Stormtime transport of ring current and radiation belt ions
NASA Technical Reports Server (NTRS)
Chen, Margaret W.; Schulz, Michael; Lyons, L. R.; Gorney, David J.
1993-01-01
This is an investigation of stormtime particle transport that leads to formation of the ring current. Our method is to trace the guiding-center motion of representative ions (having selected first adiabatic invariants mu) in response to model substorm-associated impulses in the convection electric field. We compare our simulation results qualitatively with existing analytically tractable idealizations of particle transport (direct convective access and radial diffusion) in order to assess the limits of validity of these approximations. For mu approximately less than 10 MeV/G (E approximately less than 10 keV at L equivalent to 3) the ion drift period on the final (ring-current) drift shell of interest (L equivalent to 3) exceeds the duration of the main phase of our model storm, and we find that the transport of ions to this drift shell is appropriately idealized as direct convective access, typically from open drift paths. Ion transport to a final closed drift path from an open (plasma-sheet) drift trajectory is possible for those portions of that drift path that lie outside the mean stormtime separatrix between closed and open drift trajectories, For mu approximately 10-25 MeV/G (110 keV approximately less than E approximately less than 280 keV at L equivalent to 3) the drift period at L equivalent to 3 is comparable to the postulated 3-hr duration of the storm, and the mode of transport is transitional between direct convective access and transport that resembles radial diffusion. (This particle population is transitional between the ring current and radiation belt). For mu approximately greater than 25 MeV/G (radiation-belt ions having E approximately greater than 280 keV at L equivalent to 3) the ion drift period is considerably shorter than the main phase of a typical storm, and ions gain access to the ring-current region essentially via radial diffusion. By computing the mean and mean-square cumulative changes in 1/L among (in this case) 12 representative ions equally spaced in drift time around the steady-state drift shell of interest (L equivalent to 3), we have estimated (from both our forward and our time-reversed simulations) the time-integrated radial-diffusion coefficients D(sup sim)(sub LL) for particles having selected values of mu approximately greater than 15 MeV/G. The results agree surprisingly well with the predictions (D(sup ql)(sub LL)) of quasilinear radial diffusion theory, despite the rather brief duration (approximately 3 hrs) of our model storm and despite the extreme variability (with frequency) of the spectral-density function that characterizes the applied electric field during our model storm. As expected, the values of D(sup sim)(sub LL) deduced (respectively) from our forward and time-reversed simulations agree even better with each other and with D(sup sim)(sub LL) when the impulse amplitudes which characterize the individual substorms of our model storm are systematically reduced.
WIPP Repository Reconfiguration
On August 30, 2011, the U.S. Department of Energy (DOE) provided a proposed planned change request that will relocate Panels 9 and 10 from the main north-south access drifts to south of the existing Panels 4 and 5 in the WIPP repository.
Gas seal for an in situ oil shale retort and method of forming thermal barrier
Burton, III, Robert S.
1982-01-01
A gas seal is provided in an access drift excavated in a subterranean formation containing oil shale. The access drift is adjacent an in situ oil shale retort and is in gas communication with the fragmented permeable mass of formation particles containing oil shale formed in the in situ oil shale retort. The mass of formation particles extends into the access drift, forming a rubble pile of formation particles having a face approximately at the angle of repose of fragmented formation. The gas seal includes a temperature barrier which includes a layer of heat insulating material disposed on the face of the rubble pile of formation particles and additionally includes a gas barrier. The gas barrier is a gas-tight bulkhead installed across the access drift at a location in the access drift spaced apart from the temperature barrier.
The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC)
NASA Astrophysics Data System (ADS)
Nicolaus, M.; Rex, M.; Dethloff, K.; Shupe, M.; Sommerfeld, A.
2016-12-01
The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) is a key international flagship initiative under the auspices of the International Arctic Science Committee (IASC). The main aim of MOSAiC is to improve our understanding of the functioning of the Arctic coupled system with a complex interplay between processes in the atmosphere, ocean, sea ice and ecosystem coupled through bio-geochemical interactions. The main objective of MOSAiC is to develop a better understanding of these important coupled-system processes so they can be more accurately represented in regional- and global-scale weather- and climate models. Observations covering a full annual cycle over the Arctic Ocean of many critical parameters such as cloud properties, surface energy fluxes, atmospheric aerosols, small-scale sea-ice and oceanic processes, biological feedbacks with the sea-ice ice and ocean, and others have never been made in the central Arctic in all seasons, and certainly not in a coupled system fashion. The main scientific goals focus on data assimilation for numerical weather prediction models, improved sea ice forecasts and climate models, ground truth for satellite remote sensing, energy budget and fluxes through interfaces, sources, sinks and cycles of chemical species, boundary layer processes, habitat conditions and primary productivity and stakeholder services. The MOSAiC Observatory will be deployed in, and drift with, the Arctic sea-ice pack for a full annual cycle, starting in fall 2019 and ending in fall 2020. Initial drift plans are to start in the newly forming fall sea-ice in the East Siberian Sea and follow the Transpolar Drift. The German Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research will made a huge contribution with the icebreaker Polarstern to serve as the central drifting observatory for this year long drift, and the US Department of Energy has committed a comprehensive atmospheric measurement suite. Many other nations and agencies have expressed interest in participation and in gaining access to this unprecedented observational dataset.
Effects of particle drifts on the solar modulation of galactic cosmic rays
NASA Technical Reports Server (NTRS)
Jokipii, J. R.; Levy, E. H.
1977-01-01
Gradient and curvature drifts in an Archimedean-spiral magnetic field are shown to produce a significant effect on the modulation of galactic cosmic rays by the solar wind. The net modulation, heliocentric radial gradient, and average energy change of particles which reach the inner solar system are significantly reduced. The effects of drifts are due to the fact that cosmic rays for which the drift velocity is comparable to the wind velocity or larger, have more rapid access to the inner solar system than in the absence of drifts.
NASA Astrophysics Data System (ADS)
Bagiya, Mala S.; Vichare, Geeta; Sinha, A. K.; Sripathi, S.
2018-02-01
During quiet period, the nocturnal equatorial ionospheric plasma drifts eastward in the zonal direction and downward in the vertical direction. This quiet time drift pattern could be understood through dynamo processes in the nighttime equatorial ionosphere. The present case study reports the nocturnal simultaneous occurrence of the vertically downward and zonally westward plasma drifts over the Indian latitudes during the geomagnetic storm of 17 March 2015. After 17:00 UT ( 22:10 local time), the vertical plasma drift became downward and coincided with the westward zonal drift, a rarely observed feature of low latitude plasma drifts. The vertical drift turned upward after 18:00 UT, while the zonal drift became eastward. We mainly emphasize here the distinct bipolar type variations of vertical and zonal plasma drifts observed around 18:00 UT. We explain the vertical plasma drift in terms of the competing effects between the storm time prompt penetration and disturbance dynamo electric fields. Whereas, the westward drift is attributed to the storm time local electrodynamical changes mainly through the disturbance dynamo field in addition to the vertical Pedersen current arising from the spatial (longitudinal) gradient of the field aligned Pedersen conductivity.
ADVANTG Shielding Analysis for Closure Operations in an Open-Mode Repository
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bevill, Aaron M; Radulescu, Georgeta; Scaglione, John M
2013-01-01
en-mode repository concepts could require worker entry into access drifts after placement of fuel casks in order to perform activities related to backfill, plug emplacement, routine maintenance, or performance confirmation. An ideal emplacement-drift shielding configuration would minimize dose to workers while maximizing airflow through the emplacement drifts. This paper presents a preliminary investigation of the feasibility and effectiveness of radiation shielding concepts that could be employed to facilitate worker operations in an open-mode repository. The repository model for this study includes pressurized-water reactor fuel assemblies (60 GWd/MTU burnup, 40 year post-irradiation cooldown) in packages of 32 assemblies. The closest fuelmore » packages are 5 meters from dosimetry voxels in the access drift. The unshielded dose to workers in the access drift is 73.7 rem/hour. Prior work suggests that open-mode repository concepts similar to this one would require 15 m3/s of ventilation airflow. Shielding concepts considered here include partial concrete plugs, labyrinthine shields, and stainless steel photon attenuator grids. Maximum dose to workers in the access drift was estimated for each shielding concept using MCNP5 with variance reduction parameters generated by ADVANTG. Because airflow through the shielding is important for open-mode repositories, a semi-empirical estimate of the head loss due to each shielding configuration was also calculated. Airflow and shielding performance vary widely among the proposed shielding configurations. Although the partial plug configuration had the best airflow performance, it allowed dose rates 1500 greater than the specified target. Labyrinthine shielding concepts yield doses on the order of 1 mrem/hour with configurations that impose 3 to 11 J/kg head loss. Adding 1 cm lead lining to the airflow channels of labyrinthine designs further reduces the worker dose by 65% to 95%. Photon-attenuator concepts may reduce worker dose to as low as 29 mrem/hour with head loss on the order of 1.9 J/kg.« less
PDR with a Foot-Mounted IMU and Ramp Detection
Jiménez, Antonio R.; Seco, Fernando; Zampella, Francisco; Prieto, José C.; Guevara, Jorge
2011-01-01
The localization of persons in indoor environments is nowadays an open problem. There are partial solutions based on the deployment of a network of sensors (Local Positioning Systems or LPS). Other solutions only require the installation of an inertial sensor on the person’s body (Pedestrian Dead-Reckoning or PDR). PDR solutions integrate the signals coming from an Inertial Measurement Unit (IMU), which usually contains 3 accelerometers and 3 gyroscopes. The main problem of PDR is the accumulation of positioning errors due to the drift caused by the noise in the sensors. This paper presents a PDR solution that incorporates a drift correction method based on detecting the access ramps usually found in buildings. The ramp correction method is implemented over a PDR framework that uses an Inertial Navigation algorithm (INS) and an IMU attached to the person’s foot. Unlike other approaches that use external sensors to correct the drift error, we only use one IMU on the foot. To detect a ramp, the slope of the terrain on which the user is walking, and the change in height sensed when moving forward, are estimated from the IMU. After detection, the ramp is checked for association with one of the existing in a database. For each associated ramp, a position correction is fed into the Kalman Filter in order to refine the INS-PDR solution. Drift-free localization is achieved with positioning errors below 2 meters for 1,000-meter-long routes in a building with a few ramps. PMID:22163701
Equatorial Scintillation of Satellite Signals and some Drift Characteristics of the Scintillation.
1983-10-15
of the main objectives of the program was to investigate the ~. drift characteristics of equatorial scintillation, other aspects of the scin ...Maximum scin - tillation intensity frequently occurred long after the maximum drift vel oci ty. The amount of delay was quite variable, however. It could
Charge transfer in rectifying oxide heterostructures and oxide access elements in ReRAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stefanovich, G. B.; Pergament, A. L.; Boriskov, P. P.
2016-05-15
The main aspects of the synthesis and experimental research of oxide diode heterostructures are discussed with respect to their use as selector diodes, i.e., access elements in oxide resistive memory. It is shown that charge transfer in these materials differs significantly from the conduction mechanism in p–n junctions based on conventional semiconductors (Si, Ge, A{sup III}–B{sup V}), and the model should take into account the electronic properties of oxides, primarily the low carrier drift mobility. It is found that an increase in the forward current requires an oxide with a small band gap (<1.3 eV) in the heterostructure composition. Heterostructuresmore » with Zn, In–Zn (IZO), Ti, Ni, and Cu oxides are studied; it is found that the CuO–IZO heterojunction has the highest forward current density (10{sup 4} A/cm{sup 2}).« less
The generalized drift flux approach: Identification of the void-drift closure law
NASA Technical Reports Server (NTRS)
Boure, J. A.
1989-01-01
The main characteristics and the potential advantages of generalized drift flux models are presented. In particular it is stressed that the issue on the propagation properties and on the mathematical nature (hyperbolic or not) of the model and the problem of closure are easier to tackle than in two fluid models. The problem of identifying the differential void-drift closure law inherent to generalized drift flux models is then addressed. Such a void-drift closure, based on wave properties, is proposed for bubbly flows. It involves a drift relaxation time which is of the order of 0.25 s. It is observed that, although wave properties provide essential closure validity tests, they do not represent an easily usable source of quantitative information on the closure laws.
NASA Astrophysics Data System (ADS)
Maute, A.; Hagan, M. E.; Yudin, V.; Liu, H.-L.; Yizengaw, E.
2015-06-01
During stratospheric sudden warming (SSW) periods large changes in the low-latitude vertical drift have been observed at Jicamarca as well as in other longitudinal sectors. In general, a strengthening of the daytime maximum vertical drift with a shift from prenoon to the afternoon is observed. During the January 2013 stratospheric warming significant longitudinal differences in the equatorial vertical drift were observed. At Jicamarca the previously reported SSW behavior prevails; however, no shift of the daytime maximum drift was exhibited in the African sector. Using the National Center for Atmospheric Research thermosphere-ionosphere-mesosphere electrodynamics general circulation model (TIME-GCM) the possible causes for the longitudinal difference are examined. The timing of the strong SSW effect in the vertical drift (15-20 January) coincides with moderate geomagnetic activity. The simulation indicates that approximately half of the daytime vertical drift increase in the American sector may be related to the moderate geophysical conditions (Kp = 4) with the effect being negligible in the African sector. The simulation suggests that the wind dynamo accounts for approximately 50% of the daytime vertical drift in the American sector and almost 100% in the African sector. The simulation agrees with previous findings that the migrating solar tides and the semidiurnal westward propagating tide with zonal wave number 1 (SW1) mainly contribute to the daytime wind dynamo and vertical drift. Numerical experiments suggest that the neutral wind and the geomagnetic main field contribute to the presence (absence) of a local time shift in the daytime maximum drift in the American (African) sector.
The Role of Convection in the Buildup of the Ring Current Pressure during the March 17, 2013 Storm
NASA Astrophysics Data System (ADS)
Menz, A.; Kistler, L. M.; Mouikis, C.; Spence, H. E.; Skoug, R. M.; Funsten, H. O.; Larsen, B.; Mitchell, D. G.; Gkioulidou, M.; Lanzerotti, L. J.
2016-12-01
On March 17, 2013, the Van Allen Probes, with their apogee 1 hour post-midnight, measured the H+ and O+ fluxes of ring current during a large geomagnetic storm. Detailed examination of the pressure build-up during the storm shows that there can be large differences in the pressure measured by the two spacecraft with measurements separated by only an hour, and large differences in the pressure measured at different local times. In addition, while the H+ and O+ pressure contributions are about equal during the main phase in the near-earth plasma sheet outside L=5.5, the O+ pressure becomes dominant at lower L-values. We test whether adiabatic convective transport from the near earth plasma sheet (L>5.5) to the inner magnetosphere can explain these observations by comparing the observed inner magnetospheric distributions with the source distribution at constant magnetic moment, mu. We find that adiabatic convection can account for the enhanced pressure observed during the storm. Using a Weimer '96 electric field we model the drift trajectories to show that the key features can be explained by the drift of a changing source population and energy and L-shell dependent access and drift times. Finally, we show that the dominance of O+ at low L-shells is due partly to a plasma sheet source that is preferentially enhanced in O+ at lower energies (5-10 keV) and partly due to the time dependence in the source, combined with the longer drift times to low L-shells. No source of O+ inside L=5.5 is required.
Novel drift structures for silicon and compound semiconductor X-ray and gamma-ray detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patt, B.E.; Iwanczyk, J.S.
Recently developed silicon- and compound-semiconductor-based drift detector structures have produced excellent performance for charged particles, X-rays, and gamma rays and for low-signal visible light detection. The silicon drift detector (SDD) structures that the authors discuss relate to direct X-ray detectors and scintillation photon detectors coupled with scintillators for gamma rays. Recent designs include several novel features that ensure very low dark current and hence low noise. In addition, application of thin window technology ensures a very high quantum efficiency entrance window on the drift photodetector. The main features of the silicon drift structures for X rays and light detection aremore » very small anode capacitance independent of the overall detector size, low noise, and high throughput. To take advantage of the small detector capacitance, the first stage of the electronics needs to be integrated into the detector anode. In the gamma-ray application, factors other than electronic noise dominate, and there is no need to integrate the electronics into the anode. Thus, a different drift structure is needed in conjunction with a high-Z material. The main features in this case are large active detector volume and electron-only induced signal.« less
Effects of Geomagnetic Storms on the Postsunset Vertical Plasma Drift in the Equatorial Ionosphere
NASA Astrophysics Data System (ADS)
Huang, Chao-Song
2018-05-01
It has been observed that geomagnetic storms cause suppression of the occurrence of equatorial spread F or plasma bubbles in the evening sector. In this study, we use ion drift data measured by the Communication/Navigation Outage Forecasting System satellite over 6 years (2008-2014) to derive the dependence of the vertical ion drift at the prereversal enhancement peak on the strength of magnetic storms (the Dst index). It is found that the average vertical ion drift does not change much for Dst in the range between 0 and -60 nT but decreases approximately linearly with the increasing magnitude of Dst for Dst < -60 nT. The net decrease in the average vertical ion drift is 30 m/s when Dst changes from -60 to -90 nT. This result is derived when the ion drift data during the storm main phase are excluded, so the decrease of the vertical ion drift is caused by storm time disturbance dynamo. A possible interpretation of this phenomenon is that geomagnetic activity must be strong enough (e.g., Dst < -60 nT) so disturbance winds can reach the equatorial region and change plasma drifts there. The storm time disturbance dynamo becomes dominant in the equatorial ionospheric dynamics near the end of the storm main phase, 4.7 hr after the storm onset. The postsunset vertical ion drift is significantly decreased during the early stage of the storm recovery phase but becomes almost fully recovered when Dst increases close to -60 nT.
NASA Astrophysics Data System (ADS)
Wang, J. S.; Cording, E. J.; Fairhurst, C.; Lesko, K. T.; Nabighian, M.; Silver, L. T.; Tiedje, J. M.; Wierenga, P. J.; Witherspoon, P. A.
2001-12-01
A summary of the Earth Science Workshop, Lead, South Dakota, October 4-7 2001, on the planned development of earth science research at the proposed National Underground Science Laboratory (NUSL) will be presented. The Homestake Mine in South Dakota will cease gold production in 2002. The Mine has been recommended for conversion into a NUSL by a national underground science committee and is the focus of a major (physics) proposal to the National Science Foundation. The Earth Science Workshop, associated with the Conference on Underground Science, was held to discuss the type of studies that could be conducted in the Mine and associated practical aspects such as space and time requirements. Construction of the NUSL (estimated to take approximately five years) will involve a variety of rock mechanics and geotechnical studies necessary for the design and excavation of large test chambers at depth for physics experiments, extension of access drifts, and enlargement and deepening of the Yates shaft. Hundreds of kilometers of drifts over fifty levels will be accessible during this period for geological mapping, mineral sampling, seepage quantification, mine water evaluation, seismic monitoring, and geophysical imaging. The extensive network of drifts and vertical shafts will allow installation of kilometer-scale antenna and seismograph networks for remote sensing. Another possibility is for earth scientists to collaborate with physicists in using cosmic-ray flux distributions for crustal imaging. The Homestake Mine has been in operation for over 125 years and drifts of different ages are accessible for studies of rock alternation, environment tracer migration, and hydrological studies associated with mine dewatering and mine operation. The majority of drifts will probably become inaccessible for sampling within a few years when these are sealed off from the NUSL test chambers. Monitoring equipment installed behind the bulkheads will be designed to last for decades under flooded conditions. The re-flooding process around the NUSL will be assessed carefully before implementation. Preservation of a region with multiple levels below 4,850 ft (connected by sloping ramps) for multi-drift heater tests over a 30-year period is a possibility. These tests could study heat-induced coupled processes with temperature, fluid flow, chemical transport, and mechanical deformation measurements in fractured rocks (which are in igneous and sedimentary units that have been subject to intense folding, and have been uplifted and domed by a nearby granite massif). The space around the NUSL and the access shaft will be open to a depth of 8,000 ft. This will allow long term hydrochemical/geomechanical evaluations and ecological/geomicrobiological studies in these ~2 billion years old metamorphic rocks. Underground access at these depths will facilitate additional drilling and excavation into surrounding intact rocks for multi-disciplinary research during and after the conversion of the Mine.
Limits of neutral drift: lessons from the in vitro evolution of two ribozymes.
Petrie, Katherine L; Joyce, Gerald F
2014-10-01
The relative contributions of adaptive selection and neutral drift to genetic change are unknown but likely depend on the inherent abundance of functional genotypes in sequence space and how accessible those genotypes are to one another. To better understand the relative roles of selection and drift in evolution, local fitness landscapes for two different RNA ligase ribozymes were examined using a continuous in vitro evolution system under conditions that foster the capacity for neutral drift to mediate genetic change. The exploration of sequence space was accelerated by increasing the mutation rate using mutagenic nucleotide analogs. Drift was encouraged by carrying out evolution within millions of separate compartments to exploit the founder effect. Deep sequencing of individuals from the evolved populations revealed that the distribution of genotypes did not escape the starting local fitness peak, remaining clustered around the sequence used to initiate evolution. This is consistent with a fitness landscape where high-fitness genotypes are sparse and well isolated, and suggests, at least in this context, that neutral drift alone is not a primary driver of genetic change. Neutral drift does, however, provide a repository of genetic variation upon which adaptive selection can act.
Linear study of the nonmodal growth of drift waves in dusty plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manz, P.; Greiner, F.
2010-06-15
The main effect of dust on drift wave turbulence is the enhancement of the nonadiabaticity. Previous work found that nonmodal behavior is important in the nonadiabatic regime of the drift wave system. Here, the modal and nonmodal properties of the linear Hasegawa-Wakatani system of dusty plasmas are investigated. The non-normality of the linear evolution operator can lead to enhanced transient growth rates compared to the modal growth rates.
Li, Fei; Yu, Peicheng; Xu, Xinlu; ...
2017-01-12
In this study we present a customized finite-difference-time-domain (FDTD) Maxwell solver for the particle-in-cell (PIC) algorithm. The solver is customized to effectively eliminate the numerical Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference operator for the spatial derivative along the direction of the drift (1ˆ direction). We show that this eliminates the main NCI modes with moderate |k 1|, while keepsmore » additional main NCI modes well outside the range of physical interest with higher |k 1|. These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible advantage of improved parallel scalability because it can be easily partitioned along 1ˆ which typically has many more cells than other directions for the problems of interest. We show that FFTs can be performed locally to current on each partition to filter out the main and first spatial aliasing NCI modes, and to correct the current so that it satisfies the continuity equation for the customized spatial derivative. This ensures that Gauss’ Law is satisfied. Lastly, we present simulation examples of one relativistically drifting plasma, of two colliding relativistically drifting plasmas, and of nonlinear laser wakefield acceleration (LWFA) in a Lorentz boosted frame that show no evidence of the NCI can be observed when using this customized Maxwell solver together with its NCI elimination scheme.« less
NASA Astrophysics Data System (ADS)
Li, Fei; Yu, Peicheng; Xu, Xinlu; Fiuza, Frederico; Decyk, Viktor K.; Dalichaouch, Thamine; Davidson, Asher; Tableman, Adam; An, Weiming; Tsung, Frank S.; Fonseca, Ricardo A.; Lu, Wei; Mori, Warren B.
2017-05-01
In this paper we present a customized finite-difference-time-domain (FDTD) Maxwell solver for the particle-in-cell (PIC) algorithm. The solver is customized to effectively eliminate the numerical Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference operator for the spatial derivative along the direction of the drift (1 ˆ direction). We show that this eliminates the main NCI modes with moderate |k1 | , while keeps additional main NCI modes well outside the range of physical interest with higher |k1 | . These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible advantage of improved parallel scalability because it can be easily partitioned along 1 ˆ which typically has many more cells than other directions for the problems of interest. We show that FFTs can be performed locally to current on each partition to filter out the main and first spatial aliasing NCI modes, and to correct the current so that it satisfies the continuity equation for the customized spatial derivative. This ensures that Gauss' Law is satisfied. We present simulation examples of one relativistically drifting plasma, of two colliding relativistically drifting plasmas, and of nonlinear laser wakefield acceleration (LWFA) in a Lorentz boosted frame that show no evidence of the NCI can be observed when using this customized Maxwell solver together with its NCI elimination scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Fei; Yu, Peicheng; Xu, Xinlu
In this study we present a customized finite-difference-time-domain (FDTD) Maxwell solver for the particle-in-cell (PIC) algorithm. The solver is customized to effectively eliminate the numerical Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference operator for the spatial derivative along the direction of the drift (1ˆ direction). We show that this eliminates the main NCI modes with moderate |k 1|, while keepsmore » additional main NCI modes well outside the range of physical interest with higher |k 1|. These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible advantage of improved parallel scalability because it can be easily partitioned along 1ˆ which typically has many more cells than other directions for the problems of interest. We show that FFTs can be performed locally to current on each partition to filter out the main and first spatial aliasing NCI modes, and to correct the current so that it satisfies the continuity equation for the customized spatial derivative. This ensures that Gauss’ Law is satisfied. Lastly, we present simulation examples of one relativistically drifting plasma, of two colliding relativistically drifting plasmas, and of nonlinear laser wakefield acceleration (LWFA) in a Lorentz boosted frame that show no evidence of the NCI can be observed when using this customized Maxwell solver together with its NCI elimination scheme.« less
Thonusin, Chanisa; IglayReger, Heidi B; Soni, Tanu; Rothberg, Amy E; Burant, Charles F; Evans, Charles R
2017-11-10
In recent years, mass spectrometry-based metabolomics has increasingly been applied to large-scale epidemiological studies of human subjects. However, the successful use of metabolomics in this context is subject to the challenge of detecting biologically significant effects despite substantial intensity drift that often occurs when data are acquired over a long period or in multiple batches. Numerous computational strategies and software tools have been developed to aid in correcting for intensity drift in metabolomics data, but most of these techniques are implemented using command-line driven software and custom scripts which are not accessible to all end users of metabolomics data. Further, it has not yet become routine practice to assess the quantitative accuracy of drift correction against techniques which enable true absolute quantitation such as isotope dilution mass spectrometry. We developed an Excel-based tool, MetaboDrift, to visually evaluate and correct for intensity drift in a multi-batch liquid chromatography - mass spectrometry (LC-MS) metabolomics dataset. The tool enables drift correction based on either quality control (QC) samples analyzed throughout the batches or using QC-sample independent methods. We applied MetaboDrift to an original set of clinical metabolomics data from a mixed-meal tolerance test (MMTT). The performance of the method was evaluated for multiple classes of metabolites by comparison with normalization using isotope-labeled internal standards. QC sample-based intensity drift correction significantly improved correlation with IS-normalized data, and resulted in detection of additional metabolites with significant physiological response to the MMTT. The relative merits of different QC-sample curve fitting strategies are discussed in the context of batch size and drift pattern complexity. Our drift correction tool offers a practical, simplified approach to drift correction and batch combination in large metabolomics studies. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamson, B. D.; Coughlan, N. J. A.; Markworth, P. B.
An ion mobility mass spectrometry apparatus for investigating the photoisomerization and photodissociation of electrosprayed molecular ions in the gas phase is described. The device consists of a drift tube mobility spectrometer, with access for a laser beam that intercepts the drifting ion packet either coaxially or transversely, followed by a quadrupole mass filter. An ion gate halfway along the drift region allows the instrument to be used as a tandem ion mobility spectrometer, enabling mobility selection of ions prior to irradiation, with the photoisomer ions being separated over the second half of the drift tube. The utility of the devicemore » is illustrated with photoisomerization and photodissociation action spectra of carbocyanine molecular cations. The mobility resolution of the device for singly charged ions is typically 80 and it has a mass range of 100-440 Da, with the lower limit determined by the drive frequency for the ion funnels, and the upper limit by the quadrupole mass filter.« less
Degenerate SDEs with singular drift and applications to Heisenberg groups
NASA Astrophysics Data System (ADS)
Huang, Xing; Wang, Feng-Yu
2018-09-01
By using the ultracontractivity of a reference diffusion semigroup, Krylov's estimate is established for a class of degenerate SDEs with singular drifts, which leads to existence and pathwise uniqueness by means of Zvonkin's transformation. The main result is applied to singular SDEs on generalized Heisenberg groups.
Hidden long evolutionary memory in a model biochemical network
NASA Astrophysics Data System (ADS)
Ali, Md. Zulfikar; Wingreen, Ned S.; Mukhopadhyay, Ranjan
2018-04-01
We introduce a minimal model for the evolution of functional protein-interaction networks using a sequence-based mutational algorithm, and apply the model to study neutral drift in networks that yield oscillatory dynamics. Starting with a functional core module, random evolutionary drift increases network complexity even in the absence of specific selective pressures. Surprisingly, we uncover a hidden order in sequence space that gives rise to long-term evolutionary memory, implying strong constraints on network evolution due to the topology of accessible sequence space.
Temporal Evolution of Ion Spectral Structures During a Geomagnetic Storm: Observations and Modeling
NASA Astrophysics Data System (ADS)
Ferradas, C. P.; Zhang, J.-C.; Spence, H. E.; Kistler, L. M.; Larsen, B. A.; Reeves, G. D.; Skoug, R. M.; Funsten, H. O.
2018-01-01
Using the Van Allen Probes/Helium, Oxygen, Proton, and Electron mass spectrometer, we perform a case study of the temporal evolution of ion spectral structures observed in the energy range of 1 to 50 keV throughout the geomagnetic storm of 2 October 2013. The ion spectral features are observed near the inner edge of the plasma sheet and are signatures of fresh transport from the plasma sheet into the inner magnetosphere. We find that the characteristics of the ion structures are determined by the intensity of the convection electric field. Prior to the beginning of the storm, the plasma sheet inner edge exhibits narrow nose spectral structures that vary little in energy across
Temporal evolution of ion spectral structures during a geomagnetic storm: Observations and modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferradas Alva, Cristian Pablo; Zhang, J.-C.; Spence, H. E.
Using the Van Allen Probes/Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometer, we perform a case study of the temporal evolution of ion spectral structures observed in the energy range of 1- ~50 keV throughout the geomagnetic storm of 2 October 2013. The ion spectral features are observed near the inner edge of the plasma sheet and are signatures of fresh transport from the plasma sheet into the inner magnetosphere. We find that the characteristics of the ion structures are determined by the intensity of the convection electric field. Prior to the beginning of the storm, the plasma sheet innermore » edge exhibits narrow nose spectral structures that vary little in energy across L values. Ion access to the inner magnetosphere during these times is limited to the nose energy bands. As convection is enhanced and large amounts of plasma are injected from the plasma sheet during the main phase of the storm, ion access occurs at a wide energy range, as no nose structures are observed. Here, as the magnetosphere recovers from the storm, single noses and then multiple noses are observed once again. Lastly, we use a model of ion drift and losses due to charge exchange to simulate the ion spectra and gain insight into the main observed features.« less
Temporal evolution of ion spectral structures during a geomagnetic storm: Observations and modeling
Ferradas Alva, Cristian Pablo; Zhang, J.-C.; Spence, H. E.; ...
2017-12-13
Using the Van Allen Probes/Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometer, we perform a case study of the temporal evolution of ion spectral structures observed in the energy range of 1- ~50 keV throughout the geomagnetic storm of 2 October 2013. The ion spectral features are observed near the inner edge of the plasma sheet and are signatures of fresh transport from the plasma sheet into the inner magnetosphere. We find that the characteristics of the ion structures are determined by the intensity of the convection electric field. Prior to the beginning of the storm, the plasma sheet innermore » edge exhibits narrow nose spectral structures that vary little in energy across L values. Ion access to the inner magnetosphere during these times is limited to the nose energy bands. As convection is enhanced and large amounts of plasma are injected from the plasma sheet during the main phase of the storm, ion access occurs at a wide energy range, as no nose structures are observed. Here, as the magnetosphere recovers from the storm, single noses and then multiple noses are observed once again. Lastly, we use a model of ion drift and losses due to charge exchange to simulate the ion spectra and gain insight into the main observed features.« less
The Storm Time Evolution of the Ionospheric Disturbance Plasma Drifts
NASA Astrophysics Data System (ADS)
Zhang, Ruilong; Liu, Libo; Le, Huijun; Chen, Yiding; Kuai, Jiawei
2017-11-01
In this paper, we use the C/NOFS and ROCSAT-1 satellites observations to analyze the storm time evolution of the disturbance plasma drifts in a 24 h local time scale during three magnetic storms driven by long-lasting southward IMF Bz. The disturbance plasma drifts during the three storms present some common features in the periods dominated by the disturbance dynamo. The newly formed disturbance plasma drifts are upward and westward at night, and downward and eastward during daytime. Further, the disturbance plasma drifts are gradually evolved to present significant local time shifts. The westward disturbance plasma drifts gradually migrate from nightside to dayside. Meanwhile, the dayside downward disturbance plasma drifts become enhanced and shift to later local time. The local time shifts in disturbance plasma drifts are suggested to be mainly attributed to the evolution of the disturbance winds. The strong disturbance winds arisen around midnight can constantly corotate to later local time. At dayside the westward and equatorward disturbance winds can drive the F region dynamo to produce the poleward and westward polarization electric fields (or the westward and downward disturbance drifts). The present results indicate that the disturbance winds corotated to later local time can affect the local time features of the disturbance dynamo electric field.
Comparison of Vertical Drifts of ISR and Magnetometer Data Measurements at the Magnetic Equator
NASA Astrophysics Data System (ADS)
Condor P, P. J.
2014-12-01
We compare vertical drifts measured with the Jicamarca incoherent scatter radar (ISR) and drifts estimated from magnetometer data applying a Neural Network data processing technique. For the application of the Neural Network (NN) method, we use the magnitude of the horizontal (H) component of the magnetic field measured with magnetometers at Jicamarca and Piura (Peru). The data was collected between the years 2002 and 2013. In training the NN we use the difference between the magnitudes of the horizontal components (dH) measured at JRO (placed at the magnetic equator) and Piura (displaced 5° away). Additional parameters used are F10.7 and Ap indexes. The estimates obtained with the NN procedure are very good. We have an RMS error of 3.7 m/s using dH as an input of the NN while the error is 3.9 m/s when we use the component H of JRO as an input. The results are validated using the set of vertical drifts observations collected with the Jicamarca incoherent scatter radar. The estimated drifts can be accessed using the following website: http://jro.igp.gob.pe/driftnn. In the poster, we show the comparison of vertical drifts from 2002 to 2013 where we discuss the agreement between magnetometer and ISR data.
Profiling of the injected charge drift current transients by cross-sectional scanning technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaubas, E., E-mail: eugenijus.gaubas@ff.vu.lt; Ceponis, T.; Pavlov, J.
2014-02-07
The electric field distribution and charge drift currents in Si particle detectors are analyzed. Profiling of the injected charge drift current transients has been implemented by varying charge injection position within a cross-sectional boundary of the particle detector. The obtained profiles of the induction current density and duration of the injected charge drift pulses fit well the simulated current variations. Induction current transients have been interpreted by different stages of the bipolar and monopolar drift of the injected carriers. Profiles of the injected charge current transients registered in the non-irradiated and neutron irradiated Si diodes are compared. It has beenmore » shown that the mixed regime of the competing processes of drift, recombination, and diffusion appears in the measured current profiles on the irradiated samples. The impact of the avalanche effects can be ignored based on the investigations presented. It has been shown that even a simplified dynamic model enabled us to reproduce the main features of the profiled transients of induced charge drift current.« less
USDA-ARS?s Scientific Manuscript database
Influenza A virus (IAV) of the H3 subtype is an important pathogen that affects both humans and swine. The main intervention strategy for preventing infection is vaccination to induce neutralizing antibodies against the surface glycoprotein hemagglutinin (HA). However, due to antigenic drift, vaccin...
Size-dependent modification of asteroid family Yarkovsky V-shapes
NASA Astrophysics Data System (ADS)
Bolin, B. T.; Morbidelli, A.; Walsh, K. J.
2018-04-01
Context. The thermal properties of the surfaces of asteroids determine the magnitude of the drift rate cause by the Yarkovsky force. In the general case of Main Belt asteroids, the Yarkovsky force is indirectly proportional to the thermal inertia, Γ. Aim. Following the proposed relationship between Γ and asteroid diameter D, we find that asteroids' Yarkovsky drift rates might have a more complex size dependence than previous thought, leading to a curved family V-shape boundary in semi-major axis, a, vs. 1/D space. This implies that asteroids are drifting faster at larger sizes than previously considered decreasing on average the known ages of asteroid families. Methods: The V-Shape curvature is determined for >25 families located throughout the Main Belt to quantify the Yarkovsky size-dependent drift rate. Results: We find that there is no correlation between family age and V-shape curvature. In addition, the V-shape curvature decreases for asteroid families with larger heliocentric distances suggesting that the relationship between Γ and D is weaker in the outer MB possibly due to homogenous surface roughness among family members.
Brownian motion with adaptive drift for remaining useful life prediction: Revisited
NASA Astrophysics Data System (ADS)
Wang, Dong; Tsui, Kwok-Leung
2018-01-01
Linear Brownian motion with constant drift is widely used in remaining useful life predictions because its first hitting time follows the inverse Gaussian distribution. State space modelling of linear Brownian motion was proposed to make the drift coefficient adaptive and incorporate on-line measurements into the first hitting time distribution. Here, the drift coefficient followed the Gaussian distribution, and it was iteratively estimated by using Kalman filtering once a new measurement was available. Then, to model nonlinear degradation, linear Brownian motion with adaptive drift was extended to nonlinear Brownian motion with adaptive drift. However, in previous studies, an underlying assumption used in the state space modelling was that in the update phase of Kalman filtering, the predicted drift coefficient at the current time exactly equalled the posterior drift coefficient estimated at the previous time, which caused a contradiction with the predicted drift coefficient evolution driven by an additive Gaussian process noise. In this paper, to alleviate such an underlying assumption, a new state space model is constructed. As a result, in the update phase of Kalman filtering, the predicted drift coefficient at the current time evolves from the posterior drift coefficient at the previous time. Moreover, the optimal Kalman filtering gain for iteratively estimating the posterior drift coefficient at any time is mathematically derived. A discussion that theoretically explains the main reasons why the constructed state space model can result in high remaining useful life prediction accuracies is provided. Finally, the proposed state space model and its associated Kalman filtering gain are applied to battery prognostics.
NASA Astrophysics Data System (ADS)
Lei, Jiuhou; Wang, Wenbin; Burns, Alan G.; Yue, Xinan; Dou, Xiankang; Luan, Xiaoli; Solomon, Stanley C.; Liu, Yong C.-M.
2014-03-01
The total electron content (TEC) data measured by the Jason, CHAMP, GRACE, and SAC-C satellites, the in situ electron densities from CHAMP and GRACE, and the vertical E × B drifts from the ROCSAT, have been utilized to examine the ionospheric response to the October 2003 superstorms. The combination of observations from multiple satellites provides a unique global view of ionospheric storm effects, especially over the Pacific Ocean and American regions, which were under sunlit conditions during the main phases of the October 2003 superstorms. The main results of this study are as follows: (1) There were substantial increases in TEC in the daytime at low and middle latitudes during both superstorms. (2) The enhancements were greater during the 30 October superstorm and occurred over a wider range of local times. (3) They also tended to peak at earlier local times during this second event. (4) These TEC enhancement events occurred at the local times when there were enhancements in the upward vertical drift. (5) The strong upward vertical drifts are attributed to penetration electric fields, suggesting that these penetration electric fields played a significant role in the electron density enhancements during these superstorms. Overall, the main contribution of this study is the simultaneous view of the storm time ionospheric response from multiple satellites, and the association of local time differences in ionospheric plasma response with measured vertical drift variations.
Paraskeva, Christakis A.; Kalogerakis, Nicolas; Doyle, Patrick S.
2018-01-01
In the aftermath of oil spills in the sea, clouds of droplets drift into the seawater column and are carried away by sea currents. The fate of the drifting droplets is determined by natural attenuation processes, mainly dissolution into the seawater and biodegradation by oil-degrading microbial communities. Specifically, microbes have developed three fundamental strategies for accessing and assimilating oily substrates. Depending on their affinity for the oily phase and ability to proliferate in multicellular structures, microbes might either attach to the oil surface and directly uptake compounds from the oily phase, or grow suspended in the aqueous phase consuming solubilized oil, or form three-dimensional biofilms over the oil–water interface. In this work, a compound particle model that accounts for all three microbial strategies is developed for the biodegradation of solitary oil microdroplets moving through a water column. Under a set of educated hypotheses, the hydrodynamics and solute transport problems are amenable to analytical solutions and a closed-form correlation is established for the overall dissolution rate as a function of the Thiele modulus, the Biot number and other key parameters. Moreover, two coupled ordinary differential equations are formulated for the evolution of the particle size and used to investigate the impact of the dissolution and biodegradation processes on the droplet shrinking rate. PMID:29439555
Kapellos, George E; Paraskeva, Christakis A; Kalogerakis, Nicolas; Doyle, Patrick S
2018-02-12
In the aftermath of oil spills in the sea, clouds of droplets drift into the seawater column and are carried away by sea currents. The fate of the drifting droplets is determined by natural attenuation processes, mainly dissolution into the seawater and biodegradation by oil-degrading microbial communities. Specifically, microbes have developed three fundamental strategies for accessing and assimilating oily substrates. Depending on their affinity for the oily phase and ability to proliferate in multicellular structures, microbes might either attach to the oil surface and directly uptake compounds from the oily phase, or grow suspended in the aqueous phase consuming solubilized oil, or form three-dimensional biofilms over the oil-water interface. In this work, a compound particle model that accounts for all three microbial strategies is developed for the biodegradation of solitary oil microdroplets moving through a water column. Under a set of educated hypotheses, the hydrodynamics and solute transport problems are amenable to analytical solutions and a closed-form correlation is established for the overall dissolution rate as a function of the Thiele modulus, the Biot number and other key parameters. Moreover, two coupled ordinary differential equations are formulated for the evolution of the particle size and used to investigate the impact of the dissolution and biodegradation processes on the droplet shrinking rate.
Decoupling of mass flux and turbulent wind fluctuations in drifting snow
NASA Astrophysics Data System (ADS)
Paterna, E.; Crivelli, P.; Lehning, M.
2016-05-01
The wind-driven redistribution of snow has a significant impact on the climate and mass balance of polar and mountainous regions. Locally, it shapes the snow surface, producing dunes and sastrugi. Sediment transport has been mainly represented as a function of the wind strength, and the two processes assumed to be stationary and in equilibrium. The wind flow in the atmospheric boundary layer is unsteady and turbulent, and drifting snow may never reach equilibrium. Our question is therefore: what role do turbulent eddies play in initiating and maintaining drifting snow? To investigate the interaction between drifting snow and turbulence experimentally, we conducted several wind tunnel measurements of drifting snow over naturally deposited snow covers. We observed a coupling between snow transport and turbulent flow only in a weak saltation regime. In stronger regimes it self-organizes developing its own length scales and efficiently decoupling from the wind forcing.
Disturbance zonal and vertical plasma drifts in the Peruvian sector during solar minimum phases
NASA Astrophysics Data System (ADS)
Santos, A. M.; Abdu, M. A.; Souza, J. R.; Sobral, J. H. A.; Batista, I. S.
2016-03-01
In the present work, we investigate the behavior of the equatorial F region zonal plasma drifts over the Peruvian region under magnetically disturbed conditions during two solar minimum epochs, one of them being the recent prolonged solar activity minimum. The study utilizes the vertical and zonal components of the plasma drifts measured by the Jicamarca (11.95°S; 76.87°W) incoherent scatter radar during two events that occurred on 10 April 1997 and 24 June 2008 and model calculation of the zonal drift in a realistic ionosphere simulated by the Sheffield University Plasmasphere-Ionosphere Model-INPE. Two main points are focused: (1) the connection between electric fields and plasma drifts under prompt penetration electric field during a disturbed periods and (2) anomalous behavior of daytime zonal drift in the absence of any magnetic storm. A perfect anticorrelation between vertical and zonal drifts was observed during the night and in the initial and growth phases of the magnetic storm. For the first time, based on a realistic low-latitude ionosphere, we will show, on a detailed quantitative basis, that this anticorrelation is driven mainly by a vertical Hall electric field induced by the primary zonal electric field in the presence of an enhanced nighttime E region ionization. It is shown that an increase in the field line-integrated Hall-to-Pedersen conductivity ratio (∑H/∑P), which can arise from precipitation of energetic particles in the region of the South American Magnetic Anomaly, is capable of explaining the observed anticorrelation between the vertical and zonal plasma drifts. Evidence for the particle ionization is provided from the occurrence of anomalous sporadic E layers over the low-latitude station, Cachoeira Paulista (22.67°S; 44.9°W)—Brazil. It will also be shown that the zonal plasma drift reversal to eastward in the afternoon two hours earlier than its reference quiet time pattern is possibly caused by weakening of the zonal wind system during the prolonged solar minimum period.
NASA Astrophysics Data System (ADS)
Desmars, J.
2015-03-01
Context. The Yarkovsky effect is a weak non-gravitational force leading to a small variation of the semi-major axis of an asteroid. Using radar measurements and astrometric observations, it is possible to measure a drift in semi-major axis through orbit determination. Aims: This paper aims to detect a reliable drift in semi-major axis of near-Earth asteroids (NEAs) from ground-based observations and to investigate the impact of precovery observations and the future Gaia catalogue in the detection of a secular drift in semi-major axis. Methods: We have developed a precise dynamical model of an asteroid's motion taking the Yarkovsky acceleration into account and allowing the fitting of the drift in semi-major axis. Using statistical methods, we investigate the quality and the robustness of the detection. Results: By filtering spurious detections with an estimated maximum drift depending on the asteroid's size, we found 46 NEAs with a reliable drift in semi-major axis in good agreement with the previous studies. The measure of the drift leads to a better orbit determination and constrains some physical parameters of these objects. Our results are in good agreement with the 1 /D dependence of the drift and with the expected ratio of prograde and retrograde NEAs. We show that the uncertainty of the drift mainly depends on the length of orbital arc and in this way we highlight the importance of the precovery observations and data mining in the detection of consistent drift. Finally, we discuss the impact of Gaia catalogue in the determination of drift in semi-major axis.
The Magnus problem in Rodrigues-Hamilton parameters
NASA Astrophysics Data System (ADS)
Koshliakov, V. N.
1984-04-01
The formalism of Rodrigues-Hamilton parameters is applied to the Magnus problem related to the systematic drift of a gimbal-mounted astatic gyroscope due to the nutational vibration of the main axis of the rotor. It is shown that the use of the above formalism makes it possible to limit the analysis to a consideration of a linear system of differential equations written in perturbed values of Rodrigues-Hamilton parameters. A refined formula for the drift of the main axis of the gyroscope rotor is obtained, and an estimation is made of the effect of the truncation of higher-order terms.
T-Violation experiment using polarized Li-8 at TRIUMF
NASA Astrophysics Data System (ADS)
Murata, Jiro; MTV Collaboration
2014-09-01
The MTV experiment searching T-Violating electron transverse polarization in polarized nuclear beta decay at TRIUMF is running. The main electron tracking detector as a Mott polarimeter was upgraded from a planer drift chamber to a cylindrical drift chamber (CDC), which has been commissioned and tested. In this talk, preparation status of the next physics production using the CDC will be presented.
Do insect repellents induce drift behaviour in aquatic non-target organisms?
Fink, Patrick; Moelzner, Jana; Berghahn, Ruediger; von Elert, Eric
2017-01-01
Synthetic insect repellents are compounds applied to surfaces to discourage insects, mainly mosquitoes, from landing on those surfaces. As some of these repellents have repeatedly been detected in surface waters at significant concentrations, they may also exert repellent effects on aquatic non-target organisms. In running water systems, aquatic invertebrates actively enter downstream drift in order to avoid unfavourable environmental conditions. We thus tested the hypothesis that the widely used insect repellents DEET (N,N-Diethyl-m-toluamide), EBAAP (3-[N-butyl-N-acetyl]-aminopropionic acid ethyl ester) and Icaridin (1-piperidinecarboxylic acid 2-(2-hydroxyethyl)-1-methylpropyl ester) induce downstream drift behaviour in the aquatic invertebrates Gammarus pulex (Crustacea, Amphipoda) and Cloeon dipterum (Insecta, Ephemeroptera), using a laboratory-scale drift assay. We found no clear increase in the drift behaviour of both invertebrate species across a concentration gradient of eight orders of magnitude and even beyond maximum environmental concentrations for any of the three repellents. We found no evidence for a direct drift-inducing activity of insect repellents on aquatic non-target organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fast Adapting Ensemble: A New Algorithm for Mining Data Streams with Concept Drift
Ortíz Díaz, Agustín; Ramos-Jiménez, Gonzalo; Frías Blanco, Isvani; Caballero Mota, Yailé; Morales-Bueno, Rafael
2015-01-01
The treatment of large data streams in the presence of concept drifts is one of the main challenges in the field of data mining, particularly when the algorithms have to deal with concepts that disappear and then reappear. This paper presents a new algorithm, called Fast Adapting Ensemble (FAE), which adapts very quickly to both abrupt and gradual concept drifts, and has been specifically designed to deal with recurring concepts. FAE processes the learning examples in blocks of the same size, but it does not have to wait for the batch to be complete in order to adapt its base classification mechanism. FAE incorporates a drift detector to improve the handling of abrupt concept drifts and stores a set of inactive classifiers that represent old concepts, which are activated very quickly when these concepts reappear. We compare our new algorithm with various well-known learning algorithms, taking into account, common benchmark datasets. The experiments show promising results from the proposed algorithm (regarding accuracy and runtime), handling different types of concept drifts. PMID:25879051
The Geodiversity in Drift Sand Landscapes of The Netherlands
NASA Astrophysics Data System (ADS)
van den Ancker, Hanneke; Jungerius, Pieter Dirk; Riksen, Michel
2015-04-01
The authors carried out detailed field studies of more than twelve drift sand landscapes in The Netherlands. The objective of these studies was to restore Natura-2000 values by restoring the wind activity. Active drift sands occur almost exclusively in The Netherlands, Natura 2000 habitat 2330 'Inland dunes with open Corynephorus and Agrostis grasslands', for which reason our country is largely responsible for this European landscape. Active drift sands had almost disappeared for two reasons: first, the stabilization of the drift sands by air pollution, mainly nitrogen, which stimulates the growth of algae and grasses that initiate soil formation, and second, by the growth of forests surrounding the sands, which decreases the wind force. The restoration studies revealed differences in the geodiversity between and within the drift sand areas. Whereas the drift sands on geological and soil maps show as almost homogenous areas, they have in fact highly variable geo-conditions of which examples will be given. These geodiversity aspects concern differences in geomorphological structure, origin, sediments and age of the drift sands. Differences in wind and water erosion, trampling and soil formation add to the geodiversity within the drift sand areas. Especially in the primary stages of succession the differences in geodiversity are relevant for the Natura-2000 values. We discerned three main types of active sands. Firstly, the impressive drift sands with large parabolic dune structures, often consisting of series of interlocking parabolic dunes. They developed from the northeast towards the southwest, against the direction of the dominant wind, and must have taken centuries to develop. Small parts of these systems are still active, other parts show different degrees of soil formation. Their origin is still unclear but probably dates from medieval times (Heidinga, 1985, Jungerius & Riksen, 2008). Second are the drift sand areas with irregular hills from 0.5 to about 2 metres high. They are common near villages. They originated through sand blown from fallow agricultural fields and local overgrazing. They vary in age from prehistoric to modern time and are now mostly planted with forests. Third are the linear drift sand areas with one to three metre high ridges that align old roads and originated through dust whirled up by horses and carriages over many centuries. They also occurs within drift sands of the first system. In the re-stabilization of reactivated drift sands, differences in geodiversity on a still more detailed scale are important (Ancker, Jungerius et al. 2013). Even a small change in slope can cause primary dunes to develop and stop wind erosion. Gradually the geodiversity aspects are recognized as relevant for the management of active and fossil drift sands, and also is becoming a management issue in itself. An important future research issue is the completion of the Drift Sand Atlas, a project that describes the geodiversity aspects of all drift sand areas of The Netherlands. This project has been retarded by lack of means. Knowledge of the geodiversity also is important for correct sampling of C14 and luminescence data. Other future research includes the processes that caused the formation of 'randwallen' (rim walls), rates of water and wind erosion and soil formation and links between flora, fauna and Natura 2000 species. References
Xie, Jiangbo; Tang, Lisong; Wang, Zhongyuan; Xu, Guiqing; Li, Yan
2012-01-01
In resource-poor environments, adjustment in plant biomass allocation implies a complex interplay between environmental signals and plant development rather than a delay in plant development alone. To understand how environmental factors influence biomass allocation or the developing phenotype, it is necessary to distinguish the biomass allocations resulting from environmental gradients or ontogenetic drift. Here, we compared the development trajectories of cotton plants (Gossypium herbaceum L.), which were grown in two contrasting soil textures during a 60-d period. Those results distinguished the biomass allocation pattern resulting from ontogenetic drift and the response to soil texture. The soil texture significantly changed the biomass allocation to leaves and roots, but not to stems. Soil texture also significantly changed the development trajectories of leaf and root traits, but did not change the scaling relationship between basal stem diameter and plant height. Results of nested ANOVAs of consecutive plant-size categories in both soil textures showed that soil gradients explained an average of 63.64–70.49% of the variation of biomass allocation to leaves and roots. Ontogenetic drift explained 77.47% of the variation in biomass allocation to stems. The results suggested that the environmental factors governed the biomass allocation to roots and leaves, and ontogenetic drift governed the biomass allocation to stems. The results demonstrated that biomass allocation to metabolically active organs (e.g., roots and leaves) was mainly governed by environmental factors, and that biomass allocation to metabolically non-active organs (e.g., stems) was mainly governed by ontogenetic drift. We concluded that differentiating the causes of development trajectories of plant traits was important to the understanding of plant response to environmental gradients. PMID:22911802
Heavy-ion dominance near Cluster perigees
NASA Astrophysics Data System (ADS)
Ferradas, C. P.; Zhang, J.-C.; Kistler, L. M.; Spence, H. E.
2015-12-01
Time periods in which heavy ions dominate over H+ in the energy range of 1-40 keV were observed by the Cluster Ion Spectrometry (CIS)/COmposition DIstribution Function (CODIF) instrument onboard Cluster Spacecraft 4 at L values less than 4. The characteristic feature is a narrow flux peak at around 10 keV that extends into low L values, with He+ and/or O+ dominating. In the present work we perform a statistical study of these events and examine their temporal occurrence and spatial distribution. The observed features, both the narrow energy range and the heavy-ion dominance, can be interpreted using a model of ion drift from the plasma sheet, subject to charge exchange losses. The narrow energy range corresponds to the only energy range that has direct drift access from the plasma sheet during quiet times. The drift time to these locations from the plasma sheet is > 30 h, so that charge exchange has a significant impact on the population. We show that a simple drift/loss model can explain the dependence on L shell and MLT of these heavy-ion-dominant time periods.
Churnside, Allison B; Sullan, Ruby May A; Nguyen, Duc M; Case, Sara O; Bull, Matthew S; King, Gavin M; Perkins, Thomas T
2012-07-11
Force drift is a significant, yet unresolved, problem in atomic force microscopy (AFM). We show that the primary source of force drift for a popular class of cantilevers is their gold coating, even though they are coated on both sides to minimize drift. Drift of the zero-force position of the cantilever was reduced from 900 nm for gold-coated cantilevers to 70 nm (N = 10; rms) for uncoated cantilevers over the first 2 h after wetting the tip; a majority of these uncoated cantilevers (60%) showed significantly less drift (12 nm, rms). Removing the gold also led to ∼10-fold reduction in reflected light, yet short-term (0.1-10 s) force precision improved. Moreover, improved force precision did not require extended settling; most of the cantilevers tested (9 out of 15) achieved sub-pN force precision (0.54 ± 0.02 pN) over a broad bandwidth (0.01-10 Hz) just 30 min after loading. Finally, this precision was maintained while stretching DNA. Hence, removing gold enables both routine and timely access to sub-pN force precision in liquid over extended periods (100 s). We expect that many current and future applications of AFM can immediately benefit from these improvements in force stability and precision.
An Universal packaging technique for low-drift implantable pressure sensors.
Kim, Albert; Powell, Charles R; Ziaie, Babak
2016-04-01
Monitoring bodily pressures provide valuable diagnostic and prognostic information. In particular, long-term measurement through implantable sensors is highly desirable in situations where percutaneous access can be complicated or dangerous (e.g., intracranial pressure in hydrocephalic patients). In spite of decades of progress in the fabrication of miniature solid-state pressure sensors, sensor drift has so far severely limited their application in implantable systems. In this paper, we report on a universal packaging technique for reducing the sensor drift. The described method isolates the pressure sensor from a major source of drift, i.e., contact with the aqueous surrounding environment, by encasing the sensor in a silicone-filled medical-grade polyurethane balloon. In-vitro soak tests for 100 days using commercial micromachined piezoresistive pressure sensors demonstrate a stable operation with the output remaining within 1.8 cmH2O (1.3 mmHg) of a reference pressure transducer. Under similar test conditions, a non-isolated sensor fluctuates between 10 and 20 cmH2O (7.4-14.7 mmHg) of the reference, without ever settling to a stable operation regime. Implantation in Ossabow pigs demonstrate the robustness of the package and its in-vivo efficacy in reducing the baseline drift.
Glass Polarization Induced Drift of a Closed-Loop Micro-Accelerometer.
Zhou, Wu; He, Jiangbo; Yu, Huijun; Peng, Bei; He, Xiaoping
2018-01-20
The glass polarization effects were introduced in this paper to study the main cause of turn-on drift phenomenon of closed-loop micro-accelerometers. The glass substrate underneath the sensitive silicon structure underwent a polarizing process when the DC bias voltage was applied. The slow polarizing process induced an additional electrostatic field to continually drag the movable mass block from one position to another so that the sensing capacitance was changed, which led to an output drift of micro-accelerometers. This drift was indirectly tested by experiments and could be sharply reduced by a shielding layer deposited on the glass substrate because the extra electrical filed was prohibited from generating extra electrostatic forces on the movable fingers of the mass block. The experimental results indicate the average magnitude of drift decreased about 73%, from 3.69 to 0.99 mV. The conclusions proposed in this paper showed a meaningful guideline to improve the stability of micro-devices based on silicon-on-glass structures.
Glass Polarization Induced Drift of a Closed-Loop Micro-Accelerometer
He, Jiangbo; Yu, Huijun; Peng, Bei; He, Xiaoping
2018-01-01
The glass polarization effects were introduced in this paper to study the main cause of turn-on drift phenomenon of closed-loop micro-accelerometers. The glass substrate underneath the sensitive silicon structure underwent a polarizing process when the DC bias voltage was applied. The slow polarizing process induced an additional electrostatic field to continually drag the movable mass block from one position to another so that the sensing capacitance was changed, which led to an output drift of micro-accelerometers. This drift was indirectly tested by experiments and could be sharply reduced by a shielding layer deposited on the glass substrate because the extra electrical filed was prohibited from generating extra electrostatic forces on the movable fingers of the mass block. The experimental results indicate the average magnitude of drift decreased about 73%, from 3.69 to 0.99 mV. The conclusions proposed in this paper showed a meaningful guideline to improve the stability of micro-devices based on silicon-on-glass structures. PMID:29361685
DRIFT POTENTIAL OF TILTED SHIELDED ROTARY ATOMISERS BASED ON WIND TUNNEL MEASUREMENTS.
Salah, S Ouled Taleb; Massinon, M; De Cock, N; Schiffers, B; Lebeau, F
2015-01-01
Crop protection is mainly achieved by applying Plant Protection Products (PPP) using hydraulic nozzles, which rely on pressure, to produce a wide droplet size distribution. Because of always increased concerns about drift reduction, a wider range of low drift nozzles, such as air induction nozzles, was adopted in order to reduce the finest part of the spray. While successful for some treatments, the efficiency of coarser sprays is dramatically reduced on small and superhydrophobic target, i.e. at early stage weed control. This may be related to the increased proportion of big bouncing and splashing droplets. On the other hand, Controlled Droplet Application (CDA), using shielded rotary atomizers, stands for an improved control of droplets diameters and trajectories compared to hydraulic nozzles. Unfortunately, these atomizers, because of their horizontal droplet release, are widely recognized to produce more drift than hydraulic nozzles. The present contribution investigates whether the setting of a rotary atomizer 60 degrees forward tilted can reduce drift to acceptable levels in comparison with vertical and 60 degrees forward tilted standard and low drift flat fan nozzles for the same flow rate. In a wind tunnel, the drift potential of a medium spray produced by a tilted shielded rotary atomizer Micromax 120 was benchmarked with that of a flat fan nozzle XR11002 fine spray and that of an anti-drift nozzle Hardi Injet 015 medium spray. Operating parameters were set to apply 0.56 l/min for every spray generator. Vertical drift profiles were measured 2.0 m downward from nozzle axis for a 2 m.s(-1) wind speed. The tilted hydraulic nozzles resulted in a significant drift increase while droplets trajectories are affected by the decrease of the droplet initial vertical speed. Droplets emitted by the shielded rotary atomizer drift due to low entrained air and turbulence. A significant reduction of the cumulative drift was achieved by the rotary atomizer in comparison with flat fan nozzle while still being higher than the anti-drift nozzle. Unfortunately, the drift potential index (DIX) revealed that the cumulative drift reduction may not results in actual drift decrease because of higher drift at higher sampling locations. As a result, the DIX of the shielded rotary atomizer was similar to the standard flat-fan nozzle while the anti-drift nozzle reduced drastically drift as intended. Therefore, the 60 degrees tilted rotary atomizer failed to reach low drift levels as expected despite the reduced span.
Incremental learning of concept drift in nonstationary environments.
Elwell, Ryan; Polikar, Robi
2011-10-01
We introduce an ensemble of classifiers-based approach for incremental learning of concept drift, characterized by nonstationary environments (NSEs), where the underlying data distributions change over time. The proposed algorithm, named Learn(++). NSE, learns from consecutive batches of data without making any assumptions on the nature or rate of drift; it can learn from such environments that experience constant or variable rate of drift, addition or deletion of concept classes, as well as cyclical drift. The algorithm learns incrementally, as other members of the Learn(++) family of algorithms, that is, without requiring access to previously seen data. Learn(++). NSE trains one new classifier for each batch of data it receives, and combines these classifiers using a dynamically weighted majority voting. The novelty of the approach is in determining the voting weights, based on each classifier's time-adjusted accuracy on current and past environments. This approach allows the algorithm to recognize, and act accordingly, to the changes in underlying data distributions, as well as to a possible reoccurrence of an earlier distribution. We evaluate the algorithm on several synthetic datasets designed to simulate a variety of nonstationary environments, as well as a real-world weather prediction dataset. Comparisons with several other approaches are also included. Results indicate that Learn(++). NSE can track the changing environments very closely, regardless of the type of concept drift. To allow future use, comparison and benchmarking by interested researchers, we also release our data used in this paper. © 2011 IEEE
Modeling and simulation of Cu diffusion and drift in porous CMOS backend dielectrics
NASA Astrophysics Data System (ADS)
Ali, R.; Fan, Y.; King, S.; Orlowski, M.
2018-06-01
With the advent of porous dielectrics, Cu drift-diffusion reliability issues in CMOS backend have only been exacerbated. In this regard, a modeling and simulation study of Cu atom/ion drift-diffusion in porous dielectrics is presented to assess the backend reliability and to explore conditions for a reliable Resistive Random Access Memory (RRAM) operation. The numerical computation, using elementary jump frequencies for a random walk in 2D and 3D, is based on an extended adjacency tensor concept. It is shown that Cu diffusion and drift transport are affected as much by the level of porosity as by the pore morphology. Allowance is made for different rates of Cu dissolution into the dielectric and for Cu absorption and transport at and on the inner walls of the pores. Most of the complex phenomena of the drift-diffusion transport in porous media can be understood in terms of local lateral and vertical gradients and the degree of their perturbation caused by the presence of pores in the transport domain. The impact of pore morphology, related to the concept of tortuosity, is discussed in terms of "channeling" and "trapping" effects. The simulations are calibrated to experimental results of porous SiCOH layers of 25 nm thickness, sandwiched between Cu and Pt(W) electrodes with experimental porosity levels of 0%, 8%, 12%, and 25%. We find that porous SICOH is more immune to Cu+ drift at 300 K than non-porous SICOH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kholodnaya, G. E.; Sazonov, R. V.; Ponomarev, D. V.
The paper presents the results of current measurements for the electron beam, propagating inside a drift tube filled in with a gas mixture (Ar and N{sub 2}). The experiments were performed using the TEA-500 pulsed electron accelerator. The main characteristics of electron beam were as follows: 60 ns pulse duration, up to 200 J energy, and 5 cm diameter. The electron beam propagated inside the drift tube assembled of three sections. Gas pressures inside the drift tube were 760 ± 3, 300 ± 3, and 50 ± 1 Torr. The studies were performed in argon, nitrogen, and their mixtures of 33%, 50%, and 66% volume concentrations, respectively.
Drift due to viscous vortex rings
NASA Astrophysics Data System (ADS)
Morrell, Thomas; Spagnolie, Saverio; Thiffeault, Jean-Luc
2016-11-01
Biomixing is the study of fluid mixing due to swimming organisms. While large organisms typically produce turbulent flows in their wake, small organisms produce less turbulent wakes; the main mechanism of mixing is the induced net particle displacement (drift). Several experiments have examined this drift for small jellyfish, which produce vortex rings that trap and transport a fair amount of fluid. Inviscid theory implies infinite particle displacements for the trapped fluid, so the effect of viscosity must be included to understand the damping of real vortex motion. We use a model viscous vortex ring to compute particle displacements and other relevant quantities, such as the integrated moments of the displacement. Fluid entrainment at the tail end of a growing vortex 'envelope' is found to play an important role in the total fluid transport and drift. Partially supported by NSF Grant DMS-1109315.
Modeling spray drift and runoff-related inputs of pesticides to receiving water.
Zhang, Xuyang; Luo, Yuzhou; Goh, Kean S
2018-03-01
Pesticides move to surface water via various pathways including surface runoff, spray drift and subsurface flow. Little is known about the relative contributions of surface runoff and spray drift in agricultural watersheds. This study develops a modeling framework to address the contribution of spray drift to the total loadings of pesticides in receiving water bodies. The modeling framework consists of a GIS module for identifying drift potential, the AgDRIFT model for simulating spray drift, and the Soil and Water Assessment Tool (SWAT) for simulating various hydrological and landscape processes including surface runoff and transport of pesticides. The modeling framework was applied on the Orestimba Creek Watershed, California. Monitoring data collected from daily samples were used for model evaluation. Pesticide mass deposition on the Orestimba Creek ranged from 0.08 to 6.09% of applied mass. Monitoring data suggests that surface runoff was the major pathway for pesticide entering water bodies, accounting for 76% of the annual loading; the rest 24% from spray drift. The results from the modeling framework showed 81 and 19%, respectively, for runoff and spray drift. Spray drift contributed over half of the mass loading during summer months. The slightly lower spray drift contribution as predicted by the modeling framework was mainly due to SWAT's under-prediction of pesticide mass loading during summer and over-prediction of the loading during winter. Although model simulations were associated with various sources of uncertainties, the overall performance of the modeling framework was satisfactory as evaluated by multiple statistics: for simulation of daily flow, the Nash-Sutcliffe Efficiency Coefficient (NSE) ranged from 0.61 to 0.74 and the percent bias (PBIAS) < 28%; for daily pesticide loading, NSE = 0.18 and PBIAS = -1.6%. This modeling framework will be useful for assessing the relative exposure from pesticides related to spray drift and runoff in receiving waters and the design of management practices for mitigating pesticide exposure within a watershed. Published by Elsevier Ltd.
Distribution of drifting seaweeds in eastern East China Sea
NASA Astrophysics Data System (ADS)
Komatsu, Teruhisa; Tatsukawa, Kenichi; Filippi, Jean B.; Sagawa, Tatsuyuki; Matsunaga, Daisuke; Mikami, Atsuko; Ishida, Kenichi; Ajisaka, Tetsuro; Tanaka, Katsuhiko; Aoki, Masakazu; Wang, Wei-Ding; Liu, Hui-Fei; Zhang, Shou-Du; Zhou, Min-Dong; Sugimoto, Takashige
2007-09-01
In offshore waters with relatively low primary production, drifting seaweeds composed of Sargassum species form an identical ecosystem such as an oasis in desert. Commercially important pelagic fishes such as jack mackerel ( Trachurus japonicus) and yellow tail ( Seriola quinqueradiata) spawn in East China Sea pass their juvenile period accompanying drifting seaweeds. Therefore drifting seaweeds are very important not only in offshore ecosystem but also fishery resources. However the distribution of drifting seaweeds in East China Sea has scarcely known. Then we conducted two research cruises of R/V Hakuho-Maru in May 2002 and in March 2004. During the cruises, drifting seaweeds were visually observed from the bridge and sampled with a towing net. The observation revealed that the drifting seaweeds were distributed along the front between the Kuroshio Current and coastal waters and mainly composed of one seaweed species, Sargassum horneri (Turner) C. Agardh from spring to early summer. There are no reports on geographical distribution of this species in the coasts south of southern Kyushu Island in Japan. Kuroshio Current flows northeastward there. Buoys with GPS attached to drifting seaweeds released off Zhejiang Province, China, in March 2005 to track their transport. Their positions monitored by ORBCOM satellite showed that they were transported to the area in East China Sea, where the drifting seaweeds were observed during the cruises, in 2 months. These facts suggest that S. horneri detached from Chinese coast in March or months earlier than March could be transported to fringe area of continental shelf and waters influenced by Kuroshio Current from March to May. Therefore the Sargassum forests, especially S. horneri, along the Chinese coast play a very important role in the ecosystem of the East China Sea as a source of drifting seaweeds.
Miyazawa, Yasumasa; Guo, Xinyu; Varlamov, Sergey M.; Miyama, Toru; Yoda, Ken; Sato, Katsufumi; Kano, Toshiyuki; Sato, Keiji
2015-01-01
At the present time, ocean current is being operationally monitored mainly by combined use of numerical ocean nowcast/forecast models and satellite remote sensing data. Improvement in the accuracy of the ocean current nowcast/forecast requires additional measurements with higher spatial and temporal resolution as expected from the current observation network. Here we show feasibility of assimilating high-resolution seabird and ship drift data into an operational ocean forecast system. Data assimilation of geostrophic current contained in the observed drift leads to refinement in the gyre mode events of the Tsugaru warm current in the north-eastern sea of Japan represented by the model. Fitting the observed drift to the model depends on ability of the drift representing geostrophic current compared to that representing directly wind driven components. A preferable horizontal scale of 50 km indicated for the seabird drift data assimilation implies their capability of capturing eddies with smaller horizontal scale than the minimum scale of 100 km resolved by the satellite altimetry. The present study actually demonstrates that transdisciplinary approaches combining bio-/ship- logging and numerical modeling could be effective for enhancement in monitoring the ocean current. PMID:26633309
NASA Astrophysics Data System (ADS)
Santos, Ângela M.; Abdu, Mangalathayil A.; Souza, Jonas R.; Batista, Inez S.; Sobral, José H. A.
2017-11-01
The influence of the recent deep and prolonged solar minimum on the daytime zonal and vertical plasma drift velocities during quiet time is investigated in this work. Analyzing the data obtained from incoherent scatter radar from Jicamarca (11.95° S, 76.87° W) we observe an anomalous behavior of the zonal plasma drift during June 2008 characterized by lower than usual daytime westward drift and its early afternoon reversal to eastward. As a case study the zonal drift observed on 24 June 2008 is modeled using a realistic low-latitude ionosphere simulated by the Sheffield University Plasmasphere-Ionosphere Model-INPE (SUPIM-INPE). The results show that an anomalously low zonal wind was mainly responsible for the observed anomalous behavior in the zonal drift. A comparative study of the vertical plasma drifts obtained from magnetometer data for some periods of maximum (2000-2002) and minimum solar activity (1998, 2008, 2010) phases reveal a considerable decrease on the E-region conductivity and the dynamo electric field during 2008. However, we believe that the contribution of these characteristics to the unusual behavior of the zonal plasma drift is significantly smaller than that arising from the anomalously low zonal wind. The SUPIM-INPE result of the critical frequency of the F layer (foF2) over Jicamarca suggested a lower radiation flux than that predicted by solar irradiance model (SOLAR2000) for June 2008.
An Energetic Electron Flux Dropout Due to Magnetopause Shadowing on 1 June 2013
NASA Astrophysics Data System (ADS)
Kang, Suk-Bin; Fok, Mei-Ching; Komar, Colin; Glocer, Alex; Li, Wen; Buzulukova, Natalia
2018-02-01
We examine the mechanisms responsible for the dropout of energetic electron flux during 31 May to 1 June 2013 using Van Allen Probe (Radiation Belt Storm Probes (RBSP)) electron flux data and simulations with the Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model. During the storm main phase, L-shells at RBSP locations are greater than 8, which are connected to open drift shells. Consequently, diminished electron fluxes were observed over a wide range of energies. The combination of drift shell splitting, magnetopause shadowing, and drift loss all results in butterfly electron pitch angle distributions (PADs) at the nightside. During storm sudden commencement, RBSP observations display electron butterfly PADs over a wide range of energies. However, it is difficult to determine whether there are butterfly PADs during the storm main phase since the maximum observable equatorial pitch angle from RBSP is not larger than 40° during this period. To investigate the causes of the dropout, the CIMI model is used as a global 4-D kinetic inner magnetosphere model. The CIMI model reproduces the dropout with very similar timing and flux levels and PADs along the RBSP trajectory for 593 keV. Furthermore, the CIMI simulation shows butterfly PADs for 593 keV during the storm main phase. Based on comparison of observations and simulations, we suggest that the dropout during this event mainly results from magnetopause shadowing.
Evaluation of dual-tip micromanometers during 21-day implantation in goats
NASA Technical Reports Server (NTRS)
Reister, C. A.; Koenig, S. C.; Schaub, J. D.; Ewert, D. L.; Swope, R. D.; Latham, R. D.; Fanton, J. W.; Convertino, V. A. (Principal Investigator)
1998-01-01
Investigative research efforts using a cardiovascular model required the determination of central circulatory haemodynamic and arterial system parameters for the evaluation of cardiovascular performance. These calculations required continuous beat-to-beat measurement of pressure within the four chambers of the heart and great vessels. Sensitivity and offset drift, longevity, and sources of error for eight 3F dual-tipped micromanometers were determined during 21 days of implantation in goats. Subjects were instrumented with pairs of chronically implanted fluid-filled access catheters in the left and right ventricles, through which dual-tipped (test) micromanometers were chronically inserted and single-tip (standard) micromanometers were acutely inserted. Acutely inserted sensors were calibrated daily and measured pressures were compared in vivo to the chronically inserted sensors. Comparison of the pre- and post-gain calibration of the chronically inserted sensors showed a mean sensitivity drift of 1.0 +/- 0.4% (99% confidence, n = 9 sensors) and mean offset drift of 5.0 +/- 1.5 mmHg (99% confidence, n = 9 sensors). Potential sources of error for these drifts were identified, and included measurement system inaccuracies, temperature drift, hydrostatic column gradients, and dynamic pressure changes. Based upon these findings, we determined that these micromanometers may be chronically inserted in high-pressure chambers for up to 17 days with an acceptable error, but should be limited to acute (hours) insertions in low-pressure applications.
Ground-water resources in New Hampshire; stratified-drift aquifers
Medalie, Laura; Moore, R.B.
1995-01-01
Stratified-drift aquifers underlie about 14 percent of the land surface in New Hampshire and are an important source of ground water for commercial, industrial, domestic, and public-water supplies in the State. This report introduces terms and concepts relevant to ground-water resources, summarizes some of the important information derived from a statewide stratified-drift-aquifer investigation, and provides examples of how the findings are used . The purpose of this report is to provide an overview of the stratified-drift aquifer assessment program, thus making summary information accessible to a broad audience, including legislators, State and local officials, and the public. Different audiences will use the report in different ways . To accommodate the varied audiences, some data are summarized statewide, some are presented by major river basin, and some are provided by town. During data collection, care was taken to use consistent methods for each of the 13 study areas (fig. 1) so that results would be comparable throughout the State . If more specific or detailed information about a particular area of interest is needed, the reader is directed to one or more of the technical reports listed in the Selected References section of this report.
NASA Astrophysics Data System (ADS)
van den Bremer, T. S.; Breivik, Ø.
2017-12-01
During its periodic motion, a particle floating at the free surface of a water wave experiences a net drift velocity in the direction of wave propagation, known as the Stokes drift (Stokes 1847 Trans. Camb. Philos. Soc. 8, 441-455). More generally, the Stokes drift velocity is the difference between the average Lagrangian flow velocity of a fluid parcel and the average Eulerian flow velocity of the fluid. This paper reviews progress in fundamental and applied research on the induced mean flow associated with surface gravity waves since the first description of the Stokes drift, now 170 years ago. After briefly reviewing the fundamental physical processes, most of which have been established for decades, the review addresses progress in laboratory and field observations of the Stokes drift. Despite more than a century of experimental studies, laboratory studies of the mean circulation set up by waves in a laboratory flume remain somewhat contentious. In the field, rapid advances are expected due to increasingly small and cheap sensors and transmitters, making widespread use of small surface-following drifters possible. We also discuss remote sensing of the Stokes drift from high-frequency radar. Finally, the paper discusses the three main areas of application of the Stokes drift: in the coastal zone, in Eulerian models of the upper ocean layer and in the modelling of tracer transport, such as oil and plastic pollution. Future climate models will probably involve full coupling of ocean and atmosphere systems, in which the wave model provides consistent forcing on the ocean surface boundary layer. Together with the advent of new space-borne instruments that can measure surface Stokes drift, such models hold the promise of quantifying the impact of wave effects on the global atmosphere-ocean system and hopefully contribute to improved climate projections. This article is part of the theme issue 'Nonlinear water waves'.
Drift-driven evolution of electric signals in a Neotropical knifefish.
Picq, Sophie; Alda, Fernando; Bermingham, Eldredge; Krahe, Rüdiger
2016-09-01
Communication signals are highly diverse traits. This diversity is usually assumed to be shaped by selective forces, whereas the null hypothesis of divergence through drift is often not considered. In Panama, the weakly electric fish Brachyhypopomus occidentalis is widely distributed in multiple independent drainage systems, which provide a natural evolutionary laboratory for the study of genetic and signal divergence in separate populations. We quantified geographic variation in the electric signals of 109 fish from five populations, and compared it to the neutral genetic variation estimated from cytochrome oxidase I (COI) sequences of the same individuals, to test whether drift may be driving divergence of their signals. Signal distances were highly correlated with genetic distances, even after controlling for geographic distances, suggesting that drift alone is sufficient to explain geographic variation in electric signals. Significant differences at smaller geographic scales (within drainages) showed, however, that electric signals may evolve at a faster rate than expected under drift, raising the possibility that additional adaptive forces may be contributing to their evolution. Overall, our data point to stochastic forces as main drivers of signal evolution in this species and extend the role of drift in the evolution of communication systems to fish and electrocommunication. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Current structure and flow pattern on the electron separatrix in reconnection region
NASA Astrophysics Data System (ADS)
Guo, Ruilong; Pu, Zuyin; Wei, Yong
2017-12-01
Results from 2.5D Particle-in-cell (PIC) simulations of symmetric reconnection with negligible guide field reveal that the accessible boundary of the electrons accelerated in the magnetic reconnection region is displayed by enhanced electron nongyrotropy downstream from the X-line. The boundary, hereafter termed the electron separatrix, occurs at a few d e (electron inertial length) away from the exhaust side of the magnetic separatrix. On the inflow side of the electron separatrix, the current is mainly carried by parallel accelerated electrons, served as the inflow region patch of the Hall current. The out-of-plane current density enhances at the electron separatrix. The dominating current carriers are the electrons, nongyrotropic distribution functions of which contribute significantly to the perpendicular electron velocity by increasing the electron diamagnetic drift velocity. When crossing the separatrix region where the Hall electric field is enhanced, electron velocity orientation is changed dramatically, which could be a diagnostic indicator to detect the electron separatrix. In the exhaust region, ions are the main carriers for the out-of-plane current, while the parallel current is still mainly carried by electrons. The current density peak in the separatrix region implies that a thin current sheet is formed apart from the neutral line, which can evolve to the bifurcated current sheet.
Two-dimensional relativistic space charge limited current flow in the drift space
NASA Astrophysics Data System (ADS)
Liu, Y. L.; Chen, S. H.; Koh, W. S.; Ang, L. K.
2014-04-01
Relativistic two-dimensional (2D) electrostatic (ES) formulations have been derived for studying the steady-state space charge limited (SCL) current flow of a finite width W in a drift space with a gap distance D. The theoretical analyses show that the 2D SCL current density in terms of the 1D SCL current density monotonically increases with D/W, and the theory recovers the 1D classical Child-Langmuir law in the drift space under the approximation of uniform charge density in the transverse direction. A 2D static model has also been constructed to study the dynamical behaviors of the current flow with current density exceeding the SCL current density, and the static theory for evaluating the transmitted current fraction and minimum potential position have been verified by using 2D ES particle-in-cell simulation. The results show the 2D SCL current density is mainly determined by the geometrical effects, but the dynamical behaviors of the current flow are mainly determined by the relativistic effect at the current density exceeding the SCL current density.
NASA Astrophysics Data System (ADS)
Lee, C.-C.; Liu, J.-Y.; Reinisch, B. W.; Chen, W.-S.; Chu, F.-D.
2005-03-01
We use a digisonde at Jicamarca and a chain of GPS receivers on the west side of South America to investigate the effects of the pre-reversal enhancement (PRE) in ExB drift, the asymmetry (Ia) of equatorial ionization anomaly (EIA), and the magnetic activity (Kp) on the generation of equatorial spread F (ESF). Results show that the ESF appears frequently in summer (November, December, January, and February) and equinoctial (March, April, September, and October) months, but rarely in winter (May, June, July, and August) months. The seasonal variation in the ESF is associated with those in the PRE ExB drift and Ia. The larger ExB drift (>20m/s) and smaller |Ia| (<0.3) in summer and equinoctial months provide a preferable condition to development the ESF. Conversely, the smaller ExB drift and larger |Ia| are responsible for the lower ESF occurrence in winter months. Regarding the effects of magnetic activity, the ESF occurrence decreases with increasing Kp in the equinoctial and winter months, but not in the summer months. Furthermore, the larger and smaller ExB drifts are presented under the quiet (Kp<3) and disturbed (Kp≥3) conditions, respectively. These results indicate that the suppression in ESF and the decrease in ExB drifts are mainly caused by the decrease in the eastward electric field.
A statistical study of ion pitch-angle distributions
NASA Technical Reports Server (NTRS)
Sibeck, D. G.; Mcentire, R. W.; Lui, A. T. Y.; Krimigis, S. M.
1987-01-01
Preliminary results of a statistical study of energetic (34-50 keV) ion pitch-angle distributions (PADs) within 9 Re of earth provide evidence for an orderly pattern consistent with both drift-shell splitting and magnetopause shadowing. Normal ion PADs dominate the dayside and inner magnetosphere. Butterfly PADs typically occur in a narrow belt stretching from dusk to dawn through midnight, where they approach within 6 Re of earth. While those ion butterfly PADs that typically occur on closed drift paths are mainly caused by drift-shell splitting, there is also evidence for magnetopause shadowing in observations of more frequent butterfly PAD occurrence in the outer magnetosphere near dawn than dusk. Isotropic and gradient boundary PADs terminate the tailward extent of the butterfly ion PAD belt.
Minimal-Drift Heading Measurement using a MEMS Gyro for Indoor Mobile Robots.
Hong, Sung Kyung; Park, Sungsu
2008-11-17
To meet the challenges of making low-cost MEMS yaw rate gyros for the precise self-localization of indoor mobile robots, this paper examines a practical and effective method of minimizing drift on the heading angle that relies solely on integration of rate signals from a gyro. The main idea of the proposed approach is consists of two parts; 1) self-identification of calibration coefficients that affects long-term performance, and 2) threshold filter to reject the broadband noise component that affects short-term performance. Experimental results with the proposed phased method applied to Epson XV3500 gyro demonstrate that it effectively yields minimal drift heading angle measurements getting over major error sources in the MEMS gyro output.
NASA Technical Reports Server (NTRS)
Brown, Shannon; Misra, Sidharth
2013-01-01
The Aquarius/SAC-D mission was launched on June 10, 2011 from Vandenberg Air Force Base. Aquarius consists of an L-band radiometer and scatterometer intended to provide global maps of sea surface salinity. One of the main mission objectives is to provide monthly global salinity maps for climate studies of ocean circulation, surface evaporation and precipitation, air/sea interactions and other processes. Therefore, it is critical that any spatial or temporal systematic biases be characterized and corrected. One of the main mission requirements is to measure salinity with an accuracy of 0.2 psu on montly time scales which requires a brightness temperature stability of about 0.1K, which is a challenging requirement for the radiometer. A secondary use of the Aquarius data is for soil moisture applications, which requires brightness temperature stability at the warmer end of the brightness temperature dynamic range. Soon after launch, time variable drifts were observed in the Aquarius data compared to in-situ data from ARGO and models for the ocean surface salinity. These drifts could arise from a number of sources, including the various components of the retrieval algorithm, such as the correction for direct and reflected galactic emission, or from the instrument brightness temperature calibration. If arising from the brightness temperature calibration, they could have gain and offset components. It is critical that the nature of the drifts be understood before a suitable correction can be implemented. This paper describes the approach that was used to detect and characterize the components of the drift that were in the brightness temperature calibration using on-Earth reference targets that were independent of the ocean model.
Snow drift: acoustic sensors for avalanche warning and research
NASA Astrophysics Data System (ADS)
Lehning, M.; Naaim, F.; Naaim, M.; Brabec, B.; Doorschot, J.; Durand, Y.; Guyomarc'h, G.; Michaux, J.-L.; Zimmerli, M.
Based on wind tunnel measurements at the CSTB (Jules Verne) facility in Nantes and based on field observations at the SLF experimental site Versuchsfeld Weissfluhjoch, two acoustic wind drift sensors are evaluated against different mechanical snow traps and one optical snow particle counter. The focus of the work is the suitability of the acoustic sensors for applications such as avalanche warning and research. Although the acoustic sensors have not yet reached the accuracy required for typical research applications, they can, however, be useful for snow drift monitoring to help avalanche forecasters. The main problem of the acoustic sensors is a difficult calibration that has to take into account the variable snow properties. Further difficulties arise from snow fall and high wind speeds. However, the sensor is robust and can be operated remotely under harsh conditions. It is emphasized that due to the lack of an accurate reference method for snow drift measurements, all sensors play a role in improving and evaluating snow drift models. Finally, current operational snow drift models and snow drift sensors are compared with respect to their usefulness as an aid for avalanche warning. While drift sensors always make a point measurement, the models are able to give a more representative drift index that is valid for a larger area. Therefore, models have the potential to replace difficult observations such as snow drift in operational applications. Current models on snow drift are either only applicable in flat terrain, are still too complex for an operational application (Lehning et al., 2000b), or offer only limited information on snow drift, such as the SNOWPACK drift index (Lehning et al., 2000a). On the other hand, snow drift is also difficult to measure. While mechanical traps (Mellor 1960; Budd et al., 1966) are probably still the best reference, they require more or less continuous manual operation and are thus not suitable for remote locations or long-term monitoring. Optical sensors (Schmidt, 1977; Brown and Pomeroy, 1989; Sato and Kimura, 1993) have been very successful for research applications, but suffer from the fact that they give a single flux value at one specific height. In addition, they have not been used, to our knowledge, for long-term monitoring applications or at remote sites. New developments of acoustic sensors have taken place recently (Chritin et al., 1999; Font et al., 1998). Jaedicke (2001) gives examples of possible applications of acoustic snow drift sensors. He emphasizes the advantages of acoustic sensors for snow drift monitoring at remote locations, but could not present any evaluation of the accuracy of the measurements. We present a complete evaluation of the new acoustic sensors for snow drift and discuss their applications for research or avalanche warning. We compare the suitability of sensors for operational applications.
Imaging of Nuclear Weapon Trainers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwellenbach, David
2017-12-06
The Configurable Muon Tracker (CMT) is an adaptation of the existing drift tube detector commercially available from Decision Sciences International Corporation (DSIC). NSTec engineered the CMT around commercially available drift tube assemblies to make a detector that is more versatile than previous drift tube assemblies. The CMT became operational in February 2013. Traditionally, cosmic-ray muon trackers rely on near-vertical trajectory muons for imaging. Since there are scenarios where imaging using vertical trajectory muons is not practical, NSTec designed the CMT specifically for quick configurability to track muons from any trajectory. The CMT was originally designed to be changed from verticalmore » imaging mode to horizontal imaging mode in a few hours with access to a crane or other lifting equipment. In FY14, locations for imaging weapon trainers and SNM were identified and it was determined that lifting equipment would not typically be available in experimental areas. The CMT was further modified and a portable lifting system was developed to allow reconfiguration of the CMT without access to lifting equipment at the facility. This system was first deployed at Los Alamos National Laboratory’s W-division, where several trainers were imaged in both horizontal and vertical modes. Real-time images have been compared in both modes showing that imaging can be done in both modes with the expected longer integration time for horizontal mode. Further imaging and post processing of the data is expected to continue into early FY15.« less
The Gas Monitoring of the Besiii Drift Chamber
NASA Astrophysics Data System (ADS)
Wang, Xianggao; Chen, Chang; Chen, Yuanbo; Wu, Zhi; Gu, Yunting; Ma, Xiaoyan; Jin, Yan; Liu, Rongguang; Tang, Xiao; Wang, Lan; Zhu, Qiming
Two monitoring proportional counters (MPCs), installed at the inlet and outlet of the gas system of BESIII drift chamber (DC), were used to monitor the operation of the BESIII DC successfully and effectively as reported in this paper. The ratio of Gout/Gin (full energy photoelectron peak position of 55Fe 5.9 keV X-ray in inlet MPC as Gin and outlet MPC as Gout) is used as the main monitoring parameter. The MPC method is very useful for the gas detector system.
On the Outer Edges of Protoplanetary Dust Disks
NASA Astrophysics Data System (ADS)
Birnstiel, Tilman; Andrews, Sean M.
2014-01-01
The expectation that aerodynamic drag will force the solids in a gas-rich protoplanetary disk to spiral in toward the host star on short timescales is one of the fundamental problems in planet formation theory. The nominal efficiency of this radial drift process is in conflict with observations, suggesting that an empirical calibration of solid transport mechanisms in a disk is highly desirable. However, the fact that both radial drift and grain growth produce a similar particle size segregation in a disk (such that larger particles are preferentially concentrated closer to the star) makes it difficult to disentangle a clear signature of drift alone. We highlight a new approach, by showing that radial drift leaves a distinctive "fingerprint" in the dust surface density profile that is directly accessible to current observational facilities. Using an analytical framework for dust evolution, we demonstrate that the combined effects of drift and (viscous) gas drag naturally produce a sharp outer edge in the dust distribution (or, equivalently, a sharp decrease in the dust-to-gas mass ratio). This edge feature forms during the earliest phase in the evolution of disk solids, before grain growth in the outer disk has made much progress, and is preserved over longer timescales when both growth and transport effects are more substantial. The key features of these analytical models are reproduced in detailed numerical simulations, and are qualitatively consistent with recent millimeter-wave observations that find gas/dust size discrepancies and steep declines in dust continuum emission in the outer regions of protoplanetary disks.
A drift chamber with a new type of straws for operation in vacuum
NASA Astrophysics Data System (ADS)
Azorskiy, N.; Glonti, L.; Gusakov, Yu.; Elsha, V.; Enik, T.; Kakurin, S.; Kekelidze, V.; Kislov, E.; Kolesnikov, A.; Madigozhin, D.; Movchan, S.; Polenkevich, I.; Potrebenikov, Yu.; Samsonov, V.; Shkarovskiy, S.; Sotnikov, S.; Zinchenko, A.; Danielsson, H.; Bendotti, J.; Degrange, J.; Dixon, N.; Lichard, P.; Morant, J.; Palladino, V.; Gomez, F. Perez; Ruggiero, G.; Vergain, M.
2016-07-01
A 2150×2150 mm2 registration area drift chamber capable of working in vacuum is presented. Thin-wall tubes (straws) of a new type are used in the chamber. A large share of these 9.80 mm diameter drift tubes are made in Dubna from metalized 36 μm Mylar film welded along the generatrix using an ultrasonic welding machine created at JINR. The main features of the chamber and some characteristics of the drift tubes are described. Four such chambers with the X, Y, U, V coordinates each, containing 7168 straws in total, are designed and produced at JINR and CERN. They are installed in the vacuum volume of the NA62 setup in order to study the ultra-rare decay K+ →π+ vv bar and to search for and study rare meson decays. In autumn 2014 the chambers were used for the first time for the data taking in the experimental run of the NA62 at CERN's SPS.
New installation for inclined EAS investigations
NASA Astrophysics Data System (ADS)
Zadeba, E. A.; Ampilogov, N. V.; Barbashina, N. S.; Bogdanov, A. G.; Borisov, A. A.; Chernov, D. V.; Dushkin, L. I.; Fakhrutdinov, R. M.; Kokoulin, R. P.; Kompaniets, K. G.; Kozhin, A. S.; Ovchinnikov, V. V.; Ovechkin, A. S.; Petrukhin, A. A.; Shutenko, V. V.; Volkov, N. S.; Vorobjev, V. S.; Yashin, I. I.
2017-06-01
The large-scale coordinate-tracking detector TREK for registration of inclined EAS is being developed in MEPhI. The detector is based on multiwire drift chambers from the neutrino experiment at the IHEP U-70 accelerator. Their key advantages are a large effective area (1.85 m2), a good coordinate and angular resolution with a small number of measuring channels. The detector will be operated as part of the experimental complex NEVOD, in particular, jointly with a Cherenkov water detector (CWD) with a volume of 2000 cubic meters and the coordinate detector DECOR. The first part of the detector named Coordinate-Tracking Unit based on the Drift Chambers (CTUDC), representing two coordinate planes of 8 drift chambers in each, has been developed and mounted on opposite sides of the CWD. It has the same principle of joint operation with the NEVOD-DECOR triggering system and the same drift chambers alignment, so the main features of the TREK detector will be examined. Results of the CTUDC development and a joint operation with NEVOD-DECOR complex are presented.
T he Faint Drifting Decameter Radio Bursts From The Solar Corona
NASA Astrophysics Data System (ADS)
Briand, C.; Zaslavsky, A.; Lecacheux, A.; Zarka, P.; Maksimovic, M.; Mangeney, A.
2007-01-01
The radio observations of solar corona at decameter wavelengths reveal the presence of numerous faint, frequency drifting structures. We analyse observations performed on July 13th , 2002 with the DSP wideband spectrometer instrument implemented at the UTR-2 radiote- lescope. The main characteristics of these structures are statistically studied. Three populations of bursts are iden- tifies. The largest one presents negative frequency drifts of about -0.89 MHz.s-1 and a lifetime extending up to 11 sec (median value 2.72 sec). A second one shows positive frequency drifts of about +0.95 MHz.s-1 and a life- time extending up to 3 sec. The last population consists in structures with very small frequency drifts of about -0.1 MHz.s-1 and a shorter lifetime (about 1 sec). Assuming that those emissions are the signature of elec- tron beams propagating through the solar corona, we deduce that they have a velocity of about 3-5 times the electron thermal velocity. A new mechanism is proposed to explain the formation of plasma waves with such low beam velocity: spatially localized, temporal fluctuations of the electron distribution function width (heating).
Ionospheric Plasma Drift Analysis Technique Based On Ray Tracing
NASA Astrophysics Data System (ADS)
Ari, Gizem; Toker, Cenk
2016-07-01
Ionospheric drift measurements provide important information about the variability in the ionosphere, which can be used to quantify ionospheric disturbances caused by natural phenomena such as solar, geomagnetic, gravitational and seismic activities. One of the prominent ways for drift measurement depends on instrumentation based measurements, e.g. using an ionosonde. The drift estimation of an ionosonde depends on measuring the Doppler shift on the received signal, where the main cause of Doppler shift is the change in the length of the propagation path of the signal between the transmitter and the receiver. Unfortunately, ionosondes are expensive devices and their installation and maintenance require special care. Furthermore, the ionosonde network over the world or even Europe is not dense enough to obtain a global or continental drift map. In order to overcome the difficulties related to an ionosonde, we propose a technique to perform ionospheric drift estimation based on ray tracing. First, a two dimensional TEC map is constructed by using the IONOLAB-MAP tool which spatially interpolates the VTEC estimates obtained from the EUREF CORS network. Next, a three dimensional electron density profile is generated by inputting the TEC estimates to the IRI-2015 model. Eventually, a close-to-real situation electron density profile is obtained in which ray tracing can be performed. These profiles can be constructed periodically with a period of as low as 30 seconds. By processing two consequent snapshots together and calculating the propagation paths, we estimate the drift measurements over any coordinate of concern. We test our technique by comparing the results to the drift measurements taken at the DPS ionosonde at Pruhonice, Czech Republic. This study is supported by TUBITAK 115E915 and Joint TUBITAK 114E092 and AS CR14/001 projects.
NASA Astrophysics Data System (ADS)
Maute, A. I.; Lu, G.; Richmond, A. D.
2017-12-01
Earth's magnetic main field plays an important role in the thermosphere-ionosphere (TI) system, as well as its coupling to Earth's magnetosphere. The ionosphere consists of a weakly ionized plasma strongly influenced by the main field and embedded in the thermosphere. Therefore, ion-neutral coupling and ionospheric electrodynamics can influence the plasma distribution and neutral dynamics. There are strong longitude variations of the TI storm response. At high latitude magnetosphere-ionosphere coupling is organized by the geomagnetic main field, leading in general to stronger northern middle latitude storm time response in the American sector due to the geomagnetic dipole location. In addition, the weak geomagnetic main field in the American sector leads to larger local ExB drift and can alter the plasma densities. During geomagnetic storms the intense energy input into the high latitude region is redistributed globally, leading to thermospheric heating, wind circulation changes and alterations of the ionospheric electrodynamics. The storm time changes are measurable in the plasma density, ion drift, temperature, neutral composition, and other parameters. All these changes depend, to some degree, on the geomagnetic main field which changes on decadal time scales. In this study, we employ a forecast model of the geomagnetic main field based on data assimilation and geodynamo modeling [Aubert et al., 2015]. The main field model predicts that in 50 years the South Atlantic Anomaly is further weakened by 2 mT and drifts westward by approximately 10o. The dipole axis moves northward and westward by 2o and 6o, respectively. Simulating the March 2015 geomagnetic storm with the Thermosphere-Ionosphere Electrodynamics General Circulation Model (TIE-GCM) driven by the Assimilative Mapping of Ionospheric Electrodynamics (AMIE), we evaluate the thermosphere-ionosphere response using the geomagnetic main field of 2015, 2065, and 2115. We compare the TI response for 2015 with available satellite data, e.g. Swarm and COSMIC, and discuss the changes in the TI response due to the predicted main field changes to identify regions of potential increase and decrease in the storm time response. Aubert, J., Geophys. J. Int. 203, 1738-1751, 2015, doi: 10.1093/gji/ggv394 .
The ichthyofauna of drifting macrophyte mats in the Ivinhema River, upper Paraná River basin, Brazil
Bulla, C. K.; Gomes, Luiz Carlos; Miranda, Leandro E.; Agostinho, A. A.
2011-01-01
We describe the fish assemblages associated with drifting macrophyte mats and consider their possible role as dispersal vectors in the Ivinhema River, a major tributary of the upper Paraná River, Brazil. Fish associated with drifting mats were sampled in the main river channel during January and March 2005, when the wind and/or the increased water level were sufficient to transport macrophyte stands. Fish in the drifting mats were sampled with a floating sieve (4 m long x 2 m wide x 0.6 m high, and 2 mm mesh size). In the laboratory, larvae, juvenile, and adult fish were counted and identified to the lowest possible taxonomic level. In four drifting macrophyte mats we captured 218 individuals belonging to at least 28 species, 17 families, and 6 orders. Aphyocharax dentatus, Serrasalmus spp., and Trachelyopterus galeatus were the most abundant taxa associated with the mats, but species richness ranged from 6 to 24 species per mat. In addition, 85% of the total number of individuals caught was larvae and juveniles. Although preliminary and based on limited samples, this study of drifting macrophyte mats was the first one in the last unregulated stretch of the Paraná River remaining inside Brazilian territory, and alerts us to the potential role of macrophytes mats as dispersers of fish species in the region.
Classification of spray nozzles based on droplet size distributions and wind tunnel tests.
De Schamphelerie, M; Spanoghe, P; Nuyttens, D; Baetens, K; Cornelis, W; Gabriels, D; Van der Meeren, P
2006-01-01
Droplet size distribution of a pesticide spray is recognised as a main factor affecting spray drift. As a first approximation, nozzles can be classified based on their droplet size spectrum. However, the risk of drift for a given droplet size distribution is also a function of spray structure, droplet velocities and entrained air conditions. Wind tunnel tests to determine actual drift potentials of the different nozzles have been proposed as a method of adding an indication of the risk of spray drift to the existing classification based on droplet size distributions (Miller et al, 1995). In this research wind tunnel tests were performed in the wind tunnel of the International Centre for Eremology (I.C.E.), Ghent University, to determine the drift potential of different types and sizes of nozzles at various spray pressures. Flat Fan (F) nozzles Hardi ISO 110 02, 110 03, 110 04, 110 06; Low-Drift (LD) nozzles Hardi ISO 110 02, 110 03, 110 04 and Injet Air Inclusion (AI) nozzles Hardi ISO 110 02, 110 03, 110 04 were tested at a spray pressures of 2, 3 and 4 bar. The droplet size spectra of the F and the LD nozzles were measured with a Malvern Mastersizer at spray pressures 2 bar, 3 bar and 4 bar. The Malvern spectra were used to calculate the Volume Median Diameters (VMD) of the sprays.
Chen, Ming; Wu, Si; Lu, Haidong D.; Roe, Anna W.
2013-01-01
Interpreting population responses in the primary visual cortex (V1) remains a challenge especially with the advent of techniques measuring activations of large cortical areas simultaneously with high precision. For successful interpretation, a quantitatively precise model prediction is of great importance. In this study, we investigate how accurate a spatiotemporal filter (STF) model predicts average response profiles to coherently drifting random dot motion obtained by optical imaging of intrinsic signals in V1 of anesthetized macaques. We establish that orientation difference maps, obtained by subtracting orthogonal axis-of-motion, invert with increasing drift speeds, consistent with the motion streak effect. Consistent with perception, the speed at which the map inverts (the critical speed) depends on cortical eccentricity and systematically increases from foveal to parafoveal. We report that critical speeds and response maps to drifting motion are excellently reproduced by the STF model. Our study thus suggests that the STF model is quantitatively accurate enough to be used as a first model of choice for interpreting responses obtained with intrinsic imaging methods in V1. We show further that this good quantitative correspondence opens the possibility to infer otherwise not easily accessible population receptive field properties from responses to complex stimuli, such as drifting random dot motions. PMID:23197457
van den Bremer, T S; Breivik, Ø
2018-01-28
During its periodic motion, a particle floating at the free surface of a water wave experiences a net drift velocity in the direction of wave propagation, known as the Stokes drift (Stokes 1847 Trans. Camb. Philos. Soc. 8 , 441-455). More generally, the Stokes drift velocity is the difference between the average Lagrangian flow velocity of a fluid parcel and the average Eulerian flow velocity of the fluid. This paper reviews progress in fundamental and applied research on the induced mean flow associated with surface gravity waves since the first description of the Stokes drift, now 170 years ago. After briefly reviewing the fundamental physical processes, most of which have been established for decades, the review addresses progress in laboratory and field observations of the Stokes drift. Despite more than a century of experimental studies, laboratory studies of the mean circulation set up by waves in a laboratory flume remain somewhat contentious. In the field, rapid advances are expected due to increasingly small and cheap sensors and transmitters, making widespread use of small surface-following drifters possible. We also discuss remote sensing of the Stokes drift from high-frequency radar. Finally, the paper discusses the three main areas of application of the Stokes drift: in the coastal zone, in Eulerian models of the upper ocean layer and in the modelling of tracer transport, such as oil and plastic pollution. Future climate models will probably involve full coupling of ocean and atmosphere systems, in which the wave model provides consistent forcing on the ocean surface boundary layer. Together with the advent of new space-borne instruments that can measure surface Stokes drift, such models hold the promise of quantifying the impact of wave effects on the global atmosphere-ocean system and hopefully contribute to improved climate projections.This article is part of the theme issue 'Nonlinear water waves'. © 2017 The Author(s).
First look at rock & soil properties
NASA Technical Reports Server (NTRS)
1997-01-01
The earliest survey of spectral properties of the rocks and soils surrounding Pathfinder was acquired as a narrow strip covering the region just beyond the where the rover made its egress from the lander. The wavelength filters used, all in the binocular camera's right eye, cover mainly visible wavelengths. These data reveal at least five kinds of rocks and soil in the immediate vicinity of the lander. All of the spectra are ratioed to the mean spectrum of bright red drift to highlight the differences. Different occurrences of drift (pink spectra) are closely similar. Most of the rocks (black spectra) have a dark gray color, and are both darker and less red than the drift, suggesting less weathering. Typical soils (green spectra) are intermediate in properties to the rocks and drift. Both these data and subsequent higher resolution images show that the typical soil consists of a mixture of drift and small dark gray particles resembling the rock. However, two other kinds of materials are significantly different from the rocks and drift. Pinkish or whitish pebbles and crusts on some of the rocks (blue spectra) are brighter in blue light and darker in near-infrared light than is the drift, and they lack the spectral characteristics closely associated with iron minerals. Dark red soils in the lee of several rocks are about as red as the drift, but consistently darker. The curvature in the spectrum at visible wavelengths suggests either more ferric iron minerals than in the drift or a larger particle size.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).Tian, Qinglin; Salcic, Zoran; Wang, Kevin I-Kai; Pan, Yun
2015-12-05
Pedestrian dead reckoning is a common technique applied in indoor inertial navigation systems that is able to provide accurate tracking performance within short distances. Sensor drift is the main bottleneck in extending the system to long-distance and long-term tracking. In this paper, a hybrid system integrating traditional pedestrian dead reckoning based on the use of inertial measurement units, short-range radio frequency systems and particle filter map matching is proposed. The system is a drift-free pedestrian navigation system where position error and sensor drift is regularly corrected and is able to provide long-term accurate and reliable tracking. Moreover, the whole system is implemented on a commercial off-the-shelf smartphone and achieves real-time positioning and tracking performance with satisfactory accuracy.
NASA Astrophysics Data System (ADS)
Delay, Jacques; Vinsot, Agnès; Krieguer, Jean-Marie; Rebours, Hervé; Armand, Gilles
In November 1999 Andra began building an Underground Research Laboratory (URL) on the border of the Meuse and Haute-Marne departments in eastern France. The research activities of the URL are dedicated to study the feasibility of reversible, deep geological disposal of high-activity, long-lived radioactive wastes in an argillaceous host rock. The Laboratory consists of two shafts, an experimental drift at 445 m depth and a set of technical and experimental drifts at the main level at 490 m depth. The main objective of the research is to characterize the confining properties of the argillaceous rock through in situ hydrogeological tests, chemical measurements and diffusion experiments. In order to achieve this goal, a fundamental understanding of the geoscientific properties and processes that govern geological isolation in clay-rich rocks has been acquired. This understanding includes both the host rocks at the laboratory site and the regional geological context. After establishing the geological conditions, the underground research programme had to demonstrate that the construction and operation of a geological disposal will not introduce pathways for waste migration. Thus, the construction of the laboratory itself serves a research purpose through the monitoring of excavation effects and the optimization of construction technology. These studies are primarily geomechanical in nature, though chemical and hydrogeological coupling also have important roles. In order to achieve the scientific objectives of this project in the underground drifts, a specific methodology has been applied for carrying out the experimental programme conducted concurrently with the construction of the shafts and drifts. This methodology includes technological as well as organizational aspects and a systematic use of feedback from other laboratories abroad and every scientific zone of the URL already installed. This methodology was first applied to set up a multi-purpose experimental area at 445 m depth. Then the setting up of the experimental programme at the level 490 m was improved from the knowledge acquired during installation of the drift at 445 m. The several steps of the underground scientific programme are illustrated by presenting three experiments carried out in the underground drifts. The first experiment was carried out from the drift at 445 m depth, from end of 2004 to mid 2005. This experiment aimed at setting up an array of about 16 boreholes to monitor the geomechanical changes during and after construction of the shaft between 445 and 490 m. The second experiment was set up in the drift at 445 m depth, and also at the main level at 490 m depth. It consisted in determining the composition of the interstitial water by circulating gas in one borehole and water of a known composition in the other. The evolution of the composition of both water and gases enabled us to test the thermodynamic model of the water/rock interactions. The third example is related to the testing of a concept of interruption of the EDZ through a cross-cut slot technology. The concept, which was tested successfully at Mont Terri (Switzerland), has been transposed and adapted to the URL site conditions. The results will be used for developing a concept for drift sealing.
Miller, Todd S.; Pitman, Lacey M.
2012-01-01
The surficial deposits, areal extent of aquifers, and the water-table configurations of the stratified-drift aquifer systems in the Cayuta Creek and Catatonk Creek valleys and their large tributary valleys in Tompkins, Schuyler, Chemung, and Tioga Counties, New York were mapped in 2009, in cooperation with the New York State Department of Environmental Conservation. Well and test-boring records, surficial deposit maps, Light Detection and Ranging (LIDAR) data, soils maps, and horizontal-to-vertical ambient-noise seismic surveys were used to map the extent of the aquifers, construct geologic sections, and determine the depth to bedrock (thickness of valley-fill deposits) at selected locations. Geologic materials in the study area include sedimentary bedrock, unstratified drift (till), stratified drift (glaciolacustrine and glaciofluvial deposits), and recent alluvium. Stratified drift consisting of glaciofluvial sand and gravel is the major component of the valley fill in this study area. The deposits are present in sufficient amounts in most places to form extensive unconfined aquifers throughout the study area and, in some places, confined aquifers. Stratified drift consisting of glaciolacustrine fine sand, silt, and clay are present locally in valleys underlying the surficial sand and gravel deposits in the southern part of the Catatonk Creek valley. These unconfined and confined aquifers are the source of water for most residents, farms, and businesses in the valleys. A generalized depiction of the water table in the unconfined aquifer was constructed using water-level measurements made from the 1950s through 2010, as well as LIDAR data that were used to determine the altitudes of perennial streams at 10-foot contour intervals and water surfaces of ponds and wetlands that are hydraulically connected to the unconfined aquifer. The configuration of the water-table contours indicate that the general direction of groundwater flow within Cayuta Creek and Catatonk Creek stratified-drift aquifers is predominantly from the valley walls toward the main streams in the valleys. The groundwater discharges from the aquifer system to the main-stem streams in the valleys. Locally, the direction of groundwater flow is radially away from groundwater mounds that have formed beneath upland tributaries that typically lose water where they flow on alluvial fans in the valleys. In some places, groundwater that would normally flow toward streams is intercepted by pumping wells.
NASA Astrophysics Data System (ADS)
Rodrigues, Sara; Roque, Cristina; Terrinha, Pedro; Hernández-Molina, Francisco J.; Llave, Estefania; Ercilla, Gemma; Casas, David; Farran, Marcelli
2017-04-01
The Sines Contourite Drift, located in the Southwest Portuguese margin, is a distal drift of the Contourite Depositional System of the Gulf of Cadiz, built by the influence of the Mediterranean Outflow Water (MOW). This drift is located between 1000 and 2000 m water depth on the Alentejo margin continental slope. The Sines Drift is bounded by four major morphologic features, the 1.4 km high Pereira de Sousa Fault escarpment to the west, the upper continental slope to the east and the Setúbal and São Vicente canyons to the north and south, respectively. This work presents a seismic stratigraphic analysis and proposes an evolutionary model for the Sines Drift, as well as the identification of its main driving mechanisms and constraints. We used new seismic reflection lines acquired during the MOWER/CONDRIBER cruise in September-October 2014, pre-existent multichannel seismic lines and lithostratigraphic and chronological data from Site U1391 of IODP Expedition 339 carried out in 2011-2012. Three evolutionary phases are identified for the Sines Drift development: 1) a sheeted-contourite-drift phase (<5.3-3.2 Ma) built since the Late Miocene by an initially weak flowing MOW; 2) a mounded-contourite-drift phase (3.2-0.7 Ma) from Late Pliocene to Early Quaternary times characterized by a mounded drift in the north and sheeted in the south, with a succession of sinuous N-S paleomoats in the east built as a result of a MOW enhancement; and 3) a plastered-contourite-drift phase from Mid-Pleistocene (0.7 Ma) till the present day, characterized by the present depositional (sandy-muddy drifts) and erosional (moats) contourite features associated with two major events of MOW intensification. The growth of the Sines Drift was constrained, in a long-term, by seafloor morphologies that resulted from the Mesozoic rifting processes of the Southwest Portuguese margin, inherited from the Mesozoic rifting phases. The paleomorphology provided accommodation space for drift growth and conditioned its overall architecture. The N-S horsts built during the Mesozoic rifting confined drift formation and did not allow lateral migration. The formation of the Sines Drift has also been influenced, in short-term, by climatic fluctuations and sea-level changes especially during the Quaternary. The succession of sinuous paleomoats beneath the present-day moat suggests a persistent and northward flowing MOW with several phases of enhancement. It was also perceived that the São Vicente and Setúbal canyons took most of the downslope sediment supply, as well as the occurrence of mass-movement processes in the west associated with the steep gradient of the Pereira de Sousa escarpment. All these results suggest the Sines Drift had a complex evolution controlled by several and varied factors at different scales.
May, Jody C.; McLean, John A.
2013-01-01
The influence of three different drift gases (helium, nitrogen, and argon) on the separation mechanism in traveling wave ion mobility spectrometry is explored through ion trajectory simulations which include considerations for ion diffusion based on kinetic theory and the electrodynamic traveling wave potential. The model developed for this work is an accurate depiction of a second-generation commercial traveling wave instrument. Three ion systems (cocaine, MDMA, and amphetamine) whose reduced mobility values have previously been measured in different drift gases are represented in the simulation model. The simulation results presented here provide a fundamental understanding of the separation mechanism in traveling wave, which is characterized by three regions of ion motion: (1) ions surfing on a single wave, (2) ions exhibiting intermittent roll-over onto subsequent waves, and (3) ions experiencing a steady state roll-over which repeats every few wave cycles. These regions of ion motion are accessed through changes in the gas pressure, wave amplitude, and wave velocity. Resolving power values extracted from simulated arrival times suggest that momentum transfer in helium gas is generally insufficient to access regions (2) and (3) where ion mobility separations occur. Ion mobility separations by traveling wave are predicted to be effectual for both nitrogen and argon, with slightly lower resolving power values observed for argon as a result of band-broadening due to collisional scattering. For the simulation conditions studied here, the resolving power in traveling wave plateaus between regions (2) and (3), with further increases in wave velocity contributing only minor improvements in separations. PMID:23888124
May, Jody C; McLean, John A
2003-06-01
The influence of three different drift gases (helium, nitrogen, and argon) on the separation mechanism in traveling wave ion mobility spectrometry is explored through ion trajectory simulations which include considerations for ion diffusion based on kinetic theory and the electrodynamic traveling wave potential. The model developed for this work is an accurate depiction of a second-generation commercial traveling wave instrument. Three ion systems (cocaine, MDMA, and amphetamine) whose reduced mobility values have previously been measured in different drift gases are represented in the simulation model. The simulation results presented here provide a fundamental understanding of the separation mechanism in traveling wave, which is characterized by three regions of ion motion: (1) ions surfing on a single wave, (2) ions exhibiting intermittent roll-over onto subsequent waves, and (3) ions experiencing a steady state roll-over which repeats every few wave cycles. These regions of ion motion are accessed through changes in the gas pressure, wave amplitude, and wave velocity. Resolving power values extracted from simulated arrival times suggest that momentum transfer in helium gas is generally insufficient to access regions (2) and (3) where ion mobility separations occur. Ion mobility separations by traveling wave are predicted to be effectual for both nitrogen and argon, with slightly lower resolving power values observed for argon as a result of band-broadening due to collisional scattering. For the simulation conditions studied here, the resolving power in traveling wave plateaus between regions (2) and (3), with further increases in wave velocity contributing only minor improvements in separations.
McCamy, Michael B.; Otero-Millan, Jorge; Leigh, R. John; King, Susan A.; Schneider, Rosalyn M.; Macknik, Stephen L.; Martinez-Conde, Susana
2015-01-01
Human eyes move continuously, even during visual fixation. These “fixational eye movements” (FEMs) include microsaccades, intersaccadic drift and oculomotor tremor. Research in human FEMs has grown considerably in the last decade, facilitated by the manufacture of noninvasive, high-resolution/speed video-oculography eye trackers. Due to the small magnitude of FEMs, obtaining reliable data can be challenging, however, and depends critically on the sensitivity and precision of the eye tracking system. Yet, no study has conducted an in-depth comparison of human FEM recordings obtained with the search coil (considered the gold standard for measuring microsaccades and drift) and with contemporary, state-of-the art video trackers. Here we measured human microsaccades and drift simultaneously with the search coil and a popular state-of-the-art video tracker. We found that 95% of microsaccades detected with the search coil were also detected with the video tracker, and 95% of microsaccades detected with video tracking were also detected with the search coil, indicating substantial agreement between the two systems. Peak/mean velocities and main sequence slopes of microsaccades detected with video tracking were significantly higher than those of the same microsaccades detected with the search coil, however. Ocular drift was significantly correlated between the two systems, but drift speeds were higher with video tracking than with the search coil. Overall, our combined results suggest that contemporary video tracking now approaches the search coil for measuring FEMs. PMID:26035820
Relation between bandgap and resistance drift in amorphous phase change materials
Rütten, Martin; Kaes, Matthias; Albert, Andreas; Wuttig, Matthias; Salinga, Martin
2015-01-01
Memory based on phase change materials is currently the most promising candidate for bridging the gap in access time between memory and storage in traditional memory hierarchy. However, multilevel storage is still hindered by the so-called resistance drift commonly related to structural relaxation of the amorphous phase. Here, we present the temporal evolution of infrared spectra measured on amorphous thin films of the three phase change materials Ag4In3Sb67Te26, GeTe and the most popular Ge2Sb2Te5. A widening of the bandgap upon annealing accompanied by a decrease of the optical dielectric constant ε∞ is observed for all three materials. Quantitative comparison with experimental data for the apparent activation energy of conduction reveals that the temporal evolution of bandgap and activation energy can be decoupled. The case of Ag4In3Sb67Te26, where the increase of activation energy is significantly smaller than the bandgap widening, demonstrates the possibility to identify new phase change materials with reduced resistance drift. PMID:26621533
Relation between bandgap and resistance drift in amorphous phase change materials.
Rütten, Martin; Kaes, Matthias; Albert, Andreas; Wuttig, Matthias; Salinga, Martin
2015-12-01
Memory based on phase change materials is currently the most promising candidate for bridging the gap in access time between memory and storage in traditional memory hierarchy. However, multilevel storage is still hindered by the so-called resistance drift commonly related to structural relaxation of the amorphous phase. Here, we present the temporal evolution of infrared spectra measured on amorphous thin films of the three phase change materials Ag4In3Sb67Te26, GeTe and the most popular Ge2Sb2Te5. A widening of the bandgap upon annealing accompanied by a decrease of the optical dielectric constant ε∞ is observed for all three materials. Quantitative comparison with experimental data for the apparent activation energy of conduction reveals that the temporal evolution of bandgap and activation energy can be decoupled. The case of Ag4In3Sb67Te26, where the increase of activation energy is significantly smaller than the bandgap widening, demonstrates the possibility to identify new phase change materials with reduced resistance drift.
Impact of centrifugal drifts on ion turbulent transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belli, Emily A.; Candy, J.
Here, the influence of sonic toroidal rotation on gyrokinetic stability and transport is studied, with important implications for heavy impurity dynamics. When centrifugal drifts and electrostatic trapping corrections are included, significant modifications to the calculated transport of heavy impurities are observed. These high-rotation corrections add to the standard Coriolis drift and toroidal rotation shear drive which are normally included in gyrokinetics. Yet, because of their complexity, centrifugal and electrostatic trapping terms (quadratic in the main ion Mach number) are not generally included in gyrokinetic codes. In this work, we explore the implications of using reduced descriptions of the rotational physics.more » For heavy impurities such as tungsten, cross terms due to the centrifugal force can dominate the rotation dynamics, and neglecting them is shown to lead to large errors in the impurity particle flux.« less
Impact of centrifugal drifts on ion turbulent transport
Belli, Emily A.; Candy, J.
2018-03-01
Here, the influence of sonic toroidal rotation on gyrokinetic stability and transport is studied, with important implications for heavy impurity dynamics. When centrifugal drifts and electrostatic trapping corrections are included, significant modifications to the calculated transport of heavy impurities are observed. These high-rotation corrections add to the standard Coriolis drift and toroidal rotation shear drive which are normally included in gyrokinetics. Yet, because of their complexity, centrifugal and electrostatic trapping terms (quadratic in the main ion Mach number) are not generally included in gyrokinetic codes. In this work, we explore the implications of using reduced descriptions of the rotational physics.more » For heavy impurities such as tungsten, cross terms due to the centrifugal force can dominate the rotation dynamics, and neglecting them is shown to lead to large errors in the impurity particle flux.« less
Rapid temporal accumulation in spider fear: Evidence from hierarchical drift diffusion modelling.
Tipples, Jason
2015-12-01
Fear can distort sense of time--making time seem slow or even stand still. Here, I used hierarchical drift diffusion modeling (HDDM; Vandekerckhove, Tuerlinckx, & Lee, 2008, 2011; Wiecki, Sofer, & Frank, 2013) to test the idea that temporal accumulation speeds up during fear. Eighteen high fearful and 23 low fearful participants judged the duration of both feared stimuli (spiders) and nonfeared stimuli (birds) in a temporal bisection task. The drift diffusion modeling results support the main hypothesis. In high but not low fearful individuals, evidence accumulated more rapidly toward a long duration decision-drift rates were higher-for spiders compared with birds. This result and further insights into how fear affects time perception would not have been possible on the basis of analyses of choice proportion data alone. Further results were interpreted in the context of a recent 2-stage model of time perception (Balcı & Simen, 2014). The results highlight the usefulness of diffusion modeling to test process-based explanations of disordered cognition in emotional disorders. (c) 2015 APA, all rights reserved).
Effects of stream enclosures on drifting invertebrates and fish growth
Zimmerman, J.K.H.; Vondracek, B.
2006-01-01
Stream ecologists often use enclosure experiments to investigate predator-prey interactions and competition within and among fish species. The design of enclosures, manipulation of species densities, and method of replication may influence experimental results. We designed an experiment with enclosure cages (1 m2, 6-mm mesh) to examine the relative influence of fish size, density, and prey availability on growth of brown trout (Salmo trutta), brook trout (Salvelinus fontinalis), and slimy sculpin (Cottus cognatus) within enclosures in Valley Creek, Minnesota. In addition, we examined water flow and invertebrate drift entering enclosures and in open riffles to investigate whether enclosures reduced the supply of invertebrate prey. Growth of small (age-0) brook and brown trout was not influenced by fish density, but growth of larger (age-1) trout generally decreased as density increased. Sculpin growth was not related to fish size or density, but increased with mean size of invertebrates in the drift. Enclosures reduced water flow and tended to reduce invertebrate drift rate, although total drift rate (ind./min), total drift density (ind./m3), and mean size of invertebrates were not significantly different inside enclosures compared to adjacent stream riffles. Enclosures had no effect on drift rate or size of Gammarus pseudolimnaeus, the main prey item for trout and sculpin in Valley Creek. Overall, our analyses indicated that reductions of prey availability by enclosures did not influence fish growth. Trout growth may have been limited at larger sizes and densities because of increased activity costs of establishing and defending territories, whereas sculpin growth was related to availability of large prey, a factor not influenced by enclosures. ?? 2006 by The North American Benthological Society.
Equatorial ionospheric response to the 2015 St. Patrick's Day magnetic storm
NASA Astrophysics Data System (ADS)
Huang, C.; Wilson, G. R.; Hairston, M. R.; Zhang, Y.; Wang, W.; Liu, J.
2016-12-01
The geomagnetic storm on 17 March 2015 was the strongest storm during solar cycle 24 and caused significant disturbances in the global ionosphere. We present measurements of the Defense Meteorological Satellite Program satellites and identify the dynamic response of the equatorial ionosphere to the storm. Large penetration and disturbance dynamo electric fields are detected in both the dusk and the dawn sectors, and the characteristics of the electric fields are dramatically different in the two local time sectors. Penetration electric field is strong in the evening sector, but disturbance dynamo electric field is dominant in the dawn sector. The dynamo process is first observed in the post-midnight sector 4 hours after the beginning of the storm main phase and lasts for 31 hours, covering the major part of the storm main phase and the initial 20 hours of the recovery phase. The dynamo vertical ion drift is upward (up to 200 m/s) in the post-midnight sector and downward (up to 80 m/s) in the early morning sector. The dynamo zonal ion drift is westward at these locations and reaches 100 m/s. The dynamo process causes large enhancements of the oxygen ion concentration, and the variations of the oxygen ion concentration are well correlated with the vertical ion drift. The observations suggest that disturbance dynamo becomes dominant in the post-midnight equatorial ionosphere even during the storm main phase when disturbance neutral winds arrive there. The results provide new insight into storm-time equatorial ionospheric dynamics.
Experimental measurement of cooling tower emissions using image processing of sensitive papers
NASA Astrophysics Data System (ADS)
Ruiz, J.; Kaiser, A. S.; Ballesta, M.; Gil, A.; Lucas, M.
2013-04-01
Cooling tower emissions are harmful for several reasons such as air polluting, wetting, icing and solid particle deposition, but mainly due to human health hazards (i.e. Legionella). There are several methods for measuring drift drops. This paper is focussed on the sensitive paper technique, which is suitable in low drift scenarios and real conditions. The lack of an automatic classification method motivated the development of a digital image process algorithm for the Sensitive Paper method. This paper presents a detailed description of this method, in which, drop-like elements are identified by means of the Canny edge detector combined with some morphological operations. Afterwards, the application of a J48 decision tree is proposed as one of the most relevant contributions. This classification method allows us to discern between stains whose origin is a drop and stains whose origin is not a drop. The method is applied to a real case and results are presented in terms of drift and PM10 emissions. This involves the calculation of the main features of the droplet distribution at the cooling tower exit surface in terms of drop size distribution data, cumulative mass distribution curve and characteristic drop diameters. The Log-normal and the Rosin-Rammler distribution functions have been fitted to the experimental data collected in the tests and it can been concluded that the first one is the most suitable for experimental data among the functions tested (whereas the second one is less suitable). Realistic PM10 calculations include the measurement of drift emissions and Total Dissolved Solids as well as the size and number of drops. Results are compared to the method proposed by the U.S. Environmental Protection Agency assessing its overestimation. Drift emissions have found to be 0.0517% of the recirculating water, which is over the Spanish standards limit (0.05%).
The role of convection in the buildup of the ring current pressure during the 17 March 2013 storm
NASA Astrophysics Data System (ADS)
Menz, A. M.; Kistler, L. M.; Mouikis, C. G.; Spence, H. E.; Skoug, R. M.; Funsten, H. O.; Larsen, B. A.; Mitchell, D. G.; Gkioulidou, M.
2017-01-01
On 17 March 2013, the Van Allen Probes measured the H+ and O+ fluxes of the ring current during a large geomagnetic storm. Detailed examination of the pressure buildup during the storm shows large differences in the pressure measured by the two spacecraft, with measurements separated by only an hour, and large differences in the pressure measured at different local times. In addition, while the H+ and O+ pressure contributions are about equal during the main phase in the near-Earth plasma sheet outside L = 5.5, the O+ pressure dominates at lower L values. We test whether adiabatic convective transport from the near-Earth plasma sheet (L > 5.5) to the inner magnetosphere can explain these observations by comparing the observed inner magnetospheric distributions with the source distribution at constant magnetic moment, mu. We find that adiabatic convection can account for the enhanced pressure observed during the storm. Using a Weimer 1996 electric field we model the drift trajectories to show that the key features can be explained by variation in the near-Earth plasma sheet population and particle access that changes with energy and L shell. Finally, we show that the dominance of O+ at low L shells is due partly to a near-Earth plasma sheet that is preferentially enhanced in O+ at lower energies (5-10 keV) and partly due to the time dependence in the source combined with longer drift times to low L shells. No source of O+ inside L = 5.5 is required to explain the observations at low L shells.
Rotation and kinetic modifications of the tokamak ideal-wall pressure limit.
Menard, J E; Wang, Z; Liu, Y; Bell, R E; Kaye, S M; Park, J-K; Tritz, K
2014-12-19
The impact of toroidal rotation, energetic ions, and drift-kinetic effects on the tokamak ideal wall mode stability limit is considered theoretically and compared to experiment for the first time. It is shown that high toroidal rotation can be an important destabilizing mechanism primarily through the angular velocity shear; non-Maxwellian fast ions can also be destabilizing, and drift-kinetic damping can potentially offset these destabilization mechanisms. These results are obtained using the unique parameter regime accessible in the spherical torus NSTX of high toroidal rotation speed relative to the thermal and Alfvén speeds and high kinetic pressure relative to the magnetic pressure. Inclusion of rotation and kinetic effects significantly improves agreement between measured and predicted ideal stability characteristics and may provide new insight into tearing mode triggering.
Energy Conversion Mechanism for Electron Perpendicular Energy in High Guide-Field Reconnection
NASA Astrophysics Data System (ADS)
Guo, Xuehan; Horiuchi, Ritoku; Kaminou, Yasuhiro; Cheng, Frank; Ono, Yasushi
2016-10-01
The energy conversion mechanism for electron perpendicular energy, both the thermal and the kinetic energy, is investigated by means of two-dimensional, full-particle simulations in an open system. It is shown that electron perpendicular heating is mainly due to the breaking of magnetic moment conservation in separatrix region because the charge separation generates intense variation of electric field within the electron Larmor radius. Meanwhile, electron perpendicular acceleration takes place manly due to the polarization drift term as well as the curvature drift term of E . u⊥ in the downstream near the X-point. The enhanced electric field due to the charge separation there results in a significant effect of the polarization drift term on the dissipation of magnetic energy within the ion inertia length in the downstream. Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.
Anhøj, Jacob; Olesen, Anne Vingaard
2014-01-01
A run chart is a line graph of a measure plotted over time with the median as a horizontal line. The main purpose of the run chart is to identify process improvement or degradation, which may be detected by statistical tests for non-random patterns in the data sequence. We studied the sensitivity to shifts and linear drifts in simulated processes using the shift, crossings and trend rules for detecting non-random variation in run charts. The shift and crossings rules are effective in detecting shifts and drifts in process centre over time while keeping the false signal rate constant around 5% and independent of the number of data points in the chart. The trend rule is virtually useless for detection of linear drift over time, the purpose it was intended for.
Drift wave stabilized by an additional streaming ion or plasma population
NASA Astrophysics Data System (ADS)
Bashir, M. F.; Vranjes, J.
2015-03-01
It is shown that the universally unstable kinetic drift wave in an electron-ion plasma can very effectively be suppressed by adding an extra flowing ion (or plasma) population. The effect of the flow of the added ions is essential, their response is of the type (vp h-vf 0) exp[-(vph-vf 0) 2] , where vf 0 is the flow speed and vp h is the phase speed parallel to the magnetic field vector. The damping is strong and it is mainly due to this ion exponential term, and this remains so for vf 0
Drift wave stabilized by an additional streaming ion or plasma population.
Bashir, M F; Vranjes, J
2015-03-01
It is shown that the universally unstable kinetic drift wave in an electron-ion plasma can very effectively be suppressed by adding an extra flowing ion (or plasma) population. The effect of the flow of the added ions is essential, their response is of the type (vph-vf0)exp[-(vph-vf0)2], where vf0 is the flow speed and vph is the phase speed parallel to the magnetic field vector. The damping is strong and it is mainly due to this ion exponential term, and this remains so for vf0
NASA Astrophysics Data System (ADS)
Mo, Yongpeng; Shi, Zongqian; Bai, Zhibin; Jia, Shenli; Wang, Lijun
2016-05-01
The residual plasma in the inter-contact region of a vacuum circuit breaker moves towards the post-arc cathode at current zero, because the residual plasma mainly comes from the cathode spots during the arc burning process. In the most previous theoretical researches on the post-arc sheath expansion process of vacuum circuit breakers, only the thermal motion of residual plasma was taken into consideration. Alternately, the residual plasma was even assumed to be static at the moment of current zero in some simplified models. However, the influence of residual plasma drift velocity at current zero on the post-arc sheath expansion process was rarely investigated. In this paper, this effect is investigated by a one-dimensional particle-in-cell model. Simulation results indicate that the sheath expands slower with higher residual plasma drift velocity in the initial sheath expansion stage. However, with the increase of residual plasma drift velocity, the overall plasma density in the inter-contact region decreases faster, and the sheath expansion velocity increases earlier. Consequently, as a whole, it needs shorter time to expel the residual plasma from the inter-contact region. Furthermore, if the residual plasma drift velocity is high enough, the sheath expansion process ceases before it develops to the post-arc anode. Besides, the influence of the collisions between charges and neutrals is investigated as well in terms of the density of metal vapor. It shows that the residual plasma drift velocity takes remarkable effect only if the density of the metal vapor is relatively low, which corresponds to the circumstance of low-current interruptions.
Eye-Safe Lidar System for Pesticide Spray Drift Measurement
Gregorio, Eduard; Rocadenbosch, Francesc; Sanz, Ricardo; Rosell-Polo, Joan R.
2015-01-01
Spray drift is one of the main sources of pesticide contamination. For this reason, an accurate understanding of this phenomenon is necessary in order to limit its effects. Nowadays, spray drift is usually studied by using in situ collectors which only allow time-integrated sampling of specific points of the pesticide clouds. Previous research has demonstrated that the light detection and ranging (lidar) technique can be an alternative for spray drift monitoring. This technique enables remote measurement of pesticide clouds with high temporal and distance resolution. Despite these advantages, the fact that no lidar instrument suitable for such an application is presently available has appreciably limited its practical use. This work presents the first eye-safe lidar system specifically designed for the monitoring of pesticide clouds. Parameter design of this system is carried out via signal-to-noise ratio simulations. The instrument is based on a 3-mJ pulse-energy erbium-doped glass laser, an 80-mm diameter telescope, an APD optoelectronic receiver and optomechanically adjustable components. In first test measurements, the lidar system has been able to measure a topographic target located over 2 km away. The instrument has also been used in spray drift studies, demonstrating its capability to monitor the temporal and distance evolution of several pesticide clouds emitted by air-assisted sprayers at distances between 50 and 100 m. PMID:25658395
F layer positive response to a geomagnetic storm - June 1972
NASA Technical Reports Server (NTRS)
Miller, N. J.; Grebowsky, J. M.; Mayr, H. G.; Harris, I.; Tulunay, Y. K.
1979-01-01
A circulation model of neutral thermosphere-ionosphere coupling is used to interpret in situ spacecraft measurements taken during a topside midlatitude ionospheric storm. The data are measurements of electron density taken along the circular polar orbit of Ariel 4 at 550 km during the geomagnetically disturbed period June 17-18, 1972. It is inferred that collisional momentum transfer from the disturbed neutral thermosphere to the ionosphere was the dominant midday process generating the positive F-layer storm phase in the summer hemisphere. In the winter hemisphere the positive storm phase drifted poleward in the apparent response to magnetospheric E x B drifts. A summer F-layer positive phase developed at the sudden commencement and again during the geomagnetic main phase; a winter F-layer positive phase developed only during the geomagnetic main phase. The observed seasonal differences in both the onsets and the magnitudes of the positive phases are attributed to the interhemispheric asymmetry in thermospheric dynamics.
Extensive electron transport and energization via multiple, localized dipolarizing flux bundles
NASA Astrophysics Data System (ADS)
Gabrielse, Christine; Angelopoulos, Vassilis; Harris, Camilla; Artemyev, Anton; Kepko, Larry; Runov, Andrei
2017-05-01
Using an analytical model of multiple dipolarizing flux bundles (DFBs) embedded in earthward traveling bursty bulk flows, we demonstrate how equatorially mirroring electrons can travel long distances and gain hundreds of keV from betatron acceleration. The model parameters are constrained by four Time History of Events and Macroscale Interactions during Substorms satellite observations, putting limits on the DFBs' speed, location, and magnetic and electric field magnitudes. We find that the sharp, localized peaks in magnetic field have such strong spatial gradients that energetic electrons ∇B drift in closed paths around the peaks as those peaks travel earthward. This is understood in terms of the third adiabatic invariant, which remains constant when the field changes on timescales longer than the electron's drift timescale: An energetic electron encircles a sharp peak in magnetic field in a closed path subtending an area of approximately constant flux. As the flux bundle magnetic field increases the electron's drift path area shrinks and the electron is prevented from escaping to the ambient plasma sheet, while it continues to gain energy via betatron acceleration. When the flux bundles arrive at and merge with the inner magnetosphere, where the background field is strong, the electrons suddenly gain access to previously closed drift paths around the Earth. DFBs are therefore instrumental in transporting and energizing energetic electrons over long distances along the magnetotail, bringing them to the inner magnetosphere and energizing them by hundreds of keV.
Börner, Andreas
2018-01-01
Cauliflower (Brassica oleracea var. botrytis) is an important vegetable crop for human nutrition. We characterized 192 cauliflower accessions from the USDA and IPK genebanks with genotyping by sequencing (GBS). They originated from 26 different countries and represent about 44% of all cauliflower accessions in both genebanks. The analysis of genetic diversity revealed that accessions formed two major groups that represented the two genebanks and were not related to the country of origin. This differentiation was robust with respect to the analysis methods that included principal component analysis, ADMIXTURE and neighbor-joining trees. Genetic diversity was higher in the USDA collection and significant phenotypic differences between the two genebanks were found in three out of six traits investigated. GBS data have a high proportion of missing data, but we observed that the exclusion of single nucleotide polymorphisms (SNPs) with missing data or the imputation of missing SNP alleles produced very similar results. The results indicate that the composition and type of accessions have a strong effect on the structure of genetic diversity of ex situ collections, although regeneration procedures and local adaptation to regeneration conditions may also contribute to a divergence. Fst-based outlier tests of genetic differentiation identified only a small proportion (<1%) of SNPs that are highly differentiated between the two genebanks, which indicates that selection during seed regeneration is not a major cause of differentiation between genebanks. Seed regeneration procedures of both genebanks do not result in different levels of genetic drift and loss of genetic variation. We therefore conclude that the composition and type of accessions mainly influence the level of genetic diversity and explain the strong genetic differentiation between the two ex situ collections. In summary, GBS is a useful method for characterizing genetic diversity in cauliflower genebank material and our results suggest that it may be useful to incorporate routine genotyping into accession management and seed regeneration to monitor the diversity present in ex situ collections and to reduce the loss of genetic diversity during seed regeneration. PMID:29420661
Yousef, Eltohamy A A; Müller, Thomas; Börner, Andreas; Schmid, Karl J
2018-01-01
Cauliflower (Brassica oleracea var. botrytis) is an important vegetable crop for human nutrition. We characterized 192 cauliflower accessions from the USDA and IPK genebanks with genotyping by sequencing (GBS). They originated from 26 different countries and represent about 44% of all cauliflower accessions in both genebanks. The analysis of genetic diversity revealed that accessions formed two major groups that represented the two genebanks and were not related to the country of origin. This differentiation was robust with respect to the analysis methods that included principal component analysis, ADMIXTURE and neighbor-joining trees. Genetic diversity was higher in the USDA collection and significant phenotypic differences between the two genebanks were found in three out of six traits investigated. GBS data have a high proportion of missing data, but we observed that the exclusion of single nucleotide polymorphisms (SNPs) with missing data or the imputation of missing SNP alleles produced very similar results. The results indicate that the composition and type of accessions have a strong effect on the structure of genetic diversity of ex situ collections, although regeneration procedures and local adaptation to regeneration conditions may also contribute to a divergence. Fst-based outlier tests of genetic differentiation identified only a small proportion (<1%) of SNPs that are highly differentiated between the two genebanks, which indicates that selection during seed regeneration is not a major cause of differentiation between genebanks. Seed regeneration procedures of both genebanks do not result in different levels of genetic drift and loss of genetic variation. We therefore conclude that the composition and type of accessions mainly influence the level of genetic diversity and explain the strong genetic differentiation between the two ex situ collections. In summary, GBS is a useful method for characterizing genetic diversity in cauliflower genebank material and our results suggest that it may be useful to incorporate routine genotyping into accession management and seed regeneration to monitor the diversity present in ex situ collections and to reduce the loss of genetic diversity during seed regeneration.
Recent developments in the understanding of equatorial ionization anomaly: A review
NASA Astrophysics Data System (ADS)
Balan, N.; Souza, J.; Bailey, G. J.
2018-06-01
A brief review of the recent developments in the understanding of the equatorial plasma fountain (EPF) and equatorial ionization anomaly (EIA) under quiet and active conditions is presented. It is clarified that (1) the EPF is not upward ExB plasma drift at the equator followed by downward plasma diffusion, but it is field perpendicular ExB plasma drift and field-aligned plasma diffusion acting together all along the field lines at all altitudes and plasma flowing in the direction of the resultant. (2) The EIA is formed not from the accumulation of plasma at the crests but mainly from the removal of plasma from around the equator by the upward ExB drift with small accumulations when the crests are within approximately ±20° magnetic latitude. The accumulations reduce with increasing latitude and become zero by approximately ±25°. (3) An asymmetric neutral wind makes EPF and EIA asymmetric with stronger fountain and stronger crest usually occurring in opposite hemispheres especially at equinoxes when winter anomaly is absent. (4) During the early stages of daytime main phase of major geomagnetic storms, the plasma fountain becomes a super fountain and the EIA becomes strong not due to the eastward prompt penetration electric field (PPEF) alone but due to the combined effect of eastward PPEF and storm-time equatorward winds (SEW). (5) During the later stages of the storms when EIA gets inhibited a peak sometimes occurs around the equator not due to westward electric fields but mainly due to the convergence of plasma from both hemispheres due to SEW.
Analysis of dead zone sources in a closed-loop fiber optic gyroscope.
Chong, Kyoung-Ho; Choi, Woo-Seok; Chong, Kil-To
2016-01-01
Analysis of the dead zone is among the intensive studies in a closed-loop fiber optic gyroscope. In a dead zone, a gyroscope cannot detect any rotation and produces a zero bias. In this study, an analysis of dead zone sources is performed in simulation and experiments. In general, the problem is mainly due to electrical cross coupling and phase modulation drift. Electrical cross coupling is caused by interference between modulation voltage and the photodetector. The cross-coupled signal produces spurious gyro bias and leads to a dead zone if it is larger than the input rate. Phase modulation drift as another dead zone source is due to the electrode contamination, the piezoelectric effect of the LiNbO3 substrate, or to organic fouling. This modulation drift lasts for a short or long period of time like a lead-lag filter response and produces gyro bias error, noise spikes, or dead zone. For a more detailed analysis, the cross-coupling effect and modulation phase drift are modeled as a filter and are simulated in both the open-loop and closed-loop modes. The sources of dead zone are more clearly analyzed in the simulation and experimental results.
Menon, Madhav; Jaffe, Warwick; Watson, Tim; Webster, Mark
2015-07-01
FFR measurements have been limited by the handling characteristics of pressure wire (PW) systems, and by signal drift. This first-in-human study evaluated the safety and efficacy of a new monorail catheter (Navvus) to assess coronary FFR, compared to a PW system. Resting measurements were acquired with both systems. After initiating IV adenosine, FFR was measured with the PW alone, simultaneously using both systems, and again with PW alone. Any zero offset of PW or Navvus was then recorded. Navvus measured FFR in all patients in whom a PW recording was obtained (50 of 58 patients); there were no complications related to Navvus. Navvus FFR correlated well with PW FFR (r=0.87, slope 1.0, intercept -0.02). Within PW measurement accuracy, in no cases did Navvus FFR classify lesion significance differently from PW FFR. PW signal drift was significantly greater than Navvus (0.06±0.12 vs. 0.02±0.02, p=0.014). Navvus and PW FFR correlated well. Navvus had less sensor drift. This new catheter-based system offers an alternative method for measuring FFR, with some potential advantages over PW.
Accessing defect dynamics using intense, nanosecond pulsed ion beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Persaud, A.; Barnard, J. J.; Guo, H.
2015-06-18
Gaining in-situ access to relaxation dynamics of radiation induced defects will lead to a better understanding of materials and is important for the verification of theoretical models and simulations. We show preliminary results from experiments at the new Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory that will enable in-situ access to defect dynamics through pump-probe experiments. Here, the unique capabilities of the NDCX-II accelerator to generate intense, nanosecond pulsed ion beams are utilized. Preliminary data of channeling experiments using lithium and potassium ions and silicon membranes are shown. We compare these data to simulation results using Crystalmore » Trim. Furthermore, we discuss the improvements to the accelerator to higher performance levels and the new diagnostics tools that are being incorporated.« less
Comparative study of anti-drift nozzles' wear.
Bolly, G; Huyghebaert, B; Mostade, O; Oger, R
2002-01-01
When spraying, the drift is a restricting factor which reduces the efficiency of pesticides treatments and increases their impact on the environment. The use of anti-drift nozzles is the most common technique to reduce the drift effect. The basic principle of all anti-drift nozzles is to produce bigger droplets (Imag DLO, 1999) being less sensitive to the wind. The increase of the droplets' size is possible whether by reducing the spraying pressure (anti-drift fan nozzle) or by injecting air in the nozzle (air injection nozzles). This study aims at comparing the performances of the main anti-drift nozzles available on the Belgian market (Teejet DG and AI, Albuz ADI and AVI, Hardi ISO LD et AI). The study made it possible to compare thirteen different nozzles' sets according to their trademark, type and material. The study is based on the analysis of macroscopic parameters (flowrate, transversal distribution and individual distribution) as well as on the analysis of microscopic parameters (spraying deposit on artificial target). The evolution of these parameters is analysed according to the nozzle's wear. The wear is carried out artificially according to the "ISO 5682-1" standard (ISO 5682-1, 1996). The results confirmed the major influence of the manufacturing material on the nozzles' wear, ceramic being the most resistant material. Macroscopic as well as microscopic parameters variated according to the utilization time without any direct correlation. Indeed, most parameters variate in an uncertain way. It was however possible to establish a correlation between the wear time and the recovering rate and flowrate parameters. The utilization length is different depending on the type of nozzle, air injection nozzles being more resistant. At last, the analysis of microscopic parameters (spraying deposit) (Degré A., 1999), shows that the number of impacts is stable depending on the wear, while the size of impacts and the recovering rate increase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mo, Yongpeng; Shi, Zongqian; Jia, Shenli
The residual plasma in the inter-contact region of a vacuum circuit breaker moves towards the post-arc cathode at current zero, because the residual plasma mainly comes from the cathode spots during the arc burning process. In the most previous theoretical researches on the post-arc sheath expansion process of vacuum circuit breakers, only the thermal motion of residual plasma was taken into consideration. Alternately, the residual plasma was even assumed to be static at the moment of current zero in some simplified models. However, the influence of residual plasma drift velocity at current zero on the post-arc sheath expansion process wasmore » rarely investigated. In this paper, this effect is investigated by a one-dimensional particle-in-cell model. Simulation results indicate that the sheath expands slower with higher residual plasma drift velocity in the initial sheath expansion stage. However, with the increase of residual plasma drift velocity, the overall plasma density in the inter-contact region decreases faster, and the sheath expansion velocity increases earlier. Consequently, as a whole, it needs shorter time to expel the residual plasma from the inter-contact region. Furthermore, if the residual plasma drift velocity is high enough, the sheath expansion process ceases before it develops to the post-arc anode. Besides, the influence of the collisions between charges and neutrals is investigated as well in terms of the density of metal vapor. It shows that the residual plasma drift velocity takes remarkable effect only if the density of the metal vapor is relatively low, which corresponds to the circumstance of low-current interruptions.« less
NASA Astrophysics Data System (ADS)
Berglund, J.; Mattila, J.; Rönnberg, O.; Heikkilä, J.; Bonsdorff, E.
2003-04-01
Submerged rooted macrophytes and drift algae were studied in shallow (0-1 m) brackish soft-bottom bays in the Åland Islands, N Baltic Sea, in 1997-2000. The study was performed by aerial photography and ground-truth sampling and the compatibility of the methods was evaluated. The study provided quantitative results on seasonal and inter-annual variation in growth, distribution and biomass of submerged macrophytes and drift algae. On an average, 18 submerged macrophyte species occurred in the studied bays. The most common species, by weight and occurrence, were Chara aspera, Cladophora glomerata, Pilayella littoralis and Potamogeton pectinatus. Filamentous green algae constituted 45-70% of the biomass, charophytes 25-40% and vascular plants 3-18%. A seasonal pattern with a peak in biomass in July-August was found and the mean biomass was negatively correlated with exposure. There were statistically significant differences in coverage among years, and among levels of exposure. The coverage was highest when exposure was low. Both sheltered and exposed bays were influenced by drift algae (30 and 60% occurrence in July-August) and there was a positive correlation between exposure and occurrence of algal accumulations. At exposed sites, most of the algae had drifted in from other areas, while at sheltered ones they were mainly of local origin. Data obtained by aerial photography and ground-truth sampling showed a high concordance, but aerial photography gave a 9% higher estimate than the ground-truth samples. The results can be applied in planning of monitoring and management strategies for shallow soft-bottom areas under potential threat of drift algae.
Seabird drift as a proxy to estimate surface currents in the western Mediterranean?
NASA Astrophysics Data System (ADS)
Gomez-Navarro, Laura; Sánchez-Román, Antonio; Pascual, Ananda; Fablet, Ronan; Hernandez-Carrasco, Ismael; Mason, Evan; Arcos, José Manuel; Oro, Daniel
2017-04-01
Seabird trajectories can be used as proxies to investigate the dynamics of marine systems and their spatiotemporal evolution. Previous studies have mainly been based on analyses of long range flights, where birds are travelling at high velocities over long time periods. Such data have been used to study wind patterns, and areas of avian feeding and foraging have also been used to study oceanic fronts. Here we focus on "slow moving" periods (which we associate to when birds appear to be drifting on the sea surface), in order to investigate bird drift as a proxy for sea surface currents in the western Mediterranean Sea. We analyse trajectories corresponding to "slow moving" periods recorded by GPSs attached to individuals of the species Calonectris diomedea ( Scopoli's shearwater) from mid August to mid September 2012. The trajectories are compared with sea level anomaly (SLA), sea surface temperature (SST), Finite Size Lyapunov Exponents (FSLE), wind fields, and the outputs from an automated sea-surface-height based eddy tracker. The SLA and SST datasets were obtained from the Copernicus Marine Environment Monitoring Service (CMEMS) with a spatial resolution of 1/8 ̊ and 1/100 ̊ respectively while the FSLEs were computed from the SLA dataset. Finally, the wind data comes from the outputs of the CCMPv2 numerical model. This model has a global coverage with a spatial resolution of 1/4 ̊. Interesting relationships between the trajectories and SLA fields are found. According to the angle between the SLA gradient and the trajectories of birds, we classify drifts into three scenarios: perpendicular, parallel and other, which are associated with different driving forces. The first scenario implies that bird drift is driven by geostrophic sea surface currents. The second we associate with wind drag as the main driving force. This is validated through the wind dataset. Moreover, from the SST, FSLEs and the eddy tracker, we obtain supplementary information on the presence of oceanic structures (such as eddies or fronts), not observed in the SLA field due to its limited spatial and temporal resolutions. Therefore, this data helps to explain some of the third case scenario trajectories.
Drift effects on the galactic cosmic ray modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurenza, M.; Storini, M.; Vecchio, A.
2014-02-01
Cosmic ray (CR) modulation is driven by both solar activity and drift effects in the heliosphere, although their role is only qualitatively understood as it is difficult to connect the CR variations to their sources. In order to address this problem, the Empirical Mode Decomposition technique has been applied to the CR intensity, recorded by three neutron monitors at different rigidities (Climax, Rome, and Huancayo-Haleakala (HH)), the sunspot area, as a proxy for solar activity, the heliospheric magnetic field magnitude, directly related to CR propagation, and the tilt angle (TA) of the heliospheric current sheet (HCS), which characterizes drift effectsmore » on CRs. A prominent periodicity at ∼six years is detected in all the analyzed CR data sets and it is found to be highly correlated with changes in the HCS inclination at the same timescale. In addition, this variation is found to be responsible for the main features of the CR modulation during periods of low solar activity, such as the flat (peaked) maximum in even (odd) solar cycles. The contribution of the drift effects to the global Galactic CR modulation has been estimated to be between 30% and 35%, depending on the CR particle energy. Nevertheless, the importance of the drift contribution is generally reduced in periods nearing the sunspot maximum. Finally, threshold values of ∼40°, ∼45°, and >55° have been derived for the TA, critical for the CR modulation at the Climax, Rome, and HH rigidity thresholds, respectively.« less
Invertebrate drift during in-channel gravel mining: the Upper River Cinca (Southern Pyrenees)
NASA Astrophysics Data System (ADS)
Béjar, Maria; Gibbins, Chris; Vericat, Damià; Batalla, Ramon J.; Muñoz, Efrén; Ramos, Ester; Lobera, Gemma; Andrés López-Tarazón, Jose; Piqué, Gemma; Tena, Álvaro; Buendía, Cristina; Rennie, Colin D.
2015-04-01
Invertebrate drift has been widely studied as an important mechanism to structure the benthic assemblages and as a part of invertebrate behavior in fluvial systems. River channel disturbance is considered the main factor affecting the organization of riverine communities and contributes to key ecological processes. However, little is known about involuntary drift associated to bed disturbance due to the difficulties associated with sampling during floods. In-channel gravel mining offers an opportunity to study involuntary drift associated not only to local bed disturbances but also to sudden changes on suspended sediment concentrations and flow. High suspended sediment concentrations and sudden changes in flow also prompt drift due to the limiting conditions (i.e. lack of oxygen, hydric stress). Within this context, invertebrate drift was monitored in the Upper River Cinca (Southern Pyrenees) during two gravel mining activities performed in summer 2014. The data acquisition design includes: drift, suspended sediment, bedload, bed mobility and flow. Data was acquired before, during and after mining at different sampling locations located upstream and downstream the perturbation. Drift and suspended sediment transport were sampled at 5 sections: 1 control site upstream the mining and 4 downstream. Bedload samples were collected just downstream the channel where gravels were extracted. Bed mobility and changes on topography were assessed by means of GPS-aDcp and repeat topographic surveys. Discharge was continuously recorded 2.5 km downstream the mining location. Additionally, two turbidity meters registered water turbidity at 15 minute intervals in two of the four sampling sections located downstream. This experimental design provides data on the spatial and temporal variability of drift associated to a local bed disturbance that (i) changes the distribution of flow across the section where mining was performed, (ii) increase substantially suspended sediment transport, and (iii) generates bed mobility and changes on local morphology and roughness that, ultimately, modify channel topography. Samples are being post-processed. Preliminary results show markedly differences in drift in terms of densities and species at different temporal and spatial scales. These differences can be attributed to the type of disturbance during mining: (i) hydric stress associated to changes on the distribution of flows, (ii) the sudden increase of suspended sediment concentrations, or (iii) high bed mobility just downstream from the mining location. These results will provide: (a) a new framework to understand ecological responses during river disturbances and (b) key information or guidelines for an appropriate management in human stressed fluvial systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shilin; Qu, Hongpeng; Li, Jiquan, E-mail: lijq@energy.kyoto-u.ac.jp
Resistive drift wave instability is investigated numerically in tokamak edge plasma confined by sheared slab magnetic field geometry with an embedded magnetic island. The focus is on the structural characteristics of eigenmode inside the island, where the density profile tends to be flattened. A transition of the dominant eigenmode occurs around a critical island width w{sub c}. For thin islands with a width below w{sub c}, two global long wavelength eigenmodes with approximately the same growth rate but different eigenfrequency are excited, which are stabilized by the magnetic island through two-dimensional mode coupling in both x and y (corresponding tomore » radial and poloidal in tokamak) directions. On the other hand, a short wavelength eigenmode, which is destabilized by thick islands with a width above w{sub c}, dominates the edge fluctuation, showing a prominent structural localization in the region between the X-point and the O-point of the magnetic island. The main destabilization mechanism is identified as the mode coupling in the y direction, which is similar to the so-called toroidal coupling in tokamak plasmas. These three eigenmodes may coexist in the drift wave fluctuation for the island with a width around w{sub c}. It is demonstrated that the structural localization results mainly from the quasilinear flattening of density profile inside the magnetic island.« less
Tapia, A; Salgado, M S; Martín, M P; Rodríguez-Fernández, J; Rossi, M J; Cabañas, B
2017-03-01
A chemical characterization of diesel and hydrotreated vegetable oil (HVO) soot has been developed using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) before and after the reaction with different probe gases. Samples were generated under combustion conditions corresponding to an urban operation mode of a diesel engine and were reacted with probe gas-phase molecules in a Knudsen flow reactor. Specifically, NH 2 OH, O 3 and NO 2 were used as reactants (probes) and selected according to their reactivities towards specific functional groups on the sample surface. Samples of previously ground soot were diluted with KBr and were introduced in a DRIFTS accessory. A comparison between unreacted and reacted soot samples was made in order to establish chemical changes on the soot surface upon reaction. It was concluded that the interface of diesel and HVO soot before reaction mainly consists polycyclic aromatic hydrocarbons, nitro and carbonyl compounds, as well as ether functionalities. The main difference between both soot samples was observed in the band of the C=O groups that in diesel soot was observed at 1719 cm -1 but not in HVO soot. After reaction with probe gases, it was found that nitro compounds remain on the soot surface, that the degree of unsaturation decreases for reacted samples, and that new spectral bands such as hydroxyl groups are observed.
The role of convection in the buildup of the ring current pressure during the 17 March 2013 storm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menz, A. M.; Kistler, L. M.; Mouikis, C. G.
We report on 17 March 2013, the Van Allen Probes measured the H + and O + fluxes of the ring current during a large geomagnetic storm. Detailed examination of the pressure buildup during the storm shows large differences in the pressure measured by the two spacecraft, with measurements separated by only an hour, and large differences in the pressure measured at different local times. In addition, while the H + and O + pressure contributions are about equal during the main phase in the near-Earth plasma sheet outside L = 5.5, the O + pressure dominates at lower Lmore » values. We test whether adiabatic convective transport from the near-Earth plasma sheet (L > 5.5) to the inner magnetosphere can explain these observations by comparing the observed inner magnetospheric distributions with the source distribution at constant magnetic moment, mu. We find that adiabatic convection can account for the enhanced pressure observed during the storm. Using a Weimer 1996 electric field we model the drift trajectories to show that the key features can be explained by variation in the near-Earth plasma sheet population and particle access that changes with energy and L shell. Finally, we show that the dominance of O + at low L shells is due partly to a near-Earth plasma sheet that is preferentially enhanced in O + at lower energies (5–10 keV) and partly due to the time dependence in the source combined with longer drift times to low L shells. Lastly, no source of O + inside L = 5.5 is required to explain the observations at low L shells.« less
The role of convection in the buildup of the ring current pressure during the 17 March 2013 storm
Menz, A. M.; Kistler, L. M.; Mouikis, C. G.; ...
2017-01-21
We report on 17 March 2013, the Van Allen Probes measured the H + and O + fluxes of the ring current during a large geomagnetic storm. Detailed examination of the pressure buildup during the storm shows large differences in the pressure measured by the two spacecraft, with measurements separated by only an hour, and large differences in the pressure measured at different local times. In addition, while the H + and O + pressure contributions are about equal during the main phase in the near-Earth plasma sheet outside L = 5.5, the O + pressure dominates at lower Lmore » values. We test whether adiabatic convective transport from the near-Earth plasma sheet (L > 5.5) to the inner magnetosphere can explain these observations by comparing the observed inner magnetospheric distributions with the source distribution at constant magnetic moment, mu. We find that adiabatic convection can account for the enhanced pressure observed during the storm. Using a Weimer 1996 electric field we model the drift trajectories to show that the key features can be explained by variation in the near-Earth plasma sheet population and particle access that changes with energy and L shell. Finally, we show that the dominance of O + at low L shells is due partly to a near-Earth plasma sheet that is preferentially enhanced in O + at lower energies (5–10 keV) and partly due to the time dependence in the source combined with longer drift times to low L shells. Lastly, no source of O + inside L = 5.5 is required to explain the observations at low L shells.« less
NASA Astrophysics Data System (ADS)
Müller-Michaelis, Antje; Uenzelmann-Neben, Gabriele
2015-12-01
The method of seismic oceanography was applied to identify fine structure and pathways of the Western Boundary Undercurrent (WBUC) at Eirik Drift, 200 km south of Greenland. Three high-velocity cores of the WBUC were distinguished: a deep core in depths >2600 m which carries Denmark Strait Overflow Water, an upper core in depths between ~1900 and 3000 m transporting Iceland-Scotland Overflow Water, and a split-off of this upper core, which crosses the main crest of Eirik Drift at depths between ~1900 and 2400 m. For the upper WBUC core a detailed analysis of the structure was conducted. The WBUC core has as a domed structure, which changes in style, width and height above seafloor along the lines of the changing topography. We proved not only the influence of the topography on pathway and structure of the WBUC core but also that this information cannot be gained by measuring the overflow waters with discrete CTD stations.
The development of magnetic field measurement system for drift-tube linac quadrupole
NASA Astrophysics Data System (ADS)
Zhou, Jianxin; Kang, Wen; Yin, Baogui; Peng, Quanling; Li, Li; Liu, Huachang; Gong, Keyun; Li, Bo; Chen, Qiang; Li, Shuai; Liu, Yiqin
2015-06-01
In the China Spallation Neutron Source (CSNS) linac, a conventional 324 MHz drift-tube linac (DTL) accelerating an H- ion beam from 3 MeV to 80 MeV has been designed and manufactured. The electromagnetic quadrupoles (EMQs) are widely used in a DTL accelerator. The main challenge of DTLQ's structure is to house a strong gradient EMQ in the much reduced space of the drift-tube (DT). To verify the DTLQ's design specifications and fabrication quality, a precision harmonic coil measurement system has been developed, which is based on the high precision movement platform, the harmonic coil with ceramic frame and the special method to make the harmonic coil and the quadrupoles coaxial. After more than one year's continuous running, the magnetic field measurement system still performs accurately and stably. The field measurement of more than one hundred DTLQ has been finished. The components and function of the measurement system, the key point of the technology and the repeatability of the measurement results are described in this paper.
Population size effects in evolutionary dynamics on neutral networks and toy landscapes
NASA Astrophysics Data System (ADS)
Sumedha; Martin, Olivier C.; Peliti, Luca
2007-05-01
We study the dynamics of a population subject to selective pressures, evolving either on RNA neutral networks or on toy fitness landscapes. We discuss the spread and the neutrality of the population in the steady state. Different limits arise depending on whether selection or random drift is dominant. In the presence of strong drift we show that the observables depend mainly on Mμ, M being the population size and μ the mutation rate, while corrections to this scaling go as 1/M: such corrections can be quite large in the presence of selection if there are barriers in the fitness landscape. Also we find that the convergence to the large-Mμ limit is linear in 1/Mμ. Finally we introduce a protocol that minimizes drift; then observables scale like 1/M rather than 1/(Mμ), allowing one to determine the large-M limit more quickly when μ is small; furthermore the genotypic diversity increases from O(lnM) to O(M).
NASA Astrophysics Data System (ADS)
Mitani, K.; Seki, K.; Keika, K.; Gkioulidou, M.; Lanzerotti, L. J.; Mitchell, D. G.; Kletzing, C.
2017-12-01
It is known that proton is main contributor of the ring current and oxygen ions can make significant contribution during major magnetic storms. Ions are supplied to the ring current by radial transport from the plasma sheet. Convective transport of lower-energy protons and diffusive transport of higher-energy protons were reported to contribute to the storm-time and quiet-time ring current respectively [e.g., Gkioulidou et al., 2016]. However, supply mechanisms of the oxygen ions are not clear. To characterize the supply of oxygen ions to the ring current during magnetic storms, we studied the properties of energetic proton and oxygen ion phase space densities (PSDs) for specific magnetic moment (μ) during the April 23-25, 2013, geomagnetic storm observed by the Van Allen Probes mission. We here report on radial transport of high-energy (μ ≥ 0.5 keV/nT) oxygen ions into the deep inner magnetosphere during the late main phase of the magnetic storm. Since protons show little change during this period, this oxygen radial transport is inferred to cause the development of the late main phase. Enhancement of poloidal magnetic fluctuations is simultaneously observed. We estimated azimuthal mode number ≤5 by using cross wavelet analysis with ground-based observation of IMAGE ground magnetometers. The fluctuations can resonate with drift and bounce motions of the oxygen ions. The results suggest that combination of the drift and drift-bounce resonances is responsible for the radial transport of high-energy oxygen ions into the deep inner magnetosphere. We also report on the radial transport of the high-energy oxygen ions into the deep inner magnetosphere during other magnetic storms.
NASA Astrophysics Data System (ADS)
Capella, W.; Hernández-Molina, F. J.; Flecker, R.; Hilgen, F. J.; Hssain, M.; Kouwenhoven, T. J.; van Oorschot, M.; Sierro, F. J.; Stow, D. A. V.; Trabucho-Alexandre, J.; Tulbure, M. A.; de Weger, W.; Yousfi, M. Z.; Krijgsman, W.
2017-06-01
The Rifian Corridor was a seaway between the Atlantic Ocean and the Mediterranean Sea during the late Miocene. The seaway progressively closed, leading to the Messinian Salinity Crisis in the Mediterranean Sea. Despite the key palaeogeographic importance of the Rifian Corridor, patterns of sediment transport within the seaway have not been thoroughly studied. In this study, we investigated the upper Miocene sedimentation and bottom current pathways in the South Rifian Corridor. The planktic and benthic foraminifera of the upper Tortonian and lower Messinian successions allow us to constrain the age and palaeo-environment of deposition. Encased in silty marls deposited at 150-300 m depth, there are (i) 5 to 50 m thick, mainly clastic sandstone bodies with unidirectional cross-bedding; and (ii) 50 cm thick, mainly clastic, tabular sandstone beds with bioturbation, mottled silt, lack of clear base or top, and bi-gradational sequences. Furthermore, seismic facies representing elongated mounded drifts and associated moat are present at the western mouth of the seaway. We interpret these facies as contourites: the products of a westward sedimentary drift in the South Rifian Corridor. The contourites are found only on the northern margin of the seaway, thus suggesting a geostrophic current flowing westward along slope and then northward. This geostrophic current may have been modulated by tides. By comparing these fossil examples with the modern Gulf of Cadiz, we interpret these current-dominated deposits as evidence of late Miocene Mediterranean overflow into the Atlantic Ocean, through the Rifian Corridor. This overflow may have affected late Miocene ocean circulation and climate, and the overflow deposits may represent one of the first examples of mainly clastic contourites exposed on land.
Iron Mountain Electromagnetic Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gail Heath
2012-07-01
Iron Mountain Mine is located seventeen miles northwest of Redding, CA. After the completion of mining in early 1960s, the mine workings have been exposed to environmental elements which have resulted in degradation in water quality in the surrounding water sheds. In 1985, the EPA plugged ore stoops in many of the accessible mine drifts in an attempt to restrict water flow through the mine workings. During this process little data was gathered on the orientation of the stoops and construction of the plugs. During the last 25 years, plugs have begun to deteriorate and allow acidic waters from themore » upper workings to flow out of the mine. A team from Idaho National Laboratory (INL) performed geophysical surveys on a single mine drift and 3 concrete plugs. The project goal was to evaluate several geophysical methods to determine competence of the concrete plugs and orientation of the stopes.« less
Climate-driven ichthyoplankton drift model predicts growth of top predator young.
Myksvoll, Mari S; Erikstad, Kjell E; Barrett, Robert T; Sandvik, Hanno; Vikebø, Frode
2013-01-01
Climate variability influences seabird population dynamics in several ways including access to prey near colonies during the critical chick-rearing period. This study addresses breeding success in a Barents Sea colony of common guillemots Uria aalge where trophic conditions vary according to changes in the northward transport of warm Atlantic Water. A drift model was used to simulate interannual variations in transport of cod Gadus morhua larvae along the Norwegian coast towards their nursery grounds in the Barents Sea. The results showed that the arrival of cod larvae from southern spawning grounds had a major effect on the size of common guillemot chicks at fledging. Furthermore, the fraction of larvae from the south was positively correlated to the inflow of Atlantic Water into the Barents Sea thus clearly demonstrating the mechanisms by which climate-driven bottom-up processes influence interannual variations in reproductive success in a marine top predator.
Climate-Driven Ichthyoplankton Drift Model Predicts Growth of Top Predator Young
Myksvoll, Mari S.; Erikstad, Kjell E.; Barrett, Robert T.; Sandvik, Hanno; Vikebø, Frode
2013-01-01
Climate variability influences seabird population dynamics in several ways including access to prey near colonies during the critical chick-rearing period. This study addresses breeding success in a Barents Sea colony of common guillemots Uria aalge where trophic conditions vary according to changes in the northward transport of warm Atlantic Water. A drift model was used to simulate interannual variations in transport of cod Gadus morhua larvae along the Norwegian coast towards their nursery grounds in the Barents Sea. The results showed that the arrival of cod larvae from southern spawning grounds had a major effect on the size of common guillemot chicks at fledging. Furthermore, the fraction of larvae from the south was positively correlated to the inflow of Atlantic Water into the Barents Sea thus clearly demonstrating the mechanisms by which climate-driven bottom-up processes influence interannual variations in reproductive success in a marine top predator. PMID:24265761
Dynamical Evolution of Asteroids and Meteoroids Using the Yarkovsky Effect
NASA Technical Reports Server (NTRS)
Bottke, William F., Jr.; Vokrouhlicky, David; Rubincam, David P.; Broz, Miroslav; Smith, David E. (Technical Monitor)
2001-01-01
The Yarkovsky effect is a thermal radiation force which causes objects to undergo semimajor axis drift and spin up/down as a function of their spin, orbit, and material properties. This mechanism can be used to (i) deliver asteroids (and meteoroids) with diameter D < 20 km from their parent bodies in the main belt to chaotic resonance zones capable of transporting this material to Earth-crossing orbits, (ii) disperse asteroid families, with drifting bodies jumping or becoming trapped in mean-motion and secular resonances within the main belt, and (iii) modify the rotation rates of asteroids a few km in diameter or smaller enough to explain the excessive number of very fast and very slow rotators among the small asteroids. Accordingly, we suggest that nongravitational forces, which produce small but meaningful effects on asteroid orbits and rotation rates over long timescales, should now be considered as important as collisions and gravitational perturbations to our overall understanding of asteroid evolution.
Numerical Analysis of Orbital Perturbation Effects on Inclined Geosynchronous SAR
Dong, Xichao; Hu, Cheng; Long, Teng; Li, Yuanhao
2016-01-01
The geosynchronous synthetic aperture radar (GEO SAR) is susceptible to orbit perturbations, leading to orbit drifts and variations. The influences behave very differently from those in low Earth orbit (LEO) SAR. In this paper, the impacts of perturbations on GEO SAR orbital elements are modelled based on the perturbed dynamic equations, and then, the focusing is analyzed theoretically and numerically by using the Systems Tool Kit (STK) software. The accurate GEO SAR slant range histories can be calculated according to the perturbed orbit positions in STK. The perturbed slant range errors are mainly the first and second derivatives, leading to image drifts and defocusing. Simulations of the point target imaging are performed to validate the aforementioned analysis. In the GEO SAR with an inclination of 53° and an argument of perigee of 90°, the Doppler parameters and the integration time are different and dependent on the geometry configurations. Thus, the influences are varying at different orbit positions: at the equator, the first-order phase errors should be mainly considered; at the perigee and apogee, the second-order phase errors should be mainly considered; at other positions, first-order and second-order exist simultaneously. PMID:27598168
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDermott, William F.
1979-12-01
The major activities at OOSI's Logan Wash site during the quarter were: driving the access drifts towards the underground locations for Retorts 7 and 8; manway raise boring; constructing the change house; rubbling the first lift of Mini-Retort (MR)1; preparing the Mini-Retorts for tracer testing; coring of Retort 3E; and beginning the DOE instrumentation program.
NASA Astrophysics Data System (ADS)
Dobson, P. F.; Oldenburg, C. M.; Wu, Y.; Cook, P. J.; Kneafsey, T. J.; Nakagawa, S.; Ulrich, C.; Siler, D. L.; Guglielmi, Y.; Ajo Franklin, J. B.; Rutqvist, J.; Daley, T. M.; Birkholzer, J. T.; Wang, H. F.; Lord, N.; Haimson, B. C.; Sone, H.; Vigilante, P.; Roggenthen, W.; Doe, T.; Lee, M.; Ingraham, M. D.; Huang, H.; Mattson, E.; Johnson, T. C.; Zhou, J.; Zoback, M. D.; Morris, J.; White, J. A.; Johnson, P. A.; Coblentz, D. D.; Heise, J.
2017-12-01
In 2015, we established a field test facility at the Sanford Underground Research Facility (SURF), and in 2016 we carried out in situ hydraulic fracturing experiments to characterize the stress field, understand the effects of crystalline rock fabric on fracturing, and gain experience in monitoring using geophysical methods. The kISMET (permeability (k) and Induced Seismicity Management for Energy Technologies) project test site was established in the West Access Drift at the 4850 ft level, 1478 m below ground in phyllite of the Precambrian Poorman Formation. The kISMET team drilled and cored five near-vertical boreholes in a line on 3 m spacing, deviating the two outermost boreholes slightly to create a five-spot pattern around the test borehole centered in the test volume 40 m below the drift invert (floor) at a total depth of 1518 m. Laboratory measurements of core from the center test borehole showed P-wave velocity heterogeneity along each core indicating strong, fine-scale ( 1 cm or smaller) changes in the mechanical properties of the rock. Tensile strength ranges between 3‒7.5 MPa and 5‒12 MPa. Pre-fracturing numerical simulations with a discrete element code were carried out to predict fracture size and magnitude of microseismicity. Field measurements of the stress field were made using hydraulic fracturing, which produced remarkably uniformly oriented fractures suggesting rock fabric did not play a significant role in controlling fracture orientation. Electrical resistivity tomography (ERT) and continuous active seismic source monitoring (CASSM) were deployed in the four monitoring boreholes, and passive seismic accelerometer-based measurements in the West Access Drift were carried out during the generation of a larger fracture (so-called stimulation test). ERT was not able to detect the fracture created, nor did the accelerometers in the drift, but microseismicity was detected for the first (deepest) hydraulic-fracturing stress measurement. Analytical solutions suggest that the fracture radius of the large fracture (stimulation test) was more than 6 m, depending on the unknown amount of leak-off. Currently kISMET team members are analyzing a large number of borehole breakouts recorded in nearby boreholes at SURF to generate a more complete picture of the stress field and its variations at SURF.
The thin-wall tube drift chamber operating in vacuum (prototype)
NASA Astrophysics Data System (ADS)
Alexeev, G. D.; Glonti, L. N.; Kekelidze, V. D.; Malyshev, V. L.; Piskun, A. A.; Potrbenikov, Yu. K.; Rodionov, V. K.; Samsonov, V. A.; Tokmenin, V. V.; Shkarovskiy, S. N.
2013-08-01
The goal of this work was to design drift tubes and a chamber operating in vacuum, and to develop technologies for tubes independent assembly and mounting in the chamber. These design and technology were tested on the prototype. The main features of the chamber are the following: the drift tubes are made of flexible mylar film (wall thickness 36 μm, diameter 9.80 mm, length 2160 mm) using ultrasonic welding along the generatrix; the welding device and methods were developed at JINR. Drift tubes with end plugs, anode wires and spacers were completely assembled outside the chamber. "Self-centering" spacers and bushes were used for precise setting of the anode wires and tubes. The assembled tubes were sealed with O-rings in their seats in the chamber which simplified the chamber assembling. Moreover the tube assembly and the chamber manufacture can be performed independently and in parallel; this sufficiently reduces the total time of chamber manufacture and assembling, its cost and allows tubes to be tested outside the chamber. The technology of independent tube assembling is suitable for a chamber of any shape but a round chamber is preferable for operation in vacuum. Single channel amplifier-discriminator boards which are more stable against cross talks were used for testing the tubes. Independently assembled tubes were mounted into the chamber prototype and its performance characteristic measured under the vacuum conditions. The results showed that both the structure and the tubes themselves normally operate. They are suitable for making a full-scale drift chamber for vacuum.
Stormtime ring current and radiation belt ion transport: Simulations and interpretations
NASA Technical Reports Server (NTRS)
Lyons, Larry R.; Gorney, David J.; Chen, Margaret W.; Schulz, Michael
1995-01-01
We use a dynamical guiding-center model to investigate the stormtime transport of ring current and radiation-belt ions. We trace the motion of representative ions' guiding centers in response to model substorm-associated impulses in the convection electric field for a range of ion energies. Our simple magnetospheric model allows us to compare our numerical results quantitatively with analytical descriptions of particle transport, (e.g., with the quasilinear theory of radial diffusion). We find that 10-145-keV ions gain access to L approximately 3, where they can form the stormtime ring current, mainly from outside the (trapping) region in which particles execute closed drift paths. Conversely, the transport of higher-energy ions (approximately greater than 145 keV at L approximately 3) turns out to resemble radial diffusion. The quasilinear diffusion coefficient calculated for our model storm does not vary smoothly with particle energy, since our impulses occur at specific (although randomly determined) times. Despite the spectral irregularity, quasilinear theory provides a surprisingly accurate description of the transport process for approximately greater than 145-keV ions, even for the case of an individual storm. For 4 different realizations of our model storm, the geometric mean discrepancies between diffusion coefficients D(sup sim, sub LL) obtained from the simulations and the quasilinear diffusion coefficient D(sup ql, sub LL) amount to factors of 2.3, 2.3, 1.5, and 3.0, respectively. We have found that these discrepancies between D(sup sim, sub LL) and D(sup ql, sub LL) can be reduced slightly by invoking drift-resonance broadening to smooth out the sharp minima and maxima in D(sup ql, sub LL). The mean of the remaining discrepancies between D(sup sim, sub LL) and D(sup ql, sub LL) for the 4 different storms then amount to factors of 1.9, 2.1, 1.5, and 2.7, respectively. We find even better agreement when we reduce the impulse amplitudes systematically in a given model storm (e.g., reduction of all the impulse amplitudes by half reduces the discrepancy factor by at least its square root) and also when we average our results over an ensemble of 20 model storms (agreement is within a factor of 1.2 without impulse-amplitude reduction). We use our simulation results also to map phase-space densities f in accordance with Liouville's theorem. We find that the stormtime transport of approximately greater than 145-keV ions produces little change in f-bar the drift-averaged phase-space density on any drift shell of interest. However, the stormtime transport produces a major enhancement from the pre-storm phase-space density at energies approximately 30-145 keV, which are representative of the stormtime ring current.
Brazil-Africa geological links
NASA Astrophysics Data System (ADS)
Torquato, Joaquim Raul; Cordani, Umberto G.
1981-04-01
In this work, the main evidence and conclusions regarding geological links between Brazil and Africa are summarized, with emphasis on the geochronological aspects. Taking into account the geographical position, as well as the similarities in the geochronological pattern, the following main provinces of the two continents are correlated: The Imataca and Falawatra complexes in the Guayana Shield and the Liberian Province of West Africa. The Paraguay-Araguaia and the Rockelide Fold Belts. The Sa˜o Luiz and the West African cratonic areas. The Caririan Fold Belt of northeastern Brazil and the Pan-Africa Belt of Nigeria and Cameroon. The JequiéComplex of Bahia, the Ntem Complex of Cameroon and similar rocks of Gabon and Angola. The Ribeira Fold Belt in Brazil and the West Congo and Damara Belts in West and South Africa. In addition, other geological links are considered, such as some of the major linear fault zones which can be traced across the margins of South America and Africa, in the pre-drift reconstructions. Correlations are also made of the tectonic and stratigraphic evolution of the Paranáand Karroo syneclises, and the Brazilian and African marginal basins around the South Atlantic, during their initial stages. Finally, several similarities in the tectonic evolution of South America and Africa, during and after the onset of drifting, are shown to be compatible with a recent origin for the South Atlantic floor, as required by sea-floor spreading and continental drift between South America and Africa.
Quantification of the precipitation loss of radiation belt electrons observed by SAMPEX
NASA Astrophysics Data System (ADS)
Tu, Weichao; Selesnick, Richard; Li, Xinlin; Looper, Mark
2010-07-01
Based on SAMPEX/PET observations, the rates and the spatial and temporal variations of electron loss to the atmosphere in the Earth's radiation belt were quantified using a drift diffusion model that includes the effects of azimuthal drift and pitch angle diffusion. The measured electrons by SAMPEX can be distinguished as trapped, quasi-trapped (in the drift loss cone), and precipitating (in the bounce loss cone). The drift diffusion model simulates the low-altitude electron distribution from SAMPEX. After fitting the model results to the data, the magnitudes and variations of the electron lifetime can be quantitatively determined based on the optimum model parameter values. Three magnetic storms of different magnitudes were selected to estimate the various loss rates of ˜0.5-3 MeV electrons during different phases of the storms and at L shells ranging from L = 3.5 to L = 6.5 (L represents the radial distance in the equatorial plane under a dipole field approximation). The storms represent a small storm, a moderate storm from the current solar minimum, and an intense storm right after the previous solar maximum. Model results for the three individual events showed that fast precipitation losses of relativistic electrons, as short as hours, persistently occurred in the storm main phases and with more efficient loss at higher energies over wide range of L regions and over all the SAMPEX-covered local times. In addition to this newly discovered common feature of the main phase electron loss for all the storm events and at all L locations, some other properties of the electron loss rates, such as the local time and energy dependence that vary with time or locations, were also estimated and discussed. This method combining model with the low-altitude observations provides direct quantification of the electron loss rate, a prerequisite for any comprehensive modeling of the radiation belt electron dynamics.
Quantification of the Precipitation Loss of Radiation Belt Electrons Observed by SAMPEX
NASA Astrophysics Data System (ADS)
Tu, W.; Selesnick, R. S.; Li, X.; Looper, M. D.
2009-12-01
Based on SAMPEX/PET observations, the rates and the spatial and temporal variations of electron loss to the atmosphere in the Earth’s radiation belt were quantified using a Drift-Diffusion model that includes the effects of azimuthal drifts and pitch angle diffusion. The measured electrons detected by SAMPEX can be distinguished as trapped, quasi-trapped (in the drift loss cone), and precipitating (in the bounce loss cone). The Drift-Diffusion model simulates the low-altitude electron distribution from SAMPEX. After fitting the model results to the data, the magnitudes and variations of the electron lifetime can be quantitatively determined based on the optimum model parameter values. Three magnetic storms of different types of magnitude were selected to estimate the various loss rates of ~0.5 to 3 MeV electrons during different phases of the storm and at L shells ranging from L=3.5 to L=6.5 (L represents the radial distance in the equatorial plane under a dipole field approximation). They are a small storm and a moderate storm in the current solar minimum and an intense storm right after the previous solar maximum. Model results for the three individual events showed that fast precipitation losses of energetic radiation belt electrons, as short as hours, persistently occurred in the storm main phases and with more efficient loss at higher energies, over wide range of L regions and over all the SAMPEX covered local times. In addition to this newly discovered common feature of the main phase electron lifetimes for all the storm events and at all L locations, some other properties of the electron loss rates that vary with time or locations, were also estimated and discussed. This method combining model with the low-altitude observations provides direct quantification of the electron loss rate, a prerequisite for any comprehensive modeling of the radiation belt electron dynamics.
Investigations of SPS Orbit Drifts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drøsdal, Lene; Bracco, Chiara; Cornelis, Karel
2014-07-01
The LHC is filled from the last pre-injector, the Super Proton Synchrotron (SPS), via two 3 km long transfer lines, TI 2 and TI 8. Over the LHC injection processes, a drift of the beam trajectories has been observed in TI 2 and TI 8, requiring regular correction of the trajectories, in order to ensure clean injection into the LHC. Investigations of the trajectory variations in the transfer lines showed that the main source of short term trajectory drifts are current variations of the SPS extraction septa (MSE). The stability of the power converters has been improved, but the variationsmore » are still present and further improvements are being investigated. The stability over a longer period of time cannot be explained by this source alone. The analysis of trajectory variations shows that there are also slow variations in the SPS closed orbit at extraction. A set of SPS orbit measurements has been saved and analysed. These observations will be used together with simulations and observed field errors to locate the second source of variations.« less
NASA Astrophysics Data System (ADS)
Mascia, Corrado
2016-01-01
This paper examines a class of linear hyperbolic systems which generalizes the Goldstein-Kac model to an arbitrary finite number of speeds vi with transition rates μij. Under the basic assumptions that the transition matrix is symmetric and irreducible, and the differences vi -vj generate all the space, the system exhibits a large-time behavior described by a parabolic advection-diffusion equation. The main contribution is to determine explicit formulas for the asymptotic drift speed and diffusion matrix in term of the kinetic parameters vi and μij, establishing a complete connection between microscopic and macroscopic coefficients. It is shown that the drift speed is the arithmetic mean of the velocities vi. The diffusion matrix has a more complicate representation, based on the graph with vertices the velocities vi and arcs weighted by the transition rates μij. The approach is based on an exhaustive analysis of the dispersion relation and on the application of a variant of the Kirchoff's matrix tree Theorem from graph theory.
Xing, Qian-Guo; Zheng, Xiang-Yang; Shi, Ping; Hao, Jia-Jia; Yu, Ding-Feng; Liang, Shou-Zhen; Liu, Dong-Yan; Zhang, Yuan-Zhi
2011-06-01
Landsat-TM (Theme Mapper) and EOS (Earth Observing System)-MODIS (MODerate resolution Imaging Spectrora-diometer) Terra/Aqua images were used to monitor the macro-algae (Ulva prolifera) bloom since 2007 at the Yellow Sea and the East China Sea. At the turbid waters of Northern Jiangsu Shoal, there is strong spectral mixing behavior, and satellite images with finer spatical resolution are more effective in detection of macro-algae patches. Macro-algae patches were detected by the Landsat images for the first time at the Sheyang estuary where is dominated by very turbid waters. The MODIS images showed that the macro-algae from the turbid waters near the Northern Jiangsu Shoal drifted southwardly in the early of May and affected the East China Sea waters; with the strengthening east-asian Summer Monsoon, macro-algae patches mainly drifted in a northward path which was mostly observed at the Yellow Sea. Macro-algae patches were also found to drift eastwardly towards the Korea Peninsular, which are supposed to be driven by the sea surface wind.
Di Giacomo, F; Luca, F; Anagnou, N; Ciavarella, G; Corbo, R M; Cresta, M; Cucci, F; Di Stasi, L; Agostiano, V; Giparaki, M; Loutradis, A; Mammi', C; Michalodimitrakis, E N; Papola, F; Pedicini, G; Plata, E; Terrenato, L; Tofanelli, S; Malaspina, P; Novelletto, A
2003-09-01
We explored the spatial distribution of human Y chromosomal diversity on a microgeographic scale, by typing 30 population samples from closely spaced locations in Italy and Greece for 9 haplogroups and their internal microsatellite variation. We confirm a significant difference in the composition of the Y chromosomal gene pools of the two countries. However, within each country, heterogeneity is not organized along the lines of clinal variation deduced from studies on larger spatial scales. Microsatellite data indicate that local increases of haplogroup frequencies can be often explained by a limited number of founders. We conclude that local founder or drift effects are the main determinants in shaping the microgeographic Y chromosomal diversity.
Measurement and Compensation of BPM Chamber Motion in HLS
NASA Astrophysics Data System (ADS)
Li, J. W.; Sun, B. G.; Cao, Y.; Xu, H. L.; Lu, P.; Li, C.; Xuan, K.; Wang, J. G.
2010-06-01
Significant horizontal drifts in the beam orbit in the storage ring of HLS (Hefei Light Source) have been seen for many years. What leads to the motion of Beam Position Monitor (BPM) chamber is thermal expansion mainly caused by the synchrotron light. To monitor the BPM chamber motions for all BPMs, a BPM chamber motion measurement system is built in real-time. The raster gauges are used to measure the displacements. The results distinctly show the relation between the BPM chamber motion and the beam current. To suppress the effect of BPM chamber motion, a compensation strategy is implemented at HLS. The horizontal drifts of beam orbit have been really suppressed within 20μm without the compensation of BPM chamber motion in the runtime.
Ruiz, J; Kaiser, A S; Lucas, M
2017-11-01
Cooling tower emissions have become an increasingly common hazard to the environment (air polluting, ice formation and salts deposition) and to the health (Legionella disease) in the last decades. Several environmental policies have emerged in recent years limiting cooling tower emissions but they have not prevented an increasing intensity of outbreaks. Since the level of emissions depends mainly on cooling tower component design and the operating conditions, this paper deals with an experimental investigation of the amount of emissions, drift and PM 10 , emitted by a cooling tower with different configurations (drift eliminators and distribution systems) and working under several operating conditions. This objective is met by the measurement of cooling tower source emission parameters by means of the sensitive paper technique. Secondary objectives were to contextualize the observed emission rates according to international regulations. Our measurements showed that the drift rates included in the relevant international standards are significantly higher than the obtained results (an average of 100 times higher) and hence, the environmental problems may occur. Therefore, a revision of the standards is recommended with the aim of reducing the environmental and human health impact. By changing the operating conditions and the distribution system, emissions can be reduced by 52.03% and 82% on average. In the case of drift eliminators, the difference ranges from 18.18% to 98.43% on average. As the emissions level is clearly influenced by operating conditions and components, regulation tests should be referred to default conditions. Finally, guidelines to perform emission tests and a selection criterion of components and conditions for the tested cooling tower are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hillenbrand, C. D.; Crowhurst, S.; Channell, J. E. T.; Williams, M.; Hodell, D. A.; Xuan, C.; Allen, C. S.; Ehrmann, W. U.; Graham, A. G. C.; Larter, R. D.
2016-12-01
Giant sediment drifts located on the continental rise west of the Antarctic Peninsula and in the Bellingshausen Sea contain a high-resolution archive of ice sheet history in West Antarctica and of palaeoceanographic changes in the Southern Ocean. However, previous studies on sediment cores recovered from these contourite drifts, including Ocean Drilling Program (ODP) Leg 178, were compromised by lack of reliable high-resolution chronological control. This shortcoming is mainly caused by the very low abundance of calcareous microfossils in the sediments that are required for applying radiocarbon dating and stable oxygen isotope (δ18O) stratigraphy. Moreover, sediments assumed to have been deposited during glacial periods consist almost entirely of terrigenous detritus, i.e. they lack even siliceous microfossils that could be utilised for biostratigraphic purposes. International Ocean Discovery Program (IODP) proposal 732-Full2 aims to obtain continuous, high-resolution records from sites on the West Antarctic sediment drifts and to develop reliable age models for them. The strategy for achieving the second objective is to use a range of chronostratigraphic techniques, including relative geomagnetic palaeointensity (RPI) and δ18O stratigraphy, on sedimentary sequences recovered from the shallowest parts of the drift crests, where the preservation of calcareous microfossils is expected be higher than in deeper water. Here we present preliminary results of multi-proxy investigations on new piston and box cores recovered from the proposed drill sites during site survey investigation cruise JR298 of the RRS James Clark Ross in 2015. Apart from the integrated chronological approach, the new cores augment previous assessments of palaeoenvironmental change on the West Antarctic continental margin during glacial-interglacial cycles of the Late Quaternary.
Current Pattern Change in the Fram Strait at the Pliocene/Pleistocene Boundary
NASA Astrophysics Data System (ADS)
Gebhardt, C.; Geissler, W. H.; Matthiessen, J. J.; Jokat, W.
2014-12-01
Thick packages of drift-type sediments were identified in the northwestern and central part of the Fram Strait, mainly along the western Yermak Plateau flank, but also in the central, flat part of the Fram Strait. A large-scale field of sediment waves was found north of 80.5°, along the Yermak Plateau rise. This field separates two drift bodies, a deeper one towards west and a shallower one towards east. The drift bodies were deposited by bottom currents, most likely by the northbound Yermak Branch of the West Spitsbergen Current, but an influence of a southbound current on the westren drift body cannot be ruled out. Within the drift bodies and even more pronounced withing the sediment waves, a stratigraphic boundary is clearly visible. It separates a lower package of waves migrating upslope at a low angle of ~5° from an upper package with significantly increased wave crest migration at ~16.5°. Using the seismic network, this stratigraphic boundary could be tracked to ODP Leg 151, Site 911, where it corresponds to the lithostratigraphic boundary between units IA and IB dated to 2.7 Ma. The increase in wave-crest migration angle points at a shift towards higher sedimentation rates at 2.7 Ma. This corresponds to the intensification of the Northern Hemisphere glaciation with a major expansion of the Scandinavian, northern Barents Sea, North American and Greenland ice sheets. The Barents Shelf that was subaerially exposed and the expansion of the northern Barents Sea ice sheet (as well as Svalbard) are the likely sources for enhanced erosion and fluvial input along the pathway of the West Spitsbergen Current, resulting in higher sedimentation rates in the Fram Strait.
NASA Astrophysics Data System (ADS)
Garel, E.; Sousa, C.; Ferreira, Ó.; Morales, J. A.
2014-07-01
The morphodynamic response of a mixed-energy ebb-tidal delta (Guadiana estuary, southern Portugal) and its down-drift barrier island (Canela Island) to channel relocation and stabilisation by jetties is examined using a series of sequential bathymetric maps and vertical aerial photographs spanning five decades. Morphological analysis indicates that the ebb delta is in an immature state, characterised by weak sediment bypassing. Landward-migrating shoals on the swash platform have been produced by the jetty-induced artificial bank-breaching and by the collapse of the eastern portion of the delta. The welding of these shoals has largely controlled the evolution of the coast, with local accretion and erosion lasting for years, and large amounts of regional accretion occurring over decades due to sand accumulation against jetties located further down-drift. These observations provide insights into the potential response of a coast to very large, locally concentrated sand nourishment in the form of shoals. The main effects of the jetties on the coast are observed at the centre of Canela Island, with the production of an erosion hot-spot associated with a temporally persistent and divergent longshore transport providing sand to the adjacent areas. Significant accretion is anticipated for the next decade along the entire island due to the ongoing attachment of the presently observed shoals. After the depletion of this sediment source, and in the context of weak sediment bypassing, the most severe down-drift erosion induced by the jetties is predicted to occur some decades after their construction. This study demonstrates that the geomorphic response of an ebb-tidal delta to jetty construction must be considered at multiple temporal and spatial scales when assessing the impacts of jetties on the down-drift coast.
NASA Astrophysics Data System (ADS)
Lantzsch, Hendrik; Hanebuth, Till J. J.; Horry, Jan; Grave, Marina; Rebesco, Michele; Schwenk, Tilmann
2017-10-01
High-resolution sediment echosounder data combined with radiocarbon-dated sediment cores allowed us to reconstruct the Late Quaternary stratigraphic architecture of the Kveithola Trough and surrounding Spitsbergenbanken. The deposits display the successive deglacial retreat of the Svalbard-Barents Sea Ice Sheet. Basal subglacial till indicates that the grounded ice sheet covered both bank and trough during the Late Weichselian. A glaciomarine blanket inside the trough coinciding with laminated plumites on the bank formed during the initial ice-melting phase from at least 16.1 to 13.5 cal ka BP in close proximity to the ice margin. After the establishment of open-marine conditions at around 13.5 cal ka BP, a sediment drift developed in the confined setting of the Kveithola Trough, contemporary with crudely laminated mud, an overlying lag deposit, and modern bioclastic-rich sand on Spitsbergenbanken. The Kveithola Drift shows a remarkable grain-size coarsening from the moat towards the southern flank of the trough. This trend contradicts the concept of a separated drift (which would imply coarser grain sizes in proximity of the moat) and indicates that the southern bank is the main sediment source for the coarse material building up the Kveithola Drift. This depocenter represents, therefore, a yet undescribed combination of off-bank wedge and confined drift. Although the deposits inside Kveithola Trough and on Spitsbergenbanken display different depocenter geometries, time-equivalent grain-size changes imply a region-wide sediment-dynamic connection. We thus relate a phase of coarsest sediment supply (8.8-6.3 cal ka BP) to an increase in bottom current strength, which might be related to a stronger Atlantic Water inflow from the Southeast across the bank leading to winnowing and off-bank export of sandy sediments.
Surnames in Honduras: A study of the population of Honduras through isonymy.
Herrera Paz, Edwin Francisco; Scapoli, Chiara; Mamolini, Elisabetta; Sandri, Massimo; Carrieri, Alberto; Rodriguez-Larralde, Alvaro; Barrai, Italo
2014-05-01
In this work, we investigated surname distribution in 4,348,021 Honduran electors with the aim of detecting population structure through the study of isonymy in three administrative levels: the whole nation, the 18 departments, and the 298 municipalities. For each administrative level, we studied the surname effective number, α, the total inbreeding, FIT , the random inbreeding, FST , and the local inbreeding, FIS . Principal components analysis, multidimensional scaling, and cluster analysis were performed on Lasker's distance matrix to detect the direction of surname diffusion and for a graphic representation of the surname relationship between different locations. The values of FIT , FST , and FIS display a variation of random inbreeding between the administrative levels in the Honduras population, which is attributed to the "Prefecture effect." Multivariate analyses of department data identified two main clusters, one south-western and the second north-eastern, with the Bay Islands and the eastern Gracias a Dios out of the main clusters. The results suggest that currently the population structure of this country is the result of the joint action of short-range directional migration and drift, with drift dominating over migration, and that population diffusion may have taken place mainly in the NW-SE direction. © 2014 John Wiley & Sons Ltd/University College London.
HYDROBS: a long-term autonomous mooring for passive acoustic monitoring
NASA Astrophysics Data System (ADS)
Hello, Y.; Royer, J. Y.; Yegikyan, M.
2017-12-01
Passive acoustics proves an effective way for monitoring the low-level seismic activity of the ocean floor and low-frequency sounds from the ocean (baleen whales, sea-state, icebergs). Networks of synchronized autonomous hydrophones have thus been commonly deployed in the world ocean to monitor large sections of mid-oceanic ridges. HYDROBS is an improved system that meet two requirements: an easy access to the data collected by the instruments together with long-term deployments - up to 4 consecutive years - reducing the need of large vessels capable of yearly mooring operations in open seas. The system has two components: a data logger, up-to-date but similar to previous systems, and three messengers, releasable on demand to collect the data. The mooring line itself is classical, with an expandable weight at the sea-bottom to maintain the mooring, an acoustic release to free the mooring line for recovery, a line adjustable to the seafloor depth, and an immerged buoy, holding the acquisition system, to maintain the sensors at a constant depth and to bring the mooring line to the surface for its recovery. The data logger is based on a low-power microprocessor, an A/D-32bit convertor sampling at 250Hz, a 10-8 real time clock and SD card storage. Lithium batteries provide 3-4 years of autonomy. Acoustic communications with the surface-ship provide control over all functionalities at deployment and a health bulletin on demand. The 3 shuttles, encapsulated in 13" glass spheres, use the same CPU board and clock as the main station. Data transfer from the data logger to the shuttles is wireless (1Mbit/s digital inductive through water). Data are duplicated once per day on shuttles N and N+1 for redundancy. Prior to their release by acoustic command, the shuttles are synchronized with the master clock. At sea-surface, shuttles (as the main unit) look for GPS time and calculate their clock drift. So, the master clock drift can be monitored over time at every shuttle release until its final recovery. Shuttles and main unit are located on the sea-surface by AIS. Iridium communications can also be set to warn the user of a false release. A non-specialist can thus easily handle a shuttle recovery from a ship of opportunity. With 4-channels, this system is also suitable to monitor other parameters in the water column, continuously and over long periods.
Spheromaks and how plasmas may explain the ultra high energy cosmic ray mystery
NASA Astrophysics Data System (ADS)
Fowler, T. Kenneth; Li, Hui
2016-10-01
> eV or more, finally ejected as ultra high energy cosmic rays (UHECRs) long regarded as one of the mysteries of astrophysics. The acceleration is mainly due to the drift cyclotron loss cone kinetic instability known from plasma research. Experiments and simulations are suggested to verify the acceleration process.
Qualitative Features Extraction from Sensor Data using Short-time Fourier Transform
NASA Technical Reports Server (NTRS)
Amini, Abolfazl M.; Figueroa, Fernando
2004-01-01
The information gathered from sensors is used to determine the health of a sensor. Once a normal mode of operation is established any deviation from the normal behavior indicates a change. This change may be due to a malfunction of the sensor(s) or the system (or process). The step-up and step-down features, as well as sensor disturbances are assumed to be exponential. An RC network is used to model the main process, which is defined by a step-up (charging), drift, and step-down (discharging). The sensor disturbances and spike are added while the system is in drift. The system runs for a period of at least three time-constants of the main process every time a process feature occurs (e.g. step change). The Short-Time Fourier Transform of the Signal is taken using the Hamming window. Three window widths are used. The DC value is removed from the windowed data prior to taking the FFT. The resulting three dimensional spectral plots provide good time frequency resolution. The results indicate distinct shapes corresponding to each process.
3D shape measurements with a single interferometric sensor for in-situ lathe monitoring
NASA Astrophysics Data System (ADS)
Kuschmierz, R.; Huang, Y.; Czarske, J.; Metschke, S.; Löffler, F.; Fischer, A.
2015-05-01
Temperature drifts, tool deterioration, unknown vibrations as well as spindle play are major effects which decrease the achievable precision of computerized numerically controlled (CNC) lathes and lead to shape deviations between the processed work pieces. Since currently no measurement system exist for fast, precise and in-situ 3d shape monitoring with keyhole access, much effort has to be made to simulate and compensate these effects. Therefore we introduce an optical interferometric sensor for absolute 3d shape measurements, which was integrated into a working lathe. According to the spindle rotational speed, a measurement rate of 2,500 Hz was achieved. In-situ absolute shape, surface profile and vibration measurements are presented. While thermal drifts of the sensor led to errors of several mµm for the absolute shape, reference measurements with a coordinate machine show, that the surface profile could be measured with an uncertainty below one micron. Additionally, the spindle play of 0.8 µm was measured with the sensor.
Fluctuation dynamics in reconnecting current sheets
NASA Astrophysics Data System (ADS)
von Stechow, Adrian; Grulke, Olaf; Ji, Hantao; Yamada, Masaaki; Klinger, Thomas
2015-11-01
During magnetic reconnection, a highly localized current sheet forms at the boundary between opposed magnetic fields. Its steep perpendicular gradients and fast parallel drifts can give rise to a range of instabilities which can contribute to the overall reconnection dynamics. In two complementary laboratory reconnection experiments, MRX (PPPL, Princeton) and VINETA.II (IPP, Greifswald, Germany), magnetic fluctuations are observed within the current sheet. Despite the large differences in geometries (toroidal vs. linear), plasma parameters (high vs. low beta) and magnetic configuration (low vs. high magnetic guide field), similar broadband fluctuation characteristics are observed in both experiments. These are identified as Whistler-like fluctuations in the lower hybrid frequency range that propagate along the current sheet in the electron drift direction. They are intrinsic to the localized current sheet and largely independent of the slower reconnection dynamics. This contribution characterizes these magnetic fluctuations within the wide parameter range accessible by both experiments. Specifically, the fluctuation spectra and wave dispersion are characterized with respect to the magnetic topology and plasma parameters of the reconnecting current sheet.
Chen, Peirong; Schönebaum, Simon; Simons, Thomas; Rauch, Dieter; Dietrich, Markus; Moos, Ralf; Simon, Ulrich
2015-01-01
Zeolites have been found to be promising sensor materials for a variety of gas molecules such as NH3, NOx, hydrocarbons, etc. The sensing effect results from the interaction of the adsorbed gas molecules with mobile cations, which are non-covalently bound to the zeolite lattice. The mobility of the cations can be accessed by electrical low-frequency (LF; mHz to MHz) and high-frequency (HF; GHz) impedance measurements. Recent developments allow in situ monitoring of catalytic reactions on proton-conducting zeolites used as catalysts. The combination of such in situ impedance measurements with diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), which was applied to monitor the selective catalytic reduction of nitrogen oxides (DeNOx-SCR), not only improves our understanding of the sensing properties of zeolite catalysts from integral electric signal to molecular processes, but also bridges the length scales being studied, from centimeters to nanometers. In this work, recent developments of zeolite-based, impedimetric sensors for automotive exhaust gases, in particular NH3, are summarized. The electrical response to NH3 obtained from LF impedance measurements will be compared with that from HF impedance measurements, and correlated with the infrared spectroscopic characteristics obtained from the DRIFTS studies of molecules involved in the catalytic conversion. The future perspectives, which arise from the combination of these methods, will be discussed. PMID:26580627
Control Infrastructure for a Pulsed Ion Accelerator
NASA Astrophysics Data System (ADS)
Persaud, A.; Regis, M. J.; Stettler, M. W.; Vytla, V. K.
2016-10-01
We report on updates to the accelerator controls for the Neutralized Drift Compression Experiment II, a pulsed induction-type accelerator for heavy ions. The control infrastructure is built around a LabVIEW interface combined with an Apache Cassandra backend for data archiving. Recent upgrades added the storing and retrieving of device settings into the database, as well as ZeroMQ as a message broker that replaces LabVIEW's shared variables. Converting to ZeroMQ also allows easy access via other programming languages, such as Python.
Control Infrastructure for a Pulsed Ion Accelerator
Persaud, A.; Regis, M. J.; Stettler, M. W.; ...
2016-07-27
We report on updates to the accelerator controls for the Neutralized Drift Compression Experiment II, a pulsed induction-type accelerator for heavy ions. The control infrastructure is built around a LabVIEW interface combined with an Apache Cassandra backend for data archiving. Recent upgrades added the storing and retrieving of device settings into the database, as well as ZeroMQ as a message broker that replaces LabVIEW's shared variables. Converting to ZeroMQ also allows easy access via other programming languages, such as Python.
NASA Astrophysics Data System (ADS)
Rosenberger, A. E.; Dunham, J. B.; Wipfli, M. S.; Buffington, J. M.
2005-05-01
Studies examining the effects of fire on the biota of streams are often confined to immediate post-disturbance impacts; however it is also important to consider longer-term effects of fire and fire-related channel disturbances, including both negative and positive influences on stream communities. Fire and subsequent debris flows and hyperconcentrated flows destroy streamside vegetation and alter the channel morphology such that streams are wider and shallower with larger, less mobile substrate. Increased light, high temperatures, and altered stream morphology have the potential to greatly impact invertebrate communities, invertebrate drift, and drift-feeding fish diet. The goal of our study was to determine the effects of wildfire and wildfire-related disturbance on the amount and composition of stream invertebrate drift and how that translates to the diet of resident fishes 10 years post-disturbance. In the summer and fall of 2003, we set drift nets and examined the diet of fishes in 9 streams: 3 unburned; 3 burned (1992-4); and 3 burned with a subsequent channel disturbance (1992-4). Key questions include: does the taxonomic composition (richness, functional feeding groups), origin (terrestrial or aquatic), or total production (biomass) of invertebrate drift and fish diet vary with burn history? Does the composition and biomass of invertebrate drift indicate main sources of energy (allochthonous vs. autochthonous) for headwater streams affected by fire? Differences among streams in channel morphology, streamside vegetation, light input, and temperature did not correspond to consistent or marked differences in invertebrate drift productivity and only slight differences in functional feeding group composition. However, preliminary data suggest that taxon richness, though similar among burned and unburned streams, is lowest in burned and disturbed streams. Although there is a terrestrial component to fish diet in all three treatment groups, in the summer, there is a greater terrestrial contribution in burned streams; while fish in unburned streams have a greater terrestrial component in their diet in the fall. Our results indicate that the effects of fire and disturbance on invertebrate communities are difficult to detect 10-years post event. Resilience in the invertebrate community and a flexible diet may be contributing to the resilience of resident trout found throughout our study streams. However, geomorphic changes and habitat alterations caused by massive channel-reorganizing events after wildfire may prevent full invertebrate community recovery for some time after the disturbance.
NASA Astrophysics Data System (ADS)
Roque, Cristina; Hernández-Molina, F. Javier; Madureira, Pedro; Quartau, Rui; Magalhães, Vitor; Carrara, Gabriela; Santos de Campos, Aldino; Brandão, Filipe; Tomás Vázquez, Juan; Somoza, Luis
2017-04-01
During the last decades several works have been carried out on the morphosedimentary processes driven by bottom-currents in several continental margins and abyssal plains worldwide. However these processes still remain poorly understood on deep-water settings and particularly around oceanic islands. This study is focused on the offshore of Madeira Island (Portugal), which is located in the Northeast Atlantic at about 700 km west of NW Africa. The interpretation of a newly acquired dataset, composed of multibeam bathymetry, Parasound echosounder profiles and multichannel seismic reflection profiles, allowed to identify a giant (about 385 km long and over than 175 km wide) plastered contourite drift, called the "Madeira Drift", developing along the lower slope of the Madeira plateau. It formed on top of a major erosional unconformity that truncates the underlying pelagic deposits, which drape over faulted blocks of Cretaceous oceanic crust. The Madeira Drift is composed of three main regional seismic units showing a predominant aggradational stacking pattern, without evidence of major lateral migration thought time. Its internal configuration indicates that it was build-up by a northwards flowing deep bottom current. These characteristics suggests that an almost persistent and stable water mass has been responsible for its edification trough time. While the precise age of this contourite drift is undetermined, some chronostratigraphic constraints can be determined based upon published works regarding seafloor magnetic anomalies (e.g. Bird et al., 2007), DSDP Site 136drilling data (Hayes et al., 1978). Attending to this, we propose that the possible onset of Madeira Drift must have occurred after Late Cretaceous, within the tertiary period, and quite probably in the Late Eocene / Eocene-Oligocene transition. Based on them is commonly accepted that an enhanced proto-Antarctic Bottom Water (AABW) started to circulate at that time we considered this water mass as the best candidate for the build-up of Madeira Drift. Thus, the Madeira drift represents an exceptional sedimentary record in this sector of the Northeast Atlantic for the earliest phases of the proto-AABW water mass circulation. References: Bird, D.E., Hall, S.A., Burke, K., Casey, J.F., Sawyer, D.S. 2007. Early Central Atlantic Ocean seafloor spreading history. Geosphere, 3, 282-298. doi: 10.1130/GES00047.1 Hayes, D.E., Pimm, A.C., Beckmann, J.P., Benson, W.E., Berger, W.H., Roth, P.H., Supko,P.R., von Rad, U. (1978). Initial Reports, Site 136. doi:10.2973/dsdp.proc.14.1972
Comparative Study of Drift Compensation Methods for Environmental Gas Sensors
NASA Astrophysics Data System (ADS)
Abidin, M. Z.; Asmat, Arnis; Hamidon, M. N.
2018-02-01
Most drift compensation attempts in environmental gas sensors are only emphasize on the “already-known” drift-causing parameter (i.e., ambient temperature, relative humidity) in compensating the sensor drift. Less consideration is taken to another parameter (i.e., baseline responses) that might have affected indirectly with the promotion of drift-causing parameter variable (in this context, is ambient temperature variable). In this study, the “indirect” drift-causing parameter (drifted baseline responses) has been taken into consideration in compensating the sensor drift caused by ambient temperature variable, by means of a proposed drift compensation method (named as RT-method). The effectiveness of this method in its efficacy of compensating drift was analysed and compared with the common method that used the “already-known” drift-causing parameter (named as T-method), using drift reduction percentage. From the results analysis, the RT-method has outperformed T- method in the drift reduction percentage, with its ability to reduce drift up to 64% rather than the T-method which only able to reduce up to 45% for TGS2600 sensor. It has proven that the inclusion of drifted baseline responses into drift compensation attempt would resulted to an improved drift compensation efficiency.
Sedimentary framework of Penobscot Bay, Maine
Knebel, Harley J.; Scanlon, Kathryn M.
1985-01-01
Analyses of seismic-reflection profiles, along with previously collected sediment samples and geologic information from surrounding coastal areas, outline the characteristics, distribution, and history of the strata that accumulated within Penobscot Bay, Maine, during the complex period of glaciation, crustal movement, and sea-level change since late Wisconsinan time. Sediments that overlie the rugged, glacially eroded surface of Paleozoic bedrock range in thickness from near zero to more than 50 m and consist of four distinct units.Massive to partly stratified, coarse-grained drift forms thin (< 15 m) isolated patches along the walls and floors of bedrock troughs and constitutes a thick (up to 30 m), hummocky end moraine in the central part of the bay. The drift was deposited by the last ice sheet between 12,700 and 13,500 years ago during deglaciation and coastal submergence (due to crustal depression).Well-stratified, fine-grained glaciomarine deposits are concentrated in bedrock depressions beneath the main passages of the bay. During the period of ice retreat and marine submergence, these sediments settled to the sea floor, draped the irregular underlying surface of bedrock or drift, and accumulated without disturbance by physical or biologic processes.Heterogeneous fluvial deposits fill ancestral channels of the Penobscot River beneath the head of the bay. The channels were incised during a −40 m postglacial low stand of sea level (due to crustal rebound) and later were filled as base level was increased during Holocene time.Muddy marine sediments, which are homogeneous to weakly stratified and rich in organic matter, blanket older deposits within bathymetric depressions in the middle and lower reaches of the bay and cover a pronounced, gently dipping, erosional unconformity in the upper reach. These sediments were deposited during the Holocene transgression as sea level approached its present position and the bay became deeper.Late Wisconsinan and Holocene sedimentation in Penobscot Bay has smoothed the sea floor, but it has not completely obscured the ice-sculptured bedrock topography.
A full year of snow on sea ice observations and simulations - Plans for MOSAiC 2019/20
NASA Astrophysics Data System (ADS)
Nicolaus, M.; Geland, S.; Perovich, D. K.
2017-12-01
The snow cover on sea on sea ice dominates many exchange processes and properties of the ice covered polar oceans. It is a major interface between the atmosphere and the sea ice with the ocean underneath. Snow on sea ice is known for its extraordinarily large spatial and temporal variability from micro scales and minutes to basin wide scales and decades. At the same time, snow cover properties and even snow depth distributions are among the least known and most difficult to observe climate variables. Starting in October 2019 and ending in October 2020, the international MOSAiC drift experiment will allow to observe the evolution of a snow pack on Arctic sea ice over a full annual cycle. During the drift with one ice floe along the transpolar drift, we will study snow processes and interactions as one of the main topics of the MOSAiC research program. Thus we will, for the first time, be able to perform such studies on seasonal sea ice and relate it to previous expeditions and parallel observations at different locations. Here we will present the current status of our planning of the MOSAiC snow program. We will summarize the latest implementation ideas to combine the field observations with numerical simulations. The field program will include regular manual observations and sampling on the main floe of the central observatory, autonomous recordings in the distributed network, airborne observations in the surrounding of the central observatory, and retrievals of satellite remote sensing products. Along with the field program, numerical simulations of the MOSAiC snow cover will be performed on different scales, including large-scale interaction with the atmosphere and the sea ice. The snow studies will also bridge between the different disciplines, including physical, chemical, biological, and geochemical measurements, samples, and fluxes. The main challenge of all measurements will be to accomplish the description of the full annual cycle.
Measurement and Compensation of BPM Chamber Motion in HLS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J. W.; Sun, B. G.; Cao, Y.
2010-06-23
Significant horizontal drifts in the beam orbit in the storage ring of HLS (Hefei Light Source) have been seen for many years. What leads to the motion of Beam Position Monitor (BPM) chamber is thermal expansion mainly caused by the synchrotron light. To monitor the BPM chamber motions for all BPMs, a BPM chamber motion measurement system is built in real-time. The raster gauges are used to measure the displacements. The results distinctly show the relation between the BPM chamber motion and the beam current. To suppress the effect of BPM chamber motion, a compensation strategy is implemented at HLS.more » The horizontal drifts of beam orbit have been really suppressed within 20{mu}m without the compensation of BPM chamber motion in the runtime.« less
Diversity of soils near rover deploy region
NASA Technical Reports Server (NTRS)
1997-01-01
The surface near the rover's egress from the lander contains mainly bright red drift (#1), dark gray rocks such as Cradle (# 3), soil intermediate in color to the rocks and drift (#2), and dark red soil on and around the rock Lamb (#4). Globally, Mars is characterized by similar color variations. The spectra, measured using the full 13-color capability of the Imager for Mars Pathfinder (IMP), provide evidence for the mineralogy of the unweathered rocks and highly weathered red soils.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech).NASA Astrophysics Data System (ADS)
Van Eester, Dirk
2005-03-01
A semi-analytical method is proposed to evaluate the dielectric response of a plasma to electromagnetic waves in the ion cyclotron domain of frequencies in a D-shaped but axisymmetric toroidal geometry. The actual drift orbit of the particles is accounted for. The method hinges on subdividing the orbit into elementary segments in which the integrations can be performed analytically or by tabulation, and it relies on the local book-keeping of the relation between the toroidal angular momentum and the poloidal flux function. Depending on which variables are chosen, the method allows computation of elementary building blocks for either the wave or the Fokker-Planck equation, but the accent is mainly on the latter. Two types of tangent resonance are distinguished.
NASA Astrophysics Data System (ADS)
Kozyra, J. U.; Liemohn, M. W.; Clauer, C. R.; Ridley, A. J.; Thomsen, M. F.; Borovsky, J. E.; Roeder, J. L.; Jordanova, V. K.; Gonzalez, W. D.
2002-08-01
The 4-6 June 1991 magnetic storm, which occurred during solar maximum conditions, is analyzed to investigate two observed features of magnetic storms that are not completely understood: (1) the mass-dependent decay of the ring current during the early recovery phase and (2) the role of preconditioning in multistep ring current development. A kinetic ring current drift-loss model, driven by dynamic fluxes at the nightside outer boundary, was used to simulate this storm interval. A strong partial ring current developed and persisted throughout the main and early recovery phases. The majority of ions in the partial ring current make one pass through the inner magnetosphere on open drift paths before encountering the dayside magnetopause. The ring current exhibited a three-phase decay in this storm. A short interval of charge-exchange loss constituted the first phase of the decay followed by a classical two-phase decay characterized by an abrupt transition between two very different decay timescales. The short interval dominated by charge-exchange loss occurred because an abrupt northward turning of the interplanetary magnetic field (IMF) trapped ring current ions on closed trajectories, and turned-off sources and ``flow-out'' losses. If this had been the end of the solar wind disturbance, decay timescales would have gradually lengthened as charge exchange preferentially removed the short-lived species; a distinctive two-phase decay would not have resulted. However, the IMF turned weakly southward, drift paths became open, and a standard two-phase decay ensued as the IMF rotated slowly northward again. As has been shown before, a two-phase decay is produced as open drift paths are converted to closed in a weakening convection electric field, driving a transition from the fast flow-out losses associated with the partial ring current to the slower charge-exchange losses associated with the trapped ring current. The open drift path geometry during the main phase and during phase 1 of the two-phase decay has important consequences for the evolution of ring current composition and for preconditioning issues. In this particular storm, ring current composition changes measured by the Combined Release and Radiation Effects Satellite (CRRES) during the main and recovery phase of the storm resulted largely from composition changes in the plasma sheet transmitted into the inner magnetosphere along open drift paths as the magnetic activity declined. Possible preconditioning elements were investigated during the multistep development of this storm, which was driven by the sequential arrival of three southward IMF Bz intervals of increasing peak strength. In each case, previous intensifications (preexisting ring currents) were swept out of the magnetosphere by the enhanced convection associated with the latest intensification and did not act as a significant preconditioning element. However, plasma sheet characteristics varied significantly between subsequent intensifications, altering the response of the magnetosphere to the sequential solar wind drivers. A denser plasma sheet (ring current source population) appeared during the second intensification, compensating for the weaker IMF Bz at this time and producing a minimum pressure-corrected Dst* value comparable to the third intensification (driven by stronger IMF Bz but a lower density plasma sheet source). The controlling influence of the plasma sheet dynamics on the ring current dynamics and its role in altering the inner magnetospheric response to solar wind drivers during magnetic storms adds a sense of urgency to understanding what processes produce time-dependent responses in the plasma sheet density, composition, and temperature.
Provides information about pesticide spray drift, including problems associated with drift, managing risks from drift and the voluntary Drift Reduction Technology program that seeks to reduce spray drift through improved spray equipment design.
NASA Astrophysics Data System (ADS)
Watts, Millie; Taylor, Vicki; Talling, Peter; Hunt, James; Stanford, Jennifer
2016-04-01
Eirik Drift contains a high-resolution record of climatic and oceanic variability. In addition, it records several submarine landslides throughout the Holocene. Submarine landslides and associated tsunamis are potentially damaging, and have the potential to travel significant distances across the North Atlantic. Two cores taken from Eirik Drift (D298-P2) show an expanded Holocene section of hemipelagite and contain a fine grained turbidite dated to 8.17 ka BP (+/- 200 years). This event is coincident with both the 8.2 ka BP climatic anomaly, and the Storegga Slide. Paleoenvironmental proxies suggest this 8.2 ka BP turbidite was deposited during the coldest part of the 8.2 ka BP event, interpreted here as a longer duration cooling. This Holocene Storegga Slide triggered a major tsunami, evidence of which has been found across Northern European coastlines and the East Greenland coast. Here we show that the 8.2 ka BP turbidite has a different provenance both to other turbidites within the D298 core, and the main body of the Storegga Slide turbidite, and is unique within the Eirik Drift sequence. We interpret this event within the core as a distal deposit of a turbidite transported within the Western boundary Under Current, potentially related to a more northerly Greenland impact of the Storegga Tsunami. The fine-grained nature of the deposit suggests significant transport, supporting the hypothesis this event relates to a Greenland impact of the Storegga Tsunami.
Torres Astorga, Romina; de Los Santos Villalobos, Sergio; Velasco, Hugo; Domínguez-Quintero, Olgioly; Pereira Cardoso, Renan; Meigikos Dos Anjos, Roberto; Diawara, Yacouba; Dercon, Gerd; Mabit, Lionel
2018-05-15
Identification of hot spots of land degradation is strongly related with the selection of soil tracers for sediment pathways. This research proposes the complementary and integrated application of two analytical techniques to select the most suitable fingerprint tracers for identifying the main sources of sediments in an agricultural catchment located in Central Argentina with erosive loess soils. Diffuse reflectance Fourier transformed in the mid-infrared range (DRIFT-MIR) spectroscopy and energy-dispersive X-ray fluorescence (EDXRF) were used for a suitable fingerprint selection. For using DRIFT-MIR spectroscopy as fingerprinting technique, calibration through quantitative parameters is needed to link and correlate DRIFT-MIR spectra with soil tracers. EDXRF was used in this context for determining the concentrations of geochemical elements in soil samples. The selected tracers were confirmed using two artificial mixtures composed of known proportions of soil collected in different sites with distinctive soil uses. These fingerprint elements were used as parameters to build a predictive model with the whole set of DRIFT-MIR spectra. Fingerprint elements such as phosphorus, iron, calcium, barium, and titanium were identified for obtaining a suitable reconstruction of the source proportions in the artificial mixtures. Mid-infrared spectra produced successful prediction models (R 2 = 0.91) for Fe content and moderate useful prediction (R 2 = 0.72) for Ti content. For Ca, P, and Ba, the R 2 were 0.44, 0.58, and 0.59 respectively.
On The Ion Drift Contribution To The Phase Velocity of Electrojet Irregularities
NASA Astrophysics Data System (ADS)
Uspensky, M.; Koustov, A.; Janhunen, P.; Pellinen, R.; Danskin, D.; Nozawa, S.
The ion drift effect is often ignored in the interpretation of VHF Doppler measure- ments. For example, in the STARE experiment it is assumed that the line-of-sight velocity measured at large flow angles is simply a cosine component of the true elec- tron drift. Previous studies seem to support this assumption, though only to a certain degree. In this study we consider a 3.5-hour morning event of joint STARE-EISCAT observa- tions for which the STARE-Finland radar velocity was mainly larger than the EISCAT convection component. A moderate 5-20 deg offset between the EISCAT convection azimuth and its STARE estimate was also observed. We show that both the STARE- Finland radar velocity "over-speed" and the azimuthal offset between the EISCAT and STARE convection vectors can be explained by fluid plasma theory arguments if the ion drift contribution to the irregularity phase velocity under the condition of moder- ate backscatter off-orthogonality is taken into account. The ion effects were enhanced because of a lifting up of the entire E-region seen by the EISCAT. It perhaps resulted in an increase of the STARE echo heights and aspect angles. The latter are of the order of 1 deg at the top of the electrojet layer. We also compare STARE convection magni- tudes and true velocities measured by the EISCAT to study the potential impact of the ion motions on the STARE velocity estimates.
Deport, Coralie; Ratel, Jérémy; Berdagué, Jean-Louis; Engel, Erwan
2006-05-26
The current work describes a new method, the comprehensive combinatory standard correction (CCSC), for the correction of instrumental signal drifts in GC-MS systems. The method consists in analyzing together with the products of interest a mixture of n selected internal standards, and in normalizing the peak area of each analyte by the sum of standard areas and then, select among the summation operator sigma(p = 1)(n)C(n)p possible sums, the sum that enables the best product discrimination. The CCSC method was compared with classical techniques of data pre-processing like internal normalization (IN) or single standard correction (SSC) on their ability to correct raw data from the main drifts occurring in a dynamic headspace-gas chromatography-mass spectrometry system. Three edible oils with closely similar compositions in volatile compounds were analysed using a device which performance was modulated by using new or used dynamic headspace traps and GC-columns, and by modifying the tuning of the mass spectrometer. According to one-way ANOVA, the CCSC method increased the number of analytes discriminating the products (31 after CCSC versus 25 with raw data or after IN and 26 after SSC). Moreover, CCSC enabled a satisfactory discrimination of the products irrespective of the drifts. In a factorial discriminant analysis, 100% of the samples (n = 121) were well-classified after CCSC versus 45% for raw data, 90 and 93%, respectively after IN and SSC.
Kim, Seokkyun; Song, Jinsu; Park, Seungkyu; Ham, Sunyoung; Paek, Kyungyeol; Kang, Minjung; Chae, Yunjung; Seo, Heewon; Kim, Hyung-Chan; Flores, Michael
A biosimilar product needs to demonstrate biosimilarity to the originator reference product, and the quality profile of the latter should be monitored throughout the period of the biosimilar's development to match the quality attributes of the 2 products that relate to efficacy and safety. For the development of a biosimilar version of trastuzumab, the reference product, Herceptin®, was extensively characterized for the main physicochemical and biologic properties by standard or state-of-the-art analytical methods, using multiple lots expiring between March 2015 and December 2019. For lots with expiry dates up to July 2018, a high degree of consistency was observed for all the tested properties. However, among the lots expiring in August 2018 or later, a downward drift was observed in %afucose (G0+G1+G2). Furthermore, the upward drift of %high mannose (M5+M6) was observed in the lots with expiry dates from June 2019 to December 2019. As a result, the combination of %afucose and %high mannose showed 2 marked drifts in the lots with expiry dates from August 2018 to December 2019, which was supported by the similar trend of biologic data, such as FcγRIIIa binding and antibody-dependent cell-mediated cytotoxicity (ADCC) activity. Considering that ADCC is one of the clinically relevant mechanisms of action for trastuzumab, the levels of %afucose and %high mannose should be tightly monitored as critical quality attributes for biosimilar development of trastuzumab.
Kim, Seokkyun; Song, Jinsu; Park, Seungkyu; Ham, Sunyoung; Paek, Kyungyeol; Kang, Minjung; Chae, Yunjung; Seo, Heewon; Kim, Hyung-Chan; Flores, Michael
2017-01-01
ABSTRACT A biosimilar product needs to demonstrate biosimilarity to the originator reference product, and the quality profile of the latter should be monitored throughout the period of the biosimilar's development to match the quality attributes of the 2 products that relate to efficacy and safety. For the development of a biosimilar version of trastuzumab, the reference product, Herceptin®, was extensively characterized for the main physicochemical and biologic properties by standard or state-of-the-art analytical methods, using multiple lots expiring between March 2015 and December 2019. For lots with expiry dates up to July 2018, a high degree of consistency was observed for all the tested properties. However, among the lots expiring in August 2018 or later, a downward drift was observed in %afucose (G0+G1+G2). Furthermore, the upward drift of %high mannose (M5+M6) was observed in the lots with expiry dates from June 2019 to December 2019. As a result, the combination of %afucose and %high mannose showed 2 marked drifts in the lots with expiry dates from August 2018 to December 2019, which was supported by the similar trend of biologic data, such as FcγRIIIa binding and antibody-dependent cell-mediated cytotoxicity (ADCC) activity. Considering that ADCC is one of the clinically relevant mechanisms of action for trastuzumab, the levels of %afucose and %high mannose should be tightly monitored as critical quality attributes for biosimilar development of trastuzumab. PMID:28296619
NASA Astrophysics Data System (ADS)
Olsson, Per-Ivar; Fiandaca, Gianluca; Larsen, Jakob Juul; Dahlin, Torleif; Auken, Esben
2016-11-01
The extraction of spectral information in the inversion process of time-domain (TD) induced polarization (IP) data is changing the use of the TDIP method. Data interpretation is evolving from a qualitative description of the subsurface, able only to discriminate the presence of contrasts in chargeability parameters, towards a quantitative analysis of the investigated media, which allows for detailed soil- and rock-type characterization. Two major limitations restrict the extraction of the spectral information of TDIP data in the field: (i) the difficulty of acquiring reliable early-time measurements in the millisecond range and (ii) the self-potential background drift in the measured potentials distorting the shape of the late-time IP responses, in the second range. Recent developments in TDIP acquisition equipment have given access to full-waveform recordings of measured potentials and transmitted current, opening for a breakthrough in data processing. For measuring at early times, we developed a new method for removing the significant noise from power lines contained in the data through a model-based approach, localizing the fundamental frequency of the power-line signal in the full-waveform IP recordings. By this, we cancel both the fundamental signal and its harmonics. Furthermore, an efficient processing scheme for identifying and removing spikes in TDIP data was developed. The noise cancellation and the de-spiking allow the use of earlier and narrower gates, down to a few milliseconds after the current turn-off. In addition, tapered windows are used in the final gating of IP data, allowing the use of wider and overlapping gates for higher noise suppression with minimal distortion of the signal. For measuring at late times, we have developed an algorithm for removal of the self-potential drift. Usually constant or linear drift-removal algorithms are used, but these algorithms often fail in removing the background potentials present when the electrodes used for potential readings are previously used for current injection, also for simple contact resistance measurements. We developed a drift-removal scheme that models the polarization effect and efficiently allows for preserving the shape of the IP responses at late times. Uncertainty estimates are essential in the inversion of IP data. Therefore, in the final step of the data processing, we estimate the data standard deviation based on the data variability within the IP gates and the misfit of the background drift removal Overall, the removal of harmonic noise, spikes, self-potential drift, tapered windowing and the uncertainty estimation allows for doubling the usable range of TDIP data to almost four decades in time (corresponding to four decades in frequency), which will significantly advance the applicability of the IP method.
Small-scale lacustrine drifts in Lake Champlain, Vermont
Manley, Patricia L.; Manley, T.O.; Hayo, Kathryn; Cronin, Thomas
2012-01-01
High resolution CHIRP (Compressed High Intensity Radar Pulse) seismic profiles reveal the presence of two lacustrine sediment drifts located in Lake Champlain's Juniper Deep. Both drifts are positive features composed of highly laminated sediments. Drift B sits on a basement high while Drift A is built on a trough-filling acoustically-transparent sediment unit inferred to be a mass-transport event. These drifts are oriented approximately north–south and are parallel to a steep ridge along the eastern shore of the basin. Drift A, located at the bottom of a structural trough, is classified as a confined, elongate drift that transitions northward to become a system of upslope asymmetric mudwaves. Drift B is perched atop a structural high to the west of Drift A and is classified as a detached elongate drift. Bottom current depositional control was investigated using Acoustic Doppler Current Profilers (ADCPs) located across Drift A. Sediment cores were taken at the crest and at the edges of the Drift A and were dated. Drift source, deposition, and evolution show that these drifts are formed by a water column shear with the highest deposition occurring along its crest and western flank and began developing circa 8700–8800 year BP.
6. West elevation of Drift Creek Bridge, view looking east ...
6. West elevation of Drift Creek Bridge, view looking east from new alignment of Drift Creek Road - Drift Creek Bridge, Spanning Drift Creek on Drift Creek County Road, Lincoln City, Lincoln County, OR
High-speed and supersonic upward plasma drifts: multi-instrumental study
NASA Astrophysics Data System (ADS)
Astafyeva, E.; Zakharenkova, I.; Hairston, M. R.; Huba, J.; Coley, W. R.
2017-12-01
Since the pioneering observations by Aggson et al. (1992, JGR, doi: 10.1002/92JA00644), there have been several reports of the occurrence of high-speed (Vz>800 m/s) and supersonic plasma flows in the post-sunset (e.g., Hysell et al., 1994, JGR, doi: 10.1029/94JA00476; Hanson et al., 1997, JGR, doi: 10.1029/96JA03376) and the pre-dawn sector (Astafyeva and Zakharenkova, 2015, GRL, doi:10.1002/2015GL066369). However, despite this observational evidence, these events remain rare and are not well understood. The main issue is to determine the background conditions leading to the occurrence of these high-speed plasma drifts. In this work, we perform a multi-instrumental study of high-speed and supersonic upward plasma drift events/structures. For this purpose, we analyze data from several ground-based and space-borne instruments, including data from the DMSP, Swarm and C/NOFS (IVM instrument) satellites. In addition to the space-borne instruments, we use data from ground-based GPS-receivers and ionosondes to further investigate the background ionosphere conditions, as well as the effects produced by the plasma bubbles and ionospheric irregularities. Besides the observations, we add the SAMI3/ESF modeling results on plasma bubble simulations and high-speed drifts inside plasma bubbles. TIE-GCM runs (from the CCMC, https://ccmc.gsfc.nasa.gov) are used to define the background atmospheric/ionospheric and electrodynamical conditions leading to the occurrence of the high-speed and supersonic plasma drift events. Our search of events with upward plasma drift exceeding 800 m/s in the data of DMSP for the years 2002-2016 shows that such high-speed events are extremely rare. During this period of time, only 6 events were found, two of them occurred during the recovery phase of a geomagnetic storm, while the other four were detected during geomagnetically quiet conditions. Concerning the generation of such events, our preliminary results show that enhanced electric fields are required and that horizontal thermospheric winds play an important role in the occurrence of high-speed plasma flows.
Note: A temperature-stable low-noise transimpedance amplifier for microcurrent measurement.
Xie, Kai; Shi, Xueyou; Zhao, Kai; Guo, Lixin; Zhang, Hanlu
2017-02-01
Temperature stability and noise characteristics often run contradictory in microcurrent (e.g., pA-scale) measurement instruments because low-noise performance requires high-value resistors with relatively poor temperature coefficients. A low-noise transimpedance amplifier with high-temperature stability, which involves an active compensation mechanism to overcome the temperature drift mainly caused by high-value resistors, is presented. The implementation uses a specially designed R-2R compensating network to provide programmable current gain with extra-fine trimming resolution. The temperature drifts of all components (e.g., feedback resistors, operational amplifiers, and the R-2R network itself) are compensated simultaneously. Therefore, both low-temperature drift and ultra-low-noise performance can be achieved. With a current gain of 10 11 V/A, the internal current noise density was about 0.4 fA/√Hz, and the average temperature coefficient was 4.3 ppm/K at 0-50 °C. The amplifier module maintains accuracy across a wide temperature range without additional thermal stabilization, and its compact size makes it especially suitable for high-precision, low-current measurement in outdoor environments for applications such as electrochemical emission supervision, air pollution particles analysis, radiation monitoring, and bioelectricity.
Note: A temperature-stable low-noise transimpedance amplifier for microcurrent measurement
NASA Astrophysics Data System (ADS)
Xie, Kai; Shi, Xueyou; Zhao, Kai; Guo, Lixin; Zhang, Hanlu
2017-02-01
Temperature stability and noise characteristics often run contradictory in microcurrent (e.g., pA-scale) measurement instruments because low-noise performance requires high-value resistors with relatively poor temperature coefficients. A low-noise transimpedance amplifier with high-temperature stability, which involves an active compensation mechanism to overcome the temperature drift mainly caused by high-value resistors, is presented. The implementation uses a specially designed R-2R compensating network to provide programmable current gain with extra-fine trimming resolution. The temperature drifts of all components (e.g., feedback resistors, operational amplifiers, and the R-2R network itself) are compensated simultaneously. Therefore, both low-temperature drift and ultra-low-noise performance can be achieved. With a current gain of 1011 V/A, the internal current noise density was about 0.4 fA/√Hz, and the average temperature coefficient was 4.3 ppm/K at 0-50 °C. The amplifier module maintains accuracy across a wide temperature range without additional thermal stabilization, and its compact size makes it especially suitable for high-precision, low-current measurement in outdoor environments for applications such as electrochemical emission supervision, air pollution particles analysis, radiation monitoring, and bioelectricity.
Kinda, G Bazile; Simard, Yvan; Gervaise, Cédric; Mars, Jérome I; Fortier, Louis
2013-07-01
This paper analyzes an 8-month time series (November 2005 to June 2006) of underwater noise recorded at the mouth of the Amundsen Gulf in the marginal ice zone of the western Canadian Arctic when the area was >90% ice covered. The time-series of the ambient noise component was computed using an algorithm that filtered out transient acoustic events from 7-min hourly recordings of total ocean noise over a [0-4.1] kHz frequency band. Under-ice ambient noise did not respond to thermal changes, but showed consistent correlations with large-scale regional ice drift, wind speed, and measured currents in upper water column. The correlation of ambient noise with ice drift peaked for locations at ranges of ~300 km off the mouth of the Amundsen Gulf. These locations are within the multi-year ice plume that extends westerly along the coast in the Eastern Beaufort Sea due to the large Beaufort Gyre circulation. These results reveal that ambient noise in Eastern Beaufort Sea in winter is mainly controlled by the same meteorological and oceanographic forcing processes that drive the ice drift and the large-scale circulation in this part of the Arctic Ocean.
Water Temperature, Invertebrate Drift, and the Scope for Growth for Juvenile Spring Chinook Salmon.
NASA Astrophysics Data System (ADS)
Lovtang, J. C.; Li, H. W.
2005-05-01
We present a bioenergetic assessment of habitat quality based on the concept of the scope for growth for juvenile Chinook salmon. Growth of juvenile salmonids during the freshwater phase of their life history depends on a balance between two main factors: energy intake and metabolic costs. The metabolic demands of temperature and the availability of food play integral roles in determining the scope for growth of juvenile salmonids in stream systems. We investigated differences in size of juvenile spring Chinook salmon in relation to water temperature and invertebrate drift density in six unique study reaches in the Metolius River Basin, a tributary of the Deschutes River in Central Oregon. This project was initiated to determine the relative quality and potential productivity of habitat in the Metolius Basin prior to the reintroduction of spring Chinook salmon, which were extirpated from the middle Deschutes basin in the early 1970's due to the construction of a hydroelectric dam. Variations in the growth of juvenile Chinook salmon can be described using a multiple regression model of water temperature and invertebrate drift density. We also discuss the relationships between our bioenergetic model, variations of the ideal free distribution model, and physiological growth models.
Using Google Earth in Marine Research and Operational Decision Support
NASA Astrophysics Data System (ADS)
Blower, J. D.; Bretherton, D.; Haines, K.; Liu, C.; Rawlings, C.; Santokhee, A.; Smith, I.
2006-12-01
A key advantage of Virtual Globes ("geobrowsers") such as Google Earth is that they can display many different geospatial data types at a huge range of spatial scales. In this demonstration and poster display we shall show how marine data from disparate sources can be brought together in a geobrowser in order to support both scientific research and operational search and rescue activities. We have developed the Godiva2 interactive website for browsing and exploring marine data, mainly output from supercomputer analyses and predictions of ocean circulation. The user chooses a number of parameters (e.g. sea temperature at 100m depth on 1st July 2006) and can load an image of the resulting data in Google Earth. Through the use of an automatically-refreshing NetworkLink the user can explore the whole globe at a very large range of spatial scales: the displayed data will automatically be refreshed to show data at increasingly fine resolution as the user zooms in. This is a valuable research tool for exploring these terabyte- scale datasets. Many coastguard organizations around the world use SARIS, a software application produced by BMT Cordah Ltd., to predict the drift pattern of objects in the sea in order to support search and rescue operations. Different drifting objects have different trajectories depending on factors such as their buoyancy and windage and so a computer model, supported by meteorological and oceanographic data, is needed to help rescuers locate their targets. We shall demonstrate how Google Earth is used to display output from the SARIS model (including the search target location and associated error polygon) alongside meteorological data (wind vectors) and oceanographic data (sea temperature, surface currents) from Godiva2 in order to support decision-making. We shall also discuss the limitations of using Google Earth in this context: these include the difficulties of working with time- dependent data and the need to access data securely. essc.ac.uk:8080/Godiva2
A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 1 of 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drollinger, Harold; Jones, Robert C.; Thomas F. Bullard
2009-02-01
This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and onemore » high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.« less
A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 5 of 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harold Drollinger; Robert C. Jones; and Thomas F. Bullard
2009-02-01
This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and onemore » high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.« less
A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 6 of 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harold Drollinger; Robert C. Jones; and Thomas F. Bullard
2009-02-01
This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and onemore » high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.« less
A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 3 of 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harold Drollinger; Robert C. Jones; and Thomas F. Bullard
2009-02-01
This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and onemore » high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.« less
A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 2 of 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harold Drollinger; Robert C. Jones; and Thomas F. Bullard
2009-02-01
This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and onemore » high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.« less
A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 4 of 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harold Drollinger; Robert C. Jones; and Thomas F. Bullard
2009-02-01
This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and onemore » high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.« less
Origin of CH+ in diffuse molecular clouds. Warm H2 and ion-neutral drift
NASA Astrophysics Data System (ADS)
Valdivia, Valeska; Godard, Benjamin; Hennebelle, Patrick; Gerin, Maryvonne; Lesaffre, Pierre; Le Bourlot, Jacques
2017-04-01
Context. Molecular clouds are known to be magnetised and to display a turbulent and complex structure where warm and cold phases are interwoven. The turbulent motions within molecular clouds transport molecules, and the presence of magnetic fields induces a relative velocity between neutrals and ions known as the ion-neutral drift (vd). These effects all together can influence the chemical evolution of the clouds. Aims: This paper assesses the roles of two physical phenomena which have previously been invoked to boost the production of CH+ under realistic physical conditions: the presence of warm H2 and the increased formation rate due to the ion-neutral drift. Methods: We performed ideal magnetohydrodynamical (MHD) simulations that include the heating and cooling of the multiphase interstellar medium (ISM), and where we treat dynamically the formation of the H2 molecule. In a post-processing step we compute the abundances of species at chemical equilibrium using a solver that we developed. The solver uses the physical conditions of the gas as input parameters, and can also prescribe the H2 fraction if needed. We validate our approach by showing that the H2 molecule generally has a much longer chemical evolution timescale compared to the other species. Results: We show that CH+ is efficiently formed at the edge of clumps, in regions where the H2 fraction is low (0.3-30%) but nevertheless higher than its equilibrium value, and where the gas temperature is high (≳ 300 K). We show that warm and out of equilibrium H2 increases the integrated column densities of CH+ by one order of magnitude up to values still 3-10 times lower than those observed in the diffuse ISM. We balance the Lorentz force with the ion-neutral drag to estimate the ion-drift velocities from our ideal MHD simulations. We find that the ion-neutral drift velocity distribution peaks around 0.04 km s-1, and that high drift velocities are too rare to have a significant statistical impact on the abundances of CH+. Compared to previous works, our multiphase simulations reduce the spread in vd, and our self-consistent treatment of the ionisation leads to much reduced vd. Nevertheless, our resolution study shows that this velocity distribution is not converged: the ion-neutral drift has a higher impact on CH+ at higher resolution. On the other hand, our ideal MHD simulations do not include ambipolar diffusion, which would yield lower drift velocities. Conclusions: Within these limitations, we conclude that warm H2 is a key ingredient in the efficient formation of CH+ and that the ambipolar diffusion has very little influence on the abundance of CH+, mainly due to the small drift velocities obtained. However, we point out that small-scale processes and other non-thermal processes not included in our MHD simulation may be of crucial importance, and higher resolution studies with better controlled dissipation processes are needed.
Global mapping of the surface of Titan through the haze with VIMS onboard Cassini
NASA Astrophysics Data System (ADS)
Le Mouélic, Stéphane; Cornet, Thomas; Rodriguez, Sébastien; Sotin, Christophe; Barnes, Jason W.; Brown, Robert H.; Lasue, Jérémie; Baines, K. H.; Buratti, Bonnie; Clark, Roger Nelson; Nicholson, Philip D.
2016-10-01
The Visual and Infrared Mapping Spectrometer (VIMS) onboard Cassini observes the surface of Titan through the atmosphere in seven narrow spectral windows in the infrared at 0.93, 1.08, 1.27, 1.59, 2.01, 2.68-2.78, and 4.9-5.1 microns. We have produced a global hyperspectral mosaic at 32 pixels per degrees of the complete VIMS data set of Titan between T0 (July 2004) and T120 (June 2016) flybys. We merged all the data cubes sorted by increasing spatial resolution, with the high resolution images on top of the mosaic and the low resolution images used as background. One of the main challenge in producing global spectral composition maps is to remove the seams between individual frames taken throughout the entire mission. These seams are mainly due to the widely varying viewing angles between data acquired during the different Titan flybys. These angles induce significant surface photometric effects and a strongly varying atmospheric (absorption and scattering) contribution, the scattering of the atmosphere being all the more present than the wavelength is short. We have implemented a series of empirical corrections to homogenize the maps, by correcting at first order for photometric and atmospheric scattering effects. Recently, the VIMS' IR wavelength calibration has been observed to be drifting from a total of a few nm toward longer wavelengths, the drift being almost continuously present over the course of the mission. Whereas minor at first order, this drift has implications on the homogeneity of the maps when trying to fit images taken at the beginning of the mission with images taken near the end, in particular when using channels in the narrowest atmospheric spectral windows. A correction scheme has been implemented to account for this subtle effect.
Using the Data From Accidents and Natural Disasters to Improve Marine Debris Modeling
NASA Astrophysics Data System (ADS)
Maximenko, N. A.; Hafner, J.; MacFadyen, A.; Kamachi, M.; Murray, C. C.
2016-02-01
In the absence of satisfactory marine debris observing system, drift models provide a unique tool that can be used to identify main pathways and accumulation areas of the natural and anthropogenic debris, including the plastic pollution having increasing impact on the environment and raising concern of the society. Main problems, limiting the utility of model simulations, include the lack of accurate information on distribution, timing, strength and composition of sources of marine debris and the complexity of the hydrodynamics of an object, floating on the surface of a rough sea. To calculate the drift, commonly, models estimate surface currents first and then add the object motion relative to the water. Importantly, ocean surface velocity can't be measured with the existing instruments. For various applications it is derived from subsurface (such as 15-meter drifter trajectories) and satellite (altimetry, scatterometry) data using simple theories (geostrophy, Ekman spiral, etc.). Similarly, even the best ocean general circulation models (OGCM's), utilizing different parameterizations of the mixed layer, significantly disagree on the ocean surface velocities. Understanding debris motion under the direct wind force and in interaction with the breaking wind waves seems to be a task of even greater complexity. In this presentation, we demonstrate how the data of documented natural disasters (such as tsunamis, hurricanes and floods) and other accidents generating marine debris with known times and coordinates of start and/or end points of the trajectories, can be used to calibrate drift models and obtain meaningful quantitative results that can be generalized for other sources of debris and used to plan the future marine debris observing system. On these examples we also demonstrate how the oceanic and atmospheric circulations couple together to determine the pathways and destination areas of different types of the floating marine debris.
NASA Astrophysics Data System (ADS)
Steger, Simon; Stege, Heike; Bretz, Simone; Hahn, Oliver
2018-04-01
A non-invasive method has been carried out to show the capabilities and limitations of Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) for identifying of colourants and binders in modern reverse glass paintings. For this purpose, the reverse glass paintings "Zwei Frauen am Tisch" (1920-22), "Bäume" (1946) (both by Heinrich Campendonk), "Lofoten" (1933) (Edith Campendonk-van Leckwyck) and "Ohne Titel" (1954) (Marianne Uhlenhuth), were measured. In contrast to other techniques (e.g. panel and mural painting), the paint layers are applied in reverse succession. In multi-layered paint systems, the front paint layer may no longer be accessible. The work points out the different spectral appearance of a given substance (gypsum, basic lead white) in reverse glass paintings. However, inverted bands, band overlapping and derivative-shaped spectral features can be interpreted by comparing the spectra from the paintings with spectra from pure powders and pigment/linseed oil mock-ups. Moreover, the work focuses on this method's capabilities in identifying synthetic organic pigments (SOP). Reference spectra of three common SOP (PG7, PY1, PR83) were obtained from powders and historical colour charts. We identified PR83 and PY1 in two reverse glass paintings, using the measured reference spectra. The recorded DRIFTS spectra of pure linseed oil, gum Arabic, mastic, polyvinyl acetate resin and bees wax can be used to classify the binding media of the measured paintings.
SAPS effects on thermospheric winds during the 17 March 2013 storm
NASA Astrophysics Data System (ADS)
Sheng, C.; Lu, G.; Wang, W.; Doornbos, E.; Talaat, E. R.
2017-12-01
Strong subauroral polarization streams (SAPS) were observed by DMSP satellites during the main phase of the 17 March 2013 geomagnetic storm. Both DMSP F18 and GOCE satellites sampled at 19 MLT during this period, providing near-simultaneous measurements of ion drifts and neutral winds near dusk. The fortuitous satellite conjunction allows us to directly examine the SAPS effects on thermospheric winds. In addition, two sets of model runs were carried out for this event: (1) the standard TIEGCM run with high-latitude forcing; (2) the SAPS-TIEGCM run by incoporating an empirical model of SAPS in the subauroral zone. The difference between these two runs represents the influence of SAPS forcing. In particular, we examine ion-neutral coupling at subauroral latitudes through detailed forcing term analysis to determine how the SAPS-related strong westward ion drifts alter thermospheric winds.
Effect of climate change on marine ecosystems
NASA Astrophysics Data System (ADS)
Vikebo, F. B.; Sundby, S.; Aadlandsvik, B.; Fiksen, O.
2003-04-01
As a part of the INTEGRATION project, headed by Potsdam Institute for Climate Impact Research, funded by the German Research Council, the impact of climate change scenarios on marine fish populations will be addressed on a spesific population basis and will focus on fish populations in the northern North Atlantic with special emphasis on cod. The approach taken will mainly be a modelling study supported by analysis of existing data on fish stocks and climate. Through down-scaling and nesting techniques, various climate change scenarios with reduced THC in the North Atlantic will be investigated with higher spatial resolution for selected shelf areas. The hydrodynamical model used for the regional ocean modeling is ROMS (http://marine.rutgers.edu/po/models/roms/). An individual based model will be implemented into the larval drift module to simulate growth of the larvae along the drift paths.
Atomic force microscope-assisted scanning tunneling spectroscopy under ambient conditions.
Vakhshouri, Amin; Hashimoto, Katsushi; Hirayama, Yoshiro
2014-12-01
We have developed a method of atomic force microscopy (AFM)-assisted scanning tunneling spectroscopy (STS) under ambient conditions. An AFM function is used for rapid access to a selected position prior to performing STS. The AFM feedback is further used to suppress vertical thermal drift of the tip-sample distance during spectroscopy, enabling flexible and stable spectroscopy measurements at room temperature. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The plasmasheet H+ and O+ contribution on the storm time ring current
NASA Astrophysics Data System (ADS)
Mouikis, C.; Bingham, S.; Kistler, L. M.; Spence, H. E.; Gkioulidou, M.; Claudepierre, S. G.; Farrugia, C. J.
2015-12-01
The source population of the storm time ring current is the night side plasma sheet. We use Van Allen Probes and Cluster observations to determine the contribution of the convecting plasma sheet H+ and O+ particles in the storm time development of the ring current. Using the Volland-Stern model with a dipole magnetic field together with the identification of the observed energy cutoffs in the particle spectra, we specify the pressure contributed by H+ and O+ populations that are on open drift paths vs. the pressure contributed by the trapped populations, for different local times. We find that during the storm main phase most of the ring current pressure in the pre-midnight inner magnetosphere is contributed by particles on open drift paths that cause the development of a strong partial ring current that causes most of the main phase Dst drop. These particles can reach as deep as L~2 and their pressure compares to the local magnetic field pressure as deep as L~3. During the recovery phase, if these particles are not lost at the magnetopause, will become trapped and will contribute to the symmetric ring current.
Mølgaard, Carsten; Rathleff, Michael Skovdal; Simonsen, Ole
2011-01-01
An increased pronated foot posture is believed to contribute to patellofemoral pain syndrome (PFPS), but the relationship between these phenomena is still controversial. The objectives of this study were to investigate the prevalence of PFPS in high school students and to compare passive internal and external hip rotation, passive dorsiflexion, and navicular drop and drift between healthy high school students and students with PFPS. All 16- to 18-year-old students in a Danish high school were invited to join this single-blind case-control study (N = 299). All of the students received a questionnaire regarding knee pain. The main outcome measurements were prevalence of PFPS, navicular drop and drift, passive ankle dorsiflexion, passive hip rotation in the prone position, and activity level. The case group consisted of all students with PFPS. From the same population, a randomly chosen control group was formed. The prevalence of knee pain was 25%. Of the 24 students with knee pain, 13 were diagnosed as having PFPS. This corresponds to a PFPS prevalence of 6%. Mean navicular drop and drift were higher in the PFPS group versus the control group (navicular drop: 4.2 mm [95% confidence interval (CI), 3.2-5.3 mm] versus 2.9 mm [95% CI, 2.5-3.3 mm]; and navicular drift: 2.6 mm [95% CI, 1.6-3.7 mm] versus 1.4 mm [95% CI, 0.9-2.0 mm]). Higher passive ankle dorsiflexion was also identified in the PFPS group (22.2° [95% CI, 18°-26°] versus 17.7° [95% CI, 15°-20°]). This study demonstrated greater navicular drop, navicular drift, and dorsiflexion in high school students with PFPS compared with healthy students and highlights that foot posture is important to consider as a factor where patients with PFPS diverge from healthy individuals.
NASA Astrophysics Data System (ADS)
Horrocks, J.; Ó Cofaigh, C.; Lloyd, J. M.; Hillenbrand, C. D.; Kuhn, G.; Smith, J.; Ehrmann, W. U.; Esper, O.
2015-12-01
The Amundsen Sea sector of the West Antarctic Ice Sheet (WAIS) is experiencing rapid mass loss and there is a pressing need to place the contemporary ice-sheet changes into a longer term context. The continental rise in this region is characterised by large sediment mounds that are shaped by westward flowing bottom currents and that resemble contouritic drifts existing offshore from the Antarctic Peninsula. Similar to the Antarctic Peninsula drifts, marine sediment cores from the poorly studied sediment mounds in the Amundsen Sea have the potential to provide reliable records of dynamical ice-sheet behaviour in West Antarctica and palaeoceanographic changes in the Southern Ocean during the Late Quaternary that can be reconstructed from their terrestrial, biogenic and authigenic components. Here we use multi-proxy data from three sediment cores recovered from two of the Amundsen Sea mounds to present the first high-resolution study of environmental changes on this part of the West Antarctic continental margin over the glacial-interglacial cycles of the Late Quaternary. Age constraints for the records are derived from biostratigraphy, AMS 14C dates and lithostratigraphy. We focus on the investigation of processes for drift formation, thereby using grain size and sortable silt data to reconstruct changes in bottom current speed and to identify episodes of current winnowing. Data on geochemical and mineralogical sediment composition and physical properties are used to infer both changes in terrigenous sediment supply in response to the advance and retreat of the WAIS across the Amundsen Sea shelf and changes in biological productivity that are mainly controlled by the duration of annual sea-ice coverage. We compare our data sets from the Amundsen Sea mounds to those from the well-studied Antarctic Peninsula drifts, thereby highlighting similarities and discrepancies in depositional processes and climatically-driven environmental changes.
Townsend, D.R.; Baldwin, M.J.; Carroll, R.D.; Ellis, W.L.; Magner, J.E.
1982-01-01
The Hybla Gold experiment was conducted in the U12e.20 drifts of the E-tunnel complex beneath the surface of Rainier Mesa at the Nevada Test Site. Though the proximity of the Hybla Gold working point to the chimney of the Dining Car event was important to the experiment, the observable geologic effects from Dining Car on the Hybla Gold site were minor. Overburden above the working point is approximately 385 m (1,263 ft). The pre-Tertiary surface, probably quartzite, lies approximately 254 m (833 ft) below the working point. The drifts are mined in zeolitized ash-fall tuffs of tunnel bed 4, subunits K and J, all of Miocene age. The working point is in subunit 4J. Geologic structure in the region around the working point is not complex. The U12e.20 main drift follows the axis of a shallow depositional syncline. A northeast-dipping fault with displacement of approximately 3 m (10 ft) passes within 15.2 m (50 ft) of the Hybla Gold working point. Three faults of smaller displacement pass within 183-290 m (600-950 ft) of the working point, and are antithetic to the 3-m (10-ft) fault. Three exploratory holes were drilled to investigate the chimney of the nearby Dining Car event. Four horizontal holes were drilled during the construction of the U12e.20 drifts to investigate the geology of the Hybla Gold working point.
Maufroy, Alexandra; Chassot, Emmanuel; Joo, Rocío; Kaplan, David Michael
2015-01-01
Since the 1990s, massive use of drifting Fish Aggregating Devices (dFADs) to aggregate tropical tunas has strongly modified global purse-seine fisheries. For the first time, a large data set of GPS positions from buoys deployed by French purse-seiners to monitor dFADs is analysed to provide information on spatio-temporal patterns of dFAD use in the Atlantic and Indian Oceans during 2007-2011. First, we select among four classification methods the model that best separates "at sea" from "on board" buoy positions. A random forest model had the best performance, both in terms of the rate of false "at sea" predictions and the amount of over-segmentation of "at sea" trajectories (i.e., artificial division of trajectories into multiple, shorter pieces due to misclassification). Performance is improved via post-processing removing unrealistically short "at sea" trajectories. Results derived from the selected model enable us to identify the main areas and seasons of dFAD deployment and the spatial extent of their drift. We find that dFADs drift at sea on average for 39.5 days, with time at sea being shorter and distance travelled longer in the Indian than in the Atlantic Ocean. 9.9% of all trajectories end with a beaching event, suggesting that 1,500-2,000 may be lost onshore each year, potentially impacting sensitive habitat areas, such as the coral reefs of the Maldives, the Chagos Archipelago, and the Seychelles.
Maufroy, Alexandra; Chassot, Emmanuel; Joo, Rocío; Kaplan, David Michael
2015-01-01
Since the 1990s, massive use of drifting Fish Aggregating Devices (dFADs) to aggregate tropical tunas has strongly modified global purse-seine fisheries. For the first time, a large data set of GPS positions from buoys deployed by French purse-seiners to monitor dFADs is analysed to provide information on spatio-temporal patterns of dFAD use in the Atlantic and Indian Oceans during 2007-2011. First, we select among four classification methods the model that best separates “at sea” from “on board” buoy positions. A random forest model had the best performance, both in terms of the rate of false “at sea” predictions and the amount of over-segmentation of “at sea” trajectories (i.e., artificial division of trajectories into multiple, shorter pieces due to misclassification). Performance is improved via post-processing removing unrealistically short “at sea” trajectories. Results derived from the selected model enable us to identify the main areas and seasons of dFAD deployment and the spatial extent of their drift. We find that dFADs drift at sea on average for 39.5 days, with time at sea being shorter and distance travelled longer in the Indian than in the Atlantic Ocean. 9.9% of all trajectories end with a beaching event, suggesting that 1,500-2,000 may be lost onshore each year, potentially impacting sensitive habitat areas, such as the coral reefs of the Maldives, the Chagos Archipelago, and the Seychelles. PMID:26010151
NASA Astrophysics Data System (ADS)
De Dominicis, M.; Bruciaferri, D.; Gerin, R.; Pinardi, N.; Poulain, P. M.; Garreau, P.; Zodiatis, G.; Perivoliotis, L.; Fazioli, L.; Sorgente, R.; Manganiello, C.
2016-11-01
Validation of oil spill forecasting systems suffers from a lack of data due to the scarcity of oil slick in situ and satellite observations. Drifters (surface drifting buoys) are often considered as proxy for oil spill to overcome this problem. However, they can have different designs and consequently behave in a different way at sea, making it not straightforward to use them for oil spill model validation purposes and to account for surface currents, waves and wind when modelling them. Stemming from the need to validate the MEDESS4MS (Mediterranean Decision Support System for Marine Safety) multi-model oil spill prediction system, which allows access to several ocean, wave and meteorological operational model forecasts, an exercise at sea was carried out to collect a consistent dataset of oil slick satellite observations, in situ data and trajectories of different type of drifters. The exercise, called MEDESS4MS Serious Game 1 (SG1), took place in the Elba Island region (Western Mediterranean Sea) during May 2014. Satellite images covering the MEDESS4MS SG1 exercise area were acquired every day and, in the case an oil spill was observed from satellite, vessels of the Italian Coast Guard (ITCG) were sent in situ to confirm the presence of the pollution. During the exercise one oil slick was found in situ and drifters, with different water-following characteristics, were effectively deployed into the oil slick and then monitored in the following days. Although it was not possible to compare the oil slick and drifter trajectories due to a lack of satellite observations of the same oil slick in the following days, the oil slick observations in situ and drifters trajectories were used to evaluate the quality of MEDESS4MS multi-model currents, waves and winds by using the MEDSLIK-II oil spill model. The response of the drifters to surface ocean currents, different Stokes drift parameterizations and wind drag has been examined. We found that the surface ocean currents mainly drive the transport of completely submerged drifters. The accuracy of the simulations increases with higher resolution currents and with addition of the Stokes drift, which is better estimated when provided by wave models. The wind drag improves the modelling of drifter trajectories only in the case of partially emerged drifters, otherwise it leads to an incorrect reproduction of the drifters' direction, which is particularly evident in high speed wind conditions.
Is the sky the limit? On the expansion threshold of a species' range.
Polechová, Jitka
2018-06-15
More than 100 years after Grigg's influential analysis of species' borders, the causes of limits to species' ranges still represent a puzzle that has never been understood with clarity. The topic has become especially important recently as many scientists have become interested in the potential for species' ranges to shift in response to climate change-and yet nearly all of those studies fail to recognise or incorporate evolutionary genetics in a way that relates to theoretical developments. I show that range margins can be understood based on just two measurable parameters: (i) the fitness cost of dispersal-a measure of environmental heterogeneity-and (ii) the strength of genetic drift, which reduces genetic diversity. Together, these two parameters define an 'expansion threshold': adaptation fails when genetic drift reduces genetic diversity below that required for adaptation to a heterogeneous environment. When the key parameters drop below this expansion threshold locally, a sharp range margin forms. When they drop below this threshold throughout the species' range, adaptation collapses everywhere, resulting in either extinction or formation of a fragmented metapopulation. Because the effects of dispersal differ fundamentally with dimension, the second parameter-the strength of genetic drift-is qualitatively different compared to a linear habitat. In two-dimensional habitats, genetic drift becomes effectively independent of selection. It decreases with 'neighbourhood size'-the number of individuals accessible by dispersal within one generation. Moreover, in contrast to earlier predictions, which neglected evolution of genetic variance and/or stochasticity in two dimensions, dispersal into small marginal populations aids adaptation. This is because the reduction of both genetic and demographic stochasticity has a stronger effect than the cost of dispersal through increased maladaptation. The expansion threshold thus provides a novel, theoretically justified, and testable prediction for formation of the range margin and collapse of the species' range.
Behavioral and catastrophic drift of invertebrates in two streams in northeastern Wyoming
Wangsness, David J.; Peterson, David A.
1980-01-01
Invertebrate drift samples were collected in August 1977 from two streams in the Powder River structural basin in northeastern Wyoming. The streams are Clear Creek, a mountain stream, and the Little Powder River, a plains stream. Two major patterns of drift were recognized. Clear Creek was sampled during a period of normal seasonal conditions. High drift rates occurred during the night indicating a behavioral drift pattern that is related to the benthic invertebrate density and carrying capacity of the stream substrates. The mayfly genes Baetis, a common drift organism, dominated the peak periods of drift in Clear Creek. The Little Powder River has a high discharge during the study period. Midge larvae of the families Chironomidae and Ceratopogonidae, ususally not common in drift, dominated the drift community. The dominance of midge larvae, the presence of several other organisms not common in drift, and the high discharge during the study period caused a catastrophic drift pattern. (USGS)
Sodium Ion Dynamics in the Magnetospheric Flanks of Mercury
NASA Astrophysics Data System (ADS)
Aizawa, Sae; Delcourt, Dominique; Terada, Naoki
2018-01-01
We investigate the transport of planetary ions in the magnetospheric flanks of Mercury. In situ measurements from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft show evidences of Kelvin-Helmholtz instability development in this region of space, due to the velocity shear between the downtail streaming flow of solar wind originating protons in the magnetosheath and the magnetospheric populations. Ions that originate from the planet exosphere and that gain access to this region of space may be transported across the magnetopause along meandering orbits. We examine this transport using single-particle trajectory calculations in model Magnetohydrodynamics simulations of the Kelvin-Helmholtz instability. We show that heavy ions of planetary origin such as Na+ may experience prominent nonadiabatic energization as they
Energy dynamics in a simulation of LAPD turbulence
NASA Astrophysics Data System (ADS)
Friedman, B.; Carter, T. A.; Umansky, M. V.; Schaffner, D.; Dudson, B.
2012-10-01
Energy dynamics calculations in a 3D fluid simulation of drift wave turbulence in the linear Large Plasma Device [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] illuminate processes that drive and dissipate the turbulence. These calculations reveal that a nonlinear instability dominates the injection of energy into the turbulence by overtaking the linear drift wave instability that dominates when fluctuations about the equilibrium are small. The nonlinear instability drives flute-like (k∥=0) density fluctuations using free energy from the background density gradient. Through nonlinear axial wavenumber transfer to k∥≠0 fluctuations, the nonlinear instability accesses the adiabatic response, which provides the requisite energy transfer channel from density to potential fluctuations as well as the phase shift that causes instability. The turbulence characteristics in the simulations agree remarkably well with experiment. When the nonlinear instability is artificially removed from the system through suppressing k∥=0 modes, the turbulence develops a coherent frequency spectrum which is inconsistent with experimental data. This indicates the importance of the nonlinear instability in producing experimentally consistent turbulence.
Spiral biasing adaptor for use in Si drift detectors and Si drift detector arrays
Li, Zheng; Chen, Wei
2016-07-05
A drift detector array, preferably a silicon drift detector (SDD) array, that uses a low current biasing adaptor is disclosed. The biasing adaptor is customizable for any desired geometry of the drift detector single cell with minimum drift time of carriers. The biasing adaptor has spiral shaped ion-implants that generate the desired voltage profile. The biasing adaptor can be processed on the same wafer as the drift detector array and only one biasing adaptor chip/side is needed for one drift detector array to generate the voltage profiles on the front side and back side of the detector array.
Kennedy, Theodore A.; Yackulic, Charles B.; Cross, Wyatt F.; Grams, Paul E.; Yard, Michael D.; Copp, Adam J.
2014-01-01
1. Invertebrate drift is a fundamental process in streams and rivers. Studies from laboratory experiments and small streams have identified numerous extrinsic (e.g. discharge, light intensity, water quality) and intrinsic factors (invertebrate life stage, benthic density, behaviour) that govern invertebrate drift concentrations (# m−3), but the factors that govern invertebrate drift in larger rivers remain poorly understood. For example, while large increases or decreases in discharge can lead to large increases in invertebrate drift, the role of smaller, incremental changes in discharge is poorly described. In addition, while we might expect invertebrate drift concentrations to be proportional to benthic densities (# m−2), the benthic–drift relation has not been rigorously evaluated. 2. Here, we develop a framework for modelling invertebrate drift that is derived from sediment transport studies. We use this framework to guide the analysis of high-resolution data sets of benthic density and drift concentration for four important invertebrate taxa from the Colorado River downstream of Glen Canyon Dam (mean daily discharge 325 m3 s−1) that were collected over 18 months and include multiple observations within days. Ramping of regulated flows on this river segment provides an experimental treatment that is repeated daily and allowed us to describe the functional relations between invertebrate drift and two primary controls, discharge and benthic densities. 3. Twofold daily variation in discharge resulted in a >10-fold increase in drift concentrations of benthic invertebrates associated with pools and detritus (i.e. Gammarus lacustris and Potamopyrgus antipodarum). In contrast, drift concentrations of sessile blackfly larvae (Simuliium arcticum), which are associated with high-velocity cobble microhabitats, decreased by over 80% as discharge doubled. Drift concentrations of Chironomidae increased proportional to discharge. 4. Drift of all four taxa was positively related to benthic density. Drift concentrations of Gammarus, Potamopyrgus and Chironomidae were proportional to benthic density. Drift concentrations of Simulium were positively related to benthic density, but the benthic–drift relation was less than proportional (i.e. a doubling of benthic density only led to a 40% increase in drift concentrations). 5. Our study demonstrates that invertebrate drift concentrations in the Colorado River are jointly controlled by discharge and benthic densities, but these controls operate at different timescales. Twofold daily variation in discharge associated with hydropeaking was the primary control on within-day variation in invertebrate drift concentrations. In contrast, benthic density, which varied 10- to 1000-fold among sampling dates, depending on the taxa, was the primary control on invertebrate drift concentrations over longer timescales (weeks to months).
Effect of natural windbreaks on drift reduction in orchard spraying.
Wenneker, M; Heijne, B; van de Zande, J C
2005-01-01
In the Netherlands windbreaks are commonly grown to protect orchards against wind damage and to improve micro-climate. Natural windbreaks of broad-leaved trees can also reduce the risk of surface water contamination caused by spray drift during orchard spraying. Spray drift from pesticide applications is a major concern in the Netherlands, especially drift into water courses. So far, several drift reducing measures have been accepted by water quality control organisations and the Board for the Authorization of Pesticides (CTB), e.g. presence of a windbreak (i.e. 70% drift reduction at early season and 90% drift reduction at full leaf, respectively before and after first of May). From the experiments it was concluded that the risk of drift contamination is high during the early developmental stages of the growing season. The 70% drift reduction at early season as determined in previous experiments, appears to be valid only for windbreaks with a certain degree of developed leaves. At full leaf stage 80-90% drift reduction by the windbreak was measured. The use of evergreen windbreaks or wind-break species that develop in early season can reduce the risk of drift contamination considerably. Also, the combination of drift reducing methods, such as one-sided spraying of the last tree row and a windbreak is an effective method to reduce spray drift in the Netherlands in early season.
Early life history of the northern pikeminnow in the lower Columbia River basin
Gadomski, D.M.; Barfoot, C.A.; Bayer, J.M.; Poe, T.P.
2001-01-01
The northern pikeminnow Ptychocheilus oregonensis is a large, native cyprinid in the Columbia River basin that has persisted in spite of substantial habitat alterations. During the months of June to September 1993-1996, we investigated the temporal and spatial patterns of northern pikeminnow spawning, along with describing larval drift and characterizing larval and early juvenile rearing habitats in the lower Columbia River (the John Day and Dalles reservoirs and the free-flowing section downstream of Bonneville Dam) as well as in the lower sections of two major tributaries (the John Day and Deschutes rivers). The density of newly emerged drifting larvae was higher in dam tailraces (a mean of 7.7 larvae/100 m3 in surface tows) than in the lower reservoirs (0.3 larvae/100 m3), indicating that tailraces were areas of more intense spawning. Density was particularly high in the Bonneville Dam tailrace (15.1 larvae/100 m3), perhaps because adult northern pikeminnow are abundant below Bonneville Dam and this is the first tailrace and suitable main-stem spawning habitat encountered during upriver spawning migrations. Spawning also occurred in both of the tributaries sampled but not in a backwater. Spawning in the Columbia River primarily took place during the month of June in 1993 and 1994, when the water temperature rose from 14??C to 18??C, but occurred about 2 weeks later in 1995 and 1996, possibly because of cooler June water temperature (14-15??C) in these years. The period of drift was brief (about 1-3 d), with larvae recruiting to shallow, low-velocity shorelines of main-channel and backwater areas to rear. Larvae reared in greatest densities at sites with fine sediment or sand substrates and moderate- to high-density vegetation (a mean density of 92.1 larvae/10 m3). The success of northern pikeminnow in the Columbia River basin may be partly attributable to their ability to locate adequate spawning and rearing conditions in a variety of main-stem and tributary locations.
Escape of asteroids from the main belt
NASA Astrophysics Data System (ADS)
Granvik, Mikael; Morbidelli, Alessandro; Vokrouhlický, David; Bottke, William F.; Nesvorný, David; Jedicke, Robert
2017-02-01
Aims: We locate escape routes from the main asteroid belt, particularly into the near-Earth-object (NEO) region, and estimate the relative fluxes for different escape routes as a function of object size under the influence of the Yarkovsky semimajor-axis drift. Methods: We integrated the orbits of 78 355 known and 14 094 cloned main-belt objects and Cybele and Hilda asteroids (hereafter collectively called MBOs) for 100 Myr and recorded the characteristics of the escaping objects. The selected sample of MBOs with perihelion distance q > 1.3 au and semimajor axis a < 4.1 au is essentially complete, with an absolute magnitude limit ranging from HV < 15.9 in the inner belt (a < 2.5 au) to HV < 14.4 in the outer belt (2.5 au < a < 4.1 au). We modeled the semimajor-axis drift caused by the Yarkovsky force and assigned four different sizes (diameters of 0.1, 0.3, 1.0, and 3.0 km) and random spin obliquities (either 0 deg or 180 deg) for each test asteroid. Results: We find more than ten obvious escape routes from the asteroid belt to the NEO region, and they typically coincide with low-order mean-motion resonances with Jupiter and secular resonances. The locations of the escape routes are independent of the semimajor-axis drift rate and thus are also independent of the asteroid diameter. The locations of the escape routes are likewise unaffected when we added a model for Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) cycles coupled with secular evolution of the rotation pole as a result of the solar gravitational torque. A Yarkovsky-only model predicts a flux of asteroids entering the NEO region that is too high compared to the observationally constrained flux, and the discrepancy grows larger for smaller asteroids. A combined Yarkovsky and YORP model predicts a flux of small NEOs that is approximately a factor of 5 too low compared to an observationally constrained estimate. This suggests that the characteristic timescale of the YORP cycle is longer than our canonical YORP model predicts.
NASA Astrophysics Data System (ADS)
Sripathi, S.; Singh, Ram; Banola, S.; Sreekumar, Sreeba; Emperumal, K.; Selvaraj, C.
2016-08-01
We present here characteristics of the Doppler drift measurements over Tirunelveli (8.73°N, 77.70°E; dip 0.5°N), an equatorial site over Southern India using Doppler interferometry technique of Canadian ionosonde. Three-dimensional bulk motions of the scatterers as reflected from the ionosphere are derived by using Doppler interferometry technique at selected frequencies using spaced receivers arranged in magnetic E-W and N-S directions. After having compared with Lowell's digisonde drifts at Trivandrum, we studied the temporal and seasonal variabilities of quiet time drifts for the year 2012. The observations showed higher vertical drifts during post sunset in the equinox followed by winter and summer seasons. The comparison of Doppler vertical drifts with the drifts obtained from (a) virtual height and (b) Fejer drift model suggests that Doppler vertical drifts are relatively higher as compared to the drifts obtained from model and virtual height methods. Further, it is seen that vertical drifts exhibited equinoctial asymmetry in prereversal enhancement quite similar to such asymmetry observed in the spread F in the ionograms and GPS L band scintillations. The zonal drifts, on the other hand, showed westward during daytime with mean drifts of ~150-200 m/s and correlated well with equatorial electrojet strength indicating the role of E region dynamo during daytime, while they are eastward during nighttime with mean drifts of ~100 m/s resembling F region dynamo process. Also, zonal drifts showed large westward prior to the spread F onset during autumn equinox than vernal equinox, suggesting strong zonal shears which might cause equinoctial asymmetry in spread F.
A novel multi-cell silicon drift detector for Low Energy X-Ray Fluorescence (LEXRF) spectroscopy
NASA Astrophysics Data System (ADS)
Bufon, J.; Ahangarianabhari, M.; Bellutti, P.; Bertuccio, G.; Carrato, S.; Cautero, G.; Fabiani, S.; Giacomini, G.; Gianoncelli, A.; Giuressi, D.; Grassi, M.; Malcovati, P.; Menk, R. H.; Picciotto, A.; Piemonte, C.; Rashevskaya, I.; Rachevski, A.; Stolfa, A.; Vacchi, A.; Zampa, G.; Zampa, N.
2014-12-01
The TwinMic spectromicroscope at Elettra is a multipurpose experimental station for full-field and scanning imaging modes and simultaneous acquisition of X-ray fluorescence. The actual LEXRF detection setup consists of eight single-cell Silicon Drift Detectors (SDD) in an annular configuration. Although they provide good performances in terms of both energy resolution and low-energy photon detection efficiency, they cover just about 4% of the whole photoemission solid angle. This is the main limitation of the present detection system, since large part of the emitted photons is lost and consequently a high acquisition time is required. In order to increase the solid angle, a new LEXRF detection system is being developed within a large collaboration of several institutes. The system, composed of 4 trapezoidal multi-cell silicon drift detectors, covers up to 40% of the photoemission hemisphere, so that this geometry provides a 10 times improvement over the present configuration. First measurements in the laboratory and on the TwinMic beamline have been performed in order to characterize a single trapezoidal detector, configured and controlled by means of two multichannel ASICs, which provide preamplification, shaping and peak-stretching, connected to acquisition electronics based on fast ADCs and FPGA and working under vacuum.
Combined effects of drift waves and neoclassical transport on density profiles in tokamaks
NASA Astrophysics Data System (ADS)
Houlberg, W. A.; Strand, P.
2005-10-01
The relative importance of neoclassical and anomalous particle transport depends on the charge number of the species being studied. The detailed particle balance including the EDWM [1] drift wave model for anomalous transport that includes ITG, TEM and in some cases ETG modes, and the neoclassical model NCLASS [2], are illustrated by simulations with the DEA particle transport code. DEA models the evolution of all ion species, and can be run in a mode to evaluate dynamic responses to perturbations or to conditions far from equilibrium by perturbing the profiles from the experimental measurements. The perturbations allow the fluxes to be decomposed into diffusive and convective (pinch) terms. The different scaling with charge number between drift wave and neoclassical models favors a stronger component of neoclassical transport for higher Z impurities through the effective pinch term. Although trace impurities illustrate a simple Ficks Law form, the main ions as well as higher concentrations of intrinsic impurities exhibit non-linear responses to the density gradients as well as off-diagonal gradient dependencies, leading to a more complicated response for the particle fluxes.[1] H. Nordman, et al., Plasma Phys. Control. Fusion 47 (2005) L11. [2] W.A. Houlberg, et al., Phys. Plasmas 4 (1997) 3230.
Self-shielding flex-circuit drift tube, drift tube assembly and method of making
Jones, David Alexander
2016-04-26
The present disclosure is directed to an ion mobility drift tube fabricated using flex-circuit technology in which every other drift electrode is on a different layer of the flex-circuit and each drift electrode partially overlaps the adjacent electrodes on the other layer. This results in a self-shielding effect where the drift electrodes themselves shield the interior of the drift tube from unwanted electro-magnetic noise. In addition, this drift tube can be manufactured with an integral flex-heater for temperature control. This design will significantly improve the noise immunity, size, weight, and power requirements of hand-held ion mobility systems such as those used for explosive detection.
Suppression of Higher Order Modes in an Array of Cavities Using Waveguides
NASA Astrophysics Data System (ADS)
Shashkov, Ya. V.; Sobenin, N. P.; Bazyl, D. S.; Kaminskiy, V. I.; Mitrofanov, A. A.; Zobov, M. M.
An application of additional harmonic cavities operating at multiplies of the main RF system frequency of 400 MHz is currently under discussionin the framework of the High Luminosity LHC upgrade program [1,2]. A structure consisting of two 800 MHz single cell superconducting cavities with grooved beam pipes coupled by drift tubes has been suggested for implementation. However, it is desirable to increase the number of single cells installed in one cryomodule in order to decrease the number of transitions between "warm" and "cold" parts of the collider vacuum chamber. Unfortunately, it can lead to the appearance of higher order modes (HOM) trapped between the cavities. In order to solve this problem the methods of HOM damping with rectangular waveguides connected to the drift tubes were investigated and compared. We describe the results obtained for arrays of 2, 4 and 8 cavitiesin this paper.
NASA Astrophysics Data System (ADS)
Azorskii, N. I.; Gusakov, Yu. V.; Elsha, V. V.; Enik, T. L.; Ershov, Yu. V.; Kekelidze, V. D.; Kislov, E. M.; Kolesnikov, A. O.; Madigozhin, D. T.; Movchan, S. A.; Polenkevich, I. A.; Potrebenikov, Yu. K.; Samsonov, V. A.; Shkarovskiy, S. N.; Sotnikov, A. N.; Volkov, A. D.; Zinchenko, A. I.
2017-01-01
A device for fabricating thin-wall (straw) drift tubes using polyethylene terephthalate film 36 μm thick by ultrasonic welding is described together with the technique for controlling their quality. The joint width amounts to 0.4-1.0 mm. The joint breaking strength is 31.9 kg/mm2. The argon leakage from a tube of volume 188.6 cm3 under a pressure gradient of 1.0 atm does not exceed 0.3 × 10-3 cm3/min, which is mainly related to the absence of metallization in the joint vicinity. The high strength, the low tensile creep due to the absence of glued layers, the small value of gas leakage makes the new tubes capable of reliable and long-term operation in vacuum, which is confirmed by the operation of 7168 straw tubes for two years in the NA62 experiment.
Electron Jet Detected by MMS at Dipolarization Front
NASA Astrophysics Data System (ADS)
Liu, C. M.; Fu, H. S.; Vaivads, A.; Khotyaintsev, Y. V.; Gershman, D. J.; Hwang, K.-J.; Chen, Z. Z.; Cao, D.; Xu, Y.; Yang, J.; Peng, F. Z.; Huang, S. Y.; Burch, J. L.; Giles, B. L.; Ergun, R. E.; Russell, C. T.; Lindqvist, P.-A.; Le Contel, O.
2018-01-01
Using MMS high-resolution measurements, we present the first observation of fast electron jet (
Central Drift Chamber for Belle-II
NASA Astrophysics Data System (ADS)
Taniguchi, N.
2017-06-01
The Central Drift Chamber (CDC) is the main device for tracking and identification of charged particles for Belle-II experiment. The Belle-II CDC is cylindrical wire chamber with 14336 sense wires, 2.3 m-length and 2.2 m-diameter. The wire chamber and readout electronics have been completely replaced from the Belle CDC. The new readout electronics system must handle higher trigger rate of 30 kHz with less dead time at the design luminosity of 8 × 1035 cm-2s-1. The front-end electronics are located close to detector and send digitized signal through optical fibers. The Amp-Shaper-Discriminator chips, FADC and FPGA are assembled on a single board. Belle-II CDC with readout electronics has been installed successfully in Belle structure in October 2016. We will present overview of the Belle-II CDC and status of commissioning with cosmic ray.
Quantification of Stokes Drift as a Mechanism for Surface Oil Advection in the DWH Oil Spill
NASA Astrophysics Data System (ADS)
Clark, M.
2013-12-01
Stokes drift has previously been qualitatively shown to be a factor in ocean surface particle transport, but has never been comprehensively quantified. In addition, most operational ocean particle advection models used during the Deepwater Horizon oil spill do not explicitly account for Stokes drift, instead using a simple parameterization based on wind drift (or ignoring it completely). This research works to quantify Stokes drift via direct calculation, with a focus on shallow water, where Stokes drift is more likely to have a relatively large impact compared to other transport processes such as ocean currents. For this study, WaveWatch III modeled waves in the Gulf of Mexico are used, from which Stokes drift is calculated using the peak wave period and significant wave height outputs. Trajectories are also calculated to examine the role Stokes drift plays in bringing surface particles (and specifically surface oil slicks) onshore. The impact of Stokes drift is compared to transport by currents and traditional estimates of wind drift.
Sediment drifts and contourites on the continental margin off northwest Britain
NASA Astrophysics Data System (ADS)
Stoker, M. S.; Akhurst, M. C.; Howe, J. A.; Stow, D. A. V.
1998-01-01
Seismic reflection profiles and short cores from the continental margin off northwest Britain have revealed a variety of sediment-drift styles and contourite deposits preserved in the northeast Rockall Trough and Faeroe-Shetland Channel. The sediment drifts include: (1) distinctly mounded elongate drifts, both single- and multi-crested; (2) broad sheeted drift forms, varying from gently domed to flat-lying; and (3) isolated patch drifts, including moat-related drifts. Fields of sediment waves are locally developed in association with the elongate and gently domed, broad sheeted drifts. The contrasting styles of the sediment drifts most probably reflect the interaction between a variable bottom-current regime and the complex bathymetry of the continental margin. The bulk of the mounded/gently domed drifts occur in the northeast Rockall Trough, whereas the flat-lying, sheet-form deposits occur in the Faeroe-Shetland Channel, a much narrower basin which appears to have been an area more of sediment export than drift accumulation. Patch drifts are present in both basins. In the northeast Rockall Trough, the along-strike variation from single- to multi-crested elongate drifts may be a response to bottom-current changes influenced by developing drift topography. Muddy, silty muddy and sandy contourites have been recovered in sediment cores from the uppermost parts of the drift sequences. On the basis of their glaciomarine origin, these mid- to high-latitude contourites can be referred to, collectively, as glacigenic contourites. Both partial and complete contourite sequences are preserved; the former consist largely of sandy (mid-only) and top-only contourites. Sandy contourites, by their coarse-grained nature and their formation under strongest bottom-current flows, are the most likely to be preserved in the rock record. However, the very large scale of sediment drifts should be borne in mind with regard to the recognition of fossil contourites in ancient successions.
Water resources of the New Jersey part of the Ramapo River basin
Vecchioli, John; Miller, E.G.
1973-01-01
The Ramapo River, a major stream in the Passaic River basin, drains an area of 161 square miles, 70 percent of which is in Orange and Rockland Counties, N.Y., and 30 percent is in Bergen and Passaic Counties, N.J. This report describes the hydrology of the New Jersey part of the basin and evaluates the feasibility of developing large ground-water supplies from the stratified drift in the Ramapo River valley by inducing recharge to the aquifer from the river. The ground water and surface water of the basin are considered as a single resource because the development of either ground water or surface water affects the availability of the other. Precambrian gneiss, sparsely mantled with Pleistocene glacial drift, underlies the basin west of the Ramapo River in New Jersey. To the east, bedrock consists of the Watchung Basalt and of shale, sandstone, and conglomerate of the Brunswick Formation of Triassic age. Glacial drift occurs nearly everywhere in the eastern part of the basin, and deposits of stratified drift more than 100 feet thick occur in the Ramapo valley. Average annual runoff at Pompton Lakes accounts for 25 inches of the 45 inches of annual precipitation in the New Jersey part of the basin, and the remaining 20 inches is accounted for by evapotranspiration. Streamflow is highly variable--particularly in the area underlain by gneissic rocks-because of the low storage capacity of the rocks and the rough topography. Many of the small tributaries go dry during extended periods of no precipitation. Small domestic supplies of ground water can be obtained nearly everywhere, but the Brunswick Formation is the only consolidated-rock aquifer in the basin that can be depended upon to yield 100-200 gallons per minute to wells. Supplies of more than 1,000 gallons per minute are available from wells tapping the stratified drift in the Ramapo valley. The drift supplies 75 percent of the ground water pumped for public supply in the basin. Sustained ground-water yield in upland areas, based on stream base-flow recession, is estimated to be 200,000-300,000 gallons per day per square mile for the drift-covered Brunswick Formation and about 100,000-200,000 gallons per day per square mile for the gneiss and basalt. Potential sustained yield of the stratified drift in the valley depends on the availability of the streamflow and on the induced rate of infiltration. Pumping from the stratified drift results in a reduction in streamflow, which may be undesirable, mainly because of prior downstream water rights. On the basis of the storage available in the stratified drift and an analysis of daily flow during the drought period of October 1964 to September 1967 at Pompton Lakes, 20-25 million gallons per day of Ramapo River water are available for development after existing downstream water requirements are supplied. However, some low-flow augmentation will be. necessary to insure downstream rights. Rates of infiltration computed from seepage losses observed near Mahwah indicate that at least 11 million gallons per day, on an average basis, can be infiltrated from the river by the pumping of wells tapping the stratified drift. The use of recharge pits and spreading areas would increase the rate of infiltration. Losses from the Ramapo River could be minimized by returning treated sewage effluent directly to the river or, preferably, by recharging the stratified-drift aquifer with the treated effluent. Ground-water quality and surface-water quality at times of low-flow vary according to the type of rock from which the water is obtained. Water from the gneiss is low in dissolved solids--less than 127 mg/l (milligrams per liter)--and soft to moderately hard--less than 94 rag/l. Water from the Brunswick Formation is more mineralized--total dissolved-solids content is as much as 278 mg/1 and hardness as much as 188 mg/1. Water from the stratified drift is generally intermediate in quality--that is, total dissolved-solids content is as
NASA Technical Reports Server (NTRS)
Stern, D. P.
1978-01-01
An investigation is made of the adiabatic particle motion occurring in an almost drift-free magnetic field. The dependence of the mean drift velocity on the equatorial pitch angle and the variation of the local drift velocity along the trajectories is studied. The fields considered are two-dimensional and resemble the geomagnetic tail. Derivations are presented for instantaneous and average drift velocities, bounce times, longitudinal invariants, and approximations to the adiabatic Hamiltonian. As expected, the mean drift velocity is significantly smaller than the instantaneous drift velocities found at typical points on the trajectory. The slow drift indicates that particles advance in the dawn-dusk direction rather slowly in the plasma sheet of the magnetospheric tail.
Adiabatic particle motion in a nearly drift-free magnetic field: Application to the geomagnetic tail
NASA Technical Reports Server (NTRS)
Stern, D. P.
1977-01-01
The guiding center motion of particles in a nearly drift free magnetic field is analyzed in order to investigate the dependence of mean drift velocity on equatorial pitch angle, the variation of local drift velocity along the trajectory, and other properties. The mean drift for adiabatic particles is expressed by means of elliptic integrals. Approximations to the twice-averaged Hamiltonian W near z = O are derived, permitting simple representation of drift paths if an electric potential also exists. In addition, the use of W or of expressions for the longitudinal invariant allows the derivation of the twice averaged Liouville equation and of the corresponding Vlasov equation. Bounce times are calculated (using the drift-free approximation), as are instantaneous guiding center drift velocities, which are then used to provide a numerical check on the formulas for the mean drift.
The Effects of Clock Drift on the Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Ali, Khaled S.; Vanelli, C. Anthony
2012-01-01
All clocks drift by some amount, and the mission clock on the Mars Exploration Rovers (MER) is no exception. The mission clock on both MER rovers drifted significantly since the rovers were launched, and it is still drifting on the Opportunity rover. The drift rate is temperature dependent. Clock drift causes problems for onboard behaviors and spacecraft operations, such as attitude estimation, driving, operation of the robotic arm, pointing for imaging, power analysis, and telecom analysis. The MER operations team has techniques to deal with some of these problems. There are a few techniques for reducing and eliminating the clock drift, but each has drawbacks. This paper presents an explanation of what is meant by clock drift on the rovers, its relationship to temperature, how we measure it, what problems it causes, how we deal with those problems, and techniques for reducing the drift.
Diel drift of Chironomidae larvae in a pristine Idaho mountain stream
Tilley, L.J.
1989-01-01
Simultaneous hourly net collections in a meadow and canyon reach of a mountain stream determined diel and spatial abundances of drifting Chironomidae larvae. Sixty-one taxa were identified to the lowest practical level, 52 in the meadow and 41 in the canyon. Orthocladiinae was the most abundant subfamily with 32 taxa and a 24 h mean density of 294 individuals 100 m-3 (meadow) and 26 taxa and a mean of 648 individuals 100 m-3 (canyon). Chironominae was the second most abundant subfamily. Nonchironomid invertebrates at both sites and total Chironomidae larvae (meadow) were predominantly night-drifting. Parakiefferiella and Psectrocladius were day-drifting (meadow) whereas 8 other chironomid taxa (meadow) and 2 taxa (canyon) were night-drifting. All others were aperiodic or too rare to test periodicity, Stempellinella cf brevis Edwards exhibited catastrophic drift in the canyon only. The different drift patterns between sites is attributed to greater loss of streambed habitat in the canyon compared to the meadow as streamflow decreased. Consequent crowding of chironomid larvae in the canyon caused catastrophic drift or interfered with drift periodicty. This study adds to knowledge of Chironomidae drift and shows influences on drift of hydrologic and geomorphic conditions. ?? 1989 Kluwer Academic Publishers.
Braaten, P.J.; Fuller, D.B.; Lott, R.D.; Ruggles, M.P.; Brandt, T.F.; Legare, R.G.; Holm, R.J.
2012-01-01
Free embryos of wild pallid sturgeon Scaphirhynchus albus were released in the Missouri River and captured at downstream sites through a 180-km reach of the river to examine ontogenetic drift and dispersal processes. Free embryos drifted primarily in the fastest portion of the river channel, and initial drift velocities for all age groups (mean = 0.66–0.70 m s−1) were only slightly slower than mean water column velocity (0.72 m s−1). During the multi-day long-distance drift period, drift velocities of all age groups declined an average of 9.7% day−1. Younger free embryos remained in the drift upon termination of the study; whereas, older age groups transitioned from drifting to settling during the study. Models based on growth of free embryos, drift behavior, size-related variations in drift rates, and channel hydraulic characteristics were developed to estimate cumulative distance drifted during ontogenetic development through a range of simulated water temperatures and velocity conditions. Those models indicated that the average free embryo would be expected to drift several hundred km during ontogenetic development. Empirical data and model results highlight the long-duration, long-distance drift and dispersal processes for pallid sturgeon early life stages. In addition, results provide a likely mechanism for lack of pallid sturgeon recruitment in fragmented river reaches where dams and reservoirs reduce the length of free-flowing river available for pallid sturgeon free embryos during ontogenetic development.
Kilometer-Spaced GNSS Array for Ionospheric Irregularity Monitoring
NASA Astrophysics Data System (ADS)
Su, Yang
This dissertation presents automated, systematic data collection, processing, and analysis methods for studying the spatial-temporal properties of Global Navigation Satellite Systems (GNSS) scintillations produced by ionospheric irregularities at high latitudes using a closely spaced multi-receiver array deployed in the northern auroral zone. The main contributions include 1) automated scintillation monitoring, 2) estimation of drift and anisotropy of the irregularities, 3) error analysis of the drift estimates, and 4) multi-instrument study of the ionosphere. A radio wave propagating through the ionosphere, consisting of ionized plasma, may suffer from rapid signal amplitude and/or phase fluctuations known as scintillation. Caused by non-uniform structures in the ionosphere, intense scintillation can lead to GNSS navigation and high-frequency (HF) communication failures. With specialized GNSS receivers, scintillation can be studied to better understand the structure and dynamics of the ionospheric irregularities, which can be parameterized by altitude, drift motion, anisotropy of the shape, horizontal spatial extent and their time evolution. To study the structuring and motion of ionospheric irregularities at the sub-kilometer scale sizes that produce L-band scintillations, a closely-spaced GNSS array has been established in the auroral zone at Poker Flat Research Range, Alaska to investigate high latitude scintillation and irregularities. Routinely collecting low-rate scintillation statistics, the array database also provides 100 Hz power and phase data for each channel at L1/L2C frequency. In this work, a survey of seasonal and hourly dependence of L1 scintillation events over the course of a year is discussed. To efficiently and systematically study scintillation events, an automated low-rate scintillation detection routine is established and performed for each day by screening the phase scintillation index. The spaced-receiver technique is applied to cross-correlated phase and power measurements from GNSS receivers. Results of horizontal drift velocities and anisotropy ellipses derived from the parameters are shown for several detected events. Results show the possibility of routinely quantifying ionospheric irregularities by drifts and anisotropy. Error analysis on estimated properties is performed to further evaluate the estimation quality. Uncertainties are quantified by ensemble simulation of noise on the phase signals carried through to the observations of the spaced-receiver linear system. These covariances are then propagated through to uncertainties on drifts. A case study of a single scintillating satellite observed by the array is used to demonstrate the uncertainty estimation process. The distributed array is used in coordination with other measuring techniques such as incoherent scatter radar and optical all-sky imagers. These scintillations are correlated with auroral activity, based on all-sky camera images. Measurements and uncertainty estimates made over a 30-minute period are made and compared to a collocated incoherent scatter radar, and show good agreement in horizontal drift speed and direction during periods of scintillation for cases when the characteristic velocity is less than the drift velocity. The methods demonstrated are extensible to other zones and other GNSS arrays of varying size, number, ground distribution, and transmitter frequency.
NASA Astrophysics Data System (ADS)
Chouinard, Christopher D.; Cruzeiro, Vinícius Wilian D.; Beekman, Christopher R.; Roitberg, Adrian E.; Yost, Richard A.
2017-08-01
Drift tube ion mobility coupled with mass spectrometry was used to investigate the gas-phase structure of 25-hydroxyvitamin D3 (25OHD3) and D2 (25OHD2) epimers, and to evaluate its potential in rapid separation of these compounds. Experimental results revealed two distinct drift species for the 25OHD3 sodiated monomer, whereas only one of these conformations was observed for its epimer (epi25OHD3). The unique species allowed 25OHD3 to be readily distinguished, and the same pattern was observed for 25OHD2 epimers. Theoretical modeling of 25OHD3 epimers identified energetically stable gas-phase structures, indicating that both compounds may adopt a compact "closed" conformation, but that 25OHD3 may also adopt a slightly less energetically favorable "open" conformation that is not accessible to its epimer. Calculated theoretical collision cross-sections for these structures agreed with experimental results to <2%. Experimentation indicated that additional energy in the ESI source (i.e., increased temperature, spray voltage) affected the ratio of 25OHD3 conformations, with the less energetically favorable "open" conformation increasing in relative intensity. Finally, LC-IM-MS results yielded linear quantitation of 25OHD3, in the presence of the epimer interference, at biologically relevant concentrations. This study demonstrates that ion mobility can be used in tandem with theoretical modeling to determine structural differences that contribute to drift separation. These separation capabilities provide potential for rapid (<60 ms) identification of 25OHD3 and 25OHD2 in mixtures with their epimers.
Steger, Simon; Stege, Heike; Bretz, Simone; Hahn, Oliver
2018-04-15
A non-invasive method has been carried out to show the capabilities and limitations of Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) for identifying of colourants and binders in modern reverse glass paintings. For this purpose, the reverse glass paintings "Zwei Frauen am Tisch" (1920-22), "Bäume" (1946) (both by Heinrich Campendonk), "Lofoten" (1933) (Edith Campendonk-van Leckwyck) and "Ohne Titel" (1954) (Marianne Uhlenhuth), were measured. In contrast to other techniques (e.g. panel and mural painting), the paint layers are applied in reverse succession. In multi-layered paint systems, the front paint layer may no longer be accessible. The work points out the different spectral appearance of a given substance (gypsum, basic lead white) in reverse glass paintings. However, inverted bands, band overlapping and derivative-shaped spectral features can be interpreted by comparing the spectra from the paintings with spectra from pure powders and pigment/linseed oil mock-ups. Moreover, the work focuses on this method's capabilities in identifying synthetic organic pigments (SOP). Reference spectra of three common SOP (PG7, PY1, PR83) were obtained from powders and historical colour charts. We identified PR83 and PY1 in two reverse glass paintings, using the measured reference spectra. The recorded DRIFTS spectra of pure linseed oil, gum Arabic, mastic, polyvinyl acetate resin and bees wax can be used to classify the binding media of the measured paintings. Copyright © 2018 Elsevier B.V. All rights reserved.
Solnik, Stanislaw; Qiao, Mu; Latash, Mark L.
2017-01-01
This study tested two hypotheses on the nature of unintentional force drifts elicited by removing visual feedback during accurate force production tasks. The role of working memory (memory hypothesis) was explored in tasks with continuous force production, intermittent force production, and rest intervals over the same time interval. The assumption of unintentional drifts in referent coordinate for the fingertips was tested using manipulations of visual feedback: Young healthy subjects performed accurate steady-state force production tasks by pressing with the two index fingers on individual force sensors with visual feedback on the total force, sharing ratio, both, or none. Predictions based on the memory hypothesis have been falsified. In particular, we observed consistent force drifts to lower force values during continuous force production trials only. No force drift or drifts to higher forces were observed during intermittent force production trials and following rest intervals. The hypotheses based on the idea of drifts in referent finger coordinates have been confirmed. In particular, we observed superposition of two drift processes: A drift of total force to lower magnitudes and a drift of the sharing ratio to 50:50. When visual feedback on total force only was provided, the two finger forces showed drifts in opposite directions. We interpret the findings as evidence for the control of motor actions with changes in referent coordinates for participating effectors. Unintentional drifts in performance are viewed as natural relaxation processes in the involved systems; their typical time reflects stability in the direction of the drift. The magnitude of the drift was higher in the right (dominant) hand, which is consistent with the dynamic dominance hypothesis. PMID:28168396
On the utility of the ionosonde Doppler-derived EXB drift during the daytime
NASA Astrophysics Data System (ADS)
Joshi, L. M.; Sripathi, S.
2016-03-01
Vertical EXB drift measured using the ionosonde Doppler sounding during the daytime suffers from an underestimation of the actual EXB drift because the reflection height of the ionosonde signals is also affected by the photochemistry of the ionosphere. Systematic investigations have indicated a fair/good correlation to exist between the C/NOFS and ionosonde Doppler-measured vertical EXB drift during the daytime over magnetic equator. A detailed analysis, however, indicated that the linear relation between the ionosonde Doppler drift and C/NOFS EXB drift varied with seasons. Thus, solar, seasonal, and also geomagnetic variables were included in the Doppler drift correction, using the artificial neural network-based approach. The RMS error in the neural network was found to be smaller than that in the linear regression analysis. Daytime EXB drift was derived using the neural network which was also used to model the ionospheric redistribution in the SAMI2 model. SAMI2 model reproduced strong (weak) equatorial ionization anomaly (EIA) for cases when neural network corrected daytime vertical EXB drift was high (low). Similar features were also observed in GIM TEC maps. Thus, the results indicate that the neural network can be utilized to derive the vertical EXB drift from its proxies, like the ionosonde Doppler drift. These results indicate that the daytime ionosonde measured vertical EXB drift can be relied upon, provided that adequate corrections are applied to it.
Hyperspectral sensing to detect the impact of herbicide drift on cotton growth and yield
NASA Astrophysics Data System (ADS)
Suarez, L. A.; Apan, A.; Werth, J.
2016-10-01
Yield loss in crops is often associated with plant disease or external factors such as environment, water supply and nutrient availability. Improper agricultural practices can also introduce risks into the equation. Herbicide drift can be a combination of improper practices and environmental conditions which can create a potential yield loss. As traditional assessment of plant damage is often imprecise and time consuming, the ability of remote and proximal sensing techniques to monitor various bio-chemical alterations in the plant may offer a faster, non-destructive and reliable approach to predict yield loss caused by herbicide drift. This paper examines the prediction capabilities of partial least squares regression (PLS-R) models for estimating yield. Models were constructed with hyperspectral data of a cotton crop sprayed with three simulated doses of the phenoxy herbicide 2,4-D at three different growth stages. Fibre quality, photosynthesis, conductance, and two main hormones, indole acetic acid (IAA) and abscisic acid (ABA) were also analysed. Except for fibre quality and ABA, Spearman correlations have shown that these variables were highly affected by the chemical. Four PLS-R models for predicting yield were developed according to four timings of data collection: 2, 7, 14 and 28 days after the exposure (DAE). As indicated by the model performance, the analysis revealed that 7 DAE was the best time for data collection purposes (RMSEP = 2.6 and R2 = 0.88), followed by 28 DAE (RMSEP = 3.2 and R2 = 0.84). In summary, the results of this study show that it is possible to accurately predict yield after a simulated herbicide drift of 2,4-D on a cotton crop, through the analysis of hyperspectral data, thereby providing a reliable, effective and non-destructive alternative based on the internal response of the cotton leaves.
A 3D CZT high resolution detector for x- and gamma-ray astronomy
NASA Astrophysics Data System (ADS)
Kuvvetli, I.; Budtz-Jørgensen, C.; Zappettini, A.; Zambelli, N.; Benassi, G.; Kalemci, E.; Caroli, E.; Stephen, J. B.; Auricchio, N.
2014-07-01
At DTU Space we have developed a high resolution three dimensional (3D) position sensitive CZT detector for high energy astronomy. The design of the 3D CZT detector is based on the CZT Drift Strip detector principle. The position determination perpendicular to the anode strips is performed using a novel interpolating technique based on the drift strip signals. The position determination in the detector depth direction, is made using the DOI technique based the detector cathode and anode signals. The position determination along the anode strips is made with the help of 10 cathode strips orthogonal to the anode strips. The position resolutions are at low energies dominated by the electronic noise and improve therefore with increased signal to noise ratio as the energy increases. The achievable position resolution at higher energies will however be dominated by the extended spatial distribution of the photon produced ionization charge. The main sources of noise contribution of the drift signals are the leakage current between the strips and the strip capacitance. For the leakage current, we used a metallization process that reduces the leakage current by means of a high resistive thin layer between the drift strip electrodes and CZT detector material. This method was applied to all the proto type detectors and was a very effective method to reduce the surface leakage current between the strips. The proto type detector was recently investigated at the European Synchrotron Radiation Facility, Grenoble which provided a fine 50 × 50 μm2 collimated X-ray beam covering an energy band up to 600 keV. The Beam positions are resolved very well with a ~ 0.2 mm position resolution (FWHM ) at 400 keV in all directions.
Campuzano, Iain; Bush, Matthew F; Robinson, Carol V; Beaumont, Claire; Richardson, Keith; Kim, Hyungjun; Kim, Hugh I
2012-01-17
We present the use of drug-like molecules as a traveling wave (T-wave) ion mobility (IM) calibration sample set, covering the m/z range of 122.1-609.3, the nitrogen collision cross-section (Ω(N(2))) range of 124.5-254.3 Å(2) and the helium collision cross-section (Ω(He)) range of 63.0-178.8 Å(2). Absolute Ω(N(2)) and Ω(He) values for the drug-like calibrants and two diastereomers were measured using a drift-tube instrument with radio frequency (RF) ion confinement. T-wave drift-times for the protonated diastereomers betamethasone and dexamethasone are reproducibly different. Calibration of these drift-times yields T-wave Ω(N(2)) values of 189.4 and 190.4 Å(2), respectively. These results demonstrate the ability of T-wave IM spectrometry to differentiate diastereomers differing in Ω(N(2)) value by only 1 Å(2), even though the resolution of these IM experiments were ∼40 (Ω/ΔΩ). Demonstrated through density functional theory optimized geometries and ionic electrostatic surface potential analysis, the small but measurable mobility difference between the two diastereomers is mainly due to short-range van der Waals interactions with the neutral buffer gas and not long-range charge-induced dipole interactions. The experimental RF-confining drift-tube and T-wave Ω(N(2)) values were also evaluated using a nitrogen based trajectory method, optimized for T-wave operating temperature and pressures, incorporating additional scaling factors to the Lennard-Jones potentials. Experimental Ω(He) values were also compared to the original and optimized helium based trajectory methods.
Energy dynamics in a simulation of LAPD turbulence
NASA Astrophysics Data System (ADS)
Friedman, Brett
2012-10-01
It is often assumed that linear instabilities maintain turbulence in plasmas and some fluids, but this is not always the case. It is well known that many fluids display subcritical turbulence at a Reynolds number well below the threashold of linear instability. Certain plasma models such as drift waves in a sheared slab also exhibit subcritical turbulence [1]. In other instances such as drift-ballooning turbulence in tokamak edge plasmas, linear instabilities exist in a system, but they become subdominant to more robust nonlinear mechanisms that sustain a turbulent state [2, 3]. In our simulation of LAPD turbulence, which was previously analyzed in [4], we diagnose the results using an energy dynamics analysis [5]. This allows us to track energy input into turbulent fluctuations and energy dissipation out of them. We also track conservative energy transfer between different energy types (e.g. from potential to kinetic energy) and between different Fourier waves of the system. The result is that a nonlinear instability drives and maintains the turbulence in the steady state saturated phase of the simulation. While a linear restistive drift wave instability resides in the system, the nonlinear drift wave instability dominates when the fluctuation amplitude becomes large enough. The nonlinear instability is identified by its energy growth rate spectrum, which varies significantly from the linear growth rate spectrum. The main differences are the presence of positive growth rates when k|| = 0 and negative growth rates for nonzero k||, which is opposite that of the linear growth rate spectrum.[4pt] [1] B. D. Scott, Phys. Rev. Lett., 65, 3289 (1990).[0pt] [2] A. Zeiler et al, Phys. Plasmas, 3, 2951 (1996).[0pt] [3] B. D. Scott, Phys. Plasmas, 12, 062314 (2005).[0pt] [4] P. Popovich et al, Phys. Plasmas, 17, 122312 (2010).[0pt] [5] [physics.plasm-ph].
Drifting algae and zoobenthos — Effects on settling and community structure
NASA Astrophysics Data System (ADS)
Bonsdorff, Erik
Shallow (5 to 10 m) sandy bottoms in the Baltic Sea are important areas for zoobenthic production. The infaunal communities are generally governed by the hydrographical conditions are transport of the sediment through wind effects. With increasing eutrophication in the Baltic Sea, drifting mats of annual algae ( Cladophora, Stictyosiphon, Polysiphonia, Rhodemela, Sphacelaria, Pilayella, Furcellaria, Ceramium, etc) have become increasingly common, adding to the structuring and regulating factors for the infauna. In 1990 and 91, a field-study (SCUBA diving; zoobenthos and algae sampling) was carried out in the Åland archipelogo, in thennorthern and their structuring effect on the zoobenthos. Algal biomass increased from 150 ± 19 g DW·m -2 in 1990 to 832±60 g DW·m -2 in 1991, having no effect on oxygen saturation in 1990, but showing signs of reduced oxygen saturation in 1991. Organic content of the sediment remained stable (0.60 to 0.74%) during the entire study period. The zoobenthic community showed significant responses to the drifting algae at population level and in terms of community structure (by 1991: significantly reduced species number; low similarity values (40 to 65%) between bare sand and under the algae). The main species affected were the dominating bivalve Macoma balthica, the polychaetes Pygospio elegans and Manayunkia aestuarina, and the amphipod Corophium volutator. The settlement of M. balthica spat was significantly reduced by the algae (>70% in 1990/91), and no individuals of the dominating polychaetes were recorded under the mat. C. volutator, however, benefited from the algae, and greatly increased in numbers. The results clearly demonstrate the types of physical effects drift-algae will have no sandy-bottom benthos, and show that significant changes in the communities over large areas can be expected with increasing eutrophication.
Recent developments in laser-driven and hollow-core fiber optic gyroscopes
NASA Astrophysics Data System (ADS)
Digonnet, M. J. F.; Chamoun, J. N.
2016-05-01
Although the fiber optic gyroscope (FOG) continues to be a commercial success, current research efforts are endeavoring to improve its precision and broaden its applicability to other markets, in particular the inertial navigation of aircraft. Significant steps in this direction are expected from the use of (1) laser light to interrogate the FOG instead of broadband light, and (2) a hollow-core fiber (HCF) in the sensing coil instead of a conventional solid-core fiber. The use of a laser greatly improves the FOG's scale-factor stability and eliminates the source excess noise, while an HCF virtually eliminates the Kerr-induced drift and significantly reduces the thermal and Faraday-induced drifts. In this paper we present theoretical evidence that in a FOG with a 1085-m coil interrogated with a laser, the two main sources of noise and drift resulting from the use of coherent light can be reduced below the aircraft-navigation requirement by using a laser with a very broad linewidth, in excess of 40 GHz. We validate this concept with a laser broadened with an external phase modulator driven with a pseudo-random bit sequence at 2.8 GHz. This FOG has a measured noise of 0.00073 deg/√h, which is 30% below the aircraft-navigation requirement. Its measured drift is 0.03 deg/h, the lowest reported for a laser-driven FOG and only a factor of 3 larger than the navigation-grade specification. To illustrate the potential benefits of a hollow-core fiber in the FOG, this review also summarizes the previously reported performance of an experimental FOG utilizing 235 m of HCF and interrogated with broadband light.
The surface drifter program for real time and off-line validation of ocean forecasts and reanalyses
NASA Astrophysics Data System (ADS)
Hernandez, Fabrice; Regnier, Charly; Drévillon, Marie
2017-04-01
As part of the Global Ocean Observing System, the Global Drifter Program (GDP) is comprised of an array of about 1250 drifting buoys spread over the global ocean, that provide operational, near-real time surface velocity, sea surface temperature (SST) and sea level pressure observations. This information is used mainly used for numerical weather forecasting, research, and in-situ calibration/verification of satellite observations. Since 2013 the drifting buoy SST measurements are used for near real time assessment of global forecasting systems from Canada, France, UK, USA, Australia in the frame of the GODAE OceanView Intercomparison and Validation Task. For most of these operational systems, these data are not used for assimilation, and offer an independent observation assessment. This approach mimics the validation performed for SST satellite products. More recently, validation procedures have been proposed in order to assess the surface dynamics of Mercator Océan global and regional forecast and reanalyses. Velocities deduced from drifter trajectories are used in two ways. First, the Eulerian approach where buoy and ocean model velocity values are compared at the position of drifters. Then, from discrepancies, statistics are computed and provide an evaluation of the ocean model's surface dynamics reliability. Second, the Lagrangian approach, where drifting trajectories are simulated at each location of the real drifter trajectory using the ocean model velocity fields. Then, on daily basis, real and simulated drifter trajectories are compared by analyzing the spread after one day, two days etc…. The cumulated statistics on specific geographical boxes are evaluated in term of dispersion properties of the "real ocean" as captured by drifters, and those properties in the ocean model. This approach allows to better evaluate forecasting score for surface dispersion applications, like Search and Rescue, oil spill forecast, drift of other objects or contaminant, larvae dispersion etc… These Eulerian and Lagrangian validation approach can be applied for real time or offline assessment of ocean velocity products. In real time, the main limitation is our capability to detect drifter drogue's loss, causing erroneous assessment. Several methods, by comparison to wind entrainment effect or other velocity estimates like from satellite altimetry, are used. These Eulerian and Lagrangian surface velocity validation methods are planned to be adopted by the GODAE OceanView operational community in order to offer independent verification of surface current forecast.
Seasonal drift and feeding periodicity during summer of the amphipod, Gammarus psuedolimnaeus
Johnson, James H.
2014-01-01
Downstream drift of aquatic invertebrates is an important ecological process that varies temporally. Seasonal patterns of diel drift and diel feeding periodicity during summer of the amphipod Gammarus pseudolimnaeus were examined in a small stream in central New York. Seasonal trends in drift were similar with peak drift occurring from 2000 to 0400 h. Very little drift occurred during the day. Feeding intensity of G. pseudolimnaeus was greatest from 2000 to 0400 h and was significantly greater than at 0400 to 0800 h and 0800 to 1200 h. Previous research on feeding periodicity of this species found no evidence of periods of increased food consumption. Conflicting results between this study and earlier studies may be due to sampling drifting versus non-drifting amphipods.
Intrafractional baseline drift during free breathing breast cancer radiation therapy.
Jensen, Christer Andre; Acosta Roa, Ana María; Lund, Jo-Åsmund; Frengen, Jomar
2017-06-01
Intrafraction motion in breast cancer radiation therapy (BCRT) has not yet been thoroughly described in the literature. It has been observed that baseline drift occurs as part of the intrafraction motion. This study aims to measure baseline drift and its incidence in free-breathing BCRT patients using an in-house developed laser system for tracking the position of the sternum. Baseline drift was monitored in 20 right-sided breast cancer patients receiving free breathing 3D-conformal RT by using an in-house developed laser system which measures one-dimensional distance in the AP direction. A total of 357 patient respiratory traces from treatment sessions were logged and analysed. Baseline drift was compared to patient positioning error measured from in-field portal imaging. The mean overall baseline drift at end of treatment sessions was -1.3 mm for the patient population. Relatively small baseline drift was observed during the first fraction; however it was clearly detected already at the second fraction. Over 90% of the baseline drift occurs during the first 3 min of each treatment session. The baseline drift rate for the population was -0.5 ± 0.2 mm/min in the posterior direction the first minute after localization. Only 4% of the treatment sessions had a 5 mm or larger baseline drift at 5 min, all towards the posterior direction. Mean baseline drift in the posterior direction in free breathing BCRT was observed in 18 of 20 patients over all treatment sessions. This study shows that there is a substantial baseline drift in free breathing BCRT patients. No clear baseline drift was observed during the first treatment session; however, baseline drift was markedly present at the rest of the sessions. Intrafraction motion due to baseline drift should be accounted for in margin calculations.
“How Did We Get Here?”: Topic Drift in Online Health Discussions
Hartzler, Andrea L; Huh, Jina; Hsieh, Gary; McDonald, David W; Pratt, Wanda
2016-01-01
Background Patients increasingly use online health communities to exchange health information and peer support. During the progression of health discussions, a change of topic—topic drift—can occur. Topic drift is a frequent phenomenon linked to incoherence and frustration in online communities and other forms of computer-mediated communication. For sensitive topics, such as health, such drift could have life-altering repercussions, yet topic drift has not been studied in these contexts. Objective Our goals were to understand topic drift in online health communities and then to develop and evaluate an automated approach to detect both topic drift and efforts of community members to counteract such drift. Methods We manually analyzed 721 posts from 184 threads from 7 online health communities within WebMD to understand topic drift, members’ reaction towards topic drift, and their efforts to counteract topic drift. Then, we developed an automated approach to detect topic drift and counteraction efforts. We detected topic drift by calculating cosine similarity between 229,156 posts from 37,805 threads and measuring change of cosine similarity scores from the threads’ first posts to their sequential posts. Using a similar approach, we detected counteractions to topic drift in threads by focusing on the irregular increase of similarity scores compared to the previous post in threads. Finally, we evaluated the performance of our automated approaches to detect topic drift and counteracting efforts by using a manually developed gold standard. Results Our qualitative analyses revealed that in threads of online health communities, topics change gradually, but usually stay within the global frame of topics for the specific community. Members showed frustration when topic drift occurred in the middle of threads but reacted positively to off-topic stories shared as separate threads. Although all types of members helped to counteract topic drift, original posters provided the most effort to keep threads on topic. Cosine similarity scores show promise for automatically detecting topical changes in online health discussions. In our manual evaluation, we achieved an F1 score of .71 and .73 for detecting topic drift and counteracting efforts to stay on topic, respectively. Conclusions Our analyses expand our understanding of topic drift in a health context and highlight practical implications, such as promoting off-topic discussions as a function of building rapport in online health communities. Furthermore, the quantitative findings suggest that an automated tool could help detect topic drift, support counteraction efforts to bring the conversation back on topic, and improve communication in these important communities. Findings from this study have the potential to reduce topic drift and improve online health community members’ experience of computer-mediated communication. Improved communication could enhance the personal health management of members who seek essential information and support during times of difficulty. PMID:27806924
Primary and secondary pesticide drift profiles from a peach orchard.
Zivan, Ohad; Bohbot-Raviv, Yardena; Dubowski, Yael
2017-06-01
Atmospheric drift is considered a major loss path of pesticide from target areas, but there is still a large gap of knowledge regarding this complex phenomenon. Pesticide drift may occur during application (Primary drift) and after it (Secondary drift). The present study focuses on primary and secondary drift from ground applications in peach orchard (tree height of 3 m), under Mediterranean climate. Detailed and prolonged vertical drift profiles at close proximity to orchard are presented, together with detailed measurements of key meteorological parameters. The effect of volatility on drift was also studied by simultaneously applying two pesticides that differ in their volatility. Drifting airborne pesticides were detected both during and after applications at sampling distances of 7 and 20 m away from orchard edge. Concentrations ranged between hundreds ng m -3 to a few μg m -3 and showed clear decrease with time and with upwind conditions. Almost no decline in concentrations with height was observed up to thrice canopy height (i.e., 10 m). These homogeneous profiles indicate strong mixing near orchard and are in line with the unstable atmospheric conditions that prevailed during measurements. While air concentrations during pesticide application were higher than after it, overall pesticide load drifted from the orchard during primary and secondary drift are comparable. To the best of our knowledge this is the first work to show such large vertical dispersion and long duration of secondary drift following ground application in orchards. The obtained information indicates that secondary drift should not be neglected in exposure and environmental impact estimations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Radar studies of midlatitude ionospheric plasma drifts
NASA Astrophysics Data System (ADS)
Scherliess, L.; Fejer, B. G.; Holt, J.; Goncharenko, L.; Amory-Mazaudier, C.; Buonsanto, M. J.
2001-02-01
We use incoherent scatter radar measurements from Millstone Hill and Saint Santin to study the midlatitude F region electrodynamic plasma drifts during geomagnetically quiet and active periods. We present initially a local time, season, and solar flux dependent analytical model of the quiet time zonal and meridional
1993-11-30
dependent field to the main toroidal field, which provides an effective increment to the acceleration rate if it has a negative time derivative during...regions, non- uniformities in the beam develop in the drift region, scattering in the foils affects the beam entering the laser, effects due to a second...faster destroyed by a small perturbation. Note that this analogy is adequate only when the global RT mode cannot develop - otherwise, it is the rigid pen
William R. Meehan
1996-01-01
The community composition of macroinvertebrates and the feeding habits of juvenile salmonids were studied in eight Oregon streams. Benthic, drift, sticky trap, and water trap samples were taken over a 3-year period, along with stomach samples of the fish. Samples were taken in stream reaches with and without riparian canopy. Both main effectsâfish diet versus...
Characterization of Non-Organized Soils at Gusev Crater with the Spirit Rover Data
NASA Technical Reports Server (NTRS)
Cabrol, N. A.; Greeley, R.
2005-01-01
We surveyed the characteristic of non-organized soils at Gusev crater at microscale and macroscale in four main traverse regions: (1) Landing site to Bonneville crater; (2) Bonneville to West Spur; (3) the West Spur region; and (4) the Columbia Hills up to sol 363. Non-organized soils are defined as soils traversed by Spirit that do not include drifts, ripples, or dunes.
NASA Astrophysics Data System (ADS)
Lukianova, R. Yu.; Bogoutdinov, Sh. R.
2017-11-01
An analysis of the electron density measurements ( Ne) along the flyby trajectories over the high-latitude region of the Northern Hemisphere under winter conditions in 2014 and 2016 has shown that the main large-scale structure observed by Swarm satellites is the tongue of ionization (TOI). At the maximum of the solar cycle ( F 10.7 = 160), the average value of Ne in the TOI region at an altitude of 500 km was 8 × 104 cm-3. Two years later, at F 10.7 = 100, Ne 5 × 104 cm-3 and Ne 2.5 × 104 cm-3 were observed at altitudes of 470 and 530 km, respectively. During the dominance of the azimuthal component of the interplanetary magnetic field, the TOI has been observed mainly on the dawn or dusk side depending on the sign of B y . Simultaneous observations of the convective plasma drift velocity in the polar cap show the transpolar flow drift to the dawn ( B y < 0) or dusk side ( B y < 0). Observations and numerical simulation of the Ne distribution have confirmed the significant role of the electric field of the magnetospheric convection in the generation of large-scale irregularities in the polar ionosphere.
"How Did We Get Here?": Topic Drift in Online Health Discussions.
Park, Albert; Hartzler, Andrea L; Huh, Jina; Hsieh, Gary; McDonald, David W; Pratt, Wanda
2016-11-02
Patients increasingly use online health communities to exchange health information and peer support. During the progression of health discussions, a change of topic-topic drift-can occur. Topic drift is a frequent phenomenon linked to incoherence and frustration in online communities and other forms of computer-mediated communication. For sensitive topics, such as health, such drift could have life-altering repercussions, yet topic drift has not been studied in these contexts. Our goals were to understand topic drift in online health communities and then to develop and evaluate an automated approach to detect both topic drift and efforts of community members to counteract such drift. We manually analyzed 721 posts from 184 threads from 7 online health communities within WebMD to understand topic drift, members' reaction towards topic drift, and their efforts to counteract topic drift. Then, we developed an automated approach to detect topic drift and counteraction efforts. We detected topic drift by calculating cosine similarity between 229,156 posts from 37,805 threads and measuring change of cosine similarity scores from the threads' first posts to their sequential posts. Using a similar approach, we detected counteractions to topic drift in threads by focusing on the irregular increase of similarity scores compared to the previous post in threads. Finally, we evaluated the performance of our automated approaches to detect topic drift and counteracting efforts by using a manually developed gold standard. Our qualitative analyses revealed that in threads of online health communities, topics change gradually, but usually stay within the global frame of topics for the specific community. Members showed frustration when topic drift occurred in the middle of threads but reacted positively to off-topic stories shared as separate threads. Although all types of members helped to counteract topic drift, original posters provided the most effort to keep threads on topic. Cosine similarity scores show promise for automatically detecting topical changes in online health discussions. In our manual evaluation, we achieved an F1 score of .71 and .73 for detecting topic drift and counteracting efforts to stay on topic, respectively. Our analyses expand our understanding of topic drift in a health context and highlight practical implications, such as promoting off-topic discussions as a function of building rapport in online health communities. Furthermore, the quantitative findings suggest that an automated tool could help detect topic drift, support counteraction efforts to bring the conversation back on topic, and improve communication in these important communities. Findings from this study have the potential to reduce topic drift and improve online health community members' experience of computer-mediated communication. Improved communication could enhance the personal health management of members who seek essential information and support during times of difficulty. ©Albert Park, Andrea L Hartzler, Jina Huh, Gary Hsieh, David W McDonald, Wanda Pratt. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 02.11.2016.
NASA Astrophysics Data System (ADS)
Ali, Gul-e.; Ahmad, Ali; Masood, W.; Mirza, Arshad M.
2017-12-01
Linear and nonlinear coupling of drift and ion acoustic waves are studied in a nonuniform magnetized plasma comprising of Oxygen and Hydrogen ions with nonthermal distribution of electrons. It has been observed that different ratios of ion number densities and kappa and Cairns distributed electrons significantly modify the linear dispersion characteristics of coupled drift-ion acoustic waves. In the nonlinear regime, KdV (for pure drift waves) and KP (for coupled drift-ion acoustic waves) like equations have been derived to study the nonlinear evolution of drift solitary waves in one and two dimensions. The dependence of drift solitary structures on different ratios of ion number densities and nonthermal distribution of electrons has also been explored in detail. It has been found that the ratio of the diamagnetic drift velocity to the velocity of the nonlinear structure determines the existence regimes for the drift solitary waves. The present investigation may be beneficial to understand the formation of solitons in the ionospheric F-region.
Discovery of remarkable subpulse drifting pattern in PSR B0818-41
NASA Astrophysics Data System (ADS)
Bhattacharyya, B.; Gupta, Y.; Gil, J.; Sendyk, M.
The study of pulsars showing systematic subpulse drift patterns provides important clues for understanding of pulsar emission mechanism. Pulsars with wide profiles provide extra insights because of the presence of multiple drift bands (e.g PSR B0826-34). We report the discovery of a remarkable subpulse drift pattern in a relatively less studied wide profile pulsar, PSR B0818-41, using the GMRT. We find simultaneous occurrence of three drift regions with two drift rates, an inner region with steeper apparent drift rate flanked on each side by a region of slower apparent drift rate. Furthermore, the two closely spaced drift regions always maintain a constant phase relationship. These unique drift properties seen for this pulsar is very rare. We interpret that the observed drift pattern is created by intersection of our line of sight (LOS) with two conal rings in a inner LOS (negative beta) geometry. We argue that the carousel rotation periodicity (P_4) and the number of sparks (N_sp) are the same for the rings and claim that P_4 is close to the measured P_3. Based on our analysis results and interpretations, we simulate the radiation from B0818-41. The simulations support our interpretations and reproduce the average profile and the observed drift pattern. The results of our study show that PSR B0818-41 is a powerful system to explore the pulsar radio emission mechanism, the implications of which are also discussed in our work.
On the utility of the ionosonde Doppler derived EXB drift during the daytime
NASA Astrophysics Data System (ADS)
Mohan Joshi, Lalit; Sripathi, Samireddipelle
2016-07-01
Vertical EXB drift measured using the ionosonde Doppler sounding during the daytime suffers from an underestimation of the actual EXB drift. This is due to the photochemistry that determines the height of the F layer during the daytime, in addition to the zonal electric field. Systematic investigations have indicated a fair/good correlation to exist between the C/NOFS and ionosonde Doppler measured vertical EXB drift during the daytime over magnetic equator. A detailed analysis, however, indicated that the linear relation between the ionosonde Doppler drift and C/NOFS EXB drift varied with seasons. Thus, solar, seasonal and also geomagnetic variables were included in the Doppler drift correction, using the artificial neural network based approach. The RMS error in the neural network was found to be lesser than that in the linear regression analysis. Daytime EXB drift was derived using the neural network which was also used to model the ionospheic redistribution in the SAMI2 model. SAMI2 model reproduced strong (/weak) equatorial ionization anomaly (EIA) for cases when neural network corrected daytime vertical EXB drift was high (/low). Similar features were also observed in GIM TEC maps. Thus, the results indicate that the neural network can be utilized to derive the vertical EXB drift from its proxies, like the ionosonde Doppler drift. These results indicate that the daytime ionosonde measured vertical EXB drift can be relied upon, provided adequate corrections are applied to it.
Earth Science Research at the Homestake Deep Underground Science and Engineering Laboratory
NASA Astrophysics Data System (ADS)
Roggenthen, W.; Wang, J.
2004-12-01
The Homestake Mine in South Dakota ceased gold production in 2002 and was sealed for entry in 2003. The announcement of mine closure triggered the revival of a national initiative to establish a deep underground facility, currently known as the Deep Underground Science and Engineering Laboratory (DUSEL). The National Science Foundation announced that solicitations were to be issued in 2004 and 2005, with the first one (known as S-1) issued in June, 2004. The focus of S-1 is on site non-specific technical requirements to define the scientific program at DUSEL. Earth scientists and physicists participated in an S-1 workshop at Berkeley in August, 2004. This abstract presents the prospects of the Homestake Mine to accommodate the earth science scientific programs defined at the S-1 workshop. The Homestake Mine has hundreds of kilometers of drifts over fifty levels accessible (upon mine reopening) for water evaluation, seepage quantification, seismic monitoring, geophysical imaging, geological mapping, mineral sampling, ecology and geo-microbiology. The extensive network of drifts, ramps, and vertical shafts allows installation of 10-kilometer-scale seismograph and electromagnetic networks. Ramps connecting different levels, typically separated by 150 ft, could be instrumented for flow and transport studies, prior to implementation of coupled thermal-hydro-chemical-mechanical-biological processes testing. Numerous large rooms are available for ecological and introduced-material evaluations. Ideas for installing instruments in cubic kilometers of rock mass can be realized over multiple levels. Environmental assessment, petroleum recovery, carbon sequestration were among the applications discussed in the S-1 workshop. If the Homestake Mine can be expediently reopened, earth scientists are ready to perform important tests with a phased approach. The drifts and ramps directly below the large open pit could be the first area for shallow testing. The 4,850 ft level is the next target area, which has a large lateral extent. Geophysical sensor stations could be installed at this level, together with stations along two main shafts accessing this level, and one winze below. After dewatering, rock mechanics and geotechnical engineering investigators could actively participate in room siting and excavation, at depths up to 8,000 ft. Geochemistry and geo-microbiology scientists would prefer additional drilling in deep zones beyond the mining and flooding perturbations. Additional earth science programs are being developed for the Homestake Mine, utilizing multiple levels and shafts. Many physics experiments require a site "as deep as possible" and special conditions to reduce background and cosmic rays. The Homestake Mine offers a very deep site and a vast amount of data and knowledge associated with its 125 years of mining operation. The cores from exploratory drilling into a mechanical strong unit, the Yates Formation, are available for scientific and engineering evaluations. A team from many institutions is being formed by Kevin Lesko, a neutrino scientist with experience in detecting neutrino oscillations with deep detectors in Canada and Japan. It is time for the United States to establish a DUSEL deep and large enough for next-generation physics and earth science long-term experiments. The Homestake Mine has these necessary attributes. The collaboration welcomes participation and contribution from scientists and engineers in the physics and earth science community for multi-disciplinary research during and after the restoration and conversion of the Homestake Mine.
Gyrophase drifts and the orbital evolution of dust at Jupiter's Gossamer Ring
NASA Technical Reports Server (NTRS)
Northrop, T. G.; Mendis, D. A.; Schaffer, Les
1989-01-01
The 'gyrophase drift' phenomenon in Jupiter's fine-dust 'gossamer ring' is presently shown to exceed the plasma-drag drift, and may be able to move small, charged grains either toward or away from synchronous radius. The grain gyrophase drifts toward the higher temperature in the presence of a radial gradient in plasma temperature; gyrophase drift will also occur in conjunction with a radial gradient in the relative concentrations of different plasma ion species, or even due to plasma-grain velocity variation associated with the grain's cycloidal motion through the plasma. The Poynting-Robertson drift is noted to be diminutive by comparison with either the plasma-drag or gyrophase drifts.
ERIC Educational Resources Information Center
Price, Rebecca M.; Andrews, Tessa C.; McElhinny, Teresa L.; Mead, Louise S.; Abraham, Joel K.; Thanukos, Anna; Perez, Kathryn E.
2014-01-01
Understanding genetic drift is crucial for a comprehensive understanding of biology, yet it is difficult to learn because it combines the conceptual challenges of both evolution and randomness. To help assess strategies for teaching genetic drift, we have developed and evaluated the Genetic Drift Inventory (GeDI), a concept inventory that measures…
NASA Astrophysics Data System (ADS)
Li, Rong; Zhao, Jianhui; Li, Fan
2009-07-01
Gyroscope used as surveying sensor in the oil industry has been proposed as a good technique for measurement-whiledrilling (MWD) to provide real-time monitoring of the position and the orientation of the bottom hole assembly (BHA).However, drifts in the measurements provided by gyroscope might be prohibitive for the long-term utilization of the sensor. Some usual methods such as zero velocity update procedure (ZUPT) introduced to limit these drifts seem to be time-consuming and with limited effect. This study explored an in-drilling dynamic -alignment (IDA) method for MWD which utilizes gyroscope. During a directional drilling process, there are some minutes in the rotary drilling mode when the drill bit combined with drill pipe are rotated about the spin axis in a certain speed. This speed can be measured and used to determine and limit some drifts of the gyroscope which pay great effort to the deterioration in the long-term performance. A novel laser assembly is designed on the wellhead to count the rotating cycles of the drill pipe. With this provided angular velocity of the drill pipe, drifts of gyroscope measurements are translated into another form that can be easy tested and compensated. That allows better and faster alignment and limited drifts during the navigation process both of which can reduce long-term navigation errors, thus improving the overall accuracy in INS-based MWD system. This article concretely explores the novel device on the wellhead designed to test the rotation of the drill pipe. It is based on laser testing which is simple and not expensive by adding a laser emitter to the existing drilling equipment. Theoretical simulations and analytical approximations exploring the IDA idea have shown improvement in the accuracy of overall navigation and reduction in the time required to achieve convergence. Gyroscope accuracy along the axis is mainly improved. It is suggested to use the IDA idea in the rotary mode for alignment. Several other practical aspects of implementing this approach are evaluated and compared.
Redshift drift in an inhomogeneous universe: averaging and the backreaction conjecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koksbang, S.M.; Hannestad, S., E-mail: koksbang@phys.au.dk, E-mail: sth@phys.au.dk
2016-01-01
An expression for the average redshift drift in a statistically homogeneous and isotropic dust universe is given. The expression takes the same form as the expression for the redshift drift in FLRW models. It is used for a proof-of-principle study of the effects of backreaction on redshift drift measurements by combining the expression with two-region models. The study shows that backreaction can lead to positive redshift drift at low redshifts, exemplifying that a positive redshift drift at low redshifts does not require dark energy. Moreover, the study illustrates that models without a dark energy component can have an average redshiftmore » drift observationally indistinguishable from that of the standard model according to the currently expected precision of ELT measurements. In an appendix, spherically symmetric solutions to Einstein's equations with inhomogeneous dark energy and matter are used to study deviations from the average redshift drift and effects of local voids.« less
Relationships of forest vegetation to habitat on two types of glacial drift in New Hampshire
William B. Leak
1978-01-01
Species composition and site index were determined on nine tree habitats in an area of schistose drift and compared with previous findings on habitats with granitic drift. Habitats on schistose drift supported more sugar maple and had somewhat higher site indexes. Compact tills in schistose drift supported northern hardwoods, and the site indexes for yellow birch were...
The initial value problem in Lagrangian drift kinetic theory
NASA Astrophysics Data System (ADS)
Burby, J. W.
2016-06-01
> Existing high-order variational drift kinetic theories contain unphysical rapidly varying modes that are not seen at low orders. These unphysical modes, which may be rapidly oscillating, damped or growing, are ushered in by a failure of conventional high-order drift kinetic theory to preserve the structure of its parent model's initial value problem. In short, the (infinite dimensional) system phase space is unphysically enlarged in conventional high-order variational drift kinetic theory. I present an alternative, `renormalized' variational approach to drift kinetic theory that manifestly respects the parent model's initial value problem. The basic philosophy underlying this alternate approach is that high-order drift kinetic theory ought to be derived by truncating the all-orders system phase-space Lagrangian instead of the usual `field particle' Lagrangian. For the sake of clarity, this story is told first through the lens of a finite-dimensional toy model of high-order variational drift kinetics; the analogous full-on drift kinetic story is discussed subsequently. The renormalized drift kinetic system, while variational and just as formally accurate as conventional formulations, does not support the troublesome rapidly varying modes.
NASA Astrophysics Data System (ADS)
Fierro, Annalisa; Cocozza, Sergio; Monticelli, Antonella; Scala, Giovanni; Miele, Gennaro
2017-06-01
The presence of phenomena analogous to phase transition in Statistical Mechanics has been suggested in the evolution of a polygenic trait under stabilizing selection, mutation and genetic drift. By using numerical simulations of a model system, we analyze the evolution of a population of N diploid hermaphrodites in random mating regime. The population evolves under the effect of drift, selective pressure in form of viability on an additive polygenic trait, and mutation. The analysis allows to determine a phase diagram in the plane of mutation rate and strength of selection. The involved pattern of phase transitions is characterized by a line of critical points for weak selective pressure (smaller than a threshold), whereas discontinuous phase transitions, characterized by metastable hysteresis, are observed for strong selective pressure. A finite-size scaling analysis suggests the analogy between our system and the mean-field Ising model for selective pressure approaching the threshold from weaker values. In this framework, the mutation rate, which allows the system to explore the accessible microscopic states, is the parameter controlling the transition from large heterozygosity ( disordered phase) to small heterozygosity ( ordered one).
Arctic Ocean sea ice drift origin derived from artificial radionuclides.
Cámara-Mor, P; Masqué, P; Garcia-Orellana, J; Cochran, J K; Mas, J L; Chamizo, E; Hanfland, C
2010-07-15
Since the 1950s, nuclear weapon testing and releases from the nuclear industry have introduced anthropogenic radionuclides into the sea, and in many instances their ultimate fate are the bottom sediments. The Arctic Ocean is one of the most polluted in this respect, because, in addition to global fallout, it is impacted by regional fallout from nuclear weapon testing, and indirectly by releases from nuclear reprocessing facilities and nuclear accidents. Sea-ice formed in the shallow continental shelves incorporate sediments with variable concentrations of anthropogenic radionuclides that are transported through the Arctic Ocean and are finally released in the melting areas. In this work, we present the results of anthropogenic radionuclide analyses of sea-ice sediments (SIS) collected on five cruises from different Arctic regions and combine them with a database including prior measurements of these radionuclides in SIS. The distribution of (137)Cs and (239,240)Pu activities and the (240)Pu/(239)Pu atom ratio in SIS showed geographical differences, in agreement with the two main sea ice drift patterns derived from the mean field of sea-ice motion, the Transpolar Drift and Beaufort Gyre, with the Fram Strait as the main ablation area. A direct comparison of data measured in SIS samples against those reported for the potential source regions permits identification of the regions from which sea ice incorporates sediments. The (240)Pu/(239)Pu atom ratio in SIS may be used to discern the origin of sea ice from the Kara-Laptev Sea and the Alaskan shelf. However, if the (240)Pu/(239)Pu atom ratio is similar to global fallout, it does not provide a unique diagnostic indicator of the source area, and in such cases, the source of SIS can be constrained with a combination of the (137)Cs and (239,240)Pu activities. Therefore, these anthropogenic radionuclides can be used in many instances to determine the geographical source area of sea-ice. Copyright 2010 Elsevier B.V. All rights reserved.
Electron beam charging of insulators: A self-consistent flight-drift model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Touzin, M.; Goeuriot, D.; Guerret-Piecourt, C.
2006-06-01
Electron beam irradiation and the self-consistent charge transport in bulk insulating samples are described by means of a new flight-drift model and an iterative computer simulation. Ballistic secondary electron and hole transport is followed by electron and hole drifts, their possible recombination and/or trapping in shallow and deep traps. The trap capture cross sections are the Poole-Frenkel-type temperature and field dependent. As a main result the spatial distributions of currents j(x,t), charges {rho}(x,t), the field F(x,t), and the potential slope V(x,t) are obtained in a self-consistent procedure as well as the time-dependent secondary electron emission rate {sigma}(t) and the surfacemore » potential V{sub 0}(t). For bulk insulating samples the time-dependent distributions approach the final stationary state with j(x,t)=const=0 and {sigma}=1. Especially for low electron beam energies E{sub 0}<4 keV the incorporation of mainly positive charges can be controlled by the potential V{sub G} of a vacuum grid in front of the target surface. For high beam energies E{sub 0}=10, 20, and 30 keV high negative surface potentials V{sub 0}=-4, -14, and -24 kV are obtained, respectively. Besides open nonconductive samples also positive ion-covered samples and targets with a conducting and grounded layer (metal or carbon) on the surface have been considered as used in environmental scanning electron microscopy and common SEM in order to prevent charging. Indeed, the potential distributions V(x) are considerably small in magnitude and do not affect the incident electron beam neither by retarding field effects in front of the surface nor within the bulk insulating sample. Thus the spatial scattering and excitation distributions are almost not affected.« less
Lima, Marcos R.; Macedo, Regina H. F.; Martins, Thaís L. F.; Schrey, Aaron W.; Martin, Lynn B.; Bensch, Staffan
2012-01-01
Introduced species are interesting systems for the study of contemporary evolution in new environments because of their spatial and temporal scales. For this study we had three aims: (i) to determine how genetic diversity and genetic differentiation of introduced populations of the house sparrow (Passer domesticus) in Brazil varies with range expansion, (ii) to determine how genetic diversity and differentiation in Brazil compares to ancestral European populations; and (iii) to determine whether selection or genetic drift has been more influential on phenotypic divergence. We used six microsatellite markers to genotype six populations from Brazil and four populations from Europe. We found slightly reduced levels of genetic diversity in Brazilian compared to native European populations. However, among introduced populations of Brazil, we found no association between genetic diversity and time since introduction. Moreover, overall genetic differentiation among introduced populations was low indicating that the expansion took place from large populations in which genetic drift effects would likely have been weak. We found significant phenotypic divergence among sites in Brazil. Given the absence of a spatial genetic pattern, divergent selection and not genetic drift seems to be the main force behind most of the phenotypic divergence encountered. Unravelling whether microevolution (e.g., allele frequency change), phenotypic plasticity, or both mediated phenotypic divergence is challenging and will require experimental work (e.g., common garden experiments or breeding programs). PMID:23285283
1969-07-01
In this photograph, the deep-sea Research Submarine "Ben Franklin" drifts off the East Coast of the United States (U.S.) prior to submerging into the ocean. Named for American patriot and inventor Ben Franklin, who discovered the Gulf Steam, the 50-foot Ben Franklin was built between 1966 and 1968 in Switzerland for deep-ocean explorer Jacques Piccard and the Grumman Aircraft Engineering Corporation. The submersible made a famous 30-day drift dive off the East Coast of the United States and Canada in 1969 mapping the Gulf Stream's currents and sea life, and also made space exploration history by studying the behavior of aquanauts in a sealed, self-contained, self-sufficient capsule for NASA. On July 14, 1969, the Ben Franklin was towed to the high-velocity center of the Stream off the coast of Palm Beach, Florida. With a NASA observer on board, the sub descended to 1,000 feet off of Riviera Beach, Florida and drifted 1,400 miles north with the current for more than four weeks, reemerging near Maine. During the course of the dive, NASA conducted exhaustive analyses of virtually every aspect of onboard life. They measured sleep quality and patterns, sense of humor and behavioral shifts, physical reflexes, and the effects of a long-term routine on the crew. The submarine's record-shattering dive influenced the design of Apollo and Skylab missions and continued to guide NASA scientists as they devised future marned space-flight missions.
Credit Card Fraud Detection: A Realistic Modeling and a Novel Learning Strategy.
Dal Pozzolo, Andrea; Boracchi, Giacomo; Caelen, Olivier; Alippi, Cesare; Bontempi, Gianluca
2017-09-14
Detecting frauds in credit card transactions is perhaps one of the best testbeds for computational intelligence algorithms. In fact, this problem involves a number of relevant challenges, namely: concept drift (customers' habits evolve and fraudsters change their strategies over time), class imbalance (genuine transactions far outnumber frauds), and verification latency (only a small set of transactions are timely checked by investigators). However, the vast majority of learning algorithms that have been proposed for fraud detection rely on assumptions that hardly hold in a real-world fraud-detection system (FDS). This lack of realism concerns two main aspects: 1) the way and timing with which supervised information is provided and 2) the measures used to assess fraud-detection performance. This paper has three major contributions. First, we propose, with the help of our industrial partner, a formalization of the fraud-detection problem that realistically describes the operating conditions of FDSs that everyday analyze massive streams of credit card transactions. We also illustrate the most appropriate performance measures to be used for fraud-detection purposes. Second, we design and assess a novel learning strategy that effectively addresses class imbalance, concept drift, and verification latency. Third, in our experiments, we demonstrate the impact of class unbalance and concept drift in a real-world data stream containing more than 75 million transactions, authorized over a time window of three years.
NASA Astrophysics Data System (ADS)
Monnier, F.; Vallet, B.; Paparoditis, N.; Papelard, J.-P.; David, N.
2013-10-01
This article presents a generic and efficient method to register terrestrial mobile data with imperfect location on a geographic database with better overall accuracy but less details. The registration method proposed in this paper is based on a semi-rigid point to plane ICP ("Iterative Closest Point"). The main applications of such registration is to improve existing geographic databases, particularly in terms of accuracy, level of detail and diversity of represented objects. Other applications include fine geometric modelling and fine façade texturing, object extraction such as trees, poles, road signs marks, facilities, vehicles, etc. The geopositionning system of mobile mapping systems is affected by GPS masks that are only partially corrected by an Inertial Navigation System (INS) which can cause an important drift. As this drift varies non-linearly, but slowly in time, it will be modelled by a translation defined as a piecewise linear function of time which variation over time will be minimized (rigidity term). For each iteration of the ICP, the drift is estimated in order to minimise the distance between laser points and planar model primitives (data attachment term). The method has been tested on real data (a scan of the city of Paris of 3.6 million laser points registered on a 3D model of approximately 71,400 triangles).
The μ-RWELL: A compact, spark protected, single amplification-stage MPGD
NASA Astrophysics Data System (ADS)
Poli Lener, M.; Bencivenni, G.; de Olivera, R.; Felici, G.; Franchino, S.; Gatta, M.; Maggi, M.; Morello, G.; Sharma, A.
2016-07-01
In this work we present two innovative architectures of resistive MPGDs based on the WELL-amplification concept: - the micro-Resistive WELL (μ-RWELL) is a compact spark-protected single amplification-stage Micro-Pattern Gas Detector (MPGD). The amplification stage, realized with a structure very similar to a GEM foil (called WELL), is embedded through a resistive layer in the readout board. A cathode electrode, defining the gas conversion/drift gap, completes the detector mechanics. The new architecture, showing an excellent space resolution, 50 μm, is a very compact device, robust against discharges and exhibiting a large gain (>104), simple to construct and easy for engineering and then suitable for large area tracking devices as well as digital calorimeters. - the Fast Timing Micro-pattern (FTM): a new device with an architecture based on a stack of several coupled full-resistive layers where drift and multiplication stages (WELL type) alternate in the structure. The signals from each multiplication stage can be read out from any external readout boards through the capacitive couplings, providing a signal with a gain of 104-105. The main advantage of this new device is the improvement of the timing provided by the competition of the ionization processes in the different drift regions, which can be exploited for fast timing at the high luminosity accelerators (e.g. HL-LHC upgrade) as well as for applications like medical imaging.
Christofilos, N.C.; Polk, I.J.
1959-02-17
Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.
The drift velocity monitoring system of the CMS barrel muon chambers
NASA Astrophysics Data System (ADS)
Altenhöfer, Georg; Hebbeker, Thomas; Heidemann, Carsten; Reithler, Hans; Sonnenschein, Lars; Teyssier, Daniel
2018-04-01
The drift velocity is a key parameter of drift chambers. Its value depends on several parameters: electric field, pressure, temperature, gas mixture, and contamination, for example, by ambient air. A dedicated Velocity Drift Chamber (VDC) with 1-L volume has been built at the III. Phys. Institute A, RWTH Aachen, in order to monitor the drift velocity of all CMS barrel muon Drift Tube chambers. A system of six VDCs was installed at CMS and has been running since January 2011. We present the VDC monitoring system, its principle of operation, and measurements performed.
Using different drift gases to change separation factors (alpha) in ion mobility spectrometry
Asbury; Hill
2000-02-01
The use of different drift gases to alter separation factors (alpha) in ion mobility spectrometry has been demonstrated. The mobility of a series of low molecular weight compounds and three small peptides was determined in four different drift gases. The drift gases chosen were helium, argon, nitrogen, and carbon dioxide. These drift gases provide a range of polarizabilities and molecular weights. In all instances, the compounds showed the greatest mobility in helium and the lowest mobility in carbon dioxide; however the percentage change of mobility for each compound was different, effectively changing the alpha value. The alpha value changes were primarily due to differences in drift gas polarizability but were also influenced by the mass of the drift gas. In addition, gas-phase ion radii were calculated in each of the different drift gases. These radii were then plotted against drift gas polarizability producing linear plots with r2 values greater than 0.99. The intercept of these plots provides the gas-phase radius of an ion in a nonpolarizing environment, whereas the slope is indicative of the magnitude of the ion's mobility change related to polarizability. It therefore, should be possible to separate any two compounds that have different slopes with the appropriate drift gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuoka, Seikichi, E-mail: matsuoka@rist.or.jp; Satake, Shinsuke; Kanno, Ryutaro
2015-07-15
In evaluating neoclassical transport by radially local simulations, the magnetic drift tangential to a flux surface is usually ignored in order to keep the phase-space volume conservation. In this paper, effect of the tangential magnetic drift on the local neoclassical transport is investigated. To retain the effect of the tangential magnetic drift in the local treatment of neoclassical transport, a new local formulation for the drift kinetic simulation is developed. The compressibility of the phase-space volume caused by the tangential magnetic drift is regarded as a source term for the drift kinetic equation, which is solved by using a two-weightmore » δf Monte Carlo method for non-Hamiltonian system [G. Hu and J. A. Krommes, Phys. Plasmas 1, 863 (1994)]. It is demonstrated that the effect of the drift is negligible for the neoclassical transport in tokamaks. In non-axisymmetric systems, however, the tangential magnetic drift substantially changes the dependence of the neoclassical transport on the radial electric field E{sub r}. The peaked behavior of the neoclassical radial fluxes around E{sub r }={sub }0 observed in conventional local neoclassical transport simulations is removed by taking the tangential magnetic drift into account.« less
Laboratory Simulation and Measurement of Instrument Drift in Quartz-Resonant Pressure Gauges
NASA Astrophysics Data System (ADS)
Sasagawa, G. S.; Zumberge, M. A.
2017-12-01
Marine geodesy uses ocean bottom pressure sensors to measure vertical deformation of the sea floor, including that due to volcanic inflation and subsidence, episodic tremor and slip, plate subduction, and deformation due to hydrocarbon extraction at offshore reservoirs. Instrumental drift is inherent in existing pressure sensors and introduce uncertainties in data interpretation. Different methods have been developed to control drift, using varying techniques and instrumentation. Laboratory measurements of sensor drift, under controlled conditions that simulate seafloor pressures and temperatures, would allow for evaluating pressure gauge drift and the efficacy of new drift control methods. We have constructed and operated a laboratory system to monitor the drift of 15 quartz resonant pressure gauges over a year. The temperature and pressure are maintained and controlled at approximately 5 °C and 1900 dbar. A deadweight tester was used to provide a reference signal at frequent intervals; the time series of reference pressure signals is a direct measure of each gauge's drift. Several other tests were conducted, including a) evaluation of a custom outgassing sensor used as proxy for instrument drift, b) determination of the oscillator drift in the pressure gauge signal conditioning electronics, and c) a test of ambient air pressure calibration, also known as the A-0-A method. First results will be presented.
Ferguson, J Connor; Chechetto, Rodolfo G; O'Donnell, Chris C; Dorr, Gary J; Moore, John H; Baker, Greg J; Powis, Kevin J; Hewitt, Andrew J
2016-08-01
Previous research has sought to adopt the use of drift-reducing technologies (DRTs) for use in field trials to control diamondback moth (DBM) Plutella xylostella (L.) (Lepidoptera: Plutellidae) in canola (Brassica napus L.). Previous studies observed no difference in canopy penetration from fine to coarse sprays, but the coverage was higher for fine sprays. DBM has a strong propensity to avoid sprayed plant material, putting further pressure on selecting technologies that maximise coverage, but often this is at the expense of a greater drift potential. This study aims to examine the addition of a DRT oil that is labelled for control of DBM as well and its effect on the drift potential of the spray solution. The objectives of the study are to quantify the droplet size spectrum and spray drift potential of each nozzle type to select technologies that reduce spray drift, to examine the effect of the insecticide tank mix at both (50 and 100 L ha(-1) ) application rates on droplet size and spray drift potential across tested nozzle type and to compare the droplet size results of each nozzle by tank mix against the drift potential of each nozzle. The nozzle type affected the drift potential the most, but the spray solution also affected drift potential. The fine spray quality (TCP) resulted in the greatest drift potential (7.2%), whereas the coarse spray quality (AIXR) resulted in the lowest (1.3%), across all spray solutions. The spray solutions mixed at the 100 L ha(-1) application volume rate resulted in a higher drift potential than the same products mixed at the 50 L ha(-1) mix rate. The addition of the paraffinic DRT oil was significant in reducing the drift potential of Bacillus thuringiensis var. kurstkai (Bt)-only treatments across all tested nozzle types. The reduction in drift potential from the fine spray quality to the coarse spray quality was up to 85%. The addition of a DRT oil is an effective way to reduce the spray solution drift potential across all nozzle types and tank mixes evaluated in this study. The greatest reduction in drift potential can be achieved by changing nozzle type, which can reduce the losses of the spray to the surrounding environment. Venturi nozzles greatly reduce the drift potential compared with standard nozzles by as much as 85% across all three insecticide spray solutions. Results suggest that a significant reduction in drift potential can be achieved by changing the nozzle type, and can be achieved without a loss in control of DBM. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Wideband, mobile networking technologies
NASA Astrophysics Data System (ADS)
Hyer, Kevin L.; Bowen, Douglas G.; Pulsipher, Dennis C.
2005-05-01
Ubiquitous communications will be the next era in the evolving communications revolution. From the human perspective, access to information will be instantaneous and provide a revolution in services available to both the consumer and the warfighter. Services will be from the mundane - anytime, anywhere access to any movie ever made - to the vital - reliable and immediate access to the analyzed real-time video from the multi-spectral sensors scanning for snipers in the next block. In the former example, the services rely on a fixed infrastructure of networking devices housed in controlled environments and coupled to fixed terrestrial fiber backbones - in the latter, the services are derived from an agile and highly mobile ad-hoc backbone established in a matter of minutes by size, weight, and power-constrained platforms. This network must mitigate significant changes in the transmission media caused by millisecond-scale atmospheric temperature variations, the deployment of smoke, or the drifting of a cloud. It must mitigate against structural obscurations, jet wash, or incapacitation of a node. To maintain vital connectivity, the mobile backbone must be predictive and self-healing on both near-real-time and real-time time scales. The nodes of this network must be reconfigurable to mitigate intentional and environmental jammers, block attackers, and alleviate interoperability concerns caused by changing standards. The nodes must support multi-access of disparate waveform and protocols.
Boston Harbor, Massachusetts Main Report for Debris Removal. Volume I. Revision.
1980-05-01
levels , has been estimated at $19,464,000. Prospective tangible monetary benefits to navigation through the reduction in boat-drift collision incidents and...percent of the $19,464,000 total estimated project first costs assigned to nonvendible project purposes, based on December 1979 price levels ). This cash...Harbor enjoys a temperate climate typical of its location on the easterly side of a large continent. Humidity and precipitation levels remain
OpenDrift v1.0: a generic framework for trajectory modelling
NASA Astrophysics Data System (ADS)
Dagestad, Knut-Frode; Röhrs, Johannes; Breivik, Øyvind; Ådlandsvik, Bjørn
2018-04-01
OpenDrift is an open-source Python-based framework for Lagrangian particle modelling under development at the Norwegian Meteorological Institute with contributions from the wider scientific community. The framework is highly generic and modular, and is designed to be used for any type of drift calculations in the ocean or atmosphere. A specific module within the OpenDrift framework corresponds to a Lagrangian particle model in the traditional sense. A number of modules have already been developed, including an oil drift module, a stochastic search-and-rescue module, a pelagic egg module, and a basic module for atmospheric drift. The framework allows for the ingestion of an unspecified number of forcing fields (scalar and vectorial) from various sources, including Eulerian ocean, atmosphere and wave models, but also measurements or a priori values for the same variables. A basic backtracking mechanism is inherent, using sign reversal of the total displacement vector and negative time stepping. OpenDrift is fast and simple to set up and use on Linux, Mac and Windows environments, and can be used with minimal or no Python experience. It is designed for flexibility, and researchers may easily adapt or write modules for their specific purpose. OpenDrift is also designed for performance, and simulations with millions of particles may be performed on a laptop. Further, OpenDrift is designed for robustness and is in daily operational use for emergency preparedness modelling (oil drift, search and rescue, and drifting ships) at the Norwegian Meteorological Institute.
NASA Astrophysics Data System (ADS)
Sun, Guohua; Chuang-Sheng, Walter Yang; Gu, Qiang; DesRoches, Reginald
2018-04-01
To resolve the issue regarding inaccurate prediction of the hysteretic behavior by micro-based numerical analysis for partially-restrained (PR) steel frames with solid reinforced concrete (RC) infill walls, an innovative simplified model of composite compression struts is proposed on the basis of experimental observation on the cracking distribution, load transferring mechanism, and failure modes of RC infill walls filled in PR steel frame. The proposed composite compression struts model for the solid RC infill walls is composed of α inclined struts and main diagonal struts. The α inclined struts are used to reflect the part of the lateral force resisted by shear connectors along the frame-wall interface, while the main diagonal struts are introduced to take into account the rest of the lateral force transferred along the diagonal direction due to the complicated interaction between the steel frame and RC infill walls. This study derives appropriate formulas for the effective widths of the α inclined strut and main diagonal strut, respectively. An example of PR steel frame with RC infill walls simulating simulated by the composite inclined compression struts model is illustrated. The maximum lateral strength and the hysteresis curve shape obtained from the proposed composite strut model are in good agreement with those from the test results, and the backbone curve of a PR steel frame with RC infill walls can be predicted precisely when the inter-story drift is within 1%. This simplified model can also predict the structural stiffness and the equivalent viscous damping ratio well when the inter-story drift ratio exceeds 0.5%.
Pulsed discharge ionization source for miniature ion mobility spectrometers
Xu, Jun; Ramsey, J. Michael; Whitten, William B.
2004-11-23
A method and apparatus is disclosed for flowing a sample gas and a reactant gas (38, 43) past a corona discharge electrode (26) situated at a first location in an ion drift chamber (24), applying a pulsed voltage waveform comprising a varying pulse component and a dc bias component to the corona discharge electrode (26) to cause a corona which in turn produces ions from the sample gas and the reactant gas, applying a dc bias to the ion drift chamber (24) to cause the ions to drift to a second location (25) in the ion drift chamber (24), detecting the ions at the second location (25) in the drift chamber (24), and timing the period for the ions to drift from the corona discharge electrode to the selected location in the drift chamber.
Community Air Monitoring for Pesticide Drift Using Pesticide Action Network's (PAN) Drift Catcher
NASA Astrophysics Data System (ADS)
Marquez, E.
2016-12-01
Community air monitoring projects for pesticides in the air have been conducted by PAN in collaboration with community members and locally based groups engaged around pesticide issues. PAN is part of an international network working to promote a just, thriving food system and replace the use of hazardous pesticides with ecologically sound alternatives. The Drift Catcher is an air-monitoring device with a design based on the California Air Resource Board's air monitoring equipment, and has been used in community-based projects in 11 states. Observations of pesticide drift made by community members cannot always be confirmed by regulatory agencies—if an inspection is made hours or days after a drift incident, the evidence may no longer be present. The Drift Catcher makes it possible to collect scientific evidence of pesticide drift in areas where people live, work, and play. One of the most recent Drift Catcher projects was done in California, in partnership with the Safe Strawberry Coalition and led by the statewide coalition Californians for Pesticide Reform. The data were used to support a call for stronger mitigation rules for the fumigant chloropicrin and to support a campaign asking for stronger pesticide rules to protect children attending school in close proximity to agricultural fields. The Drift Catcher data are used by organizers and community members to engage policymakers with the intention of making policy change on a local and/or statewide level. On the national level, PAN's Drift Catcher data has helped win regulatory recognition of volatilization drift for pesticides other than fumigants. Lessons learned from conducting community-based research projects will also be discussed. PAN is also currently assessing other community-based monitoring tools, such as community surveys and drift questionnaires that may allow communities to collect data that can also support the campaign work.
Smith, Richard D.; Tang, Keqi; Shvartsburg, Alexandre A.
2004-11-16
A method and apparatus enabling increased sensitivity in ion mobility spectrometry/mass spectrometry instruments which substantially reduces or eliminates the loss of ions in ion mobility spectrometer drift tubes utilizing an hourglass electrodynamic ion funnel at the entrance to the drift tube and/or an internal ion funnel at the exit of the drift tube. An hourglass electrodynamic funnel is formed of at least an entry element, a center element, and an exit element, wherein the aperture of the center element is smaller than the aperture of the entry element and the aperture of the exit elements. Ions generated in a relatively high pressure region by an ion source at the exterior of the hourglass electrodynamic funnel are transmitted to a relatively low pressure region at the entrance of the hourglass funnel through a conductance limiting orifice. Alternating and direct electrical potentials are applied to the elements of the hourglass electrodynamic funnel thereby drawing ions into and through the hourglass electrodynamic funnel thereby introducing relatively large quantities of ions into the drift tube while maintaining the gas pressure and composition at the interior of the drift tube as distinct from those at the entrance of the electrodynamic funnel and allowing a positive gas pressure to be maintained within the drift tube, if desired. An internal ion funnel is provided within the drift tube and is positioned at the exit of said drift tube. The advantage of the internal ion funnel is that ions that are dispersed away from the exit aperture within the drift tube, such as those that are typically lost in conventional drift tubes to any subsequent analysis or measurement, are instead directed through the exit of the drift tube, vastly increasing the amount of ions exiting the drift tube.
Different types of drifts in two seasonal forecast systems and their dependence on ENSO
NASA Astrophysics Data System (ADS)
Hermanson, L.; Ren, H.-L.; Vellinga, M.; Dunstone, N. D.; Hyder, P.; Ineson, S.; Scaife, A. A.; Smith, D. M.; Thompson, V.; Tian, B.; Williams, K. D.
2017-11-01
Seasonal forecasts using coupled ocean-atmosphere climate models are increasingly employed to provide regional climate predictions. For the quality of forecasts to improve, regional biases in climate models must be diagnosed and reduced. The evolution of biases as initialized forecasts drift away from the observations is poorly understood, making it difficult to diagnose the causes of climate model biases. This study uses two seasonal forecast systems to examine drifts in sea surface temperature (SST) and precipitation, and compares them to the long-term bias in the free-running version of each model. Drifts are considered from daily to multi-annual time scales. We define three types of drift according to their relation with the long-term bias in the free-running model: asymptoting, overshooting and inverse drift. We find that precipitation almost always has an asymptoting drift. SST drifts on the other hand, vary between forecasting systems, where one often overshoots and the other often has an inverse drift. We find that some drifts evolve too slowly to have an impact on seasonal forecasts, even though they are important for climate projections. The bias found over the first few days can be very different from that in the free-running model, so although daily weather predictions can sometimes provide useful information on the causes of climate biases, this is not always the case. We also find that the magnitude of equatorial SST drifts, both in the Pacific and other ocean basins, depends on the El Niño Southern Oscillation (ENSO) phase. Averaging over all hindcast years can therefore hide the details of ENSO state dependent drifts and obscure the underlying physical causes. Our results highlight the need to consider biases across a range of timescales in order to understand their causes and develop improved climate models.
Spray particle drift mitigation using field corn (Zea mays L.) as a drift barrier.
Vieira, Bruno C; Butts, Thomas R; Rodrigues, Andre O; Golus, Jeffrey A; Schroeder, Kasey; Kruger, Greg R
2018-04-24
Herbicide particle drift reduces application efficacy and can cause severe impacts on nearby vegetation depending on the herbicide mode-of-action, exposure level, and tolerance to the herbicide. A particle drift mitigation effort placing windbreaks or barriers on the field boundaries to reduce off-target movement of spray particles has been utilized in the past. The objective of this research was to evaluate the effectiveness of field corn (Zea mays L.) at different heights as a particle drift barrier. Applications with a non-air inclusion flat fan nozzle (ER11004) resulted in greater particle drift when compared to an air inclusion nozzle (TTI11004). Eight rows of corn were used as barriers (0.91, 1.22, and 1.98 m height) which reduced the particle drift for both nozzles, especially at shorter downwind distances. Applications with the ER11004 nozzle without corn barriers had 1% of the applied rate (D 99 ) predicted to deposit at 14.8 m downwind, whereas this distance was reduced (up to 7-fold) when applications were performed with corn barriers. The combination of corn drift barriers and nozzle selection (TTI11004) provided satisfactory particle drift reduction when the D 99 estimates were compared to applications with the ER11004 nozzle without corn barriers (up to 10-fold difference). The corn drift barriers were effective in reducing particle drift from applications with the ER11004 and the TTI11004 nozzles (Fine and Ultra Coarse spray classifications, respectively). The corn drift barrier had appropriate porosity and width as the airborne spray was captured within its canopy instead of deflecting up and over it. This article is protected by copyright. All rights reserved.
NASA Technical Reports Server (NTRS)
Burger, R. A.; Moraal, H.; Webb, G. M.
1985-01-01
It is shown that there is a simpler way to derive the average guiding center drift of a distribution of particles than via the so-called single particle analysis. Based on this derivation it is shown that the entire drift formalism can be considerably simplified, and that results for low order anisotropies are more generally valid than is usually appreciated. This drift analysis leads to a natural alternative derivation of the drift velocity along a neutral sheet.
POST-PROCESSING ANALYSIS FOR THC SEEPAGE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y. SUN
This report describes the selection of water compositions for the total system performance assessment (TSPA) model of results from the thermal-hydrological-chemical (THC) seepage model documented in ''Drift-Scale THC Seepage Model'' (BSC 2004 [DIRS 169856]). The selection has been conducted in accordance with ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Post-Processing Analysis for THC Seepage) Report Integration'' (BSC 2004 [DIRS 171334]). This technical work plan (TWP) was prepared in accordance with AP-2.27Q, ''Planning for Science Activities''. Section 1.2.3 of the TWP describes planning information pertaining to the technical scope, content, and managementmore » of this report. The post-processing analysis for THC seepage (THC-PPA) documented in this report provides a methodology for evaluating the near-field compositions of water and gas around a typical waste emplacement drift as these relate to the chemistry of seepage, if any, into the drift. The THC-PPA inherits the conceptual basis of the THC seepage model, but is an independently developed process. The relationship between the post-processing analysis and other closely related models, together with their main functions in providing seepage chemistry information for the Total System Performance Assessment for the License Application (TSPA-LA), are illustrated in Figure 1-1. The THC-PPA provides a data selection concept and direct input to the physical and chemical environment (P&CE) report that supports the TSPA model. The purpose of the THC-PPA is further discussed in Section 1.2. The data selection methodology of the post-processing analysis (Section 6.2.1) was initially applied to results of the THC seepage model as presented in ''Drift-Scale THC Seepage Model'' (BSC 2004 [DIRS 169856]). Other outputs from the THC seepage model (DTN: LB0302DSCPTHCS.002 [DIRS 161976]) used in the P&CE (BSC 2004 [DIRS 169860], Section 6.6) were also subjected to the same initial selection. The present report serves as a full documentation of this selection and also provides additional analyses in support of the choice of waters selected for further evaluation in ''Engineered Barrier System: Physical and Chemical Environment'' (BSC 2004 [DIRS 169860], Section 6.6). The work scope for the studies presented in this report is described in the TWP (BSC 2004 [DIRS 171334]) and other documents cited above and can be used to estimate water and gas compositions near waste emplacement drifts. Results presented in this report were submitted to the Technical Data Management System (TDMS) under specific data tracking numbers (DTNs) as listed in Appendix A. The major change from previous selection of results from the THC seepage model is that the THC-PPA now considers data selection in space around the modeled waste emplacement drift, tracking the evolution of pore-water and gas-phase composition at the edge of the dryout zone around the drift. This post-processing analysis provides a scientific background for the selection of potential seepage water compositions.« less
NASA Astrophysics Data System (ADS)
Hernandez, Olga; Lehodey, Patrick; Senina, Inna; Echevin, Vincent; Ayón, Patricia; Bertrand, Arnaud; Gaspar, Philippe
2014-04-01
The Spatial Ecosystem And Populations Dynamics Model "SEAPODYM", based on a system of Eulerian equations and initially developed for large pelagic fish (e.g., tuna), was modified to describe spawning habitat and eggs and larvae dynamics of small pelagic fish. The spawning habitat is critical since it controls the initial recruitment of larvae and the subsequent spatio-temporal variability of natural mortality during their drift with currents. A robust statistical approach based on Maximum Likelihood Estimation is presented to optimize the model parameters defining the spawning habitat and the eggs and larvae dynamics. To improve parameterization, eggs and larvae density observations are assimilated in the model. The model and its associated optimization approach allow investigating the significance of the mechanisms proposed to control fish spawning habitat and larval recruitment: temperature, prey abundance, trade-off between prey and predators, and retention and dispersion processes. An application to the Peruvian anchovy (Engraulis ringens) and sardine (Sardinops sagax) illustrates the ability of the model to simulate the main features of spatial dynamics of these two species in the Humboldt Current System. For both species, in climatological conditions, the main observed spatial patterns are well reproduced and are explained by the impact of prey and predator abundance and by physical retention with currents, while temperature has a lower impact. In agreement with observations, sardine larvae are mainly predicted in the northern part of the Peruvian shelf (5-10°S), while anchovy larvae extend further south. Deoxygenation, which can potentially limit the accessibility of adult fish to spawning areas, does not appear to have an impact in our model setting. Conversely, the observed seasonality in spawning activity, especially the spawning rest period in austral autumn, is not well simulated. It is proposed that this seasonal cycle is more likely driven by the spatio-temporal dynamics of adult fish constituting the spawning biomass and not yet included in the model.
Kanu, Abu B; Hill, Herbert H
2007-10-15
This work demonstrated the potential of using a secondary drift gas of differing polarizability from the primary drift gas for confirmation of a positive response for drugs or explosives by ion mobility spectrometry (IMS). The gas phase mobilities of response ions for selected drugs and explosives were measured in four drift gases. The drift gases chosen for this study were air, nitrogen, carbon dioxide and nitrous oxide providing a range of polarizability and molecular weights. Four other drift gases (helium, neon, argon and sulfur hexafluoride) were also investigated but design limitations of the commercial instrument prevented their use for this application. When ion mobility was plotted against drift gas polarizability, the resulting slopes were often unique for individual ions, indicating that selectivity factors between any two analytes varied with the choice of drift gas. In some cases, drugs like THC and heroin, which are unresolved in air or nitrogen, were well resolved in carbon dioxide or nitrous oxide.
[Study of spectrum drifting of primary colors and its impact on color rendering properties].
Cui, Xiao-yan; Zhang, Xiao-dong
2012-08-01
LEDs are currently used widely to display text, graphics and images in large screens. With red, green and blue LEDs as three primary colors, color rendition will be realized through color mixing. However, LEDs' spectrum will produce drifts with the changes in the temperature environment. With the changes in the driving current simulating changes in the temperature, the three primary color LEDs' spectral drifts were tested, and the drift characteristics of the three primary colors were obtained respectively. Based on the typical characteristics of the LEDs and the differences between LEDs with different colors in composition and molecular structure, the paper analyzed the reason for the spectrum drifts and the drift characteristics of different color LEDs, and proposed the equations of spectrum drifts. Putting the experimental data into the spectrum drift equations, the paper analyzed the impacts of primary colors on the mixed color, pointed out a way to reduce the chromatic aberration, and provided the theory for engineering application of color LEDs.
NASA Astrophysics Data System (ADS)
Soulsby, C.; Rodgers, P.; Malcolm, I. A.; Dunn, S.
Geochemical and isotopic tracers have been shown to have widespread utility in catch- ment hydrology in terms of identifying hydrological source areas and characterising residence time distributions. In many cases application of tracer techniques has pro- vided insights into catchment functioning that could not be obtained from hydromet- ric and/or modelling studies alone. This paper will show how the use of tracers has contributed to an evolving perceptual model of hydrological pathways and runoff gen- eration processes in catchments in the Scottish highlands. In particular the paper will focus on the different insights that are gained at three different scales of analysis; (a) nested sub-catchments within a mesoscale (ca. 200 square kilometers) experimen- tal catchment; (b) hillslope-riparian interactions and (c) stream bed fluxes. Nested hydrometric and hydrochemical monitoring within the mesoscale Feugh catchment identified three main hydrological response units: (i) plateau peatlands which gener- ated saturation overland flow in the catchment headwaters, (ii) steep valley hillslopes which drain from the plateaux into (iii) alluvial and drift aquifers in the valley bottoms. End Member Mixing Analysis (EMMA) in 8 nested sub-catchments indicated that that stream water tracer concentrations can be modelled in terms of 2 dominant runoff pro- cesses; overland flow from the peat and groundwater from the drift aquifers. Ground- water contributions generally increased with catchment size, though this was moder- ated by the characteristics of individual sub-basins, with drift cover being particularly important. Hillslope riparian interactions were also examined using tracers, hydromet- ric data and a semi-distributed hydrological model. This revealed that in the glaciated, drift covered terrain of the Scottish highlands, extensive valley bottom aquifers effec- tively de-couple hillslope waters from the river channel. Thus, riparian groundwater appears to significantly contribute to storm runoff as well as sustain base flows. Water from steeper hillslopes appears to primarily recharge valley bottom aquifers. Fluxes from the drift aquifers into the stream bed were investigated using hydrometric and tracer techniques. Groundwater fluxes through the stream bed appear to be relatively localized relating to geological boundaries or changes in drift characteristics. How- ever, these fluxes are also controlled by morphological features in the river channel which exert a strong control on localized groundwater U surface water interactions. 1 If catchment hydrology is to contribute to a functional understanding of freshwater ecosystems it is argued that integrated tracer studies, at different scales and incorpo- rating both observations from field work and modelling applications, have a key role to play. 2
Kasiotis, Konstantinos M; Glass, C Richard; Tsakirakis, Angelos N; Machera, Kyriaki
2014-05-01
The objective of this work was to generate spray drift data from pesticide application in the field comparing spray drift from traditional equipment with emerging, anti-drift technologies. The applications were carried out in the Kopais area in central Greece. Currently few data exist as regards to pesticide spray drift in Southern European conditions. This work details the data for ground and airborne deposition of spray drift using the methodology developed in the UK by the Food and Environment Research Agency (FERA). Three trials were performed in two days using sunset yellow dye which deposited on dosimeters placed at specific distances from the edge of the sprayer boom. The application was carried out with a tractor mounted boom sprayer, which was of local manufacture, as were the nozzles of Trial I, being flat fan brass nozzles. For Trials II and III anti-drift nozzles were used. The boom sprayers were used with the settings as employed by the farmers for the routine pesticide applications. The results of this work indicate that drift was significantly reduced when anti-drift nozzles were utilized. Copyright © 2014 Elsevier B.V. All rights reserved.
Comparison of ionospheric plasma drifts obtained by different techniques
NASA Astrophysics Data System (ADS)
Kouba, Daniel; Arikan, Feza; Arikan, Orhan; Toker, Cenk; Mosna, Zbysek; Gok, Gokhan; Rejfek, Lubos; Ari, Gizem
2016-07-01
Ionospheric observatory in Pruhonice (Czech Republic, 50N, 14.9E) provides regular ionospheric sounding using Digisonde DPS-4D. The paper is focused on F-region vertical drift data. Vertical component of the drift velocity vector can be estimated by several methods. Digisonde DPS-4D allows sounding in drift mode with direct output represented by drift velocity vector. The Digisonde located in Pruhonice provides direct drift measurement routinely once per 15 minutes. However, also other different techniques can be found in the literature, for example the indirect estimation based on the temporal evolution of measured ionospheric characteristics is often used for calculation of the vertical drift component. The vertical velocity is thus estimated according to the change of characteristics scaled from the classical quarter-hour ionograms. In present paper direct drift measurement is compared with technique based on measuring of the virtual height at fixed frequency from the F-layer trace on ionogram, technique based on variation of h`F and hmF. This comparison shows possibility of using different methods for calculating vertical drift velocity and their relationship to the direct measurement used by Digisonde. This study is supported by the Joint TUBITAK 114E092 and AS CR 14/001 projects.
Long-Term Stability of the SGA-WZ Strapdown Airborne Gravimeter
Cai, Shaokun; Zhang, Kaidong; Wu, Meiping; Huang, Yangming
2012-01-01
Accelerometers are one of the most important sensors in a strapdown airborne gravimeter. The accelerometer's drift determines the long-term accuracy of the strapdown inertial navigation system (SINS), which is the primary and most critical component of the strapdown airborne gravimeter. A long-term stability test lasting 104 days was conducted to determine the characteristics of the strapdown airborne gravimeter's long-term drift. This stability test was based on the first set of strapdown airborne gravimeters built in China, the SGA-WZ. The test results reveal a quadratic drift in the strapdown airborne gravimeter data. A drift model was developed using the static data in the two end sections, and then this model was used to correct the test data. After compensating for the drift, the drift effect improved from 70 mGal to 3.46 mGal with a standard deviation of 0.63 mGal. The quadratic curve better reflects the drift's real characteristics. In comparison with other methodologies, modelling the drift as a quadratic curve was shown to be more appropriate. Furthermore, this method allows the drift to be adjusted throughout the course of the entire campaign. PMID:23112647
Aerial spray adjuvants for herbicidal drift control.
Gratkowski H.; Stewart R.
1973-01-01
Increased public concern about pesticides requires that foresters reduce drift and insure precise application of herbicides to the areas requiring treatment. Drift control is necessary near waterways and other ecologically sensitive areas. This publication discusses available drift control adjuvants for herbicidal sprays. These include invert emulsions, thickening...
Self-Attractive Random Walks: The Case of Critical Drifts
NASA Astrophysics Data System (ADS)
Ioffe, Dmitry; Velenik, Yvan
2012-07-01
Self-attractive random walks (polymers) undergo a phase transition in terms of the applied drift (force): If the drift is strong enough, then the walk is ballistic, whereas in the case of small drifts self-attraction wins and the walk is sub-ballistic. We show that, in any dimension d ≥ 2, this transition is of first order. In fact, we prove that the walk is already ballistic at critical drifts, and establish the corresponding LLN and CLT.
Wave drift damping acting on multiple circular cylinders (model tests)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinoshita, Takeshi; Sunahara, Shunji; Bao, W.
1995-12-31
The wave drift damping for the slow drift motion of a four-column platform is experimentally investigated. The estimation of damping force of the slow drift motion of moored floating structures in ocean waves, is one of the most important topics. Bao et al. calculated an interaction of multiple circular cylinders based on the potential flow theory, and showed that the wave drift damping is significantly influenced by the interaction between cylinders. This calculation method assumes that the slow drift motion is approximately replaced by steady current, that is, structures on slow drift motion are supposed to be equivalent to onesmore » in both regular waves and slow current. To validate semi-analytical solutions of Bao et al., experiments were carried out. At first, added resistance due to waves acting on a structure composed of multiple (four) vertical circular cylinders fixed to a slowly moving carriage, was measured in regular waves. Next, the added resistance of the structure moored by linear spring to the slowly moving carriage were measured in regular waves. Furthermore, to validate the assumption that the slow drift motion is replaced by steady current, free decay tests in still water and in regular waves were compared with the simulation of the slow drift motion using the wave drift damping coefficient obtained by the added resistance tests.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. Gaffiney
2004-11-23
This report presents and documents the model components and analyses that represent potential processes associated with propagation of a magma-filled crack (dike) migrating upward toward the surface, intersection of the dike with repository drifts, flow of magma in the drifts, and post-magma emplacement effects on repository performance. The processes that describe upward migration of a dike and magma flow down the drift are referred to as the dike intrusion submodel. The post-magma emplacement processes are referred to as the post-intrusion submodel. Collectively, these submodels are referred to as a conceptual model for dike/drift interaction. The model components and analyses ofmore » the dike/drift interaction conceptual model provide the technical basis for assessing the potential impacts of an igneous intrusion on repository performance, including those features, events, and processes (FEPs) related to dike/drift interaction (Section 6.1).« less
Influence of tungsten fiber’s slow drift on the measurement of G with angular acceleration method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Jie; Wu, Wei-Huang; Zhan, Wen-Ze
In the measurement of the gravitational constant G with angular acceleration method, the equilibrium position of torsion pendulum with tungsten fiber undergoes a linear slow drift, which results in a quadratic slow drift on the angular velocity of the torsion balance turntable under feedback control unit. The accurate amplitude determination of the useful angular acceleration signal with known frequency is biased by the linear slow drift and the coupling effect of the drifting equilibrium position and the room fixed gravitational background signal. We calculate the influences of the linear slow drift and the complex coupling effect on the value ofmore » G, respectively. The result shows that the bias of the linear slow drift on G is 7 ppm, and the influence of the coupling effect is less than 1 ppm.« less
Influence of tungsten fiber's slow drift on the measurement of G with angular acceleration method.
Luo, Jie; Wu, Wei-Huang; Xue, Chao; Shao, Cheng-Gang; Zhan, Wen-Ze; Wu, Jun-Fei; Milyukov, Vadim
2016-08-01
In the measurement of the gravitational constant G with angular acceleration method, the equilibrium position of torsion pendulum with tungsten fiber undergoes a linear slow drift, which results in a quadratic slow drift on the angular velocity of the torsion balance turntable under feedback control unit. The accurate amplitude determination of the useful angular acceleration signal with known frequency is biased by the linear slow drift and the coupling effect of the drifting equilibrium position and the room fixed gravitational background signal. We calculate the influences of the linear slow drift and the complex coupling effect on the value of G, respectively. The result shows that the bias of the linear slow drift on G is 7 ppm, and the influence of the coupling effect is less than 1 ppm.
Influence of tungsten fiber's slow drift on the measurement of G with angular acceleration method
NASA Astrophysics Data System (ADS)
Luo, Jie; Wu, Wei-Huang; Xue, Chao; Shao, Cheng-Gang; Zhan, Wen-Ze; Wu, Jun-Fei; Milyukov, Vadim
2016-08-01
In the measurement of the gravitational constant G with angular acceleration method, the equilibrium position of torsion pendulum with tungsten fiber undergoes a linear slow drift, which results in a quadratic slow drift on the angular velocity of the torsion balance turntable under feedback control unit. The accurate amplitude determination of the useful angular acceleration signal with known frequency is biased by the linear slow drift and the coupling effect of the drifting equilibrium position and the room fixed gravitational background signal. We calculate the influences of the linear slow drift and the complex coupling effect on the value of G, respectively. The result shows that the bias of the linear slow drift on G is 7 ppm, and the influence of the coupling effect is less than 1 ppm.
Phylogeography of Asian wild rice, Oryza rufipogon: a genome-wide view.
Huang, Pu; Molina, Jeanmaire; Flowers, Jonathan M; Rubinstein, Samara; Jackson, Scott A; Purugganan, Michael D; Schaal, Barbara A
2012-09-01
Asian wild rice (Oryza rufipogon) that ranges widely across the eastern and southern part of Asia is recognized as the direct ancestor of cultivated Asian rice (O. sativa). Studies of the geographic structure of O. rufipogon, based on chloroplast and low-copy nuclear markers, reveal a possible phylogeographic signal of subdivision in O. rufipogon. However, this signal of geographic differentiation is not consistently observed among different markers and studies, with often conflicting results. To more precisely characterize the phylogeography of O. rufipogon populations, a genome-wide survey of unlinked markers, intensively sampled from across the entire range of O. rufipogon is critical. In this study, we surveyed sequence variation at 42 genome-wide sequence tagged sites (STS) in 108 O. rufipogon accessions from throughout the native range of the species. Using Bayesian clustering, principal component analysis and amova, we conclude that there are two genetically distinct O. rufipogon groups, Ruf-I and Ruf-II. The two groups exhibit a clinal variation pattern generally from north-east to south-west. Different from many earlier studies, Ruf-I, which is found mainly in China and the Indochinese Peninsula, shows genetic similarity with one major cultivated rice variety, O. satvia indica, whereas Ruf-II, mainly from South Asia and the Indochinese Peninsula, is not found to be closely related to cultivated rice varieties. The other major cultivated rice variety, O. sativa japonica, is not found to be similar to either O. rufipogon groups. Our results support the hypothesis of a single origin of the domesticated O. sativa in China. The possible role of palaeoclimate, introgression and migration-drift balance in creating this clinal variation pattern is also discussed. © 2012 Blackwell Publishing Ltd.
NASA Technical Reports Server (NTRS)
Boville, Byron A.; Baumhefner, David P.
1990-01-01
Using an NCAR community climate model, Version I, the forecast error growth and the climate drift resulting from the omission of the upper stratosphere are investigated. In the experiment, the control simulation is a seasonal integration of a medium horizontal general circulation model with 30 levels extending from the surface to the upper mesosphere, while the main experiment uses an identical model, except that only the bottom 15 levels (below 10 mb) are retained. It is shown that both random and systematic errors develop rapidly in the lower stratosphere with some local propagation into the troposphere in the 10-30-day time range. The random growth rate in the troposphere in the case of the altered upper boundary was found to be slightly faster than that for the initial-condition uncertainty alone. However, this is not likely to make a significant impact in operational forecast models, because the initial-condition uncertainty is very large.
PRN 90-3: Announcing the Formation of an Industry-Wide Spray Drift Task Force
A Spray Drift Task Force has been organized pursuant to provisions of FIFRA section 3 (c)(2)(B)(ii) to share the cost of developing a generic spray drift data base capable of satisfying spray drift data requirements for pesticide product registrations.
Determination of selection criteria for spray drift reduction from atomization data
USDA-ARS?s Scientific Manuscript database
When testing and evaluating drift reduction technologies (DRT), there are different metrics that can be used to determine if the technology reduces drift as compared to a reference system. These metrics can include reduction in percent of fine drops, measured spray drift from a field trial, or comp...
Code of Federal Regulations, 2014 CFR
2014-07-01
... rate at the time of the measurements is zero. 3.4Calibration drift. The change in measurement system... reference value (paragraph 6.3.1). Zero drift (24 hours) zero drift, calibration drift, and operation period. 5.1.1System...
Code of Federal Regulations, 2013 CFR
2013-07-01
... rate at the time of the measurements is zero. 3.4Calibration drift. The change in measurement system... reference value (paragraph 6.3.1). Zero drift (24 hours) zero drift, calibration drift, and operation period. 5.1.1System...
Code of Federal Regulations, 2012 CFR
2012-07-01
... rate at the time of the measurements is zero. 3.4Calibration drift. The change in measurement system... reference value (paragraph 6.3.1). Zero drift (24 hours) zero drift, calibration drift, and operation period. 5.1.1System...
Migraine and the social selection vs causation hypotheses: a question larger than either/or?
Peterlin, B Lee; Scher, Ann I
2013-09-10
For decades, the question of social selection vs social causation has been raised by public health researchers and social scientists to explain the association between socioeconomic factors and mood disorders.(1,2) The social selection or "downward drift" theory postulates that the disease itself limits an individual's educational and occupational achievements, leading to a lower socioeconomic status (SES). In contrast, the social causation hypothesis suggests that factors associated with low SES (e.g., stressful life events, poor health care access) increase the likelihood of disease onset or prolonged disease duration.(3,4) Simply stated, the end result of each hypothesis is as follows:
Real-Time Observation of Internal Motion within Ultrafast Dissipative Optical Soliton Molecules
NASA Astrophysics Data System (ADS)
Krupa, Katarzyna; Nithyanandan, K.; Andral, Ugo; Tchofo-Dinda, Patrice; Grelu, Philippe
2017-06-01
Real-time access to the internal ultrafast dynamics of complex dissipative optical systems opens new explorations of pulse-pulse interactions and dynamic patterns. We present the first direct experimental evidence of the internal motion of a dissipative optical soliton molecule generated in a passively mode-locked erbium-doped fiber laser. We map the internal motion of a soliton pair molecule by using a dispersive Fourier-transform imaging technique, revealing different categories of internal pulsations, including vibrationlike and phase drifting dynamics. Our experiments agree well with numerical predictions and bring insights to the analogy between self-organized states of lights and states of the matter.
Freely Drifting Swallow Float Array: August 1988 Trip Report
1989-01-01
situ meas- urements of the floats’ clock drifts were obtained; the absolute drifts were on the order of / one part in 105 and the relative clock...Finally, in situ meas- urements of the floats’ clock drifts were obtained, the absolute drifts were on the order of one part in W05 and the relative...FSK mode). That is, the pseudo-random noise generator (PRNG) created a string of ones and zeros ; a zero caused a 12 kHz tone to be broadcast from
Analysis of drift correction in different simulated weighing schemes
NASA Astrophysics Data System (ADS)
Beatrici, A.; Rebelo, A.; Quintão, D.; Cacais, F. L.; Loayza, V. M.
2015-10-01
In the calibration of high accuracy mass standards some weighing schemes are used to reduce or eliminate the zero drift effects in mass comparators. There are different sources for the drift and different methods for its treatment. By using numerical methods, drift functions were simulated and a random term was included in each function. The comparison between the results obtained from ABABAB and ABBA weighing series was carried out. The results show a better efficacy of ABABAB method for drift with smooth variation and small randomness.
Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC)
NASA Astrophysics Data System (ADS)
Dethloff, Klaus; Rex, Markus; Shupe, Matthew
2016-04-01
The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) is an international initiative under the International Arctic Science Committee (IASC) umbrella that aims to improve numerical model representations of sea ice, weather, and climate processes through coupled system observations and modeling activities that link the central Arctic atmosphere, sea ice, ocean, and the ecosystem. Observations of many critical parameters such as cloud properties, surface energy fluxes, atmospheric aerosols, small-scale sea-ice and oceanic processes, biological feedbacks with the sea-ice ice and ocean, and others have never been made in the central Arctic in all seasons, and certainly not in a coupled system fashion. The primary objective of MOSAiC is to develop a better understanding of these important coupled-system processes so they can be more accurately represented in regional- and global-scale weather- and climate models. Such enhancements will contribute to improved modeling of global climate and weather, and Arctic sea-ice predictive capabilities. The MOSAiC observations are an important opportunity to gather the high quality and comprehensive observations needed to improve numerical modeling of critical, scale-dependent processes impacting Arctic predictability given diminished sea ice coverage and increased model complexity. Model improvements are needed to understand the effects of a changing Arctic on mid-latitude weather and climate. MOSAiC is specifically designed to provide the multi-parameter, coordinated observations needed to improve sub-grid scale model parameterizations especially with respect to thinner ice conditions. To facilitate, evaluate, and develop the needed model improvements, MOSAiC will employ a hierarchy of modeling approaches ranging from process model studies, to regional climate model intercomparisons, to operational forecasts and assimilation of real-time observations. Model evaluations prior to the field program will be used to identify specific gaps and parameterization needs. Preliminary modeling and operational forecasting will also be necessary to directly guide field planning and optimal implementation of field resources, and to support the safety of the project. The MOSAiC Observatory will be deployed in, and drift with, the Arctic sea-ice pack for at least a full annual cycle, starting in fall 2019 and ending in autumn 2020. Initial plans are for the drift to start in the newly forming autumn sea-ice in, or near, the East Siberian Sea. The specific location will be selected to allow for the observatory to follow the Transpolar Drift towards the North Pole and on to the Fram Strait. IASC has adopted MOSAiC as a key international activity, the German Alfred Wegener Institute has made the huge contribution of the icebreaker Polarstern to serve as the central drifting observatory for this year long endeavor, and the US Department of Energy has committed a comprehensive atmospheric measurement suite. Many other nations and agencies have expressed interest in participation and in gaining access to this unprecedented observational dataset. International coordination is needed to support this groundbreaking endeavor.
9. VIEW OF INTAKE PIER AND MAIN SPAN OF ACCESS ...
9. VIEW OF INTAKE PIER AND MAIN SPAN OF ACCESS BRIDGE FROM WATER LEVEL, LOOKING NORTHWEST. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA
Dual mode ion mobility spectrometer and method for ion mobility spectrometry
Scott, Jill R [Idaho Falls, ID; Dahl, David A [Idaho Falls, ID; Miller, Carla J [Idaho Falls, ID; Tremblay, Paul L [Idaho Falls, ID; McJunkin, Timothy R [Idaho Falls, ID
2007-08-21
Ion mobility spectrometer apparatus may include an ion interface that is operable to hold positive and negative ions and to simultaneously release positive and negative ions through respective positive and negative ion ports. A first drift chamber is operatively associated with the positive ion port of the ion interface and encloses an electric field therein. A first ion detector operatively associated with the first drift chamber detects positive ions from the first drift chamber. A second drift chamber is operatively associated with the negative ion port of the ion interface and encloses an electric field therein. A second ion detector operatively associated with the second drift chamber detects negative ions from said second drift chamber.
Particle drift model for Z-pinch-driven magneto-Rayleigh-Taylor instability
NASA Astrophysics Data System (ADS)
Dan, Jia Kun; Xu, Qiang; Wang, Kun Lun; Ren, Xiao Dong; Huang, Xian Bin
2016-09-01
A theoretical model of Z-pinch driven magneto-Rayleigh-Taylor instability is proposed based on the particle drift point of view, which can explain the helical instability structure observed in premagnetized imploding liner experiments. It is demonstrated that all possible drift motions, including polarization drift, gradient drift, and curvature drift, which can lead to charge separations, each will attribute to an effective gravity acceleration. Theoretical predictions given by this model are dramatically different from those given by previous theories which have been readily recovered in the theory presented here as a limiting case. The theory shows qualitative agreement with available experimental data of the pitch angle and provides certain predictions to be verified.
Electromagnetic drift waves dispersion for arbitrarily collisional plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Wonjae, E-mail: wol023@ucsd.edu; Krasheninnikov, Sergei I., E-mail: skrash@mae.ucsd.edu; Angus, J. R.
2015-07-15
The impacts of the electromagnetic effects on resistive and collisionless drift waves are studied. A local linear analysis on an electromagnetic drift-kinetic equation with Bhatnagar-Gross-Krook-like collision operator demonstrates that the model is valid for describing linear growth rates of drift wave instabilities in a wide range of plasma parameters showing convergence to reference models for limiting cases. The wave-particle interactions drive collisionless drift-Alfvén wave instability in low collisionality and high beta plasma regime. The Landau resonance effects not only excite collisionless drift wave modes but also suppress high frequency electron inertia modes observed from an electromagnetic fluid model in collisionlessmore » and low beta regime. Considering ion temperature effects, it is found that the impact of finite Larmor radius effects significantly reduces the growth rate of the drift-Alfvén wave instability with synergistic effects of high beta stabilization and Landau resonance.« less
Clinical guide to periodontology: part 3. Multidisciplinary integrated treatment.
Palmer, R M; Ide, M; Floyd, P D
2014-05-01
The establishment of periodontal health should be a primary aim in all treatment plans. The methods by which this can be achieved have been dealt with in previous chapters, but there are a number of situations where integration of these treatment methods with other dental disciplines needs to be clarified. To simplify matters this chapter will consider periodontal implications in three main areas: treatment of drifted anterior teeth, pre-restorative procedures and replacement of missing teeth.
Energy spectra and pitch angle distributions of storm-time and substorm injected protons.
NASA Technical Reports Server (NTRS)
Konradi, A.; Williams, D. J.; Fritz, T. A.
1973-01-01
Discussion of the energy spectra and pitch angle distributions of ring current protons observed with the solid-state proton detector of Explorer 45 during the main and fast recovery phases of a storm on Dec. 17, 1971. Appearances of characteristic changes in the pitch angle distributions of roughly 100-eV protons are interpreted as pitch angle dispersion of rapidly injected protons during their azimuthal drift at L values above 5.
Laval, Guillaume; SanCristobal, Magali; Chevalet, Claude
2002-01-01
Many works demonstrate the benefits of using highly polymorphic markers such as microsatellites in order to measure the genetic diversity between closely related breeds. But it is sometimes difficult to decide which genetic distance should be used. In this paper we review the behaviour of the main distances encountered in the literature in various divergence models. In the first part, we consider that breeds are populations in which the assumption of equilibrium between drift and mutation is verified. In this case some interesting distances can be expressed as a function of divergence time, t, and therefore can be used to construct phylogenies. Distances based on allele size distribution (such as (δμ)2 and derived distances), taking a mutation model of microsatellites, the Stepwise Mutation Model, specifically into account, exhibit large variance and therefore should not be used to accurately infer phylogeny of closely related breeds. In the last section, we will consider that breeds are small populations and that the divergence times between them are too small to consider that the observed diversity is due to mutations: divergence is mainly due to genetic drift. Expectation and variance of distances were calculated as a function of the Wright-Malécot inbreeding coefficient, F. Computer simulations performed under this divergence model show that the Reynolds distance [57]is the best method for very closely related breeds. PMID:12270106
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Ping; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024; Sun, Jun
2015-06-15
In O-type high power microwave (HPM) devices, the annular relativistic electron beam is constrained by a strong guiding magnetic field and propagates through an interaction region to generate HPM. Some papers believe that the E × B drift of electrons may lead to beam breakup. This paper simplifies the interaction region with a smooth cylindrical waveguide to research the radial motion of electrons under conditions of strong guiding magnetic field and TM{sub 01} mode HPM. The single-particle trajectory shows that the radial electron motion presents the characteristic of radial guiding-center drift carrying cyclotron motion. The radial guiding-center drift is spatiallymore » periodic and is dominated by the polarization drift, not the E × B drift. Furthermore, the self fields of the beam space charge can provide a radial force which may pull electrons outward to some extent but will not affect the radial polarization drift. Despite the radial drift, the strong guiding magnetic field limits the drift amplitude to a small value and prevents beam breakup from happening due to this cause.« less
Method for closing a drift between adjacent in situ oil shale retorts
Hines, Alex E.
1984-01-01
A row of horizontally spaced-apart in situ oil shale retorts is formed in a subterranean formation containing oil shale. Each row of retorts is formed by excavating development drifts at different elevations through opposite side boundaries of a plurality of retorts in the row of retorts. Each retort is formed by explosively expanding formation toward one or more voids within the boundaries of the retort site to form a fragmented permeable mass of formation particles containing oil shale in each retort. Following formation of each retort, the retort development drifts on the advancing side of the retort are closed off by covering formation particles within the development drift with a layer of crushed oil shale particles having a particle size smaller than the average particle size of oil shale particles in the adjacent retort. In one embodiment, the crushed oil shale particles are pneumatically loaded into the development drift to pack the particles tightly all the way to the top of the drift and throughout the entire cross section of the drift. The closure between adjacent retorts provided by the finely divided oil shale provides sufficient resistance to gas flow through the development drift to effectively inhibit gas flow through the drift during subsequent retorting operations.
Discovery of a remarkable subpulse drift pattern in PSR B0818-41
NASA Astrophysics Data System (ADS)
Bhattacharyya, B.; Gupta, Y.; Gil, J.; Sendyk, M.
2007-05-01
We report the discovery of a remarkable subpulse drift pattern in the relatively less-studied wide profile pulsar B0818-41 using high-sensitivity Giant Metrewave Radio Telescope (GMRT) observations. We find simultaneous occurrences of three drift regions with two different drift rates: an inner region with steeper apparent drift rate flanked on each side by a region of slower apparent drift rate. Furthermore, these closely spaced drift bands always maintain a constant phase relationship. Though these drift regions have significantly different values for the measured P2, the measured P3 value is the same and equal to 18.3P1. We interpret the unique drift pattern of this pulsar as being created by the intersection of our line of sight (LOS) with two conal rings on the polar cap of a fairly aligned rotator (inclination angle α ~ 11°), with an `inner' LOS geometry (impact angle ). We argue that both rings have the same values for the carousel rotation periodicity P4 and the number of sparks Nsp. We find that Nsp is 19-21 and show that it is very likely that P4 is the same as the measured P3, making it a truly unique pulsar. We present results from simulations of the radiation pattern using the inferred parameters, which support our interpretations and reproduce the average profile as well as the observed features in the drift pattern quite well.
NASA Astrophysics Data System (ADS)
Wang, Dong; Zhao, Yang; Yang, Fangfang; Tsui, Kwok-Leung
2017-09-01
Brownian motion with adaptive drift has attracted much attention in prognostics because its first hitting time is highly relevant to remaining useful life prediction and it follows the inverse Gaussian distribution. Besides linear degradation modeling, nonlinear-drifted Brownian motion has been developed to model nonlinear degradation. Moreover, the first hitting time distribution of the nonlinear-drifted Brownian motion has been approximated by time-space transformation. In the previous studies, the drift coefficient is the only hidden state used in state space modeling of the nonlinear-drifted Brownian motion. Besides the drift coefficient, parameters of a nonlinear function used in the nonlinear-drifted Brownian motion should be treated as additional hidden states of state space modeling to make the nonlinear-drifted Brownian motion more flexible. In this paper, a prognostic method based on nonlinear-drifted Brownian motion with multiple hidden states is proposed and then it is applied to predict remaining useful life of rechargeable batteries. 26 sets of rechargeable battery degradation samples are analyzed to validate the effectiveness of the proposed prognostic method. Moreover, some comparisons with a standard particle filter based prognostic method, a spherical cubature particle filter based prognostic method and two classic Bayesian prognostic methods are conducted to highlight the superiority of the proposed prognostic method. Results show that the proposed prognostic method has lower average prediction errors than the particle filter based prognostic methods and the classic Bayesian prognostic methods for battery remaining useful life prediction.
Optimization of curved drift tubes for ultraviolet-ion mobility spectrometry
NASA Astrophysics Data System (ADS)
Ni, Kai; Ou, Guangli; Zhang, Xiaoguo; Yu, Zhou; Yu, Quan; Qian, Xiang; Wang, Xiaohao
2015-08-01
Ion mobility spectrometry (IMS) is a key trace detection technique for toxic pollutants and explosives in the atmosphere. Ultraviolet radiation photoionization source is widely used as an ionization source for IMS due to its advantages of high selectivity and non-radioactivity. However, UV-IMS bring problems that UV rays will be launched into the drift tube which will cause secondary ionization and lead to the photoelectric effect of the Faraday disk. So air is often used as working gas to reduce the effective distance of UV rays, but it will limit the application areas of UV-IMS. In this paper, we propose a new structure of curved drift tube, which can avoid abnormally incident UV rays. Furthermore, using curved drift tube may increase the length of drift tube and then improve the resolution of UV-IMS according to previous research. We studied the homogeneity of electric field in the curved drift tube, which determined the performance of UV-IMS. Numerical simulation of electric field in curved drift tube was conducted by SIMION in our study. In addition, modeling method and homogeneity standard for electric field were also presented. The influences of key parameters include radius of gyration, gap between electrode as well as inner diameter of curved drift tube, on the homogeneity of electric field were researched and some useful laws were summarized. Finally, an optimized curved drift tube is designed to achieve homogenous drift electric field. There is more than 98.75% of the region inside the curved drift tube where the fluctuation of the electric field strength along the radial direction is less than 0.2% of that along the axial direction.
Smith, Richard D.; Tang, Keqi; Shvartsburg, Alexandre A.
2005-11-22
A method and apparatus enabling increased sensitivity in ion mobility spectrometry/mass spectrometry instruments which substantially reduces or eliminates the loss of ions in ion mobility spectrometer drift tubes utilizing a device for transmitting ions from an ion source which allows the transmission of ions without significant delay to an hourglass electrodynamic ion funnel at the entrance to the drift tube and/or an internal ion funnel at the exit of the drift tube. An hourglass electrodynamic funnel is formed of at least an entry element, a center element, and an exit element, wherein the aperture of the center element is smaller than the aperture of the entry element and the aperture of the exit elements. Ions generated in a relatively high pressure region by an ion source at the exterior of the hourglass electrodynamic funnel are transmitted to a relatively low pressure region at the entrance of the hourglass funnel through a conductance limiting orifice. Alternating and direct electrical potentials are applied to the elements of the hourglass electrodynamic funnel thereby drawing ions into and through the hourglass electrodynamic funnel thereby introducing relatively large quantities of ions into the drift tube while maintaining the gas pressure and composition at the interior of the drift tube as distinct from those at the entrance of the electrodynamic funnel and allowing a positive gas pressure to be maintained within the drift tube, if desired. An internal ion funnel is provided within the drift tube and is positioned at the exit of said drift tube. The advantage of the internal ion funnel is that ions that are dispersed away from the exit aperture within the drift tube, such as those that are typically lost in conventional drift tubes to any subsequent analysis or measurement, are instead directed through the exit of the drift tube, vastly increasing the amount of ions exiting the drift tube.
Microdefects and self-interstitial diffusion in crystalline silicon
NASA Astrophysics Data System (ADS)
Knowlton, William Barthelemy
In this thesis, a study is presented of D-defects and self-interstitial diffusion in silicon using Li ion (Lisp+) drifting in an electric field and transmission electron microscopy (TEM). Obstruction of Lisp+ drifting has been found in wafers from certain but not all FZ p-type Si. Incomplete Lisp+ drifting always occurs in the central region of the wafers. This work established that interstitial oxygen is not responsible for hindering Lisp+ drifting. The Osb i concentration was measured ({˜}2× 10sp{15}\\ cmsp{-3}) by local vibrational mode Fourier transform infrared spectroscopy and did not vary radially across the wafer. TEM was performed on a samples from the partially Lisp+ drifted area and compared to regions without D-defects. Precipitates were found only in the region containing D-defects that had partially Lisp+ drifted. This result indicates D-defects are responsible for the precipitation that halts the Lisp+ drift process. The precipitates were characterized using selected area diffraction (SAD) and image contrast analysis. The results suggested that the precipitates may cause stacking faults and their identity may be lithium silicides such as Lisb{21}Sisb5\\ and\\ Lisb{13}Sisb4. TEM revealed a decreasing distribution of Li precipitates as a function of Lisp+ drift depth along the growth direction. A preliminary model is presented that simulates Lisp+ drifting. The objective of the model is to incorporate the Li precipitate density distribution and Lisp+ drift depth to extract the size and capture cross-section of the D-defects. Nitrogen (N) doping has been shown to eliminate D-defects as measured by conventional techniques. However, Lisp+ drifting has shown that D-defects are indeed still present. Lisp+ drifting is able to detect D-defects at concentrations lower than conventional techniques. Lisp+ drifting and D-defects provide a useful means to study Si self-interstitial diffusion. The process modeling program SUPREM-IV was used to simulate the results of Si self-interstitial diffusion obtained from Lisp+ drifting experiments. Anomalous results from the Si self-interstitial diffusion experiments forced a re-examination of the possibility of thermal dissociation of D-defects. Thermal annealing experiments that were performed support this possibility. A review of the current literature illustrates the need for more research on the effects of thermal processing on FZ Si to understand the dissolution kinetics of D-defects.
Harvey, Allison G.; Gumport, Nicole B.
2015-01-01
The prevalence of mental disorders is high and appears to be growing, yet the majority of individuals who meet diagnostic criteria for a mental disorder are not able to access an adequate treatment. While evidence-based psychological treatments (EBPTs) are effective single or adjunctive treatments for mental disorders, there is also evidence that access to these treatments is diminishing. We seek to highlight modifiable barriers to these problems at the patient, therapist, treatment, organization and government-levels of analysis. A range of solutions to each set of contributors is offered and domains for future research are highlighted. In particular, we focus on the need to continue to work toward innovation in treatment development while also solving the difficulties relating to the dissemination of EBPTs. Several relatively new concepts in the field will be discussed (implementation cliff, program drift, voltage drop and deployment treatment development) and we contrast America and England as examples of government-level processes that are in the process of major change with respect to EBPTs. We conclude that there is a need for people in our field to become more knowledgeable about, and get involved in, shaping public policy. PMID:25768982
Final report on CCM key comparison CCM.D-K2: Comparison of liquid density standards
NASA Astrophysics Data System (ADS)
Bettin, Horst; Jacques, Claude; Zelenka, Zoltán; Fujii, Ken-ichi; Kuramoto, Naoki; Chang, Kyung-Ho; Lee, Yong Jae; Becerra, Luis Omar; Domostroeva, Natalia
2013-01-01
The results are presented of the key comparison CCM.D-K2 that covered the density measurements of four liquids: the density of water at 20 °C, of pentadecane at 15 °C, 20 °C, 40 °C and 60°C, of tetrachloroethlyene at 5 °C and 20 °C and of a viscous oil at 20 °C. Seven national metrology institutes measured the densities at atmospheric pressure by hydrostatic weighing of solid density standards in the time interval from 27 April 2004 to 28 June 2004. Since the participants were asked not to include components for a possible drift or inhomogeneity of the liquid in their uncertainty budget, these uncertainty contributions are investigated for the final evaluation of the data. For this purpose, results of stability and homogeneity measurements of the pilot laboratory are used. The participants decided not to include a possible drift of the liquid's density since no significant drift could be detected, and the influence of the drift and its uncertainty are negligible. Similarly, the inhomogeneity of the water and pentadecane samples is not significant and has no influence on the evaluation. Thus, it was neglected. Only the inhomogeneities of tetrachloroethylene and of the viscous oil were significant. Consequently, they were included in the evaluation. With one or two exceptions, the results show good agreement among the participants. Only in the case of water are the results clearly discrepant. The key comparison reference values were calculated by the weighted mean (taking into account a small correlation between two participants) in the case of consistent results. Otherwise the Procedure B of Cox was used. The expanded uncertainties of all reference densities are below 1 × 10-5 in relative terms. This satisfies the needs of all customers who wish to calibrate or check liquid density measuring instruments such as oscillation-type density meters. The comparison fully supports the calibration measurement capabilities table in the BIPM key comparison database. The results can be used to link regional comparisons to this CCM key comparison. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
Improving the communication reliability of body sensor networks based on the IEEE 802.15.4 protocol.
Gomes, Diogo; Afonso, José A
2014-03-01
Body sensor networks (BSNs) enable continuous monitoring of patients anywhere, with minimum constraints to daily life activities. Although the IEEE 802.15.4 and ZigBee(®) (ZigBee Alliance, San Ramon, CA) standards were mainly developed for use in wireless sensors network (WSN) applications, they are also widely used in BSN applications because of device characteristics such as low power, low cost, and small form factor. However, compared with WSNs, BSNs present some very distinctive characteristics in terms of traffic and mobility patterns, heterogeneity of the nodes, and quality of service requirements. This article evaluates the suitability of the carrier sense multiple access-collision avoidance protocol, used by the IEEE 802.15.4 and ZigBee standards, for data-intensive BSN applications, through the execution of experimental tests in different evaluation scenarios, in order to take into account the effects of contention, clock drift, and hidden nodes on the communication reliability. Results show that the delivery ratio may decrease substantially during transitory periods, which can last for several minutes, to a minimum of 90% with retransmissions and 13% without retransmissions. This article also proposes and evaluates the performance of the BSN contention avoidance mechanism, which was designed to solve the identified reliability problems. This mechanism was able to restore the delivery ratio to 100% even in the scenario without retransmissions.
The Aegean Sea marine security decision support system
NASA Astrophysics Data System (ADS)
Perivoliotis, L.; Krokos, G.; Nittis, K.; Korres, G.
2011-05-01
As part of the integrated ECOOP (European Coastal Sea Operational observing and Forecasting System) project, HCMR upgraded the already existing standalone Oil Spill Forecasting System for the Aegean Sea, initially developed for the Greek Operational Oceanography System (POSEIDON), into an active element of the European Decision Support System (EuroDeSS). The system is accessible through a user friendly web interface where the case scenarios can be fed into the oil spill drift model component, while the synthetic output contains detailed information about the distribution of oil spill particles and the oil spill budget and it is provided both in text based ECOOP common output format and as a series of sequential graphics. The main development steps that were necessary for this transition were the modification of the forcing input data module in order to allow the import of other system products which are usually provided in standard formats such as NetCDF and the transformation of the model's calculation routines to allow use of current, density and diffusivities data in z instead of sigma coordinates. During the implementation of the Aegean DeSS, the system was used in operational mode in order support the Greek marine authorities in handling a real accident that took place in North Aegean area. Furthermore, the introduction of common input and output files by all the partners of EuroDeSS extended the system's interoperability thus facilitating data exchanges and comparison experiments.
The Aegean sea marine security decision support system
NASA Astrophysics Data System (ADS)
Perivoliotis, L.; Krokos, G.; Nittis, K.; Korres, G.
2011-10-01
As part of the integrated ECOOP (European Coastal Sea Operational observing and Forecasting System) project, HCMR upgraded the already existing standalone Oil Spill Forecasting System for the Aegean Sea, initially developed for the Greek Operational Oceanography System (POSEIDON), into an active element of the European Decision Support System (EuroDeSS). The system is accessible through a user friendly web interface where the case scenarios can be fed into the oil spill drift model component, while the synthetic output contains detailed information about the distribution of oil spill particles and the oil spill budget and it is provided both in text based ECOOP common output format and as a series of sequential graphics. The main development steps that were necessary for this transition were the modification of the forcing input data module in order to allow the import of other system products which are usually provided in standard formats such as NetCDF and the transformation of the model's calculation routines to allow use of current, density and diffusivities data in z instead of sigma coordinates. During the implementation of the Aegean DeSS, the system was used in operational mode in order to support the Greek marine authorities in handling a real accident that took place in North Aegean area. Furthermore, the introduction of common input and output files by all the partners of EuroDeSS extended the system's interoperability thus facilitating data exchanges and comparison experiments.
Sorkheh, Karim; Amirbakhtiar, Nazanin; Ercisli, Sezai
2016-08-01
Wild pistachio species is important species in forests regions Iran and provide protection wind and soil erosion. Even though cultivation and utilization of Pistacia are fully exploited, the evolutionary history of the Pistacia genus and the relationships among the species and accessions is still not well understood. Two molecular marker strategies, SCoT and IRAP markers were analyzed for assessment of 50 accessions of this species accumulated from diverse geographical areas of Iran. A thorough of 115 bands were amplified using eight IRAP primers, of which 104 (90.4 %) have been polymorphic, and 246 polymorphic bands (68.7 %) had been located in 358 bands amplified by way of forty-four SCoT primers. Average PIC for IRAP and SCoT markers became 0.32 and 0.48, respectively. This is exposed that SCoT markers have been extra informative than IRAP for the assessment of variety among pistachio accessions. Primarily based on the two extraordinary molecular markers, cluster evaluation revealed that the 50 accessions taken for the evaluation may be divided into three distinct clusters. Those results recommend that the performance of SCoT and IRAP markers was highly the equal in fingerprinting of accessions. The results affirmed a low genetic differentiation among populations, indicating the opportunity of gene drift most of the studied populations. These findings might render striking information in breeding management strategies for genetic conservation and cultivar improvement.
NASA Technical Reports Server (NTRS)
1974-01-01
Information was exchanged between people directly involved with the development, use, and/or potential use of free drifting buoys. Tracking systems and techniques, where methods and accuracy of optical, radio, radar, satellite, and sonic tracking of free-drifting buoys were discussed. Deployment and retrieval covering methods currently used or planned in the deployment and retrieval of free-drifting buoys from boats, ships, helicopters, fixed platforms, and fixed-wing aircraft were reported. Simulation, sensors, and data emphasizing the status of water circulation modeling, and sensors useful on free-drifting buoys, and data display and analysis were described.
Drift studies--comparison of field and wind tunnel experiments.
Stadler, R; Regenauer, W
2005-01-01
Drift at pesticide application leads to a pollution of non-target crops, non-target species and surface water. Spray drift is influenced by many factors like environmental conditions, vegetation, technical conditions, and physical properties of the tank mixes and influenced by Chemicals. Field experiments to characterise spray drift effects with the risk of permanent changing weather conditions can be supported by wind tunnel experiments. Wind tunnel experiments do not lead to the same soil deposition curves like field experiments, but the ratio of drift reduction potential is comparable.
Matz, Laura M; Hill, Herbert H; Beegle, Luther W; Kanik, Isik
2002-04-01
Recent studies in electrospray ionization (ESI)/ion mobility spectrometry (IMS) have focussed on employing different drift gases to alter separation efficiency for some molecules. This study investigates four structurally similar classes of molecules (cocaine and metabolites, amphetamines, benzodiazepines, and small peptides) to determine the effect of structure on relative mobility changes in four drift gases (helium, nitrogen, argon, carbon dioxide). Collision cross sections were plotted against drift gas polarizability and a linear relationship was found for the nineteen compounds evaluated in the study. Based on the reduced mobility database, all nineteen compounds could be separated in one of the four drift gases, however, the drift gas that provided optimal separation was specific for the two compounds.
Ma, Zhiyuan; Luo, Guangchun; Qin, Ke; Wang, Nan; Niu, Weina
2018-03-01
Sensor drift is a common issue in E-Nose systems and various drift compensation methods have received fruitful results in recent years. Although the accuracy for recognizing diverse gases under drift conditions has been largely enhanced, few of these methods considered online processing scenarios. In this paper, we focus on building online drift compensation model by transforming two domain adaptation based methods into their online learning versions, which allow the recognition models to adapt to the changes of sensor responses in a time-efficient manner without losing the high accuracy. Experimental results using three different settings confirm that the proposed methods save large processing time when compared with their offline versions, and outperform other drift compensation methods in recognition accuracy.
About the Drift Reduction Technology Program
The new voluntary Drift Reduction Technology (DRT) Program will encourage the manufacture, marketing, and use of safer spray technology and equipment scientifically verified to reduce pesticide drift.
NASA Astrophysics Data System (ADS)
Förster, Matthias; Cnossen, Ingrid
2013-09-01
The nondipolar portions of the Earth's main magnetic field constitute substantial differences between the two hemispheres. Beside the magnetic flux densities and patterns being different in the Northern Hemisphere (NH) and Southern Hemisphere (SH), also the offset between the invariant magnetic and the geographic poles is larger in the SH than in the NH. We investigated the effects of this magnetic field asymmetry on the high-latitude thermosphere and ionosphere using global numerical simulations and compared our results with recent observations. While the effects on the high-latitude plasma convection are small, the consequences for the neutral wind circulation are substantial. The cross-polar neutral wind and ion drift velocities are generally larger in the NH than the SH, and the hemispheric difference shows a semidiurnal variation. The neutral wind vorticity is likewise larger in the NH than in the SH, with the difference probably becoming larger for higher solar activity. In contrast, the spatial variance of the neutral wind is considerably larger in the SH polar region, with the hemispheric difference showing a strong semidiurnal variation. Its phase is similar to the phase of the semidiurnal variation of the hemispheric magnitude differences. Hemispheric differences in ion drift and neutral wind magnitude are most likely caused partly by the larger magnetic flux densities in the near-polar regions of the SH and partly by the larger offset between the invariant and geographic pole in the SH, while differences in spatial variance are probably just caused by the latter. We conclude that the asymmetry of the magnetic field, both in strength and in orientation, establishes substantial hemispheric differences in the neutral wind and plasma drift in the high-latitude upper atmosphere, which can help to explain observed hemispheric differences found with the Cluster/Electron Drift Instrument (EDI) and the Challenging Minisatellite Payload (CHAMP).
Bi, Zedong; Zhou, Changsong
2016-01-01
In neural systems, synaptic plasticity is usually driven by spike trains. Due to the inherent noises of neurons and synapses as well as the randomness of connection details, spike trains typically exhibit variability such as spatial randomness and temporal stochasticity, resulting in variability of synaptic changes under plasticity, which we call efficacy variability. How the variability of spike trains influences the efficacy variability of synapses remains unclear. In this paper, we try to understand this influence under pair-wise additive spike-timing dependent plasticity (STDP) when the mean strength of plastic synapses into a neuron is bounded (synaptic homeostasis). Specifically, we systematically study, analytically and numerically, how four aspects of statistical features, i.e., synchronous firing, burstiness/regularity, heterogeneity of rates and heterogeneity of cross-correlations, as well as their interactions influence the efficacy variability in converging motifs (simple networks in which one neuron receives from many other neurons). Neurons (including the post-synaptic neuron) in a converging motif generate spikes according to statistical models with tunable parameters. In this way, we can explicitly control the statistics of the spike patterns, and investigate their influence onto the efficacy variability, without worrying about the feedback from synaptic changes onto the dynamics of the post-synaptic neuron. We separate efficacy variability into two parts: the drift part (DriftV) induced by the heterogeneity of change rates of different synapses, and the diffusion part (DiffV) induced by weight diffusion caused by stochasticity of spike trains. Our main findings are: (1) synchronous firing and burstiness tend to increase DiffV, (2) heterogeneity of rates induces DriftV when potentiation and depression in STDP are not balanced, and (3) heterogeneity of cross-correlations induces DriftV together with heterogeneity of rates. We anticipate our work important for understanding functional processes of neuronal networks (such as memory) and neural development. PMID:26941634
NASA Astrophysics Data System (ADS)
Parkhomenko, A. I.; Shalagin, A. M.
2018-06-01
A mechanism for the segregation of calcium isotopes in the atmospheres of chemically peculiar (CP) stars due to light-induced drift (LID) of singly charged 48Ca+ ions is discussed. One peculiarity of Ca+ is that an adequate description of the effect of LID requires taking into account several energy levels of Ca+, and thus several pairs of relative differences ( ν i - ν k )/ ν i for the transport frequencies for collisions of levels i and k with neutral atoms (hydrogen, helium). The known real (calculated ab initio) interaction potentials are used to numerically calculate the factors ( ν i - ν k )/ ν i for several states of Ca+ for collisions with H and He atoms. These computations show that, at the temperatures characteristic of the atmospheres of CP stars, T = 6600-12 000 K, fairly high values are obtained for Ca+ ions, ( ν i - ν k )/ ν i ≈ 0.4-0.6. Simple, transparent computations demonstrate that the LID rates of Ca+ ions in the atmospheres of cool CP stars ( T eff = 6600 K) exceed the drift rate due to light pressure by two orders of magnitude. The LID is directed upward in the stellar atmosphere, and the heavy isotope 48Ca is pushed into upper layers of the atmosphere. This can explain the observed predominance of the heavy isotope 48Ca in the upper atmospheric layers of CP stars; according to the radiative-diffusion theory, the action of light pressure alone (in the absence of LID) would lead to sinking of the isotope 48Ca deeper into stellar atmosphere, following the lighter main isotope 40Ca. The 48Ca+ LIDrate decreases and its drift rate due to light pressure increases with growth of the effective temperatures in the atmospheres of CP stars. The manifestations of LID and light pressure are roughly comparable in the atmospheres of CP stars with effective temperatures near T eff = 9500 K.
The Characterization of Non-Gravitational Perturbations That Act on Near-Earth Asteroid Orbits
NASA Astrophysics Data System (ADS)
Margot, Jean-Luc; Greenberg, Adam H.; Verma, Ashok K.; Taylor, Patrick A.
2017-10-01
The Yarkovsky effect is a thermal process acting upon the orbits of small celestial bodies which can cause these orbits to slowly expand or contract with time. The effect is subtle -- typical drift rates lie near 1e-4 au/My for a ~1 km diameter object -- and is thus generally difficult to measure. However, objects with long observation intervals, as well as objects with radar detections, serve as excellent candidates for the observation of this effect.We analyzed both optical and radar astrometry for all numbered Near-Earth Asteroids (NEAs), as well as several un-numbered NEAs. In order to quantify the likelihood of Yarkovsky detections, we developed a metric based on the quality of Yarkovsky fits as compared to that of gravity-only fits. Based on the metric results, we report 167 objects with measured Yarkovsky drifts.Our Yarkovsky sample is the largest published set of such detections, and presents an opportunity to examine the physical properties of these NEAs and the Yarkovsky effect in a statistical manner. In particular, we confirm the Yarkovsky effect's theoretical size dependence of 1/D, where D is diameter. We also examine the efficiency with which this effect converts absorbed light into orbital drift. Using our set of 167 objects, we find typical efficiences of around 5%. This efficiency can be used to place bounds on spin and thermal properties. We report the ratio of positive to negative drift rates and interpret this ratio in terms of prograde/retrograde rotators and main belt escape mechanisms. The observed ratio has a probability of 1 in 9 million of occurring by chance, which confirms the presence of a non-gravitational influence. We examine how the presence of radar data affect the strength and precision of our detections. We find that, on average, the precision of radar+optical detections improves by a factor of approximately 1.6 for each additional apparition with ranging data compared to that of optical-only solutions.
Ga-doped indium oxide nanowire phase change random access memory cells
NASA Astrophysics Data System (ADS)
Jin, Bo; Lim, Taekyung; Ju, Sanghyun; Latypov, Marat I.; Kim, Hyoung Seop; Meyyappan, M.; Lee, Jeong-Soo
2014-02-01
Phase change random access memory (PCRAM) devices are usually constructed using tellurium based compounds, but efforts to seek other materials providing desirable memory characteristics have continued. We have fabricated PCRAM devices using Ga-doped In2O3 nanowires with three different Ga compositions (Ga/(In+Ga) atomic ratio: 2.1%, 11.5% and 13.0%), and investigated their phase switching properties. The nanowires (˜40 nm in diameter) can be repeatedly switched between crystalline and amorphous phases, and Ga concentration-dependent memory switching behavior in the nanowires was observed with ultra-fast set/reset rates of 80 ns/20 ns, which are faster than for other competitive phase change materials. The observations of fast set/reset rates and two distinct states with a difference in resistance of two to three orders of magnitude appear promising for nonvolatile information storage. Moreover, we found that increasing the Ga concentration can reduce the power consumption and resistance drift; however, too high a level of Ga doping may cause difficulty in achieving the phase transition.
Deep-Sea Research Submarine 'Ben Franklin' at the East Coast of the United States
NASA Technical Reports Server (NTRS)
1969-01-01
In this photograph, the deep-sea Research Submarine 'Ben Franklin' drifts off the East Coast of the United States (U.S.) prior to submerging into the ocean. Named for American patriot and inventor Ben Franklin, who discovered the Gulf Steam, the 50-foot Ben Franklin was built between 1966 and 1968 in Switzerland for deep-ocean explorer Jacques Piccard and the Grumman Aircraft Engineering Corporation. The submersible made a famous 30-day drift dive off the East Coast of the United States and Canada in 1969 mapping the Gulf Stream's currents and sea life, and also made space exploration history by studying the behavior of aquanauts in a sealed, self-contained, self-sufficient capsule for NASA. On July 14, 1969, the Ben Franklin was towed to the high-velocity center of the Stream off the coast of Palm Beach, Florida. With a NASA observer on board, the sub descended to 1,000 feet off of Riviera Beach, Florida and drifted 1,400 miles north with the current for more than four weeks, reemerging near Maine. During the course of the dive, NASA conducted exhaustive analyses of virtually every aspect of onboard life. They measured sleep quality and patterns, sense of humor and behavioral shifts, physical reflexes, and the effects of a long-term routine on the crew. The submarine's record-shattering dive influenced the design of Apollo and Skylab missions and continued to guide NASA scientists as they devised future marned space-flight missions.
Characteristics of drift pumice from New Caledonia beaches
NASA Astrophysics Data System (ADS)
Nicholson, Kirsten Ngaire; Stewart, Ariel
2016-12-01
Siliceous drift pumice was collected from a total of 40 beaches around the main island of New Caledonia, Southwest Pacific, in order to determine its provenance. New Caledonia is enclosed by a barrier reef lagoon whose 2008 designation as a UNESCO World Heritage Site brought attention to the environmental degradation caused by a century of open cast nickel mining. The frequent, voluminous pumice eruptions in the Southwest Pacific provide ample source material that is somewhat durable, highly transportable in water, and easy to collect and analyze. Geochemical and mineralogical analyses were used to identify the source of the pumice in order to map the transport vector across the open ocean and into the lagoon. Drift pumice was sampled during 2008 and 2010. The mineral assemblage of the pumice was consistently calcic plagioclase, clinopyroxene, orthopyroxene, and opaque minerals. All of the pumice was of fairly uniform geochemistry: low in mafic elements, low in alkalis, with LILE enriched compared to HFSE, and negative Eu, Ti, and Zr anomalies. The pumice is predominately dacitic and tholeiitic. This geochemical signature was consistent with published data from the Tonga arc, which is further supported by the mineralogy. With the exception of two samples (which probably came from either the Kermadec arc or Vanuatu) all of the pumice comes from the Tonga arc. The samples from 2008 are consistent with pumice erupted from Metis Shoal in 2006, and the majority of 2010 samples are consistent with pumice erupted from an unnamed volcano (0403-091) that erupted in 2001.
NASA Astrophysics Data System (ADS)
Lapshin, Rostislav V.
2016-08-01
A method of distributed calibration of a probe microscope scanner is suggested. The main idea consists in a search for a net of local calibration coefficients (LCCs) in the process of automatic measurement of a standard surface, whereby each point of the movement space of the scanner can be characterized by a unique set of scale factors. Feature-oriented scanning (FOS) methodology is used as a basis for implementation of the distributed calibration permitting to exclude in situ the negative influence of thermal drift, creep and hysteresis on the obtained results. Possessing the calibration database enables correcting in one procedure all the spatial systematic distortions caused by nonlinearity, nonorthogonality and spurious crosstalk couplings of the microscope scanner piezomanipulators. To provide high precision of spatial measurements in nanometer range, the calibration is carried out using natural standards - constants of crystal lattice. One of the useful modes of the developed calibration method is a virtual mode. In the virtual mode, instead of measurement of a real surface of the standard, the calibration program makes a surface image ;measurement; of the standard, which was obtained earlier using conventional raster scanning. The application of the virtual mode permits simulation of the calibration process and detail analysis of raster distortions occurring in both conventional and counter surface scanning. Moreover, the mode allows to estimate the thermal drift and the creep velocities acting while surface scanning. Virtual calibration makes possible automatic characterization of a surface by the method of scanning probe microscopy (SPM).
Wind selectivity and partial compensation for wind drift among nocturnally migrating passerines
McLaren, James D.
2012-01-01
A migrating bird’s response to wind can impact its timing, energy expenditure, and path taken. The extent to which nocturnal migrants select departure nights based on wind (wind selectivity) and compensate for wind drift remains unclear. In this paper, we determine the effect of wind selectivity and partial drift compensation on the probability of successfully arriving at a destination area and on overall migration speed. To do so, we developed an individual-based model (IBM) to simulate full drift and partial compensation migration of juvenile Willow Warblers (Phylloscopus trochilus) along the southwesterly (SW) European migration corridor to the Iberian coast. Various degrees of wind selectivity were tested according to how large a drift angle and transport cost (mechanical energy per unit distance) individuals were willing to tolerate on departure after dusk. In order to assess model results, we used radar measurements of nocturnal migration to estimate the wind selectivity and proportional drift among passerines flying in SW directions. Migration speeds in the IBM were highest for partial compensation populations tolerating at least 25% extra transport cost compared to windless conditions, which allowed more frequent departure opportunities. Drift tolerance affected migration speeds only weakly, whereas arrival probabilities were highest with drift tolerances below 20°. The radar measurements were indicative of low drift tolerance, 25% extra transport cost tolerance and partial compensation. We conclude that along migration corridors with generally nonsupportive winds, juvenile passerines should not strictly select supportive winds but partially compensate for drift to increase their chances for timely and accurate arrival. PMID:22936843
Wind selectivity and partial compensation for wind drift among nocturnally migrating passerines.
McLaren, James D; Shamoun-Baranes, Judy; Bouten, Willem
2012-09-01
A migrating bird's response to wind can impact its timing, energy expenditure, and path taken. The extent to which nocturnal migrants select departure nights based on wind (wind selectivity) and compensate for wind drift remains unclear. In this paper, we determine the effect of wind selectivity and partial drift compensation on the probability of successfully arriving at a destination area and on overall migration speed. To do so, we developed an individual-based model (IBM) to simulate full drift and partial compensation migration of juvenile Willow Warblers (Phylloscopus trochilus) along the southwesterly (SW) European migration corridor to the Iberian coast. Various degrees of wind selectivity were tested according to how large a drift angle and transport cost (mechanical energy per unit distance) individuals were willing to tolerate on departure after dusk. In order to assess model results, we used radar measurements of nocturnal migration to estimate the wind selectivity and proportional drift among passerines flying in SW directions. Migration speeds in the IBM were highest for partial compensation populations tolerating at least 25% extra transport cost compared to windless conditions, which allowed more frequent departure opportunities. Drift tolerance affected migration speeds only weakly, whereas arrival probabilities were highest with drift tolerances below 20°. The radar measurements were indicative of low drift tolerance, 25% extra transport cost tolerance and partial compensation. We conclude that along migration corridors with generally nonsupportive winds, juvenile passerines should not strictly select supportive winds but partially compensate for drift to increase their chances for timely and accurate arrival.
Increased Arctic sea ice drift alters adult female polar bear movements and energetics
Durner, George M.; Douglas, David C.; Albeke, Shannon; Whiteman, John P.; Amstrup, Steven C.; Richardson, Evan; Wilson, Ryan R.; Ben-David, Merav
2017-01-01
Recent reductions in thickness and extent have increased drift rates of Arctic sea ice. Increased ice drift could significantly affect the movements and the energy balance of polar bears (Ursus maritimus) which forage, nearly exclusively, on this substrate. We used radio-tracking and ice drift data to quantify the influence of increased drift on bear movements, and we modeled the consequences for energy demands of adult females in the Beaufort and Chukchi seas during two periods with different sea ice characteristics. Westward and northward drift of the sea ice used by polar bears in both regions increased between 1987–1998 and 1999–2013. To remain within their home ranges, polar bears responded to the higher westward ice drift with greater eastward movements, while their movements north in the spring and south in fall were frequently aided by ice motion. To compensate for more rapid westward ice drift in recent years, polar bears covered greater daily distances either by increasing their time spent active (7.6%–9.6%) or by increasing their travel speed (8.5%–8.9%). This increased their calculated annual energy expenditure by 1.8%–3.6% (depending on region and reproductive status), a cost that could be met by capturing an additional 1–3 seals/year. Polar bears selected similar habitats in both periods, indicating that faster drift did not alter habitat preferences. Compounding reduced foraging opportunities that result from habitat loss; changes in ice drift, and associated activity increases, likely exacerbate the physiological stress experienced by polar bears in a warming Arctic.
An effective drift correction for dynamical downscaling of decadal global climate predictions
NASA Astrophysics Data System (ADS)
Paeth, Heiko; Li, Jingmin; Pollinger, Felix; Müller, Wolfgang A.; Pohlmann, Holger; Feldmann, Hendrik; Panitz, Hans-Jürgen
2018-04-01
Initialized decadal climate predictions with coupled climate models are often marked by substantial climate drifts that emanate from a mismatch between the climatology of the coupled model system and the data set used for initialization. While such drifts may be easily removed from the prediction system when analyzing individual variables, a major problem prevails for multivariate issues and, especially, when the output of the global prediction system shall be used for dynamical downscaling. In this study, we present a statistical approach to remove climate drifts in a multivariate context and demonstrate the effect of this drift correction on regional climate model simulations over the Euro-Atlantic sector. The statistical approach is based on an empirical orthogonal function (EOF) analysis adapted to a very large data matrix. The climate drift emerges as a dramatic cooling trend in North Atlantic sea surface temperatures (SSTs) and is captured by the leading EOF of the multivariate output from the global prediction system, accounting for 7.7% of total variability. The SST cooling pattern also imposes drifts in various atmospheric variables and levels. The removal of the first EOF effectuates the drift correction while retaining other components of intra-annual, inter-annual and decadal variability. In the regional climate model, the multivariate drift correction of the input data removes the cooling trends in most western European land regions and systematically reduces the discrepancy between the output of the regional climate model and observational data. In contrast, removing the drift only in the SST field from the global model has hardly any positive effect on the regional climate model.
On the nature of unintentional action: a study of force/moment drifts during multifinger tasks.
Parsa, Behnoosh; O'Shea, Daniel J; Zatsiorsky, Vladimir M; Latash, Mark L
2016-08-01
We explored the origins of unintentional changes in performance during accurate force production in isometric conditions seen after turning visual feedback off. The idea of control with referent spatial coordinates suggests that these phenomena could result from drifts of the referent coordinate for the effector. Subjects performed accurate force/moment production tasks by pressing with the fingers of a hand on force sensors. Turning the visual feedback off resulted in slow drifts of both total force and total moment to lower magnitudes of these variables; these drifts were more pronounced in the right hand of the right-handed subjects. Drifts in individual finger forces could be in different direction; in particular, fingers that produced moments of force against the required total moment showed an increase in their forces. The force/moment drift was associated with a drop in the index of synergy stabilizing performance under visual feedback. The drifts in directions that changed performance (non-motor equivalent) and in directions that did not (motor equivalent) were of about the same magnitude. The results suggest that control with referent coordinates is associated with drifts of those referent coordinates toward the corresponding actual coordinates of the hand, a reflection of the natural tendency of physical systems to move toward a minimum of potential energy. The interaction between drifts of the hand referent coordinate and referent orientation leads to counterdirectional drifts in individual finger forces. The results also demonstrate that the sensory information used to create multifinger synergies is necessary for their presence over the task duration. Copyright © 2016 the American Physiological Society.
Preliminary map showing the thickness of glacial deposits in Ohio
Soller, D.R.
1986-01-01
In contrast to the extreme variations in drift thickness encountered in the vicinity of buried channels, drift on the upland arcus is generally thinner and the variations in thickness are much less pronounced. Worthy of note, however, are three large areas where the drift sheet is relatively thick. In northwestern Ohio, a large volume of drift was deposited along the flanks of the Erie ice lobe (fig. 2) near the interlobate position with the Saginaw lobe to the northwest; drift thickness there exceeds 200 ft. Thick drift was also deposited in a roughly cast-west band across the Miami lobe. The mechanism that produced this band of thick drift is not obvious, but it may have been influenced in part by bedrock topography. Bedrock control of drift thickness is more clearly indicated to the cast of Columbus, along the eastern flank of the Scioto lobe, where ice slow was resisted by rocks of the Allegheny plateau. The edge of the plateau, or the Allegheny escarpment, is obscured by glacial deposits but its likely position (Fenneman, 1938; Stout and others, 1913; Dove, 1960; and Root and others, 1961) is shown on the map. Southward from the ice margin's reentrant position in southern Richland County, ice flowing eastward from the Scioto lobe encountered the topographically higher plateau, which constrained the ice and caused drift to accumulate in significant thicknesses just to the west of the escarpment.
Age of marginal Wisconsin drift at corry, northwestern Pennsylvania
Droste, J.B.; Rubin, M.; White, G.W.
1959-01-01
Marl began to accumulate about 14,000 years ago, as determined by radiocarbon dating, in a pond in a kettle hole in Kent drift at Corry, Pa., 9 miles inside the Wisconsin drift margin. This radiocarbon age represents the minimum time since the disappearance of the ice from Corry and confirms an assignment of Cary age to the drift.
Drifting oscillations in axion monodromy
Flauger, Raphael; McAllister, Liam; Silverstein, Eva; ...
2017-10-31
In this paper, we study the pattern of oscillations in the primordial power spectrum in axion monodromy inflation, accounting for drifts in the oscillation period that can be important for comparing to cosmological data. In these models the potential energy has a monomial form over a super-Planckian field range, with superimposed modulations whose size is model-dependent. The amplitude and frequency of the modulations are set by the expectation values of moduli fields. We show that during the course of inflation, the diminishing energy density can induce slow adjustments of the moduli, changing the modulations. We provide templates capturing the effectsmore » of drifting moduli, as well as drifts arising in effective field theory models based on softly broken discrete shift symmetries, and we estimate the precision required to detect a drifting period. A non-drifting template suffices over a wide range of parameters, but for the highest frequencies of interest, or for sufficiently strong drift, it is necessary to include parameters characterizing the change in frequency over the e-folds visible in the CMB. Finally, we use these templates to perform a preliminary search for drifting oscillations in a part of the parameter space in the Planck nominal mission data.« less
How Far is Far Enough? Invertebrate Responses to Physical Constraints on Drift Distance
NASA Astrophysics Data System (ADS)
Hoover, T. M.; Yonemitsu, N.; Richardson, J. S.
2005-05-01
Many stream insects enter the drift and disperse downstream. Once entrained, however, the probability of settling in a patch of suitable habitat is a function of the physical properties and behavior of the drifting insect, as well as the hydrodynamic characteristics of the habitat through which the insect is drifting. The roles that taxa-specific morphology and behavior play in determining drift distance were examined for four mayflies with different habitat requirements; two rheophilous taxa (Baetis and Epeorus) and two pool-dwelling taxa (Ameletus and Paraleptophlebia). Larvae were released in an experimental channel in low and high water velocities. The total distances traveled by live mayfly larvae (+ behavior, + morphology) were compared to heat-killed larvae (- behavior, + morphology), and a series of low-density tracer particles (- behavior, - morphology). Live Baetis and Epeorus drifted similar distances, whereas the drift distances of the two pool taxa differed substantially (Ameletus < Epeorus, Baetis < Paraleptophlebia). The settlement distributions of dead larvae and passive tracer particles show that settlement behaviors allow drifting larvae to avoid becoming entrained in large-scale turbulent flow structures. These results suggest that stream insects have evolved strategies that facilitate dispersal between patches of suitable habitat.
Pulsed electron beam propagation in gases under pressure of 6.6 kPa in drift tube
NASA Astrophysics Data System (ADS)
Kholodnaya, G. E.; Sazonov, R. V.; Ponomarev, D. V.; Remnev, G. E.; Poloskov, A. V.
2017-02-01
This paper presents the results of an investigation of pulsed electron beam transport propagated in a drift tube filled with different gases (He, H2, N2, Ar, SF6, and CO2). The total pressure in the drift tube was 6.6 kPa. The experiments were carried out using a TEA-500 pulsed electron accelerator. The electron beam was propagated in the drift tube composed of two sections equipped with reverse current shunts. Under a pressure of 6.6 kPa, the maximum value of the electron beam charge closed on the walls of the drift tube was recorded when the beam was propagated in hydrogen and carbon dioxide. The minimum value of the electron beam charge closed on the walls of the drift tube was recorded for sulfur hexafluoride. The visualization of the pulsed electron beam energy losses onto the walls of the drift chamber was carried out using radiation-sensitive film.
Novel x-ray silicon detector for 2D imaging and high-resolution spectroscopy
NASA Astrophysics Data System (ADS)
Castoldi, Andrea; Gatti, Emilio; Guazzoni, Chiara; Longoni, Antonio; Rehak, Pavel; Strueder, Lothar
1999-10-01
A novel x-ray silicon detector for 2D imaging has been recently proposed. The detector, called Controlled-Drift Detector, is operated in integrate-readout mode. Its basic feature is the fast transport of the integrated charge to the output electrode by means of a uniform drift field. The drift time of the charge packet identifies the pixel of incidence. A new architecture to implement the Controlled- Drift Detector concept will be presented. The potential wells for the integration of the signal charge are obtained by means of a suitable pattern of deep n-implants and deep p-implants. During the readout mode the signal electrons are transferred in the drift channel that flanks each column of potential wells where they drift towards the collecting electrode at constant velocity. The first experimental measurements demonstrate the successful integration, transfer and drift of the signal electrons. The low output capacitance of the readout electrode together with the on- chip front-end electronics allows high resolution spectroscopy of the detected photons.
Drift from the Use of Hand-Held Knapsack Pesticide Sprayers in Boyacá (Colombian Andes).
García-Santos, Glenda; Feola, Giuseppe; Nuyttens, David; Diaz, Jaime
2016-05-25
Offsite pesticide losses in tropical mountainous regions have been little studied. One example is measuring pesticide drift soil deposition, which can support pesticide risk assessment for surface water, soil, bystanders, and off-target plants and fauna. This is considered a serious gap, given the evidence of pesticide-related poisoning in those regions. Empirical data of drift deposition of a pesticide surrogate, Uranine tracer, within one of the highest potato-producing regions in Colombia, characterized by small plots and mountain orography, is presented. High drift values encountered in this study reflect the actual spray conditions using hand-held knapsack sprayers. Comparison between measured and predicted drift values using three existing empirical equations showed important underestimation. However, after their optimization based on measured drift information, the equations showed a strong predictive power for this study area and the study conditions. The most suitable curve to assess mean relative drift was the IMAG calculator after optimization.
Ionospheric vertical plasma drift perturbations due to the quasi 2 day wave
NASA Astrophysics Data System (ADS)
Gu, Sheng-Yang; Liu, Han-Li; Li, Tao; Dou, Xiankang
2015-05-01
The thermosphere-ionosphere-mesosphere-electrodynamics-general circulation model is utilized to study the vertical E × B drift perturbations due to the westward quasi 2 day wave with zonal wave numbers 2 and 3 (W2 and W3). The simulations show that both wind components contribute directly and significantly to the vertical drift, which is not merely confined to low latitudes. The vertical drifts at the equator induced by the total wind perturbations of W2 are comparable with that at middle latitudes, while the vertical drifts from W3 are much stronger at middle latitudes than at the equator. The ion drift perturbations induced by the zonal and meridional wind perturbations of W2 are nearly in-phase with each other, whereas the phase discrepancies of the ion drift induced by the individual wind component of W3 are much larger. This is because the wind perturbations of W2 and W3 have different latitudinal structures and phases, which result in different ionospheric responses through wind dynamo.
Extraction of Qualitative Features from Sensor Data Using Windowed Fourier Transform
NASA Technical Reports Server (NTRS)
Amini, Abolfazl M.; Figueroa, Fenando
2003-01-01
In this paper, we use Matlab to model the health monitoring of a system through the information gathered from sensors. This implies assessment of the condition of the system components. Once a normal mode of operation is established any deviation from the normal behavior indicates a change. This change may be due to a malfunction of an element, a qualitative change, or a change due to a problem with another element in the network. For example, if one sensor indicates that the temperature in the tank has experienced a step change then a pressure sensor associated with the process in the tank should also experience a step change. The step up and step down as well as sensor disturbances are assumed to be exponential. An RC network is used to model the main process, which is step-up (charging), drift, and step-down (discharging). The sensor disturbances and spike are added while the system is in drift. The system is allowed to run for a period equal to three time constant of the main process before changes occur. Then each point of the signal is selected with a trailing data collected previously. Two trailing lengths of data are selected, one equal to two time constants of the main process and the other equal to two time constants of the sensor disturbance. Next, the DC is removed from each set of data and then the data are passed through a window followed by calculation of spectra for each set. In order to extract features the signal power, peak, and spectrum are plotted vs time. The results indicate distinct shapes corresponding to each process. The study is also carried out for a number of Gaussian distributed noisy cases.
Linear electronic field time-of-flight ion mass spectrometers
Funsten, Herbert O.
2010-08-24
Time-of-flight mass spectrometer comprising a first drift region and a second drift region enclosed within an evacuation chamber; a means of introducing an analyte of interest into the first drift region; a pulsed ionization source which produces molecular ions from said analyte of interest; a first foil positioned between the first drift region and the second drift region, which dissociates said molecular ions into constituent atomic ions and emits secondary electrons; an electrode which produces secondary electrons upon contact with a constituent atomic ion in second drift region; a stop detector comprising a first ion detection region and a second ion detection region; and a timing means connected to the pulsed ionization source, to the first ion detection region, and to the second ion detection region.
Equatorial Ionospheric Disturbance Field-Aligned Plasma Drifts Observed by C/NOFS
NASA Astrophysics Data System (ADS)
Zhang, Ruilong; Liu, Libo; Balan, N.; Le, Huijun; Chen, Yiding; Zhao, Biqiang
2018-05-01
Using C/NOFS satellite observations, this paper studies the disturbance field-aligned plasma drifts in the equatorial topside ionosphere during eight geomagnetic storms in 2011-2015. During all six storms occurred in the solstices, the disturbance field-aligned plasma drift is from winter to summer hemisphere especially in the morning-midnight local time sector and the disturbance is stronger in June solstice. The two storms occurred at equinoxes have very little effect on the field-aligned plasma drift. Using the plasma temperature data from DMSP satellites and Global Positioning System-total electron content, it is suggested that the plasma density gradient seems likely to cause the disturbance winter-to-summer plasma drift while the role of plasma temperature gradient is opposite to the observed plasma drift.
Diel periodicity of drift of larval fishes in tributaries of Lake Ontario
Johnson, J. H.; McKenna, J.E.
2007-01-01
Diel patterns of downstream drift were examined during mid-June in three tributaries of Lake Ontario. Larval fishes were collected in drift nets that were set in each stream for 72 consecutive hours and emptied at 4-h intervals. Fantail darter (Ethostoma flabellare) and blacknose dace (Rhinichthys atractulus) were the two most abundant native stream fishes and were two of the three species collected in the ichthyoplankton drift. Fantail darter larvae comprised 100%, 98.9%, and 70.2% of the ichthyoplankton in the three streams. Most larval fishes (96%) drifted at night with peak catches occurring at 2400h in Orwell Brook and Trout Brook and 0400h in Little Sandy Creek. Based on stream temperatures, peak spawning and larval drift of blacknose dace probably occurred later in the season.
Luo, Guangchun; Qin, Ke; Wang, Nan; Niu, Weina
2018-01-01
Sensor drift is a common issue in E-Nose systems and various drift compensation methods have received fruitful results in recent years. Although the accuracy for recognizing diverse gases under drift conditions has been largely enhanced, few of these methods considered online processing scenarios. In this paper, we focus on building online drift compensation model by transforming two domain adaptation based methods into their online learning versions, which allow the recognition models to adapt to the changes of sensor responses in a time-efficient manner without losing the high accuracy. Experimental results using three different settings confirm that the proposed methods save large processing time when compared with their offline versions, and outperform other drift compensation methods in recognition accuracy. PMID:29494543
Drift of suspended ferromagnetic particles due to the Magnus effect
NASA Astrophysics Data System (ADS)
Denisov, S. I.; Pedchenko, B. O.
2017-01-01
A minimal system of equations is introduced and applied to study the drift motion of ferromagnetic particles suspended in a viscous fluid and subjected to a time-periodic driving force and a nonuniformly rotating magnetic field. It is demonstrated that the synchronized translational and rotational oscillations of these particles are accompanied by their drift in a preferred direction, which occurs under the action of the Magnus force. We calculate both analytically and numerically the drift velocity of particles characterized by single-domain cores and nonmagnetic shells and show that there are two types of drift, unidirectional and bidirectional, which can be realized in suspensions composed of particles with different core-shell ratios. The possibility of using the phenomenon of bidirectional drift for the separation of core-shell particles in suspensions is also discussed.
Electron drift in a large scale solid xenon
Yoo, J.; Jaskierny, W. F.
2015-08-21
A study of charge drift in a large scale optically transparent solid xenon is reported. A pulsed high power xenon light source is used to liberate electrons from a photocathode. The drift speeds of the electrons are measured using a 8.7 cm long electrode in both the liquid and solid phase of xenon. In the liquid phase (163 K), the drift speed is 0.193 ± 0.003 cm/μs while the drift speed in the solid phase (157 K) is 0.397 ± 0.006 cm/μs at 900 V/cm over 8.0 cm of uniform electric fields. Furthermore, it is demonstrated that a factor twomore » faster electron drift speed in solid phase xenon compared to that in liquid in a large scale solid xenon.« less
The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC)
NASA Astrophysics Data System (ADS)
Rex, M.; Shupe, M.; Dethloff, K.
2017-12-01
MOSAiC is an international initiative under the umbrella of the International Arctic Science Committee (IASC) designed by an international consortium of leading polar research institutes. Rapid changes in the Arctic lead to an urgent need for reliable information about the state and evolution of the Arctic climate system. This requires more observations and improved modelling over various spatial and temporal scales, and across a wide variety of disciplines. Observations of many critical parameters were never made in the central Arctic for a full annual cycle. MOSAiC will be the first year-around expedition into the central Arctic exploring the coupled climate system. The research vessel Polarstern will drift with the sea ice across the central Arctic during the years 2019 to 2020. The drift starts in the Siberian sector of the Arctic in late summer. A distributed regional network of observational sites will be established on the sea ice in an area of up to 50 km distance from Polarstern, representing a grid cell of climate models. The ship and the surrounding network will drift with the natural sea ice drift across the polar cap towards the Atlantic. The focus of MOSAiC lies on in-situ observations of the climate processes that couple atmosphere, ocean, sea ice, biogeochemistry and ecosystem. These measurements will be supported by weather and sea ice predictions and remote sensing operations to make the expedition successful. The expedition includes aircraft operations and cruises by icebreakers from MOSAiC partners. All these observations will be used for the main scientific goals of MOSAiC, enhancing the understanding of the regional and global consequences of Arctic climate change and sea ice loss and improve weather and climate prediction. More precisely, the results are needed to advance the data assimilation for numerical weather prediction models, sea ice forecasts and climate models and ground truth for satellite remote sensing. Additionally, the understanding of energy budget and fluxes through interfaces, sources, sinks and cycles of chemical species, boundary layer processes, and primary productivity will be investigated during the expedition. MOSAiC will support safer maritime and offshore operations, contribute to an improved scientific future fishery and traffic along the northern sea routes.
NASA Astrophysics Data System (ADS)
Muella, M. T. A. H.; de Paula, E. R.; Kantor, I. J.; Rezende, L. F. C.; Smorigo, P. F.
2009-06-01
A statistical study of L-band amplitude scintillations and zonal drift velocity of Fresnel-scale ionospheric irregularities is presented. Ground-based global positioning system (GPS) data acquired at the equatorial station of São Luís (2.33°S, 44.21°W, dip latitude 1.3°S), Brazil, during the solar maximum period from March 2001 to February 2002 are used in the analysis. The variation of scintillations and irregularity drift velocities with local time, season and magnetic activity are reported. The results reveal that for the near overhead ionosphere (satellite elevation angle >45°) a broad maximum in the occurrence of scintillation is seen from October to February. In general, weak scintillations (S 4 < 0.4) dominated (>90%) during equinox (March-April; September-October) and December solstice (November-February) quiet time conditions and, many of the scintillations, occurred during pre-midnight hours. The mean zonal velocities of the irregularities are seen to be ˜30 m s -1 larger near December solstice, while during the equinoctial period the velocities decay faster and the scintillations tend to cease earlier. On geomagnetically disturbed nights, scintillation activity seems to be strongly affected by the prompt penetration of magnetospheric electric fields and disturbance dynamo effects. On disturbed days, during the equinox and December solstice seasons, the scintillations tend to be suppressed in the pre-midnight hours, whereas during June solstice months (May-August) the effect is opposite. In the post-midnight period, the mostly marked increase in the scintillation occurrence is observed during the equinox months. The results show that during disturbed conditions only one type of storm (when the main phase maximum takes place during the daytime hours) agrees with the Aarons' description, that is the suppression of L-band scintillations in the first recovery phase night. The results also reveal that the storm-time irregularity drifts become more spread in velocity and occasionally may present westward drift. The present work is important to evaluate the behavior of the ionospheric irregularities at equatorial latitudes under geomagnetically quiet and disturbed conditions, which is one of the most relevant themes in the space weather studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
N Liu; P Yu
2011-12-31
The objective of this study was to use molecular spectral analyses with the diffuse reflectance Fourier transform infrared spectroscopy (DRIFT) bioanlytical technique to study carbohydrate conformation features, molecular clustering and interrelationships in hull and seed among six barley cultivars (AC Metcalfe, CDC Dolly, McLeod, CDC Helgason, CDC Trey, CDC Cowboy), which had different degradation kinetics in rumen. The molecular structure spectral analyses in both hull and seed involved the fingerprint regions of ca. 1536-1484 cm{sup -1} (attributed mainly to aromatic lignin semicircle ring stretch), ca. 1293-1212 cm{sup -1} (attributed mainly to cellulosic compounds in the hull), ca. 1269-1217 cm{sup -1}more » (attributed mainly to cellulosic compound in the seeds), and ca. 1180-800 cm{sup -1} (attributed mainly to total CHO C-O stretching vibrations) together with an agglomerative hierarchical cluster (AHCA) and principal component spectral analyses (PCA). The results showed that the DRIFT technique plus AHCA and PCA molecular analyses were able to reveal carbohydrate conformation features and identify carbohydrate molecular structure differences in both hull and seeds among the barley varieties. The carbohydrate molecular spectral analyses at the region of ca. 1185-800 cm{sup -1} together with the AHCA and PCA were able to show that the barley seed inherent structures exhibited distinguishable differences among the barley varieties. CDC Helgason had differences from AC Metcalfe, MeLeod, CDC Cowboy and CDC Dolly in carbohydrate conformation in the seed. Clear molecular cluster classes could be distinguished and identified in AHCA analysis and the separate ellipses could be grouped in PCA analysis. But CDC Helgason had no distinguished differences from CDC Trey in carbohydrate conformation. These carbohydrate conformation/structure difference could partially explain why the varieties were different in digestive behaviors in animals. The molecular spectroscopy technique used in this study could also be used for other plant-based feed and food structure studies.« less
ERIC Educational Resources Information Center
Jacobus, Michelle Vazquez; Ahmed, Hussein; Jalali, Reza
2013-01-01
Food access for Maine's growing African refugee population reflects multiple levels of general access to society. To better understand the challenges and opportunities unique to this community, a multidisciplinary team of students, faculty, and community partners integrated the expertise of local residents with the results of a food assessment of…
Blue stragglers in the core of the globular cluster 47 Tucanae
NASA Technical Reports Server (NTRS)
Paresce, F.; Meylan, G.; Shara, M.; Baxter, D.; Greenfield, P.
1991-01-01
High-resolution observations of the core of the globular cluster 47 Tucanae with the Faint Object Camera on the Hubble Space Telescope reveal a high density of 'blue straggler' stars, occupying the upper end of the main sequence from which all stars in the cluster should have long since evolved. Their presence in the dense core supports the hypothesis that they formed by stellar collision and coalescence, and, as the heaviest objects in the cluster, have drifted to the core.
Damping of lower hybrid waves by low-frequency drift waves
NASA Astrophysics Data System (ADS)
Krall, Nicholas A.
1989-11-01
The conditions under which a spectrum of lower hybrid drift waves will decay into low-frequency drift waves (LFD) are calculated. The purpose is to help understand why lower hybrid drift waves are not seen in all field-reversed configuration (FRC) experiments in which they are predicted. It is concluded that if there is in the plasma a LFD wave amplitude above a critical level, lower hybrid waves will decay into low-frequency drift waves. The critical level required to stabilize TRX-2 [Phys. Fluids 30, 1497 (1987)] is calculated and found to be reasonably consistent with theoretical estimates.
Estimation of ion charge states using Van Allen Probes-RBSPICE: a case study
NASA Astrophysics Data System (ADS)
Farinas Perez, G.; Sibeck, D. G.
2017-12-01
We use data from the RBSPICE instrument aboard the Van Allen Probes spacecraft to identify particle injection events with ion drift echoes. We calculate the arrival time and drift period of the protons, helium and oxygen for every energy channel of the RBSPICE instrument. The ions drift period depends upon their energy and charge, as we know the particle energy and the time drift period, the charge state can be estimated for a dipolar magnetic field model. A drift-echo event occurred in May 23, 2013 at 0400 UT is analyzed.
Drift and separation in collisionality gradients
Ochs, I. E.; Rax, J. M.; Gueroult, R.; ...
2017-07-20
Here we identify a single-particle drift resulting from collisional interactions with a background species, in the presence of a collisionality gradient and background net flow. We also analyze this drift in different limits, showing how it reduces to the well known impurity pinch for high-Zi impurities. We find that in the low-temperature, singly ionized limit, the magnitude of the drift becomes mass-dependent and energy-dependent. Furthermore, by solving for the resulting diffusion-advection motion, we propose a mass-separation scheme that takes advantage of this drift, and analyze the separative capability as a function of collisionally dissipated energy.
Drift and separation in collisionality gradients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ochs, I. E.; Rax, J. M.; Gueroult, R.
Here we identify a single-particle drift resulting from collisional interactions with a background species, in the presence of a collisionality gradient and background net flow. We also analyze this drift in different limits, showing how it reduces to the well known impurity pinch for high-Zi impurities. We find that in the low-temperature, singly ionized limit, the magnitude of the drift becomes mass-dependent and energy-dependent. Furthermore, by solving for the resulting diffusion-advection motion, we propose a mass-separation scheme that takes advantage of this drift, and analyze the separative capability as a function of collisionally dissipated energy.
Huang, Yi-Xin; Hang, De-Rong; Tang, Hong-Ping; Sun, Dao-Kuan; Zhou, Can-Hua; Gao, Jin-Bin; Zheng, Bo; Hu, Gui-Quan; Li, Qian; Huang, Yong-Jun; She, Guang-Song; Ren, Zhi-Yuan
2014-12-01
To study the drifting law of floats and potential risks of Oncomelania hupensis diffusion in the water diversion rivers of the east route of South-to-North Water Diversion Project. The O. hupensis snails in the river channels were monitored by the salvage method and snail luring method with rice straw curtains, and the diffusion possibility of snails along with water was assessed through the drift test of floats with GPS. In the flood seasons from 2006 to 2013, totally 8 338.0 kg of floats were salvaged, and 2 100 rice straw curtains were put into water in the Li Canal and Jinbao shipping channel, but no Oncomelania snails were found. The drift test of floats with GPS before water diversion showed that the flow velocity on water surface (northbound) was 0.45 m/s, the average drift velocity of the floats was 0.56 - 0.60 m/s, and the average drift distances each time were 999.70 - 1 995.50 m in the Gaoshui River section, while there were no obvious drift in Jinbao shipping channel section. During the water diversion period, the flow velocity on water surface (northbound) was 0.45 m/s, the average drift velocity of the floats was 0.35 - 0.41m/s, and the average drift distances each time were 1 248.06 -1 289.44 m in the Gaoshui River, while in Jinbao shipping channel section, the flow velocity on water surface was 0.28 m/s, the average drift velocity of the floats was 0.25 - 0.27 m/s, and the average drift distances each time were 477.76 - 496.38 m. The drift test showed that the floats gradually closed to the river bank as affected by water flow, wind direction and ship waves, when blocked by the reeds, water plants or other obstacles, and they would stopped and could not continue to drift without outside help. There are no Oncomelania snails found in the river channels of the east route of South-to-North Water Diversion Project. The drifting distance of the floating debris along with the water is restricted by the flow rate and shore environment.
Habitat selection and spawning success of walleye in a tributary to Owasco Lake, New York
Chalupnicki, Marc A.; Johnson, James H.; McKenna, James E.; Dittman, Dawn E.
2010-01-01
Walleyes Sander vitreus are stocked into Owasco Lake, New York, to provide a sport fishery, but the population must be sustained by annual hatchery supplementation despite the presence of appropriate habitat. Therefore, we evaluated walleye spawning success in Dutch Hollow Brook, a tributary of Owasco Lake, to determine whether early survival limited recruitment. Spawning success during spring 2006 and 2007 was evaluated by estimating egg densities from samples collected in the lower 725 m of the stream. Environmental variables were also recorded to characterize the selected spawning habitat. Drift nets were set downstream of the spawning section to assess egg survival and larval drift. We estimated that 162,596 larvae hatched in 2006. For 2007, we estimated that 360,026 eggs were deposited, with a hatch of 127,500 larvae and hatching success of 35.4%. Egg density was significantly correlated to percent cover, substrate type, and depth : velocity ratio. Two sections had significantly higher egg deposition than other areas. Adult spawning walleyes selected shallow, slow habitats with some cover and gravel substrate in the accessible reaches of Dutch Hollow Brook. Our results show that walleyes found suitable spawning habitat in Dutch Hollow Brook and that egg and larval development does not appear to limit natural reproduction.
Studies of waves and instabilities using increased beta, warm ion plasmas in LAPD
NASA Astrophysics Data System (ADS)
Carter, Troy; Dorfman, Seth; Gekelman, Walter; Vincena, Steve; van Compernolle, Bart; Tripathi, Shreekrishna; Pribyl, Pat; Morales, George
2015-11-01
A new plasma source based on a Lanthanum Hexaboride (LAB6) emissive cathode has been developed and installed on the LArge Plasma Device (LAPD) at UCLA. The new source provides a much higher discharge current density (compared to the standard LAPD Barium Oxide source) resulting in a factor of ~ 50 increase in plasma density and a factor of ~ 2 - 3 increase in electron temperature. Due to the increased density the ion-electron energy exchange time is shorter in the new plasma, resulting in warm ions (measured spectroscopically to be ~ 5 - 6 eV, up from <~ 1 eV in the standard source plasma). This increased pressure combined with lowered magnetic field provides access to magnetized plasmas with β up to order unity. Topics under investigation include the physics of Alfvén waves in increased β plasmas (dispersion and kinetic damping on ions), electromagnetic effects and magnetic transport in drift-Alfvén wave turbulence, and the excitation of ion-temperature-anisotropy driven modes such as the mirror and firehose instabilities. The capabilities of the new source will be discussed along with initial experimental resuls on electromagnetic drift-Alfvén wave turbulence and Alfvén wave propagation with increased plasma β. Supported by NSF and DOE.
Jason L. White; Bret C. Harvey
2003-01-01
We studied the distribution and abundance of drifting embryonic and larval fishes and lampreys in the Smith and Van Duzen rivers of northern California, U.S.A. We collected seven fish species in four families and at least one lamprey species in the drift. All taxa drifted almost exclusively at night. Sculpins, Cottus aleuticus and C. asper...
NASA Astrophysics Data System (ADS)
Carrano, C. S.; Groves, K. M.; Valladares, C. E.; Delay, S. H.
2014-12-01
A complete characterization of field-aligned ionospheric irregularities responsible for the scintillation of satellite signals includes not only their spectral properties (power spectral strength, spectral index, anisotropy ratio, and outer-scale) but also their horizontal drift velocity. From a system impacts perspective, the horizontal drift velocity is important in that it dictates the rate of signal fading and also, to an extent, the level of phase fluctuations encountered by the receiver. From a physics perspective, studying the longitudinal morphology of zonal irregularity may lead to an improved understanding of the F region dynamo and regional electrodynamics at low latitudes. The irregularity drift at low latitudes is predominantly zonal and is most commonly measured by cross-correlating observations of satellite signals made by a pair of closely-spaced antennas. The AFRL-SCINDA network operates a small number of VHF spaced-antenna systems at low latitude stations for this purpose. A far greater number of GPS scintillation monitors are operated by AFRL-SCINDA (25-30) and the Low Latitude Ionospheric Sensor Network (35-50), but the receivers are situated too far apart to monitor the drift using cross-correlation techniques. In this paper, we present an alternative approach that leverages the weak scatter scintillation theory (Rino, Radio Sci., 1979) to infer the zonal irregularity drift from single-station GPS measurements of S4, sigma-phi, and the propagation geometry alone. Unlike the spaced-receiver technique, this technique requires assumptions for the height of the scattering layer (which introduces a bias in the drift estimates) and the spectral index of the irregularities (which affects the spread of the drift estimates about the mean). Nevertheless, theory and experiment show that the ratio of sigma-phi to S4 is less sensitive to these parameters than it is to the zonal drift, and hence the zonal drift can be estimated with reasonable accuracy. In this talk, we first validate the technique using spaced VHF-antenna measurements of zonal irregularity drift from the AFRL-SCINDA network. Next, we discuss preliminary results from our investigation into the longitudinal morphology of zonal irregularity drift using the AFRL-SCINDA and LISN networks of GPS scintillation monitors.
Drift induced by repeated hydropeaking waves in controlled conditions
NASA Astrophysics Data System (ADS)
Maiolini, Bruno; Bruno, M. Cristina; Biffi, Sofia; Cashman, Matthew J.
2014-05-01
Repeated hydropeaking events characterize most alpine rivers downstream of power plants fed by high elevation reservoirs. The effects of hydropeaking on the benthic communities are well known, and usually each hydropeaking wave causes an increase in tractive force and changes in temperature and water quality. Simulations of hydropeaking in artificial system can help to disentangle the direct effects of the modified flow regime from impacts associated with other associated physio-chemical changes, and with the effects of river regulation and land-use changes that often accompany water resource development. In September 2013 we conducted a set of controlled simulations in five steel flumes fed by an Alpine stream (Fersina stream, Adige River catchment, Trentino, Italy), where benthic invertebrates can freely colonize the flumes. One flume was used as control with no change in flow, in the other four flumes we simulated an hydropeaking wave lasting six hours, and repeated for five consecutive days. Flow was increased by twice baseflow in two flumes, and three times in the other two. We collected benthic samples before the beginning (morning of day 1) and after the end (afternoon of day 5) of the set of simulations to evaluate changes in the benthic communities due to induced drift migration. During each simulation, we collected drifting organisms at short time intervals to assess the responses to: 1) the initial discharge increase, 2) the persistence of high flows for several hours; 3) the decrease of discharge to the baseflow; 4) the change in drift with each successive day. Preliminary results indicate typical strong increases of catastrophic drift on the onset of each simulated hydropeaking, drift responses proportional to the absolute discharge increase, a decrease in the drift responses over successive days. Different taxa responded with different patterns: taxa which resist tractive force increased in drift only during the periods of baseflow that follow the habitat stress (behavioral drift) (e.g., Simuliidae, behavioral drift); other taxa which can not resist the increase in tractive force, drifted from the beginning of the simulation (e.g., Chironomidae, catastrophic drift).
NASA Astrophysics Data System (ADS)
Kreyscher, Martin; Harder, Markus; Lemke, Peter; Flato, Gregory M.
2000-05-01
A hierarchy of sea ice rheologies is evaluated on the basis of a comprehensive set of observational data. The investigations are part of the Sea Ice Model Intercomparison Project (SIMIP). Four different sea ice rheology schemes are compared: a viscous-plastic rheology, a cavitating-fluid model, a compressible Newtonian fluid, and a simple free drift approach with velocity correction. The same grid, land boundaries, and forcing fields are applied to all models. As verification data, there are (1) ice thickness data from upward looking sonars (ULS), (2) ice concentration data from the passive microwave radiometers SMMR and SSM/I, (3) daily buoy drift data obtained by the International Arctic Buoy Program (IABP), and (4) satellite-derived ice drift fields based on the 85 GHz channel of SSM/I. All models are optimized individually with respect to mean drift speed and daily drift speed statistics. The impact of ice strength on the ice cover is best revealed by the spatial pattern of ice thickness, ice drift on different timescales, daily drift speed statistics, and the drift velocities in Fram Strait. Overall, the viscous-plastic rheology yields the most realistic simulation. In contrast, the results of the very simple free-drift model with velocity correction clearly show large errors in simulated ice drift as well as in ice thicknesses and ice export through Fram Strait compared to observation. The compressible Newtonian fluid cannot prevent excessive ice thickness buildup in the central Arctic and overestimates the internal forces in Fram Strait. Because of the lack of shear strength, the cavitating-fluid model shows marked differences to the statistics of observed ice drift and the observed spatial pattern of ice thickness. Comparison of required computer resources demonstrates that the additional cost for the viscous-plastic sea ice rheology is minor compared with the atmospheric and oceanic model components in global climate simulations.
The Rubber Hand Illusion: Feeling of Ownership and Proprioceptive Drift Do Not Go Hand in Hand
Rohde, Marieke; Di Luca, Massimiliano; Ernst, Marc O.
2011-01-01
In the Rubber Hand Illusion, the feeling of ownership of a rubber hand displaced from a participant's real occluded hand is evoked by synchronously stroking both hands with paintbrushes. A change of perceived finger location towards the rubber hand (proprioceptive drift) has been reported to correlate with this illusion. To measure the time course of proprioceptive drift during the Rubber Hand Illusion, we regularly interrupted stroking (performed by robot arms) to measure perceived finger location. Measurements were made by projecting a probe dot into the field of view (using a semi-transparent mirror) and asking participants if the dot is to the left or to the right of their invisible hand (Experiment 1) or to adjust the position of the dot to that of their invisible hand (Experiment 2). We varied both the measurement frequency (every 10 s, 40 s, 120 s) and the mode of stroking (synchronous, asynchronous, just vision). Surprisingly, with frequent measurements, proprioceptive drift occurs not only in the synchronous stroking condition but also in the two control conditions (asynchronous stroking, just vision). Proprioceptive drift in the synchronous stroking condition is never higher than in the just vision condition. Only continuous exposure to asynchronous stroking prevents proprioceptive drift and thus replicates the differences in drift reported in the literature. By contrast, complementary subjective ratings (questionnaire) show that the feeling of ownership requires synchronous stroking and is not present in the asynchronous stroking condition. Thus, subjective ratings and drift are dissociated. We conclude that different mechanisms of multisensory integration are responsible for proprioceptive drift and the feeling of ownership. Proprioceptive drift relies on visuoproprioceptive integration alone, a process that is inhibited by asynchronous stroking, the most common control condition in Rubber Hand Illusion experiments. This dissociation implies that conclusions about feelings of ownership cannot be drawn from measuring proprioceptive drift alone. PMID:21738756
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gala, Alan; Ohmacht, Martin
A multiprocessor system includes nodes. Each node includes a data path that includes a core, a TLB, and a first level cache implementing disambiguation. The system also includes at least one second level cache and a main memory. For thread memory access requests, the core uses an address associated with an instruction format of the core. The first level cache uses an address format related to the size of the main memory plus an offset corresponding to hardware thread meta data. The second level cache uses a physical main memory address plus software thread meta data to store the memorymore » access request. The second level cache accesses the main memory using the physical address with neither the offset nor the thread meta data after resolving speculation. In short, this system includes mapping of a virtual address to a different physical addresses for value disambiguation for different threads.« less
Increased Arctic sea ice drift alters adult female polar bear movements and energetics.
Durner, George M; Douglas, David C; Albeke, Shannon E; Whiteman, John P; Amstrup, Steven C; Richardson, Evan; Wilson, Ryan R; Ben-David, Merav
2017-09-01
Recent reductions in thickness and extent have increased drift rates of Arctic sea ice. Increased ice drift could significantly affect the movements and the energy balance of polar bears (Ursus maritimus) which forage, nearly exclusively, on this substrate. We used radio-tracking and ice drift data to quantify the influence of increased drift on bear movements, and we modeled the consequences for energy demands of adult females in the Beaufort and Chukchi seas during two periods with different sea ice characteristics. Westward and northward drift of the sea ice used by polar bears in both regions increased between 1987-1998 and 1999-2013. To remain within their home ranges, polar bears responded to the higher westward ice drift with greater eastward movements, while their movements north in the spring and south in fall were frequently aided by ice motion. To compensate for more rapid westward ice drift in recent years, polar bears covered greater daily distances either by increasing their time spent active (7.6%-9.6%) or by increasing their travel speed (8.5%-8.9%). This increased their calculated annual energy expenditure by 1.8%-3.6% (depending on region and reproductive status), a cost that could be met by capturing an additional 1-3 seals/year. Polar bears selected similar habitats in both periods, indicating that faster drift did not alter habitat preferences. Compounding reduced foraging opportunities that result from habitat loss; changes in ice drift, and associated activity increases, likely exacerbate the physiological stress experienced by polar bears in a warming Arctic. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Lee, Soo-Jeong; Mehler, Louise; Beckman, John; Diebolt-Brown, Brienne; Prado, Joanne; Lackovic, Michelle; Waltz, Justin; Mulay, Prakash; Schwartz, Abby; Mitchell, Yvette; Moraga-McHaley, Stephanie; Gergely, Rita
2011-01-01
Background: Pesticides are widely used in agriculture, and off-target pesticide drift exposes workers and the public to harmful chemicals. Objective: We estimated the incidence of acute illnesses from pesticide drift from outdoor agricultural applications and characterized drift exposure and illnesses. Methods: Data were obtained from the National Institute for Occupational Safety and Health’s Sentinel Event Notification System for Occupational Risks–Pesticides program and the California Department of Pesticide Regulation. Drift included off-target movement of pesticide spray, volatiles, and contaminated dust. Acute illness cases were characterized by demographics, pesticide and application variables, health effects, and contributing factors. Results: From 1998 through 2006, we identified 2,945 cases associated with agricultural pesticide drift from 11 states. Our findings indicate that 47% were exposed at work, 92% experienced low-severity illness, and 14% were children (< 15 years). The annual incidence ranged from 1.39 to 5.32 per million persons over the 9-year period. The overall incidence (in million person-years) was 114.3 for agricultural workers, 0.79 for other workers, 1.56 for nonoccupational cases, and 42.2 for residents in five agriculture-intensive counties in California. Soil applications with fumigants were responsible for the largest percentage (45%) of cases. Aerial applications accounted for 24% of cases. Common factors contributing to drift cases included weather conditions, improper seal of the fumigation site, and applicator carelessness near nontarget areas. Conclusions: Agricultural workers and residents in agricultural regions had the highest rate of pesticide poisoning from drift exposure, and soil fumigations were a major hazard, causing large drift incidents. Our findings highlight areas where interventions to reduce off-target drift could be focused. PMID:21642048
Regan, Hillary K; Lynch, Joseph J; Regan, Christopher P
2009-01-01
The accurate assessment of blood pressure is often a key component of preclinical cardiovascular disease/efficacy models and of screening models used to determine the effects of test agents on cardiovascular physiology. Of the many methods utilized in large animals, telemetry is becoming more widely used throughout preclinical testing, and non-human primates are playing an ever increasing role as a large animal model to evaluate the cardiovascular effect of novel test agents. Therefore, we sought to characterize pressure transducer drift of a telemetry implant in primates over an extended duration. We instrumented ten rhesus monkeys with a Konigsberg T27F implant and a chronic indwelling arterial catheter and cross calibrated the diastolic pressure recorded by the implant to the diastolic pressure that was simultaneously recorded through the arterial catheter using a calibrated external transducer/amplifier system. While all implanted pressure transducers experienced drift to some degree, magnitude of drift varied across animals (range of average drift 0.7-20.5 mmHg/month). Specifically, we found that all implants could be calibrated within the voltage range of the instrument up to 6 months after implantation despite the drift observed. Between 6 and 12 months, 3 of the 10 implants studied drifted outside the defined voltage range and were unusable, two more drifted off scale within 2 years, while the remainder remained within the operating voltage range. Given that pressure transducer drift was not consistent across implants or time, these data suggest careful assessment and quantitative correction for in vivo drift of telemetry blood pressure transducers implanted for extended duration should be considered.
Al-Tamimi, Yahia Z; Helmy, Adel; Bavetta, Seb; Price, Stephen J
2009-01-01
Intraparenchymal monitoring devices play an important role in the daily management of head injury and other critically ill neurosurgical patients. Although zero drift data exist for the Camino system (Camino Laboratories, San Diego, CA), only in vitro data exist for the Codman system (Codman and Shurtleff, Inc., Raynham, MA). The aim of this study was to assess the extent of zero drift for the Codman intracranial pressure (ICP) monitor in patients being monitored in 2 neurointensive care units. This was a prospective study conducted at 2 neurointensive care units. Eighty-eight patients who required ICP monitoring and who presented to the 2 neurosurgical departments, Center 1 (n = 48) and Center 2 (n = 40), were recruited for participation. The duration of ICP monitoring was noted, as was the resultant pressure reading in normal saline on removing the ICP monitor (zero drift). The median absolute zero drift for the group was 2.0 mm Hg (interquartile range, 1-3 mm Hg). The median time in situ was 108 hours (interquartile range, 69-201 hours). There was a positive correlation between the drift and time of the probe spent in situ (Spearman's correlation coefficient = 0.342; P = 0.001). Of the readings, 20 and 2% showed a drift greater than 5 and 10 mm Hg in magnitude, respectively. These data demonstrate that a small amount of zero drift exists in ICP monitors and that this drift increases with time. The wide range in the data demonstrates that some drift readings are quite excessive. This reinforces the school of thought that, although ICP readings contribute significantly to the management of neurosurgical patients, they should be interpreted carefully and in conjunction with clinical and radiological assessment of patients.
11. Detail view of interior, showing heavy timber Howe truss ...
11. Detail view of interior, showing heavy timber Howe truss configuration and steel beam retrofit - Drift Creek Bridge, Spanning Drift Creek on Drift Creek County Road, Lincoln City, Lincoln County, OR
10. Detail view of interior, showing heavy timber Howe truss ...
10. Detail view of interior, showing heavy timber Howe truss configuration and steel beam retrofitting - Drift Creek Bridge, Spanning Drift Creek on Drift Creek County Road, Lincoln City, Lincoln County, OR
High power linear pulsed beam annealer. [Patent application
Strathman, M.D.; Sadana, D.K.; True, R.B.
1980-11-26
A high power pulsed electron beam system for annealing semiconductors is comprised of an electron gun having a heated cathode, control grid and focus ring for confining the pulsed beam of electrons to a predetermined area, and a curved drift tube. The drift tube and an annular Faraday shield between the focus ring and the drift tube are maintained at a high positive voltage with respect to the cathode to accelerate electrons passing through the focus ring, thereby eliminating space charge limitations on the emission of electrons from said gun. A coil surrounding the curved drift tube provides a magnetic field which maintains the electron beam focused about the axis of the tube. The magnetic field produced by the coil around the curved tube imparts motion to electrons in a spiral path for shallow penetration of the electrons into a target. It also produces a scalloped profile of the electron beam. A second drift tube spaced a predetermined distance from the curved tube is positioned with its axis aligned with the axis of the first drift tube. The second drift tube and the target holder are maintained at a reference voltage between the cathode voltage and the curved tube voltage to decelerate the electrons. A second coil surrounding the second drift tube, maintains the electron beam focused about the axis of the second drift tube. The magnetic field of the second coil comprises the electron beam to the area of the semiconductor on the target holder.
Shibuya, Satoshi; Unenaka, Satoshi; Ohki, Yukari
2017-01-01
Body ownership and agency are fundamental to self-consciousness. These bodily experiences have been intensively investigated using the rubber hand illusion, wherein participants perceive a fake hand as their own. After presentation of the illusion, the position of the participant's hand then shifts toward the location of the fake hand (proprioceptive drift). However, it remains controversial whether proprioceptive drift is able to provide an objective measurement of body ownership, and whether agency also affects drift. Using the virtual hand illusion (VHI), the current study examined the effects of body ownership and agency on proprioceptive drift, with three different visuo-motor tasks. Twenty healthy adults (29.6 ± 9.2 years old) completed VH manipulations using their right hand under a 2 × 2 factorial design (active vs. passive manipulation, and congruent vs. incongruent virtual hand). Prior to and after VH manipulation, three different tasks were performed to assess proprioceptive drift, in which participants were unable to see their real hands. The effects of the VHI on proprioceptive drift were task-dependent. When participants were required to judge the position of their right hand using a ruler, or by reaching toward a visual target, both body ownership and agency modulated proprioceptive drift. Comparatively, when participants aligned both hands, drift was influenced by ownership but not agency. These results suggest that body ownership and agency might differentially modulate various body representations in the brain.
Reduced-Drift Virtual Gyro from an Array of Low-Cost Gyros.
Vaccaro, Richard J; Zaki, Ahmed S
2017-02-11
A Kalman filter approach for combining the outputs of an array of high-drift gyros to obtain a virtual lower-drift gyro has been known in the literature for more than a decade. The success of this approach depends on the correlations of the random drift components of the individual gyros. However, no method of estimating these correlations has appeared in the literature. This paper presents an algorithm for obtaining the statistical model for an array of gyros, including the cross-correlations of the individual random drift components. In order to obtain this model, a new statistic, called the "Allan covariance" between two gyros, is introduced. The gyro array model can be used to obtain the Kalman filter-based (KFB) virtual gyro. Instead, we consider a virtual gyro obtained by taking a linear combination of individual gyro outputs. The gyro array model is used to calculate the optimal coefficients, as well as to derive a formula for the drift of the resulting virtual gyro. The drift formula for the optimal linear combination (OLC) virtual gyro is identical to that previously derived for the KFB virtual gyro. Thus, a Kalman filter is not necessary to obtain a minimum drift virtual gyro. The theoretical results of this paper are demonstrated using simulated as well as experimental data. In experimental results with a 28-gyro array, the OLC virtual gyro has a drift spectral density 40 times smaller than that obtained by taking the average of the gyro signals.
Design of motion adjusting system for space camera based on ultrasonic motor
NASA Astrophysics Data System (ADS)
Xu, Kai; Jin, Guang; Gu, Song; Yan, Yong; Sun, Zhiyuan
2011-08-01
Drift angle is a transverse intersection angle of vector of image motion of the space camera. Adjusting the angle could reduce the influence on image quality. Ultrasonic motor (USM) is a new type of actuator using ultrasonic wave stimulated by piezoelectric ceramics. They have many advantages in comparison with conventional electromagnetic motors. In this paper, some improvement was designed for control system of drift adjusting mechanism. Based on ultrasonic motor T-60 was designed the drift adjusting system, which is composed of the drift adjusting mechanical frame, the ultrasonic motor, the driver of Ultrasonic Motor, the photoelectric encoder and the drift adjusting controller. The TMS320F28335 DSP was adopted as the calculation and control processor, photoelectric encoder was used as sensor of position closed loop system and the voltage driving circuit designed as generator of ultrasonic wave. It was built the mathematic model of drive circuit of the ultrasonic motor T-60 using matlab modules. In order to verify the validity of the drift adjusting system, was introduced the source of the disturbance, and made simulation analysis. It designed the control systems of motor drive for drift adjusting system with the improved PID control. The drift angle adjusting system has such advantages as the small space, simple configuration, high position control precision, fine repeatability, self locking property and low powers. It showed that the system could accomplish the mission of drift angle adjusting excellent.
Proportional drift tubes for large area muon detectors
NASA Technical Reports Server (NTRS)
Cho, C.; Higashi, S.; Hiraoka, N.; Maruyama, A.; Okusawa, T.; Sato, T.; Suwada, T.; Takahashi, T.; Umeda, H.
1985-01-01
A proportional drift chamber which consists of eight rectangular drift tubes with cross section of 10 cm x 5 cm, a sense wire of 100 micron phi gold-plated tungsten wire and the length of 6 m, was tested using cosmic ray muons. Spatial resolution (rms) is between 0.5 and 1 mm over drift space of 50 mm, depending on incident angle and distance from sense wire.
Characterizing the nature of subpulse drifting in pulsars
NASA Astrophysics Data System (ADS)
Basu, Rahul; Mitra, Dipanjan
2018-04-01
We report a detailed study of subpulse drifting in four long-period pulsars. These pulsars were observed in the Meterwavelength Single-pulse Polarimetric Emission Survey and the presence of phase-modulated subpulse drifting was reported in each case. We carried out longer duration and more sensitive observations lasting 7000-12 000 periods in the frequency range 306-339 MHz. The drifting features were characterized in great detail, including the phase variations across the pulse window. For two pulsars, J0820-1350 and J1720-2933, the phases changed steadily across the pulse window. The pulsar J1034-3224 has five components. The leading component was very weak and was barely detectable in our single-pulse observations. The four trailing components showed subpulse drifting. The phase variations changed in alternate components with a reversal in the sign of the gradient. This phenomenon is known as bi-drifting. The pulsar J1555-3134 showed two distinct peak frequencies of comparable strengths in the fluctuation spectrum. The two peaks did not appear to be harmonically related and were most likely a result of different physical processes. Additionally, the long observations enabled us to explore the temporal variations of the drifting features. The subpulse drifting was largely constant with time but small fluctuations around a mean value were seen.
Adaptive Online Sequential ELM for Concept Drift Tackling
Basaruddin, Chan
2016-01-01
A machine learning method needs to adapt to over time changes in the environment. Such changes are known as concept drift. In this paper, we propose concept drift tackling method as an enhancement of Online Sequential Extreme Learning Machine (OS-ELM) and Constructive Enhancement OS-ELM (CEOS-ELM) by adding adaptive capability for classification and regression problem. The scheme is named as adaptive OS-ELM (AOS-ELM). It is a single classifier scheme that works well to handle real drift, virtual drift, and hybrid drift. The AOS-ELM also works well for sudden drift and recurrent context change type. The scheme is a simple unified method implemented in simple lines of code. We evaluated AOS-ELM on regression and classification problem by using concept drift public data set (SEA and STAGGER) and other public data sets such as MNIST, USPS, and IDS. Experiments show that our method gives higher kappa value compared to the multiclassifier ELM ensemble. Even though AOS-ELM in practice does not need hidden nodes increase, we address some issues related to the increasing of the hidden nodes such as error condition and rank values. We propose taking the rank of the pseudoinverse matrix as an indicator parameter to detect “underfitting” condition. PMID:27594879
Greener synthesis of Cu-MOF-74 and its catalytic use for the generation of vanillin.
Flores, J Gabriel; Sánchez-González, Elí; Gutiérrez-Alejandre, Aída; Aguilar-Pliego, Julia; Martínez, Ana; Jurado-Vázquez, Tamara; Lima, Enrique; González-Zamora, Eduardo; Díaz-García, Manuel; Sánchez-Sánchez, Manuel; Ibarra, Ilich A
2018-03-26
A greener synthesis of Cu-MOF-74 was obtained, for the first time, in methanol as the unique solvent and at room temperature. Full characterisation of the MOF material showed its purity and also its nanocrystalline nature. Complete activation (150 °C for 1 h and 10-3 bar) of Cu-MOF-74 afforded unsaturated Cu metal sites and this was corroborated by in situ DRIFT spectroscopy. The access to these Cu open metal sites was tested for the catalytic transformation of trans-ferulic acid to vanillin (yield of 71% and 97% selectivity) and a plausible catalytic reaction mechanism was postulated based on quantum chemical calculations.
Structural drift: the population dynamics of sequential learning.
Crutchfield, James P; Whalen, Sean
2012-01-01
We introduce a theory of sequential causal inference in which learners in a chain estimate a structural model from their upstream "teacher" and then pass samples from the model to their downstream "student". It extends the population dynamics of genetic drift, recasting Kimura's selectively neutral theory as a special case of a generalized drift process using structured populations with memory. We examine the diffusion and fixation properties of several drift processes and propose applications to learning, inference, and evolution. We also demonstrate how the organization of drift process space controls fidelity, facilitates innovations, and leads to information loss in sequential learning with and without memory.
The study of buried drift aquifers in Minnesota by seismic geophysical methods
Woodward, D. G.
1984-01-01
Buried-drift aquifers are stratified sand and (or) gravel aquifers in glacial deposits that cannot be seen or inferred at the land surface. During the Pleistocene Epoch, four continental glaciations advanced and retreated across Minnesota, blanketing the bedrock surface with drift as much as 700 feet thick (fig. 1). Most of the drift consists of till, an unsorted, un-stratified mixture of clay silt, sand, and gravel that usually is not considered to be an aquifer. Permeable, stratified sand and gravel, deposited as outwash, alluvium, and (or) ice-contact deposits usually during an earlier glacial episode and subsequently covered (buried) with till, form the buried-drift aquifers.
A drift chamber constructed of aluminized mylar tubes
NASA Astrophysics Data System (ADS)
Baringer, P.; Jung, C.; Ogren, H. O.; Rust, D. R.
1987-03-01
A thin reliable drift chamber has been constructed to be used near the interaction point of the PEP storage ring in the HRS detector. It is composed of individual drift tubes with aluminized mylar walls.
DRIFT COMPENSATED DIRECT COUPLED AMPLIFIER
Windsor, A.A.
1959-05-01
An improved direct-coupled amplifier having zerolevel drift correction is described. The need for an auxiliary corrective-potential amplifier is eliminated thereby giving protection against overload saturation of the zero- level drift correcting circuit. (T.R.H.)
Dodrill, Michael J.; Yackulic, Charles B.
2016-01-01
Drift-foraging models offer a mechanistic description of how fish feed in flowing water and the application of drift-foraging bioenergetics models to answer both applied and theoretical questions in aquatic ecology is growing. These models typically include nonlinear descriptions of ecological processes and as a result may be sensitive to how model inputs are summarized because of a mathematical property of nonlinear equations known as Jensen’s inequality. In particular, we show that the way in which continuous size distributions of invertebrate prey are represented within foraging models can lead to biases within the modeling process. We begin by illustrating how different equations common to drift-foraging models are sensitive to invertebrate inputs. We then use two case studies to show how different representations of invertebrate prey can influence predictions of energy intake and lifetime growth. Greater emphasis should be placed on accurate characterizations of invertebrate drift, acknowledging that inferences from drift-foraging models may be influenced by how invertebrate prey are represented.
Development of a drift-correction procedure for a direct-reading spectrometer
NASA Technical Reports Server (NTRS)
Chapman, G. B., II; Gordon, W. A.
1977-01-01
A procedure which provides automatic correction for drifts in the radiometric sensitivity of each detector channel in a direct-reading emission spectrometer is described. Such drifts are customarily controlled by the regular analyses of standards, which provide corrections for changes in the excitational, optical, and electronic components of the instrument. This standardization procedure, however, corrects for the optical and electronic drifts. It is a step that must be taken if the time, effort, and cost of processing standards is to be minimized. This method of radiometric drift correction uses a 1,000-W tungsten-halogen reference lamp to illuminate each detector through the same optical path as that traversed during sample analysis. The responses of the detector channels to this reference light are regularly compared with channel response to the same light intensity at the time of analytical calibration in order to determine and correct for drift. Except for placing the lamp in position, the procedure is fully automated and compensates for changes in spectral intensity due to variations in lamp current. A discussion of the implementation of this drift-correction system is included.
Assessment method of accessibility conditions: how to make public buildings accessible?
Andrade, Isabela Fernandes; Ely, e Vera Helena Moro Bins
2012-01-01
The enforcement of accessibility today has faced several difficulties, such as intervention in historic buildings that now house public services and cultural activities, such as town halls, museums and theaters and should allow access, on equal terms to all people. The paper presents the application of a method for evaluating the spatial accessibility conditions and their results. For this, we sought to support the theoretical foundation about the main issue involved and legislation. From the method used--guided walks--it was possible to identify the main barriers to accessibility in historic buildings. From the identified barriers, possible solutions are presented according to the four components of accessibility: spatial orientation, displacement, use and communication. It is hoped also that the knowledge gained in this research contributes to an improvement of accessibility legislation in relation to the listed items.
Patterns of sediment dispersion coastwise the State of Bahia - Brazil.
Bittencourt; Dominguez; Martin; Silva
2000-06-01
Using the average directions of the main wave-fronts which approach the coast of Bahia State - coinciding with that of the main wind occurring in the area - and of their periods, we define a wave climate model based on the construction of refraction diagrams. The resulting model of sediment transport was able to reproduce, in a general way, the sediment dispersion patterns furnished by geomorphic indicators of the littoral drift. These dispersion patterns control the generation of different types of sediment accumulations and of coastal stretches under erosion. We demonstrate that the presence of the Abrolhos and Corumbaú Point coral reefs is an important factor controlling the sediment dispersion patterns, since them act as a large protection against the waves action.
Closeup view of the Solid Rocket Booster (SRB) Frustum mounted ...
Close-up view of the Solid Rocket Booster (SRB) Frustum mounted on ground support equipment in the Solid Rocket Booster Assembly and Refurbishment Facility at Kennedy Space Center as it is being prepared to be mated with the Nose Cap and Forward Skirt. The Frustum contains the three Main Parachutes, Altitude Switches and forward booster Separation Motors. The Separation Motors burn for one second to ensure the SRBs drift away from the External Tank and Orbiter at separation. The three main parachutes are deployed to reduce speed as the SRBs descend to a splashdown in the Atlantic Ocean where they are recovered refurbished and reused. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
ERIC Educational Resources Information Center
Li, Yanmei
2012-01-01
In a common-item (anchor) equating design, the common items should be evaluated for item parameter drift. Drifted items are often removed. For a test that contains mostly dichotomous items and only a small number of polytomous items, removing some drifted polytomous anchor items may result in anchor sets that no longer resemble mini-versions of…
Intonation in unaccompanied singing: accuracy, drift, and a model of reference pitch memory.
Mauch, Matthias; Frieler, Klaus; Dixon, Simon
2014-07-01
This paper presents a study on intonation and intonation drift in unaccompanied singing, and proposes a simple model of reference pitch memory that accounts for many of the effects observed. Singing experiments were conducted with 24 singers of varying ability under three conditions (Normal, Masked, Imagined). Over the duration of a recording, ∼50 s, a median absolute intonation drift of 11 cents was observed. While smaller than the median note error (19 cents), drift was significant in 22% of recordings. Drift magnitude did not correlate with other measures of singing accuracy, singing experience, or the presence of conditions tested. Furthermore, it is shown that neither a static intonation memory model nor a memoryless interval-based intonation model can account for the accuracy and drift behavior observed. The proposed causal model provides a better explanation as it treats the reference pitch as a changing latent variable.
Subpulse drifting, nulling, and mode changing in PSR J1822-2256
NASA Astrophysics Data System (ADS)
Basu, Rahul; Mitra, Dipanjan
2018-05-01
We report a detailed observational study of the single pulses from the pulsar J1822-2256. The pulsar shows the presence of subpulse drifting, nulling as well as multiple emission modes. During these observations the pulsar existed primarily in two modes; mode A with prominent drift bands and mode B which was more disorderly without any clear subpulse drifting. A third mode C was also seen for a short duration with a different drifting periodicity compared to mode A. The nulls were present throughout the observations but were more frequent during the disorderly B mode. The nulling also exhibited periodicity with a clear peak in the fluctuation spectra. Before the transition from mode A to nulling the pulsar switched to a third drifting state with periodicity different from both mode A and C. The diversity seen in the single pulse behaviour from the pulsar J1822-2256 provides an unique window into the emission physics.
NASA Technical Reports Server (NTRS)
Edmond, John A. (Inventor); Palmour, John W. (Inventor)
1996-01-01
The SiC thyristor has a substrate, an anode, a drift region, a gate, and a cathode. The substrate, the anode, the drift region, the gate, and the cathode are each preferably formed of silicon carbide. The substrate is formed of silicon carbide having one conductivity type and the anode or the cathode, depending on the embodiment, is formed adjacent the substrate and has the same conductivity type as the substrate. A drift region of silicon carbide is formed adjacent the anode or cathode and has an opposite conductivity type as the anode or cathode. A gate is formed adjacent the drift region or the cathode, also depending on the embodiment, and has an opposite conductivity type as the drift region or the cathode. An anode or cathode, again depending on the embodiment, is formed adjacent the gate or drift region and has an opposite conductivity type than the gate.
NASA Astrophysics Data System (ADS)
Ferradas, C. P.; Zhang, J.-C.; Spence, H. E.; Kistler, L. M.; Larsen, B. A.; Reeves, G.; Skoug, R.; Funsten, H.
2016-11-01
We present a case study of the H+, He+, and O+ multiple-nose structures observed by the Helium, Oxygen, Proton, and Electron instrument on board Van Allen Probe A over one complete orbit on 28 September 2013. Nose structures are observed near the inner edge of the plasma sheet and constitute the signatures of ion drift in the highly dynamic environment of the inner magnetosphere. We find that the multiple noses are intrinsically associated with variations in the solar wind. Backward ion drift path tracings show new details of the drift trajectories of these ions; i.e., multiple noses are formed by ions with a short drift time from the assumed source location to the inner region and whose trajectories (1) encircle the Earth different number of times or (2) encircle the Earth equal number of times but with different drift time, before reaching the observation site.
Magnetic Activity Dependence of the Electric Drift Below L = 3
NASA Astrophysics Data System (ADS)
Lejosne, Solène; Mozer, F. S.
2018-05-01
More than 2 years of magnetic and electric field measurements by the Van Allen Probes are analyzed with the objective of determining the average effects of magnetic activity on the electric drift below L = 3. The study finds that an increase in magnetospheric convection leads to a decrease in the magnitude of the azimuthal component of the electric drift, especially in the nightside. The amplitude of the slowdown is a function of L, magnetic local time, and Kp, in a pattern consistent with the storm time dynamics of the ionosphere and thermosphere. To a lesser extent, magnetic activity also alters the average radial component of the electric drift below L = 3. A global picture for the average variations of the electric drift with Kp is provided as a function of L and magnetic local time. It is the first time that the signature of the ionospheric disturbance dynamo is observed in near-equatorial electric drift measurements.
Domínguez Vila, Trinidad; Alén González, Elisa; Darcy, Simon
2017-08-09
To analyze the accessibility of official national tourism organization websites of countries around the world, in order to establish possible common patterns and rankings of those with exemplary practice through to those with the highest number of issues. The purpose for undertaking such an analysis is to provide a quasi-indicator of inclusive organizational practice for online accessibility for both destination managers and their accessible tourism consumers - domestic and overseas people with disability visiting the websites. The official tourism websites of 210 countries included in the latest World Tourism Organization report were analyzed. A website accessibility evaluation tool (website accessible test) was used in the analysis, according to AA and AAA levels of conformance to Web Content Accessibility Guidelines 2.0 requirements. Different patterns compliance to Web Content Accessibility Guidelines 2.0 were established for the clusters, which were rather similar for both AA and AAA conformance levels. The main issues in the least accessible websites were also identified, mainly focused on the following guidelines: navigable, compatible, adaptability, text alternatives and also referred to other assistive technologies. Once the main issues were established several alternatives are suggested to address them, such as implementing more prescriptive laws and regulations, complying with mandatory benchmark standards and/or having external agencies audit website designs. However, in addition to using benchmark standards, efforts to improve this situation should also be made by programmers, who should also rely on preexistent experiences and develop more dynamic knowledge. This knowledge may include text alternatives for any nontext content; creation of content that can be presented in different ways without losing information; provide ways to help users navigate, find content, determine where they are and navigate websites to maximize compatibility with assistive technologies and user agents. Implications for rehabilitation Access to information - in this case, online information - is an important factor in the process of rehabilitation for people with disability and those supporting them. Failure to apply homogeneous criteria for website accessibility around the world can hamper access to information by people with disabilities. Travel planning requires access to mainstream tourist distribution networks where online inclusive practice is a precursor to information searching. Documents for destination managers and programmers the main problems of accessibility to websites and examples of models or solutions to follow and not. Establish the main inclusive website design criteria on which to focus on improving the access of people with disabilities to websites (e.g., text alternatives, content presented in different ways, navigating and improving compatibility with assistive technologies etc.).
Magnetically Controlled Upper Ionosphere of Mars
NASA Astrophysics Data System (ADS)
Majeed, T.; Al Aryani, O.; Al Mutawa, S.; Bougher, S. W.; Haider, S. A.
2017-12-01
The electron density (Ne) profiles measured by the Mars Express spacecraft over regions of strong crustal magnetic fields have shown anomalous characteristics of the topside plasma distribution with variable scale heights. One of such Ne profiles is located at 82oS and 180oE whose topside ionosphere is extended up to an altitude of 700 km. The crustal magnetic field at this southern site is nearly vertical and open to the access of solar wind plasma through magnetic reconnection with the interplanetary magnetic field. This can lead to the acceleration of electrons and ions during the daytime ionosphere. The downward accelerated electrons with energies >200 eV can penetrate deep into the Martian upper ionosphere along vertical magnetic field lines and cause heating, excitation and ionization of the background atmosphere. The upward acceleration of ions resulting from energy input by precipitating electrons can lead to enhance ion escape rate and modify scale heights of the topside ionosphere. We have developed a 1-D chemical diffusive model from 100 km to 400 km to interpret the Martian ionospheric structure at 82oS latitude. The primary source of ionization in the model is due to solar EUV radiation. An extra ionization source due to precipitating electrons of 0.25 keV, peaking near an altitude of 145 km is added in the model to reasonably reproduce the measured ionospheric structure below an altitude of 180 km. The behavior of the topside ionosphere can be interpreted by the vertical plasma transport caused by precipitating electrons. The vertical transport of plasma in our model is simulated by vertical ion velocities, whose values can be interpreted as drift velocities along magnetic field lines. We find that the variation of the topside Ne scale heights is sensitive to the magnitudes of upward and downward drifts with an imposed outward flux boundary condition at the top of the model. The model requires an upward flux of more than 107 ions cm-2 s-1 for both O2+ and O+, and drift speeds of 200 m/s to interpret the measured topside ionospheric structure for altitudes >180 km. The magnitudes of outward ion fluxes and drift velocities are compared with those simulated by existing models. The model results will be presented in comparison with the measured electron density profile. This work is supported by MBRSC, Dubai, UAE.
Monitoring geo-biodiversity interactions of a restored inland drift-sand cell in Nieuw Bergen (Li)
NASA Astrophysics Data System (ADS)
Jungerius, Pieter Dirk; van den Ancker, Hanneke; Arts, Andries; Borkent, Ido; Ketner-Oostra, Rita; Ketner, Pieter
2013-04-01
In 2002, a research was carried out by Jungerius, van den Ancker, Ketner-Oostra and Evers to see if it was possible to restore active inland drift-sand areas in National Park De Maasduinen in Nieuw Bergen, Limburg. The active drift-sand had completely disappeared from the area by nitrogen-rich precipitation. It was decided to try and restore the activity depicted on the first aerial photographs in 1933, if soil profile development and Natura 2000 species allowed this. The areas stabilized since then were overgrown, dominantly by the invasive moss Campylopus introflexus, a species introduced to the Netherlands by tanks during World War II. Areas colonized by Natura 2000 lichens were spared as centres for re-colonization. The research gave insight in the elongated geomorphological cell-structure of the original drift-sands and the rate of soil development after stabilisation. In 2005, the first active drift-sand cell was restored by increasing the erodibility of the terrain, by mechanically removing the sod and up to 5 cm thick soil formed since 1933, and increasing the erosivity of the wind by removing trees, mainly in the upwind direction. In 2008 a second cell was restored, and a third one in 2011. A monitoring programme was set up for the first cell to improve our understanding of stabilization and geodiversity-biodiversity interactions in drift-sand areas. Lines of erosion pins were monitored at regular intervals for a five year period. Aerial photographs made in 2005 and 2008 showed the pattern of stabilization of the moving sand. The poster will present the results of these experiments. In 2012, five years after the restoration, the active drift-sand cell was stable again and had turned into an open dry grassland, almost completely dominated by the Natura 2000 species Corynephorus canescens. Unfortunately several of the areas that were spared as centres for re-colonization of Natura 2000 lichens lay in the sand transport zone and had acted as sandtraps, and most Natura-2000 species had disappeared from these areas. Discussion and recommendations From the Natura-2000 viewpoint the restoration measures were very successful as the terrain now classifies as habitat type 2330. Different views exist on how to further manage the terrain. One view is to try and create a steady-state situation by regularly removing part of the Corynephorus canescens vegetation and having an active erosion- and transport-zone while further increasing the erosivity of the wind by removing more trees. Another view is to let succession have its way, and see which species appear in the course of succession. As cells in successive stages are now available, we propose to test the different views and proceed with the monitoring of the terrains. Reference Ancker, J.A.M. van den, Everts, H., Jungerius, P.D. & Ketner-Oostra, R., 2002. Vooronderzoek herstel stuifzanden gemeente Bergen (Limburg). Rapport Stichting G&L, Ede, i.s.m. Rita Ketner en Ecologisch Advies & Onderzoeksbureau Everts & de Vries, i.o.v. de gemeente Bergen (Li).
SU-F-T-279: Impact of Beam Energy Drifts On IMRT Delivery Accuracy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goddu, S; Kamal, G; Herman, A
Purpose: According to TG-40 percent-depth-dose (PDD) tolerance is ±2% but TG-142 is ±1%. Now the question is, which one is relevant in IMRT era? The primary objective of this study is to evaluate dosimetric impact of beam-energy-drifts on IMRT-delivery. Methods: Beam-energy drifts were simulated by adjusting Linac’s bending-magnet-current (BMC) followed by tuning the pulse-forming network and adjusting gun-current. PDD change of −0.6% and +1.2% were tested. Planar-dosimetry measurements were performed using an ionization-chamber-array in solid-water phantoms. Study includes 10-head-and-neck and 3-breast cancer patients. en-face beam-deliveries were also tested at 1.3cm and 5.3cm depths. Composite and single-field dose-distributions were compared againstmore » the plans to determine %Gamma pass-rates (%GPRs). For plan dose comparisons, changes in %Gamma pass-rates (cPGPRs) were computed/reported to exclude the differences between dose-computation and delivery. Dose distributions of the drifted-energies were compared against their baseline measurements to determine the% GPRs. A Gamma criteria of 3%/3mm was considered for plan-dose comparisons while 3%/1mm used for measured dose intercomparisons. Results: For composite-dose delivery, average cPGPRs were 0.41%±2.48% and −2.54%±3.65% for low-energy (LE) and high-energy (HE) drifts, respectively. For measured dose inter-comparisons, the average%GPRs were 98.4%±2.2% (LE-drift) and 95.8%±4.0 (HE-drift). The average %GPR of 92.6%±4.3% was noted for the worst-case scenario comparing LE-drift to HE-drift. All en-face beams at 5.3 cm depth have cPGPRs within ±4% of the baseline-energy measurements. However, greater variations were noted for 1.3cm depth. Average %GPRs for drifted energies were >99% at 5.3cm and >97% at 1.3cm depths. However, for the worst-case scenario (LE-drift to HE-drift) these numbers dropped to 95.2% at 5.3cm and 93.1% at 1.3cm depths. Conclusion: The dosimetric impact of beam-energy drifts was found to be within clinically acceptable tolerance. However, this study includes a single energy with limited range of PDD change. Further studies are on going and the results will be presented. Received funding from Varian Medical Systems, Palo Alto, CA.« less
Precipitation interpolation in mountainous areas
NASA Astrophysics Data System (ADS)
Kolberg, Sjur
2015-04-01
Different precipitation interpolation techniques as well as external drift covariates are tested and compared in a 26000 km2 mountainous area in Norway, using daily data from 60 stations. The main method of assessment is cross-validation. Annual precipitation in the area varies from below 500 mm to more than 2000 mm. The data were corrected for wind-driven undercatch according to operational standards. While temporal evaluation produce seemingly acceptable at-station correlation values (on average around 0.6), the average daily spatial correlation is less than 0.1. Penalising also bias, Nash-Sutcliffe R2 values are negative for spatial correspondence, and around 0.15 for temporal. Despite largely violated assumptions, plain Kriging produces better results than simple inverse distance weighting. More surprisingly, the presumably 'worst-case' benchmark of no interpolation at all, simply averaging all 60 stations for each day, actually outperformed the standard interpolation techniques. For logistic reasons, high altitudes are under-represented in the gauge network. The possible effect of this was investigated by a) fitting a precipitation lapse rate as an external drift, and b) applying a linear model of orographic enhancement (Smith and Barstad, 2004). These techniques improved the results only marginally. The gauge density in the region is one for each 433 km2; higher than the overall density of the Norwegian national network. Admittedly the cross-validation technique reduces the gauge density, still the results suggest that we are far from able to provide hydrological models with adequate data for the main driving force.
Luquet, E; David, P; Lena, J-P; Joly, P; Konecny, L; Dufresnes, C; Perrin, N; Plenet, S
2011-05-01
Quantifying the impacts of inbreeding and genetic drift on fitness traits in fragmented populations is becoming a major goal in conservation biology. Such impacts occur at different levels and involve different sets of loci. Genetic drift randomly fixes slightly deleterious alleles leading to different fixation load among populations. By contrast, inbreeding depression arises from highly deleterious alleles in segregation within a population and creates variation among individuals. A popular approach is to measure correlations between molecular variation and phenotypic performances. This approach has been mainly used at the individual level to detect inbreeding depression within populations and sometimes at the population level but without consideration about the genetic processes measured. For the first time, we used in this study a molecular approach considering both the interpopulation and intrapopulation level to discriminate the relative importance of inbreeding depression vs. fixation load in isolated and non-fragmented populations of European tree frog (Hyla arborea), complemented with interpopulational crosses. We demonstrated that the positive correlations observed between genetic heterozygosity and larval performances on merged data were mainly caused by co-variations in genetic diversity and fixation load among populations rather than by inbreeding depression and segregating deleterious alleles within populations. Such a method is highly relevant in a conservation perspective because, depending on how populations lose fitness (inbreeding vs. fixation load), specific management actions may be designed to improve the persistence of populations. © 2011 Blackwell Publishing Ltd.
Improved kinetic neoclassical transport calculation for a low-collisionality QH-mode pedestal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battaglia, D. J.; Burrell, K. H.; Chang, C. S.
The role of neoclassical, anomalous and neutral transport to the overall H-mode pedestal and scrape-off layer (SOL) structure in an ELM-free QH-mode discharge on DIII-D is explored using XGC0, a 5D full-f multi-species particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. The work in this paper builds on previous work aimed at achieving quantitative agreement between the flux-driven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles. Improved quantitative agreement is achieved by performing the calculations with a more realistic electron mass, larger neutral density and including finite-Larmor-radius corrections self-consistentlymore » in the drift-kinetic motion of the particles. Consequently, the simulations provide stronger evidence that the radial electric field (E r) in the pedestal is primarily established by the required balance between the loss of high-energy tail main ions against a pinch of colder main ions and impurities. The kinetic loss of a small population of ions carrying a large proportion of energy and momentum leads to a separation of the particle and energy transport rates and introduces a source of intrinsic edge torque. Ion orbit loss and finite orbit width effects drive the energy distributions away from Maxwellian, and describe the anisotropy, poloidal asymmetry and local minimum near the separatrix observed in the T i profile.« less
Improved kinetic neoclassical transport calculation for a low-collisionality QH-mode pedestal
Battaglia, D. J.; Burrell, K. H.; Chang, C. S.; ...
2016-07-15
The role of neoclassical, anomalous and neutral transport to the overall H-mode pedestal and scrape-off layer (SOL) structure in an ELM-free QH-mode discharge on DIII-D is explored using XGC0, a 5D full-f multi-species particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. The work in this paper builds on previous work aimed at achieving quantitative agreement between the flux-driven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles. Improved quantitative agreement is achieved by performing the calculations with a more realistic electron mass, larger neutral density and including finite-Larmor-radius corrections self-consistentlymore » in the drift-kinetic motion of the particles. Consequently, the simulations provide stronger evidence that the radial electric field (E r) in the pedestal is primarily established by the required balance between the loss of high-energy tail main ions against a pinch of colder main ions and impurities. The kinetic loss of a small population of ions carrying a large proportion of energy and momentum leads to a separation of the particle and energy transport rates and introduces a source of intrinsic edge torque. Ion orbit loss and finite orbit width effects drive the energy distributions away from Maxwellian, and describe the anisotropy, poloidal asymmetry and local minimum near the separatrix observed in the T i profile.« less
Johnson, J. H.; Nash, K. J.; Chiavelli, R. A.; DiRado, J. A.; Mackey, G. E.; Knight, J. R.; Diaz, A. R.
2017-01-01
Since juvenile Atlantic salmon (Salmo salar) and Chinook salmon (Oncorhynchus tshawytscha) occupy a similar habitat in Lake Ontario tributaries, we sought to determine the degree of diet similarity between these species in order to assess the potential for interspecific competition. Atlantic salmon, an historically important but currently extirpated component of the Lake Ontario fish community, are the focus of a bi-national restoration effort. Presently this effort includes the release of hatchery produced juvenile Atlantic salmon in Lake Ontario tributaries. These same tributaries support substantial numbers of naturally reproduced juvenile Pacific salmonids including Chinook salmon. Subyearling Atlantic salmon and subyearling Chinook salmon had significantly different diets during each of the three time periods examined. Atlantic salmon fed slightly more from the benthos than from the drift and consumed mainly chirononmids (47.0%) and ephemeropterans (21.1%). The diet of subyearling Chinook salmon was more closely associated with the drift and consisted mainly of chironomids (60.2%) and terrestrial invertebrates (16.0%). Low diet similarity between subyearling Atlantic salmon and subyearling Chinook salmon likely minimizes competitive interactions for food between these species in Lake Ontario tributaries. However, the availability of small prey such as chironomids which comprise over 50% of the diet of each species, soon after emergence, could constitute a short term resource limitation. To our knowledge this is the first study of interspecific diet associations between these two important salmonid species.
Gordine, Samantha Alex; Fedak, Michael; Boehme, Lars
2015-01-01
ABSTRACT In southern elephant seals (Mirounga leonina), fasting- and foraging-related fluctuations in body composition are reflected by buoyancy changes. Such buoyancy changes can be monitored by measuring changes in the rate at which a seal drifts passively through the water column, i.e. when all active swimming motion ceases. Here, we present an improved knowledge-based method for detecting buoyancy changes from compressed and abstracted dive profiles received through telemetry. By step-wise filtering of the dive data, the developed algorithm identifies fragments of dives that correspond to times when animals drift. In the dive records of 11 southern elephant seals from South Georgia, this filtering method identified 0.8–2.2% of all dives as drift dives, indicating large individual variation in drift diving behaviour. The obtained drift rate time series exhibit that, at the beginning of each migration, all individuals were strongly negatively buoyant. Over the following 75–150 days, the buoyancy of all individuals peaked close to or at neutral buoyancy, indicative of a seal's foraging success. Independent verification with visually inspected detailed high-resolution dive data confirmed that this method is capable of reliably detecting buoyancy changes in the dive records of drift diving species using abstracted data. This also affirms that abstracted dive profiles convey the geometric shape of drift dives in sufficient detail for them to be identified. Further, it suggests that, using this step-wise filtering method, buoyancy changes could be detected even in old datasets with compressed dive information, for which conventional drift dive classification previously failed. PMID:26486362
NASA Astrophysics Data System (ADS)
Yamasaki, Mami; Aono, Mikina; Ogawa, Naoto; Tanaka, Koichiro; Imoto, Zenji; Nakamura, Yohei
2014-06-01
Evidence is accumulating that the invasion and extinction of habitat-forming seaweed species alters coastal community structure and ecological services, but their effects on the pelagic environment have been largely ignored. Thus, we examined the seasonal occurrence patterns of indigenous temperate and invasive tropical drifting algae and associated fish species every month for 2 years (2009-2011) in western Japan (Tosa Bay), where a rapid shift from temperate to tropical Sargassum species has been occurring in the coastal area since the late 1980s due to rising seawater temperatures. Of the 19 Sargassum species (31.6%) in drifting algae, we found that six were tropical species, whereas a study in the early 1980s found only one tropical species among 12 species (8.3%), thereby suggesting an increase in the proportion of tropical Sargassum species in drifting algae during the last 30 years. Drifting temperate algae were abundantly present from late winter to summer, whereas tropical algal clumps occurred primarily during summer. In the warm season, fish assemblages did not differ significantly between drifting temperate and tropical algae, suggesting the low host-algal specificity of most fishes. We also found that yellowtail juveniles frequently aggregated with drifting temperate algae from late winter to spring when drifting tropical algae were unavailable. Local fishermen collect these juveniles for use as aquaculture seed stock; therefore, the occurrence of drifting temperate algae in early spring is important for local fisheries. These results suggest that the further extinction of temperate Sargassum spp. may have negative impacts on the pelagic ecosystem and associated regional fisheries.
Climate-driven polar motion: 2003-2015.
Adhikari, Surendra; Ivins, Erik R
2016-04-01
Earth's spin axis has been wandering along the Greenwich meridian since about 2000, representing a 75° eastward shift from its long-term drift direction. The past 115 years have seen unequivocal evidence for a quasi-decadal periodicity, and these motions persist throughout the recent record of pole position, in spite of the new drift direction. We analyze space geodetic and satellite gravimetric data for the period 2003-2015 to show that all of the main features of polar motion are explained by global-scale continent-ocean mass transport. The changes in terrestrial water storage (TWS) and global cryosphere together explain nearly the entire amplitude (83 ± 23%) and mean directional shift (within 5.9° ± 7.6°) of the observed motion. We also find that the TWS variability fully explains the decadal-like changes in polar motion observed during the study period, thus offering a clue to resolving the long-standing quest for determining the origins of decadal oscillations. This newly discovered link between polar motion and global-scale TWS variability has broad implications for the study of past and future climate.
Formation Flying Control Implementation in Highly Elliptical Orbits
NASA Technical Reports Server (NTRS)
Capo-Lugo, Pedro A.; Bainum, Peter M.
2009-01-01
The Tschauner-Hempel equations are widely used to correct the separation distance drifts between a pair of satellites within a constellation in highly elliptical orbits [1]. This set of equations was discretized in the true anomaly angle [1] to be used in a digital steady-state hierarchical controller [2]. This controller [2] performed the drift correction between a pair of satellites within the constellation. The objective of a discretized system is to develop a simple algorithm to be implemented in the computer onboard the satellite. The main advantage of the discrete systems is that the computational time can be reduced by selecting a suitable sampling interval. For this digital system, the amount of data will depend on the sampling interval in the true anomaly angle [3]. The purpose of this paper is to implement the discrete Tschauner-Hempel equations and the steady-state hierarchical controller in the computer onboard the satellite. This set of equations is expressed in the true anomaly angle in which a relation will be formulated between the time and the true anomaly angle domains.
Perpendicular diffusion of a dilute beam of charged particles in the PK-4 dusty plasma
NASA Astrophysics Data System (ADS)
Liu, Bin; Goree, John
2015-09-01
We study the random walk of a dilute beam of projectile dust particles that drift through a target dusty plasma. This random walk is a diffusion that occurs mainly due to Coulomb collisions with target particles that have a different size. In the direction parallel to the drift, projectiles exhibit mobility-limited motion with a constant average velocity. We use a 3D molecular dynamics (MD) simulation of the dust particle motion to determine the diffusion and mobility coefficients for the dilute beam. The dust particles are assumed to interact with a shielded Coulomb repulsion. They also experience gas drag. The beam particles are driven by a prescribed net force that is not applied to the target particles; in the experiments this net force is due to an imbalance of the electric and ion drag forces. This simulation is motivated by microgravity experiments, with the expectation that the scattering of projectiles studied here will be observed in upcoming PK-4 experiments on the International Space Station. Supported by NASA and DOE.
Disentangling the stochastic behavior of complex time series
NASA Astrophysics Data System (ADS)
Anvari, Mehrnaz; Tabar, M. Reza Rahimi; Peinke, Joachim; Lehnertz, Klaus
2016-10-01
Complex systems involving a large number of degrees of freedom, generally exhibit non-stationary dynamics, which can result in either continuous or discontinuous sample paths of the corresponding time series. The latter sample paths may be caused by discontinuous events - or jumps - with some distributed amplitudes, and disentangling effects caused by such jumps from effects caused by normal diffusion processes is a main problem for a detailed understanding of stochastic dynamics of complex systems. Here we introduce a non-parametric method to address this general problem. By means of a stochastic dynamical jump-diffusion modelling, we separate deterministic drift terms from different stochastic behaviors, namely diffusive and jumpy ones, and show that all of the unknown functions and coefficients of this modelling can be derived directly from measured time series. We demonstrate appli- cability of our method to empirical observations by a data-driven inference of the deterministic drift term and of the diffusive and jumpy behavior in brain dynamics from ten epilepsy patients. Particularly these different stochastic behaviors provide extra information that can be regarded valuable for diagnostic purposes.
SABRE observations of a sequence of Pc 5 micropulsations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waldock, J.A.; Thomas, E.C.
Observations of a Pc 5 micropulsation event, using the Wick half of the new SABRE auroral radar, are presented. During a 3-hour period in the early morning of September 18, 1981, a train of pulsations were recorded. Analysis revealed that there were three main events, rather than one continuous disturbance. The first event appeared as a perturbation of only one or two cycles, extending throughout the latitude of the viewing area. It was also visible in the STARE region, but the perturbation drift velocity was in the north-south direction as opposed to the east-west perturbation drift of a more conventional,more » toroidal mode field line resonance. The second disturbance was an isolated, one-cycle perturbation, also visible throughout both SABRE and STARE viewing areas and also having a dominant north-south velocity component. Finally, a very localized monochromatic event, lasting five cycles or more, with a period of about 5 min, was recorded. The characteristics of the third event were found to be consistent with those predicted by field line resonance theory. 18 references.« less
Hole mobilities and the effective Hall factor in p-type GaAs
NASA Astrophysics Data System (ADS)
Wenzel, M.; Irmer, G.; Monecke, J.; Siegel, W.
1997-06-01
We prove the effective Hall factor in p-GaAs to be larger than values discussed in the literature up to now. The scattering rates for the relevant scattering mechanisms in p-GaAs have been recalculated after critical testing the existing models. These calculations allow to deduce theoretical drift and theoretical Hall mobilities as functions of temperature which can be compared with measured data. Theoretical Hall factors in the heavy and light hole bands and an effective Hall factor result. The calculated room temperature values of the drift mobility and of the effective Hall factor are 118 cm2/V s and 3.6, respectively. The fitted acoustic deformation potential E1=7.9 eV and the fitted optical coupling constant DK=1.24×1011 eV/m are close to values published before. It is shown that the measured strong dependence of the Hall mobility on the Hall concentration is not mainly caused by scattering by ionized impurities but by the dependence of the effective Hall factor on the hole concentration.
Climate-driven polar motion: 2003–2015
Adhikari, Surendra; Ivins, Erik R.
2016-01-01
Earth’s spin axis has been wandering along the Greenwich meridian since about 2000, representing a 75° eastward shift from its long-term drift direction. The past 115 years have seen unequivocal evidence for a quasi-decadal periodicity, and these motions persist throughout the recent record of pole position, in spite of the new drift direction. We analyze space geodetic and satellite gravimetric data for the period 2003–2015 to show that all of the main features of polar motion are explained by global-scale continent-ocean mass transport. The changes in terrestrial water storage (TWS) and global cryosphere together explain nearly the entire amplitude (83 ± 23%) and mean directional shift (within 5.9° ± 7.6°) of the observed motion. We also find that the TWS variability fully explains the decadal-like changes in polar motion observed during the study period, thus offering a clue to resolving the long-standing quest for determining the origins of decadal oscillations. This newly discovered link between polar motion and global-scale TWS variability has broad implications for the study of past and future climate. PMID:27152348
Passive Sensor Integration for Vehicle Self-Localization in Urban Traffic Environment †
Gu, Yanlei; Hsu, Li-Ta; Kamijo, Shunsuke
2015-01-01
This research proposes an accurate vehicular positioning system which can achieve lane-level performance in urban canyons. Multiple passive sensors, which include Global Navigation Satellite System (GNSS) receivers, onboard cameras and inertial sensors, are integrated in the proposed system. As the main source for the localization, the GNSS technique suffers from Non-Line-Of-Sight (NLOS) propagation and multipath effects in urban canyons. This paper proposes to employ a novel GNSS positioning technique in the integration. The employed GNSS technique reduces the multipath and NLOS effects by using the 3D building map. In addition, the inertial sensor can describe the vehicle motion, but has a drift problem as time increases. This paper develops vision-based lane detection, which is firstly used for controlling the drift of the inertial sensor. Moreover, the lane keeping and changing behaviors are extracted from the lane detection function, and further reduce the lateral positioning error in the proposed localization system. We evaluate the integrated localization system in the challenging city urban scenario. The experiments demonstrate the proposed method has sub-meter accuracy with respect to mean positioning error. PMID:26633420
Development of an ion mobility spectrometer with UV ionization source to detect ketones and BTX
NASA Astrophysics Data System (ADS)
Ni, Kai; Guo, Jingran; Ou, Guangli; Lei, Yu; Wang, Xiaohao
2014-11-01
Ion mobility spectrometry (IMS) is an attractive material analysis technology for developing a miniaturized volatile organic compounds (VOCs) on-site monitoring sensor. Having simple instrumentation, IMS is especially suitable when portability and sensitivity are required. In this work, we designed an ion mobility spectrometer with UV ionization. The geometric parameters of the UV-IMS were optimized based on a numerical simulation. The simulation results demonstrated that the drift electric field in the drift region was approximately homogenous and in the reaction region had an ion focusing effect, which could improve the sensitivity and resolving power of the IMS. The UV-IMS has been constructed and used to detect VOCs, such as acetone, benzene, toluene and m-xylene (BTX). The resolution of these substance measured from the UV-IMS in the atmospheric conditions are about 30 and the limit of detection (LOD) is low to ppmv. The ion mobility module and electric circuit are integrated in a main PCB, which can facilitate mass production and miniaturization. The present UV-IMS is expected to become a tool of choice for the on-site monitoring for VOCs.
NASA Astrophysics Data System (ADS)
Giordano, V.; Chisari, C.; Rizzano, G.; Latour, M.
2017-10-01
The main aim of this work is to understand how the prediction of the seismic performance of moment-resisting (MR) steel frames depends on the modelling of their dissipative zones when the structure geometry (number of stories and bays) and seismic excitation source vary. In particular, a parametric analysis involving 4 frames was carried out, and, for each one, the full-strength beam-to-column connections were modelled according to 4 numerical approaches with different degrees of sophistication (Smooth Hysteretic Model, Bouc-Wen, Hysteretic and simple Elastic-Plastic models). Subsequently, Incremental Dynamic Analyses (IDA) were performed by considering two different earthquakes (Spitak and Kobe). The preliminary results collected so far pointed out that the influence of the joint modelling on the overall frame response is negligible up to interstorey drift ratio values equal to those conservatively assumed by the codes to define conventional collapse (0.03 rad). Conversely, if more realistic ultimate interstorey drift values are considered for the q-factor evaluation, the influence of joint modelling can be significant, and thus may require accurate modelling of its cyclic behavior.
Detecting an atomic clock frequency anomaly using an adaptive Kalman filter algorithm
NASA Astrophysics Data System (ADS)
Song, Huijie; Dong, Shaowu; Wu, Wenjun; Jiang, Meng; Wang, Weixiong
2018-06-01
The abnormal frequencies of an atomic clock mainly include frequency jump and frequency drift jump. Atomic clock frequency anomaly detection is a key technique in time-keeping. The Kalman filter algorithm, as a linear optimal algorithm, has been widely used in real-time detection for abnormal frequency. In order to obtain an optimal state estimation, the observation model and dynamic model of the Kalman filter algorithm should satisfy Gaussian white noise conditions. The detection performance is degraded if anomalies affect the observation model or dynamic model. The idea of the adaptive Kalman filter algorithm, applied to clock frequency anomaly detection, uses the residuals given by the prediction for building ‘an adaptive factor’ the prediction state covariance matrix is real-time corrected by the adaptive factor. The results show that the model error is reduced and the detection performance is improved. The effectiveness of the algorithm is verified by the frequency jump simulation, the frequency drift jump simulation and the measured data of the atomic clock by using the chi-square test.
8. View of substructure showing the lower chord of the ...
8. View of substructure showing the lower chord of the Howe truss, flared board-and-batten siding, and pier configuration - Drift Creek Bridge, Spanning Drift Creek on Drift Creek County Road, Lincoln City, Lincoln County, OR
Validation testing of drift reduction technology testing protocol
A number of pesticide application technologies offer the potential to reduce spray drift from pesticide applications. However, limited information exists on the effectiveness of these technologies in reducing spray drift. Working with a stakeholder technical panel under EPA's Env...
Evolution: drift will tear us apart.
Maderspacher, Florian
2012-11-06
That the widely scattered geographical distribution of some animals could be due to continental drift is a neat idea. Now, cave animals provide evidence for extreme long-term persistence on continents drifting apart. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Komachi, Mamoru; Kudo, Taku; Shimbo, Masashi; Matsumoto, Yuji
Bootstrapping has a tendency, called semantic drift, to select instances unrelated to the seed instances as the iteration proceeds. We demonstrate the semantic drift of Espresso-style bootstrapping has the same root as the topic drift of Kleinberg's HITS, using a simplified graph-based reformulation of bootstrapping. We confirm that two graph-based algorithms, the von Neumann kernels and the regularized Laplacian, can reduce the effect of semantic drift in the task of word sense disambiguation (WSD) on Senseval-3 English Lexical Sample Task. Proposed algorithms achieve superior performance to Espresso and previous graph-based WSD methods, even though the proposed algorithms have less parameters and are easy to calibrate.
El Hadri, Hind; Petersen, Elijah J.; Winchester, Michael R.
2016-01-01
The effect of ICP-MS instrument sensitivity drift on the accuracy of NP size measurements using single particle (sp)ICP-MS is investigated. Theoretical modeling and experimental measurements of the impact of instrument sensitivity drift are in agreement and indicate that drift can impact the measured size of spherical NPs by up to 25 %. Given this substantial bias in the measured size, a method was developed using an internal standard to correct for the impact of drift and was shown to accurately correct for a decrease in instrument sensitivity of up to 50 % for 30 nm and 60 nm gold nanoparticles. PMID:26894759
New drift chamber technology for high energy gamma-ray telescopes
NASA Astrophysics Data System (ADS)
Hunter, Stanley D.; Cuddapah, Rajani
1990-08-01
Work to develop a low-power amplifier and discriminator for use on space qualifiable drift chambers is discussed. Consideration is given to the goals of the next generation of high-energy gamma-ray telescope design and to how the goals can be achieved using xenon gas drift chambers. The design and construction of a low power drift chamber amplifier and discriminator are described, and the design of a quad-time-to-amplitude converter is outlined.
Benchmark of the local drift-kinetic models for neoclassical transport simulation in helical plasmas
NASA Astrophysics Data System (ADS)
Huang, B.; Satake, S.; Kanno, R.; Sugama, H.; Matsuoka, S.
2017-02-01
The benchmarks of the neoclassical transport codes based on the several local drift-kinetic models are reported here. Here, the drift-kinetic models are zero orbit width (ZOW), zero magnetic drift, DKES-like, and global, as classified in Matsuoka et al. [Phys. Plasmas 22, 072511 (2015)]. The magnetic geometries of Helically Symmetric Experiment, Large Helical Device (LHD), and Wendelstein 7-X are employed in the benchmarks. It is found that the assumption of E ×B incompressibility causes discrepancy of neoclassical radial flux and parallel flow among the models when E ×B is sufficiently large compared to the magnetic drift velocities. For example, Mp≤0.4 where Mp is the poloidal Mach number. On the other hand, when E ×B and the magnetic drift velocities are comparable, the tangential magnetic drift, which is included in both the global and ZOW models, fills the role of suppressing unphysical peaking of neoclassical radial-fluxes found in the other local models at Er≃0 . In low collisionality plasmas, in particular, the tangential drift effect works well to suppress such unphysical behavior of the radial transport caused in the simulations. It is demonstrated that the ZOW model has the advantage of mitigating the unphysical behavior in the several magnetic geometries, and that it also implements the evaluation of bootstrap current in LHD with the low computation cost compared to the global model.
Xing, Haifeng; Hou, Bo; Lin, Zhihui; Guo, Meifeng
2017-10-13
MEMS (Micro Electro Mechanical System) gyroscopes have been widely applied to various fields, but MEMS gyroscope random drift has nonlinear and non-stationary characteristics. It has attracted much attention to model and compensate the random drift because it can improve the precision of inertial devices. This paper has proposed to use wavelet filtering to reduce noise in the original data of MEMS gyroscopes, then reconstruct the random drift data with PSR (phase space reconstruction), and establish the model for the reconstructed data by LSSVM (least squares support vector machine), of which the parameters were optimized using CPSO (chaotic particle swarm optimization). Comparing the effect of modeling the MEMS gyroscope random drift with BP-ANN (back propagation artificial neural network) and the proposed method, the results showed that the latter had a better prediction accuracy. Using the compensation of three groups of MEMS gyroscope random drift data, the standard deviation of three groups of experimental data dropped from 0.00354°/s, 0.00412°/s, and 0.00328°/s to 0.00065°/s, 0.00072°/s and 0.00061°/s, respectively, which demonstrated that the proposed method can reduce the influence of MEMS gyroscope random drift and verified the effectiveness of this method for modeling MEMS gyroscope random drift.
Hirata, Kimiko; Yoshimura, Michio; Mukumoto, Nobutaka; Nakamura, Mitsuhiro; Inoue, Minoru; Sasaki, Makoto; Fujimoto, Takahiro; Yano, Shinsuke; Nakata, Manabu; Mizowaki, Takashi; Hiraoka, Masahiro
2017-07-01
We evaluated three-dimensional intrafractional target motion, divided into respiratory-induced motion and baseline drift, in accelerated partial breast irradiation (APBI). Paired fluoroscopic images were acquired simultaneously using orthogonal kV X-ray imaging systems at pre- and post-treatment for 23 patients who underwent APBI with external beam radiotherapy. The internal target motion was calculated from the surgical clips placed around the tumour cavity. The peak-to-peak respiratory-induced motions ranged from 0.6 to 1.5mm in all directions. A systematic baseline drift of 1.5mm towards the posterior direction and a random baseline drift of 0.3mm in the lateral-medial and cranial-caudal directions were observed. The baseline for an outer tumour cavity drifted towards the lateral and posterior directions, and that for an upper tumour cavity drifted towards the cranial direction. Moderate correlations were observed between the posterior baseline drift and the patients' physical characteristics. The posterior margin for intrafractional uncertainties was larger than 5mm in patients with greater fat thickness due to the baseline drift. The magnitude of the intrafractional motion was not uniform according to the direction, patients' physical characteristics, or tumour cavity location due to the baseline drift. Therefore, the intrafractional systematic movement should be properly managed. Copyright © 2017 Elsevier B.V. All rights reserved.
Drivers of drift sand dynamics; a reconstruction for the Wekeromse Zand, the Netherlands
NASA Astrophysics Data System (ADS)
Hendriks, Chantal; Sonneveld, Marthijn; Wallinga, Jakob
2013-04-01
Inland active drift sand landscapes are regarded as unique ecosystems of great historical and geomorphological value. Recent studies have highlighted the role of multiple factors in the initiation and stabilization of drift sand landscapes. To unravel the importance of different forcings (e.g. agricultural practices, climate) and their interplay, insight in the chronology of drift sand dynamics is essential. In this study, we aimed to reconstruct the dynamics of the drift sand landscape of the Wekeromse Zand (central Netherlands) and to develop a conceptual model to understand the processes involved. The Wekeromse Zand study area (370 ha) is located on the border of a central push moraine and is characterised by open active drift sands (14 ha) and vegetated hills and valleys. The surroundings are dominated by modern agricultural practices, and remnants from ancient iron age Celtic Field systems showing that the area has been in agricultural use since at least the Iron Age. For the study area we: i) analysed historical maps going back to the early 19th century, ii) performed a field survey to map the palaeolandscape (before drift sand activation) and iii) employed optically stimulated luminescence (OSL) dating of drift sand deposits on 11 samples from two locations to determine the timing of drift sand deposition. Analysis of the available topographic maps showed no substantial aeolean activity of the area outside its morphological boundaries. OSL dating revealed that two drift sand layers were deposited between 1373 and 1462 AD and between 1680 and 1780 AD. A layer with a higher organic matter content was found at one of the sites. This suggests that the Wekeromse Zand has known three relatively stable periods: i) a period between the start of the Holocene to the Late Medieval Period, ii) in between the Medieval climatic optimum and the climatic Maunder minimum, and iii) current situation. Despite the fact that agricultural activities occurred in this area from the Iron Age onwards, drift sand activity only started in the mid- to late 14th century. The two active phases appear to correspond with active phases in the coastal dune systems and are probably the combined result of anthropogenic land use and climatic changes.
Plant reproduction is altered by simulated herbicide drift to constructed plant communities
Herbicide drift may have unintended impacts on native vegetation, adversely affecting structure and function of plant communities. However, these potential effects have been rarely studied or quantified. To determine potential ecological effects of herbicide drift, we construct...
PRN 2001-X Draft: Spray and Dust Drift Label Statements for Pesticide Products
This Notice sets forth the U.S. Environmental Protection Agency's (EPA or Agency) draft guidance for labeling statements for controlling spray drift and dust drift from application sites and for implementing these statements for risk mitigation.
ENCOURAGING THE USE OF DRIFT REDUCTION TECHNOLOGIES IN THE UNITED STATES
A number of pesticide application technologies offer the potential to reduce spray drift from pesticide applications. However, limited information exists on their effectiveness in reducing spray drift. The United States Environmental Protection Agency (EPA) is taking initiatives ...
Biology Undergraduates' Misconceptions about Genetic Drift
ERIC Educational Resources Information Center
Andrews, T. M.; Price, R. M.; Mead, L. S.; McElhinny, T. L.; Thanukos, A.; Perez, K. E.; Herreid, C. F.; Terry, D. R.; Lemons, P. P.
2012-01-01
This study explores biology undergraduates' misconceptions about genetic drift. We use qualitative and quantitative methods to describe students' definitions, identify common misconceptions, and examine differences before and after instruction on genetic drift. We identify and describe five overarching categories that include 16 distinct…
Mesh-size effects on drift sample composition as determined with a triple net sampler
Slack, K.V.; Tilley, L.J.; Kennelly, S.S.
1991-01-01
Nested nets of three different mesh apertures were used to study mesh-size effects on drift collected in a small mountain stream. The innermost, middle, and outermost nets had, respectively, 425 ??m, 209 ??m and 106 ??m openings, a design that reduced clogging while partitioning collections into three size groups. The open area of mesh in each net, from largest to smallest mesh opening, was 3.7, 5.7 and 8.0 times the area of the net mouth. Volumes of filtered water were determined with a flowmeter. The results are expressed as (1) drift retained by each net, (2) drift that would have been collected by a single net of given mesh size, and (3) the percentage of total drift (the sum of the catches from all three nets) that passed through the 425 ??m and 209 ??m nets. During a two day period in August 1986, Chironomidae larvae were dominant numerically in all 209 ??m and 106 ??m samples and midday 425 ??m samples. Large drifters (Ephemerellidae) occurred only in 425 ??m or 209 ??m nets, but the general pattern was an increase in abundance and number of taxa with decreasing mesh size. Relatively more individuals occurred in the larger mesh nets at night than during the day. The two larger mesh sizes retained 70% of the total sediment/detritus in the drift collections, and this decreased the rate of clogging of the 106 ??m net. If an objective of a sampling program is to compare drift density or drift rate between areas or sampling dates, the same mesh size should be used for all sample collection and processing. The mesh aperture used for drift collection should retain all species and life stages of significance in a study. The nested net design enables an investigator to test the adequacy of drift samples. ?? 1991 Kluwer Academic Publishers.
NASA Astrophysics Data System (ADS)
Fedors, R. W.; Painter, S. L.
2004-12-01
Temperature gradients along the thermally-perturbed drifts of the potential high-level waste repository at Yucca Mountain, Nevada, will drive natural convection and associated heat and mass transfer along drifts. A three-dimensional, dual-permeability, thermohydrological model of heat and mass transfer was used to estimate the magnitude of temperature gradients along a drift. Temperature conditions along heated drifts are needed to support estimates of repository-edge cooling and as input to computational fluid dynamics modeling of in-drift axial convection and the cold-trap process. Assumptions associated with abstracted heat transfer models and two-dimensional thermohydrological models weakly coupled to mountain-scale thermal models can readily be tested using the three-dimensional thermohydrological model. Although computationally expensive, the fully coupled three-dimensional thermohydrological model is able to incorporate lateral heat transfer, including host rock processes of conduction, convection in gas phase, advection in liquid phase, and latent-heat transfer. Results from the three-dimensional thermohydrological model showed that weakly coupling three-dimensional thermal and two-dimensional thermohydrological models lead to underestimates of temperatures and underestimates of temperature gradients over large portions of the drift. The representative host rock thermal conductivity needed for abstracted heat transfer models are overestimated using the weakly coupled models. If axial flow patterns over large portions of drifts are not impeded by the strong cross-sectional flow patterns imparted by the heat rising directly off the waste package, condensation from the cold-trap process will not be limited to the extreme ends of each drift. Based on the three-dimensional thermohydrological model, axial temperature gradients occur sooner over a larger portion of the drift, though high gradients nearest the edge of the potential repository are dampened. This abstract is an independent product of CNWRA and does not necessarily reflect the view or regulatory position of the Nuclear Regulatory Commission.
Drift correction of the dissolved signal in single particle ICPMS.
Cornelis, Geert; Rauch, Sebastien
2016-07-01
A method is presented where drift, the random fluctuation of the signal intensity, is compensated for based on the estimation of the drift function by a moving average. It was shown using single particle ICPMS (spICPMS) measurements of 10 and 60 nm Au NPs that drift reduces accuracy of spICPMS analysis at the calibration stage and during calculations of the particle size distribution (PSD), but that the present method can again correct the average signal intensity as well as the signal distribution of particle-containing samples skewed by drift. Moreover, deconvolution, a method that models signal distributions of dissolved signals, fails in some cases when using standards and samples affected by drift, but the present method was shown to improve accuracy again. Relatively high particle signals have to be removed prior to drift correction in this procedure, which was done using a 3 × sigma method, and the signals are treated separately and added again. The method can also correct for flicker noise that increases when signal intensity is increased because of drift. The accuracy was improved in many cases when flicker correction was used, but when accurate results were obtained despite drift, the correction procedures did not reduce accuracy. The procedure may be useful to extract results from experimental runs that would otherwise have to be run again. Graphical Abstract A method is presented where a spICP-MS signal affected by drift (left) is corrected (right) by adjusting the local (moving) averages (green) and standard deviations (purple) to the respective values at a reference time (red). In combination with removing particle events (blue) in the case of calibration standards, this method is shown to obtain particle size distributions where that would otherwise be impossible, even when the deconvolution method is used to discriminate dissolved and particle signals.
Gaze holding deficits discriminate early from late onset cerebellar degeneration.
Tarnutzer, Alexander A; Weber, K P; Schuknecht, B; Straumann, D; Marti, S; Bertolini, G
2015-08-01
The vestibulo-cerebellum calibrates the output of the inherently leaky brainstem neural velocity-to-position integrator to provide stable gaze holding. In healthy humans small-amplitude centrifugal nystagmus is present at extreme gaze-angles, with a non-linear relationship between eye-drift velocity and eye eccentricity. In cerebellar degeneration this calibration is impaired, resulting in pathological gaze-evoked nystagmus (GEN). For cerebellar dysfunction, increased eye drift may be present at any gaze angle (reflecting pure scaling of eye drift found in controls) or restricted to far-lateral gaze (reflecting changes in shape of the non-linear relationship) and resulting eyed-drift patterns could be related to specific disorders. We recorded horizontal eye positions in 21 patients with cerebellar neurodegeneration (gaze-angle = ±40°) and clinically confirmed GEN. Eye-drift velocity, linearity and symmetry of drift were determined. MR-images were assessed for cerebellar atrophy. In our patients, the relation between eye-drift velocity and gaze eccentricity was non-linear, yielding (compared to controls) significant GEN at gaze-eccentricities ≥20°. Pure scaling was most frequently observed (n = 10/18), followed by pure shape-changing (n = 4/18) and a mixed pattern (n = 4/18). Pure shape-changing patients were significantly (p = 0.001) younger at disease-onset compared to pure scaling patients. Atrophy centered around the superior/dorsal vermis, flocculus/paraflocculus and dentate nucleus and did not correlate with the specific drift behaviors observed. Eye drift in cerebellar degeneration varies in magnitude; however, it retains its non-linear properties. With different drift patterns being linked to age at disease-onset, we propose that the gaze-holding pattern (scaling vs. shape-changing) may discriminate early- from late-onset cerebellar degeneration. Whether this allows a distinction among specific cerebellar disorders remains to be determined.
NASA Astrophysics Data System (ADS)
Crabbe, R. S.; McCooeye, M.; Mickle, R. E.
1994-04-01
Measurements of drift cloud mass from 11 cases selected from a study of wind-borne droplet drift from ultra low-volume aerial spray applications over northern Ontario forests are presented as a function of atmospheric stability. Six swaths were overlaid onto a flight line in 30 min to obtain ensemble-averaged data from rotary atomizer emissions from an agricultural spray plane flying at about 21 and 26 m above ground level. The estimated volume median diameters of the spray were 100 µm for the 21-m height and 70 µm for the 26-m height. The mass of spray material in the drift cloud was measured at 400, 1200, and 2200 m downwind of the (crosswind) flight line using Rotorods' suspended from tethered blimps. Wind speed at aircraft height varied from 2 to 5 m s1 and meteorological conditions varied from moderately stable to moderately unstable.Analysis of the data revealed that 35% more drift occurred in stable than in unstable conditions. The lowest drift was measured when the aircraft was flown in the morning mixing layer beneath a low capping inversion. Under thee conditions, only 18% of the emission drifted put 400 m downwind and 10% past 1200 m. The highest drift occurred in moderately stable flow, 71% past 400 m and 50% past 2200 m in 3 m s1 wind speeds and, in slightly stable flow, 77% past 400 m and 27% past 2200 m in 5 m s1 wind speeds.Within experimental error, little difference was observed between wind drift of the 100-µm-diameter droplets and the 70-µm-diameter droplets past 400 m downwind although farther downwind, drift from the larger-droplet emission was less. This difference is discussed in terms of the descent rate of the aircraft vortex wake in stable conditions.
Real time, ambient air laser monitor for rare CO2 isotopic tracers: Δ13 C18 O16 O and Δ17 O
NASA Astrophysics Data System (ADS)
Nelson, David; Shorter, Joanne; McManus, Barry; Jervis, Dylan; Zahniser, Mark; Ono, Shuhei
2017-04-01
Greenhouse gas (GHG) emissions are the primary drivers of global climate change and hence there is a crucial need to quantify their sources and sinks. A powerful technique to help constrain source and sink strengths in GHG exchange processes is the analysis of the relative proportions of isotopic variants of GHGs. We present a new laser isotope monitor based on Tunable Infrared Laser Direct Absorption Spectroscopy (TILDAS) to measure the primary clumped isotopologue of CO2 (Δ13 C18 O16 O) and to simultaneously measure the mass independent 17 O-CO2 content (Δ17 O). The instrument directly measures dried atmospheric samples without cryogenic preconcentration of CO2 . The instrument has several novel features. The instrument's sensitivity is enhanced by employing a 400 meter optical absorption cell. Measurement drift is suppressed by using a rapid sample switching method with frequent comparison to a working reference. A new dual-pressure measurement scheme is demonstrated. This scheme solves the dynamic range challenge that arises in simultaneously measuring the main isotopologues of CO2 together with much less abundant clumped isotopologue species. Our initial results address measurement precision, measurement drift and calibration. We show the potential to reach 0.03 per mil repeatability with time resolution of 3 minutes and with minimal drift over an 18 hour measurement period. The instrument is sufficiently compact to be field deployed thus providing the possibility of continuous measurements of Δ13 C18 O16 O and Δ17 O rather than occasional flask samples.
Evolution of Spiral and Scroll Waves of Excitation in a Mathematical Model of Ischaemic Border Zone
Biktashev, Vadim N.; Biktasheva, Irina V.; Sarvazyan, Narine A.
2011-01-01
Abnormal electrical activity from the boundaries of ischemic cardiac tissue is recognized as one of the major causes in generation of ischemia-reperfusion arrhythmias. Here we present theoretical analysis of the waves of electrical activity that can rise on the boundary of cardiac cell network upon its recovery from ischaemia-like conditions. The main factors included in our analysis are macroscopic gradients of the cell-to-cell coupling and cell excitability and microscopic heterogeneity of individual cells. The interplay between these factors allows one to explain how spirals form, drift together with the moving boundary, get transiently pinned to local inhomogeneities, and finally penetrate into the bulk of the well-coupled tissue where they reach macroscopic scale. The asymptotic theory of the drift of spiral and scroll waves based on response functions provides explanation of the drifts involved in this mechanism, with the exception of effects due to the discreteness of cardiac tissue. In particular, this asymptotic theory allows an extrapolation of 2D events into 3D, which has shown that cells within the border zone can give rise to 3D analogues of spirals, the scroll waves. When and if such scroll waves escape into a better coupled tissue, they are likely to collapse due to the positive filament tension. However, our simulations have shown that such collapse of newly generated scrolls is not inevitable and that under certain conditions filament tension becomes negative, leading to scroll filaments to expand and multiply leading to a fibrillation-like state within small areas of cardiac tissue. PMID:21935402
Mueller, Christina J; White, Corey N; Kuchinke, Lars
2017-11-27
The goal of this study was to replicate findings of diffusion model parameters capturing emotion effects in a lexical decision task and investigating whether these findings extend to other tasks of implicit emotion processing. Additionally, we were interested in the stability of diffusion model parameters across emotional stimuli and tasks for individual subjects. Responses to words in a lexical decision task were compared with responses to faces in a gender categorization task for stimuli of the emotion categories: happy, neutral and fear. Main effects of emotion as well as stability of emerging response style patterns as evident in diffusion model parameters across these tasks were analyzed. Based on earlier findings, drift rates were assumed to be more similar in response to stimuli of the same emotion category compared to stimuli of a different emotion category. Results showed that emotion effects of the tasks differed with a processing advantage for happy followed by neutral and fear-related words in the lexical decision task and a processing advantage for neutral followed by happy and fearful faces in the gender categorization task. Both emotion effects were captured in estimated drift rate parameters-and in case of the lexical decision task also in the non-decision time parameters. A principal component analysis showed that contrary to our hypothesis drift rates were more similar within a specific task context than within a specific emotion category. Individual response patterns of subjects across tasks were evident in significant correlations regarding diffusion model parameters including response styles, non-decision times and information accumulation.
NASA Astrophysics Data System (ADS)
Liu, Jing; Wang, Wenbin; Burns, Alan; Solomon, Stanley C.; Zhang, Shunrong; Zhang, Yongliang; Huang, Chaosong
2016-08-01
There are still uncertainties regarding the formation mechanisms for storm-enhanced density (SED) in the high and subauroral latitude ionosphere. In this work, we deploy the Thermosphere Ionosphere Electrodynamic General Circulation Model (TIEGCM) and GPS total electron content (TEC) observations to identify the principle mechanisms for SED and the tongue of ionization (TOI) through term-by-term analysis of the ion continuity equation and also identify the advantages and deficiencies of the TIEGCM in capturing high-latitude and subauroral latitude ionospheric fine structures for the two geomagnetic storm events occurring on 17 March 2013 and 2015. Our results show that in the topside ionosphere, upward E × B ion drifts are most important in SED formation and are offset by antisunward neutral winds and downward ambipolar diffusion effects. In the bottomside F region ionosphere, neutral winds play a major role in generating SEDs. SED signature in TEC is mainly caused by upward E × B ion drifts that lift the ionosphere to higher altitudes where chemical recombination is slower. Horizontal E × B ion drifts play an essential role in transporting plasma from the dayside convection throat region to the polar cap to form TOIs. Inconsistencies between model results and GPS TEC data were found: (1) GPS relative TEC difference between storm time and quiet time has "holes" in the dayside ion convection entrance region, which do not appear in the model results. (2) The model tends to overestimate electron density enhancements in the polar region. Possible causes for these inconsistencies are discussed in this article.
Goldberg, D.A.; Flood, W.S.; Arthur, A.A.; Voelker, F.
1984-03-20
A broad-band beam bunther is disclosed, comprising an evacuated housing, an electron gun therein for producing an electron beam, a buncher cavity having entrance and exit openings through which the beam is directed, grids across such openings, a source providing a positive DC voltage between the cavity and the electron gun, a drift tube through which the electron beam travels in passing through such cavity, grids across the ends of such drift tube, gaps being provided between the drift tube grids and the entrance and exit grids, a modulator for supplying an ultrahigh frequency modulating signal to the drift tube for producing velocity modulation of the electrons in the beam, a drift space in the housing through which the velocity modulated electron beam travels and in which the beam is bunched, and a discharge opening from such drift tube and having a grid across such opening through which the bunched electron beam is discharged into an accelerator or the like. The buncher cavity and the drift tube may be arranged to constitute an extension of a coaxial transmission line which is employed to deliver the modulating signal from a signal source. The extended transmission line may be terminated in its characteristic impedance to afford a broad-
Simple automatic strategy for background drift correction in chromatographic data analysis.
Fu, Hai-Yan; Li, He-Dong; Yu, Yong-Jie; Wang, Bing; Lu, Peng; Cui, Hua-Peng; Liu, Ping-Ping; She, Yuan-Bin
2016-06-03
Chromatographic background drift correction, which influences peak detection and time shift alignment results, is a critical stage in chromatographic data analysis. In this study, an automatic background drift correction methodology was developed. Local minimum values in a chromatogram were initially detected and organized as a new baseline vector. Iterative optimization was then employed to recognize outliers, which belong to the chromatographic peaks, in this vector, and update the outliers in the baseline until convergence. The optimized baseline vector was finally expanded into the original chromatogram, and linear interpolation was employed to estimate background drift in the chromatogram. The principle underlying the proposed method was confirmed using a complex gas chromatographic dataset. Finally, the proposed approach was applied to eliminate background drift in liquid chromatography quadrupole time-of-flight samples used in the metabolic study of Escherichia coli samples. The proposed method was comparable with three classical techniques: morphological weighted penalized least squares, moving window minimum value strategy and background drift correction by orthogonal subspace projection. The proposed method allows almost automatic implementation of background drift correction, which is convenient for practical use. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Hongli; Giles, Kevin; Bendiak, Brad; Kaplan, Kimberly; Siems, William F.; Hill, Herbert H.
2013-01-01
Monosaccharide structural isomers including sixteen methyl-D-glycopyranosides and four methyl-N-acetylhexosamines were subjected to ion mobility measurements by electrospray ion mobility mass spectrometry. Two ion mobility-MS systems were employed: atmospheric pressure drift tube ion mobility time-of-flight mass spectrometry and a Synapt G2 HDMS system which incorporates a low pressure traveling wave ion mobility separator. All the compounds were investigated as [M+Na]+ ions in the positive mode. A majority of the monosaccharide structural isomers exhibited different mobility drift times in either system, depending on differences in their anomeric and stereochemical configurations. In general, drift time patterns (relative drift times of isomers) matched between the two instruments. Higher resolving power was observed using the atmospheric pressure drift tube. Collision cross section values of monosaccharide structural isomers were directly calculated from the atmospheric pressure ion mobility experiments and a collision cross section calibration curve was made for the traveling wave ion mobility instrument. Overall, it was demonstrated that ion mobility-mass spectrometry using either drift tube or traveling wave ion mobility is a valuable technique for resolving subtle variations in stereochemistry among the sodium adducts of monosaccharide methyl glycosides. PMID:22339760
Jaïdi, Faouzi; Labbene-Ayachi, Faten; Bouhoula, Adel
2016-12-01
Nowadays, e-healthcare is a main advancement and upcoming technology in healthcare industry that contributes to setting up automated and efficient healthcare infrastructures. Unfortunately, several security aspects remain as main challenges towards secure and privacy-preserving e-healthcare systems. From the access control perspective, e-healthcare systems face several issues due to the necessity of defining (at the same time) rigorous and flexible access control solutions. This delicate and irregular balance between flexibility and robustness has an immediate impact on the compliance of the deployed access control policy. To address this issue, the paper defines a general framework to organize thinking about verifying, validating and monitoring the compliance of access control policies in the context of e-healthcare databases. We study the problem of the conformity of low level policies within relational databases and we particularly focus on the case of a medical-records management database defined in the context of a Medical Information System. We propose an advanced solution for deploying reliable and efficient access control policies. Our solution extends the traditional lifecycle of an access control policy and allows mainly managing the compliance of the policy. We refer to an example to illustrate the relevance of our proposal.
Drift tube suspension for high intensity linear accelerators
Liska, D.J.; Schamaun, R.G.; Clark, D.C.; Potter, R.C.; Frank, J.A.
1980-03-11
The disclosure relates to a drift tube suspension for high intensity linear accelerators. The system comprises a series of box-sections girders independently adjustably mounted on a linear accelerator. A plurality of drift tube holding stems are individually adjustably mounted on each girder.
Electron Gun For Multiple Beam Klystron Using Magnetic Focusing
Ives, R. Lawrence; Miram, George; Krasnykh, Anatoly
2004-07-27
An RF device comprising a plurality of drift tubes, each drift tube having a plurality of gaps defining resonant cavities, is immersed in an axial magnetic field. RF energy is introduced at an input RF port at one of these resonant cavities and collected at an output RF port at a different RF cavity. A plurality of electron beams passes through these drift tubes, and each electron beam has an individual magnetic shaping applied which enables confined beam transport through the drift tubes.
Sources and control of instrumental drift in the surface forces apparatus
NASA Astrophysics Data System (ADS)
Heuberger, M.; Zäch, M.; Spencer, N. D.
2000-12-01
Instrumental drift in the surface forces apparatus (SFA) has been carefully scrutinized. A diversity of different contributions with different characteristic time constants could be distinguished. The face seal of the functional attachment was identified as a potential weak point in the mechanical loop of the instrument. We compared drift in three different design variants and found that the drift rate may vary over four orders of magnitude. We believe that the presented results are applicable to a number of different SFA types.
An Investigation of Accelerating Mechanisms in a Plasma Focus Relevant to Interrupting Switches.
1983-07-01
drift region so as to reduce beam loss due to contact with the conductive walls of the drift tube . The beam guiding apparatus was shown *i to increase...secondary discharge had an adverse effect on the trans- mission of the electron beam through the drift tube . This effect, which was shown to be...the electron beam from entering the drift tube region. .A -4 Io For CiA&- TAR - ’ ’--, U Unclassified SECURITY CLASSIFICATION OF THIS PAGEfhe, 00i Ent
Restrike Particle Beam Experiments on a Dense Plasma Focus.
1980-11-30
differentially pumped drift tube as shown in Figure 1. However, even the lOI of gas pressure in the drift space is sufficient to establish an equilibrium...pumped drift tube concept are five-fold: 1) Lower energy attenuation of the beam by neutral gas 2) Lower lateral spread of the beam caused by multiple...relatively low gas pressure through the use of a differentially pumped drift tube . The path makes it possible to observe ion energies to considerably lower
Toward a Greater Understanding of the Reduction of Drift Coefficients in the Presence of Turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engelbrecht, N. E.; Strauss, R. D.; Burger, R. A.
2017-06-01
Drift effects play a significant role in the transport of charged particles in the heliosphere. A turbulent magnetic field is also known to reduce the effects of particle drifts. The exact nature of this reduction, however, is not clear. This study aims to provide some insight into this reduction and proposes a relatively simple, tractable means of modeling it that provides results in reasonable agreement with numerical simulations of the drift coefficient in a turbulent magnetic field.
NASA Astrophysics Data System (ADS)
Muckenhuber, Stefan; Sandven, Stein
2017-04-01
An open-source sea ice drift algorithm for Sentinel-1 SAR imagery is introduced based on the combination of feature-tracking and pattern-matching. A computational efficient feature-tracking algorithm produces an initial drift estimate and limits the search area for the pattern-matching, that provides small to medium scale drift adjustments and normalised cross correlation values as quality measure. The algorithm is designed to utilise the respective advantages of the two approaches and allows drift calculation at user defined locations. The pre-processing of the Sentinel-1 data has been optimised to retrieve a feature distribution that depends less on SAR backscatter peak values. A recommended parameter set for the algorithm has been found using a representative image pair over Fram Strait and 350 manually derived drift vectors as validation. Applying the algorithm with this parameter setting, sea ice drift retrieval with a vector spacing of 8 km on Sentinel-1 images covering 400 km x 400 km, takes less than 3.5 minutes on a standard 2.7 GHz processor with 8 GB memory. For validation, buoy GPS data, collected in 2015 between 15th January and 22nd April and covering an area from 81° N to 83.5° N and 12° E to 27° E, have been compared to calculated drift results from 261 corresponding Sentinel-1 image pairs. We found a logarithmic distribution of the error with a peak at 300 m. All software requirements necessary for applying the presented sea ice drift algorithm are open-source to ensure free implementation and easy distribution.
Do larval fishes exhibit diel drift patterns in a large, turbid river?
Reeves, K.S.; Galat, D.L.
2010-01-01
Previous research suggested larval fishes do not exhibit a diel drift cycle in turbid rivers (transparency <30 cm). We evaluated this hypothesis in the turbid, lower Missouri River, Missouri. We also reviewed diel patterns of larval drift over a range of transparencies in rivers worldwide. Larval fishes were collected from the Missouri River primary channel every 4 h per 24-h period during spring-summer 2002. Water transparency was measured during this period and summarized for previous years. Diel drift patterns were analyzed at the assemblage level and lower taxonomic levels for abundant groups. Day and night larval fish catch-per-unit-effort (CPUE) was compared for the entire May through August sampling period and spring (May - June) and summer (July - August) seasons separately. There were no significant differences between day and night CPUE at the assemblage level for the entire sampling period or for the spring and summer seasons. However, Hiodon alosoides, Carpiodes/Ictiobus spp. and Macrhybopsis spp. exhibited a diel cycle of abundance within the drift. This pattern was evident although mean Secchi depth (transparency) ranged from 4 to 25 cm during the study and was <30 cm from May through August over the previous nine years. Larval diel drift studies from 48 rivers excluding the Missouri River indicated the primary drift period for larval fishes was at night in 38 rivers and during the day for five, with the remaining rivers showing no pattern. Water transparency was reported for 10 rivers with six being <30 cm or 'low'. Two of these six turbid rivers exhibited significant diel drift patterns. The effect of water transparency on diel drift of larval fishes appears taxa-specific and patterns of abundant taxa could mask patterns of rare taxa when analyzed only at the assemblage level. ?? 2010 Blackwell Verlag, Berlin.
NASA Astrophysics Data System (ADS)
Carrano, Charles S.; Groves, Keith M.; Rino, Charles L.; Doherty, Patricia H.
2016-08-01
The zonal drift of ionospheric irregularities at low latitudes is most commonly measured by cross-correlating observations of a scintillating satellite signal made with a pair of closely spaced antennas. The Air Force Research Laboratory-Scintillation Network Decision Aid (AFRL-SCINDA) network operates a small number of very high frequency (VHF) spaced-receiver systems at low latitudes for this purpose. A far greater number of Global Navigation Satellite System (GNSS) scintillation monitors are operated by the AFRL-SCINDA network (25-30) and the Low-Latitude Ionospheric Sensor Network (35-50), but the receivers are too widely separated from each other for cross-correlation techniques to be effective. In this paper, we present an alternative approach that leverages the weak scatter scintillation theory to infer the zonal irregularity drift from single-station GNSS measurements of S4, σφ, and the propagation geometry. Unlike the spaced-receiver technique, this approach requires assumptions regarding the height of the scattering layer (which introduces a bias in the drift estimates) and the spectral index of the irregularities (which affects the spread of the drift estimates about the mean). Nevertheless, theory and experiment suggest that the ratio of σφ to S4 is less sensitive to these parameters than it is to the zonal drift. We validate the technique using VHF spaced-receiver measurements of zonal irregularity drift obtained from the AFRL-SCINDA network. While the spaced-receiver technique remains the preferred way to monitor the drift when closely spaced antenna pairs are available, our technique provides a new opportunity to monitor zonal irregularity drift using regional or global networks of widely separated GNSS scintillation monitors.
A 3-D morphometric analysis of erosional features in a contourite drift from offshore SE Brazil
NASA Astrophysics Data System (ADS)
Alves, Tiago M.
2010-12-01
A contourite drift from offshore Brazil is mapped in detail and investigated using state-of-the-art 3-D seismic data. The aim was to review the relevance of erosional features in contourite drifts accumulated on continental slopes. Topographically confined by growing salt diapirs, the mapped contourite ridge is limited by two erosional features, a contourite moat and a turbidite channel, showing multiple slide scars on it flanks. Associated with the latter features are thick accumulations of high-amplitude strata, probably comprising sandy/silty sediment of Miocene to Holocene age. The erosional unconformities are mostly observed in a region averaging 3.75km away from the axes of a channel and a moat, whose deposits interfinger with continuous strata in central parts of the contourite drift. The multiple unconformities observed are mostly related to slide scars and local erosion on the flanks of the drift. This work demonstrates that the existence of widespread unconformities within contourite drifts on continental slopes: (1) may not be as prominent as often documented, (2) are often diachronic and interfinger with correlative hiatuses or aggraded strata in axial regions of contourite drifts. Although less widespread than regional, or ocean-scale unconformities, these diachronous features result in significant hiatuses within contourite drifts and are, therefore, potentially mappable as relevant (regional-scale) unconformities on 2-D/3-D seismic data. Thus, without a full 3-D morphometric analysis of contourite drifts, significant errors may occur when estimating major changes in the dynamics of principal geostrophic currents based on single-site core data, or on direct correlations between stratigraphic surfaces of distinct contourite bodies.
NASA Astrophysics Data System (ADS)
Pierik, Harm Jan; Van Lanen, Rowin; Gouw-Bouman, Marjolein; Groenewoudt, Bert; Wallinga, Jakob; Hoek, Wim
2017-04-01
Holocene drift-sand activity is commonly linked directly to either population pressure (via agricultural activity) or to climate change (e.g. storminess). In the Pleistocene sand areas of the Netherlands small-scale Holocene aeolian activity occurred since the Neolithic, whereas large scale drift-sand activity started during the Middle Ages (especially after AD 1000. This last phase coincides with the intensification of farming and demographic pressure, but is also commonly associated with a colder climate and enhanced storminess. This raises the question to what extent drift-sand activity can be attributed to human activities or to natural forcing factors. In this study we compare the spatial and chronological patterns of drift-sand occurrence for four characteristic Pleistocene sand regions in the Netherlands. For this, we compiled a new supra-regional overview of dates related to drift-sand activity (14C, OSL, archaeological and historical), that we compared with existing national soil maps, historical-route networks, and vegetation and climate reconstructions. Results show a steady occurrence of aeolian activity between 1000 BC and AD 1000, interrupted by remarkable dip in aeolian activity around 2000 BP, probably caused by changing land-use practices or by lower storminess. It is evident that human pressure on the landscape was most influential on initiating sand drifting: this is supported by more frequent occurrence close to routes and the uninterrupted increase in drift-sand activity after ca AD 1000 during periods of high population density and large-scale deforestation. Once triggered by human activities, the drift-sand development was probably further enhanced several centuries later during the cold and more stormy Little Ice Age (AD 1570-1900).
NASA Astrophysics Data System (ADS)
Swanger, K. M.; Schaefer, J. M.; Winckler, G.; Lamp, J. L.; Marchant, D. R.
2016-12-01
Based on surface exposure dating of moraines and drifts, East Antarctic outlet glaciers in the McMurdo Dry Valleys (MDV) advanced during the mid-Pliocene and/or early-Pleistocene. However, scatter in exposure ages is common for these deposits (and other glacial drifts throughout Antarctica), making it difficult to tie glacial advances to specific climate intervals. In order to constrain the sources of scatter, we mapped and dated 15 cold-based drifts in Taylor Valley and the Olympus Range in the MDV. A secondary goal was to build a regional climate record, for comparison with fluctuations of the local outlet glaciers. Our alpine drift record is confined to the late-Pleistocene, with glacial advances during interglacial periods. Based on 54 3He exposure dates on alpine drifts, age scatter is common in the MDV on both recent and ancient deposits. Where it occurs, age scatter is likely caused by inheritance of cosmogenic nuclides previous to glacial entrainment and stacking of multiple cold-based drifts. Nuclide inheritance of >1 Myr is possible, but this is relatively rare and confined to regions where englacial debris is sourced from stable, high-elevation plateaus. On the other hand, drifts associated with glaciers bound by steep cirque headwalls and arêtes exhibit significantly less age scatter. Given the cold-based nature of MDV alpine and outlet glaciers, deposition of multiple stacked drift sheets also contributes to age scatter, with the implication that it might be possible to date multiple advances of cold-based ice. These results serve to inform better sampling strategies on cold-based drifts throughout Antarctica.
Gamma-ray detector employing scintillators coupled to semiconductor drift photodetectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwanczyk, Jan S.; Patt, Bradley E.
Radiation detectors according to one embodiment of the invention are implemented using scintillators combined with a semiconductor drift photodetectors wherein the components are specifically constructed in terms of their geometry, dimensions, and arrangement so that the scintillator decay time and drift time in the photodetector pairs are matched in order to achieve a greater signal-to-noise ratio. The detectors may include electronics for amplification of electrical signals produced by the silicon drift photodetector, the amplification having a shaping time optimized with respect to the decay time of the scintillator and time spread of the signal in the silicon drift photodetector tomore » substantially maximize the ratio of the signal to the electronic noise.« less
Track chambers based on precision drift tubes housed inside 30 mm mylar pipe
NASA Astrophysics Data System (ADS)
Borisov, A.; Bozhko, N.; Fakhrutdinov, R.; Kozhin, A.; Leontiev, B.; Levin, A.
2014-06-01
We describe drift chambers consisting of 3 layers of 30 mm (OD) drift tubes made of double sided aluminized mylar film with thickness 0.125 mm. A single drift tube is self-supported structure withstanding 350 g tension of 50 microns sense wire located in the tube center with 10 microns precision with respect to end-plug outer surface. Such tubes allow to create drift chambers with small amount of material, construction of such chambers doesn't require hard frames. Twenty six chambers with working area from 0.8 × 1.0 to 2.5 × 2.0 m2 including 4440 tubes have been manufactured for experiments at 70-GeV proton accelerator at IHEP(Protvino).
The Electron Drift Technique for Measuring Electric and Magnetic Fields
NASA Technical Reports Server (NTRS)
Paschmann, G.; McIlwain, C. E.; Quinn, J. M.; Torbert, R. B.; Whipple, E. C.; Christensen, John (Technical Monitor)
1998-01-01
The electron drift technique is based on sensing the drift of a weak beam of test electrons that is caused by electric fields and/or gradients in the magnetic field. These quantities can, by use of different electron energies, in principle be determined separately. Depending on the ratio of drift speed to magnetic field strength, the drift velocity can be determined either from the two emission directions that cause the electrons to gyrate back to detectors placed some distance from the emitting guns, or from measurements of the time of flight of the electrons. As a by-product of the time-of-flight measurements, the magnetic field strength is also determined. The paper describes strengths and weaknesses of the method as well as technical constraints.
Observation and analysis of pellet material del B drift on MAST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garzotti, L.; Baylor, Larry R; Kochi, F.
2010-01-01
Pellet material deposited in a tokamak plasma experiences a drift towards the low field side of the torus induced by the magnetic field gradient. Plasma fuelling in ITER relies on the beneficial effect of this drift to increase the pellet deposition depth and fuelling efficiency. It is therefore important to analyse this phenomenon in present machines to improve the understanding of the del B induced drift and the accuracy of the predictions for ITER. This paper presents a detailed analysis of pellet material drift in MAST pellet injection experiments based on the unique diagnostic capabilities available on this machine andmore » compares the observations with predictions of state-of-the-art ablation and deposition codes.« less
Coplen, Tyler B.; Wassenaar, Leonard I
2015-01-01
Although laser absorption spectrometry (LAS) instrumentation is easy to use, its incorporation into laboratory operations is not easy, owing to extensive offline manipulation of comma-separated-values files for outlier detection, between-sample memory correction, nonlinearity (δ-variation with water amount) correction, drift correction, normalization to VSMOW-SLAP scales, and difficulty in performing long-term QA/QC audits. METHODS: A Microsoft Access relational-database application, LIMS (Laboratory Information Management System) for Lasers 2015, was developed. It automates LAS data corrections and manages clients, projects, samples, instrument-sample lists, and triple-isotope (δ(17) O, δ(18) O, and δ(2) H values) instrumental data for liquid-water samples. It enables users to (1) graphically evaluate sample injections for variable water yields and high isotope-delta variance; (2) correct for between-sample carryover, instrumental drift, and δ nonlinearity; and (3) normalize final results to VSMOW-SLAP scales. RESULTS: Cost-free LIMS for Lasers 2015 enables users to obtain improved δ(17) O, δ(18) O, and δ(2) H values with liquid-water LAS instruments, even those with under-performing syringes. For example, LAS δ(2) HVSMOW measurements of USGS50 Lake Kyoga (Uganda) water using an under-performing syringe having ±10 % variation in water concentration gave +31.7 ± 1.6 ‰ (2-σ standard deviation), compared with the reference value of +32.8 ± 0.4 ‰, after correction for variation in δ value with water concentration, between-sample memory, and normalization to the VSMOW-SLAP scale. CONCLUSIONS: LIMS for Lasers 2015 enables users to create systematic, well-founded instrument templates, import δ(2) H, δ(17) O, and δ(18) O results, evaluate performance with automatic graphical plots, correct for δ nonlinearity due to variable water concentration, correct for between-sample memory, adjust for drift, perform VSMOW-SLAP normalization, and perform long-term QA/QC audits easily.
Meuse, Curtis W; Filliben, James J; Rubinson, Kenneth A
2018-04-17
As has long been understood, the noise on a spectrometric signal can be reduced by averaging over time, and the averaged noise is expected to decrease as t 1/2 , the square root of the data collection time. However, with contemporary capability for fast data collection and storage, we can retain and access a great deal more information about a signal train than just its average over time. During the same collection time, we can record the signal averaged over much shorter, equal, fixed periods. This is, then, the set of signals over submultiples of the total collection time. With a sufficiently large set of submultiples, the distribution of the signal's fluctuations over the submultiple periods of the data stream can be acquired at each wavelength (or frequency). From the autocorrelations of submultiple sets, we find only some fraction of these fluctuations consist of stochastic noise. Part of the fluctuations are what we call "fast drift", which is defined as drift over a time shorter than the complete measurement period of the average spectrum. In effect, what is usually assumed to be stochastic noise has a significant component of fast drift due to changes of conditions in the spectroscopic system. In addition, we show that the extreme values of the fluctuation of the signals are usually not balanced (equal magnitudes, equal probabilities) on either side of the mean or median without an inconveniently long measurement time; the data is almost inevitably biased. In other words, the unbalanced data is collected in an unbalanced manner around the mean, and so the median provides a better measure of the true spectrum. As is shown here, by using the medians of these distributions, the signal-to-noise of the spectrum can be increased and sampling bias reduced. The effect of this submultiple median data treatment is demonstrated for infrared, circular dichroism, and Raman spectrometry.
VERIFYING THE PERFORMANCE OF PESTICIDE SPRAY DRIFT REDUCTION TECHNOLOGIES
Application of pesticide sprays usually results in formation of small spray droplets which can drift with air currents to nearby sensitive sites. A number of technologies offer the potential to reduce the amount of spray drift from pesticide applications. Acceptance and use of ...
An overview of spray drift reduction testing of spray nozzles
USDA-ARS?s Scientific Manuscript database
The importance of the development and testing of drift reduction technologies (DRTs) is increasing. Common spray drift reduction technologies include spray nozzles and spray adjuvants. Following draft procedures developed for a DRT program, three spray nozzles were tested under high air speed cond...
Space charge effect in spectrometers of ion mobility increment with planar drift chamber.
Elistratov, A A; Sherbakov, L A
2007-01-01
The effect of space charge on the ion beam in a spectrometer of ion mobility increment with the planar drift chamber has been investigated. A model for the drift of ions under a non-uniform high-frequency electric field(1-3) has been developed recently. We have amplified this model by taking space charge effect into account. The ion peak shape taking into consideration the space charge effect is obtained. The output current saturation effect limiting the rise of the ion peak with increasing ion density at the input of the drift chamber of a spectrometer is observed. We show that the saturation effect is caused by the following phenomenon. The maximum possible output ion density exists, depending on the ion type (constant ion mobility, k(0)) and the time of the motion of ions through the drift chamber. At the same time, the ion density does not depend on the parameters of the drift chamber.
Ferradas, C. P.; Zhang, J. -C.; Spence, H. E.; ...
2016-11-05
Here in this paper, we present a case study of the H +, He +, and O + multiple-nose structures observed by the Helium, Oxygen, Proton, and Electron instrument on board Van Allen Probe A over one complete orbit on 28 September 2013. Nose structures are observed near the inner edge of the plasma sheet and constitute the signatures of ion drift in the highly dynamic environment of the inner magnetosphere. We find that the multiple noses are intrinsically associated with variations in the solar wind. Backward ion drift path tracings show new details of the drift trajectories of thesemore » ions; i.e., multiple noses are formed by ions with a short drift time from the assumed source location to the inner region and whose trajectories (1) encircle the Earth different number of times or (2) encircle the Earth equal number of times but with different drift time, before reaching the observation site.« less
The assessment of spray drift damage for ten major crops in Belgium.
de Schampheleire, M; Spanoghe, P; Steurbaut, W; Nuyttens, D; Sonck, B
2005-01-01
According to the Council Directive 91/414/EC pesticide damage should be assessed by considering the risk for persons arising from occupational, non-dietary exposure and risk to the environment. In this research an assessment for the pesticide damage by droplet spray drift was set up. The percentages of spray drift were estimated with the Ganzelmeier drift curves and the IMAG drift calculator. Knowing the percentages of drift and the applied doses of pesticide formulations in a given crop, the human and environmental exposures (water and bottom) were predicted. Thereupon risk indices were calculated for water organisms, soil organisms and bystanders. A risk index is the ratio of a predicted exposure to a toxicological reference value and gives an indication of the incidence and the severity of the adverse effects likely to occur. Considering the risk index it is possible to define the minimal width of an unsprayed field margin or "buffer zone" to reduce this risk at an acceptable level.
SELF-SUSTAINED RECYCLING IN THE INNER DUST RING OF PRE-TRANSITIONAL DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husmann, T.; Loesche, C.; Wurm, G., E-mail: tim.jankowski@uni-due.de
Observations of pre-transitional disks show a narrow inner dust ring and a larger outer one. They are separated by a cavity with no or only little dust. We propose an efficient recycling mechanism for the inner dust ring which keeps it in a steady state. No major particle sources are needed for replenishment. Dust particles and pebbles drift outwards by radiation pressure and photophoresis. The pebbles grow during outward drift until they reach a balanced position where residual gravity compensates photophoresis. While still growing larger they reverse their motion and drift inward. Eventually, their speed is fast enough for themmore » to be destroyed in collisions with other pebbles and drift outward again. We quantify the force balance and drift velocities for the disks LkCa15 and HD 135344B. We simulate single-particle evolution and show that this scenario is viable. Growth and drift timescales are on the same order and a steady state can be established in the inner dust ring.« less
Elimination of Drifts in Long-Duration Monitoring for Apnea-Hypopnea of Human Respiration.
Jiang, Peng; Zhu, Rong
2016-10-25
This paper reports a methodology to eliminate an uncertain baseline drift in respiratory monitoring using a thermal airflow sensor exposed in a high humidity environment. Human respiratory airflow usually contains a large amount of moisture (relative humidity, RH > 85%). Water vapors in breathing air condense gradually on the surface of the sensor so as to form a thin water film that leads to a significant sensor drift in long-duration respiratory monitoring. The water film is formed by a combination of condensation and evaporation, and therefore the behavior of the humidity drift is complicated. Fortunately, the exhale and inhale responses of the sensor exhibit distinguishing features that are different from the humidity drift. Using a wavelet analysis method, we removed the baseline drift of the sensor and successfully recovered the respiratory waveform. Finally, we extracted apnea-hypopnea events from the respiratory signals monitored in whole-night sleeps of patients and compared them with golden standard polysomnography (PSG) results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferradas, C. P.; Zhang, J. -C.; Spence, H. E.
Here in this paper, we present a case study of the H +, He +, and O + multiple-nose structures observed by the Helium, Oxygen, Proton, and Electron instrument on board Van Allen Probe A over one complete orbit on 28 September 2013. Nose structures are observed near the inner edge of the plasma sheet and constitute the signatures of ion drift in the highly dynamic environment of the inner magnetosphere. We find that the multiple noses are intrinsically associated with variations in the solar wind. Backward ion drift path tracings show new details of the drift trajectories of thesemore » ions; i.e., multiple noses are formed by ions with a short drift time from the assumed source location to the inner region and whose trajectories (1) encircle the Earth different number of times or (2) encircle the Earth equal number of times but with different drift time, before reaching the observation site.« less
Organic Scintillator Detector Response Simulations with DRiFT
Andrews, Madison Theresa; Bates, Cameron Russell; Mckigney, Edward Allen; ...
2016-06-11
Here, this work presents the organic scintillation simulation capabilities of DRiFT, a post-processing Detector Response Function Toolkit for MCNPR output. DRiFT is used to create realistic scintillation detector response functions to incident neutron and gamma mixed- field radiation. As a post-processing tool, DRiFT leverages the extensively validated radiation transport capabilities of MCNPR ®6, which also provides the ability to simulate complex sources and geometries. DRiFT is designed to be flexible, it allows the user to specify scintillator material, PMT type, applied PMT voltage, and quenching data used in simulations. The toolkit's capabilities, which include the generation of pulse shape discriminationmore » plots and full-energy detector spectra, are demonstrated in a comparison of measured and simulated neutron contributions from 252Cf and PuBe, and photon spectra from 22Na and 228Th sources. DRiFT reproduced energy resolution effects observed in EJ-301 measurements through the inclusion of scintillation yield variances, photon transport noise, and PMT photocathode and multiplication noise.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masood, W.; National Centre for Physics, Shahdara Valley Road, Islamabad; Zahoor, Sara
2016-09-15
Nonlinear dissipative structures are studied in one and two dimensions in nonuniform magnetized plasmas with non-Maxwellian electrons. The dissipation is incorporated in the system through ion-neutral collisions. Employing the drift approximation, nonlinear drift waves are derived in 1D, whereas coupled drift-ion acoustic waves are derived in 2D in the weak nonlinearity limit. It is found that the ratio of the diamagnetic drift velocity to the velocity of nonlinear structure determines the nature (compressive or rarefactive) of the shock structure. The upper and lower bounds for velocity of the nonlinear shock structures are also found. It is noticed that the existencemore » regimes for the drift shock waves in one and two dimensions for Cairns distributed electrons are very distinct from those with kappa distributed electrons. Interestingly, it is found that both compressive and rarefactive shock structures could be obtained for the one dimensional drift waves with kappa distributed electrons.« less
Organic scintillator detector response simulations with DRiFT
NASA Astrophysics Data System (ADS)
Andrews, M. T.; Bates, C. R.; McKigney, E. A.; Solomon, C. J.; Sood, A.
2016-09-01
This work presents the organic scintillation simulation capabilities of DRiFT, a post-processing Detector Response Function Toolkit for MCNP® output. DRiFT is used to create realistic scintillation detector response functions to incident neutron and gamma mixed-field radiation. As a post-processing tool, DRiFT leverages the extensively validated radiation transport capabilities of MCNP® 6 , which also provides the ability to simulate complex sources and geometries. DRiFT is designed to be flexible, it allows the user to specify scintillator material, PMT type, applied PMT voltage, and quenching data used in simulations. The toolkit's capabilities, which include the generation of pulse shape discrimination plots and full-energy detector spectra, are demonstrated in a comparison of measured and simulated neutron contributions from 252Cf and PuBe, and photon spectra from 22Na and 228Th sources. DRiFT reproduced energy resolution effects observed in EJ-301 measurements through the inclusion of scintillation yield variances, photon transport noise, and PMT photocathode and multiplication noise.
Elimination of Drifts in Long-Duration Monitoring for Apnea-Hypopnea of Human Respiration
Jiang, Peng; Zhu, Rong
2016-01-01
This paper reports a methodology to eliminate an uncertain baseline drift in respiratory monitoring using a thermal airflow sensor exposed in a high humidity environment. Human respiratory airflow usually contains a large amount of moisture (relative humidity, RH > 85%). Water vapors in breathing air condense gradually on the surface of the sensor so as to form a thin water film that leads to a significant sensor drift in long-duration respiratory monitoring. The water film is formed by a combination of condensation and evaporation, and therefore the behavior of the humidity drift is complicated. Fortunately, the exhale and inhale responses of the sensor exhibit distinguishing features that are different from the humidity drift. Using a wavelet analysis method, we removed the baseline drift of the sensor and successfully recovered the respiratory waveform. Finally, we extracted apnea-hypopnea events from the respiratory signals monitored in whole-night sleeps of patients and compared them with golden standard polysomnography (PSG) results. PMID:27792151
NASA Astrophysics Data System (ADS)
Masood, W.; Zahoor, Sara; Gul-e-Ali, Ahmad, Ali
2016-09-01
Nonlinear dissipative structures are studied in one and two dimensions in nonuniform magnetized plasmas with non-Maxwellian electrons. The dissipation is incorporated in the system through ion-neutral collisions. Employing the drift approximation, nonlinear drift waves are derived in 1D, whereas coupled drift-ion acoustic waves are derived in 2D in the weak nonlinearity limit. It is found that the ratio of the diamagnetic drift velocity to the velocity of nonlinear structure determines the nature (compressive or rarefactive) of the shock structure. The upper and lower bounds for velocity of the nonlinear shock structures are also found. It is noticed that the existence regimes for the drift shock waves in one and two dimensions for Cairns distributed electrons are very distinct from those with kappa distributed electrons. Interestingly, it is found that both compressive and rarefactive shock structures could be obtained for the one dimensional drift waves with kappa distributed electrons.
Barren Island west of Malaysia as seen from STS-67 Endeavour
1995-03-14
Barren Island, a small volcanic island which is part of the Andaman Island group in the Andaman Sea west of Malaysia, began a new eruptive phase late in 1994. The STS-67 crew noticed the volcanic plume early in their flight, and had several opportunities to document the on-going eruption. This view, taken March 14, 1995, shows a healthy volcanic plume rising several thousand feet into the atmosphere. The main plume drifts westward over Andaman Island, although a smaller plume close to the ground is being dispersed to the south.
Nearshore drift dynamics of natural versus artificial seagrass wrack
NASA Astrophysics Data System (ADS)
Baring, Ryan J.; Fairweather, Peter G.; Lester, Rebecca E.
2018-03-01
Drifting macrophytes such as seagrass and macroalgae are commonly found washed ashore on sandy beaches but few studies have investigated the drift trajectories of macrophytes whilst near to the coast. This is the first study to investigate the surface drifting of small clumps of seagrass released at various distances from shore, across multiple days with contrasting wind and tidal conditions, in a large gulf in southern Australia. Natural and artificial radio-tagged seagrass units generally travelled in the same directions as tides but trajectories were variable across sampling days and when tagged units were released at different distances from shore. Natural and artificial units diverged from each other particularly on days when wind speeds increased but generally drifted in the same direction and ended up within close proximity to each other at the 6-h endpoint. During calm conditions, tagged seagrass units drifted with tides for 0.25-5 km and, during one sampling day when wind speeds increased, drifted for >5 km over the 6-h time period. Only tagged units that were released closest to shore stranded on sandy beaches within the six hours of observation, so it would be difficult to predict the eventual stranding location on shorelines for macrophytes released further offshore. This study provides evidence of the variability of macrophyte drift dynamics near to coastlines. Acknowledging this variability is essential for further understanding of the ecological significance of allochthonous material arriving at shorelines, which should be integrated into future research and management of sandy-beach ecosystems.
Straight-line drift fences and pitfall traps
Corn, Paul Stephen
1994-01-01
Straight-line drift fences typically are short barriers (5-15 m) that direct animals traveling on the substrate surface into traps places at the ends of or beside the barriers. Traps (described below) can be pitfalls, funnel traps, or a combination of the two. Drift fences with pitfall or funnel traps and pitfall traps without fences are used commonly to inventory and monitor populations of amphibians and reptiles. For example, 9 of 17 field studies reported for management of terrestrial vertebrates (Sarzo et al. 1988) used these techniques to sample amphibians. Drift fences with pitfall traps can be used to determine species richness at a site and to detect the presence of rare species. They also can yield data on relative abundances and habitat use of selected species. Pitfall traps arrayed in a grid without fences can also be used to study the population ecology and habitat use of selected species. Population density can be estimated with this latter technique if used in conjunction with mark-recapture techniques (see Chapter 8). Drift fence arrays or pitfall grids can be left in place for long-term monitoring. In this section, I discuss the use of this technique to obtain data on amphibians away from breeding ponds. Use of drift fences and traps to monitory amphibian activity at breeding ponds is discussed in the section "Drift Fences Encircling Breeding Sits", below (technique 9). Some materials and procedures are common to both techniques. Investigators contemplating the use of drift fences and traps in any context should read both accounts.
Seasonal variation in drifting eggs and larvae in the upper Yangtze, China.
Jiang, Wei; Liu, Huan-Zhang; Duan, Zhong-Hua; Cao, Wen-Xuan
2010-05-01
From 5 March to 25 July 2008, ichthyoplankton drifting into the Three Gorges Reservoir from the upper reaches of the Yangtze River were sampled daily to investigate the species composition, abundance, and seasonal variation in early-stage fishes in this area. Twenty-eight species belonging to five orders and 17 families or subfamilies were identified by analyzing fish eggs and larvae, and a total of 14.16 billion individuals were estimated drifting through the sampling section during the investigation. Among the ichthyoplankton sampled, species in Cultrinae, Cobitidae, Gobioninae and Gobiidae, along with the common carp (Cyprinus carpio Linnaeus), comprised 89.6% of the total amount. Six peaks of drift density were identified during the sampling period, and a significant correlation was found between drift density with water discharge. The dominant species were different in each drift peak, indicating different spawning times for the major species. The total amount of the four major Chinese carps that drifted through the sampling section was estimated as 0.88 billion, indicating an increase in the population sizes of these species in the upper reaches of the Yangtze River after construction of the Three Gorges Dam. Actually, these reaches have become the largest spawning area for the four major Chinese carps in the Yangtze River. The large total amount of eggs and larvae drifting through this section demonstrated that the upper reaches of the Yangtze River provided important spawning sites for many fish species, and that conservation of this area should be of great concern.
On the inward drift of runaway electrons during the plateau phase of runaway current
Hu, Di; Qin, Hong
2016-03-29
The well observed inward drift of current carrying runaway electrons during runaway plateau phase after disruption is studied by considering the phase space dynamic of runaways in a large aspect ratio toroidal system. We consider the case where the toroidal field is unperturbed and the toroidal symmetry of the system is preserved. The balance between the change in canonical angular momentum and the input of mechanical angular momentum in such a system requires runaways to drift horizontally in configuration space for any given change in momentum space. The dynamic of this drift can be obtained by integrating the modified Euler-Lagrangemore » equation over one bounce time. It is then found that runaway electrons will always drift inward as long as they are decelerating. This drift motion is essentially non-linear, since the current is carried by runaways themselves, and any runaway drift relative to the magnetic axis will cause further displacement of the axis itself. A simplified analytical model is constructed to describe such inward drift both in the ideal wall case and no wall case, and the runaway current center displacement as a function of parallel momentum variation is obtained. The time scale of such displacement is estimated by considering effective radiation drag, which shows reasonable agreement with the observed displacement time scale. Furthermore, this indicates that the phase space dynamic studied here plays a major role in the horizontal displacement of runaway electrons during plateau phase. (C) 2016 AIP Publishing LLC.« less