parameters to evaluate the earthquake's damage potential. However, many magnitude scales developed over the past years have different meanings. Among the non-saturating magnitude scales, the energy magnitude Me is related to a well defined physical parameter of the seismic source, that is the radiated seismic energy ES (e.g. Bormann et al., 2002): Me = 2/3(log10 ES - 4.4). Me is more suitable than the moment magnitude Mw in describing an earthquake's shaking potential (Choy and Kirby, 2004). Indeed, Me is calculated over a wide frequency range of the source spectrum and represents a better measure of the shaking potential, whereas Mw is related to the low-frequency asymptote of the source spectrum and is a good measure of the fault size and hence of the static (tectonic) effect of an earthquake. The calculation of ES requires the integration over frequency of the squared P-waves velocity spectrum corrected for the energy loss experienced by the seismic waves along the path from the source to the receivers. To accout for the frequency-dependent energy loss, we computed spectral amplitude decay functions for different frequenciesby using synthetic Green's functions (Wang, 1999) based on the reference Earth model AK135Q (Kennett et al., 1995; Montagner and Kennett, 1996). By means of these functions the correction for the various propagation effects of the recorded P-wave velocity spectra is performed in a rapid and robust way, and the calculation of ES, and hence of Me, can be computed at the single station. We analyse teleseismic broadband P-waves signals in the distance range 20°-98°. We show that our procedure is suitable for implementation in rapid response systems since it could provide stable Me determinations within 10-15 minutes after the earthquake's origin time. Indeed, we use time variable cumulative energy windows starting 4 s after the first P-wave arrival in order to include the earthquake rupture

  3. [Not Available].

    PubMed

    Molina Villaverde, Raquel

    2016-06-03

    El cáncer es un problema sanitario de primera magnitud a escala mundial. Su tratamiento es uno de los mayores campos de innovación y desarrollo en medicina. La visión del cáncer como una enfermedad sistémica, heterogénea y de una elevada complejidad hace que los enfermos deban recibir una atención oncológica de calidad, proporcionada por equipos multidisciplinares altamente cualificados. Además de la gran incidencia de malnutrición en estos pacientes, la intervención nutricional precoz puede mejorar su pronóstico, aumentar la calidad de vida y disminuir la tasa de complicaciones de la enfermedad. Por ello, es necesaria una estrecha colaboración entre el oncólogo y el experto en nutrición.

  4. Lamp modulator provides signal magnitude indication

    NASA Technical Reports Server (NTRS)

    Zeman, J. R.

    1970-01-01

    Lamp modulator provides visible indication of presence and magnitude of an audio signal carrying voice or data. It can be made to reflect signal variations of up to 32 decibels. Lamp life is increased by use of a bypass resistor to prevent filament failure.

  5. Magnitude and frequency of floods in Washington

    USGS Publications Warehouse

    Cummans, J.E.; Collings, Michael R.; Nasser, Edmund George

    1975-01-01

    Relations are provided to estimate the magnitude and frequency of floods on Washington streams. Annual-peak-flow data from stream gaging stations on unregulated streams having 1 years or more of record were used to determine a log-Pearson Type III frequency curve for each station. Flood magnitudes having recurrence intervals of 2, 5, i0, 25, 50, and 10years were then related to physical and climatic indices of the drainage basins by multiple-regression analysis using the Biomedical Computer Program BMDO2R. These regression relations are useful for estimating flood magnitudes of the specified recurrence intervals at ungaged or short-record sites. Separate sets of regression equations were defined for western and eastern parts of the State, and the State was further subdivided into 12 regions in which the annual floods exhibit similar flood characteristics. Peak flows are related most significantly in western Washington to drainage-area size and mean annual precipitation. In eastern Washington-they are related most significantly to drainage-area size, mean annual precipitation, and percentage of forest cover. Standard errors of estimate of the estimating relations range from 25 to 129 percent, and the smallest errors are generally associated with the more humid regions.

  6. The global magnitude-frequency relationship for large explosive volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Rougier, Jonathan; Sparks, R. Stephen J.; Cashman, Katharine V.; Brown, Sarah K.

    2018-01-01

    For volcanoes, as for other natural hazards, the frequency of large events diminishes with their magnitude, as captured by the magnitude-frequency relationship. Assessing this relationship is valuable both for the insights it provides about volcanism, and for the practical challenge of risk management. We derive a global magnitude-frequency relationship for explosive volcanic eruptions of at least 300Mt of erupted mass (or M4.5). Our approach is essentially empirical, based on the eruptions recorded in the LaMEVE database. It differs from previous approaches mainly in our conservative treatment of magnitude-rounding and under-recording. Our estimate for the return period of 'super-eruptions' (1000Gt, or M8) is 17ka (95% CI: 5.2ka, 48ka), which is substantially shorter than previous estimates, indicating that volcanoes pose a larger risk to human civilisation than previously thought.

  7. Magnitude and frequency of floods in Arkansas

    USGS Publications Warehouse

    Hodge, Scott A.; Tasker, Gary D.

    1995-01-01

    Methods are presented for estimating the magnitude and frequency of peak discharges of streams in Arkansas. Regression analyses were developed in which a stream's physical and flood characteristics were related. Four sets of regional regression equations were derived to predict peak discharges with selected recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years on streams draining less than 7,770 square kilometers. The regression analyses indicate that size of drainage area, main channel slope, mean basin elevation, and the basin shape factor were the most significant basin characteristics that affect magnitude and frequency of floods. The region of influence method is included in this report. This method is still being improved and is to be considered only as a second alternative to the standard method of producing regional regression equations. This method estimates unique regression equations for each recurrence interval for each ungaged site. The regression analyses indicate that size of drainage area, main channel slope, mean annual precipitation, mean basin elevation, and the basin shape factor were the most significant basin and climatic characteristics that affect magnitude and frequency of floods for this method. Certain recommendations on the use of this method are provided. A method is described for estimating the magnitude and frequency of peak discharges of streams for urban areas in Arkansas. The method is from a nationwide U.S. Geeological Survey flood frequency report which uses urban basin characteristics combined with rural discharges to estimate urban discharges. Annual peak discharges from 204 gaging stations, with drainage areas less than 7,770 square kilometers and at least 10 years of unregulated record, were used in the analysis. These data provide the basis for this analysis and are published in the Appendix of this report as supplemental data. Large rivers such as the Red, Arkansas, White, Black, St. Francis, Mississippi, and

  8. Magnitude Dependent Seismic Quiescence of 2008 Wenchuan Earthquake

    NASA Astrophysics Data System (ADS)

    Suyehiro, K.; Sacks, S. I.; Takanami, T.; Smith, D. E.; Rydelek, P. A.

    2014-12-01

    The change in seismicity leading to the Wenchuan Earthquake in 2008 (Mw 7.9) has been studied by various authors based on statistics and/or pattern recognitions (Huang, 2008; Yan et al., 2009; Chen and Wang, 2010; Yi et al., 2011). We show, in particular, that the magnitude-dependent seismic quiescence is observed for the Wenchuan earthquake and that it adds to other similar observations. Such studies on seismic quiescence prior to major earthquakes include 1982 Urakawa-Oki earthquake (M 7.1) (Taylor et al., 1992), 1994 Hokkaido-Toho-Oki earthquake (Mw=8.2) (Takanami et al., 1996), 2011 Tohoku earthquake (Mw=9.0) (Katsumata, 2011). Smith and Sacks (2013) proposed a magnitude-dependent quiescence based on a physical earthquake model (Rydelek and Sacks, 1995) and demonstrated the quiescence can be reproduced by the introduction of "asperities" (dilantacy hardened zones). Actual observations indicate the change occurs in a broader area than the eventual earthquake fault zone. In order to accept the explanation, we need to verify the model as the model predicts somewhat controversial features of earthquakes such as the magnitude dependent stress drop at lower magnitude range or the dynamically appearing asperities and repeating slips in some parts of the rupture zone. We show supportive observations. We will also need to verify the dilatancy diffusion to be taking place. So far, we only seem to have indirect evidences, which need to be more quantitatively substantiated.

  9. An Updated Catalog of Taiwan Earthquakes (1900-2011) with Homogenized Mw Magnitudes

    NASA Astrophysics Data System (ADS)

    Chen, K.; Tsai, Y.; Chang, W.

    2012-12-01

    A complete and consistent catalog of earthquakes can provide good data for studying the distribution of earthquakes in a region as function of space, time and magnitude. Therefore, it is a basic tool for studying seismic hazard and mitigating hazard, and we can get the seismicity with magnitude equal to or greater than Mw from the data set. In the article for completeness and consistence, we apply a catalog of earthquakes from 1900 to 2006 with homogenized magnitude (Mw) (Chen and Tsai, 2008) as a base, and we also refer to the Hsu (1989) to incorporate available supplementary data (total 188 data) for the period 1900-1935, the supplementary data lead the cutoff threshold magnitude to be from Mw 5.5 down to 5.0, this indicates that we add the additional data has enriched the magnitude > 5.0 content. For this study, the catalog has been updated to include earthquakes up to 2011, and it is complete for Mw > 5.0, this will increase the reliability for studying seismic hazard. It is found that it is saturated for original catalog of Taiwan earthquakes compared with Harvard Mw or USGS M for magnitude > 6.5. Although, we modified the original catalog into seismic moment magnitude Mw, it still does not overcome the drawback. But, it is found for Mw < 6.5, our unified Mw are most greater than Harvard Mw or USGS M, the phenomenon indicates our unified Mw to supplement the gap above magnitude > 6.0 and somewhere magnitude > 5.5 during the time period 1973-1991 for original catalog. Therefore, it is better with Mw to report the earthquake magnitude.

  10. Are numbers grounded in a general magnitude processing system? A functional neuroimaging meta-analysis.

    PubMed

    Sokolowski, H Moriah; Fias, Wim; Bosah Ononye, Chuka; Ansari, Daniel

    2017-10-01

    It is currently debated whether numbers are processed using a number-specific system or a general magnitude processing system, also used for non-numerical magnitudes such as physical size, duration, or luminance. Activation likelihood estimation (ALE) was used to conduct the first quantitative meta-analysis of 93 empirical neuroimaging papers examining neural activation during numerical and non-numerical magnitude processing. Foci were compiled to generate probabilistic maps of activation for non-numerical magnitudes (e.g. physical size), symbolic numerical magnitudes (e.g. Arabic digits), and nonsymbolic numerical magnitudes (e.g. dot arrays). Conjunction analyses revealed overlapping activation for symbolic, nonsymbolic and non-numerical magnitudes in frontal and parietal lobes. Contrast analyses revealed specific activation in the left superior parietal lobule for symbolic numerical magnitudes. In contrast, small regions in the bilateral precuneus were specifically activated for nonsymbolic numerical magnitudes. No regions in the parietal lobes were activated for non-numerical magnitudes that were not also activated for numerical magnitudes. Therefore, numbers are processed using both a generalized magnitude system and format specific number regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The generalized truncated exponential distribution as a model for earthquake magnitudes

    NASA Astrophysics Data System (ADS)

    Raschke, Mathias

    2015-04-01

    The random distribution of small, medium and large earthquake magnitudes follows an exponential distribution (ED) according to the Gutenberg-Richter relation. But a magnitude distribution is truncated in the range of very large magnitudes because the earthquake energy is finite and the upper tail of the exponential distribution does not fit well observations. Hence the truncated exponential distribution (TED) is frequently applied for the modelling of the magnitude distributions in the seismic hazard and risk analysis. The TED has a weak point: when two TEDs with equal parameters, except the upper bound magnitude, are mixed, then the resulting distribution is not a TED. Inversely, it is also not possible to split a TED of a seismic region into TEDs of subregions with equal parameters, except the upper bound magnitude. This weakness is a principal problem as seismic regions are constructed scientific objects and not natural units. It also applies to alternative distribution models. The presented generalized truncated exponential distribution (GTED) overcomes this weakness. The ED and the TED are special cases of the GTED. Different issues of the statistical inference are also discussed and an example of empirical data is presented in the current contribution.

  12. Neural representations of magnitude for natural and rational numbers.

    PubMed

    DeWolf, Melissa; Chiang, Jeffrey N; Bassok, Miriam; Holyoak, Keith J; Monti, Martin M

    2016-11-01

    Humans have developed multiple symbolic representations for numbers, including natural numbers (positive integers) as well as rational numbers (both fractions and decimals). Despite a considerable body of behavioral and neuroimaging research, it is currently unknown whether different notations map onto a single, fully abstract, magnitude code, or whether separate representations exist for specific number types (e.g., natural versus rational) or number representations (e.g., base-10 versus fractions). We address this question by comparing brain metabolic response during a magnitude comparison task involving (on different trials) integers, decimals, and fractions. Univariate and multivariate analyses revealed that the strength and pattern of activation for fractions differed systematically, within the intraparietal sulcus, from that of both decimals and integers, while the latter two number representations appeared virtually indistinguishable. These results demonstrate that the two major notations formats for rational numbers, fractions and decimals, evoke distinct neural representations of magnitude, with decimals representations being more closely linked to those of integers than to those of magnitude-equivalent fractions. Our findings thus suggest that number representation (base-10 versus fractions) is an important organizational principle for the neural substrate underlying mathematical cognition. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The Absolute Magnitude of the Sun in Several Filters

    NASA Astrophysics Data System (ADS)

    Willmer, Christopher N. A.

    2018-06-01

    This paper presents a table with estimates of the absolute magnitude of the Sun and the conversions from vegamag to the AB and ST systems for several wide-band filters used in ground-based and space-based observatories. These estimates use the dustless spectral energy distribution (SED) of Vega, calibrated absolutely using the SED of Sirius, to set the vegamag zero-points and a composite spectrum of the Sun that coadds space-based observations from the ultraviolet to the near-infrared with models of the Solar atmosphere. The uncertainty of the absolute magnitudes is estimated by comparing the synthetic colors with photometric measurements of solar analogs and is found to be ∼0.02 mag. Combined with the uncertainty of ∼2% in the calibration of the Vega SED, the errors of these absolute magnitudes are ∼3%–4%. Using these SEDs, for three of the most utilized filters in extragalactic work the estimated absolute magnitudes of the Sun are M B = 5.44, M V = 4.81, and M K = 3.27 mag in the vegamag system and M B = 5.31, M V = 4.80, and M K = 5.08 mag in AB.

  14. DEL phenotype.

    PubMed

    Kwon, Dong H; Sandler, S G; Flegel, Willy A

    2017-09-01

    DEL red blood cells (RBCs) type as D- by routine serologic methods and are transfused routinely, without being identified as expressing a very weak D antigen, to D- recipients. DEL RBCs are detected only by adsorption and elution of anti-D or by molecular methods. Most DEL phenotypes have been reported in population studies conducted in East Asia, although DEL phenotypes have been detected also among Caucasian individuals. Approximately 98 percent of DEL phenotypes in East Asians are associated with the RHD*DEL1 or RHD*01EL.01 allele. The prevalence of DEL phenotypes has been reported among D- Han Chinese (30%), Japanese (28%), and Korean (17%) populations. The prevalence of DEL phenotypes is significantly lower among D- Caucasian populations (0.1%). Among the 3-5 percent of African individuals who are D-, there are no reports of the DEL phenotype. Case reports from East Asia indicate that transfusion of DEL RBCs to D- recipients has been associated with D alloimmunization. East Asian immigrants constitute 2.1 percent of the 318.9 million persons residing in the United States, and an estimated 2.8 percent are blood donors. Using these statistics, we estimate that 68-683 units of DEL RBCs from donors of East Asian ancestry are transfused as D- annually in the United States. Given the reports from East Asia of D alloimmunization attributed to transfusion of DEL RBCs, one would expect an occasional report of D alloimmunization in the United States following transfusion of DEL RBCs to a D- recipient. If such cases do occur, the most likely reason that they are not detected is the absence of active post-transfusion monitoring for formation of anti-D.

  15. Estimating the Maximum Magnitude of Induced Earthquakes With Dynamic Rupture Simulations

    NASA Astrophysics Data System (ADS)

    Gilmour, E.; Daub, E. G.

    2017-12-01

    Seismicity in Oklahoma has been sharply increasing as the result of wastewater injection. The earthquakes, thought to be induced from changes in pore pressure due to fluid injection, nucleate along existing faults. Induced earthquakes currently dominate central and eastern United States seismicity (Keranen et al. 2016). Induced earthquakes have only been occurring in the central US for a short time; therefore, too few induced earthquakes have been observed in this region to know their maximum magnitude. The lack of knowledge regarding the maximum magnitude of induced earthquakes means that large uncertainties exist in the seismic hazard for the central United States. While induced earthquakes follow the Gutenberg-Richter relation (van der Elst et al. 2016), it is unclear if there are limits to their magnitudes. An estimate of the maximum magnitude of the induced earthquakes is crucial for understanding their impact on seismic hazard. While other estimates of the maximum magnitude exist, those estimates are observational or statistical, and cannot take into account the possibility of larger events that have not yet been observed. Here, we take a physical approach to studying the maximum magnitude based on dynamic ruptures simulations. We run a suite of two-dimensional ruptures simulations to physically determine how ruptures propagate. The simulations use the known parameters of principle stress orientation and rupture locations. We vary the other unknown parameters of the ruptures simulations to obtain a large number of rupture simulation results reflecting different possible sets of parameters, and use these results to train a neural network to complete the ruptures simulations. Then using a Markov Chain Monte Carlo method to check different combinations of parameters, the trained neural network is used to create synthetic magnitude-frequency distributions to compare to the real earthquake catalog. This method allows us to find sets of parameters that are

  16. Transforming GSC-II Magnitudes into JWST/FGS Count Rates

    NASA Astrophysics Data System (ADS)

    Holfeltz, Sherie T.; Chayer, P.; Nelan, E. P.

    2010-01-01

    The JWST Fine Guidance Sensor (FGS) will provide the positions of guide stars to the spacecraft attitude control system to facilitate the fine pointing of the Observatory. The FGS is an infrared camera operating in an unfiltered passband from 0.6 to 5.3 microns. The ground system will select guide stars from the Guide Star Catalog II (GSC-II), which is an all-sky catalog with three optical passbands (BJ, RF, IN) derived from photographic plates, and from 2MASS. We present a method for predicting a guide star's FGS photon count rate, which is needed to operate the FGS. The method consists of first deriving equations for transforming the GSC-II optical passbands into J, H, and K for stars that are below the 2MASS faint limiting magnitude, based upon fitting the distribution of brighter stars in color-color diagrams using GSC-II and 2MASS photometry. Next, we convolve the BJ, RF, IN and predicted J, H, and K magnitudes (or 2MASS magnitudes if available) for a given star with the wavelength dependent throughput and sensitivity of the telescope and FGS. To estimate the accuracy of this method for stars that are too faint for 2MASS, we compare the predicted J, H, and K magnitudes for a large sample of stars to data from the United Kingdom Infrared Telescope (UKIRT) Deep Sky Survey (UKIDSS) Large Area Survey (LAS). Using synthetic magnitudes computed from Kurucz models for stars of different spectral types, we show that the method should provide reliable FGS count rates.

  17. Understanding volatility correlation behavior with a magnitude cross-correlation function

    NASA Astrophysics Data System (ADS)

    Jun, Woo Cheol; Oh, Gabjin; Kim, Seunghwan

    2006-06-01

    We propose an approach for analyzing the basic relation between correlation properties of the original signal and its magnitude fluctuations by decomposing the original signal into its positive and negative fluctuation components. We use this relation to understand the following phenomenon found in many naturally occurring time series: the magnitude of the signal exhibits long-range correlation, whereas the original signal is short-range correlated. The applications of our approach to heart rate variability signals and high-frequency foreign exchange rates reveal that the difference between the correlation properties of the original signal and its magnitude fluctuations is induced by the time organization structure of the correlation function between the magnitude fluctuations of positive and negative components. We show that this correlation function can be described well by a stretched-exponential function and is related to the nonlinearity and the multifractal structure of the signals.

  18. Understanding volatility correlation behavior with a magnitude cross-correlation function.

    PubMed

    Jun, Woo Cheol; Oh, Gabjin; Kim, Seunghwan

    2006-06-01

    We propose an approach for analyzing the basic relation between correlation properties of the original signal and its magnitude fluctuations by decomposing the original signal into its positive and negative fluctuation components. We use this relation to understand the following phenomenon found in many naturally occurring time series: the magnitude of the signal exhibits long-range correlation, whereas the original signal is short-range correlated. The applications of our approach to heart rate variability signals and high-frequency foreign exchange rates reveal that the difference between the correlation properties of the original signal and its magnitude fluctuations is induced by the time organization structure of the correlation function between the magnitude fluctuations of positive and negative components. We show that this correlation function can be described well by a stretched-exponential function and is related to the nonlinearity and the multifractal structure of the signals.

  19. I love my baffling, backward, counterintuitive, overly complicated magnitudes

    NASA Astrophysics Data System (ADS)

    Sirola, Christopher

    2017-02-01

    All professions have their jargon. But astronomy goes the extra parsec. Here's an example. Vega, one of the brighter stars in the night sky, has an apparent magnitude (i.e., an apparent brightness) of approximately zero. Polaris, the North Star, has an apparent magnitude of about +2. Despite this, Vega appears brighter than Polaris, and not by two, but by a factor of about six times.

  20. Self-stimulating rats combine subjective reward magnitude and subjective reward rate multiplicatively.

    PubMed

    Leon, M I; Gallistel, C R

    1998-07-01

    For rats that bar pressed for intracranial electrical stimulation in a 2-lever matching paradigm with concurrent variable interval schedules of reward, the authors found that the time allocation ratio is based on a multiplicative combination of the ratio of subjective reward magnitudes and the ratio of the rates of reward. Multiplicative combining was observed in a range covering approximately 2 orders of magnitude in the ratio of the rates of reward from about 1:10 to 10:1) and an order of magnitude change in the size of rewards. After determining the relation between the pulse frequency of stimulation and subjective reward magnitude, the authors were able to predict from knowledge of the subjective magnitudes of the rewards and the obtained relative rates of reward the subject's time allocation ratio over a range in which it varied by more than 3 orders of magnitude.

  1. Design of recursive digital filters having specified phase and magnitude characteristics

    NASA Technical Reports Server (NTRS)

    King, R. E.; Condon, G. W.

    1972-01-01

    A method for a computer-aided design of a class of optimum filters, having specifications in the frequency domain of both magnitude and phase, is described. The method, an extension to the work of Steiglitz, uses the Fletcher-Powell algorithm to minimize a weighted squared magnitude and phase criterion. Results using the algorithm for the design of filters having specified phase as well as specified magnitude and phase compromise are presented.

  2. Reinforcement magnitude modulation of rate dependent effects in pigeons and rats.

    PubMed

    Ginsburg, Brett C; Pinkston, Jonathan W; Lamb, R J

    2011-08-01

    Response rate can influence the behavioral effects of many drugs. Reinforcement magnitude may also influence drug effects. Further, reinforcement magnitude can influence rate-dependent effects. For example, in an earlier report, we showed that rate-dependent effects of two antidepressants depended on reinforcement magnitude. The ability of reinforcement magnitude to interact with rate-dependency has not been well characterized. It is not known whether our previous results are specific to antidepressants or generalize to other drug classes. Here, we further examine rate-magnitude interactions by studying effects of two stimulants (d-amphetamine [0.32-5.6 mg/kg] and cocaine [0.32-10 mg/kg]) and two sedatives (chlordiazepoxide [1.78-32 mg/kg] and pentobarbital [1.0-17.8 mg/kg]) in pigeons responding under a 3-component multiple fixed-interval (FI) 300-s schedule maintained by 2-, 4-, or 8-s of food access. We also examine the effects of d-amphetamine [0.32-3.2 mg/kg] and pentobarbital [1.8-10 mg/kg] in rats responding under a similar multiple FI300-s schedule maintained by 2- or 10- food pellet (45 mg) delivery. In pigeons, cocaine and, to a lesser extent, chlordiazepoxide exerted rate-dependent effects that were diminished by increasing durations of food access. The relationship was less apparent for pentobarbital, and not present for d-amphetamine. In rats, rate-dependent effects of pentobarbital and d-amphetamine were not modulated by reinforcement magnitude. In conclusion, some drugs appear to exert rate-dependent effect which are diminished when reinforcement magnitude is relatively high. Subsequent analysis of the rate-dependency data suggest the effects of reinforcement magnitude may be due to a diminution of drug-induced increases in low-rate behavior that occurs early in the fixed-interval. (c) 2011 APA, all rights reserved.

  3. The Effects of Reinforcement Magnitude on Skill Acquisition for Children with Autism

    ERIC Educational Resources Information Center

    Paden, Amber R.; Kodak, Tiffany

    2015-01-01

    We examined the effects of reinforcement magnitude on skill acquisition during discrete-trial training. After conducting a magnitude preference assessment, we compared acquisition during conditions with large and small magnitudes of edible reinforcement to a praise-only condition. Although all participants showed a preference for the…

  4. Number Games, Magnitude Representation, and Basic Number Skills in Preschoolers

    ERIC Educational Resources Information Center

    Whyte, Jemma Catherine; Bull, Rebecca

    2008-01-01

    The effect of 3 intervention board games (linear number, linear color, and nonlinear number) on young children's (mean age = 3.8 years) counting abilities, number naming, magnitude comprehension, accuracy in number-to-position estimation tasks, and best-fit numerical magnitude representations was examined. Pre- and posttest performance was…

  5. A catalog of observed nuclear magnitudes of Jupiter family comets

    NASA Astrophysics Data System (ADS)

    Tancredi, G.; Fernández, J. A.; Rickman, H.; Licandro, J.

    2000-10-01

    A catalog of a sample of 105 Jupiter family (JF) comets (defined as those with Tisserand constants T > 2 and orbital periods P < 20 yr) is presented with our ``best estimates'' of their absolute nuclear magnitudes H_N = V(1,0,0). The catalog includes all the nuclear magnitudes reported after 1950 until August 1998 that appear in the International Comet Quarterly Archive of Cometary Photometric Data, the Minor Planet Center (MPC) data base, IAU Circulars, International Comet Quarterly, and a few papers devoted to some particular comets, together with our own observations. Photometric data previous to 1990 have mainly been taken from the Comet Light Curve Catalogue (CLICC) compiled by Kamél (\\cite{kamel}). We discuss the reliability of the reported nuclear magnitudes in relation to the inherent sources of errors and uncertainties, in particular the coma contamination often present even at large heliocentric distances. A large fraction of the JF comets of our sample indeed shows various degrees of activity at large heliocentric distances, which is correlated with recent downward jumps in their perihelion distances. The reliability of coma subtraction methods to compute the nuclear magnitude is also discussed. Most absolute nuclear magnitudes are found in the range 15 - 18, with no magnitudes fainter than H_N ~ 19.5. The catalog can be found at: http://www.fisica.edu.uy/ ~ gonzalo/catalog/. Table 2 and Appendix B are only available in electronic form at http://www.edpsciences.org Table 5 is also available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  6. Rational numbers: componential versus holistic representation of fractions in a magnitude comparison task.

    PubMed

    Meert, Gaëlle; Grégoire, Jacques; Noël, Marie-Pascale

    2009-08-01

    This study investigated whether the mental representation of the fraction magnitude was componential and/or holistic in a numerical comparison task performed by adults. In Experiment 1, the comparison of fractions with common numerators (x/a_x/b) and of fractions with common denominators (a/x_b/x) primed the comparison of natural numbers. In Experiment 2, fillers (i.e., fractions without common components) were added to reduce the regularity of the stimuli. In both experiments, distance effects indicated that participants compared the numerators for a/x_b/x fractions, but that the magnitudes of the whole fractions were accessed and compared for x/a_x/b fractions. The priming effect of x/a_x/b fractions on natural numbers suggested that the interference of the denominator magnitude was controlled during the comparison of these fractions. These results suggested a hybrid representation of their magnitude (i.e., componential and holistic). In conclusion, the magnitude of the whole fraction can be accessed, probably by estimating the ratio between the magnitude of the denominator and the magnitude of the numerator. However, adults might prefer to rely on the magnitudes of the components and compare the magnitudes of the whole fractions only when the use of a componential strategy is made difficult.

  7. The Development of the Mental Representations of the Magnitude of Fractions

    PubMed Central

    Gabriel, Florence C.; Szucs, Denes; Content, Alain

    2013-01-01

    We investigated the development of the mental representation of the magnitude of fractions during the initial stages of fraction learning in grade 5, 6 and 7 children as well as in adults. We examined the activation of global fraction magnitude in a numerical comparison task and a matching task. There were global distance effects in the comparison task, but not in the matching task. This suggests that the activation of the global magnitude representation of fractions is not automatic in all tasks involving magnitude judgments. The slope of the global distance effect increased during early fraction learning and declined by adulthood, demonstrating that the development of the fraction global distance effect differs from that of the integer distance effect. PMID:24236169

  8. Rapid magnitude estimation from time-dependent displacement amplitude measured with seismogeodetic instrumentation

    NASA Astrophysics Data System (ADS)

    Goldberg, D.; Bock, Y.; Melgar, D.

    2017-12-01

    Earthquake magnitude is a concise metric that illuminates the destructive potential of a seismic event. Rapid determination of earthquake magnitude is currently the main prerequisite for dissemination of a tsunami early warning, thus timely and automated calculation is of high importance. Seismic instrumentation experiences well-documented complications at long periods, making the accurate measurement of ground displacement in the near field unreliable. As a result, the relation between ground motion measured with seismic instrumentation and magnitude saturates, causing underestimation of the size of very large events. In the case of tsunamigenic earthquakes, magnitude underestimation in turn leads to a flawed tsunami inundation assessment, which limits the effectiveness of an early warning, in particular for local tsunamis. Global Navigation Satellite System (GNSS) instrumentation measures the displacement field directly, leading to more accurate magnitude estimates with near-field data. Unlike seismic-only instrumentation, near-field GNSS has been shown to provide an accurate magnitude estimate using the peak ground displacement (PGD) after just 2 minutes [Melgar et al., 2015]. However, GNSS alone is too noisy to detect the first seismic wave arrivals (P-waves), thus it cannot be as timely as a seismic system on its own. Using collocated seismic and geodetic instrumentation, we refine magnitude scaling relations by incorporating a large dataset of earthquakes in Japan. We demonstrate that consideration of the time-dependence of displacement amplitude with respect to P-wave arrival time reduces the time to convergence of the magnitude estimate. We present findings on the growth of events of large magnitude, and demonstrate time-dependent scaling relations that adapt to the amount of recorded data, starting with the P-wave arrival and continuing through PGD. We illustrate real-time, automated implementation of this method, and consider network improvements to

  9. Detonation charge size versus coda magnitude relations in California and Nevada

    USGS Publications Warehouse

    Brocher, T.M.

    2003-01-01

    Magnitude-charge size relations have important uses in forensic seismology and are used in Comprehensive Nuclear-Test-Ban Treaty monitoring. I derive empirical magnitude versus detonation-charge-size relationships for 322 detonations located by permanent seismic networks in California and Nevada. These detonations, used in 41 different seismic refraction or network calibration experiments, ranged in yield (charge size) between 25 and 106 kg; coda magnitudes reported for them ranged from 0.5 to 3.9. Almost all represent simultaneous (single-fired) detonations of one or more boreholes. Repeated detonations at the same shotpoint suggest that the reported coda magnitudes are repeatable, on average, to within 0.1 magnitude unit. An empirical linear regression for these 322 detonations yields M = 0.31 + 0.50 log10(weight [kg]). The detonations compiled here demonstrate that the Khalturin et al. (1998) relationship, developed mainly for data from large chemical explosions but which fits data from nuclear blasts, can be used to estimate the minimum charge size for coda magnitudes between 0.5 and 3.9. Drilling, loading, and shooting logs indicate that the explosive specification, loading method, and effectiveness of tamp are the primary factors determining the efficiency of a detonation. These records indicate that locating a detonation within the water table is neither a necessary nor sufficient condition for an efficient shot.

  10. A general magnitude system in human adults: Evidence from a subliminal priming paradigm.

    PubMed

    Lourenco, Stella F; Ayzenberg, Vladislav; Lyu, Jennifer

    2016-08-01

    Despite general agreement that number and other magnitudes share analog format, there is disagreement about the extent to which representations of numerical and non-numerical magnitude recruit common cognitive and neural resources. Cross-dimensional interactions between number and other magnitudes on Stroop-like tasks have been taken as evidence for integration across magnitudes, but such effects are subject to alternative interpretations that allow for differentiated representations. Here we use a subliminal priming paradigm to test for interactions between different magnitudes (number and area) when one magnitude is not consciously detectable. Across two experiments, we first provide evidence for the feasibility of this paradigm by demonstrating that transfer occurs within the dimension of number; that is, symbolic numerals (Arabic digits) that were subliminally primed affected judgments of non-symbolic numerosities in target displays. Crucially, we also found transfer across magnitudes-from subliminally primed numerals to target displays of cumulative surface area whether participants made an ordinal judgment (i.e., "which array is larger in area?") or judged whether two arrays were the same or different in area. These findings suggest that representations of number and area are not fully differentiated. Moreover, they provide unique support for a general magnitude system that includes direct connections, or overlap, between the neural codes for numerical and non-numerical magnitudes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. [Nurses' professional prestige: estimate of magnitudes and expanded categories].

    PubMed

    Sousa, F A; da Silva, J A

    2001-01-01

    The prestige of professionals such as social workers, biologists, dentists, nurses, engineers, pharmacists, physicists, physical therapists, speech-language pathologists, physicians, psychologists, chemists and sociologists was scaled by the psychophysical methods of estimation of magnitudes and expanded categories. Results showed that: 1) when we increase the limited amplitude of categories, this method has the same characteristics as those of the estimation of magnitudes. 2) the relationship between the estimations of magnitudes and estimations of expanded categories is a power function with an exponent that is not significantly different from 1.0. These data enabled the following conclusions: 1--The nursing profession is in the seventh or eighth position regarding the prestige of the 13 professions whereas physicians are in the first position in the scale obtained by the used methods; 2--the orders resulting from the methods produce positions of prestige that highly agree for the different professions.

  12. The Weight of Time: Affordances for an Integrated Magnitude System

    ERIC Educational Resources Information Center

    Lu, Aitao; Mo, Lei; Hodges, Bert H.

    2011-01-01

    In five experiments we explored the effects of weight on time in different action contexts to test the hypothesis that an integrated magnitude system is tuned to affordances. Larger magnitudes generally seem longer; however, Lu and colleagues (2009) found that if numbers were presented as weights in a range heavy enough to affect lifting, the…

  13. An energy dependent earthquake frequency-magnitude distribution

    NASA Astrophysics Data System (ADS)

    Spassiani, I.; Marzocchi, W.

    2017-12-01

    The most popular description of the frequency-magnitude distribution of seismic events is the exponential Gutenberg-Richter (G-R) law, which is widely used in earthquake forecasting and seismic hazard models. Although it has been experimentally well validated in many catalogs worldwide, it is not yet clear at which space-time scales the G-R law still holds. For instance, in a small area where a large earthquake has just happened, the probability that another very large earthquake nucleates in a short time window should diminish because it takes time to recover the same level of elastic energy just released. In short, the frequency-magnitude distribution before and after a large earthquake in a small area should be different because of the different amount of available energy.Our study is then aimed to explore a possible modification of the classical G-R distribution by including the dependence on an energy parameter. In a nutshell, this more general version of the G-R law should be such that a higher release of energy corresponds to a lower probability of strong aftershocks. In addition, this new frequency-magnitude distribution has to satisfy an invariance condition: when integrating over large areas, that is when integrating over infinite energy available, the G-R law must be recovered.Finally we apply a proposed generalization of the G-R law to different seismic catalogs to show how it works and the differences with the classical G-R law.

  14. Magnitude Bias of Microlensed Sources toward the Large Magellanic Cloud.

    PubMed

    Zhao; Graff; Guhathakurta

    2000-03-20

    There are lines of evidence suggesting that some of the observed microlensing events in the direction of the Large Magellanic Cloud (LMC) are caused by ordinary star lenses as opposed to dark MACHOs in the Galactic halo. Efficient lensing by ordinary stars generally requires the presence of one or more additional concentrations of stars along the line of sight to the LMC disk. If such a population behind the LMC disk exists, then the source stars (for lensing by LMC disk objects) will be drawn preferentially from the background population and will show systematic differences from LMC field stars. One such difference is that the (lensed) source stars will be farther away than the average LMC field stars, and this should be reflected in their apparent baseline magnitudes. We focus on red clump stars; these should appear in the color-magnitude diagram at a few tenths of a magnitude fainter than the field red clump. Suggestively, one of the two near-clump confirmed events, MACHO-LMC-1, is a few tenths of magnitude fainter than the clump.

  15. Moment magnitude, local magnitude and corner frequency of small earthquakes nucleating along a low angle normal fault in the Upper Tiber valley (Italy)

    NASA Astrophysics Data System (ADS)

    Munafo, I.; Malagnini, L.; Chiaraluce, L.; Valoroso, L.

    2015-12-01

    The relation between moment magnitude (MW) and local magnitude (ML) is still a debated issue (Bath, 1966, 1981; Ristau et al., 2003, 2005). Theoretical considerations and empirical observations show that, in the magnitude range between 3 and 5, MW and ML scale 1∶1. Whilst for smaller magnitudes this 1∶1 scaling breaks down (Bethmann et al. 2011). For accomplishing this task we analyzed the source parameters of about 1500 (30.000 waveforms) well-located small earthquakes occurred in the Upper Tiber Valley (Northern Apennines) in the range of -1.5≤ML≤3.8. In between these earthquakes there are 300 events repeatedly rupturing the same fault patch generally twice within a short time interval (less than 24 hours; Chiaraluce et al., 2007). We use high-resolution short period and broadband recordings acquired between 2010 and 2014 by 50 permanent seismic stations deployed to monitor the activity of a regional low angle normal fault (named Alto Tiberina fault, ATF) in the framework of The Alto Tiberina Near Fault Observatory project (TABOO; Chiaraluce et al., 2014). For this study the direct determination of MW for small earthquakes is essential but unfortunately the computation of MW for small earthquakes (MW < 3) is not a routine procedure in seismology. We apply the contributions of source, site, and crustal attenuation computed for this area in order to obtain precise spectral corrections to be used in the calculation of small earthquakes spectral plateaus. The aim of this analysis is to achieve moment magnitudes of small events through a procedure that uses our previously calibrated crustal attenuation parameters (geometrical spreading g(r), quality factor Q(f), and the residual parameter k) to correct for path effects. We determine the MW-ML relationships in two selected fault zones (on-fault and fault-hanging-wall) of the ATF by an orthogonal regression analysis providing a semi-automatic and robust procedure for moment magnitude determination within a

  16. Determining on-fault earthquake magnitude distributions from integer programming

    NASA Astrophysics Data System (ADS)

    Geist, Eric L.; Parsons, Tom

    2018-02-01

    Earthquake magnitude distributions among faults within a fault system are determined from regional seismicity and fault slip rates using binary integer programming. A synthetic earthquake catalog (i.e., list of randomly sampled magnitudes) that spans millennia is first formed, assuming that regional seismicity follows a Gutenberg-Richter relation. Each earthquake in the synthetic catalog can occur on any fault and at any location. The objective is to minimize misfits in the target slip rate for each fault, where slip for each earthquake is scaled from its magnitude. The decision vector consists of binary variables indicating which locations are optimal among all possibilities. Uncertainty estimates in fault slip rates provide explicit upper and lower bounding constraints to the problem. An implicit constraint is that an earthquake can only be located on a fault if it is long enough to contain that earthquake. A general mixed-integer programming solver, consisting of a number of different algorithms, is used to determine the optimal decision vector. A case study is presented for the State of California, where a 4 kyr synthetic earthquake catalog is created and faults with slip ≥3 mm/yr are considered, resulting in >106 variables. The optimal magnitude distributions for each of the faults in the system span a rich diversity of shapes, ranging from characteristic to power-law distributions.

  17. Determining on-fault earthquake magnitude distributions from integer programming

    USGS Publications Warehouse

    Geist, Eric L.; Parsons, Thomas E.

    2018-01-01

    Earthquake magnitude distributions among faults within a fault system are determined from regional seismicity and fault slip rates using binary integer programming. A synthetic earthquake catalog (i.e., list of randomly sampled magnitudes) that spans millennia is first formed, assuming that regional seismicity follows a Gutenberg-Richter relation. Each earthquake in the synthetic catalog can occur on any fault and at any location. The objective is to minimize misfits in the target slip rate for each fault, where slip for each earthquake is scaled from its magnitude. The decision vector consists of binary variables indicating which locations are optimal among all possibilities. Uncertainty estimates in fault slip rates provide explicit upper and lower bounding constraints to the problem. An implicit constraint is that an earthquake can only be located on a fault if it is long enough to contain that earthquake. A general mixed-integer programming solver, consisting of a number of different algorithms, is used to determine the optimal decision vector. A case study is presented for the State of California, where a 4 kyr synthetic earthquake catalog is created and faults with slip ≥3 mm/yr are considered, resulting in >106  variables. The optimal magnitude distributions for each of the faults in the system span a rich diversity of shapes, ranging from characteristic to power-law distributions. 

  18. Effect of Magnitude Estimation of Pleasantness and Intensity on fMRI Activation to Taste

    PubMed Central

    Cerf-Ducastel, B.; Haase, L.; Murphy, C.

    2012-01-01

    The goal of the present study was to investigate whether the psychophysical evaluation of taste stimuli using magnitude estimation influences the pattern of cortical activation observed with neuroimaging. That is, whether different brain areas are involved in the magnitude estimation of pleasantness relative to the magnitude estimation of intensity. fMRI was utilized to examine the patterns of cortical activation involved in magnitude estimation of pleasantness and intensity during hunger in response to taste stimuli. During scanning, subjects were administered taste stimuli orally and were asked to evaluate the perceived pleasantness or intensity using the general Labeled Magnitude Scale (Green 1996, Bartoshuk et al. 2004). Image analysis was conducted using AFNI. Magnitude estimation of intensity and pleasantness shared common activations in the insula, rolandic operculum, and the medio dorsal nucleus of the thalamus. Globally, magnitude estimation of pleasantness produced significantly more activation than magnitude estimation of intensity. Areas differentially activated during magnitude estimation of pleasantness versus intensity included, e.g., the insula, the anterior cingulate gyrus, and putamen; suggesting that different brain areas were recruited when subjects made magnitude estimates of intensity and pleasantness. These findings demonstrate significant differences in brain activation during magnitude estimation of intensity and pleasantness to taste stimuli. An appreciation for the complexity of brain response to taste stimuli may facilitate a clearer understanding of the neural mechanisms underlying eating behavior and over consumption. PMID:23227271

  19. Magnitude Estimation for the 2011 Tohoku-Oki Earthquake Based on Ground Motion Prediction Equations

    NASA Astrophysics Data System (ADS)

    Eshaghi, Attieh; Tiampo, Kristy F.; Ghofrani, Hadi; Atkinson, Gail M.

    2015-08-01

    This study investigates whether real-time strong ground motion data from seismic stations could have been used to provide an accurate estimate of the magnitude of the 2011 Tohoku-Oki earthquake in Japan. Ultimately, such an estimate could be used as input data for a tsunami forecast and would lead to more robust earthquake and tsunami early warning. We collected the strong motion accelerograms recorded by borehole and free-field (surface) Kiban Kyoshin network stations that registered this mega-thrust earthquake in order to perform an off-line test to estimate the magnitude based on ground motion prediction equations (GMPEs). GMPEs for peak ground acceleration and peak ground velocity (PGV) from a previous study by Eshaghi et al. in the Bulletin of the Seismological Society of America 103. (2013) derived using events with moment magnitude ( M) ≥ 5.0, 1998-2010, were used to estimate the magnitude of this event. We developed new GMPEs using a more complete database (1998-2011), which added only 1 year but approximately twice as much data to the initial catalog (including important large events), to improve the determination of attenuation parameters and magnitude scaling. These new GMPEs were used to estimate the magnitude of the Tohoku-Oki event. The estimates obtained were compared with real time magnitude estimates provided by the existing earthquake early warning system in Japan. Unlike the current operational magnitude estimation methods, our method did not saturate and can provide robust estimates of moment magnitude within ~100 s after earthquake onset for both catalogs. It was found that correcting for average shear-wave velocity in the uppermost 30 m () improved the accuracy of magnitude estimates from surface recordings, particularly for magnitude estimates of PGV (Mpgv). The new GMPEs also were used to estimate the magnitude of all earthquakes in the new catalog with at least 20 records. Results show that the magnitude estimate from PGV values using

  20. Application of a time-magnitude prediction model for earthquakes

    NASA Astrophysics Data System (ADS)

    An, Weiping; Jin, Xueshen; Yang, Jialiang; Dong, Peng; Zhao, Jun; Zhang, He

    2007-06-01

    In this paper we discuss the physical meaning of the magnitude-time model parameters for earthquake prediction. The gestation process for strong earthquake in all eleven seismic zones in China can be described by the magnitude-time prediction model using the computations of the parameters of the model. The average model parameter values for China are: b = 0.383, c=0.154, d = 0.035, B = 0.844, C = -0.209, and D = 0.188. The robustness of the model parameters is estimated from the variation in the minimum magnitude of the transformed data, the spatial extent, and the temporal period. Analysis of the spatial and temporal suitability of the model indicates that the computation unit size should be at least 4° × 4° for seismic zones in North China, at least 3° × 3° in Southwest and Northwest China, and the time period should be as long as possible.

  1. Maximum magnitude earthquakes induced by fluid injection

    USGS Publications Warehouse

    McGarr, Arthur F.

    2014-01-01

    Analysis of numerous case histories of earthquake sequences induced by fluid injection at depth reveals that the maximum magnitude appears to be limited according to the total volume of fluid injected. Similarly, the maximum seismic moment seems to have an upper bound proportional to the total volume of injected fluid. Activities involving fluid injection include (1) hydraulic fracturing of shale formations or coal seams to extract gas and oil, (2) disposal of wastewater from these gas and oil activities by injection into deep aquifers, and (3) the development of enhanced geothermal systems by injecting water into hot, low-permeability rock. Of these three operations, wastewater disposal is observed to be associated with the largest earthquakes, with maximum magnitudes sometimes exceeding 5. To estimate the maximum earthquake that could be induced by a given fluid injection project, the rock mass is assumed to be fully saturated, brittle, to respond to injection with a sequence of earthquakes localized to the region weakened by the pore pressure increase of the injection operation and to have a Gutenberg-Richter magnitude distribution with a b value of 1. If these assumptions correctly describe the circumstances of the largest earthquake, then the maximum seismic moment is limited to the volume of injected liquid times the modulus of rigidity. Observations from the available case histories of earthquakes induced by fluid injection are consistent with this bound on seismic moment. In view of the uncertainties in this analysis, however, this should not be regarded as an absolute physical limit.

  2. Improvement of real-time seismic magnitude estimation by combining seismic and geodetic instrumentation

    NASA Astrophysics Data System (ADS)

    Goldberg, D.; Bock, Y.; Melgar, D.

    2017-12-01

    Rapid seismic magnitude assessment is a top priority for earthquake and tsunami early warning systems. For the largest earthquakes, seismic instrumentation tends to underestimate the magnitude, leading to an insufficient early warning, particularly in the case of tsunami evacuation orders. GPS instrumentation provides more accurate magnitude estimations using near-field stations, but isn't sensitive enough to detect the first seismic wave arrivals, thereby limiting solution speed. By optimally combining collocated seismic and GPS instruments, we demonstrate improved solution speed of earthquake magnitude for the largest seismic events. We present a real-time implementation of magnitude-scaling relations that adapts to consider the length of the recording, reflecting the observed evolution of ground motion with time.

  3. Representations of numerical and non-numerical magnitude both contribute to mathematical competence in children.

    PubMed

    Lourenco, Stella F; Bonny, Justin W

    2017-07-01

    A growing body of evidence suggests that non-symbolic representations of number, which humans share with nonhuman animals, are functionally related to uniquely human mathematical thought. Other research suggesting that numerical and non-numerical magnitudes not only share analog format but also form part of a general magnitude system raises questions about whether the non-symbolic basis of mathematical thinking is unique to numerical magnitude. Here we examined this issue in 5- and 6-year-old children using comparison tasks of non-symbolic number arrays and cumulative area as well as standardized tests of math competence. One set of findings revealed that scores on both magnitude comparison tasks were modulated by ratio, consistent with shared analog format. Moreover, scores on these tasks were moderately correlated, suggesting overlap in the precision of numerical and non-numerical magnitudes, as expected under a general magnitude system. Another set of findings revealed that the precision of both types of magnitude contributed shared and unique variance to the same math measures (e.g. calculation and geometry), after accounting for age and verbal competence. These findings argue against an exclusive role for non-symbolic number in supporting early mathematical understanding. Moreover, they suggest that mathematical understanding may be rooted in a general system of magnitude representation that is not specific to numerical magnitude but that also encompasses non-numerical magnitude. © 2016 John Wiley & Sons Ltd.

  4. Contribution of jaw muscle size and craniofacial morphology to human bite force magnitude.

    PubMed

    Raadsheer, M C; van Eijden, T M; van Ginkel, F C; Prahl-Andersen, B

    1999-01-01

    The existence of an interaction among bite force magnitude, jaw muscle size (e.g., cross-sectional area, thickness), and craniofacial morphology is widely accepted. Bite force magnitude depends on the size of the jaw muscles and the lever arm lengths of bite force and muscle forces, which in turn are dictated by craniofacial morphology. In this study, the relative contributions of craniofacial morphology and jaw muscle thickness to the bite force magnitude were studied. In 121 adult individuals, both magnitude and direction of the maximal voluntary bite force were registered. Craniofacial dimensions were measured by anthropometrics and from lateral radiographs. The thicknesses of the masseter, temporal, and digastric muscles were registered by ultrasonography. After a factor analysis was applied to the anthropometric and cephalometric dimensions, the correlation between bite force magnitude, on the one hand, and the "craniofacial factors" and jaw muscle thicknesses, on the other, was assessed by stepwise multiple regression. Fifty-eight percent of the bite force variance could be explained. From the jaw muscles, only the thickness of the masseter muscle correlated significantly with bite force magnitude. Bite force magnitude also correlated significantly positively with vertical and transverse facial dimensions and the inclination of the midface, and significantly negatively with mandibular inclination and occlusal plane inclination. The contribution of the masseter muscle to the variation in bite force magnitude was higher than that of the craniofacial factors.

  5. Modeling of magnitude distributions by the generalized truncated exponential distribution

    NASA Astrophysics Data System (ADS)

    Raschke, Mathias

    2015-01-01

    The probability distribution of the magnitude can be modeled by an exponential distribution according to the Gutenberg-Richter relation. Two alternatives are the truncated exponential distribution (TED) and the cutoff exponential distribution (CED). The TED is frequently used in seismic hazard analysis although it has a weak point: when two TEDs with equal parameters except the upper bound magnitude are mixed, then the resulting distribution is not a TED. Inversely, it is also not possible to split a TED of a seismic region into TEDs of subregions with equal parameters except the upper bound magnitude. This weakness is a principal problem as seismic regions are constructed scientific objects and not natural units. We overcome it by the generalization of the abovementioned exponential distributions: the generalized truncated exponential distribution (GTED). Therein, identical exponential distributions are mixed by the probability distribution of the correct cutoff points. This distribution model is flexible in the vicinity of the upper bound magnitude and is equal to the exponential distribution for smaller magnitudes. Additionally, the exponential distributions TED and CED are special cases of the GTED. We discuss the possible ways of estimating its parameters and introduce the normalized spacing for this purpose. Furthermore, we present methods for geographic aggregation and differentiation of the GTED and demonstrate the potential and universality of our simple approach by applying it to empirical data. The considerable improvement by the GTED in contrast to the TED is indicated by a large difference between the corresponding values of the Akaike information criterion.

  6. Symbolic and non-symbolic number magnitude processing in children with developmental dyscalculia.

    PubMed

    Castro Cañizares, Danilka; Reigosa Crespo, Vivian; González Alemañy, Eduardo

    2012-11-01

    The aim of this study was to evaluate if children with Developmental Dyscalculia (DD) exhibit a general deficit in magnitude representations or a specific deficit in the connection of symbolic representations with the corresponding analogous magnitudes. DD was diagnosed using a timed arithmetic task. The experimental magnitude comparison tasks were presented in non-symbolic and symbolic formats. DD and typically developing (TD) children showed similar numerical distance and size congruity effects. However, DD children performed significantly slower in the symbolic task. These results are consistent with the access deficit hypothesis, according to which DD children's deficits are caused by difficulties accessing magnitude information from numerical symbols rather than in processing numerosities per se.

  7. Differential item functioning magnitude and impact measures from item response theory models.

    PubMed

    Kleinman, Marjorie; Teresi, Jeanne A

    2016-01-01

    Measures of magnitude and impact of differential item functioning (DIF) at the item and scale level, respectively are presented and reviewed in this paper. Most measures are based on item response theory models. Magnitude refers to item level effect sizes, whereas impact refers to differences between groups at the scale score level. Reviewed are magnitude measures based on group differences in the expected item scores and impact measures based on differences in the expected scale scores. The similarities among these indices are demonstrated. Various software packages are described that provide magnitude and impact measures, and new software presented that computes all of the available statistics conveniently in one program with explanations of their relationships to one another.

  8. A local earthquake coda magnitude and its relation to duration, moment M sub O, and local Richter magnitude M sub L

    NASA Technical Reports Server (NTRS)

    Suteau, A. M.; Whitcomb, J. H.

    1977-01-01

    A relationship was found between the seismic moment, M sub O, of shallow local earthquakes and the total duration of the signal, t, in seconds, measured from the earthquakes origin time, assuming that the end of the coda is composed of backscattering surface waves due to lateral heterogenity in the shallow crust following Aki. Using the linear relationship between the logarithm of M sub O and the local Richter magnitude M sub L, a relationship between M sub L and t, was found. This relationship was used to calculate a coda magnitude M sub C which was compared to M sub L for Southern California earthquakes which occurred during the period from 1972 to 1975.

  9. The Effects of Numerical Magnitude, Size, and Color Saturation on Perceived Interval Duration

    ERIC Educational Resources Information Center

    Alards-Tomalin, Doug; Leboe-McGowan, Jason P.; Shaw, Joshua D. M.; Leboe-McGowan, Launa C.

    2014-01-01

    The relative magnitude (or intensity) of an event can have direct implications on timing estimation. Previous studies have found that greater magnitude stimuli are often reported as longer in duration than lesser magnitudes, including Arabic digits (Xuan, Zhang, He, & Chen, 2007). One explanation for these findings is that different…

  10. Basolateral amygdala lesions and sensitivity to reinforcer magnitude in concurrent chains schedules.

    PubMed

    Helms, Christa M; Mitchell, Suzanne H

    2008-08-22

    Previous studies show that the basolateral amygdala (BLA) is required for behavior to adjust when the value of a reinforcer decreases after satiation or pairing with gastric distress. This study evaluated the effect of pre- or post-training excitotoxic lesions of the BLA on changes in preference with another type of contingency change, reinforcer magnitude reversal. Rats were trained to press left and right levers during a variable-interval choice phase for 50 microl or 150 microl sucrose delivered to consistent locations after a 16-s delay. Tones were presented during the first and last 2s of the delay to reinforcement. The tone frequency predicted the magnitude of sucrose reinforcement in baseline conditions. All groups acquired stable preference for the lever on the large (150 microl) reinforcer side. However, nose poking during the delay to large reinforcement was highly accurate (i.e., to the reinforced side) for all groups except the rats with BLA lesions induced before training, suggesting impaired control of behavior by the tone. After the acquisition of stable preference, the locations of the reinforcer magnitudes were unpredictably reversed for a single session. Pre-training lesions blunted changes in preference when the reinforcer magnitudes were reversed. Lesions induced after stable preference was acquired, but prior to reversal, did not disrupt changes in preference. The data suggest that the BLA contributes to the adaptation of choice behavior following changes in reinforcer magnitude. Impaired learning about the tone-reinforcer magnitude relationships may have disrupted discrimination of the reinforcer magnitude reversal.

  11. BASOLATERAL AMYGDALA LESIONS AND SENSITIVITY TO REINFORCER MAGNITUDE IN CONCURRENT CHAINS SCHEDULES

    PubMed Central

    Helms, Christa M.; Mitchell, Suzanne H.

    2008-01-01

    Previous studies show that the basolateral amygdala (BLA) is required for behavior to adjust when the value of a reinforcer decreases after satiation or pairing with gastric distress. This study evaluated the effect of pre- or post-training excitotoxic lesions of the BLA on changes in preference with another type of contingency change, reinforcer magnitude reversal. Rats were trained to press left and right levers during a variable-interval choice phase for 50 µl or 150 µl sucrose delivered to consistent locations after a 16-s delay. Tones were presented during the first and last 2 s of the delay to reinforcement. The tone frequency predicted the magnitude of sucrose reinforcement in baseline conditions. All groups acquired stable preference for the lever on the large (150-µl) reinforcer side. However, nose poking during the delay to large reinforcement was highly accurate (i.e., to the reinforced side) for all groups except the rats with BLA lesions induced before training, suggesting impaired control of behavior by the tone. After the acquisition of stable preference, the locations of the reinforcer magnitudes were unpredictably reversed for a single session. Pre-training lesions blunted changes in preference when the reinforcer magnitudes were reversed. Lesions induced after stable preference was acquired, but prior to reversal, did not disrupt changes in preference. The data suggest that the BLA contributes to the adaptation of choice behavior following changes in reinforcer magnitude. Impaired learning about the tone-reinforcer magnitude relationships may have disrupted discrimination of the reinforcer magnitude reversal. PMID:18455812

  12. Number magnitude to finger mapping is disembodied and topological.

    PubMed

    Plaisier, Myrthe A; Smeets, Jeroen B J

    2011-03-01

    It has been shown that humans associate fingers with numbers because finger counting strategies interact with numerical judgements. At the same time, there is evidence that there is a relation between number magnitude and space as small to large numbers seem to be represented from left to right. In the present study, we investigated whether number magnitude to finger mapping is embodied (related to the order of fingers on the hand) or disembodied (spatial). We let healthy human volunteers name random numbers between 1 and 30, while simultaneously tapping a random finger. Either the hands were placed directly next to each other, 30 cm apart, or the hands were crossed such that the left hand was on the right side of the body mid-line. The results show that naming a smaller number than the previous one was associated with tapping a finger to the left of the previously tapped finger. This shows that there is a spatial (disembodied) mapping between number magnitude and fingers. Furthermore, we show that this mapping is topological rather than metrically scaled.

  13. Revision of a local magnitude relation for South Korea

    NASA Astrophysics Data System (ADS)

    Sheen, D. H.; Seo, K. J.; Oh, J.; Kim, S.; Kang, T. S.; Rhie, J.

    2017-12-01

    A local magnitude relation in South Korea is revised using synthetic Wood-Anderson seismograms from local earthquakes in the distance range of 10-600 km recorded by broadband seismic networks, operated by the Korea Institute of Geoscience and Mineral Resources (KIGAM) and the Korea Meteorological Administration (KMA) between 2001 and 2016. The magnitudes of the earthquakes ranged from ML 2.0 to 5.8 based on the catalog of the KMA. Total numbers of events and seismic records are about 500 and 10,000, respectively. In order to minimize the location error, inland earthquakes were relocated based on manual picks of P and S arrivals using 1-D velocity model for South Korea developed by a trans-dimensional hierarchical Bayesian inversion. Wood-Anderson peak amplitudes measured on the records whose signal-to-noise ratios are greater than 3.0 and were inverted for the attenuation curve by parametric and non-parametric least-squares inversion methods. The discussion on the comparison of the resulting local magnitude relationships will also be addressed.

  14. Cosmological parameter extraction and biases from type Ia supernova magnitude evolution

    NASA Astrophysics Data System (ADS)

    Linden, S.; Virey, J.-M.; Tilquin, A.

    2009-11-01

    We study different one-parametric models of type Ia supernova magnitude evolution on cosmic time scales. Constraints on cosmological and supernova evolution parameters are obtained by combined fits on the actual data coming from supernovae, the cosmic microwave background, and baryonic acoustic oscillations. We find that the best-fit values imply supernova magnitude evolution such that high-redshift supernovae appear some percent brighter than would be expected in a standard cosmos with a dark energy component. However, the errors on the evolution parameters are of the same order, and data are consistent with nonevolving magnitudes at the 1σ level, except for special cases. We simulate a future data scenario where SN magnitude evolution is allowed for, and neglect the possibility of such an evolution in the fit. We find the fiducial models for which the wrong model assumption of nonevolving SN magnitude is not detectable, and for which biases on the fitted cosmological parameters are introduced at the same time. Of the cosmological parameters, the overall mass density ΩM has the strongest chances to be biased due to the wrong model assumption. Whereas early-epoch models with a magnitude offset Δ m˜ z2 show up to be not too dangerous when neglected in the fitting procedure, late epoch models with Δ m˜√{z} have high chances of undetectably biasing the fit results. Centre de Physique Théorique is UMR 6207 - “Unité Mixte de Recherche” of CNRS and of the Universities “de Provence”, “de la Mediterranée”, and “du Sud Toulon-Var” - Laboratory affiliated with FRUMAM (FR2291).

  15. Estimating earthquake magnitudes from reported intensities in the central and eastern United States

    USGS Publications Warehouse

    Boyd, Oliver; Cramer, Chris H.

    2014-01-01

    A new macroseismic intensity prediction equation is derived for the central and eastern United States and is used to estimate the magnitudes of the 1811–1812 New Madrid, Missouri, and 1886 Charleston, South Carolina, earthquakes. This work improves upon previous derivations of intensity prediction equations by including additional intensity data, correcting magnitudes in the intensity datasets to moment magnitude, and accounting for the spatial and temporal population distributions. The new relation leads to moment magnitude estimates for the New Madrid earthquakes that are toward the lower range of previous studies. Depending on the intensity dataset to which the new macroseismic intensity prediction equation is applied, mean estimates for the 16 December 1811, 23 January 1812, and 7 February 1812 mainshocks, and 16 December 1811 dawn aftershock range from 6.9 to 7.1, 6.8 to 7.1, 7.3 to 7.6, and 6.3 to 6.5, respectively. One‐sigma uncertainties on any given estimate could be as high as 0.3–0.4 magnitude units. We also estimate a magnitude of 6.9±0.3 for the 1886 Charleston, South Carolina, earthquake. We find a greater range of magnitude estimates when also accounting for multiple macroseismic intensity prediction equations. The inability to accurately and precisely ascertain magnitude from intensities increases the uncertainty of the central United States earthquake hazard by nearly a factor of two. Relative to the 2008 national seismic hazard maps, our range of possible 1811–1812 New Madrid earthquake magnitudes increases the coefficient of variation of seismic hazard estimates for Memphis, Tennessee, by 35%–42% for ground motions expected to be exceeded with a 2% probability in 50 years and by 27%–35% for ground motions expected to be exceeded with a 10% probability in 50 years.

  16. Understanding the magnitude dependence of PGA and PGV in NGA-West 2 data

    USGS Publications Warehouse

    Baltay, Annemarie S.; Hanks, Thomas C.

    2014-01-01

    The Next Generation Attenuation‐West 2 (NGA‐West 2) 2014 ground‐motion prediction equations (GMPEs) model ground motions as a function of magnitude and distance, using empirically derived coefficients (e.g., Bozorgniaet al., 2014); as such, these GMPEs do not clearly employ earthquake source parameters beyond moment magnitude (M) and focal mechanism. To better understand the magnitude‐dependent trends in the GMPEs, we build a comprehensive earthquake source‐based model to explain the magnitude dependence of peak ground acceleration and peak ground velocity in the NGA‐West 2 ground‐motion databases and GMPEs. Our model employs existing models (Hanks and McGuire, 1981; Boore, 1983, 1986; Anderson and Hough, 1984) that incorporate a point‐source Brune model, including a constant stress drop and the high‐frequency attenuation parameter κ0, random vibration theory, and a finite‐fault assumption at the large magnitudes to describe the data from magnitudes 3 to 8. We partition this range into four different magnitude regions, each of which has different functional dependences on M. Use of the four magnitude partitions separately allows greater understanding of what happens in any one subrange, as well as the limiting conditions between the subranges. This model provides a remarkably good fit to the NGA data for magnitudes from 3magnitude data, for which the corner frequency is masked by the attenuation of high frequencies. That this simple, source‐based model matches the NGA‐West 2 GMPEs and data so well suggests that considerable simplicity underlies the parametrically complex NGA GMPEs.

  17. Epistemic uncertainty in the location and magnitude of earthquakes in Italy from Macroseismic data

    USGS Publications Warehouse

    Bakun, W.H.; Gomez, Capera A.; Stucchi, M.

    2011-01-01

    Three independent techniques (Bakun and Wentworth, 1997; Boxer from Gasperini et al., 1999; and Macroseismic Estimation of Earthquake Parameters [MEEP; see Data and Resources section, deliverable D3] from R.M.W. Musson and M.J. Jimenez) have been proposed for estimating an earthquake location and magnitude from intensity data alone. The locations and magnitudes obtained for a given set of intensity data are almost always different, and no one technique is consistently best at matching instrumental locations and magnitudes of recent well-recorded earthquakes in Italy. Rather than attempting to select one of the three solutions as best, we use all three techniques to estimate the location and the magnitude and the epistemic uncertainties among them. The estimates are calculated using bootstrap resampled data sets with Monte Carlo sampling of a decision tree. The decision-tree branch weights are based on goodness-of-fit measures of location and magnitude for recent earthquakes. The location estimates are based on the spatial distribution of locations calculated from the bootstrap resampled data. The preferred source location is the locus of the maximum bootstrap location spatial density. The location uncertainty is obtained from contours of the bootstrap spatial density: 68% of the bootstrap locations are within the 68% confidence region, and so on. For large earthquakes, our preferred location is not associated with the epicenter but with a location on the extended rupture surface. For small earthquakes, the epicenters are generally consistent with the location uncertainties inferred from the intensity data if an epicenter inaccuracy of 2-3 km is allowed. The preferred magnitude is the median of the distribution of bootstrap magnitudes. As with location uncertainties, the uncertainties in magnitude are obtained from the distribution of bootstrap magnitudes: the bounds of the 68% uncertainty range enclose 68% of the bootstrap magnitudes, and so on. The instrumental

  18. Viscomagnetic effect: j-magnitude weighting for Ar-N2

    NASA Astrophysics Data System (ADS)

    Snider, R. F.

    1984-10-01

    A continuing question in the study of the viscomagnetic effect has been the dependence on j magnitude, of the angular momentum polarization. It has been generally accepted that neither the normalized nor the unrenormalized angular momentum quadrupole correctly interprets the experimental results. IOS calculations of the production and relaxation cross sections are performed keeping the full j-magnitude dependence. Predictions of the field dependence of the viscomagnetic effect are made and it is found that the j dependence of both the production cross sections and of the relaxation matrix influence the detailed field dependence of the viscomagnetic effect.

  19. Magnitude and frequency of floods in western Oregon

    USGS Publications Warehouse

    Harris, David Dell; Hubbard, Larry L.; Hubbard, Lawrence E.

    1979-01-01

    A method for estimating the magnitude and frequency of floods is presented for unregulated streams in western Oregon. Equations relating flood magnitude to basin characteristics were developed for exceedance probabilities of 0.5 to 0.01 (2- to 100-year recurrence intervals). Separate equations are presented for four regions: Coast, Willamette, Rogue-Umpqua, and High Cascades. Also presented are values of flood discharges for selected exceedance probabilities and of basin characteristics for all gaging stations used in the analysis. Included are data for 230 stations in Oregon, 6 stations in southwestern Washington, and 3 stations in northwestern California. Drainage areas used in the analysis range from 0.21 to 7,280 square miles. Also included are maximum discharges for all western Oregon stations used in the analysis. (Woodard-USGS)

  20. Dynamic visual attention: motion direction versus motion magnitude

    NASA Astrophysics Data System (ADS)

    Bur, A.; Wurtz, P.; Müri, R. M.; Hügli, H.

    2008-02-01

    Defined as an attentive process in the context of visual sequences, dynamic visual attention refers to the selection of the most informative parts of video sequence. This paper investigates the contribution of motion in dynamic visual attention, and specifically compares computer models designed with the motion component expressed either as the speed magnitude or as the speed vector. Several computer models, including static features (color, intensity and orientation) and motion features (magnitude and vector) are considered. Qualitative and quantitative evaluations are performed by comparing the computer model output with human saliency maps obtained experimentally from eye movement recordings. The model suitability is evaluated in various situations (synthetic and real sequences, acquired with fixed and moving camera perspective), showing advantages and inconveniences of each method as well as preferred domain of application.

  1. Development of magnitude processing in children with developmental dyscalculia: space, time, and number

    PubMed Central

    Skagerlund, Kenny; Träff, Ulf

    2014-01-01

    Developmental dyscalculia (DD) is a learning disorder associated with impairments in a preverbal non-symbolic approximate number system (ANS) pertaining to areas in and around the intraparietal sulcus (IPS). The current study sought to enhance our understanding of the developmental trajectory of the ANS and symbolic number processing skills, thereby getting insight into whether a deficit in the ANS precedes or is preceded by impaired symbolic and exact number processing. Recent work has also suggested that humans are endowed with a shared magnitude system (beyond the number domain) in the brain. We therefore investigated whether children with DD demonstrated a general magnitude deficit, stemming from the proposed magnitude system, rather than a specific one limited to numerical quantity. Fourth graders with DD were compared to age-matched controls and a group of ability-matched second graders, on a range of magnitude processing tasks pertaining to space, time, and number. Children with DD displayed difficulties across all magnitude dimensions compared to age-matched peers and showed impaired ANS acuity compared to the younger, ability-matched control group, while exhibiting intact symbolic number processing. We conclude that (1) children with DD suffer from a general magnitude-processing deficit, (2) a shared magnitude system likely exists, and (3) a symbolic number-processing deficit in DD tends to be preceded by an ANS deficit. PMID:25018746

  2. Development of magnitude processing in children with developmental dyscalculia: space, time, and number.

    PubMed

    Skagerlund, Kenny; Träff, Ulf

    2014-01-01

    Developmental dyscalculia (DD) is a learning disorder associated with impairments in a preverbal non-symbolic approximate number system (ANS) pertaining to areas in and around the intraparietal sulcus (IPS). The current study sought to enhance our understanding of the developmental trajectory of the ANS and symbolic number processing skills, thereby getting insight into whether a deficit in the ANS precedes or is preceded by impaired symbolic and exact number processing. Recent work has also suggested that humans are endowed with a shared magnitude system (beyond the number domain) in the brain. We therefore investigated whether children with DD demonstrated a general magnitude deficit, stemming from the proposed magnitude system, rather than a specific one limited to numerical quantity. Fourth graders with DD were compared to age-matched controls and a group of ability-matched second graders, on a range of magnitude processing tasks pertaining to space, time, and number. Children with DD displayed difficulties across all magnitude dimensions compared to age-matched peers and showed impaired ANS acuity compared to the younger, ability-matched control group, while exhibiting intact symbolic number processing. We conclude that (1) children with DD suffer from a general magnitude-processing deficit, (2) a shared magnitude system likely exists, and (3) a symbolic number-processing deficit in DD tends to be preceded by an ANS deficit.

  3. Involvement of Working Memory in Longitudinal Development of Number-Magnitude Skills

    ERIC Educational Resources Information Center

    Kolkman, Meijke E.; Kroesbergen, Evelyn H.; Leseman, Paul P. M.

    2014-01-01

    The ability to connect numbers and magnitudes is an important prerequisite for math learning, here referred to as number-magnitude skills. It has been proposed that working memory plays an important role in constructing these connections. The aim of the current study was to examine if working memory accounts for constructing these connections by…

  4. Are Earthquakes Predictable? A Study on Magnitude Correlations in Earthquake Catalog and Experimental Data

    NASA Astrophysics Data System (ADS)

    Stavrianaki, K.; Ross, G.; Sammonds, P. R.

    2015-12-01

    The clustering of earthquakes in time and space is widely accepted, however the existence of correlations in earthquake magnitudes is more questionable. In standard models of seismic activity, it is usually assumed that magnitudes are independent and therefore in principle unpredictable. Our work seeks to test this assumption by analysing magnitude correlation between earthquakes and their aftershocks. To separate mainshocks from aftershocks, we perform stochastic declustering based on the widely used Epidemic Type Aftershock Sequence (ETAS) model, which allows us to then compare the average magnitudes of aftershock sequences to that of their mainshock. The results of earthquake magnitude correlations were compared with acoustic emissions (AE) from laboratory analog experiments, as fracturing generates both AE at the laboratory scale and earthquakes on a crustal scale. Constant stress and constant strain rate experiments were done on Darley Dale sandstone under confining pressure to simulate depth of burial. Microcracking activity inside the rock volume was analyzed by the AE technique as a proxy for earthquakes. Applying the ETAS model to experimental data allowed us to validate our results and provide for the first time a holistic view on the correlation of earthquake magnitudes. Additionally we search the relationship between the conditional intensity estimates of the ETAS model and the earthquake magnitudes. A positive relation would suggest the existence of magnitude correlations. The aim of this study is to observe any trends of dependency between the magnitudes of aftershock earthquakes and the earthquakes that trigger them.

  5. Analysis of Magnitude Correlations in a Self-Similar model of Seismicity

    NASA Astrophysics Data System (ADS)

    Zambrano, A.; Joern, D.

    2017-12-01

    A recent model of seismicity that incorporates a self-similar Omori-Utsu relation, which is used to describe the temporal evolution of earthquake triggering, has been shown to provide a more accurate description of seismicity in Southern California when compared to epidemic type aftershock sequence models. Forecasting of earthquakes is an active research area where one of the debated points is whether magnitude correlations of earthquakes exist within real world seismic data. Prior to this work, the analysis of magnitude correlations of the aforementioned self-similar model had not been addressed. Here we present statistical properties of the magnitude correlations for the self-similar model along with an analytical analysis of the branching ratio and criticality parameters.

  6. Color-magnitude diagrams for six metal-rich, low-latitude globular clusters

    NASA Technical Reports Server (NTRS)

    Armandroff, Taft E.

    1988-01-01

    Colors and magnitudes for stars on CCD frames for six metal-rich, low-latitude, previously unstudied globular clusters and one well-studied, metal-rich cluster (47 Tuc) have been derived and color-magnitude diagrams have been constructed. The photometry for stars in 47 Tuc are in good agreement with previous studies, while the V magnitudes of the horizontal-branch stars in the six program clusters do not agree with estimates based on secondary methods. The distances to these clusters are different from prior estimates. Redding values are derived for each program cluster. The horizontal branches of the program clusters all appear to lie entirely redwards of the red edge of the instability strip, as is normal for their metallicities.

  7. Individual Movement Variability Magnitudes Are Explained by Cortical Neural Variability.

    PubMed

    Haar, Shlomi; Donchin, Opher; Dinstein, Ilan

    2017-09-13

    Humans exhibit considerable motor variability even across trivial reaching movements. This variability can be separated into specific kinematic components such as extent and direction that are thought to be governed by distinct neural processes. Here, we report that individual subjects (males and females) exhibit different magnitudes of kinematic variability, which are consistent (within individual) across movements to different targets and regardless of which arm (right or left) was used to perform the movements. Simultaneous fMRI recordings revealed that the same subjects also exhibited different magnitudes of fMRI variability across movements in a variety of motor system areas. These fMRI variability magnitudes were also consistent across movements to different targets when performed with either arm. Cortical fMRI variability in the posterior-parietal cortex of individual subjects explained their movement-extent variability. This relationship was apparent only in posterior-parietal cortex and not in other motor system areas, thereby suggesting that individuals with more variable movement preparation exhibit larger kinematic variability. We therefore propose that neural and kinematic variability are reliable and interrelated individual characteristics that may predispose individual subjects to exhibit distinct motor capabilities. SIGNIFICANCE STATEMENT Neural activity and movement kinematics are remarkably variable. Although intertrial variability is rarely studied, here, we demonstrate that individual human subjects exhibit distinct magnitudes of neural and kinematic variability that are reproducible across movements to different targets and when performing these movements with either arm. Furthermore, when examining the relationship between cortical variability and movement variability, we find that cortical fMRI variability in parietal cortex of individual subjects explained their movement extent variability. This enabled us to explain why some subjects

  8. Rapid determination of the energy magnitude Me

    NASA Astrophysics Data System (ADS)

    di Giacomo, D.; Parolai, S.; Bormann, P.; Grosser, H.; Saul, J.; Wang, R.; Zschau, J.

    2009-12-01

    The magnitude of an earthquake is one of the most used parameters to evaluate the earthquake’s damage potential. Among the non-saturating magnitude scales, the energy magnitude Me is related to a well defined physical parameter of the seismic source, that is the radiated seismic energy Es (e.g. Bormann et al., 2002): Me = 2/3(log10 Es - 4.4). Me is more suitable than the moment magnitude Mw in describing an earthquake's shaking potential (Choy and Kirby, 2004). Indeed, Me is calculated over a wide frequency range of the source spectrum and represents a better measure of the shaking potential, whereas Mw is related to the low-frequency asymptote of the source spectrum and is a good measure of the fault size and hence of the static (tectonic) effect of an earthquake. We analyse teleseismic broadband P-waves signals in the distance range 20°-98° to calculate Es. To correct the frequency-dependent energy loss experienced by the P-waves during the propagation path, we use pre-calculated spectral amplitude decay functions for different frequencies obtained from numerical simulations of Green’s functions (Wang, 1999) given the reference Earth model AK135Q (Kennett et al., 1995; Montagner and Kennett, 1996). By means of these functions the correction for the various propagation effects of the recorded P-wave velocity spectra is performed in a rapid and robust way, and the calculation of ES, and hence of Me, can be computed at the single station. We show that our procedure is suitable for implementation in rapid response systems since it could provide stable Me determinations within 10-15 minutes after the earthquake’s origin time, even in case of great earthquakes. We tested our procedure for a large dataset composed by about 770 earthquakes globally distributed in the Mw range 5.5-9.3 recorded at the broadband stations managed by the IRIS, GEOFON, and GEOSCOPE global networks, as well as other regional seismic networks. Me and Mw express two different aspects of

  9. Intensity, magnitude, location and attenuation in India for felt earthquakes since 1762

    USGS Publications Warehouse

    Szeliga, Walter; Hough, Susan; Martin, Stacey; Bilham, Roger

    2010-01-01

    A comprehensive, consistently interpreted new catalog of felt intensities for India (Martin and Szeliga, 2010, this issue) includes intensities for 570 earthquakes; instrumental magnitudes and locations are available for 100 of these events. We use the intensity values for 29 of the instrumentally recorded events to develop new intensity versus attenuation relations for the Indian subcontinent and the Himalayan region. We then use these relations to determine the locations and magnitudes of 234 historical events, using the method of Bakun and Wentworth (1997). For the remaining 336 events, intensity distributions are too sparse to determine magnitude or location. We evaluate magnitude and location accuracy of newly located events by comparing the instrumental- with the intensity-derived location for 29 calibration events, for which more than 15 intensity observations are available. With few exceptions, most intensity-derived locations lie within a fault length of the instrumentally determined location. For events in which the azimuthal distribution of intensities is limited, we conclude that the formal error bounds from the regression of Bakun and Wentworth (1997) do not reflect the true uncertainties. We also find that the regression underestimates the uncertainties of the location and magnitude of the 1819 Allah Bund earthquake, for which a location has been inferred from mapped surface deformation. Comparing our inferred attenuation relations to those developed for other regions, we find that attenuation for Himalayan events is comparable to intensity attenuation in California (Bakun and Wentworth, 1997), while intensity attenuation for cratonic events is higher than intensity attenuation reported for central/eastern North America (Bakun et al., 2003). Further, we present evidence that intensities of intraplate earthquakes have a nonlinear dependence on magnitude such that attenuation relations based largely on small-to-moderate earthquakes may significantly

  10. Intensity, magnitude, location, and attenuation in India for felt earthquakes since 1762

    USGS Publications Warehouse

    Szeliga, W.; Hough, S.; Martin, S.; Bilham, R.

    2010-01-01

    A comprehensive, consistently interpreted new catalog of felt intensities for India (Martin and Szeliga, 2010, this issue) includes intensities for 570 earth-quakes; instrumental magnitudes and locations are available for 100 of these events. We use the intensity values for 29 of the instrumentally recorded events to develop new intensity versus attenuation relations for the Indian subcontinent and the Himalayan region. We then use these relations to determine the locations and magnitudes of 234 historical events, using the method of Bakun and Wentworth (1997). For the remaining 336 events, intensity distributions are too sparse to determine magnitude or location. We evaluate magnitude and location accuracy of newly located events by comparing the instrumental-with the intensity-derived location for 29 calibration events, for which more than 15 intensity observations are available. With few exceptions, most intensity-derived locations lie within a fault length of the instrumentally determined location. For events in which the azimuthal distribution of intensities is limited, we conclude that the formal error bounds from the regression of Bakun and Wentworth (1997) do not reflect the true uncertainties. We also find that the regression underestimates the uncertainties of the location and magnitude of the 1819 Allah Bund earthquake, for which a location has been inferred from mapped surface deformation. Comparing our inferred attenuation relations to those developed for other regions, we find that attenuation for Himalayan events is comparable to intensity attenuation in California (Bakun and Wentworth, 1997), while intensity attenuation for cratonic events is higher than intensity attenuation reported for central/eastern North America (Bakun et al., 2003). Further, we present evidence that intensities of intraplate earth-quakes have a nonlinear dependence on magnitude such that attenuation relations based largely on small-to-moderate earthquakes may significantly

  11. Using Landsat to Diagnose Trends in Disturbance Magnitude Across the National Forest System

    NASA Astrophysics Data System (ADS)

    Hernandez, A. J.; Healey, S. P.; Stehman, S. V.; Ramsey, R. D.

    2014-12-01

    The Landsat archive is increasingly being used to detect trends in the occurrence of forest disturbance. Beyond information about the amount of area affected, forest managers need to know if and how disturbance severity is changing. For example, the United States National Forest System (NFS) has developed a comprehensive plan for carbon monitoring, which requires a detailed temporal mapping of forest disturbance magnitudes across 75 million hectares. To meet this need, we have prepared multitemporal models of percent canopy cover that were calibrated with extensive field data from the USFS Forest Inventory and Analysis Program (FIA). By applying these models to pre- and post-event Landsat images at the site of known disturbances, we develop maps showing first-order estimates of disturbance magnitude on the basis of cover removal. However, validation activities consistently show that these initial estimates under-estimate disturbance magnitude. We have developed an approach, which quantifies this under-prediction at the landscape level and uses empirical validation data to adjust change magnitude estimates derived from initial disturbance maps. In an assessment of adjusted magnitude trends of NFS' Northern Region from 1990 to the present, we observed significant declines since 1990 (p < .01) in harvest magnitude, likely related to known reduction of clearcutting practices in the region. Fire, conversely, did not show strongly significant trends in magnitude, despite an increase in the overall area affected. As Landsat is used to provide increasingly precise maps of the timing and location of historical forest disturbance, a logical next step is to use the archive to generate widely interpretable and objective estimates of disturbance magnitude.

  12. PubMed

    Oliver Bonet, Maria; Mach, Núria

    2016-09-20

    Introducción: la infertilidad es un problema global en aumento. Se estima que aproximadamente un 15% de las parejas en edad reproductiva tiene dificultades a la hora de concebir. De estas, alrededor de la mitad presentan uno o varios factores masculinos asociados a infertilidad o subfertilidad, aislados o en combinación con problemas de origen femenino. Durante la última década se ha empezado a estudiar la infertilidad desde una perspectiva multifactorial, considerando las interacciones y conexiones entre diferentes situaciones genéticas, epigenéticas, bioquímicas y fisiológicas del paciente.Objetivo: la presente revisión pretende describir mecanismos epigenéticos que pueden ser modulados mediante aspectos nutricionales y que están relacionados con la etiología de la infertilidad masculina y con la herencia transgeneracional de este fenotipo.Material y métodos: se ha realizado una extensa búsqueda de publicaciones científicas en las principales bases de datos electrónicas especializadas: NBCI, Elsevier, Scielo, Scirus y Science Direct.Resultados y conclusión: varios trabajos que muestran la importancia del estado nutricional en la fertilidad del hombre y, más específicamente, la capacidad de los componentes de la dieta para modificar los perfiles epigenéticos que no únicamente pueden afectar a su fertilidad, sino que también pueden ser transmitidos a la descendencia mediante lo que se ha denominado herencia transgeneracional, ocasionándoles problemas de salud diversos entre los que también se hallan problemas en la fertilidad.

  13. Extreme Magnitude Earthquakes and their Economical Consequences

    NASA Astrophysics Data System (ADS)

    Chavez, M.; Cabrera, E.; Ashworth, M.; Perea, N.; Emerson, D.; Salazar, A.; Moulinec, C.

    2011-12-01

    The frequency of occurrence of extreme magnitude earthquakes varies from tens to thousands of years, depending on the considered seismotectonic region of the world. However, the human and economic losses when their hypocenters are located in the neighborhood of heavily populated and/or industrialized regions, can be very large, as recently observed for the 1985 Mw 8.01 Michoacan, Mexico and the 2011 Mw 9 Tohoku, Japan, earthquakes. Herewith, a methodology is proposed in order to estimate the probability of exceedance of: the intensities of extreme magnitude earthquakes, PEI and of their direct economical consequences PEDEC. The PEI are obtained by using supercomputing facilities to generate samples of the 3D propagation of extreme earthquake plausible scenarios, and enlarge those samples by Monte Carlo simulation. The PEDEC are computed by using appropriate vulnerability functions combined with the scenario intensity samples, and Monte Carlo simulation. An example of the application of the methodology due to the potential occurrence of extreme Mw 8.5 subduction earthquakes on Mexico City is presented.

  14. El Lenguaje de los Chicanos (The Language of Chicanos). Regional and Social Characteristics of Language Used by Mexican Americans.

    ERIC Educational Resources Information Center

    Hernandez-Chavez, Eduardo, Ed.; And Others

    The following articles are included in this anthology on Chicano speech: (1) "Mexican Spanish," D.N. Cardenas; (2) "The Archaic and the Modern in the Spanish of New Mexico," J. Ornstein; (3) "Problemas Lexicograficos del Espanol del Sudoeste," A.M. Espinosa, Jr.; (4) "Associative Interference in New Mexican Spanish," J.B. Rael; (5) "Some Aspects…

  15. Influence of biases in numerical magnitude allocation on human prosocial decision making.

    PubMed

    Arshad, Qadeer; Nigmatullina, Yuliya; Siddiqui, Shuaib; Franka, Mustafa; Mediratta, Saniya; Ramachandaran, Sanjeev; Lobo, Rhannon; Malhotra, Paresh A; Roberts, R E; Bronstein, Adolfo M

    2017-12-01

    Over the past decade neuroscientific research has attempted to probe the neurobiological underpinnings of human prosocial decision making. Such research has almost ubiquitously employed tasks such as the dictator game or similar variations (i.e., ultimatum game). Considering the explicit numerical nature of such tasks, it is surprising that the influence of numerical cognition on decision making during task performance remains unknown. While performing these tasks, participants typically tend to anchor on a 50:50 split that necessitates an explicit numerical judgement (i.e., number-pair bisection). Accordingly, we hypothesize that the decision-making process during the dictator game recruits overlapping cognitive processes to those known to be engaged during number-pair bisection. We observed that biases in numerical magnitude allocation correlated with the formulation of decisions during the dictator game. That is, intrinsic biases toward smaller numerical magnitudes were associated with the formulation of less favorable decisions, whereas biases toward larger magnitudes were associated with more favorable choices. We proceeded to corroborate this relationship by subliminally and systematically inducing biases in numerical magnitude toward either higher or lower numbers using a visuo-vestibular stimulation paradigm. Such subliminal alterations in numerical magnitude allocation led to proportional and corresponding changes to an individual's decision making during the dictator game. Critically, no relationship was observed between neither intrinsic nor induced biases in numerical magnitude on decision making when assessed using a nonnumerical-based prosocial questionnaire. Our findings demonstrate numerical influences on decisions formulated during the dictator game and highlight the necessity to control for confounds associated with numerical cognition in human decision-making paradigms. NEW & NOTEWORTHY We demonstrate that intrinsic biases in numerical magnitude

  16. Suitability of rapid energy magnitude determinations for emergency response purposes

    NASA Astrophysics Data System (ADS)

    Di Giacomo, Domenico; Parolai, Stefano; Bormann, Peter; Grosser, Helmut; Saul, Joachim; Wang, Rongjiang; Zschau, Jochen

    2010-01-01

    It is common practice in the seismological community to use, especially for large earthquakes, the moment magnitude Mw as a unique magnitude parameter to evaluate the earthquake's damage potential. However, as a static measure of earthquake size, Mw does not provide direct information about the released seismic wave energy and its high frequency content, which is the more interesting information both for engineering purposes and for a rapid assessment of the earthquake's shaking potential. Therefore, we recommend to provide to disaster management organizations besides Mw also sufficiently accurate energy magnitude determinations as soon as possible after large earthquakes. We developed and extensively tested a rapid method for calculating the energy magnitude Me within about 10-15 min after an earthquake's occurrence. The method is based on pre-calculated spectral amplitude decay functions obtained from numerical simulations of Green's functions. After empirical validation, the procedure has been applied offline to a large data set of 767 shallow earthquakes that have been grouped according to their type of mechanism (strike-slip, normal faulting, thrust faulting, etc.). The suitability of the proposed approach is discussed by comparing our rapid Me estimates with Mw published by GCMT as well as with Mw and Me reported by the USGS. Mw is on average slightly larger than our Me for all types of mechanisms. No clear dependence on source mechanism is observed for our Me estimates. In contrast, Me from the USGS is generally larger than Mw for strike-slip earthquakes and generally smaller for the other source types. For ~67 per cent of the event data set our Me differs <= +/-0.3 magnitude units (m.u.) from the respective Me values published by the USGS. However, larger discrepancies (up to 0.8 m.u.) may occur for strike-slip events. A reason of that may be the overcorrection of the energy flux applied by the USGS for this type of earthquakes. We follow the original

  17. Magnitude-Based Postfire Debris Flow Rainfall Accumulation-Duration Thresholds for Emergency-Response Planning

    NASA Astrophysics Data System (ADS)

    Cannon, S. H.; Boldt, E. M.; Laber, J. L.; Kean, J. W.; Staley, D. M.

    2011-12-01

    Following wildfires, emergency-response and public-safety agencies can be faced with evacuation and resource-deployment decisions well in advance of coming winter storms and during storms themselves. Information critical to these decisions is needed for recently burned areas in the San Gabriel Mountains of southern California. A compilation of information on the hydrologic response to winter storms from recently burned areas in southern California steeplands is used to develop a system for classifying magnitudes of hydrologic response in this setting. The four-class system describes combinations of reported volumes of individual debris flows, consequences of debris flows and floods in an urban setting, and spatial extents of the hydrologic response. Magnitude 0 events show a negligible response, while Magnitude I events are characterized by small (<1,000 m3) debris flows or low-discharge floods produced from one or two drainage basins. A few culverts and storm drains may be blocked, a few streets may be partially flooded or blocked by water and debris, and a few buildings near the mountain front may be damaged. Magnitude II events are characterized by two to five moderately-sized (1,000 to 10,000 m3) debris flows or one large (>10,000 m3) event. Several culverts or storm drains may be blocked or fail, several streets may be flooded or completely blocked by water and debris, and buildings, streets, and bridges may be damaged or destroyed. Magnitude III events consist of widespread and abundant debris flows of volumes >10,000 m3 and high discharge flooding causing significant impact to the built environment. Many streets, storm drains, and streets may be completely blocked by debris, making many streets unsafe for travel. Several large buildings, sections of infrastructure corridors and bridges may be damaged or destroyed. The range of rainfall conditions associated with different magnitude classes are defined by correlating local rainfall data with the response

  18. Independent coding of absolute duration and distance magnitudes in the prefrontal cortex

    PubMed Central

    Marcos, Encarni; Tsujimoto, Satoshi

    2016-01-01

    The estimation of space and time can interfere with each other, and neuroimaging studies have shown overlapping activation in the parietal and prefrontal cortical areas. We used duration and distance discrimination tasks to determine whether space and time share resources in prefrontal cortex (PF) neurons. Monkeys were required to report which of two stimuli, a red circle or blue square, presented sequentially, were longer and farther, respectively, in the duration and distance tasks. In a previous study, we showed that relative duration and distance are coded by different populations of neurons and that the only common representation is related to goal coding. Here, we examined the coding of absolute duration and distance. Our results support a model of independent coding of absolute duration and distance metrics by demonstrating that not only relative magnitude but also absolute magnitude are independently coded in the PF. NEW & NOTEWORTHY Human behavioral studies have shown that spatial and duration judgments can interfere with each other. We investigated the neural representation of such magnitudes in the prefrontal cortex. We found that the two magnitudes are independently coded by prefrontal neurons. We suggest that the interference among magnitude judgments might depend on the goal rather than the perceptual resource sharing. PMID:27760814

  19. Selective breeding for magnitude of methamphetamine-induced sensitization alters methamphetamine consumption

    PubMed Central

    Scibelli, Angela C.; McKinnon, Carrie S.; Reed, Cheryl; Burkhart-Kasch, Sue; Li, Na; Baba, Harue; Wheeler, Jeanna M.

    2012-01-01

    Rationale Genetically determined differences in susceptibility to drug-induced sensitization could be related to risk for drug consumption. Objectives Studies were performed to determine whether selective breeding could be used to create lines of mice with different magnitudes of locomotor sensitization to methamphetamine (MA). MA sensitization (MASENS) lines were also examined for genetically correlated responses to MA. Methods Beginning with the F2 cross of C57BL/6J and DBA/2J strains, mice were tested for locomotor sensitization to repeated injections of 1 mg/kg MA and bred based on magnitude of sensitization. Five selected offspring generations were tested. All generations were also tested for MA consumption, and some were tested for dose-dependent locomotor-stimulant responses to MA, consumption of saccharin, quinine, and potassium chloride as a measure of taste sensitivity, and MA clearance after acute and repeated MA. Results Selective breeding resulted in creation of two lines [MA high sensitization (MAHSENS) and MA low sensitization (MALSENS)] that differed in magnitude of MA-induced sensitization. Initially, greater MA consumption in MAHSENS mice reversed over the course of selection so that MALSENS mice consumed more MA. MAHSENS mice exhibited greater sensitivity to the acute stimulant effects of MA, but there were no significant differences between the lines in MA clearance from blood. Conclusions Genetic factors influence magnitude of MA-induced locomotor sensitization and some of the genes involved in magnitude of this response also influence MA sensitivity and consumption. Genetic factors leading to greater MA-induced sensitization may serve a protective role against high levels of MA consumption. PMID:21088960

  20. Optical Spectroscopy of the Classical Novae V339 Del (2013) and V5668 Sgr (2015 No. 2)

    NASA Astrophysics Data System (ADS)

    Wagner, R. Mark; Woodward, Charles E.; Starrfield, Sumner; Ilyin, Ilya; Strassmeier, Klaus G.; Page, Kim; Osborne, Julian P.; Beardmore, Andrew P.

    2016-01-01

    We report the results of optical spectroscopy of the gamma-ray classical novae V339 Del (2013) and V5668 Sgr (PNV J18365700-2855420/Nova Sgr 2015 No. 2) supplemented by UV and X-ray observations obtained with Swift. Our spectra were obtained with the Steward Observatory Bok 2.3 m telescope (+B&C), the MDM 2.4 m Hiltner telescope (+OSMOS), the 6.5 m MMT (+BlueChannel), and the 2 x 8.4 m Large Binocular Telescope (+MODS1 and PEPSI) between 2013 August and 2015 September. The PEPSI spectra cover all or part of the 384-907 nm spectral region at a resolution of up to 270,000 (1 km/s). This is the highest resolution available on any 8-10 m class telescope. V339 Del was discovered on 2015 August 14.58 by Itagaki at V about 6.8. This nova reached a peak magnitude of about 4.3 making it one of the brightest novae of this century. Because of its exceptional brightness it has been observed at a variety of wavelengths and by a host of observatories both on the ground and in space. V5668 Sgr was discovered on 2015 March 15.634 by Seach at a magnitude of 6.0. It subsequently reached a maximum brightness of about 4.0 in late March. High resolution PEPSI spectra obtained in early April show dramatic variations in the multi-component P Cygni-type line profiles. V5668 Sgr was observed to form dust in June thereafter fading to about 13th magnitude. Our recent observations show that it has now evolved into the nebular phase. SS acknowledges partial support from NSF and NASA grants to ASU. CEW acknowledges support from NASA.

  1. Common magnitude representation of fractions and decimals is task dependent.

    PubMed

    Zhang, Li; Fang, Qiaochu; Gabriel, Florence C; Szűcs, Denes

    2016-01-01

    Although several studies have compared the representation of fractions and decimals, no study has investigated whether fractions and decimals, as two types of rational numbers, share a common representation of magnitude. The current study aimed to answer the question of whether fractions and decimals share a common representation of magnitude and whether the answer is influenced by task paradigms. We included two different number pairs, which were presented sequentially: fraction-decimal mixed pairs and decimal-fraction mixed pairs in all four experiments. Results showed that when the mixed pairs were very close numerically with the distance 0.1 or 0.3, there was a significant distance effect in the comparison task but not in the matching task. However, when the mixed pairs were further apart numerically with the distance 0.3 or 1.3, the distance effect appeared in the matching task regardless of the specific stimuli. We conclude that magnitudes of fractions and decimals can be represented in a common manner, but how they are represented is dependent on the given task. Fractions and decimals could be translated into a common representation of magnitude in the numerical comparison task. In the numerical matching task, fractions and decimals also shared a common representation. However, both of them were represented coarsely, leading to a weak distance effect. Specifically, fractions and decimals produced a significant distance effect only when the numerical distance was larger.

  2. Impact from Magnitude-Rupture Length Uncertainty on Seismic Hazard and Risk

    NASA Astrophysics Data System (ADS)

    Apel, E. V.; Nyst, M.; Kane, D. L.

    2015-12-01

    In probabilistic seismic hazard and risk assessments seismic sources are typically divided into two groups: fault sources (to model known faults) and background sources (to model unknown faults). In areas like the Central and Eastern United States and Hawaii the hazard and risk is driven primarily by background sources. Background sources can be modeled as areas, points or pseudo-faults. When background sources are modeled as pseudo-faults, magnitude-length or magnitude-area scaling relationships are required to construct these pseudo-faults. However the uncertainty associated with these relationships is often ignored or discarded in hazard and risk models, particularly when faults sources are the dominant contributor. Conversely, in areas modeled only with background sources these uncertainties are much more significant. In this study we test the impact of using various relationships and the resulting epistemic uncertainties on the seismic hazard and risk in the Central and Eastern United States and Hawaii. It is common to use only one magnitude length relationship when calculating hazard. However, Stirling et al. (2013) showed that for a given suite of magnitude-rupture length relationships the variability can be quite large. The 2014 US National Seismic Hazard Maps (Petersen et al., 2014) used one magnitude-rupture length relationship (Somerville, et al., 2001) in the Central and Eastern United States, and did not consider variability in the seismogenic rupture plane width. Here we use a suite of metrics to compare the USGS approach with these variable uncertainty models to assess 1) the impact on hazard and risk and 2) the epistemic uncertainty associated with choice of relationship. In areas where the seismic hazard is dominated by larger crustal faults (e.g. New Madrid) the choice of magnitude-rupture length relationship has little impact on the hazard or risk. However away from these regions, the choice of relationship is more significant and may approach

  3. Scaling A Moment-Rate Function For Small To Large Magnitude Events

    NASA Astrophysics Data System (ADS)

    Archuleta, Ralph; Ji, Chen

    2017-04-01

    Since the 1980's seismologists have recognized that peak ground acceleration (PGA) and peak ground velocity (PGV) scale differently with magnitude for large and moderate earthquakes. In a recent paper (Archuleta and Ji, GRL 2016) we introduced an apparent moment-rate function (aMRF) that accurately predicts the scaling with magnitude of PGA, PGV, PWA (Wood-Anderson Displacement) and the ratio PGA/2πPGV (dominant frequency) for earthquakes 3.3 ≤ M ≤ 5.3. This apparent moment-rate function is controlled by two temporal parameters, tp and td, which are related to the time for the moment-rate function to reach its peak amplitude and the total duration of the earthquake, respectively. These two temporal parameters lead to a Fourier amplitude spectrum (FAS) of displacement that has two corners in between which the spectral amplitudes decay as 1/f, f denotes frequency. At higher or lower frequencies, the FAS of the aMRF looks like a single-corner Aki-Brune omega squared spectrum. However, in the presence of attenuation the higher corner is almost certainly masked. Attempting to correct the spectrum to an Aki-Brune omega-squared spectrum will produce an "apparent" corner frequency that falls between the double corner frequency of the aMRF. We reason that the two corners of the aMRF are the reason that seismologists deduce a stress drop (e.g., Allmann and Shearer, JGR 2009) that is generally much smaller than the stress parameter used to produce ground motions from stochastic simulations (e.g., Boore, 2003 Pageoph.). The presence of two corners for the smaller magnitude earthquakes leads to several questions. Can deconvolution be successfully used to determine scaling from small to large earthquakes? Equivalently will large earthquakes have a double corner? If large earthquakes are the sum of many smaller magnitude earthquakes, what should the displacement FAS look like for a large magnitude earthquake? Can a combination of such a double-corner spectrum and random

  4. Development of A Tsunami Magnitude Scale Based on DART Buoy Data

    NASA Astrophysics Data System (ADS)

    Leiva, J.; Polet, J.

    2016-12-01

    The quantification of tsunami energy has evolved through time, with a number of magnitude and intensity scales employed in the past century. Most of these scales rely on coastal measurements, which may be affected by complexities due to near-shore bathymetric effects and coastal geometries. Moreover, these datasets are generated by tsunami inundation, and thus cannot serve as a means of assessing potential tsunami impact prior to coastal arrival. With the introduction of a network of ocean buoys provided through the Deep-ocean Assessment and Reporting of Tsunamis (DART) project, a dataset has become available that can be exploited to further our current understanding of tsunamis and the earthquakes that excite them. The DART network consists of 39 stations that have produced estimates of sea-surface height as a function of time since 2003, and are able to detect deep ocean tsunami waves. Data collected at these buoys for the past decade reveals that at least nine major tsunami events, such as the 2011 Tohoku and 2013 Solomon Islands events, produced substantial wave amplitudes across a large distance range that can be implemented in a DART data based tsunami magnitude scale. We present preliminary results from the development of a tsunami magnitude scale that follows the methods used in the development of the local magnitude scale by Charles Richter. Analogous to the use of seismic ground motion amplitudes in the calculation of local magnitude, maximum ocean height displacements due to the passage of tsunami waves will be related to distance from the source in a least-squares exponential regression analysis. The regression produces attenuation curves based on the DART data, a site correction term, attenuation parameters, and an amplification factor. Initially, single event based regressions are used to constrain the attenuation parameters. Additional iterations use the parameters of these event-based fits as a starting point to obtain a stable solution, and include

  5. Solar Variability Magnitudes and Timescales

    NASA Astrophysics Data System (ADS)

    Kopp, Greg

    2015-08-01

    The Sun’s net radiative output varies on timescales of minutes to many millennia. The former are directly observed as part of the on-going 37-year long total solar irradiance climate data record, while the latter are inferred from solar proxy and stellar evolution models. Since the Sun provides nearly all the energy driving the Earth’s climate system, changes in the sunlight reaching our planet can have - and have had - significant impacts on life and civilizations.Total solar irradiance has been measured from space since 1978 by a series of overlapping instruments. These have shown changes in the spatially- and spectrally-integrated radiant energy at the top of the Earth’s atmosphere from timescales as short as minutes to as long as a solar cycle. The Sun’s ~0.01% variations over a few minutes are caused by the superposition of convection and oscillations, and even occasionally by a large flare. Over days to weeks, changing surface activity affects solar brightness at the ~0.1% level. The 11-year solar cycle has comparable irradiance variations with peaks near solar maxima.Secular variations are harder to discern, being limited by instrument stability and the relatively short duration of the space-borne record. Proxy models of the Sun based on cosmogenic isotope records and inferred from Earth climate signatures indicate solar brightness changes over decades to millennia, although the magnitude of these variations depends on many assumptions. Stellar evolution affects yet longer timescales and is responsible for the greatest solar variabilities.In this talk I will summarize the Sun’s variability magnitudes over different temporal ranges, showing examples relevant for climate studies as well as detections of exo-solar planets transiting Sun-like stars.

  6. An analysis of the magnitude and frequency of floods on Oahu, Hawaii

    USGS Publications Warehouse

    Nakahara, R.H.

    1980-01-01

    An analysis of available peak-flow data for the island of Oahu, Hawaii, was made by using multiple regression techniques which related flood-frequency data to basin and climatic characteristics for 74 gaging stations on Oahu. In the analysis, several different groupings of stations were investigated, including divisions by geographic location and size of drainage area. The grouping consisting of two leeward divisions and one windward division produced the best results. Drainage basins ranged in area from 0.03 to 45.7 square miles. Equations relating flood magnitudes of selected frequencies to basin characteristics were developed for the three divisions of Oahu. These equations can be used to estimate the magnitude and frequency of floods for any site, gaged or ungaged, for any desired recurrence interval from 2 to 100 years. Data on basin characteristics, flood magnitudes for various recurrence intervals from individual station-frequency curves, and computed flood magnitudes by use of the regression equation are tabulated to provide the needed data. (USGS)

  7. Estimating earthquake location and magnitude from seismic intensity data

    USGS Publications Warehouse

    Bakun, W.H.; Wentworth, C.M.

    1997-01-01

    Analysis of Modified Mercalli intensity (MMI) observations for a training set of 22 California earthquakes suggests a strategy for bounding the epicentral region and moment magnitude M from MMI observations only. We define an intensity magnitude MI that is calibrated to be equal in the mean to M. MI = mean (Mi), where Mi = (MMIi + 3.29 + 0.0206 * ??i)/1.68 and ??i is the epicentral distance (km) of observation MMIi. The epicentral region is bounded by contours of rms [MI] = rms (MI - Mi) - rms0 (MI - Mi-), where rms is the root mean square, rms0 (MI - Mi) is the minimum rms over a grid of assumed epicenters, and empirical site corrections and a distance weighting function are used. Empirical contour values for bounding the epicenter location and empirical bounds for M estimated from MI appropriate for different levels of confidence and different quantities of intensity observations are tabulated. The epicentral region bounds and MI obtained for an independent test set of western California earthquakes are consistent with the instrumental epicenters and moment magnitudes of these earthquakes. The analysis strategy is particularly appropriate for the evaluation of pre-1900 earthquakes for which the only available data are a sparse set of intensity observations.

  8. Correlating precursory declines in groundwater radon with earthquake magnitude.

    PubMed

    Kuo, T

    2014-01-01

    Both studies at the Antung hot spring in eastern Taiwan and at the Paihe spring in southern Taiwan confirm that groundwater radon can be a consistent tracer for strain changes in the crust preceding an earthquake when observed in a low-porosity fractured aquifer surrounded by a ductile formation. Recurrent anomalous declines in groundwater radon were observed at the Antung D1 monitoring well in eastern Taiwan prior to the five earthquakes of magnitude (Mw ): 6.8, 6.1, 5.9, 5.4, and 5.0 that occurred on December 10, 2003; April 1, 2006; April 15, 2006; February 17, 2008; and July 12, 2011, respectively. For earthquakes occurring on the longitudinal valley fault in eastern Taiwan, the observed radon minima decrease as the earthquake magnitude increases. The above correlation has been proven to be useful for early warning local large earthquakes. In southern Taiwan, radon anomalous declines prior to the 2010 Mw 6.3 Jiasian, 2012 Mw 5.9 Wutai, and 2012 ML 5.4 Kaohsiung earthquakes were also recorded at the Paihe spring. For earthquakes occurring on different faults in southern Taiwan, the correlation between the observed radon minima and the earthquake magnitude is not yet possible. © 2013, National Ground Water Association.

  9. Hierarchical Probabilistic Inference of the Color-Magnitude Diagram and Shrinkage of Stellar Distance Uncertainties

    NASA Astrophysics Data System (ADS)

    Leistedt, Boris; Hogg, David W.

    2017-12-01

    We present a hierarchical probabilistic model for improving geometric stellar distance estimates using color-magnitude information. This is achieved with a data-driven model of the color-magnitude diagram, not relying on stellar models but instead on the relative abundances of stars in color-magnitude cells, which are inferred from very noisy magnitudes and parallaxes. While the resulting noise-deconvolved color-magnitude diagram can be useful for a range of applications, we focus on deriving improved stellar distance estimates relying on both parallax and photometric information. We demonstrate the efficiency of this approach on the 1.4 million stars of the Gaia TGAS sample that also have AAVSO Photometric All Sky Survey magnitudes. Our hierarchical model has 4 million parameters in total, most of which are marginalized out numerically or analytically. We find that distance estimates are significantly improved for the noisiest parallaxes and densest regions of the color-magnitude diagram. In particular, the average distance signal-to-noise ratio (S/N) and uncertainty improve by 19% and 36%, respectively, with 8% of the objects improving in S/N by a factor greater than 2. This computationally efficient approach fully accounts for both parallax and photometric noise and is a first step toward a full hierarchical probabilistic model of the Gaia data.

  10. Acerca del moho

    EPA Pesticide Factsheets

    El moho forma parte del medio ambiente natural. Afuera del hogar, el moho juega un papel en la naturaleza al desintegrar materias organicas tales como las hojas que se han caido o los arboles muertos. El moho puede crecer adentro del hogar cuando las espor

  11. Fast Moment Magnitude Determination from P-wave Trains for Bucharest Rapid Early Warning System (BREWS)

    NASA Astrophysics Data System (ADS)

    Lizurek, Grzegorz; Marmureanu, Alexandru; Wiszniowski, Jan

    2017-03-01

    Bucharest, with a population of approximately 2 million people, has suffered damage from earthquakes in the Vrancea seismic zone, which is located about 170 km from Bucharest, at a depth of 80-200 km. Consequently, an earthquake early warning system (Bucharest Rapid earthquake Early Warning System or BREWS) was constructed to provide some warning about impending shaking from large earthquakes in the Vrancea zone. In order to provide quick estimates of magnitude, seismic moment was first determined from P-waves and then a moment magnitude was determined from the moment. However, this magnitude may not be consistent with previous estimates of magnitude from the Romanian Seismic Network. This paper introduces the algorithm using P-wave spectral levels and compares them with catalog estimates. The testing procedure used waveforms from about 90 events with catalog magnitudes from 3.5 to 5.4. Corrections to the P-wave determined magnitudes according to dominant intermediate depth events mechanism were tested for November 22, 2014, M5.6 and October 17, M6 events. The corrections worked well, but unveiled overestimation of the average magnitude result of about 0.2 magnitude unit in the case of shallow depth event ( H < 60 km). The P-wave spectral approach allows for the relatively fast estimates of magnitude for use in BREWS. The average correction taking into account the most common focal mechanism for radiation pattern coefficient may lead to overestimation of the magnitude for shallow events of about 0.2 magnitude unit. However, in case of events of intermediate depth of M6 the resulting M w is underestimated at about 0.1-0.2. We conclude that our P-wave spectral approach is sufficiently robust for the needs of BREWS for both shallow and intermediate depth events.

  12. Automated Determination of Magnitude and Source Length of Large Earthquakes

    NASA Astrophysics Data System (ADS)

    Wang, D.; Kawakatsu, H.; Zhuang, J.; Mori, J. J.; Maeda, T.; Tsuruoka, H.; Zhao, X.

    2017-12-01

    Rapid determination of earthquake magnitude is of importance for estimating shaking damages, and tsunami hazards. However, due to the complexity of source process, accurately estimating magnitude for great earthquakes in minutes after origin time is still a challenge. Mw is an accurate estimate for large earthquakes. However, calculating Mw requires the whole wave trains including P, S, and surface phases, which takes tens of minutes to reach stations at tele-seismic distances. To speed up the calculation, methods using W phase and body wave are developed for fast estimating earthquake sizes. Besides these methods that involve Green's Functions and inversions, there are other approaches that use empirically simulated relations to estimate earthquake magnitudes, usually for large earthquakes. The nature of simple implementation and straightforward calculation made these approaches widely applied at many institutions such as the Pacific Tsunami Warning Center, the Japan Meteorological Agency, and the USGS. Here we developed an approach that was originated from Hara [2007], estimating magnitude by considering P-wave displacement and source duration. We introduced a back-projection technique [Wang et al., 2016] instead to estimate source duration using array data from a high-sensitive seismograph network (Hi-net). The introduction of back-projection improves the method in two ways. Firstly, the source duration could be accurately determined by seismic array. Secondly, the results can be more rapidly calculated, and data derived from farther stations are not required. We purpose to develop an automated system for determining fast and reliable source information of large shallow seismic events based on real time data of a dense regional array and global data, for earthquakes that occur at distance of roughly 30°- 85° from the array center. This system can offer fast and robust estimates of magnitudes and rupture extensions of large earthquakes in 6 to 13 min (plus

  13. Automated Determination of Magnitude and Source Extent of Large Earthquakes

    NASA Astrophysics Data System (ADS)

    Wang, Dun

    2017-04-01

    Rapid determination of earthquake magnitude is of importance for estimating shaking damages, and tsunami hazards. However, due to the complexity of source process, accurately estimating magnitude for great earthquakes in minutes after origin time is still a challenge. Mw is an accurate estimate for large earthquakes. However, calculating Mw requires the whole wave trains including P, S, and surface phases, which takes tens of minutes to reach stations at tele-seismic distances. To speed up the calculation, methods using W phase and body wave are developed for fast estimating earthquake sizes. Besides these methods that involve Green's Functions and inversions, there are other approaches that use empirically simulated relations to estimate earthquake magnitudes, usually for large earthquakes. The nature of simple implementation and straightforward calculation made these approaches widely applied at many institutions such as the Pacific Tsunami Warning Center, the Japan Meteorological Agency, and the USGS. Here we developed an approach that was originated from Hara [2007], estimating magnitude by considering P-wave displacement and source duration. We introduced a back-projection technique [Wang et al., 2016] instead to estimate source duration using array data from a high-sensitive seismograph network (Hi-net). The introduction of back-projection improves the method in two ways. Firstly, the source duration could be accurately determined by seismic array. Secondly, the results can be more rapidly calculated, and data derived from farther stations are not required. We purpose to develop an automated system for determining fast and reliable source information of large shallow seismic events based on real time data of a dense regional array and global data, for earthquakes that occur at distance of roughly 30°- 85° from the array center. This system can offer fast and robust estimates of magnitudes and rupture extensions of large earthquakes in 6 to 13 min (plus

  14. A design of calibration single star simulator with adjustable magnitude and optical spectrum output system

    NASA Astrophysics Data System (ADS)

    Hu, Guansheng; Zhang, Tao; Zhang, Xuan; Shi, Gentai; Bai, Haojie

    2018-03-01

    In order to achieve multi-color temperature and multi-magnitude output, magnitude and temperature can real-time adjust, a new type of calibration single star simulator was designed with adjustable magnitude and optical spectrum output in this article. xenon lamp and halogen tungsten lamp were used as light source. The control of spectrum band and temperature of star was realized with different multi-beam narrow band spectrum with light of varying intensity. When light source with different spectral characteristics and color temperature go into the magnitude regulator, the light energy attenuation were under control by adjusting the light luminosity. This method can completely satisfy the requirements of calibration single star simulator with adjustable magnitude and optical spectrum output in order to achieve the adjustable purpose of magnitude and spectrum.

  15. Produccion Gaseosa del Cometa Halley: Erupciones Y Fotodisociacion del Radical OH

    NASA Astrophysics Data System (ADS)

    Silva, A. M.; Mirabel, I. F.

    1990-11-01

    RESUMEN:En este trabajo informamos la detecci6n de 20 erupciones en la li'nea de =18cm (1667MHz) del radical OH en el Cometa Halley.Las observaciones incluyen todos los monitoreos existentes y se extienden desde 120 dias antes del perihelio hasta 90 dias despues.Se detectan bruscos crecimientos en el flujo medido,hasta un factor 1O,seguidos por decaimientos lentos asociados con la fotodisociaci6n del OH. Se obtuvieron valores para el tiempo de vida fotoquimico del OH y del H2O basandose en el modelo desarrollado previamente por Silva(1988). Esos tiempos de vida estan de acuerdo con predicciones teoricas y con las observaciones en el Ultravioleta, y los resultados, los que son fuertemente dependientes de la velocidad heliocentrica del Coineta (variando hasta un factor 6), han sido calculados para varios rangos de velocidad entre +28 y -28 km/seg. Key wo'L :

  16. Developmental trajectories of children's symbolic numerical magnitude processing skills and associated cognitive competencies.

    PubMed

    Vanbinst, Kiran; Ceulemans, Eva; Peters, Lien; Ghesquière, Pol; De Smedt, Bert

    2018-02-01

    Although symbolic numerical magnitude processing skills are key for learning arithmetic, their developmental trajectories remain unknown. Therefore, we delineated during the first 3years of primary education (5-8years of age) groups with distinguishable developmental trajectories of symbolic numerical magnitude processing skills using a model-based clustering approach. Three clusters were identified and were labeled as inaccurate, accurate but slow, and accurate and fast. The clusters did not differ in age, sex, socioeconomic status, or IQ. We also tested whether these clusters differed in domain-specific (nonsymbolic magnitude processing and digit identification) and domain-general (visuospatial short-term memory, verbal working memory, and processing speed) cognitive competencies that might contribute to children's ability to (efficiently) process the numerical meaning of Arabic numerical symbols. We observed minor differences between clusters in these cognitive competencies except for verbal working memory for which no differences were observed. Follow-up analyses further revealed that the above-mentioned cognitive competencies did not merely account for the cluster differences in children's development of symbolic numerical magnitude processing skills, suggesting that other factors account for these individual differences. On the other hand, the three trajectories of symbolic numerical magnitude processing revealed remarkable and stable differences in children's arithmetic fact retrieval, which stresses the importance of symbolic numerical magnitude processing for learning arithmetic. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Developing Deaf Students Fraction Skills Requires Understanding Magnitude and Whole Number Division

    ERIC Educational Resources Information Center

    Mousley, Keith; Kelly, Ronald R.

    2018-01-01

    Research has shown that fraction magnitude and whole number division are important precursors to learning and understanding fractions. Deaf and hard-of-hearing (DHH) students are consistently challenged with learning fractions from K-12 through college. Sixty DHH college students were tested for both their understanding of magnitude between two…

  18. Magnitude and Time Course of Sleep Inertia

    DTIC Science & Technology

    2008-10-10

    laboratory protocol, and to avoid caffeinated drinks from midday the day before the laboratory protocol. • Non-smokers. • Non- or social drinkers only (0...see Figure 3), and snacks and non- caffeinated drinks were provided regularly throughout the protocol. Meals were balanced in terms of carbohydrate and...awakening) influences the magnitude or time course of sleep inertia effects under these conditions. 15. SUBJECT TERMS Sleep Research

  19. Effects of different magnitudes of mechanical strain on Osteoblasts in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Lin; Lin Zhu; Li Yongming

    2006-05-26

    In addition to systemic and local factors, mechanical strain plays a crucial role in bone remodeling during growth, development, and fracture healing, and especially in orthodontic tooth movement. Although many papers have been published on the effects of mechanical stress on osteoblasts or osteoblastic cells, little is known about the effects of different magnitudes of mechanical strain on such cells. In the present study, we investigated how different magnitudes of cyclic tensile strain affected osteoblasts. MC3T3-E1 osteoblastic cells were subjected to 0%, 6%, 12% or 18% elongation for 24 h using a Flexercell Strain Unit, and then the mRNA andmore » protein expressions of osteoprotegerin (OPG) and receptor activator of nuclear factor-{kappa}B ligand (RANKL) were examined. The results showed that cyclic tensile strain induced a magnitude-dependent increase (0%, 6%, 12%, and 18%) in OPG synthesis and a concomitant decrease in RANKL mRNA expression and sRANKL release from the osteoblasts. Furthermore, the induction of OPG mRNA expression by stretching was inhibited by indomethacin or genistein, and the stretch-induced reduction of RANKL mRNA was inhibited by PD098059. These results indicate that different magnitudes of cyclic tensile strain influence the biological behavior of osteoblasts, which profoundly affects bone remodeling.« less

  20. Improving Children's Knowledge of Fraction Magnitudes

    ERIC Educational Resources Information Center

    Fazio, Lisa K.; Kennedy, Casey A.; Siegler, Robert S.

    2016-01-01

    We examined whether playing a computerized fraction game, based on the integrated theory of numerical development and on the Common Core State Standards' suggestions for teaching fractions, would improve children's fraction magnitude understanding. Fourth and fifth-graders were given brief instruction about unit fractions and played "Catch…

  1. Statistical relations among earthquake magnitude, surface rupture length, and surface fault displacement

    USGS Publications Warehouse

    Bonilla, Manuel G.; Mark, Robert K.; Lienkaemper, James J.

    1984-01-01

    In order to refine correlations of surface-wave magnitude, fault rupture length at the ground surface, and fault displacement at the surface by including the uncertainties in these variables, the existing data were critically reviewed and a new data base was compiled. Earthquake magnitudes were redetermined as necessary to make them as consistent as possible with the Gutenberg methods and results, which make up much of the data base. Measurement errors were estimated for the three variables for 58 moderate to large shallow-focus earthquakes. Regression analyses were then made utilizing the estimated measurement errors.The regression analysis demonstrates that the relations among the variables magnitude, length, and displacement are stochastic in nature. The stochastic variance, introduced in part by incomplete surface expression of seismogenic faulting, variation in shear modulus, and regional factors, dominates the estimated measurement errors. Thus, it is appropriate to use ordinary least squares for the regression models, rather than regression models based upon an underlying deterministic relation in which the variance results primarily from measurement errors.Significant differences exist in correlations of certain combinations of length, displacement, and magnitude when events are grouped by fault type or by region, including attenuation regions delineated by Evernden and others.Estimates of the magnitude and the standard deviation of the magnitude of a prehistoric or future earthquake associated with a fault can be made by correlating Ms with the logarithms of rupture length, fault displacement, or the product of length and displacement.Fault rupture area could be reliably estimated for about 20 of the events in the data set. Regression of Ms on rupture area did not result in a marked improvement over regressions that did not involve rupture area. Because no subduction-zone earthquakes are included in this study, the reported results do not apply to such

  2. Beyond Valence and Magnitude: a Flexible Evaluative Coding System in the Brain

    PubMed Central

    Gu, Ruolei; Lei, Zhihui; Broster, Lucas; Wu, Tingting; Jiang, Yang; Luo, Yue-jia

    2013-01-01

    Outcome evaluation is a cognitive process that plays an important role in our daily lives. In most paradigms utilized in the field of experimental psychology, outcome valence and outcome magnitude are the two major features investigated. The classical “independent coding model” suggest that outcome valence and outcome magnitude are evaluated by separate neural mechanisms that may be mapped onto discrete event-related potential (ERP) components: feedback-related negativity (FRN) and the P3, respectively. To examine this model, we presented outcome valence and magnitude sequentially rather than simultaneously. The results reveal that when only outcome valence or magnitude is known, both the FRN and the P3 encode that outcome feature; when both aspects of outcome are known, the cognitive functions of the two components dissociate: the FRN responds to the information available in the current context, while the P3 pattern depends on outcome presentation sequence. The current study indicates that the human evaluative system, indexed in part by the FRN and the P3, is more flexible than previous theories suggested. PMID:22019775

  3. Self-motion magnitude estimation during linear oscillation - Changes with head orientation and following fatigue

    NASA Technical Reports Server (NTRS)

    Parker, D. E.; Wood, D. L.; Gulledge, W. L.; Goodrich, R. L.

    1979-01-01

    Two types of experiments concerning the estimated magnitude of self-motion during exposure to linear oscillation on a parallel swing are described in this paper. Experiment I examined changes in magnitude estimation as a function of variation of the subject's head orientation, and Experiments II a, II b, and II c assessed changes in magnitude estimation performance following exposure to sustained, 'intense' linear oscillation (fatigue-inducting stimulation). The subjects' performance was summarized employing Stevens' power law R = k x S to the nth, where R is perceived self-motion magnitude, k is a constant, S is amplitude of linear oscillation, and n is an exponent). The results of Experiment I indicated that the exponents, n, for the magnitude estimation functions varied with head orientation and were greatest when the head was oriented 135 deg off the vertical. In Experiments II a-c, the magnitude estimation function exponents were increased following fatigue. Both types of experiments suggest ways in which the vestibular system's contribution to a spatial orientation perceptual system may vary. This variability may be a contributing factor to the development of pilot/astronaut disorientation and may also be implicated in the occurrence of motion sickness.

  4. Developmental Dyscalculia and Automatic Magnitudes Processing: Investigating Interference Effects between Area and Perimeter.

    PubMed

    Eidlin-Levy, Hili; Rubinsten, Orly

    2017-01-01

    The relationship between numbers and other magnitudes has been extensively investigated in the scientific literature. Here, the objectives were to examine whether two continuous magnitudes, area and perimeter, are automatically processed and whether adults with developmental dyscalculia (DD) are deficient in their ability to automatically process one or both of these magnitudes. Fifty-seven students (30 with DD and 27 with typical development) performed a novel Stroop-like task requiring estimation of one aspect (area or perimeter) while ignoring the other. In order to track possible changes in automaticity due to practice, we measured performance after initial and continuous exposure to stimuli. Similar to previous findings, current results show a significant group × congruency interaction, evident beyond exposure level or magnitude type. That is, the DD group systematically showed larger Stroop effects. However, analysis of each exposure period showed that during initial exposure to stimuli the DD group showed larger Stroop effects in the perimeter and not in the area task. In contrast, during continuous exposure to stimuli no triple interaction was evident. It is concluded that both magnitudes are automatically processed. Nevertheless, individuals with DD are deficient in inhibiting irrelevant magnitude information in general and, specifically, struggle to inhibit salient area information after initial exposure to a perimeter comparison task. Accordingly, the findings support the assumption that DD involves a deficiency in multiple cognitive components, which include domain-specific and domain-general cognitive functions.

  5. Developmental Dyscalculia and Automatic Magnitudes Processing: Investigating Interference Effects between Area and Perimeter

    PubMed Central

    Eidlin-Levy, Hili; Rubinsten, Orly

    2017-01-01

    The relationship between numbers and other magnitudes has been extensively investigated in the scientific literature. Here, the objectives were to examine whether two continuous magnitudes, area and perimeter, are automatically processed and whether adults with developmental dyscalculia (DD) are deficient in their ability to automatically process one or both of these magnitudes. Fifty-seven students (30 with DD and 27 with typical development) performed a novel Stroop-like task requiring estimation of one aspect (area or perimeter) while ignoring the other. In order to track possible changes in automaticity due to practice, we measured performance after initial and continuous exposure to stimuli. Similar to previous findings, current results show a significant group × congruency interaction, evident beyond exposure level or magnitude type. That is, the DD group systematically showed larger Stroop effects. However, analysis of each exposure period showed that during initial exposure to stimuli the DD group showed larger Stroop effects in the perimeter and not in the area task. In contrast, during continuous exposure to stimuli no triple interaction was evident. It is concluded that both magnitudes are automatically processed. Nevertheless, individuals with DD are deficient in inhibiting irrelevant magnitude information in general and, specifically, struggle to inhibit salient area information after initial exposure to a perimeter comparison task. Accordingly, the findings support the assumption that DD involves a deficiency in multiple cognitive components, which include domain-specific and domain-general cognitive functions. PMID:29312066

  6. Magnitude and sign of long-range correlated time series: Decomposition and surrogate signal generation.

    PubMed

    Gómez-Extremera, Manuel; Carpena, Pedro; Ivanov, Plamen Ch; Bernaola-Galván, Pedro A

    2016-04-01

    We systematically study the scaling properties of the magnitude and sign of the fluctuations in correlated time series, which is a simple and useful approach to distinguish between systems with different dynamical properties but the same linear correlations. First, we decompose artificial long-range power-law linearly correlated time series into magnitude and sign series derived from the consecutive increments in the original series, and we study their correlation properties. We find analytical expressions for the correlation exponent of the sign series as a function of the exponent of the original series. Such expressions are necessary for modeling surrogate time series with desired scaling properties. Next, we study linear and nonlinear correlation properties of series composed as products of independent magnitude and sign series. These surrogate series can be considered as a zero-order approximation to the analysis of the coupling of magnitude and sign in real data, a problem still open in many fields. We find analytical results for the scaling behavior of the composed series as a function of the correlation exponents of the magnitude and sign series used in the composition, and we determine the ranges of magnitude and sign correlation exponents leading to either single scaling or to crossover behaviors. Finally, we obtain how the linear and nonlinear properties of the composed series depend on the correlation exponents of their magnitude and sign series. Based on this information we propose a method to generate surrogate series with controlled correlation exponent and multifractal spectrum.

  7. Working Memory Strategies during Rational Number Magnitude Processing

    ERIC Educational Resources Information Center

    Hurst, Michelle; Cordes, Sara

    2017-01-01

    Rational number understanding is a critical building block for success in more advanced mathematics; however, how rational number magnitudes are conceptualized is not fully understood. In the current study, we used a dual-task working memory (WM) interference paradigm to investigate the dominant type of strategy (i.e., requiring verbal WM…

  8. Statistics of Delta v magnitude for a trajectory correction maneuver containing deterministic and random components

    NASA Technical Reports Server (NTRS)

    Bollman, W. E.; Chadwick, C.

    1982-01-01

    A number of interplanetary missions now being planned involve placing deterministic maneuvers along the flight path to alter the trajectory. Lee and Boain (1973) examined the statistics of trajectory correction maneuver (TCM) magnitude with no deterministic ('bias') component. The Delta v vector magnitude statistics were generated for several values of random Delta v standard deviations using expansions in terms of infinite hypergeometric series. The present investigation uses a different technique (Monte Carlo simulation) to generate Delta v magnitude statistics for a wider selection of random Delta v standard deviations and also extends the analysis to the case of nonzero deterministic Delta v's. These Delta v magnitude statistics are plotted parametrically. The plots are useful in assisting the analyst in quickly answering questions about the statistics of Delta v magnitude for single TCM's consisting of both a deterministic and a random component. The plots provide quick insight into the nature of the Delta v magnitude distribution for the TCM.

  9. Examining pitch and numerical magnitude processing in congenital amusia: A quasi-experimental pilot study.

    PubMed

    Nunes-Silva, Marilia; Moura, Ricardo; Lopes-Silva, Júlia Beatriz; Haase, Vitor Geraldi

    2016-08-01

    Congenital amusia is a developmental disorder associated with deficits in pitch height discrimination or in integrating pitch sequences into melodies. This quasi-experimental pilot study investigated whether there is an association between pitch and numerical processing deficits in congenital amusia. Since pitch height discrimination is considered a form of magnitude processing, we investigated whether individuals with amusia present an impairment in numerical magnitude processing, which would reflect damage to a generalized magnitude system. Alternatively, we investigated whether the numerical processing deficit would reflect a disconnection between nonsymbolic and symbolic number representations. This study was conducted with 11 adult individuals with congenital amusia and a control comparison group of 6 typically developing individuals. Participants performed nonsymbolic and symbolic magnitude comparisons and number line tasks. Results were available from previous testing using the Montreal Battery of Evaluation of Amusia (MBEA) and a pitch change detection task (PCD). Compared to the controls, individuals with amusia exhibited no significant differences in their performance on both the number line and the nonsymbolic magnitude tasks. Nevertheless, they showed significantly worse performance on the symbolic magnitude task. Moreover, individuals with congenital amusia, who presented worse performance in the Meter subtest, also presented less precise nonsymbolic numerical representation. The relationship between meter and nonsymbolic numerical discrimination could indicate a general ratio processing deficit. The finding of preserved nonsymbolic numerical magnitude discrimination and mental number line representations, with impaired symbolic number processing, in individuals with congenital amusia indicates that (a) pitch height and numerical magnitude processing may not share common neural representations, and (b) in addition to pitch processing, individuals with

  10. Spatializing Emotion: No Evidence for a Domain-General Magnitude System.

    PubMed

    Pitt, Benjamin; Casasanto, Daniel

    2017-11-22

    People implicitly associate different emotions with different locations in left-right space. Which aspects of emotion do they spatialize, and why? Across many studies people spatialize emotional valence, mapping positive emotions onto their dominant side of space and negative emotions onto their non-dominant side, consistent with theories of metaphorical mental representation. Yet other results suggest a conflicting mapping of emotional intensity (a.k.a., emotional magnitude), according to which people associate more intense emotions with the right and less intense emotions with the left - regardless of their valence; this pattern has been interpreted as support for a domain-general system for representing magnitudes. To resolve the apparent contradiction between these mappings, we first tested whether people implicitly map either valence or intensity onto left-right space, depending on which dimension of emotion they attend to (Experiments 1a, b). When asked to judge emotional valence, participants showed the predicted valence mapping. However, when asked to judge emotional intensity, participants showed no systematic intensity mapping. We then tested an alternative explanation of findings previously interpreted as evidence for an intensity mapping (Experiments 2a, b). These results suggest that previous findings may reflect a left-right mapping of spatial magnitude (i.e., the size of a salient feature of the stimuli) rather than emotion. People implicitly spatialize emotional valence, but, at present, there is no clear evidence for an implicit lateral mapping of emotional intensity. These findings support metaphor theory and challenge the proposal that mental magnitudes are represented by a domain-general metric that extends to the domain of emotion. Copyright © 2017 Cognitive Science Society, Inc.

  11. The weight of time: affordances for an integrated magnitude system.

    PubMed

    Lu, Aitao; Mo, Lei; Hodges, Bert H

    2011-12-01

    In five experiments we explored the effects of weight on time in different action contexts to test the hypothesis that an integrated magnitude system is tuned to affordances. Larger magnitudes generally seem longer; however, Lu and colleagues (2009) found that if numbers were presented as weights in a range heavy enough to affect lifting, the "larger seems longer" effect was enhanced, but it was eliminated with weights too light to affect lifting. Experiments 1 and 2 revealed that actually lifting kilogram and gram weights had effects parallel to symbolized weights, suggesting that Lu et al.'s task implicitly evoked a lifting context. Experiments 3 and 4 showed that weights too heavy (e.g., tons) or too light to be discriminated by lifting, but relevant to other affordances (e.g., grams of a toxin) had effects on time as large or larger than for kilograms. Experiment 5 showed that the effect for grams in a toxicology context did not generalize to the lifting task of Experiment 2. Weight appears to integrate with other magnitudes when it is relevant to meaningful actions, including but not limited to lifting.

  12. Relations of different types of numerical magnitude representations to each other and to mathematics achievement.

    PubMed

    Fazio, Lisa K; Bailey, Drew H; Thompson, Clarissa A; Siegler, Robert S

    2014-07-01

    We examined relations between symbolic and non-symbolic numerical magnitude representations, between whole number and fraction representations, and between these representations and overall mathematics achievement in fifth graders. Fraction and whole number symbolic and non-symbolic numerical magnitude understandings were measured using both magnitude comparison and number line estimation tasks. After controlling for non-mathematical cognitive proficiency, both symbolic and non-symbolic numerical magnitude understandings were uniquely related to mathematics achievement, but the relation was much stronger for symbolic numbers. A meta-analysis of 19 published studies indicated that relations between non-symbolic numerical magnitude knowledge and mathematics achievement are present but tend to be weak, especially beyond 6 years of age. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Vigilando la Calidad del Agua de los Grandes Rios de la Nacion: El Programa NASQAN del Rio Grande (Rio Bravo del Norte)

    USGS Publications Warehouse

    Lurry, Dee L.; Reutter, David C.; Wells, Frank C.; Rivera, M.C.; Munoz, A.

    1998-01-01

    La Oficina del Estudio Geologico de los Estados Unidos (U.S. Geological Survey, 0 USGS) ha monitoreado la calidad del agua de la cuenca del Rio Grande (Rio Bravo del Norte) desde 1995 como parte de la rediseiiada Red Nacional para Contabilizar la Calidad del Agua de los Rios (National Stream Quality Accounting Network, o NASOAN) (Hooper and others, 1997). EI programa NASOAN fue diseiiado para caracterizar las concentraciones y el transporte de sedimento y constituyentes quimicos seleccionados, encontrados en los grandes rios de los Estados Unidos - incluyendo el Misisipi, el Colorado y el Columbia, ademas del Rio Grande. En estas cuatro cuencas, el USGS opera actualmente (1998) una red de 40 puntos de muestreo pertenecientes a NASOAN, con un enfasis en cuantificar el flujo en masa (la cantidad de material que pasa por la estacion, expresado en toneladas por dial para cada constituyente. Aplicacando un enfoque consistente, basado en la cuantificacion de flujos en la cuenca del Rio Grande, el programa NASOAN esta generando la informacion necesaria para identificar fuentes regionales de diversos contaminantes, incluyendo sustancias qui micas agricolas y trazas elementos en la cuenca. EI efecto de las grandes reservas en el Rio Grande se puede observar segun los flujos de constituyentes discurren a 10 largo del rio. EI analisis de los flujos de constituyentes a escala de la cuenca proveera los medios para evaluar la influencia de la actividad humana sobre las condiciones de calidad del agua del Rio Grande.

  14. Selective interference of grasp and space representations with number magnitude and serial order processing.

    PubMed

    van Dijck, Jean-Philippe; Fias, Wim; Andres, Michael

    2015-10-01

    It has been proposed that the metrics of space, time and other magnitudes relevant for action are coupled through a generalized magnitude system that also contribute to number representation. Several studies capitalized on stimulus-response compatibility effects to show that numbers map onto left-right representations and grasp representations as a function of their magnitude. However, the tasks typically used do not allow disentangling magnitude from serial order processing. Here, we devised a working memory (WM) task where participants had to remember random sequences of numbers and perform a precision/whole-hand grip (Experiment 1) or a uni-manual left/right button press (Experiment 2) in response to numbers presented during the retention interval. This task does allow differentiating the interference of number magnitude and serial order with each set of responses. Experiment 1 showed that precision grips were initiated faster than whole-hand grips in response to small numbers, irrespective of their serial position in WM. In contrast, Experiment 2 revealed an advantage of right over left button presses as serial position increased, without any influence of number magnitude. These findings demonstrate that grasping and left-right movements overlap with distinct dimensions of number processing. These findings are discussed in the light of different theories explaining the interactions between numbers, space and action.

  15. Development of magnitude scaling relationship for earthquake early warning system in South Korea

    NASA Astrophysics Data System (ADS)

    Sheen, D.

    2011-12-01

    Seismicity in South Korea is low and magnitudes of recent earthquakes are mostly less than 4.0. However, historical earthquakes of South Korea reveal that many damaging earthquakes had occurred in the Korean Peninsula. To mitigate potential seismic hazard in the Korean Peninsula, earthquake early warning (EEW) system is being installed and will be operated in South Korea in the near future. In order to deliver early warnings successfully, it is very important to develop stable magnitude scaling relationships. In this study, two empirical magnitude relationships are developed from 350 events ranging in magnitude from 2.0 to 5.0 recorded by the KMA and the KIGAM. 1606 vertical component seismograms whose epicentral distances are within 100 km are chosen. The peak amplitude and the maximum predominant period of the initial P wave are used for finding magnitude relationships. The peak displacement of seismogram recorded at a broadband seismometer shows less scatter than the peak velocity of that. The scatters of the peak displacement and the peak velocity of accelerogram are similar to each other. The peak displacement of seismogram differs from that of accelerogram, which means that two different magnitude relationships for each type of data should be developed. The maximum predominant period of the initial P wave is estimated after using two low-pass filters, 3 Hz and 10 Hz, and 10 Hz low-pass filter yields better estimate than 3 Hz. It is found that most of the peak amplitude and the maximum predominant period are estimated within 1 sec after triggering.

  16. Relatively high motivation for context-evoked reward produces the magnitude effect in rats.

    PubMed

    Yuki, Shoko; Okanoya, Kazuo

    2014-09-01

    Using a concurrent-chain schedule, we demonstrated the effect of absolute reinforcement (i.e., the magnitude effect) on choice behavior in rats. In general, animals' simultaneous choices conform to a relative reinforcement ratio between alternatives. However, studies in pigeons and rats have found that on a concurrent-chain schedule, the overall reinforcement ratio, or absolute amount, also influences choice. The effect of reinforcement amount has also been studied in inter-temporal choice situations, and this effect has been referred to as the magnitude effect. The magnitude effect has been observed in humans under various conditions, but little research has assessed it in animals (e.g., pigeons and rats). The present study confirmed the effect of reinforcement amount in rats during simultaneous and inter-temporal choice situations. We used a concurrent-chain procedure to examine the cause of the magnitude effect during inter-temporal choice. Our results suggest that rats can use differences in reinforcement amount as a contextual cue during choice, and the direction of the magnitude effect in rats might be similar to humans when using the present procedure. Furthermore, our results indicate that the magnitude effect was caused by the initial-link effect when the reinforcement amount was relatively small, while a loss aversion tendency was observed when the reinforcement amount changed within a session. The emergence of the initial-link effect and loss aversion suggests that rats make choices through cognitive processes predicted by prospect theory. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Methods for estimating magnitude and frequency of floods in Montana based on data through 1983

    USGS Publications Warehouse

    Omang, R.J.; Parrett, Charles; Hull, J.A.

    1986-01-01

    Equations are presented for estimating flood magnitudes for ungaged sites in Montana based on data through 1983. The State was divided into eight regions based on hydrologic conditions, and separate multiple regression equations were developed for each region. These equations relate annual flood magnitudes and frequencies to basin characteristics and are applicable only to natural flow streams. In three of the regions, equations also were developed relating flood magnitudes and frequencies to basin characteristics and channel geometry measurements. The standard errors of estimate for an exceedance probability of 1% ranged from 39% to 87%. Techniques are described for estimating annual flood magnitude and flood frequency information at ungaged sites based on data from gaged sites on the same stream. Included are curves relating flood frequency information to drainage area for eight major streams in the State. Maximum known flood magnitudes in Montana are compared with estimated 1 %-chance flood magnitudes and with maximum known floods in the United States. Values of flood magnitudes for selected exceedance probabilities and values of significant basin characteristics and channel geometry measurements for all gaging stations used in the analysis are tabulated. Included are 375 stations in Montana and 28 nearby stations in Canada and adjoining States. (Author 's abstract)

  18. High-magnitude flooding across Britain since AD 1750

    NASA Astrophysics Data System (ADS)

    Macdonald, Neil; Sangster, Heather

    2017-03-01

    The last decade has witnessed severe flooding across much of the globe, but have these floods really been exceptional? Globally, relatively few instrumental river flow series extend beyond 50 years, with short records presenting significant challenges in determining flood risk from high-magnitude floods. A perceived increase in extreme floods in recent years has decreased public confidence in conventional flood risk estimates; the results affect society (insurance costs), individuals (personal vulnerability) and companies (e.g. water resource managers). Here, we show how historical records from Britain have improved understanding of high-magnitude floods, by examining past spatial and temporal variability. The findings identify that whilst recent floods are notable, several comparable periods of increased flooding are identifiable historically, with periods of greater frequency (flood-rich periods). Statistically significant relationships between the British flood index, the Atlantic Meridional Oscillation and the North Atlantic Oscillation Index are identified. The use of historical records identifies that the largest floods often transcend single catchments affecting regions and that the current flood-rich period is not unprecedented.

  19. The influence of unimanual response on pseudoneglect magnitude.

    PubMed

    McCourt, M E; Freeman, P; Tahmahkera-Stevens, C; Chaussee, M

    2001-02-01

    Various factors influence the degree of leftward error (pseudoneglect) (Bowers & Heilman, 1980) that typifies the performance of normal subjects in line bisection tasks (Jewell & McCourt, 2000). The results of this experiment show that unimanual responding also exerts a subtle but significant modulating influence on spatial attention, as indexed by the differential magnitude of pseudoneglect. Using a forced-choice tachistoscopic line bisection protocol, 184 subjects (92 male and 92 female) bisected horizontally oriented lines (22.3 degrees wide x 0.39 degrees height) presented to central vision in two conditions, in which bisection responses were executed via button presses using the first two fingers of either the left (LH) or right (RH) hand. Perceived line midpoint deviated significantly leftward of veridical (p <.05) in both conditions. There was no significant influence of subject sex (p >.05). A significant influence of unimanual response was revealed (p <.05) where pseudoneglect magnitude was greater in the LH than the RH condition. The results are interpreted within the framework of the activation-orientation theory of attentional asymmetry. Copyright 2001 Academic Press.

  20. Missing texture reconstruction method based on error reduction algorithm using Fourier transform magnitude estimation scheme.

    PubMed

    Ogawa, Takahiro; Haseyama, Miki

    2013-03-01

    A missing texture reconstruction method based on an error reduction (ER) algorithm, including a novel estimation scheme of Fourier transform magnitudes is presented in this brief. In our method, Fourier transform magnitude is estimated for a target patch including missing areas, and the missing intensities are estimated by retrieving its phase based on the ER algorithm. Specifically, by monitoring errors converged in the ER algorithm, known patches whose Fourier transform magnitudes are similar to that of the target patch are selected from the target image. In the second approach, the Fourier transform magnitude of the target patch is estimated from those of the selected known patches and their corresponding errors. Consequently, by using the ER algorithm, we can estimate both the Fourier transform magnitudes and phases to reconstruct the missing areas.

  1. Statistical relations among earthquake magnitude, surface rupture length, and surface fault displacement

    USGS Publications Warehouse

    Bonilla, M.G.; Mark, R.K.; Lienkaemper, J.J.

    1984-01-01

    In order to refine correlations of surface-wave magnitude, fault rupture length at the ground surface, and fault displacement at the surface by including the uncertainties in these variables, the existing data were critically reviewed and a new data base was compiled. Earthquake magnitudes were redetermined as necessary to make them as consistent as possible with the Gutenberg methods and results, which necessarily make up much of the data base. Measurement errors were estimated for the three variables for 58 moderate to large shallow-focus earthquakes. Regression analyses were then made utilizing the estimated measurement errors. The regression analysis demonstrates that the relations among the variables magnitude, length, and displacement are stochastic in nature. The stochastic variance, introduced in part by incomplete surface expression of seismogenic faulting, variation in shear modulus, and regional factors, dominates the estimated measurement errors. Thus, it is appropriate to use ordinary least squares for the regression models, rather than regression models based upon an underlying deterministic relation with the variance resulting from measurement errors. Significant differences exist in correlations of certain combinations of length, displacement, and magnitude when events are qrouped by fault type or by region, including attenuation regions delineated by Evernden and others. Subdivision of the data results in too few data for some fault types and regions, and for these only regressions using all of the data as a group are reported. Estimates of the magnitude and the standard deviation of the magnitude of a prehistoric or future earthquake associated with a fault can be made by correlating M with the logarithms of rupture length, fault displacement, or the product of length and displacement. Fault rupture area could be reliably estimated for about 20 of the events in the data set. Regression of MS on rupture area did not result in a marked improvement

  2. Maximum earthquake magnitudes in the Aegean area constrained by tectonic moment release rates

    NASA Astrophysics Data System (ADS)

    Ch. Koravos, G.; Main, I. G.; Tsapanos, T. M.; Musson, R. M. W.

    2003-01-01

    Seismic moment release is usually dominated by the largest but rarest events, making the estimation of seismic hazard inherently uncertain. This uncertainty can be reduced by combining long-term tectonic deformation rates with short-term recurrence rates. Here we adopt this strategy to estimate recurrence rates and maximum magnitudes for tectonic zones in the Aegean area. We first form a merged catalogue for historical and instrumentally recorded earthquakes in the Aegean, based on a recently published catalogue for Greece and surrounding areas covering the time period 550BC-2000AD, at varying degrees of completeness. The historical data are recalibrated to allow for changes in damping in seismic instruments around 1911. We divide the area up into zones that correspond to recent determinations of deformation rate from satellite data. In all zones we find that the Gutenberg-Richter (GR) law holds at low magnitudes. We use Akaike's information criterion to determine the best-fitting distribution at high magnitudes, and classify the resulting frequency-magnitude distributions of the zones as critical (GR law), subcritical (gamma density distribution) or supercritical (`characteristic' earthquake model) where appropriate. We determine the ratio η of seismic to tectonic moment release rate. Low values of η (<0.5) corresponding to relatively aseismic deformation, are associated with higher b values (>1.0). The seismic and tectonic moment release rates are then combined to constrain recurrence rates and maximum credible magnitudes (in the range 6.7-7.6 mW where the results are well constrained) based on extrapolating the short-term seismic data. With current earthquake data, many of the tectonic zones show a characteristic distribution that leads to an elevated probability of magnitudes around 7, but a reduced probability of larger magnitudes above this value when compared with the GR trend. A modification of the generalized gamma distribution is suggested to account

  3. Listening to the 2011 magnitude 9.0 Tohoku-Oki, Japan, earthquake

    USGS Publications Warehouse

    Peng, Zhigang; Aiken, Chastity; Kilb, Debi; Shelly, David R.; Enescu, Bogdan

    2012-01-01

    The magnitude 9.0 Tohoku-Oki, Japan, earthquake on 11 March 2011 is the largest earthquake to date in Japan’s modern history and is ranked as the fourth largest earthquake in the world since 1900. This earthquake occurred within the northeast Japan subduction zone (Figure 1), where the Pacific plate is subducting beneath the Okhotsk plate at rate of ∼8–9 cm/yr (DeMets et al. 2010). This type of extremely large earthquake within a subduction zone is generally termed a “megathrust” earthquake. Strong shaking from this magnitude 9 earthquake engulfed the entire Japanese Islands, reaching a maximum acceleration ∼3 times that of gravity (3 g). Two days prior to the main event, a foreshock sequence occurred, including one earthquake of magnitude 7.2. Following the main event, numerous aftershocks occurred around the main slip region; the largest of these was magnitude 7.9. The entire foreshocks-mainshock-aftershocks sequence was well recorded by thousands of sensitive seismometers and geodetic instruments across Japan, resulting in the best-recorded megathrust earthquake in history. This devastating earthquake resulted in significant damage and high death tolls caused primarily by the associated large tsunami. This tsunami reached heights of more than 30 m, and inundation propagated inland more than 5 km from the Pacific coast, which also caused a nuclear crisis that is still affecting people’s lives in certain regions of Japan.

  4. Do Indonesian Children's Experiences with Large Currency Units Facilitate Magnitude Estimation of Long Temporal Periods?

    NASA Astrophysics Data System (ADS)

    Cheek, Kim A.

    2017-08-01

    Ideas about temporal (and spatial) scale impact students' understanding across science disciplines. Learners have difficulty comprehending the long time periods associated with natural processes because they have no referent for the magnitudes involved. When people have a good "feel" for quantity, they estimate cardinal number magnitude linearly. Magnitude estimation errors can be explained by confusion about the structure of the decimal number system, particularly in terms of how powers of ten are related to one another. Indonesian children regularly use large currency units. This study investigated if they estimate long time periods accurately and if they estimate those time periods the same way they estimate analogous currency units. Thirty-nine children from a private International Baccalaureate school estimated temporal magnitudes up to 10,000,000,000 years in a two-part study. Artifacts children created were compared to theoretical model predictions previously used in number magnitude estimation studies as reported by Landy et al. (Cognitive Science 37:775-799, 2013). Over one third estimated the magnitude of time periods up to 10,000,000,000 years linearly, exceeding what would be expected based upon prior research with children this age who lack daily experience with large quantities. About half treated successive powers of ten as a count sequence instead of multiplicatively related when estimating magnitudes of time periods. Children generally estimated the magnitudes of long time periods and familiar, analogous currency units the same way. Implications for ways to improve the teaching and learning of this crosscutting concept/overarching idea are discussed.

  5. Relationships between magnitude representation, counting and memory in 4- to 7-year-old children: a developmental study.

    PubMed

    Soltész, Fruzsina; Szucs, Dénes; Szucs, Lívia

    2010-02-18

    The development of an evolutionarily grounded analogue magnitude representation linked to the parietal lobes is frequently thought to be a major factor in the arithmetic development of humans. We investigated the relationship between counting and the development of magnitude representation in children, assessing also children's knowledge of number symbols, their arithmetic fact retrieval, their verbal skills, and their numerical and verbal short-term memory. The magnitude representation was tested by a non-symbolic magnitude comparison task. We have perfected previous experimental designs measuring magnitude discrimination skills in 65 children kindergarten (4-7-year-olds) by controlling for several variables which were not controlled for in previous similar research. We also used a large number of trials which allowed for running a full factorial ANOVA including all relevant factors. Tests of verbal counting, of short term memory, of number knowledge, of problem solving abilities and of verbal fluency were administered and correlated with performance in the magnitude comparison task. Verbal counting knowledge and performance on simple arithmetic tests did not correlate with non-symbolic magnitude comparison at any age. Older children performed successfully on the number comparison task, showing behavioural patterns consistent with an analogue magnitude representation. In contrast, 4-year-olds were unable to discriminate number independently of task-irrelevant perceptual variables. Sensitivity to irrelevant perceptual features of the magnitude discrimination task was also affected by age, and correlated with memory, suggesting that more general cognitive abilities may play a role in performance in magnitude comparison tasks. We conclude that young children are not able to discriminate numerical magnitudes when co-varying physical magnitudes are methodically pitted against number. We propose, along with others, that a rather domain general magnitude representation

  6. Relationships between magnitude representation, counting and memory in 4- to 7-year-old children: A developmental study

    PubMed Central

    2010-01-01

    Background The development of an evolutionarily grounded analogue magnitude representation linked to the parietal lobes is frequently thought to be a major factor in the arithmetic development of humans. We investigated the relationship between counting and the development of magnitude representation in children, assessing also children's knowledge of number symbols, their arithmetic fact retrieval, their verbal skills, and their numerical and verbal short-term memory. Methods The magnitude representation was tested by a non-symbolic magnitude comparison task. We have perfected previous experimental designs measuring magnitude discrimination skills in 65 children kindergarten (4-7-year-olds) by controlling for several variables which were not controlled for in previous similar research. We also used a large number of trials which allowed for running a full factorial ANOVA including all relevant factors. Tests of verbal counting, of short term memory, of number knowledge, of problem solving abilities and of verbal fluency were administered and correlated with performance in the magnitude comparison task. Results and discussion Verbal counting knowledge and performance on simple arithmetic tests did not correlate with non-symbolic magnitude comparison at any age. Older children performed successfully on the number comparison task, showing behavioural patterns consistent with an analogue magnitude representation. In contrast, 4-year-olds were unable to discriminate number independently of task-irrelevant perceptual variables. Sensitivity to irrelevant perceptual features of the magnitude discrimination task was also affected by age, and correlated with memory, suggesting that more general cognitive abilities may play a role in performance in magnitude comparison tasks. Conclusion We conclude that young children are not able to discriminate numerical magnitudes when co-varying physical magnitudes are methodically pitted against number. We propose, along with others

  7. Early Warning for Large Magnitude Earthquakes: Is it feasible?

    NASA Astrophysics Data System (ADS)

    Zollo, A.; Colombelli, S.; Kanamori, H.

    2011-12-01

    The mega-thrust, Mw 9.0, 2011 Tohoku earthquake has re-opened the discussion among the scientific community about the effectiveness of Earthquake Early Warning (EEW) systems, when applied to such large events. Many EEW systems are now under-testing or -development worldwide and most of them are based on the real-time measurement of ground motion parameters in a few second window after the P-wave arrival. Currently, we are using the initial Peak Displacement (Pd), and the Predominant Period (τc), among other parameters, to rapidly estimate the earthquake magnitude and damage potential. A well known problem about the real-time estimation of the magnitude is the parameter saturation. Several authors have shown that the scaling laws between early warning parameters and magnitude are robust and effective up to magnitude 6.5-7; the correlation, however, has not yet been verified for larger events. The Tohoku earthquake occurred near the East coast of Honshu, Japan, on the subduction boundary between the Pacific and the Okhotsk plates. The high quality Kik- and K- networks provided a large quantity of strong motion records of the mainshock, with a wide azimuthal coverage both along the Japan coast and inland. More than 300 3-component accelerograms have been available, with an epicentral distance ranging from about 100 km up to more than 500 km. This earthquake thus presents an optimal case study for testing the physical bases of early warning and to investigate the feasibility of a real-time estimation of earthquake size and damage potential even for M > 7 earthquakes. In the present work we used the acceleration waveform data of the main shock for stations along the coast, up to 200 km epicentral distance. We measured the early warning parameters, Pd and τc, within different time windows, starting from 3 seconds, and expanding the testing time window up to 30 seconds. The aim is to verify the correlation of these parameters with Peak Ground Velocity and Magnitude

  8. Dealing with Big Numbers: Representation and Understanding of Magnitudes outside of Human Experience

    ERIC Educational Resources Information Center

    Resnick, Ilyse; Newcombe, Nora S.; Shipley, Thomas F.

    2017-01-01

    Being able to estimate quantity is important in everyday life and for success in the STEM disciplines. However, people have difficulty reasoning about magnitudes outside of human perception (e.g., nanoseconds, geologic time). This study examines patterns of estimation errors across temporal and spatial magnitudes at large scales. We evaluated the…

  9. Magnitude Anomalies and Propagation of Local Phases

    DTIC Science & Technology

    1983-01-31

    PORTMSI 27 rue Claude Bernard 75005 PARIS - FRANCE AP()R h- ’,*174 2. SPOOSOtGINMONITAJNG AGENCY NAME(S) AND AOORIS,4ES) 1.SPONSONG/MOWTOFMG AFOSR DTBLDG...200SWJ There are three main parts in this report: - a study of magnitude anomalies in French Polynesia. A first approach gives an anomaly per station...which is roughly a function of a’zimuth valid for all French Polynesia plus a station’s constant. A more detailed study shows the influence of local

  10. Estimators of The Magnitude-Squared Spectrum and Methods for Incorporating SNR Uncertainty

    PubMed Central

    Lu, Yang; Loizou, Philipos C.

    2011-01-01

    Statistical estimators of the magnitude-squared spectrum are derived based on the assumption that the magnitude-squared spectrum of the noisy speech signal can be computed as the sum of the (clean) signal and noise magnitude-squared spectra. Maximum a posterior (MAP) and minimum mean square error (MMSE) estimators are derived based on a Gaussian statistical model. The gain function of the MAP estimator was found to be identical to the gain function used in the ideal binary mask (IdBM) that is widely used in computational auditory scene analysis (CASA). As such, it was binary and assumed the value of 1 if the local SNR exceeded 0 dB, and assumed the value of 0 otherwise. By modeling the local instantaneous SNR as an F-distributed random variable, soft masking methods were derived incorporating SNR uncertainty. The soft masking method, in particular, which weighted the noisy magnitude-squared spectrum by the a priori probability that the local SNR exceeds 0 dB was shown to be identical to the Wiener gain function. Results indicated that the proposed estimators yielded significantly better speech quality than the conventional MMSE spectral power estimators, in terms of yielding lower residual noise and lower speech distortion. PMID:21886543

  11. SELECTION DYNAMICS IN JOINT MATCHING TO RATE AND MAGNITUDE OF REINFORCEMENT

    PubMed Central

    McDowell, J. J; Popa, Andrei; Calvin, Nicholas T

    2012-01-01

    Virtual organisms animated by a selectionist theory of behavior dynamics worked on concurrent random interval schedules where both the rate and magnitude of reinforcement were varied. The selectionist theory consists of a set of simple rules of selection, recombination, and mutation that act on a population of potential behaviors by means of a genetic algorithm. An extension of the power function matching equation, which expresses behavior allocation as a joint function of exponentiated reinforcement rate and reinforcer magnitude ratios, was fitted to the virtual organisms' data, and over a range of moderate mutation rates was found to provide an excellent description of their behavior without residual trends. The mean exponents in this range of mutation rates were 0.83 for the reinforcement rate ratio and 0.68 for the reinforcer magnitude ratio, which are values that are comparable to those obtained in experiments with live organisms. These findings add to the evidence supporting the selectionist theory, which asserts that the world of behavior we observe and measure is created by evolutionary dynamics. PMID:23008523

  12. Understanding high magnitude flood risk: evidence from the past

    NASA Astrophysics Data System (ADS)

    MacDonald, N.

    2009-04-01

    The average length of gauged river flow records in the UK is ~25 years, which presents a problem in determining flood risk for high-magnitude flood events. Severe floods have been recorded in many UK catchments during the past 10 years, increasing the uncertainty in conventional flood risk estimates based on river flow records. Current uncertainty in flood risk has implications for society (insurance costs), individuals (personal vulnerability) and water resource managers (flood/drought risk). An alternative approach is required which can improve current understanding of the flood frequency/magnitude relationship. Historical documentary accounts are now recognised as a valuable resource when considering the flood frequency/magnitude relationship, but little consideration has been given to the temporal and spatial distribution of these records. Building on previous research based on British rivers (urban centre): Ouse (York), Trent (Nottingham), Tay (Perth), Severn (Shrewsbury), Dee (Chester), Great Ouse (Cambridge), Sussex Ouse (Lewes), Thames (Oxford), Tweed (Kelso) and Tyne (Hexham), this work considers the spatial and temporal distribution of historical flooding. The selected sites provide a network covering many of the largest river catchments in Britain, based on urban centres with long detailed documentary flood histories. The chronologies offer an opportunity to assess long-term patterns of flooding, indirectly determining periods of climatic variability and potentially increased geomorphic activity. This research represents the first coherent large scale analysis undertaken of historical multi-catchment flood chronologies, providing an unparalleled network of sites, permitting analysis of the spatial and temporal distribution of historical flood patterns on a national scale.

  13. Spatiotemporal evolution of the completeness magnitude of the Icelandic earthquake catalogue from 1991 to 2013

    NASA Astrophysics Data System (ADS)

    Panzera, Francesco; Mignan, Arnaud; Vogfjörð, Kristin S.

    2017-07-01

    In 1991, a digital seismic monitoring network was installed in Iceland with a digital seismic system and automatic operation. After 20 years of operation, we explore for the first time its nationwide performance by analysing the spatiotemporal variations of the completeness magnitude. We use the Bayesian magnitude of completeness (BMC) method that combines local completeness magnitude observations with prior information based on the density of seismic stations. Additionally, we test the impact of earthquake location uncertainties on the BMC results, by filtering the catalogue using a multivariate analysis that identifies outliers in the hypocentre error distribution. We find that the entire North-to-South active rift zone shows a relatively low magnitude of completeness Mc in the range 0.5-1.0, highlighting the ability of the Icelandic network to detect small earthquakes. This work also demonstrates the influence of earthquake location uncertainties on the spatiotemporal magnitude of completeness analysis.

  14. Typical whole body vibration exposure magnitudes encountered in the open pit mining industry.

    PubMed

    Howard, Bryan; Sesek, Richard; Bloswick, Don

    2009-01-01

    According to recent research, a causal link has been established between occupational exposure to whole body vibration and an increased occurrence of low back pain. To aid in the further development of an in-house health and safety program for a large open pit mining facility interested in reducing back pain among its operators, whole body vibration magnitudes were characterized for a range of jobs. Specifically, thirty-five individual jobs from five different areas across the facility were evaluated for tri-axial acceleration levels during normal operating conditions. Tri-axial acceleration magnitudes were categorized into thirteen job groups. Job groups were ranked according to exposure and compared to the ISO 2631-1 standard for health risk assessment. Three of the thirteen job groups produced tri-axial acceleration magnitudes below the ISO 2631-1 low/moderate health caution limit for a twelve hour exposure. Six of the thirteen job groups produced exposures within the moderate health risk range. Four job groups were found to subject operators to WBV acceleration magnitudes above the moderate/high health caution limit.

  15. On mass concentrations and magnitude gaps of galaxy systems in the CS82 survey

    NASA Astrophysics Data System (ADS)

    Vitorelli, André Z.; Cypriano, Eduardo S.; Makler, Martín; Pereira, Maria E. S.; Erben, Thomas; Moraes, Bruno

    2018-02-01

    Galaxy systems with large magnitude gaps - defined as the difference in magnitude between the central galaxy and the brightest satellite in the central region, such as fossil groups - are claimed to have earlier formation times. In this study, we measure the mass concentration, as an indicator of the formation epoch, of ensembles of galaxy systems divided by redshift and magnitude gaps in the r band. We use cross-correlation weak-lensing measurements with NFW parametric mass profiles to measure masses and concentrations of these ensembles from a catalogue of systems built from the SDSS Coadd by the redMaPPer algorithm. The lensing shear data come from the CFHT Stripe 82 (CS82) survey, and consists of i-band images of the SDSS Stripe 82 region. We find that the stack made up of systems with larger magnitude gaps has a high probability of being more concentrated, in the lowest redshift slice (0.2 < z < 0.4), both when dividing in quartiles (P = 0.98) and tertiles (P = 0.85). These results lend credibility to the claim that systems with large magnitude gaps tend to have been formed early.

  16. Video analysis of high-magnitude head impacts in men's collegiate lacrosse.

    PubMed

    Kindschi, Kari; Higgins, Michael; Hillman, Andrea; Penczek, Gregory; Lincoln, Andrew

    2017-01-01

    Lacrosse is one of the fastest growing sports in the USA. Efforts to minimise head injuries focus on promoting safe play through player and coach education, rules enforcement and use of effective protective equipment. The study aims to determine event characteristics of high-magnitude head impacts in men's collegiate lacrosse competitions through video analysis. Seventeen Division I men's collegiate lacrosse players wore instrumented helmets that collected biomechanical measures of head impacts. During 15 competitions, the magnitude of linear acceleration, rotational velocity and helmet impact location were recorded. Impacts with linear accelerations above a 70 g threshold were correlated with video to confirm impact location and to determine event characteristics-source of impact and player activity at the time of impact. A total of 122 high-magnitude impacts were reviewed on video. Player-to-player contact (n=94, 77.0%) was the most common impact mechanism, followed by stick-to-player contact (n=11, 9.0%). Impacts occurred most often when the athlete was delivering a body check (n=39, 32.0%), fighting for loose ball possession (n=35, 28.7%) or attacking the goal (n=35, 28.7%). The most frequent impact locations were the front of the helmet (n=46, 37.8%) and the left side of the helmet (n=26, 21.3%). In men's collegiate lacrosse games, the majority of high-magnitude head impacts resulted from player-to-player contact when the sensored athlete did not have possession of the ball. Video analysis provides the game context for head impact mechanisms, which is critical to developing sport-specific injury prevention strategies.

  17. Optimal updating magnitude in adaptive flat-distribution sampling

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Drake, Justin A.; Ma, Jianpeng; Pettitt, B. Montgomery

    2017-11-01

    We present a study on the optimization of the updating magnitude for a class of free energy methods based on flat-distribution sampling, including the Wang-Landau (WL) algorithm and metadynamics. These methods rely on adaptive construction of a bias potential that offsets the potential of mean force by histogram-based updates. The convergence of the bias potential can be improved by decreasing the updating magnitude with an optimal schedule. We show that while the asymptotically optimal schedule for the single-bin updating scheme (commonly used in the WL algorithm) is given by the known inverse-time formula, that for the Gaussian updating scheme (commonly used in metadynamics) is often more complex. We further show that the single-bin updating scheme is optimal for very long simulations, and it can be generalized to a class of bandpass updating schemes that are similarly optimal. These bandpass updating schemes target only a few long-range distribution modes and their optimal schedule is also given by the inverse-time formula. Constructed from orthogonal polynomials, the bandpass updating schemes generalize the WL and Langfeld-Lucini-Rago algorithms as an automatic parameter tuning scheme for umbrella sampling.

  18. Optimal updating magnitude in adaptive flat-distribution sampling.

    PubMed

    Zhang, Cheng; Drake, Justin A; Ma, Jianpeng; Pettitt, B Montgomery

    2017-11-07

    We present a study on the optimization of the updating magnitude for a class of free energy methods based on flat-distribution sampling, including the Wang-Landau (WL) algorithm and metadynamics. These methods rely on adaptive construction of a bias potential that offsets the potential of mean force by histogram-based updates. The convergence of the bias potential can be improved by decreasing the updating magnitude with an optimal schedule. We show that while the asymptotically optimal schedule for the single-bin updating scheme (commonly used in the WL algorithm) is given by the known inverse-time formula, that for the Gaussian updating scheme (commonly used in metadynamics) is often more complex. We further show that the single-bin updating scheme is optimal for very long simulations, and it can be generalized to a class of bandpass updating schemes that are similarly optimal. These bandpass updating schemes target only a few long-range distribution modes and their optimal schedule is also given by the inverse-time formula. Constructed from orthogonal polynomials, the bandpass updating schemes generalize the WL and Langfeld-Lucini-Rago algorithms as an automatic parameter tuning scheme for umbrella sampling.

  19. A standardised, generic, validated approach to stratify the magnitude of clinical benefit that can be anticipated from anti-cancer therapies: the European Society for Medical Oncology Magnitude of Clinical Benefit Scale (ESMO-MCBS).

    PubMed

    Cherny, N I; Sullivan, R; Dafni, U; Kerst, J M; Sobrero, A; Zielinski, C; de Vries, E G E; Piccart, M J

    2015-08-01

    The value of any new therapeutic strategy or treatment is determined by the magnitude of its clinical benefit balanced against its cost. Evidence for clinical benefit from new treatment options is derived from clinical research, in particular phase III randomised trials, which generate unbiased data regarding the efficacy, benefit and safety of new therapeutic approaches. To date, there is no standard tool for grading the magnitude of clinical benefit of cancer therapies, which may range from trivial (median progression-free survival advantage of only a few weeks) to substantial (improved long-term survival). Indeed, in the absence of a standardised approach for grading the magnitude of clinical benefit, conclusions and recommendations derived from studies are often hotly disputed and very modest incremental advances have often been presented, discussed and promoted as major advances or 'breakthroughs'. Recognising the importance of presenting clear and unbiased statements regarding the magnitude of the clinical benefit from new therapeutic approaches derived from high-quality clinical trials, the European Society for Medical Oncology (ESMO) has developed a validated and reproducible tool to assess the magnitude of clinical benefit for cancer medicines, the ESMO Magnitude of Clinical Benefit Scale (ESMO-MCBS). This tool uses a rational, structured and consistent approach to derive a relative ranking of the magnitude of clinically meaningful benefit that can be expected from a new anti-cancer treatment. The ESMO-MCBS is an important first step to the critical public policy issue of value in cancer care, helping to frame the appropriate use of limited public and personal resources to deliver cost-effective and affordable cancer care. The ESMO-MCBS will be a dynamic tool and its criteria will be revised on a regular basis. © The Author 2015. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For

  20. Moral Severity is Represented as a Domain-General Magnitude.

    PubMed

    Powell, Derek; Horne, Zachary

    2017-03-01

    The severity of moral violations can vary by degree. For instance, although both are immoral, murder is a more severe violation than lying. Though this point is well established in Ethics and the law, relatively little research has been directed at examining how moral severity is represented psychologically. Most prominent moral psychological theories are aimed at explaining first-order moral judgments and are silent on second-order metaethical judgments, such as comparisons of severity. Here, the relative severity of 20 moral violations was established in a preliminary study. Then, a second group of participants were asked to decide which of two moral violations was more severe for all possible combinations of these 20 violations. Participant's response times exhibited two signatures of domain-general magnitude comparisons: we observed both a distance effect and a semantic congruity effect. These findings suggest that moral severity is represented in a similar fashion as other continuous magnitudes.

  1. Availability of high-magnitude streamflow for groundwater banking in the Central Valley, California

    NASA Astrophysics Data System (ADS)

    Kocis, Tiffany N.; Dahlke, Helen E.

    2017-08-01

    California’s climate is characterized by the largest precipitation and streamflow variability observed within the conterminous US This, combined with chronic groundwater overdraft of 0.6-3.5 km3 yr-1, creates the need to identify additional surface water sources available for groundwater recharge using methods such as agricultural groundwater banking, aquifer storage and recovery, and spreading basins. High-magnitude streamflow, i.e. flow above the 90th percentile, that exceeds environmental flow requirements and current surface water allocations under California water rights, could be a viable source of surface water for groundwater banking. Here, we present a comprehensive analysis of the magnitude, frequency, duration and timing of high-magnitude streamflow (HMF) for 93 stream gauges covering the Sacramento, San Joaquin and Tulare basins in California. The results show that in an average year with HMF approximately 3.2 km3 of high-magnitude flow is exported from the entire Central Valley to the Sacramento-San Joaquin Delta often at times when environmental flow requirements of the Delta and major rivers are exceeded. High-magnitude flow occurs, on average, during 7 and 4.7 out of 10 years in the Sacramento River and the San Joaquin-Tulare Basins, respectively, from just a few storm events (5-7 1-day peak events) lasting for 25-30 days between November and April. The results suggest that there is sufficient unmanaged surface water physically available to mitigate long-term groundwater overdraft in the Central Valley.

  2. Trends in the Timing and Magnitude of Ice-Jam Floods in Canada.

    PubMed

    Rokaya, Prabin; Budhathoki, Sujata; Lindenschmidt, Karl-Erich

    2018-04-11

    Ice-jam floods (IJFs) are important hydrological and hydraulic events in the northern hemisphere that are of major concern for citizens, authorities, insurance companies and government agencies. In recent years, there have been advances in assessing and quantifying climate change impacts on river ice processes, however, an understanding of climate change and regulation impacts on the timing and magnitude of IJFs remains limited. This study presents a global overview of IJF case studies and discusses IJF risks in North America, one of the most IJF prone regions according to literature. Then an assessment of shifts in the timing and magnitude of IJFs in Canada is presented analyzing flow data from 1107 hydrometric stations across Canada for the period from 1903 to 2015. The analyses show clear signals of climate change and regulation impacts in the timing and magnitude of IJFs, particularly in small basins.

  3. Como Lo Hago Yo: Defectos Del Cierre Del Tubo Neural En Nicaragua

    PubMed Central

    Gonzalez, Juan Bosco

    2014-01-01

    En Nicaragua no hay un plan de forltificación de alimentos con ácido fólico. Las madres son muy jóvenes. En La Mascota operamos mas de cuarenta niños por año. Derivación tardía es un problema. La infección preoperatoria tiene que ser descartada. Vancomicina y Ceftriaxone estan indicadas. Estricta regla de asepsia operatoria. Suturamos la plaqueta para asemejar su forma al cilindro normal de la médula. No ceramos la capa de músculo. PMID:24791221

  4. Threshold magnitudes for a multichannel correlation detector in background seismicity

    DOE PAGES

    Carmichael, Joshua D.; Hartse, Hans

    2016-04-01

    Colocated explosive sources often produce correlated seismic waveforms. Multichannel correlation detectors identify these signals by scanning template waveforms recorded from known reference events against "target" data to find similar waveforms. This screening problem is challenged at thresholds required to monitor smaller explosions, often because non-target signals falsely trigger such detectors. Therefore, it is generally unclear what thresholds will reliably identify a target explosion while screening non-target background seismicity. Here, we estimate threshold magnitudes for hypothetical explosions located at the North Korean nuclear test site over six months of 2010, by processing International Monitoring System (IMS) array data with a multichannelmore » waveform correlation detector. Our method (1) accounts for low amplitude background seismicity that falsely triggers correlation detectors but is unidentifiable with conventional power beams, (2) adapts to diurnally variable noise levels and (3) uses source-receiver reciprocity concepts to estimate thresholds for explosions spatially separated from the template source. Furthermore, we find that underground explosions with body wave magnitudes m b = 1.66 are detectable at the IMS array USRK with probability 0.99, when using template waveforms consisting only of P -waves, without false alarms. We conservatively find that these thresholds also increase by up to a magnitude unit for sources located 4 km or more from the Feb.12, 2013 announced nuclear test.« less

  5. (Non-)symbolic magnitude processing in children with mathematical difficulties: A meta-analysis.

    PubMed

    Schwenk, Christin; Sasanguie, Delphine; Kuhn, Jörg-Tobias; Kempe, Sophia; Doebler, Philipp; Holling, Heinz

    2017-05-01

    Symbolic and non-symbolic magnitude representations, measured by digit or dot comparison tasks, are assumed to underlie the development of arithmetic skills. The comparison distance effect (CDE) has been suggested as a hallmark of the preciseness of mental magnitude representations. It implies that two magnitudes are harder to discriminate when the numerical distance between them is small, and may therefore differ in children with mathematical difficulties (MD), i.e. low mathematical achievement or dyscalculia. However, empirical findings on the CDE in children with MD are heterogeneous, and only few studies assess both symbolic and non-symbolic skills. This meta-analysis therefore integrates 44 symbolic and 48 non-symbolic response time (RT) outcomes reported in nineteen studies (N=1630 subjects, aged 6-14 years). Independent of age, children with MD show significantly longer mean RTs than typically achieving controls, particularly on symbolic (Hedges' g=0.75; 95% CI [0.51; 0.99]), but to a significantly lower extent also on non-symbolic (g=0.24; 95% CI [0.13; 0.36]) tasks. However, no group differences were found for the CDE. Extending recent work, these meta-analytical findings on children with MD corroborate the diagnostic importance of magnitude comparison speed in symbolic tasks. By contrast, the validity of CDE measures in assessing MD is questioned. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The structure of first-ranked cluster galaxies and the radius-magnitude relation

    NASA Astrophysics Data System (ADS)

    Lugger, P. M.

    1984-11-01

    To investigate theoretical predictions for the dynamical evolution of first-ranked galaxies, a quantitative study of their properties, as a function of cluster morphology, has been carried out using photographic plates obtained with the Palomar 48 inch (1.2 m) Schmidt telescope. Surface brightness profiles to radii of several hundred kpc for 35 first-ranked cluster galaxies have been analyzed. The dispersion in the metric magnitudes of first-ranked galaxies is quite small (about 0.4 mag), which is consistent with the results of Kristian, Sandage, and Westphal (1978) as well as those of Hoessel, Gunn, and Thuan (1980) and the recent work of Schneider, Gunn, and Hoessel (1983). For the cD (supergiant elliptical) galaxy sample, the mean metric magnitude is about 0.5 mag brighter than for the non-cD galaxies. The mean de Vaucouleurs effective radius for the cD galaxy sample is 80 percent larger than that of the non-cD sample. The relation between de Vaucouleurs effective radius and magnitude determined in the present study for first-ranked galaxies, log r(e) equal to about -0.26 M + constant is consistent with the relations found for fainter galaxies by Strom and Strom (1978) as well as Wirth (1982). The residuals in radius from the mean radius-magnitude relation for first-ranked galaxies do not correlate with the Bautz-Morgan (1970) type of the cluster.

  7. Cognitive factors affecting children's nonsymbolic and symbolic magnitude judgment abilities: A latent profile analysis.

    PubMed

    Chew, Cindy S; Forte, Jason D; Reeve, Robert A

    2016-12-01

    Early math abilities are claimed to be linked to magnitude representation ability. Some claim that nonsymbolic magnitude abilities scaffold the acquisition of symbolic (Arabic number) magnitude abilities and influence math ability. Others claim that symbolic magnitude abilities, and ipso facto math abilities, are independent of nonsymbolic abilities and instead depend on the ability to process number symbols (e.g., 2, 7). Currently, the issue of whether symbolic abilities are or are not related to nonsymbolic abilities, and the cognitive factors associated with nonsymbolic-symbolic relationships, remains unresolved. We suggest that different nonsymbolic-symbolic relationships reside within the general magnitude ability distribution and that different cognitive abilities are likely associated with these different relationships. We further suggest that the different nonsymbolic-symbolic relationships and cognitive abilities in combination differentially predict math abilities. To test these claims, we used latent profile analysis to identify nonsymbolic-symbolic judgment patterns of 124, 5- to 7-year-olds. We also assessed four cognitive factors (visuospatial working memory [VSWM], naming numbers, nonverbal IQ, and basic reaction time [RT]) and two math abilities (number transcoding and single-digit addition abilities). Four nonsymbolic-symbolic ability profiles were identified. Naming numbers, VSWM, and basic RT abilities were differentially associated with the different ability profiles and in combination differentially predicted math abilities. Findings show that different patterns of nonsymbolic-symbolic magnitude abilities can be identified and suggest that an adequate account of math development should specify the inter-relationship between cognitive factors and nonsymbolic-symbolic ability patterns. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Radio-Observaciones del OH EN la Coma del Cometa Halley Desde EL Hemisferio Sur

    NASA Astrophysics Data System (ADS)

    Silva, A. M.; Bajaja, E.; Morras, R.; Cersosimo, J. C.; Martin, M. C.; Arnal, E. M.; Poppel, W. G. L.; Colomb, F. R.; Mazzaro, J.; Olalde, J. C.; Boriakoff, V.; Mirabel, I. F.

    1987-05-01

    Se utilizó una antena de 30 metros del Instituto Argentino de Radioastronomía para observaciones diarias Cf ebrero a abril de 1986) de la transición en 1667 MHz ( λ = 18 cm) del OH en la coma del cometa Halley. De las observaciones realizadas se concluye: 1) El número promedio de moléculas de OH en la coma durante 37 días de observación fue de (8.9±3.5)x1034 moléculas, lo que implica una tasa de producción promedio de OH de 1.8x1029 moléculas seg-1 y consecuentemente una pérdida de masa promedio de 17±6 toneladas seg-1 . Este valor está de acuerdo con las mediciones realizadas por las sondas Vega y Giotto. 2) El monitoreo desde el lAR revela la existencia de variaciones bruscas en los flujos de absorción del OH. Estas variaciones son consistentes con los modelos que representan la producción gaseosa a partir de ejecciones y/o desprendimientos discretos de materia congelada del núcleo. 3) Las variaciones en la densidad de flujo son consistentes con las estimaciones de los tiem- pos de vida medios del H2O y del OH en presencia del campo de radiación solar. 4) Se encuentra una correlación entre la intensidad del flujo absorbido y anisotropías en Ia dinamica de la coma.

  9. Evaluation of the magnitude of EBT Gafchromic film polarization effects.

    PubMed

    Butson, M J; Cheung, T; Yu, P K N

    2009-03-01

    Gafchromic EBT film, has become a main dosimetric tools for quantitative evaluation of radiation doses in radiation therapy application. One aspect of variability using EBT Gafchromic film is the magnitude of the orientation effect when analysing the film in landscape or portrait mode. This work has utilized a > 99% plane polarized light source and a non-polarized diffuse light source to investigate the absolute magnitude of EBT Gafchromic films polarization or orientation effects. Results have shown that using a non-polarized light source produces a negligible orientation effect for EBT Gafchromic film and thus the angle of orientation is not important. However, the film exhibits a significant variation in transmitted optical density with angle of orientation to polarized light producing more than 100% increase, or over a doubling of measured OD for films irradiated with x-rays up to dose levels of 5 Gy. The maximum optical density was found to be in a plane at an angle of 14 degrees +/- 7 degrees (2 SD) when the polarizing sheet is turned clockwise with respect to the film. As the magnitude of the orientation effect follows a sinusoidal shape it becomes more critical for alignment accuracy of the film with respect to the polarizing direction in the anticlockwise direction as this will place the alignment of the polarizing axes on the steeper gradient section of the sinusoidal pattern. An average change of 4.5% per 5 degrees is seen for an anticlockwise polarizer rotation where as the effect is 1.2% per 5 degrees for an clockwise polarizer rotation. This may have consequences to the positional accuracy of placement of the EBT Gafchromic film on a scanner as even a 1 degree alignment error can cause an approximate 1% error in analysis. The magnitude of the orientation effect is therefore dependant on the degree of polarization of the scanning light source and can range from negligible (diffuse LED light source) through to more than 100% or doubling of OD variation

  10. Precise Relative Earthquake Magnitudes from Cross Correlation

    DOE PAGES

    Cleveland, K. Michael; Ammon, Charles J.

    2015-04-21

    We present a method to estimate precise relative magnitudes using cross correlation of seismic waveforms. Our method incorporates the intercorrelation of all events in a group of earthquakes, as opposed to individual event pairings relative to a reference event. This method works well when a reliable reference event does not exist. We illustrate the method using vertical strike-slip earthquakes located in the northeast Pacific and Panama fracture zone regions. Our results are generally consistent with the Global Centroid Moment Tensor catalog, which we use to establish a baseline for the relative event sizes.

  11. Spectrophotometry of Wolf-Rayet stars - Intrinsic colors and absolute magnitudes

    NASA Technical Reports Server (NTRS)

    Torres-Dodgen, Ana V.; Massey, Philip

    1988-01-01

    Absolute spectrophotometry of about 10-A resolution in the range 3400-7300 A have been obtained for southern Wolf-Rayet stars, and line-free magnitudes and colors have been constructed. The emission-line contamination in the narrow-band ubvr systems of Westerlund (1966) and Smith (1968) is shown to be small for most WN stars, but to be quite significant for WC stars. It is suggested that the more severe differences in intrinsic color from star to star of the same spectral subtype noted at shorter wavelengths are due to differences in atmospheric extent. True continuum absolute visual magnitudes and intrinsic colors are obtained for the LMC WR stars. The most visually luminous WN6-WN7 stars are found to be located in the core of the 30 Doradus region.

  12. Maternal body condition influences magnitude of anti-predator response in offspring.

    PubMed

    Bennett, Amanda M; Murray, Dennis L

    2014-11-07

    Organisms exhibit plasticity in response to their environment, but there is large variation even within populations in the expression and magnitude of response. Maternal influence alters offspring survival through size advantages in growth and development. However, the relationship between maternal influence and variation in plasticity in response to predation risk is unknown. We hypothesized that variation in the magnitude of plastic responses between families is at least partly due to maternal provisioning and examined the relationship between maternal condition, egg provisioning and magnitude of plastic response to perceived predation risk (by dragonfly larvae: Aeshna spp.) in northern leopard frogs (Lithobates pipiens). Females in better body condition tended to lay more (clutch size) larger (egg diameter) eggs. Tadpoles responded to predation risk by increasing relative tail depth (morphology) and decreasing activity (behaviour). We found a positive relationship between morphological effect size and maternal condition, but no relationship between behavioural effect size and maternal condition. These novel findings suggest that limitations imposed by maternal condition can constrain phenotypic variation, ultimately influencing the capacity of populations to respond to environmental change. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  13. Bayesian Estimation of the Spatially Varying Completeness Magnitude of Earthquake Catalogs

    NASA Astrophysics Data System (ADS)

    Mignan, A.; Werner, M.; Wiemer, S.; Chen, C.; Wu, Y.

    2010-12-01

    Assessing the completeness magnitude Mc of earthquake catalogs is an essential prerequisite for any seismicity analysis. We employ a simple model to compute Mc in space, based on the proximity to seismic stations in a network. We show that a relationship of the form Mcpred(d) = ad^b+c, with d the distance to the 5th nearest seismic station, fits the observations well. We then propose a new Mc mapping approach, the Bayesian Magnitude of Completeness (BMC) method, based on a 2-step procedure: (1) a spatial resolution optimization to minimize spatial heterogeneities and uncertainties in Mc estimates and (2) a Bayesian approach that merges prior information about Mc based on the proximity to seismic stations with locally observed values weighted by their respective uncertainties. This new methodology eliminates most weaknesses associated with current Mc mapping procedures: the radius that defines which earthquakes to include in the local magnitude distribution is chosen according to an objective criterion and there are no gaps in the spatial estimation of Mc. The method solely requires the coordinates of seismic stations. Here, we investigate the Taiwan Central Weather Bureau (CWB) earthquake catalog by computing a Mc map for the period 1994-2010.

  14. Fixed-head star tracker magnitude calibration on the solar maximum mission

    NASA Technical Reports Server (NTRS)

    Pitone, Daniel S.; Twambly, B. J.; Eudell, A. H.; Roberts, D. A.

    1990-01-01

    The sensitivity of the fixed-head star trackers (FHSTs) on the Solar Maximum Mission (SMM) is defined as the accuracy of the electronic response to the magnitude of a star in the sensor field-of-view, which is measured as intensity in volts. To identify stars during attitude determination and control processes, a transformation equation is required to convert from star intensity in volts to units of magnitude and vice versa. To maintain high accuracy standards, this transformation is calibrated frequently. A sensitivity index is defined as the observed intensity in volts divided by the predicted intensity in volts; thus, the sensitivity index is a measure of the accuracy of the calibration. Using the sensitivity index, analysis is presented that compares the strengths and weaknesses of two possible transformation equations. The effect on the transformation equations of variables, such as position in the sensor field-of-view, star color, and star magnitude, is investigated. In addition, results are given that evaluate the aging process of each sensor. The results in this work can be used by future missions as an aid to employing data from star cameras as effectively as possible.

  15. When Should Zero Be Included on a Scale Showing Magnitude?

    ERIC Educational Resources Information Center

    Kozak, Marcin

    2011-01-01

    This article addresses an important problem of graphing quantitative data: should one include zero on the scale showing magnitude? Based on a real time series example, the problem is discussed and some recommendations are proposed.

  16. Monetary reward magnitude effects on behavior and brain function during goal-directed behavior.

    PubMed

    Rosell-Negre, P; Bustamante, J C; Fuentes-Claramonte, P; Costumero, V; Benabarre, S; Barrós-Loscertales, A

    2017-08-01

    Reward may modulate the cognitive processes required for goal achievement, while individual differences in personality may affect reward modulation. Our aim was to test how different monetary reward magnitudes modulate brain activation and performance during goal-directed behavior, and whether individual differences in reward sensitivity affect this modulation. For this purpose, we scanned 37 subjects with a parametric design in which we varied the magnitude of monetary rewards (€0, €0.01, €0.5, €1 or €1.5) in a blocked fashion while participants performed an interference counting-Stroop condition. The results showed that the brain activity of left dorsolateral prefrontal cortex (DLPFC) and the striatum were modulated by increasing and decreasing reward magnitudes, respectively. Behavioral performance improved as the magnitude of monetary reward increased while comparing the non reward (€0) condition to any other reward condition, or the lower €0.01 to any other reward condition, and this improvement was related with individual differences in reward sensitivity. In conclusion, the locus of influence of monetary incentives overlaps the activity of the regions commonly involved in cognitive control.

  17. Spatio-Temporal Fluctuations of the Earthquake Magnitude Distribution: Robust Estimation and Predictive Power

    NASA Astrophysics Data System (ADS)

    Olsen, S.; Zaliapin, I.

    2008-12-01

    We establish positive correlation between the local spatio-temporal fluctuations of the earthquake magnitude distribution and the occurrence of regional earthquakes. In order to accomplish this goal, we develop a sequential Bayesian statistical estimation framework for the b-value (slope of the Gutenberg-Richter's exponential approximation to the observed magnitude distribution) and for the ratio a(t) between the earthquake intensities in two non-overlapping magnitude intervals. The time-dependent dynamics of these parameters is analyzed using Markov Chain Models (MCM). The main advantage of this approach over the traditional window-based estimation is its "soft" parameterization, which allows one to obtain stable results with realistically small samples. We furthermore discuss a statistical methodology for establishing lagged correlations between continuous and point processes. The developed methods are applied to the observed seismicity of California, Nevada, and Japan on different temporal and spatial scales. We report an oscillatory dynamics of the estimated parameters, and find that the detected oscillations are positively correlated with the occurrence of large regional earthquakes, as well as with small events with magnitudes as low as 2.5. The reported results have important implications for further development of earthquake prediction and seismic hazard assessment methods.

  18. Computing approximate random Delta v magnitude probability densities. [for spacecraft trajectory correction

    NASA Technical Reports Server (NTRS)

    Chadwick, C.

    1984-01-01

    This paper describes the development and use of an algorithm to compute approximate statistics of the magnitude of a single random trajectory correction maneuver (TCM) Delta v vector. The TCM Delta v vector is modeled as a three component Cartesian vector each of whose components is a random variable having a normal (Gaussian) distribution with zero mean and possibly unequal standard deviations. The algorithm uses these standard deviations as input to produce approximations to (1) the mean and standard deviation of the magnitude of Delta v, (2) points of the probability density function of the magnitude of Delta v, and (3) points of the cumulative and inverse cumulative distribution functions of Delta v. The approximates are based on Monte Carlo techniques developed in a previous paper by the author and extended here. The algorithm described is expected to be useful in both pre-flight planning and in-flight analysis of maneuver propellant requirements for space missions.

  19. Floods on small streams in North Carolina, probable magnitude and frequency

    USGS Publications Warehouse

    Hinson, Herbert G.

    1965-01-01

    The magnitude and frequency of floods are defined regionally for small streams (drainage area, 1 to 150 sq mi) in North Carolina. Composite frequency curves for each of two regions relate the magnitude of the annual flood, in ratio to the mean annual flood, to recurrence intervals of 1.1 to 50 years. In North Carolina, the mean annual flood (Q2.33) is related to drainage area (A) by the following equation: Q2. 33 = GA0.66, where G, the geographic factor, is the product of a statewide coefficient (US) times a correction which reflects differences in basin characteristics. Isograms of the G factor covering the State are presented.

  20. The effect of mathematics anxiety on the processing of numerical magnitude.

    PubMed

    Maloney, Erin A; Ansari, Daniel; Fugelsang, Jonathan A

    2011-01-01

    In an effort to understand the origins of mathematics anxiety, we investigated the processing of symbolic magnitude by high mathematics-anxious (HMA) and low mathematics-anxious (LMA) individuals by examining their performance on two variants of the symbolic numerical comparison task. In two experiments, a numerical distance by mathematics anxiety (MA) interaction was obtained, demonstrating that the effect of numerical distance on response times was larger for HMA than for LMA individuals. These data support the claim that HMA individuals have less precise representations of numerical magnitude than their LMA peers, suggesting that MA is associated with low-level numerical deficits that compromise the development of higher level mathematical skills.

  1. Has the magnitude of floods across the USA changed with global CO2 levels?

    USGS Publications Warehouse

    Hirsch, Robert M.; Ryberg, Karen R.

    2012-01-01

    Statistical relationships between annual floods at 200 long-term (85–127 years of record) streamgauges in the coterminous United States and the global mean carbon dioxide concentration (GMCO2) record are explored. The streamgauge locations are limited to those with little or no regulation or urban development. The coterminous US is divided into four large regions and stationary bootstrapping is used to evaluate if the patterns of these statistical associations are significantly different from what would be expected under the null hypothesis that flood magnitudes are independent of GMCO2. In none of the four regions defined in this study is there strong statistical evidence for flood magnitudes increasing with increasing GMCO2. One region, the southwest, showed a statistically significant negative relationship between GMCO2 and flood magnitudes. The statistical methods applied compensate both for the inter-site correlation of flood magnitudes and the shorter-term (up to a few decades) serial correlation of floods.

  2. Has the magnitude of floods across the USA changed with global CO 2 levels?

    USGS Publications Warehouse

    Hirsch, R.M.; Ryberg, K.R.

    2012-01-01

    Statistical relationships between annual floods at 200 long-term (85-127 years of record) streamgauges in the coterminous United States and the global mean carbon dioxide concentration (GMCO2) record are explored. The streamgauge locations are limited to those with little or no regulation or urban development. The coterminous US is divided into four large regions and stationary bootstrapping is used to evaluate if the patterns of these statistical associations are significantly different from what would be expected under the null hypothesis that flood magnitudes are independent of GMCO2. In none of the four regions defined in this study is there strong statistical evidence for flood magnitudes increasing with increasing GMCO2. One region, the southwest, showed a statistically significant negative relationship between GMCO2 and flood magnitudes. The statistical methods applied compensate both for the inter-site correlation of flood magnitudes and the shorter-term (up to a few decades) serial correlation of floods.

  3. Ionospheric Longitude Storm Dependence Upon the Magnitude of the Earth's Magnetic Field

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.; David, M.; Schunk, R. W.

    2007-12-01

    The Earth's magnetic field in the ionosphere is understood to be non-dipolar with significant deviations in magnitude and orientation across the globe. This study models the mid-latitude ionospheric response to a geomagnetic storm for different idealizations of the Earth's magnetic field strength. In so doing the study addresses the question whether or not a longitude dependence in ionospheric storm responses could exist due to the longitude dependence of the magnetic field [ Huang et al., 2005], and if so, how significant is the effect? The mechanism by which the magnetic field magnitude has a first order effect is through the E x B plasma drift that has a vertical components, i.e., usually described as a meridional plasma drift caused by the zonal electric field. This vertical drift is inversely proportional to the magnitude of the magnetic field. A vertical drift raises or lowers the F-region into regions of lesser or greater recombination rates respectively, hence, directly affecting the plasma density. The Utah State University (USU) Time Dependent Ionospheric Model (TDIM) uses a tilted dipole magnetic field model to represent the Earth's field. The magnitude of magnetic field is specified by the dipole moment, in fact, the magnetic field strength on the surface of the Earth at the magnetic equator. Changing this one parameter enables studies to be made under identical storm conditions of the effect of different magnetic field magnitudes. For this study the normal 0.31 Gauss surface magnetic field is replaced by 0.24 Gauss and 0.41 Gauss. These two numbers represent the magnitude of the minimum and maximum observed field strength around the Earth equatorial region. The TDIM results are shown for a storm simulation that occurred on 5-6 November 2001. For otherwise identical model conditions and drivers, the difference in magnetic field strength results in a factor of 2 difference in TEC, NmF2, etc. Since the magnetic field magnitude is weakest in the Atlantic

  4. An Equivalent Moment Magnitude Earthquake Catalogue for Western Turkey and its Quantitative Properties

    NASA Astrophysics Data System (ADS)

    Leptokaropoulos, Konstantinos; Vasilios, Karakostas; Eleftheria, Papadimitriou; Aggeliki, Adamaki; Onur, Tan; Zumer, Pabuçcu

    2013-04-01

    Earthquake catalogues consist a basic product of seismology, resulting from complex procedures and suffering from natural and man-made errors. The accumulation of these problems over space and time lead to inhomogeneous catalogues which in turn lead to significant uncertainties in many kinds of analyses, such as seismicity rate evaluation and seismic hazard assessment. A major source of catalogue inhomogeneity is the variety of magnitude scales (i.e. Mw, mb, MS, ML, Md), reported from different institutions and sources. Therefore an effort is made in this study to compile a catalogue as homogenous as possible regarding the magnitude scale for the region of Western Turkey (26oE - 32oE longitude, 35oN - 43oN latitude), one of the most rapidly deforming regions worldwide with intense seismic activity, complex fault systems and frequent strong earthquakes. For this purpose we established new relationships to transform as many as possible available magnitudes into equivalent moment magnitude scale, M*w. These relations yielded by the application of the General Orthogonal Regression method and the statistical significance of the results was quantified. The final equivalent moment magnitude was evaluated by taking into consideration all the available magnitudes for which a relation was obtained and also a weight inversely proportional to their standard deviation. Once the catalogue was compiled the magnitude of completeness, Mc, was investigated in both space and time regime. The b-values and their accuracy were also calculated by the maximum likelihood estimate. The spatial and temporal constraints were selected in respect to seismicity recording level, since the state and evolution of the local and regional seismic networks are unknown. We modified and applied the Goodness of Fit test of Wiemer and Wyss (2000) in order to be more effective in datasets that are characterized by smaller sample size and higher Mcthresholds. The compiled catalogue and the Mcevaluation

  5. Strategy Use and Strategy Choice in Fraction Magnitude Comparison

    ERIC Educational Resources Information Center

    Fazio, Lisa K.; DeWolf, Melissa; Siegler, Robert S.

    2016-01-01

    We examined, on a trial-by-trial basis, fraction magnitude comparison strategies of adults with more and less mathematical knowledge. College students with high mathematical proficiency used a large variety of strategies that were well tailored to the characteristics of the problems and that were guaranteed to yield correct performance if executed…

  6. [Not Available].

    PubMed

    Cruz-Sáez, María Soledad; Pascual Jimeno, Aitziber; Wlodarczyk, Anna; Polo-López, Rocío; Echeburúa Odriozola, Enrique

    2016-07-19

    Introducción: los problemas relacionados con el peso constituyen un problema importante de salud pública debido a su alta prevalencia y a las adversas consecuencias que tienen para la salud.Objetivo: el objetivo principal de este estudio fue analizar si la depresión y la ansiedad tienen un papel mediador en la relación entre la insatisfacción corporal y las conductas de control del peso en chicas adolescentes con sobrepeso.Material y métodos: en el estudio participaron 140 mujeres de 16 a 20 años con sobrepeso. Las participantes tuvieron que cumplimentar la escala de insatisfacción corporal del EDI-2, las escalas de ansiedad y depresión del GHQ-28 y una adaptación de las escalas del EAT survey para evaluar las conductas de control del peso. Para los análisis estadísticos se utilizaron métodos de diferencias de medias, correlaciones y de mediación secuencial.Resultados: las adolescentes con sobrepeso y alta insatisfacción corporal presentaban más sintomatología ansiosa y depresiva, así como mayor cantidad de conductas de control del peso. Los resultados del análisis de mediación secuencial evidencian que el efecto de la insatisfacción corporal en las conductas de control del peso está parcialmente mediado por las variables depresión y ansiedad. Mientras que la sintomatología ansiosa presenta efectos directos e indirectos sobre las conductas de control de peso, la sintomatología depresiva solamente presenta un efecto indirecto.Conclusiones:los resultados del estudio destacan el rol mediador de la sintomatología depresiva y, especialmente, de la ansiedad en el desarrollo de conductas no saludables de control del peso.

  7. The efficacy of support vector machines (SVM) in robust determination of earthquake early warning magnitudes in central Japan

    NASA Astrophysics Data System (ADS)

    Reddy, Ramakrushna; Nair, Rajesh R.

    2013-10-01

    This work deals with a methodology applied to seismic early warning systems which are designed to provide real-time estimation of the magnitude of an event. We will reappraise the work of Simons et al. (2006), who on the basis of wavelet approach predicted a magnitude error of ±1. We will verify and improve upon the methodology of Simons et al. (2006) by applying an SVM statistical learning machine on the time-scale wavelet decomposition methods. We used the data of 108 events in central Japan with magnitude ranging from 3 to 7.4 recorded at KiK-net network stations, for a source-receiver distance of up to 150 km during the period 1998-2011. We applied a wavelet transform on the seismogram data and calculating scale-dependent threshold wavelet coefficients. These coefficients were then classified into low magnitude and high magnitude events by constructing a maximum margin hyperplane between the two classes, which forms the essence of SVMs. Further, the classified events from both the classes were picked up and linear regressions were plotted to determine the relationship between wavelet coefficient magnitude and earthquake magnitude, which in turn helped us to estimate the earthquake magnitude of an event given its threshold wavelet coefficient. At wavelet scale number 7, we predicted the earthquake magnitude of an event within 2.7 seconds. This means that a magnitude determination is available within 2.7 s after the initial onset of the P-wave. These results shed light on the application of SVM as a way to choose the optimal regression function to estimate the magnitude from a few seconds of an incoming seismogram. This would improve the approaches from Simons et al. (2006) which use an average of the two regression functions to estimate the magnitude.

  8. Espectroscopia del Cometa Halley

    NASA Astrophysics Data System (ADS)

    Naranjo, O.; Fuenmayor, F.; Ferrin, L.; Bulka, P.; Mendoza, C.

    1987-05-01

    Se reportan observaciones espectroscópicas del cometa Halley. Los espectros fueron tomados usando el espectrógrafo del telescopio reflector de 1 metro del Observatorio Nacional de Venezuela. Se utilizó óptica azul, con una red de difracción de 600 lineas/min, obteniéndose una dispersión de 74.2 A/mm y una resolución de 2.5 A, en el rango espectral de 3500 a 6500 A. Seis placas fueron tomadas con emulsión IIa-O y dos con IIa-D. Los tiempos de exposición fueron entre 10 y 150 minutos. El cometa se encontraba entre 0.70 y 1.04 UA del Sol, y entre 1.28 y 0.73 UA de la Tierra. Las emisiones más prominentes en el espectro, son las del CN, C2, y C3. Otras emisiones detectadas corresponden a CH, NH2 y Na. Los espectros muestran un fuerte continuo, indicando un contenido significativo de polvo. Se detectó mayor intensidad del contínuo, en la dirección anti solar, lo cual es evidencia de la cola de polvo.

  9. Magnitude comparison extended: how lack of knowledge informs comparative judgments under uncertainty.

    PubMed

    Schweickart, Oliver; Brown, Norman R

    2014-02-01

    How do people compare quantitative attributes of real-world objects? (e.g., Which country has the higher per capita GDP, Mauritania or Nepal?). The research literature on this question is divided: Although researchers in the 1970s and 1980s assumed that a 2-stage magnitude comparison process underlies these types of judgments (Banks, 1977), more recent approaches emphasize the role of probabilistic cues and simple heuristics (Gigerenzer, Todd, & The ABC Research Group, 1999). In this article, we review the magnitude comparison literature and propose a framework for magnitude comparison under uncertainty (MaC). Predictions from this framework were tested in a choice context involving one recognized and one unrecognized object, and were contrasted with those based on the recognition heuristic (Goldstein & Gigerenzer, 2002). This was done in 2 paired-comparison studies. In both, participants were timed as they decided which of 2 countries had the higher per capita gross domestic product (GDP). Consistent with the MaC account, we found that response times (RTs) displayed a classic symbolic distance effect: RTs were inversely related to the difference between the subjective per capita GDPs of the compared countries. Furthermore, choice of the recognized country became more frequent as subjective difference increased. These results indicate that the magnitude comparison process extends to choice contexts that have previously been associated only with cue-based strategies. We end by discussing how several findings reported in the recent heuristics literature relate to the MaC framework.

  10. Representations of Numerical and Non-Numerical Magnitude Both Contribute to Mathematical Competence in Children

    ERIC Educational Resources Information Center

    Lourenco, Stella F.; Bonny, Justin W.

    2017-01-01

    A growing body of evidence suggests that non-symbolic representations of number, which humans share with nonhuman animals, are functionally related to uniquely human mathematical thought. Other research suggesting that numerical and non-numerical magnitudes not only share analog format but also form part of a general magnitude system raises…

  11. 16 CFR 455.5 - Spanish language sales.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... pueden darle a usted algunos derechos y hacer que el vendedor resuelva problemas graves que no fueron... implícitas” de acuerdo a la ley del estado pueden concederle derechos adicionales. EC29SE91.053 EC29SE91.054...

  12. Foundations of children's numerical and mathematical skills: the roles of symbolic and nonsymbolic representations of numerical magnitude.

    PubMed

    Lyons, Ian M; Ansari, Daniel

    2015-01-01

    Numerical and mathematical skills are critical predictors of academic success. The last three decades have seen a substantial growth in our understanding of how the human mind and brain represent and process numbers. In particular, research has shown that we share with animals the ability to represent numerical magnitude (the total number of items in a set) and that preverbal infants can process numerical magnitude. Further research has shown that similar processing signatures characterize numerical magnitude processing across species and developmental time. These findings suggest that an approximate system for nonsymbolic (e.g., dot arrays) numerical magnitude representation serves as the basis for the acquisition of cultural, symbolic (e.g., Arabic numerals) representations of numerical magnitude. This chapter explores this hypothesis by reviewing studies that have examined the relation between individual differences in nonsymbolic numerical magnitude processing and symbolic math abilities (e.g., arithmetic). Furthermore, we examine the extent to which the available literature provides strong evidence for a link between symbolic and nonsymbolic representations of numerical magnitude at the behavioral and neural levels of analysis. We conclude that claims that symbolic number abilities are grounded in the approximate system for the nonsymbolic representation of numerical magnitude are not strongly supported by the available evidence. Alternative models and future research directions are discussed. © 2015 Elsevier Inc. All rights reserved.

  13. What Is the Meaning of the Physical Magnitude "Work"?

    ERIC Educational Resources Information Center

    Kanderakis, Nikos

    2014-01-01

    Usually, in physics textbooks, the physical magnitude "work" is introduced as the product of a force multiplied by its displacement, in relation to the transfer of energy. In other words, "work" is presented as an internal affair of physics theory, while its relation to the world of experience, that is its empirical meaning, is…

  14. 35-45 Giga Hertz Transceiver System for Phase and Magnitude Detection

    NASA Technical Reports Server (NTRS)

    Beni, Aman Aflaki

    2007-01-01

    Nondestructive evaluation (NDE) is the science and practice of examining an object in a way that the object's usefulness is not adversely affected. Different types of NDE methods exist but this thesis is based on microwave and millimeter wave NDE using imaging techniques. Microwave NDE is based on illuminating the object under test with a microwave signal and studying the various properties of the reflected signal from the object. This reflected signal contains some information about the inner structure of the object under test. This information may be contained in several parameters including the phase and magnitude of the reflected signal. The goal of this project is to design and build a Q-band coherent transceiver that is capable of measuring the reflected signal's phase and magnitude so that an image of the object under test may be reconstructed. From the several techniques that can be used to construct an image of the object under test, techniques of interest to this work include synthetic aperture focusing technique (SAFT) and microwave holography. The transceiver system should have the ability to sweep a large portion of Q-band frequency range in small frequency steps as quick as possible while the detected phase and magnitude of the reflected signal is very accurate. Several different designs were studied and the final schematic diagram of the transceiver system was determined. One of the most important modules that was designed, implemented and tested in the laboratory was an accurate phase/magnitude detector circuit. The compared results of the scans using the transceiver system and vector network analyzer (VNA) showed that this transceiver system has a great potential to replace a VNA for the purpose of microwave and millimeter wave imaging.

  15. Natural time analysis of global seismicity: the identification of magnitude correlations.

    NASA Astrophysics Data System (ADS)

    Sarlis, N. V.; Christopoulos, S.-R. G.

    2012-04-01

    Natural time [1-6] can reveal novel dynamical features hidden behind the time series of complex systems, for a review see Ref.[7]. In a time series comprising N earthquakes, the natural time χk = k/N serves as an index for the occurrence of the k-th event[1, 5, 6], and is smaller than or equal to unity. In natural time analysis of seismicity, the evolution of the pair of two quantities (χk, Ek) is considered, where Ek denotes the energy emitted during the k-th earthquake. It has been proposed[5] that the variance κ1 of natural time can play the role of an order parameter for seismicity. Moreover, when using natural time the identification of temporal correlations -even in the presence of heavy tails in the data- becomes possible[6]. Thus, natural time analysis enables the identification of magnitude correlations between successive earthquakes[8]. By analyzing in natural time[9] the worldwide seismicity from the Harvard Global Centroid Moment Tensor Catalog as reported by the United States Geological Survey as well as the most recent version (1900-2007) of the Centennial earthquake Catalog[10], we find non-trivial magnitude correlations for earthquakes of magnitude greater than or equal to 7.

  16. Estimating unbiased magnitudes for the announced DPRK nuclear tests, 2006-2016

    NASA Astrophysics Data System (ADS)

    Peacock, Sheila; Bowers, David

    2017-04-01

    The seismic disturbances generated from the five (2006-2016) announced nuclear test explosions by the Democratic People's Republic of Korea (DPRK) are of moderate magnitude (body-wave magnitude mb 4-5) by global earthquake standards. An upward bias of network mean mb of low- to moderate-magnitude events is long established, and is caused by the censoring of readings from stations where the signal was below noise level at the time of the predicted arrival. This sampling bias can be overcome by maximum-likelihood methods using station thresholds at detecting (and non-detecting) stations. Bias in the mean mb can also be introduced by differences in the network of stations recording each explosion - this bias can reduced by using station corrections. We apply a maximum-likelihood (JML) inversion that jointly estimates station corrections and unbiased network mb for the five DPRK explosions recorded by the CTBTO International Monitoring Network (IMS) of seismic stations. The thresholds can either be directly measured from the noise preceding the observed signal, or determined by statistical analysis of bulletin amplitudes. The network mb of the first and smallest explosion is reduced significantly relative to the mean mb (to < 4.0 mb) by removal of the censoring bias.

  17. Distance and absolute magnitudes of the brightest stars in the dwarf galaxy Sextans A

    NASA Technical Reports Server (NTRS)

    Sandage, A.; Carlson, G.

    1982-01-01

    In an attempt to improve present bright star calibration, data were gathered for the brightest red and blue stars and the Cepheids in the Im V dwarf galaxy, Sextans A. On the basis of a magnitude sequence measured to V and B values of about 22 and 23, respectively, the mean magnitudes of the three brightest blue stars are V=17.98 and B=17.88. The three brightest red supergiants have V=18.09 and B=20.14. The periods and magnitudes measured for five Cepheids yield an apparent blue distance modulus of 25.67 + or - 0.2, via the P-L relation, and the mean absolute magnitudes of V=-7.56 and B=-5.53 for the red supergiants provide additional calibration of the brightest red stars as distance indicators. If Sextans A were placed at the distance of the Virgo cluster, it would appear to have a surface brightness of 23.5 mag/sq arcec. This, together with the large angular diameter, would make such a galaxy easily discoverable in the Virgo cluster by means of ground-based surveys.

  18. Intertextual Sexual Politics: Illness and Desire in Enrique Gomez Carrillo's "Del amor", "del dolor y del vicio" and Aurora Caceres's "La rosa muerta"

    ERIC Educational Resources Information Center

    LaGreca, Nancy

    2012-01-01

    This study explores the intertextuality between Aurora Caceres's "La rosa muerta" (1914) and the novel "Del amor, del dolor y del vicio" (1898) by her ex-husband, Enrique Gomez Carrillo. Caceres strategically mentions Gomez Carrillo's novel in "La rosa muerta" to invite a reading of her work in dialogue with his. Both narratives follow the sexual…

  19. Avalanche ecology and large magnitude avalanche events: Glacier National Park, Montana, USA

    USGS Publications Warehouse

    Fagre, Daniel B.; Peitzsch, Erich H.

    2010-01-01

    Large magnitude snow avalanches play an important role ecologically in terms of wildlife habitat, vegetation diversity, and sediment transport within a watershed. Ecological effects from these infrequent avalanches can last for decades. Understanding the frequency of such large magnitude avalanches is also critical to avalanche forecasting for the Going-to-the-Sun Road (GTSR). In January 2009, a large magnitude avalanche cycle occurred in and around Glacier National Park, Montana. The study site is the Little Granite avalanche path located along the GTSR. The study is designed to quantify change in vegetative cover immediately after a large magnitude event and document ecological response over a multi-year period. GPS field mapping was completed to determine the redefined perimeter of the avalanche path. Vegetation was inventoried using modified U.S. Forest Service Forest Inventory and Analysis plots, cross sections were taken from over 100 dead trees throughout the avalanche path, and an avalanche chronology was developed. Initial results indicate that the perimeter of this path was expanded by 30%. The avalanche travelled approximately 1200 vertical meters and 3 linear kilometers. Stands of large conifers as old as 150 years were decimated by the avalanche, causing a shift in dominant vegetation types in many parts of the avalanche path. Woody debris is a major ground cover up to 3 m in depth on lower portions of the avalanche path and will likely affect tree regrowth. Monitoring and measuring the post-avalanche vegetation recovery of this particular avalanche path provides a unique dataset for determining the ecological role of avalanches in mountain landscapes.

  20. Bone strain magnitude is correlated with bone strain rate in tetrapods: implications for models of mechanotransduction

    PubMed Central

    Aiello, B. R.; Iriarte-Diaz, J.; Blob, R. W.; Butcher, M. T.; Carrano, M. T.; Espinoza, N. R.; Main, R. P.; Ross, C. F.

    2015-01-01

    Hypotheses suggest that structural integrity of vertebrate bones is maintained by controlling bone strain magnitude via adaptive modelling in response to mechanical stimuli. Increased tissue-level strain magnitude and rate have both been identified as potent stimuli leading to increased bone formation. Mechanotransduction models hypothesize that osteocytes sense bone deformation by detecting fluid flow-induced drag in the bone's lacunar–canalicular porosity. This model suggests that the osteocyte's intracellular response depends on fluid-flow rate, a product of bone strain rate and gradient, but does not provide a mechanism for detection of strain magnitude. Such a mechanism is necessary for bone modelling to adapt to loads, because strain magnitude is an important determinant of skeletal fracture. Using strain gauge data from the limb bones of amphibians, reptiles, birds and mammals, we identified strong correlations between strain rate and magnitude across clades employing diverse locomotor styles and degrees of rhythmicity. The breadth of our sample suggests that this pattern is likely to be a common feature of tetrapod bone loading. Moreover, finding that bone strain magnitude is encoded in strain rate at the tissue level is consistent with the hypothesis that it might be encoded in fluid-flow rate at the cellular level, facilitating bone adaptation via mechanotransduction. PMID:26063842

  1. Impedance magnitude optimization of the regenerator in Stirling pulse tube cryocoolers working at liquid-helium temperatures

    NASA Astrophysics Data System (ADS)

    Cao, Q.; Qiu, L. M.; Zhi, X. Q.; Han, L.; Gan, Z. H.; Zhang, X. B.; Zhang, X. J.; Sun, D. M.

    2013-12-01

    The impedance magnitude is important for the design and operation of a Stirling pulse tube cryocooler (SPTC). However, the influence of the impedance magnitude on the SPTC working at liquid-helium temperatures is still not clear due to the complexity of refrigeration mechanism at this temperature range. In this study, the influence of the impedance magnitude on the viscous and thermal losses has been investigated, which contributes to the overall refrigeration efficiency. Different from the previous study at liquid nitrogen temperatures, it has been found and verified experimentally that a higher impedance magnitude may result in a larger mass flow rate accompanied with larger losses in the warmer region, hence the refrigeration efficiency is lowered. Numerical simulation is carried out in SPTCs of different geometry dimensions and working parameters, and the experimental study is carried out in a three-stage SPTC. A minimum no-load refrigeration temperature is achieved with an appropriate impedance magnitude that is determined by the combination of frequency and precooling temperature. A lowest temperature of 4.76 K is achieved at 28 Hz and a precooling temperature of 22.6 K, which is the lowest temperature ever achieved with He-4 for SPTCs. Impedance magnitude optimization is clearly an important consideration for the design of a 4 K SPTC.

  2. Optimising 4-D surface change detection: an approach for capturing rockfall magnitude-frequency

    NASA Astrophysics Data System (ADS)

    Williams, Jack G.; Rosser, Nick J.; Hardy, Richard J.; Brain, Matthew J.; Afana, Ashraf A.

    2018-02-01

    We present a monitoring technique tailored to analysing change from near-continuously collected, high-resolution 3-D data. Our aim is to fully characterise geomorphological change typified by an event magnitude-frequency relationship that adheres to an inverse power law or similar. While recent advances in monitoring have enabled changes in volume across more than 7 orders of magnitude to be captured, event frequency is commonly assumed to be interchangeable with the time-averaged event numbers between successive surveys. Where events coincide, or coalesce, or where the mechanisms driving change are not spatially independent, apparent event frequency must be partially determined by survey interval.The data reported have been obtained from a permanently installed terrestrial laser scanner, which permits an increased frequency of surveys. Surveying from a single position raises challenges, given the single viewpoint onto a complex surface and the need for computational efficiency associated with handling a large time series of 3-D data. A workflow is presented that optimises the detection of change by filtering and aligning scans to improve repeatability. An adaptation of the M3C2 algorithm is used to detect 3-D change to overcome data inconsistencies between scans. Individual rockfall geometries are then extracted and the associated volumetric errors modelled. The utility of this approach is demonstrated using a dataset of ˜ 9 × 103 surveys acquired at ˜ 1 h intervals over 10 months. The magnitude-frequency distribution of rockfall volumes generated is shown to be sensitive to monitoring frequency. Using a 1 h interval between surveys, rather than 30 days, the volume contribution from small (< 0.1 m3) rockfalls increases from 67 to 98 % of the total, and the number of individual rockfalls observed increases by over 3 orders of magnitude. High-frequency monitoring therefore holds considerable implications for magnitude-frequency derivatives, such as hazard return

  3. Relations of Different Types of Numerical Magnitude Representations to Each Other and to Mathematics Achievement

    ERIC Educational Resources Information Center

    Fazio, Lisa K.; Bailey, Drew H.; Thompson, Clarissa A.; Siegler, Robert S.

    2014-01-01

    We examined relations between symbolic and non-symbolic numerical magnitude representations, between whole number and fraction representations, and between these representations and overall mathematics achievement in fifth graders. Fraction and whole number symbolic and non-symbolic numerical magnitude understandings were measured using both…

  4. Kant and the magnitude of sensation: a neglected prologue to modern psychophysics.

    PubMed

    Baumann, Christian

    2008-01-01

    Quantitative relations between the sensations and the stimuli that produce them are the domain of psychophysics, a branch of natural science not yet known at the time of Immanuel Kant (1724-1804). But Kant's philosophical doctrines of perception imply that sensations can be quantified. Accordingly, he proposed not only to consider the magnitude of both sensations and stimuli but also to work out an appropriate mathematics that would relate these magnitudes to each other. This part of Kant's work received almost no attention up to the present time although it contains some essential elements of modern psychophysics.

  5. 101 Short Problems from EQUALS = 101 Problemas Cortos del programma EQUALS.

    ERIC Educational Resources Information Center

    Stenmark, Jean Kerr, Ed.

    EQUALS is a teacher advisory program that helps elementary and secondary educators acquire methods and materials to attract minority and female students to mathematics. The program supports a problem-solving approach to mathematics, including having students working in groups, using active assessment methods, and incorporating a broad mathematics…

  6. Smoke optical depths - Magnitude, variability, and wavelength dependence

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Russell, P. B.; Colburn, D. A.; Ackerman, T. P.; Allen, D. A.

    1988-01-01

    An airborne autotracking sun-photometer has been used to measure magnitudes, temporal/spatial variabilities, and the wavelength dependence of optical depths in the near-ultraviolet to near-infrared spectrum of smoke from two forest fires and one jet fuel fire and of background air. Jet fuel smoke optical depths were found to be generally less wavelength dependent than background aerosol optical depths. Forest fire smoke optical depths, however, showed a wide range of wavelength depedences, such as incidents of wavelength-independent extinction.

  7. Effects of reinforcer magnitude on responding under differential-reinforcement-of-low-rate schedules of rats and pigeons.

    PubMed

    Doughty, Adam H; Richards, Jerry B

    2002-07-01

    Experiment I investigated the effects of reinforcer magnitude on differential-reinforcement-of-low-rate (DRL) schedule performance in three phases. In Phase 1, two groups of rats (n = 6 and 5) responded under a DRI. 72-s schedule with reinforcer magnitudes of either 30 or 300 microl of water. After acquisition, the water amounts were reversed for each rat. In Phase 2, the effects of the same reinforcer magnitudes on DRL 18-s schedule performance were examined across conditions. In Phase 3, each rat responded unider a DR1. 18-s schedule in which the water amotnts alternated between 30 and 300 microl daily. Throughout each phase of Experiment 1, the larger reinforcer magnitude resulted in higher response rates and lower reinforcement rates. The peak of the interresponse-time distributions was at a lower value tinder the larger reinforcer magnitude. In Experiment 2, 3 pigeons responded under a DRL 20-s schedule in which reinforcer magnitude (1-s or 6-s access to grain) varied iron session to session. Higher response rates and lower reinforcement rates occurred tinder the longer hopper duration. These results demonstrate that larger reinforcer magnitudes engender less efficient DRL schedule performance in both rats and pigeons, and when reinforcer magnitude was held constant between sessions or was varied daily. The present results are consistent with previous research demonstrating a decrease in efficiency as a function of increased reinforcer magnituide tinder procedures that require a period of time without a specified response. These findings also support the claim that DRI. schedule performance is not governed solely by a timing process.

  8. Outcome Probability versus Magnitude: When Waiting Benefits One at the Cost of the Other

    PubMed Central

    Young, Michael E.; Webb, Tara L.; Rung, Jillian M.; McCoy, Anthony W.

    2014-01-01

    Using a continuous impulsivity and risk platform (CIRP) that was constructed using a video game engine, choice was assessed under conditions in which waiting produced a continuously increasing probability of an outcome with a continuously decreasing magnitude (Experiment 1) or a continuously increasing magnitude of an outcome with a continuously decreasing probability (Experiment 2). Performance in both experiments reflected a greater desire for a higher probability even though the corresponding wait times produced substantive decreases in overall performance. These tendencies are considered to principally reflect hyperbolic discounting of probability, power discounting of magnitude, and the mathematical consequences of different response rates. Behavior in the CIRP is compared and contrasted with that in the Balloon Analogue Risk Task (BART). PMID:24892657

  9. Erratum: Sloan Magnitudes for the Brightest Stars

    NASA Astrophysics Data System (ADS)

    Mallama, A.

    2018-06-01

    In the article "Sloan Magnitudes for the Brightest Stars" (JAAVSO, 2014, 42, 443), Equation 3 in section A.1. of the Appendix is incorrect; the coefficient of ((R-I) - C1) should be 0.935, rather than 0.953. The mean differences between the new and old results are 0.00 in all cases, and the standard deviations are all 0.00 or 0.01, which is less than the photometric uncertainties of the Johnson or Sloan values. A revised version of the catalog has been published at https://arxiv.org/abs/1805.09324. The revision is proposed as a bright star extension to the APASS database.

  10. Characteristics of Gyeongju earthquake, moment magnitude 5.5 and relative relocations of aftershocks

    NASA Astrophysics Data System (ADS)

    Cho, ChangSoo; Son, Minkyung

    2017-04-01

    There is low seismicity in the korea peninsula. According historical record in the historic book, There were several strong earthquake in the korea peninsula. Especially in Gyeongju of capital city of the Silla dynasty, few strong earthquakes caused the fatalities of several hundreds people 1,300 years ago and damaged the houses and make the wall of castles collapsed. Moderate strong earthquake of moment magnitude 5.5 hit the city in September 12, 2016. Over 1000 aftershocks were detected. The numbers of occurrences of aftershock over time follows omori's law well. The distribution of relative locations of 561 events using clustering aftershocks by cross-correlation between P and S waveform of the events showed the strike NNE 25 30 o and dip 68 74o of fault plane to cause the earthquake matched with the fault plane solution of moment tensor inversion well. The depth of range of the events is from 11km to 16km. The width of distribution of event locations is about 5km length. The direction of maximum horizontal stress by inversion of stress for the moment solutions of main event and large aftershocks is similar to the known maximum horizontal stress direction of the korea peninsula. The relation curves between moment magnitude and local magnitude of aftershocks shows that the moment magnitude increases slightly more for events of size less than 2.0

  11. What magnitude are observed non-target impacts from weed biocontrol?

    USDA-ARS?s Scientific Manuscript database

    A systematic review focused by plant on non-target impacts from agents deliberately introduced for the biological control of weeds found significant non-target impacts to be rare. The magnitude of direct impact of 43 biocontrol agents on 140 non-target plants was retrospectively categorized using a ...

  12. Associations of Non-Symbolic and Symbolic Numerical Magnitude Processing with Mathematical Competence: A Meta-Analysis

    ERIC Educational Resources Information Center

    Schneider, Michael; Beeres, Kassandra; Coban, Leyla; Merz, Simon; Schmidt, S. Susan; Stricker, Johannes; De Smedt, Bert

    2017-01-01

    Many studies have investigated the association between numerical magnitude processing skills, as assessed by the numerical magnitude comparison task, and broader mathematical competence, e.g. counting, arithmetic, or algebra. Most correlations were positive but varied considerably in their strengths. It remains unclear whether and to what extent…

  13. VizieR Online Data Catalog: Sloan magnitudes for the brightest stars, V2 (Mallama, 2018)

    NASA Astrophysics Data System (ADS)

    Mallama, A.

    2018-05-01

    A new version of the Catalog containing Sloan magnitudes for the brightest stars is presented. The accuracy of the data indicates that the Catalog is a reliable source of comparison star magnitudes for astronomical photometry. Version 2 complements the APASS database of fainter stars. (1 data file).

  14. Method for measuring surface shear stress magnitude and direction using liquid crystal coatings

    NASA Technical Reports Server (NTRS)

    Reda, Daniel C. (Inventor)

    1995-01-01

    A method is provided for determining surface shear magnitude and direction at every point on a surface. The surface is covered with a shear stress sensitive liquid crystal coating and illuminated by white light from a normal direction. A video camera is positioned at an oblique angle above the surface to observe the color of the liquid crystal at that angle. The shear magnitude and direction are derived from the color information. A method of calibrating the device is also provided.

  15. Osteocyte calcium signals encode strain magnitude and loading frequency in vivo.

    PubMed

    Lewis, Karl J; Frikha-Benayed, Dorra; Louie, Joyce; Stephen, Samuel; Spray, David C; Thi, Mia M; Seref-Ferlengez, Zeynep; Majeska, Robert J; Weinbaum, Sheldon; Schaffler, Mitchell B

    2017-10-31

    Osteocytes are considered to be the major mechanosensory cells of bone, but how osteocytes in vivo process, perceive, and respond to mechanical loading remains poorly understood. Intracellular calcium (Ca 2+ ) signaling resulting from mechanical stimulation has been widely studied in osteocytes in vitro and in bone explants, but has yet to be examined in vivo. This is achieved herein by using a three-point bending device which is capable of delivering well-defined mechanical loads to metatarsal bones of living mice while simultaneously monitoring the intracellular Ca 2+ responses of individual osteocytes by using a genetically encoded fluorescent Ca 2+ indicator. Osteocyte responses are imaged by using multiphoton fluorescence microscopy. We investigated the in vivo responses of osteocytes to strains ranging from 250 to 3,000 [Formula: see text] and frequencies from 0.5 to 2 Hz, which are characteristic of physiological conditions reported for bone. At all loading frequencies examined, the number of responding osteocytes increased strongly with applied strain magnitude. However, Ca 2+ intensity within responding osteocytes did not change significantly with physiological loading magnitudes. Our studies offer a glimpse into how these critical bone cells respond to mechanical load in vivo, as well as provide a technique to determine how the cells encode magnitude and frequency of loading. Published under the PNAS license.

  16. The differing magnitude distributions of the two Jupiter Trojan color populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Ian; Brown, Michael E.; Emery, Joshua P., E-mail: iwong@caltech.edu

    The Jupiter Trojans are a significant population of minor bodies in the middle solar system that have garnered substantial interest in recent years. Several spectroscopic studies of these objects have revealed notable bimodalities with respect to near-infrared spectra, infrared albedo, and color, which suggest the existence of two distinct groups among the Trojan population. In this paper, we analyze the magnitude distributions of these two groups, which we refer to as the red and less red color populations. By compiling spectral and photometric data from several previous works, we show that the observed bimodalities are self-consistent and categorize 221 ofmore » the 842 Trojans with absolute magnitudes in the range H<12.3 into the two color populations. We demonstrate that the magnitude distributions of the two color populations are distinct to a high confidence level (>95%) and fit them individually to a broken power law, with special attention given to evaluating and correcting for incompleteness in the Trojan catalog as well as incompleteness in our categorization of objects. A comparison of the best-fit curves shows that the faint-end power-law slopes are markedly different for the two color populations, which indicates that the red and less red Trojans likely formed in different locations. We propose a few hypotheses for the origin and evolution of the Trojan population based on the analyzed data.« less

  17. On the internal representation of numerical magnitude and physical size.

    PubMed

    Fitousi, Daniel

    2014-01-01

    A nascent idea in the numerical cognition literature--the analogical hypothesis (Pinel, Piazza, Bihan, & Dehaene, 2004)--assumes a common noisy code for the representation of symbolic (e.g., numerals) and nonsymbolic (e.g., numerosity, physical size, luminance) magnitudes. The present work subjected this assumption to various tests from the perspective of General Recognition Theory (GRT; Ashby &Townsend, 1986)--a multidimensional extension of Signal Detection Theory (Green & Swets, 1966). The GRT was applied to the dimensions of numerical magnitude and physical size with the following goals: (a) characterizing the internal representation of these dimensions in the psychological space, and (b) assessing various types of (in)dependence and separability governing the perception of these dimensions. The results revealed various violations of independence and separability with Stroop incongruent, but not with Stroop congruent stimuli. The outcome suggests that there are deep differences in architecture between Stroop congruent and incongruent stimuli that reach well beyond the semantic relationship involved.

  18. Magnitude Scaling of the early displacement for the 2007, Mw 7.8 Tocopilla sequence (Chile)

    NASA Astrophysics Data System (ADS)

    Lancieri, M.; Fuenzalida, A.; Ruiz, S.; Madariaga, R. I.

    2009-12-01

    We investigate the empirical relationships between the initial portion of P and S-phase and the final event magnitude, on the Tocopilla (Chile) event and its aftershocks. Such correlations, on which real-time magnitude estimation for seismic early warning is founded, have been widely studied on several data sets, merging earthquakes generated in different tectonic settings and recorded with very different networks. The Tocopilla (Mw 7.8) earthquake, occurred along the northern Chile seismic gap on 14 November 2007, provides, together with its aftershocks, a unique opportunity of studying a homogeneous data set in terms of tectonic environment, focal mechanism, and recording network. The preliminary analysis required to build the seismic catalogue includes the automatic identification of more than 570 aftershocks using an automatic phase detector and picker algorithm, and the subsequent location of the events through a non-linear and probabilistic code. The seismic moment (M0) has been calculated by spectral modeling of P and S waves, assuming a Brune omega-square model. This analysis also yields values for the corner frequency and quality factor. The estimated range of moment magnitude for the aftershocks sequence is [2.8 - 6.8]. The correlation between the low pass filtered peak displacement (PD) and the final magnitude has been investigated for 90 events with magnitude greater than 4. These include the main event, its larger aftershock (Mw 6.8 occurred twenty-four hours after the main shock), and seven events with magnitude greater than 5.7. The recovered relationships confirm the observations of Zollo et al. [2006, 2007] of a clear correlation between distance corrected PD and final magnitude in the magnitude range [4.0 - 7.4], when considering time windows of 4 sec of P- or 2 sec of S- wave. In contrast with the previous studies, when examining time windows of 2 sec of P-wave, we surprisingly do not observe any saturation effect for magnitudes greater than 6

  19. A moment-tensor catalog for intermediate magnitude earthquakes in Mexico

    NASA Astrophysics Data System (ADS)

    Rodríguez Cardozo, Félix; Hjörleifsdóttir, Vala; Martínez-Peláez, Liliana; Franco, Sara; Iglesias Mendoza, Arturo

    2016-04-01

    Located among five tectonic plates, Mexico is one of the world's most seismically active regions. The earthquake focal mechanisms provide important information on the active tectonics. A widespread technique for estimating the earthquake magnitud and focal mechanism is the inversion for the moment tensor, obtained by minimizing a misfit function that estimates the difference between synthetic and observed seismograms. An important element in the estimation of the moment tensor is an appropriate velocity model, which allows for the calculation of accurate Green's Functions so that the differences between observed and synthetics seismograms are due to the source of the earthquake rather than the velocity model. However, calculating accurate synthetic seismograms gets progressively more difficult as the magnitude of the earthquakes decreases. Large earthquakes (M>5.0) excite waves of longer periods that interact weakly with lateral heterogeneities in the crust. For these events, using 1D velocity models to compute Greens functions works well and they are well characterized by seismic moment tensors reported in global catalogs (eg. USGS fast moment tensor solutions and GCMT). The opposite occurs for small and intermediate sized events, where the relatively shorter periods excited interact strongly with lateral heterogeneities in the crust and upper mantle. To accurately model the Green's functions for the smaller events in a large heterogeneous area, requires 3D or regionalized 1D models. To obtain a rapid estimate of earthquake magnitude, the National Seismological Survey in Mexico (Servicio Sismológico Nacional, SSN) automatically calculates seismic moment tensors for events in the Mexican Territory (Franco et al., 2002; Nolasco-Carteño, 2006). However, for intermediate-magnitude and small earthquakes the signal-to-noise ratio could is low for many of the seismic stations, and without careful selection and filtering of the data, obtaining a stable focal mechanism

  20. Increasing Magnitude of Hurricane Rapid Intensification in the Central and Eastern Tropical Atlantic

    NASA Astrophysics Data System (ADS)

    Balaguru, Karthik; Foltz, Gregory R.; Leung, L. Ruby

    2018-05-01

    Rapid intensification (RI) of hurricanes is notoriously difficult to predict and can contribute to severe destruction and loss of life. While past studies examined the frequency of RI occurrence, changes in RI magnitude were not considered. Here we explore changes in RI magnitude over the 30-year satellite period of 1986-2015. In the central and eastern tropical Atlantic, which includes much of the main development region, the 95th percentile of 24-hr intensity changes increased at 3.8 knots per decade. In the western tropical Atlantic, encompassing the Caribbean Sea and the Gulf of Mexico, trends are insignificant. Our analysis reveals that warming of the upper ocean coinciding with the positive phase of Atlantic Multidecadal Oscillation, and associated changes in the large-scale environment, has predominantly favored RI magnitude increases in the central and eastern tropical Atlantic. These results have substantial implications for the eastern Caribbean Islands, some of which were devastated during the 2017 hurricane season.

  1. Saturation of subjective reward magnitude as a function of current and pulse frequency.

    PubMed

    Simmons, J M; Gallistel, C R

    1994-02-01

    In rats with electrodes in the medial forebrain bundle, the upper portion of the function relating the experienced magnitude of the reward to pulse frequency was determined at currents ranging from 100 to 1,000 microA. The pulse frequency required to produce an asymptotic level of reward was inversely proportional to current except at the lowest currents and highest pulse frequencies. At a given current, the subjective reward magnitude functions decelerated to an asymptote over an interval in which the pulse frequency doubled or tripled. The asymptotic level of reward was approximately constant for currents between 200 and 1,000 microA but declined substantially at currents at or below 100 microA and pulse frequencies at or above 250 to 400 pulses per second. The results are consistent with the hypothesis that the magnitude of the experienced reward depends only on the number of action potentials generated by the train of pulses in the bundle of reward-relevant axons.

  2. N-Cadherin Maintains the Healthy Biology of Nucleus Pulposus Cells under High-Magnitude Compression.

    PubMed

    Wang, Zhenyu; Leng, Jiali; Zhao, Yuguang; Yu, Dehai; Xu, Feng; Song, Qingxu; Qu, Zhigang; Zhuang, Xinming; Liu, Yi

    2017-01-01

    Mechanical load can regulate disc nucleus pulposus (NP) biology in terms of cell viability, matrix homeostasis and cell phenotype. N-cadherin (N-CDH) is a molecular marker of NP cells. This study investigated the role of N-CDH in maintaining NP cell phenotype, NP matrix synthesis and NP cell viability under high-magnitude compression. Rat NP cells seeded on scaffolds were perfusion-cultured using a self-developed perfusion bioreactor for 5 days. NP cell biology in terms of cell apoptosis, matrix biosynthesis and cell phenotype was studied after the cells were subjected to different compressive magnitudes (low- and high-magnitudes: 2% and 20% compressive deformation, respectively). Non-loaded NP cells were used as controls. Lentivirus-mediated N-CDH overexpression was used to further investigate the role of N-CDH under high-magnitude compression. The 20% deformation compression condition significantly decreased N-CDH expression compared with the 2% deformation compression and control conditions. Meanwhile, 20% deformation compression increased the number of apoptotic NP cells, up-regulated the expression of Bax and cleaved-caspase-3 and down-regulated the expression of Bcl-2, matrix macromolecules (aggrecan and collagen II) and NP cell markers (glypican-3, CAXII and keratin-19) compared with 2% deformation compression. Additionally, N-CDH overexpression attenuated the effects of 20% deformation compression on NP cell biology in relation to the designated parameters. N-CDH helps to restore the cell viability, matrix biosynthesis and cellular phenotype of NP cells under high-magnitude compression. © 2017 The Author(s). Published by S. Karger AG, Basel.

  3. Discriminability and Sensitivity to Reinforcer Magnitude in a Detection Task

    ERIC Educational Resources Information Center

    Alsop, Brent; Porritt, Melissa

    2006-01-01

    Three pigeons discriminated between two sample stimuli (intensities of red light). The difficulty of the discrimination was varied over four levels. At each level, the relative reinforcer magnitude for the two correct responses was varied across conditions, and the reinforcer rates were equal. Within levels, discriminability between the sample…

  4. Fraction Development in Children: Importance of Building Numerical Magnitude Understanding

    ERIC Educational Resources Information Center

    Jordan, Nancy C.; Carrique, Jessica; Hansen, Nicole; Resnick, Ilyse

    2016-01-01

    This chapter situates fraction learning within the integrated theory of numerical development. We argue that the understanding of numerical magnitudes for whole numbers as well as for fractions is critical to fraction learning in particular and mathematics achievement more generally. Results from the Delaware Longitudinal Study, which examined…

  5. On the impact of the magnitude of interstellar pressure on physical properties of molecular cloud

    NASA Astrophysics Data System (ADS)

    Anathpindika, S.; Burkert, A.; Kuiper, R.

    2017-04-01

    Recently reported variations in the typical physical properties of Galactic and extra-Galactic molecular clouds (MCs), and, in their star-forming ability, have been attributed to local variations in the magnitude of interstellar pressure. Inferences from these surveys have called into question two long-standing beliefs that: (1) MCs are virialized and (2) they obey the Larson's third law. Here we invoked the framework of cloud formation via collision between warm gas-flows to examine if these latest observational inferences can be reconciled. To this end, we traced the temporal evolution of the gas surface density, the fraction of dense gas, the distribution of gas column density (N-PDF) and the virial nature of the assembled clouds. We conclude that these physical properties exhibit temporal variation and their respective peak magnitude also increases in proportion with the magnitude of external pressure, Pext. The velocity dispersion in assembled clouds appears to follow the power law, σ _{gas}∝ P_{ext}^{0.23}. The power-law tail of the N-PDFs at higher densities becomes shallower with increasing magnitude of external pressure for Pext/kB ≲ 107 K cm-3; at higher magnitudes such as those typically found in the Galactic Central Molecular Zone (Pext/kB > 107 K cm-3), the power-law shows significant steepening. While our results are broadly consistent with inferences from various recent observational surveys, it appears that MCs do not exhibit a unique set of properties, but rather a wide variety that can be reconciled with a range of magnitudes of pressure between 104 and 108 K cm-3.

  6. The color-magnitude distribution of small Kuiper Belt objects

    NASA Astrophysics Data System (ADS)

    Wong, Ian; Brown, Michael E.

    2015-11-01

    Occupying a vast region beyond the ice giants is an extensive swarm of minor bodies known as the Kuiper Belt. Enigmatic in their formation, composition, and evolution, these Kuiper Belt objects (KBOs) lie at the intersection of many of the most important topics in planetary science. Improved instruments and large-scale surveys have revealed a complex dynamical picture of the Kuiper Belt. Meanwhile, photometric studies have indicated that small KBOs display a wide range of colors, which may reflect a chemically diverse initial accretion environment and provide important clues to constraining the surface compositions of these objects. Notably, some recent work has shown evidence for bimodality in the colors of non-cold classical KBOs, which would have major implications for the formation and subsequent evolution of the entire KBO population. However, these previous color measurements are few and mostly come from targeted observations of known objects. As a consequence, the effect of observational biases cannot be readily removed, preventing one from obtaining an accurate picture of the true color distribution of the KBOs as a whole.We carried out a survey of KBOs using the Hyper Suprime-Cam instrument on the 8.2-meter Subaru telescope. Our observing fields targeted regions away from the ecliptic plane so as to avoid contamination from cold classical KBOs. Each field was imaged in both the g’ and i’ filters, which allowed us to calculate the g’-i’ color of each detected object. We detected more than 500 KBOs over two nights of observation, with absolute magnitudes from H=6 to H=11. Our survey increases the number of KBOs fainter than H=8 with known colors by more than an order of magnitude. We find that the distribution of colors demonstrates a robust bimodality across the entire observed range of KBO sizes, from which we can categorize individual objects into two color sub-populations -- the red and very-red KBOs. We present the very first analysis of the

  7. Rockfall magnitude-frequency estimation: how data acquistion strategies influence methodological results

    NASA Astrophysics Data System (ADS)

    Guerin, Antoine; Abellán, Antonio; Jesús Royán, Manuel; Carrea, Dario; Vilaplana, Joan Manuel; Jaboyedoff, Michel

    2014-05-01

    The modelling of rock cliff erosion rates through rockfall magnitude-frequency is a well-known technique extensively carried out before by many authors (e.g. Barlow et al., 2012; Guerin et al., 2014). These studies show how the relation between frequency (F) and magnitude (M) of rockfalls is well fitted by a negative power law [F = a*M ^ (-b)], the value of its parameters varying considerably according to differences in type of material, structural settings, climate, etc. Nevertheless, little insight is given into how methodological and instrumental issues influence power law, typically into how data acquisition accuracy, minimum level of detection and spatio-temporal resolution influence this relationship. Extensive Terrestrial Laser Scanner (TLS) campaigns were carried out during more than six years (from Nov.2007 to Dec.2013) in order to monitor a semi-circular rock wall of 150 m width and 25 m height, situated in Puigcercós (Pallars Jussà, Catalonia, Spain). The analysed cliff represents the main outcrop of a landslide that took place in 1881, the scarp being affected by a high number of rockfalls per year (Royan et al., 2013). The spatial-temporal rockfall frequency is determined by comparison of very dense point clouds (about 500 points/m2) acquired in 22 fieldwork campaigns at different dates. The TLS data processing (data filtering, alignment, georeferencing, meshing and comparison) was carried out with the ImInspect module of Polyworks software. The analysis of the magnitude-frequency parameters was carried out for each period of comparison using a script specifically developed in Matlab software. We used the image processing toolbox aiming to extract rockfall areas (number of pixels) and centroids for each event. We carried out an exploratory analysis in order to investigate how certain parameters linked to data acquisition -spatial and temporal resolution, level of detection, etc.- influence the complementary cumulative distributions of the rockfall

  8. Effects of reinforcer magnitude on responding under differential-reinforcement-of-low-rate schedules of rats and pigeons.

    PubMed Central

    Doughty, Adam H; Richards, Jerry B

    2002-01-01

    Experiment I investigated the effects of reinforcer magnitude on differential-reinforcement-of-low-rate (DRL) schedule performance in three phases. In Phase 1, two groups of rats (n = 6 and 5) responded under a DRI. 72-s schedule with reinforcer magnitudes of either 30 or 300 microl of water. After acquisition, the water amounts were reversed for each rat. In Phase 2, the effects of the same reinforcer magnitudes on DRL 18-s schedule performance were examined across conditions. In Phase 3, each rat responded unider a DR1. 18-s schedule in which the water amotnts alternated between 30 and 300 microl daily. Throughout each phase of Experiment 1, the larger reinforcer magnitude resulted in higher response rates and lower reinforcement rates. The peak of the interresponse-time distributions was at a lower value tinder the larger reinforcer magnitude. In Experiment 2, 3 pigeons responded under a DRL 20-s schedule in which reinforcer magnitude (1-s or 6-s access to grain) varied iron session to session. Higher response rates and lower reinforcement rates occurred tinder the longer hopper duration. These results demonstrate that larger reinforcer magnitudes engender less efficient DRL schedule performance in both rats and pigeons, and when reinforcer magnitude was held constant between sessions or was varied daily. The present results are consistent with previous research demonstrating a decrease in efficiency as a function of increased reinforcer magnituide tinder procedures that require a period of time without a specified response. These findings also support the claim that DRI. schedule performance is not governed solely by a timing process. PMID:12144310

  9. Estuarine abandoned channel sedimentation rates record peak fluvial discharge magnitudes

    NASA Astrophysics Data System (ADS)

    Gray, A. B.; Pasternack, G. B.; Watson, E. B.

    2018-04-01

    Fluvial sediment deposits can provide useful records of integrated watershed expressions including flood event magnitudes. However, floodplain and estuarine sediment deposits evolve through the interaction of watershed/marine sediment supply and transport characteristics with the local depositional environment. Thus extraction of watershed scale signals depends upon accounting for local scale effects on sediment deposition rates and character. This study presents an examination of the balance of fluvial sediment dynamics and local scale hydro-geomorphic controls on alluviation of an abandoned channel in the Salinas River Lagoon, CA. A set of three sediment cores contained discrete flood deposits that corresponded to the largest flood events over the period of accretion from 1969 to 2007. Sedimentation rates scaled with peak flood discharge and event scale sediment flux, but were not influenced by longer scale hydro-meteorological activities such as annual precipitation and water yield. Furthermore, the particle size distributions of flood deposits showed no relationship to event magnitudes. Both the responsiveness of sedimentation and unresponsiveness of particle size distributions to hydro-sedimentological event magnitudes appear to be controlled by aspects of local geomorphology that influence the connectivity of the abandoned channel to the Salinas River mainstem. Well-developed upstream plug bar formation precluded the entrainment of coarser bedload into the abandoned channel, while Salinas River mouth conditions (open/closed) in conjunction with tidal and storm surge conditions may play a role in influencing the delivery of coarser suspended load fractions. Channel adjacent sediment deposition can be valuable records of hydro-meteorological and sedimentological regimes, but local depositional settings may dominate the character of short term (interdecadal) signatures.

  10. Teorí­as de primer y segundo orden sobre el potencial de ciertas figuras de equilibrio de cuerpos celestes

    NASA Astrophysics Data System (ADS)

    Gumbau, Manuel Forner

    2010-11-01

    Uno de los problemas que aborda la Mecánica Celeste es la determinación de las figuras de equilibrio de los cuerpos celestes. Para investigar su solución mediante métodos directos, se precisa evaluar el potencial generado por su autogravitación, el generado por su fuerza centrí­fuga y el generado por la fuerza de atracción entre los cuerpos. Los métodos clásicos de Finlay y Kopal que afrontan estos problemas, para determinar el potencial autogravitatorio en las configuraciones de equilibrio, emplean desarrollos en serie de los potenciales interior y exterior del potencial autogravitatorio. Estos métodos incurren en el error de suponer la convergencia en capas donde resulta cuestionable dicha convergencia para estos desarrollos en serie. En este trabajo se han elaborado unos algoritmos que contemplan toda la casuí&stica y que permiten una manipulación efic iente del producto de polinomios de Legendre, del producto de funciones asociada s de Legendre y del producto de armónicos esféricos como combinacióon lineal de ellos mismos, respectivamente. Se han obtenido, para primer y segundo orden en las amplitudes, los desarrollos correctos para los potencial es interior y exterior del potencial autogravitatorio para configuraciones de equilibrio aisladas, y , en primer orden de amplitudes, los mismos potenciales para los sistemas binarios próximos. Se ha elaborado un método analítico, en primer orden respecto de las amplitudes, para la determinación del potencial de marea en sistemas binarios próximos en el cual se manifiesta la forma de la componente secundaria del sistema

  11. Multi-objective control of nonlinear boiler-turbine dynamics with actuator magnitude and rate constraints.

    PubMed

    Chen, Pang-Chia

    2013-01-01

    This paper investigates multi-objective controller design approaches for nonlinear boiler-turbine dynamics subject to actuator magnitude and rate constraints. System nonlinearity is handled by a suitable linear parameter varying system representation with drum pressure as the system varying parameter. Variation of the drum pressure is represented by suitable norm-bounded uncertainty and affine dependence on system matrices. Based on linear matrix inequality algorithms, the magnitude and rate constraints on the actuator and the deviations of fluid density and water level are formulated while the tracking abilities on the drum pressure and power output are optimized. Variation ranges of drum pressure and magnitude tracking commands are used as controller design parameters, determined according to the boiler-turbine's operation range. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Comparison of water production rates from UV spectroscopy and visual magnitudes for some recent comets

    NASA Technical Reports Server (NTRS)

    Roettger, E. E.; Feldman, P. D.; A'Hearn, M. F.; Festou, M. C.

    1990-01-01

    IUE data on the UV and visible coma emissions of the comets Bradfield, P/Tempel 2, Wilson, and P/Halley, are presently compared with the visual lightcurves from magnitudes reported in the IAU circulars to consider the temporal evolution of these comets. While the water-production rates obtainable from visual magnitudes on the basis of Newburn's (1984) method are consistent with OH-derived rates to first order, they are sometimes either displaced or unable to exhibit the same pre/postperihelion asymmetry. The best agreement is obtained for the relatively dust-free Comet P/Tempel 2. IUE Fine Error Sensor lightcurves are generally in agreement with curves based on total visual magnitude.

  13. Examination of two methods for statistical analysis of data with magnitude and direction emphasizing vestibular research applications

    NASA Technical Reports Server (NTRS)

    Calkins, D. S.

    1998-01-01

    When the dependent (or response) variable response variable in an experiment has direction and magnitude, one approach that has been used for statistical analysis involves splitting magnitude and direction and applying univariate statistical techniques to the components. However, such treatment of quantities with direction and magnitude is not justifiable mathematically and can lead to incorrect conclusions about relationships among variables and, as a result, to flawed interpretations. This note discusses a problem with that practice and recommends mathematically correct procedures to be used with dependent variables that have direction and magnitude for 1) computation of mean values, 2) statistical contrasts of and confidence intervals for means, and 3) correlation methods.

  14. The global distribution of magnitude 9 earthquakes

    NASA Astrophysics Data System (ADS)

    McCaffrey, R.

    2011-12-01

    The 2011 Tohoku M9 earthquake once again caught some in the earthquake community by surprise. The expectation of these massive quakes has been driven in the past by the over-reliance on our short, incomplete history of earthquakes and causal relationships derived from it. The logic applied is that if a great earthquake has not happened in the past, that we know of, one cannot happen in the future. Using the ~100-year global earthquake history, seismologists have promoted relationships between maximum earthquake sizes and other properties of subduction zones, leading to the notion that some subduction zones, like the Japan Trench, would never produce a magnitude ~9 event. The 2004 Andaman Mw = 9.2 earthquake, that occurred where there is slow subduction of old crust and a history of only moderate-sized earthquakes, seriously undermined such ideas. Given multi-century return times of the greatest earthquakes, ignorance of those return times and our very limited observation span, I suggest that we cannot yet make such determinations. Alternatively, using the length of a subduction zone that is available for slip as the predominant factor in determining maximum earthquake size, we cannot rule out that any subduction zone of a few hundred kilometers or more in length may be capable of producing a magnitude 9 or larger earthquake. Based on this method, the expected maximum size for the Japan Trench was 9.0 (McCaffrey, Geology, p. 263, 2008). The same approach portends a M > 9 for Java, with twice the population density as Honshu and much lower building standards. The Java Trench, and others where old crust subducts (Hikurangi, Marianas, Tonga, Kermadec), require increased awareness of the possibility for a great earthquake.

  15. Far-field tsunami magnitude determined from ocean-bottom pressure gauge data around Japan

    NASA Astrophysics Data System (ADS)

    Baba, T.; Hirata, K.; Kaneda, Y.

    2003-12-01

    \\hspace*{3mm}Tsunami magnitude is the most fundamental parameter to scale tsunamigenic earthquakes. According to Abe (1979), the tsunami magnitude, Mt, is empirically related to the crest to trough amplitude, H, of the far-field tsunami wave in meters (Mt = logH + 9.1). Here we investigate the far-field tsunami magnitude using ocean-bottom pressure gauge data. The recent ocean-bottom pressure measurements provide more precise tsunami data with a high signal-to-noise ratio. \\hspace*{3mm}Japan Marine Science and Technology Center is monitoring ocean bottom pressure fluctuations using two submarine cables of depths of 1500 - 2400 m. These geophysical observatory systems are located off Cape Muroto, Southwest Japan, and off Hokkaido, Northern Japan. The ocean-bottom pressure data recorded with the Muroto and Hokkaido systems have been collected continuously since March, 1997 and October, 1999, respectively. \\hspace*{3mm}Over the period from March 1997 to June 2003, we have observed four far-field tsunami signals, generated by earthquakes, on ocean-bottom pressure records. These far-field tsunamis were generated by the 1998 Papua New Guinea eq. (Mw 7.0), 1999 Vanuatu eq. (Mw 7.2), 2001 Peru eq. (Mw 8.4) and 2002 Papua New Guinea eq. (Mw 7.6). Maximum amplitude of about 30 mm was recorded by the tsunami from the 2001 Peru earthquake. \\hspace*{3mm}Direct application of the Abe's empirical relation to ocean-bottom pressure gauge data underestimates tsunami magnitudes by about an order of magnitude. This is because the Abe's empirical relation was derived only from tsunami amplitudes with coastal tide gauges where tsunami is amplified by the shoaling of topography and the reflection at the coastline. However, these effects do not work for offshore tsunami in deep oceans. In general, amplification due to shoaling near the coastline is governed by the Green's Law, in which the tsunami amplitude is proportional to h-1/4, where h is the water depth. Wave amplitude also is

  16. A new dataset of Wood Anderson magnitude from the Trieste (Italy) seismic station

    NASA Astrophysics Data System (ADS)

    Sandron, Denis; Gentile, G. Francesco; Gentili, Stefania; Rebez, Alessandro; Santulin, Marco; Slejko, Dario

    2014-05-01

    The standard torsion Wood Anderson (WA) seismograph owes its fame to the fact that historically it has been used for the definition of the magnitude of an earthquake (Richter, 1935). With the progress of the technology, digital broadband (BB) seismographs replaced it. However, for historical consistency and homogeneity with the old seismic catalogues, it is still important continuing to compute the so called Wood Anderson magnitude. In order to evaluate WA magnitude, the synthetic seismograms WA equivalent are simulated convolving the waveforms recorded by a BB instrument with a suitable transfer function. The value of static magnification that should be applied in order to simulate correctly the WA instrument is debated. The original WA instrument in Trieste operated from 1971 to 1992 and the WA magnitude (MAW) estimates were regularly reported in the seismic station bulletins. The calculation of the local magnitude was performed following the Richter's formula (Richter, 1935), using the table of corrections factor unmodified from those calibrated for California and without station correction applied (Finetti, 1972). However, the WA amplitudes were computed as vector sum rather than arithmetic average of the horizontal components, resulting in a systematic overestimation of approximately 0.25, depending on the azimuth. In this work, we have retrieved the E-W and N-S components of the original recordings and re-computed MAW according to the original Richter (1935) formula. In 1992, the WA recording were stopped, due to the long time required for the daily development of the photographic paper, the costs of the photographic paper and the progress of the technology. After a decade of interruption, the WA was recovered and modernized by replacing the recording on photographic paper with an electronic device and it continues presently to record earthquakes. The E-W and N-S components records were memorized, but not published till now. Since 2004, next to the WA (few

  17. Fraction magnitude understanding and its unique role in predicting general mathematics achievement at two early stages of fraction instruction.

    PubMed

    Liu, Yingyi

    2017-09-08

    Prior studies on fraction magnitude understanding focused mainly on students with relatively sufficient formal instruction on fractions whose fraction magnitude understanding is relatively mature. This study fills a research gap by investigating fraction magnitude understanding in the early stages of fraction instruction. It extends previous findings to children with limited and primary formal fraction instruction. Thirty-five fourth graders with limited fraction instruction and forty fourth graders with primary fraction instruction were recruited from a Chinese primary school. Children's fraction magnitude understanding was assessed with a fraction number line estimation task. Approximate number system (ANS) acuity was assessed with a dot discrimination task. Whole number knowledge was assessed with a whole number line estimation task. General reading and mathematics achievements were collected concurrently and 1 year later. In children with limited fraction instruction, fraction representation was linear and fraction magnitude understanding was concurrently related to both ANS and whole number knowledge. In children with primary fraction instruction, fraction magnitude understanding appeared to (marginally) significantly predict general mathematics achievement 1 year later. Fraction magnitude understanding emerged early during formal instruction of fractions. ANS and whole number knowledge were related to fraction magnitude understanding when children first began to learn about fractions in school. The predictive value of fraction magnitude understanding is likely constrained by its sophistication level. © 2017 The British Psychological Society.

  18. Assessing the location and magnitude of the 20 October 1870 Charlevoix, Quebec, earthquake

    USGS Publications Warehouse

    Ebel, John E.; Dupuy, Megan; Bakun, William H.

    2013-01-01

    The Charlevoix, Quebec, earthquake of 20 October 1870 caused damage to several towns in Quebec and was felt throughout much of southeastern Canada and along the U.S. Atlantic seaboard from Maine to Maryland. Site‐specific damage and felt reports from Canadian and U.S. cities and towns were used in analyses of the location and magnitude of the earthquake. The macroseismic center of the earthquake was very close to Baie‐St‐Paul, where the greatest damage was reported, and the intensity magnitude MI was found to be 5.8, with a 95% probability range of 5.5–6.0. After corrections for epicentral‐distance differences are applied, the modified Mercalli intensity (MMI) data for the 1870 earthquake and for the moment magnitude M 6.2 Charlevoix earthquake of 1925 at common sites show that on average, the MMI readings are about 0.8 intensity units smaller for the 1870 earthquake than for the 1925 earthquake, suggesting that the 1870 earthquake was MI 5.7. A similar comparison of the MMI data for the 1870 earthquake with the corresponding data for the M 5.9 1988 Saguenay event suggests that the 1870 earthquake was MI 6.0. These analyses all suggest that the magnitude of the 1870 Charlevoix earthquake is between MI 5.5 and MI 6.0, with a best estimate of MI 5.8.

  19. Occurence and magnitude of methane - hydrate accumulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zielinski, R.E.; McIver, R.D.

    1982-01-01

    Solid, ice-like mixtures of natural gas and water have been found immobilized in rocks beneath the permafrost in Arctic basins, and in muds under deep water along the continental margins of the Americas. The muds in North America could contain almost 5.7 x 10/sup 14/ m/sup 3/, of gas, but probably only a small fraction, eg., 5.7 x 10/sup 12/ M/sup 3/, in rock porous enough to be considered reservoir rocks. None of this gas is recoverable with present technology. However, the very magnitude of the resource is so large that naturally occurring hydrates should be the object of continuingmore » study and research. 25 refs.« less

  20. Continuous estimates on the earthquake early warning magnitude by use of the near-field acceleration records

    NASA Astrophysics Data System (ADS)

    Li, Jun; Jin, Xing; Wei, Yongxiang; Zhang, Hongcai

    2013-10-01

    In this article, the seismic records of Japan's Kik-net are selected to measure the acceleration, displacement, and effective peak acceleration of each seismic record within a certain time after P wave, then a continuous estimation is given on earthquake early warning magnitude through statistical analysis method, and Wenchuan earthquake record is utilized to check the method. The results show that the reliability of earthquake early warning magnitude continuously increases with the increase of the seismic information, the biggest residual happens if the acceleration is adopted to fit earthquake magnitude, which may be caused by rich high-frequency components and large dispersion of peak value in acceleration record, the influence caused by the high-frequency components can be effectively reduced if the effective peak acceleration and peak displacement is adopted, it is estimated that the dispersion of earthquake magnitude obviously reduces, but it is easy for peak displacement to be affected by long-period drifting. In various components, the residual enlargement phenomenon at vertical direction is almost unobvious, thus it is recommended in this article that the effective peak acceleration at vertical direction is preferred to estimate earthquake early warning magnitude. Through adopting Wenchuan strong earthquake record to check the method mentioned in this article, it is found that this method can be used to quickly, stably, and accurately estimate the early warning magnitude of this earthquake, which shows that this method is completely applicable for earthquake early warning.

  1. Sequence data - Magnitude and implications of some ambiguities.

    NASA Technical Reports Server (NTRS)

    Holmquist, R.; Jukes, T. H.

    1972-01-01

    A stochastic model is applied to the divergence of the horse-pig lineage from a common ansestor in terms of the alpha and beta chains of hemoglobin and fibrinopeptides. The results are compared with those based on the minimum mutation distance model of Fitch (1972). Buckwheat and cauliflower cytochrome c sequences are analyzed to demonstrate their ambiguities. A comparative analysis of evolutionary rates for various proteins of horses and pigs shows that errors of considerable magnitude are introduced by Glx and Asx ambiguities into evolutionary conclusions drawn from sequences of incompletely analyzed proteins.

  2. A Psychological Model for Aggregating Judgments of Magnitude

    NASA Astrophysics Data System (ADS)

    Merkle, Edgar C.; Steyvers, Mark

    In this paper, we develop and illustrate a psychologically-motivated model for aggregating judgments of magnitude across experts. The model assumes that experts' judgments are perturbed from the truth by both systematic biases and random error, and it provides aggregated estimates that are implicitly based on the application of nonlinear weights to individual judgments. The model is also easily extended to situations where experts report multiple quantile judgments. We apply the model to expert judgments concerning flange leaks in a chemical plant, illustrating its use and comparing it to baseline measures.

  3. Combination of Complex-Based and Magnitude-Based Multiecho Water-Fat Separation for Accurate Quantification of Fat-Fraction

    PubMed Central

    Yu, Huanzhou; Shimakawa, Ann; Hines, Catherine D. G.; McKenzie, Charles A.; Hamilton, Gavin; Sirlin, Claude B.; Brittain, Jean H.; Reeder, Scott B.

    2011-01-01

    Multipoint water–fat separation techniques rely on different water–fat phase shifts generated at multiple echo times to decompose water and fat. Therefore, these methods require complex source images and allow unambiguous separation of water and fat signals. However, complex-based water–fat separation methods are sensitive to phase errors in the source images, which may lead to clinically important errors. An alternative approach to quantify fat is through “magnitude-based” methods that acquire multiecho magnitude images. Magnitude-based methods are insensitive to phase errors, but cannot estimate fat-fraction greater than 50%. In this work, we introduce a water–fat separation approach that combines the strengths of both complex and magnitude reconstruction algorithms. A magnitude-based reconstruction is applied after complex-based water–fat separation to removes the effect of phase errors. The results from the two reconstructions are then combined. We demonstrate that using this hybrid method, 0–100% fat-fraction can be estimated with improved accuracy at low fat-fractions. PMID:21695724

  4. Removal of intensity bias in magnitude spin-echo MRI images by nonlinear diffusion filtering

    NASA Astrophysics Data System (ADS)

    Samsonov, Alexei A.; Johnson, Chris R.

    2004-05-01

    MRI data analysis is routinely done on the magnitude part of complex images. While both real and imaginary image channels contain Gaussian noise, magnitude MRI data are characterized by Rice distribution. However, conventional filtering methods often assume image noise to be zero mean and Gaussian distributed. Estimation of an underlying image using magnitude data produces biased result. The bias may lead to significant image errors, especially in areas of low signal-to-noise ratio (SNR). The incorporation of the Rice PDF into a noise filtering procedure can significantly complicate the method both algorithmically and computationally. In this paper, we demonstrate that inherent image phase smoothness of spin-echo MRI images could be utilized for separate filtering of real and imaginary complex image channels to achieve unbiased image denoising. The concept is demonstrated with a novel nonlinear diffusion filtering scheme developed for complex image filtering. In our proposed method, the separate diffusion processes are coupled through combined diffusion coefficients determined from the image magnitude. The new method has been validated with simulated and real MRI data. The new method has provided efficient denoising and bias removal in conventional and black-blood angiography MRI images obtained using fast spin echo acquisition protocols.

  5. Multi-dimensional self-esteem and magnitude of change in the treatment of anorexia nervosa.

    PubMed

    Collin, Paula; Karatzias, Thanos; Power, Kevin; Howard, Ruth; Grierson, David; Yellowlees, Alex

    2016-03-30

    Self-esteem improvement is one of the main targets of inpatient eating disorder programmes. The present study sought to examine multi-dimensional self-esteem and magnitude of change in eating psychopathology among adults participating in a specialist inpatient treatment programme for anorexia nervosa. A standardised assessment battery, including multi-dimensional measures of eating psychopathology and self-esteem, was completed pre- and post-treatment for 60 participants (all white Scottish female, mean age=25.63 years). Statistical analyses indicated that self-esteem improved with eating psychopathology and weight over the course of treatment, but that improvements were domain-specific and small in size. Global self-esteem was not predictive of treatment outcome. Dimensions of self-esteem at baseline (Lovability and Moral Self-approval), however, were predictive of magnitude of change in dimensions of eating psychopathology (Shape and Weight Concern). Magnitude of change in Self-Control and Lovability dimensions were predictive of magnitude of change in eating psychopathology (Global, Dietary Restraint, and Shape Concern). The results of this study demonstrate that the relationship between self-esteem and eating disorder is far from straightforward, and suggest that future research and interventions should focus less exclusively on self-esteem as a uni-dimensional psychological construct. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Deformation mechanisms of bent Si nanowires governed by the sign and magnitude of strain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lihua, E-mail: wlh@bjut.edu.cn, E-mail: xdhan@bjut.edu.cn, E-mail: j.zou@uq.edu.au; Materials Engineering, The University of Queensland, Brisbane, QLD 4072; Kong, Deli

    2016-04-11

    In this study, the deformation mechanisms of bent Si nanowires are investigated at the atomic scale with bending strain up to 12.8%. The sign and magnitude of the applied strain are found to govern their deformation mechanisms, in which the dislocation types (full or partial dislocations) can be affected by the sign (tensile or compressive) and magnitude of the applied strain. In the early stages of bending, plastic deformation is controlled by 60° full dislocations. As the bending increases, Lomer dislocations can be frequently observed. When the strain increases to a significant level, 90° partial dislocations induced from the tensilemore » surfaces of the bent nanowires are observed. This study provides a deeper understanding of the effect of the sign and magnitude of the bending strain on the deformation mechanisms in bent Si nanowires.« less

  7. Bright end of the color-magnitude relation for cD, E and S0 galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lugger, P.M.

    1979-11-01

    Schild and Davis's (Astron. J. 84, 311 (1979)) galaxy photometry for cD's in poor clusters is compared with Sandage's (Astrophys. J. 176, 21(1979)) color-magnitude relation defined by elliptical and S0 galaxies in the Virgo and Coma clusters. The cD galaxies are found to be somewhat bluer on average than galaxies of similar magnitude in the Virgo and Coma sample, consistent with the predictions of the galactic cannibalism model proposed by Hausman and Ostriker (Astrophys. J. 224, 320 (1978)). However, a more uniform selection of galaxy photometry is required before any definitive conclusions regarding the bright end of the color-magnitude relationmore » can be made.« less

  8. Gravitoinertial force magnitude and direction influence head-centric auditory localization

    NASA Technical Reports Server (NTRS)

    DiZio, P.; Held, R.; Lackner, J. R.; Shinn-Cunningham, B.; Durlach, N.

    2001-01-01

    We measured the influence of gravitoinertial force (GIF) magnitude and direction on head-centric auditory localization to determine whether a true audiogravic illusion exists. In experiment 1, supine subjects adjusted computer-generated dichotic stimuli until they heard a fused sound straight ahead in the midsagittal plane of the head under a variety of GIF conditions generated in a slow-rotation room. The dichotic stimuli were constructed by convolving broadband noise with head-related transfer function pairs that model the acoustic filtering at the listener's ears. These stimuli give rise to the perception of externally localized sounds. When the GIF was increased from 1 to 2 g and rotated 60 degrees rightward relative to the head and body, subjects on average set an acoustic stimulus 7.3 degrees right of their head's median plane to hear it as straight ahead. When the GIF was doubled and rotated 60 degrees leftward, subjects set the sound 6.8 degrees leftward of baseline values to hear it as centered. In experiment 2, increasing the GIF in the median plane of the supine body to 2 g did not influence auditory localization. In experiment 3, tilts up to 75 degrees of the supine body relative to the normal 1 g GIF led to small shifts, 1--2 degrees, of auditory setting toward the up ear to maintain a head-centered sound localization. These results show that head-centric auditory localization is affected by azimuthal rotation and increase in magnitude of the GIF and demonstrate that an audiogravic illusion exists. Sound localization is shifted in the direction opposite GIF rotation by an amount related to the magnitude of the GIF and its angular deviation relative to the median plane.

  9. Quality of Explanation as an Indicator of Fraction Magnitude Understanding

    ERIC Educational Resources Information Center

    Foreman-Murray, Lindsay; Fuchs, Lynn S.

    2018-01-01

    Student explanations of their mathematical thinking and conclusions have become a greater part of the assessment landscape in recent years. With a sample of 71 4th-grade students at-risk for mathematics learning disabilities, we investigated the relation between student accuracy in comparing the magnitude of fractions and the quality of students'…

  10. Underestimation of Microearthquake Size by the Magnitude Scale of the Japan Meteorological Agency: Influence on Earthquake Statistics

    NASA Astrophysics Data System (ADS)

    Uchide, Takahiko; Imanishi, Kazutoshi

    2018-01-01

    Magnitude scales based on the amplitude of seismic waves, including the Japan Meteorological Agency magnitude scale (Mj), are commonly used in routine processes. The moment magnitude scale (Mw), however, is more physics based and is able to evaluate any type and size of earthquake. This paper addresses the relation between Mj and Mw for microearthquakes. The relative moment magnitudes among earthquakes are well constrained by multiple spectral ratio analyses. The results for the events in the Fukushima Hamadori and northern Ibaraki prefecture areas of Japan imply that Mj is significantly and systematically smaller than Mw for microearthquakes. The Mj-Mw curve has slopes of 1/2 and 1 for small and large values of Mj, respectively; for example, Mj = 1.0 corresponds to Mw = 2.0. A simple numerical simulation implies that this is due to anelastic attenuation and the recording using a finite sampling interval. The underestimation affects earthquake statistics. The completeness magnitude, Mc, for magnitudes lower than which the magnitude-frequency distribution deviates from the Gutenberg-Richter law, is effectively lower for Mw than that for Mj, by taking into account the systematic difference between Mj and Mw. The b values of the Gutenberg-Richter law are larger for Mw than for Mj. As the b values for Mj and Mw are well correlated, qualitative argument using b values is not affected. While the estimated b values for Mj are below 1.5, those for Mw often exceed 1.5. This may affect the physical implication of the seismicity.

  11. Earthquake Magnitude Relationships for the Saint Peter and Saint Paul Archipelago, Equatorial Atlantic

    NASA Astrophysics Data System (ADS)

    de Melo, Guilherme W. S.; do Nascimento, Aderson F.

    2018-03-01

    We have investigated several relationships between ML, M(NEIC) and Mw for the earthquakes locally recorded in the Saint Peter and Saint Paul Archipelago (SPSPA), Equatorial Atlantic. Because we only have one station in the area, we could not derive attenuation relations for events recorded at different distances at different stations. Our approach was then to compare our ML estimates with magnitudes reported by NEIC. This approach produced acceptable results particularly for epicentral distance smaller than 100 km. For distances greater that 100 km, there is a systematic increase in the residuals probable due to the lack of station correction and our inability to accurately estimate Q. We also investigate the Mw—M(NEIC) relationship. We find that Mw estimates using S-wave produce smaller residuals when compared with both M(NEIC). Finally, we also investigate the ML—Mw relationship and observe that given the data set we have, the 1:1 holds. We believe that the use of the present methodologies provide consistent magnitude estimates between all the magnitudes investigated that could be used to better assess seismic hazard in the region.

  12. Earthquake Magnitude Relationships for the Saint Peter and Saint Paul Archipelago, Equatorial Atlantic

    NASA Astrophysics Data System (ADS)

    de Melo, Guilherme W. S.; do Nascimento, Aderson F.

    2017-12-01

    We have investigated several relationships between ML, M(NEIC) and Mw for the earthquakes locally recorded in the Saint Peter and Saint Paul Archipelago (SPSPA), Equatorial Atlantic. Because we only have one station in the area, we could not derive attenuation relations for events recorded at different distances at different stations. Our approach was then to compare our ML estimates with magnitudes reported by NEIC. This approach produced acceptable results particularly for epicentral distance smaller than 100 km. For distances greater that 100 km, there is a systematic increase in the residuals probable due to the lack of station correction and our inability to accurately estimate Q. We also investigate the Mw—M(NEIC) relationship. We find that Mw estimates using S-wave produce smaller residuals when compared with both M(NEIC). Finally, we also investigate the ML—Mw relationship and observe that given the data set we have, the 1:1 holds. We believe that the use of the present methodologies provide consistent magnitude estimates between all the magnitudes investigated that could be used to better assess seismic hazard in the region.

  13. The stay/switch model describes choice among magnitudes of reinforcers.

    PubMed

    MacDonall, James S

    2008-06-01

    The stay/switch model is an alternative to the generalized matching law for describing choice in concurrent procedures. The purpose of the present experiment was to extend this model to choice among magnitudes of reinforcers. Rats were exposed to conditions in which the magnitude of reinforcers (number of food pellets) varied for staying at alternative 1, switching from alternative 1, staying at alternative 2 and switching from alternative 2. A changeover delay was not used. The results showed that the stay/switch model provided a good account of the data overall, and deviations from fits of the generalized matching law to response allocation data were in the direction predicted by the stay/switch model. In addition, comparisons among specific conditions suggested that varying the ratio of obtained reinforcers, as in the generalized matching law, was not necessary to change the response and time allocations. Other comparisons suggested that varying the ratio of obtained reinforcers was not sufficient to change response allocation. Taken together these results provide additional support for the stay/switch model of concurrent choice.

  14. Concepciones Alternativas de "Fotosintesis" en estudiantes Universitarios del curso basico de Biologia y posibles correcciones con el Modelo Educativo MODEF

    NASA Astrophysics Data System (ADS)

    De Jesus Roman, Sandra

    Concepciones Alternativas de Fotosíntesis en estudiantes Universitariosdel curso básico de Biología y posibles correcciones con el Modelo Educativo MODEF El modelo educativo para la enseñanza de Fotosíntesis (MODEF) se implantó para trabajar el problema de las concepciones alternativas (CA) en un curso de Biología General. Se evaluaron los resultados en cuanto al logro del aprendizaje significativo. La pregunta central de la investigación fue: ¿Cómo aporta el modelo educativo en la didáctica y comprensión del tema de fotosíntesis? Se efectuó una investigación acción con una fase cuantitativa y una cualitativa. Para la fase cuantitativa se elaboró una prueba para determinar las concepciones alternativas, se validó y se sometió a los estudiantes que participaron en el estudio antes y después de ofrecer la unidad de metabolismo celular. Los participantes eran estudiantes de primer año de la Universidad de Puerto Rico en Bayamón (UPRB). Se llevó a cabo un análisis de consistencia interna de la prueba mediante el método Alfa de Cronbach. Se analizaron las contestaciones a cada pregunta mediante la prueba de Ji cuadrado de contingencia, se efectuó la prueba de t y el coeficiente r de Pearson. La fase cualitativa incluyó la observación participativa de la investigadora- profesora, las reflexiones de los estudiantes y la información de las entrevistas semi-estructuradas que se realizaron a tres estudiantes del curso. El análisis se llevó a cabo mediante el Modelo de Wolcott. Se trabajaron diez CA de las cuales siete fueron corregidas mediante el Modelo MODEF. Las actividades más importantes para el proceso de aprendizaje incluyeron el trabajo de investigación o búsqueda de información para hacer una presentación digital, la elaboración de tablas, los mapas de conceptos, el uso de visuales o videos y las analogías para explicar conceptos o procesos. En conclusión: se recomienda el uso del Modelo MODEF para la discusión del tema de

  15. How Deep Is Your SNARC? Interactions Between Numerical Magnitude, Response Hands, and Reachability in Peripersonal Space.

    PubMed

    Lohmann, Johannes; Schroeder, Philipp A; Nuerk, Hans-Christoph; Plewnia, Christian; Butz, Martin V

    2018-01-01

    Spatial, physical, and semantic magnitude dimensions can influence action decisions in human cognitive processing and interact with each other. For example, in the spatial-numerical associations of response code (SNARC) effect, semantic numerical magnitude facilitates left-hand or right-hand responding dependent on the small or large magnitude of number symbols. SNARC-like interactions of numerical magnitudes with the radial spatial dimension (depth) were postulated from early on. Usually, the SNARC effect in any direction is investigated using fronto-parallel computer monitors for presentation of stimuli. In such 2D setups, however, the metaphorical and literal interpretation of the radial depth axis with seemingly close/far stimuli or responses are not distinct. Hence, it is difficult to draw clear conclusions with respect to the contribution of different spatial mappings to the SNARC effect. In order to disentangle the different mappings in a natural way, we studied parametrical interactions between semantic numerical magnitude, horizontal directional responses, and perceptual distance by means of stereoscopic depth in an immersive virtual reality (VR). Two VR experiments show horizontal SNARC effects across all spatial displacements in traditional latency measures and kinematic response parameters. No indications of a SNARC effect along the depth axis, as it would be predicted by a direct mapping account, were observed, but the results show a non-linear relationship between horizontal SNARC slopes and physical distance. Steepest SNARC slopes were observed for digits presented close to the hands. We conclude that spatial-numerical processing is susceptible to effector-based processes but relatively resilient to task-irrelevant variations of radial-spatial magnitudes.

  16. Weber's law, the magnitude effect and discrimination of sugar concentrations in nectar-feeding animals.

    PubMed

    Nachev, Vladislav; Stich, Kai Petra; Winter, York

    2013-01-01

    Weber's law quantifies the perception of difference between stimuli. For instance, it can explain why we are less likely to detect the removal of three nuts from a bowl if the bowl is full than if it is nearly empty. This is an example of the magnitude effect - the phenomenon that the subjective perception of a linear difference between a pair of stimuli progressively diminishes when the average magnitude of the stimuli increases. Although discrimination performances of both human and animal subjects in various sensory modalities exhibit the magnitude effect, results sometimes systematically deviate from the quantitative predictions based on Weber's law. An attempt to reformulate the law to better fit data from acoustic discrimination tasks has been dubbed the "near-miss to Weber's law". Here, we tested the gustatory discrimination performance of nectar-feeding bats (Glossophaga soricina), in order to investigate whether the original version of Weber's law accurately predicts choice behavior in a two-alternative forced choice task. As expected, bats either preferred the sweeter of the two options or showed no preference. In 4 out of 6 bats the near-miss to Weber's law provided a better fit and Weber's law underestimated the magnitude effect. In order to test the generality of this observation in nectar-feeders, we reviewed previously published data on bats, hummingbirds, honeybees, and bumblebees. In all groups of animals the near-miss to Weber's law provided better fits than Weber's law. Furthermore, whereas the magnitude effect was stronger than predicted by Weber's law in vertebrates, it was weaker than predicted in insects. Thus nectar-feeding vertebrates and insects seem to differ in how their choice behavior changes as sugar concentration is increased. We discuss the ecological and evolutionary implications of the observed patterns of sugar concentration discrimination.

  17. A comprehensive analysis of high-magnitude streamflow and trends in the Central Valley, California

    NASA Astrophysics Data System (ADS)

    Kocis, T. N.; Dahlke, H. E.

    2017-12-01

    California's climate is characterized by the largest precipitation and streamflow variability observed within the conterminous US. This, combined with chronic groundwater overdraft of 0.6-3.5 km3 yr-1, creates the need to identify additional surface water sources available for groundwater recharge using methods such as agricultural groundwater banking, aquifer storage and recovery, and spreading basins. High-magnitude streamflow, i.e. flow above the 90th percentile, that exceeds environmental flow requirements and current surface water allocations under California water rights, could be a viable source of surface water for groundwater banking. Here, we present a comprehensive analysis of the magnitude, frequency, duration and timing of high-magnitude streamflow (HMF "metrics") over multiple time periods for 93 stream gauges covering the Sacramento, San Joaquin and Tulare basins in California. In addition, we present trend analyses conducted on the same dataset and all HMF metrics using generalized additive models, the Mann-Kendall trend test, and the Signal to Noise Ratio test. The results of the comprehensive analysis show, in short, that in an average year with HMF approximately 3.2 km3 of high-magnitude flow is exported from the entire Central Valley to the Sacramento-San Joaquin Delta, often at times when environmental flow requirements of the Delta and major rivers are exceeded. High-magnitude flow occurs, on average, during 7 and 4.7 out of 10 years in the Sacramento River and the San Joaquin-Tulare Basins, respectively, from just a few storm events (5-7 1-day peak events) lasting for a total of 25-30 days between November and April. Preliminary trend tests suggest that all HMF metrics show limited change over the last 50 years. As a whole, the results suggest that there is sufficient unmanaged surface water physically available to mitigate long-term groundwater overdraft in the Central Valley.

  18. Spread in the magnitude of climate model interdecadal global temperature variability traced to disagreements over high-latitude oceans

    NASA Astrophysics Data System (ADS)

    Brown, Patrick T.; Li, Wenhong; Jiang, Jonathan H.; Su, Hui

    2016-12-01

    Unforced variability in global mean surface air temperature can obscure or exaggerate global warming on interdecadal time scales; thus, understanding both the magnitude and generating mechanisms of such variability is of critical importance for both attribution studies as well as decadal climate prediction. Coupled atmosphere-ocean general circulation models (climate models) simulate a wide range of magnitudes of unforced interdecadal variability in global mean surface air temperature (UITglobal), hampering efforts to quantify the influence of UITglobal on contemporary global temperature trends. Recently, a preliminary consensus has emerged that unforced interdecadal variability in local surface temperatures (UITlocal) over the tropical Pacific Ocean is particularly influential on UITglobal. Therefore, a reasonable hypothesis might be that the large spread in the magnitude of UITglobal across climate models can be explained by the spread in the magnitude of simulated tropical Pacific UITlocal. Here we show that this hypothesis is mostly false. Instead, the spread in the magnitude of UITglobal is linked much more strongly to the spread in the magnitude of UITlocal over high-latitude regions characterized by significant variability in oceanic convection, sea ice concentration, and energy flux at both the surface and the top of the atmosphere. Thus, efforts to constrain the climate model produced range of UITglobal magnitude would be best served by focusing on the simulation of air-sea interaction at high latitudes.

  19. Does the Measurement or Magnitude of Academic Entitlement Change over Time?

    ERIC Educational Resources Information Center

    Sessoms, John; Finney, Sara J.; Kopp, Jason P.

    2016-01-01

    Academic entitlement (AE) characterizes students who believe they deserve positive academic outcomes independent of performance. Using the Academic Entitlement Questionnaire, we evaluated the longitudinal stability of the measurement and magnitude of AE. Results indicated partial measurement invariance, slight average increase in AE, and…

  20. The magnitude of impact damage on LDEF materials

    NASA Technical Reports Server (NTRS)

    Allbrooks, Martha; Atkinson, Dale

    1992-01-01

    The purpose of this report is to document the magnitude and types of impact damage to materials and systems on the LDEF. This report will provide insights which permit NASA and industry space-systems designers to more rapidly identify potential problems and hazards in placing a spacecraft in low-Earth orbit (LEO). This report is structured to provide (1) a background on LDEF, (2) an introduction to the LEO meteoroid and debris environments, and (3) descriptions of the types of damage caused by impacts into structural materials, and contamination caused by spallation and ejecta from impact events.

  1. Formación y evolución de planetas gigantes

    NASA Astrophysics Data System (ADS)

    Benvenuto, O. G.; Brunini, A.

    Presentamos el estado actual del trabajo que estamos realizando en el estudio de la formación de planetas gigantes. Detallamos los algoritmos numéricos necesarios para realizar este tipo de cálculo. Presentamos algunos resultados de la formación de objetos con masas de hasta una docena de veces la del planeta Júpiter, resaltando las principales caracteríticas. Finalmente detallamos los problemas que pensamos abordar en un futuro cercano en este tema de investigación.

  2. Preliminary Magnitude of Completeness Quantification of Improved BMKG Catalog (2008-2016) in Indonesian Region

    NASA Astrophysics Data System (ADS)

    Diantari, H. C.; Suryanto, W.; Anggraini, A.; Irnaka, T. M.; Susilanto, P.; Ngadmanto, D.

    2018-03-01

    We present a magnitude of completeness (Mc) quantification based on BMKG improved earthquake catalog which generated from Ina-TEWS seismograph network. The Mc quantification can help us determine the lowest magnitude which can be recorded perfectly as a function of space and time. We use the BMKG improved earthquake catalog from 2008 to 2016 which has been converted to moment magnitude (Mw) and declustered. The value of Mc is computed by determining the initial point of deviation patterns in Frequency Magnitude Distribution (FMD) chart following the Gutenberg-Richter equations. In the next step, we calculate the temporal variation of Mc and b-value using maximum likelihood method annually. We found that the Mc value is decreasing and produced a varying b-value. It indicates that the development of seismograph network from 2008 to 2016 can affect the value of Mc although it is not significant. We analyze temporal variation of Mc value, and correlate it with the spatial distribution of seismograph in Indonesia. The spatial distribution of seismograph installation shows that the western part of Indonesia has more dense seismograph compared to the eastern region. However, the eastern part of Indonesia has a high level of seismicity compared to the western region. Based upon the results, additional seismograph installation in the eastern part of Indonesia should be taken into consideration.

  3. Trail impacts and trail impact management related to ecotourism visitation at Torres del Paine National Park, Chile

    USGS Publications Warehouse

    Farrell, T.A.; Marion, J.L.

    2002-01-01

    Ecotourism and protected area visitation in Central and South America are largely dependent upon a relatively undisturbed quality of natural resources. However, visitation may impact vegetation, soil, water and wildlife resources, and degrade visitor facilities such as recreation sites and trails. Findings are reported from trail impact research conducted at Torres del Paine National Park in Patagonia, Chile. The frequency and magnitude of selected trail impacts and the relative effect of the amount of use, vegetation type, trail position and trail grade are investigated. Findings differed from previous studies in that amount of use was significantly related to both trail width increases and trail erosion. Management actions to minimize trail impacts are offered.

  4. Testing the Quick Seismic Event Locator and Magnitude Calculator (SSL_Calc) by Marsite Project Data Base

    NASA Astrophysics Data System (ADS)

    Tunc, Suleyman; Tunc, Berna; Caka, Deniz; Baris, Serif

    2016-04-01

    Locating and calculating size of the seismic events is quickly one of the most important and challenging issue in especially real time seismology. In this study, we developed a Matlab application to locate seismic events and calculate their magnitudes (Local Magnitude and empirical Moment Magnitude) using single station called SSL_Calc. This newly developed sSoftware has been tested on the all stations of the Marsite project "New Directions in Seismic Hazard Assessment through Focused Earth Observation in the Marmara Supersite-MARsite". SSL_Calc algorithm is suitable both for velocity and acceleration sensors. Data has to be in GCF (Güralp Compressed Format). Online or offline data can be selected in SCREAM software (belongs to Guralp Systems Limited) and transferred to SSL_Calc. To locate event P and S wave picks have to be marked by using SSL_Calc window manually. During magnitude calculation, instrument correction has been removed and converted to real displacement in millimeter. Then the displacement data is converted to Wood Anderson Seismometer output by using; Z=[0;0]; P=[-6.28+4.71j; -6.28-4.71j]; A0=[2080] parameters. For Local Magnitude calculation,; maximum displacement amplitude (A) and distance (dist) are used in formula (1) for distances up to 200km and formula (2) for more than 200km. ML=log10(A)-(-1.118-0.0647*dist+0.00071*dist2-3.39E-6*dist3+5.71e-9*dist4) (1) ML=log10(A)+(2.1173+0.0082*dist-0.0000059628*dist2) (2) Following Local Magnitude calculation, the programcode calculates two empiric Moment Magnitudes using formulas (3) Akkar et al. (2010) and (4) Ulusay et al. (2004). Mw=0.953* ML+0.422 (3) Mw=0.7768* ML+1.5921 (4) SSL_Calc is a software that is easy to implement and user friendly and offers practical solution to individual users to location of event and ML, Mw calculation.

  5. Extreme magnitude earthquakes and their economical impact: The Mexico City case

    NASA Astrophysics Data System (ADS)

    Chavez, M.; Mario, C.

    2005-12-01

    The consequences (estimated by the human and economical losses) of the recent occurrence (worldwide) of extreme magnitude (for the region under consideration) earthquakes, such as the 19 09 1985 in Mexico (Ritchter magnitude Ms 8.1, moment magnitude Mw 8.01), or the one in Indonesia of the 26 12 2004 (Ms 9.4, Mw 9.3), stress the importance of performing seismic hazard analysis that, specifically, incorporate this possibility. Herewith, we present and apply a methodology, based on plausible extreme seismic scenarios and the computation of their associated synthetic accelerograms, to estimate the seismic hazard on Mexico City (MC) stiff and compressible surficial soils. The uncertainties about the characteristics of the potential finite seismic sources, as well as those related to the dynamic properties of MC compressible soils are taken into account. The economic consequences (i.e. the seismic risk = seismic hazard x economic cost) implicit in the seismic coefficients proposed in MC seismic Codes before (1976) and after the 1985 earthquake (2004) are analyzed. Based on the latter and on an acceptable risk criterion, a maximum seismic coefficient (MSC) of 1.4g (g = 9.81m/s2) of the elastic acceleration design spectra (5 percent damping), which has a probability of exceedance of 2.4 x 10-4, seems to be appropriate for analyzing the seismic behavior of infrastructure located on MC compressible soils, if extreme Mw 8.5 subduction thrust mechanism earthquakes (similar to the one occurred on 19 09 1985 with an observed, equivalent, MSC of 1g) occurred in the next 50 years.

  6. Improving Preschoolers’ Arithmetic through Number Magnitude Training: The Impact of Non-Symbolic and Symbolic Training

    PubMed Central

    2016-01-01

    The numerical cognition literature offers two views to explain numerical and arithmetical development. The unique-representation view considers the approximate number system (ANS) to represent the magnitude of both symbolic and non-symbolic numbers and to be the basis of numerical learning. In contrast, the dual-representation view suggests that symbolic and non-symbolic skills rely on different magnitude representations and that it is the ability to build an exact representation of symbolic numbers that underlies math learning. Support for these hypotheses has come mainly from correlative studies with inconsistent results. In this study, we developed two training programs aiming at enhancing the magnitude processing of either non-symbolic numbers or symbolic numbers and compared their effects on arithmetic skills. Fifty-six preschoolers were randomly assigned to one of three 10-session-training conditions: (1) non-symbolic training (2) symbolic training and (3) control training working on story understanding. Both numerical training conditions were significantly more efficient than the control condition in improving magnitude processing. Moreover, symbolic training led to a significantly larger improvement in arithmetic than did non-symbolic training and the control condition. These results support the dual-representation view. PMID:27875540

  7. Efectos de la radiación UV en la salud

    EPA Pesticide Factsheets

    La reducción de la capa de ozono disminuye la protección natural que ofrece nuestra atmósfera contra la radiación ultravioleta (UV) perjudicial del sol. Esta página web proporciona una descripción general de los principales problemas de salud relacionados

  8. Life on the Number Line: Routes to Understanding Fraction Magnitude for Students with Difficulties Learning Mathematics

    ERIC Educational Resources Information Center

    Gersten, Russell; Schumacher, Robin F.; Jordan, Nancy C.

    2017-01-01

    Magnitude understanding is critical for students to develop a deep understanding of fractions and more advanced mathematics curriculum. The research reports in this special issue underscore magnitude understanding for fractions and emphasize number lines as both an assessment and an instructional tool. In this commentary, we discuss how number…

  9. 33 CFR 80.1118 - Marina Del Rey, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1118 Marina Del Rey, CA. (a) A line drawn from Marina Del Rey Breakwater South Light 1 to Marina Del Rey Light 4. (b) A line drawn from Marina Del Rey... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Marina Del Rey, CA. 80.1118...

  10. 33 CFR 80.1118 - Marina Del Rey, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1118 Marina Del Rey, CA. (a) A line drawn from Marina Del Rey Breakwater South Light 1 to Marina Del Rey Light 4. (b) A line drawn from Marina Del Rey... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Marina Del Rey, CA. 80.1118...

  11. 33 CFR 80.1118 - Marina Del Rey, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1118 Marina Del Rey, CA. (a) A line drawn from Marina Del Rey Breakwater South Light 1 to Marina Del Rey Light 4. (b) A line drawn from Marina Del Rey... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Marina Del Rey, CA. 80.1118...

  12. 33 CFR 80.1118 - Marina Del Rey, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1118 Marina Del Rey, CA. (a) A line drawn from Marina Del Rey Breakwater South Light 1 to Marina Del Rey Light 4. (b) A line drawn from Marina Del Rey... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Marina Del Rey, CA. 80.1118...

  13. 33 CFR 80.1118 - Marina Del Rey, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1118 Marina Del Rey, CA. (a) A line drawn from Marina Del Rey Breakwater South Light 1 to Marina Del Rey Light 4. (b) A line drawn from Marina Del Rey... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Marina Del Rey, CA. 80.1118...

  14. Moderate-magnitude earthquakes induced by magma reservoir inflation at Kīlauea Volcano, Hawai‘i

    USGS Publications Warehouse

    Wauthier, Christelle; Roman, Diana C.; Poland, Michael P.

    2013-01-01

    Although volcano-tectonic (VT) earthquakes often occur in response to magma intrusion, it is rare for them to have magnitudes larger than ~M4. On 24 May 2007, two shallow M4+ earthquakes occurred beneath the upper part of the east rift zone of Kīlauea Volcano, Hawai‘i. An integrated analysis of geodetic, seismic, and field data, together with Coulomb stress modeling, demonstrates that the earthquakes occurred due to strike-slip motion on pre-existing faults that bound Kīlauea Caldera to the southeast and that the pressurization of Kīlauea's summit magma system may have been sufficient to promote faulting. For the first time, we infer a plausible origin to generate rare moderate-magnitude VTs at Kīlauea by reactivation of suitably oriented pre-existing caldera-bounding faults. Rare moderate- to large-magnitude VTs at Kīlauea and other volcanoes can therefore result from reactivation of existing fault planes due to stresses induced by magmatic processes.

  15. Roles of testosterone and amygdaloid LTP induction in determining sex differences in fear memory magnitude.

    PubMed

    Chen, Li-Shen; Tzeng, Wen-Yu; Chuang, Jia-Ying; Cherng, Chianfang G; Gean, Po-Wu; Yu, Lung

    2014-08-01

    Women are thought to form fear memory more robust than men do and testosterone is suspected to play a role in determining such a sex difference. Mouse cued fear freezing was used to study the sex-related susceptibility and the role of testosterone in fear memory in humans. A 75-dB tone was found to provoke weak freezing, while 0.15-mA and 0.20-mA footshock caused strong freezing responses. No sex differences were noticed in the tone- or footshock-induced (naïve fear) freezing. Following the conditionings, female mice exhibited greater tone (cued fear)-induced freezing than did male mice. Nonetheless, female mice demonstrated indistinctive cued fear freezing across the estrous phases and ovariectomy did not affect such freezing in female mice. Orchidectomy enhanced the cued fear freezing in male mice. Systemic testosterone administrations and an intra-lateral nucleus of amygdala (LA) testosterone infusion diminished the cued fear freezing in orchidectomized male mice, while pretreatment with flutamide (Flu) eradicated these effects. Long-term potentiation (LTP) magnitude in LA has been known to correlate with the strength of the cued fear conditioning. We found that LA LTP magnitude was indeed greater in female than male mice. Orchidectomy enhanced LTP magnitude in males' LA, while ovariectomy decreased LTP magnitude in females' LA. Testosterone decreased LTP magnitude in orchidectomized males' LA and estradiol enhanced LTP magnitude in ovariectomized females' LA. Finally, male mice had lower LA GluR1 expression than female mice and orchidectomy enhanced the GluR1 expression in male mice. These findings, taken together, suggest that testosterone plays a critical role in rendering the sex differences in the cued fear freezing and LA LTP. Testosterone is negatively associated with LA LTP and the cued fear memory in male mice. However, ovarian hormones and LA LTP are loosely associated with the cued fear memory in female mice. Copyright © 2014 Elsevier Inc. All

  16. Differences in Arithmetic Performance between Chinese and German Children Are Accompanied by Differences in Processing of Symbolic Numerical Magnitude

    PubMed Central

    Lonnemann, Jan; Linkersdörfer, Janosch; Hasselhorn, Marcus; Lindberg, Sven

    2016-01-01

    Symbolic numerical magnitude processing skills are assumed to be fundamental to arithmetic learning. It is, however, still an open question whether better arithmetic skills are reflected in symbolic numerical magnitude processing skills. To address this issue, Chinese and German third graders were compared regarding their performance in arithmetic tasks and in a symbolic numerical magnitude comparison task. Chinese children performed better in the arithmetic tasks and were faster in deciding which one of two Arabic numbers was numerically larger. The group difference in symbolic numerical magnitude processing was fully mediated by the performance in arithmetic tasks. We assume that a higher degree of familiarity with arithmetic in Chinese compared to German children leads to a higher speed of retrieving symbolic numerical magnitude knowledge. PMID:27630606

  17. Estimation of daily stream flow of southeastern coastal plain watersheds by combining estimated magnitude and sequence

    Treesearch

    Herbert Ssegane; Devendra M. Amatya; E.W. Tollner; Zhaohua Dai; Jami E. Nettles

    2013-01-01

    Commonly used methods to predict streamflow at ungauged watersheds implicitly predict streamflow magnitude and temporal sequence concurrently. An alternative approach that has not been fully explored is the conceptualization of streamflow as a composite of two separable components of magnitude and sequence, where each component is estimated separately and then combined...

  18. Improving Correlation Algorithms to Detect and Characterize Smaller Magnitude Induced Seismicity Swarms

    NASA Astrophysics Data System (ADS)

    Skoumal, R.; Brudzinski, M.; Currie, B.

    2015-12-01

    Induced seismic sequences often occur as swarms that can include thousands of small (< M 2) earthquakes. While the identification of this microseismicity would invariably aid in the characterization and modeling of induced sequences, traditional earthquake detection techniques often provide incomplete catalogs, even when local networks are deployed. Because induced sequences often include scores of micro-earthquakes that prelude larger magnitude events, the identification of these small magnitude events would be crucial for the early identification of induced sequences. By taking advantage of the repeating, swarm-like nature of induced seismicity, a more robust catalog can be created using complementary correlation algorithms in near real-time without the reliance on traditional earthquake detection and association routines. Since traditional earthquake catalog methodologies using regional networks have a relatively high detection threshold (M 2+), we have sought to develop correlation routines that can detect smaller magnitude sequences. While short-term/long-term amplitude average detection algorithms requires significant signal-to-noise ratio at multiple stations for confident identification, a correlation detector is capable of identifying earthquakes with high confidence using just a single station. The result is an embarrassingly parallel task that can be employed for a network to be used as an early warning system for potentially induced seismicity while also better characterizing tectonic sequences beyond what traditional methods allow.

  19. Effects of different magnitudes of whole-body vibration on arm muscular performance.

    PubMed

    Marín, Pedro J; Herrero, Azael J; Sáinz, Nuria; Rhea, Matthew R; García-López, David

    2010-09-01

    The purpose of this study was to analyze the effects of different vibration magnitudes via feet on the number of repetitions performed, mean velocity, and perceived exertion during a set of elbow-extension exercise to failure (70% 1 repetition maximum [1RM] load). Twenty recreationally active students (14 men and 6 women) performed, in 3 different days, 1 elbow-extension set applying randomly 1 of the 3 experimental conditions: high magnitude (HM; 50 Hz and 2.51 mmp-p; 98.55 mxs-2), low magnitude (LM; 30 Hz and 1.15 mmp-p; 20.44 m.s-2) or control (Control, without vibration stimulus). Results indicate that the vibration via feet provides superimposed stimuli for elbow-extensor performance, enhancing the total number of repetitions performed in the HM and LM conditions, which was significantly higher (p

  20. Locations and magnitudes of historical earthquakes in the Sierra of Ecuador (1587-1996)

    NASA Astrophysics Data System (ADS)

    Beauval, Céline; Yepes, Hugo; Bakun, William H.; Egred, José; Alvarado, Alexandra; Singaucho, Juan-Carlos

    2010-06-01

    The whole territory of Ecuador is exposed to seismic hazard. Great earthquakes can occur in the subduction zone (e.g. Esmeraldas, 1906, Mw 8.8), whereas lower magnitude but shallower and potentially more destructive earthquakes can occur in the highlands. This study focuses on the historical crustal earthquakes of the Andean Cordillera. Several large cities are located in the Interandean Valley, among them Quito, the capital (~2.5 millions inhabitants). A total population of ~6 millions inhabitants currently live in the highlands, raising the seismic risk. At present, precise instrumental data for the Ecuadorian territory is not available for periods earlier than 1990 (beginning date of the revised instrumental Ecuadorian seismic catalogue); therefore historical data are of utmost importance for assessing seismic hazard. In this study, the Bakun & Wentworth method is applied in order to determine magnitudes, locations, and associated uncertainties for historical earthquakes of the Sierra over the period 1587-1976. An intensity-magnitude equation is derived from the four most reliable instrumental earthquakes (Mw between 5.3 and 7.1). Intensity data available per historical earthquake vary between 10 (Quito, 1587, Intensity >=VI) and 117 (Riobamba, 1797, Intensity >=III). The bootstrap resampling technique is coupled to the B&W method for deriving geographical confidence contours for the intensity centre depending on the data set of each earthquake, as well as confidence intervals for the magnitude. The extension of the area delineating the intensity centre location at the 67 per cent confidence level (+/-1σ) depends on the amount of intensity data, on their internal coherence, on the number of intensity degrees available, and on their spatial distribution. Special attention is dedicated to the few earthquakes described by intensities reaching IX, X and XI degrees. Twenty-five events are studied, and nineteen new epicentral locations are obtained, yielding

  1. Magnitude and Peak Amplitude Relationship for Microseismicity Induced by a Hydraulic Fracture Experiment

    NASA Astrophysics Data System (ADS)

    Smith, T.; Arce, A. C.; Ji, C.

    2016-12-01

    Waveform cross-correlation technique is widely used to improve the detection of small magnitude events induced by hydraulic fracturing. However, when events are detected, assigning a reliable magnitude is a challenging task, especially considering their small signal amplitude and high background noise during injections. In this study, we adopt the Match & Locate algorithm (M&L, Zhang and Wen, 2015) to analyze seven hours of continuous seismic observations from a hydraulic fracturing experiment in Central California. The site of the stimulated region is only 300-400m away from a 16-receiver vertical-borehole array which spans 230 m. The sampling rate is 4000 Hz. Both the injection sites and borehole array are more than 1.7 km below the surface. This dataset has previously been studied by an industry group, producing a catalog of 1134 events with moment magnitudes (Mw) ranging from -3.1 to -0.9. In this study, we select 202 events from this catalog with high signal to noise ratios to use as templates. Our M&L analysis produces a new catalog that contains 2119 events, which is 10 times more detections than the number of templates and about two times the original catalog. Using these two catalogs, we investigate the relationship of moment magnitude difference (ΔMW) and local magnitude difference (ΔML) between the detected event and corresponding template event. ΔML is computed using the peak amplitude ratio between the detected and template event for each channel. Our analysis yields an empirical relationship of ΔMW=0.64-0.65ΔML with an R2 of 0.99. The coefficient of 2/3 suggests that the information of the event's corner frequency is entirely lost (Hanks and Boore, 1984). The cause might not be unique, which implies that Earth's attenuation at this depth range (>1.7 km) is significant; or the 4000 Hz sampling rate is not sufficient. This relationship is crucial to estimate the b-value of the microseismicity induced by hydraulic fracture experiments. The analysis

  2. Variable-period surface-wave magnitudes: A rapid and robust estimator of seismic moments

    USGS Publications Warehouse

    Bonner, J.; Herrmann, R.; Benz, H.

    2010-01-01

    We demonstrate that surface-wave magnitudes (Ms), measured at local, regional, and teleseismic distances, can be used as a rapid and robust estimator of seismic moment magnitude (Mw). We used the Russell (2006) variable-period surface-wave magnitude formula, henceforth called Ms(VMAX), to estimate the Ms for 165 North American events with 3.2 magnitude units (m.u). The residuals between Mw [Ms(VMAX)] and Mw [Waveform Modeling] show a significant focal mechanism effect, especially when strike-slip events are compared with other mechanisms. Validation testing of this method suggests that Ms(VMAX)-predicted Mw's can be estimated within minutes after the origin of an event and are typically within ??0.2 m.u. of the final Mw[Waveform Modeling]. While Mw estimated from Ms(VMAX) has a slightly higher variance than waveform modeling results, it can be measured on the first short-period surface-wave observed at a local or near-regional distance seismic station after a preliminary epicentral location has been formed. Therefore, it may be used to make rapid measurements of Mw, which are needed by government agencies for early warning systems.

  3. Hubble Space Telescope Observations of M32: The Color-Magnitude Diagram

    NASA Technical Reports Server (NTRS)

    Grillmair, C. J.; Lauer, T. R.; Worthey, G.; Faber, S. M.; Freedman, W. L.; Madore, B. F.; Ajhar, E. A.; Baum, W. A.; Holtzman, J. A.; Lynds, C. R.; hide

    1996-01-01

    We present a V--I color-magnitude diagram for a region 1'--2' the center of M32 based on Hubble Space Telescope WFPC2 images. The broad color-luminosity distribution of red giants shows that the stellar population comprises stars with a wide range in metallicity.

  4. Relative Reinforcer Rates and Magnitudes Do Not Control Concurrent Choice Independently

    ERIC Educational Resources Information Center

    Elliffe, Douglas; Davison, Michael; Landon, Jason

    2008-01-01

    One assumption of the matching approach to choice is that different independent variables control choice independently of each other. We tested this assumption for reinforcer rate and magnitude in an extensive parametric experiment. Five pigeons responded for food reinforcement on switching-key concurrent variable-interval variable-interval…

  5. An improvement of drought monitoring through the use of a multivariate magnitude index

    NASA Astrophysics Data System (ADS)

    Real-Rangel, R. A.; Alcocer-Yamanaka, V. H.; Pedrozo-Acuña, A.; Breña-Naranjo, J. A.; Ocón-Gutiérrez, A. R.

    2017-12-01

    In drought monitoring activities it is widely acknowledged that the severity of an event is determined in relation to monthly values of univariate indices of one or more hydrological variables. Normally, these indices are estimated using temporal windows from 1 to 12 months or more to aggregate the effects of deficits in the variable of interest. However, the use of these temporal windows may lead to a misperception of both, the drought event intensity and the timing of its occurrence. In this context, this work presents the implementation of a trivariate drought magnitude index, considering key hydrological variables (e.g., precipitation, soil moisture and runoff) using for this the framework of the Multivariate Standardized Drought Index (MSDI). Despite the popularity and simplicity of the concept of drought magnitude for standardized drought indices, its implementation in drought monitoring and early warning systems has not been reported. This approach has been tested for operational purposes in the recently launched Multivariate Drought Monitor of Mexico (MOSEMM) and the results shows that the inclusion of a Magnitude index facilitates the drought detection and, thus, improves the decision making process for emergency managers.

  6. The impact of fraction magnitude knowledge on algebra performance and learning.

    PubMed

    Booth, Julie L; Newton, Kristie J; Twiss-Garrity, Laura K

    2014-02-01

    Knowledge of fractions is thought to be crucial for success with algebra, but empirical evidence supporting this conjecture is just beginning to emerge. In the current study, Algebra 1 students completed magnitude estimation tasks on three scales (0-1 [fractions], 0-1,000,000, and 0-62,571) just before beginning their unit on equation solving. Results indicated that fraction magnitude knowledge, and not whole number knowledge, was especially related to students' pretest knowledge of equation solving and encoding of equation features. Pretest fraction knowledge was also predictive of students' improvement in equation solving and equation encoding skills. Students' placement of unit fractions (e.g., those with a numerator of 1) was not especially useful for predicting algebra performance and learning in this population. Placement of non-unit fractions was more predictive, suggesting that proportional reasoning skills might be an important link between fraction knowledge and learning algebra. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Present-day stress magnitude at depth from leak-off tests in Italy

    NASA Astrophysics Data System (ADS)

    Mariucci, M. T.; Montone, P.; Pierdominici, S.

    2012-04-01

    We present new results from the analysis of leak-off tests, performed in deep oil wells in Italy, to characterize the present-day stress magnitude and regime in the crust. In the last years we have collected a large number of data (more than 500) from different stress indicators, mainly borehole breakouts, earthquake focal mechanisms and fault data, which provided information on the present-day stress orientations. In some areas the tectonic regime has been inferred either from fault plane solutions of M≥4 earthquakes or from stress inversions of smaller earthquakes. Where seismicity lacks, the regime is not well constrained and little or no information on the magnitude of the crustal stresses is available. In order to improve our knowledge in stress regime and its magnitude in Italy, in this work we use the leak-off test technique. Each test is performed at the bottom of an open hole by sealing off a section and then slowly pressurizing with a fluid until hydraulic tensile fractures develop. The minimum horizontal stress is inferred by leak-off pressure record, the vertical stress is computed by rock density data and the maximum horizontal stress is estimated applying a specific formula from the literature. Thanks to ENI S.p.A. (Italian oil company), that kindly provided new well data, we have been able to perform a critical review of our preliminary calculations and to enhance our previous results concerning stress magnitudes. Totally, we have analyzed 192 leak-off tests at depth between 200 and 5400m (average 1800m). In particular, wells are located along the Italian peninsula and in Sicily: most of them are in the Po Plain and along the Apenninic foredeep; few are in southern Apenninic belt and a few tens are in Sicily. After an accurate selection of the most robust results, we better characterize the Italian stress regime at depth.

  8. The Magnitude of Trial-By-Trial Neural Variability Is Reproducible over Time and across Tasks in Humans.

    PubMed

    Arazi, Ayelet; Gonen-Yaacovi, Gil; Dinstein, Ilan

    2017-01-01

    Numerous studies have shown that neural activity in sensory cortices is remarkably variable over time and across trials even when subjects are presented with an identical repeating stimulus or task. This trial-by-trial neural variability is relatively large in the prestimulus period and considerably smaller (quenched) following stimulus presentation. Previous studies have suggested that the magnitude of neural variability affects behavior such that perceptual performance is better on trials and in individuals where variability quenching is larger. To what degree are neural variability magnitudes of individual subjects flexible or static? Here, we used EEG recordings from adult humans to demonstrate that neural variability magnitudes in visual cortex are remarkably consistent across different tasks and recording sessions. While magnitudes of neural variability differed dramatically across individual subjects, they were surprisingly stable across four tasks with different stimuli, temporal structures, and attentional/cognitive demands as well as across experimental sessions separated by one year. These experiments reveal that, in adults, neural variability magnitudes are mostly solidified individual characteristics that change little with task or time, and are likely to predispose individual subjects to exhibit distinct behavioral capabilities.

  9. Manual del McVCO 1999

    USGS Publications Warehouse

    McChesney, P.J.

    1999-01-01

    El McVCO es un generador de frecuencias basado en un microcontrolador que reemplaza al oscilador controlado por voltaje (VCO) utilizado en telemetría analógica de datos sísmicas. Acepta señales de baja potencia desde un sismómetro y produce una señal subportadora modulada en frecuencia adecuada para enlaces telefónicos o vía radio a un lugar remoto de recolección de datos. La frecuencia de la subportadora y la ganancia pueden ser seleccionadas mediante un interruptor. Tiene la opción de poder operar con dos canales para la observación con ganancia alta y baja. El McVCO fue diseñado con el propósito de mejorar la telemetría analógica de las señales dentro de la Pacific Northwest Seismograph Network (PNSN) (Red Sismográfica del Noroeste del Pacífico). Su desarrollo recibió el respaldo del Programa de Geofísica de la Universidad de Washington y del "Volcano Hazards and Earthquake Hazards programs of the United States Geological Survey (USGS) (Programa de Investigaciones de Riesgos Volcánicos y Programa de Investigaciones de Riesgos Sísmicos de los EEUU). Cientos de instrumentos se han construido e instalado. Además de utilizarlo el PNSN, el McVCO es usado por el Observatorio Vulcanológico de Alaska para monitorear los volcanes aleutianos y por el USGS Volcano Disaster Assistance Program (Programa de Ayuda en las Catástrofes Volcánicas del USGS) para responder a crisis volcánicas en otros países. Este manual cubre el funcionamiento del McVCO, es una referencia técnica para aquellos que necesitan saber con más detalle cómo funciona el McVCO, y cubre una serie de temas que requieren un trato explícito o que derivan del despliegue del instrumento.

  10. Combined magnitude and phase-based segmentation of the cerebral cortex in 7T MR images of the elderly.

    PubMed

    Doan, Nhat Trung; van Rooden, Sanneke; Versluis, Maarten J; Webb, Andrew G; van der Grond, Jeroen; van Buchem, Mark A; Reiber, Johan H C; Milles, Julien

    2012-07-01

    To propose a new method that integrates both magnitude and phase information obtained from magnetic resonance (MR) T*(2) -weighted scans for cerebral cortex segmentation of the elderly. This method makes use of K-means clustering on magnitude and phase images to compute an initial segmentation, which is further refined by means of transformation with reconstruction criteria. The method was evaluated against the manual segmentation of 7T in vivo MR data of 20 elderly subjects (age = 67.7 ± 10.9). The added value of combining magnitude and phase was also evaluated by comparing the performance of the proposed method with the results obtained when limiting the available data to either magnitude or phase. The proposed method shows good overlap agreement, as quantified by the Dice Index (0.79 ± 0.04), limited bias (average relative volume difference = 2.94%), and reasonable volumetric correlation (R = 0.555, p = 0.011). Using the combined magnitude and phase information significantly improves the segmentation accuracy compared with using either magnitude or phase. This study suggests that the proposed method is an accurate and robust approach for cerebral cortex segmentation in datasets presenting low gray/white matter contrast. Copyright © 2012 Wiley Periodicals, Inc.

  11. The Relationship between Spatial and Temporal Magnitude Estimation of Scientific Concepts at Extreme Scales

    NASA Astrophysics Data System (ADS)

    Price, Aaron; Lee, H.

    2010-01-01

    Many astronomical objects, processes, and events exist and occur at extreme scales of spatial and temporal magnitudes. Our research draws upon the psychological literature, replete with evidence of linguistic and metaphorical links between the spatial and temporal domains, to compare how students estimate spatial and temporal magnitudes associated with objects and processes typically taught in science class.. We administered spatial and temporal scale estimation tests, with many astronomical items, to 417 students enrolled in 12 undergraduate science courses. Results show that while the temporal test was more difficult, students’ overall performance patterns between the two tests were mostly similar. However, asymmetrical correlations between the two tests indicate that students think of the extreme ranges of spatial and temporal scales in different ways, which is likely influenced by their classroom experience. When making incorrect estimations, students tended to underestimate the difference between the everyday scale and the extreme scales on both tests. This suggests the use of a common logarithmic mental number line for both spatial and temporal magnitude estimation. However, there are differences between the two tests in the errors student make in the everyday range. Among the implications discussed is the use of spatio-temporal reference frames, instead of smooth bootstrapping, to help students maneuver between scales of magnitude and the use of logarithmic transformations between reference frames. Implications for astronomy range from learning about spectra to large scale galaxy structure.

  12. The Codevelopment of Children's Fraction Arithmetic Skill and Fraction Magnitude Understanding

    ERIC Educational Resources Information Center

    Bailey, Drew H.; Hansen, Nicole; Jordan, Nancy C.

    2017-01-01

    The importance of fraction knowledge to later mathematics achievement, along with U.S. students' poor knowledge of fraction concepts and procedures, has prompted research on the development of fraction learning. In the present study, participants' (N = 536) development of fraction magnitude understanding and fraction arithmetic skills was assessed…

  13. Mole Pi: Using New Technology to Teach the Magnitude of a Mole

    ERIC Educational Resources Information Center

    Geyer, Michael J.

    2014-01-01

    A modified technique for demonstrating the magnitude of Avogadro's number using a new Raspberry Pi computer and the Python language is described. The technique also provides students the opportunity to review dimensional analysis.

  14. The Type Ia Supernova Color-Magnitude Relation and Host Galaxy Dust: A Simple Hierarchical Bayesian Model

    NASA Astrophysics Data System (ADS)

    Mandel, Kaisey S.; Scolnic, Daniel M.; Shariff, Hikmatali; Foley, Ryan J.; Kirshner, Robert P.

    2017-06-01

    Conventional Type Ia supernova (SN Ia) cosmology analyses currently use a simplistic linear regression of magnitude versus color and light curve shape, which does not model intrinsic SN Ia variations and host galaxy dust as physically distinct effects, resulting in low color-magnitude slopes. We construct a probabilistic generative model for the dusty distribution of extinguished absolute magnitudes and apparent colors as the convolution of an intrinsic SN Ia color-magnitude distribution and a host galaxy dust reddening-extinction distribution. If the intrinsic color-magnitude (M B versus B - V) slope {β }{int} differs from the host galaxy dust law R B , this convolution results in a specific curve of mean extinguished absolute magnitude versus apparent color. The derivative of this curve smoothly transitions from {β }{int} in the blue tail to R B in the red tail of the apparent color distribution. The conventional linear fit approximates this effective curve near the average apparent color, resulting in an apparent slope {β }{app} between {β }{int} and R B . We incorporate these effects into a hierarchical Bayesian statistical model for SN Ia light curve measurements, and analyze a data set of SALT2 optical light curve fits of 248 nearby SNe Ia at z< 0.10. The conventional linear fit gives {β }{app}≈ 3. Our model finds {β }{int}=2.3+/- 0.3 and a distinct dust law of {R}B=3.8+/- 0.3, consistent with the average for Milky Way dust, while correcting a systematic distance bias of ˜0.10 mag in the tails of the apparent color distribution. Finally, we extend our model to examine the SN Ia luminosity-host mass dependence in terms of intrinsic and dust components.

  15. Modelo analítico del efecto de PRS sobre satélites GPS

    NASA Astrophysics Data System (ADS)

    Meza, A.; Brunini, C.; Usandivaras, J. C.

    componente semidiurna. El modelo analítico planteado en este trabajo, predice el comportamiento de los residuos que se observan en las publicaciones más recientes. Esto abre el camino para plantear una estimación distinta de las incógnitas del problema, basado en el método de colocación por mínimos cuadrados. Ello requiere modelar estadísticamente la señal debida a las componentes de la PRS que no son tomadas en cuenta en el modelo determinista.

  16. Earthquake magnitude estimation using the τ c and P d method for earthquake early warning systems

    NASA Astrophysics Data System (ADS)

    Jin, Xing; Zhang, Hongcai; Li, Jun; Wei, Yongxiang; Ma, Qiang

    2013-10-01

    Earthquake early warning (EEW) systems are one of the most effective ways to reduce earthquake disaster. Earthquake magnitude estimation is one of the most important and also the most difficult parts of the entire EEW system. In this paper, based on 142 earthquake events and 253 seismic records that were recorded by the KiK-net in Japan, and aftershocks of the large Wenchuan earthquake in Sichuan, we obtained earthquake magnitude estimation relationships using the τ c and P d methods. The standard variances of magnitude calculation of these two formulas are ±0.65 and ±0.56, respectively. The P d value can also be used to estimate the peak ground motion of velocity, then warning information can be released to the public rapidly, according to the estimation results. In order to insure the stability and reliability of magnitude estimation results, we propose a compatibility test according to the natures of these two parameters. The reliability of the early warning information is significantly improved though this test.

  17. Ácaros del mango

    USDA-ARS?s Scientific Manuscript database

    Los ácaros constituyen un grupo abundante y diverso que ocupa diferentes hábitats en árboles frutales y la estructura y disposición del follaje y ramas del mango, contribuyen significativamente a que se presente gran diversidad de ácaros benéficos y dañinos asociados a esta especie frutal. En Colomb...

  18. Symbolic Numerical Magnitude Processing Is as Important to Arithmetic as Phonological Awareness Is to Reading

    PubMed Central

    Vanbinst, Kiran; Ansari, Daniel; Ghesquière, Pol; De Smedt, Bert

    2016-01-01

    In this article, we tested, using a 1-year longitudinal design, whether symbolic numerical magnitude processing or children’s numerical representation of Arabic digits, is as important to arithmetic as phonological awareness is to reading. Children completed measures of symbolic comparison, phonological awareness, arithmetic, reading at the start of third grade and the latter two were retested at the start of fourth grade. Cross-sectional and longitudinal correlations indicated that symbolic comparison was a powerful domain-specific predictor of arithmetic and that phonological awareness was a unique predictor of reading. Crucially, the strength of these independent associations was not significantly different. This indicates that symbolic numerical magnitude processing is as important to arithmetic development as phonological awareness is to reading and suggests that symbolic numerical magnitude processing is a good candidate for screening children at risk for developing mathematical difficulties. PMID:26942935

  19. The Type Ia Supernova Color-Magnitude Relation and Host Galaxy Dust: A Simple Hierarchical Bayesian Model

    NASA Astrophysics Data System (ADS)

    Mandel, Kaisey; Scolnic, Daniel; Shariff, Hikmatali; Foley, Ryan; Kirshner, Robert

    2017-01-01

    Inferring peak optical absolute magnitudes of Type Ia supernovae (SN Ia) from distance-independent measures such as their light curve shapes and colors underpins the evidence for cosmic acceleration. SN Ia with broader, slower declining optical light curves are more luminous (“broader-brighter”) and those with redder colors are dimmer. But the “redder-dimmer” color-luminosity relation widely used in cosmological SN Ia analyses confounds its two separate physical origins. An intrinsic correlation arises from the physics of exploding white dwarfs, while interstellar dust in the host galaxy also makes SN Ia appear dimmer and redder. Conventional SN Ia cosmology analyses currently use a simplistic linear regression of magnitude versus color and light curve shape, which does not model intrinsic SN Ia variations and host galaxy dust as physically distinct effects, resulting in low color-magnitude slopes. We construct a probabilistic generative model for the dusty distribution of extinguished absolute magnitudes and apparent colors as the convolution of an intrinsic SN Ia color-magnitude distribution and a host galaxy dust reddening-extinction distribution. If the intrinsic color-magnitude (MB vs. B-V) slope βint differs from the host galaxy dust law RB, this convolution results in a specific curve of mean extinguished absolute magnitude vs. apparent color. The derivative of this curve smoothly transitions from βint in the blue tail to RB in the red tail of the apparent color distribution. The conventional linear fit approximates this effective curve near the average apparent color, resulting in an apparent slope βapp between βint and RB. We incorporate these effects into a hierarchical Bayesian statistical model for SN Ia light curve measurements, and analyze a dataset of SALT2 optical light curve fits of 277 nearby SN Ia at z < 0.10. The conventional linear fit obtains βapp ≈ 3. Our model finds a βint = 2.2 ± 0.3 and a distinct dust law of RB = 3.7 ± 0

  20. Magnitude of flood flows for selected annual exceedance probabilities in Rhode Island through 2010

    USGS Publications Warehouse

    Zarriello, Phillip J.; Ahearn, Elizabeth A.; Levin, Sara B.

    2012-01-01

    Heavy persistent rains from late February through March 2010 caused severe widespread flooding in Rhode Island that set or nearly set record flows and water levels at many long-term streamgages in the State. In response, the U.S. Geological Survey, in partnership with the Federal Emergency Management Agency, conducted a study to update estimates of flood magnitudes at streamgages and regional equations for estimating flood flows at ungaged locations. This report provides information needed for flood plain management, transportation infrastructure design, flood insurance studies, and other purposes that can help minimize future flood damages and risks. The magnitudes of floods were determined from the annual peak flows at 43 streamgages in Rhode Island (20 sites), Connecticut (14 sites), and Massachusetts (9 sites) using the standard Bulletin 17B log-Pearson type III method and a modification of this method called the expected moments algorithm (EMA) for 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probability (AEP) floods. Annual-peak flows were analyzed for the period of record through the 2010 water year; however, records were extended at 23 streamgages using the maintenance of variance extension (MOVE) procedure to best represent the longest period possible for determining the generalized skew and flood magnitudes. Generalized least square regression equations were developed from the flood quantiles computed at 41 streamgages (2 streamgages in Rhode Island with reported flood quantiles were not used in the regional regression because of regulation or redundancy) and their respective basin characteristics to estimate magnitude of floods at ungaged sites. Of 55 basin characteristics evaluated as potential explanatory variables, 3 were statistically significant—drainage area, stream density, and basin storage. The pseudo-coefficient of determination (pseudo-R2) indicates these three explanatory variables explain 95 to 96 percent of the variance

  1. The colour-magnitude relation as a constraint on the formation of rich cluster galaxies

    NASA Astrophysics Data System (ADS)

    Bower, Richard G.; Kodama, Tadayuki; Terlevich, Ale

    1998-10-01

    The colours and magnitudes of early-type galaxies in galaxy clusters are strongly correlated. The existence of such a correlation has been used to infer that early-type galaxies must be old passively evolving systems. Given the dominance of early-type galaxies in the cores of rich clusters, this view sits uncomfortably with the increasing fraction of blue galaxies found in clusters at intermediate redshifts, and with the late formation of galaxies favoured by cold dark matter type cosmologies. In this paper, we make a detailed investigation of these issues and examine the role that the colour-magnitude relation can play in constraining the formation history of galaxies currently found in the cores of rich clusters. We start by considering the colour evolution of galaxies after star formation ceases. We show that the scatter of the colour-magnitude relation places a strong constraint on the spread in age that is allowed for the bulk of the stellar population. In the extreme case that the stars are formed in a single event, the spread in age cannot be more than 4 Gyr. Although the bulk of stars must be formed in a short period, continuing formation of stars in a fraction of the galaxies is not so strongly constrained. We examine a model in which star formation occurs over an extended period of time in most galaxies with star formation being truncated randomly. This model is consistent with the formation of stars in a few systems until look-back times of ~5Gyr. An extension of this type of star formation history allows us to reconcile the small present-day scatter of the colour-magnitude relation with the observed blue galaxy fractions of intermediate redshift galaxy clusters. In addition to setting a limit on the variations in luminosity-weighted age between the stellar populations of cluster galaxies, the colour-magnitude relation can also be used to constrain the degree of merging between pre-existing stellar systems. This test relies on the slope of the colour-magnitude

  2. Reflection magnitude as a predictor of mortality: the Multi-Ethnic Study of Atherosclerosis.

    PubMed

    Zamani, Payman; Jacobs, David R; Segers, Patrick; Duprez, Daniel A; Brumback, Lyndia; Kronmal, Richard A; Lilly, Scott M; Townsend, Raymond R; Budoff, Matthew; Lima, Joao A; Hannan, Peter; Chirinos, Julio A

    2014-11-01

    Arterial wave reflections have been associated with mortality in an ethnically homogenous Asian population. It is unknown whether this association is present in a multiethnic population or whether it is independent of subclinical atherosclerosis. We hypothesized that reflection magnitude (defined as the ratio of the amplitude of the backward wave [Pb] to that of the forward wave [Pf]) is associated with all-cause mortality in a large multiethnic adult community-based sample. We studied 5984 participants enrolled in the Multi-Ethnic Study of Atherosclerosis who had analyzable arterial tonometry waveforms. During 9.8±1.7 years of follow-up, 617 deaths occurred, of which 134 (22%) were adjudicated cardiovascular deaths. In Cox proportional hazards models, each 10% increase in reflection magnitude was associated with a 31% increased risk for all-cause mortality (hazard ratio [HR]=1.31; 95% confidence interval [CI]=1.11-1.55; P=0.001). This relationship persisted after adjustment for various confounders and for markers of subclinical atherosclerosis (HR=1.23; 95% CI=1.01-1.51; P=0.04), including the coronary calcium score, ankle-brachial index, common carotid intima-media thickness, and ascending thoracic aortic Agatston score. Pb was independently associated with all-cause mortality in a similarly adjusted model (HR per 10 mm Hg increase in P(b)=2.18; 95% CI=1.21-3.92; P=0.009). Reflection magnitude (HR=1.71; 95% CI=1.06-2.77; P=0.03) and P(b) (HR=5.02; 95% CI=1.29-19.42; P=0.02) were mainly associated with cardiovascular mortality. In conclusion, reflection magnitude is independently associated with all-cause mortality in a multiethnic population initially free of clinically evident cardiovascular disease. This relationship persists after adjustment for a comprehensive set of markers of subclinical atherosclerosis. © 2014 American Heart Association, Inc.

  3. Effect of Maturation of the Magnitude of Mechanosensitive and Chemosensitive Reflexes in the Premature Human Esophagus

    PubMed Central

    Jadcherla, Sudarshan Rao; Hoffmann, Raymond G.; Shaker, Reza

    2014-01-01

    Objectives To investigate the effect of esophageal mechanosensitive and chemosensitive stimulation on the magnitude and recruitment of peristaltic reflexes and upper esophageal sphincter (UES)-contractile reflex in premature infants. Study design Esophageal manometry and provocation testing were performed in the same 18 neonates at 33 and 36 weeks postmenstrual age (PMA). Mechanoreceptor and chemoreceptor stimulation were performed using graded volumes of air, water, and apple juice (pH 3.7), respectively. The frequency and magnitude of the resulting esophago-deglutition response (EDR) or secondary peristalsis (SP), and esophago-UES-contractile reflex (EUCR) were quantified. Results Threshold volumes to evoke EDR, SP, or EUCR were similar. The recruitment and magnitude of SP and EUCR increased with volume increments of air and water in either study (P < .05). However, apple juice infusions resulted in increased recruitment of EDR in the 33 weeks group (P < .05), and SP in the 36 weeks group (P < .05). The magnitude of EUCR was also volume responsive (all media, P < .05), and significant differences between media were noted (P < .05). At maximal stimulation (1 mL, all media), sensory-motor characteristics of peristaltic and EUCR reflexes were different (P < .05) between media and groups. Conclusions Mechano- and chemosensitive stimuli evoke volume-dependent specific peristaltic and UES reflexes at 33 and 36 weeks PMA. The recruitment and magnitude of these reflexes are dependent on the physicochemical properties of the stimuli in healthy premature infants. PMID:16860132

  4. Causality between expansion of seismic cloud and maximum magnitude of induced seismicity in geothermal field

    NASA Astrophysics Data System (ADS)

    Mukuhira, Yusuke; Asanuma, Hiroshi; Ito, Takatoshi; Häring, Markus

    2016-04-01

    Occurrence of induced seismicity with large magnitude is critical environmental issues associated with fluid injection for shale gas/oil extraction, waste water disposal, carbon capture and storage, and engineered geothermal systems (EGS). Studies for prediction of the hazardous seismicity and risk assessment of induced seismicity has been activated recently. Many of these studies are based on the seismological statistics and these models use the information of the occurrence time and event magnitude. We have originally developed physics based model named "possible seismic moment model" to evaluate seismic activity and assess seismic moment which can be ready to release. This model is totally based on microseismic information of occurrence time, hypocenter location and magnitude (seismic moment). This model assumes existence of representative parameter having physical meaning that release-able seismic moment per rock volume (seismic moment density) at given field. Seismic moment density is to be estimated from microseismic distribution and their seismic moment. In addition to this, stimulated rock volume is also inferred by progress of microseismic cloud at given time and this quantity can be interpreted as the rock volume which can release seismic energy due to weakening effect of normal stress by injected fluid. Product of these two parameters (equation (1)) provide possible seismic moment which can be released from current stimulated zone as a model output. Difference between output of this model and observed cumulative seismic moment corresponds the seismic moment which will be released in future, based on current stimulation conditions. This value can be translated into possible maximum magnitude of induced seismicity in future. As this way, possible seismic moment can be used to have feedback to hydraulic stimulation operation in real time as an index which can be interpreted easily and intuitively. Possible seismic moment is defined as equation (1), where D

  5. The volcanic explosivity index /VEI/ - An estimate of explosive magnitude for historical volcanism

    NASA Technical Reports Server (NTRS)

    Newhall, C. G.; Self, S.

    1982-01-01

    A composite estimate of the magnitude of past explosive eruptions, referred to as the Volcanic Explosivity Index (VEI), is proposed as a semiquantitative compromise between poor data and the need in various disciplines to evaluate the record of past volcanism. The VEI is assigned to more than 8000 historic and prehistoric eruptions. It is shown that the VEI can help detect incompleteness and reporting biases and can help in selecting subsets of the historical record suitable for each study. The VEI is a composite estimate of Walkers (1980) magnitude and/or intensity and/or destructiveness and/or (less frequently) dispersive power, violence, and energy release rate, depending on the data that are available.

  6. Magnitude and Origin of Electrical Noise at Individual Grain Boundaries in Graphene.

    PubMed

    Kochat, Vidya; Tiwary, Chandra Sekhar; Biswas, Tathagata; Ramalingam, Gopalakrishnan; Hsieh, Kimberly; Chattopadhyay, Kamanio; Raghavan, Srinivasan; Jain, Manish; Ghosh, Arindam

    2016-01-13

    Grain boundaries (GBs) are undesired in large area layered 2D materials as they degrade the device quality and their electronic performance. Here we show that the grain boundaries in graphene which induce additional scattering of carriers in the conduction channel also act as an additional and strong source of electrical noise especially at the room temperature. From graphene field effect transistors consisting of single GB, we find that the electrical noise across the graphene GBs can be nearly 10 000 times larger than the noise from equivalent dimensions in single crystalline graphene. At high carrier densities (n), the noise magnitude across the GBs decreases as ∝1/n, suggesting Hooge-type mobility fluctuations, whereas at low n close to the Dirac point, the noise magnitude could be quantitatively described by the fluctuations in the number of propagating modes across the GB.

  7. Type Ia Supernova Intrinsic Magnitude Dispersion and the Fitting of Cosmological Parameters

    NASA Astrophysics Data System (ADS)

    Kim, A. G.

    2011-02-01

    I present an analysis for fitting cosmological parameters from a Hubble diagram of a standard candle with unknown intrinsic magnitude dispersion. The dispersion is determined from the data, simultaneously with the cosmological parameters. This contrasts with the strategies used to date. The advantages of the presented analysis are that it is done in a single fit (it is not iterative), it provides a statistically founded and unbiased estimate of the intrinsic dispersion, and its cosmological-parameter uncertainties account for the intrinsic-dispersion uncertainty. Applied to Type Ia supernovae, my strategy provides a statistical measure to test for subtypes and assess the significance of any magnitude corrections applied to the calibrated candle. Parameter bias and differences between likelihood distributions produced by the presented and currently used fitters are negligibly small for existing and projected supernova data sets.

  8. On the use of Gaia magnitudes and new tables of bolometric corrections

    NASA Astrophysics Data System (ADS)

    Casagrande, L.; VandenBerg, Don A.

    2018-06-01

    The availability of reliable bolometric corrections and reddening estimates, rather than the quality of parallaxes will be one of the main limiting factors in determining the luminosities of a large fraction of Gaia stars. With this goal in mind, we provide Gaia GBP, G, and GRP synthetic photometry for the entire MARCS grid, and test the performance of our synthetic colours and bolometric corrections against space-borne absolute spectrophotometry. We find indication of a magnitude-dependent offset in Gaia DR2 G magnitudes, which must be taken into account in high accuracy investigations. Our interpolation routines are easily used to derive bolometric corrections at desired stellar parameters, and to explore the dependence of Gaia photometry on Teff, log g, {[Fe/H]}, [α /{Fe}] and E(B - V). Gaia colours for the Sun and Vega, and Teff-dependent extinction coefficients, are also provided.

  9. Differences in arithmetic performance between Chinese and German adults are accompanied by differences in processing of non-symbolic numerical magnitude

    PubMed Central

    Lonnemann, Jan; Li, Su; Zhao, Pei; Li, Peng; Linkersdörfer, Janosch; Lindberg, Sven; Hasselhorn, Marcus; Yan, Song

    2017-01-01

    Human beings are assumed to possess an approximate number system (ANS) dedicated to extracting and representing approximate numerical magnitude information. The ANS is assumed to be fundamental to arithmetic learning and has been shown to be associated with arithmetic performance. It is, however, still a matter of debate whether better arithmetic skills are reflected in the ANS. To address this issue, Chinese and German adults were compared regarding their performance in simple arithmetic tasks and in a non-symbolic numerical magnitude comparison task. Chinese participants showed a better performance in solving simple arithmetic tasks and faster reaction times in the non-symbolic numerical magnitude comparison task without making more errors than their German peers. These differences in performance could not be ascribed to differences in general cognitive abilities. Better arithmetic skills were thus found to be accompanied by a higher speed of retrieving non-symbolic numerical magnitude knowledge but not by a higher precision of non-symbolic numerical magnitude representations. The group difference in the speed of retrieving non-symbolic numerical magnitude knowledge was fully mediated by the performance in arithmetic tasks, suggesting that arithmetic skills shape non-symbolic numerical magnitude processing skills. PMID:28384191

  10. Effects of Reinforcer Magnitude and Distribution on Preference for Work Schedules

    ERIC Educational Resources Information Center

    Ward-Horner, John C.; Pittenger, Alexis; Pace, Gary; Fienup, Daniel M.

    2014-01-01

    When the overall magnitude of reinforcement is matched between 2 alternative work schedules, some students prefer to complete all of their work for continuous access to a reinforcer (continuous work) rather than distributed access to a reinforcer while they work (discontinuous work). We evaluated a student's preference for continuous work by…

  11. The Magnitude Response Learning Tool for DSP Education: A Case Study

    ERIC Educational Resources Information Center

    Kulmer, Florian; Wurzer, Christian Gun; Geiger, Bernhard C.

    2016-01-01

    Many concepts in digital signal processing are intuitive, despite being mathematically challenging. The lecturer not only has to teach the complicated math but should also help students develop intuition about the concept. To aid the lecturer in this task, the Magnitude Response Learning Tool has been introduced, a computer-based learning game…

  12. Selection Dynamics in Joint Matching to Rate and Magnitude of Reinforcement

    ERIC Educational Resources Information Center

    McDowell, J. J.; Popa, Andrei; Calvin, Nicholas T.

    2012-01-01

    Virtual organisms animated by a selectionist theory of behavior dynamics worked on concurrent random interval schedules where both the rate and magnitude of reinforcement were varied. The selectionist theory consists of a set of simple rules of selection, recombination, and mutation that act on a population of potential behaviors by means of a…

  13. Effect of Reinforcer Magnitude on Performance Maintained by Progressive-Ratio Schedules

    ERIC Educational Resources Information Center

    Rickard, J. F.; Body, S.; Zhang, Z.; Bradshaw, C. M.; Szabadi, E.

    2009-01-01

    This experiment examined the relationship between reinforcer magnitude and quantitative measures of performance on progressive-ratio schedules. Fifteen rats were trained under a progressive-ratio schedule in seven phases of the experiment in which the volume of a 0.6-M sucrose solution reinforcer was varied within the range 6-300 microliters.…

  14. Does Sensitivity to Magnitude Depend on the Temporal Distribution of Reinforcement?

    ERIC Educational Resources Information Center

    Grace, Randolph C.; Bragason, Orn

    2005-01-01

    Our research addressed the question of whether sensitivity to relative reinforcer magnitude in concurrent chains depends on the distribution of reinforcer delays when the terminal-link schedules are equal. In Experiment 1, 12 pigeons responded in a two-component procedure. In both components, the initial links were concurrent variable-interval 40…

  15. Efectos del material particulado (PM) sobre la salud y el medioambiente

    EPA Pesticide Factsheets

    El tamaño de las partículas se encuentra directamente vinculado con el potencial para provocar problemas de salud. La exposición a estas partículas puede afectar tanto a los pulmones como al corazón. También afectan el medioambiente.

  16. Testing the linearity and independence assumptions of the generalized matching law for reinforcer magnitude: a residual meta-analysis.

    PubMed

    Cording, Jacinta R; McLean, Anthony P; Grace, Randolph C

    2011-05-01

    We conducted a residual meta-analysis to test the assumptions of the generalized matching law that effects of relative reinforcer magnitude on response allocation in concurrent schedules can be described by a power function and are independent from the effects of relative reinforcer rate. We identified five studies which varied magnitude ratios over at least four levels and six studies in which reinforcer rate and magnitude ratios were varied factorially. The generalized matching law provided a reasonably good description of the data, accounting for 77.1% and 90.1% of the variance in the two sets of studies. Results of polynomial regressions showed that there were no systematic patterns in pooled residuals as a function of predicted log response ratios for data sets in which relative magnitude was varied. For data sets in which relative rate and magnitude were varied factorially, there was a significant negative cubic pattern in the pooled residuals, suggesting that obtained response allocation was less extreme than predicted for conditions with extreme predicted values. However, subsequent analyses showed that this result was associated with results from conditions in one study in which the product of the rate and magnitude ratios was 63:1, and in which response allocation may have been attenuated by a ceiling effect. When data from these conditions were omitted, there were no significant components in the residuals. Although the number of available studies was small, results provide tentative support for the assumptions of the generalized matching law that effects of reinforcer magnitude ratios on choice can be described by a power function and are independent from reinforcer rate ratios. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Transformation of Pan-STARRS1 gri to Stetson BVRI magnitudes. Photometry of small bodies observations.

    NASA Astrophysics Data System (ADS)

    Kostov, A.; Bonev, T.

    2018-02-01

    The UBVRI broad band photometric system is widely used in CCD astronomy. There are a lot of sets of standard stars for this photometric system, the Landolt's and Stetson's catalogues being the most precise and reliable. Another photometric system, recently considerably spread in CCD observations is ugriz, which originates from the Sloan Digital Sky Survey (SDSS) and has now many variations based on its 5 broad-band filters. One of the photometric systems based on it is The Panoramic Survey Telescope and Rapid Response System (Pan-STARRS). In this paper we compare the BVRI magnitudes in the Stetson catalogue of standard stars with the magnitudes of the corresponding stars in the Pan-STARRS1 (PS1) grizyw catalogue. Transformations between these two systems are presented and discussed. An algorithm for data reduction and calibration is developed and its functionality is demonstrated in the magnitude determination of an asteroid.

  18. Quantification of neotectonic stress orientations and magnitudes from field observations in Finnmark, northern Norway

    NASA Astrophysics Data System (ADS)

    Pascal, Christophe; Roberts, David; Gabrielsen, Roy H.

    2005-05-01

    Fieldwork was conducted in Finnmark, northern Norway, with the purpose of detecting and measuring stress-relief features, induced by quarrying and road works, and to derive from them valuable information on the shallow-crustal stress orientations and magnitudes. Two kinds of stress-relief features were considered in this study. The first consists of drillhole offsets that were found along blasted road-cuts and which were triggered by the sudden rock unloading following the actual blasting. Vertical axial fractures found in the concave remains of boreholes represent the second kind of stress-relief feature. The axial fractures are tension fractures produced by gas overpressure inside the drillhole when the blast occurs. As such, their strike reflects the orientation of the ambient maximum horizontal stress axis. The borehole offsets show mostly reverse-slip displacements to the E-SE and the axial fractures trend NW-SE on average, in agreement with NW-SE compression induced by North Atlantic ridge-push forces. Mechanical considerations of the slip planes offsetting some of the drillholes lead to the conclusion that the magnitude of the maximum horizontal stress at the surface is in the range ˜0.1-˜1 MPa. This range of magnitudes is 1-2 orders less than the horizontal stress magnitudes measured at the surface in other post-glacial environments (e.g. Canada). It is suggested that this difference is related to the marked decline in stress that followed the tremendous post-glacial burst of earthquake activity that affected Fennoscandia but apparently not the Canadian Shield.

  19. Arm swing magnitude and asymmetry during gait in the early stages of Parkinson's disease.

    PubMed

    Lewek, Michael D; Poole, Roxanne; Johnson, Julia; Halawa, Omar; Huang, Xuemei

    2010-02-01

    The later stages of Parkinson's disease (PD) are characterized by altered gait patterns. Although decreased arm swing during gait is the most frequently reported motor dysfunction in individuals with PD, quantitative descriptions of gait in early PD have largely ignored upper extremity movements. This study was designed to perform a quantitative analysis of arm swing magnitude and asymmetry that might be useful in the assessment of early PD. Twelve individuals with early PD (in "off" state) and eight controls underwent gait analysis using an optically-based motion capture system. Participants were instructed to walk at normal and fast velocities, and then on heels (to minimize push-off). Arm swing was measured as the excursion of the wrist with respect to the pelvis. Arm swing magnitude for each arm, and inter-arm asymmetry, were compared between groups. Both groups had comparable gait velocities (p = 0.61), and there was no significant difference between the groups in the magnitude of arm swing in all walking conditions for the arm that swung more (p = 0.907) or less (p = 0.080). Strikingly, the PD group showed significantly greater arm swing asymmetry (asymmetry angle: 13.9 + or - 7.9%) compared to the control group (asymmetry angle: 5.1 + or - 4.0%; p = 0.003). Unlike arm swing magnitude, arm swing asymmetry unequivocally differs between people with early PD and controls. Such quantitative evaluation of arm swing, especially its asymmetry, may have utility for early and differential diagnosis, and for tracking disease progression in patients with later PD. Copyright 2009 Elsevier B.V. All rights reserved.

  20. Arm Swing Magnitude and Asymmetry During Gait in the Early Stages of Parkinson's Disease

    PubMed Central

    Lewek, Michael D.; Poole, Roxanne; Johnson, Julia; Halawa, Omar; Huang, Xuemei

    2009-01-01

    The later stages of Parkinson's disease (PD) are characterized by altered gait patterns. Although decreased arm swing during gait is the most frequently reported motor dysfunction in individuals with PD, quantitative descriptions of gait in early PD have largely ignored upper extremity movements. This study was designed to perform a quantitative analysis of arm swing magnitude and asymmetry that might be useful in the assessment of early PD. Twelve individuals with early PD (in “off” state) and eight controls underwent gait analysis using an optically-based motion capture system. Participants were instructed to walk at normal and fast velocities, and then on heels (to minimize push-off). Arm swing was measured as the excursion of the wrist with respect to the pelvis. Arm swing magnitude for each arm, and inter-arm asymmetry, were compared between groups. Both groups had comparable gait velocities (p=0.61), and there was no significant difference between the groups in the magnitude of arm swing in all walking conditions for the arm that swung more (p=0.907) or less (p=0.080). Strikingly, the PD group showed significantly greater arm swing asymmetry (asymmetry angle: 13.9±7.9%) compared to the control group (asymmetry angle: 5.1±4.0%; p=0.003). Unlike arm swing magnitude, arm swing asymmetry unequivocally differs between people with early PD and controls. Such quantitative evaluation of arm swing, especially its asymmetry, may have utility for early and differential diagnosis, and for tracking disease progression in patients with later PD. PMID:19945285

  1. Magnitude and Rupture Area Scaling Relationships of Seismicity at The Northwest Geysers EGS Demonstration Project

    NASA Astrophysics Data System (ADS)

    Dreger, D. S.; Boyd, O. S.; Taira, T.; Gritto, R.

    2017-12-01

    Enhanced Geothermal System (EGS) resource development requires knowledge of subsurface physical parameters to quantify the evolution of fracture networks. Spatio-temporal source properties, including source dimension, rupture area, slip, rupture speed, and slip velocity of induced seismicity are of interest at The Geysers geothermal field, northern California to map the coseismic facture density of the EGS swarm. In this investigation we extend our previous finite-source analysis of selected M>4 earthquakes to examine source properties of smaller magnitude seismicity located in the Northwest Geysers Enhanced Geothermal System (EGS) demonstration project. Moment rate time histories of the source are found using empirical Green's function (eGf) deconvolution using the method of Mori (1993) as implemented by Dreger et al. (2007). The moment rate functions (MRFs) from data recorded using the Lawrence Berkeley National Laboratory (LBNL) short-period geophone network are inverted for finite-source parameters including the spatial distribution of fault slip, rupture velocity, and the orientation of the causative fault plane. The results show complexity in the MRF for the studied earthquakes. Thus far the estimated rupture area and the magnitude-area trend of the smaller magnitude Geysers seismicity is found to agree with the empirical relationships of Wells and Coppersmith (1994) and Leonard (2010), which were developed for much larger M>5.5 earthquakes worldwide indicating self-similar behavior extending to M2 earthquakes. We will present finite-source inversion results of the micro-earthquakes, attempting to extend the analysis to sub Mw, and demonstrate their magnitude-area scaling. The extension of the scaling laws will then enable the mapping of coseismic fracture density of the EGS swarm in the Northwest Geysers based on catalog moment magnitude estimates.

  2. Weber’s Law, the Magnitude Effect and Discrimination of Sugar Concentrations in Nectar-Feeding Animals

    PubMed Central

    Nachev, Vladislav; Stich, Kai Petra; Winter, York

    2013-01-01

    Weber’s law quantifies the perception of difference between stimuli. For instance, it can explain why we are less likely to detect the removal of three nuts from a bowl if the bowl is full than if it is nearly empty. This is an example of the magnitude effect – the phenomenon that the subjective perception of a linear difference between a pair of stimuli progressively diminishes when the average magnitude of the stimuli increases. Although discrimination performances of both human and animal subjects in various sensory modalities exhibit the magnitude effect, results sometimes systematically deviate from the quantitative predictions based on Weber’s law. An attempt to reformulate the law to better fit data from acoustic discrimination tasks has been dubbed the “near-miss to Weber’s law”. Here, we tested the gustatory discrimination performance of nectar-feeding bats (Glossophaga soricina), in order to investigate whether the original version of Weber’s law accurately predicts choice behavior in a two-alternative forced choice task. As expected, bats either preferred the sweeter of the two options or showed no preference. In 4 out of 6 bats the near-miss to Weber’s law provided a better fit and Weber’s law underestimated the magnitude effect. In order to test the generality of this observation in nectar-feeders, we reviewed previously published data on bats, hummingbirds, honeybees, and bumblebees. In all groups of animals the near-miss to Weber’s law provided better fits than Weber’s law. Furthermore, whereas the magnitude effect was stronger than predicted by Weber’s law in vertebrates, it was weaker than predicted in insects. Thus nectar-feeding vertebrates and insects seem to differ in how their choice behavior changes as sugar concentration is increased. We discuss the ecological and evolutionary implications of the observed patterns of sugar concentration discrimination. PMID:24040189

  3. Low-Magnitude, High-Frequency Vibration Fails to Accelerate Ligament Healing but Stimulates Collagen Synthesis in the Achilles Tendon.

    PubMed

    Thompson, William R; Keller, Benjamin V; Davis, Matthew L; Dahners, Laurence E; Weinhold, Paul S

    2015-05-01

    Low-magnitude, high-frequency vibration accelerates fracture and wound healing and prevents disuse atrophy in musculoskeletal tissues. To investigate the role of low-magnitude, high-frequency vibration as a treatment to accelerate healing of an acute ligament injury and to examine gene expression in the intact Achilles tendon of the injured limb after low-magnitude, high-frequency vibration. Controlled laboratory study. Complete surgical transection of the medial collateral ligament (MCL) was performed in 32 Sprague-Dawley rats, divided into control and low-magnitude, high-frequency vibration groups. Low-magnitude, high-frequency vibration started on postoperative day 2, and rats received vibration for 30 minutes a day for 12 days. All rats were sacrificed 2 weeks after the operation, and their intact and injured MCLs were biomechanically tested or used for histological analysis. Intact Achilles tendons from the injured limb were evaluated for differences in gene expression. Mechanical testing revealed no differences in the ultimate tensile load or the structural stiffness between the control and vibration groups for either the injured or intact MCL. Vibration exposure increased gene expression of collagen 1 alpha (3-fold), interleukin 6 (7-fold), cyclooxygenase 2 (5-fold), and bone morphogenetic protein 12 (4-fold) in the intact Achilles tendon when compared with control tendons ( P < .05). While no differences were observed in the mechanical or histological properties of the fully transected MCL after low-magnitude, high-frequency vibration treatment, significant enhancements in gene expression were observed in the intact Achilles tendon. These included collagen, several inflammatory cytokines, and growth factors critical for tendons. As low-magnitude, high-frequency vibration had no negative effects on ligament healing, vibration therapy may be a useful tool to accelerate healing of other tissues (bone) in multitrauma injuries without inhibiting ligament healing

  4. The character of scaling earthquake source spectra for Kamchatka in the 3.5-6.5 magnitude range

    NASA Astrophysics Data System (ADS)

    Gusev, A. A.; Guseva, E. M.

    2017-02-01

    The properties of the source spectra of local shallow-focus earthquakes on Kamchatka in the range of magnitudes M w = 3.5-6.5 are studied using 460 records of S-waves obtained at the PET station. The family of average source spectra is constructed; the spectra are used to study the relationship between M w and the key quasi-dimensionless source parameters: stress drop Δσ and apparent stress σa. It is found that the parameter Δσ is almost stable, while σa grows steadily as the magnitude M w increases, indicating that the similarity is violated. It is known that at sufficiently large M w the similarity hypothesis is approximately valid: both parameters Δσ and σa do not show any noticeable magnitude dependence. It has been established that M w ≈ 5.7 is the threshold value of the magnitude when the change in regimes described occurs for the conditions on Kamchatka.

  5. Torres del Paine National Park

    NASA Image and Video Library

    2017-12-08

    Grinding glaciers and granite peaks mingle in Chile’s Torres del Paine National Park. The Advanced Land Imager (ALI) on NASA’s Earth Observing-1 (EO-1) satellite captured this summertime image of the park on January 21, 2013. This image shows just a portion of the park, including Grey Glacier and the mountain range of Cordillera del Paine. The rivers of glacial ice in Torres del Paine National Park grind over bedrock, turning some of that rock to dust. Many of the glaciers terminate in freshwater lakes, which are rich with glacial flour that colors them brown to turquoise. Skinny rivers connect some of the lakes to each other (image upper and lower right). Cordillera del Paine rises between some of the wide glacial valleys. The compact mountain range is a combination of soaring peaks and small glaciers, most notably the Torres del Paine (Towers of Paine), three closely spaced peaks emblematic of the mountain range and the larger park. By human standards, the mountains of Cordillera del Paine are quite old. But compared to the Rocky Mountains (70 million years old), and the Appalachians (about 480 million years), the Cordillera del Paine are very young—only about 12 million years old. A study published in 2008 described how scientists used zircon crystals to estimate the age of Cordillera del Paine. The authors concluded that the mountain range was built in three pulses, creating a granite laccolith, or dome-shaped feature, more than 2,000 meters (7,000 feet) thick. NASA Earth Observatory image created by Jesse Allen and Robert Simmon, using Advanced Land Imager data from the NASA EO-1 team. Caption by Michon Scott. Instrument: EO-1 - ALI View more info: earthobservatory.nasa.gov/IOTD/view.php?id=80266 Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA

  6. Estudio del comportamiento tribologico y de las interacciones de superficie de nuevos nanofluidos ionicos

    NASA Astrophysics Data System (ADS)

    Espinosa Rodriguez, Tulia

    tribocorrosion processes. The formation of a coating layer on magnesium alloys from phosphonate imidazolium ionic liquids by immersion and by chronoamperometry has been described. The new coatings reduce the abrasive wear in the magnesium-aluminium alloy but they are not effective in the magnesium-zinc alloy, which prevent the formation of continuous coatings. Los liquidos ionicos son sales liquidas a temperatura ambiente o bajas temperaturas que presentan excelentes propiedades fisico-quimicas. En el presente trabajo se estudian como lubricantes en problemas tribologicos complejos como la lubricacion de metales contra si mismos, el desarrollo de lubricantes base agua y de nuevas superficies autolubricadas. Cuando no es posible reducir la friccion y desgaste mediante lubricacion, como en las aleaciones de magnesio, los liquidos ionicos se han estudiado como precursores de recubrimientos protectores. Se han determinado las interacciones superficiales y los procesos de corrosion sobre cobre y sobre acero con diferentes liquidos ionicos proticos y aproticos para desarrollar nuevos lubricantes y aditivos. En el contacto cobre/cobre, excepto el liquido ionico protico derivado del oleato, todos los liquidos ionicos estudiados presentan mejor comportamiento tribologico que el lubricante comercial Polialfaolefina 6. En el contacto acero/zafiro, los nuevos liquidos ionicos proticos son buenos lubricantes cuando se utilizan en estado puro, y, como aditivos en agua, generan peliculas adsorbidas sobre la superficie del metal reduciendo la friccion y el desgaste tras la evaporacion del agua. Para evitar el periodo de alta friccion inicial en presencia de agua, se han generado peliculas superficiales de liquido ionico sobre el acero en condiciones estaticas. El mejor comportamiento lubricante tanto en el contacto cobre/cobre como en el contacto acero/zafiro se obtiene para el liquido ionico protico derivado del anion adipato, con dos grupos carboxilicos. Las interacciones de los grupos

  7. Trabecular bone adaptation to low-magnitude high-frequency loading in microgravity.

    PubMed

    Torcasio, Antonia; Jähn, Katharina; Van Guyse, Maarten; Spaepen, Pieter; Tami, Andrea E; Vander Sloten, Jos; Stoddart, Martin J; van Lenthe, G Harry

    2014-01-01

    Exposure to microgravity causes loss of lower body bone mass in some astronauts. Low-magnitude high-frequency loading can stimulate bone formation on earth. Here we hypothesized that low-magnitude high-frequency loading will also stimulate bone formation under microgravity conditions. Two groups of six bovine cancellous bone explants were cultured at microgravity on a Russian Foton-M3 spacecraft and were either loaded dynamically using a sinusoidal curve or experienced only a static load. Comparable reference groups were investigated at normal gravity. Bone structure was assessed by histology, and mechanical competence was quantified using μCT and FE modelling; bone remodelling was assessed by fluorescent labelling and secreted bone turnover markers. Statistical analyses on morphometric parameters and apparent stiffness did not reveal significant differences between the treatment groups. The release of bone formation marker from the groups cultured at normal gravity increased significantly from the first to the second week of the experiment by 90.4% and 82.5% in response to static and dynamic loading, respectively. Bone resorption markers decreased significantly for the groups cultured at microgravity by 7.5% and 8.0% in response to static and dynamic loading, respectively. We found low strain magnitudes to drive bone turnover when applied at high frequency, and this to be valid at normal as well as at microgravity. In conclusion, we found the effect of mechanical loading on trabecular bone to be regulated mainly by an increase of bone formation at normal gravity and by a decrease in bone resorption at microgravity. Additional studies with extended experimental time and increased samples number appear necessary for a further understanding of the anabolic potential of dynamic loading on bone quality and mechanical competence.

  8. A Job with a Future? Delay Discounting, Magnitude Effects, and Domain Independence of Utility for Career Decisions.

    ERIC Educational Resources Information Center

    Schoenfelder, Thomas E.; Hantula, Donald A.

    2003-01-01

    Seniors (n=20) assessed two job offers with differences in domain (salary/tasks), delay (career-long earnings), and magnitude (initial salary offer). Contrary to discounted utility theory, choices reflected nonconstant discount rates for future salary/tasks (delay effect), lower discount rates for salary/preferred tasks (magnitude effect), and a…

  9. Earthquake Magnitude: A Teaching Module for the Spreadsheets Across the Curriculum Initiative

    NASA Astrophysics Data System (ADS)

    Wetzel, L. R.; Vacher, H. L.

    2006-12-01

    Spreadsheets Across the Curriculum (SSAC) is a library of computer-based activities designed to reinforce or teach quantitative-literacy or mathematics concepts and skills in context. Each activity (called a "module" in the SSAC project) consists of a PowerPoint presentation with embedded Excel spreadsheets. Each module focuses on one or more problems for students to solve. Each student works through a presentation, thinks about the in-context problem, figures out how to solve it mathematically, and builds the spreadsheets to calculate and examine answers. The emphasis is on mathematical problem solving. The intention is for the in- context problems to span the entire range of subjects where quantitative thinking, number sense, and math non-anxiety are relevant. The self-contained modules aim to teach quantitative concepts and skills in a wide variety of disciplines (e.g., health care, finance, biology, and geology). For example, in the Earthquake Magnitude module students create spreadsheets and graphs to explore earthquake magnitude scales, wave amplitude, and energy release. In particular, students realize that earthquake magnitude scales are logarithmic. Because each step in magnitude represents a 10-fold increase in wave amplitude and approximately a 30-fold increase in energy release, large earthquakes are much more powerful than small earthquakes. The module has been used as laboratory and take-home exercises in small structural geology and solid earth geophysics courses with upper level undergraduates. Anonymous pre- and post-tests assessed students' familiarity with Excel as well as other quantitative skills. The SSAC library consists of 27 modules created by a community of educators who met for one-week "module-making workshops" in Olympia, Washington, in July of 2005 and 2006. The educators designed the modules at the workshops both to use in their own classrooms and to make available for others to adopt and adapt at other locations and in other classes

  10. Local magnitude determinations for intermountain seismic belt earthquakes from broadband digital data

    USGS Publications Warehouse

    Pechmann, J.C.; Nava, S.J.; Terra, F.M.; Bernier, J.C.

    2007-01-01

    The University of Utah Seismograph Stations (UUSS) earthquake catalogs for the Utah and Yellowstone National Park regions contain two types of size measurements: local magnitude (ML) and coda magnitude (MC), which is calibrated against ML. From 1962 through 1993, UUSS calculated ML values for southern and central Intermountain Seismic Belt earthquakes using maximum peak-to-peak (p-p) amplitudes on paper records from one to five Wood-Anderson (W-A) seismographs in Utah. For ML determinations of earthquakes since 1994, UUSS has utilized synthetic W-A seismograms from U.S. National Seismic Network and UUSS broadband digital telemetry stations in the region, which numbered 23 by the end of our study period on 30 June 2002. This change has greatly increased the percentage of earthquakes for which ML can be determined. It is now possible to determine ML for all M ???3 earthquakes in the Utah and Yellowstone regions and earthquakes as small as M <1 in some areas. To maintain continuity in the magnitudes in the UUSS earthquake catalogs, we determined empirical ML station corrections that minimize differences between MLs calculated from paper and synthetic W-A records. Application of these station corrections, in combination with distance corrections from Richter (1958) which have been in use at UUSS since 1962, produces ML values that do not show any significant distance dependence. ML determinations for the Utah and Yellowstone regions for 1981-2002 using our station corrections and Richter's distance corrections have provided a reliable data set for recalibrating the MC scales for these regions. Our revised ML values are consistent with available moment magnitude determinations for Intermountain Seismic Belt earthquakes. To facilitate automatic ML measurements, we analyzed the distribution of the times of maximum p-p amplitudes in synthetic W-A records. A 30-sec time window for maximum amplitudes, beginning 5 sec before the predicted Sg time, encompasses 95% of the

  11. Tezacaftor/Ivacaftor in Subjects with Cystic Fibrosis and F508del/F508del-CFTR or F508del/G551D-CFTR.

    PubMed

    Donaldson, Scott H; Pilewski, Joseph M; Griese, Matthias; Cooke, Jon; Viswanathan, Lakshmi; Tullis, Elizabeth; Davies, Jane C; Lekstrom-Himes, Julie A; Wang, Linda T

    2018-01-15

    Tezacaftor (formerly VX-661) is an investigational small molecule that improves processing and trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) in vitro, and improves CFTR function alone and in combination with ivacaftor. To evaluate the safety and efficacy of tezacaftor monotherapy and of tezacaftor/ivacaftor combination therapy in subjects with cystic fibrosis homozygous for F508del or compound heterozygous for F508del and G551D. This was a randomized, placebo-controlled, double-blind, multicenter, phase 2 study (NCT01531673). Subjects homozygous for F508del received tezacaftor (10 to 150 mg) every day alone or in combination with ivacaftor (150 mg every 12 h) in a dose escalation phase, as well as in a dosage regimen testing phase. Subjects compound heterozygous for F508del and G551D, taking physician-prescribed ivacaftor, received tezacaftor (100 mg every day). Primary endpoints were safety through Day 56 and change in sweat chloride from baseline through Day 28. Secondary endpoints included change in percent predicted FEV 1 (ppFEV 1 ) from baseline through Day 28 and pharmacokinetics. The incidence of adverse events was similar across treatment arms. Tezacaftor (100 mg every day)/ivacaftor (150 mg every 12 h) resulted in a 6.04 mmol/L decrease in sweat chloride and 3.75 percentage point increase in ppFEV 1 in subjects homozygous for F508del, and a 7.02 mmol/L decrease in sweat chloride and 4.60 percentage point increase in ppFEV 1 in subjects compound heterozygous for F508del and G551D from baseline through Day 28 (P < 0.05 for all). These results support continued clinical development of tezacaftor (100 mg every day) in combination with ivacaftor (150 mg every 12 h) in subjects with cystic fibrosis. Clinical trial registered with www.clinicaltrials.gov (NCT01531673).

  12. The American Indian High School Dropout: The Magnitude of the Problem.

    ERIC Educational Resources Information Center

    Selinger, Alphonse D.

    The magnitude of the dropout problem among Indians was illustrated by a study which followed students registered in grade 8 as of November 1962 through June 1967. Statistics were gathered by area, state, type of school, tribal group, and majority-minority position of Indian students in the 6-state area of Oregon, Washington, Idaho, Montana, South…

  13. Image Reconstruction from Sparse Irregular Intensity Interferometry Measurements of Fourier Magnitude

    DTIC Science & Technology

    2013-09-01

    of baselines than would a pattern with equal spacing . Nevertheless, many of the telescope pairs have equivalent baselines resulting in...magnitude to a spatial domain representation of the object, sparse and irregular spacing of the measurements in the Fourier plane, and low SNR...any particular geometry of the telescope array configuration. Its inputs are a list of measurements, each

  14. Kurt Gödels Brünner Verwandte

    NASA Astrophysics Data System (ADS)

    Müller, Dora

    2007-11-01

    The author of this memoir Dora Müller (born 1920) belongs - as well as Kurt Gödel-to the German minority playing an important role in the past life of Brno. The marriage of his son included her among the Gödels collaterals. She was chemist, but also pianist, historician, participant of antinacist movement and iniciator of Czech-German understanding after war. Following her personal experiences, remembrances of Gödels relatives and documental materials, she evokes the atmosphere of broader family milieu of Kurt Gödel.

  15. The effects of earthquake measurement concepts and magnitude anchoring on individuals' perceptions of earthquake risk

    USGS Publications Warehouse

    Celsi, R.; Wolfinbarger, M.; Wald, D.

    2005-01-01

    The purpose of this research is to explore earthquake risk perceptions in California. Specifically, we examine the risk beliefs, feelings, and experiences of lay, professional, and expert individuals to explore how risk is perceived and how risk perceptions are formed relative to earthquakes. Our results indicate that individuals tend to perceptually underestimate the degree that earthquake (EQ) events may affect them. This occurs in large part because individuals' personal felt experience of EQ events are generally overestimated relative to experienced magnitudes. An important finding is that individuals engage in a process of "cognitive anchoring" of their felt EQ experience towards the reported earthquake magnitude size. The anchoring effect is moderated by the degree that individuals comprehend EQ magnitude measurement and EQ attenuation. Overall, the results of this research provide us with a deeper understanding of EQ risk perceptions, especially as they relate to individuals' understanding of EQ measurement and attenuation concepts. ?? 2005, Earthquake Engineering Research Institute.

  16. Estimating Seismic Hazards from the Catalog of Taiwan Earthquakes from 1900 to 2014 in Terms of Maximum Magnitude

    NASA Astrophysics Data System (ADS)

    Chen, Kuei-Pao; Chang, Wen-Yen

    2017-04-01

    Maximum expected earthquake magnitude is an important parameter when designing mitigation measures for seismic hazards. This study calculated the maximum magnitude of potential earthquakes for each cell in a 0.1° × 0.1° grid of Taiwan. Two zones vulnerable to maximum magnitudes of M w ≥6.0, which will cause extensive building damage, were identified: one extends from Hsinchu southward to Taichung, Nantou, Chiayi, and Tainan in western Taiwan; the other extends from Ilan southward to Hualian and Taitung in eastern Taiwan. These zones are also characterized by low b values, which are consistent with high peak ground shaking. We also employed an innovative method to calculate (at intervals of M w 0.5) the bounds and median of recurrence time for earthquakes of magnitude M w 6.0-8.0 in Taiwan.

  17. The novel c.247_249delTTC (p.F83del) GJB2 mutation in a family with prelingual sensorineural deafness.

    PubMed

    Petersen, Michael B; Grigoriadou, Maria; Koutroumpe, Maria; Kokotas, Haris

    2012-07-01

    Non-syndromic hearing loss is one of the most common hereditary determined diseases in human, and the disease is a genetically heterogeneous disorder. Mutations in the GJB2 gene, encoding connexin 26 (Cx26), are a major cause of non-syndromic recessive hearing impairment in many countries and are largely dependent on ethnic groups. Due to the high frequency of the c.35delG GJB2 mutation in the Greek population, we have previously suggested that Greek patients with sensorineural, non-syndromic deafness should be tested for the c.35delG mutation and the coding region of the GJB2 gene should be sequenced in c.35delG heterozygotes. Here we present on the clinical and molecular genetic evaluation of a family suffering from prelingual, sensorineural, non-syndromic deafness. A novel c.247_249delTTC (p.F83del) GJB2 mutation was detected in compound heterozygosity with the c.35delG GJB2 mutation in the proband and was later confirmed in the father, while the mother was homozygous for the c.35delG GJB2 mutation. We conclude that compound heterozygosity of the novel c.247_249delTTC (p.F83del) and the c.35delG mutations in the GJB2 gene was the cause of deafness in the proband and his father. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Locations and magnitudes of historical earthquakes in the Sierra of Ecuador (1587–1996)

    USGS Publications Warehouse

    Beauval, Celine; Yepes, Hugo; Bakun, William H.; Egred, Jose; Alvarado, Alexandra; Singaucho, Juan-Carlos

    2010-01-01

    The whole territory of Ecuador is exposed to seismic hazard. Great earthquakes can occur in the subduction zone (e.g. Esmeraldas, 1906, Mw8.8), whereas lower magnitude but shallower and potentially more destructive earthquakes can occur in the highlands. This study focuses on the historical crustal earthquakes of the Andean Cordillera. Several large cities are located in the Interandean Valley, among them Quito, the capital (∼2.5 millions inhabitants). A total population of ∼6 millions inhabitants currently live in the highlands, raising the seismic risk. At present, precise instrumental data for the Ecuadorian territory is not available for periods earlier than 1990 (beginning date of the revised instrumental Ecuadorian seismic catalogue); therefore historical data are of utmost importance for assessing seismic hazard. In this study, the Bakun & Wentworth method is applied in order to determine magnitudes, locations, and associated uncertainties for historical earthquakes of the Sierra over the period 1587–1976. An intensity-magnitude equation is derived from the four most reliable instrumental earthquakes (Mwbetween 5.3 and 7.1). Intensity data available per historical earthquake vary between 10 (Quito, 1587, Intensity ≥VI) and 117 (Riobamba, 1797, Intensity ≥III). The bootstrap resampling technique is coupled to the B&W method for deriving geographical confidence contours for the intensity centre depending on the data set of each earthquake, as well as confidence intervals for the magnitude. The extension of the area delineating the intensity centre location at the 67 per cent confidence level (±1σ) depends on the amount of intensity data, on their internal coherence, on the number of intensity degrees available, and on their spatial distribution. Special attention is dedicated to the few earthquakes described by intensities reaching IX, X and XI degrees. Twenty-five events are studied, and nineteen new epicentral locations are obtained, yielding

  19. Numerical magnitude processing in abacus-trained children with superior mathematical ability: an EEG study*

    PubMed Central

    Huang, Jian; Du, Feng-lei; Yao, Yuan; Wan, Qun; Wang, Xiao-song; Chen, Fei-yan

    2015-01-01

    Distance effect has been regarded as the best established marker of basic numerical magnitude processes and is related to individual mathematical abilities. A larger behavioral distance effect is suggested to be concomitant with lower mathematical achievement in children. However, the relationship between distance effect and superior mathematical abilities is unclear. One could get superior mathematical abilities by acquiring the skill of abacus-based mental calculation (AMC), which can be used to solve calculation problems with exceptional speed and high accuracy. In the current study, we explore the relationship between distance effect and superior mathematical abilities by examining whether and how the AMC training modifies numerical magnitude processing. Thus, mathematical competencies were tested in 18 abacus-trained children (who accepted the AMC training) and 18 non-trained children. Electroencephalography (EEG) waveforms were recorded when these children executed numerical comparison tasks in both Arabic digit and dot array forms. We found that: (a) the abacus-trained group had superior mathematical abilities than their peers; (b) distance effects were found both in behavioral results and on EEG waveforms; (c) the distance effect size of the average amplitude on the late negative-going component was different between groups in the digit task, with a larger effect size for abacus-trained children; (d) both the behavioral and EEG distance effects were modulated by the notation. These results revealed that the neural substrates of magnitude processing were modified by AMC training, and suggested that the mechanism of the representation of numerical magnitude for children with superior mathematical abilities was different from their peers. In addition, the results provide evidence for a view of non-abstract numerical representation. PMID:26238541

  20. How fault geometry controls earthquake magnitude

    NASA Astrophysics Data System (ADS)

    Bletery, Q.; Thomas, A.; Karlstrom, L.; Rempel, A. W.; Sladen, A.; De Barros, L.

    2016-12-01

    Recent large megathrust earthquakes, such as the Mw9.3 Sumatra-Andaman earthquake in 2004 and the Mw9.0 Tohoku-Oki earthquake in 2011, astonished the scientific community. The first event occurred in a relatively low-convergence-rate subduction zone where events of its size were unexpected. The second event involved 60 m of shallow slip in a region thought to be aseismicaly creeping and hence incapable of hosting very large magnitude earthquakes. These earthquakes highlight gaps in our understanding of mega-earthquake rupture processes and the factors controlling their global distribution. Here we show that gradients in dip angle exert a primary control on mega-earthquake occurrence. We calculate the curvature along the major subduction zones of the world and show that past mega-earthquakes occurred on flat (low-curvature) interfaces. A simplified analytic model demonstrates that shear strength heterogeneity increases with curvature. Stress loading on flat megathrusts is more homogeneous and hence more likely to be released simultaneously over large areas than on highly-curved faults. Therefore, the absence of asperities on large faults might counter-intuitively be a source of higher hazard.

  1. A Novel Method for Age Estimation in Solar-Type Stars Through GALEX FUV Magnitudes

    NASA Astrophysics Data System (ADS)

    Ho, Kelly; Subramonian, Arjun; Smith, Graeme; Shouru Shieh

    2018-01-01

    Utilizing an inverse association known to exist between Galaxy Evolution Explorer (GALEX) far ultraviolet (FUV) magnitudes and the chromospheric activity of F, G, and K dwarfs, we explored a method of age estimation in solar-type stars through GALEX FUV magnitudes. Sample solar-type star data were collected from refereed publications and filtered by B-V and absolute visual magnitude to ensure similarities in temperature and luminosity to the Sun. We determined FUV-B and calculated a residual index Q for all the stars, using the temperature-induced upper bound on FUV-B as the fiducial. Plotting current age estimates for the stars against Q, we discovered a strong and significant association between the variables. By applying a log-linear transformation to the data to produce a strong correlation between Q and loge Age, we confirmed the association between Q and age to be exponential. Thus, least-squares regression was used to generate an exponential model relating Q to age in solar-type stars, which can be used by astronomers. The Q-method of stellar age estimation is simple and more efficient than existing spectroscopic methods and has applications to galactic archaeology and stellar chemical composition analysis.

  2. Estudio del CH interestelar

    NASA Astrophysics Data System (ADS)

    Olano, C.; Lemarchand, G.; Sanz, A. J.; Bava, J. A.

    El objetivo principal de este proyecto consiste en el estudio de la distribución y abundancia del CH en nubes interestelares a través de la observación de las líneas hiperfinas del CH en 3,3 GHz. El CH es una molécula de amplia distribución en el espacio interestelar y una de las pocas especies que han sido observadas tanto con técnicas de radio como ópticas. Desde el punto de vista tecnológico se ha desarrollado un cabezal de receptor que permitirá la realización de observaciones polarimétricas en la frecuencia de 3,3 GHz, con una temperatura del sistema de 60 K y un ancho de banda de 140 MHz, y que será instalado en el foco primario de la antena parabólica del IAR. El cabezal del receptor es capaz de detectar señales polarizadas, separando las componentes de polarización circular derecha e izquierda. Para tal fin el cabezal consta de dos ramas receptoras que amplificarán la señal y la trasladarán a una frecuencia más baja (frecuencia intermedia), permitiendo de esa forma un mejor transporte de la señal a la sala de control para su posterior procesamiento. El receptor además de tener características polarimétricas, podrá ser usado en el continuo y en la línea, utilizando las ventajas observacionales y de procesamiento de señal que actualmente posee el IAR.

  3. The unique and shared contributions of arithmetic operation understanding and numerical magnitude representation to children's mathematics achievement.

    PubMed

    Wong, Terry Tin-Yau

    2017-12-01

    The current study examined the unique and shared contributions of arithmetic operation understanding and numerical magnitude representation to children's mathematics achievement. A sample of 124 fourth graders was tested on their arithmetic operation understanding (as reflected by their understanding of arithmetic principles and the knowledge about the application of arithmetic operations) and their precision of rational number magnitude representation. They were also tested on their mathematics achievement and arithmetic computation performance as well as the potential confounding factors. The findings suggested that both arithmetic operation understanding and numerical magnitude representation uniquely predicted children's mathematics achievement. The findings highlight the significance of arithmetic operation understanding in mathematics learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Improved instrumental magnitude prediction expected from version 2 of the NASA SKY2000 master star catalog

    NASA Technical Reports Server (NTRS)

    Sande, C. B.; Brasoveanu, D.; Miller, A. C.; Home, A. T.; Tracewell, D. A.; Warren, W. H., Jr.

    1998-01-01

    The SKY2000 Master Star Catalog (MC), Version 2 and its predecessors have been designed to provide the basic astronomical input data needed for satellite acquisition and attitude determination on NASA spacecraft. Stellar positions and proper motions are the primary MC data required for operations support followed closely by the stellar brightness observed in various standard astronomical passbands. The instrumental red-magnitude prediction subsystem (REDMAG) in the MMSCAT software package computes the expected instrumental color index (CI) [sensor color correction] from an observed astronomical stellar magnitude in the MC and the characteristics of the stellar spectrum, astronomical passband, and sensor sensitivity curve. The computation is more error prone the greater the mismatch of the sensor sensitivity curve characteristics and those of the observed astronomical passbands. This paper presents the preliminary performance analysis of a typical red-sensitive CCDST during acquisition of sensor data from the two Ball CT-601 ST's onboard the Rossi X-Ray Timing Explorer (RXTE). A comparison is made of relative star positions measured in the ST FOV coordinate system with the expected results computed from the recently released Tycho Catalogue. The comparison is repeated for a group of observed stars with nearby, bright neighbors in order to determine the tracker behavior in the presence of an interfering, near neighbor (NN). The results of this analysis will be used to help define a new photoelectric photometric instrumental sensor magnitude system (S) that is based on several thousand bright star magnitudes observed with the PXTE ST's. This new system will be implemented in Version 2 of the SKY2000 MC to provide improved predicted magnitudes in the mission run catalogs.

  5. Calculation of Confidence Intervals for the Maximum Magnitude of Earthquakes in Different Seismotectonic Zones of Iran

    NASA Astrophysics Data System (ADS)

    Salamat, Mona; Zare, Mehdi; Holschneider, Matthias; Zöller, Gert

    2017-03-01

    The problem of estimating the maximum possible earthquake magnitude m_max has attracted growing attention in recent years. Due to sparse data, the role of uncertainties becomes crucial. In this work, we determine the uncertainties related to the maximum magnitude in terms of confidence intervals. Using an earthquake catalog of Iran, m_max is estimated for different predefined levels of confidence in six seismotectonic zones. Assuming the doubly truncated Gutenberg-Richter distribution as a statistical model for earthquake magnitudes, confidence intervals for the maximum possible magnitude of earthquakes are calculated in each zone. While the lower limit of the confidence interval is the magnitude of the maximum observed event,the upper limit is calculated from the catalog and the statistical model. For this aim, we use the original catalog which no declustering methods applied on as well as a declustered version of the catalog. Based on the study by Holschneider et al. (Bull Seismol Soc Am 101(4):1649-1659, 2011), the confidence interval for m_max is frequently unbounded, especially if high levels of confidence are required. In this case, no information is gained from the data. Therefore, we elaborate for which settings finite confidence levels are obtained. In this work, Iran is divided into six seismotectonic zones, namely Alborz, Azerbaijan, Zagros, Makran, Kopet Dagh, Central Iran. Although calculations of the confidence interval in Central Iran and Zagros seismotectonic zones are relatively acceptable for meaningful levels of confidence, results in Kopet Dagh, Alborz, Azerbaijan and Makran are not that much promising. The results indicate that estimating m_max from an earthquake catalog for reasonable levels of confidence alone is almost impossible.

  6. Change in the magnitude and mechanisms of global temperature variability with warming

    PubMed Central

    Brown, Patrick T.; Ming, Yi; Li, Wenhong; Hill, Spencer A.

    2017-01-01

    Natural unforced variability in global mean surface air temperature (GMST) can mask or exaggerate human-caused global warming, and thus a complete understanding of this variability is highly desirable. Significant progress has been made in elucidating the magnitude and physical origins of present-day unforced GMST variability, but it has remained unclear how such variability may change as the climate warms. Here we present modeling evidence that indicates that the magnitude of low-frequency GMST variability is likely to decline in a warmer climate and that its generating mechanisms may be fundamentally altered. In particular, a warmer climate results in lower albedo at high latitudes, which yields a weaker albedo feedback on unforced GMST variability. These results imply that unforced GMST variability is dependent on the background climatological conditions, and thus climate model control simulations run under perpetual preindustrial conditions may have only limited relevance for understanding the unforced GMST variability of the future. PMID:29391875

  7. Change in the magnitude and mechanisms of global temperature variability with warming.

    PubMed

    Brown, Patrick T; Ming, Yi; Li, Wenhong; Hill, Spencer A

    2017-01-01

    Natural unforced variability in global mean surface air temperature (GMST) can mask or exaggerate human-caused global warming, and thus a complete understanding of this variability is highly desirable. Significant progress has been made in elucidating the magnitude and physical origins of present-day unforced GMST variability, but it has remained unclear how such variability may change as the climate warms. Here we present modeling evidence that indicates that the magnitude of low-frequency GMST variability is likely to decline in a warmer climate and that its generating mechanisms may be fundamentally altered. In particular, a warmer climate results in lower albedo at high latitudes, which yields a weaker albedo feedback on unforced GMST variability. These results imply that unforced GMST variability is dependent on the background climatological conditions, and thus climate model control simulations run under perpetual preindustrial conditions may have only limited relevance for understanding the unforced GMST variability of the future.

  8. Change in the Magnitude and Mechanisms of Global Temperature Variability with Warming

    NASA Astrophysics Data System (ADS)

    Brown, P. T.; Ming, Y.; Li, W.; Hill, S. A.

    2017-12-01

    Natural unforced variability in global mean surface air temperature (GMST) can mask or exaggerate human-caused global warming, and thus a complete understanding of this variability is highly desirable. Significant progress has been made in elucidating the magnitude and physical origins of present-day unforced GMST variability, but it has remained unclear how such variability may change as the climate warms. Here we present modeling evidence that indicates that the magnitude of low-frequency GMST variability is likely to decline in a warmer climate and that its generating mechanisms may be fundamentally altered. In particular, a warmer climate results in lower albedo at high latitudes, which yields a weaker albedo feedback on unforced GMST variability. These results imply that unforced GMST variability is dependent on the background climatological conditions, and thus climate model control simulations run under perpetual preindustrial conditions may have only limited relevance for understanding the unforced GMST variability of the future.

  9. Order of magnitude improvement of nano-contact spin torque nano-oscillator performance.

    PubMed

    Banuazizi, Seyed Amir Hossein; Sani, Sohrab R; Eklund, Anders; Naiini, Maziar M; Mohseni, Seyed Majid; Chung, Sunjae; Dürrenfeld, Philipp; Malm, B Gunnar; Åkerman, Johan

    2017-02-02

    Spin torque nano-oscillators (STNO) represent a unique class of nano-scale microwave signal generators and offer a combination of intriguing properties, such as nano sized footprint, ultrafast modulation rates, and highly tunable microwave frequencies from 100 MHz to close to 100 GHz. However, their low output power and relatively high threshold current still limit their applicability and must be improved. In this study, we investigate the influence of the bottom Cu electrode thickness (t Cu ) in nano-contact STNOs based on Co/Cu/NiFe GMR stacks and with nano-contact diameters ranging from 60 to 500 nm. Increasing t Cu from 10 to 70 nm results in a 40% reduction of the threshold current, an order of magnitude higher microwave output power, and close to two orders of magnitude better power conversion efficiency. Numerical simulations of the current distribution suggest that these dramatic improvements originate from a strongly reduced lateral current spread in the magneto-dynamically active region.

  10. Violence against women: global scope and magnitude.

    PubMed

    Watts, Charlotte; Zimmerman, Cathy

    2002-04-06

    An increasing amount of research is beginning to offer a global overview of the extent of violence against women. In this paper we discuss the magnitude of some of the most common and most severe forms of violence against women: intimate partner violence; sexual abuse by non-intimate partners; trafficking, forced prostitution, exploitation of labour, and debt bondage of women and girls; physical and sexual violence against prostitutes; sex selective abortion, female infanticide, and the deliberate neglect of girls; and rape in war. There are many potential perpetrators, including spouses and partners, parents, other family members, neighbours, and men in positions of power or influence. Most forms of violence are not unique incidents but are ongoing, and can even continue for decades. Because of the sensitivity of the subject, violence is almost universally under-reported. Nevertheless, the prevalence of such violence suggests that globally, millions of women are experiencing violence or living with its consequences.

  11. Características del viento en estrellas Be derivadas del perfil Hα

    NASA Astrophysics Data System (ADS)

    Rohrmann, R.; Cidale, L.

    El estudio teórico de perfiles Hα y su variabilidad en estrellas Be ha sido frecuentemente desarrollado en base a modelos de envolturas circunestelares inhomogéneas, donde la geometría del material es responsable de la forma del perfil dependiendo de la dirección de observación. Nosotros damos una interpretación alternativa y proponemos que la mayoría de las propiedades de esta línea tienen origen en la base de un viento estelar y de una estructura cromosférica anexa a la fotósfera. Encontramos que típicos perfiles Hα en Be, como son los llamados pole-on y winebottle, pueden ser reproducidos cualitativamente sin recurrir a la existencia de una envoltura asimétrica. Analizamos como la línea Hα permite identificar la posible estructura del viento en la región donde éste se inicia.

  12. Tierra del Fuego, Argentina, South America

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Mitre Peninsula is the easternmost tip of Tierra del Fuego, Argentina, (54.5S, 65.5W). Early winter snow can be seen on this south tip of the Andes Mountains. These same mountains continue underwater to Antarctica. The Strait of Magellan, separating the South American mainland from Tierra del Fuego is off the scene to the north and west, but the Strait of LeMaire, separating Tierra del Fuego from the Isla de los Estados can be seen.

  13. Dependence of the aftershock flow on the main shock magnitude

    NASA Astrophysics Data System (ADS)

    Guglielmi, A. V.; Zavyalov, A. D.; Zotov, O. D.; Lavrov, I. P.

    2017-01-01

    Previously, we predicted and then observed in practice the property of aftershocks which consists in the statistically regular clustering of events in time during the first hours after the main shock. The characteristic quasi-period of clustering is three hours. This property is associated with the cumulative action of the surface waves converging to the epicenter, whereas the quasi-period is mainly determined by the time delay of the round-the-world seismic echo. The quasi-period varies from case to case. In the attempt to find the cause of this variability, we have statistically explored the probable dependence of quasi-period on the magnitude of the main shock. In this paper, we present the corresponding result of analyzing global seismicity from the USGS/NEIC earthquake catalog. We succeeded in finding a significant reduction in the quasiperiod of the strong earthquakes clustering with growth in the magnitude of the main shock. We suggest the interpretation of this regularity from the standpoint of the phenomenological theory of explosive instability. It is noted that the phenomenon of explosive instability is fairly common in the geophysical media. The examples of explosive instability in the radiation belt and magnetospheric tail are presented. The search for the parallels in the evolution of explosive instability in the lithosphere and magnetosphere of the Earth will enrich both the physics of the earthquakes and physics of the magnetospheric pulsations.

  14. Calibration of the local magnitude scale ( M L ) for Peru

    NASA Astrophysics Data System (ADS)

    Condori, Cristobal; Tavera, Hernando; Marotta, Giuliano Sant'Anna; Rocha, Marcelo Peres; França, George Sand

    2017-07-01

    We propose a local magnitude scale ( M L ) for Peru, based on the original Richter definition, using 210 seismic events between 2011 and 2014, recorded by 35 broadband stations of the National Seismic Network operated by the Geophysical Institute of Peru. In the solution model, we considered 1057 traces of maximum amplitude records on the vertical channel from simulated Wood-Anderson seismograms of shallow events (depths between 0 and 60 km) and hypocentral distances less than 600 km. The attenuation factor has been evaluated in terms of geometrical spreading and anelastic attenuation coefficients. The magnitude M L was defined as M L = L o g 10 A W A +1.5855 L o g 10( R/100)+0.0008( R-100)+3± S, where, A W A is the displacement amplitude in millimeters (Wood-Anderson), R is the hypocentral distance (km), and S is the station correction. The results obtained for M L have good correlation with the m b , M s and M w values reported the ISC and NEIC. The anelastic attenuation curve obtained has a similar behavior to that other highly seismic regions. Station corrections were determined for all stations during the regression analysis resulting in values ranging between -0.97 and +0.73, suggesting a strong influence of local site effects on amplitude.

  15. Nucleus accumbens core lesions induce sub-optimal choice and reduce sensitivity to magnitude and delay in impulsive choice tasks

    PubMed Central

    Steele, Catherine C.; Peterson, Jennifer R.; Marshall, Andrew T.; Stuebing, Sarah L.; Kirkpatrick, Kimberly

    2017-01-01

    The nucleus accumbens core (NAc) has long been recognized as an important contributor to the computation of reward value that is critical for impulsive choice behavior. Impulsive choice refers to choosing a smaller-sooner (SS) over a larger-later (LL) reward when the LL is more optimal in terms of the rate of reward delivery. Two experiments examined the role of the NAc in impulsive choice and its component processes of delay and magnitude processing. Experiment 1 delivered an impulsive choice task with manipulations of LL reward magnitude, followed by a reward magnitude discrimination task. Experiment 2 tested impulsive choice under manipulations of LL delay, followed by temporal bisection and progressive interval tasks. NAc lesions, in comparison to sham control lesions, produced suboptimal preferences that resulted in lower reward earning rates, and led to reduced sensitivity to magnitude and delay within the impulsive choice task. The secondary tasks revealed intact reward magnitude and delay discrimination abilities, but the lesion rats persisted in responding more as the progressive interval increased during the session. The results suggest that the NAc is most critical for demonstrating good sensitivity to magnitude and delay, and adjusting behavior accordingly. Ultimately, the NAc lesions induced suboptimal choice behavior rather than simply promoting impulsive choice, suggesting that an intact NAc is necessary for optimal decision making. PMID:29146281

  16. Infants' Auditory Enumeration: Evidence for Analog Magnitudes in the Small Number Range

    ERIC Educational Resources Information Center

    vanMarle, Kristy; Wynn, Karen

    2009-01-01

    Vigorous debate surrounds the issue of whether infants use different representational mechanisms to discriminate small and large numbers. We report evidence for ratio-dependent performance in infants' discrimination of small numbers of auditory events, suggesting that infants can use analog magnitudes to represent small values, at least in the…

  17. Exploring earthquake databases for the creation of magnitude-homogeneous catalogues: tools for application on a regional and global scale

    NASA Astrophysics Data System (ADS)

    Weatherill, G. A.; Pagani, M.; Garcia, J.

    2016-09-01

    The creation of a magnitude-homogenized catalogue is often one of the most fundamental steps in seismic hazard analysis. The process of homogenizing multiple catalogues of earthquakes into a single unified catalogue typically requires careful appraisal of available bulletins, identification of common events within multiple bulletins and the development and application of empirical models to convert from each catalogue's native scale into the required target. The database of the International Seismological Center (ISC) provides the most exhaustive compilation of records from local bulletins, in addition to its reviewed global bulletin. New open-source tools are developed that can utilize this, or any other compiled database, to explore the relations between earthquake solutions provided by different recording networks, and to build and apply empirical models in order to harmonize magnitude scales for the purpose of creating magnitude-homogeneous earthquake catalogues. These tools are described and their application illustrated in two different contexts. The first is a simple application in the Sub-Saharan Africa region where the spatial coverage and magnitude scales for different local recording networks are compared, and their relation to global magnitude scales explored. In the second application the tools are used on a global scale for the purpose of creating an extended magnitude-homogeneous global earthquake catalogue. Several existing high-quality earthquake databases, such as the ISC-GEM and the ISC Reviewed Bulletins, are harmonized into moment magnitude to form a catalogue of more than 562 840 events. This extended catalogue, while not an appropriate substitute for a locally calibrated analysis, can help in studying global patterns in seismicity and hazard, and is therefore released with the accompanying software.

  18. Combining Earthquake Focal Mechanism Inversion and Coulomb Friction Law to Yield Tectonic Stress Magnitudes in Strike-slip Faulting Regime

    NASA Astrophysics Data System (ADS)

    Soh, I.; Chang, C.

    2017-12-01

    The techniques for estimating present-day stress states by inverting multiple earthquake focal mechanism solutions (FMS) provide orientations of the three principal stresses and their relative magnitudes. In order to estimate absolute magnitudes of the stresses that are generally required to analyze faulting mechanics, we combine the relative stress magnitude parameter (R-value) derived from the inversion process and the concept of frictional equilibrium of stress state defined by Coulomb friction law. The stress inversion in Korean Peninsula using 152 FMS data (magnitude≥2.5) conducted at regularly spaced grid points yields a consistent strike-slip faulting regime in which the maximum (S1) and the minimum (S3) principal stresses act in horizontal planes (with an S1 azimuth in ENE-WSW) and the intermediate principal stress (S2) close to vertical. However, R-value varies from 0.28 to 0.75 depending on locations, systematically increasing eastward. Based on the assumptions that the vertical stress is lithostatic, pore pressure is hydrostatic, and the maximum differential stress (S1-S3) is limited by Byerlee's friction of optimally oriented faults for slip, we estimate absolute magnitudes of the two horizontal principal stresses using R-value. As R-value increases, so do the magnitudes of the horizontal stresses. Our estimation of the stress magnitudes shows that the maximum horizontal principal stress (S1) normalized by vertical stress tends to increase from 1.3 in the west to 1.8 in the east. The estimated variation of stress magnitudes is compatible with distinct clustering of faulting types in different regions. Normal faulting events are densely populated in the west region where the horizontal stress is relatively low, whereas numerous reverse faulting events prevail in the east offshore where the horizontal stress is relatively high. Such a characteristic distribution of distinct faulting types in different regions can only be explained in terms of stress

  19. Low-magnitude mechanical vibration regulates expression of osteogenic proteins in ovariectomized rats.

    PubMed

    Li, Ming; Wu, Wei; Tan, Lei; Mu, Degong; Zhu, Dong; Wang, Jian; Zhao, Bin

    2015-09-25

    The present study aimed to investigate the impact of low-magnitude and high-frequency mechanical vibration with various lengths of resting period incorporated between loading cycles on the expression of osteogenesis-related proteins in a rat model of osteoporosis. The rats in the mechanical loading groups received low-magnitude and high-frequency vibration (35 Hz and acceleration of 0.25 g, 15 min/day) for 8 weeks. Bilateral humeral heads and femoral heads were then isolated, and protein levels of bone morphogenetic protein 2 (BMP-2), extracellular signal-regulated kinase 1/2 (ERK1/2), phosphorylated ERK1/2 (p-ERK1/2), runt-related transcription factor 2 (Runx2) and osteocalcin (OCN) were determined by Western blotting. Increased levels of BMP-2, Runx2 and OCN were observed in rats receiving mechanical vibration. Total ERK1/2 protein remained unchanged, whereas the level of activated ERK1/2 (p-ERK1/2) increased after mechanical vibration. Vibration with incorporated resting period, regardless of length, was more effective in inducing expression of these osteogenic proteins, and the vibration with 7-day resting period had the most profound impact. Signals from low-magnitude and high-frequency mechanical vibration upregulated the expression of BMP-2 and Runx2, activated the ERK1/2 signaling pathway, and consequently led to increased expression of OCN. The anabolic effect of mechanical stimulation was enhanced with incorporation of resting period between loadings, and the one with 7-day resting period exhibited the strongest effect among all. Our results could provide a reference for development of mechanical stimulation as a non-pharmacological intervention for osteoporosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Towards Estimating the Magnitude of Earthquakes from EM Data Collected from the Subduction Zone

    NASA Astrophysics Data System (ADS)

    Heraud, J. A.

    2016-12-01

    During the past three years, magnetometers deployed in the Peruvian coast have been providing evidence that the ULF pulses received are indeed generated at the subduction or Benioff zone. Such evidence was presented at the AGU 2015 Fall meeting, showing the results of triangulation of pulses from two magnetometers located in the central area of Peru, using data collected during a two-year period. The process has been extended in time, only pulses associated with the occurrence of earthquakes and several pulse parameters have been used to estimate a function relating the magnitude of the earthquake with the value of a function generated with those parameters. The results shown, including an animated data video, are a first approximation towards the estimation of the magnitude of an earthquake about to occur, based on electromagnetic pulses that originated at the subduction zone. During the past three years, magnetometers deployed in the Peruvian coast have been providing evidence that the ULF pulses received are indeed generated at the subduction or Benioff zone. Such evidence was presented at the AGU 2015 Fall meeting, showing the results of triangulation of pulses from two magnetometers located in the central area of Peru, using data collected during a two-year period. The process has been extended in time, only pulses associated with the occurrence of earthquakes have been used and several pulse parameters have been used to estimate a function relating the magnitude of the earthquake with the value of a function generated with those parameters. The results shown, including an animated data video, are a first approximation towards the estimation of the magnitude of an earthquake about to occur, based on electromagnetic pulses that originated at the subduction zone.

  1. Predicting the Maximum Earthquake Magnitude from Seismic Data in Israel and Its Neighboring Countries.

    PubMed

    Last, Mark; Rabinowitz, Nitzan; Leonard, Gideon

    2016-01-01

    This paper explores several data mining and time series analysis methods for predicting the magnitude of the largest seismic event in the next year based on the previously recorded seismic events in the same region. The methods are evaluated on a catalog of 9,042 earthquake events, which took place between 01/01/1983 and 31/12/2010 in the area of Israel and its neighboring countries. The data was obtained from the Geophysical Institute of Israel. Each earthquake record in the catalog is associated with one of 33 seismic regions. The data was cleaned by removing foreshocks and aftershocks. In our study, we have focused on ten most active regions, which account for more than 80% of the total number of earthquakes in the area. The goal is to predict whether the maximum earthquake magnitude in the following year will exceed the median of maximum yearly magnitudes in the same region. Since the analyzed catalog includes only 28 years of complete data, the last five annual records of each region (referring to the years 2006-2010) are kept for testing while using the previous annual records for training. The predictive features are based on the Gutenberg-Richter Ratio as well as on some new seismic indicators based on the moving averages of the number of earthquakes in each area. The new predictive features prove to be much more useful than the indicators traditionally used in the earthquake prediction literature. The most accurate result (AUC = 0.698) is reached by the Multi-Objective Info-Fuzzy Network (M-IFN) algorithm, which takes into account the association between two target variables: the number of earthquakes and the maximum earthquake magnitude during the same year.

  2. Predicting the Maximum Earthquake Magnitude from Seismic Data in Israel and Its Neighboring Countries

    PubMed Central

    2016-01-01

    This paper explores several data mining and time series analysis methods for predicting the magnitude of the largest seismic event in the next year based on the previously recorded seismic events in the same region. The methods are evaluated on a catalog of 9,042 earthquake events, which took place between 01/01/1983 and 31/12/2010 in the area of Israel and its neighboring countries. The data was obtained from the Geophysical Institute of Israel. Each earthquake record in the catalog is associated with one of 33 seismic regions. The data was cleaned by removing foreshocks and aftershocks. In our study, we have focused on ten most active regions, which account for more than 80% of the total number of earthquakes in the area. The goal is to predict whether the maximum earthquake magnitude in the following year will exceed the median of maximum yearly magnitudes in the same region. Since the analyzed catalog includes only 28 years of complete data, the last five annual records of each region (referring to the years 2006–2010) are kept for testing while using the previous annual records for training. The predictive features are based on the Gutenberg-Richter Ratio as well as on some new seismic indicators based on the moving averages of the number of earthquakes in each area. The new predictive features prove to be much more useful than the indicators traditionally used in the earthquake prediction literature. The most accurate result (AUC = 0.698) is reached by the Multi-Objective Info-Fuzzy Network (M-IFN) algorithm, which takes into account the association between two target variables: the number of earthquakes and the maximum earthquake magnitude during the same year. PMID:26812351

  3. Maximum magnitude estimations of induced earthquakes at Paradox Valley, Colorado, from cumulative injection volume and geometry of seismicity clusters

    NASA Astrophysics Data System (ADS)

    Yeck, William L.; Block, Lisa V.; Wood, Christopher K.; King, Vanessa M.

    2015-01-01

    The Paradox Valley Unit (PVU), a salinity control project in southwest Colorado, disposes of brine in a single deep injection well. Since the initiation of injection at the PVU in 1991, earthquakes have been repeatedly induced. PVU closely monitors all seismicity in the Paradox Valley region with a dense surface seismic network. A key factor for understanding the seismic hazard from PVU injection is the maximum magnitude earthquake that can be induced. The estimate of maximum magnitude of induced earthquakes is difficult to constrain as, unlike naturally occurring earthquakes, the maximum magnitude of induced earthquakes changes over time and is affected by injection parameters. We investigate temporal variations in maximum magnitudes of induced earthquakes at the PVU using two methods. First, we consider the relationship between the total cumulative injected volume and the history of observed largest earthquakes at the PVU. Second, we explore the relationship between maximum magnitude and the geometry of individual seismicity clusters. Under the assumptions that: (i) elevated pore pressures must be distributed over an entire fault surface to initiate rupture and (ii) the location of induced events delineates volumes of sufficiently high pore-pressure to induce rupture, we calculate the largest allowable vertical penny-shaped faults, and investigate the potential earthquake magnitudes represented by their rupture. Results from both the injection volume and geometrical methods suggest that the PVU has the potential to induce events up to roughly MW 5 in the region directly surrounding the well; however, the largest observed earthquake to date has been about a magnitude unit smaller than this predicted maximum. In the seismicity cluster surrounding the injection well, the maximum potential earthquake size estimated by these methods and the observed maximum magnitudes have remained steady since the mid-2000s. These observations suggest that either these methods

  4. Relationship between isoseismal area and magnitude of historical earthquakes in Greece by a hybrid fuzzy neural network method

    NASA Astrophysics Data System (ADS)

    Tselentis, G.-A.; Sokos, E.

    2012-01-01

    In this paper we suggest the use of diffusion-neural-networks, (neural networks with intrinsic fuzzy logic abilities) to assess the relationship between isoseismal area and earthquake magnitude for the region of Greece. It is of particular importance to study historical earthquakes for which we often have macroseismic information in the form of isoseisms but it is statistically incomplete to assess magnitudes from an isoseismal area or to train conventional artificial neural networks for magnitude estimation. Fuzzy relationships are developed and used to train a feed forward neural network with a back propagation algorithm to obtain the final relationships. Seismic intensity data from 24 earthquakes in Greece have been used. Special attention is being paid to the incompleteness and contradictory patterns in scanty historical earthquake records. The results show that the proposed processing model is very effective, better than applying classical artificial neural networks since the magnitude macroseismic intensity target function has a strong nonlinearity and in most cases the macroseismic datasets are very small.

  5. Unidades del paisaje de Puerto Rico: la influencia del clima, el substrato y la topografia

    Treesearch

    William Gould; Michael E. Jimenez; Gary Potts; Maya Quinones; Sebastian Martinuzzi

    2008-01-01

    El mapa de unidades del paisaje de Puerto Rico representa variaciones climaticas, topograficas y del substrato mediante la integracion de seis zonas climaticas (Ewel y Whitmore, 1973), seis substratos (Bawiec, 2001; USGS, 2005), cinco posiciones topograficas, o topoformas (Martinuzzi et al. 2007), y cuerpos de agua (USGS 2005). Los substratos representan el conjunto...

  6. Magnitude 8.1 Earthquake off the Solomon Islands

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On April 1, 2007, a magnitude 8.1 earthquake rattled the Solomon Islands, 2,145 kilometers (1,330 miles) northeast of Brisbane, Australia. Centered less than ten kilometers beneath the Earth's surface, the earthquake displaced enough water in the ocean above to trigger a small tsunami. Though officials were still assessing damage to remote island communities on April 3, Reuters reported that the earthquake and the tsunami killed an estimated 22 people and left as many as 5,409 homeless. The most serious damage occurred on the island of Gizo, northwest of the earthquake epicenter, where the tsunami damaged the hospital, schools, and hundreds of houses, said Reuters. This image, captured by the Landsat-7 satellite, shows the location of the earthquake epicenter in relation to the nearest islands in the Solomon Island group. Gizo is beyond the left edge of the image, but its triangular fringing coral reefs are shown in the upper left corner. Though dense rain forest hides volcanic features from view, the very shape of the islands testifies to the geologic activity of the region. The circular Kolombangara Island is the tip of a dormant volcano, and other circular volcanic peaks are visible in the image. The image also shows that the Solomon Islands run on a northwest-southeast axis parallel to the edge of the Pacific plate, the section of the Earth's crust that carries the Pacific Ocean and its islands. The earthquake occurred along the plate boundary, where the Australia/Woodlark/Solomon Sea plates slide beneath the denser Pacific plate. Friction between the sinking (subducting) plates and the overriding Pacific plate led to the large earthquake on April 1, said the United States Geological Survey (USGS) summary of the earthquake. Large earthquakes are common in the region, though the section of the plate that produced the April 1 earthquake had not caused any quakes of magnitude 7 or larger since the early 20th century, said the USGS.

  7. Modulation of Response Timing in ADHD, Effects of Reinforcement Valence and Magnitude

    ERIC Educational Resources Information Center

    Luman, Marjolein; Oosterlaan, Jaap; Sergeant, Joseph A.

    2008-01-01

    The present study investigated the impact of reinforcement valence and magnitude on response timing in children with ADHD. Children were required to estimate a 1-s interval, and both the median response time (response tendency) and the intrasubject-variability (response stability) were investigated. In addition, heart rate and skin conductance…

  8. Neural substrates of reward magnitude, probability, and risk during a wheel of fortune decision-making task.

    PubMed

    Smith, Bruce W; Mitchell, Derek G V; Hardin, Michael G; Jazbec, Sandra; Fridberg, Daniel; Blair, R James R; Ernst, Monique

    2009-01-15

    Economic decision-making involves the weighting of magnitude and probability of potential gains/losses. While previous work has examined the neural systems involved in decision-making, there is a need to understand how the parameters associated with decision-making (e.g., magnitude of expected reward, probability of expected reward and risk) modulate activation within these neural systems. In the current fMRI study, we modified the monetary wheel of fortune (WOF) task [Ernst, M., Nelson, E.E., McClure, E.B., Monk, C.S., Munson, S., Eshel, N., et al. (2004). Choice selection and reward anticipation: an fMRI study. Neuropsychologia 42(12), 1585-1597.] to examine in 25 healthy young adults the neural responses to selections of different reward magnitudes, probabilities, or risks. Selection of high, relative to low, reward magnitude increased activity in insula, amygdala, middle and posterior cingulate cortex, and basal ganglia. Selection of low-probability, as opposed to high-probability reward, increased activity in anterior cingulate cortex, as did selection of risky, relative to safe reward. In summary, decision-making that did not involve conflict, as in the magnitude contrast, recruited structures known to support the coding of reward values, and those that integrate motivational and perceptual information for behavioral responses. In contrast, decision-making under conflict, as in the probability and risk contrasts, engaged the dorsal anterior cingulate cortex whose role in conflict monitoring is well established. However, decision-making under conflict failed to activate the structures that track reward values per se. Thus, the presence of conflict in decision-making seemed to significantly alter the pattern of neural responses to simple rewards. In addition, this paradigm further clarifies the functional specialization of the cingulate cortex in processes of decision-making.

  9. Gaze direction affects the magnitude of face identity aftereffects.

    PubMed

    Kloth, Nadine; Jeffery, Linda; Rhodes, Gillian

    2015-02-20

    The face perception system partly owes its efficiency to adaptive mechanisms that constantly recalibrate face coding to our current diet of faces. Moreover, faces that are better attended produce more adaptation. Here, we investigated whether the social cues conveyed by a face can influence the amount of adaptation that face induces. We compared the magnitude of face identity aftereffects induced by adaptors with direct and averted gazes. We reasoned that faces conveying direct gaze may be more engaging and better attended and thus produce larger aftereffects than those with averted gaze. Using an adaptation duration of 5 s, we found that aftereffects for adaptors with direct and averted gazes did not differ (Experiment 1). However, when processing demands were increased by reducing adaptation duration to 1 s, we found that gaze direction did affect the magnitude of the aftereffect, but in an unexpected direction: Aftereffects were larger for adaptors with averted rather than direct gaze (Experiment 2). Eye tracking revealed that differences in looking time to the faces between the two gaze directions could not account for these findings. Subsequent ratings of the stimuli (Experiment 3) showed that adaptors with averted gaze were actually perceived as more expressive and interesting than adaptors with direct gaze. Therefore it appears that the averted-gaze faces were more engaging and better attended, leading to larger aftereffects. Overall, our results suggest that naturally occurring facial signals can modulate the adaptive impact a face exerts on our perceptual system. Specifically, the faces that we perceive as most interesting also appear to calibrate the organization of our perceptual system most strongly. © 2015 ARVO.

  10. A short feature vector for image matching: The Log-Polar Magnitude feature descriptor

    PubMed Central

    Hast, Anders; Wählby, Carolina; Sintorn, Ida-Maria

    2017-01-01

    The choice of an optimal feature detector-descriptor combination for image matching often depends on the application and the image type. In this paper, we propose the Log-Polar Magnitude feature descriptor—a rotation, scale, and illumination invariant descriptor that achieves comparable performance to SIFT on a large variety of image registration problems but with much shorter feature vectors. The descriptor is based on the Log-Polar Transform followed by a Fourier Transform and selection of the magnitude spectrum components. Selecting different frequency components allows optimizing for image patterns specific for a particular application. In addition, by relying only on coordinates of the found features and (optionally) feature sizes our descriptor is completely detector independent. We propose 48- or 56-long feature vectors that potentially can be shortened even further depending on the application. Shorter feature vectors result in better memory usage and faster matching. This combined with the fact that the descriptor does not require a time-consuming feature orientation estimation (the rotation invariance is achieved solely by using the magnitude spectrum of the Log-Polar Transform) makes it particularly attractive to applications with limited hardware capacity. Evaluation is performed on the standard Oxford dataset and two different microscopy datasets; one with fluorescence and one with transmission electron microscopy images. Our method performs better than SURF and comparable to SIFT on the Oxford dataset, and better than SIFT on both microscopy datasets indicating that it is particularly useful in applications with microscopy images. PMID:29190737

  11. The effect of scopolamine on matching behavior and the estimation of relative reward magnitude.

    PubMed

    Leon, Matthew I; Rodriguez-Barrera, Vanessa; Amaya, Aldo

    2017-10-01

    We investigated the behavioral effects of scopolamine on rats that bar pressed for trains of electrically stimulating pulses under concurrent variable interval schedules of reward. For the first half of the session (30 min) a 1:4 ratio in the programmed number of stimulation trains delivered at each option was in effect. At the start of the second half of the session, an unsignaled reversal in the relative train number (4:1) occurred. We tracked the relative magnitude of reward estimated for each contiguous pair of reinforced visits to competing options. Scopolamine hydrobromide led to a reduction in the relative magnitude of reward. A similar result was obtained in a follow-up test in which relative magnitude was manipulated by varying the pulse frequency of stimulation, while equating the train number at each option. The effect of scopolamine hydrobromide could not be attributed to undermatching, side bias, nor to an effect of scopolamine on the reward integration process. When the same rats were treated with scopolamine methylbromide, no effects on matching behavior were observed. Our results suggest a cholinergic basis for the computation of choice variables related to matching behavior. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  12. Prevalence and magnitude of groundwater use by vegetation: a global stable isotope meta-analysis

    PubMed Central

    Evaristo, Jaivime; McDonnell, Jeffrey J.

    2017-01-01

    The role of groundwater as a resource in sustaining terrestrial vegetation is widely recognized. But the global prevalence and magnitude of groundwater use by vegetation is unknown. Here we perform a meta-analysis of plant xylem water stable isotope (δ2H and δ18O, n = 7367) information from 138 published papers – representing 251 genera, and 414 species of angiosperms (n = 376) and gymnosperms (n = 38). We show that the prevalence of groundwater use by vegetation (defined as the number of samples out of a universe of plant samples reported to have groundwater contribution to xylem water) is 37% (95% confidence interval, 28–46%). This is across 162 sites and 12 terrestrial biomes (89% of heterogeneity explained; Q-value = 1235; P < 0.0001). However, the magnitude of groundwater source contribution to the xylem water mixture (defined as the proportion of groundwater contribution in xylem water) is limited to 23% (95% CI, 20–26%; 95% prediction interval, 3–77%). Spatial analysis shows that the magnitude of groundwater source contribution increases with aridity. Our results suggest that while groundwater influence is globally prevalent, its proportional contribution to the total terrestrial transpiration is limited. PMID:28281644

  13. Methods for estimating magnitude and frequency of peak flows for natural streams in Utah

    USGS Publications Warehouse

    Kenney, Terry A.; Wilkowske, Chris D.; Wright, Shane J.

    2007-01-01

    Estimates of the magnitude and frequency of peak streamflows is critical for the safe and cost-effective design of hydraulic structures and stream crossings, and accurate delineation of flood plains. Engineers, planners, resource managers, and scientists need accurate estimates of peak-flow return frequencies for locations on streams with and without streamflow-gaging stations. The 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence-interval flows were estimated for 344 unregulated U.S. Geological Survey streamflow-gaging stations in Utah and nearby in bordering states. These data along with 23 basin and climatic characteristics computed for each station were used to develop regional peak-flow frequency and magnitude regression equations for 7 geohydrologic regions of Utah. These regression equations can be used to estimate the magnitude and frequency of peak flows for natural streams in Utah within the presented range of predictor variables. Uncertainty, presented as the average standard error of prediction, was computed for each developed equation. Equations developed using data from more than 35 gaging stations had standard errors of prediction that ranged from 35 to 108 percent, and errors for equations developed using data from less than 35 gaging stations ranged from 50 to 357 percent.

  14. Increased rates of large-magnitude explosive eruptions in Japan in the late Neogene and Quaternary.

    PubMed

    Mahony, S H; Sparks, R S J; Wallace, L M; Engwell, S L; Scourse, E M; Barnard, N H; Kandlbauer, J; Brown, S K

    2016-07-01

    Tephra layers in marine sediment cores from scientific ocean drilling largely record high-magnitude silicic explosive eruptions in the Japan arc for up to the last 20 million years. Analysis of the thickness variation with distance of 180 tephra layers from a global data set suggests that the majority of the visible tephra layers used in this study are the products of caldera-forming eruptions with magnitude (M) > 6, considering their distances at the respective drilling sites to their likely volcanic sources. Frequency of visible tephra layers in cores indicates a marked increase in rates of large magnitude explosive eruptions at ∼8 Ma, 6-4 Ma, and further increase after ∼2 Ma. These changes are attributed to major changes in tectonic plate interactions. Lower rates of large magnitude explosive volcanism in the Miocene are related to a strike-slip-dominated boundary (and temporary cessation or deceleration of subduction) between the Philippine Sea Plate and southwest Japan, combined with the possibility that much of the arc in northern Japan was submerged beneath sea level partly due to previous tectonic extension of northern Honshu related to formation of the Sea of Japan. Changes in plate motions and subduction dynamics during the ∼8 Ma to present period led to (1) increased arc-normal subduction in southwest Japan (and resumption of arc volcanism) and (2) shift from extension to compression of the upper plate in northeast Japan, leading to uplift, crustal thickening and favorable conditions for accumulation of the large volumes of silicic magma needed for explosive caldera-forming eruptions.

  15. Analysis of a RECQL splicing mutation, c.1667_1667+3delAGTA, in breast cancer patients and controls from Central Europe.

    PubMed

    Bogdanova, Natalia; Pfeifer, Katja; Schürmann, Peter; Antonenkova, Natalia; Siggelkow, Wulf; Christiansen, Hans; Hillemanns, Peter; Park-Simon, Tjoung-Won; Dörk, Thilo

    2017-04-01

    RECQL is a DNA helicase required for genomic stability. Two studies have recently identified RECQL as a novel breast cancer susceptibility gene. The most common RECQL mutation, the 4 bp-deletion c.1667_1667+3delAGTA, was five-fold enriched in Polish breast cancer patients, but the exact magnitude of the risk is uncertain. We investigated two hospital-based breast cancer case-control series from Belarus and Germany, respectively, comprising a total of 2596 breast cancer patients and 2132 healthy females. The mutation was found in 9 cases and 6 controls, with an adjusted Odds Ratio 1.23 (95% CI 0.44-3.47; p = 0.69) in the combined analysis. Among the cases, heterozygosity for c.1667_1667+3delAGTA was linked with estrogen-receptor positive breast cancer. There was no significant difference in age at diagnosis between carriers and non-carriers, and only one of the carriers reported a first-degree family history. Meta-analysis with the initial study from Poland suggests an about two-fold increase in risk for this mutation (OR 2.51; 95% CI 1.13-5.57, p = 0.02). Altogether, the data indicate that RECQL* c.1667_1667+3delAGTA is not a high-risk mutation for breast cancer though it could represent a moderate-risk breast cancer susceptibility allele. Further studies will be required to determine the clinical significance of testing for this RECQL mutation.

  16. Magnitude and frequency of summer floods in western New Mexico and eastern Arizona

    USGS Publications Warehouse

    Kennon, F.W.

    1955-01-01

    Numerous small reservoirs and occasional water-spreading structures are being built on the ephemeral streams draining the public and Indian lands of the Southwest as part of the Soil and Moisture Conservation Program of the Bureau of Land Management and Bureau of Indian Affairs.  Economic design of these structures requires some knowledge of the flood rates and volumes.  Information concerning flood frequencies on areas less than 100 square miles is deficient throughout the country, particularly on intermittent streams of the Southwest.  Design engineers require a knowledge of the frequency and magnitude of flood volumes for the planning of adequate reservoir capacities and a knowledge of frequency and magnitude of flood peaks for spillway design.  Hence, this study deals with both flood volumes and peaks, the same statistical methods being used to develop frequency curves for each.

  17. Extended Pausing by Humans on Multiple Fixed-Ratio Schedules with Varied Reinforcer Magnitude and Response Requirements

    PubMed Central

    Williams, Dean C; Saunders, Kathryn J; Perone, Michael

    2011-01-01

    We conducted three experiments to reproduce and extend Perone and Courtney's (1992) study of pausing at the beginning of fixed-ratio schedules. In a multiple schedule with unequal amounts of food across two components, they found that pigeons paused longest in the component associated with the smaller amount of food (the lean component), but only when it was preceded by the rich component. In our studies, adults with mild intellectual disabilities responded on a touch-sensitive computer monitor to produce money. In Experiment 1, the multiple-schedule components differed in both response requirement and reinforcer magnitude (i.e., the rich component required fewer responses and produced more money than the lean component). Effects shown with pigeons were reproduced in all 7 participants. In Experiment 2, we removed the stimuli that signaled the two schedule components, and participants' extended pausing was eliminated. In Experiment 3, to assess sensitivity to reinforcer magnitude versus fixed-ratio size, we presented conditions with equal ratio sizes but disparate magnitudes and conditions with equal magnitudes but disparate ratio sizes. Sensitivity to these manipulations was idiosyncratic. The present experiments obtained schedule control in verbally competent human participants and, despite procedural differences, we reproduced findings with animal participants. We showed that pausing is jointly determined by past conditions of reinforcement and stimuli correlated with upcoming conditions. PMID:21541121

  18. Reevaluating the two-representation model of numerical magnitude processing.

    PubMed

    Jiang, Ting; Zhang, Wenfeng; Wen, Wen; Zhu, Haiting; Du, Han; Zhu, Xiangru; Gao, Xuefei; Zhang, Hongchuan; Dong, Qi; Chen, Chuansheng

    2016-01-01

    One debate in mathematical cognition centers on the single-representation model versus the two-representation model. Using an improved number Stroop paradigm (i.e., systematically manipulating physical size distance), in the present study we tested the predictions of the two models for number magnitude processing. The results supported the single-representation model and, more importantly, explained how a design problem (failure to manipulate physical size distance) and an analytical problem (failure to consider the interaction between congruity and task-irrelevant numerical distance) might have contributed to the evidence used to support the two-representation model. This study, therefore, can help settle the debate between the single-representation and two-representation models.

  19. Spatio-Temporal Magnitude and Direction of Highly Pathogenic Avian Influenza (H5N1) Outbreaks in Bangladesh

    PubMed Central

    Ahmed, Syed S. U.; Ersbøll, Annette K.; Biswas, Paritosh K.; Christensen, Jens P.; Toft, Nils

    2011-01-01

    Background The number of outbreaks of HPAI-H5N1 reported by Bangladesh from 2007 through 2011 placed the country among the highest reported numbers worldwide. However, so far, the understanding of the epidemic progression, direction, intensity, persistence and risk variation of HPAI-H5N1 outbreaks over space and time in Bangladesh remains limited. Methodology/Principal Findings To determine the magnitude and spatial pattern of the highly pathogenic avian influenza A subtype H5N1 virus outbreaks over space and time in poultry from 2007 to 2009 in Bangladesh, we applied descriptive and analytical spatial statistics. Temporal distribution of the outbreaks revealed three independent waves of outbreaks that were clustered during winter and spring. The descriptive analyses revealed that the magnitude of the second wave was the highest as compared to the first and third waves. Exploratory mapping of the infected flocks revealed that the highest intensity and magnitude of the outbreaks was systematic and persistent in an oblique line that connects south-east to north-west through the central part of the country. The line follows the Brahmaputra-Meghna river system, the junction between Central Asian and East Asian flyways, and the major poultry trading route in Bangladesh. Moreover, several important migratory bird areas were identified along the line. Geostatistical analysis revealed significant latitudinal directions of outbreak progressions that have similarity to the detected line of intensity and magnitude. Conclusion/Significance The line of magnitude and direction indicate the necessity of mobilizing maximum resources on this line to strengthen the existing surveillance. PMID:21931683

  20. New Results in Magnitude and Sign Correlations in Heartbeat Fluctuations for Healthy Persons and Congestive Heart Failure (CHF) Patients

    NASA Astrophysics Data System (ADS)

    Diosdado, A. Muñoz; Cruz, H. Reyes; Hernández, D. Bueno; Coyt, G. Gálvez; González, J. Arellanes

    2008-08-01

    Heartbeat fluctuations exhibit temporal structure with fractal and nonlinear features that reflect changes in the neuroautonomic control. In this work we have used the detrended fluctuation analysis (DFA) to analyze heartbeat (RR) intervals of 54 healthy subjects and 40 patients with congestive heart failure during 24 hours; we separate time series for sleep and wake phases. We observe long-range correlations in time series of healthy persons and CHF patients. However, the correlations for CHF patients are weaker than the correlations for healthy persons; this fact has been reported by Ashkenazy et al. [1] but with a smaller group of subjects. In time series of CHF patients there is a crossover, it means that the correlations for high and low frequencies are different, but in time series of healthy persons there are not crossovers even if they are sleeping. These crossovers are more pronounced for CHF patients in the sleep phase. We decompose the heartbeat interval time series into magnitude and sign series, we know that these kinds of signals can exhibit different time organization for the magnitude and sign and the magnitude series relates to nonlinear properties of the original time series, while the sign series relates to the linear properties. Magnitude series are long-range correlated, while the sign series are anticorrelated. Newly, the correlations for healthy persons are different that the correlations for CHF patients both for magnitude and sign time series. In the paper of Ashkenazy et al. they proposed the empirical relation: αsign≈1/2(αoriginal+αmagnitude) for the short-range regime (high frequencies), however, we have found a different relation that in our calculations is valid for short and long-range regime: αsign≈1/4(αoriginal+αmagnitude).

  1. Child prostitution: magnitude and related problems.

    PubMed

    Ayalew, T; Berhane, Y

    2000-07-01

    In Ethiopia, very little is known about prostitution in general and about child prostitution in particular. The objective of this study was to determine the magnitude of child prostitution and to identify problems associated with it. A cross-sectional study design was utilized. Data were collected using structured questionnaire. A total of 650 commercial sex workers were interviewed. Eighty eight (13.5%) were below the age of 18 years at the time of data collection. At the time of joining prostitution 268 (41.2%) were under 18 years of age. Poverty, disagreement with family, and peer influence were the major reasons leading to prostitution. Child prostitutes were likely to be victim of physical violence [OR = (95% C.I.) = 1.93(1.18,3.15)] and sexual violence [OR = (95% C.I.) = 2.20(1.36,3.35)] compared to adult prostitutes. Child prostitutes were about five times more likely to desire rejoining their family than the adult prostitutes [OR = (95% C.I) = 5.47(3.01;9.93)]. Strategies need to be developed to rescue child prostitutes from on-job violence, and to establish a rehabilitation program for those interested to discontinue prostitution along with efforts to minimize entry into prostitution.

  2. Techniques for estimating magnitude and frequency of floods on streams in Indiana

    USGS Publications Warehouse

    Glatfelter, D.R.

    1984-01-01

    A rainfall-runoff model was tlsed to synthesize long-term peak data at 11 gaged locations on small streams. Flood-frequency curves developed from the long-term synthetic data were combined with curves based on short-term observed data to provide weighted estimates of flood magnitude and frequency at the rainfall-runoff stations.

  3. Reliability and Magnitude of Laterality Effects in Dichotic Listening with Exogenous Cueing

    ERIC Educational Resources Information Center

    Voyer, Daniel

    2004-01-01

    The purpose of the present study was to replicate and extend to word recognition previous findings of reduced magnitude and reliability of laterality effects when exogenous cueing was used in a dichotic listening task with syllable pairs. Twenty right-handed undergraduate students with normal hearing (10 females, 10 males) completed a dichotic…

  4. Standardized Magnitude Estimations of Frequency and Amount for Use in Rating Extensivity.

    ERIC Educational Resources Information Center

    Bass, Bernard M.; And Others

    Magnitude estimation was employed to find the numerical equivalents of 39 expressions of frequency ranging from never to always, and 44 expressions of amount ranging from none to all. The results were generalizable across three age-education-occupation levels and unaffected by whether ratings were an important or unimportant issue. Geometric means…

  5. Magnitude of flood flows for selected annual exceedance probabilities for streams in Massachusetts

    USGS Publications Warehouse

    Zarriello, Phillip J.

    2017-05-11

    The U.S. Geological Survey, in cooperation with the Massachusetts Department of Transportation, determined the magnitude of flood flows at selected annual exceedance prob­abilities (AEPs) at streamgages in Massachusetts and from these data developed equations for estimating flood flows at ungaged locations in the State. Flood magnitudes were deter­mined for the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent AEPs at 220 streamgages, 125 of which are in Massachusetts and 95 are in the adjacent States of Connecticut, New Hamp­shire, New York, Rhode Island, and Vermont. AEP flood flows were computed for streamgages using the expected moments algorithm weighted with a recently computed regional skew­ness coefficient for New England.Regional regression equations were developed to estimate the magnitude of floods for selected AEP flows at ungaged sites from 199 selected streamgages and for 60 potential explanatory basin characteristics. AEP flows for 21 of the 125 streamgages in Massachusetts were not used in the final regional regression analysis, primarily because of regulation or redundancy. The final regression equations used general­ized least squares methods to account for streamgage record length and correlation. Drainage area, mean basin elevation, and basin storage explained 86 to 93 percent of the variance in flood magnitude from the 50- to 0.2-percent AEPs, respec­tively. The estimates of AEP flows at streamgages can be improved by using a weighted estimate that is based on the magnitude of the flood and associated uncertainty from the at-site analysis and the regional regression equations. Weighting procedures for estimating AEP flows at an ungaged site on a gaged stream also are provided that improve estimates of flood flows at the ungaged site when hydrologic characteristics do not abruptly change.Urbanization expressed as the percentage of imperviousness provided some explanatory power in the regional regression; however, it was not statistically

  6. Analisis del contenido curricular de los Documentos Normativos del Programa de Ciencias en el area de biologia para la escuela superior del sistema de educacion publica de Puerto Rico: 1993-2012

    NASA Astrophysics Data System (ADS)

    Davila Montanez, Melissa

    Esta investigacion de naturaleza cualitativa se ocupo de realizar un analisis de contenido documental de los Documentos Normativos del Programa de Ciencias en el area de biologia de la escuela superior del sistema de educacion publica de Puerto Rico del periodo 1993-2012. Los documentos analizados fueron: Guia Curricular, 1995; Marco Curricular, 2003; Estandares de Excelencia, 1996, 2000 y Estandares de Contenido y Expectativas de Grado, 2007. Se indago si hubo cambios en significados en los Componentes Estructurales: Naturaleza de la ciencia, Paradigmas para la ensenanza de la ciencia, Funcion del curriculo formal, Mision de la ensenanza de la ciencia; Contenidos, destrezas y competencias, Estrategias de ensenanza y Evaluacion/Assessment del aprendizaje. El analisis sugiere que no hubo cambios sustanciales en los significados de los Componentes Estructurales. Los documentos estudiados muestran mayormente caracteristicas similares, aunque los documentos mas recientes eran mas descriptivos, explicativos y especificos.

  7. Multi-Scale Long-Range Magnitude and Sign Correlations in Vertical Upward Oil-Gas-Water Three-Phase Flow

    NASA Astrophysics Data System (ADS)

    Zhao, An; Jin, Ning-de; Ren, Ying-yu; Zhu, Lei; Yang, Xia

    2016-01-01

    In this article we apply an approach to identify the oil-gas-water three-phase flow patterns in vertical upwards 20 mm inner-diameter pipe based on the conductance fluctuating signals. We use the approach to analyse the signals with long-range correlations by decomposing the signal increment series into magnitude and sign series and extracting their scaling properties. We find that the magnitude series relates to nonlinear properties of the original time series, whereas the sign series relates to the linear properties. The research shows that the oil-gas-water three-phase flows (slug flow, churn flow, bubble flow) can be classified by a combination of scaling exponents of magnitude and sign series. This study provides a new way of characterising linear and nonlinear properties embedded in oil-gas-water three-phase flows.

  8. Path-corrected Body-wave Magnitudes and Yield Estimates of Semipalatinsk Explosions

    DTIC Science & Technology

    1992-04-04

    OFFICE 3701 NORTH FAIRFAX DRIVE ARLINGTON, VA 22203-1714 . ..... - The views and conclusions contained in this report are those of the authors and should...MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /MONITORING AGENCY REPORT NUMBER DARPA/NMRO (Attn. Dr. Alan Ryall) 3701 North Fairfax Drive...Report UCRL -Trans-10517, 79-109. North, R. G. (1977). Station magnitude bias --- its determination, causes, and effects, Lincoln Laboratory, Technical

  9. Replication of linkage to quantitative trait loci: variation in location and magnitude of the lod score.

    PubMed

    Hsueh, W C; Göring, H H; Blangero, J; Mitchell, B D

    2001-01-01

    Replication of linkage signals from independent samples is considered an important step toward verifying the significance of linkage signals in studies of complex traits. The purpose of this empirical investigation was to examine the variability in the precision of localizing a quantitative trait locus (QTL) by analyzing multiple replicates of a simulated data set with the use of variance components-based methods. Specifically, we evaluated across replicates the variation in both the magnitude and the location of the peak lod scores. We analyzed QTLs whose effects accounted for 10-37% of the phenotypic variance in the quantitative traits. Our analyses revealed that the precision of QTL localization was directly related to the magnitude of the QTL effect. For a QTL with effect accounting for > 20% of total phenotypic variation, > 90% of the linkage peaks fall within 10 cM from the true gene location. We found no evidence that, for a given magnitude of the lod score, the presence of interaction influenced the precision of QTL localization.

  10. Differentiating induced and natural seismicity using space-time-magnitude statistics applied to the Coso Geothermal field

    USGS Publications Warehouse

    Schoenball, Martin; Davatzes, Nicholas C.; Glen, Jonathan M. G.

    2015-01-01

    A remarkable characteristic of earthquakes is their clustering in time and space, displaying their self-similarity. It remains to be tested if natural and induced earthquakes share the same behavior. We study natural and induced earthquakes comparatively in the same tectonic setting at the Coso Geothermal Field. Covering the preproduction and coproduction periods from 1981 to 2013, we analyze interevent times, spatial dimension, and frequency-size distributions for natural and induced earthquakes. Individually, these distributions are statistically indistinguishable. Determining the distribution of nearest neighbor distances in a combined space-time-magnitude metric, lets us identify clear differences between both kinds of seismicity. Compared to natural earthquakes, induced earthquakes feature a larger population of background seismicity and nearest neighbors at large magnitude rescaled times and small magnitude rescaled distances. Local stress perturbations induced by field operations appear to be strong enough to drive local faults through several seismic cycles and reactivate them after time periods on the order of a year.

  11. Is 9 louder than 1? Audiovisual cross-modal interactions between number magnitude and judged sound loudness.

    PubMed

    Alards-Tomalin, Doug; Walker, Alexander C; Shaw, Joshua D M; Leboe-McGowan, Launa C

    2015-09-01

    The cross-modal impact of number magnitude (i.e. Arabic digits) on perceived sound loudness was examined. Participants compared a target sound's intensity level against a previously heard reference sound (which they judged as quieter or louder). Paired with each target sound was a task irrelevant Arabic digit that varied in magnitude, being either small (1, 2, 3) or large (7, 8, 9). The degree to which the sound and the digit were synchronized was manipulated, with the digit and sound occurring simultaneously in Experiment 1, and the digit preceding the sound in Experiment 2. Firstly, when target sounds and digits occurred simultaneously, sounds paired with large digits were categorized as loud more frequently than sounds paired with small digits. Secondly, when the events were separated, number magnitude ceased to bias sound intensity judgments. In Experiment 3, the events were still separated, however the participants held the number in short-term memory. In this instance the bias returned. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Reward magnitude, but not time of day, influences the trial-spacing effect in autoshaping with rats.

    PubMed

    Thomas, B; Huneycutt, D; Papini, M R

    1998-12-01

    The arousal hypothesis of the trial-spacing effect suggests that spaced-trial training increases emotional arousal and thus invigorates Pavlovian behavior, relative to massed-trial conditions. Emotional arousal was manipulated by varying reinforcer magnitude during training (either one or five food pellets/trial, across groups). In addition, autoshaping training was administered either in the morning (0900 h) or in the evening (1700 h). Rats were housed in an enclosed colony room and exposed to a regular light:dark cycle (light from 0700 to 1900 h). Available evidence indicates that reinforcer magnitude and time of day are related to arousal levels. As expected, a larger reinforcer magnitude led to a highly significant trial spacing effect. Evening training led to a higher response rate than morning training, but the trial-spacing effect was equally strong whether training was administered in the morning or in the evening. These results provide partial support for the arousal hypothesis and are discussed in the context of research on schedule-induced behavior.

  13. Perceived state of self during motion can differentially modulate numerical magnitude allocation.

    PubMed

    Arshad, Q; Nigmatullina, Y; Roberts, R E; Goga, U; Pikovsky, M; Khan, S; Lobo, R; Flury, A-S; Pettorossi, V E; Cohen-Kadosh, R; Malhotra, P A; Bronstein, A M

    2016-09-01

    Although a direct relationship between numerical allocation and spatial attention has been proposed, recent research suggests that these processes are not directly coupled. In keeping with this, spatial attention shifts induced either via visual or vestibular motion can modulate numerical allocation in some circumstances but not in others. In addition to shifting spatial attention, visual or vestibular motion paradigms also (i) elicit compensatory eye movements which themselves can influence numerical processing and (ii) alter the perceptual state of 'self', inducing changes in bodily self-consciousness impacting upon cognitive mechanisms. Thus, the precise mechanism by which motion modulates numerical allocation remains unknown. We sought to investigate the influence that different perceptual experiences of motion have upon numerical magnitude allocation while controlling for both eye movements and task-related effects. We first used optokinetic visual motion stimulation (OKS) to elicit the perceptual experience of either 'visual world' or 'self'-motion during which eye movements were identical. In a second experiment, we used a vestibular protocol examining the effects of perceived and subliminal angular rotations in darkness, which also provoked identical eye movements. We observed that during the perceptual experience of 'visual world' motion, rightward OKS-biased judgments towards smaller numbers, whereas leftward OKS-biased judgments towards larger numbers. During the perceptual experience of 'self-motion', judgments were biased towards larger numbers irrespective of the OKS direction. Contrastingly, vestibular motion perception was found not to modulate numerical magnitude allocation, nor was there any differential modulation when comparing 'perceived' vs. 'subliminal' rotations. We provide a novel demonstration that numerical magnitude allocation can be differentially modulated by the perceptual state of self during visual but not vestibular mediated motion

  14. Constraining explosive volcanism: subjective choices during estimates of eruption magnitude

    USGS Publications Warehouse

    Klawonn, Malin; Houghton, Bruce F.; Swanson, Don; Fagents, Sarah A.; Wessel, Paul; Wolfe, Cecily J.

    2014-01-01

    When estimating the magnitude of explosive eruptions from their deposits, individuals make three sets of critical choices with respect to input data: the spacing of sampling sites, the selection of contour intervals to constrain the field measurements, and the hand contouring of thickness/isomass data, respectively. Volcanologists make subjective calls, as there are no accepted published protocols and few accounts of how these choices will impact estimates of eruption magnitude. Here, for the first time, we took a set of unpublished thickness measurements from the 1959 Kīlauea Iki pyroclastic fall deposit and asked 101 volcanologists worldwide to hand contour the data. First, there were surprisingly consistent volume estimates across maps with three different sampling densities. Second, the variability in volume calculations imparted by individuals’ choices of contours is also surprisingly low and lies between s = 5 and 8 %. Third, volume estimation is insensitive to the extent to which different individuals “smooth” the raw data in constructing contour lines. Finally, large uncertainty is associated with the construction of the thinnest isopachs, which is likely to underestimate the actual trend of deposit thinning. The net result is that researchers can have considerable confidence in using volume or dispersal data from multiple authors and different deposits for comparative studies. These insights should help volcanologists around the world to optimize design and execution of field-based studies to characterize accurately the volume of pyroclastic deposits.

  15. Constraining explosive volcanism: subjective choices during estimates of eruption magnitude

    NASA Astrophysics Data System (ADS)

    Klawonn, Malin; Houghton, Bruce F.; Swanson, Donald A.; Fagents, Sarah A.; Wessel, Paul; Wolfe, Cecily J.

    2014-02-01

    When estimating the magnitude of explosive eruptions from their deposits, individuals make three sets of critical choices with respect to input data: the spacing of sampling sites, the selection of contour intervals to constrain the field measurements, and the hand contouring of thickness/isomass data, respectively. Volcanologists make subjective calls, as there are no accepted published protocols and few accounts of how these choices will impact estimates of eruption magnitude. Here, for the first time, we took a set of unpublished thickness measurements from the 1959 Kīlauea Iki pyroclastic fall deposit and asked 101 volcanologists worldwide to hand contour the data. First, there were surprisingly consistent volume estimates across maps with three different sampling densities. Second, the variability in volume calculations imparted by individuals' choices of contours is also surprisingly low and lies between s = 5 and 8 %. Third, volume estimation is insensitive to the extent to which different individuals "smooth" the raw data in constructing contour lines. Finally, large uncertainty is associated with the construction of the thinnest isopachs, which is likely to underestimate the actual trend of deposit thinning. The net result is that researchers can have considerable confidence in using volume or dispersal data from multiple authors and different deposits for comparative studies. These insights should help volcanologists around the world to optimize design and execution of field-based studies to characterize accurately the volume of pyroclastic deposits.

  16. Correlation of Foreshock Occurrence with Mainshock Depth, Rake, and Magnitude from the High Precision Catalog for Northern California

    NASA Astrophysics Data System (ADS)

    Schaff, D. P.; Waldhauser, F.; Lerner-Lam, A.

    2010-12-01

    Foreshocks are perhaps the best-documented and most undisputed precursors to some large earthquakes. The question remains, however, if foreshocks have any more predictive power for future mainshocks than any other earthquake. Several researchers argue for a single unifying triggering law for foreshocks, mainshocks, and aftershocks. An alternate model is that foreshocks are the byproduct of an aseismic pre-slip phase that scales with mainshock magnitude. In this case foreshocks are different than other earthquakes and have predictive value for the mainshock location, origin time, and magnitude. We examine 612 mainshocks with M ≥ 4 from the cross-correlation double-difference catalog for northern California. 235 (44%) of these had foreshock sequences, providing us with a data set more than an order of magnitude larger than those used in previous studies. We are able to confirm with improved accuracy correlations of foreshock occurrence and characteristics with depth. The proportion of mainshocks with associated foreshocks, the number of foreshocks in the sequence, the foreshock duration, and the foreshock radius in map view all decrease with increasing depth, all with statistical significance above 95%. This supports models where increasing normal stress due to lithostatic load inhibits foreshock occurrence. Other M ≥ 4 events that were classified as aftershocks of larger events did not show the depth dependence. However, our analysis does not confirm a previous observation that increased normal stress due to tectonic loading appears to inhibit foreshock occurrence. We observe a negative correlation of foreshock magnitude with foreshock duration which is consistent with a model of mainshocks triggered by increased pore pressure. We observe a statistically significant relationship between foreshock magnitude and mainshock magnitude, lending support to the pre-slip model.

  17. Estudio teórico del CO2. Orbitales de valencia y del ``core''

    NASA Astrophysics Data System (ADS)

    Olalla Gutiérrez, E.

    Hemos calculado las intensidades de las transiciones E1 a los miembros de las series de Rydberg con origen en los orbitales ``no enlazantes'' del dióxido de carbono, especie de conocida relevancia atmosférica. Se han computado, asimismo, los continuos de fotoionización correspondientes a los distintos canales de ionización, representándolos como densidad espectral de fuerza de oscilador frente a la energía del fotón incidente; mostramos los resultados df/dE para la fotoionización total de esta especie en el intervalo 15-60 eV. Todos los cálculos se han llevado a cabo mediante la formulación Molecular del Método de los Orbitales de Defecto Cuántico, MQDO [1,2]. La calidad de los resultados que presentamos se ha evaluado en base a la comparación con los datos, tanto experimentales como teóricos, disponibles en la bibliografía. El acuerdo encontrado es altamente satisfactorio

  18. Color Magnitude Diagrams of Old, Massive GCs in M31

    NASA Astrophysics Data System (ADS)

    Caldwell, Nelson; Williams, B.; Dolphin, A. E.; Johnson, L. C.; Weisz, D. R.

    2013-01-01

    Multicolor stellar photometry of HST data of M31 collected as part of the PHAT project has been performed using the DOLPHOT suite of programs. We present results of color-magnitude diagrams created in F475W and F814W (BI) of more than 50 massive, old clusters. These are clusters in or projected on the disk. We compare the metallicities derived from the color of the giant branch stars with that derived from integrated light spectroscopy. As well, we compare the ages of massive, young clusters with those found from spectra.

  19. The world's largest floods, past and present: Their causes and magnitudes

    USGS Publications Warehouse

    O'Connor, Jim E.; Costa, John E.

    2004-01-01

    Floods are among the most powerful forces on earth. Human societies worldwide have lived and died with floods from the very beginning, spawning a prominent role for floods within legends, religions, and history. Inspired by such accounts, geologists, hydrologists, and historians have studied the role of floods on humanity and its supporting ecosystems, resulting in new appreciation for the many-faceted role of floods in shaping our world. Part of this appreciation stems from ongoing analysis of long-term streamflow measurements, such as those recorded by the U.S. Geological Survey's (USGS) streamflow gaging network. But the recognition of the important role of flooding in shaping our cultural and physical landscape also owes to increased understanding of the variety of mechanisms that cause floods and how the types and magnitudes of floods can vary with time and space. The USGS has contributed to this understanding through more than a century of diverse research activities on many aspects of floods, including their causes, effects, and hazards. This Circular summarizes a facet of this research by describing the causes and magnitudes of the world's largest floods, including those measured and described by modern methods in historic times, as well as floods of prehistoric times, for which the only records are those left by the floods themselves.

  20. Gradient Magnitude Similarity Deviation: A Highly Efficient Perceptual Image Quality Index.

    PubMed

    Xue, Wufeng; Zhang, Lei; Mou, Xuanqin; Bovik, Alan C

    2014-02-01

    It is an important task to faithfully evaluate the perceptual quality of output images in many applications, such as image compression, image restoration, and multimedia streaming. A good image quality assessment (IQA) model should not only deliver high quality prediction accuracy, but also be computationally efficient. The efficiency of IQA metrics is becoming particularly important due to the increasing proliferation of high-volume visual data in high-speed networks. We present a new effective and efficient IQA model, called gradient magnitude similarity deviation (GMSD). The image gradients are sensitive to image distortions, while different local structures in a distorted image suffer different degrees of degradations. This motivates us to explore the use of global variation of gradient based local quality map for overall image quality prediction. We find that the pixel-wise gradient magnitude similarity (GMS) between the reference and distorted images combined with a novel pooling strategy-the standard deviation of the GMS map-can predict accurately perceptual image quality. The resulting GMSD algorithm is much faster than most state-of-the-art IQA methods, and delivers highly competitive prediction accuracy. MATLAB source code of GMSD can be downloaded at http://www4.comp.polyu.edu.hk/~cslzhang/IQA/GMSD/GMSD.htm.

  1. Increased rates of large‐magnitude explosive eruptions in Japan in the late Neogene and Quaternary

    PubMed Central

    Sparks, R. S. J.; Wallace, L. M.; Engwell, S. L.; Scourse, E. M.; Barnard, N. H.; Kandlbauer, J.; Brown, S. K.

    2016-01-01

    Abstract Tephra layers in marine sediment cores from scientific ocean drilling largely record high‐magnitude silicic explosive eruptions in the Japan arc for up to the last 20 million years. Analysis of the thickness variation with distance of 180 tephra layers from a global data set suggests that the majority of the visible tephra layers used in this study are the products of caldera‐forming eruptions with magnitude (M) > 6, considering their distances at the respective drilling sites to their likely volcanic sources. Frequency of visible tephra layers in cores indicates a marked increase in rates of large magnitude explosive eruptions at ∼8 Ma, 6–4 Ma, and further increase after ∼2 Ma. These changes are attributed to major changes in tectonic plate interactions. Lower rates of large magnitude explosive volcanism in the Miocene are related to a strike‐slip‐dominated boundary (and temporary cessation or deceleration of subduction) between the Philippine Sea Plate and southwest Japan, combined with the possibility that much of the arc in northern Japan was submerged beneath sea level partly due to previous tectonic extension of northern Honshu related to formation of the Sea of Japan. Changes in plate motions and subduction dynamics during the ∼8 Ma to present period led to (1) increased arc‐normal subduction in southwest Japan (and resumption of arc volcanism) and (2) shift from extension to compression of the upper plate in northeast Japan, leading to uplift, crustal thickening and favorable conditions for accumulation of the large volumes of silicic magma needed for explosive caldera‐forming eruptions. PMID:27656115

  2. Children's Representation of Symbolic and Nonsymbolic Magnitude Examined with the Priming Paradigm

    ERIC Educational Resources Information Center

    Defever, Emmy; Sasanguie, Delphine; Gebuis, Titia; Reynvoet, Bert

    2011-01-01

    How people process and represent magnitude has often been studied using number comparison tasks. From the results of these tasks, a comparison distance effect (CDE) is generated, showing that it is easier to discriminate two numbers that are numerically further apart (e.g., 2 and 8) compared with numerically closer numbers (e.g., 6 and 8).…

  3. Developmental dyscalculia: compensatory mechanisms in left intraparietal regions in response to nonsymbolic magnitudes.

    PubMed

    Kaufmann, Liane; Vogel, Stephan E; Starke, Marc; Kremser, Christian; Schocke, Michael; Wood, Guilherme

    2009-08-05

    Functional magnetic resonance imaging (fMRI) studies investigating the neural mechanisms underlying developmental dyscalculia are scarce and results are thus far inconclusive. Main aim of the present study is to investigate the neural correlates of nonsymbolic number magnitude processing in children with and without dyscalculia. 18 children (9 with dyscalculia) were asked to solve a non-symbolic number magnitude comparison task (finger patterns) during brain scanning. For the spatial control task identical stimuli were employed, instructions varying only (judgment of palm rotation). This design enabled us to present identical stimuli with identical visual processing requirements in the experimental and the control task. Moreover, because numerical and spatial processing relies on parietal brain regions, task-specific contrasts are expected to reveal true number-specific activations. Behavioral results during scanning reveal that despite comparable (almost at ceiling) performance levels, task-specific activations were stronger in dyscalculic children in inferior parietal cortices bilaterally (intraparietal sulcus, supramarginal gyrus, extending to left angular gyrus). Interestingly, fMRI signal strengths reflected a group x task interaction: relative to baseline, controls produced significant deactivations in (intra)parietal regions bilaterally in response to number but not spatial processing, while the opposite pattern emerged in dyscalculics. Moreover, beta weights in response to number processing differed significantly between groups in left - but not right - (intra)parietal regions (becoming even positive in dyscalculic children). Overall, findings are suggestive of (a) less consistent neural activity in right (intra)parietal regions upon processing nonsymbolic number magnitudes; and (b) compensatory neural activity in left (intra)parietal regions in developmental dyscalculia.

  4. Are low and high number magnitudes processed differently while resolving the conflict evoked by the SNARC effect?

    PubMed

    Gut, Małgorzata; Szumska, Izabela; Wasilewska, Marzena; Jaśkowski, Piotr

    2012-07-01

    In the brain, numbers are thought to be represented in a spatially organised fashion on what is known as the Mental Number Line (MNL). The SNARC (Spatial-Numerical Association of Response Codes) effect refers to the faster responses to digits when the reaction side is congruent with the digit position on the MNL (e.g. a left-handed response to a small magnitude) and the slowing down of responses (inhibition) in the case of incongruity. We examined the electrophysiological correlates of conflict, which are linked to that of inhibition, to shed light on the relationship between the SNARC effect and executive attention. Event-related potentials (ERPs) were recorded from twenty-nine participants during a parity-judgment task. The participants responded more quickly on congruent than on incongruent trials. The congruency effect was reflected in early sensory (N1, N2) components above parieto-occipital and frontal regions, as well as in the later P3 component above centro-parietal areas. Moreover, both the N1 amplitude and N2 latency were greater with high than low magnitude digit targets. P3 amplitude modulation implies that the SNARC effect is the result of first evoking the parallel processing of digit magnitude categorisation (in the occipital and central areas) and numeric conflict detection (in the parieto-occipital and frontal areas) and secondly conflict monitoring and resolution localised in the centro-parietal and frontal sites. These results also suggest that the left hemisphere specialises in conflict processing of high magnitude digit targets, while the right hemisphere of low digit magnitudes. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Comparing otoacoustic emissions evoked by chirp transients with constant absorbed sound power and constant incident pressure magnitude.

    PubMed

    Keefe, Douglas H; Feeney, M Patrick; Hunter, Lisa L; Fitzpatrick, Denis F

    2017-01-01

    Human ear-canal properties of transient acoustic stimuli are contrasted that utilize measured ear-canal pressures in conjunction with measured acoustic pressure reflectance and admittance. These data are referenced to the tip of a probe snugly inserted into the ear canal. Promising procedures to calibrate across frequency include stimuli with controlled levels of incident pressure magnitude, absorbed sound power, and forward pressure magnitude. An equivalent pressure at the eardrum is calculated from these measured data using a transmission-line model of ear-canal acoustics parameterized by acoustically estimated ear-canal area at the probe tip and length between the probe tip and eardrum. Chirp stimuli with constant incident pressure magnitude and constant absorbed sound power across frequency were generated to elicit transient-evoked otoacoustic emissions (TEOAEs), which were measured in normal-hearing adult ears from 0.7 to 8 kHz. TEOAE stimuli had similar peak-to-peak equivalent sound pressure levels across calibration conditions. Frequency-domain TEOAEs were compared using signal level, signal-to-noise ratio (SNR), coherence synchrony modulus (CSM), group delay, and group spread. Time-domain TEOAEs were compared using SNR, CSM, instantaneous frequency and instantaneous bandwidth. Stimuli with constant incident pressure magnitude or constant absorbed sound power across frequency produce generally similar TEOAEs up to 8 kHz.

  6. Visiting the Gödel universe.

    PubMed

    Grave, Frank; Buser, Michael

    2008-01-01

    Visualization of general relativity illustrates aspects of Einstein's insights into the curved nature of space and time to the expert as well as the layperson. One of the most interesting models which came up with Einstein's theory was developed by Kurt Gödel in 1949. The Gödel universe is a valid solution of Einstein's field equations, making it a possible physical description of our universe. It offers remarkable features like the existence of an optical horizon beyond which time travel is possible. Although we know that our universe is not a Gödel universe, it is interesting to visualize physical aspects of a world model resulting from a theory which is highly confirmed in scientific history. Standard techniques to adopt an egocentric point of view in a relativistic world model have shortcomings with respect to the time needed to render an image as well as difficulties in applying a direct illumination model. In this paper we want to face both issues to reduce the gap between common visualization standards and relativistic visualization. We will introduce two techniques to speed up recalculation of images by means of preprocessing and lookup tables and to increase image quality through a special optimization applicable to the Gödel universe. The first technique allows the physicist to understand the different effects of general relativity faster and better by generating images from existing datasets interactively. By using the intrinsic symmetries of Gödel's spacetime which are expressed by the Killing vector field, we are able to reduce the necessary calculations to simple cases using the second technique. This even makes it feasible to account for a direct illumination model during the rendering process. Although the presented methods are applied to Gödel's universe, they can also be extended to other manifolds, for example light propagation in moving dielectric media. Therefore, other areas of research can benefit from these generic improvements.

  7. Research on temperature characteristics of laser energy meter absorber irradiated by ms magnitude long pulse laser

    NASA Astrophysics Data System (ADS)

    Li, Nan; Qiao, Chunhong; Fan, Chengyu; Zhang, Jinghui; Yang, Gaochao

    2017-10-01

    The research on temperature characteristics for large-energy laser energy meter absorber is about continuous wave (CW) laser before. For the measuring requirements of millisecond magnitude long pulse laser energy, the temperature characteristics for absorber are numerically calculated and analyzed. In calculation, the temperature field distributions are described by heat conduction equations, and the metal cylinder cavity is used for absorber model. The results show that, the temperature of absorber inwall appears periodic oscillation with pulse structure, the oscillation period and amplitude respectively relate to the pulse repetition frequency and single pulse energy. With the wall deep increasing, the oscillation amplitude decreases rapidly. The temperature of absorber outerwall is without periodism, and rises gradually with time. The factors to affect the temperature rise of absorber are single pulse energy, pulse width and repetition frequency. When the laser irradiation stops, the temperature between absorber inwall and outerwall will reach agreement rapidly. After special technology processing to enhance the capacity of resisting laser damage for absorber inwall, the ms magnitude long pulse laser energy can be obtained with the method of measuring the temperature of absorber outerwall. Meanwhile, by optimization design of absorber structure, when the repetition frequency of ms magnitude pulse laser is less than 10Hz, the energy of every pulse for low repetition frequency pulse sequence can be measured. The work offers valuable references for the design of ms magnitude large-energy pulse laser energy meter.

  8. Reexamination of the magnitudes for the 1906 and 1922 Chilean earthquakes using Japanese tsunami amplitudes: Implications for source depth constraints

    USGS Publications Warehouse

    Carvajal, M.; Cisternas, M.; Gubler, A.; Catalan, P. A.; Winckler, P.; Wesson, Robert L.

    2017-01-01

    Far-field tsunami records from the Japanese tide gauge network allow the reexamination of the moment magnitudes (Mw) for the 1906 and 1922 Chilean earthquakes, which to date rely on limited information mainly from seismological observations alone. Tide gauges along the Japanese coast provide extensive records of tsunamis triggered by six great (Mw >8) Chilean earthquakes with instrumentally determined moment magnitudes. These tsunami records are used to explore the dependence of tsunami amplitudes in Japan on the parent earthquake magnitude of Chilean origin. Using the resulting regression parameters together with tide gauge amplitudes measured in Japan we estimate apparent moment magnitudes of Mw 8.0–8.2 and Mw8.5–8.6 for the 1906 central and 1922 north-central Chile earthquakes. The large discrepancy of the 1906 magnitude estimated from the tsunami observed in Japan as compared with those previously determined from seismic waves (Ms 8.4) suggests a deeper than average source with reduced tsunami excitation. A deep dislocation along the Chilean megathrust would favor uplift of the coast rather than beneath the sea, giving rise to a smaller tsunami and producing effects consistent with those observed in 1906. The 1922 magnitude inferred from far-field tsunami amplitudes appear to better explain the large extent of damage and the destructive tsunami that were locally observed following the earthquake than the lower seismic magnitudes (Ms 8.3) that were likely affected by the well-known saturation effects. Thus, a repeat of the large 1922 earthquake poses seismic and tsunami hazards in a region identified as a mature seismic gap.

  9. Relations Between Rainfall and Postfire Debris-Flow and Flood Magnitudes for Emergency-Response Planning, San Gabriel Mountains, Southern California

    USGS Publications Warehouse

    Cannon, Susan H.; Boldt, Eric M.; Kean, Jason W.; Laber, Jayme; Staley, Dennis M.

    2010-01-01

    Following wildfires, emergency-response and public-safety agencies are faced often with making evacuation decisions and deploying resources both well in advance of each coming winter storm and during storms themselves. Information critical to this process is provided for recently burned areas in the San Gabriel Mountains of southern California. The National Weather Service (NWS) issues Quantitative Precipitation Forecasts (QPFs) for the San Gabriel Mountains twice a day, at approximately 4 a.m. and 4 p.m., along with unscheduled updates when conditions change. QPFs provide estimates of rainfall totals in 3-hour increments for the first 12-hour period and in 6-hour increments for the second 12-hour period. Estimates of one-hour rainfall intensities can be provided in the forecast narrative, along with probable peak intensities and timing, although with less confidence than rainfall totals. A compilation of information on the hydrologic response to winter storms from recently burned areas in southern California steeplands was used to develop a system for classifying the magnitude of the postfire hydrologic response. The four-class system is based on a combination of the reported volume of individual debris flows, the consequences of these events in an urban setting, and the spatial extent of the response to the triggering storm. Threshold rainfall conditions associated with debris flow and floods of different magnitude classes are defined by integrating local rainfall data with debris-flow and flood magnitude information. The within-storm rainfall accumulations (A) and durations (D) above which magnitude I events are expected are defined by A=0.3D0.6. The function A=0.5D0.6 defines the within-storm rainfall accumulations and durations above which a magnitude III event will occur in response to a regional-scale storm, and a magnitude II event will occur if the storm affects only a few drainage basins. The function A=1.0D0.5defines the rainfall conditions above which

  10. Life on the Number Line: Routes to Understanding Fraction Magnitude for Students With Difficulties Learning Mathematics.

    PubMed

    Gersten, Russell; Schumacher, Robin F; Jordan, Nancy C

    Magnitude understanding is critical for students to develop a deep understanding of fractions and more advanced mathematics curriculum. The research reports in this special issue underscore magnitude understanding for fractions and emphasize number lines as both an assessment and an instructional tool. In this commentary, we discuss how number lines broaden the concept of fractions for students who are tied to the more general part-whole representations of area models. We also discuss how number lines, compared to other representations, are a superior and more mathematically correct way to explain fraction concepts.

  11. A stress-controlled mechanism for the intensity of very large magnitude explosive eruptions

    NASA Astrophysics Data System (ADS)

    Costa, A.; Gottsmann, J.; Melnik, O.; Sparks, R. S. J.

    2011-10-01

    Large magnitude explosive eruptions are the result of the rapid and large-scale transport of silicic magma stored in the Earth's crust, but the mechanics of erupting teratonnes of silicic magma remain poorly understood. Here, we demonstrate that the combined effect of local crustal extension and magma chamber overpressure can sustain linear dyke-fed explosive eruptions with mass fluxes in excess of 10 10 kg/s from shallow-seated (4-6 km depth) chambers during moderate extensional stresses. Early eruption column collapse is facilitated with eruption duration of the order of few days with an intensity of at least one order of magnitude greater than the largest eruptions in the 20th century. The conditions explored in this study are one way in which high mass eruption rates can be achieved to feed large explosive eruptions. Our results corroborate geological and volcanological evidences from volcano-tectonic complexes such as the Sierra Madre Occidental (Mexico) and the Taupo Volcanic Zone (New Zealand).

  12. Magnitude and behavior of cross-talk effects in multichannel electrophysiology experiments.

    PubMed

    Nelson, Matthew J; Valtcheva, Silvana; Venance, Laurent

    2017-07-01

    Modern neurophysiological experiments frequently involve multiple channels separated by very small distances. A unique methodological concern for multiple-electrode experiments is that of capacitive coupling (cross-talk) between channels. Yet the nature of the cross-talk recording circuit is not well known in the field, and the extent to which it practically affects neurophysiology experiments has never been fully investigated. Here we describe a simple electrical circuit model of simultaneous recording and stimulation with two or more channels and experimentally verify the model using ex vivo brain slice and in vivo whole-brain preparations. In agreement with the model, we find that cross-talk amplitudes increase nearly linearly with the impedance of a recording electrode and are larger for higher frequencies. We demonstrate cross-talk contamination of action potential waveforms from intracellular to extracellular channels, which is observable in part because of the different orders of magnitude between the channels. This contamination is electrode impedance-dependent and matches predictions from the model. We use recently published parameters to simulate cross-talk in high-density multichannel extracellular recordings. Cross-talk effectively spatially smooths current source density (CSD) estimates in these recordings and induces artefactual phase shifts where underlying voltage gradients occur; however, these effects are modest. We show that the effects of cross-talk are unlikely to affect most conclusions inferred from neurophysiology experiments when both originating and receiving electrode record signals of similar magnitudes. We discuss other types of experiments and analyses that may be susceptible to cross-talk, techniques for detecting and experimentally reducing cross-talk, and implications for high-density probe design. NEW & NOTEWORTHY We develop and experimentally verify an electrical circuit model describing cross-talk that necessarily occurs between

  13. del universes in string theory

    NASA Astrophysics Data System (ADS)

    Barrow, John D.; Dabrowski, Mariusz P.

    1998-11-01

    We show that homogeneous Gödel spacetimes need not contain closed timelike curves in low-energy-effective string theories. We find exact solutions for the Gödel metric in string theory for the full O(α') action including both dilaton and axion fields. The results are valid for bosonic, heterotic and super-strings. To first order in the inverse string tension α', these solutions display a simple relation between the angular velocity of the Gödel universe, Ω, and the inverse string tension of the form α'=1/Ω2 in the absence of the axion field. The generalization of this relationship is also found when the axion field is present.

  14. Relaciones entre el sueño y la adicción

    PubMed Central

    Cañellas, Francesca; de Lecea, Luis

    2016-01-01

    Resumen La interacción entre los trastornos del sueño y el abuso de sustancias es ya conocida, pero seguramente más compleja de lo que se pensaba. Existe tanto una relación positiva entre tener un trastorno por uso de substancias y sufrir un trastorno de sueño, como viceversa. Los efectos sobre el sueño dependen de la substancia utilizada, pero se ha demostrado que tanto durante su uso como en período de abstinencia los consumidores tienen diferentes problemas de sueño y fundamentalmente un sueño más fragmentado. Sabemos que hay que tener en cuenta los problemas de sueño para evitar recaídas en la adicción. Investigaciones recientes indican que el sistema hipocretinérgico definido por el neuropéptido hipocretina/orexina (Hcrt/ox), localizado en el hipotálamo lateral e implicado entre otros en la regulación del ciclo sueño-vigilia, jugaría un papel importante en las conductas adictivas. Diferentes estudios han demostrado interacciones entre el sistema hipocretinérgico, los circuitos de respuesta aguda al estrés y los sistemas de recompensa. También sabemos que la activación optogenética selectiva del sistema hipocretinérgico incrementa la probabilidad de la transición del sueño a la vigilia, y también es suficiente para iniciar un comportamiento compulsivo de recaída adictiva. La activación del sistema hipocretinérgico podría explicar la hipervigilia asociada al estrés y a la adicción. El mayor conocimiento de esta interacción permitiría entender mejor los mecanismos de la adicción y encontrar nuevas estrategias para el tratamiento de las adicciones. PMID:23241715

  15. Calibration of the MEarth Photometric System: Optical Magnitudes and Photometric Metallicity Estimates for 1802 Nearby M-Dwarfs

    NASA Astrophysics Data System (ADS)

    Dittmann, Jason A.; Irwin, Jonathan M.; Charbonneau, David; Newton, Elisabeth R.

    2016-02-01

    The MEarth Project is a photometric survey systematically searching the smallest stars near the Sun for transiting rocky planets. Since 2008, MEarth has taken approximately two million images of 1844 stars suspected to be mid-to-late M dwarfs. We have augmented this survey by taking nightly exposures of photometric standard stars and have utilized this data to photometrically calibrate the MEarth system, identify photometric nights, and obtain an optical magnitude with 1.5% precision for each M dwarf system. Each optical magnitude is an average over many years of data, and therefore should be largely immune to stellar variability and flaring. We combine this with trigonometric distance measurements, spectroscopic metallicity measurements, and 2MASS infrared magnitude measurements in order to derive a color-magnitude-metallicity relation across the mid-to-late M dwarf spectral sequence that can reproduce spectroscopic metallicity determinations to a precision of 0.1 dex. We release optical magnitudes and metallicity estimates for 1567 M dwarfs, many of which did not have an accurate determination of either prior to this work. For an additional 277 stars without a trigonometric parallax, we provide an estimate of the distance, assuming solar neighborhood metallicity. We find that the median metallicity for a volume-limited sample of stars within 20 pc of the Sun is [Fe/H] = -0.03 ± 0.008, and that 29/565 of these stars have a metallicity of [Fe/H] = -0.5 or lower, similar to the low-metallicity distribution of nearby G dwarfs. When combined with the results of ongoing and future planet surveys targeting these objects, the metallicity estimates presented here will be important for assessing the significance of any putative planet-metallicity correlation.

  16. Speaking two languages with different number naming systems: What implications for magnitude judgments in bilinguals at different stages of language acquisition?

    PubMed

    Van Rinsveld, Amandine; Schiltz, Christine; Landerl, Karin; Brunner, Martin; Ugen, Sonja

    2016-08-01

    Differences between languages in terms of number naming systems may lead to performance differences in number processing. The current study focused on differences concerning the order of decades and units in two-digit number words (i.e., unit-decade order in German but decade-unit order in French) and how they affect number magnitude judgments. Participants performed basic numerical tasks, namely two-digit number magnitude judgments, and we used the compatibility effect (Nuerk et al. in Cognition 82(1):B25-B33, 2001) as a hallmark of language influence on numbers. In the first part we aimed to understand the influence of language on compatibility effects in adults coming from German or French monolingual and German-French bilingual groups (Experiment 1). The second part examined how this language influence develops at different stages of language acquisition in individuals with increasing bilingual proficiency (Experiment 2). Language systematically influenced magnitude judgments such that: (a) The spoken language(s) modulated magnitude judgments presented as Arabic digits, and (b) bilinguals' progressive language mastery impacted magnitude judgments presented as number words. Taken together, the current results suggest that the order of decades and units in verbal numbers may qualitatively influence magnitude judgments in bilinguals and monolinguals, providing new insights into how number processing can be influenced by language(s).

  17. Visual Cues, Student Sex, Material Taught, and the Magnitude of Teacher Expectancy Effects.

    ERIC Educational Resources Information Center

    Badini, Aldo A.; Rosenthal, Robert

    1989-01-01

    Conducts an experiment on teacher expectancy effects to investigate the simultaneous effects of student gender, communication channel, and type of material taught (vocabulary and reasoning). Finds that the magnitude of teacher expectation effects was greater when students had access to visual cues, especially when the students were female. (MS)

  18. Regional Triggering of Volcanic Activity Following Large Magnitude Earthquakes

    NASA Astrophysics Data System (ADS)

    Hill-Butler, Charley; Blackett, Matthew; Wright, Robert

    2015-04-01

    There are numerous reports of a spatial and temporal link between volcanic activity and high magnitude seismic events. In fact, since 1950, all large magnitude earthquakes have been followed by volcanic eruptions in the following year - 1952 Kamchatka M9.2, 1960 Chile M9.5, 1964 Alaska M9.2, 2004 & 2005 Sumatra-Andaman M9.3 & M8.7 and 2011 Japan M9.0. While at a global scale, 56% of all large earthquakes (M≥8.0) in the 21st century were followed by increases in thermal activity. The most significant change in volcanic activity occurred between December 2004 and April 2005 following the M9.1 December 2004 earthquake after which new eruptions were detected at 10 volcanoes and global volcanic flux doubled over 52 days (Hill-Butler et al. 2014). The ability to determine a volcano's activity or 'response', however, has resulted in a number of disparities with <50% of all volcanoes being monitored by ground-based instruments. The advent of satellite remote sensing for volcanology has, therefore, provided researchers with an opportunity to quantify the timing, magnitude and character of volcanic events. Using data acquired from the MODVOLC algorithm, this research examines a globally comparable database of satellite-derived radiant flux alongside USGS NEIC data to identify changes in volcanic activity following an earthquake, February 2000 - December 2012. Using an estimate of background temperature obtained from the MODIS Land Surface Temperature (LST) product (Wright et al. 2014), thermal radiance was converted to radiant flux following the method of Kaufman et al. (1998). The resulting heat flux inventory was then compared to all seismic events (M≥6.0) within 1000 km of each volcano to evaluate if changes in volcanic heat flux correlate with regional earthquakes. This presentation will first identify relationships at the temporal and spatial scale, more complex relationships obtained by machine learning algorithms will then be examined to establish favourable

  19. Evaluation of the statistical evidence for Characteristic Earthquakes in the frequency-magnitude distributions of Sumatra and other subduction zone regions

    NASA Astrophysics Data System (ADS)

    Naylor, M.; Main, I. G.; Greenhough, J.; Bell, A. F.; McCloskey, J.

    2009-04-01

    The Sumatran Boxing Day earthquake and subsequent large events provide an opportunity to re-evaluate the statistical evidence for characteristic earthquake events in frequency-magnitude distributions. Our aims are to (i) improve intuition regarding the properties of samples drawn from power laws, (ii) illustrate using random samples how appropriate Poisson confidence intervals can both aid the eye and provide an appropriate statistical evaluation of data drawn from power-law distributions, and (iii) apply these confidence intervals to test for evidence of characteristic earthquakes in subduction-zone frequency-magnitude distributions. We find no need for a characteristic model to describe frequency magnitude distributions in any of the investigated subduction zones, including Sumatra, due to an emergent skew in residuals of power law count data at high magnitudes combined with a sample bias for examining large earthquakes as candidate characteristic events.

  20. Trastornos mentales y consumo de drogas en la población víctima del conflicto armado en tres ciudades de Colombia.

    PubMed

    Castaño, Guillermo; Sierra, Gloria; Sánchez, Daniela; Torres, Yolanda; Salas, Carolina; Buitrago, Carolina

    2018-05-01

    Introducción. La violencia en sus diferentes modalidades incrementa el riesgo de trastornos mentales y de consumo de drogas.Objetivos. Estimar la prevalencia de los trastornos mentales, del uso y abuso de drogas, así como los factores asociados en víctimas de desplazamiento forzado en tres ciudades colombianas.Materiales y métodos. Se hizo un estudio de prevalencia en una muestra de 1.026 personas entre los 13 y los 65 años de edad, a quienes se entrevistó utilizando el instrumento Composite International Diagnostic Interview y el Alcohol Use Disorders Identification Test de la Organización Mundial de la Salud, así como un cuestionario sobre el consumo de drogas modificado a partir de la encuesta del Sistema Interamericano de Datos Uniformes sobre Drogas de la Comisión Interamericana para el Control del Abuso de Drogas de la Organización de Estados Americanos, y otro sobre aspectos relacionados con el desplazamiento forzado. El análisis se hizo mediante el programa estadístico SPSS™, versión 21.Resultados. La prevalencia de vida de los trastornos mentales fue la siguiente: fobia específica, 17,7 %; depresión mayor, 16,4 %; estrés postraumático, 9,9 %; trastorno oposicionista desafiante, 8,9 %; ansiedad por separación, 7,2 %; trastornos de conducta, 5,8 %, y déficit de atención, 5,6 %. La prevalencia de vida del consumo de alcohol fue de 68,7 %; de tabaco, 31,3 %, de marihuana, 11,2 %, de cocaína, 3,5 %, de basuco, 2,0 %, de inhalables, 2,3 %, y de medicamentos ansiolíticos sin receta, 2,5 %, en tanto que 0,7 % de los entrevistados se había inyectado drogas. El presentar cualquiera de los trastornos mentales se asoció con el sexo femenino (odds ratio, OR=1,61; IC95% 1,21-2,14), así como el haber sido sometido a más de un desplazamiento forzado (OR=1,47; IC95 1,05-2,05). El consumo de cualquiera de las drogas se asoció con ser hombre (OR=5,38; IC95% 2,35-12,34).Conclusiones. La alta prevalencia de trastornos mentales y de consumo de