Sample records for main bioactive component

  1. Comparative analysis of the main bioactive components of Xin-Sheng-Hua granule and its single herbs by ultrahigh performance liquid chromatography with tandem mass spectrometry.

    PubMed

    Pang, Hanqing; Wang, Jun; Tang, Yuping; Xu, Huiqin; Wu, Liang; Jin, Yi; Zhu, Zhenhua; Guo, Sheng; Shi, Xuqin; Huang, Shengliang; Sun, Dazheng; Duan, Jin-Ao

    2016-11-01

    Xin-Sheng-Hua granule, a representative formula for postpartum hemorrhage, has been used clinically to treat postpartum diseases. Its main bioactive components comprise aromatic acids, phthalides, alkaloids, flavonoids, and gingerols among others. To investigate the changes in main bioactive constituents in its seven single herbs before and after compatibility, a rapid, simple, and sensitive method was developed for comparative analysis of 27 main bioactive components by using ultrahigh-performance liquid chromatography with triple quadrupole electrospray tandem mass spectrometry for the first time. The sufficient separation of 27 target constituents was achieved on a Thermo Scientific Hypersil GOLD column (100 mm × 3 mm, 1.9 μm) within 20 min under the optimized chromatographic conditions. Compared with the theoretical content, the observed content of each analyte showed remarkable differences in Xin-Sheng-Hua granule except thymine, p-coumaric acid, senkyunolide I, senkyunolide H, and ligustilide; the total contents of 27 components increased significantly, and the content variation degrees for the different components were gingerols > flavonoids > aromatic acids > alkaloids > phthalides. The results could provide a good reference for the quality control of Xin-Sheng-Hua granule and might be helpful to interpret the drug interactions based on variation of bioactive components in formulae. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Comparative analysis of main bio-active components in the herb pair Danshen-Honghua and its single herbs by ultra-high performance liquid chromatography coupled to triple quadrupole tandem mass spectrometry.

    PubMed

    Qu, Cheng; Pu, Zong-Jin; Zhou, Gui-Sheng; Wang, Jun; Zhu, Zhen-Hua; Yue, Shi-Jun; Li, Jian-Ping; Shang, Li-Li; Tang, Yu-Ping; Shi, Xu-Qin; Liu, Pei; Guo, Jian-Ming; Sun, Jing; Tang, Zhi-Shu; Zhao, Jing; Zhao, Bu-Chang; Duan, Jin-Ao

    2017-09-01

    A sensitive, reliable, and powerful ultra-high performance liquid chromatography coupled to triple quadrupole tandem mass spectrometry method was developed for simultaneous quantification of the 15 main bio-active components including phenolic acids and flavonoids within 13 min for the first time. The proposed method was first reported and validated by good linearity (r 2  > 0.9975), limit of detection (1.12-7.01 ng/mL), limit of quantification (3.73-23.37 ng/mL), intra- and inter-day precisions (RSD ≤ 1.92%, RSD ≤ 2.45%), stability (RSD ≤ 5.63%), repeatability (RSD ≤ 4.34%), recovery (96.84-102.12%), and matrix effects (0.92-1.02). The established analytical methodology was successfully applied to comparative analysis of main bio-active components in the herb pair Danshen-Honghua and its single herbs. Compared to the single herb, the content of most flavonoid glycosides was remarkably increased in their herb pair, and main phenolic acids were decreased, conversely. The content changes of the main components in the herb pair supported the synergistic effects on promoting blood circulation and removing blood stasis. The results provide a scientific basis and reference for the quality control of Danshen-Honghua herb pair and the drug interactions based on variation of bio-active components in herb pairs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Large-scale randomized clinical trials of bioactives and nutrients in relation to human health and disease prevention - Lessons from the VITAL and COSMOS trials.

    PubMed

    Rautiainen, Susanne; Sesso, Howard D; Manson, JoAnn E

    2017-12-29

    Several bioactive compounds and nutrients in foods have physiological properties that are beneficial for human health. While nutrients typically have clear definitions with established levels of recommended intakes, bioactive compounds often lack such a definition. Although a food-based approach is often the optimal approach to ensure adequate intake of bioactives and nutrients, these components are also often produced as dietary supplements. However, many of these supplements are not sufficiently studied and have an unclear role in chronic disease prevention. Randomized trials are considered the gold standard of study designs, but have not been fully applied to understand the effects of bioactives and nutrients. We review the specific role of large-scale trials to test whether bioactives and nutrients have an effect on health outcomes through several crucial components of trial design, including selection of intervention, recruitment, compliance, outcome selection, and interpretation and generalizability of study findings. We will discuss these components in the context of two randomized clinical trials, the VITamin D and OmegA-3 TriaL (VITAL) and the COcoa Supplement and Multivitamin Outcomes Study (COSMOS). We will mainly focus on dietary supplements of bioactives and nutrients while also emphasizing the need for translation and integration with food-based trials that are of vital importance within nutritional research. Copyright © 2017. Published by Elsevier Ltd.

  4. Relationship of Mycotoxins Accumulation and Bioactive Components Variation in Ginger after Fungal Inoculation.

    PubMed

    Yang, Zhixin; Wang, Haiwei; Ying, Guangyao; Yang, Meihua; Nian, Yujiao; Liu, Jiajia; Kong, Weijun

    2017-01-01

    Ginger has got increasing worldwide interests due to its extensive biological activities, along with high medical and edible values. But fungal contamination and mycotoxin residues have brought challenges to its quality and safety. In the present study, the relationship of content of mycotoxins accumulation and bioactive components variation in ginger after infection by toxigenic fungi were investigated for the first time to elucidate the influence of fungal contamination on the inherent quality of ginger. After being infected by Aspergillus flavus and Aspergillus carbonarius for different periods, the produced mycotoxins was determined by an immunoaffinity column clean-up based ultra-fast liquid chromatography coupled with tandem mass spectrometry, and the main bioactive components in ginger were analyzed by ultra performance liquid chromatography-photodiode array detection. The results showed that consecutive incubation of ginger with A. flavus and A. carbonarius within 20 days resulted in the production and accumulation of aflatoxins (especially AFB 1 ) and ochratoxin A, as well as the constant content reduction of four bioactive components, which were confirmed through the scanning electron microscope images. Significantly negative correlation was expressed between the mycotoxins accumulation and bioactive components variation in ginger, which might influence the quality and safety of it. Furthermore, a new compound was detected after inoculation for 6 days, which was found in our study for the first time.

  5. Potential of Fruit Wastes as Natural Resources of Bioactive Compounds

    PubMed Central

    Deng, Gui-Fang; Shen, Chen; Xu, Xiang-Rong; Kuang, Ru-Dan; Guo, Ya-Jun; Zeng, Li-Shan; Gao, Li-Li; Lin, Xi; Xie, Jie-Feng; Xia, En-Qin; Li, Sha; Wu, Shan; Chen, Feng; Ling, Wen-Hua; Li, Hua-Bin

    2012-01-01

    Fruit wastes are one of the main sources of municipal waste. In order to explore the potential of fruit wastes as natural resources of bioactive compounds, the antioxidant potency and total phenolic contents (TPC) of lipophilic and hydrophilic components in wastes (peel and seed) of 50 fruits were systematically evaluated. The results showed that different fruit residues had diverse antioxidant potency and the variation was very large. Furthermore, the main bioactive compounds were identified and quantified, and catechin, cyanidin 3-glucoside, epicatechin, galangin, gallic acid, homogentisic acid, kaempferol, and chlorogenic acid were widely found in these residues. Especially, the values of ferric-reducing antioxidant power (FRAP), trolox equivalent antioxidant capacity (TEAC) and TPC in the residues were higher than in pulps. The results showed that fruit residues could be inexpensive and readily available resources of bioactive compounds for use in the food and pharmaceutical industries. PMID:22942704

  6. Potential of fruit wastes as natural resources of bioactive compounds.

    PubMed

    Deng, Gui-Fang; Shen, Chen; Xu, Xiang-Rong; Kuang, Ru-Dan; Guo, Ya-Jun; Zeng, Li-Shan; Gao, Li-Li; Lin, Xi; Xie, Jie-Feng; Xia, En-Qin; Li, Sha; Wu, Shan; Chen, Feng; Ling, Wen-Hua; Li, Hua-Bin

    2012-01-01

    Fruit wastes are one of the main sources of municipal waste. In order to explore the potential of fruit wastes as natural resources of bioactive compounds, the antioxidant potency and total phenolic contents (TPC) of lipophilic and hydrophilic components in wastes (peel and seed) of 50 fruits were systematically evaluated. The results showed that different fruit residues had diverse antioxidant potency and the variation was very large. Furthermore, the main bioactive compounds were identified and quantified, and catechin, cyanidin 3-glucoside, epicatechin, galangin, gallic acid, homogentisic acid, kaempferol, and chlorogenic acid were widely found in these residues. Especially, the values of ferric-reducing antioxidant power (FRAP), trolox equivalent antioxidant capacity (TEAC) and TPC in the residues were higher than in pulps. The results showed that fruit residues could be inexpensive and readily available resources of bioactive compounds for use in the food and pharmaceutical industries.

  7. Biomimetic component coating on 3D scaffolds using high bioactivity of mesoporous bioactive ceramics

    PubMed Central

    Yun, Hui-suk; Kim, Sang-Hyun; Khang, Dongwoo; Choi, Jungil; Kim, Hui-hoon; Kang, Minji

    2011-01-01

    Background Mesoporous bioactive glasses (MBGs) are very attractive materials for use in bone tissue regeneration because of their extraordinarily high bone-forming bioactivity in vitro. That is, MBGs may induce the rapid formation of hydroxy apatite (HA) in simulated body fluid (SBF), which is a major inorganic component of bone extracellular matrix (ECM) and comes with both good osteoconductivity and high affinity to adsorb proteins. Meanwhile, the high bioactivity of MBGs may lead to an abrupt initial local pH variation during the initial Ca ion-leaching from MBGs at the initial transplant stage, which may induce unexpected negative effects on using them in in vivo application. In this study we suggest a new way of using MBGs in bone tissue regeneration that can improve the strength and make up for the weakness of MBGs. We applied the outstanding bone-forming bioactivity of MBG to coat the main ECM components HA and collagen on the MBG-polycarplolactone (PCL) composite scaffolds for improving their function as bone scaffolds in tissue regeneration. This precoating process can also expect to reduce initial local pH variation of MBGs. Methods and materials The MBG-PCL scaffolds were immersed in the mixed solution of the collagen and SBF at 37°C for 24 hours. The coating of ECM components on the MBG-PCL scaffolds and the effect of ECM coating on in vitro cell behaviors were confirmed. Results The ECM components were fully coated on MBG-PCL scaffolds after immersing in SBF containing dilute collagen-I solution only for 24 hours due to the high bone-forming bioactivity of MBG. Both cell affinity and osteoconductivity of MBG-PCL scaffolds were dramatically enhanced by this precoating process. Conclusion The precoating process of ECM components on MBG-PCL scaffold using a high bioactivity of MBG was not only effective in enhancing the functionality of scaffolds but also effective in eliminating the unexpected side effect. The MBG-PCL scaffold-coated ECM components ideally satisfied the required conditions of scaffold in tissue engineering, including 3D well-interconnected pore structures with high porosity, good bioactivity, enhanced cell affinity, biocompatibility, osteoconductivity, and sufficient mechanical properties, and promise excellent potential application in the field of biomaterials. PMID:22072886

  8. Modulation of the multidrug efflux pump EmrD-3 from Vibrio cholerae by Allium sativum extract and the bioactive agent allyl sulfide plus synergistic enhancement of antimicrobial susceptibility by A. sativum extract.

    PubMed

    Bruns, Merissa M; Kakarla, Prathusha; Floyd, Jared T; Mukherjee, Mun Mun; Ponce, Robert C; Garcia, John A; Ranaweera, Indrika; Sanford, Leslie M; Hernandez, Alberto J; Willmon, T Mark; Tolson, Grace L; Varela, Manuel F

    2017-10-01

    The causative agent of cholera, Vibrio cholerae, is a public health concern. Multidrug-resistant V. cholerae variants may reduce chemotherapeutic efficacies of severe cholera. We previously reported that the multidrug efflux pump EmrD-3 from V. cholerae confers resistance to multiple structurally distinct antimicrobials. Medicinal plant compounds are potential candidates for EmrD-3 efflux pump modulation. The antibacterial activities of garlic Allium sativum, although poorly understood, predicts that a main bioactive component, allyl sulfide, modulates EmrD-3 efflux. Thus, we tested whether A. sativum extract acts in synergy with antimicrobials and that a main bioactive component allyl sulfide inhibits EmrD-3 efflux. We found that A. sativum extract and allyl sulfide inhibited ethidium bromide efflux in cells harboring EmrD-3 and that A. sativum lowered the MICs of multiple antibacterials. We conclude that A. sativum and allyl sulfide inhibit EmrD-3 and that A. sativum extract synergistically enhances antibacterial agents.

  9. Isolation, structure, and bioactivities of polysaccharides from Cyclocarya paliurus (Batal.) Iljinskaja.

    PubMed

    Li, Qiqiong; Hu, Jielun; Xie, Jianhua; Nie, Shaoping; Xie, Ming-Yong

    2017-06-01

    Cyclocarya paliurus (Batal.) Iljinskaja, a well-known edible and medicinal plant, has been widely used in China as a traditional medicine for treating hypertension and diabetes. C. paliurus possesses various bioactivities, such as antihyperglycemic, antihyperlipidemic, antihypertensive, anticancer, antifatigue, antioxidation, antimicrobial, colon health-promoting, and immunological activities. Polysaccharides, as natural macromolecules with various biological activities, are considered to be the main effective components in C. paliurus. Here, we summarize studies of polysaccharides from C. paliurus over the past 20 years, including extraction and purification processes, structure, and bioactivities. © 2017 New York Academy of Sciences.

  10. Seaweed as a source of novel nutraceuticals: sulfated polysaccharides and peptides.

    PubMed

    Jiménez-Escrig, A; Gómez-Ordóñez, E; Rupérez, P

    2011-01-01

    Seaweeds and seaweed-derived products are underexploited marine bioresources and a source of natural ingredients for functional foods. Nutritional studies on seaweeds indicate that brown and red seaweeds possess a good nutritional quality and could be used as an alternative source of dietary fiber, protein, and minerals. Moreover, bioactive sulfated polysaccharides are the main components of soluble fiber in seaweeds and also bioactive peptides can be prepared from seaweed protein. This chapter gives an overview of the main biological properties of sulfated polysaccharides and peptides from brown and red seaweeds. Recent studies have provided evidence that sulfated polysaccharides from seaweeds can play a vital role in human health and nutrition. Besides, peptides derived from algal protein are most promising as antihypertensive agents. Further research work, especially in vivo studies, are needed in order to gain a better knowledge of the relation structure-function by which bioactive compounds from seaweeds exert their bioactivity. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Current Strategies to Improve the Bioactivity of PEEK

    PubMed Central

    Ma, Rui; Tang, Tingting

    2014-01-01

    The synthetic thermoplastic polymer polyetheretherketone (PEEK) is becoming a popular component of clinical orthopedic and spinal applications, but its practical use suffers from several limitations. Although PEEK is biocompatible, chemically stable, radiolucent and has an elastic modulus similar to that of normal human bone, it is biologically inert, preventing good integration with adjacent bone tissues upon implantation. Recent efforts have focused on increasing the bioactivity of PEEK to improve the bone-implant interface. Two main strategies have been used to overcome the inert character of PEEK. One approach is surface modification to activate PEEK through surface treatment alone or in combination with a surface coating. Another strategy is to prepare bioactive PEEK composites by impregnating bioactive materials into PEEK substrate. Researchers believe that modified bioactive PEEK will have a wide range of orthopedic applications. PMID:24686515

  12. Microgreens: Production, shelf life, and bioactive components.

    PubMed

    Mir, Shabir Ahmad; Shah, Manzoor Ahmad; Mir, Mohammad Maqbool

    2017-08-13

    Microgreens are emerging specialty food products which are gaining popularity and increased attention nowadays. They are young and tender cotyledonary leafy greens that are found in a pleasing palette of colors, textures, and flavors. Microgreens are a new class of edible vegetables harvested when first leaves have fully expanded and before true leaves have emerged. They are gaining popularity as a new culinary ingredient. They are used to enhance salads or as edible garnishes to embellish a wide variety of other dishes. Common microgreens are grown mainly from mustard, cabbage, radish, buckwheat, lettuce, spinach, etc. The consumption of microgreens has nowadays increased due to higher concentrations of bioactive components such as vitamins, minerals, and antioxidants than mature greens, which are important for human health. However, they typically have a short shelf life due to rapid product deterioration. This review aimed to evaluate the postharvest quality, potential bioactive compounds, and shelf life of microgreens for proper management of this specialty produce.

  13. Design of bone-integrating organic-inorganic composite suitable for bone repair.

    PubMed

    Miyazaki, Toshiki

    2013-01-01

    Several ceramics exhibit specific biological affinity, i.e. direct bone integration, when implanted in bony defects. They are called bioactive ceramics and utilized as important bone substitutes. However, there is limitation on clinical application, because of their inappropriate mechanical properties such as high Young's modulus and low fracture toughness. Novel bioactive materials exhibiting high machinability and flexibility have been desired in medical fields. Mixing bioactive ceramic powders and organic polymers have developed various organic-inorganic composites. Their mechanical property and bioactivity are mainly governed by the ceramics content. It is known that bioactive ceramics integrate with the bone through bone-like hydroxyapatite layer formed on their surfaces by chemical reaction with body fluid. This is triggered by a catalytic effect of various functional groups. On the basis of these facts, novel bioactive organic-inorganic nanocomposites have been developed. In these composites, inorganic components effective for triggering the hydroxyapatite nucleation are dispersed in polymer matrix at molecular level. Concept of the organic-inorganic composite is also applicable for providing polymethyl methacrylate (PMMA) bone cement with the bioactivity.

  14. Comparative analysis of the main bioactive components of San-ao decoction and its series of formulations.

    PubMed

    Shu, Xiaoyun; Tang, Yuping; Jiang, Chenxue; Shang, Erxing; Fan, Xinshen; Ding, Anwei

    2012-11-01

    A high performance liquid chromatographic (HPLC) method with diode array detection (DAD) was established for simultaneous determination of seven main bioactive components in San-ao decoction and its series of formulae (San-ao decoction, Wu-ao decoction, Qi-ao decoction and Jia-wei San-ao decoction). Seven compounds were analyzed simultaneously with a XTerra C(18) column (4.6 mm × 250 mm, 5 µm) using a linear gradient elution of a mobile phase containing acetonitrile (A) and a buffer solution (0.02 mol/L potassium dihydrogen phosphate and adjusted to pH 3 using phosphoric acid) (B); the flow rate was 1.0 mL/min. The sample was detected with DAD at 210, 254 and 360 nm and the column was maintained at 30 °C. All the compounds showed good linearity (r2 > 0.9984) in the tested concentration range. The precisions were evaluated by intra-day and inter-day tests, and relative standard deviation (R.S.D.) values within the range of 0.83%–2.53% and 0.64%–2.77% were reported, respectively. The recoveries of the quantified compounds were observed to cover a range from 95.34% and 104.82% with R.S.D. values less than 2.72%. The validated method was successfully applied for the simultaneous determination of seven main bioactive components including ephedrine (1), amygdalin (2), liquiritin (3), benzoic acid (4), isoliquiritin (5), formononetin (6) and glycyrrhizic acid (7) in San-ao decoction and its series of formulae. The results also showed a wide variation in the content of the identified active compounds in these samples, which could also be helpful to illustrate the drug interactions after some herbs combined in different formulations.

  15. A Review of Extraction and Analysis of Bioactives in Oat and Barley and Scope for Use of Novel Food Processing Technologies.

    PubMed

    Gangopadhyay, Nirupama; Hossain, Mohammad B; Rai, Dilip K; Brunton, Nigel P

    2015-06-12

    Oat and barely are cereal crops mainly used as animal feed and for the purposes of malting and brewing, respectively. Some studies have indicated that consumption of oat and barley rich foods may reduce the risk of some chronic diseases such as coronary heart disease, type II diabetes and cancer. Whilst there is no absolute consensus, some of these benefits may be linked to presence of compounds such as phenolics, vitamin E and β-glucan in these cereals. A number of benefits have also been linked to the lipid component (sterols, fatty acids) and the proteins and bioactive peptides in oats and barley. Since the available evidence is pointing toward the possible health benefits of oat and barley components, a number of authors have examined techniques for recovering them from their native sources. In the present review, we summarise and examine the range of conventional techniques that have been used for the purpose of extraction and detection of these bioactives. In addition, the recent advances in use of novel food processing technologies as a substitute to conventional processes for extraction of bioactives from oats and barley, has been discussed.

  16. The composition of potentially bioactive triterpenoid glycosides in red raspberry is influenced by tissue, extraction procedure and genotype.

    PubMed

    McDougall, Gordon J; Allwood, J William; Pereira-Caro, Gema; Brown, Emma M; Latimer, Cheryl; Dobson, Gary; Stewart, Derek; Ternan, Nigel G; Lawther, Roger; O'Connor, Gloria; Rowland, Ian; Crozier, Alan; Gill, Chris I R

    2017-10-18

    The beneficial effects of consumption of berry fruits on a range of chronic diseases has been attributed (at least in part) to the presence of unique phytochemicals. Recently, we identified novel ursolic acid-based triterpenoid glycosides (TTPNs) in raspberry fruit and demonstrated their survival in human ileal fluids after feeding which confirmed their colon-availability in vivo. In this paper, in vitro digestion studies demonstrated that certain TTPNs were stable under gastrointestinal conditions and confirmed that these components may have been responsible for bioactivity noted in previous studies. Sequential extractions of raspberry puree, isolated seeds and unseeded puree showed that certain TTPN components (e.g. peak T1 m/z 679, and T2 m/z 1358) had different extractabilities in water/solvent mixes and were differentially associated with the seeds. Purified seed TTPNs (mainly T1 and T2) were shown to be anti-genotoxic in HT29 and CCD841 cell based in vitro colonocyte models. Further work confirmed that the seeds contained a wider range of TTPN-like components which were also differentially extractable in water/solvent mixes. This differential extractability could influence the TTPN composition and potential bioactivity of the extracts. There was considerable variation in total content of TTPNs (∼3-fold) and TTPN composition across 13 Rubus genotypes. Thus, TTPNs are likely to be present in raspberry juices and common extracts used for bioactivity studies and substantial variation exists in both content and composition due to genetics, tissue source or extraction conditions, which may all affect observed bioactivity.

  17. Hydroxytyrosol in the Prevention of the Metabolic Syndrome and Related Disorders.

    PubMed

    Peyrol, Julien; Riva, Catherine; Amiot, Marie Josèphe

    2017-03-20

    Virgin olive oil (VOO) constitutes the main source of fat in the Mediterranean diet. VOO is rich in oleic acid, displaying health-promoting properties, but also contains minor bioactive components, especially phenolic compounds. Hydroxytyrosol (HT), the main polyphenol of olive oil, has been reported to be the most bioactive component. This review aims to compile the results of clinical, animal and cell culture studies evaluating the effects of HT on the features of Metabolic Syndrome (MetS) (body weight/adiposity, dyslipidemia, hypertension, and hyperglycemia/insulin resistance) and associated complications (oxidative stress and inflammation). HT was able to improve the lipid profile, glycaemia, and insulin sensitivity, and counteract oxidative and inflammatory processes. Experimental studies identified multiple molecular targets for HT conferring its beneficial effect on health in spite of its low bioavailability. However, rodent experiments and clinical trials with pure HT at biologically relevant concentrations are still lacking. Moreover, the roles of intestine and its gut microbiota have not been elucidated.

  18. Hydroxytyrosol in the Prevention of the Metabolic Syndrome and Related Disorders

    PubMed Central

    Peyrol, Julien; Riva, Catherine; Amiot, Marie Josèphe

    2017-01-01

    Virgin olive oil (VOO) constitutes the main source of fat in the Mediterranean diet. VOO is rich in oleic acid, displaying health-promoting properties, but also contains minor bioactive components, especially phenolic compounds. Hydroxytyrosol (HT), the main polyphenol of olive oil, has been reported to be the most bioactive component. This review aims to compile the results of clinical, animal and cell culture studies evaluating the effects of HT on the features of Metabolic Syndrome (MetS) (body weight/adiposity, dyslipidemia, hypertension, and hyperglycemia/insulin resistance) and associated complications (oxidative stress and inflammation). HT was able to improve the lipid profile, glycaemia, and insulin sensitivity, and counteract oxidative and inflammatory processes. Experimental studies identified multiple molecular targets for HT conferring its beneficial effect on health in spite of its low bioavailability. However, rodent experiments and clinical trials with pure HT at biologically relevant concentrations are still lacking. Moreover, the roles of intestine and its gut microbiota have not been elucidated. PMID:28335507

  19. GEPSI: A Gene Expression Profile Similarity-Based Identification Method of Bioactive Components in Traditional Chinese Medicine Formula.

    PubMed

    Zhang, Baixia; He, Shuaibing; Lv, Chenyang; Zhang, Yanling; Wang, Yun

    2018-01-01

    The identification of bioactive components in traditional Chinese medicine (TCM) is an important part of the TCM material foundation research. Recently, molecular docking technology has been extensively used for the identification of TCM bioactive components. However, target proteins that are used in molecular docking may not be the actual TCM target. For this reason, the bioactive components would likely be omitted or incorrect. To address this problem, this study proposed the GEPSI method that identified the target proteins of TCM based on the similarity of gene expression profiles. The similarity of the gene expression profiles affected by TCM and small molecular drugs was calculated. The pharmacological action of TCM may be similar to that of small molecule drugs that have a high similarity score. Indeed, the target proteins of the small molecule drugs could be considered TCM targets. Thus, we identified the bioactive components of a TCM by molecular docking and verified the reliability of this method by a literature investigation. Using the target proteins that TCM actually affected as targets, the identification of the bioactive components was more accurate. This study provides a fast and effective method for the identification of TCM bioactive components.

  20. GEPSI: A Gene Expression Profile Similarity-Based Identification Method of Bioactive Components in Traditional Chinese Medicine Formula

    PubMed Central

    Zhang, Baixia; He, Shuaibing; Lv, Chenyang; Zhang, Yanling

    2018-01-01

    The identification of bioactive components in traditional Chinese medicine (TCM) is an important part of the TCM material foundation research. Recently, molecular docking technology has been extensively used for the identification of TCM bioactive components. However, target proteins that are used in molecular docking may not be the actual TCM target. For this reason, the bioactive components would likely be omitted or incorrect. To address this problem, this study proposed the GEPSI method that identified the target proteins of TCM based on the similarity of gene expression profiles. The similarity of the gene expression profiles affected by TCM and small molecular drugs was calculated. The pharmacological action of TCM may be similar to that of small molecule drugs that have a high similarity score. Indeed, the target proteins of the small molecule drugs could be considered TCM targets. Thus, we identified the bioactive components of a TCM by molecular docking and verified the reliability of this method by a literature investigation. Using the target proteins that TCM actually affected as targets, the identification of the bioactive components was more accurate. This study provides a fast and effective method for the identification of TCM bioactive components. PMID:29692857

  1. ITPI: Initial Transcription Process-Based Identification Method of Bioactive Components in Traditional Chinese Medicine Formula

    PubMed Central

    Zhang, Baixia; Li, Yanwen; Zhang, Yanling; Li, Zhiyong; Bi, Tian; He, Yusu; Song, Kuokui; Wang, Yun

    2016-01-01

    Identification of bioactive components is an important area of research in traditional Chinese medicine (TCM) formula. The reported identification methods only consider the interaction between the components and the target proteins, which is not sufficient to explain the influence of TCM on the gene expression. Here, we propose the Initial Transcription Process-based Identification (ITPI) method for the discovery of bioactive components that influence transcription factors (TFs). In this method, genome-wide chip detection technology was used to identify differentially expressed genes (DEGs). The TFs of DEGs were derived from GeneCards. The components influencing the TFs were derived from STITCH. The bioactive components in the formula were identified by evaluating the molecular similarity between the components in formula and the components that influence the TF of DEGs. Using the formula of Tian-Zhu-San (TZS) as an example, the reliability and limitation of ITPI were examined and 16 bioactive components that influence TFs were identified. PMID:27034696

  2. Medicinal chemistry and pharmacology of genus Tripterygium (Celastraceae)

    PubMed Central

    Brinker, Anita M.; Ma, Jun; Lipsky, Peter E.; Raskin, Ilya

    2013-01-01

    Plants in the genus Tripterygium, such as Tripterygium wilfordii Hook. f., have a long history of use in traditional Chinese medicine. In recent years there has been considerable interest in the use of Tripterygium extracts and of the main bioactive constituent, the diterpene triepoxide triptolide (1), to treat a variety of autoimmune and inflammation-related conditions. The main mode of action of the Tripterygium extracts and triptolide (1) is the inhibition of expression of proinflammatory genes such as those for interleukin-2 (IL-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2) and interferon-gamma (IFN-γ). The efficacy and safety of certain types of Tripterygium extracts were confirmed in human clinical trials in the US and abroad. Over 300 compounds have been identified in the genus Tripterygium, and many of these have been evaluated for biological activity. The overall activity of the extract is based on the interaction between its components. Therefore, the safety and efficacy of the extract cannot be fully mimicked by any individual constituent. This review discusses the biochemical composition and biological and pharmacological activities of Tripterygium extracts, and their main bioactive components. PMID:17250858

  3. Medicinal chemistry and pharmacology of genus Tripterygium (Celastraceae).

    PubMed

    Brinker, Anita M; Ma, Jun; Lipsky, Peter E; Raskin, Ilya

    2007-03-01

    Plants in the genus Tripterygium, such as Tripterygium wilfordii Hook.f., have a long history of use in traditional Chinese medicine. In recent years there has been considerable interest in the use of Tripterygium extracts and of the main bioactive constituent, the diterpene triepoxide triptolide (1), to treat a variety of autoimmune and inflammation-related conditions. The main mode of action of the Tripterygium extracts and triptolide (1) is the inhibition of expression of proinflammatory genes such as those for interleukin-2 (IL-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-alpha), cyclooxygenase-2 (COX-2) and interferon-gamma (IFN-gamma). The efficacy and safety of certain types of Tripterygium extracts were confirmed in human clinical trials in the US and abroad. Over 300 compounds have been identified in the genus Tripterygium, and many of these have been evaluated for biological activity. The overall activity of the extract is based on the interaction between its components. Therefore, the safety and efficacy of the extract cannot be fully mimicked by any individual constituent. This review discusses the biochemical composition and biological and pharmacological activities of Tripterygium extracts, and their main bioactive components.

  4. A Review of Potential Marine-derived Hypotensive and Anti-obesity Peptides.

    PubMed

    Manikkam, V; Vasiljevic, T; Donkor, O N; Mathai, M L

    2016-01-01

    Bioactive peptides are food derived components, usually consisting of 3-20 amino acids, which are inactive when incorporated within their parent protein. Once liberated by enzymatic or chemical hydrolysis, during food processing and gastrointestinal transit, they can potentially provide an array of health benefits to the human body. Owing to an unprecedented increase in the worldwide incidence of obesity and hypertension, medical researchers are focusing on the hypotensive and anti-obesity properties of nutritionally derived bioactive peptides. The role of the renin-angiotensin system has long been established in the aetiology of metabolic diseases and hypertension. Targeting the renin-angiotensin system by inhibiting the activity of angiotensin-converting enzyme (ACE) and preventing the formation of angiotensin II can be a potential therapeutic approach to the treatment of hypertension and obesity. Fish-derived proteins and peptides can potentially be excellent sources of bioactive components, mainly as a source of ACE inhibitors. However, increased use of marine sources, poses an unsustainable burden on particular fish stocks, so, the underutilized fish species and by-products can be exploited for this purpose. This paper provides an overview of the techniques involved in the production, isolation, purification, and characterization of bioactive peptides from marine sources, as well as the evaluation of the ACE inhibitory (ACE-I) activity and bioavailability.

  5. Composition and Bioactivity of Essential Oil from Citrus grandis (L.) Osbeck 'Mato Peiyu' Leaf.

    PubMed

    Tsai, Mei-Lin; Lin, Cai-Di; Khoo, Keh Ai; Wang, Mei-Ying; Kuan, Tsang-Kuei; Lin, Wei-Chao; Zhang, Ya-Nan; Wang, Ya-Ying

    2017-12-05

    'Mato Peiyu' pomelo ( Citrus grandis (L.) Osbeck 'Mato Peiyu') leaves from pruning are currently an agricultural waste. The aim of this study was to isolate essential oils from these leaves through steam distillation (SD) and solvent-free microwave extraction (SFME) and to evaluate their applicability to skin care by analyzing their antimicrobial, antioxidant (diphenyl-1-picrylhydrazyl scavenging assay, β-carotene/linoleic acid assay, and nitric oxide scavenging assay), anti-inflammatory (5-lipoxygenase inhibition assay), and antityrosinase activities. The gas chromatography-mass spectrometry results indicated that the main components of 'Mato Peiyu' leaf essential oils were citronellal and citronellol, with a total percentage of 50.71% and 59.82% for SD and SFME, respectively. The highest bioactivity among all assays was obtained for 5-lipoxygenase inhibition, with an IC 50 value of 0.034% ( v / v ). The MIC 90 of the antimicrobial activity of essential oils against Escherichia coli , Pseudomonas aeruginosa , Staphylococcus aureus , and Candida albicans ranged from 0.086% to 0.121% ( v / v ). Citronellal and citronellol were the main contributors, accounting for at least 54.58% of the essential oil's bioactivity. This paper is the first to report the compositions and bioactivities of 'Mato Peiyu' leaf essential oil, and the results imply that the pomelo leaf essential oil may be applied in skin care.

  6. Vortex-ultrasound-assisted dispersive liquid-liquid microextraction coupled with gas chromatography-mass spectrometry for the analysis of volatile bioactive components and comparative pharmacokinetic study of the herb-herb interactions in Guanxin Shutong Capsule.

    PubMed

    Mu, Jingqing; Gao, Xun; Li, Qing; Yang, Xiaomei; Yang, Wenling; Sun, Xu; Bi, Kaishun; Zhang, Huifen

    2017-08-01

    Guanxin Shutong Capsule, an effective traditional Chinese medicine, is widely used for coronary heart disease clinically. Volatile components are one of its important bioactive constituents. To better understand the material basis for the therapeutic effects, the components of Guanxin Shutong Capsule absorbed into the blood and their metabolites were identified based on gas chromatography with mass spectrometry coupled with vortex-ultrasound-assisted dispersive liquid-liquid microextraction. As a result, three prototypes and 15 metabolites were identified or tentatively characterized in rat plasma. Subsequently, a pharmacokinetic study was carried out to monitor the concentrations of the main bioactive constituents and metabolites (isoborneol, borneol, eugenol, and camphor) by gas chromatography with mass spectrometry in rat plasma following oral administration of single herb extract and different combinations of herbs in this prescription. Compared to other groups, a statistically significant difference of the pharmacokinetic properties was obtained when the total complex prescription was administered, indicating possible drug-drug interactions among the complex ingredients of Guanxin Shutong Capsule. These findings provided an experimental basis concerning the clinical application and medicinal efficacy of Guanxin Shutong Capsule in the treatment of coronary heart disease. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Dietary bioactives: establishing a scientific framework for recommended intakes

    USDA-ARS?s Scientific Manuscript database

    Research has shown that numerous dietary bioactive components that are not considered essential may still be beneficial to health. The dietary reference intake (DRI) process has been applied to nonessential nutrients, such as fiber, yet the majority of bioactive components await a recommended intake...

  8. Termitarium-Inhabiting Bacillus spp. Enhanced Plant Growth and Bioactive Component in Turmeric (Curcuma longa L.).

    PubMed

    Chauhan, Ankit Kumar; Maheshwari, Dinesh Kumar; Dheeman, Shrivardhan; Bajpai, Vivek K

    2017-02-01

    Curcumin (diferuloyl methane) is the main bioactive component of turmeric (Curcuma longa L.) having remarkable multipotent medicinal and therapeutic applications. Two Bacilli isolated from termitarium soil and identified as Bacillus endophyticus TSH42 and Bacillus cereus TSH77 were used for bacterization of rhizome for raising C. longa ver. suguna for growth and enhancement. Both the strains showed remarkable PGP activities and also chemotactic in nature with high chemotactic index. Turmeric plants bacterized with strains B. endophyticus TSH42 and B. cereus TSH77 individually and in combination increased plant growth and turmeric production up to 18% in field trial in comparison to non-bacterized plants. High-performance liquid chromatography analysis was performed to determine the content of curcumin, which showed concentration of curcumin in un-inoculated turmeric as 3.66 g which increased by 13.6% (4.16 g) when combination of TSH42 and TSH77 was used.

  9. [Multiple emulsions; bioactive compounds and functional foods].

    PubMed

    Jiménez-Colmenero, Francisco

    2013-01-01

    The continued appearance of scientific evidence about the role of diet and/or its components in health and wellness, has favored the emergence of functional foods which currently constitute one of the chief factors driving the development of new products. The application of multiple emulsions opens new possibilities in the design and development of functional foods. Multiple emulsions can be used as an intermediate product (food ingredient) into technological strategies normally used in the optimization of the presence of bioactive compounds in healthy and functional foods. This paper presents a summary of the types, characteristics and formation of multiple emulsions, possible location of bioactive compounds and their potential application in the design and preparation of healthy and functional foods. Such applications are manifested particularly relevant in relation to quantitative and qualitative aspects of lipid material (reduced fat/calories and optimization of fatty acid profile), encapsulation of bioactive compounds mainly hydrophilic and sodium reduction. This strategy offers interesting possibilities regarding masking flavours and improving sensory characteristics of foods. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.

  10. Crystals and crystallization in oil-in-water emulsions: implications for emulsion-based delivery systems.

    PubMed

    McClements, David Julian

    2012-06-15

    Many bioactive components intended for oral ingestion (pharmaceuticals and nutraceuticals) are hydrophobic molecules with low water-solubilities and high melting points, which poses considerable challenges to the formulation of oral delivery systems. Oil-in-water emulsions are often suitable vehicles for the encapsulation and delivery of this type of bioactive component. The bioactive component is usually dissolved in a carrier lipid phase by either dilution and/or heating prior to homogenization, and then the carrier lipid and water phases are homogenized to form an emulsion consisting of small oil droplets dispersed in water. The successful development of this kind of emulsion-based delivery system depends on a good understanding of the influence of crystals on the formation, stability, and properties of emulsions. This review article addresses the physicochemical phenomena associated with the encapsulation, retention, crystallization, release, and absorption of hydrophobic bioactive components within emulsions. This knowledge will be useful for the rational formulation of effective emulsion-based delivery systems for oral delivery of crystalline hydrophobic bioactive components in the food, health care, and pharmaceutical industries. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. It’s a lipid’s world: Bioactive lipid metabolism and signaling in neural stem cell differentiation

    PubMed Central

    Bieberich, Erhard

    2012-01-01

    Lipids are often considered membrane components whose function is to embed proteins into cell membranes. In the last two decades, studies on brain lipids have unequivocally demonstrated that many lipids have critical cell signaling functions; they are called “bioactive lipids”. Pioneering work in Dr. Robert Ledeen’s laboratory has shown that two bioactive brain sphingolipids, sphingomyelin and the ganglioside GM1 are major signaling lipids in the nuclear envelope. In addition to derivatives of the sphingolipid ceramide, the bioactive lipids discussed here belong to the classes of terpenoids and steroids, eicosanoids, and lysophospholipids. These lipids act mainly through two mechanisms: 1) direct interaction between the bioactive lipid and a specific protein binding partner such as a lipid receptor, protein kinase or phosphatase, ion exchanger, or other cell signaling protein; and 2) formation of lipid microdomains or rafts that regulate the activity of a group of raft-associated cell signaling proteins. In recent years, a third mechanism has emerged, which invokes lipid second messengers as a regulator for the energy and redox balance of differentiating neural stem cells (NSCs). Interestingly, developmental niches such as the stem cell niche for adult NSC differentiation may also be metabolic compartments that respond to a distinct combination of bioactive lipids. The biological function of these lipids as regulators of NSC differentiation will be reviewed and their application in stem cell therapy discussed. PMID:22246226

  12. [Screening of anti-lung cancer bioactive compounds from Curcuma longa by target cell extraction and UHPLC/LTQ Orbitrap MS].

    PubMed

    Zhou, Jian-Liang; Wu, Ye-Qing; Tan, Chun-Mei; Zhu, Ming; Ma, Lin-Ke

    2016-10-01

    A target cell extraction-chemical profiling method based on human alveolar adenocarcinoma cell line (A549 cells) and UHPLC/LTQ Orbitrap MS for screening the anti-lung cancer bioactive compounds from Curcuma longa has been developed in this paper. According to the hypothesis that when cells are incubated together with the extract of Curcuma longa, the potential bioactive compounds in the extract should selectively combine with the cells, then the cell-binding compounds could be separated and analyzed by LC-MS. The bioactive compounds in C. longa are lipophilic components. They intend to be absorbed on the inner wall of cell culture flask when they were incubated with A549 cells, which will produce interference in the blank solution. In this paper, by using cells digestion and multi-step centrifugation and transfer strategy, the interference problem has been solved. Finally, using the developed method, three cell-binding compounds were screened out and were identified as bisdemethoxycurcumin, demethoxycurcumin, and curcumin. These compounds are the main bioactive compounds with anti-lung cancer bioactivity in C. longa. The improved method developed in this paper could avoid the false positive results due to the absorption of lipophilic compounds on the inner wall of cell culture flask, which will to be an effective complementary method for current target cell extraction-chemical profiling technology. Copyright© by the Chinese Pharmaceutical Association.

  13. Patents on Therapeutic and Cosmetic Applications of Bioactives of Crocus Sativus L. and their Production through Synthetic Biology Methods: A Review.

    PubMed

    Dawalbhakta, Mitali; Telang, Manasi

    2017-01-01

    Saffron (Crocus sativus L.) has a long history of use as a food additive and a traditional medicine for treating a number of disorders. Prominent bioactives of saffron are crocin, crocetin and safranal. The aim of this study was to carry out an extensive patent search to collect information on saffron bioactives and their derivatives as therapeutic and cosmeceutical agents. All patents related to the area of interest published globally till date have been reviewed. Moreover, a recent synthetic biology approach to cost effective and consistent production of saffron bioactives has been highlighted. A patent search strategy was designed based on keywords and concepts related to Crocus sativus L. and its bioactives- safranal, crocin and crocetin in combination with different patent classification codes relevant to the technology areas. This search strategy was employed to retrieve patents from various patent databases. The patents which focused on therapeutic or cosmetic applications and claimed compositions comprising crocin, crocetin or safranal as the main active component were selected and analysed. Maximum patenting activity was noticed towards the use of these bioactives in the treatment of neurological disorders followed by multiple uses of the same compound, use in treatment of metabolic disorders and use as cosmeceuticals. Interestingly, there were no patent records related to use of these bioactives in treating infectious disorders. Our patent analysis points out the populous and less explored uses of saffron bioactives and areas where there is further scope for research and growth. Recently developed synthetic biology approach is contributory in improving availability, consistency and cost effectiveness of saffron bioactives. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Wine, resveratrol and health: a review.

    PubMed

    Guerrero, Raúl F; García-Parrilla, Maria C; Puertas, Belén; Cantos-Villar, Emma

    2009-05-01

    Several studies have cited the Mediterranean diet as an example of healthy eating. In fact, the Mediterranean diet has become the reference diet for the prevention of cardiovascular disease. Red wine seems to be an essential component of the diet, since moderate consumption of wine is associated with lower risk and mortality from cardiovascular disease. Evidence is also accumulating that wine helps prevent the development of certain cancers. Of all the many components of wine, resveratrol, which is a natural component specifically present in wine, has been identified as being mainly responsible for these health-promoting properties. Many valuable properties such as cardioprotective and anticarcinogenic activity have been attributed to resveratrol; however, its bioavailability is quite low. The bioactivity of metabolites derived from resveratrol, and the accumulation of resveratrol in vital organs are still under study, but there are high expectations of positive results. Other stilbene compounds are also considered in this review, despite being present in undetectable or very small quantities in wine. The present paper reviews all aspects of the health properties of wine, bioactive compounds found in wine, and their concentrations, bioavailability and possible synergistic effects.

  15. Evaluation of Coptidis Rhizoma-Euodiae Fructus couple and Zuojin products based on HPLC fingerprint chromatogram and simultaneous determination of main bioactive constituents.

    PubMed

    Gao, Xin; Yang, Xiu-Wei; Marriott, Philip J

    2013-11-01

    Coptidis Rhizoma-Euodiae Fructus couple (CEC) is a classic traditional Chinese medicine preparation consisting of Coptidis Rhizoma and Euodiae Fructus at the ratio of 6:1, and used to treat gastro-intestinal disorders. Alkaloids are the main bioactive component. This research provides comprehensive analysis information for the quality control of CEC. To develop a high-performance liquid chromatography-diode array detection fingerprint for chemical composition characteristics of CEC and its products. The samples were separated with a Gemini C18 column by using gradient elution with water-formic acid (100:0.03) and acetonitrile as mobile phase. Flow rate was 1.0 mL/min and detection wavelength was 250 nm. Similarity analysis and principal component analysis (PCA) were employed to evaluate quality consistencies of analytes. Mean chromatograms and correlation coefficients of analytes were calculated by the software "Similarity Evaluation System for Chromatographic Fingerprint of Traditional Chinese Medicine". Fingerprint chromatogram comparison determined 20 representative general fingerprint peaks, and the fingerprint chromatogram resemblances are all better than 0.988. Consistent results were obtained to show that CEC and its related samples could be successfully divided into three groups. Contribution plots generated by PCA were performed to interpret differences among the sample groups while peaks which significantly contributed to classification were identified. Seven bioactive constituents in the samples were verified by quantitative analysis. The chromatographic fingerprint with similarity evaluation and PCA assay combined with quantification of seven compounds could be utilized as a quality control method for the herbal couple.

  16. High-value components and bioactives from sea cucumbers for functional foods--a review.

    PubMed

    Bordbar, Sara; Anwar, Farooq; Saari, Nazamid

    2011-01-01

    Sea cucumbers, belonging to the class Holothuroidea, are marine invertebrates, habitually found in the benthic areas and deep seas across the world. They have high commercial value coupled with increasing global production and trade. Sea cucumbers, informally named as bêche-de-mer, or gamat, have long been used for food and folk medicine in the communities of Asia and Middle East. Nutritionally, sea cucumbers have an impressive profile of valuable nutrients such as Vitamin A, Vitamin B1 (thiamine), Vitamin B2 (riboflavin), Vitamin B3 (niacin), and minerals, especially calcium, magnesium, iron and zinc. A number of unique biological and pharmacological activities including anti-angiogenic, anticancer, anticoagulant, anti-hypertension, anti-inflammatory, antimicrobial, antioxidant, antithrombotic, antitumor and wound healing have been ascribed to various species of sea cucumbers. Therapeutic properties and medicinal benefits of sea cucumbers can be linked to the presence of a wide array of bioactives especially triterpene glycosides (saponins), chondroitin sulfates, glycosaminoglycan (GAGs), sulfated polysaccharides, sterols (glycosides and sulfates), phenolics, cerberosides, lectins, peptides, glycoprotein, glycosphingolipids and essential fatty acids. This review is mainly designed to cover the high-value components and bioactives as well as the multiple biological and therapeutic properties of sea cucumbers with regard to exploring their potential uses for functional foods and nutraceuticals.

  17. High-Value Components and Bioactives from Sea Cucumbers for Functional Foods—A Review

    PubMed Central

    Bordbar, Sara; Anwar, Farooq; Saari, Nazamid

    2011-01-01

    Sea cucumbers, belonging to the class Holothuroidea, are marine invertebrates, habitually found in the benthic areas and deep seas across the world. They have high commercial value coupled with increasing global production and trade. Sea cucumbers, informally named as bêche-de-mer, or gamat, have long been used for food and folk medicine in the communities of Asia and Middle East. Nutritionally, sea cucumbers have an impressive profile of valuable nutrients such as Vitamin A, Vitamin B1 (thiamine), Vitamin B2 (riboflavin), Vitamin B3 (niacin), and minerals, especially calcium, magnesium, iron and zinc. A number of unique biological and pharmacological activities including anti-angiogenic, anticancer, anticoagulant, anti-hypertension, anti-inflammatory, antimicrobial, antioxidant, antithrombotic, antitumor and wound healing have been ascribed to various species of sea cucumbers. Therapeutic properties and medicinal benefits of sea cucumbers can be linked to the presence of a wide array of bioactives especially triterpene glycosides (saponins), chondroitin sulfates, glycosaminoglycan (GAGs), sulfated polysaccharides, sterols (glycosides and sulfates), phenolics, cerberosides, lectins, peptides, glycoprotein, glycosphingolipids and essential fatty acids. This review is mainly designed to cover the high-value components and bioactives as well as the multiple biological and therapeutic properties of sea cucumbers with regard to exploring their potential uses for functional foods and nutraceuticals. PMID:22072996

  18. Toward Smart Implant Synthesis: Bonding Bioceramics of Different Resorbability to Match Bone Growth Rates

    PubMed Central

    Comesaña, Rafael; Lusquiños, Fernando; del Val, Jesús; Quintero, Félix; Riveiro, Antonio; Boutinguiza, Mohamed; Jones, Julian R.; Hill, Robert G.; Pou, Juan

    2015-01-01

    Craniofacial reconstructive surgery requires a bioactive bone implant capable to provide a gradual resorbability and to adjust to the kinetics of new bone formation during healing. Biomaterials made of calcium phosphate or bioactive glasses are currently available, mainly as bone defect fillers, but it is still required a versatile processing technique to fabricate composition-gradient bioceramics for application as controlled resorption implants. Here it is reported the application of rapid prototyping based on laser cladding to produce three-dimensional bioceramic implants comprising of a calcium phosphate inner core, with moderate in vitro degradation at physiological pH, surrounded by a bioactive glass outer layer of higher degradability. Each component of the implant is validated in terms of chemical and physical properties, and absence of toxicity. Pre–osteoblastic cell adhesion and proliferation assays reveal the adherence and growth of new bone cells on the material. This technique affords implants with gradual-resorbability for restoration of low-load-bearing bone. PMID:26032983

  19. Comparative analysis of multiple representative components in the herb pair Astragali Radix-Curcumae Rhizoma and its single herbs by UPLC-QQQ-MS.

    PubMed

    Yin, Gang; Cheng, Xiaolan; Tao, Weiwei; Dong, Yu; Bian, Yong; Zang, Wenhua; Tang, Decai

    2018-01-30

    The herb-pair, Astragali Radix (AR) and Curcumae Rhizoma (CR), often occurs in traditional herbal prescriptions used for cancer treatment in Asian areas. In clinical application, the AR-CR herb pair was often produced by different preparation methods or with raw materials from different sources, which raised a challenge for quality control of the herb-pair medicines. In this paper, ultra high performance liquid chromatography coupled to triple quadrupole tandem mass spectrometry method (UPLC-QQQ-MS) was applied for the first time to simultaneously determine 17 main bioactive components for quality control of AR-CR herb pair. The chromatographic separation was studied on an ACQUITY UPLC BEH C 18 column (100mm×2.1mm, 1.7μm) with a mobile phase composed of 0.1% aqueous formic acid and acetonitrile using a gradient elution in 12min. The proposed method was optimized and validated by good linearity (r 2 >0.9970), limit of detection (0.33-10.78ng/mL), limit of quantification (0.81-2.54ng/mL), intra- and inter-day precisions (RSD≤3.64%, RSD≤5.68%), stability (RSD≤4.29%), repeatability (RSD≤5.98%), recovery (90.20-107.60%). The established method was successfully applied to comparative analysis of main bioactive components in AR-CR herb pair and its single herbs, and quality evaluation of different batches of clinical dispensing granules. Compared to the single herb, the content of most liposoluble constituents such as curcumenol, curdione, isocurcumenol, furanodienone, curcumol, and germacrone were remarkable increased in their herb pair, suggesting mixed preparation produced synergistic effects on promoting the extraction of bioactive ingredients. This study is the first time to report the rapid and simultaneous analysis of 17 compounds in AR-CR herb pair by UPLC-QQQ-MS, and provides a feasible method for holistic quality control of preparations containing AR-CR herb-pair. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Component analysis and target cell-based neuroactivity screening of Panax ginseng by ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry.

    PubMed

    Yuan, Jinbin; Chen, Yang; Liang, Jian; Wang, Chong-Zhi; Liu, Xiaofei; Yan, Zhihong; Tang, Yi; Li, Jiankang; Yuan, Chun-Su

    2016-12-01

    Ginseng is one of the most widely used natural medicines in the world. Recent studies have suggested Panax ginseng has a wide range of beneficial effects on aging, central nervous system disorders, and neurodegenerative diseases. However, knowledge about the specific bioactive components of ginseng is still limited. This work aimed to screen for the bioactive components in Panax ginseng that act against neurodegenerative diseases, using the target cell-based bioactivity screening method. Firstly, component analysis of Panax ginseng extracts was performed by UPLC-QTOF-MS, and a total of 54 compounds in white ginseng were characterized and identified according to the retention behaviors, accurate MW, MS characteristics, parent nucleus, aglycones, side chains, and literature data. Then target cell-based bioactivity screening method was developed to predict the candidate compounds in ginseng with SH-SY5Y cells. Four ginsenosides, Rg 2 , Rh 1 , Ro, and Rd, were observed to be active. The target cell-based bioactivity screening method coupled with UPLC-QTOF-MS technique has suitable sensitivity and it can be used as a screening tool for low content bioactive constituents in natural products. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Adhesive Bioactive Coatings Inspired by Sea Life.

    PubMed

    Rego, Sónia J; Vale, Ana C; Luz, Gisela M; Mano, João F; Alves, Natália M

    2016-01-19

    Inspired by nature, in particular by the marine mussels adhesive proteins (MAPs) and by the tough brick-and-mortar nacre-like structure, novel multilayered films are prepared in the present work. Organic-inorganic multilayered films, with an architecture similar to nacre based on bioactive glass nanoparticles (BG), chitosan, and hyaluronic acid modified with catechol groups, which are the main components responsible for the outstanding adhesion in MAPs, are developed for the first time. The biomimetic conjugate is prepared by carbodiimide chemistry and analyzed by ultraviolet-visible spectrophotometry. The buildup of the multilayered films is monitored with a quartz crystal microbalance with dissipation monitoring, and their topography is characterized by atomic force microscopy. The mechanical properties reveal that the films containing catechol groups and BG present an enhanced adhesion. Moreover, the bioactivity of the films upon immersion in a simulated body fluid solution is evaluated by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. It was found that the constructed films promote the formation of bonelike apatite in vitro. Such multifunctional mussel inspired LbL films, which combine enhanced adhesion and bioactivity, could be potentially used as coatings of a variety of implants for orthopedic applications.

  2. Bioactive Nutrients and Nutrigenomics in Age-Related Diseases.

    PubMed

    Rescigno, Tania; Micolucci, Luigina; Tecce, Mario F; Capasso, Anna

    2017-01-08

    The increased life expectancy and the expansion of the elderly population are stimulating research into aging. Aging may be viewed as a multifactorial process that results from the interaction of genetic and environmental factors, which include lifestyle. Human molecular processes are influenced by physiological pathways as well as exogenous factors, which include the diet. Dietary components have substantive effects on metabolic health; for instance, bioactive molecules capable of selectively modulating specific metabolic pathways affect the development/progression of cardiovascular and neoplastic disease. As bioactive nutrients are increasingly identified, their clinical and molecular chemopreventive effects are being characterized and systematic analyses encompassing the "omics" technologies (transcriptomics, proteomics and metabolomics) are being conducted to explore their action. The evolving field of molecular pathological epidemiology has unique strength to investigate the effects of dietary and lifestyle exposure on clinical outcomes. The mounting body of knowledge regarding diet-related health status and disease risk is expected to lead in the near future to the development of improved diagnostic procedures and therapeutic strategies targeting processes relevant to nutrition. The state of the art of aging and nutrigenomics research and the molecular mechanisms underlying the beneficial effects of bioactive nutrients on the main aging-related disorders are reviewed herein.

  3. Identification and comparative quantification of bio-active phthalides in essential oils from si-wu-tang, fo-shou-san, radix angelica and rhizoma chuanxiong.

    PubMed

    Tang, Yuping; Zhu, Min; Yu, Sheng; Hua, Yongqing; Duan, Jin-Ao; Su, Shulan; Zhang, Xu; Lu, Yin; Ding, Anwei

    2010-01-15

    Phthalides are important bio-active constituents in Si-Wu-Tang and Fo-Shou-San, two commonly used Traditional Chinese Medicine (TCM) combined prescriptions mainly derived from Radix Angelica and Rhizoma Chuanxiong. In this paper, the contents of eight phthalides, including Z-ligustilide, E-ligustilide, Z-butylenephthalide, E-butylene-phthalide, 3-butylphthalide, neocnidilide and senkyunolide A were determined or estimated by gas chromatography-mass spectrometry (GC-MS). The results showed GC-MS was a simple, rapid, and high sensitive method for analyzing phthalides in Si-Wu-Tang, Fo-Shou-San, Radix Angelica and Rhizoma Chuanxiong, and the extractable contents of each phthalides including Z-ligustilide, E-ligustilide, Z-butylenephthalide, etc. varied after Radix Angelica, Rhizoma Chuanxiong were combined into a formulation, such as Si-Wu-Tang and Fo-Shou-San. Furthermore, inhibition activity of essential oils from Si-Wu-Tang, Fo-Shou-San, Radix Angelica and Rhizoma Chuanxiong on uterine contraction was tested in an in vitro assay, and the results showed that the activity of the essential oil is higher as the content of the phthalides increase, which demonstrated that phthalides are possibly main active components inhibiting mice uterine contraction in vitro. All of the results suggested that comparative analysis of chemical components and pharmacological activities of each herb and formula is possibly helpful to elucidate the active components in traditional Chinese medicine, and to reveal the compatibility mechanism of TCM formulae.

  4. Systems biology approaches to understand the effects of nutrition and promote health.

    PubMed

    Badimon, Lina; Vilahur, Gemma; Padro, Teresa

    2017-01-01

    Within the last years the implementation of systems biology in nutritional research has emerged as a powerful tool to understand the mechanisms by which dietary components promote health and prevent disease as well as to identify the biologically active molecules involved in such effects. Systems biology, by combining several '-omics' disciplines (mainly genomics/transcriptomics, proteomics and metabolomics), creates large data sets that upon computational integration provide in silico predictive networks that allow a more extensive analysis of the individual response to a nutritional intervention and provide a more global comprehensive understanding of how diet may influence health and disease. Numerous studies have demonstrated that diet and particularly bioactive food components play a pivotal role in helping to counteract environmental-related oxidative damage. Oxidative stress is considered to be strongly implicated in ageing and the pathophysiology of numerous diseases including neurodegenerative disease, cancers, metabolic disorders and cardiovascular diseases. In the following review we will provide insights into the role of systems biology in nutritional research and focus on transcriptomic, proteomic and metabolomics studies that have demonstrated the ability of functional foods and their bioactive components to fight against oxidative damage and contribute to health benefits. © 2016 The British Pharmacological Society.

  5. Bioactivity characterization of 45S5 bioglass using TL, OSL and EPR: Comparison with the case of 58S sol-gel bioactive glass.

    PubMed

    Polymeris, G S; Giannoulatou, V; Kyriakidou, A; Sfampa, I K; Theodorou, G S; Şahiner, E; Meriç, N; Kitis, G; Paraskevopoulos, K M

    2017-01-01

    The current work exploits the effective application of thermoluminescence (TL), optically stimulated luminescence (OSL) and the possibility of applying Electron Paramagnetic Resonance (EPR) for the discrimination between different bioactive responses in the case of the 45S5 bioactive glass (SiO 2 45, Na 2 O 24.5, CaO 24.5, P 2 O 5 6 in wt%), which was synthesized through melting process. These techniques are suggested mainly due to their low spectroscopic detection thresholds. The original 45S5 in grain size range of 20-40μm was immersed in the Simulated Body Fluid (SBF) for various different immersion times ranging over one week. In this work the 110°C TL peak, a specific OSL component and the EPR signal at g=2.013 ascribed to oxygen hole center (OHC) are used due to their sensitivity to the different bioactive responses. For all luminescence and EPR components, the intensity plot versus immersion time yields sharp discontinuities, resulting in effective probes regarding the timescale for both the beginning as well as the end of the procedure of the crystalline HCAp formation respectively. On the contrary to the smooth decreasing pattern of both luminescence entities, the peak to peak amplitude of the EPR signal indicates an initial increase for the initial 16min of immersion, followed by a further decrease throughout the immersion time duration. The discontinuities monitored for both sensitivity of TL, OSL and EPR, in conjunction with the discontinuities monitored for the sensitization of TL and OSL, when plotted versus immersion time, provide an individual time scale for each one of the chemical reactions involved in the five steps of the aforementioned procedure. According to the authors' best knowledge, scarce characterization techniques could provide this time scale frame, while it is the first time that such an application of OSL and EPR is attempted. Finally, the bioactive response of the 45S5 bioglass was compared with that of the 58S sol-gel bioactive glass, in terms of the timescale of these five stages required for the final formation of the HCAp. The techniques of luminescence and EPR which take advantage of trapped charges are proposed as alternative cheap and prompt effective techniques towards discrimination between different bioactive responses in bioactive glasses. Copyright © 2016. Published by Elsevier B.V.

  6. Sodium Is Not Essential for High Bioactivity of Glasses

    PubMed Central

    Chen, Xiaojing; Chen, Xiaohui; Brauer, Delia S.; Wilson, Rory M.; Law, Robert V.; Hill, Robert G.; Karpukhina, Natalia

    2017-01-01

    This study aims to demonstrate that excellent bioactivity of glass can be achieved without the presence of an alkali metal component in glass composition. In vitro bioactivity of two sodium-free glasses based on the quaternary system SiO2-P2O5-CaO-CaF2 with 0 and 4.5 mol% CaF2 content was investigated and compared with the sodium containing glasses with equivalent amount of CaF2. The formation of apatite after immersion in Tris buffer was followed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), 31P and 19F solid state MAS-NMR. The dissolution study was completed by ion release measurements in Tris buffer. The results show that sodium free bioactive glasses formed apatite at 3 hours of immersion in Tris buffer, which is as fast as the corresponding sodium containing composition. This signifies that sodium is not an essential component in bioactive glasses and it is possible to make equally degradable bioactive glasses with or without sodium. The results presented here also emphasize the central role of the glass compositions design which is based on understanding of structural role of components and/or predicting the network connectivity of glasses. PMID:29271977

  7. Sodium Is Not Essential for High Bioactivity of Glasses.

    PubMed

    Chen, Xiaojing; Chen, Xiaohui; Brauer, Delia S; Wilson, Rory M; Law, Robert V; Hill, Robert G; Karpukhina, Natalia

    2017-12-01

    This study aims to demonstrate that excellent bioactivity of glass can be achieved without the presence of an alkali metal component in glass composition. In vitro bioactivity of two sodium-free glasses based on the quaternary system SiO 2 -P 2 O 5 -CaO-CaF 2 with 0 and 4.5 mol% CaF 2 content was investigated and compared with the sodium containing glasses with equivalent amount of CaF 2 . The formation of apatite after immersion in Tris buffer was followed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), 31 P and 19 F solid state MAS-NMR. The dissolution study was completed by ion release measurements in Tris buffer. The results show that sodium free bioactive glasses formed apatite at 3 hours of immersion in Tris buffer, which is as fast as the corresponding sodium containing composition. This signifies that sodium is not an essential component in bioactive glasses and it is possible to make equally degradable bioactive glasses with or without sodium. The results presented here also emphasize the central role of the glass compositions design which is based on understanding of structural role of components and/or predicting the network connectivity of glasses.

  8. Germinated brown rice and its bio-functional compounds.

    PubMed

    Cho, Dong-Hwa; Lim, Seung-Taik

    2016-04-01

    Brown rice (BR) contains bran layers and embryo, where a variety of nutritional and biofunctional components, such as dietary fibers, γ-oryzanol, vitamins, and minerals, exist. However, BR is consumed less than white rice because it has an inferior eating texture when cooked. Germination is one of the techniques used to improve the texture of the cooked BR. In addition, it induces numerous changes in the composition and chemical structure of the bioactive components. Moreover, many studies reported that the germination could induce the formation of new bioactive compounds, such as gamma-aminobutyric acid (GABA). The consumption of germinated brown rice (GBR) is increasing in many Asian countries because of its improved eating quality and potential health-promoting functions. However, there is still a lack of studies on the compositional and functional changes of the bioactive components during germination. This review contains recent research findings, especially on the bioactive components in GBR. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Establishing health benefits of bioactive food components: a basic research scientist's perspective

    USDA-ARS?s Scientific Manuscript database

    Bioactive food components or functional foods have recently received significant attention because of their widely touted positive effects beyond basic nutrition. However, a question continues to lurk: are these 'super foods' backed by sound science or simply an exaggerated portrayal of very small '...

  10. [Nutrigenomics--bioactive dietary components].

    PubMed

    Gętek, Monika; Czech, Natalia; Fizia, Katarzyna; Białek-Dratwa, Agnieszka; Muc-Wierzgoń, Małgorzata; Kokot, Teresa; Nowakowska-Zajdel, Ewa

    2013-04-05

    Nutrigenomics analyzes relations between diet and genes, and identifies mechanisms in which food and nutrition affect health and lifestyles and noncommunicable diseases (R. Chadwick, 2004). Bioactive dietary components are signal molecules that carry information from the external environment and affect in terms of quantity and quality in the process of gene expression. The biological effect of bioactive dietary components depends on various of physiological processes that can occur within a few genes. Polymorphism of genes can change their function and physiological response of the body for nutrients. Bioactive dietary components work on at least two levels of the expression of genes as factors regulating chromatin structure and as factors directly regulate the activity of nuclear receptors. The processes of synthesis and DNA repair are regulated by some of vitamins, macro-and micro-elements. They provide, among others, cofactors of enzymes that catalyze the replication of DNA methylation and its repair. DNA methylation profile may change under the influence of diet, single nucleotide polymorphisms and environmental factors. Bioactive dietary components may directly affect the process of gene expression by acting as ligands for nuclear receptors. Sensitive to dietary group of nuclear receptors are sensory receptors. This group includes, among others receptor PPAR (peroxisome proliferator activated), responsible for energy metabolism and receptors LXR (liver X receptor), FXR (farnesoid X receptor) and RXR, which is responsible for the metabolism of cholesterol.

  11. Simultaneous determination of bioactive constituents in Danggui Buxue Tang for quality control by HPLC coupled with a diode array detector, an evaporative light scattering detector and mass spectrometry.

    PubMed

    Yi, Ling; Qi, Lian-Wen; Li, Ping; Ma, Yi-Han; Luo, Yong-Jing; Li, Hai-Yun

    2007-09-01

    Danggui Buxue Tang (DBT), a classical traditional Chinese formula comprising Radix Angelicae Sinensis (RAS) and Radix Astragali (RA), has been widely used to treat menopausal irregularity in Chinese women for nearly 800 years. In this study, a comprehensive analytical method of simultaneously determining the main types of bioactive constituents, eighteen in all from the formula, involving flavonoids, saponins, organic acid and some volatile compounds, was developed. This method was based on HPLC coupled to a diode array and evaporative light scattering detectors (HPLC-DAD-ELSD) on a common reverse-phase C(18) column. Liquid chromatography coupled with on-line electrospray ionization mass spectrometry (LC-ESI-MS) was also used to further validate and analyze the constituents. It was found that 0.3% aqueous formic acid and acetonitrile was the optimum mobile phase for gradient elution. This method, which showed good precision and accuracy, was successfully used to quantify the bioactive constituents in six products. As a result, the validated HPLC method, together with the LC-ESI-MS analysis, provided a new basis for assessing the quality of traditional Chinese medicinal compound preparations (TCMCPs) consisting of many bioactive components.

  12. Integration of magnetic solid phase fishing and off-line two-dimensional high-performance liquid chromatography-diode array detector-mass spectrometry for screening and identification of human serum albumin binders from Radix Astragali.

    PubMed

    Zhang, Yuping; Nie, Mingkun; Shi, Shuyun; You, Qingping; Guo, Junfang; Liu, Liangliang

    2014-03-01

    Radix Astragali is one of the most popular traditional medicinal herb and healthy dietary supplement. Isoflavonoids and astragalosides are the main bioactive ingredients. However, the systematic bioactive component analysis is inadequate so far. Then a facile method based on Fe3O4@SiO2-human serum albumin (Fe3O4@SiO2-HSA) magnetic solid phase fishing integrated with two-dimensional high-performance liquid chromatography-diode array detector-mass spectrometry (2D HPLC-DAD-MS(n)) was developed to fish out and identify HSA binders from Radix Astragali. The immobilized HSA displayed a high stability with 96.2% retained after ten consecutive cycles. 2D HPLC system (size exclusion chromatography×reversed phase chromatography, SEC×RP) were developed and optimised. Forty-seven bioactive compounds including thirty-four isoflavonoids and thirteen astragalosides were screened and identified or tentatively deduced based on their retention time, ultraviolet (UV), accurate molecular weight and diagnostic fragment ions. The results indicated that the integrated method could be widely applied for systematical fishing and identification of bioactive compounds, especially for low-abundance and overlapped compounds, from complex mixtures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Bioactive Peptides in Animal Food Products.

    PubMed

    Albenzio, Marzia; Santillo, Antonella; Caroprese, Mariangela; Della Malva, Antonella; Marino, Rosaria

    2017-05-09

    Proteins of animal origin represent physiologically active components in the human diet; they exert a direct action or constitute a substrate for enzymatic hydrolysis upon food processing and consumption. Bioactive peptides may descend from the hydrolysis by digestive enzymes, enzymes endogenous to raw food materials, and enzymes from microorganisms added during food processing. Milk proteins have different polymorphisms for each dairy species that influence the amount and the biochemical characteristics (e.g., amino acid chain, phosphorylation, and glycosylation) of the protein. Milk from other species alternative to cow has been exploited for their role in children with cow milk allergy and in some infant pathologies, such as epilepsy, by monitoring the immune status. Different mechanisms concur for bioactive peptides generation from meat and meat products, and their functionality and application as functional ingredients have proven effects on consumer health. Animal food proteins are currently the main source of a range of biologically-active peptides which have gained special interest because they may also influence numerous physiological responses in the organism. The addition of probiotics to animal food products represent a strategy for the increase of molecules with health and functional properties.

  14. Immunology of breast milk.

    PubMed

    Palmeira, Patricia; Carneiro-Sampaio, Magda

    2016-09-01

    In the critical phase of immunological immaturity of the newborn, particularly for the immune system of mucous membranes, infants receive large amounts of bioactive components through colostrum and breast milk. Colostrum is the most potent natural immune booster known to science. Breastfeeding protects infants against infections mainly via secretory IgA (SIgA) antibodies, but also via other various bioactive factors. It is striking that the defense factors of human milk function without causing inflammation; some components are even anti-inflammatory. Protection against infections has been well evidenced during lactation against, e.g., acute and prolonged diarrhea, respiratory tract infections, including otitis media, urinary tract infection, neonatal septicemia, and necrotizing enterocolitis. The milk's immunity content changes over time. In the early stages of lactation, IgA, anti-inflammatory factors and, more likely, immunologically active cells provide additional support for the immature immune system of the neonate. After this period, breast milk continues to adapt extraordinarily to the infant's ontogeny and needs regarding immune protection and nutrition. The need to encourage breastfeeding is therefore justifiable, at least during the first 6 months of life, when the infant's secretory IgA production is insignificant.

  15. High-performance thin-layer chromatography linked with (bio)assays and mass spectrometry - a suited method for discovery and quantification of bioactive components? Exemplarily shown for turmeric and milk thistle extracts.

    PubMed

    Taha, Mahmoud N; Krawinkel, Michael B; Morlock, Gertrud E

    2015-05-15

    Extraction parameters, chemical fingerprint, and the single compounds' activity levels were considered for the selection of active botanicals. For an initial survey, the total bioactivity (i.e., total reducing capacity, total flavonoids contents and free radical scavenging capacity) of 21 aqueous and 21 ethanolic plant extracts was investigated. Ethanolic extracts showed a higher yield and were further analyzed by HPTLC in detail to obtain fingerprints of single flavonoids and further bioactive components. Exemplarily shown for turmeric (Curcuma longa) and milk thistle (Silybum marianum), effect-directed analysis (EDA) was performed using three selected (bio)assays, the Aliivibrio fischeri bioassay, the Bacillus subtilis bioassay and the 2,2-diphenyl-1-picrylhydrazyl (DPPH*) assay. As a proof of principle, the bioactive components found in the extracts were confirmed by HPTLC-MS. Bioassays in combination with planar chromatography directly linked to the known, single effective compounds like curcumin and silibinin. However, also some unknown bioactive components were discovered and exemplarily characterized, which demonstrated the strength of this kind of EDA. HPTLC-UV/Vis/FLD-EDA-MS could become a useful tool for selection of active botanicals and for the activity profiling of the active ingredients therein. The flexibility in effect-directed detections allows a comprehensive survey of effective ingredients in samples. This streamlined methodology comprised a non-targeted, effect-directed screening first, followed by a highly targeted characterization of the discovered bioactive compounds. HPTLC-EDA-MS can also be recommended for bioactivity profiling of food on the food intake side, as not only effective phytochemicals, but also unknown bioactive degradation products during food processing or contamination products or residues or metabolites can be detected. Thus, an efficient survey on potential food intake effects on wellness could be obtained. Having performed both, sum parameter assays and HPTLC analysis, a comparison of both approaches was made and discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Mushrooms: A Potential Natural Source of Anti-Inflammatory Compounds for Medical Applications

    PubMed Central

    Elsayed, Elsayed A.; El Enshasy, Hesham; Wadaan, Mohammad A. M.; Aziz, Ramlan

    2014-01-01

    For centuries, macrofungi have been used as food and medicine in different parts of the world. This is mainly attributed to their nutritional value as a potential source of carbohydrates, proteins, amino acids, and minerals. In addition, they also include many bioactive metabolites which make mushrooms and truffles common components in folk medicine, especially in Africa, the Middle East, China, and Japan. The reported medicinal effects of mushrooms include anti-inflammatory effects, with anti-inflammatory compounds of mushrooms comprising a highly diversified group in terms of their chemical structure. They include polysaccharides, terpenoids, phenolic compounds, and many other low molecular weight molecules. The aims of this review are to report the different types of bioactive metabolites and their relevant producers, as well as the different mechanisms of action of mushroom compounds as potent anti-inflammatory agents. PMID:25505823

  17. Bioactive Food Components, Inflammatory Targets, and Cancer Prevention

    PubMed Central

    Kim, Young S.; Young, Matthew R.; Bobe, Gerd; Colburn, Nancy H.; Milner, John A.

    2012-01-01

    Various dietary components may modify chronic inflammatory processes at the stage of cytokine production, amplification of nuclear factor-κB–mediated inflammatory gene expression, and the release of anti-inflammatory cytokine, transforming growth factor-β. This review provides a synopsis of the strengths and weaknesses of the evidence that specific bioactive food components influence inflammation-related targets linked to cancer. A target repeatedly surfacing as a site of action for several dietary components is transforming growth factor β. Whereas the use of dietary intervention strategies offers intriguing possibilities for maintaining normal cell function by modifying a process that is essential for cancer development and progression, more information is needed to characterize the minimum quantity of the bioactive food components required to bring about a change in inflammation-mediated cancer, the ideal time for intervention, and the importance of genetics in determining the response. Unquestionably, the societal benefits of using foods and their components to prevent chronic inflammation and associated complications, including cancer, are enormous. PMID:19258539

  18. Implications of domestic food practices for the presence of bioactive components in meats with special reference to meat-based functional foods.

    PubMed

    Jiménez-Colmenero, Francisco; Cofrades, Susana; Herrero, Ana M; Ruiz-Capillas, Claudia

    2017-06-14

    Although an essential component of the diet, the consumption of meat is in question. Meat is a major source of beneficial compounds but it also contains other substances with negative health implications. Functional foods, which are leading trends in the food industry, constitute an excellent opportunity for the meat sector to improve healthier meat options. Most studies on meat-based functional foods have focused mainly on the application of different strategies (animal production practices and meat transformation systems) to improve (increase/reduce) the presence of bioactive (healthy/unhealthy) compounds; these have led to the development of numerous products, many of them by the meat industry. However, like other foods, after purchase meats undergo certain processes before they are consumed, and these affect their composition. Although domestic handling practices can significantly alter the make-up of the marketed product in terms of healthy/unhealthy compounds, there are very few studies on their consequences. This paper provides an overview of the influence of different domestic practices (from shopping to eating) habitually followed by consumers on the presence of, and consequently on the levels of exposure to, (healthy and unhealthy) food components associated with the consumption of meats, with special reference to meat-based functional foods.

  19. Cereal bran fractionation: processing techniques for the recovery of functional components and their applications to the food industry.

    PubMed

    Soukoulis, Christos; Aprea, Eugenio

    2012-04-01

    Bran is the outer part of cereal grains that is separated during the cereals de-hulling and milling processes. It was considered in the past a by-product of cereal industry employed mainly as animal feed. Cereal bran, being particularly rich in different functional biopolymers, bio-active compounds and essential fatty acids, attracted the interest of pharmaceutical and food industry. Furthermore, the peculiar techno-functional properties of brans together with their particular physiological and nutritional aspects have led to a great interest in their incorporation as main or secondary components in different groups of food products including bakery and confectionery products, breakfast cereals and extruded foodstuffs, emulsions and functional dairy products and pasta products. In the first part of the present work the main fractionation processes, bran fractions properties and their physicochemical and technological properties are briefly reviewed. In the second part, relevant applications, with emphasis on patents, in food industry are reviewed as well.

  20. Chemical Mapping of Essential Oils, Flavonoids and Carotenoids in Citrus Peels by Raman Microscopy.

    PubMed

    Yang, Ying; Wang, Xiaohe; Zhao, Chengying; Tian, Guifang; Zhang, Hua; Xiao, Hang; He, Lili; Zheng, Jinkai

    2017-12-01

    Citrus peels, by-products in large quantity, are rich in various functional and beneficial components which have wide applications. Chemical analysis of these components in citrus peels is an important step to determine the usefulness of the by-products for further applications. In this study, we explored Raman microscopy for rapid, nondestructive, and in situ chemical mapping of multiple main functional components from citrus peels. The relative amount and distribution in different locations (flavedo, albedo, and longitudinal section) of 3 main functional components (essential oils, carotenoids, and flavonoids) in citrus peels were systematically investigated. The distribution profiles of these components were heterogeneous on the peels and varied between different species of citrus peels. Essential oil was found mainly existed in the oil glands, while carotenoids were in the complementary location. Some flavonoids were observed in the oil glands. This study showed the capability of Raman microscopy for rapid and nondestructive analysis of multiple bio-components without extraction from plants. The information obtained from this study would assist the better production and application of the functional and beneficial components from citrus by products in an effective and sustainable manner. This study indicated the capability of Raman microscopy for rapid and nondestructive analysis of multiple bioactive components in plant tissues. The information obtained from the study would be valuable for developing effective and sustainable strategy of utilization of citrus peels for further applications. © 2017 Institute of Food Technologists®.

  1. Nutrigenomics and Cancer

    PubMed Central

    Ardekani, Ali M.; Jabbari, Sepideh

    2009-01-01

    Cancer incidence is projected to increase in the future and an effectual preventive strategy is required to face this challenge. Alteration of dietary habits is potentially an effective approach for reducing cancer risk. Assessment of biological effects of a specific food or bioactive component that is linked to cancer and prediction of individual susceptibility as a function of nutrient-nutrient interactions and genetics is an essential element to evaluate the beneficiaries of dietary interventions. In general, the use of biomarkers to evaluate individuals susceptibilities to cancer must be easily accessible and reliable. However, the response of individuals to bioactive food components depends not only on the effective concentration of the bioactive food components, but also on the target tissues. This fact makes the response of individuals to food components vary from one individual to another. Nutrigenomics focuses on the understanding of interactions between genes and diet in an individual and how the response to bioactive food components is influenced by an individual's genes. Nutrients have shown to affect gene expression and to induce changes in DNA and protein molecules. Nutrigenomic approaches provide an opportunity to study how gene expression is regulated by nutrients and how nutrition affects gene variations and epigenetic events. Finding the components involved in interactions between genes and diet in an individual can potentially help identify target molecules important in preventing and/or reducing the symptoms of cancer. PMID:23407612

  2. In vitro bioactivity behavior of modified multicomponent borate glasses containing dopants of Ag2O, CuO, CeO2 or V2O5

    NASA Astrophysics Data System (ADS)

    Marzouk, M. A.; ElBatal, F. H.; Ghoneim, N. A.

    2018-02-01

    Some multi-component borate glasses containing dopants of Ag2O, CuO, CeO2 or V2O5 were prepared. Multi-characterization techniques were carried out to investigate their bioactivity, corrosion weight loss after immersion in phosphate solution. Controlled thermal heat-treatment by two-step technique was done to convert the prepared glasses to their corresponding glass-ceramic derivatives. X-ray diffraction analysis was performed to identify the crystalline phases formed by thermal treatment. Infrared absorption of glasses and glass-ceramics reveal vibrational bands due to combined main triangular and tetrahedral borate groups in their specific wavenumbers besides some sharing of phosphate group. After immersion in the phosphate solution, two extra characteristic peaks are generated indicating the bioactivity of the studied glasses and glass-ceramics through the formation of calcium phosphate (hydroxyapatite). X-ray diffraction data indicate the formation of crystalline phases which are variable with the introduced dopants. The main crystalline phase identified is calcium borate together with some other phases some of which contain phosphate ions. These data indicate that the presence of CaO and P2O5 initiates phase separation and subsequent crystallization of the parent and doped glasses. Weight loss data indicate that glass-ceramics are obviously durable than the parent glasses. SEM micrographs of glass-ceramics before immersion show multiconstituent crystalline phases due to the basic chemical composition consisting of multicomponent mixed alkali and alkaline earth oxides beside P2O5 and with the main B2O3 constituent. After immersion, the crystalline phases are identified to be more distinct in different shapes because of the multi-composition involved.

  3. The main anticancer bullets of the Chinese medicinal herb, thunder god vine.

    PubMed

    Liu, Zi; Ma, Liang; Zhou, Guang-Biao

    2011-06-23

    The thunder god vine or Tripterygium wilfordii Hook. F. is a representative Chinese medicinal herb which has been used widely and successfully for centuries in treating inflammatory diseases. More than 100 components have been isolated from this plant, and most of them have potent therapeutic efficacy for a variety of autoimmune and inflammatory diseases. In the past four decades, the anticancer activities of the extracts from this medicinal herb have attracted intensive attention by researchers worldwide. The diterpenoid epoxide triptolide and the quinone triterpene celastrol are two important bioactive ingredients that show a divergent therapeutic profile and can perturb multiple signal pathways. Both compounds promise to turn traditional medicines into modern drugs. In this review, we will mainly address the anticancer activities and mechanisms of action of these two agents and briefly describe some other antitumor components of the thunder god vine.

  4. Spices for Prevention and Treatment of Cancers

    PubMed Central

    Zheng, Jie; Zhou, Yue; Li, Ya; Xu, Dong-Ping; Li, Sha; Li, Hua-Bin

    2016-01-01

    Spices have been widely used as food flavorings and folk medicines for thousands of years. Numerous studies have documented the antioxidant, anti-inflammatory and immunomodulatory effects of spices, which might be related to prevention and treatment of several cancers, including lung, liver, breast, stomach, colorectum, cervix, and prostate cancers. Several spices are potential sources for prevention and treatment of cancers, such as Curcuma longa (tumeric), Nigella sativa (black cumin), Zingiber officinale (ginger), Allium sativum (garlic), Crocus sativus (saffron), Piper nigrum (black pepper) and Capsicum annum (chili pepper), which contained several important bioactive compounds, such as curcumin, thymoquinone, piperine and capsaicin. The main mechanisms of action include inducing apoptosis, inhibiting proliferation, migration and invasion of tumors, and sensitizing tumors to radiotherapy and chemotherapy. This review summarized recent studies on some spices for prevention and treatment of cancers, and special attention was paid to bioactive components and mechanisms of action. PMID:27529277

  5. Spices for Prevention and Treatment of Cancers.

    PubMed

    Zheng, Jie; Zhou, Yue; Li, Ya; Xu, Dong-Ping; Li, Sha; Li, Hua-Bin

    2016-08-12

    Spices have been widely used as food flavorings and folk medicines for thousands of years. Numerous studies have documented the antioxidant, anti-inflammatory and immunomodulatory effects of spices, which might be related to prevention and treatment of several cancers, including lung, liver, breast, stomach, colorectum, cervix, and prostate cancers. Several spices are potential sources for prevention and treatment of cancers, such as Curcuma longa (tumeric), Nigella sativa (black cumin), Zingiber officinale (ginger), Allium sativum (garlic), Crocus sativus (saffron), Piper nigrum (black pepper) and Capsicum annum (chili pepper), which contained several important bioactive compounds, such as curcumin, thymoquinone, piperine and capsaicin. The main mechanisms of action include inducing apoptosis, inhibiting proliferation, migration and invasion of tumors, and sensitizing tumors to radiotherapy and chemotherapy. This review summarized recent studies on some spices for prevention and treatment of cancers, and special attention was paid to bioactive components and mechanisms of action.

  6. Effects of low sulfur dioxide concentrations on bioactive compounds and antioxidant properties of Aglianico red wine.

    PubMed

    Gabriele, Morena; Gerardi, Chiara; Lucejko, Jeannette J; Longo, Vincenzo; Pucci, Laura; Domenici, Valentina

    2018-04-15

    This study analyzed the effect of low sulfur dioxide concentrations on the chromatic properties, phytochemical composition and antioxidant activity of Aglianico red wines with respect to wines produced from conventional winemaking. We determined the phytochemical composition by spectrophotometric methods and HPLC-DAD analysis and the in vitro antioxidant activity of different wine samples by the ORAC assay. The main important classes of fluorophore molecules in red wine were identified by Front-Face fluorescence spectroscopy, and the emission intensity trend was investigated at various sulfur dioxide concentrations. Lastly, we tested the effects of both conventional and low sulfite wines on ex vivo human erythrocytes under oxidative stimulus by the cellular antioxidant activity (CAA) assay and the hemolysis test. The addition of sulfur dioxide, which has well-known side effects, increased the content of certain bioactive components but did not raise the erythrocyte antioxidant capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Bioactivity, proximate, mineral and volatile profiles along the flowering stages of Opuntia microdasys (Lehm.): defining potential applications.

    PubMed

    Chahdoura, Hassiba; Barreira, João C M; Fernández-Ruiz, Virginia; Morales, Patricia; Calhelha, Ricardo C; Flamini, Guido; Soković, Marina; Ferreira, Isabel C F R; Achour, Lotfi

    2016-03-01

    Opuntia spp. flowers have been traditionally used for medical purposes, mostly because of their diversity in bioactive molecules with health promoting properties. The proximate, mineral and volatile compound profiles, together with the cytotoxic and antimicrobial properties were characterized in O. microdasys flowers at different maturity stages, revealing several statistically significant differences. O. microdasys stood out mainly for its high contents of dietary fiber, potassium and camphor, and its high activities against HCT15 cells, Staphylococcus aureus, Aspergillus versicolor and Penicillium funiculosum. The vegetative stage showed the highest cytotoxic and antifungal activities, whilst the full flowering stage was particularly active against bacterial species. The complete dataset has been classified by principal component analysis, achieving clearly identifiable groups for each flowering stage, elucidating also the most distinctive features, and comprehensively profiling each of the assayed stages. The results might be useful to define the best flowering stage considering practical application purposes.

  8. Screening and analysis of the multiple absorbed bioactive components and metabolites in rat plasma after oral administration of Jitai tablets by high-performance liquid chromatography/diode-array detection coupled with electrospray ionization tandem mass spectrometry.

    PubMed

    Wang, Shu-Ping; Liu, Lei; Wang, Ling-Ling; Jiang, Peng; Zhang, Ji-Quan; Zhang, Wei-Dong; Liu, Run-Hui

    2010-06-15

    Based on the serum pharmacochemistry technique and high-performance liquid chromatography/diode-array detection (HPLC/DAD) coupled with electrospray tandem mass spectrometry (HPLC/ESI-MS/MS), a method for screening and analysis of the multiple absorbed bioactive components and metabolites of Jitai tablets (JTT) in orally dosed rat plasma was developed. Plasma was treated by methanol precipitation prior to liquid chromatography, and the separation was carried out on a Symmetry C(18) column, with a linear gradient (0.1% formic acid/water/acetonitrile). Mass spectra were acquired in negative and positive ion modes, respectively. As a result, 26 bioactive components originated from JTT and 5 metabolites were tentatively identified in orally dosed rat plasma by comparing their retention times and MS spectra with those of authentic standards and literature data. It is concluded that an effective and reliable analytical method was set up for screening the bioactive components of Chinese herbal medicine, which provided a meaningful basis for further pharmacology and active mechanism research of JTT. Copyright (c) 2010 John Wiley & Sons, Ltd.

  9. Suitability of Different Food Grade Materials for the Encapsulation of Some Functional Foods Well Reported for Their Advantages and Susceptibility.

    PubMed

    Wani, Touseef Ahmed; Shah, Adil Gani; Wani, Sajad Mohd; Wani, Idrees Ahmed; Masoodi, Farooq Ahmad; Nissar, Nazia; Shagoo, Mudasir Ahmad

    2016-11-17

    Functional foods find a very important place in the modern era, where different types of cancer, diabetes, cardiovascular diseases, etc. are on a high. Irrespective of the abundance of bioactive components in different fruits and vegetables, their low solubility in aqueous solution, vulnerability to destruction in different environmental and gastrointestinal conditions and a low intestinal absorption becomes a concern. Because it is quite difficult to commercialize non food materials for the food encapsulation purposes due to their safety concerns in the human body, scientists in the recent times have come up with the idea of encapsulating the different bioactive components in different food grade materials that are able to safeguard these bioactive components against the different environmental and gastrointestinal conditions and ensure their safe and targeted delivery at their absorption sites. Different food grade encapsulation materials including various oligosaccharides, polysaccharides (starch, cyclodextrins, alginates, chitosan, gum arabic, and carboxymethyl cellulose) and proteins and their suitability for encapsulating various bioactive components like flavonoids (catechins, rutin, curcumin, hesperetin, and vanillin), nonflavonoids (resveratrol), carotenoids (β-carotene, lycopene, and lutein), and fatty acids (fish oil, flaxseed oil, and olive oil) of high medical and nutritional value are reviewed here.

  10. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review.

    PubMed

    Bernardo, Enrico; Fiocco, Laura; Parcianello, Giulio; Storti, Enrico; Colombo, Paolo

    2014-03-06

    Preceramic polymers, i.e. , polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings) or functional (bioactive ceramics, luminescent materials), mainly relies on modifications of the polymers at the nano-scale, i.e. , on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs), or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix.

  11. Bread enriched in lycopene and other bioactive compounds by addition of dry tomato waste.

    PubMed

    Nour, Violeta; Ionica, Mira Elena; Trandafir, Ion

    2015-12-01

    The tomato processing industry generates high amounts of waste, mainly tomato skins and seeds, which create environmental problems. These residues are attractive sources of valuable bioactive components and pigments. A relatively simple recovery technology could consist of production of powders to be directly incorporated into foods. Tomato waste coming from a Romanian tomato processing unit were analyzed for the content of several bioactive compounds like ascorbic acid, β-carotene, lycopene, total phenolics, mineral and trace elements. In addition, its antioxidant capacity was assayed. Results revealed that tomato waste (skins and seeds) could be successfully utilized as functional ingredient for the formulation of antioxidant rich functional foods. Dry tomato processing waste were used to supplement wheat flour at 6 and 10 % levels (w/w flour basis) and the effects on the bread's physicochemical, baking and sensorial characteristics were studied. The following changes were observed: increase in moisture content, titratable acidity and bread crumb elasticity, reduction in specific volume and bread crumb porosity. The addition of dry tomato waste at 6 % resulted in bread with good sensory characteristics and overall acceptability but as the amount of dry tomato waste increased to 10 %, bread was less acceptable.

  12. Fast Centrifugal Partition Chromatography Fractionation of Concentrated Agave (Agave salmiana) Sap to Obtain Saponins with Apoptotic Effect on Colon Cancer Cells.

    PubMed

    Santos-Zea, Liliana; Fajardo-Ramírez, Oscar R; Romo-López, Irasema; Gutiérrez-Uribe, Janet A

    2016-03-01

    Separation of potentially bioactive components from foods and plant extracts is one of the main challenges for their study. Centrifugal partition chromatography has been a successful technique for the screening and identification of molecules with bioactive potential, such as steroidal saponins. Agave is a source of steroidal saponins with anticancer potential, though the activity of these compounds in concentrated agave sap has not been yet explored. In this study, fast centrifugal partition chromatography (FCPC) was used coupled with in vitro tests on HT-29 cells as a screening procedure to identify apoptotic saponins from an acetonic extract of concentrated agave sap. The three most bioactive fractions obtained by FCPC at partition coefficients between 0.23 and 0.4 contained steroidal saponins, predominantly magueyoside b. Flow cytometry analysis determined that the fraction rich in kammogenin and manogenin glycosides induced apoptosis, but when gentrogenin and hecogenin glycosides were also found in the fraction, a necrotic effect was observed. In conclusion, this study provides the evidence that steroidal saponins in concentrated agave sap were potential inductors of apoptosis and that it was possible to separate them using fast centrifugal partition chromatography.

  13. Bioactive Phytochemicals from Wild Arbutus unedo L. Berries from Different Locations in Portugal: Quantification of Lipophilic Components

    PubMed Central

    Fonseca, Daniela F. S.; Salvador, Ângelo C.; Santos, Sónia A. O.; Vilela, Carla; Freire, Carmen S. R.; Silvestre, Armando J. D.; Rocha, Sílvia M.

    2015-01-01

    The lipophilic composition of wild Arbutus unedo L. berries, collected from six locations in Penacova (center of Portugal), as well as some general chemical parameters, namely total soluble solids, pH, titratable acidity, total phenolic content and antioxidant activity was studied in detail to better understand its potential as a source of bioactive compounds. The chemical composition of the lipophilic extracts, focused on the fatty acids, triterpenoids, sterols, long chain aliphatic alcohols and tocopherols, was investigated by gas chromatography–mass spectrometry (GC–MS) analysis of the dichloromethane extracts. The lipophilic extractives of the ripe A. unedo berries ranged from 0.72% to 1.66% (w/w of dry weight), and consisted mainly of triterpenoids, fatty acids and sterols. Minor amounts of long chain aliphatic alcohols and tocopherols were also identified. Forty-one compounds were identified and among these, ursolic acid, lupeol, α-amyrin, linoleic and α-linolenic acids, and β-sitosterol were highlighted as the major components. To the best of our knowledge the current research study provides the most detailed phytochemical repository for the lipophilic composition of A. unedo, and offers valuable information for future valuation and exploitation of these berries. PMID:26110390

  14. Evaluation of quality of kefir from milk obtained from goats supplemented with a diet rich in bioactive compounds.

    PubMed

    Cais-Sokolińska, Dorota; Pikul, Jan; Wójtowski, Jacek; Danków, Romualda; Teichert, Joanna; Czyżak-Runowska, Grażyna; Bagnicka, Emilia

    2015-04-01

    The composition of bioactive components in dairy products depends on their content in raw milk and the processing conditions. The experimental material consisted of the milk of dairy goats supplemented with 120 g d(-1) per head of false flax cake. The aim of the study was to evaluate the quality of kefir produced from goat's milk with a higher content of bioactive components resulting from supplementation of the goats' diet with false flax cake. The administration of false flax cake to goats had a positive effect on the fatty acid profile of the raw milk, causing an increase in the proportion of polyunsaturated fatty acids (PUFA), including conjugated linoleic acid (CLA) and n-3 fatty acids. Their increased percentage was detected in the kefir after production as well as after storage. The processing value of the harvested milk did not differ from the qualitative characteristics of milk from goats of the control group. Increasing the proportion of bioactive components in goat's milk did not result in changes in the acidity, texture, colour, flavour, aroma or consistency of the kefir obtained. Milk and kefir obtained after the administration of false flax cake to goats contain bioactive components (PUFA including CLA, n-3 and monoenic trans fatty acids) in significant amounts. Kefir from experimental goat's milk did not differ in quality from kefir made from the milk of the control group. © 2014 Society of Chemical Industry.

  15. Biochemometrics for Natural Products Research: Comparison of Data Analysis Approaches and Application to Identification of Bioactive Compounds.

    PubMed

    Kellogg, Joshua J; Todd, Daniel A; Egan, Joseph M; Raja, Huzefa A; Oberlies, Nicholas H; Kvalheim, Olav M; Cech, Nadja B

    2016-02-26

    A central challenge of natural products research is assigning bioactive compounds from complex mixtures. The gold standard approach to address this challenge, bioassay-guided fractionation, is often biased toward abundant, rather than bioactive, mixture components. This study evaluated the combination of bioassay-guided fractionation with untargeted metabolite profiling to improve active component identification early in the fractionation process. Key to this methodology was statistical modeling of the integrated biological and chemical data sets (biochemometric analysis). Three data analysis approaches for biochemometric analysis were compared, namely, partial least-squares loading vectors, S-plots, and the selectivity ratio. Extracts from the endophytic fungi Alternaria sp. and Pyrenochaeta sp. with antimicrobial activity against Staphylococcus aureus served as test cases. Biochemometric analysis incorporating the selectivity ratio performed best in identifying bioactive ions from these extracts early in the fractionation process, yielding altersetin (3, MIC 0.23 μg/mL) and macrosphelide A (4, MIC 75 μg/mL) as antibacterial constituents from Alternaria sp. and Pyrenochaeta sp., respectively. This study demonstrates the potential of biochemometrics coupled with bioassay-guided fractionation to identify bioactive mixture components. A benefit of this approach is the ability to integrate multiple stages of fractionation and bioassay data into a single analysis.

  16. A Critical Review of Bioactive Food Components, and of their Functional Mechanisms, Biological Effects and Health Outcomes.

    PubMed

    Perez-Gregorio, Rosa; Simal-Gandara, Jesus

    2017-01-01

    Eating behaviours are closely related to some medical conditions potentially leading to death such as cancer, cardiovascular disease and diabetes. Healthy eating practices, maintaining a normal weight, and regular physical activity could prevent up to 80% of coronary heart disease, 90% of type-2 diabetes and onethird of all cancers [1]. Over the last two decades, the food industry has invested much effort in research and development of healthier, more nutritious foods. These foods are frequently designated "functional" when they contain nutritional components required for healthy living or "nutraceuticals" when intended to treat or prevent disease or disorders through a variety of bioactive (e.g., antioxidant, antimicrobial, immunomodulatory, hypocholesterolaemic) functions that are performed by functional enzymes, probiotics, prebiotics, fibres, phytosterols, peptides, proteins, isoflavones, saponins or phytic acid, among other substances. Some agricultural and industrial residues have proven to be excellent choices as raw materials for producing bioactive compounds and have been proposed as potentially safe natural sources of antimicrobials and/or antioxidants for the food industry. Functional food ingredients containing bioactive compounds could be used as plant extracts by pharmaceutical and food industries. Bioactive food components influence health outcomes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Smart Dressings Based on Nanostructured Fibers Containing Natural Origin Antimicrobial, Anti-Inflammatory, and Regenerative Compounds

    PubMed Central

    Andreu, Vanesa; Mendoza, Gracia; Arruebo, Manuel; Irusta, Silvia

    2015-01-01

    A fast and effective wound healing process would substantially decrease medical costs, wound care supplies, and hospitalization significantly improving the patients’ quality of life. The search for effective therapeutic approaches seems to be imperative in order to avoid the aggravation of chronic wounds. In spite of all the efforts that have been made during the recent years towards the development of artificial wound dressings, none of the currently available options combine all the requirements necessary for quick and optimal cutaneous regeneration. Therefore, technological advances in the area of temporary and permanent smart dressings for wound care are required. The development of nanoscience and nanotechnology can improve the materials and designs used in topical wound care in order to efficiently release antimicrobial, anti-inflammatory and regenerative compounds speeding up the endogenous healing process. Nanostructured dressings can overcome the limitations of the current coverings and, separately, natural origin components can also overcome the drawbacks of current antibiotics and antiseptics (mainly cytotoxicity, antibiotic resistance, and allergies). The combination of natural origin components with demonstrated antibiotic, regenerative, or anti-inflammatory properties together with nanostructured materials is a promising approach to fulfil all the requirements needed for the next generation of bioactive wound dressings. Microbially compromised wounds have been treated with different essential oils, honey, cationic peptides, aloe vera, plant extracts, and other natural origin occurring antimicrobial, anti-inflammatory, and regenerative components but the available evidence is limited and insufficient to be able to draw reliable conclusions and to extrapolate those findings to the clinical practice. The evidence and some promising preliminary results indicate that future comparative studies are justified but instead of talking about the beneficial or inert effects of those natural origin occurring materials, the scientific community leads towards the identification of the main active components involved and their mechanism of action during the corresponding healing, antimicrobial, or regenerative processes and in carrying out systematic and comparative controlled tests. Once those natural origin components have been identified and their efficacy validated through solid clinical trials, their combination within nanostructured dressings can open up new avenues in the fabrication of bioactive dressings with outstanding characteristics for wound care. The motivation of this work is to analyze the state of the art in the use of different essential oils, honey, cationic peptides, aloe vera, plant extracts, and other natural origin occurring materials as antimicrobial, anti-inflammatory and regenerative components with the aim of clarifying their potential clinical use in bioactive dressings. We conclude that, for those natural occurring materials, more clinical trials are needed to reach a sufficient level of evidence as therapeutic agents for wound healing management. PMID:28793497

  18. Comparative study on major bioactive components in natural, artificial and in-vitro cultured Calculus Bovis.

    PubMed

    Yan, Shi-Kai; Wu, Yan-Wen; Liu, Run-Hui; Zhang, Wei-Dong

    2007-01-01

    Major bioactive components in various Calculus Bovis, including natural, artificial and in-vitro cultured Calculus Bovis, were comparatively studied. An approach of high-performance liquid chromatography coupled with ultraviolet and evaporative light scattering detections (HPLC/UV/ELSD) was established to simultaneously determinate six bioactive components thereof, including five bile acids (cholic acid, deoxycholic acid, ursodeoxycholic, chenodeoxycholic acid, hyodeoxycholic acid) and bilirubin. ELSD and UV detector were applied to detect bile acids and bilirubin respectively. The assay was performed on a C(18) column with water-acetonitrile gradient elution and the investigated constituents were authenticated by comparing retention times and mass spectra with those of reference compounds. The proposed method was applied to analyze twenty-one Calculus Bovis extraction samples, and produced data with acceptable linearity, precision, repeatability and accuracy. The result indicated the variations among Calculus Bovis samples under different developmental conditions. Artificial and in-vitro cultured Calculus Bovis, especially in-vitro cultured ones, which contain total bioactive constituents no less than natural products and have the best batch-to-batch uniformity, suffice to be used as substitutes of natural Calculus Bovis.

  19. Bioactive components on immuno-enhancement effects in the traditional Chinese medicine Shenqi Fuzheng Injection based on relevance analysis between chemical HPLC fingerprints and in vivo biological effects.

    PubMed

    Wang, Jinxu; Tong, Xin; Li, Peibo; Liu, Menghua; Peng, Wei; Cao, Hui; Su, Weiwei

    2014-08-08

    Shenqi Fuzheng Injection (SFI) is an injectable traditional Chinese herbal formula comprised of two Chinese herbs, Radix codonopsis and Radix astragali, which were commonly used to improve immune functions against chronic diseases in an integrative and holistic way in China and other East Asian countries for thousands of years. This present study was designed to explore the bioactive components on immuno-enhancement effects in SFI using the relevance analysis between chemical fingerprints and biological effects in vivo. According to a four-factor, nine-level uniform design, SFI samples were prepared with different proportions of the four portions separated from SFI via high speed counter current chromatography (HSCCC). SFI samples were assessed with high performance liquid chromatography (HPLC) for 23 identified components. For the immunosuppressed murine experiments, biological effects in vivo were evaluated on spleen index (E1), peripheral white blood cell counts (E2), bone marrow cell counts (E3), splenic lymphocyte proliferation (E4), splenic natural killer cell activity (E5), peritoneal macrophage phagocytosis (E6) and the amount of interleukin-2 (E7). Based on the hypothesis that biological effects in vivo varied with differences in components, multivariate relevance analysis, including gray relational analysis (GRA), multi-linear regression analysis (MLRA) and principal component analysis (PCA), were performed to evaluate the contribution of each identified component. The results indicated that the bioactive components of SFI on immuno-enhancement activities were calycosin-7-O-β-d-glucopyranoside (P9), isomucronulatol-7,2'-di-O-glucoside (P11), biochanin-7-glucoside (P12), 9,10-dimethoxypterocarpan-3-O-xylosylglucoside (P15) and astragaloside IV (P20), which might have positive effects on spleen index (E1), splenic lymphocyte proliferation (E4), splenic natural killer cell activity (E5), peritoneal macrophage phagocytosis (E6) and the amount of interleukin-2 (E7), while 5-hydroxymethyl-furaldehyde (P5) and lobetyolin (P13) might have negative effects on E1, E4, E5, E6 and E7. Finally, the bioactive HPLC fingerprint of SFI based on its bioactive components on immuno-enhancement effects was established for quality control of SFI. In summary, this study provided a perspective to explore the bioactive components in a traditional Chinese herbal formula with a series of HPLC and animal experiments, which would be helpful to improve quality control and inspire further clinical studies of traditional Chinese medicines. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Use of Raman microscopy and multivariate data analysis to observe the biomimetic growth of carbonated hydroxyapatite on bioactive glass.

    PubMed

    Seah, Regina K H; Garland, Marc; Loo, Joachim S C; Widjaja, Effendi

    2009-02-15

    In the present contribution, the biomimetic growth of carbonated hydroxyapatite (HA) on bioactive glass were investigated by Raman microscopy. Bioactive glass samples were immersed in simulated body fluid (SBF) buffered solution at pH 7.40 up to 17 days at 37 degrees C. Raman microscopy mapping was performed on the bioglass samples immersed in SBF solution for different periods of time. The collected data was then analyzed using the band-target entropy minimization technique to extract the observable pure component Raman spectral information. In this study, the pure component Raman spectra of the precursor amorphous calcium phosphate, transient octacalcium phosphate, and matured HA were all recovered. In addition, pure component Raman spectra of calcite, silica glass, and some organic impurities were also recovered. The resolved pure component spectra were fit to the normalized measured Raman data to provide the spatial distribution of these species on the sample surfaces. The current results show that Raman microscopy and multivariate data analysis provide a sensitive and accurate tool to characterize the surface morphology, as well as to give more specific information on the chemical species present and the phase transformation of phosphate species during the formation of HA on bioactive glass.

  1. Bioaccessible nutrients and bioactive components from fortified products prepared using finger millet (Eleusine coracana).

    PubMed

    Oghbaei, Morteza; Prakash, Jamuna

    2012-08-30

    Finger millet (Eleusine coracana), a staple food in semi-arid parts of the world, is a rich source of nutrients and bioactive components comparable to rice and wheat but with higher fibre content. Unprocessed and processed finger millet (whole flour (WFM), sieved flour (SFM), wafers and vermicelli with altered matrices (added Fe or Zn or reduced fibre)) were analysed for chemical composition, bioaccessible Fe, Zn and Ca, in vitro digestible starch (IVSD) and protein (IVPD) and bioactive components (polyphenols and flavonoids). WFM and SFM flours differed significantly in their composition. Sieving decreased the content of both nutrients and antinutrients in WFM but increased their digestibility/bioaccessibility. WFM products with Zn and Fe showed highest IVPD, whereas SFM products with Fe showed highest IVSD. Products with externally added Fe and Zn showed maximum bioaccessibility of Fe and Zn respectively. WFM had the highest levels of total polyphenols and flavonoids, 4.18 and 15.85 g kg⁻¹ respectively; however, bioaccessibility was highest in SFM vermicelli. The availability of nutrients and bioactive components was influenced by both processing methods and compositional alterations of the food matrix in finger millet products, and bioaccessibility of all constituents was higher in vermicelli (wet matrix) than in wafers (dry matrix). Copyright © 2012 Society of Chemical Industry.

  2. Bioactive Mushroom Polysaccharides: A Review on Monosaccharide Composition, Biosynthesis and Regulation.

    PubMed

    Wang, Qiong; Wang, Feng; Xu, Zhenghong; Ding, Zhongyang

    2017-06-13

    Mushrooms are widely distributed around the world and are heavily consumed because of their nutritional value and medicinal properties. Polysaccharides (PSs) are an important component of mushrooms, a major factor in their bioactive properties, and have been intensively studied during the past two decades. Monosaccharide composition/combinations are important determinants of PS bioactivities. This review summarizes: (i) monosaccharide composition/combinations in various mushroom PSs, and their relationships with PS bioactivities; (ii) possible biosynthetic pathways of mushroom PSs and effects of key enzymes on monosaccharide composition; (iii) regulation strategies in PS biosynthesis, and prospects for controllable biosynthesis of PSs with enhanced bioactivities.

  3. Comparison of bioactive components in pressurized and pasteurized longan juices fortified with encapsulated Lactobacillus casei 01

    NASA Astrophysics Data System (ADS)

    Chaikham, Pittaya; Apichartsrangkoon, Arunee

    2012-06-01

    In this study, longan juice was subjected to a high pressure of 500 MPa for 30 min and compared with a juice pasteurized at 90°C/2 min. Probiotic Lactobacillus casei 01 was fortified into both juices and the shelf life of these products was studied. Their bioactive components such as ascorbic acid, gallic acid and ellagic acid were analyzed by High Performance Liquid Chromatography (HPLC). Total phenolic compounds and 2,2-Diphenyl-1-picrythydrazyl radical-scavenging activity were determined by colorimetric and spectrophotometric methods. It was found that the pressurized longan juice retained higher amounts of bioactive compounds than the pasteurized juice. In terms of storage stability, bioactive compounds in both processed juices decreased according to the increase in storage time. The survivability of probiotic L. casei 01 in both processed juices declined from 9 to 6 log CFU/mL after 4 weeks of storage.

  4. Bioactive Glass Nanoparticles: From Synthesis to Materials Design for Biomedical Applications

    PubMed Central

    Vichery, Charlotte; Nedelec, Jean-Marie

    2016-01-01

    Thanks to their high biocompatibility and bioactivity, bioactive glasses are very promising materials for soft and hard tissue repair and engineering. Because bioactivity and specific surface area intrinsically linked, the last decade has seen a focus on the development of highly porous and/or nano-sized materials. This review emphasizes the synthesis of bioactive glass nanoparticles and materials design strategies. The first part comprehensively covers mainly soft chemistry processes, which aim to obtain dispersible and monodispersed nanoparticles. The second part discusses the use of bioactive glass nanoparticles for medical applications, highlighting the design of materials. Mesoporous nanoparticles for drug delivery, injectable systems and scaffolds consisting of bioactive glass nanoparticles dispersed in a polymer, implant coatings and particle dispersions will be presented. PMID:28773412

  5. Effects of Ultrasound Assistance on Dehydration Processes and Bioactive Component Retention of Osmo-Dried Sour Cherries.

    PubMed

    Siucińska, Karolina; Mieszczakowska-Frąc, Monika; Połubok, Aleksandra; Konopacka, Dorota

    2016-07-01

    Despite having numerous health benefits, dried sour cherries have proven to be more acceptable to consumers when infused with sugar or other sweeteners to enhance their flavor, which, in turn, leads to serious anthocyanin losses. For this reason, a consideration was made for the application of ultrasound to accelerate solid gain and shorten drying time, thus favoring bioactive component retention. To determine the usefulness of ultrasound as a tool for sour cherry osmotic infusion enhancement, the effect of sonication time on dehydration effectiveness, as well as the stability of bioactive components during osmotic treatment and consecutive convective drying, was investigated. Fruits were osmo-dehydrated using a 60% sucrose solution for 120 min (40 °C), during which, ultrasound of 25 kHz (0.4 W/cm(2) ), was applied for 0, 30, 60, 90, and 120 min, after which, the fruits were convectively dried. In the range of the applied ultrasound energy no significant effect of sonication on mass transfer intensification was observed; moreover, longer acoustic treatment seemed to retard moisture removal during subsequent convective drying, which can be related to the breakdown of the parenchyma cell walls caused by the prolonged ultrasound (US) action. It was concluded that although US assistance could be considered neutral for bioactive component retention, excessive sonication time can lead to some anthocyanin deterioration. According to high-performance liquid chromatography analysis, the particular anthocyanin alterations, both during dehydration and final drying, occurred in a similar way. Sonication time prolongation caused approximately 10% more bioactive compound deterioration, than earlier, shorter trials. © 2016 Institute of Food Technologists®

  6. Garcinia morella fruit, a promising source of antioxidant and anti-inflammatory agents induces breast cancer cell death via triggering apoptotic pathway.

    PubMed

    Choudhury, Bhaswati; Kandimalla, Raghuram; Elancheran, R; Bharali, Rupjyoti; Kotoky, Jibon

    2018-04-17

    A rapid rise in cancer cases worldwide, especially breast cancer in females, instigates the need for more effective and less side effect causing drugs from natural origin. Thereby, in the present study, Garcinia morella fruit was investigated for antioxidant, anti-inflammatory and anti-breast cancer activity. Preliminary antioxidant and anticancer evaluation of different fractions and crude methanol extract of G. morella fruit suggested chloroform fraction as the bioactive fraction. Time course analysis (by 24 h, 48 h and 72 h) of the bioactive fraction (1.56-25) μg/ml treatment on breast cancer cell lines (MCF7, MDAMB231 and SKBR3) showed dose and time dependent antiproliferative responses. Further, mechanistic studies involving morphological observation and western blotting analysis, revealed its apoptosis inducing effect on breast cancer. P53 dependent up-regulation of Bax and down-regulation of Bcl X L is suggested as the possible pathway of apoptosis followed by MCF7 cells on exposure to the bioactive fraction. The anti-inflammatory assays revealed that it significantly lowered the release of nitrite and TNF-α level of LPS induced RAW 264.7 cells (p < 0.05). Moreover, pre treatment of Carrageenan induced paw edema animals with 20 mg/kg of the bioactive fraction significantly (p < 0.05) inhibited paw inflammation and controlled the cytokine and nitrite levels of the edema induced rat. Its main bioactive component was identified to be Garcinol by UHPLC and ESI-MS/MS. Thereby, this study clearly reflects that G. morella fruit is a valuable antioxidant and anti-inflammatory gift of nature with the potential to be used against breast cancer. This is also the first report of isolation of bioactive compound Garcinol from G. morella fruit. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. A Systematic Review of the Mysterious Caterpillar Fungus Ophiocordyceps sinensis in Dong-ChongXiaCao (冬蟲夏草 Dōng Chóng Xià Cǎo) and Related Bioactive Ingredients

    PubMed Central

    Lo, Hui-Chen; Hsieh, Chienyan; Lin, Fang-Yi; Hsu, Tai-Hao

    2013-01-01

    The caterpillar fungus Ophiocordyceps sinensis (syn.† Cordyceps sinensis), which was originally used in traditional Tibetan and Chinese medicine, is called either “yartsa gunbu” or “DongChongXiaCao (冬蟲夏草 Dōng Chóng Xià Cǎo)” (“winter worm-summer grass”), respectively. The extremely high price of DongChongXiaCao, approximately USD $20,000 to 40,000 per kg, has led to it being regarded as “soft gold” in China. The multi-fungi hypothesis has been proposed for DongChongXiaCao; however, Hirsutella sinensis is the anamorph of O. sinensis. In Chinese, the meaning of “DongChongXiaCao” is different for O. sinensis, Cordyceps spp.,‡ and Cordyceps spƒ. Over 30 bioactivities, such as immunomodulatory, antitumor, anti-inflammatory, and antioxidant activities, have been reported for wild DongChongXiaCao and for the mycelia and culture supernatants of O. sinensis. These bioactivities derive from over 20 bioactive ingredients, mainly extracellular polysaccharides, intracellular polysaccharides, cordycepin, adenosine, mannitol, and sterols. Other bioactive components have been found as well, including two peptides (cordymin and myriocin), melanin, lovastatin, γ-aminobutyric acid, and cordysinins. Recently, the bioactivities of O. sinensis were described, and they include antiarteriosclerosis, antidepression, and antiosteoporosis activities, photoprotection, prevention and treatment of bowel injury, promotion of endurance capacity, and learning-memory improvement. H. sinensis has the ability to accelerate leukocyte recovery, stimulate lymphocyte proliferation, antidiabetes, and improve kidney injury. Starting January 1st, 2013, regulation will dictate that one fungus can only have one name, which will end the system of using separate names for anamorphs. The anamorph name “H. sinensis” has changed by the International Code of Nomenclature for algae, fungi, and plants to O. sinensis. PMID:24716152

  8. Nutrigenomics of extra-virgin olive oil: A review.

    PubMed

    Piroddi, Marta; Albini, Adriana; Fabiani, Roberto; Giovannelli, Lisa; Luceri, Cristina; Natella, Fausta; Rosignoli, Patrizia; Rossi, Teresa; Taticchi, Agnese; Servili, Maurizio; Galli, Francesco

    2017-01-02

    Nutrigenomics data on the functional components of olive oil are still sparse, but rapidly increasing. Olive oil is the main source of fat and health-promoting component of the Mediterranean diet. Positive effects have been observed on genes involved in the pathobiology of most prevalent age- and lifestyle-related human conditions, such as cancer, cardiovascular disease and neurodegeneration. Other effects on health-promoting genes have been identified for bioactive components of olives and olive leafs. Omics technologies are offering unique opportunities to identify nutritional and health biomarkers associated with these gene responses, the use of which in personalized and even predictive protocols of investigation, is a main breakthrough in modern medicine and nutrition. Gene regulation properties of the functional components of olive oil, such as oleic acid, biophenols and vitamin E, point to a role for these molecules as natural homeostatic and even hormetic factors with applications as prevention agents in conditions of premature and pathologic aging. Therapeutic applications can be foreseen in conditions of chronic inflammation, and particularly in cancer, which will be discussed in detail in this review paper as major clinical target of nutritional interventions with olive oil and its functional components. © 2016 BioFactors, 43(1):17-41, 2017. © 2016 International Union of Biochemistry and Molecular Biology.

  9. HepG2 cells biospecific extraction and HPLC-ESI-MS analysis for screening potential antiatherosclerotic active components in Bupeuri radix.

    PubMed

    Liu, Shuqiang; Tan, Zhibin; Li, Pingting; Gao, Xiaoling; Zeng, Yuaner; Wang, Shuling

    2016-03-20

    HepG2 cells biospecific extraction method and high performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) analysis was proposed for screening of potential antiatherosclerotic active components in Bupeuri radix, a well-known Traditional Chinese Medicine (TCM). The hypothesis suggested that when cells are incubated together with the extracts of TCM, the potential bioactive components in the TCM should selectively combine with the receptor or channel of HepG2 cells, then the eluate which contained biospecific component binding to HepG2 cells was identified using HPLC-ESI-MS analysis. The potential bioactive components of Bupeuri radix were investigated using the proposed approach. Five compounds in the saikosaponins of Bupeuri radix were detected as these components selectively combined with HepG2 cells, among these compounds, two potentially bioactive compounds namely saikosaponin b1 and saikosaponin b2 (SSb2) were identified by comparing with the chromatography of the standard sample and analysis of the structural clearance characterization of MS. Then SSb2 was used to assess the uptake of DiI-high density lipoprotein (HDL) in HepG2 cells for antiatherosclerotic activity. The results have showed that SSb2, with indicated concentrations (5, 15, 25, and 40 μM) could remarkably uptake dioctadecylindocarbocyanine labeled- (DiI) -HDL in HepG2 cells (Vs control group, *P<0.01). In conclusion, the application of HepG2 biospecific extraction coupled with HPLC-ESI-MS analysis is a rapid, convenient, and reliable method for screening potential bioactive components in TCM and SSb2 may be a valuable novel drug agent for the treatment of atherosclerosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Isolation and bioactivities of a non-sericin component from cocoon shell silk sericin of the silkworm Bombyx mori.

    PubMed

    Wang, Hai-Yan; Wang, Yuan-Jing; Zhou, Li-Xia; Zhu, Lin; Zhang, Yu-Qing

    2012-02-01

    The cocoon shell of the silkworm Bombyx mori consists of silk fibroin fiber (70%) surrounded by a sericin layer made up of sericin (25%) and non-sericin (5%) components. The non-sericin component which consists of carbohydrate, salt, wax, flavonoids and derivatives is often overlooked in applied research into sericin and its hydrolysate. Here, sericin and non-sericin compounds were obtained from the sericin layer of five types of cocoon shell by means of degumming in water followed by extraction and separation in ethanol. These ethanol extracts were found to mainly contain flavonoids and free amino acids possessing scavenging activities of the 2,2-diphenyl -1-picrylhydrazyl (DPPH) free radical and inhibiting activities of tyrosinase, which were much greater than the corresponding activities of the purified sericin proteins. The extracts also strongly inhibited α-glucosidase while the sericins had no such activity. In particular, the inhibitory activities of the ethanol extract of Daizo cocoons were much greater than those of the other cocoons. The IC(50) values of the Daizo cocoons for DPPH free radicals, tyrosinase, and α-glucosidase were 170, 27, and 110 μg mL(-1), respectively. The bioactivities of the non-sericin component were much higher than the activity of sericin alone. In addition, the in vivo test showed preliminarily that the administration of the non-sericin component had effectively resistant activity against streptozocin (STZ) oxidation and that of the purified sericin could also evidently decrease the induction ratio of diabetic mice induced by STZ. Therefore, ethanol extract protocols of the sericin layer of cocoon shells provide a novel stock which, together with sericin protein, has potential uses in functional food, biotechnological and medical applications.

  11. Utilizing food effects to overcome challenges in delivery of lipophilic bioactives: structural design of medical and functional foods.

    PubMed

    McClements, David Julian

    2013-12-01

    The oral bioavailability of many lipophilic bioactives, such as pharmaceuticals and nutraceuticals, is relatively low due to their poor solubility, permeability and/or chemical stability within the human gastrointestinal tract (GIT). The oral bioavailability of lipophilic bioactives can be improved by designing food matrices that control their release, solubilization, transport and absorption within the GIT. This article discusses the challenges associated with delivering lipophilic bioactive components, the impact of food composition and structure on oral bioavailability and the design of functional and medical foods for improving the oral bioavailability of lipophilic bioactives. Food-based delivery systems can be used to improve the oral bioavailability of lipophilic bioactives. There are a number of potential advantages to delivering lipophilic bioactives using functional or medical foods: greater compliance than conventional delivery forms; increased bioavailability and efficacy; and reduced variability in biological effects. However, food matrices are structurally complex multicomponent materials and research is still needed to identify optimum structures and compositions for particular bioactives.

  12. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review

    PubMed Central

    Bernardo, Enrico; Fiocco, Laura; Parcianello, Giulio; Storti, Enrico; Colombo, Paolo

    2014-01-01

    Preceramic polymers, i.e., polymers that are converted into ceramics upon heat treatment, have been successfully used for almost 40 years to give advanced ceramics, especially belonging to the ternary SiCO and SiCN systems or to the quaternary SiBCN system. One of their main advantages is the possibility of combining the shaping and synthesis of ceramics: components can be shaped at the precursor stage by conventional plastic-forming techniques, such as spinning, blowing, injection molding, warm pressing and resin transfer molding, and then converted into ceramics by treatments typically above 800 °C. The extension of the approach to a wider range of ceramic compositions and applications, both structural and thermo-structural (refractory components, thermal barrier coatings) or functional (bioactive ceramics, luminescent materials), mainly relies on modifications of the polymers at the nano-scale, i.e., on the introduction of nano-sized fillers and/or chemical additives, leading to nano-structured ceramic components upon thermal conversion. Fillers and additives may react with the main ceramic residue of the polymer, leading to ceramics of significant engineering interest (such as silicates and SiAlONs), or cause the formation of secondary phases, significantly affecting the functionalities of the polymer-derived matrix. PMID:28788548

  13. Bioactivity tests of calcium phosphates with variant molar ratios of main components.

    PubMed

    Pluta, Klaudia; Sobczak-Kupiec, Agnieszka; Półtorak, Olga; Malina, Dagmara; Tyliszczak, Bożena

    2018-03-09

    Calcium phosphates constitute attractive materials of biomedical applications. Among them particular attention is devoted to bioactive hydroxyapatite (HAp) and bioresorbable tricalcium phosphate (TCP) that possess ability to bind to living bones and can be used clinically as important bone substitutes. Notably, in vivo bone bioactivity can be predicted from apatite formation of bone immersed in SBF fluids. Thus, analyses of behavior of calcium phosphates immersed in various bio fluids are of great importance. Recently, stoichiometric HAp and TCP structures have been widely studied, whereas only limited number of publications have been devoted to analyses of nonstoichiometric calcium phosphates. Here, we report physicochemical analysis of natural and synthetic phosphates with variable Ca/P molar ratios. Subsequently attained structures were subjected to incubation in either artificial saliva or Ringer's fluids. Both pH and conductivity of such fluids were determined before and after incubation. Furthermore, the influence of the Ca/P values on such parameters was exemplified. Physicochemical analysis of received materials was performed by XRD and FT-IR characterization techniques. Their potential antibacterial activity and behavior in the presence of infectious microorganisms as Escherichia coli and Staphylococcus aureus was also evaluated. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2018. © 2018 Wiley Periodicals, Inc.

  14. Characterisation of metabolic profile of banana genotypes, aiming at biofortified Musa spp. cultivars.

    PubMed

    Borges, Cristine Vanz; Amorim, Vanusia Batista de Oliveira; Ramlov, Fernanda; Ledo, Carlos Alberto da Silva; Donato, Marcela; Maraschin, Marcelo; Amorim, Edson Perito

    2014-02-15

    The banana is an important, widely consumed fruit, especially in areas of rampant undernutrition. Twenty-nine samples were analysed, including 9 diploids, 13 triploids and 7 tetraploids, in the Active Germplasm Bank, at Embrapa Cassava & Fruits, to evaluate the bioactive compounds. The results of this study reveal the presence of a diversity of bioactive compounds, e.g., catechins; they are phenolic compounds with high antioxidant potential and antitumour activity. In addition, accessions with appreciable amounts of pVACs were identified, especially compared with the main cultivars that are currently marketed. The ATR-FTIR, combined with principal components analysis, identified accessions with distinct metabolic profiles in the fingerprint regions of compounds important for human health. Likewise, starch fraction characterisation allowed discrimination of accessions according to their physical, chemical, and functional properties. The results of this study demonstrate that the banana has functional characteristics endowing it with the potential to promote human health. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Characterization of polysaccharides with marked inhibitory effect on lipid accumulation in Pleurotus eryngii.

    PubMed

    Chen, Jingjing; Yong, Yangyang; Xing, Meichun; Gu, Yifan; Zhang, Zhao; Zhang, Shizhu; Lu, Ling

    2013-09-12

    Mushrooms have a great potential for the production of useful bioactive metabolites. To explore the bioactive compounds from edible mushrooms for interfering with the development of macrophage-derived foam cells, which is recognized as the hallmark of early atherosclerosis, eight types of mushrooms polysaccharides had been selected to be tested. Consequently, different mushrooms polysaccharides displayed diverse component profiles. Of polysaccharides that we tested, the Pleurotus eryngii polysaccharide had the strongest inhibitory effect on lipid accumulation. Furthermore, through fractionation of DEAE-52 and Sephadex G-100, the polysaccharide from P. eryngii had been successfully purified and identified. By the analysis of IR, GC, and HPLC, the purified polysaccharide was estimated to be 30-38 kDa for the average molecular weight with the monosaccharide composition mainly composed of D-types of mannose, glucose and galactose. Findings presented in this report firstly provide direct evidence, which links the purified polysaccharide moiety with the biological function in foam-cell model. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. An oral colon-targeting controlled release system based on resistant starch acetate: synthetization, characterization, and preparation of film-coating pellets.

    PubMed

    Pu, Huayin; Chen, Ling; Li, Xiaoxi; Xie, Fengwei; Yu, Long; Li, Lin

    2011-05-25

    An oral colon-targeting controlled release system based on resistant starch acetate (RSA) as a film-coating material was developed. The RSA was successfully synthesized, and its digestion resistibility could be improved by increasing the degree of substitution (DS), which was favorable for the colon-targeting purpose. As a delivery carrier material, the characteristics of RSA were investigated by polarized light microscopy, FTIR spectroscopy, and X-ray diffraction. The results revealed a decrease of the crystallinity of RSA and a change of its crystalline structure from B + V hydrid type to V type. To evaluate the colon-targeting release performance, the RSA film-coated pellets loaded with different bioactive components were prepared by extrusion-spheronization and then by fluid bed coating. The effects of the DS, plasticizer content, and coating thickness of the RSA film and those of the content and molecular weight of the loaded bioactive component on the colon-targeting release performance of the resulting delivery system were investigated. By adjusting the DS, the coating thickness, and the plasticizer content of the RSA film, either the pellets loaded with a small molecular bioactive component such as 5-aminosalicylic acid or those with a macromolecular bioactive peptide or protein such as bovine serum albumin, hepatocyte growth-promoting factor, or insulin showed a desirable colon-targeting release performance. The release percentage was less than 12% in simulated upper gastrointestinal tract and went up to 70% over a period of 40 h in simulated colonic fluid. This suggests that the delivery system based on RSA film has an excellent colon-targeting release performance and the universality for a wide range of bioactive components.

  17. [Quality evaluation of Artemisiae Argyi Folium based on fingerprint analysis and quantitative analysis of multicomponents].

    PubMed

    Guo, Long; Jiao, Qian; Zhang, Dan; Liu, Ai-Peng; Wang, Qian; Zheng, Yu-Guang

    2018-03-01

    Artemisiae Argyi Folium, the dried leaves of Artemisia argyi, has been widely used in traditional Chinese and folk medicines for treatment of hemorrhage, pain, and skin itch. Phytochemical studies indicated that volatile oil, organic acid and flavonoids were the main bioactive components in Artemisiae Argyi Folium. Compared to the volatile compounds, the research of nonvolatile compounds in Artemisiae Argyi Folium are limited. In the present study, an accurate and reliable fingerprint approach was developed using HPLC for quality control of Artemisiae Argyi Folium. A total of 10 common peaks were marked,and the similarity of all the Artemisiae Argyi Folium samples was above 0.940. The established fingerprint method could be used for quality control of Artemisiae Argyi Folium. Furthermore, an HPLC method was applied for simultaneous determination of seven bioactive compounds including five organic acids and two flavonoids in Artemisiae Argyi Folium and Artemisiae Lavandulaefoliae Folium samples. Moreover, chemometrics methods such as hierarchical clustering analysis and principal component analysis were performed to compare and discriminate the Artemisiae Argyi Folium and Artemisiae Lavandulaefoliae Folium based on the quantitative data of analytes. The results indicated that simultaneous quantification of multicomponents coupled with chemometrics analysis could be a well-acceptable strategy to identify and evaluate the quality of Artemisiae Argyi Folium. Copyright© by the Chinese Pharmaceutical Association.

  18. Bioactive compounds and encapsulation of Yanang (Tiliacora triandra) leaves.

    PubMed

    Singthong, Jittra; Oonsivilai, Ratchadaporn; Oonmetta-Aree, Jirawan; Ningsanond, Suwayd

    2014-01-01

    Yanang (Tiliacora triandra) has been known as vegetable and herbal in northeast Thailand and Lao People's Democratic Republic. Extracts from Yanang leaves contain high amounts of polyphenol constituents possessing antioxidant activity. This work investigated bioactive compounds of Yanang extracts prepared by infusion with water, ethanol and acetone. Furthermore, this paper reports the design of the experimental method for optimization of Yanang encapsulation using three independent variables: the ratio of core material (Yanang), to wall material (gum Arabic), gum Arabic concentration and inlet temperature of spray drying on bioactive compounds stability. The stability of bioactive compounds was evaluated using phenolic compounds, total antioxidant, carotenoids and chlorophyll. The study of the bioactivity of Yanang extracts found that extraction with water was the appropriate application. The study of Yanang encapsulation demonstrated that gum Arabic, as coating agents, protected bioactive compounds of Yanang. Optimized condition for the encapsulation was at the ratio of core to wall {1:4}, in gum Arabic concentration 10% (w/v), and inlet temperature at 160▯C. The results show that the bioactive compounds were mainly affected by the ratio of core to wall material. Besides, moisture content and particle size of encapsulation depend on inlet temperature of spray drying, and gum Arabic concentration, respectively. This optimization reveals that the encapsulation process did not lose the bioactive compounds. Yanang extract with water was the main phenolic compound and showed high antioxidant activities. This study demonstrates the potentials of using spray drying process and optimization for the encapsulation of herbal products.

  19. Nano Traditional Chinese Medicine: Current Progresses and Future Challenges.

    PubMed

    Huang, Yi; Zhao, Yinglan; Liu, Fang; Liu, Songqing

    2015-01-01

    Nano traditional Chinese medicine (nano TCM) refers to bioactive ingredients, bioactive parts, medicinal materials or complex prescription, being approximately 100 nm in size, which are processed by nanotechnology. Nano TCM is a product of the TCM modernization, and is an application of nanotechnology in the field of TCM. This article reviews literatures on researches of nano TCM, which were published in the past 15 years. Different nanotechnologies have been used in preparation of Nano TCM in view of the varying aims of the study. The mechanical crushing technology is the main approach for nanolization of TCM material and complex prescription, and nanoparticulate drug delivery systems is the main approach for nanolization of bioactive ingredients or bioactive parts in TCM. Nano TCM has a number of advantages, for example, enhancing the bioavailability of TCM, reducing the adverse effects of TCM, achieving sustained release, attaining targeted delivery, enhancing pharmacological effects and improving the administration route of TCM. However, there are still many problems that must be resolved in nano TCM research. The main challenges to nano TCM include the theory system of TCM modernization, preparation technology, safety and stability, etc.

  20. Epigenetic diet: impact on the epigenome and cancer

    PubMed Central

    Hardy, Tabitha M; Tollefsbol, Trygve O

    2011-01-01

    A number of bioactive dietary components are of particular interest in the field of epigenetics. Many of these compounds display anticancer properties and may play a role in cancer prevention. Numerous studies suggest that a number of nutritional compounds have epigenetic targets in cancer cells. Importantly, emerging evidence strongly suggests that consumption of dietary agents can alter normal epigenetic states as well as reverse abnormal gene activation or silencing. Epigenetic modifications induced by bioactive dietary compounds are thought to be beneficial. Substantial evidence is mounting proclaiming that commonly consumed bioactive dietary factors act to modify the epigenome and may be incorporated into an ‘epigenetic diet’. Bioactive nutritional components of an epigenetic diet may be incorporated into one’s regular dietary regimen and used therapeutically for medicinal or chemopreventive purposes. This article will primarily focus on dietary factors that have been demonstrated to influence the epigenome and that may be used in conjunction with other cancer prevention and chemotherapeutic therapies. PMID:22022340

  1. Organic-inorganic composites designed for biomedical applications.

    PubMed

    Miyazaki, Toshiki; Ishikawa, Kunio; Shirosaki, Yuki; Ohtsuki, Chikara

    2013-01-01

    Several varieties of ceramics, such as Bioglass-type glasses, sintered hydroxyapatite and glass-ceramic A-W, exhibit specific biological affinity, i.e., direct bonding to surrounding bone, when implanted in bony defects. These bone-bonding ceramics are called bioactive ceramics and are utilized as important bone substitutes in the medical field. However, there is a limitation to their clinical applications because of their inappropriate mechanical properties. Natural bone takes a kind of organic-inorganic composite, where apatite nanocrystals are precipitated on collagen fibers. Therefore, problems with the bioactive ceramics can be solved by material design based on the composites. In this paper, current research topics on the development of bioactive organic-inorganic composites inspired by actual bone microstructure have been reviewed in correlation with preparation methods and various properties. Several kinds of inorganic components have been found to exhibit bioactivity in the body environment. Combination of the inorganic components with various organic polymers enables the development of bioactive organic-inorganic composites. In addition, novel biomedical applications of the composites to drug delivery systems, scaffolds for tissue regeneration and injectable biomaterials are available by combining drugs or biological molecules with appropriate control of its microstructure.

  2. Preparation and characterization of bioactive glass tablets and evaluation of bioactivity and cytotoxicity in vitro.

    PubMed

    Chen, Jianhui; Zeng, Lei; Chen, Xiaofeng; Liao, Tianshun; Zheng, Jiafu

    2018-09-01

    In this study, the SiO 2 -CaO-P 2 O 5 ternary component of bioactive glass particles were successfully synthesized by sol-gel method, then the bioactive glass particles were pressed into tablets with dry pressing molding technology. The physicochemical structure, in-vitro bioactivity and biocompatibility of BG tablets were characterized by various methods, such as XRD、SEM、FTIR, etc. The results showed that the sol-gel bioactive glass particle was distinguished with its amorphous structure and micron-size. After being soaked in Tris-Hcl solution for 15 d, the bioactive glass tablets didn't collapse. Also, the mineralization assay in vitro showed that the bioactive glass tablets had good capability of inducing the formation of hydroxycarbonate apatite (HCA) after being immersed in simulated body fluid (SBF). In addition, the cytotoxicity assay indicated that the osteoblast (MC3T3) grew well on the surface of bioactive glass tablets. According to the above results, the bioactive glass tablets presented good mechanical strength, excellent apatite-forming activity and high biocompatibility, which demonstrated their potential applications in the field of bone defect repairing.

  3. Bioactive peptides derived from traditional Chinese medicine and traditional Chinese food: A review.

    PubMed

    Liu, Ming; Wang, Yunpu; Liu, Yuhuan; Ruan, Roger

    2016-11-01

    There is an urgent treat of numerous chronic diseases including heart disease, stroke, cancer, chronic respiratory diseases and diabetes, which have a significant influence on the health of people worldwide. In addition to numerous preventive and therapeutic drug treatments, important advances have been achieved in the identification of bioactive peptides that may contribute to long-term health. Although bioactive peptides with various biological activities received unprecedented attention, as a new source of bioactive peptides, the significant role of bioactive peptides from traditional Chinese medicine and traditional Chinese food has not fully appreciated compared to other bioactive components. Hence, identification and bioactivity assessment of these peptides could benefit the pharmaceutical and food industry. Furthermore, the functional properties of bioactive peptides help to demystify drug properties and health benefits of traditional Chinese medicine and traditional Chinese food. This paper reviews the generation and biofunctional properties of various bioactive peptides derived from traditional Chinese medicine and traditional Chinese food. Mechanisms of digestion, bioavailability of bioactive peptides and interactions between traditional Chinese medicine and traditional Chinese food are also summarized in this review. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Biotransformation Strategy To Reduce Allergens in Propolis

    PubMed Central

    Gardana, Claudio; Barbieri, Andrea; Simonetti, Paolo

    2012-01-01

    Propolis (bee glue) is a resinous, sticky, dark-colored material produced by honeybees. Propolis today, due to its medicinal properties, is increasingly popular and is extensively used in food, beverages, and cosmetic products. Besides its numerous positive properties, propolis may also have adverse effects, such as, principally, allergic eczematous contact dermatitis in apiarists and in consumers with an allergic predisposition. In this study, we found appropriate conditions for removing caffeate esters, which are the main allergenic components, from raw propolis. The proposed method consists of the resuspension of propolis in a food grade solvent, followed by a biotransformation based on the cinnamoyl esterase activity of Lactobacillus helveticus. We showed that the reduction of caffeate esters by L. helveticus did not affect the content of flavonoids, which are the main bioactive molecules of propolis. Furthermore, we verified that the biotransformation of propolis did not cause a loss of antimicrobial activity. Finally, we demonstrated that the ability of L. helveticus to hydrolyze caffeate esters in propolis is strain specific. In conclusion, the proposed strategy is simple, employs food grade materials, and is effective in selectively removing allergenic molecules without affecting the bioactive fraction of propolis. This is the first study demonstrating that the allergenic caffeate esters of propolis can be eliminated by means of a bacterial biotransformation procedure. PMID:22522681

  5. Antimycobacterial and antimalarial activities of endophytic fungi associated with the ancient and narrowly endemic neotropical plant Vellozia gigantea from Brazil.

    PubMed

    Ferreira, Mariana C; Cantrell, Charles L; Wedge, David E; Gonçalves, Vívian N; Jacob, Melissa R; Khan, Shabana; Rosa, Carlos A; Rosa, Luiz H

    2017-10-01

    Endophytic fungi, present mainly in the Ascomycota and Basidiomycota phyla, are associated with different plants and represent important producers of bioactive natural products. Brazil has a rich biodiversity of plant species, including those reported as being endemic. Among the endemic Brazilian plant species, Vellozia gigantea (Velloziaceae) is threatened by extinction and is a promising target to recover endophytic fungi. The present study focused on bioprospecting of bioactive compounds of the endophytic fungi associated with V. gigantea, an endemic, ancient, and endangered plant species that occurs only in the rupestrian grasslands of Brazil. The capability of 285 fungal isolates to produce antimicrobial and antimalarial activities was examined. Fungi were grown at solid-state fermentation to recover their crude extracts in dichloromethane. Bioactive extracts were analysed by chromatographic fractionation and NMR and displayed compounds with antimicrobial, antimycobacterial, and antimalarial activities. Five fungi produced antimicrobial and antimalarial compounds. Extracts of Diaporthe miriciae showed antifungal, antibacterial, and antimalarial activities; Trichoderma effusum displayed selective antibacterial activity against methicillin-resistant Staphylococcus aureus and Mycobacterium intracellulare; and three Penicillium species showed antibacterial activity. D. miriciae extract contained highly functionalised secondary metabolites, yielding the compound epoxycytochalasin H with high antimalarial activity against the chloroquine-resistant strain of Plasmodium falciparum, with an IC50 approximately 3.5-fold lower than that with chloroquine. Our results indicate that V. gigantea may represent a microhabitat repository hotspot of potential fungi producers of bioactive compounds and suggest that endophytic fungal communities might be an important biological component contributing to the fitness of the plants living in the rupestrian grassland.

  6. Analysis of chemical constituents in Cistanche species.

    PubMed

    Jiang, Yong; Tu, Peng-Fei

    2009-03-13

    Species of the genus of Cistanche (Rou Cong Rong in Chinese) are perennial parasite herbs, and are mainly distributed in arid lands and warm deserts. As a superior tonic for the treatment of kidney deficiency, impotence, female infertility, morbid leucorrhea, profuse metrorrhagia and senile constipation, Cistanche herbs earned the honor of "Ginseng of the desert". Recently, there has been increasing scientific attention on Herba Cistanche for its remarkable bioactivities including antioxidation, neuroprotection, and anti-aging. The chemical constituents of Cistanche plants mainly include volatile oils and non-volatile phenylethanoid glycosides (PhGs), iridoids, lignans, alditols, oligosaccharides and polysaccharides. Pharmacological studies show that PhGs are the main active components for curing kidney deficiency, antioxidation and neuroprotection; galactitol and oligosaccharides are the representatives for the treatment of senile constipation, while polysaccharides are responsible for improving body immunity. In this paper, the advances on the chemical constituents of Cistanche plants and their corresponding analyses are reviewed.

  7. Nutrients and certain lipid soluble bioactive components in dehusked whole grains (gota) and dehusked splits (dhal) from pigeon pea (Cajanus cajan) and their cooking characteristics.

    PubMed

    Jayadeep, Padmanabhan A; Sashikala, Vadakkoot B; Pratape, Vishwas M

    2009-01-01

    The nutritional quality of dehusked whole grains (gota) and dehusked splits (dhal) in red and white varieties of pigeon pea regarding proximate composition and certain lipid-soluble bioactive components was investigated. A decrease in fat and crude fiber was noticed when gota was converted to dhal. The lipid profile of gota and dhal from red and white husk pigeon pea types indicated that essential fatty acids were greater in gota than in their respective dhals. Gota from white husk variety contained more tocopherols than the red variety. Dhal contained less tocopherols than gota. A decrease in the content of gamma and alpha tocopherols, vitamin E activity and total antioxidant activity also indicates loss of bioactive components on splitting gota into dhal. Cooking time and dispersed solids on cooking indicated good cooking quality of gotta. The results indicated the nutritional superiority of gota over dhal and its similarity with dhal in cooking characteristics.

  8. In vitro antiproliferative/cytotoxic activity on cancer cell lines of a cardanol and a cardol enriched from Thai Apis mellifera propolis.

    PubMed

    Teerasripreecha, Dungporn; Phuwapraisirisan, Preecha; Puthong, Songchan; Kimura, Kiyoshi; Okuyama, Masayuki; Mori, Haruhide; Kimura, Atsuo; Chanchao, Chanpen

    2012-03-30

    Propolis is a complex resinous honeybee product. It is reported to display diverse bioactivities, such as antimicrobial, anti-inflammatory and anti-tumor properties, which are mainly due to phenolic compounds, and especially flavonoids. The diversity of bioactive compounds depends on the geography and climate, since these factors affect the floral diversity. Here, Apis mellifera propolis from Nan province, Thailand, was evaluated for potential anti-cancer activity. Propolis was sequentially extracted with methanol, dichloromethane and hexane and the cytotoxic activity of each crude extract was assayed for antiproliferative/cytotoxic activity in vitro against five human cell lines derived from duet carcinoma (BT474), undifferentiated lung (Chaco), liver hepatoblastoma (Hep-G(2)), gastric carcinoma (KATO-III) and colon adenocarcinoma (SW620) cancers. The human foreskin fibroblast cell line (Hs27) was used as a non-transformed control. Those crude extracts that displayed antiproliferative/cytotoxic activity were then further fractionated by column chromatography using TLC-pattern and MTT-cytotoxicity bioassay guided selection of the fractions. The chemical structure of each enriched bioactive compound was analyzed by nuclear magnetic resonance and mass spectroscopy. The crude hexane and dichloromethane extracts of propolis displayed antiproliferative/cytotoxic activities with IC(50) values across the five cancer cell lines ranging from 41.3 to 52.4 μg/ml and from 43.8 to 53.5 μg/ml, respectively. Two main bioactive components were isolated, one cardanol and one cardol, with broadly similar in vitro antiproliferation/cytotoxicity IC(50) values across the five cancer cell lines and the control Hs27 cell line, ranging from 10.8 to 29.3 μg/ml for the cardanol and < 3.13 to 5.97 μg/ml (6.82 - 13.0 μM) for the cardol. Moreover, both compounds induced cytotoxicity and cell death without DNA fragmentation in the cancer cells, but only an antiproliferation response in the control Hs27 cells However, these two compounds did not account for the net antiproliferation/cytotoxic activity of the crude extracts suggesting the existence of other potent compounds or synergistic interactions in the propolis extracts. This is the first report that Thai A. mellifera propolis contains at least two potentially new compounds (a cardanol and a cardol) with potential anti-cancer bioactivity. Both could be alternative antiproliferative agents for future development as anti-cancer drugs.

  9. Bioactive capacity of some Romanian wild edible mushrooms consumed mainly by local communities.

    PubMed

    Vamanu, Emanuel

    2018-02-01

    Wild edible mushrooms are considered as a cheap food source, but rich in bioactive compounds, especially in phenolic compounds. The purpose of the study was to determine the antioxidant and antimicrobial activity and the content of polyphenolcarboxylic acids in 10 species of mushrooms commonly used (consumed) in Romania and two controls. The effect against free radicals, lipid peroxidation and reducing power were determined. The antimicrobial effect was revealed on some strains with pathogenic effect by disk diffusion assay. The antioxidant capacity expressed in vitro was correlated both with the presence of the main polyphenolcarboxylic acids, and also with the presence of other bioactive molecules (flavonoids, carotenoid compounds, etc.).

  10. Complementary effects of cereal and pulse polyphenols and dietary fiber on chronic inflammation and gut health.

    PubMed

    Awika, Joseph M; Rose, Devin J; Simsek, Senay

    2018-03-01

    Cereal grains and grain pulses are primary staples often consumed together, and contribute a major portion of daily human calorie and protein intake globally. Protective effects of consuming whole grain cereals and grain pulses against various inflammation-related chronic diseases are well documented. However, potential benefits of combined intake of whole cereals and pulses beyond their complementary amino acid nutrition is rarely considered in literature. There is ample evidence that key bioactive components of whole grain cereals and pulses are structurally different and thus may be optimized to provide synergistic/complementary health benefits. Among the most important whole grain bioactive components are polyphenols and dietary fiber, not only because of their demonstrated biological function, but also their major impact on consumer choice of whole grain/pulse products. This review highlights the distinct structural differences between key cereal grain and pulse polyphenols and non-starch polysaccharides (dietary fiber), and the evidence on specific synergistic/complementary benefits of combining the bioactive components from the two commodities. Interactive effects of the polyphenols and fiber on gut microbiota and associated benefits to colon health, and against systemic inflammation, are discussed. Processing technologies that can be used to further enhance the interactive benefits of combined cereal-pulse bioactive compounds are highlighted.

  11. Electrophoretic co-deposition of cellulose nanocrystals-45S5 bioactive glass nanocomposite coatings on stainless steel

    NASA Astrophysics Data System (ADS)

    Chen, Qiang; Yang, Yuyun; Pérez de Larraya, Uxua; Garmendia, Nere; Virtanen, Sannakaisa; Boccaccini, Aldo R.

    2016-01-01

    An organic-inorganic nanocomposite coating consisting of fibrous cellulose nanocrystals and 45S5 bioactive glass, intended as a bioactive surface for bone implants, was developed by a one-step electrophoretic deposition. The composition, surface roughness and wettability of the deposited coatings, influenced by the concentration of each component in the suspension, were controllable as a result of the simplicity of the coating technique. Bioactive glass particles were individually wrapped with porous cellulose layers, forming a porous coating with uniform thickness. Bioactivity test in simulated body fluid revealed a rapid hydroxyapatite formation on the deposited nanocomposite coating. Furthermore, electrochemical test was carried out to understand the corrosion behavior of the deposited coatings during incubation in simulated body fluid. According to the results of this study, the obtained cellulose-bioactive glass coatings with tunable properties represent a promising approach for biofunctionalization of metallic orthopedic implants.

  12. Chromatogram-Bioactivity Correlation-Based Discovery and Identification of Three Bioactive Compounds Affecting Endothelial Function in Ginkgo Biloba Extract.

    PubMed

    Liu, Hong; Tan, Li-Ping; Huang, Xin; Liao, Yi-Qiu; Zhang, Wei-Jian; Li, Pei-Bo; Wang, Yong-Gang; Peng, Wei; Wu, Zhong; Su, Wei-Wei; Yao, Hong-Liang

    2018-05-03

    Discovery and identification of three bioactive compounds affecting endothelial function in Ginkgo biloba Extract (GBE) based on chromatogram-bioactivity correlation analysis. Three portions were separated from GBE via D101 macroporous resin and then re-combined to prepare nine GBE samples. 21 compounds in GBE samples were identified through UFLC-DAD-Q-TOF-MS/MS. Correlation analysis between compounds differences and endothelin-1 (ET-1) in vivo in nine GBE samples was conducted. The analysis results indicated that three bioactive compounds had close relevance to ET-1: Kaempferol-3- O -α-l-glucoside, 3- O -{2- O -{6- O -[P-OH-trans-cinnamoyl]-β-d-glucosyl}-α-rhamnosyl} Quercetin isomers, and 3- O -{2- O -{6- O -[P-OH-trans-cinnamoyl]-β-d-glucosyl}-α-rhamnosyl} Kaempferide. The discovery of bioactive compounds could provide references for the quality control and novel pharmaceuticals development of GRE. The present work proposes a feasible chromatogram-bioactivity correlation based approach to discover the compounds and define their bioactivities for the complex multi-component systems.

  13. Identification and Analysis of Bioactive Components of Fruit and Vegetable Products

    ERIC Educational Resources Information Center

    Mann, Francis M.

    2015-01-01

    Many small-molecule antioxidants found in whole fruits and vegetables are analyzed and identified in this laboratory module for upper-division biochemistry courses. During this experiment, students develop their knowledge of the bioactivity of fruit and vegetable products while learning techniques to identify vitamins and nutritionally derived…

  14. Rice varietal differences in bioactive bran components for inhibition of colorectal cancer cell growth

    USDA-ARS?s Scientific Manuscript database

    Studies support that the bran fraction of rice contains bioactive compounds capable of inhibiting the formation of colonic tumors. Screening bran extracts from diverse rice varieties represents a novel approach to assessing the colon cancer chemopreventive properties of rice bran. We analyzed a pane...

  15. Pharmacological Potential of Phylogenetically Diverse Actinobacteria Isolated from Deep-Sea Coral Ecosystems of the Submarine Avilés Canyon in the Cantabrian Sea.

    PubMed

    Sarmiento-Vizcaíno, Aida; González, Verónica; Braña, Alfredo F; Palacios, Juan J; Otero, Luis; Fernández, Jonathan; Molina, Axayacatl; Kulik, Andreas; Vázquez, Fernando; Acuña, José L; García, Luis A; Blanco, Gloria

    2017-02-01

    Marine Actinobacteria are emerging as an unexplored source for natural product discovery. Eighty-seven deep-sea coral reef invertebrates were collected during an oceanographic expedition at the submarine Avilés Canyon (Asturias, Spain) in a range of 1500 to 4700 m depth. From these, 18 cultivable bioactive Actinobacteria were isolated, mainly from corals, phylum Cnidaria, and some specimens of phyla Echinodermata, Porifera, Annelida, Arthropoda, Mollusca and Sipuncula. As determined by 16S rRNA sequencing and phylogenetic analyses, all isolates belong to the phylum Actinobacteria, mainly to the Streptomyces genus and also to Micromonospora, Pseudonocardia and Myceligenerans. Production of bioactive compounds of pharmacological interest was investigated by high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) techniques and subsequent database comparison. Results reveal that deep-sea isolated Actinobacteria display a wide repertoire of secondary metabolite production with a high chemical diversity. Most identified products (both diffusible and volatiles) are known by their contrasted antibiotic or antitumor activities. Bioassays with ethyl acetate extracts from isolates displayed strong antibiotic activities against a panel of important resistant clinical pathogens, including Gram-positive and Gram-negative bacteria, as well as fungi, all of them isolated at two main hospitals (HUCA and Cabueñes) from the same geographical region. The identity of the active extracts components of these producing Actinobacteria is currently being investigated, given its potential for the discovery of pharmaceuticals and other products of biotechnological interest.

  16. Chemical characteristics combined with bioactivity for comprehensive evaluation of Panax ginseng C.A. Meyer in different ages and seasons based on HPLC-DAD and chemometric methods.

    PubMed

    Shan, Si-Ming; Luo, Jian-Guang; Huang, Fang; Kong, Ling-Yi

    2014-02-01

    Panax ginseng C.A. Meyer has been known as a valuable traditional Chinese medicines for thousands years of history. Ginsenosides, the main active constituents, exhibit prominent immunoregulation effect. The present study first describes a holistic method based on chemical characteristic and lymphocyte proliferative capacity to evaluate systematically the quality of P. ginseng in thirty samples from different seasons during 2-6 years. The HPLC fingerprints were evaluated using principle component analysis (PCA) and hierarchical clustering analysis (HCA). The spectrum-efficacy model between HPLC fingerprints and T-lymphocyte proliferative activities was investigated by principal component regression (PCR) and partial least squares (PLS). The results indicated that the growth of the ginsenosides could be grouped into three periods and from August of the fifth year, P. ginseng appeared significant lymphocyte proliferative capacity. Close correlation existed between the spectrum-efficacy relationship and ginsenosides Rb1, Ro, Rc, Rb2 and Re were the main contributive components to the lymphocyte proliferative capacity. This comprehensive strategy, providing reliable and adequate scientific evidence, could be applied to other TCMs to ameliorate their quality control. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Fungal Secretome Analysis via PepSAVI-MS: Identification of the Bioactive Peptide KP4 from Ustilago maydis

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Christine L.; Parsley, Nicole C.; Bartges, Tessa E.; Cooke, Madeline E.; Evans, Wilaysha S.; Heil, Lilian R.; Smith, Thomas J.; Hicks, Leslie M.

    2018-05-01

    Fungal secondary metabolites represent a rich and largely untapped source for bioactive molecules, including peptides with substantial structural diversity and pharmacological potential. As methods proceed to take a deep dive into fungal genomes, complimentary methods to identify bioactive components are required to keep pace with the expanding fungal repertoire. We developed PepSAVI-MS to expedite the search for natural product bioactive peptides and herein demonstrate proof-of-principle applicability of the pipeline for the discovery of bioactive peptides from fungal secretomes via identification of the antifungal killer toxin KP4 from Ustilago maydis P4. This work opens the door to investigating microbial secretomes with a new lens, and could have broad applications across human health, agriculture, and food safety. [Figure not available: see fulltext.

  18. Fungal Secretome Analysis via PepSAVI-MS: Identification of the Bioactive Peptide KP4 from Ustilago maydis

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Christine L.; Parsley, Nicole C.; Bartges, Tessa E.; Cooke, Madeline E.; Evans, Wilaysha S.; Heil, Lilian R.; Smith, Thomas J.; Hicks, Leslie M.

    2018-02-01

    Fungal secondary metabolites represent a rich and largely untapped source for bioactive molecules, including peptides with substantial structural diversity and pharmacological potential. As methods proceed to take a deep dive into fungal genomes, complimentary methods to identify bioactive components are required to keep pace with the expanding fungal repertoire. We developed PepSAVI-MS to expedite the search for natural product bioactive peptides and herein demonstrate proof-of-principle applicability of the pipeline for the discovery of bioactive peptides from fungal secretomes via identification of the antifungal killer toxin KP4 from Ustilago maydis P4. This work opens the door to investigating microbial secretomes with a new lens, and could have broad applications across human health, agriculture, and food safety. [Figure not available: see fulltext.

  19. Differential Properties of Venom Peptides and Proteins in Solitary vs. Social Hunting Wasps

    PubMed Central

    Lee, Si Hyeock; Baek, Ji Hyeong; Yoon, Kyungjae Andrew

    2016-01-01

    The primary functions of venoms from solitary and social wasps are different. Whereas most solitary wasps sting their prey to paralyze and preserve it, without killing, as the provisions for their progeny, social wasps usually sting to defend their colonies from vertebrate predators. Such distinctive venom properties of solitary and social wasps suggest that the main venom components are likely to be different depending on the wasps’ sociality. The present paper reviews venom components and properties of the Aculeata hunting wasps, with a particular emphasis on the comparative aspects of venom compositions and properties between solitary and social wasps. Common components in both solitary and social wasp venoms include hyaluronidase, phospholipase A2, metalloendopeptidase, etc. Although it has been expected that more diverse bioactive components with the functions of prey inactivation and physiology manipulation are present in solitary wasps, available studies on venom compositions of solitary wasps are simply too scarce to generalize this notion. Nevertheless, some neurotoxic peptides (e.g., pompilidotoxin and dendrotoxin-like peptide) and proteins (e.g., insulin-like peptide binding protein) appear to be specific to solitary wasp venom. In contrast, several proteins, such as venom allergen 5 protein, venom acid phosphatase, and various phospholipases, appear to be relatively more specific to social wasp venom. Finally, putative functions of main venom components and their application are also discussed. PMID:26805885

  20. Method and product for phosphosilicate slurry for use in dentistry and related bone cements

    DOEpatents

    Wagh, Arun S.; Primus, Carolyn

    2006-08-01

    The present invention is directed to magnesium phosphate ceramics and their methods of manufacture. The composition of the invention is produced by combining a mixture of a substantially dry powder component with a liquid component. The substantially dry powder component comprises a sparsely soluble oxide powder, an alkali metal phosphate powder, a sparsely soluble silicate powder, with the balance of the substantially dry powder component comprising at least one powder selected from the group consisting of bioactive powders, biocompatible powders, fluorescent powders, fluoride releasing powders, and radiopaque powders. The liquid component comprises a pH modifying agent, a monovalent alkali metal phosphate in aqueous solution, the balance of the liquid component being water. The use of calcined magnesium oxide as the oxide powder and hydroxylapatite as the bioactive powder produces a self-setting ceramic that is particularly suited for use in dental and orthopedic applications.

  1. Effect of Low Temperature Cultivation on the Phytochemical Profile and Bioactivity of Arctic Plants: A Case of Dracocephalum palmatum.

    PubMed

    Olennikov, Daniil N; Chirikova, Nadezhda K; Kashchenko, Nina I; Gornostai, Tat'yana G; Selyutina, Inessa Yu; Zilfikarov, Ifrat N

    2017-11-30

    The influence of climatic factors, e.g., low temperature, on the phytochemical composition and bioactivity of the arctic plant Dracocephalum palmatum Steph. ax Willd. (palmate dragonhead), a traditional food and medical herb of Northern Siberia, was investigated. D. palmatum seedlings were grown in a greenhouse experiment at normal (20 °C, NT) and low (1 °C, LT) temperature levels and five groups of components that were lipophilic and hydrophilic in nature were characterized. The analyses indicated that D. palmatum under NT demonstrates high content of photosynthetic pigments, specific fatty acid (FA) profile with domination of saturated FA (53.3%) and the essential oil with trans-pinocamphone as a main component (37.9%). Phenolic compounds were identified using a combination of high performance liquid chromatography with diode array detection and electrospray ionization mass-spectrometric detection (HPLC-DAD-ESI-MS) techniques, as well as free carbohydrates and water soluble polysaccharides. For the first time, it was established that the cold acclimation of D. palmatum seedlings resulted in various changes in physiological and biochemical parameters such as membrane permeability, photosynthetic potential, membrane fluidity, leaf surface secretory function, reactive oxygen species-antioxidant balance, osmoregulator content and cell wall polymers. In brief, results showed that the adaptive strategy of D. palmatum under LT was realized on the accumulation of membrane or surface components with more fluid properties (unsaturated FA and essential oils), antioxidants (phenolic compounds and enzymes), osmoprotectants (free sugars) and cell wall components (polysaccharides). In addition, the occurrence of unusual flavonoids including two new isomeric malonyl esters of eriodictyol-7- O -glucoside was found in LT samples. Data thus obtained allow improving our understanding of ecophysiological mechanisms of cold adaptation of arctic plants.

  2. Effect of Low Temperature Cultivation on the Phytochemical Profile and Bioactivity of Arctic Plants: A Case of Dracocephalum palmatum

    PubMed Central

    Chirikova, Nadezhda K.; Gornostai, Tat’yana G.; Selyutina, Inessa Yu.; Zilfikarov, Ifrat N.

    2017-01-01

    The influence of climatic factors, e.g., low temperature, on the phytochemical composition and bioactivity of the arctic plant Dracocephalum palmatum Steph. ax Willd. (palmate dragonhead), a traditional food and medical herb of Northern Siberia, was investigated. D. palmatum seedlings were grown in a greenhouse experiment at normal (20 °C, NT) and low (1 °C, LT) temperature levels and five groups of components that were lipophilic and hydrophilic in nature were characterized. The analyses indicated that D. palmatum under NT demonstrates high content of photosynthetic pigments, specific fatty acid (FA) profile with domination of saturated FA (53.3%) and the essential oil with trans-pinocamphone as a main component (37.9%). Phenolic compounds were identified using a combination of high performance liquid chromatography with diode array detection and electrospray ionization mass-spectrometric detection (HPLC-DAD-ESI-MS) techniques, as well as free carbohydrates and water soluble polysaccharides. For the first time, it was established that the cold acclimation of D. palmatum seedlings resulted in various changes in physiological and biochemical parameters such as membrane permeability, photosynthetic potential, membrane fluidity, leaf surface secretory function, reactive oxygen species–antioxidant balance, osmoregulator content and cell wall polymers. In brief, results showed that the adaptive strategy of D. palmatum under LT was realized on the accumulation of membrane or surface components with more fluid properties (unsaturated FA and essential oils), antioxidants (phenolic compounds and enzymes), osmoprotectants (free sugars) and cell wall components (polysaccharides). In addition, the occurrence of unusual flavonoids including two new isomeric malonyl esters of eriodictyol-7-O-glucoside was found in LT samples. Data thus obtained allow improving our understanding of ecophysiological mechanisms of cold adaptation of arctic plants. PMID:29189749

  3. Effects of medium components and culture conditions on mycelial biomass and the production of bioactive ingredients in submerged culture of Xylaria nigripes (Ascomycetes), a Chinese medicinal fungus.

    PubMed

    Chen, Jian-Zhi; Lo, Hui-Chen; Lin, Fang-Yi; Chang, Shih-Liang; Hsieh, Changwei; Liang, Zeng-Chin; Ho, Wai-Jane; Hsu, Tai-Hao

    2014-01-01

    The optimal culture conditions were investigated to maximize the production of mycelial biomass and bioactive ingredients in submerged cultivation of Xylaria nigripes, a Chinese medicinal fungus. The one-factor-at-a-time method was used to explore the effects of medium components, including carbon, nitrogen, mineral sources, and initial pH of the medium and environmental factors, such as culture temperature and rotation speed, on mycelial growth and production of bioactive ingredients. The results indicated that the optimal culture temperature and rotation speed were 25°C and 100 rpm in a medium with 20 g fructose, 6 g yeast extract, and 2 g magnesiun sulfate heptahydrate as carbon, nitrogen, and mineral sources, respectively, in 1 L distilled water with an initial medium pH of 5.5. With optimal medium components and conditions of cultivation, the maximal production of mycelial biomass was 6.64 ± 0.88 g/L, with maximal production of bioactive ingredients such as extracellular polysaccharides (2.36 ± 0.18 mg/mL), intracellular polysaccharides (2.38 ± 0.07 mg/g), adenosine (43.27 ± 2.37 mg/g), total polyphenols (36.57 ± 1.36 mg/g), and triterpenoids (31.29 ± 1.17 mg/g) in a shake flask culture. These results suggest that different bioactive ingredients including intracellular polysaccharides, adenosine, total polyphenols and triterpenoids in mycelia and extracellular polysaccharides in broth can be obtained from one simple medium for submerged cultivation of X. nigripes.

  4. Coptidis rhizoma and its main bioactive components: recent advances in chemical investigation, quality evaluation and pharmacological activity.

    PubMed

    Meng, Fan-Cheng; Wu, Zheng-Feng; Yin, Zhi-Qi; Lin, Li-Gen; Wang, Ruibing; Zhang, Qing-Wen

    2018-01-01

    Coptidis rhizoma (CR) is the dried rhizome of Coptis chinensis Franch., C. deltoidea C. Y. Cheng et Hsiao or C. teeta Wall. (Ranunculaceae) and is commonly used in Traditional Chinese Medicine for the treatment of various diseases including bacillary dysentery, typhoid, tuberculosis, epidemic cerebrospinal meningitis, empyrosis, pertussis, and other illnesses. A literature survey was conducted via SciFinder, ScieneDirect, PubMed, Springer, and Wiley databases. A total of 139 selected references were classified on the basis of their research scopes, including chemical investigation, quality evaluation and pharmacological studies. Many types of secondary metabolites including alkaloids, lignans, phenylpropanoids, flavonoids, phenolic compounds, saccharides, and steroids have been isolated from CR. Among them, protoberberine-type alkaloids, such as berberine, palmatine, coptisine, epiberberine, jatrorrhizine, columamine, are the main components of CR. Quantitative determination of these alkaloids is a very important aspect in the quality evaluation of CR. In recent years, with the advances in isolation and detection technologies, many new instruments and methods have been developed for the quantitative and qualitative analysis of the main alkaloids from CR. The quality control of CR has provided safety for pharmacological applications. These quality evaluation methods are also frequently employed to screen the active components from CR. Various investigations have shown that CR and its main alkaloids exhibited many powerful pharmacological effects including anti-inflammatory, anti-cancer, anti-diabetic, neuroprotective, cardioprotective, hypoglycemic, anti-Alzheimer and hepatoprotective activities. This review summarizes the recent phytochemical investigations, quality evaluation methods, the biological studies focusing on CR as well as its main alkaloids.

  5. Sphingosine 1-phosphate, present in serum-derived lipoproteins, activates matriptase.

    PubMed

    Benaud, Christelle; Oberst, Michael; Hobson, John P; Spiegel, Sarah; Dickson, Robert B; Lin, Chen-Yong

    2002-03-22

    We describe here a novel biological function of sphingosine 1-phosphate (S1P): the activation of a serine protease, matriptase. Matriptase is a type II integral membrane serine protease, expressed on the surface of a variety of epithelial cells; it may play an important role in tissue remodeling. We have previously reported that the activation of matriptase is regulated by serum. We have now identified the bioactive component from serum. First, the activity was observed to co-purify with lipoproteins by conventional liquid chromatography and immunoaffinity chromatography. The ability of lipoproteins to induce the activation of matriptase was further confirmed with commercial preparations of low density lipoprotein (LDL) and very low density lipoprotein (VLDL). Next, we observed that the bioactive component of LDL is associated with the phospholipid components of LDL. Fractionation of lipid components of LDL by thin layer chromatography (TLC) revealed that the bioactive component of LDL comigrates with S1P. Nanomolar concentrations of commercially obtained S1P were then observed to induce the rapid activation of matriptase on the surfaces of nontransformed human mammary epithelial cells. Other structurally related sphingolipids, including dihydro-S1P, ceramide 1-phosphates, and sphingosine phosphocholine as well as lysophosphatidic acid, can also induce the activation of matriptase, but at significantly higher concentrations than S1P. Furthermore, S1P-dependent matriptase activation is dependent on Ca(2+) but not via G(i) protein-coupled receptors. Our results demonstrate that bioactive phospholipids can function as nonprotein activators of a cell surface protease, suggesting a possible mechanistic link between S1P and normal and possibly pathologic tissue remodeling.

  6. Phytochemical-rich foods inhibit the growth of pathogenic trichomonads

    USDA-ARS?s Scientific Manuscript database

    Plants produce bioactive organic compounds known as secondary metabolites that possess numerous health benefits, including antimicrobial properties. One mechanism of action of these plant bioactive compounds targets the disruption of cell membranes. The main of objective of the present study was t...

  7. Bioactive Compounds in Some Culinary Aromatic Herbs and Their Effects on Human Health.

    PubMed

    Guiné, Raquel P F; Gonçalves, Fernando J

    2016-01-01

    Culinary herbs are herbaceous (leafy) plants that add flavour and colour to all types of meals. There is a wide variety of herbs that are used for culinary purposes worldwide, which are also recognized for their beneficial health effects, and thus have also been used in folk medicine. Besides their nutritional value herbs are rich in many phytochemical components with bioactive effects, thus improving human health. The aim of the present work was to make a general overview of some of these herbs, including their gastronomic usage, their chemical composition in bioactive components and their reported health effects. This work showed that the health effects are very diverse and differ according to the herb in question. However, some of the most frequently citted biological activities include antioxidant, antimicrobial, and antiviral effects.

  8. The improvement of M1 polarization in macrophages by glycopeptide derived from Ganoderma lucidum.

    PubMed

    Sun, Li-Xin; Lin, Zhi-Bin; Lu, Jie; Li, Wei-Dong; Niu, Yan-Dong; Sun, Yu; Hu, Chen-Yang; Zhang, Guo-Qiang; Duan, Xin-Suo

    2017-06-01

    Ganoderma lucidum (Fr.) Karst (Ganodermataceae) is a medicinal mushroom that has been extensively used in China for centuries to promote longevity and improve vigor without significant adverse effects. There is continuous interest in the bioactive properties of G. lucidum in view of its newly developed popularity in other regions besides Asia, such as Europe. Glycopeptide derived from G. lucidum (Gl-PS) is one of the main effective components isolated from this mushroom. The Gl-PS has been demonstrated pleiotropic with many bioactivities including immunomodulatory and antitumor effects. Macrophages are important cells involved in innate and adaptive immunity. Classically activated macrophages (M1) and alternatively activated macrophages (M2), with their different roles, display distinct cytokine profiles: M1 preferentially produces TNF-α, IL-6, and IL-12; conversely, M2 generates more IL-10 and arginase. Gl-PS might have the potential to promote macrophage M1 polarization by lipopolysaccharide (LPS). In this study, LPS was used to induce the M1 polarization. It was shown that the level of the TNF-α, IL-6, and IL-12 were increased and the IL-10 and arginase I were decreased in the polarized M1 macrophages after application of Gl-PS compared to the control. The results indicated the potential of Gl-PS to promote M1 polarization vs M2, with the health beneficial understanding of the bioactivities of Gl-PS.

  9. Bioactive natural constituents from food sources-potential use in hypertension prevention and treatment.

    PubMed

    Huang, Wu-Yang; Davidge, Sandra T; Wu, Jianping

    2013-01-01

    Prevention and management of hypertension are the major public health challenges worldwide. Uncontrolled high blood pressure may lead to a shortened life expectancy and a higher morbidity due to a high risk of cardiovascular complications such as coronary heart disease (which leads to heart attack) and stroke, congestive heart failure, heart rhythm irregularities, and kidney failure etc. In recent years, it has been recognized that many dietary constituents may contribute to human cardiovascular health. There has been an increased focus on identifying these natural components of foods, describing their physiological activities and mechanisms of actions. Grain, vegetables, fruits, milk, cheese, meat, chicken, egg, fish, soybean, tea, wine, mushrooms, and lactic acid bacteria are various food sources with potential antihypertensive effects. Their main bioactive constituents include angiotensin I-converting enzyme (ACE) inhibitory peptides, vitamins C and E, flavonoids, flavanols, cathecins, anthocyanins, phenolic acids, polyphenols, tannins, resveratrol, polysaccharides, fiber, saponin, sterols, as well as K, Ca, and P. They may reduce blood pressure by different mechanisms, such as ACE inhibition effect, antioxidant, vasodilatory, opiate-like, Ca(2+) channel blocking, and chymase inhibitory activities. These functional foods may provide new therapeutic applications for hypertension prevention and treatment, and contribute to a healthy cardiovascular population. The present review summarizes the antihypertensive food sources and their bioactive constituents, as well as physiological mechanisms of dietary products, especially focusing on ACE inhibitory activity.

  10. Maize Bioactive Peptides against Cancer

    NASA Astrophysics Data System (ADS)

    Díaz-Gómez, Jorge L.; Castorena-Torres, Fabiola; Preciado-Ortiz, Ricardo E.; García-Lara, Silverio

    2017-06-01

    Cancer is one of the main chronic degenerative diseases worldwide. In recent years, consumption of whole-grain cereals and their derived food products has been associated with reduction risks of various types of cancer. Cereals main biomolecules includes proteins, peptides, and amino acids present in different quantities within the grain. The nutraceutical properties associated with peptides exerts biological functions that promote health and prevent this disease. In this review, we report the current status and advances on maize peptides regarding bioactive properties that have been reported such as antioxidant, antihypertensive, hepatoprotective, and anti-tumour activities. We also highlighted its biological potential through which maize bioactive peptides exert anti-cancer activity. Finally, we analyse and emphasize the possible areas of application for maize peptides.

  11. In vitro antioxidant activity of phenolic-enriched extracts from Zhangping Narcissus tea cake and their inhibition on growth and metastatic capacity of 4T1 murine breast cancer cells* #

    PubMed Central

    Ying, Le; Kong, De-dong; Gao, Yuan-yuan; Yan, Feng; Wang, Yue-fei; Xu, Ping

    2018-01-01

    Phenolics, as the main bioactive compounds in tea, have been suggested to have potential in the prevention of various human diseases. However, little is known about phenolics and their bioactivity in Zhangping Narcissue tea cake which is considered the most special kind of oolong tea. To unveil its bioactivity, three phenolic-enriched extracts were obtained from Zhangping Narcissue tea cake using ethyl acetate, n-butanol, and water. Their main chemical compositions and in vitro bioactivity were analyzed by high-performance liquid chromatography (HPLC) and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). The ethyl acetate fraction (ZEF) consisted of higher content of phenolics, flavonoids, procyanidins, and catechin monomers (including epigallocatechin gallate (EGCG), epicatechin gallate (ECG), and gallocatechin gallate (GCG)) than n-butanol fraction (ZBF) and water fraction (ZWF). ZEF exhibited the strongest antioxidant capacity in vitro due to its abundant bioactive compounds. This was validated by Pearson correlation and hierarchical clustering analyses. ZEF also showed a remarkable inhibition on the growth, migration, and invasion of 4T1 murine breast cancer cells. PMID:29504313

  12. Addressing the inter-individual variation in response to consumption of plant food bioactives: Towards a better understanding of their role in healthy aging and cardiometabolic risk reduction.

    PubMed

    Manach, Claudine; Milenkovic, Dragan; Van de Wiele, Tom; Rodriguez-Mateos, Ana; de Roos, Baukje; Garcia-Conesa, Maria Teresa; Landberg, Rikard; Gibney, Eileen R; Heinonen, Marina; Tomás-Barberán, Francisco; Morand, Christine

    2017-06-01

    Bioactive compounds in plant-based foods have health properties that contribute to the prevention of age-related chronic diseases, particularly cardiometabolic disorders. Conclusive proof and understanding of these benefits in humans is essential in order to provide effective dietary recommendations but, so far, the evidence obtained from human intervention trials is limited and contradictory. This is partly due to differences between individuals in the absorption, distribution, metabolism and excretion of bioactive compounds, as well as to heterogeneity in their biological response regarding cardiometabolic health outcomes. Identifying the main factors underlying inter-individual differences, as well as developing new and innovative methodologies to account for such variability constitute an overarching goal to ultimately optimize the beneficial health effects of plant food bioactives for each and every one of us. In this respect, this position paper from the COST Action FA1403-POSITIVe examines the main factors likely to affect the individual responses to consumption of plant food bioactives and presents perspectives for assessment and consideration of inter-individual variability. © 2016 The Authors. Molecular Nutrition & Food Research published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Infant formula and infant nutrition: bioactive proteins of human milk and implications for composition of infant formulas.

    PubMed

    Lönnerdal, Bo

    2014-03-01

    Human milk contains an abundance of biologically active components that are highly likely to contribute to the short- and long-term benefits of breastfeeding. Many of these components are proteins; this article describes some of these proteins, such as α-lactalbumin, lactoferrin, osteopontin, and milk fat globule membrane proteins. The possibility of adding their bovine counterparts to infant formula is discussed as well as the implications for infant health and development. An important consideration when adding bioactive proteins to infant formula is that the total protein content of formula needs to be reduced, because formula-fed infants have significantly higher concentrations of serum amino acids, insulin, and blood urea nitrogen than do breastfed infants. When reducing the protein content of formula, the amino acid composition of the formula protein becomes important because serum concentrations of the essential amino acids should not be lower than those in breastfed infants. Both the supply of essential amino acids and the bioactivities of milk proteins are dependent on their digestibility: some proteins act only in intact form, others act in the form of larger or small peptides formed during digestion, and some are completely digested and serve as a source of amino acids. The purity of the proteins or protein fractions, potential contaminants of the proteins (such as lipopolysaccharide), as well as the degree of heat processing used during their isolation also need to be considered. It is likely that there will be more bioactive components added to infant formulas in the near future, but guidelines on how to assess their bioactivities in vitro, in animal models, and in clinical studies need to be established. The extent of testing needed is likely going to depend on the degree of complexity of the components and their bioequivalence with the human compounds whose effects they are intended to mimic.

  14. Comparative evaluation of bioactivity of crystalline trypsin for drying by Fourier-transformed infrared spectroscopy.

    PubMed

    Otsuka, Makoto; Fukui, Yuya; Ozaki, Yukihiro

    2009-03-01

    The purpose of this study was to evaluate the enzymatic stability of colloidal trypsin powder during heating in a solid-state by using Fourier transform infrared (FT-IR) spectra with chemoinformatics and generalized two-dimensional (2D) correlation spectroscopy. Colloidal crystalline trypsin powders were heated using differential scanning calorimetry. The enzymatic activity of trypsin was assayed by the kinetic degradation method. Spectra of 10 calibration sample sets were recorded three times with a FT-IR spectrometer. The maximum intensity at 1634cm(-1) of FT-IR spectra and enzymatic activity of trypsin decreased as the temperature increased. The FT-IR spectra of trypsin samples were analyzed by a principal component regression analysis (PCR). A plot of the calibration data obtained was made between the actual and predicted trypsin activity based on a two-component model with gamma(2)=0.962. On the other hand, a 2D method was applied to FT-IR spectra of heat-treated trypsin. The result was consistent with that of the chemoinformetrical method. The results for deactivation of colloidal trypsin powder by heat-treatment indicated that nano-structure of crystalline trypsin changed by heating reflecting that the beta-sheet was mainly transformed, since the peak at 1634cm(-1) decreased with dehydration. The FT-IR chemoinformetrical method allows for a solid-state quantitative analysis of the bioactivity of the bulk powder of trypsin during drying.

  15. A validated high performance liquid chromatograph-photodiode array method for simultaneous determination of 10 bioactive components in compound hongdoushan capsule

    PubMed Central

    Zhu, Liancai; Yang, Xian; Tan, Jun; Wang, Bochu; Zhang, Xue

    2014-01-01

    Background: The compound Hongdoushan capsule (CHC) is widely known as compound herbal preparation and is often used to treat ovarian cancer and breast cancer, and to enhance the body immunity, etc., in clinical practice. Objective: To determine simultaneously 10 bioactive components from CHC, namely glycyrrhetinic acid, liquiritin, glycyrrhizin, baccatin III, 10-deacetylbaccatin III, cephalomannine, taxol, ginsenoside Rg1, ginsenoside Re, and ginsenoside Rb1. Materials and Methods: A high performance liquid chromatograph method coupled with photodiode array detector was developed and validated for the 1st time. Chromatographic analysis was performed on a SHIMADZU C18 by utilizing a gradient elution program. The mobile phase was acetonitrile (A)-water (B) at a flow rate of 0.8 mL/min. Results: The calibration curve was linear over the investigated concentration ranges with the values of r2 higher than 0.9993 for all the 10 bioactive components. The average recovery rates range from 98.4% to 100.5% with relative standard deviations ≤2.9%. The developed method was successfully applied to analyze 10 compounds in six CHC samples from different batches. In addition, the herbal sources of 32 chromatographic peaks were identified through comparative studying on chromatograms of standard, the respective extracts of Hongdoushan, RenShen, GanCao, and CHC. Conclusion: All the results imply that the accurate and reproducible method developed has high separation rate and enables the determination of 10 bioactive components in a single run for the quality control of CHC. PMID:24696551

  16. Bioactive Peptide of Marine Origin for the Prevention and Treatment of Non-Communicable Diseases

    PubMed Central

    Pangestuti, Ratih; Kim, Se-Kwon

    2017-01-01

    Non-communicable diseases (NCD) are the leading cause of death and disability worldwide. The four main leading causes of NCD are cardiovascular diseases, cancers, respiratory diseases and diabetes. Recognizing the devastating impact of NCD, novel prevention and treatment strategies are extensively sought. Marine organisms are considered as an important source of bioactive peptides that can exert biological functions to prevent and treatment of NCD. Recent pharmacological investigations reported cardio protective, anticancer, antioxidative, anti-diabetic, and anti-obesity effects of marine-derived bioactive peptides. Moreover, there is available evidence supporting the utilization of marine organisms and its bioactive peptides to alleviate NCD. Marine-derived bioactive peptides are alternative sources for synthetic ingredients that can contribute to a consumer’s well-being, as a part of nutraceuticals and functional foods. This contribution focus on the bioactive peptides derived from marine organisms and elaborates its possible prevention and therapeutic roles in NCD. PMID:28282929

  17. Phytochemical Profile of Brown Rice and Its Nutrigenomic Implications.

    PubMed

    Ravichanthiran, Keneswary; Ma, Zheng Feei; Zhang, Hongxia; Cao, Yang; Wang, Chee Woon; Muhammad, Shahzad; Aglago, Elom K; Zhang, Yihe; Jin, Yifan; Pan, Binyu

    2018-05-23

    Whole grain foods have been promoted to be included as one of the important components of a healthy diet because of the relationship between the regular consumption of whole-grain foods and reduced risk of chronic diseases. Rice is a staple food, which has been widely consumed for centuries by many Asian countries. Studies have suggested that brown rice is associated with a wide spectrum of nutrigenomic implications such as anti-diabetic, anti-cholesterol, cardioprotective and antioxidant. This is because of the presence of various phytochemicals that are mainly located in bran layers of brown rice. Therefore, this paper is a review of publications that focuses on the bioactive compounds and nutrigenomic implications of brown rice. Although current evidence supports the fact that the consumption of brown rice is beneficial for health, these studies are heterogeneous in terms of their brown rice samples used and population groups, which cause the evaluation to be difficult. Future clinical studies should focus on the screening of individual bioactive compounds in brown rice with reference to their nutrigenomic implications.

  18. Occurrence, biological activity and metabolism of 6-shogaol.

    PubMed

    Kou, Xingran; Wang, Xiaoqi; Ji, Ruya; Liu, Lang; Qiao, Yening; Lou, Zaixiang; Ma, Chaoyang; Li, Shiming; Wang, Hongxin; Ho, Chi-Tang

    2018-03-01

    As one of the main bioactive compounds of dried ginger, 6-shogaol has been widely used to alleviate many ailments. It is also a major pungent flavor component, and its precursor prior to dehydration is 6-gingerol, which is reported to be responsible for the pungent flavor and biological activity of fresh ginger. Structurally, gingerols including 6-gingerol have a β-hydroxyl ketone moiety and is liable to dehydrate to generate an α,β-unsaturated ketone under heat and/or acidic conditions. The conjugation of the α,β-unsaturated ketone skeleton in the chemical structure of 6-shogaol explicates its higher potency and efficacy than 6-gingerol in terms of antioxidant, anti-inflammatory, anticancer, antiemetic and other bioactivities. Research on the health benefits of 6-shogaol has been conducted and results have been reported recently; however, scientific data are scattered due to a lack of systematic collection. In addition, action mechanisms of the preventive and/or therapeutic actions of 6-shogaol remain obscurely non-collective. Herein, we review the preparations, biological activity and mechanisms, and metabolism of 6-shogaol as well as the properties of 6-shogaol metabolites.

  19. Bioactive factors in milk across lactation: maternal effects and influence on infant growth in rhesus macaques (Macaca mulatta)

    PubMed Central

    Bernstein, Robin; Hinde, Katie

    2017-01-01

    Among mammals, numerous bioactive factors in milk vary across mothers and influence offspring outcomes. This emerging area of research has primarily investigated such dynamics within rodent biomedical models, domesticated dairy breeds, and among humans in clinical contexts. Less understood are signaling factors in the milk of non-human primates. Here, we report on multiple bioactive components in rhesus macaque (Macaca mulatta) milk and their associations with maternal and infant characteristics. Milk samples were collected from 59 macaques at multiple time points across lactation in conjunction with maternal and infant morphometrics and life-history animal records. Milk was assayed for adiponectin (APN), epidermal growth factor (EGF) and its receptor (EGF-R), and transforming growth factor beta 2 (TGF-β2). Regression models were constructed to assess the contributions of maternal factors on variation in milk bioactives, and on the relationship of this variation to infant body mass and growth. Maternal body mass, parity, social rank and infant sex were all predictive of concentrations of milk bioactives. Primiparous mothers produced milk with higher adiponectin, but lower EGF, than multiparous mothers. Heavier mothers produced milk with lower EGF and EGF-R, but higher TGF-β2. Mothers of daughters produced milk with higher TGF-β2. Mid-ranking mothers produced milk with higher mean EGF and adiponectin concentrations than low-ranking mothers. Milk EGF and EGF-R were positively associated with infant body mass and growth rate. Importantly, these signaling bioactives (APN, EGF, EGF-R, TGF-β2) were significantly correlated with nutritional values of milk. The effects of milk signals remained after controlling for the available energy in milk revealing the added physiological role of non-nutritive milk bioactives in the developing infant. Integrating analyses of energetic and other bioactive components of milk yields an important perspective for interpreting the magnitude, sources, and consequences of inter-individual variation in milk synthesis. PMID:27029025

  20. Differential release of manure-borne bioactive P Forms to runoff and leachate under simulated rain

    USDA-ARS?s Scientific Manuscript database

    Limited information exist on the release of bioactive forms of P to runoff from a distinct manure layer, without the confounding effects of properties of the underlying soil in manure-amended fields to predict and model P partitioning and environmental behavior of the component P species. A study o...

  1. Anatomical, chemical, and biochemical characterization of cladodes from prickly pear [Opuntia ficus-indica (L.) Mill.].

    PubMed

    Ginestra, Giovanna; Parker, Mary L; Bennett, Richard N; Robertson, Jim; Mandalari, Giuseppina; Narbad, Arjan; Lo Curto, Rosario B; Bisignano, Giuseppe; Faulds, Craig B; Waldron, Keith W

    2009-11-11

    Opuntia ficus-indica cladodes represent the green stem of the plant and are generally used as animal feed or disposed of in landfills. The present work investigated the anatomical and chemical composition of Opuntia cladodes, which form the basis of their pharmacological effects. Glucose and galacturonic acid were the main sugars of Opuntia cladodes, whereas high-performance liquid chromatography (HPLC) analysis showed the presence of mainly kaempherol and isorhamnetin glycosides (glucoside and rhamnoside). The presence of high amounts of calcium oxalate crystals was demonstrated by light microscopy on fresh and lyophilized cladodes. No antimicrobial activity was observed even after enzymatic treatment. O. ficus-indica cladodes may retain material tightly associated with cell-wall components, and this property will have the potential to greatly reduce the bioavailability of bioactive compounds.

  2. Quinazoline derivatives: synthesis and bioactivities

    PubMed Central

    2013-01-01

    Owing to the significant biological activities, quinazoline derivatives have drawn more and more attention in the synthesis and bioactivities research. This review summarizes the recent advances in the synthesis and biological activities investigations of quinazoline derivatives. According to the main method the authors adopted in their research design, those synthetic methods were divided into five main classifications, including Aza-reaction, Microwave-assisted reaction, Metal-mediated reaction, Ultrasound-promoted reaction and Phase-transfer catalysis reaction. The biological activities of the synthesized quinazoline derivatives also are discussed. PMID:23731671

  3. Tissue engineering of urethra: Systematic review of recent literature.

    PubMed

    Žiaran, Stanislav; Galambošová, Martina; Danišovič, L'uboš

    2017-12-01

    The purpose of this article was to perform a systematic review of the recent literature on urethral tissue engineering. A total of 31 articles describing the use of tissue engineering for urethra reconstruction were included. The obtained results were discussed in three groups: cells, scaffolds, and clinical results of urethral reconstructions using these components. Stem cells of different origin were used in many experimental studies, but only autologous urothelial cells, fibroblasts, and keratinocytes were applied in clinical trials. Natural and synthetic scaffolds were studied in the context of urethral tissue engineering. The main advantage of synthetic ones is the fact that they can be obtained in unlimited amount and modified by different techniques, but scaffolds of natural origin normally contain chemical groups and bioactive proteins which increase the cell attachment and may promote the cell proliferation and differentiation. The most promising are smart scaffolds delivering different bioactive molecules or those that can be tubularized. In two clinical trials, only onlay-fashioned transplants were used for urethral reconstruction. However, the very promising results were obtained from animal studies where tubularized scaffolds, both non-seeded and cell-seeded, were applied. Impact statement The main goal of this article was to perform a systematic review of the recent literature on urethral tissue engineering. It summarizes the most recent information about cells, seeded or non-seeded scaffolds and clinical application with respect to regeneration of urethra.

  4. Piper betle leaf extract affects the quorum sensing and hence virulence of Pseudomonas aeruginosa PAO1.

    PubMed

    Datta, Siraj; Jana, Debanjan; Maity, Tilak Raj; Samanta, Aveek; Banerjee, Rajarshi

    2016-06-01

    Quorum sensing (QS) plays an important role in virulence of Pseudomonas aeruginosa, blocking of QS ability are viewed as viable antimicrobial chemotherapy and which may prove to be a safe anti-virulent drug. Bioactive components from Piper betle have been reported to possess antimicrobial ability. This study envisages on the anti-QS properties of ethanolic extract of P. betle leaf (PbLE) using P. aeruginosa PAO1 as a model organism. A marked reduction in swarming, swimming, and twitching ability of the bacteria is demonstrated in presence of PbLE. The biofilm and pyocyanin production also shows a marked reduction in presence of PbLE, though it does not affect the bacterial growth. Thus, the studies hint on the possible effect of the bioactive components of PbLE on reducing the virulent ability of the bacteria; identification of bioactive compounds should be investigated further.

  5. A one-step method to fabricate PLLA scaffolds with deposition of bioactive hydroxyapatite and collagen using ice-based microporogens

    PubMed Central

    Li, Jiashen; Chen, Yun; Mak, Arthur F.T.; Tuan, Rocky S.; Li, Lin; Li, Yi

    2010-01-01

    Porous poly(L-lactic acid) (PLLA) scaffolds with bioactive coatings were prepared by a novel one-step method. In this process, ice-based microporogens containing bioactive molecules, such as hydroxyapatite (HA) and collagen, served as both porogens to form the porous structure and vehicles to transfer the bioactive molecules to the inside of PLLA scaffolds in a single step. Based on scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis, the bioactive components were found to be transferred successfully from the porogens to PLLA scaffolds evenly. Osteoblast cells were used to evaluate the cellular behaviors of the composite scaffolds. After 8 days culturing, MTT assay and alkaline phosphatase (ALP) activity results suggested that HA/collagen could improve the interactions between osteoblast cells and the polymeric scaffold. PMID:20004261

  6. Metabolomic Fingerprinting of Romaneschi Globe Artichokes by NMR Spectroscopy and Multivariate Data Analysis.

    PubMed

    de Falco, Bruna; Incerti, Guido; Pepe, Rosa; Amato, Mariana; Lanzotti, Virginia

    2016-09-01

    Globe artichoke (Cynara cardunculus L. var. scolymus L. Fiori) and cardoon (Cynara cardunculus L. var. altilis DC) are sources of nutraceuticals and bioactive compounds. To apply a NMR metabolomic fingerprinting approach to Cynara cardunculus heads to obtain simultaneous identification and quantitation of the major classes of organic compounds. The edible part of 14 Globe artichoke populations, belonging to the Romaneschi varietal group, were extracted to obtain apolar and polar organic extracts. The analysis was also extended to one species of cultivated cardoon for comparison. The (1) H-NMR of the extracts allowed simultaneous identification of the bioactive metabolites whose quantitation have been obtained by spectral integration followed by principal component analysis (PCA). Apolar organic extracts were mainly based on highly unsaturated long chain lipids. Polar organic extracts contained organic acids, amino acids, sugars (mainly inulin), caffeoyl derivatives (mainly cynarin), flavonoids, and terpenes. The level of nutraceuticals was found to be highest in the Italian landraces Bianco di Pertosa zia E and Natalina while cardoon showed the lowest content of all metabolites thus confirming the genetic distance between artichokes and cardoon. Metabolomic approach coupling NMR spectroscopy with multivariate data analysis allowed for a detailed metabolite profile of artichoke and cardoon varieties to be obtained. Relevant differences in the relative content of the metabolites were observed for the species analysed. This work is the first application of (1) H-NMR with multivariate statistics to provide a metabolomic fingerprinting of Cynara scolymus. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. A Non-Biological Method for Screening Active Components against Influenza Virus from Traditional Chinese Medicine by Coupling a LC Column with Oseltamivir Molecularly Imprinted Polymers

    PubMed Central

    Yang, Ya-Jun; Li, Jian-Yong; Liu, Xi-Wang; Zhang, Ji-Yu; Liu, Yu-Rong; Li, Bing

    2013-01-01

    To develop a non-biological method for screening active components against influenza virus from traditional Chinese medicine (TCM) extraction, a liquid chromatography (LC) column prepared with oseltamivir molecularly imprinted polymer (OSMIP) was employed with LC-mass spectrometry (LC-MS). From chloroform extracts of compound TCM liquid preparation, we observed an affinitive component m/z 249, which was identified to be matrine following analysis of phytochemical literatures, OSMIP-LC column on-line of control compounds and MS/MS off-line. The results showed that matrine had similar bioactivities with OS against avian influenza virus H9N2 in vitro for both alleviating cytopathic effect and hemagglutination inhibition and that the stereostructures of these two compounds are similar while their two-dimensional structures were different. In addition, our results suggested that the bioactivities of those affinitive compounds were correlated with their chromatographic behaviors, in which less difference of the chromatographic behaviors might have more similar bioactivities. This indicates that matrine is a potential candidate drug to prevent or cure influenza for human or animal. In conclusion, the present study showed that molecularly imprinted polymers can be used as a non-biological method for screening active components against influenza virus from TCM. PMID:24386385

  8. Risk management of ochratoxigenic fungi and ochratoxin A in maize grains by bioactive EVOH films containing individual components of some essential oils.

    PubMed

    Tarazona, Andrea; Gómez, José V; Gavara, Rafael; Mateo-Castro, Rufino; Gimeno-Adelantado, José V; Jiménez, Misericordia; Mateo, Eva M

    2018-03-23

    Aspergillus steynii and Aspergillus tubingensis are possibly the main ochratoxin A (OTA) producing species in Aspergillus section Circumdati and section Nigri, respectively. OTA is a potent nephrotoxic, teratogenic, embryotoxic, genotoxic, neurotoxic, carcinogenic and immunosuppressive compound being cereals the first source of OTA in the diet. In this study bioactive ethylene-vinyl alcohol copolymer (EVOH) films containing cinnamaldehyde (CINHO), linalool (LIN), isoeugenol (IEG) or citral (CIT) which are major components of some plant essential oils (EOs) were produced and tested against A. steynii and A. tubingensis growth and OTA production in partly milled maize grains. Due to the favourable safety profile, these bioactive compounds are considered in the category "GRAS". The study was carried out under different water activity (0.96 and 0.99 a w ), and temperature (24 and 32 °C) conditions. ANOVA showed that class of film, fungal species, a w and temperature and their interactions significantly affected growth rates (GR), ED 50 and ED 90 and the doses for total fungal growth inhibition and OTA production. The most effective EVOH films against both species were those containing CINHO. ED 50 , ED 90 and doses for total growth and OTA inhibition were 165-405, 297-614, 333-666 μg of EVOH-CINHO/plate (25 g of maize grains), respectively, depending on environmental conditions. The least efficient were EVOH-LIN films. ED 50 , ED 90 and doses for total growth and OTA inhibition were 2800->3330, >3330 and >3330 μg of EVOH-LIN/plate (25 g of maize grains), respectively. The effectiveness of the bioactive films increased with increasing doses. Overall, A. tubingensis was less sensitive to treatments than A. steynii. Depending on the species, a w and temperature affected GR and OTA production in a different way. In A. steynii cultures, optimal growth occurred at 0.96 a w and 32 °C while optimal OTA production happened at 0.99 a w and 32 °C. In A. tubingensis cultures optimal growth happened at 0.99 a w and 32 °C, although the best conditions for OTA production were 0.99 a w and 24 °C. Thus, these species can be very competitive in warm climates and storage conditions. The EVOH-CINHO films followed by EVOH-IEG and EVOH-CIT films, designed in this study and applied in vapour phase, can be potent antifungal agents against A. steynii and A. tubingensis and strong inhibitors of OTA biosynthesis in maize grains at very low doses. This is the first study on the impact that interacting environmental conditions and bioactive films containing individual components of EOs have on the growth of these ochratoxigenic fungi and on OTA production in maize grains. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. BIOACTIVE COMPONENTS OF GYNURA DIVARICATA AND ITS POTENTIAL USE IN HEALTH, FOOD AND MEDICINE: A MINI-REVIEW

    PubMed Central

    Xu, Bing-Qing; Zhang, Yu-Qing

    2017-01-01

    Background: G. divaricata (L.) DC belongs to genus the Gynura Cass which is a kind of perennial herb that has good health protection efficacy and is especially used widely in medicine and functional food. It is one of the most famous traditional Chinese medicinal herbs and is usually used to cure bronchitis, pulmonary tuberculosis, kink cough, rheumatism, diabetes, and so on. It has a long history for the treatment of diabetes mellitus in the folk medicine. This review is aimed at gathering all information relating to G. divaricata and obtaining new insights for further studies on G. divaricata Materials and Methods: PubMed, Springer Link, Web of Science, Science Direct and Research Gate were used for the literature search. The key search terms included G. divaricata isolation and identification, flavonoids and their combinations without language restriction. The period for the search is from year 1979 to 2016. Results: The main chemical components were listed, and the folk application, the extraction and separation methods of main chemical components, pharmacological effects of G. divaricata were discussed, which further demonstrated the plant’s value as health food and medicine. Conclusion: The present review is of great significance to the development of new medicinal resources and health food of G. divaricata PMID:28480422

  10. BIOACTIVE COMPONENTS OF GYNURA DIVARICATA AND ITS POTENTIAL USE IN HEALTH, FOOD AND MEDICINE: A MINI-REVIEW.

    PubMed

    Xu, Bing-Qing; Zhang, Yu-Qing

    2017-01-01

    G. divaricata (L.) DC belongs to genus the Gynura Cass which is a kind of perennial herb that has good health protection efficacy and is especially used widely in medicine and functional food. It is one of the most famous traditional Chinese medicinal herbs and is usually used to cure bronchitis, pulmonary tuberculosis, kink cough, rheumatism, diabetes, and so on. It has a long history for the treatment of diabetes mellitus in the folk medicine. This review is aimed at gathering all information relating to G. divaricata and obtaining new insights for further studies on G. divaricata . PubMed, Springer Link, Web of Science, Science Direct and Research Gate were used for the literature search. The key search terms included G. divaricata isolation and identification, flavonoids and their combinations without language restriction. The period for the search is from year 1979 to 2016. The main chemical components were listed, and the folk application, the extraction and separation methods of main chemical components, pharmacological effects of G. divaricata were discussed, which further demonstrated the plant's value as health food and medicine. The present review is of great significance to the development of new medicinal resources and health food of G. divaricata .

  11. Anti-Inflammatory and Anti-Obesity Properties of Food Bioactive Components: Effects on Adipose Tissue

    PubMed Central

    Jayarathne, Shasika; Koboziev, Iurii; Park, Oak-Hee; Oldewage-Theron, Wilna; Shen, Chwan-Li; Moustaid-Moussa, Naima

    2017-01-01

    Obesity is an epidemic and costly disease affecting 13% of the adult population worldwide. Obesity is associated with adipose tissue hypertrophy and hyperplasia, as well as pathologic endocrine alterations of adipose tissue including local and chronic systemic low-grade inflammation. Moreover, this inflammation is a risk factor for both metabolic syndrome (MetS) and insulin resistance. Basic and clinical studies demonstrate that foods containing bioactive compounds are capable of preventing both obesity and adipose tissue inflammation, improving obesity-associated MetS in human subjects and animal models of obesity. In this review, we discuss the anti-obesity and anti-inflammatory protective effects of some bioactive polyphenols of plant origin and omega-3 polyunsaturated fatty acids, available for the customers worldwide from commonly used foods and/or as components of commercial food supplements. We review how these bioactive compounds modulate cell signaling including through the nuclear factor-κB, adenosine monophosphate-activated protein kinase, mitogen-activated protein kinase, toll-like receptors, and G-protein coupled receptor 120 intracellular signaling pathways and improve the balance of pro- and anti-inflammatory mediators secreted by adipose tissue and subsequently lower systemic inflammation and risk for metabolic diseases. PMID:29333376

  12. Should bioactive trace elements not recognized as essential, but with beneficial health effects, have intake recommendations.

    PubMed

    Nielsen, Forrest H

    2014-10-01

    Today, most nutritionists do not consider a trace element essential unless it has a defined biochemical function in higher animals or humans. As a result, even though it has been found that trace elements such as boron and silicon have beneficial bioactivity in higher animals and humans, they generally receive limited attention or mention when dietary guidelines or intake recommendations are formulated. Recently, the possibility of providing dietary intake recommendations such as an adequate intake (AI) for some bioactive food components (e.g., flavonoids) has been discussed. Boron, chromium, nickel, and silicon are bioactive food components that provide beneficial health effects by plausible mechanisms of action in nutritional and supra nutritional amounts, and thus should be included in the discussions. Although the science base may not be considered adequate for establishing AIs, a significant number of findings suggest that statements about these trace elements should be included when dietary intake guidance is formulated. An appropriate recommendation may be that diets should include foods that would provide trace elements not currently recognized as essential in amounts shown to reduce the risk of chronic disease and/or promote health and well-being. Published by Elsevier GmbH.

  13. A narrative review of the associations between six bioactive components in breast milk and infant adiposity.

    PubMed

    Fields, David A; Schneider, Camille R; Pavela, Gregory

    2016-06-01

    This narrative review examines six important non-nutritive substances in breast milk, many of which were thought to have little to no biological significance. The overall objective is to provide background on key bioactive factors in breast milk believed to have an effect on infant outcomes (growth and body composition). The evidence for the effects of the following six bioactive compounds in breast milk on infant growth outcomes are reviewed: insulin, leptin, adiponectin, ghrelin, interleukin-6, and tumor necrosis factor-α. The existing literature on the effects of breast milk insulin, ghrelin, interleukin-6, and tumor necrosis factor-α and their associations with infant growth and adiposity is sparse. Of the bioactive compounds reviewed, leptin and adiponectin are the most researched. Data reveal that breast milk adiponectin has negative associations with growth in infancy. There is a need for innovative, well-designed studies to improve causal inference and advance our understanding in the effects of breast milk and its components on offspring growth and body composition. The recommendations provided, along with careful consideration of both known and unknown factors that affect breast milk composition, will help improve, standardize, and ultimately advance this emergent field. © 2016 The Obesity Society.

  14. In vitro antiproliferative/cytotoxic activity on cancer cell lines of a cardanol and a cardol enriched from Thai Apis mellifera propolis

    PubMed Central

    2012-01-01

    Background Propolis is a complex resinous honeybee product. It is reported to display diverse bioactivities, such as antimicrobial, anti-inflammatory and anti-tumor properties, which are mainly due to phenolic compounds, and especially flavonoids. The diversity of bioactive compounds depends on the geography and climate, since these factors affect the floral diversity. Here, Apis mellifera propolis from Nan province, Thailand, was evaluated for potential anti-cancer activity. Methods Propolis was sequentially extracted with methanol, dichloromethane and hexane and the cytotoxic activity of each crude extract was assayed for antiproliferative/cytotoxic activity in vitro against five human cell lines derived from duet carcinoma (BT474), undifferentiated lung (Chaco), liver hepatoblastoma (Hep-G2), gastric carcinoma (KATO-III) and colon adenocarcinoma (SW620) cancers. The human foreskin fibroblast cell line (Hs27) was used as a non-transformed control. Those crude extracts that displayed antiproliferative/cytotoxic activity were then further fractionated by column chromatography using TLC-pattern and MTT-cytotoxicity bioassay guided selection of the fractions. The chemical structure of each enriched bioactive compound was analyzed by nuclear magnetic resonance and mass spectroscopy. Results The crude hexane and dichloromethane extracts of propolis displayed antiproliferative/cytotoxic activities with IC50 values across the five cancer cell lines ranging from 41.3 to 52.4 μg/ml and from 43.8 to 53.5 μg/ml, respectively. Two main bioactive components were isolated, one cardanol and one cardol, with broadly similar in vitro antiproliferation/cytotoxicity IC50 values across the five cancer cell lines and the control Hs27 cell line, ranging from 10.8 to 29.3 μg/ml for the cardanol and < 3.13 to 5.97 μg/ml (6.82 - 13.0 μM) for the cardol. Moreover, both compounds induced cytotoxicity and cell death without DNA fragmentation in the cancer cells, but only an antiproliferation response in the control Hs27 cells However, these two compounds did not account for the net antiproliferation/cytotoxic activity of the crude extracts suggesting the existence of other potent compounds or synergistic interactions in the propolis extracts. Conclusion This is the first report that Thai A. mellifera propolis contains at least two potentially new compounds (a cardanol and a cardol) with potential anti-cancer bioactivity. Both could be alternative antiproliferative agents for future development as anti-cancer drugs. PMID:22458642

  15. Thermal analysis and in vitro bioactivity of bioactive glass-alumina composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatzistavrou, Xanthippi, E-mail: x.chatzistavrou@imperial.ac.uk; Kantiranis, Nikolaos, E-mail: kantira@geo.auth.gr; Kontonasaki, Eleana, E-mail: kont@dent.auth.gr

    2011-01-15

    Bioactive glass-alumina composite (BA) pellets were fabricated in the range 95/5-60/40 wt.% respectively and were heat-treated under a specific thermal treatment up to 950 {sup o}C. Control (unheated) and heat-treated pellets were immersed in Simulated Body Fluid (SBF) for bioactivity testing. All pellets before and after immersion in SBF were studied by Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM-EDS) and X-ray Diffraction (XRD) analysis. All composite pellets presented bioactive response. On the surface of the heat-treated pellets the development of a rich biological hydroxyapatite (HAp) layer was delayed for one day, compared to the respective control pellets. Independentmore » of the proportion of the two components, all composites of each group (control and heat-treated) presented the same bioactive response as a function of immersion time in SBF. It was found that by the applied methodology, Al{sub 2}O{sub 3} can be successfully applied in bioactive glass composites without obstructing their bioactive response. - Research Highlights: {yields} Isostatically pressed glass-alumina composites presented apatite-forming ability. {yields} The interaction with SBF resulted in an aluminium phosphate phase formation. {yields} The formation of an aluminium phosphate phase enhanced the in vitro apatite growth.« less

  16. Increasing the Coverage of Medicinal Chemistry-Relevant Space in Commercial Fragments Screening

    PubMed Central

    2014-01-01

    Analyzing the chemical space coverage in commercial fragment screening collections revealed the overlap between bioactive medicinal chemistry substructures and rule-of-three compliant fragments is only ∼25%. We recommend including these fragments in fragment screening libraries to maximize confidence in discovering hit matter within known bioactive chemical space, while incorporation of nonoverlapping substructures could offer novel hits in screening libraries. Using principal component analysis, polar and three-dimensional substructures display a higher-than-average enrichment of bioactive compounds, indicating increasing representation of these substructures may be beneficial in fragment screening. PMID:24405118

  17. Recent advances in tea polysaccharides: Extraction, purification, physicochemical characterization and bioactivities.

    PubMed

    Chen, Guijie; Yuan, Qingxia; Saeeduddin, Muhammad; Ou, Shiyi; Zeng, Xiaoxiong; Ye, Hong

    2016-11-20

    Tea has a long history of medicinal and dietary use. Tea polysaccharide (TPS) is regarded as one of the main bioactive constituents of tea and is beneficial for health. Over the last decades, considerable efforts have been devoted to the studies on TPS: extraction, structural feature and bioactivity of TPS. However, it has been received much less attention compared with tea polyphenols. In order to provide new insight for further development of TPS in functional foods, in present review we summarize the recent literature, update the information and put forward future perspectives on TPS covering its extraction, purification, quantitative determination techniques as well as physicochemical characterization and bioactivities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Alpinia Essential Oils and Their Major Components against Rhodnius nasutus, a Vector of Chagas Disease

    PubMed Central

    de Souza, Thamiris de A.; Lopes, Marcio B. P.; Ferreira, José Luiz P.; Queiroz, Margareth M. C.; Araújo, Kátia G. de Lima

    2018-01-01

    Species of the genus Alpinia are widely used by the population and have many described biological activities, including activity against insects. In this paper, we describe the bioactivity of the essential oil of two species of Alpinia genus, A. zerumbet and A. vittata, against Rhodnius nasutus, a vector of Chagas disease. The essential oils of these two species were obtained by hydrodistillation and analyzed by GC-MS. The main constituent of A. zerumbet essential oil (OLALPZER) was terpinen-4-ol, which represented 19.7% of the total components identified. In the essential oil of A. vittata (OLALPVIT) the monoterpene β-pinene (35.3%) was the main constituent. The essential oils and their main constituents were topically applied on R. nasutus fifth-instar nymphs. In the first 10 min of application, OLALPVIT and OLALPZER at 125 μg/mL provoked 73.3% and 83.3% of mortality, respectively. Terpinen-4-ol at 25 μg/mL and β-pinene at 44 μg/mL provoked 100% of mortality. The monitoring of resistant insects showed that both essential oils exhibited antifeedant activity. These results suggest the potential use of A. zerumbet and A. vittata essential oils and their major constituents to control R. nasutus population. PMID:29643755

  19. Recent Advances in Phospholipids from Colostrum, Milk and Dairy By-Products.

    PubMed

    Verardo, Vito; Gómez-Caravaca, Ana Maria; Arráez-Román, David; Hettinga, Kasper

    2017-01-17

    Milk is one of the most important foods for mammals, because it is the first form of feed providing energy, nutrients and immunological factors. In the last few years, milk lipids have attracted the attention of researchers due to the presence of several bioactive components in the lipid fraction. The lipid fraction of milk and dairy products contains several components of nutritional significance, such as ω-3 and ω-6 polyunsaturated fatty acids, CLA, short chain fatty acids, gangliosides and phospholipids. Prospective cohort evidence has shown that phospholipids play an important role in the human diet and reinforce the possible relationship between their consumption and prevention of several chronic diseases. Because of these potential benefits of phospholipids in the human diet, this review is focused on the recent advances in phospholipids from colostrum, milk and dairy by-products. Phospholipid composition, its main determination methods and the health activities of these compounds will be addressed.

  20. Recent Advances in Phospholipids from Colostrum, Milk and Dairy By-Products

    PubMed Central

    Verardo, Vito; Gómez-Caravaca, Ana Maria; Arráez-Román, David; Hettinga, Kasper

    2017-01-01

    Milk is one of the most important foods for mammals, because it is the first form of feed providing energy, nutrients and immunological factors. In the last few years, milk lipids have attracted the attention of researchers due to the presence of several bioactive components in the lipid fraction. The lipid fraction of milk and dairy products contains several components of nutritional significance, such as ω-3 and ω-6 polyunsaturated fatty acids, CLA, short chain fatty acids, gangliosides and phospholipids. Prospective cohort evidence has shown that phospholipids play an important role in the human diet and reinforce the possible relationship between their consumption and prevention of several chronic diseases. Because of these potential benefits of phospholipids in the human diet, this review is focused on the recent advances in phospholipids from colostrum, milk and dairy by-products. Phospholipid composition, its main determination methods and the health activities of these compounds will be addressed. PMID:28106745

  1. Dietary fiber and blood pressure control.

    PubMed

    Aleixandre, A; Miguel, M

    2016-04-01

    In the past few years, new strategies to control blood pressure levels are emerging by developing new bioactive components of foods. Fiber has been linked to the prevention of a number of cardiovascular diseases and disorders. β-Glucan, the main soluble fiber component in oat grains, was initially linked to a reduction in plasma cholesterol. Several studies have shown afterward that dietary fiber may also improve glycaemia, insulin resistance and weight loss. The effect of dietary fiber on arterial blood pressure has been the subject of far fewer studies than its effect on the above-mentioned variables, but research has already shown that fiber intake can decrease arterial blood pressure in hypertensive rats. Moreover, certain fibers can improve arterial blood pressure when administered to hypertensive and pre-hypertensive subjects. The present review summarizes all those studies which attempt to establish the antihypertensive effects of dietary fiber, as well as its effect on other cardiovascular risk factors.

  2. Applicability of preparative overpressured layer chromatography and direct bioautography in search of antibacterial chamomile compounds.

    PubMed

    Móricz, Agnes M; Ott, Péter G; Alberti, Agnes; Böszörményi, Andrea; Lemberkovics, Eva; Szoke, Eva; Kéry, Agnes; Mincsovics, Emil

    2013-01-01

    In situ sample preparation and preparative overpressured layer chromatography (OPLC) fractionation on a 0.5 mm thick adsorbent layer of chamomile flower methanol extract prepurified by conventional gravitation accelerated column chromatography were applied in searching for bioactive components. Sample cleanup in situ on the adsorbent layer subsequent to sample application was performed using mobile phase flow in the opposite direction (the input and output of the eluent was exchanged). The antibacterial effect of the fractions obtained from the stepwise gradient OPLC separation with the flow in the normal direction was evaluated by direct bioautography against two Gram-negative bacteria: the luminescence gene tagged plant pathogenic Pseudomonas syringae pv. maculicola, and the naturally luminescent marine bacterium Vibrio fischeri. The fractions having strong activity were analyzed by SPME-GC/MS and HPLC/MS/MS. Mainly essential oil components, coumarins, flavonoids, phenolic acids, and fatty acids were tentatively identified in the fractions.

  3. Batch Statistical Process Monitoring Approach to a Cocrystallization Process.

    PubMed

    Sarraguça, Mafalda C; Ribeiro, Paulo R S; Dos Santos, Adenilson O; Lopes, João A

    2015-12-01

    Cocrystals are defined as crystalline structures composed of two or more compounds that are solid at room temperature held together by noncovalent bonds. Their main advantages are the increase of solubility, bioavailability, permeability, stability, and at the same time retaining active pharmaceutical ingredient bioactivity. The cocrystallization between furosemide and nicotinamide by solvent evaporation was monitored on-line using near-infrared spectroscopy (NIRS) as a process analytical technology tool. The near-infrared spectra were analyzed using principal component analysis. Batch statistical process monitoring was used to create control charts to perceive the process trajectory and define control limits. Normal and non-normal operating condition batches were performed and monitored with NIRS. The use of NIRS associated with batch statistical process models allowed the detection of abnormal variations in critical process parameters, like the amount of solvent or amount of initial components present in the cocrystallization. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  4. Marine snail venoms: use and trends in receptor and channel neuropharmacology.

    PubMed

    Favreau, Philippe; Stöcklin, Reto

    2009-10-01

    Venoms are rich mixtures of mainly peptides and proteins evolved by nature to catch and digest preys or for protection against predators. They represent extensive sources of potent and selective bioactive compounds that can lead to original active ingredients, for use as drugs, as pharmacological tools in research and for the biotechnology industry. Among the most fascinating venomous animals, marine snails offer a unique set of pharmacologically active components, targeting a wide diversity of receptors and ion channels. Recent advances still continue to demonstrate their huge neuropharmacological potential. In the quest for interesting pharmacological profiles, researchers face a vast number of venom components to investigate within time and technological constraints. A brief perspective on marine snail venom's complexity and features is given followed by the different discovery strategies and pharmacological approaches, exemplified with some recent developments. These advances will hopefully help further uncovering new pharmacologically important venom molecules.

  5. Biomolecules and Natural Medicine Preparations: Analysis of New Sources of Bioactive Compounds from Ribes and Rubus spp. Buds.

    PubMed

    Donno, Dario; Mellano, Maria Gabriella; Cerutti, Alessandro Kim; Beccaro, Gabriele Loris

    2016-02-05

    It is well known that plants are important sources for the preparation of natural remedies as they contain many biologically active compounds. In particular, polyphenols, terpenic compounds, organic acids, and vitamins are the most widely occurring groups of phytochemicals. Some endemic species may be used for the production of herbal preparations containing phytochemicals with significant bioactivity, as antioxidant activity and anti-inflammatory capacities, and health benefits. Blackberry sprouts and blackcurrant buds are known to contain appreciable levels of bioactive compounds, including flavonols, phenolic acids, monoterpenes, vitamin C, and catechins, with several clinical effects. The aim of this research was to perform an analytical study of blackcurrant and blackberry bud-preparations, in order to identify and quantify the main biomarkers, obtaining a specific phytochemical fingerprint to evaluate the single botanical class contribution to total phytocomplex and relative bioactivity, using a High Performance Liquid Chromatograph-Diode Array Detector; the same analyses were performed both on the University laboratory and commercial preparations. Different chromatographic methods were used to determine concentrations of biomolecules in the preparations, allowing for quantification of statistically significant differences in their bioactive compound content both in the case of Ribes nigrum and Rubus cultivated varieties at different harvest stages. In blackcurrant bud-extracts the most important class was organic acids (50.98%) followed by monoterpenes (14.05%), while in blackberry preparations the main bioactive classes were catechins (50.06%) and organic acids (27.34%). Chemical, pharmaceutical and agronomic-environmental knowledge could be important for obtaining label certifications for the valorization of specific genotypes, with high clinical and pharmaceutical value: this study allowed to develop an effective tool for the natural preparation quality control and bioactivity evaluation through the chemical fingerprinting of bud preparations.

  6. Applied modern biotechnology for cultivation of Ganoderma and development of their products.

    PubMed

    Zhou, Xuan-Wei; Su, Kai-Qi; Zhang, Yong-Ming

    2012-02-01

    A white-rot basidiomycete Ganoderma spp. has long been used as a medicinal mushroom in Asia, and it has an array of pharmacological properties for immunomodulatory activity. There have been many reports about the bioactive components and their pharmacological properties. In order to analyze the current status of Ganoderma products, the detailed process of cultivation of Ganoderma spp. and development of their products are restated in this review article. These include the breeding, cultivating, extracting bioactive component, and processing Ganoderma products, etc. This article will expand people's common knowledge on Ganoderma, and provide a beneficial reference for research and industrial production.

  7. Epigenetics of breast cancer: modifying role of environmental and bioactive food compounds

    PubMed Central

    Romagnolo, Donato F.; Daniels, Kevin D.; Grunwald, Jonathan T.; Ramos, Stephan A.; Propper, Catherine R.; Selmin, Ornella I.

    2017-01-01

    Scope Reduced expression of tumor suppressor genes (TSG) increases the susceptibility to breast cancer. However, only a small percentage of breast tumors is related to family history and mutational inactivation of TSG. Epigenetics refers to non-mutational events that alter gene expression. Endocrine disruptors found in foods and drinking water may disrupt epigenetically hormonal regulation and increase breast cancer risk. This review centers on the working hypothesis that agonists of the aromatic hydrocarbon receptor (AHR); bisphenol A (BPA); and arsenic compounds, induce in TSG epigenetic signatures that mirror those often seen in sporadic breast tumors. Conversely, it is hypothesized that bioactive food components that target epigenetic mechanisms protect against sporadic breast cancer induced by these disruptors. Methods and results This review highlights 1) overlaps between epigenetic signatures placed in TSG by AHR-ligands, BPA, and arsenic with epigenetic alterations associated with sporadic breast tumorigenesis; and 2) potential opportunities for prevention of sporadic breast cancer with food components that target the epigenetic machinery. Conclusions Characterizing the overlap between epigenetic signatures elicited in TSG by endocrine disruptors with those observed in sporadic breast tumors may afford new strategies for breast cancer prevention with specific bioactive food components or diet. PMID:27144894

  8. Vegetable Oils as Alternative Solvents for Green Oleo-Extraction, Purification and Formulation of Food and Natural Products.

    PubMed

    Yara-Varón, Edinson; Li, Ying; Balcells, Mercè; Canela-Garayoa, Ramon; Fabiano-Tixier, Anne-Sylvie; Chemat, Farid

    2017-09-05

    Since solvents of petroleum origin are now strictly regulated worldwide, there is a growing demand for using greener, bio-based and renewable solvents for extraction, purification and formulation of natural and food products. The ideal alternative solvents are non-volatile organic compounds (VOCs) that have high dissolving power and flash point, together with low toxicity and less environmental impact. They should be obtained from renewable resources at a reasonable price and be easy to recycle. Based on the principles of Green Chemistry and Green Engineering, vegetable oils could become an ideal alternative solvent to extract compounds for purification, enrichment, or even pollution remediation. This review presents an overview of vegetable oils as solvents enriched with various bioactive compounds from natural resources, as well as the relationship between dissolving power of non-polar and polar bioactive components with the function of fatty acids and/or lipid classes in vegetable oils, and other minor components. A focus on simulation of solvent-solute interactions and a discussion of polar paradox theory propose a mechanism explaining the phenomena of dissolving polar and non-polar bioactive components in vegetable oils as green solvents with variable polarity.

  9. Bioactive Components in Fish Venoms

    PubMed Central

    Ziegman, Rebekah; Alewood, Paul

    2015-01-01

    Animal venoms are widely recognized excellent resources for the discovery of novel drug leads and physiological tools. Most are comprised of a large number of components, of which the enzymes, small peptides, and proteins are studied for their important bioactivities. However, in spite of there being over 2000 venomous fish species, piscine venoms have been relatively underrepresented in the literature thus far. Most studies have explored whole or partially fractioned venom, revealing broad pharmacology, which includes cardiovascular, neuromuscular, cytotoxic, inflammatory, and nociceptive activities. Several large proteinaceous toxins, such as stonustoxin, verrucotoxin, and Sp-CTx, have been isolated from scorpaenoid fish. These form pores in cell membranes, resulting in cell death and creating a cascade of reactions that result in many, but not all, of the physiological symptoms observed from envenomation. Additionally, Natterins, a novel family of toxins possessing kininogenase activity have been found in toadfish venom. A variety of smaller protein toxins, as well as a small number of peptides, enzymes, and non-proteinaceous molecules have also been isolated from a range of fish venoms, but most remain poorly characterized. Many other bioactive fish venom components remain to be discovered and investigated. These represent an untapped treasure of potentially useful molecules. PMID:25941767

  10. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis

    NASA Astrophysics Data System (ADS)

    Zhang, Yali; Xia, Lunguo; Zhai, Dong; Shi, Mengchao; Luo, Yongxiang; Feng, Chun; Fang, Bing; Yin, Jingbo; Chang, Jiang; Wu, Chengtie

    2015-11-01

    The hierarchical microstructure, surface and interface of biomaterials are important factors influencing their bioactivity. Porous bioceramic scaffolds have been widely used for bone tissue engineering by optimizing their chemical composition and large-pore structure. However, the surface and interface of struts in bioceramic scaffolds are often ignored. The aim of this study is to incorporate hierarchical pores and bioactive components into the bioceramic scaffolds by constructing nanopores and bioactive elements on the struts of scaffolds and further improve their bone-forming activity. Mesoporous bioactive glass (MBG) modified β-tricalcium phosphate (MBG-β-TCP) scaffolds with a hierarchical pore structure and a functional strut surface (~100 nm of MBG nanolayer) were successfully prepared via 3D printing and spin coating. The compressive strength and apatite-mineralization ability of MBG-β-TCP scaffolds were significantly enhanced as compared to β-TCP scaffolds without the MBG nanolayer. The attachment, viability, alkaline phosphatase (ALP) activity, osteogenic gene expression (Runx2, BMP2, OPN and Col I) and protein expression (OPN, Col I, VEGF, HIF-1α) of rabbit bone marrow stromal cells (rBMSCs) as well as the attachment, viability and angiogenic gene expression (VEGF and HIF-1α) of human umbilical vein endothelial cells (HUVECs) in MBG-β-TCP scaffolds were significantly upregulated compared with conventional bioactive glass (BG)-modified β-TCP (BG-β-TCP) and pure β-TCP scaffolds. Furthermore, MBG-β-TCP scaffolds significantly enhanced the formation of new bone in vivo as compared to BG-β-TCP and β-TCP scaffolds. The results suggest that application of the MBG nanolayer to modify 3D-printed bioceramic scaffolds offers a new strategy to construct hierarchically porous scaffolds with significantly improved physicochemical and biological properties, such as mechanical properties, osteogenesis, angiogenesis and protein expression for bone tissue engineering applications, in which the incorporation of nanostructures and bioactive components into the scaffold struts synergistically play a key role in the improved bone formation.

  11. Cannabidiol in medicine: a review of its therapeutic potential in CNS disorders.

    PubMed

    Scuderi, Caterina; Filippis, Daniele De; Iuvone, Teresa; Blasio, Angelo; Steardo, Antonio; Esposito, Giuseppe

    2009-05-01

    Cannabidiol (CBD) is the main non-psychotropic component of the glandular hairs of Cannabis sativa. It displays a plethora of actions including anticonvulsive, sedative, hypnotic, antipsychotic, antiinflammatory and neuroprotective properties. However, it is well established that CBD produces its biological effects without exerting significant intrinsic activity upon cannabinoid receptors. For this reason, CBD lacks the unwanted psychotropic effects characteristic of marijuana derivatives, so representing one of the bioactive constituents of Cannabis sativa with the highest potential for therapeutic use.The present review reports the pharmacological profile of CBD and summarizes results from preclinical and clinical studies utilizing CBD, alone or in combination with other phytocannabinoids, for the treatment of a number of CNS disorders.

  12. Curcumin conjugated silica nanoparticles for improving bioavailability and its anticancer applications.

    PubMed

    Gangwar, Rajesh K; Tomar, Geetanjali B; Dhumale, Vinayak A; Zinjarde, Smita; Sharma, Rishi B; Datar, Suwarna

    2013-10-09

    Curcumin, a yellow bioactive component of Indian spice turmeric, is known to have a wide spectrum of biological applications. In spite of various astounding therapeutic properties, it lacks in bioavailability mainly due to its poor solubility in water. In this work, we have conjugated curcumin with silica nanoparticles to improve its aqueous solubility and hence to make it more bioavailable. Conjugation and loading of curcumin with silica nanoparticles was further examined with transmission electron microscope (TEM) and thermogravimetric analyzer. Cytotoxicity analysis of synthesized silica:curcumin conjugate was studied against HeLa cell lines as well as normal fibroblast cell lines. This study shows that silica:curcumin conjugate has great potential for anticancer application.

  13. Ganoderma lucidum Polysaccharides as An Anti-cancer Agent.

    PubMed

    Sohretoglu, Didem; Huang, Shile

    2017-11-13

    The mushroom Ganoderma lucidum (G. lucidum) has been used for centuries in Asian countries to treat various diseases and to promote health and longevity. Clinical studies have shown beneficial effects of G. lucidum as an alternative adjuvant therapy in cancer patients without obvious toxicity. G. lucidum polysaccharides (GLP) is the main bioactive component in the water soluble extracts of this mushroom. Evidence from in vitro and in vivo studies has demonstrated that GLP possesses potential anticancer activity through immunomodulatory, anti-proliferative, pro-apoptotic, anti-metastatic and anti-angiogenic effects. Here, we briefly summarize these anticancer effects of GLP and the underlying mechanisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Exploring the role of cranberry polyphenols in periodontits: A brief review

    PubMed Central

    Mukherjee, Malancha; Bandyopadhyay, Prasanta; Kundu, Debabrata

    2014-01-01

    Cranberry juice polyphenols have gained importance over the past decade due to their promising health benefits. The bioactive component, proanthocyanidins is mainly responsible for its protective effect. A lot has been said about its role in urinary tract infection and other systemic diseases, but little is known about its oral benefits. An extensive search was carried out in the PubMed database using the terms “cranberry polyphenols” and “periodontitis” together. The institute library was also thoroughly scrutinized for all relevant information. Thus, a paper was formulated, the aim of which was to review the role of high molecular weight cranberry fraction on oral tissues and periodontal diseases. PMID:24872617

  15. Cyclic azole-homologated peptides from Marine sponges.

    PubMed

    Molinski, Tadeusz F

    2017-12-19

    This review discusses the chemistry of cyclic azole-homologated peptides (AHPs) from the marine sponges, Theonella swinhoei, other Theonella species, Calyx spp. and Plakina jamaicensis. The origin, distribution of AHPs and molecular structure elucidations of AHPs are described followed by their biosynthesis, bioactivity, and synthetic efforts towards their total synthesis. Reports of partial and total synthesis of AHPs extend beyond peptide coupling reactions and include creative construction of the non-proteinogenic amino acid components, mainly the homologated heteroaromatic and α-keto-β-amino acids. A useful conclusion is drawn regarding AHPs: despite their rarity, exotic structures and the potent protease inhibitory properties of some members, their synthesis is under-developed and beckons solutions for outstanding problems towards their efficient assembly.

  16. Impact of Nutrients and Food Components on Dyslipidemias: What Is the Evidence?12

    PubMed Central

    Rosa, Carla de Oliveira Barbosa; dos Santos, Carolina Araújo; Leite, Jacqueline Isaura Alvarez; Caldas, Ana Paula Silva; Bressan, Josefina

    2015-01-01

    Dyslipidemias have been shown to bear a close association with an increased risk of cardiovascular diseases, atherosclerosis in particular. As efforts are being made to find alternative therapies and ways to prevent disease, there is a corresponding rise in public interest in food and/or active food components that contribute to an improved lipid profile and, thus, to better health. Besides supplying the basic nutrients necessary for well-being, some foods add further physiologic benefits. In fact, specific foods and bioactive components could be beneficial in controlling dyslipidemias. From a review of the literature on foods and bioactive compounds, their recommended quantities, and expected effects, we found that the following nutrients and food components could positively impact the lipid profile: monounsaturated and polyunsaturated fatty acids, soluble fiber, vegetable proteins, phytosterols, and polyphenols. Therefore, incorporating these components into the regular diets of individuals is justified, because they contribute additional positive effects. This suggests that they also be recommended in clinical practice. PMID:26567195

  17. Bioactive factors in milk across lactation: Maternal effects and influence on infant growth in rhesus macaques (Macaca mulatta).

    PubMed

    Bernstein, Robin M; Hinde, Katie

    2016-08-01

    Among mammals, numerous bioactive factors in milk vary across mothers and influence offspring outcomes. This emerging area of research has primarily investigated such dynamics within rodent biomedical models, domesticated dairy breeds, and among humans in clinical contexts. Less understood are signaling factors in the milk of non-human primates. Here, we report on multiple bioactive components in rhesus macaque (Macaca mulatta) milk and their associations with maternal and infant characteristics. Milk samples were collected from 59 macaques at multiple time points across lactation in conjunction with maternal and infant morphometrics and life-history animal records. Milk was assayed for adiponectin (APN), epidermal growth factor (EGF) and its receptor (EGF-R), and transforming growth factor beta 2 (TGF-β2 ). Regression models were constructed to assess the contributions of maternal factors on variation in milk bioactives, and on the relationship of this variation to infant body mass and growth. Maternal body mass, parity, social rank, and infant sex were all predictive of concentrations of milk bioactives. Primiparous mothers produced milk with higher adiponectin, but lower EGF, than multiparous mothers. Heavier mothers produced milk with lower EGF and EGF-R, but higher TGF-β2 . Mothers of daughters produced milk with higher TGF-β2 . Mid-ranking mothers produced milk with higher mean EGF and adiponectin concentrations than low-ranking mothers. Milk EGF and EGF-R were positively associated with infant body mass and growth rate. Importantly, these signaling bioactives (APN, EGF, EGF-R, and TGF-β2 ) were significantly correlated with nutritional values of milk. The effects of milk signals remained after controlling for the available energy in milk revealing the added physiological role of non-nutritive milk bioactives in the developing infant. Integrating analyses of energetic and other bioactive components of milk yields an important perspective for interpreting the magnitude, sources, and consequences of inter-individual variation in milk synthesis. Am. J. Primatol. 78:838-850, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy

    PubMed Central

    Rein, Maarit J.; Renouf, Mathieu; Cruz‐Hernandez, Cristina; Actis‐Goretta, Lucas; Thakkar, Sagar K.; da Silva Pinto, Marcia

    2013-01-01

    Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds. PMID:22897361

  19. A monoclonal antibody targeting amyloid β (Aβ) restores complement factor I bioactivity: Potential implications in age-related macular degeneration and Alzheimer's disease.

    PubMed

    Lashkari, Kameran; Teague, Gianna; Chen, Hong; Lin, Yong-Qing; Kumar, Sanjay; McLaughlin, Megan M; López, Francisco J

    2018-01-01

    Activation of the alternative complement cascade has been implicated in the pathogenesis of age related macular degeneration (AMD) and Alzheimer's disease (AD). Amyloid β (Aβ), a component of drusen, may promote complement activation by inhibiting CFI bioactivity. We determined whether Aβ reduced CFI bioactivity and whether antibodies against Aβ including a monoclonal antibody, GSK933776 could restore CFI bioactivity. We also measured CFI bioactivity in plasma of subjects with AMD and AD. In support of the GSK933776 development program in AMD (geographic atrophy), we developed a quantitative assay to measure CFI bioactivity based on its ability to cleave C3b to iC3b, and repeated it in presence or absence of Aβ and anti-Aβ antibodies. Using this assay, we measured CFI bioactivity in plasma of 194 subjects with AMD, and in samples from subjects with AD that had been treated with GSK933776 as part of the GSK933776 development program in AD. Aβ reduced the CFI bioactivity by 5-fold and pre-incubation with GSK933776 restored CFI bioactivity. In subjects with AMD, plasma CFI levels and bioactivity were not significantly different from non-AMD controls. However, we detected a positive linear trend, suggesting increasing activity with disease severity. In subjects with AD, we observed a 10% and 27% increase in overall CFI bioactivity after treatment with GSK933776 during the second and third dose. Our studies indicate that CFI enzymatic activity can be inhibited by Aβ and be altered in proinflammatory diseases such as AMD and AD, in which deposition of Aβ and activation of the alternative complement cascade are believed to play a key role in the disease process.

  20. Biosynthetic approaches to creating bioactive fungal metabolites: Pathway engineering and activation of secondary metabolism.

    PubMed

    Motoyama, Takayuki; Osada, Hiroyuki

    2016-12-15

    The diversity of natural products is greater than that of combinatorial chemistry compounds and is similar to that of drugs. Compounds rich in sp 3 carbons, such as natural products, typically exhibit high structural complexity and high specificity to molecular targets. Microorganisms can synthesize such sp 3 carbon-rich compounds and can be used as excellent factories for making bioactive compounds. Here, we mainly focus on pathway engineering of two sp 3 carbon-rich bioactive indole alkaloids, fumitremorgin C and terpendole E. We also demonstrate the importance of activation of secondary metabolism by focusing on tenuazonic acid, a bioactive tetramic acid compound, as an example. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Bioactive Egg Components and Inflammation

    PubMed Central

    Andersen, Catherine J.

    2015-01-01

    Inflammation is a normal acute response of the immune system to pathogens and tissue injury. However, chronic inflammation is known to play a significant role in the pathophysiology of numerous chronic diseases, such as cardiovascular disease, type 2 diabetes mellitus, and cancer. Thus, the impact of dietary factors on inflammation may provide key insight into mitigating chronic disease risk. Eggs are recognized as a functional food that contain a variety of bioactive compounds that can influence pro- and anti-inflammatory pathways. Interestingly, the effects of egg consumption on inflammation varies across different populations, including those that are classified as healthy, overweight, metabolic syndrome, and type 2 diabetic. The following review will discuss the pro- and anti-inflammatory properties of egg components, with a focus on egg phospholipids, cholesterol, the carotenoids lutein and zeaxanthin, and bioactive proteins. The effects of egg consumption of inflammation across human populations will additionally be presented. Together, these findings have implications for population-specific dietary recommendations and chronic disease risk. PMID:26389951

  2. Rice Varietal Differences in Bioactive Bran Components for Inhibition of Colorectal Cancer Cell Growth

    PubMed Central

    Forster, Genevieve M.; Raina, Komal; Kumar, Ajay; Kumar, Sushil; Agarwal, Rajesh; Chen, Ming-Hsuan; Bauer, John E.; McClung, Anna M.; Ryan, Elizabeth P.

    2013-01-01

    Rice bran chemical profiles differ across rice varieties and have not yet been analyzed for differential chemopreventive bioactivity. A diverse panel of 7 rice bran varieties was analyzed for growth inhibition of human colorectal cancer (CRC) cells. Inhibition varied from 0–99%, depending on the variety of bran used. Across varieties, total lipid content ranged 5–16%, individual fatty acids had 1.4 to 1.9 fold differences, vitamin E isoforms (α-, γ-, δ- tocotrienols and tocopherols) showed 1.3 to 15.2 fold differences, and differences in γ- oryzanol and total phenolics ranged between 100–275 ng/mg and 57–146 ng GAE/mg, respectively. Spearman correlation analysis was used to identify bioactive compounds implicated in CRC cell growth inhibitory activity. Total phenolics and γ- tocotrienol were positively correlated with reduced CRC cell growth (p < 0.05). Stoichiometric variation in rice bran components and differential effects on CRC viability merit further evaluation elucidate their role in dietary CRC chemoprevention. PMID:23790950

  3. Rice varietal differences in bioactive bran components for inhibition of colorectal cancer cell growth.

    PubMed

    Forster, Genevieve M; Raina, Komal; Kumar, Ajay; Kumar, Sushil; Agarwal, Rajesh; Chen, Ming-Hsuan; Bauer, John E; McClung, Anna M; Ryan, Elizabeth P

    2013-11-15

    Rice bran chemical profiles differ across rice varieties and have not yet been analysed for differential chemopreventive bioactivity. A diverse panel of seven rice bran varieties was analysed for growth inhibition of human colorectal cancer (CRC) cells. Inhibition varied from 0% to 99%, depending on the variety of bran used. Across varieties, total lipid content ranged 5-16%, individual fatty acids had 1.4- to 1.9-fold differences, vitamin E isoforms (α-, γ-, δ-tocotrienols, and tocopherols) showed 1.3- to 15.2-fold differences, and differences in γ-oryzanol and total phenolics ranged between 100-275ng/mg and 57-146ngGAE/mg, respectively. Spearman correlation analysis was used to identify bioactive compounds implicated in CRC cell growth inhibitory activity. Total phenolics and γ-tocotrienol were positively correlated with reduced CRC cell growth (p<0.05). Stoichiometric variation in rice bran components and differential effects on CRC viability merit further evaluation elucidate their role in dietary CRC chemoprevention. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Biomimetic and bioactive nanofibrous scaffolds from electrospun composite nanofibers

    PubMed Central

    Zhang, YZ; Su, B; Venugopal, J; Ramakrishna, S; Lim, CT

    2007-01-01

    Electrospinning is an enabling technology that can architecturally (in terms of geometry, morphology or topography) and biochemically fabricate engineered cellular scaffolds that mimic the native extracellular matrix (ECM). This is especially important and forms one of the essential paradigms in the area of tissue engineering. While biomimesis of the physical dimensions of native ECM’s major constituents (eg, collagen) is no longer a fabrication-related challenge in tissue engineering research, conveying bioactivity to electrospun nanofibrous structures will determine the efficiency of utilizing electrospun nanofibers for regenerating biologically functional tissues. This can certainly be achieved through developing composite nanofibers. This article gives a brief overview on the current development and application status of employing electrospun composite nanofibers for constructing biomimetic and bioactive tissue scaffolds. Considering that composites consist of at least two material components and phases, this review details three different configurations of nanofibrous composite structures by using hybridizing basic binary material systems as example. These are components blended composite nanofiber, core-shell structured composite nanofiber, and nanofibrous mingled structure. PMID:18203429

  5. Isolation, Bioactivity, and Production of ortho-Hydroxydaidzein and ortho-Hydroxygenistein

    PubMed Central

    Chang, Te-Sheng

    2014-01-01

    Daidzein and genistein are two major components of soy isoflavones. They exist abundantly in plants and possess multiple bioactivities. In contrast, ortho-hydroxydaidzein (OHD) and ortho-hydroxygenistein (OHG), including 6-hydroxydaidzein (6-OHD), 8-hydroxydaidzein (8-OHD), 3′-hydroxydaidzein (3′-OHD), 6-hydroxygenistein (6-OHG), 8-hydroxygenistein (8-OHG), and 3′-hydroxygenistein (3′-OHG), are rarely found in plants. Instead, they are usually isolated from fermented soybean foods or microbial fermentation broth feeding with soybean meal. Accordingly, the bioactivity of OHD and OHG has been investigated less compared to that of soy isoflavones. Recently, OHD and OHG were produced by genetically engineering microorganisms through gene cloning of cytochrome P450 (CYP) enzyme systems. This success opens up bioactivity investigation and industrial applications of OHD and OHG in the future. This article reviews isolation of OHD and OHG from non-synthetic sources and production of the compounds by genetically modified microorganisms. Several bioactivities, such as anticancer and antimelanogenesis-related activities, of OHD and OHG, are also discussed. PMID:24705463

  6. Principal component analysis of phenolic acid spectra

    USDA-ARS?s Scientific Manuscript database

    Phenolic acids are common plant metabolites that exhibit bioactive properties and have applications in functional food and animal feed formulations. The ultraviolet (UV) and infrared (IR) spectra of four closely related phenolic acid structures were evaluated by principal component analysis (PCA) to...

  7. An updated review of dietary isoflavones: Nutrition, processing, bioavailability and impacts on human health.

    PubMed

    Zaheer, Khalid; Humayoun Akhtar, M

    2017-04-13

    Isoflavones (genistein, daidzein, and glycitein) are bioactive compounds with mildly estrogenic properties and often referred to as phytoestrogen. These are present in significant quantities (up to 4-5 mg·g -1 on dry basis) in legumes mainly soybeans, green beans, mung beans. In grains (raw materials) they are present mostly as glycosides, which are poorly absorbed on consumption. Thus, soybeans are processed into various food products for digestibility, taste and bioavailability of nutrients and bioactives. Main processing steps include steaming, cooking, roasting, microbial fermentation that destroy protease inhibitors and also cleaves the glycoside bond to yield absorbable aglycone in the processed soy products, such as miso, natto, soy milk, tofu; and increase shelf lives. Processed soy food products have been an integral part of regular diets in many Asia-Pacific countries for centuries, e.g. China, Japan and Korea. However, in the last two decades, there have been concerted efforts to introduce soy products in western diets for their health benefits with some success. Isoflavones were hailed as magical natural component that attribute to prevent some major prevailing health concerns. Consumption of soy products have been linked to reduction in incidence or severity of chronic diseases such as cardiovascular, breast and prostate cancers, menopausal symptoms, bone loss, etc. Overall, consuming moderate amounts of traditionally prepared and minimally processed soy foods may offer modest health benefits while minimizing potential for any adverse health effects.

  8. Exposing Differences in Monomer Exchange Rates of Multicomponent Supramolecular Polymers in Water.

    PubMed

    Baker, Matthew B; Gosens, Ronald P J; Albertazzi, Lorenzo; Matsumoto, Nicholas M; Palmans, Anja R A; Meijer, E W

    2016-02-02

    The formation of multicomponent and bioactive supramolecular polymers is a promising strategy for the formation of biomaterials that match the dynamic and responsive nature of biological systems. In order to fully realize the potential of this strategy, knowledge of the location and behavior of bioactive components within the system is crucial. By employing synthetic strategies to create multifunctional monomers, coupled with FRET and STORM techniques, we have investigated the formation and behavior of a bioactive and multicomponent supramolecular polymer. By creating a peptide-dye-monomer conjugate, we were able to measure high degrees of monomer incorporation and to visualize the equal distribution of monomers within the supramolecular polymer. Furthermore, by tracking the movement of monomers, we uncovered small differences in the dynamics of the bioactive monomers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Bioactive formulations prepared from fruiting bodies and submerged culture mycelia of the Brazilian edible mushroom Pleurotus ostreatoroseus Singer.

    PubMed

    Corrêa, Rúbia Carvalho Gomes; de Souza, Aloisio Henrique Pereira; Calhelha, Ricardo C; Barros, Lillian; Glamoclija, Jasmina; Sokovic, Marina; Peralta, Rosane Marina; Bracht, Adelar; Ferreira, Isabel C F R

    2015-07-01

    Pleurotus ostreatoroseus is a Brazilian edible mushroom whose chemical characterization and bioactivity still remain underexplored. In this study, the hydrophilic and lipophilic compounds as well as the antioxidant, anti-inflammatory and antimicrobial activities of formulations (ethanol extracts) prepared with its fruiting bodies and submerged culture mycelia were compared. The bioactive formulations contain at least five free sugars, four organic acids, four phenolic compounds and two tocopherols. The fruiting body-based formulation revealed higher reducing power, DPPH scavenging activity, β-carotene bleaching inhibition and lipid peroxidation inhibition in brain homogenates than the mycelium-based preparation, as well as higher anti-inflammatory and antimicrobial activities. The absence of hepatotoxicity was confirmed in porcine liver primary cells. These functional responses can be related to the levels of bioactive components including phenolic acids, organic acids and tocopherols.

  10. Bioactive Properties of Maillard Reaction Products Generated From Food Protein-derived Peptides.

    PubMed

    Arihara, K; Zhou, L; Ohata, M

    Food protein-derived peptides are promising food ingredients for developing functional foods, since various bioactive peptides are released from food proteins. The Maillard reaction, which plays an important role in most processed foods, generates various chemical components during processing. Although changes of amino acids or proteins and reduced sugars by the Maillard reaction have been studied extensively, such changes of peptides by the Maillard reaction are still not resolved enough. Since food protein-derived peptides are widely utilized in many processed foods, it deserves concern and research on the changes of peptides by the Maillard reaction in foods during processing or storage. This chapter initially overviewed food protein-derived bioactive peptides. Then, Maillard reaction products generated from peptides are discussed. We focused particularly on their bioactivities. © 2017 Elsevier Inc. All rights reserved.

  11. Multilayer bioactive glass/zirconium titanate thin films in bone tissue engineering and regenerative dentistry

    PubMed Central

    Mozafari, Masoud; Salahinejad, Erfan; Shabafrooz, Vahid; Yazdimamaghani, Mostafa; Vashaee, Daryoosh; Tayebi, Lobat

    2013-01-01

    Surface modification, particularly coatings deposition, is beneficial to tissue-engineering applications. In this work, bioactive glass/zirconium titanate composite thin films were prepared by a sol-gel spin-coating method. The surface features of the coatings were studied by scanning electron microscopy, atomic force microscopy, and spectroscopic reflection analyses. The results show that uniform and sound multilayer thin films were successfully prepared through the optimization of the process variables and the application of carboxymethyl cellulose as a dispersing agent. Also, it was found that the thickness and roughness of the multilayer coatings increase nonlinearly with increasing the number of the layers. This new class of nanocomposite coatings, comprising the bioactive and inert components, is expected not only to enhance bioactivity and biocompatibility, but also to protect the surface of metallic implants against wear and corrosion. PMID:23641155

  12. Cucurbitaceae Seed Protein Hydrolysates as a Potential Source of Bioactive Peptides with Functional Properties

    PubMed Central

    2017-01-01

    Seeds from Cucurbitaceae plants (squashes, pumpkins, melons, etc.) have been used both as protein-rich food ingredients and nutraceutical agents by many indigenous cultures for millennia. However, relatively little is known about the bioactive components (e.g., peptides) of the Cucurbitaceae seed proteins (CSP) and their specific effects on human health. Therefore, this paper aims to provide a comprehensive review of latest research on bioactive and functional properties of CSP isolates and hydrolysates. Enzymatic hydrolysis can introduce a series of changes to the CSP structure and improve its bioactive and functional properties, including the enhanced protein solubility over a wide range of pH values. Small-sized peptides in CSP hydrolysates seem to enhance their bioactive properties but adversely affect their functional properties. Therefore, medium degrees of hydrolysis seem to benefit the overall improvement of bioactive and functional properties of CSP hydrolysates. Among the reported bioactive properties of CSP isolates and hydrolysates, their antioxidant, antihypertensive, and antihyperglycaemic activities stand out. Therefore, they could potentially substitute synthetic antioxidants and drugs which might have adverse secondary effects on human health. CSP isolates and hydrolysates could also be implemented as functional food ingredients, thanks to their favorable amino acid composition and good emulsifying and foaming properties. PMID:29181389

  13. Comparative Analysis of the Effects of Hydroxysafflor Yellow A and Anhydrosafflor Yellow B in Safflower Series of Herb Pairs Using Prep-HPLC and a Selective Knock-Out Approach.

    PubMed

    Qu, Cheng; Wang, Lin-Yan; Jin, Wen-Tao; Tang, Yu-Ping; Jin, Yi; Shi, Xu-Qin; Shang, Li-Li; Shang, Er-Xin; Duan, Jin-Ao

    2016-11-06

    The flower of Carthamus tinctorius L. (Carthami Flos, safflower), important in traditional Chinese medicine (TCM), is known for treating blood stasis, coronary heart disease, hypertension, and cerebrovascular disease in clinical and experimental studies. It is widely accepted that hydroxysafflor yellow A (HSYA) and anhydrosafflor yellow B (ASYB) are the major bioactive components of many formulae comprised of safflower. In this study, selective knock-out of target components such as HSYA and ASYB by using preparative high performance liquid chromatography (prep-HPLC) followed by antiplatelet and anticoagulation activities evaluation was used to investigate the roles of bioactive ingredients in safflower series of herb pairs. The results showed that both HSYA and ASYB not only played a direct role in activating blood circulation, but also indirectly made a contribution to the total bioactivity of safflower series of herb pairs. The degree of contribution of HSYA in the safflower and its series herb pairs was as follows: Carthami Flos-Ginseng Radix et Rhizoma Rubra (CF-GR) > Carthami Flos-Sappan Lignum (CF-SL) > Carthami Flos-Angelicae Sinensis Radix (CF-AS) > Carthami Flos-Astragali Radix (CF-AR) > Carthami Flos-Angelicae Sinensis Radix (CF-AS) > Carthami Flos-Glycyrrhizae Radix et Rhizoma (CF-GL) > Carthami Flos-Salviae Miltiorrhizae Radix et Rhizoma (CF-SM) > Carthami Flos (CF), and the contribution degree of ASYB in the safflower and its series herb pairs: CF-GL > CF-PS > CF-AS > CF-SL > CF-SM > CF-AR > CF-GR > CF. So, this study provided a significant and effective approach to elucidate the contribution of different herbal components to the bioactivity of the herb pair, and clarification of the variation of herb-pair compatibilities. In addition, this study provides guidance for investigating the relationship between herbal compounds and the bioactivities of herb pairs. It also provides a scientific basis for reasonable clinical applications and new drug development on the basis of the safflower series of herb pairs.

  14. Effect-directed analysis of cold-pressed hemp, flax and canola seed oils by planar chromatography linked with (bio)assays and mass spectrometry.

    PubMed

    Teh, Sue-Siang; Morlock, Gertrud E

    2015-11-15

    Cold-pressed hemp, flax and canola seed oils are healthy oils for human consumption as these are rich in polyunsaturated fatty acids and bioactive phytochemicals. However, bioactive information on the food intake side is mainly focused on target analysis. For more comprehensive information with regard to effects, single bioactive compounds present in the seed oil extracts were detected by effect-directed assays, like bioassays or an enzymatic assay, directly linked with chromatography and further characterized by mass spectrometry. This effect-directed analysis is a streamlined method for the analysis of bioactive compounds in the seed oil extracts. All effective compounds with regard to the five assays or bioassays applied were detected in the samples, meaning also bioactive breakdown products caused during oil processing, residues or contaminants, aside the naturally present bioactive phytochemicals. The investigated cold-pressed oils contained compounds that exert antioxidative, antimicrobial, acetylcholinesterase inhibitory and estrogenic activities. This effect-directed analysis can be recommended for bioactivity profiling of food to obtain profound effect-directed information on the food intake side. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Silybin, a Major Bioactive Component of Milk Thistle (Silybum marianum L. Gaernt.)-Chemistry, Bioavailability, and Metabolism.

    PubMed

    Bijak, Michal

    2017-11-10

    Milk thistle ( Silybum marianum ) is a medicinal plant that has been used for thousands of years as a remedy for a variety of ailments. The main component of S. marianum fruit extract (silymarin) is a flavonolignan called silybin, which is not only the major silymarin element but is also the most active ingredient of this extract, which has been confirmed in various studies. This compound belongs to the flavonoid group known as flavonolignans. Silybin's structure consists in two main units. The first is based on a taxifolin, the second a phenyllpropanoid unit, which in this case is conyferil alcohol. These two units are linked together into one structure by an oxeran ring. Since the 1970s, silybin has been regarded in official medicine as a substance with hepatoprotective properties. There is a large body of research that demonstrates silybin's many other healthy properties, but there are still a lack of papers focused on its molecular structure, chemistry, metabolism, and novel form of administration. Therefore, the aim of this paper is a literature review presenting and systematizing our knowledge of the silybin molecule, with particular emphasis on its structure, chemistry, bioavailability, and metabolism.

  16. Facilitated Visual Interpretation of Scores in Principal Component Analysis by Bioactivity-Labeling of 1H-NMR Spectra-Metabolomics Investigation and Identification of a New α-Glucosidase Inhibitor in Radix Astragali.

    PubMed

    Liu, Yueqiu; Nyberg, Nils T; Jäger, Anna K; Staerk, Dan

    2017-03-06

    Radix Astragali is a component of several traditional medicines used for the treatment of type 2 diabetes in China. Radix Astragali is known to contain isoflavones, which inhibit α-glucosidase in the small intestines, and thus lowers the blood glucose levels. In this study, 21 samples obtained from different regions of China were extracted with ethyl acetate, then the IC50-values were determined, and the crude extracts were analyzed by 1H-NMR spectroscopy. A principal component analysis of the 1H-NMR spectra labeled with their IC50-values, that is, bioactivity-labeled 1H-NMR spectra, showed a clear correlation between spectral profiles and the α-glucosidase inhibitory activity. The loading plot and LC-HRMS/NMR of microfractions indicated that previously unknown long chain ferulates could be partly responsible for the observed antidiabetic activity of Radix Astragali. Subsequent preparative scale isolation revealed a compound not previously reported, linoleyl ferulate (1), showing α-glucosidase inhibitory activity (IC50 0.5 mM) at a level comparable to the previously studied isoflavones. A closely related analogue, hexadecyl ferulate (2), did not show significant inhibitory activity, and the double bonds in the alcohol part of 1 seem to be important structural features for the α-glucosidase inhibitory activity. This proof of concept study demonstrates that bioactivity-labeling of the 1H-NMR spectral data of crude extracts allows global and nonselective identification of individual constituents contributing to the crude extract's bioactivity.

  17. A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers.

    PubMed

    Assadpour, Elham; Jafari, Seid Mahdi

    2018-06-08

    Today, there is an ever-growing interest on natural food ingredients both by consumers and producers in the food industry. In fact, people are looking for those products in the market which are free from artificial and synthetic additives and can promote their health. These food bioactive ingredients should be formulated in such a way that protects them against harsh process and environmental conditions and safely could be delivered to the target organs and cells. Nanoencapsulation is a perfect strategy for this situation and there have been many studies in recent years for nanoencapsulation of food components and nutraceuticals by different technologies. In this review paper, our main goal is firstly to have an overview of nanoencapsulation techniques applicable to food ingredients in a systematic classification, i.e., lipid-based nanocarriers, nature-inspired nanocarriers, special-equipment-based nanocarriers, biopolymer nanocarriers, and other miscellaneous nanocarriers. Then, application of these cutting-edge nanocarriers for different nutraceuticals including phenolic compounds and antioxidants, natural food colorants, antimicrobial agents and essential oils, vitamins, minerals, flavors, fish oils and essential fatty acids will be discussed along with presenting some examples in each field.

  18. Bioaccessibility of tocopherols, carotenoids, and ascorbic acid from milk- and soy-based fruit beverages: influence of food matrix and processing.

    PubMed

    Cilla, Antonio; Alegría, Amparo; de Ancos, Begoña; Sánchez-Moreno, Concepción; Cano, M Pilar; Plaza, Lucía; Clemente, Gonzalo; Lagarda, María J; Barberá, Reyes

    2012-07-25

    A study was made of the effect of high-pressure processing (HPP) and thermal treatment (TT) on plant bioactive compounds (tocopherols, carotenoids, and ascorbic acid) in 12 fruit juice-milk beverages and of how the food matrix [whole milk (JW), skimmed milk (JS), and soy milk (JSy)] modulates their bioaccessibility (%). HPP (400 MPa/40 °C/5 min) produced a significant decrease in carotenoid and ascorbic acid bioaccessibility in all three beverages and maintained the bioaccessibility of tocopherols in JW and JS while decreasing it in JSy. TT (90 °C/30 s) produced a significant decrease in tocopherol and carotenoid bioaccessibility in all three beverages and increased the bioaccessibility of ascorbic acid. With regard to the food matrix, α-tocopherol and ascorbic acid bioaccessibility was greatest in JW beverages and lowest in JSy beverages, whereas no significant differences were found among the three beverages in terms of carotenoid bioaccessibility. HPP-treated samples showed higher tocopherol and carotenoid bioaccessibility than TT-treated samples, thus indicating that HPP combined with a milk matrix positively modulates the bioaccessibility of certain types of bioactive components of food, mainly those of a lipophilic nature.

  19. Antioxidant Activity of Individual Steryl Ferulates from Various Cereal Grain Sources.

    PubMed

    Zhu, Dan; Sánchez-Ferrer, Antoni; Nyström, Laura

    2016-02-26

    Steryl ferulates (SFs) are a subclass of bioactive lipids contributing to the health-promoting effects of whole grains. Most related studies focus on γ-oryzanol, a SF mixture from rice, since individual steryl ferulates are not commercially available. There is little evidence that individual SFs may vary in their bioactivity. The aim of this study was to evaluate the antioxidant activity of eight individual SFs by determining their radical scavenging capacity. Additional molecular properties of the individual SFs were determined by molecular simulation in order to identify correlations with their antioxidant activities. Our study demonstrates that individual SFs exhibit 1,1-diphenyl-2-picrylhydrazyl radical, hydroxyl radical, and superoxide anion radical scavenging abilities with subtle differences that were highly dependent on the kind of reaction taking place. The grouping of SFs by principle component analysis was mainly attributed to molecular properties, not antioxidant activities. Solvation energy was significantly correlated with some experimental observations. To our knowledge, this is the first study to evaluate the antioxidant activity of eight individual steryl ferulates from different sources. Results of this work will provide better insight into the antioxidant activity of SFs and the health benefits of whole grains.

  20. Studies on Chromatographic Fingerprint and Fingerprinting Profile-Efficacy Relationship of Polygoni Perfoliati Herba

    PubMed Central

    Tian, Li; Chen, Hua-Guo; Zhao, Chao; Gong, Xiao-Jian

    2013-01-01

    Polygoni Perfoliati Herba is widely used in China with antibacterium, anti-inflammatory, expectorant, antitumor, and antivirus activities. To reveal the mechanisms of the activities of Polygoni Perfoliati Herba, the relationship between the fingerprinting profile and its bioactivities was investigated. In the present study, high-performance liquid chromatographic (HPLC) fingerprinting method was developed. The established method was applied to analyze 51 batches of Polygoni Perfoliati Herba samples collected from different locations or in different harvesting times in China. Chemometrics, including similarity analysis, hierarchical clustering analysis, and principal component analysis, were used to express their similarities. It was found that similarity values of the samples were in the range of 0.432–0.998. The results of analgesic tests indicated that Polygoni Perfoliati Herba could significantly inhibit pain induced by hot plate and acetic acid in mice. The results of anti-inflammatory tests showed that Polygoni Perfoliati Herba had good anti-inflammatory effects (P < 0.01) in two models including dimethyl benzene-induced ear edema and acetic acid-induced peritoneal permeability in mice. Combining the results from chromatographic fingerprints with those from bioactivities, we found that seven peaks from Polygoni Perfoliati Herba were mainly responsible for analgesic and anti-inflammatory activities. PMID:24023580

  1. Aloe Vera for Tissue Engineering Applications

    PubMed Central

    Rahman, Shekh; Carter, Princeton; Bhattarai, Narayan

    2017-01-01

    Aloe vera, also referred as Aloe barbadensis Miller, is a succulent plant widely used for biomedical, pharmaceutical and cosmetic applications. Aloe vera has been used for thousands of years. However, recent significant advances have been made in the development of aloe vera for tissue engineering applications. Aloe vera has received considerable attention in tissue engineering due to its biodegradability, biocompatibility, and low toxicity properties. Aloe vera has been reported to have many biologically active components. The bioactive components of aloe vera have effective antibacterial, anti-inflammatory, antioxidant, and immune-modulatory effects that promote both tissue regeneration and growth. The aloe vera plant, its bioactive components, extraction and processing, and tissue engineering prospects are reviewed in this article. The use of aloe vera as tissue engineering scaffolds, gels, and films is discussed, with a special focus on electrospun nanofibers. PMID:28216559

  2. Aloe Vera for Tissue Engineering Applications.

    PubMed

    Rahman, Shekh; Carter, Princeton; Bhattarai, Narayan

    2017-02-14

    Aloe vera, also referred as Aloe barbadensis Miller, is a succulent plant widely used for biomedical, pharmaceutical and cosmetic applications. Aloe vera has been used for thousands of years. However, recent significant advances have been made in the development of aloe vera for tissue engineering applications. Aloe vera has received considerable attention in tissue engineering due to its biodegradability, biocompatibility, and low toxicity properties. Aloe vera has been reported to have many biologically active components. The bioactive components of aloe vera have effective antibacterial, anti-inflammatory, antioxidant, and immune-modulatory effects that promote both tissue regeneration and growth. The aloe vera plant, its bioactive components, extraction and processing, and tissue engineering prospects are reviewed in this article. The use of aloe vera as tissue engineering scaffolds, gels, and films is discussed, with a special focus on electrospun nanofibers.

  3. Bioactivities and Health Benefits of Mushrooms Mainly from China.

    PubMed

    Zhang, Jiao-Jiao; Li, Ya; Zhou, Tong; Xu, Dong-Ping; Zhang, Pei; Li, Sha; Li, Hua-Bin

    2016-07-20

    Many mushrooms have been used as foods and medicines for a long time. Mushrooms contain polyphenols, polysaccharides, vitamins and minerals. Studies show that mushrooms possess various bioactivities, such as antioxidant, anti-inflammatory, anticancer, immunomodulatory, antimicrobial, hepatoprotective, and antidiabetic properties, therefore, mushrooms have attracted increasing attention in recent years, and could be developed into functional food or medicines for prevention and treatment of several chronic diseases, such as cancer, cardiovascular diseases, diabetes mellitus and neurodegenerative diseases. The present review summarizes the bioactivities and health benefits of mushrooms, and could be useful for full utilization of mushrooms.

  4. Stem cell secretome-rich nanoclay hydrogel: a dual action therapy for cardiovascular regeneration

    NASA Astrophysics Data System (ADS)

    Waters, Renae; Pacelli, Settimio; Maloney, Ryan; Medhi, Indrani; Ahmed, Rafeeq P. H.; Paul, Arghya

    2016-03-01

    A nanocomposite hydrogel with photocrosslinkable micro-porous networks and a nanoclay component was successfully prepared to control the release of growth factor-rich stem cell secretome. The proven pro-angiogenic and cardioprotective potential of this new bioactive system provides a valuable therapeutic platform for cardiac tissue repair and regeneration.A nanocomposite hydrogel with photocrosslinkable micro-porous networks and a nanoclay component was successfully prepared to control the release of growth factor-rich stem cell secretome. The proven pro-angiogenic and cardioprotective potential of this new bioactive system provides a valuable therapeutic platform for cardiac tissue repair and regeneration. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07806g

  5. Organically grown tomato (Lycopersicon esculentum Mill.): bioactive compounds in the fruit and infection with Phytophthora infestans.

    PubMed

    Mohammed, Afrah E; Smit, Inga; Pawelzik, Elke; Keutgen, Anna J; Horneburg, Bernd

    2012-05-01

    Tomato fruits are characterized by a good nutritional profile, including different bioactive compounds such as carotenoids, phenolic compounds and ascorbic acid. The objective of this study was to analyze the content of bioactive compounds in the fruit and the infection by Phytophthora infestans of 28 tomato genotypes from organic outdoor production. The relationship between bioactive compounds in the fruit and infection with P. infestans was estimated. Field experiments were carried out in 2004 and 2005 at two locations in central Germany. Significant variation among genotypes, locations and years was observed for the content of lycopene, ascorbic acid, total phenolic compounds, antioxidant capacity and the infection level of P. infestans. Antioxidant capacity seemed to be influenced mainly by the phenolics and was highest in small fruits, which were less infected with P. infestans. The large genetic variation among tomato genotypes for the content of bioactive compounds in their fruit allows for selection gains. None of the investigated bioactive compounds can be recommended for the indirect selection for increased field resistance against P. infestans. Copyright © 2011 Society of Chemical Industry.

  6. Bioactive compounds from palm fatty acid distillate and crude palm oil

    NASA Astrophysics Data System (ADS)

    Estiasih, T.; Ahmadi, K.

    2018-03-01

    Crude palm oil (CPO) and palm fatty acid distillate (PFAD) are rich sources of bioactive compounds. PFAD is a by-product of palm oil refinery that produce palm frying oil. Physical refining of palm oil by deodorization produces palm fatty acid distillate. CPO and PFAD contain some bioactive compounds such as vitamin E (tocopherol and tocotrienols), phytosterol, and squalene. Bioactive compounds of CPO and PFAD are vitamin E, phytosterols, and squalene. Vitamin E of CPO and PFAD mainly comprised of tocotrienols and the remaining is tocopherol. Phytosterols of CPO and PFAD contained beta sitosterol, stigmasterol, and campesterol. Tocotrienols and phytosterols of CPO and PFAD, each can be separated to produce tocotrienol rich fraction and phytosterol rich fraction. Tocotrienol rich fraction from PFAD has both antioxidant and cholesterol lowering properties. Bioactive compounds of PFAD silmultaneously have been proven to improve lipid profile, and have hepatoprotector effect, imunomodulator, antioxidant properties, and lactogenic effect in animal test experiment. It is possible to develop separation of bioactive compounds of CPO and PFAD integratively with the other process that utilizes fatty acid.

  7. Structural design principles for delivery of bioactive components in nutraceuticals and functional foods.

    PubMed

    McClements, David Julian; Decker, Eric Andrew; Park, Yeonhwa; Weiss, Jochen

    2009-06-01

    There have been major advances in the design and fabrication of structured delivery systems for the encapsulation of nutraceutical and functional food components. A wide variety of delivery systems is now available, each with its own advantages and disadvantages for particular applications. This review begins by discussing some of the major nutraceutical and functional food components that need to be delivered and highlights the main limitations to their current utilization within the food industry. It then discusses the principles underpinning the rational design of structured delivery systems: the structural characteristics of the building blocks; the nature of the forces holding these building blocks together; and, the different ways of assembling these building blocks into structured delivery systems. Finally, we review the major types of structured delivery systems that are currently available to food scientists: lipid-based (simple, multiple, multilayer, and solid lipid particle emulsions); surfactant-based (simple micelles, mixed micelles, vesicles, and microemulsions) and biopolymer-based (soluble complexes, coacervates, hydrogel droplets, and particles). For each type of delivery system we describe its preparation, properties, advantages, and limitations.

  8. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy.

    PubMed

    Rein, Maarit J; Renouf, Mathieu; Cruz-Hernandez, Cristina; Actis-Goretta, Lucas; Thakkar, Sagar K; da Silva Pinto, Marcia

    2013-03-01

    Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds. © 2012 Nestec S. A.. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  9. Prospects in the use of aptamers for characterizing the structure and stability of bioactive proteins and peptides in food.

    PubMed

    Agyei, Dominic; Acquah, Caleb; Tan, Kei Xian; Hii, Hieng Kok; Rajendran, Subin R C K; Udenigwe, Chibuike C; Danquah, Michael K

    2018-01-01

    Food-derived bioactive proteins and peptides have gained acceptance among researchers, food manufacturers and consumers as health-enhancing functional food components that also serve as natural alternatives for disease prevention and/or management. Bioactivity in food proteins and peptides is determined by their conformations and binding characteristics, which in turn depend on their primary and secondary structures. To maintain their bioactivities, the molecular integrity of bioactive peptides must remain intact, and this warrants the study of peptide form and structure, ideally with robust, highly specific and sensitive techniques. Short single-stranded nucleic acids (i.e. aptamers) are known to have high affinity for cognate targets such as proteins and peptides. Aptamers can be produced cost-effectively and chemically derivatized to increase their stability and shelf life. Their improved binding characteristics and minimal modification of the target molecular signature suggests their suitability for real-time detection of conformational changes in both proteins and peptides. This review discusses the developmental progress of systematic evolution of ligands by exponential enrichment (SELEX), an iterative technology for generating cost-effective aptamers with low dissociation constants (K d ) for monitoring the form and structure of bioactive proteins and peptides. The review also presents case studies of this technique in monitoring the structural stability of bioactive peptide formulations to encourage applications in functional foods. The challenges and potential of aptamers in this research field are also discussed. Graphical abstract Advancing bioactive proteins and peptide functionality via aptameric ligands.

  10. Bioactivity of gel-glass powders in the CaO-SiO2 system: a comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O).

    PubMed

    Saravanapavan, Priya; Jones, Julian R; Pryce, Russell S; Hench, Larry L

    2003-07-01

    Bioactive glasses react chemically with body fluids in a manner that is compatible with the repair processes of the tissues. This results in the formation of an interfacial bond between the glasses and living tissue. Bioactive glasses also stimulate bone-cell proliferation. This behavior is dependent on the chemical composition as well as the surface texture of the glasses. It has been recently reported that gel-derived monolith specimens in the binary SiO2 - CaO are bioactive over a similar molar range of SiO2 content as the previously studied ternary CaO-P2O5-SiO2 system. In this report, the preparation and bioactivity of the binary gel-glass powder with 70 mol % SiO2 is discussed and its bioactivity is compared with the melt-derived 45S5 (quaternary) Bioglass and sol-gel-derived 58S (ternary) bioactive gel-glass compositions. Dissolution kinetic parameters K(1) and K(2) were also computed based on the silicon release for all glass powders. It was shown that the simple two-component SiO2-CaO gel-glass powder is bioactive with comparable dissolution rates as the clinically used melt-derived 45S5 Bioglass powder and extensively studied sol-gel-derived 58S gel-glass powder. Copyright 2003 Wiley Periodicals, Inc.

  11. Antidiabetic potential of purple and red rice (Oryza sativa L.) bran extracts

    USDA-ARS?s Scientific Manuscript database

    Rice bran contains several bioactive components that have been linked to the promotion of human health. Brown rice bran contains lipophilic components that include the tocotrienols and gamma-oryzanol. Pigmented or colored rice bran contains different phenolic compounds including anthocyanins (purp...

  12. In vitro fermentation patterns of rice bran components by human gut microbiota

    USDA-ARS?s Scientific Manuscript database

    Rice bran is a rich source of bioactive components that can promote gastrointestinal health. However, bran is removed during polishing. Among those, feruloylated arabinoxylan oligosaccharides (FAXO) and rice bran polyphenolics (RBPP) are hypothesized to have positive impacts on human gut microbiota ...

  13. High-pressure processing as emergent technology for the extraction of bioactive ingredients from plant materials.

    PubMed

    Jun, Xi

    2013-01-01

    High-pressure processing is a food processing technique that has shown great potentials in the food industry. Recently, it was developed to extract bioactive ingredients from plant materials, known as ultrahigh pressure extraction (UPE), taking advantages of time saving, higher extraction yields, fewer impurities in the extraction solution, minimal heat and can avoid thermal degradation on the activity and structure of bioactive components, and so on. This review provides an overview of the developments in the UPE of bioactive ingredients from plant material. Apart from a brief presentation of the theories of UPE and extraction equipment systems, the principal parameters that influence the extraction efficiency to be optimized in the UPE (e.g., solvent, pressure, temperature, extraction time, and the number of cycle) were discussed in detail, and finally the more recent applications of UPE for the extraction of active compounds from plant materials were summarized.

  14. Black garlic: A critical review of its production, bioactivity, and application.

    PubMed

    Kimura, Shunsuke; Tung, Yen-Chen; Pan, Min-Hsiung; Su, Nan-Wei; Lai, Ying-Jang; Cheng, Kuan-Chen

    2017-01-01

    Black garlic is obtained from fresh garlic (Allium sativum L.) that has been fermented for a period of time at a controlled high temperature (60-90°C) under controlled high humidity (80-90%). When compared with fresh garlic, black garlic does not release a strong offensive flavor owing to the reduced content of allicin. Enhanced bioactivity of black garlic compared with that of fresh garlic is attributed to its changes in physicochemical properties. Studies concerning the fundamental findings of black garlic, such as its production, bioactivity, and applications, have thus been conducted. Several types of black garlic products are also available in the market with a fair selling volume. In this article, we summarize the current knowledge of changes in the components, bioactivity, production, and applications of black garlic, as well as the proposed future prospects on their possible applications as a functional food product. Copyright © 2016. Published by Elsevier B.V.

  15. Effects of drying processes on starch-related physicochemical properties, bioactive components and antioxidant properties of yam flours.

    PubMed

    Chen, Xuetao; Li, Xia; Mao, Xinhui; Huang, Hanhan; Wang, Tingting; Qu, Zhuo; Miao, Jing; Gao, Wenyuan

    2017-06-01

    The effects of five different drying processes, air drying (AD), sulphur fumigation drying (SFD), hot air drying (HAD), freeze drying (FD) and microwave drying (MWD) for yams in terms of starch-related properties and antioxidant activity were studied. From the results of scanning electron microscopy (SEM), polarized optical microscopy (POM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR), the MWD sample was found to contain gelatinized starch granules. The FD yam had more slow digestible (SDS) and resistant starches (RS) compared with those processed with other modern drying methods. The bioactive components and the reducing power of the dried yams, were lower than those of fresh yam. When five dried samples were compared by principal component analysis, the HAD and SFD samples were observed to have the highest comprehensive principal component values. Based on our results, HAD would be a better method for yam drying than the more traditional SFD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Bioactive Materials in Endodontics: An Evolving Component of Clinical Dentistry.

    PubMed

    Mohapatra, Satyajit; Patro, Swadheena; Mishra, Sumita

    2016-06-01

    Achieving biocompatibility in a material requires an interdisciplinary approach that involves a sound knowledge of materials science, bioengineering, and biotechnology. The host microbial-material response is also critical. Endodontic treatment is a delicate procedure that must be planned and executed properly. Despite major advances in endodontic therapy in recent decades, clinicians are confronted with a complex root canal anatomy and a wide selection of endodontic filling materials that, in turn, may not be well tolerated by the periapical tissues and may evoke an immune reaction. This article discusses published reports of various bioactive materials that are used in endodontic therapy, including calcium hydroxide, mineral trioxide aggregate, a bioactive dentin substrate, calcium phosphate ceramics, and calcium phosphate cements.

  17. HYDROGEL-BASED NANOCOMPOSITES OF THERAPEUTIC PROTEINS FOR TISSUE REPAIR

    PubMed Central

    Zhu, Suwei; Segura, Tatiana

    2014-01-01

    The ability to design artificial extracellular matrices as cell instructive scaffolds has opened the door to technologies capable of studying cell fates in vitro and to guide tissue repair in vivo. One main component of the design of artificial extracellular matrices is the incorporation of protein-based biochemical cues to guide cell phenotypes and multicellular organizations. However, promoting the long-term bioactivity, controlling the bioavailability and understanding how the physical presentations of these proteins impacts cellular fates are among the challenges of the field. Nanotechnolgy has advanced to meet the challenges of protein therapeutics. For example, the approaches to incorporating proteins into tissue repairing scaffolds have ranged from bulk encapsulations to smart nanodepots that protect proteins from degradations and allow opportunities for controlled release. PMID:24778979

  18. HYDROGEL-BASED NANOCOMPOSITES OF THERAPEUTIC PROTEINS FOR TISSUE REPAIR.

    PubMed

    Zhu, Suwei; Segura, Tatiana

    2014-05-01

    The ability to design artificial extracellular matrices as cell instructive scaffolds has opened the door to technologies capable of studying cell fates in vitro and to guide tissue repair in vivo . One main component of the design of artificial extracellular matrices is the incorporation of protein-based biochemical cues to guide cell phenotypes and multicellular organizations. However, promoting the long-term bioactivity, controlling the bioavailability and understanding how the physical presentations of these proteins impacts cellular fates are among the challenges of the field. Nanotechnolgy has advanced to meet the challenges of protein therapeutics. For example, the approaches to incorporating proteins into tissue repairing scaffolds have ranged from bulk encapsulations to smart nanodepots that protect proteins from degradations and allow opportunities for controlled release.

  19. [Prebiotics in infant health].

    PubMed

    Chirdo, Fernando G; Menéndez, Ana M; Pita Martín de Portela, María L; Sosa, Patricia; Toca, María del C; Trifone, Liliana; Vecchiarelli, Carmen

    2011-02-01

    The composition of human milk is the main base for the development of infant formulas concerning its macronutrients and micronutrients contents and bioactive compounds. Technological advances in the composition of human milk have identified a great number of bioactive compounds such as prebiotics which are responsible for immunological protection and the prevention of different pathologies. In order to achieve similar benefits, they are part of the contents of infant formulas.

  20. Targeted profiling of hydrophilic constituents of royal jelly by hydrophilic interaction liquid chromatography-tandem mass spectrometry.

    PubMed

    Pina, Athanasia; Begou, Olga; Kanelis, Dimitris; Gika, Helen; Kalogiannis, Stavros; Tananaki, Chrysoula; Theodoridis, Georgios; Zotou, Anastasia

    2018-01-05

    In the present work a Hydrophilic Interaction Liquid Chromatography-tandem Mass Spectrometry (HILIC-MS/MS) method was developed for the efficient separation and quantification of a large number of small polar bioactive molecules in Royal Jelly. The method was validated and provided satisfactory detection sensitivity for 88 components. Quantification was proven to be precise for 64 components exhibiting good linearity, recoveries R% >90% for the majority of analytes and intra- and inter-day precision from 0.14 to 20% RSD. Analysis of 125 fresh royal jelly samples of Greek origin provided useful information on royal jelly's hydrophilic bioactive components revealing lysine, ribose, proline, melezitose and glutamic acid to be in high abundance. In addition the occurrence of 18 hydrophilic nutrients which have not been reported previously as royal jelly constituents is shown. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Bioactive Glasses: Where Are We and Where Are We Going?

    PubMed

    Baino, Francesco; Hamzehlou, Sepideh; Kargozar, Saeid

    2018-03-19

    Bioactive glasses caused a revolution in healthcare and paved the way for modern biomaterial-driven regenerative medicine. The first 45S5 glass composition, invented by Larry Hench fifty years ago, was able to bond to living bone and to stimulate osteogenesis through the release of biologically-active ions. 45S5-based glass products have been successfully implanted in millions of patients worldwide, mainly to repair bone and dental defects and, over the years, many other bioactive glass compositions have been proposed for innovative biomedical applications, such as soft tissue repair and drug delivery. The full potential of bioactive glasses seems still yet to be fulfilled, and many of today's achievements were unthinkable when research began. As a result, the research involving bioactive glasses is highly stimulating and requires a cross-disciplinary collaboration among glass chemists, bioengineers, and clinicians. The present article provides a picture of the current clinical applications of bioactive glasses, and depicts six relevant challenges deserving to be tackled in the near future. We hope that this work can be useful to both early-stage researchers, who are moving with their first steps in the world of bioactive glasses, and experienced scientists, to stimulate discussion about future research and discover new applications for glass in medicine.

  2. Bioactive Glasses: Where Are We and Where Are We Going?

    PubMed Central

    Hamzehlou, Sepideh

    2018-01-01

    Bioactive glasses caused a revolution in healthcare and paved the way for modern biomaterial-driven regenerative medicine. The first 45S5 glass composition, invented by Larry Hench fifty years ago, was able to bond to living bone and to stimulate osteogenesis through the release of biologically-active ions. 45S5-based glass products have been successfully implanted in millions of patients worldwide, mainly to repair bone and dental defects and, over the years, many other bioactive glass compositions have been proposed for innovative biomedical applications, such as soft tissue repair and drug delivery. The full potential of bioactive glasses seems still yet to be fulfilled, and many of today’s achievements were unthinkable when research began. As a result, the research involving bioactive glasses is highly stimulating and requires a cross-disciplinary collaboration among glass chemists, bioengineers, and clinicians. The present article provides a picture of the current clinical applications of bioactive glasses, and depicts six relevant challenges deserving to be tackled in the near future. We hope that this work can be useful to both early-stage researchers, who are moving with their first steps in the world of bioactive glasses, and experienced scientists, to stimulate discussion about future research and discover new applications for glass in medicine. PMID:29562680

  3. Antimicrobial properties, antioxidant activity and bioactive compounds from six wild edible mushrooms of western ghats of Karnataka, India

    PubMed Central

    Ramesh, Ch.; Pattar, Manohar G.

    2010-01-01

    Methanolic extracts of 6 wild edible mushrooms isolated from the Western Ghats of Karnataka were used in this study. Among the isolates (Lycoperdon perlatum, Cantharellus cibarius, Clavaria vermiculris, Ramaria formosa, Marasmius oreades, Pleurotus pulmonarius), only 4 showed satisfactory results. Quantitative analysis of bioactive components revealed that total phenols are the major bioactive component found in extracts of isolates expressed as mg of GAE per gram of fruit body, which ranged from 3.20 ± 0.05 mg/mL to 6.25 ± 0.08 mg/mL. Average concentration of flavonoid ranged from 0.40 ± 0.052 mg/mL to 2.54 ± 0.08 mg/mL; followed by very small concentration of ascorbic acid (range, 0.06 ± 0.01 mg/mL to 0.16 ± 0.01 mg/mL) in all the isolates. All the isolates showed high phenol and flavonoid content, but ascorbic acid content was found in traces. Antioxidant efficiency by inhibitory concentration on 1,1-Diphenly-2-picrylhydrazyl (DPPH) was found significant when compared to standard antioxidant like Buthylated hydroxyanisol (BHA). The concentration (IC50) ranged from 0.94 ± 0.27 mg/mL to 7.57 ± 0.21 mg/mL. Determination of antimicrobial activity profile of all the isolates tested against a panel of standard pathogenic bacteria and fungi indicated that the concentrations of bioactive components directly influence the antimicrobial capability of the isolates. Agar diffusion assay showed considerable activity against all bacteria. Minimum inhibitory concentration values of the extracts of 4 isolates showed that they are also active even in least concentrations. These results are discussed in relation to therapeutic value of the studied mushrooms. PMID:21808550

  4. Lavandin (Lavandula × intermedia Emeric ex Loiseleur) essential oil from Spain: determination of aromatic profile by gas chromatography-mass spectrometry, antioxidant and lipoxygenase inhibitory bioactivities.

    PubMed

    Carrasco, Alejandro; Martinez-Gutierrez, Ramiro; Tomas, Virginia; Tudela, Jose

    2016-01-01

    Lavandin (Lavandula × intermedia Emeric ex Loiseleur) essential oils (EOs), from Abrial, Super and Grosso cultivars, cultivated and extracted in the South East of Spain, were analysed by using GC/MS to determine their composition, in both relative (peak area) and absolute (using standard curves) concentrations. Linalool (34-47%), linalyl acetate (17-34%), camphor (4-9%) and eucalyptol (3-7%) were determined as the main molecules. This characterisation was completed with the enantioselective gas chromatography, where ( - )-linalool, (+)-camphor and ( - )-linalyl acetate were determined as the main components. Antioxidant activity was evaluated positively by several methods: activity against free radicals, chelating and reducing power, probably due to linalool and linalyl acetate. Mild inhibitory activity on lipoxygenase was observed supporting potential anti-inflammatory activity, mainly due to linalool and camphor. These properties support the potential use of L. × intermedia essential oils as natural cosmetic and natural pharmaceutical ingredient to fight several skin diseases.

  5. Analysis of the main active ingredients and bioactivities of essential oil from Osmanthus fragrans Var. thunbergii using a complex network approach.

    PubMed

    Wang, Le; Tan, Nana; Hu, Jiayao; Wang, Huan; Duan, Dongzhu; Ma, Lin; Xiao, Jian; Wang, Xiaoling

    2017-12-28

    Osmanthus fragrans has been used as folk medicine for thousands of years. The extracts of Osmanthus fragrans flowers were reported to have various bioactivities including free radical scavenging, anti-inflammation, neuroprotection and antitumor effects. However, there is still lack of knowledge about its essential oil. In this work, we analyzed the chemical composition of the essential oil from Osmanthus fragrans var. thunbergii by GC-MS. A complex network approach was applied to investigate the interrelationships between the ingredients, target proteins, and related pathways for the essential oil. Statistical characteristics of the networks were further studied to explore the main active ingredients and potential bioactivities of O. fragrans var. thunbergii essential oil. A total of 44 ingredients were selected from the chemical composition of O. fragrans var. thunbergii essential oil, and that 191 potential target proteins together with 70 pathways were collected for these compounds. An ingredient-target-pathway network was constructed based on these data and showed scale-free property as well as power-law degree distribution. Eugenol and geraniol were screened as main active ingredients with much higher degree values. Potential neuroprotective and anti-tumor effect of the essential oil were also found. A core subnetwork was extracted from the ingredient-target-pathway network, and indicated that eugenol and geraniol contributed most to the neuroprotection of this essential oil. Furthermore, a pathway-based protein association network was built and exhibited small-world property. MAPK1 and MAPK3 were considered as key proteins with highest scores of centrality indices, which might play an important role in the anti-tumor effect of the essential oil. This work predicted the main active ingredients and bioactivities of O. fragrans var. thunbergii essential oil, which would benefit the development and utilization of Osmanthus fragrans flowers. The application of complex network theory was proved to be effective in bioactivities studies of essential oil. Moreover, it provides a novel strategy for exploring the molecular mechanisms of traditional medicines.

  6. State of the Art on Functional Virgin Olive Oils Enriched with Bioactive Compounds and Their Properties.

    PubMed

    Reboredo-Rodríguez, Patricia; Figueiredo-González, María; González-Barreiro, Carmen; Simal-Gándara, Jesús; Salvador, María Desamparados; Cancho-Grande, Beatriz; Fregapane, Giuseppe

    2017-03-20

    Virgin olive oil, the main fat of the Mediterranean diet, is per se considered as a functional food-as stated by the European Food Safety Authority (EFSA)-due to its content in healthy compounds. The daily intake of endogenous bioactive phenolics from virgin olive oil is variable due to the influence of multiple agronomic and technological factors. Thus, a good strategy to ensure an optimal intake of polyphenols through habitual diet would be to produce enriched virgin olive oil with well-known bioactive polyphenols. Different sources of natural biological active substances can be potentially used to enrich virgin olive oil (e.g., raw materials derived from the same olive tree, mainly olive leaves and pomaces, and/or other compounds from plants and vegetables, mainly herbs and spices). The development of these functional olive oils may help in prevention of chronic diseases (such as cardiovascular diseases, immune frailty, ageing disorders and degenerative diseases) and improving the quality of life for many consumers reducing health care costs. In the present review, the most relevant scientific information related to the development of enriched virgin olive oil and their positive human health effects has been collected and discussed.

  7. State of the Art on Functional Virgin Olive Oils Enriched with Bioactive Compounds and Their Properties

    PubMed Central

    Reboredo-Rodríguez, Patricia; Figueiredo-González, María; González-Barreiro, Carmen; Simal-Gándara, Jesús; Salvador, María Desamparados; Cancho-Grande, Beatriz; Fregapane, Giuseppe

    2017-01-01

    Virgin olive oil, the main fat of the Mediterranean diet, is per se considered as a functional food—as stated by the European Food Safety Authority (EFSA)—due to its content in healthy compounds. The daily intake of endogenous bioactive phenolics from virgin olive oil is variable due to the influence of multiple agronomic and technological factors. Thus, a good strategy to ensure an optimal intake of polyphenols through habitual diet would be to produce enriched virgin olive oil with well-known bioactive polyphenols. Different sources of natural biological active substances can be potentially used to enrich virgin olive oil (e.g., raw materials derived from the same olive tree, mainly olive leaves and pomaces, and/or other compounds from plants and vegetables, mainly herbs and spices). The development of these functional olive oils may help in prevention of chronic diseases (such as cardiovascular diseases, immune frailty, ageing disorders and degenerative diseases) and improving the quality of life for many consumers reducing health care costs. In the present review, the most relevant scientific information related to the development of enriched virgin olive oil and their positive human health effects has been collected and discussed. PMID:28335517

  8. Citrus medica: nutritional, phytochemical composition and health benefits - a review.

    PubMed

    Chhikara, Navnidhi; Kour, Ragni; Jaglan, Sundeep; Gupta, Pawan; Gat, Yogesh; Panghal, Anil

    2018-04-25

    Citrus medica (Citron) is an underutilized fruit plant having various bioactive components in all parts of the plant. The major bioactive compounds present are iso-limonene, citral, limonene, phenolics, flavonones, vitamin C, pectin, linalool, decanal, and nonanal, accounting for several health benefits. Pectin and heteropolysachharides also play a major role as dietary fibers. The potential impact of citron and its bioactive components to prevent or reverse destructive deregulated processes responsible for certain diseases has attracted different researchers' attention. The fruit has numerous nutraceutical benefits, proven by pharmacological studies; for example, anti-catarrhal, capillary protector, anti-hypertensive, diuretic, antibacterial, antifungal, anthelmintic, antimicrobial, analgesic, strong antioxidant, anticancerous, antidiabetic, estrogenic, antiulcer, cardioprotective, and antihyperglycemic. The present review explores new insights into the benefits of citron in various body parts. Throughout the world, citron has been used in making carbonated drinks, alcoholic beverages, syrup, candied peels, jams, marmalade, cordials, and many other value added products, which suggests it is an appropriate raw material to develop healthy processed food. In the present review, the fruit taxonomical classification, beneficial phytochemicals, antioxidant activities, and health benefits are discussed.

  9. Designing biopolymer microgels to encapsulate, protect and deliver bioactive components: Physicochemical aspects.

    PubMed

    McClements, David Julian

    2017-02-01

    Biopolymer microgels have considerable potential for their ability to encapsulate, protect, and release bioactive components. Biopolymer microgels are small particles (typically 100nm to 1000μm) whose interior consists of a three-dimensional network of cross-linked biopolymer molecules that traps a considerable amount of solvent. This type of particle is also sometimes referred to as a nanogel, hydrogel bead, biopolymer particles, or microsphere. Biopolymer microgels are typically prepared using a two-step process involving particle formation and particle gelation. This article reviews the major constituents and fabrication methods that can be used to prepare microgels, highlighting their advantages and disadvantages. It then provides an overview of the most important characteristics of microgel particles (such as size, shape, structure, composition, and electrical properties), and describes how these parameters can be manipulated to control the physicochemical properties and functional attributes of microgel suspensions (such as appearance, stability, rheology, and release profiles). Finally, recent examples of the utilization of biopolymer microgels to encapsulate, protect, or release bioactive agents, such as pharmaceuticals, nutraceuticals, enzymes, flavors, and probiotics is given. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Dietary bioactives: establishing a scientific framework for recommended intakes.

    PubMed

    Wallace, Taylor C; Blumberg, Jeffrey B; Johnson, Elizabeth J; Shao, Andrew

    2015-01-01

    In the United States, dietary reference intakes describe the relations between nutrient intakes and indicators of adequacy, prevention of disease, and avoidance of excessive intakes among healthy populations for essential nutrients but not dietary bioactive components (DBCs), whose absence from the diet is presumably not deleterious to health (i.e., does not cause a deficiency syndrome). An appropriate framework is needed for establishing recommended intakes for which public health messages and food labeling for DBCs can be derived, because their putative health benefits may not be readily defined in the context of nutritional essentiality. In addition, a myriad of factors make determining their intake and status and investigating their discrete contributions to health particularly challenging. Therefore, the ASN Dietary Bioactive Components Research Interest Section felt it worthwhile to convene a special "hot topic" session at the 2014 Experimental Biology meeting to discuss this issue and serve as a call for future scientific dialogue on establishing a framework for recommended intakes of DBCs. This session summary captures the discussions and presentations that transpired during this session. © 2015 American Society for Nutrition.

  11. Dietary Bioactives: Establishing a Scientific Framework for Recommended Intakes12

    PubMed Central

    Wallace, Taylor C; Blumberg, Jeffrey B; Johnson, Elizabeth J; Shao, Andrew

    2015-01-01

    In the United States, dietary reference intakes describe the relations between nutrient intakes and indicators of adequacy, prevention of disease, and avoidance of excessive intakes among healthy populations for essential nutrients but not dietary bioactive components (DBCs), whose absence from the diet is presumably not deleterious to health (i.e., does not cause a deficiency syndrome). An appropriate framework is needed for establishing recommended intakes for which public health messages and food labeling for DBCs can be derived, because their putative health benefits may not be readily defined in the context of nutritional essentiality. In addition, a myriad of factors make determining their intake and status and investigating their discrete contributions to health particularly challenging. Therefore, the ASN Dietary Bioactive Components Research Interest Section felt it worthwhile to convene a special “hot topic” session at the 2014 Experimental Biology meeting to discuss this issue and serve as a call for future scientific dialogue on establishing a framework for recommended intakes of DBCs. This session summary captures the discussions and presentations that transpired during this session. PMID:25593139

  12. Simultaneous quantification of eight bioactive components of Houttuynia cordata and related Saururaceae medicinal plants by on-line high performance liquid chromatography-diode array detector-electrospray mass spectrometry.

    PubMed

    Meng, Jiang; Leung, Kelvin Sze-Yin; Dong, Xiao-Ping; Zhou, Yi-Sheng; Jiang, Zhi-Hong; Zhao, Zhong-Zhen

    2009-12-01

    An on-line high performance liquid chromatography (HPLC)-diode array detector (DAD)-electrospray ionization mass spectrometry (ESI-MS) method has been developed to quantify simultaneously eight bioactive chemical components in Houttuynia cordata Thunb and related Saururaceae medicinal plants. Simultaneous separation of these eight compounds was achieved on a C(18) analytical column with gradient elution of acetonitrile and 0.2% acetic acid (v/v) at a flow rate of 0.6 mL/min and being detected at 280 nm. These eight compounds were completely separated within 90 min. Good linear regression relationship (r(2)>0.9978) within test ranges was shown in all calibration curves. Good repeatabilty for the quantification of these eight compounds in H.cordata was also demonstrated in this method, with intra- and inter-day variations less than 3.0%. The method established was successfully applied to quantify eight bioactive compounds in closely related species of H.cordata, which provides a new basis for quality assessment of H.cordata.

  13. Effect of green tea extract microencapsulation on hypertriglyceridemia and cardiovascular tissues in high fructose-fed rats

    PubMed Central

    Jung, Moon Hee; Seong, Pil Nam; Kim, Myung Hwan; Myong, Na-Hye

    2013-01-01

    The application of polyphenols has attracted great interest in the field of functional foods and nutraceuticals due to their potential health benefits in humans. However, the effectiveness of polyphenols depends on their bioactivity and bioavailability. In the present study, the bioactive component from green tea extract (GTE) was administrated orally (50 mg/kg body weight/day) as free or in a microencapsulated form with maltodextrin in rats fed a high fructose diet. High fructose diet induced features of metabolic syndrome including hypertriglyceridemia, hyperuricemia, increased serum total cholesterol, and retroperitoneal obesity. In addition, myocardial fibrosis was increased. In rats receiving high fructose diet, the lowering of blood triglycerides, total cholesterol, non esterified fatty acid (NEFA) and uric acid, as well as the reduction in final body weight and retroperitoneal fat weight associated with the administration of GTE, led to a reversal of the features of metabolic syndrome (P < 0.05). In particular, the administration of microencapsulated GTE decreased myocardial fibrosis and increased liver catalase activity consistent with a further alleviation of serum NEFA, and hyperuricemia compared to administration of GTE. Taken together, our results suggest that microencapsulation of the bioactive components of GTE might have a protective effect on cardiovasucular system by attenuating the adverse features of myocardial fibrosis, decreasing uric acid levels and increasing hepatic catalase activity effectively by protecting their bioactivities. PMID:24133615

  14. Main chain acid-degradable polymers for the delivery of bioactive materials

    DOEpatents

    Frechet, Jean M. J. [Oakland, CA; Standley, Stephany M [Evanston, IL; Jain, Rachna [Milpitas, CA; Lee, Cameron C [Cambridge, MA

    2012-03-20

    Novel main chain acid degradable polymer backbones and drug delivery systems comprised of materials capable of delivering bioactive materials to cells for use as vaccines or other therapeutic agents are described. The polymers are synthesized using monomers that contain acid-degradable linkages cleavable under mild acidic conditions. The main chain of the resulting polymers readily degrade into many small molecules at low pH, but remain relatively stable and intact at physiological pH. The new materials have the common characteristic of being able to degrade by acid hydrolysis under conditions commonly found within the endosomal or lysosomal compartments of cells thereby releasing their payload within the cell. The materials can also be used for the delivery of therapeutics to the acidic regions of tumors and other sites of inflammation.

  15. Bioactive natural products from fungicolous Hawaiian isolates: secondary metabolites from a Phialemoniopsis sp.

    PubMed Central

    Kaur, Amninder; Rogers, Kristina D.; Swenson, Dale E.; Dowd, Patrick F.; Wicklow, Donald T.; Gloer, James B.

    2014-01-01

    Chemical investigations of two fungal isolates initially identified as members of the genus Phialemonium are described. Both isolates were obtained as colonists of other fungi collected on the island of Hawaii and were later assigned as P. curvatum. However, P. curvatum has recently been reclassified as a member of a new genus (Phialemoniopsis) and renamed as Phialemoniopsis curvata. Studies of solid–substrate fermentation cultures of one of these isolates afforded an oxirapentyn analogue and destruxin A4 as major components, while analysis of the second strain led to the isolation of several simple aromatic metabolites and a compound of mixed biogenetic origin called gabusectin that had previously been reported only in a patent. Structures were assigned mainly by detailed nuclear magnetic resonance and mass spectrometry analysis, and those of two of the major components were confirmed by X-ray crystallography. This report constitutes the first description of secondary metabolites from a member of the genus Phialemoniopsis. PMID:25379336

  16. Molecular Mechanisms and Pathways as Targets for Cancer Prevention and Progression with Dietary Compounds.

    PubMed

    Nosrati, Nagisa; Bakovic, Marica; Paliyath, Gopinadhan

    2017-09-25

    A unique feature of bioactive food ingredients is their broad antioxidant function. Antioxidants having a wide spectrum of chemical structure and activity beyond basic nutrition; display different health benefits by the prevention and progression of chronic diseases. Functional food components are capable of enhancing the natural antioxidant defense system by scavenging reactive oxygen and nitrogen species, protecting and repairing DNA damage, as well as modulating the signal transduction pathways and gene expression. Major pathways affected by bioactive food ingredients include the pro-inflammatory pathways regulated by nuclear factor kappa B (NF-κB), as well as those associated with cytokines and chemokines. The present review summarizes the importance of plant bioactives and their roles in the regulation of inflammatory pathways. Bioactives influence several physiological processes such as gene expression, cell cycle regulation, cell proliferation, cell migration, etc., resulting in cancer prevention. Cancer initiation is associated with changes in metabolic pathways such as glucose metabolism, and the effect of bioactives in normalizing this process has been provided. Initiation and progression of inflammatory bowel diseases (IBD) which increase the chances of developing of colorectal cancers can be downregulated by plant bioactives. Several aspects of the potential roles of microRNAs and epigenetic modifications in the development of cancers have also been presented.

  17. Biochemical trade-offs: evidence for ecologically linked secondary metabolism of the sponge Oscarella balibaloi.

    PubMed

    Ivanisevic, Julijana; Thomas, Olivier P; Pedel, Laura; Pénez, Nicolas; Ereskovsky, Alexander V; Culioli, Gérald; Pérez, Thierry

    2011-01-01

    Secondary metabolite production is assumed to be costly and therefore the resource allocation to their production should be optimized with respect to primary biological functions such as growth or reproduction. Sponges are known to produce a great diversity of secondary metabolites with powerful biological activities that may explain their domination in some hard substrate communities both in terms of diversity and biomass. Oscarella balibaloi (Homoscleromorpha) is a recently described, highly dynamic species, which often overgrows other sessile marine invertebrates. Bioactivity measurements (standardized Microtox assay) and metabolic fingerprints were used as indicators of the baseline variations of the O. balibaloi secondary metabolism, and related to the sponge reproductive effort over two years. The bioactivity showed a significant seasonal variation with the lowest values at the end of spring and in early summer followed by the highest bioactivity in the late summer and autumn. An effect of the seawater temperature was detected, with a significantly higher bioactivity in warm conditions. There was also a tendency of a higher bioactivity when O. balibaloi was found overgrowing other sponge species. Metabolic fingerprints revealed the existence of three principal metabolic phenotypes: phenotype 1 exhibited by a majority of low bioactive, female individuals, whereas phenotypes 2 and 3 correspond to a majority of highly bioactive, non-reproductive individuals. The bioactivity was negatively correlated to the reproductive effort, minimal bioactivities coinciding with the period of embryogenesis and larval development. Our results fit the Optimal Defense Theory with an investment in the reproduction mainly shaping the secondary metabolism variability, and a less pronounced influence of other biotic (species interaction) and abiotic (temperature) factors.

  18. PPDMs-a resource for mapping small molecule bioactivities from ChEMBL to Pfam-A protein domains.

    PubMed

    Kruger, Felix A; Gaulton, Anna; Nowotka, Michal; Overington, John P

    2015-03-01

    PPDMs is a resource that maps small molecule bioactivities to protein domains from the Pfam-A collection of protein families. Small molecule bioactivities mapped to protein domains add important precision to approaches that use protein sequence searches alignments to assist applications in computational drug discovery and systems and chemical biology. We have previously proposed a mapping heuristic for a subset of bioactivities stored in ChEMBL with the Pfam-A domain most likely to mediate small molecule binding. We have since refined this mapping using a manual procedure. Here, we present a resource that provides up-to-date mappings and the possibility to review assigned mappings as well as to participate in their assignment and curation. We also describe how mappings provided through the PPDMs resource are made accessible through the main schema of the ChEMBL database. The PPDMs resource and curation interface is available at https://www.ebi.ac.uk/chembl/research/ppdms/pfam_maps. The source-code for PPDMs is available under the Apache license at https://github.com/chembl/pfam_maps. Source code is available at https://github.com/chembl/pfam_map_loader to demonstrate the integration process with the main schema of ChEMBL. © The Author 2014. Published by Oxford University Press.

  19. Influence of cultivar and ripening time on bioactive compounds and antioxidant properties in Cape gooseberry (Physalis peruviana L.).

    PubMed

    Bravo, Karent; Sepulveda-Ortega, Stella; Lara-Guzman, Oscar; Navas-Arboleda, Alejandro A; Osorio, Edison

    2015-05-01

    Cape gooseberry (Physalis peruviana) is an exotic fruit highly valued for its organoleptic properties and bioactive compounds. Considering that the presence of phenolics and ascorbic acid could contribute to its functional capacity, it is important to investigate the quality parameters, bioactive contents and functional properties with respect to genotype and ripening time. In this study the genotype effect was evaluated in 15 cultivars for two different harvest times. Changes during maturation were recorded in two commercial cultivars within seven levels of maturity. Multivariate statistical analysis suggested that phenolic content and ORAC value were mainly affected by harvest time and that ascorbic acid content and DPPH level were mainly affected by genotype. In addition, acidity, phenolic content, ORAC value and inhibition of LDL oxidation decreased with maturity, but soluble solids content, ascorbic acid content, β-carotene content and DPPH-scavenging activity were higher in mature fruits. The phenolic content, ascorbic acid content and antioxidant properties of Cape gooseberry fruit were strongly affected by cultivar, harvest time and maturity state. Consequently, the harvest time must be scheduled carefully to gain the highest proportion of bioactive compounds according to the specific cultivar and the environment where it is grown. © 2014 Society of Chemical Industry.

  20. The Physiological Effects of Dandelion (Taraxacum Officinale) in Type 2 Diabetes.

    PubMed

    Wirngo, Fonyuy E; Lambert, Max N; Jeppesen, Per B

    2016-01-01

    The tremendous rise in the economic burden of type 2 diabetes (T2D) has prompted a search for alternative and less expensive medicines. Dandelion offers a compelling profile of bioactive components with potential anti-diabetic properties. The Taraxacum genus from the Asteraceae family is found in the temperate zone of the Northern hemisphere. It is available in several areas around the world. In many countries, it is used as food and in some countries as therapeutics for the control and treatment of T2D. The anti-diabetic properties of dandelion are attributed to bioactive chemical components; these include chicoric acid, taraxasterol (TS), chlorogenic acid, and sesquiterpene lactones. Studies have outlined the useful pharmacological profile of dandelion for the treatment of an array of diseases, although little attention has been paid to the effects of its bioactive components on T2D to date. This review recapitulates previous work on dandelion and its potential for the treatment and prevention of T2D, highlighting its anti-diabetic properties, the structures of its chemical components, and their potential mechanisms of action in T2D. Although initial research appears promising, data on the cellular impact of dandelion are limited, necessitating further work on clonal β-cell lines (INS-1E), α-cell lines, and human skeletal cell lines for better identification of the active components that could be of use in the control and treatment of T2D. In fact, extensive in-vitro, in-vivo, and clinical research is required to investigate further the pharmacological, physiological, and biochemical mechanisms underlying the effects of dandelion-derived compounds on T2D.

  1. The Physiological Effects of Dandelion (Taraxacum Officinale) in Type 2 Diabetes

    PubMed Central

    Wirngo, Fonyuy E.; Lambert, Max N.; Jeppesen, Per B.

    2016-01-01

    The tremendous rise in the economic burden of type 2 diabetes (T2D) has prompted a search for alternative and less expensive medicines. Dandelion offers a compelling profile of bioactive components with potential anti-diabetic properties. The Taraxacum genus from the Asteraceae family is found in the temperate zone of the Northern hemisphere. It is available in several areas around the world. In many countries, it is used as food and in some countries as therapeutics for the control and treatment of T2D. The anti-diabetic properties of dandelion are attributed to bioactive chemical components; these include chicoric acid, taraxasterol (TS), chlorogenic acid, and sesquiterpene lactones. Studies have outlined the useful pharmacological profile of dandelion for the treatment of an array of diseases, although little attention has been paid to the effects of its bioactive components on T2D to date. This review recapitulates previous work on dandelion and its potential for the treatment and prevention of T2D, highlighting its anti-diabetic properties, the structures of its chemical components, and their potential mechanisms of action in T2D. Although initial research appears promising, data on the cellular impact of dandelion are limited, necessitating further work on clonal β-cell lines (INS-1E), α-cell lines, and human skeletal cell lines for better identification of the active components that could be of use in the control and treatment of T2D. In fact, extensive in-vitro, in-vivo, and clinical research is required to investigate further the pharmacological, physiological, and biochemical mechanisms underlying the effects of dandelion-derived compounds on T2D. PMID:28012278

  2. Suppression of tumor growth by Pleurotus ferulae ethanol extract through induction of cell apoptosis, and inhibition of cell proliferation and migration.

    PubMed

    Wang, Weilan; Chen, Kaixu; Liu, Qing; Johnston, Nathan; Ma, Zhenghai; Zhang, Fuchun; Zheng, Xiufen

    2014-01-01

    Cancer is the second leading cause of death worldwide. Edible medicinal mushrooms have been used in traditional medicine as regimes for cancer patients. Recently anti-cancer bioactive components from some mushrooms have been isolated and their anti-cancer effects have been tested. Pleurotus ferulae, a typical edible medicinal mushroom in Xinjiang China, has also been used to treat cancer patients in folk medicine. However, little studies have been reported on the anti-cancer components of Pleurotus ferulae. This study aims to extract bioactive components from Pleurotus ferulae and to investigate the anti-cancer effects of the extracts. We used ethanol to extract anti-cancer bioactive components enriched with terpenoids from Pleurotus ferulae. We tested the anti-tumour effects of ethanol extracts on the melanoma cell line B16F10, the human gastric cancer cell line BGC 823 and the immortalized human gastric epithelial mucosa cell line GES-1 in vitro and a murine melanoma model in vivo. Cell toxicity and cell proliferation were measured by MTT assays. Cell cycle progression, apoptosis, caspase 3 activity, mitochondrial membrane potential (MMP), migration and gene expression were studied in vitro. PFEC suppressed tumor cell growth, inhibited cell proliferation, arrested cells at G0/G1 phases and was not toxic to non-cancer cells. PFEC also induced cell apoptosis and necrosis, increased caspase 3 activity, reduced the MMP, prevented cell invasion and changed the expression of genes associated with apoptosis and the cell cycle. PFEC delayed tumor formation and reduced tumor growth in vivo. In conclusion, ethanol extracted components from Pleurotus ferulae exert anti-cancer effects through direct suppression of tumor cell growth and invasion, demonstrating its therapeutic potential in cancer treatment.

  3. Lipophilic extracts of Cynara cardunculus L. var. altilis (DC): a source of valuable bioactive terpenic compounds.

    PubMed

    Ramos, Patrícia A B; Guerra, Ângela R; Guerreiro, Olinda; Freire, Carmen S R; Silva, Artur M S; Duarte, Maria F; Silvestre, Armando J D

    2013-09-04

    Lipophilic extracts of Cynara cardunculus L. var. altilis (DC) from the south of Portugal (Baixo Alentejo) were studied by gas chromatography-mass spectrometry. One sesquiterpene lactone, four pentacyclic triterpenes, and four sterols were reported for the first time as cultivated cardoon components, namely, deacylcynaropicrin, β- and α-amyrin, lupenyl and ψ-taraxasteryl acetates, stigmasterol, 24-methylenecholesterol, campesterol, and Δ(5)-avenasterol. In addition, other new compounds were identified: ten fatty acids, eight long-chain aliphatic alcohols, and six aromatic compounds. Four triterpenyl fatty acid esters were also detected. Sesquiterpene lactones and pentacyclic triterpenes were the major lipophilic families, representing respectively 2-46% and 10-89% of the detected compounds. Cynaropicrin was the most abundant sesquiterpene lactone, while taraxasteryl acetate was the main pentacyclic triterpene. Fatty acids and sterols, mainly hexadecanoic acid and β-sitosterol, were present at lower amounts (1-20% and 1-11% of the detected compounds). Long-chain aliphatic alcohols and aromatic compounds were detected at reduced abundances (1-6% of the detected compounds).

  4. Marine Peptides as Potential Agents for the Management of Type 2 Diabetes Mellitus-A Prospect.

    PubMed

    Xia, En-Qin; Zhu, Shan-Shan; He, Min-Jing; Luo, Fei; Fu, Cheng-Zhan; Zou, Tang-Bin

    2017-03-23

    An increasing prevalence of diabetes is known as a main risk for human health in the last future worldwide. There is limited evidence on the potential management of type 2 diabetes mellitus using bioactive peptides from marine organisms, besides from milk and beans. We summarized here recent advances in our understanding of the regulation of glucose metabolism using bioactive peptides from natural proteins, including regulation of insulin-regulated glucose metabolism, such as protection and reparation of pancreatic β-cells, enhancing glucose-stimulated insulin secretion and influencing the sensitivity of insulin and the signaling pathways, and inhibition of bioactive peptides to dipeptidyl peptidase IV, α-amylase and α-glucosidase activities. The present paper tried to understand the underlying mechanism involved and the structure characteristics of bioactive peptides responsible for its antidiabetic activities to prospect the utilization of rich marine organism proteins.

  5. Bioactive Compounds and Antioxidant Activity in Different Types of Berries

    PubMed Central

    Skrovankova, Sona; Sumczynski, Daniela; Mlcek, Jiri; Jurikova, Tunde; Sochor, Jiri

    2015-01-01

    Berries, especially members of several families, such as Rosaceae (strawberry, raspberry, blackberry), and Ericaceae (blueberry, cranberry), belong to the best dietary sources of bioactive compounds (BAC). They have delicious taste and flavor, have economic importance, and because of the antioxidant properties of BAC, they are of great interest also for nutritionists and food technologists due to the opportunity to use BAC as functional foods ingredients. The bioactive compounds in berries contain mainly phenolic compounds (phenolic acids, flavonoids, such as anthocyanins and flavonols, and tannins) and ascorbic acid. These compounds, either individually or combined, are responsible for various health benefits of berries, such as prevention of inflammation disorders, cardiovascular diseases, or protective effects to lower the risk of various cancers. In this review bioactive compounds of commonly consumed berries are described, as well as the factors influencing their antioxidant capacity and their health benefits. PMID:26501271

  6. Marine Peptides as Potential Agents for the Management of Type 2 Diabetes Mellitus—A Prospect

    PubMed Central

    Xia, En-Qin; Zhu, Shan-Shan; He, Min-Jing; Luo, Fei; Fu, Cheng-Zhan; Zou, Tang-Bin

    2017-01-01

    An increasing prevalence of diabetes is known as a main risk for human health in the last future worldwide. There is limited evidence on the potential management of type 2 diabetes mellitus using bioactive peptides from marine organisms, besides from milk and beans. We summarized here recent advances in our understanding of the regulation of glucose metabolism using bioactive peptides from natural proteins, including regulation of insulin-regulated glucose metabolism, such as protection and reparation of pancreatic β-cells, enhancing glucose-stimulated insulin secretion and influencing the sensitivity of insulin and the signaling pathways, and inhibition of bioactive peptides to dipeptidyl peptidase IV, α-amylase and α-glucosidase activities. The present paper tried to understand the underlying mechanism involved and the structure characteristics of bioactive peptides responsible for its antidiabetic activities to prospect the utilization of rich marine organism proteins. PMID:28333091

  7. Programmable Control in Extracellular Matrix-mimicking Polymer Hydrogels.

    PubMed

    Hof, Kevin S; Bastings, Maartje M C

    2017-06-28

    The extracellular matrix (ECM) and cells have a reciprocal relationship, one shapes the other and vice versa. One of the main challenges of synthetic material systems for developmental cell culturing, organoid and stem cell work includes the implementation of this reciprocal nature. The largest hurdle to achieve true cell-instructive materials in biomaterials engineering is a lack of spatial and temporal control over material properties and the display of bioactive signals compared to the natural cell environment. ECM-mimicking hydrogels have been developed using a wide range of polymers, assembly and cross-linking strategies. While our synthetic toolbox is larger than nature, often our systems underperform when compared to ECM systems with natural components like Matrigel. Material properties and three-dimensional structure ill-represent the three-dimensional ECM reciprocal nature and ligand presentation is an oversimplified version of the complexity found in nature. We hypothesize that the lack of programmable control in properties and ligand presentation forms the basis of this mismatch in performance and analyze the presence of control in current state of the art ECM-mimicking systems based on covalent, supramolecular and recombinant polymers. We conclude that through combining the dynamics of supramolecular materials, robustness from covalent systems and the programmable spatial control of bio-activation in recombinant ECM materials, the optimal synthetic artificial ECM could be assembled.

  8. Djulis (Chenopodium formosanum Koidz.) Water Extract and Its Bioactive Components Ameliorate Dermal Damage in UVB-Irradiated Skin Models.

    PubMed

    Hong, Yong-Han; Huang, Ya-Ling; Liu, Yao-Cheng; Tsai, Pi-Jen

    2016-01-01

    Dermal photoaging is a condition of skin suffering inappropriate ultraviolet (UV) exposure and exerts inflammation, tissue alterations, redness, swelling, and uncomfortable feelings. Djulis ( Chenopodium formosanum Koidz.) is a cereal food and its antioxidant and pigment constituents may provide skin protection from photoaging, but it still lacks proved experiments. In this study, protective effects of djulis extract (CFE) on UVB-irradiated skin were explored. The results showed that HaCaT cells with 150  μ g/mL CFE treatment had higher survival and less production of interleukin- (IL-) 6, matrix metalloprotease- (MMP-) 1, and reactive oxygen species (ROS) in UVB-irradiated conditions. Subsequently, in animal studies, mice supplemented with CFE (100 mg/kg BW) were under UVB irradiation and had thinner epidermis and lower IL-6 levels in skin layer. These data demonstrate that bioactive compounds possessing the potency of antiphotoaging exist in CFE. Following that, we found rutin and chlorogenic acid (10-100  μ M) could significantly increase cell viability and decrease the production of IL-6 in UVB models. Additionally, djulis pigment-betanin has no effect of increasing cell viability in this study. Our findings suggest CFE can protect skin against UV-induced damage and this protection is mainly from contributions of rutin and chlorogenic acid.

  9. The influence of plant protection by effective microorganisms on the content of bioactive phytochemicals in apples.

    PubMed

    Kusznierewicz, Barbara; Lewandowska, Anna; Martysiak-Żurowska, Dorota; Bartoszek, Agnieszka

    2017-09-01

    The phytochemicals of two apple cultivars (Yellow Transparent and Early Geneva) protected in two ways, conventionally with chemical pesticides or by effective microorganisms (EM), were compared. Two types of components were determined: lipids synthesised constitutively and generated via inducible pathways polyphenols along with antioxidant activity and profiles. The antioxidant activities assessed with ABTS, DPPH and Folin-Ciocalteu reagents were about two-fold higher in the case of microbiologically protected apples. The qualitative composition of phenolics determined by LC-DAD-MS varied between cultivars and the part of apples studied, while the method of protection caused mainly differences in concentration of some groups of polyphenols (hydroxycinnamates, flavanols, dihydrochalcones, flavonols, anthocyanins). The apples from biological cultivation contained about 34-54% more phenolics than these from a conventional orchard. In contrast, lipid composition did not differ significantly between apples originating from conventional and bio-crops. The results indicate that the advantage of using the EM technology in agriculture may not only be the reduction of consumption of chemical fertilisers and synthetic pesticides, but also, at least in the case of apples, may lead to the production of crops with improved health quality due to the higher content of bioactive phytochemicals. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Variation in Essential Oil and Bioactive Compounds of Curcuma kwangsiensis Collected from Natural Habitats.

    PubMed

    Zhang, Lanyue; Yang, Zhiwen; Huang, Zebin; Zhao, Mincong; Li, Penghui; Zhou, Wei; Zhang, Kun; Zheng, Xi; Lin, Li; Tang, Jian; Fang, Yanxiong; Du, Zhiyun

    2017-07-01

    The chemical compositions of essential oils (EOs) extracted from Curcuma kwangsiensis rhizomes collected from six natural habitats in P. R. China were evaluated using gas chromatography/mass spectrometry (GC/MS). Fifty-seven components were identified from the six EOs, and their main constituents were 8,9-dehydro-9-formyl-cycloisolongifolene (2.37 - 42.59%), germacrone (6.53 - 22.20%), and l-camphor (0.19 - 6.12%). The six EOs exhibited different DPPH radical-scavenging activities (IC 50 , 2.24 - 31.03 μg/ml), with the activity of most of EOs being much higher than that of Trolox C (IC 50 , 10.49 μg/ml) and BHT (IC 50 , 54.13 μg/ml). Most EOs had potent antimicrobial effects against the tested bacteria and fungus. They also exhibited cytotoxicity against B16 (IC 50 , 4.44 - 147.4 μg/ml) and LNCaP cells (IC 50 , 73.94 - 429.25 μg/ml). The EOs showed excellent anti-inflammatory action by significantly downregulating expression of pro-inflammatory cytokines, cyclooxygenase-2, and tumor necrosis factor-α. This study provides insight into the interrelation among growth location, phytoconstituents, and bioactivities, and the results indicate the potential of C. kwangsiensis as natural nutrients, medicines, and others additives. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  11. Bioactive properties of the main triterpenes found in olives, virgin olive oil, and leaves of Olea europaea.

    PubMed

    Sánchez-Quesada, Cristina; López-Biedma, Alicia; Warleta, Fernando; Campos, María; Beltrán, Gabriel; Gaforio, José J

    2013-12-18

    Oleanolic acid, maslinic acid, uvaol, and erythrodiol are the main triterpenes present in olives, olive tree leaves, and virgin olive oil. Their concentration in virgin olive oil depends on the quality of the olive oil and the variety of the olive tree. These triterpenes are described to present different properties, such as antitumoral activity, cardioprotective activity, anti-inflammatory activity, and antioxidant protection. Olive oil triterpenes are a natural source of antioxidants that could be useful compounds for the prevention of multiple diseases related to cell oxidative damage. However, special attention has to be paid to the concentrations used, because higher concentration may lead to cytotoxic or biphasic effects. This work explores all of the bioactive properties so far described for the main triterpenes present in virgin olive oil.

  12. Screening and identification of three typical phenylethanoid glycosides metabolites from Cistanches Herba by human intestinal bacteria using UPLC/Q-TOF-MS.

    PubMed

    Li, Yang; Zhou, Guisheng; Peng, Ying; Tu, Pengfei; Li, Xiaobo

    2016-01-25

    Acteoside, isoacteoside, and 2'-acetylacteoside are three representative phenylethanoid glycosides (PhGs), which are widely distributed in many plants and also known as the active components of Cistanches Herba. However, the extremely low oral bioavailability of acteoside in rats implies that these structural similar components may go through multiple sequential routes of hydrolysis in gastrointestinal tract before they are absorbed into blood. Therefore, the metabolites of these three components and other PhGs from gastrointestinal tract such as echinacoside, are supposed to be the bioactive elements. In this study, we established an approach combining ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS) with MS(E) technology and MetaboLynx™ software for the rapid metabolic profiling of acteoside, isoacteoside, and 2'-acetylacteoside by human intestinal bacteria. As a result, 11 metabolites of acteoside, 7 metabolites of isoacteoside, and 11 metabolites of 2'-acetylacteoside were identified respectively. 8 metabolic pathways including deglycosylation, de-rhamnose, de-hydroxytyrosol, de-caffeoyl, deacetylation, reduction, acetylation, and sulfate conjugation were proposed to involve in the generation of these metabolites. Furthermore, we found that the degraded metabolites hydroxytyrosol (HT) and 3-hydroxyphenylpropionic (3-HPP) were transformed from acteoside, isoacteoside, and 2'-acetylacteoside by human intestinal bacteria and demonstrated similar bioactivities to their precursors. These findings are significant for our understanding of the metabolism of PhGs and the proposed metabolic pathways of bioactive components might be crucial for further pharmacokinetic evaluations of Cistanches Herba. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Lactic Acid Bacteria and Bifidobacteria with Potential to Design Natural Biofunctional Health-Promoting Dairy Foods.

    PubMed

    Linares, Daniel M; Gómez, Carolina; Renes, Erica; Fresno, José M; Tornadijo, María E; Ross, R P; Stanton, Catherine

    2017-01-01

    Consumer interest in healthy lifestyle and health-promoting natural products is a major driving force for the increasing global demand of biofunctional dairy foods. A number of commercial sources sell synthetic formulations of bioactive substances for use as dietary supplements. However, the bioactive-enrichment of health-oriented foods by naturally occurring microorganisms during dairy fermentation is in increased demand. While participating in milk fermentation, lactic acid bacteria can be exploited in situ as microbial sources for naturally enriching dairy products with a broad range of bioactive components that may cover different health aspects. Several of these bioactive metabolites are industrially and economically important, as they are claimed to exert diverse health-promoting activities on the consumer, such as anti-hypertensive, anti-inflammatory, and anti-diabetic, anti-oxidative, immune-modulatory, anti-cholesterolemic, or microbiome modulation. This review aims at discussing the potential of these health-supporting bacteria as starter or adjunct cultures for the elaboration of dairy foods with a broad spectrum of new functional properties and added value.

  14. Bioactivity Improvement of Olea europaea Leaf Extract Biotransformed by Wickerhamomyces anomalus Enzymes.

    PubMed

    Palmeri, Rosa; Restuccia, Cristina; Monteleone, Julieta Ines; Sperlinga, Elisa; Siracusa, Laura; Serafini, Mauro; Finamore, Alberto; Spagna, Giovanni

    2017-06-01

    Olive leaves represent a quantitatively significant by-product of agroindustry. They are rich in phenols, mainly oleuropein, which can be hydrolyzed into several bioactive compounds, including hydroxytyrosol. In this study, water extract from olive leaves 'Biancolilla' was analyzed for polyphenol profile, DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity and protective effect on differentiated Caco-2 cells. The efficacy of two enzymatic treatments in promoting the release of bioactive phenols was investigated: a) enzymatic extract from Wickerhamomyces anomalus, characterized by β-glucosidase and esterase activities; b) commercial β-glucosidase. Composition and bioactivity of the resulting extracts were compared. The results showed that the yeast-treated extract presented hydroxytyrosol content and DPPH radical scavenging activity comparable to those obtained using commercial β-glucosidase; however, it was showed the additional presence of hydroxycinnamic acids. In experiments on Caco-2 cells, the leaf extracts promoted the recovery of cell membrane barrier at different minimum effective concentrations. The high specificity of W. anomalus enzymatic extract may represent an effective tool for the release of bioactive phenols from olive by-products.

  15. 78 FR 36786 - Linking Marketplace Heparin Product Attributes and Manufacturing Processes to Bioactivity and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-19

    ... heparin. The condition leads to formation of abnormal blood clots and concomitant complications associated... antibody formation although these smaller chain length heparins are much less likely to lead to clinical... components of heparin that lead to the pathogenesis of HIT is the lack of pure component heparin standards...

  16. Biomarkers for diet and cancer prevention research: potentials and challenges.

    PubMed

    Davis, Cindy D; Milner, John A

    2007-09-01

    As cancer incidence is projected to increase for decades there is a need for effective preventive strategies. Fortunately, evidence continues to mount that altering dietary habits is an effective and cost-efficient approach for reducing cancer risk and for modifying the biological behavior of tumors. Predictive, validated and sensitive biomarkers, including those that reliably evaluate "intake" or exposure to a specific food or bioactive component, that assess one or more specific biological "effects" that are linked to cancer, and that effectively predict individual "susceptibility" as a function of nutrient-nutrient interactions and genetics, are fundamental to evaluating who will benefit most from dietary interventions. These biomarkers must be readily accessible, easily and reliably assayed, and predictive of a key process(es) involved in cancer. The response to a food is determined not only by the effective concentration of the bioactive food component(s) reaching the target tissue, but also by the amount of the target requiring modification. Thus, this threshold response to foods and their components will vary from individual to individual. The key to understanding a personalized response is a greater knowledge of nutrigenomics, proteomics and metabolomics.

  17. Simultaneous determination of five bioactive components in radix glycyrrhizae by pressurised liquid extraction combined with UPLC-PDA and UPLC/ESI-QTOF-MS confirmation.

    PubMed

    Zhou, Shujun; Cao, Jiliang; Qiu, Feng; Kong, Weijun; Yang, Shihai; Yang, Meihua

    2013-01-01

    Glycyrrhizae species are popular ingredients of herbal medicine in most traditional Chinese medicine prescriptions, and they mainly contain flavonoids and triterpene saponins. The contents of these bioactive compounds may vary in different batches and affect the therapeutic effects. Thus comprehensive quality control and monitoring of their herbal formulation are of paramount concern. To establish a rapid, effective pressurised liquid extraction (PLE) and ultra-performance liquid chromatography coupled with photodiode array (UPLC-PDA) method to evaluate the quality of Glycyrrhizae species. Radix Glycyrrhizae was extracted by PLE using 70% ethanol at 100°C for 15 min during three static extraction cycles. Separation was performed using an UPLC system to quantify five bioactive compounds, namely liquiritin apioside, liquiritin, liquiritigenin, glycyrrhizic acid and glycyrrhetinic acid, in 12 batches of samples of different origins in China. Furthermore, the samples were analysed using an ultra-performance liquid chromatography coupled with electrospray ionisation and time-of-flight mass spectrometry (UPLC/ESI-QTOF-MS) system to confirm the results. The calibration curves of all five analytes showed good linearity (R(2)  > 0.9997). Accuracy, precision and repeatability were all within required limits. The mean recoveries measured at the three concentrations were higher than 93.7% with RSDs lower than < 3.33% for the targets. The established PLE and UPLC-PDA method could serve as a rapid and effective method for quality evaluation of Radix Glycyrrhizae. The UPLC technique can be considered as an attractive alternative to HPLC in routine quality control of Chinese medicine, especially in situations where high sample throughput and fast analytical speed are required. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Biochemical Trade-Offs: Evidence for Ecologically Linked Secondary Metabolism of the Sponge Oscarella balibaloi

    PubMed Central

    Ivanisevic, Julijana; Thomas, Olivier P.; Pedel, Laura; Pénez, Nicolas; Ereskovsky, Alexander V.; Culioli, Gérald; Pérez, Thierry

    2011-01-01

    Secondary metabolite production is assumed to be costly and therefore the resource allocation to their production should be optimized with respect to primary biological functions such as growth or reproduction. Sponges are known to produce a great diversity of secondary metabolites with powerful biological activities that may explain their domination in some hard substrate communities both in terms of diversity and biomass. Oscarella balibaloi (Homoscleromorpha) is a recently described, highly dynamic species, which often overgrows other sessile marine invertebrates. Bioactivity measurements (standardized Microtox assay) and metabolic fingerprints were used as indicators of the baseline variations of the O. balibaloi secondary metabolism, and related to the sponge reproductive effort over two years. The bioactivity showed a significant seasonal variation with the lowest values at the end of spring and in early summer followed by the highest bioactivity in the late summer and autumn. An effect of the seawater temperature was detected, with a significantly higher bioactivity in warm conditions. There was also a tendency of a higher bioactivity when O. balibaloi was found overgrowing other sponge species. Metabolic fingerprints revealed the existence of three principal metabolic phenotypes: phenotype 1 exhibited by a majority of low bioactive, female individuals, whereas phenotypes 2 and 3 correspond to a majority of highly bioactive, non-reproductive individuals. The bioactivity was negatively correlated to the reproductive effort, minimal bioactivities coinciding with the period of embryogenesis and larval development. Our results fit the Optimal Defense Theory with an investment in the reproduction mainly shaping the secondary metabolism variability, and a less pronounced influence of other biotic (species interaction) and abiotic (temperature) factors. PMID:22132209

  19. Neem components as potential agents for cancer prevention and treatment

    PubMed Central

    Hao, Fang; Kumar, Sandeep; Yadav, Neelu; Chandra, Dhyan

    2016-01-01

    Azadirachta indica, also known as neem, is commonly found in many semi-tropical and tropical countries including India, Pakistan, and Bangladesh. The components extracted from neem plant have been used in traditional medicine for the cure of multiple diseases including cancer for centuries. The extracts of seeds, leaves, flowers, and fruits of neem have consistently shown chemopreventive and antitumor effects in different types of cancer. Azadirachtin and nimbolide are among the few bioactive components in neem that have been studied extensively, but research on a great number of additional bioactive components is warranted. The key anticancer effects of neem components on malignant cells include inhibition of cell proliferation, induction of cell death, suppression of cancer angiogenesis, restoration of cellular reduction/oxidation (redox) balance, and enhancement of the host immune responses against tumor cells. While the underlying mechanisms of these effects are mostly unclear, the suppression of NF-κB signaling pathway is, at least partially, involved in the anticancer functions of neem components. Importantly, the anti-proliferative and apoptosis-inducing effects of neem components are tumor selective as the effects on normal cells are significantly weaker. In addition, neem extracts sensitize cancer cells to immunotherapy and radiotherapy, and enhance the efficacy of certain cancer chemotherapeutic agents. This review summarizes the current updates on the anticancer effects of neem components and their possible impact on managing cancer incidence and treatment. PMID:25016141

  20. Extraction and identification of bioactive components in Sida cordata (Burm.f.) using gas chromatography-mass spectrometry.

    PubMed

    Ganesh, Mani; Mohankumar, Murugan

    2017-09-01

    Sida cordata (Burm.f.) is a pineal tropical plant in the family Malvaceae that is found throughout India and used to treat various diseases and ailments in many complementary and alternative medicine systems. This study identified the bioactive components present in whole-plant ethanol extracts of S . cordata using gas chromatography-mass spectrometry (GC-MS). Based on their retention times (RT) and mass-to-charge ratios (m/z), 29 bioactive compounds were identified: nonanoic acid, vitamin D 3 , 3-trifluroacetoxypentadecane, α-d-glucopyranoside, O-α-d-glucopyranosyl-(1.fwdarw.3)-α-d-fructofuranosyl,3,7,11,15-tetramethyl-2-hexadecan-1-ol, octadecanoic acid, ethyl ester, phytol, 9,12-octadecadienoic acid, methyl ester (E,E), 9,12,15-octadecadienoic acid, methyl ester (Z,Z,Z), oleic acid, 1,2-15,16-diepoxyhexadecane, 3-hexadecyloxycarbonyl-5-(2-hydroxyethyl)-4-methylimidazolium ion, methoxyacetic acid, 4-tetradecyl ester, 1,2-benzenedicarboxylic acid, mono (2-ethylhexyl) ester, 1-iodo-2-methylundecane, dodecane, 2,6,10-trimethyl-, 2-piperidinone-N-[4-bromo-n-butyl]-, squalene, octadecane-1-(ethenyloxy)-, Z,Z-2,5-pentadecadien-1-ol, 1-hexadecanol, 2-methyl-, spiro[androst-5ene-17,1'-cyclobutan]-2'-one-3-hydroxy-, (3a,17a)-, diethylene glycol monododecyl ether, vitamin E, cholestan-3-ol, 2-methylene-, (3a,5a)-, 2H-pyran, 2-(7-heptadecynyloxy)tetrahydro-, and cis -Z-α-bisabolene epoxide. The presence of various bioactive compounds justifies the use of this plant for treating various ailments by traditional practitioners.

  1. Bioactive components and functional properties of biologically activated cereal grains: A bibliographic review.

    PubMed

    Singh, Arashdeep; Sharma, Savita

    2017-09-22

    Whole grains provide energy, nutrients, fibers, and bioactive compounds that may synergistically contribute to their protective effects. A wide range of these compounds is affected by germination. While some compounds, such as β-glucans are degraded, others, like antioxidants and total phenolics are increased by means of biological activation of grains. The water and oil absorption capacity as well as emulsion and foaming capacity of biologically activated grains are also improved. Application of biological activation of grains is of emerging interest, which may significantly enhance the nutritional, functional, and bioactive content of grains, as well as improve palatability of grain foods in a natural way. Therefore, biological activation of cereals can be a way to produce food grains enriched with health-promoting compounds and enhanced functional attributes.

  2. An Enzyme-Coated Metal-Organic Framework Shell for Synthetically Adaptive Cell Survival.

    PubMed

    Liang, Kang; Richardson, Joseph J; Doonan, Christian J; Mulet, Xavier; Ju, Yi; Cui, Jiwei; Caruso, Frank; Falcaro, Paolo

    2017-07-10

    A bioactive synthetic porous shell was engineered to enable cells to survive in an oligotrophic environment. Eukaryotic cells (yeast) were firstly coated with a β-galactosidase (β-gal), before crystallization of a metal-organic framework (MOF) film on the enzyme coating; thereby producing a bioactive porous synthetic shell. The β-gal was an essential component of the bioactive shell as it generated nutrients (that is, glucose and galactose) required for cell viability in nutrient-deficient media (lactose-based). Additionally, the porous MOF coating carried out other vital functions, such as 1) shielding the cells from cytotoxic compounds and radiation, 2) protecting the non-native enzymes (β-gal in this instance) from degradation and internalization, and 3) allowing for the diffusion of molecules essential for the survival of the cells. Indeed, this bioactive porous shell enabled the survival of cells in simulated extreme oligotrophic environments for more than 7 days, leading to a decrease in cell viability less than 30 %, versus a 99 % decrease for naked yeast. When returned to optimal growth conditions the bioactive porous exoskeleton could be removed and the cells regained full growth immediately. The construction of bioactive coatings represents a conceptually new and promising approach for the next-generation of cell-based research and application, and is an alternative to synthetic biology or genetic modification. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Bioactive Components in Moringa Oleifera Leaves Protect against Chronic Disease

    PubMed Central

    Vergara-Jimenez, Marcela; Almatrafi, Manal Mused

    2017-01-01

    Moringa Oleifera (MO), a plant from the family Moringacea is a major crop in Asia and Africa. MO has been studied for its health properties, attributed to the numerous bioactive components, including vitamins, phenolic acids, flavonoids, isothiocyanates, tannins and saponins, which are present in significant amounts in various components of the plant. Moringa Oleifera leaves are the most widely studied and they have shown to be beneficial in several chronic conditions, including hypercholesterolemia, high blood pressure, diabetes, insulin resistance, non-alcoholic liver disease, cancer and overall inflammation. In this review, we present information on the beneficial results that have been reported on the prevention and alleviation of these chronic conditions in various animal models and in cell studies. The existing limited information on human studies and Moringa Oleifera leaves is also presented. Overall, it has been well documented that Moringa Oleifera leaves are a good strategic for various conditions associated with heart disease, diabetes, cancer and fatty liver. PMID:29144438

  4. Effect of different drying techniques on bioactive components, fatty acid composition, and volatile profile of robusta coffee beans.

    PubMed

    Dong, Wenjiang; Hu, Rongsuo; Chu, Zhong; Zhao, Jianping; Tan, Lehe

    2017-11-01

    This study investigated the effect of different drying techniques, namely, room-temperature drying (RTD), solar drying (SD), heat-pump drying (HPD), hot-air drying (HAD), and freeze drying (FD), on bioactive components, fatty acid composition, and the volatile compound profile of robusta coffee beans. The data showed that FD was an effective method to preserve fat, organic acids, and monounsaturated fatty acids. In contrast, HAD was ideal for retaining polyunsaturated fatty acids and amino acids. Sixty-two volatile compounds were identified in the differently dried coffee beans, representing 90% of the volatile compounds. HPD of the coffee beans produced the largest number of volatiles, whereas FD resulted in the highest volatile content. A principal component analysis demonstrated a close relationship between the HPD, SD, and RTD methods whereas the FD and HAD methods were significantly different. Overall, the results provide a basis for potential application to other similar thermal sensitive materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The secret to a successful relationship: lasting chemistry between ascidians and their symbiotic bacteria

    PubMed Central

    Schmidt, Eric W.

    2014-01-01

    Bioactive secondary metabolites are common components of marine animals. In many cases, symbiotic bacteria, and not the animals themselves, synthesize the compounds. Among marine animals, ascidians are good models for understanding these symbioses. Ascidians often contain potently bioactive secondary metabolites as their major extractable components. Strong evidence shows that ~8% of the known secondary metabolites from ascidians are made by symbiotic bacteria, and indirect evidence implicates bacteria in the synthesis of many more. Far from being “secondary” to the animals, secondary metabolites are essential components of the interaction between host animals and their symbiotic bacteria. These interactions have complex underlying biology, but the chemistry is clearly ascidian-species specific. The chemical interactions are ancient in at least some cases, and they are widespread among ascidians. Ascidians maintain secondary metabolic symbioses with bacteria that are phylogenetically diverse, indicating a convergent solution to obtaining secondary metabolites and reinforcing the importance of secondary metabolism in animal survival. PMID:25937788

  6. Comparative analyses of seeds of wild fruits of Rubus and Sambucus species from Southern Italy: fatty acid composition of the oil, total phenolic content, antioxidant and anti-inflammatory properties of the methanolic extracts.

    PubMed

    Fazio, Alessia; Plastina, Pierluigi; Meijerink, Jocelijn; Witkamp, Renger F; Gabriele, Bartolo

    2013-10-15

    Fruit seeds are byproducts from fruit processing. Characterisation of the bioactive compounds present in seeds and evaluation of their potential biological properties is therefore of particular importance in view of a possible valorisation of seeds as a source of health beneficial components. In this work, we have analysed the seeds of Sambucus and Rubus species in order to identify their bioactive components and to determine the antioxidant and anti-inflammatory activities of the extracts. We first analysed their oil content, in order to assess the fatty acid profile and tocopherol content. Moreover, the methanolic extracts of the seeds were analysed for their total phenolic contents and antioxidant capacities. Polyphenols were identified by HPLC-ESI-MS/MS analysis. Furthermore, extracts were evaluated for their inhibitory effects on the production of LPS-induced inflammatory mediators (NO, CCL-20) in RAW 264.7 cells. Our findings show that the methanolic extracts from Rubus seeds have strong antioxidant and anti-inflammatory properties and could therefore represent an attractive source of bioactive compounds for food, cosmetic, or pharmaceutical applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Current progress in isolation and characterization of toxins isolated from Pfiesteria piscicida.

    PubMed Central

    Moeller, P D; Morton, S L; Mitchell, B A; Sivertsen, S K; Fairey, E R; Mikulski, T M; Glasgow, H; Deamer-Melia, N J; Burkholder, J M; Ramsdell, J S

    2001-01-01

    The isolation and partial purification of toxic substances derived from Pfiesteria piscicida Steidinger & Burkholder extracts is described. Four distinct bioassay systems were used to monitor bioactivity of the P. piscicida extracts, including a high throughput cell cytotoxicity assay and a reporter gene assay as well as assays using brine shrimp and fish. Using these bioassays to guide fractionation, we have isolated two distinct, active fractions from Pfiesteria culture medium and cell mass extracts on the basis of their solubility characteristics. We have identified and characterized a bioactive lipophilic substance from Pfiesteria-derived extracts as di(2-ethylhexyl)phthalate, a commonly used plasticizer. The source of this typically man-made substance has been identified as originating from Instant Ocean (Aquarium Systems, Mentor, OH, USA), a commercially available seawater salt mixture used to prepare our mass culture growth medium. We have developed chromatographic methodology to isolate a bioactive polar compound isolated from extracts of Pfiesteria culture and presently report the characterization of the activity of this substance. The molecular structural analysis of the polar active component(s) using mass spectrometry and nuclear magnetic resonance spectroscopy is currently under way. PMID:11677183

  8. GC-MS analysis of bio-active compounds in methanolic extract of Lactuca runcinata DC

    PubMed Central

    Kanthal, Lakshmi Kanta; Dey, Akalanka; Satyavathi, K.; Bhojaraju, P.

    2014-01-01

    Background: The presence of phytochemical constitutes has been reported from species of the Compositae (Asteraceae). Hitherto no reports exist on the phytochemical components and biological activity of Lactuca runcinata DC. Objective: The present study was designed to determine the bioactive compounds in the whole plant methanol extract of Lactuca runcinata. Materials and Methods: Phytochemical screening of the entire herb of Lactuca runcinata DC revealed the presence of some bio-active components. Gas chromatography-mass spectrometry (GC-MS) analysis of the whole plant methanol extract of Lactuca runcinata was performed on a GC-MS equipment (Thermo Scientific Co.) Thermo GC-TRACE ultra ver.: 5.0, Thermo MS DSQ II. Results: The phytochemical tests showed the presence of alkaloids, cardiac glycosides, flavonoids, phenols, phlobatannin, reducing sugars, saponins, steroids, tannins, terpenoids, volatile oils, carbohydrates, and protein/amino acids in methanolic extract of L. runcinata. The GC-MS analysis has shown the presence of different phytochemical compounds in the methanolic extract of Lactuca runcinata. A total of 21 compounds were identified representing 84.49% of total methanolic extract composition. Conclusion: From the results, it is evident that Lactuca runcinata contains various phytocomponents and is recommended as a plant of phytopharmaceutical importance. PMID:24497744

  9. Therapeutic polymers for dental adhesives: Loading resins with bio-active components

    PubMed Central

    Imazato, Satoshi; Ma, Sai; Chen, Ji-hua; Xu, Hockin H.K.

    2014-01-01

    Objectives Many recent adhesives on the market exhibit reasonable clinical performance. Future innovations in adhesive materials should therefore seek out novel properties rather than simply modifying existing technologies. It is proposed that adhesive materials that are “bio-active” could contribute to better prognosis of restorative treatments. Methods This review examines the recent approaches used to achieve therapeutic polymers for dental adhesives by incorporating bio-active components. A strategy to maintain adhesive restorations is the focus of this paper. Results Major trials on therapeutic dental adhesives have looked at adding antibacterial activities or remineralization effects. Applications of antibacterial resin monomers based on quaternary ammonium compounds have received much research attention, and the loading of nano-sized bioactive particles or multiple ion-releasing glass fillers have been perceived as advantageous since they are not expected to influence the mechanical properties of the carrier polymer. Significance The therapeutic polymer approaches described here have the potential to provide clinical benefits. However, not many technological applications in this category have been successfully commercialized. Clinical evidence as well as further advancement of these technologies can be a driving force to make these new types of materials clinically available. PMID:23899387

  10. Preventive and Prophylactic Mechanisms of Action of Pomegranate Bioactive Constituents

    PubMed Central

    Viladomiu, Monica; Hontecillas, Raquel; Lu, Pinyi; Bassaganya-Riera, Josep

    2013-01-01

    Pomegranate fruit presents strong anti-inflammatory, antioxidant, antiobesity, and antitumoral properties, thus leading to an increased popularity as a functional food and nutraceutical source since ancient times. It can be divided into three parts: seeds, peel, and juice, all of which seem to have medicinal benefits. Several studies investigate its bioactive components as a means to associate them with a specific beneficial effect and develop future products and therapeutic applications. Many beneficial effects are related to the presence of ellagic acid, ellagitannins (including punicalagins), punicic acid and other fatty acids, flavonoids, anthocyanidins, anthocyanins, estrogenic flavonols, and flavones, which seem to be its most therapeutically beneficial components. However, the synergistic action of the pomegranate constituents appears to be superior when compared to individual constituents. Promising results have been obtained for the treatment of certain diseases including obesity, insulin resistance, intestinal inflammation, and cancer. Although moderate consumption of pomegranate does not result in adverse effects, future studies are needed to assess safety and potential interactions with drugs that may alter the bioavailability of bioactive constituents of pomegranate as well as drugs. The aim of this review is to summarize the health effects and mechanisms of action of pomegranate extracts in chronic inflammatory diseases. PMID:23737845

  11. Bioactive components and mechanisms of Chinese poplar propolis alleviates oxidized low-density lipoprotein-induced endothelial cells injury.

    PubMed

    Chang, Huasong; Yuan, Wenwen; Wu, Haizhu; Yin, Xusheng; Xuan, Hongzhuan

    2018-05-03

    Propolis, a polyphenol-rich natural product, has been used as a functional food in anti-inflammation. However, its bioactive components and mechanisms have not been fully elucidated. To discover the bioactive components and anti-inflammatory mechanism, we prepared and separated 8 subfractions from ethyl acetate extract of Chinese propolis (EACP) and investigated the mechanism in oxidized low density lipoprotein (ox-LDL) induced human umbilical vein endothelial cells (HUVECs) damage. Eight subfractions were prepared and separated from ethyl acetate extract of Chinese propolis (EACP) with different concentrations of methanol-water solution, and analysed its chemical constituents by HPLC-DAD/Q-TOF-MS. Then 80% confluent HUVECs were stimulated with 40 μg/mL ox-LDL. Cell viability and apoptosis were evaluated by Sulforhodamine B (SRB) assay and Hoechst 33,258 staining, respectively. Levels of caspase 3, PARP, LC3B, p62, p-mTOR, p-p70S6K, p-PI3K, p-Akt, LOX-1 and p-p38 MAPK were assessed by western blotting and immunofluorescence assay, respectively. Reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were measured with fluorescent probes. Each subfraction exhibited similar protective effect although the contents of chemical constituents were different. EACP attenuated ox-LDL induced HUVECs apoptosis, depressed the ratio of LC3-II/LC3-I and enhanced the p62 level. In addition, treatment with EACP also activated the phosphorylation of PI3K/Akt/mTOR, and deactivated the level of LOX-1 and phosphorylation of p38 MAPK. The overproduction of ROS and the damage of MMP were also ameliorated after ECAP treatment. These findings indicated that the bioactive component of propolis on anti-inflammatory activity was not determined by a single constituent, but a complex interaction including flavonoids, esters and phenolic acids. EACP attenuated ox-LDL induced HUVECs injury by inhibiting LOX-1 level and depressed ROS production against oxidative stress in ox-LDL induced HUVECs, further to activate PI3K/Akt/mTOR pathway and deactivate p38 MAPK to inhibit apoptosis and autophagy, which provide novel insights into the potential application of propolis on modulating chronic inflammation.

  12. Nanoencapsulation of Aloe vera in Synthetic and Naturally Occurring Polymers by Electrohydrodynamic Processing of Interest in Food Technology and Bioactive Packaging.

    PubMed

    Torres-Giner, Sergio; Wilkanowicz, Sabina; Melendez-Rodriguez, Beatriz; Lagaron, Jose M

    2017-06-07

    This work originally reports on the use of electrohydrodynamic processing (EHDP) to encapsulate Aloe vera (AV, Aloe barbadensis Miller) using both synthetic polymers, i.e., polyvinylpyrrolidone (PVP) and poly(vinyl alcohol) (PVOH), and naturally occurring polymers, i.e., barley starch (BS), whey protein concentrate (WPC), and maltodextrin. The AV leaf juice was used as the water-based solvent for EHDP, and the resultant biopolymer solution properties were evaluated to determine their effect on the process. Morphological analysis revealed that, at the optimal processing conditions, synthetic polymers mainly produced fiber-like structures, while naturally occurring polymers generated capsules. Average sizes ranged from 100 nm to above 3 μm. As a result of their different and optimal morphology and, hence, higher AV content, PVP, in the form of nanofibers, and WPC, of nanocapsules, were further selected to study the AV stability against ultraviolet (UV) light exposure. Fourier transform infrared (FTIR) spectroscopy confirmed the successful encapsulation of AV in the biopolymer matrices, presenting both encapsulants a high chemical interaction with the bioactive components. Ultraviolet-visible (UV-vis) spectroscopy showed that, while PVP nanofibers offered a poor effect on the AV degradation during UV light exposure (∼10% of stability after 5 h), WPC nanobeads delivered excellent protection (stability of >95% after 6 h). This was ascribed to positive interactions between WPC and the hydrophilic components of AV and the inherent UV-blocking and oxygen barrier properties provided by the protein. Therefore, electrospraying of food hydrocolloids interestingly appears as a novel potential nanotechnology tool toward the formulation of more stable functional foods and nutraceuticals.

  13. Evidence to Support the Anti-Cancer Effect of Olive Leaf Extract and Future Directions.

    PubMed

    Boss, Anna; Bishop, Karen S; Marlow, Gareth; Barnett, Matthew P G; Ferguson, Lynnette R

    2016-08-19

    The traditional Mediterranean diet (MD) is associated with long life and lower prevalence of cardiovascular disease and cancers. The main components of this diet include high intake of fruit, vegetables, red wine, extra virgin olive oil (EVOO) and fish, low intake of dairy and red meat. Olive oil has gained support as a key effector of health benefits and there is evidence that this relates to the polyphenol content. Olive leaf extract (OLE) contains a higher quantity and variety of polyphenols than those found in EVOO. There are also important structural differences between polyphenols from olive leaf and those from olive fruit that may improve the capacity of OLE to enhance health outcomes. Olive polyphenols have been claimed to play an important protective role in cancer and other inflammation-related diseases. Both inflammatory and cancer cell models have shown that olive leaf polyphenols are anti-inflammatory and protect against DNA damage initiated by free radicals. The various bioactive properties of olive leaf polyphenols are a plausible explanation for the inhibition of progression and development of cancers. The pathways and signaling cascades manipulated include the NF-κB inflammatory response and the oxidative stress response, but the effects of these bioactive components may also result from their action as a phytoestrogen. Due to the similar structure of the olive polyphenols to oestrogens, these have been hypothesized to interact with oestrogen receptors, thereby reducing the prevalence and progression of hormone related cancers. Evidence for the protective effect of olive polyphenols for cancer in humans remains anecdotal and clinical trials are required to substantiate these claims idea. This review aims to amalgamate the current literature regarding bioavailability and mechanisms involved in the potential anti-cancer action of olive leaf polyphenols.

  14. An integrated approach to uncover quality marker underlying the effects of Alisma orientale on lipid metabolism, using chemical analysis and network pharmacology.

    PubMed

    Liao, Maoliang; Shang, Haihua; Li, Yazhuo; Li, Tian; Wang, Miao; Zheng, Yanan; Hou, Wenbin; Liu, Changxiao

    2018-06-01

    Quality control of traditional Chinese medicines is currently a great concern, due to the correlation between the quality control indicators and clinic effect is often questionable. According to the "multi-components and multi-targets" property of TCMs, a new special quality and bioactivity evaluation system is urgently needed. Present study adopted an integrated approach to provide new insights relating to uncover quality marker underlying the effects of Alisma orientale (AO) on lipid metabolism. In this paper, guided by the concept of the quality marker (Q-marker), an integrated strategies "effect-compound-target-fingerprint" was established to discovery and screen the potential quality marker of AO based on network pharmacology and chemical analysis. Firstly, a bioactivity evaluation was performed to screen the main active fractions. Then the chemical compositions were rapidly identified by chemical analysis. Next, networks were constructed to illuminate the interactions between these component and their targets for lipid metabolism, and the potential Q-marker of AO was initially screened. Finally, the activity of the Q-markers was validated in vitro. 50% ethanol extract fraction was found to have the strongest lipid-lowering activity. Then, the network pharmacology was used to clarify the unique relationship between the Q-markers and their integral pharmacological action. Combined with the results obtained, five active ingredients in the 50% ethanol extract fraction were given special considerations to be representative Q-markers: Alisol A, Alisol B, Alisol A 23-acetate, Alisol B 23-acetate and Alisol A 24-acetate, respectively. The chromatographic fingerprints based Q-marker was establishment. The integrated Q-marker screen may offer an alternative quality assessment of herbal medicines. Copyright © 2018. Published by Elsevier GmbH.

  15. Meadowsweet Teas as New Functional Beverages: Comparative Analysis of Nutrients, Phytochemicals and Biological Effects of Four Filipendula Species.

    PubMed

    Olennikov, Daniil N; Kashchenko, Nina I; Chirikova, Nadezhda K

    2016-12-26

    In recent years, the increased popularity of functional beverages such as herbal teas and decoctions has led to the search for new sources of raw materials that provide appropriate taste and functionality to consumers. The objective of this study was to investigate the nutritional, phytochemical profiles and bioactivities of possible functional beverages produced from F. ulmaria and its alternative substitutes ( F. camtschatica , F. denudata , F. stepposa ). The investigated decoctions were analyzed regarding their macronutrient, carbohydrate, organic acid, amino acid and mineral composition. Quantification of the main phenolic compounds in the decoctions of meadowsweet floral teas was performed by a microcolumn RP-HPLC-UV procedure; the highest content was revealed in F. stepposa tea. The investigation of the essential oil of four meadowsweet teas revealed the presence of 28 compounds, including simple phenols, monoterpenes, sesquiterpenes and aliphatic components. The dominance of methyl salicylate and salicylaldehyde was noted in all samples. Studies on the water soluble polysaccharides of Filipendula flowers allowed us to establish their general affiliation to galactans and/or arabinogalactans with an admixture of glucans of the starch type and galacturonans as minor components. The bioactivity data demonstrated a good ability of meadowsweet teas to inhibit amylase, α-glucosidase and AGE formation. Tea samples showed antioxidant properties by the DPPH • , ABTS •+ and Br • free radicals scavenging assays and the carotene bleaching assay, caused by the presence of highly active ellagitannins. The anti-complement activity of the water-soluble polysaccharide fraction of meadowsweet teas indicated their possible immune-modulating properties. Filipendula beverage formulations can be expected to deliver beneficial effects due to their unique nutritional and phytochemical profiles. Potential applications as health-promoting functional products may be suggested.

  16. Evidence to Support the Anti-Cancer Effect of Olive Leaf Extract and Future Directions

    PubMed Central

    Boss, Anna; Bishop, Karen S.; Marlow, Gareth; Barnett, Matthew P. G.; Ferguson, Lynnette R.

    2016-01-01

    The traditional Mediterranean diet (MD) is associated with long life and lower prevalence of cardiovascular disease and cancers. The main components of this diet include high intake of fruit, vegetables, red wine, extra virgin olive oil (EVOO) and fish, low intake of dairy and red meat. Olive oil has gained support as a key effector of health benefits and there is evidence that this relates to the polyphenol content. Olive leaf extract (OLE) contains a higher quantity and variety of polyphenols than those found in EVOO. There are also important structural differences between polyphenols from olive leaf and those from olive fruit that may improve the capacity of OLE to enhance health outcomes. Olive polyphenols have been claimed to play an important protective role in cancer and other inflammation-related diseases. Both inflammatory and cancer cell models have shown that olive leaf polyphenols are anti-inflammatory and protect against DNA damage initiated by free radicals. The various bioactive properties of olive leaf polyphenols are a plausible explanation for the inhibition of progression and development of cancers. The pathways and signaling cascades manipulated include the NF-κB inflammatory response and the oxidative stress response, but the effects of these bioactive components may also result from their action as a phytoestrogen. Due to the similar structure of the olive polyphenols to oestrogens, these have been hypothesized to interact with oestrogen receptors, thereby reducing the prevalence and progression of hormone related cancers. Evidence for the protective effect of olive polyphenols for cancer in humans remains anecdotal and clinical trials are required to substantiate these claims idea. This review aims to amalgamate the current literature regarding bioavailability and mechanisms involved in the potential anti-cancer action of olive leaf polyphenols. PMID:27548217

  17. Cinnamyl Alcohol, the Bioactive Component of Chestnut Flower Absolute, Inhibits Adipocyte Differentiation in 3T3-L1 Cells by Downregulating Adipogenic Transcription Factors.

    PubMed

    Hwang, Dae Il; Won, Kyung-Jong; Kim, Do-Yoon; Kim, Bokyung; Lee, Hwan Myung

    2017-01-01

    The extract of chestnut (Castanea crenata var. dulcis) flower (CCDF) has antioxidant and antimelanogenic properties, but its anti-obesity properties have not been previously examined. In this study, we tested the effect of CCDF absolute on adipocyte differentiation by using 3T3-L1 cells and determining the bioactive component of CCDF absolute in 3T3-L1 cell differentiation. CCDF absolute (0.1-100[Formula: see text][Formula: see text]g/mL) did not change 3T3-L1 cell viability. At 50[Formula: see text][Formula: see text]g/mL and 100[Formula: see text][Formula: see text]g/mL, the absolute significantly reduced the accumulation of lipid droplets in 3T3-L1 cells that were induced by culture in medium containing 3-isobutyl-1-methylxanthine/dexamethasone/insulin (MDI). GC/MS analysis showed that CCDF absolute contains 10 compounds. Among these compounds, cinnamyl alcohol (3-phenyl-2-propene-1-ol) dose-dependently inhibited the increased accumulation of lipid droplets in MDI-contained medium-cultured 3T3-L1 cells at a concentration range of 0.1[Formula: see text][Formula: see text]g/mL to 10[Formula: see text][Formula: see text]g/mL that did not cause cytotoxicity in 3T3-L1 cells. The inhibitory effect was significant at 5[Formula: see text][Formula: see text]g/mL ([Formula: see text] of response in MDI alone-treated state, [Formula: see text]) and 10[Formula: see text][Formula: see text]g/mL ([Formula: see text] of response in MDI alone-treated state, [Formula: see text]). Moreover, the enhanced expression of obesity-related proteins (PPAR[Formula: see text], C/EBP[Formula: see text], SREBP-1c, and FAS) in MDI medium-cultivated 3T3-L1 cells was significantly attenuated by the addition of cinnamyl alcohol at 5[Formula: see text][Formula: see text]g/mL and 10[Formula: see text][Formula: see text]g/mL. These findings demonstrate that cinnamyl alcohol suppresses 3T3-L1 cell differentiation by inhibiting anti-adipogenesis-related proteins, and it may be a main bioactive component of CCDF absolute, exerting antidifferentiation action in 3T3-L1 cells. Therefore, cinnamyl alcohol, as well as CCDF absolute, may be potential candidates for the prevention or treatment of obesity.

  18. Bioactive Secondary Metabolites Produced by the Fungal Endophytes of Conifers.

    PubMed

    Stierle, Andrea A; Stierle, Donald B

    2015-10-01

    This is a review of bioactive secondary metabolites isolated from conifer-associated endophytic fungi from 1990-2014. This includes compounds with antimicrobial, anti-inflammatory, anti-proliferative and cytotoxic activity towards human cancer cell lines, and activity against either plant pathogens or plant insect pests. Compounds that were originally reported without associated activity were included if other studies ascribed activity to these compounds. Compounds were not included if they were exclusively phytotoxic or if they were isolated from active extracts but were not determined to be the active component of that extract.

  19. From nano- to macro-scale: nanotechnology approaches for spatially controlled delivery of bioactive factors for bone and cartilage engineering.

    PubMed

    Santo, Vítor E; Gomes, Manuela E; Mano, João F; Reis, Rui L

    2012-07-01

    The field of biomaterials has advanced towards the molecular and nanoscale design of bioactive systems for tissue engineering, regenerative medicine and drug delivery. Spatial cues are displayed in the 3D extracellular matrix and can include signaling gradients, such as those observed during chemotaxis. Architectures range from the nanometer to the centimeter length scales as exemplified by extracellular matrix fibers, cells and macroscopic shapes. The main focus of this review is the application of a biomimetic approach by the combination of architectural cues, obtained through the application of micro- and nanofabrication techniques, with the ability to sequester and release growth factors and other bioactive agents in a spatiotemporal controlled manner for bone and cartilage engineering.

  20. Analysis of Soluble Proteins in Natural Cordyceps sinensis from Different Producing Areas by Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis and Two-dimensional Electrophoresis

    PubMed Central

    Li, Chun-Hong; Zuo, Hua-Li; Zhang, Qian; Wang, Feng-Qin; Hu, Yuan-Jia; Qian, Zheng-Ming; Li, Wen-Jia; Xia, Zhi-Ning; Yang, Feng-Qing

    2017-01-01

    Background: As one of the bioactive components in Cordyceps sinensis (CS), proteins were rarely used as index components to study the correlation between the protein components and producing areas of natural CS. Objective: Protein components of 26 natural CS samples produced in Qinghai, Tibet, and Sichuan provinces were analyzed and compared to investigate the relationship among 26 different producing areas. Materials and Methods: Proteins from 26 different producing areas were extracted by Tris-HCl buffer with Triton X-100, and separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional electrophoresis (2-DE). Results: The SDS-PAGE results indicated that the number of protein bands and optical density curves of proteins in 26 CS samples was a bit different. However, the 2-DE results showed that the numbers and abundance of protein spots in protein profiles of 26 samples were obviously different and showed certain association with producing areas. Conclusions: Based on the expression values of matched protein spots, 26 batches of CS samples can be divided into two main categories (Tibet and Qinghai) by hierarchical cluster analysis. SUMMARY The number of protein bands and optical density curves of proteins in 26 Cordyceps sinensis samples were a bit different on the sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profilesNumbers and abundance of protein spots in protein profiles of 26 samples were obvious different on two-dimensional electrophoresis mapsTwenty-six different producing areas of natural Cordyceps sinensis samples were divided into two main categories (Tibet and Qinghai) by Hierarchical cluster analysis based on the values of matched protein spots. Abbreviations Used: SDS-PAGE: Sodium dodecyl sulfate polyacrylamide gel electrophoresis, 2-DE: Two-dimensional electrophoresis, Cordyceps sinensis: CS, TCMs: Traditional Chinese medicines PMID:28250651

  1. Analysis of Soluble Proteins in Natural Cordyceps sinensis from Different Producing Areas by Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis and Two-dimensional Electrophoresis.

    PubMed

    Li, Chun-Hong; Zuo, Hua-Li; Zhang, Qian; Wang, Feng-Qin; Hu, Yuan-Jia; Qian, Zheng-Ming; Li, Wen-Jia; Xia, Zhi-Ning; Yang, Feng-Qing

    2017-01-01

    As one of the bioactive components in Cordyceps sinensis (CS), proteins were rarely used as index components to study the correlation between the protein components and producing areas of natural CS. Protein components of 26 natural CS samples produced in Qinghai, Tibet, and Sichuan provinces were analyzed and compared to investigate the relationship among 26 different producing areas. Proteins from 26 different producing areas were extracted by Tris-HCl buffer with Triton X-100, and separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional electrophoresis (2-DE). The SDS-PAGE results indicated that the number of protein bands and optical density curves of proteins in 26 CS samples was a bit different. However, the 2-DE results showed that the numbers and abundance of protein spots in protein profiles of 26 samples were obviously different and showed certain association with producing areas. Based on the expression values of matched protein spots, 26 batches of CS samples can be divided into two main categories (Tibet and Qinghai) by hierarchical cluster analysis. The number of protein bands and optical density curves of proteins in 26 Cordyceps sinensis samples were a bit different on the sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profilesNumbers and abundance of protein spots in protein profiles of 26 samples were obvious different on two-dimensional electrophoresis mapsTwenty-six different producing areas of natural Cordyceps sinensis samples were divided into two main categories (Tibet and Qinghai) by Hierarchical cluster analysis based on the values of matched protein spots. Abbreviations Used : SDS-PAGE: Sodium dodecyl sulfate polyacrylamide gel electrophoresis, 2-DE: Two-dimensional electrophoresis, Cordyceps sinensis : CS, TCMs: Traditional Chinese medicines.

  2. Characterization of High-Value Bioactives in Some Selected Varieties of Pakistani Rice (Oryza sativa L.)

    PubMed Central

    Zubair, Muhammad; Anwar, Farooq; Ashraf, Muhammad; Uddin, Md. Kamal

    2012-01-01

    The present study reports the composition and variation of fatty acids, sterols, tocopherols and γ-oryzanol among selected varieties namely Basmati Super, Basmati 515, Basmati 198, Basmati 385, Basmati 2000, Basmati 370, Basmati Pak, KSK-139, KS-282 and Irri-6 of Pakistani rice (Oryza sativa L). Oil content extracted with n-hexane from different varieties of brown rice seed (unpolished rice) ranged from 1.92% to 2.72%. Total fatty acid contents among rice varieties tested varied between 18240 and 25840 mg/kg brown rice seed. The rice tested mainly contained oleic (6841–10952 mg/kg) linoleic (5453–7874 mg/kg) and palmitic acid (3613–5489 mg/kg). The amounts of total phytosterols (GC and GC-MS analysis), with main contribution from β-sitosterol (445–656 mg/kg), campesterol (116–242 mg/kg), Δ5-avenasterol (89–178 mg/kg) and stigmasterol (75–180 mg/kg) were established to be 739.4 to 1330.4 mg/kg rice seed. The content of α-, γ- and δ-tocopherols as analyzed by HPLC varied from 39.0–76.1, 21.6–28.1 and 6.5–16.5 mg/kg rice seed, respectively. The amounts of different γ-oryzanol components (HPLC data), identified as cycloartenyl ferulate, 24-methylene cycloartanyl ferulate, campesteryl ferulate and β-sitosteryl ferulate, were in the range of 65.5–103.6, 140.2–183.1, 29.8–45.5 and 8.6–10.4 mg/kg rice seed, respectively. Overall, the concentration of these bioactives was higher in the Basmati rice cultivars showing their functional food superiority. In conclusion, the tested varieties of Pakistani rice, especially the Basmati cultivars, can provide best ingredients for functional foods. PMID:22605998

  3. Microwave-assisted extraction for Hibiscus sabdariffa bioactive compounds.

    PubMed

    Pimentel-Moral, Sandra; Borrás-Linares, Isabel; Lozano-Sánchez, Jesús; Arráez-Román, David; Martínez-Férez, Antonio; Segura-Carretero, Antonio

    2018-07-15

    H. sabdariffa has demonstrated positive results against chronic diseases due to the presence of phytochemicals, mainly phenolic compounds. The extraction process of bioactive compounds increases the efficient collection of extracts with high bioactivity. Microwave-Assisted Extraction (MAE) constituted a "green technology" widely employed for plant matrix. In this work, the impact of temperature (50-150 °C), composition of extraction solvent (15-75% EtOH) and extraction time (5-20 min) on the extraction yield and individual compounds concentrations were evaluated. Furthermore, the characterization of 16 extracts obtained was performed by HPLC-ESI-TOF-MS. The results showed that 164 °C, 12.5 min, 45% ethanol was the best extraction condition, although glycoside flavonoids were degraded. Besides that, the optimal conditions for extraction yield were 164 °C, 60% ethanol and 22 min. Thus, temperature and solvent concentration have demonstrated to be potential factors in MAE for obtaining bioactive compounds from H. sabdariffa. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. The addition of rosehip oil to Aloe gels improves their properties as postharvest coatings for maintaining quality in plum.

    PubMed

    Martínez-Romero, Domingo; Zapata, Pedro J; Guillén, Fabián; Paladines, Diego; Castillo, Salvador; Valero, Daniel; Serrano, María

    2017-02-15

    The effect of Aloe vera gel (AV) and Aloe arborescens gel (AA) alone or in combination with rosehip oil (RO) at 2% on ethylene production, respiration rate, quality parameters, bioactive compounds and antioxidant activity during plum postharvest storage was studied. Coated plums showed a delay in ethylene production and respiration rate at 20°C and during cold storage and subsequent shelf life, the main effect being observed for those fruits coated with AA+RO. Quality parameters such as softening, colour and maturity index was also delayed during storage by the use of the coatings, which led to a 2-fold increase in plum storability. Accumulation of bioactive compounds was also delayed although at the end of the experiment the content of bioactive compounds was higher than those found for control fruits at the estimated shelf life. The most effective coating for maintaining plum quality and bioactive compounds was AA+RO. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Berry Leaves: An Alternative Source of Bioactive Natural Products of Nutritional and Medicinal Value.

    PubMed

    Ferlemi, Anastasia-Varvara; Lamari, Fotini N

    2016-06-01

    Berry fruits are recognized, worldwide, as "superfoods" due to the high content of bioactive natural products and the health benefits deriving from their consumption. Berry leaves are byproducts of berry cultivation; their traditional therapeutic use against several diseases, such as the common cold, inflammation, diabetes, and ocular dysfunction, has been almost forgotten nowadays. Nevertheless, the scientific interest regarding the leaf composition and beneficial properties grows, documenting that berry leaves may be considered an alternative source of bioactives. The main bioactive compounds in berry leaves are similar as in berry fruits, i.e., phenolic acids and esters, flavonols, anthocyanins, and procyanidins. The leaves are one of the richest sources of chlorogenic acid. In various studies, these secondary metabolites have demonstrated antioxidant, anti-inflammatory, cardioprotective, and neuroprotective properties. This review focuses on the phytochemical composition of the leaves of the commonest berry species, i.e., blackcurrant, blackberry, raspberry, bilberry, blueberry, cranberry, and lingonberry leaves, and presents their traditional medicinal uses and their biological activities in vitro and in vivo.

  6. Dietary fibre: The scientific search for an ideal definition and methodology of analysis, and its physiological importance as a carrier of bioactive compounds.

    PubMed

    Macagnan, Fernanda Teixeira; da Silva, Leila Picolli; Hecktheuer, Luisa Helena

    2016-07-01

    There is a growing need for a global consensus on the definition of dietary fibre and the use of appropriate methodologies for its determination in different food matrices. Oligosaccharides (prebiotic effect) and bioactive compounds (antioxidant effect) are important constituents of dietary fibre, which enhance its beneficial effects in the body, such as those related to maintaining intestinal health. These dietary components need to be quantified and addressed in conjunction with fibre in nutritional studies due to the close relationship between them and their common destiny in the human body. This review discusses updates to the concept of dietary fibre, with an emphasis on biological and methodological aspects, and highlights the physiological importance of fibre as a carrier of bioactive compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Bioactive factors for tissue regeneration: state of the art.

    PubMed

    Ohba, Shinsuke; Hojo, Hironori; Chung, Ung-Il

    2012-07-01

    THERE ARE THREE COMPONENTS FOR THE CREATION OF NEW TISSUES: cell sources, scaffolds, and bioactive factors. Unlike conventional medical strategies, regenerative medicine requires not only analytical approaches but also integrative ones. Basic research has identified a number of bioactive factors that are necessary, but not sufficient, for organogenesis. In skeletal development, these factors include bone morphogenetic proteins (BMPs), transforming growth factor β TGF-β, Wnts, hedgehogs (Hh), fibroblast growth factors (FGFs), insulin-like growth factors (IGFs), SRY box-containing gene (Sox) 9, Sp7, and runt-related transcription factors (Runx). Clinical and preclinical studies have been extensively performed to apply the knowledge to bone and cartilage regeneration. Given the large number of findings obtained so far, it would be a good time for a multi-disciplinary, collaborative effort to optimize these known factors and develop appropriate drug delivery systems for delivering them.

  8. Application of ionic liquid for extraction and separation of bioactive compounds from plants.

    PubMed

    Tang, Baokun; Bi, Wentao; Tian, Minglei; Row, Kyung Ho

    2012-09-01

    In recent years, ionic liquids (ILs), as green and designer solvents, have accelerated research in analytical chemistry. This review highlights some of the unique properties of ILs and provides an overview of the preparation and application of IL or IL-based materials to extract bioactive compounds in plants. IL or IL-based materials in conjunction with liquid-liquid extraction (LLE), ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE), high performance liquid chromatography (HPLC) and solid-phase extraction (SPE) analytical technologies etc., have been applied successfully to the extraction or separation of bioactive compounds from plants. This paper reviews the available data and references to examine the advantages of IL and IL-based materials in these applications. In addition, the main target compounds reviewed in this paper are bioactive compounds with multiple therapeutic effects and pharmacological activities. Based on the importance of the targets, this paper reviews the applications of ILs, IL-based materials or co-working with analytical technologies. The exploitation of new applications of ILs on the extraction of bioactive compounds from plant samples is expected to increase. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Structure, composition and morphology of bioactive titanate layer on porous titanium surfaces

    NASA Astrophysics Data System (ADS)

    Li, Jinshan; Wang, Xiaohua; Hu, Rui; Kou, Hongchao

    2014-07-01

    A bioactive coating was produced on pore surfaces of porous titanium samples by an amendatory alkali-heat treatment method. Porous titanium was prepared by powder metallurgy and its porosity and average size were 45% and 135 μm, respectively. Coating morphology, coating structure and phase constituents were examined by SEM, XPS and XRD. It was found that a micro-network structure with sizes of <200 nm mainly composed of bioactive sodium titanate and rutile phases of TiO2 covered the interior and exterior of porous titanium cells, and redundant Ca ion was detected in the titanate layer. The concentration distribution of Ti, O, Ca and Na in the coating showed a compositional gradient from the intermediate layer toward the outer surface. These compositional gradients indicate that the coating bonded to Ti substrate without a distinct interface. After immersion into the SBF solution for 3 days, a bone-like carbonate-hydroxylapatite showing a good biocompatibility was detected on the coating surface. And the redundant Ca advanced the bioactivity of the coating. Thus, the present modification is expected to allow the use of the bioactive porous titanium as artificial bones even under load-bearing conditions.

  10. Marine-Derived Bioactive Peptides for Biomedical Sectors: A Review.

    PubMed

    Ruiz-Ruiz, Federico; Mancera-Andrade, Elena I; Iqbal, Hafiz M N

    2017-01-01

    Marine-based resources such as algae and other marine by-products have been recognized as rich sources of structurally diverse bioactive peptides. Evidently, their structural characteristics including unique amino acid residues are responsible for their biological activity. Several of the above-mentioned marine-origin species show multi-functional bioactivities that are useful for a new discovery and/or reinvention of biologically active ingredients, nutraceuticals and/or pharmaceuticals. Therefore, in recent years, marine-derived bioactive peptides have gained a considerable attention with high-value biomedical and/or pharmaceutical potentials. Furthermore, a wider spectrum of bioactive peptides can be produced through proteolytic-assisted hydrolysis of various marine resources under controlled physicochemical (pH and temperature of the reaction media) environment. Owing to their numerous health-related beneficial effects and therapeutic potential in the treatment and/or prevention of many diseases, such marine-derived bioactive peptides exhibit a wider spectrum of biological activities such as anti-cancerous, anti-proliferative, anti-coagulant, antibacterial, antifungal, and anti-tumor activities among many others. Based on emerging evidence of marine-derived peptide mining, the above-mentioned marine resources contain noteworthy levels of high-value protein. The present review article mainly summarizes the marine-derived bioactive peptides and emphasizing their potential applications in biomedical and/or pharmaceutical sectors of the modern world. In conclusion, recent literature has provided evidence that marine-derived bioactive peptides play a critical role in human health along with many possibilities of designing new functional nutraceuticals and/or pharmaceuticals to clarify potent mechanisms of action for a wider spectrum of diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Studies on influence of aluminium ions on the bioactivity of B2O3-SiO2-P2O5-Na2O-CaO glass system by means of spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Mohini, G. Jagan; Krishnamacharyulu, N.; Sahaya Baskaran, G.; Rao, P. Venkateswara; Veeraiah, N.

    2013-12-01

    Bioactive multi component glasses of the composition of 27.4 B2O3-6.4 SiO2-2.5 P2O5-25.5 Na2O-(38.2 - x) CaO: x Al2O3 (x between 0 and 3.2) were synthesized, by melt quenching technique and their bioactivity was investigated as a function of Al2O3 concentration. Initially, optical absorption and infrared spectra were recorded and analyzed in order to have some pre-understanding over structural aspects of the glasses. For understanding the bioactivity, the samples were immersed in simulated body fluid (SBF) solution for prolonged times (∼30 days) and the weight loss measurements were carried out. The spectroscopic studies were repeated on the post immersed samples. From the comparison of the analysis of the spectroscopic data of both pre-immersed and post-immersed samples together with the information on variation of pH value of residual solution as a function of immersion time, it is concluded that the participation of aluminium ions in tetrahedral positions is hindrance for the formation of HA layer and for the bioactivity of the samples.

  12. Species classification and bioactive ingredients accumulation of BaiJiangCao based on characteristic inorganic elements analysis by inductively coupled plasma-mass spectrometry and multivariate analysis

    PubMed Central

    Wen-Lan, Li; Xue, Zhang; Xin-Xin, Yang; Shuai, Wang; Lin, Zhao; Huan-Jun, Zhao; Yong-Rui, Bao; Chen-Feng, Ji; Ning, Chen; Zheng, Xiang

    2015-01-01

    Background: Patrinia scabiosaefolia Fisch and Patrinia villosa (Thunb.) Juss., two species herbs with the same Chinese name “BaiJiangCao”, are important ancient herbal medicines widely used for more than 2000 years. The clinical application of two species herb is confused due to the difficult identification. Objective: The objective was to authenticate the species of BaiJiangCao and analyze the accumulation of bioactive ingredients based on characteristic inorganic elements analysis. Materials and Methods: Content of 32 inorganic elements in BaiJiangCao from different habitats were determined by inductively coupled plasma-mass spectrometry (ICP-MS), and the characteristic inorganic elements were picked to distinguish the species of the herb by principal component analysis and cluster analysis. Contents of two bioactive ingredients, luteoloside, and oleanolic acid, in the samples, were also analyzed by high-performance liquid chromatography method. Relationship between accumulation of bioactive ingredients and content of macroelements in BaiJiangCao was established by statistics. Results: A 4 macroelements (Na, Mg, K, Fe) in 32 determined inorganic elements were picked for characteristic inorganic elements. Content of Na, Mg, K and Fe showed positive correlations with that of luteoloside, content of Na, Mg showed positive correlations with that of oleanolic acid, but content of K and Fe showed negative correlations with that of oleanolic acid. Conclusion: It is for the first time to utilize the characteristic inorganic elements as an index to classify the herb species by the method of ICP-MS and multivariate analysis. And it is also the first report to investigate the influence of inorganic elements in herb on the accumulation of bioactive components which could affect the pharmacological efficacy of the herb medicine. And this method could also be utilized in research of corresponding aspects. PMID:26600721

  13. Binding of bile acids by pastry products containing bioactive substances during in vitro digestion.

    PubMed

    Dziedzic, Krzysztof; Górecka, Danuta; Szwengiel, Artur; Smoczyńska, Paulina; Czaczyk, Katarzyna; Komolka, Patrycja

    2015-03-01

    The modern day consumer tends to choose products with health enhancing properties, enriched in bioactive substances. One such bioactive food component is dietary fibre, which shows a number of physiological properties including the binding of bile acids. Dietary fibre should be contained in everyday, easily accessible food products. Therefore, the aim of this study was to determine sorption capacities of primary bile acid (cholic acid - CA) and secondary bile acids (deoxycholic - DCA and lithocholic acids - LCA) by muffins (BM) and cookies (BC) with bioactive substances and control muffins (CM) and cookies (CC) in two sections of the in vitro gastrointestinal tract. Variations in gut flora were also analysed in the process of in vitro digestion of pastry products in a bioreactor. Enzymes: pepsin, pancreatin and bile salts: cholic acid, deoxycholic acid and lithocholic acid were added to the culture. Faecal bacteria, isolated from human large intestine, were added in the section of large intestine. The influence of dietary fibre content in cookies and concentration of bile acids in two stages of digestion were analysed. Generally, pastry goods with bioactive substances were characterized by a higher content of total fibre compared with the control samples. These products also differ in the profile of dietary fibre fractions. Principal Component Analysis (PCA) showed that the bile acid profile after two stages of digestion depends on the quality and quantity of fibre. The bile acid profile after digestion of BM and BC forms one cluster, and with the CM and CC forms a separate cluster. High concentration of H (hemicellulose) is positively correlated with LCA (low binding effect) and negatively correlated with CA and DCA contents. The relative content of bile acids in the second stage of digestion was in some cases above the content in the control sample, particularly LCA. This means that the bacteria introduced in the 2nd stage of digestion synthesize the LCA.

  14. Bio Prospecting of Marine-derived Streptomyces spectabilis VITJS10 and Exploring its Cytotoxicity Against Human Liver Cancer Cell Lines.

    PubMed

    Selvakumar, Jemimah Naine; Chandrasekaran, Subathra Devi; Vaithilingam, Mohanasrinivasan

    2015-10-01

    Recently, numerous pathogens have developed resistance due to the indiscriminate use of commercial therapeutic drugs. The main aim of the study was to evaluate the bioactive potential of the Streptomyces spectabilis VITJS10 crude extract. The S. spectabilis VITJS10 ethyl acetate extract was tested for antibacterial, antioxidant, and cytotoxic properties. Genotypic characterization was done using 16S r-DNA partial gene amplification and sequencing. The authenticity of the crude chemical constitutes were determined by gas chromatography-mass spectrometry (GC-MS). The antibacterial potential revealed the effective activity against Shigellaflexneri (MTCC No: 1457) (22 mm), Salmonella typhi (MTCC No: 1167) (23 mm), Escherichia coli (MTCC No: 1588) (22 mm), Pseudomonas aeruginosa (MTCC No: 4676) (22 mm) at 20 mg/mL concentration. Scavenging ability of the extract was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay revealing its 95% inhibition at 5 mg/mL concentration. Hepatocellular cancer cells (HepG2) cell line was used to evaluate the cytotoxicity by 3-(4, 5-dimethyl thiazol-2yl)-2, 5-diphenyl tetrazolium bromide assay. The extract showed maximum inhibition at IC50 of 250 μg/mL with 53.6% cell viability. The highest 16S rRNA gene sequence homogeneity was observed 99% similar with the novel strain S. spectabilis S3-1. The chemical components of the crude extract of VITJS10 were detected with 37 chemical constituents. However three major compounds were identified, namely Sulfurous acid, 2-ethylhexyl tridecyl ester, Phenol, 2,4-bis (1,1-dimethylethyl), and Trans-2-methyl-4-n-pentylthiane, S, S-Dioxide. Hence the present study justifies the overwhelming circumstantial evidence as the most bioactive metabolites from the marine origin, which has potential utilization in pharmaceutical industry. The aim of this study was to explore the bioactive potential of marine Streptomyces sp. isolated from marine soil and understand the bioactive properties of the crude extracts. It is clearly evident from the study that the bioactive metabolites produced by Streptomyces sp. exhibited good antibacterial, antioxidant and anticancer activity. Our results indicated that Starch casein medium was the good base for bioactive metabolite production. The taxonomic position of Streptomyces sp. isolated revealed unique pattern of phenotypic properties that distinguished it from representatives. The molecular characterization results provided valuable data for establishing the internal taxonomic structure of the genus. Hence high mortality rates, serious side effects, deficiencies of the available chemotherapeutics, and high costs during treatment clearly underscore the need to develop new anticancer agents, With the above significant features the strain could be recommended for its use in medicinal and agricultural sectors, an extensive knowledge on the behavior of natural compounds can be gained for the benefit of health.

  15. Multi-layer porous fiber-reinforced composites for implants: in vitro calcium phosphate formation in the presence of bioactive glass.

    PubMed

    Nganga, Sara; Zhang, Di; Moritz, Niko; Vallittu, Pekka K; Hupa, Leena

    2012-11-01

    Glass-fiber-reinforced composites (FRCs), based on bifunctional methacrylate resin, have recently shown their potential for use as durable cranioplasty, orthopedic and oral implants. In this study we suggest a multi-component sandwich implant structure with (i) outer layers out of porous FRC, which interface the cortical bone, and (ii) inner layers encompassing bioactive glass granules, which interface with the cancellous bone. The capability of Bioglass(®) 45S5 granules (100-250μm) to induce calcium phosphate formation on the surface of the FRC was explored by immersing the porous FRC-Bioglass laminates in simulated body fluid (SBF) for up to 28d. In both static (agitated) and dynamic conditions, bioactive glass granules induced precipitation of calcium phosphate at the laminate surfaces as confirmed by scanning electron microscopy. The proposed dynamic flow system is useful for the in vitro simulation of bone-like apatite formation on various new porous implant designs containing bioactive glass and implant material degradation. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Lactic Acid Bacteria and Bifidobacteria with Potential to Design Natural Biofunctional Health-Promoting Dairy Foods

    PubMed Central

    Linares, Daniel M.; Gómez, Carolina; Renes, Erica; Fresno, José M.; Tornadijo, María E.; Ross, R. P.; Stanton, Catherine

    2017-01-01

    Consumer interest in healthy lifestyle and health-promoting natural products is a major driving force for the increasing global demand of biofunctional dairy foods. A number of commercial sources sell synthetic formulations of bioactive substances for use as dietary supplements. However, the bioactive-enrichment of health-oriented foods by naturally occurring microorganisms during dairy fermentation is in increased demand. While participating in milk fermentation, lactic acid bacteria can be exploited in situ as microbial sources for naturally enriching dairy products with a broad range of bioactive components that may cover different health aspects. Several of these bioactive metabolites are industrially and economically important, as they are claimed to exert diverse health-promoting activities on the consumer, such as anti-hypertensive, anti-inflammatory, and anti-diabetic, anti-oxidative, immune-modulatory, anti-cholesterolemic, or microbiome modulation. This review aims at discussing the potential of these health-supporting bacteria as starter or adjunct cultures for the elaboration of dairy foods with a broad spectrum of new functional properties and added value. PMID:28572792

  17. Optimization of ultrasound assisted extraction of bioactive components from brown seaweed Ascophyllum nodosum using response surface methodology.

    PubMed

    Kadam, Shekhar U; Tiwari, Brijesh K; Smyth, Thomas J; O'Donnell, Colm P

    2015-03-01

    The objective of this study was to investigate the effect of key extraction parameters of extraction time (5-25 min), acid concentration (0-0.06 M HCl) and ultrasound amplitude (22.8-114 μm) on yields of bioactive compounds (total phenolics, fucose and uronic acid) from Ascophyllumnodosum. Response surface methodology was employed to optimize the extraction variables for bioactive compounds' yield. A second order polynomial model was fitted well to the extraction experimental data with (R(2)>0.79). Extraction yields of 143.12 mgGAE/gdb, 87.06 mg/gdb and 128.54 mg/gdb were obtained for total phenolics, fucose and uronic acid respectively at optimized extraction conditions of extraction time (25 min), acid concentration (0.03 M HCl) and ultrasonic amplitude (114 μm). Mass spectroscopy analysis of extracts show that ultrasound enhances the extraction of high molecular weight phenolic compounds from A. nodosum. This study demonstrates that ultrasound assisted extraction (UAE) can be employed to enhance extraction of bioactive compounds from seaweed. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Chemical composition and bioactivity of different oregano (Origanum vulgare) extracts and essential oil.

    PubMed

    Teixeira, Bárbara; Marques, António; Ramos, Cristina; Serrano, Carmo; Matos, Olívia; Neng, Nuno R; Nogueira, José M F; Saraiva, Jorge Alexandre; Nunes, Maria Leonor

    2013-08-30

    There is a growing interest in industry to replace synthetic chemicals by natural products with bioactive properties. Aromatic plants are excellent sources of bioactive compounds that can be extracted using several processes. As far as oregano is concerned, studies are lacking addressing the effect of extraction processes in bioactivity of extracts. This study aimed to characterise the in vitro antioxidant and antibacterial properties of oregano (Origanum vulgare) essential oil and extracts (in hot and cold water, and ethanol), and the chemical composition of its essential oil. The major components of oregano essential oil were carvacrol, β-fenchyl alcohol, thymol, and γ-terpinene. Hot water extract had the strongest antioxidant properties and the highest phenolic content. All extracts were ineffective in inhibiting the growth of the seven tested bacteria. In contrast, the essential oil inhibited the growth of all bacteria, causing greater reductions on both Listeria strains (L. monocytogenes and L. innocua). O. vulgare extracts and essential oil from Portuguese origin are strong candidates to replace synthetic chemicals used by the industry. © 2013 Society of Chemical Industry.

  19. Influence of barium substitution on bioactivity, thermal and physico-mechanical properties of bioactive glass.

    PubMed

    Arepalli, Sampath Kumar; Tripathi, Himanshu; Vyas, Vikash Kumar; Jain, Shubham; Suman, Shyam Kumar; Pyare, Ram; Singh, S P

    2015-04-01

    Barium with low concentration in the glasses acts as a muscle stimulant and is found in human teeth. We have made a primary study by substituting barium in the bioactive glass. The chemical composition containing (46.1-X) SiO2--24.3 Na2O-26.9 CaO-2.6 P2O5, where X=0, 0.4, 0.8, 1.2 and 1.6mol% of BaO was chosen and melted in an electric furnace at 1400±5°C. The glasses were characterized to determine their use in biomedical applications. The nucleation and crystallization regimes were determined by DTA and the controlled crystallization was carried out by suitable heat treatment. The crystalline phase formed was identified by using XRD technique. Bioactivity of these glasses was assessed by immersion in simulated body fluid (SBF) for various time periods. The formation of hydroxy carbonate apatite (HCA) layer was identified by FTIR spectrometry, scanning electron microscope (SEM) and XRD which showed the presence of HCA as the main phase in all tested bioactive glass samples. Flexural strength and densities of bioactive glasses have been measured and found to increase with increasing the barium content. The human blood compatibility of the samples was evaluated and found to be pertinent. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Prediction of solubilities for ginger bioactive compounds in hot water by the COSMO-RS method

    NASA Astrophysics Data System (ADS)

    Zaimah Syed Jaapar, Syaripah; Azian Morad, Noor; Iwai, Yoshio

    2013-04-01

    The solubilities in water of four main ginger bioactives, 6-gingerol, 6-shogaol, 8-gingerol and 10-gingerol, were predicted using a conductor-like screening model for real solvent (COSMO-RS) calculations. This study was conducted since no experimental data are available for ginger bioactive solubilities in hot water. The σ-profiles of these selected molecules were calculated using Gaussian software and the solubilities were calculated using the COSMO-RS method. The solubilities of these ginger bioactives were calculated at 50 to 200 °C. In order to validate the accuracy of the COSMO-RS method, the solubilities of five hydrocarbon molecules were calculated using the COSMO-RS method and compared with the experimental data in the literature. The selected hydrocarbon molecules were 3-pentanone, 1-hexanol, benzene, 3-methylphenol and 2-hydroxy-5-methylbenzaldehyde. The calculated results of the hydrocarbon molecules are in good agreement with the data in the literature. These results confirm that the solubilities of ginger bioactives can be predicted using the COSMO-RS method. The solubilities of the ginger bioactives are lower than 0.0001 at temperatures lower than 130 °C. At 130 to 200 °C, the solubilities increase dramatically with the highest being 6-shogaol, which is 0.00037 mole fraction, and the lowest is 10-gingerol, which is 0.000039 mole fraction at 200 °C.

  1. Nutrigenomics and nutrigenetics.

    PubMed

    Farhud, Dd; Zarif Yeganeh, M; Zarif Yeganeh, M

    2010-01-01

    The nutrients are able to interact with molecular mechanisms and modulate the physiological functions in the body. The Nutritional Genomics focuses on the interaction between bioactive food components and the genome, which includes Nutrigenetics and Nutrigenomics. The influence of nutrients on f genes expression is called Nutrigenomics, while the heterogeneous response of gene variants to nutrients, dietary components and developing nutraceticals is called Nutrigenetics. Genetic variation is known to affect food tolerances among human subpopulations and may also influence dietary requirements and raising the possibility of individualizing nutritional intake for optimal health and disease prevention on the basis of an individual's genome. Nutrigenomics provides a genetic understanding for how common dietary components affect the balance between health and disease by altering the expression and/or structure of an individual's genetic makeup. Nutrigenetics describes that the genetic profile have impact on the response of body to bioactive food components by influencing their absorption, metabolism, and site of action.In this way, considering different aspects of gene-nutrient interaction and designing appropriate diet for every specific genotype that optimize individual health, diagnosis and nutritional treatment of genome instability, we could prevent and control conversion of healthy phenotype to diseases.

  2. Nutrigenomics and Nutrigenetics

    PubMed Central

    Farhud, DD; Zarif Yeganeh, M; Zarif Yeganeh, M

    2010-01-01

    The nutrients are able to interact with molecular mechanisms and modulate the physiological functions in the body. The Nutritional Genomics focuses on the interaction between bioactive food components and the genome, which includes Nutrigenetics and Nutrigenomics. The influence of nutrients on f genes expression is called Nutrigenomics, while the heterogeneous response of gene variants to nutrients, dietary components and developing nutraceticals is called Nutrigenetics. Genetic variation is known to affect food tolerances among human subpopulations and may also influence dietary requirements and raising the possibility of individualizing nutritional intake for optimal health and disease prevention on the basis of an individual’s genome. Nutrigenomics provides a genetic understanding for how common dietary components affect the balance between health and disease by altering the expression and/or structure of an individual’s genetic makeup. Nutrigenetics describes that the genetic profile have impact on the response of body to bioactive food components by influencing their absorption, metabolism, and site of action. In this way, considering different aspects of gene–nutrient interaction and designing appropriate diet for every specific genotype that optimize individual health, diagnosis and nutritional treatment of genome instability, we could prevent and control conversion of healthy phenotype to diseases. PMID:23113033

  3. A novel strategy with standardized reference extract qualification and single compound quantitative evaluation for quality control of Panax notoginseng used as a functional food.

    PubMed

    Li, S P; Qiao, C F; Chen, Y W; Zhao, J; Cui, X M; Zhang, Q W; Liu, X M; Hu, D J

    2013-10-25

    Root of Panax notoginseng (Burk.) F.H. Chen (Sanqi in Chinese) is one of traditional Chinese medicines (TCMs) based functional food. Saponins are the major bioactive components. The shortage of reference compounds or chemical standards is one of the main bottlenecks for quality control of TCMs. A novel strategy, i.e. standardized reference extract based qualification and single calibrated components directly quantitative estimation of multiple analytes, was proposed to easily and effectively control the quality of natural functional foods such as Sanqi. The feasibility and credibility of this methodology were also assessed with a developed fast HPLC method. Five saponins, including ginsenoside Rg1, Re, Rb1, Rd and notoginsenoside R1 were rapidly separated using a conventional HPLC in 20 min. The quantification method was also compared with individual calibration curve method. The strategy is feasible and credible, which is easily and effectively adapted for improving the quality control of natural functional foods such as Sanqi. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. The Race To Find Antivirals for Zika Virus

    PubMed Central

    2017-01-01

    ABSTRACT Zika virus (ZIKV), a flavivirus transmitted by mosquitoes, was an almost neglected pathogen until its introduction in the Americas in 2015 and its subsequent explosive spread throughout the continent, where it has infected millions of people. The virus has caused social and sanitary alarm, mainly due to its association with severe neurological disorders (Guillain-Barré syndrome and microcephaly in fetuses and newborns). Nowadays, no specific antiviral therapy against ZIKV is available. However, during the past months, a great effort has been made to search for antiviral candidates using different approaches and methodologies, ranging from testing specific compounds with known antiviral activity to the screening of libraries with hundreds of bioactive molecules. The identified antiviral candidates include drugs targeting viral components as well as cellular ones. Here, an updated review of what has been done in this line is presented. PMID:28348160

  5. Mouse Models for Unraveling the Importance of Diet in Colon Cancer Prevention

    PubMed Central

    Tammariello, Alexandra E.; Milner, John A.

    2010-01-01

    Diet and genetics are both considered important risk determinants for colorectal cancer, a leading cause of death worldwide. Several genetically engineered mouse models have been created, including the ApcMin mouse, to aid in the identification of key cancer related processes and to assist with the characterization of environmental factors, including the diet, which influence risk. Current research using these models provides evidence that several bioactive food components can inhibit genetically predisposed colorectal cancer, while others increase risk. Specifically, calorie restriction or increased exposure to n-3 fatty acids, sulforaphane, chafuroside, curcumin, and dibenzoylmethane were reported protective. Total fat, calories and all-trans retinoic acid are associated with an increased risk. Unraveling the importance of specific dietary components in these models is complicated by the basal diet used, the quantity of test components provided, and interactions among food components. Newer models are increasingly available to evaluate fundamental cellular processes, including DNA mismatch repair, immune function and inflammation as markers for colon cancer risk. Unfortunately, these models have been used infrequently to examine the influence of specific dietary components. The enhanced use of these models can shed mechanistic insights about the involvement of specific bioactive food and components and energy as determinants of colon cancer risk. However, the use of available mouse models to exactly represent processes important to human gastrointestinal cancers will remain a continued scientific challenge. PMID:20122631

  6. Microchannel emulsification: A promising technique towards encapsulation of functional compounds.

    PubMed

    Khalid, Nauman; Kobayashi, Isao; Neves, Marcos A; Uemura, Kunihiko; Nakajima, Mitsutoshi

    2017-06-13

    This review provides an overview of microchannel emulsification (MCE) for production of functional monodispersed emulsion droplets. The main emphasis has been put on functional bioactives encapsulation using grooved-type and straight-through microchannel array plates. MCE successfully encapsulates the bioactives like β-carotene, oleuropein, γ-oryzanol, β-sitosterol, L-ascorbic acid and ascorbic acid derivatives, vitamin D and quercetin. These bioactives were encapsulated in a variety of delivery systems like simple and multiple emulsions, polymeric particles, microgels, solid lipid particles and functional vesicles. The droplet generation process in MCE is based upon spontaneous transformation of interfaces rather than high energy shear stress systems. The scale-up of MCE can increase the productivity of monodispersed droplets >100 L h -1 and makes it a promising tool at industrial level.

  7. The influence of phosphorus precursors on the synthesis and bioactivity of SiO2-CaO-P 2O 5 sol-gel glasses and glass-ceramics.

    PubMed

    Siqueira, Renato Luiz; Zanotto, Edgar Dutra

    2013-02-01

    Bioactive glasses and glass-ceramics of the SiO(2)-CaO-P(2)O(5) system were synthesised by means of a sol-gel method using different phosphorus precursors according to their respective rates of hydrolysis-triethylphosphate (OP(OC(2)H(5))(3)), phosphoric acid (H(3)PO(4)) and a solution prepared by dissolving phosphorus oxide (P(2)O(5)) in ethanol. The resulting materials were characterised by differential scanning calorimetry and thermogravimetry, X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy and by in vitro bioactivity tests in acellular simulated body fluid. The different precursors significantly affected the main steps of the synthesis, beginning with the time required for gel formation. The most striking influence of these precursors was observed during the thermal treatments at 700-1,200 °C that were used to convert the gels into glasses and glass-ceramics. The samples exhibited very different mineralisation behaviours; especially those prepared using the phosphoric acid, which had a reduced onset temperature of crystallisation and an increased resistance to devitrification. However, all resulting materials were bioactive. The in vitro bioactivity of these materials was strongly affected by the heat treatment temperature. In general, their bioactivity decreased with increasing treatment temperature. For crystallised samples obtained above 900 °C, the bioactivity was favoured by the presence of two crystalline phases: wollastonite (CaSiO(3)) and tricalcium phosphate (α-Ca(3)(PO(4))(2)).

  8. Diopside-Fluorapatite-Wollastonite Based Bioactive Glasses and Glass-ceramics =

    NASA Astrophysics Data System (ADS)

    Kansal, Ishu

    Bioactive glasses and glass-ceramics are a class of biomaterials which elicit special response on their surface when in contact with biological fluids, leading to strong bonding to living tissue. This particular trait along with good sintering ability and high mechanical strength make them ideal materials for scaffold fabrication. The work presented in this thesis is directed towards understanding the composition-structure-property relationships in potentially bioactive glasses designed in CaO-MgO-P2O5-SiO2-F system, in some cases with added Na2O. The main emphasis has been on unearthing the influence of glass composition on molecular structure, sintering ability and bioactivity of phosphosilicate glasses. The parent glass compositions have been designed in the primary crystallization field of the pseudo-ternary system of diopside (CaO•MgO•2SiO2) - fluorapatite (9CaO•3P2O5•CaF2) - wollastonite (CaO•SiO2), followed by studying the impact of compositional variations on the structure-property relationships and sintering ability of these glasses. All the glasses investigated in this work have been synthesized via melt-quenching route and have been characterized for their molecular structure, sintering ability, chemical degradation and bioactivity using wide array of experimental tools and techniques. It has been shown that in all investigated glass compositions the silicate network was mainly dominated by Q2 units while phosphate in all the glasses was found to be coordinated in orthophosphate environment. The glass compositions designed in alkali-free region of diopside - fluorapatite system demonstrated excellent sintering ability and good bioactivity in order to qualify them as potential materials for scaffold fabrication while alkali-rich bioactive glasses not only hinder the densification during sintering but also induce cytotoxicity in vitro, thus, are not ideal candidates for in vitro tissue engineering. One of our bioglass compositions with low sodium content has been tested successfully both in vivo and in preliminary clinical trials. But this work needs to be continued and deepened. The dispersing of fine glass particles in aqueous media or in other suitable solvents, and the study of the most important factors that affect the rheology of the suspensions are essential steps to enable the manufacture of porous structures with tailor-made hierarchical pores by advanced processing techniques such as Robocasting.

  9. Quality evaluation of Radix Astragali through a simultaneous determination of six major active isoflavonoids and four main saponins by high-performance liquid chromatography coupled with diode array and evaporative light scattering detectors.

    PubMed

    Qi, Lian-Wen; Yu, Qing-Tao; Li, Ping; Li, Song-Lin; Wang, Yu-Xia; Sheng, Liang-Hong; Yi, Ling

    2006-11-17

    A method, high-performance liquid chromatography coupled with diode array and evaporative light scattering detectors (HPLC-DAD-ELSD), was developed to evaluate the quality of Radix Astragali through a simultaneous determination of six major active isoflavonoids and four main saponins. The wavelength at 280 nm was chosen to determine six isoflavonoids: calycosin-7-O-beta-D-glucoside (1), ononin (2), (6alphaR, 11alphaR)-9,10-dimethoxypterocarpan-3-O-beta-D-glucoside (3), (3R)-2'-hydroxy-3',4'-dimethoxyisoflavan-7-O-beta-D-glucoside (4), calycosin (5), and formononetin (6); and ELSD connected after DAD was employed to determine four saponins: astragaloside IV (7), astragaloside II (8), astragaloside I (9), and acetylastragaloside I (10). This assay was fully validated with respect to precision, repeatability and accuracy. The proposed method was successfully applied to quantify the ten components in eleven samples from different localities in China; significant variations were demonstrated in the content of these compounds in the samples from different areas. This simple, rapid, low-cost and reliable HPLC-DAD-ELSD method is suitable for routine quantitative analysis and quality control of traditional Chinese medicines (TCMs) consisting of bioactive multi-components with different structures such as Radix Astragali.

  10. Djulis (Chenopodium formosanum Koidz.) Water Extract and Its Bioactive Components Ameliorate Dermal Damage in UVB-Irradiated Skin Models

    PubMed Central

    Huang, Ya-Ling; Liu, Yao-Cheng; Tsai, Pi-Jen

    2016-01-01

    Dermal photoaging is a condition of skin suffering inappropriate ultraviolet (UV) exposure and exerts inflammation, tissue alterations, redness, swelling, and uncomfortable feelings. Djulis (Chenopodium formosanum Koidz.) is a cereal food and its antioxidant and pigment constituents may provide skin protection from photoaging, but it still lacks proved experiments. In this study, protective effects of djulis extract (CFE) on UVB-irradiated skin were explored. The results showed that HaCaT cells with 150 μg/mL CFE treatment had higher survival and less production of interleukin- (IL-) 6, matrix metalloprotease- (MMP-) 1, and reactive oxygen species (ROS) in UVB-irradiated conditions. Subsequently, in animal studies, mice supplemented with CFE (100 mg/kg BW) were under UVB irradiation and had thinner epidermis and lower IL-6 levels in skin layer. These data demonstrate that bioactive compounds possessing the potency of antiphotoaging exist in CFE. Following that, we found rutin and chlorogenic acid (10–100 μM) could significantly increase cell viability and decrease the production of IL-6 in UVB models. Additionally, djulis pigment-betanin has no effect of increasing cell viability in this study. Our findings suggest CFE can protect skin against UV-induced damage and this protection is mainly from contributions of rutin and chlorogenic acid. PMID:27847821

  11. Red Raspberries and Their Bioactive Polyphenols: Cardiometabolic and Neuronal Health Links12

    PubMed Central

    Burton-Freeman, Britt M; Sandhu, Amandeep K; Edirisinghe, Indika

    2016-01-01

    Diet is an essential factor that affects the risk of modern-day metabolic diseases, including cardiovascular disease, diabetes mellitus, obesity, and Alzheimer disease. The potential ability of certain foods and their bioactive compounds to reverse or prevent the progression of the pathogenic processes that underlie these diseases has attracted research attention. Red raspberries (Rubus idaeus L.) are unique berries with a rich history and nutrient and bioactive composition. They possess several essential micronutrients, dietary fibers, and polyphenolic components, especially ellagitannins and anthocyanins, the latter of which give them their distinctive red coloring. In vitro and in vivo studies have revealed various mechanisms through which anthocyanins and ellagitannins (via ellagic acid or their urolithin metabolites) and red raspberry extracts (or the entire fruit) could reduce the risk of or reverse metabolically associated pathophysiologies. To our knowledge, few studies in humans are available for evaluation. We review and summarize the available literature that assesses the health-promoting potential of red raspberries and select components in modulating metabolic disease risk, especially cardiovascular disease, diabetes mellitus, obesity, and Alzheimer disease—all of which share critical metabolic, oxidative, and inflammatory links. The body of research is growing and supports a potential role for red raspberries in reducing the risk of metabolically based chronic diseases. PMID:26773014

  12. Chemopreventive Properties of Dietary Rice Bran: Current Status and Future Prospects12

    PubMed Central

    Henderson, Angela J.; Ollila, Cadie A.; Kumar, Ajay; Borresen, Erica C.; Raina, Komal; Agarwal, Rajesh; Ryan, Elizabeth P.

    2012-01-01

    Emerging evidence suggests that dietary rice bran may exert beneficial effects against several types of cancer, such as breast, lung, liver, and colorectal cancer. The chemopreventive potential has been related to the bioactive phytochemicals present in the bran portion of the rice such as ferulic acid, tricin, β-sitosterol, γ-oryzanol, tocotrienols/tocopherols, and phytic acid. Studies have shown that the anticancer effects of the rice bran–derived bioactive components are mediated through their ability to induce apoptosis, inhibit cell proliferation, and alter cell cycle progression in malignant cells. Rice bran bioactive components protect against tissue damage through the scavenging of free radicals and the blocking of chronic inflammatory responses. Rice bran phytochemicals have also been shown to activate anticancer immune responses as well as affecting the colonic tumor microenvironment in favor of enhanced colorectal cancer chemoprevention. This is accomplished through the modulation of gut microflora communities and the regulation of carcinogen-metabolizing enzymes. In addition, the low cost of rice production and the accessibility of rice bran make it an appealing candidate for global dietary chemoprevention. Therefore, the establishment of dietary rice bran as a practical food-derived chemopreventive agent has the potential to have a significant impact on cancer prevention for the global population. PMID:22983843

  13. Nutritional Genomics, Polyphenols, Diets, and Their Impact on Dietetics

    PubMed Central

    Barnes, Stephen

    2009-01-01

    Nutritional genomics offers a way to optimize human health and the quality of life. It is an attractive endeavor, but one with substantial challenges. It encompasses almost all known aspects of science, ranging from the genomes of humans, plants and microorganisms, to the highest levels of food science, analytical science, computing and statistics of large systems, as well as human behavior. The underlying biochemistry that is targeted by the principal issues in nutritional genomics is described and entails genomics, transcriptomics, proteomics and metabolomics. A major feature relevant to nutritional genomics is the single nucleotide polymorphisms in genes that interact with nutrients and other bioactive food components. These genetic changes may lead to alterations in absorption, metabolism and functional responses to bioactive nutritional factors. Bioactive food components may also regulate gene expression at the transcriptome, protein abundance and/or protein turnover levels. Even if all of these variables are known, additional variables to be taken into account include the nutritional variability of the food (unprocessed and processed), the amount that is actually eaten, and the eating-related behaviors of those consuming the food. These challenges are explored within the context of soy intake. Finally, the importance of international co-operation in nutritional genomics research is presented. PMID:18954579

  14. Designing polymers with sugar-based advantages for bioactive delivery applications.

    PubMed

    Zhang, Yingyue; Chan, Jennifer W; Moretti, Alysha; Uhrich, Kathryn E

    2015-12-10

    Sugar-based polymers have been extensively explored as a means to increase drug delivery systems' biocompatibility and biodegradation. Here,we review he use of sugar-based polymers for drug delivery applications, with a particular focus on the utility of the sugar component(s) to provide benefits for drug targeting and stimuli responsive systems. Specifically, numerous synthetic methods have been developed to reliably modify naturally-occurring polysaccharides, conjugate sugar moieties to synthetic polymer scaffolds to generate glycopolymers, and utilize sugars as a multifunctional building block to develop sugar-linked polymers. The design of sugar-based polymer systems has tremendous implications on both the physiological and biological properties imparted by the saccharide units and are unique from synthetic polymers. These features include the ability of glycopolymers to preferentially target various cell types and tissues through receptor interactions, exhibit bioadhesion for prolonged residence time, and be rapidly recognized and internalized by cancer cells. Also discussed are the distinct stimuli-sensitive properties of saccharide-modified polymers to mediate drug release under desired conditions. Saccharide-based systems with inherent pH- and temperature-sensitive properties, as well as enzyme-cleavable polysaccharides for targeted bioactive delivery, are covered. Overall, this work emphasizes inherent benefits of sugar-containing polymer systems for bioactive delivery.

  15. Overview of the anti-inflammatory effects, pharmacokinetic properties and clinical efficacies of arctigenin and arctiin from Arctium lappa L.

    PubMed

    Gao, Qiong; Yang, Mengbi; Zuo, Zhong

    2018-05-01

    Arctigenin (AR) and its glycoside, arctiin, are two major active ingredients of Arctium lappa L (A lappa), a popular medicinal herb and health supplement frequently used in Asia. In the past several decades, bioactive components from A lappa have attracted the attention of researchers due to their promising therapeutic effects. In the current article, we aimed to provide an overview of the pharmacology of AR and arctiin, focusing on their anti-inflammatory effects, pharmacokinetics properties and clinical efficacies. Compared to acrtiin, AR was reported as the most potent bioactive component of A lappa in the majority of studies. AR exhibits potent anti-inflammatory activities by inhibiting inducible nitric oxide synthase (iNOS) via modulation of several cytokines. Due to its potent anti-inflammatory effects, AR may serve as a potential therapeutic compound against both acute inflammation and various chronic diseases. However, pharmacokinetic studies demonstrated the extensive glucuronidation and hydrolysis of AR in liver, intestine and plasma, which might hinder its in vivo and clinical efficacy after oral administration. Based on the reviewed pharmacological and pharmacokinetic characteristics of AR, further pharmacokinetic and pharmacodynamic studies of AR via alternative administration routes are suggested to promote its ability to serve as a therapeutic agent as well as an ideal bioactive marker for A lappa.

  16. Influence of silica matrix composition and functional component additives on the bioactivity and viability of encapsulated living cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, Travis J.; Dunphy, Darren R.; Harbaugh, Svetlana

    The remarkable impact encapsulation matrix chemistry can have on the bioactivity and viability of integrated living cells is reported. Two silica chemistries (aqueous silicate and alkoxysilane), and a functional component additive (glycerol), are employed to generate three distinct silica matrices. These matrices are used to encapsulate living E. coli cells engineered with a synthetic riboswitch for cell-based biosensing. Following encapsulation, membrane integrity, reproductive capability, and riboswitch-based protein expression levels and rates are measured over a 5 week period. Striking differences in E. coli bioactivity, viability, and biosensing performance are observed for cells encapsulated within the different matrices. E. coli cellsmore » encapsulated for 35 days in aqueous silicate-based (AqS) matrices showed relatively low membrane integrity, but high reproductive capability in comparison to cells encapsulated in glycerol containing sodium silicate-based (AqS + g) and alkoxysilane-based (PGS) gels. Further, cells in sodium silicate-based matrices showed increasing fluorescence output over time, resulting in a 1.8-fold higher fluorescence level, and a faster expression rate, over cells free in solution. Furthermore, this unusual and unique combination of biological properties demonstrates that careful design of the encapsulation matrix chemistry can improve functionality of the biocomposite material, and result in new and unexpected physiological states.« less

  17. Influence of silica matrix composition and functional component additives on the bioactivity and viability of encapsulated living cells

    DOE PAGES

    Savage, Travis J.; Dunphy, Darren R.; Harbaugh, Svetlana; ...

    2015-11-06

    The remarkable impact encapsulation matrix chemistry can have on the bioactivity and viability of integrated living cells is reported. Two silica chemistries (aqueous silicate and alkoxysilane), and a functional component additive (glycerol), are employed to generate three distinct silica matrices. These matrices are used to encapsulate living E. coli cells engineered with a synthetic riboswitch for cell-based biosensing. Following encapsulation, membrane integrity, reproductive capability, and riboswitch-based protein expression levels and rates are measured over a 5 week period. Striking differences in E. coli bioactivity, viability, and biosensing performance are observed for cells encapsulated within the different matrices. E. coli cellsmore » encapsulated for 35 days in aqueous silicate-based (AqS) matrices showed relatively low membrane integrity, but high reproductive capability in comparison to cells encapsulated in glycerol containing sodium silicate-based (AqS + g) and alkoxysilane-based (PGS) gels. Further, cells in sodium silicate-based matrices showed increasing fluorescence output over time, resulting in a 1.8-fold higher fluorescence level, and a faster expression rate, over cells free in solution. Furthermore, this unusual and unique combination of biological properties demonstrates that careful design of the encapsulation matrix chemistry can improve functionality of the biocomposite material, and result in new and unexpected physiological states.« less

  18. Isolation of bioactive allelochemicals from sunflower (variety Suncross-42) through fractionation-guided bioassays.

    PubMed

    Anjum, Tehmina; Bajwa, Rukhsana

    2010-11-01

    Plants are rich source of biologically active allelochemicals. However, natural product discovery is not an easy task. Many problems encountered during this laborious practice can be overcome through the modification of preliminary trials. Bioassay-directed isolation of active plant compounds can increase efficiency by eliminating many of the problems encountered. This strategy avoids unnecessary compounds, concentrating on potential components and thus reducing the cost and time required. In this study, a crude aqueous extract of sunflower leaves was fractionated through high performance liquid chromatography. The isolated fractions were checked against Chenopodium album and Rumex dentatus. The fraction found active against two selected weeds was re-fractionated, and the active components were checked for their composition. Thin layer chromatography isolated a range of phenolics, whereas the presence of bioactive terpenoids was confirmed through mass spectroscopy and nuclear magnetic resonance spectroscopy.

  19. Essential oils in the ranunculaceae family: chemical composition of hydrodistilled oils from Consolida regalis, Delphinium elatum, Nigella hispanica, and N. nigellastrum seeds.

    PubMed

    Kokoska, Ladislav; Urbanova, Klara; Kloucek, Pavel; Nedorostova, Lenka; Polesna, Lucie; Malik, Jan; Jiros, Pavel; Havlik, Jaroslav; Vadlejch, Jaroslav; Valterova, Irena

    2012-01-01

    In this study, we analyzed the chemical composition of volatile oils hydrodistilled from seeds of Consolida regalis, Delphinium elatum, Nigella hispanica, and N. nigellastrum using GC and GC/MS. In C. regalis, octadecenoic (77.79%) and hexadecanoic acid (8.34%) were the main constituents. Similarly, the oils from D. elatum and N. hispanica seeds consisted chiefly of octadecadienoic (42.83 and 35.58%, resp.), hexadecanoic (23.87 and 28.59%, resp.), and octadecenoic acid (21.67 and 19.76%, resp.). Contrastingly, the monoterpene hydrocarbons α-pinene (34.67%) and β-pinene (36.42%) were the main components of N. nigellastrum essential oil. Our results confirm the presence of essential oils in the family Ranunculaceae and suggest chemotaxonomical relationships within the representatives of the genera Consolida, Delphinium, and Nigella. In addition, the presence of various bioactive constituents such as linoleic acid, (-)-β-pinene, squalene, or carotol in seeds of D. elatum, N. hispanica, and N. nigellastrum indicates a possible industrial use of these plants. Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich.

  20. Design of Bioactive Organic-inorganic Hybrid Materials with Self-setting Ability

    NASA Astrophysics Data System (ADS)

    Miyazaki, T.; Machida, S.; Morita, Y.; Ishida, E.

    2011-10-01

    Paste-like materials with ability of self-setting are attractive for bone substitutes, since they can be injected from the small hole with minimized invasion to the patient. Although bone cements which set as apatite are clinically used, there is limitation on clinical applications due to their mechanical properties such as high brittleness and low fracture toughness. To overcome this problem, organic-inorganic hybrids based on a flexible polymer are attractive. We have obtained an idea for design of self-setting hybrids using polyion complex fabricated by ionic interaction of anionic and cationic polymers. We aimed at preparation of organic-inorganic hybrids exhibiting self-setting ability and bioactivity. The liquid component was prepared from cationic chitosan aqueous solution. The powder component was prepared by mixing various carrageenans with α-tricalcium phosphate (α-TCP). The obtained cements set within 1 day. Compressive strength showed tendency to increase with increase in α-TCP content in the powder component. The prepared cements formed the apatite in simulated body fluid within 3 days. Novel self-setting materials based on organic-inorganic hybrid can be designed utilizing ionic interaction of polysaccharide.

  1. Food components with antifibrotic activity and implications in prevention of liver disease.

    PubMed

    Bae, Minkyung; Park, Young-Ki; Lee, Ji-Young

    2018-05-01

    Increasing prevalence of nonalcoholic fatty liver disease (NAFLD) in parallel with the obesity epidemic has been a major public health concern. NAFLD is the most common chronic liver disease in the United States, ranging from fatty liver to steatohepatitis, fibrosis and cirrhosis in the liver. In response to chronic liver injury, fibrogenesis in the liver occurs as a protective response; however, prolonged and dysregulated fibrogenesis can lead to liver fibrosis, which can further progress to cirrhosis and eventually hepatocellular carcinoma. Interplay of hepatocytes, macrophages and hepatic stellate cells (HSCs) in the hepatic inflammatory and oxidative milieu is critical for the development of NAFLD. In particular, HSCs play a major role in the production of extracellular matrix proteins. Studies have demonstrated that bioactive food components and natural products, including astaxanthin, curcumin, blueberry, silymarin, coffee, vitamin C, vitamin E, vitamin D, resveratrol, quercetin and epigallocatechin-3-gallate, have antifibrotic effects in the liver. This review summarizes current knowledge of the mechanistic insight into the antifibrotic actions of the aforementioned bioactive food components. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The role of seaweed bioactives in the control of digestion: implications for obesity treatments.

    PubMed

    Chater, Peter I; Wilcox, Matthew D; Houghton, David; Pearson, Jeffrey P

    2015-11-01

    Seaweeds are an underutilised nutritional resource that could not only compliment the current western diet but potentially bring additional health benefits over and above their nutritional value. There are four groups of seaweed algae; green algae (Chlorophyceae), red algae (Rhodophycae), blue-green algae (Cyanophyceae) and brown algae (Phaeophyceae). Seaweeds are rich in bioactive components including polysaccharides and polyphenols. Polysaccharides content, such as fucoidan, laminarin, as well as alginate is generally high in brown seaweeds which are also a source of polyphenols such as phenolic acids, flavonoids, phlorotannin, stilbenes and lignans. These components have been shown to reduce the activity of digestive enzymes, modulating enzymes such as α-amylase, α-glucosidase, pepsin and lipase. This review discusses the effect of several of these components on the digestive processes within the gastrointestinal tract; focusing on the effect of alginate on pancreatic lipase activity and its potential health benefits. Concluding that there is evidence to suggest alginate has the potential to be used as an obesity treatment, however, further in vivo research is required and an effective delivery method for alginate must be designed.

  3. Predicting the glass transition temperature of bioactive glasses from their molecular chemical composition.

    PubMed

    Hill, Robert G; Brauer, Delia S

    2011-10-01

    A recently published paper (M.D. O'Donnell, Acta Biomaterialia 7 (2011) 2264-2269) suggests that it is possible to correlate the glass transition temperature (T(g)) of bioactive glasses with their molar composition, based on iterative least-squares fitting of published T(g) data. However, we show that the glass structure is an important parameter in determining T(g). Phase separation, local structural effects and components (intermediate oxides) which can switch their structural role in the glass network need to be taken into consideration, as they are likely to influence the glass transition temperature of bioactive glasses. Although the model suggested by O'Donnell works reasonably well for glasses within the composition range presented, it is oversimplified and fails for glasses outside certain compositional boundaries. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Bioactive compounds of sea cucumbers and their therapeutic effects

    NASA Astrophysics Data System (ADS)

    Shi, Shujuan; Feng, Wenjing; Hu, Song; Liang, Shixiu; An, Nina; Mao, Yongjun

    2016-05-01

    Sea cucumbers belong to the Class Holothuroidea of marine invertebrates. They are commercially valuable and prized as a food and folk medicine in Asia. Nutritionally, sea cucumbers have an impressive profile of valuable nutrients such as vitamins, minerals and amino acids. A number of unique biological and pharmacological activities/properties, including anticancer, anticoagulant/antithrombotic, antimicrobial, antioxidant, antihyperlipidemic, antihyperglycemic, anti-inflammatory, antihypertension and radioprotective, have been ascribed to various compounds isolated from sea cucumbers. The therapeutic properties and medicinal benefits of sea cucumbers can be linked to the presence of a wide array of bioactives, especially triterpene glycosides, acid mucopolysaccharide, sphingoid bases, glycolipids, fucosylated chondroitin sulfate, polysaccharides, phospholipids, cerebrosides, phosphatidylcholines, and other extracts and hydrolysates. This review highlights the valuable bioactive components as well as the multiple therapeutic properties of sea cucumbers with a view to exploring their potential uses as functional foods and a natural source of new multifunctional drugs.

  5. Identification of an Epoxide Metabolite of Lycopene in Human Plasma Using 13C-Labeling and QTOF-MS.

    PubMed

    Cichon, Morgan J; Moran, Nancy E; Riedl, Ken M; Schwartz, Steven J; Clinton, Steven K

    2018-03-20

    The carotenoid lycopene is a bioactive component of tomatoes and is hypothesized to reduce risk of several chronic diseases, such as prostate cancer. The metabolism of lycopene is only beginning to be understood and some studies suggest that metabolites of lycopene may be partially responsible for bioactivity associated with the parent compound. The detection and characterization of these compounds in vivo is an important step in understanding lycopene bioactivity. The metabolism of lycopene likely involves both chemical and enzymatic oxidation. While numerous lycopene metabolites have been proposed, few have actually been identified in vivo following lycopene intake. Here, LC-QTOF-MS was used along with 13 C-labeling to investigate the post-prandial oxidative metabolism of lycopene in human plasma. Previously reported aldehyde cleavage products were not detected, but a lycopene 1,2-epoxide was identified as a new candidate oxidative metabolite.

  6. Screening and analysis of potential anti-tumor components from the stipe of Ganoderma sinense using high-performance liquid chromatography/time-of-flight mass spectrometry with multivariate statistical tool.

    PubMed

    Chan, Kar-Man; Yue, Grace Gar-Lee; Li, Ping; Wong, Eric Chun-Wai; Lee, Julia Kin-Ming; Kennelly, Edward J; Lau, Clara Bik-San

    2017-03-03

    According to Chinese Pharmacopoeia 2015 edition, Ganoderma (Lingzhi) is a species complex that comprise of Ganoderma lucidum and Ganoderma sinense. The bioactivity and chemical composition of G. lucidium had been studied extensively, and it was shown to possess antitumor activities in pharmacological studies. In contrast, G. sinense has not been studied in great detail. Our previous studies found that the stipe of G. sinense exhibited more potent antitumor activity than the pileus. To identify the antitumor compounds in the stipe of G. sinense, we studied its chemical components by merging the bioactivity results with liquid chromatography-mass spectrometry-based chemometrics. The stipe of G. sinense was extracted with water, followed by ethanol precipitation and liquid-liquid partition. The resulting residue was fractionated using column chromatography. The antitumor activity of these fractions were analysed using MTT assay in murine breast tumor 4T1 cells, and their chemical components were studied using the LC-QTOF-MS with multivariate statistical tools. The chemometric and MS/MS analysis correlated bioactivity with five known cytotoxic compounds, 4-hyroxyphenylacetate, 9-oxo-(10E,12E)-octadecadienoic acid, 3-phenyl-2-propenoic acid, 13-oxo-(9E,11E)-octadecadienoic acid and lingzhine C, from the stipe of G. sinense. To the best of our knowledge, 4-hyroxyphenylacetate, 3-phenyl-2-propenoic acid and lingzhine C are firstly reported to be found in G. sinense. These five compounds will be investigated for their antitumor activities in the future. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A Comprehensive Strategy to Evaluate Compatible Stability of Chinese Medicine Injection and Infusion Solutions Based on Chemical Analysis and Bioactivity Assay.

    PubMed

    Li, Jian-Ping; Liu, Yang; Guo, Jian-Ming; Shang, Er-Xin; Zhu, Zhen-Hua; Zhu, Kevin Y; Tang, Yu-Ping; Zhao, Bu-Chang; Tang, Zhi-Shu; Duan, Jin-Ao

    2017-01-01

    Stability of traditional Chinese medicine injection (TCMI) is an important issue related with its clinical application. TCMI is composed of multi-components, therefore, when evaluating TCMI stability, several marker compounds cannot represent global components or biological activities of TCMI. Till now, when evaluating TCMI stability, method involving the global components or biological activities has not been reported. In this paper, we established a comprehensive strategy composed of three different methods to evaluate the chemical and biological stability of a typical TCMI, Danhong injection (DHI). UHPLC-TQ/MS was used to analyze the stability of marker compounds (SaA, SaB, RA, DSS, PA, CA, and SG) in DHI, UHPLC-QTOF/MS was used to analyze the stability of global components (MW 80-1000 Da) in DHI, and cell based antioxidant capability assay was used to evaluate the bioactivity of DHI. We applied this strategy to assess the compatible stability of DHI and six infusion solutions (GS, NS, GNS, FI, XI, and DGI), which were commonly used in combination with DHI in clinic. GS was the best infusion solution for DHI, and DGI was the worst one based on marker compounds analysis. Based on global components analysis, XI and DGI were the worst infusion solutions for DHI. And based on bioactivity assay, GS was the best infusion solution for DHI, and XI was the worst one. In conclusion, as evaluated by the established comprehensive strategy, GS was the best infusion solution, however, XI and DGI were the worst infusion solutions for DHI. In the compatibility of DHI and XI or DGI, salvianolic acids in DHI would be degraded, resulting in the reduction of original composition and generation of new components, and leading to the changes of biological activities. This is the essence of instability compatibility of DHI and some infusion solutions. Our study provided references for choosing the reasonable infusion solutions for DHI, which could contribute the improvement of safety and efficacy of DHI. Moreover, the established strategy may be applied for the compatible stability evaluation of other TCMIs.

  8. TBC2health: a database of experimentally validated health-beneficial effects of tea bioactive compounds.

    PubMed

    Zhang, Shihua; Xuan, Hongdong; Zhang, Liang; Fu, Sicong; Wang, Yijun; Yang, Hua; Tai, Yuling; Song, Youhong; Zhang, Jinsong; Ho, Chi-Tang; Li, Shaowen; Wan, Xiaochun

    2017-09-01

    Tea is one of the most consumed beverages in the world. Considerable studies show the exceptional health benefits (e.g. antioxidation, cancer prevention) of tea owing to its various bioactive components. However, data from these extensively published papers had not been made available in a central database. To lay a foundation in improving the understanding of healthy tea functions, we established a TBC2health database that currently documents 1338 relationships between 497 tea bioactive compounds and 206 diseases (or phenotypes) manually culled from over 300 published articles. Each entry in TBC2health contains comprehensive information about a bioactive relationship that can be accessed in three aspects: (i) compound information, (ii) disease (or phenotype) information and (iii) evidence and reference. Using the curated bioactive relationships, a bipartite network was reconstructed and the corresponding network (or sub-network) visualization and topological analyses are provided for users. This database has a user-friendly interface for entry browse, search and download. In addition, TBC2health provides a submission page and several useful tools (e.g. BLAST, molecular docking) to facilitate use of the database. Consequently, TBC2health can serve as a valuable bioinformatics platform for the exploration of beneficial effects of tea on human health. TBC2health is freely available at http://camellia.ahau.edu.cn/TBC2health. © The Author 2016. Published by Oxford University Press.

  9. Skin bioavailability of dietary vitamin E, carotenoids, polyphenols, vitamin C, zinc and selenium.

    PubMed

    Richelle, Myriam; Sabatier, Magalie; Steiling, Heike; Williamson, Gary

    2006-08-01

    Dietary bioactive compounds (vitamin E, carotenoids, polyphenols, vitamin C, Se and Zn) have beneficial effects on skin health. The classical route of administration of active compounds is by topical application direct to the skin, and manufacturers have substantial experience of formulating ingredients in this field. However, the use of functional foods and oral supplements for improving skin condition is increasing. For oral consumption, some dietary components could have an indirect effect on the skin via, for example, secondary messengers. However, in the case of the dietary bioactive compounds considered here, we assume that they must pass down the gastrointestinal tract, cross the intestinal barrier, reach the blood circulation, and then be distributed to the different tissues of the body including the skin. The advantages of this route of administration are that the dietary bioactive compounds are metabolized and then presented to the entire tissue, potentially in an active form. Also, the blood continuously replenishes the skin with these bioactive compounds, which can then be distributed to all skin compartments (i.e. epidermis, dermis, subcutaneous fat and also to sebum). Where known, the distribution and mechanisms of transport of dietary bioactive compounds in skin are presented. Even for compounds that have been studied well in other organs, information on skin is relatively sparse. Gaps in knowledge are identified and suggestions made for future research.

  10. Simultaneous Quantification of Seven Bioactive Flavonoids in Citri Reticulatae Pericarpium by Ultra-Fast Liquid Chromatography Coupled with Tandem Mass Spectrometry.

    PubMed

    Zhao, Lian-Hua; Zhao, Hong-Zheng; Zhao, Xue; Kong, Wei-Jun; Hu, Yi-Chen; Yang, Shi-Hai; Yang, Mei-Hua

    2016-05-01

    Citri Reticulatae Pericarpium (CRP) is a commonly-used traditional Chinese medicine with flavonoids as the major bioactive components. Nevertheless, the contents of the flavonoids in CRP of different sources may significantly vary affecting their therapeutic effects. Thus, the setting up of a reliable and comprehensive quality assessment method for flavonoids in CRP is necessary. To set up a rapid and sensitive ultra-fast liquid chromatography coupled with tandem mass spectrometry (UFLC-MS/MS) method for simultaneous quantification of seven bioactive flavonoids in CRP. A UFLC-MS/MS method coupled to ultrasound-assisted extraction was developed for simultaneous separation and quantification of seven flavonoids including hesperidin, neohesperidin, naringin, narirutin, tangeretin, nobiletin and sinensetin in 16 batches of CRP samples from different sources in China. The established method showed good linearity for all analytes with correlation coefficient (R) over 0.9980, together with satisfactory accuracy, precision and reproducibility. Furthermore, the recoveries at the three spiked levels were higher than 89.71% with relative standard deviations (RSDs) lower than 5.19%. The results indicated that the contents of seven bioactive flavonoids in CRP varied significantly among different sources. Among the samples under study, hesperidin showed the highest contents in 16 samples ranged from 27.50 to 86.30 mg/g, the contents of hesperidin in CRP-15 and CRP-9 were 27.50 and 86.30 mg/g, respectively, while, the amount of narirutin was too low to be measured in some samples. This study revealed that the developed UFLC-MS/MS method was simple, sensitive and reliable for simultaneous quantification of multi-components in CRP with potential perspective for quality control of complex matrices. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Multi-component identification and target cell-based screening of potential bioactive compounds in toad venom by UPLC coupled with high-resolution LTQ-Orbitrap MS and high-sensitivity Qtrap MS.

    PubMed

    Ren, Wei; Han, Lingyu; Luo, Mengyi; Bian, Baolin; Guan, Ming; Yang, Hui; Han, Chao; Li, Na; Li, Tuo; Li, Shilei; Zhang, Yangyang; Zhao, Zhenwen; Zhao, Haiyu

    2018-04-28

    Traditional Chinese medicines (TCMs) are undoubtedly treasured natural resources for discovering effective medicines in treating and preventing various diseases. However, it is still extremely difficult for screening the bioactive compounds due to the tremendous constituents in TCMs. In this work, the chemical composition of toad venom was comprehensively analyzed using ultra-high performance liquid chromatography (UPLC) coupled with high-resolution LTQ-Orbitrap mass spectrometry and 93 compounds were detected. Among them, 17 constituents were confirmed by standard substances and 8 constituents were detected in toad venom for the first time. Further, a compound database of toad venom containing the fullest compounds was further constructed using UPLC coupled with high-sensitivity Qtrap MS. Then a target cell-based approach for screening potential bioactive compounds from toad venom was developed by analyzing the target cell extracts. The reliability of this method was validated by negative controls and positive controls. In total, 17 components in toad venom were discovered to interact with the target cancer cells. Further, in vitro pharmacological trials were performed to confirm the anti-cancer activity of four of them. The results showed that the six bufogenins and seven bufotoxins detected in our research represented a promising resource to explore bufogenins/bufotoxins-based anticancer agents with low cardiotoxic effect. The target cell-based screening method coupled with the compound database of toad venom constructed by UPLC-Qtrap-MS with high sensitivity provide us a new strategy to rapidly screen and identify the potential bioactive constituents with low content in natural products, which was beneficial for drug discovery from other TCMs. ᅟ Graphical abstract.

  12. Large Soluble Oligomers of Amyloid β-Protein from Alzheimer Brain Are Far Less Neuroactive Than the Smaller Oligomers to Which They Dissociate

    PubMed Central

    Yang, Ting; Li, Shaomin; Xu, Huixin

    2017-01-01

    Soluble oligomers of amyloid β-protein (oAβ) isolated from the brains of Alzheimer's disease (AD) patients have been shown experimentally (in the absence of amyloid plaques) to impair hippocampal synaptic plasticity, decrease synapses, induce tau hyperphosphorylation and neuritic dystrophy, activate microglial inflammation, and impair memory in normal adult rodents. Nevertheless, there has been controversy about what types of oligomers actually confer these AD-like phenotypes. Here, we show that the vast majority of soluble Aβ species obtained from brains of humans who died with confirmed AD elute at high molecular weight (HMW) on nondenaturing size-exclusion chromatography. These species have little or no cytotoxic activity in several bioassays. However, incubation of HMW oAβ in mildly alkaline buffer led to their quantitative dissociation into low molecular weight oligomers (∼8–70 kDa), and these were now far more bioactive: they impaired hippocampal LTP, decreased neuronal levels of β2-adrenergic receptors, and activated microglia in wt mice in vivo. Thus, most soluble Aβ assemblies in AD cortex are large and inactive but under certain circumstances can dissociate into smaller, highly bioactive species. Insoluble amyloid plaques likely sequester soluble HMW oligomers, limiting their potential to dissociate. We conclude that conditions that destabilize HMW oligomers or retard the sequestration of their smaller, more bioactive components are important drivers of Aβ toxicity. Selectively targeting these small, cytotoxic forms should be therapeutically beneficial. SIGNIFICANCE STATEMENT Oligomers of amyloid β-protein (oAβ) are tought to play an important role in Alzheimer's disease (AD), but there is confusion and controversy about what types and sizes of oligomers have disease-relevant activity. Using size-exclusion chromatography and three distinct measures of bioactivity, we show that the predominant forms of Aβ in aqueous extracts of AD brain are high molecular weight (HMW) and relatively inactive. Importantly, under certain conditions, the abundant HMW oAβ can dissociate into low molecular weight species, and these low molecular weight oligomers are significantly more bioactive on synapses and microglia than the HMW species from which they are derived. We conclude that conditions that destabilize HMW oAβ or retard the sequestration of smaller, more bioactive components are important drivers of Aβ toxicity. PMID:28053038

  13. Bioactive technologies for hemocompatibility.

    PubMed

    Tanzi, Maria Cristina

    2005-07-01

    The contact of any biomaterial with blood gives rise to multiple pathophysiologic defensive mechanisms such as activation of the coagulation cascade, platelet adhesion and activation of the complement system and leukocytes. The reduction of these events is of crucial importance for the successful clinical performance of a cardiovascular device. This can be achieved by improving the hemocompatibility of the device materials or by pharmacologic inhibition of the key enzymes responsible for the activation of the cascade reactions, or a combination of both. Different strategies have been developed during the last 20 years, and this article attempts to review the most significant, by dividing them into three main categories: bioinert or biopassive, biomimetic and bioactive strategies. With regard to bioactive strategies, particular attention is given to heparin immobilization and recent related technologies. References from both scientific literature and commercial sites are provided. Future development and studies are suggested.

  14. Oxidative stress and production of bioactive monoterpene indole alkaloids: biotechnological implications.

    PubMed

    Matsuura, Hélio Nitta; Rau, Mariana Ritter; Fett-Neto, Arthur Germano

    2014-02-01

    Monoterpene indole alkaloids (MIAs) encompass plant natural products with important pharmacological relevance. They include the anti-tumoral MIAs found in Catharanthus roseus and Camptotheca acuminata. The often low yields of bioactive alkaloids in plants has prompted research to identify the factors regulating MIA production. Oxidative stress is a general response associated with biotic and abiotic stresses leading to several secondary responses, including elicitation of MIA production. These changes in secondary metabolism may take place directly or via second messengers, such as Ca(2+) and reactive oxygen species (ROS). H2O2 is the main ROS that participates in MIA biosynthesis. This review analyzes the links between oxidative stress, elicitation of bioactive MIA production and their potential roles in antioxidant defense, as well as exploring the implications to developing biotechnological strategies relevant for alkaloid supply.

  15. Natural Products from Deep-Sea-Derived Fungi ̶ A New Source of Novel Bioactive Compounds?

    PubMed

    Daletos, Georgios; Ebrahim, Weaam; Ancheeva, Elena; El-Neketi, Mona; Song, Weiguo; Lin, Wenhan; Proksch, Peter

    2018-01-01

    Over the last two decades, deep-sea-derived fungi are considered to be a new source of pharmacologically active secondary metabolites for drug discovery mainly based on the underlying assumption that the uniqueness of the deep sea will give rise to equally unprecedented natural products. Indeed, up to now over 200 new metabolites have been identified from deep-sea fungi, which is in support of the statement made above. This review summarizes the new and/or bioactive compounds reported from deepsea- derived fungi in the last six years (2010 - October 2016) and critically evaluates whether the data published so far really support the notion that these fungi are a promising source of new bioactive chemical entities. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Systematic and biotechnological aspects of halophilic and halotolerant actinomycetes.

    PubMed

    Hamedi, Javad; Mohammadipanah, Fatemeh; Ventosa, Antonio

    2013-01-01

    More than 70 species of halotolerant and halophilic actinomycetes belonging to at least 24 genera have been validly described. Halophilic actinomycetes are a less explored source of actinomycetes for discovery of novel bioactive secondary metabolites. Degradation of aliphatic and aromatic organic compounds, detoxification of pollutants, production of new enzymes and other metabolites such as antibiotics, compatible solutes and polymers are other potential industrial applications of halophilic and halotolerant actinomycetes. Especially new bioactive secondary metabolites that are derived from only a small fraction of the investigated halophilic actinomycetes, mainly from marine habitats, have revealed the huge capacity of this physiological group in production of new bioactive chemical entities. Combined high metabolic capacities of actinomycetes and unique features related to extremophilic nature of the halophilic actinomycetes have conferred on them an influential role for future biotechnological applications.

  17. Significant degradability enhancement in multilayer coating of polycaprolactone-bioactive glass/gelatin-bioactive glass on magnesium scaffold for tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Yazdimamaghani, Mostafa; Razavi, Mehdi; Vashaee, Daryoosh; Pothineni, Venkata Raveendra; Rajadas, Jayakumar; Tayebi, Lobat

    2015-05-01

    Magnesium (Mg) is a promising candidate to be used in medical products especially as bone tissue engineering scaffolds. The main challenge for using Mg in biomedical applications is its high degradation rate in the body. For this reason, in this study, a multilayer polymeric layer composed of polycaprolactone (PCL) and gelatin (Gel) reinforced with bioactive glass (BaG) particles has been applied on the surface of Mg scaffolds. The materials characteristics of uncoated Mg scaffold, Mg scaffold coated only with PCL-BaG and Mg scaffold coated with PCL-BaG and Gel-BaG have been analyzed and compared in detail. Scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR) were utilized for microstructural studies. In vitro bioactivity and biodegradation evaluations were carried out by submerging the scaffolds in simulated body fluid (SBF) at pre-determined time points. The results demonstrated that Mg scaffold coated with PCL-BaG and Gel-BaG exhibited significant improvement in biodegradability.

  18. Berry Leaves: An Alternative Source of Bioactive Natural Products of Nutritional and Medicinal Value†

    PubMed Central

    Ferlemi, Anastasia-Varvara; Lamari, Fotini N.

    2016-01-01

    Berry fruits are recognized, worldwide, as “superfoods” due to the high content of bioactive natural products and the health benefits deriving from their consumption. Berry leaves are byproducts of berry cultivation; their traditional therapeutic use against several diseases, such as the common cold, inflammation, diabetes, and ocular dysfunction, has been almost forgotten nowadays. Nevertheless, the scientific interest regarding the leaf composition and beneficial properties grows, documenting that berry leaves may be considered an alternative source of bioactives. The main bioactive compounds in berry leaves are similar as in berry fruits, i.e., phenolic acids and esters, flavonols, anthocyanins, and procyanidins. The leaves are one of the richest sources of chlorogenic acid. In various studies, these secondary metabolites have demonstrated antioxidant, anti-inflammatory, cardioprotective, and neuroprotective properties. This review focuses on the phytochemical composition of the leaves of the commonest berry species, i.e., blackcurrant, blackberry, raspberry, bilberry, blueberry, cranberry, and lingonberry leaves, and presents their traditional medicinal uses and their biological activities in vitro and in vivo. PMID:27258314

  19. Application of mathematical models and computation in plant metabolomics

    USDA-ARS?s Scientific Manuscript database

    The investigation and reporting of plants’ chemical constituents has greatly evolved over the centuries of natural products and phytochemical research. Starting from the extraction and identification of plant-based bioactive components, such as historical salicin or more recent paclitaxel, phytochem...

  20. Endophytic Paraconiothyrium sp. from Zingiber officinale Rosc. Displays Broad-Spectrum Antimicrobial Activity by Production of Danthron.

    PubMed

    Anisha, C; Sachidanandan, P; Radhakrishnan, E K

    2018-03-01

    The bioactivity spectrum of fungal endophytes isolated from Zingiber officinale was analyzed against clinical pathogens and against the phytopathogen Pythium myriotylum, which causes Pythium rot in ginger. One of the isolates GFM13 showed broad bioactivity against various pathogens tested including P. myriotylum. The spore suspension as well as the culture filtrate of the endophytic fungal isolate was found to effectively protect ginger rhizomes from Pythium rot. By molecular identification, the fungal endophyte was identified as Paraconiothyrium sp. The bioactive compound produced by the isolate was separated by bioactivity-guided fractionation and was identified by GC-MS as danthron, an anthraquinone derivative. PCR amplification showed the presence of non-reducing polyketide synthase gene (NR-PKS) in the endophyte GFM13, which is reported to be responsible for the synthesis of anthraquinones in fungi. This is the first report of danthron being produced as the biologically active component of Paraconiothyrium sp. Danthron is reported to have wide pharmaceutical and agronomic applications which include its use as a fungicide in agriculture. The broad-spectrum antimicrobial activity of danthron and the endophytic origin of Paraconiothyrium sp. offer immense applications of the study.

  1. An Integrated Data-Driven Strategy for Safe-by-Design Nanoparticles: The FP7 MODERN Project.

    PubMed

    Brehm, Martin; Kafka, Alexander; Bamler, Markus; Kühne, Ralph; Schüürmann, Gerrit; Sikk, Lauri; Burk, Jaanus; Burk, Peeter; Tamm, Tarmo; Tämm, Kaido; Pokhrel, Suman; Mädler, Lutz; Kahru, Anne; Aruoja, Villem; Sihtmäe, Mariliis; Scott-Fordsmand, Janeck; Sorensen, Peter B; Escorihuela, Laura; Roca, Carlos P; Fernández, Alberto; Giralt, Francesc; Rallo, Robert

    2017-01-01

    The development and implementation of safe-by-design strategies is key for the safe development of future generations of nanotechnology enabled products. The safety testing of the huge variety of nanomaterials that can be synthetized is unfeasible due to time and cost constraints. Computational modeling facilitates the implementation of alternative testing strategies in a time and cost effective way. The development of predictive nanotoxicology models requires the use of high quality experimental data on the structure, physicochemical properties and bioactivity of nanomaterials. The FP7 Project MODERN has developed and evaluated the main components of a computational framework for the evaluation of the environmental and health impacts of nanoparticles. This chapter describes each of the elements of the framework including aspects related to data generation, management and integration; development of nanodescriptors; establishment of nanostructure-activity relationships; identification of nanoparticle categories; hazard ranking and risk assessment.

  2. Solubility enhancement and delivery systems of curcumin a herbal medicine: a review.

    PubMed

    Hani, Umme; Shivakumar, H G

    2014-01-01

    Curcumin diferuloylmethane is a main yellow bioactive component of turmeric, possess wide spectrum of biological actions. It was found to have anti-inflammatory, antioxidant, anticarcinogenic, antimutagenic, anticoagulant, antifertility, antidiabetic, antibacterial, antifungal, antiprotozoal, antiviral, antifibrotic, antivenom, antiulcer, hypotensive and hypocholesteremic activities. However, the benefits are curtailed by its extremely poor aqueous solubility, which subsequently limits the bioavailability and therapeutic effects of curcumin. Nanotechnology is the available approach in solving these issues. Therapeutic efficacy of curcumin can be utilized effectively by doing improvement in formulation properties or delivery systems. Numerous attempts have been made to design a delivery system of curcumin. Currently, nanosuspensions, micelles, nanoparticles, nano-emulsions, etc. are used to improve the in vitro dissolution velocity and in vivo efficiency of curcumin. This review focuses on the methods to increase solubility of curcumin and various nanotechnologies based delivery systems and other delivery systems of curcumin.

  3. Silymarin in liposomes and ethosomes: pharmacokinetics and tissue distribution in free-moving rats by high-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Chang, Li-Wen; Hou, Mei-Ling; Tsai, Tung-Hu

    2014-12-03

    The aim of this study was to prepare silymarin formulations (silymarin entrapped in liposomes and ethosomes, formulations referred to as LSM and ESM, respectively) to improve oral bioavailability of silymarin and evaluate its tissue distribution by liquid chromatography with tandem mass spectrometry (LC-MS/MS) in free-moving rats. Silibinin is the major active constituent of silymarin, which is the main component to be analyzed. A rapid, sensitive, and repeatable LC-MS/MS method was developed and validated in terms of precision, accuracy, and extraction recovery. Furthermore, the established method was applied to study the pharmacokinetics and tissue distribution of silymarin in rats. The size, ζ potential, and drug release of the formulations were characterized. These results showed that the LSM and ESM encapsulated formulations of silymarin may provide more efficient tissue distribution and increased oral bioavailability, thus improving its therapeutic bioactive properties in the body.

  4. Bioconversion Using Lactic Acid Bacteria: Ginsenosides, GABA, and Phenolic Compounds.

    PubMed

    Lee, Na-Kyoung; Paik, Hyun-Dong

    2017-05-28

    Lactic acid bacteria (LAB) are used as fermentation starters in vegetable and dairy products and influence the pH and flavors of foods. For many centuries, LAB have been used to manufacture fermented foods; therefore, they are generally regarded as safe. LAB produce various substances, such as lactic acid, β-glucosidase, and β-galactosidase, making them useful as fermentation starters. Existing functional substances have been assessed as fermentation substrates for better component bioavailability or other functions. Representative materials that were bioconverted using LAB have been reported and include minor ginsenosides, γ-aminobutyric acid, equol, aglycones, bioactive isoflavones, genistein, and daidzein, among others. Fermentation mainly involves polyphenol and polysaccharide substrates and is conducted using bacterial strains such as Streptococcus thermophilus, Lactobacillus plantarum, and Bifidobacterium sp. In this review, we summarize recent studies of bioconversion using LAB and discuss future directions for this field.

  5. Bee Pollen Flavonoids as a Therapeutic Agent in Allergic and Immunological Disorders.

    PubMed

    Jannesar, Masoomeh; Sharif Shoushtari, Maryam; Majd, Ahmad; Pourpak, Zahra

    2017-06-01

    Bee pollen grains, as the male reproductive part of seed-bearing plants contain considerable concentrations of various phytochemicals and nutrients. Since antiquity, people throughout the world used pollens to cure colds, flu, ulcers, premature aging, anemia and colitis. It is now well-documented that some bee pollen secondary metabolites (e.g. flavonoid) may have positive health effects. In recent years, the flavonoids have attracted much interest because of their wide range of biological properties and their beneficial effects on human health. The current review, points out potential therapeutic effects of bee pollen flavonoids as one of the main bee pollen bioactive compounds in allergic and immunological diseases. Due to the fact that some types of flavonoid components in bee pollen have anti-allergic, anti-oxidant and anti-inflammatory properties, bee pollen flavonoids can be excellent candidates for future studies including phytotherapy, molecular pharmacology and substitutes for chemicals used in treating allergic and immunological disorders.

  6. Mango (Mangifera indica L.) by-products and their valuable components: a review.

    PubMed

    Jahurul, M H A; Zaidul, I S M; Ghafoor, Kashif; Al-Juhaimi, Fahad Y; Nyam, Kar-Lin; Norulaini, N A N; Sahena, F; Mohd Omar, A K

    2015-09-15

    The large amount of waste produced by the food industries causes serious environmental problems and also results in economic losses if not utilized effectively. Different research reports have revealed that food industry by-products can be good sources of potentially valuable bioactive compounds. As such, the mango juice industry uses only the edible portions of the mangoes, and a considerable amount of peels and seeds are discarded as industrial waste. These mango by-products come from the tropical or subtropical fruit processing industries. Mango by-products, especially seeds and peels, are considered to be cheap sources of valuable food and nutraceutical ingredients. The main uses of natural food ingredients derived from mango by-products are presented and discussed, and the mainstream sectors of application for these by-products, such as in the food, pharmaceutical, nutraceutical and cosmetic industries, are highlighted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Scorpion venom peptides with no disulfide bridges: a review.

    PubMed

    Almaaytah, Ammar; Albalas, Qosay

    2014-01-01

    Scorpion venoms are rich sources of biologically active peptides that are classified into disulfide-bridged peptides (DBPs) and non-disulfide-bridged peptides (NDBPs). DBPs are the main scorpion venom components responsible for the neurotoxic effects observed during scorpion envenomation as they usually target membrane bound ion channels of excitable and non-excitable cells. Several hundred DBPs have been identified and functionally characterized in the past two decades. The NDBPs represent a novel group of molecules that have gained great interest only recently due to their high diversity both in their primary structures and bioactivities. This review provides an overview of scorpion NDBPs focusing on their therapeutic applications, modes of discovery, mechanisms of NDBPs genetic diversity and structural properties. It also provides a simple classification for NDBPs that could be adopted and applied to other NDBPs identified in future studies. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. [Coffee drinking and health - the current state of knowledge. whether the end of the doubts of patients is already coming?

    PubMed

    Wierzejska, Regina

    The impact of drinking coffee on health is still relevant in medicine. Patients, as well as some doctors noticed coffee as the product which can cause or increase a risk a lot of health complaints. However contemporary scientific researches are more optimistic and revealed that coffee doesn't have such negative impact on health, and what's more can has beneficial action. In spite of some differences in findings many of them demonstrated a lack of relationship between coffee and blood pressure, cancers, and in case of type 2 diabetes and neurodegenerative diseases even a protective action is possible. Drinking moderate amount of coffee, brewed using filters (3-4 cups a day) is preferred. Polyphenols are the main of bioactive components of coffee which act as antioxidants and can explain a positive impact of coffee on health.

  9. Effect of wine processing and acute blood stasis on the serum pharmacochemistry of rhubarb: a possible explanation for processing mechanism.

    PubMed

    Wang, Min; Fu, Jinfeng; Lv, Mengying; Tian, Yuan; Xu, Fengguo; Song, Rui; Zhang, Zunjian

    2014-09-01

    As a specific item mentioned in traditional Chinese medicine theory, processing can fulfill different requirements of therapies. Crude and wine-processed rhubarbs are used as drastic and mild laxatives, respectively. In this study, a practical method based on ultra-fast liquid chromatography coupled with diode-array detection and ion trap time-of-flight mass spectrometry was developed to screen and analyze multiple absorbed bioactive components and metabolites in the serum of both normal and acute blood stasis rats after oral administration of crude or wine-processed rhubarbs. A total of 16 compounds, mainly including phase II metabolites, were tentatively identified. Possible explanations for the processing-induced changes in pharmacological effects of traditional Chinese medicines were first explored at serum pharmacochemistry level. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Bioactivity against Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) of Cymbopogon citratus and Eucalyptus citriodora essential oils grown in Colombia.

    PubMed

    Olivero-Verbel, Jesús; Nerio, Luz S; Stashenko, Elena E

    2010-06-01

    Essential oils isolated from Cymbopogon citratus (DC) Stapf. and Eucalyptus citriodora Hook grown in Colombia were analysed by gas chromatography-mass spectrometry (GC-MS) and tested for repellent activity and contact toxicity against Tribolium castaneum (Herbst.) (Coleoptera: Tenebrionidae). The main components of C. citratus oil were geranial (34.4%), neral (28.4%) and geraniol (11.5%), whereas those of E. citriodora were citronellal (40%), isopulegol (14.6%) and citronellol (13%). The mean repellent doses after 4 h exposure were 0.021 and 0.084 mL L(-1) for C. citratus and E. citriodora oils respectively-values lower than that observed for the commercial product IR3535 (0.686 mL L(-1)). These studies showed the composition and repellent activity of essential oils of C. citratus and E. citriodora, suggesting that these are potential candidates as insect repellents.

  11. Extraction and identification of bioactive compounds from agarwood leaves

    NASA Astrophysics Data System (ADS)

    Lee, N. Y.; Yunus, M. A. C.; Idham, Z.; Ruslan, M. S. H.; Aziz, A. H. A.; Irwansyah, N.

    2016-11-01

    Agarwood commonly known as gaharu, aloeswood or eaglewood have been used as traditional medicine for centuries and its essential oil also being used as perfumery ingredients and aroma enhancers in food products. However, there is least study on the agarwood leaves though it contains large number of biomolecules component that show diverse pharmacological activity. Previous study showed that the extracted compounds from the leaves possess activities like anti-mutagenic, anti-tumor and anti-helminthic. The main objectives of this research were to determine bioactive compounds in agarwood leaves; leaves extract and oil yield obtained from maceration and soxhlet extraction methods respectively. The maceration process was performed at different operating temperature of 25°C, 50°C and 75°C and different retention time at 30, 60, 90 and 120 minutes. Meanwhile, various solvents were used to extract the oil from agarwood leaves using soxhlet method which are hexane, water, isopropanol and ethanol. The extracted oil from agarwood leaves by soxhlet extraction was analyzed using gas chromatography mass spectrometry. The results showed that the highest extract of 1.53% was obtained when increase the temperature to 75 °C and longest retention time of 120 minutes gave the highest oil yield of 2.10 % by using maceration. This is because at higher temperature enhances the solubility solute and diffusivity coefficient, thus increase the extract yield while longer retention time allow the reaction between solvent and solute occurred more rapidly giving higher extract. Furthermore, the soxhlet extraction using n-hexane as the solvent gave the highest oil yield as compared to other solvent due to the non-polar properties of n-hexane increase the efficiency of oil which is also non-polar to soluble in the solvent. In addition, the results also reported that the oil extracted from agarwood leaves contains bioactive compounds which are phytol, squalene, n-hexadecanoic acid and octadecatrienoic acid. Therefore, oil extracted from agarwood leaves has the potential to be applied in food, pharmaceutical, nutraceutical and cosmetics industries.

  12. Microencapsulation and functional bioactive foods

    USDA-ARS?s Scientific Manuscript database

    Food, the essential unit of human nutrition has been both wholesome and safe through human history ensuring the continuity of the human race. Functionalized foods are the rediscovery of the need to provide all nutrients through foods without adulteration. The functional components of foods include...

  13. Oleic acid exposure of cultured endothelial cells alters lipid mediator production

    EPA Science Inventory

    Diesel, biodiesel, and other combustion sources contain free fatty acid (FFA) components capable of entering the body through particulate inhalation. FFA can also be endogenously released into circulation in response to stress. When in circulation, bioactive FFA may interact with...

  14. The molecular mechanism of the cholesterol-lowering effect of dill and kale: The influence of the food matrix components.

    PubMed

    Danesi, Francesca; Govoni, Marco; D'Antuono, Luigi Filippo; Bordoni, Alessandra

    2016-07-01

    Foods are complex matrices containing many different compounds, all of which contribute to the overall effect of the food itself, although they have different mechanisms of action. While evaluating the effect of bioactive compounds, it is important to consider that the use of a single compound can hide the effects of the other molecules that can act synergistically or antagonistically in the same food. The aim of the present study was to evaluate the influence of food matrix components by comparing two edible plants (dill and kale) with cholesterol-lowering potential and similar contents of their most representative bioactive, quercetin. The molecular effects of the extracts were evaluated in HepG2 cells by measuring the expression of sterol-regulatory element-binding proteins (SREBPs), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and low density lipoprotein receptor (LDLR) at the mRNA and protein level. The results reported here show that both extracts reduced the cellular cholesterol level with a similar trend and magnitude. It is conceivable that the slightly different results are due to the diverse composition of minor bioactive compounds, indicating that only by considering food as a whole is it possible to understand the complex relationship between food, nutrition, and health in a foodomics vision. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Dentin Biomodification: Strategies, Renewable Resources and Clinical Applications

    PubMed Central

    Bedran-Russo, Ana K.; Pauli, Guido F.; Chen, Shao-Nong; McAlpine, James; Castellan, Carina S.; Phansalkar, Rasika S; Aguiar, Thaiane R.; Vidal, Cristina M.P.; Napotilano, José; Nam, Joo-Won; Leme, Ariene A.

    2014-01-01

    Objectives The biomodification of dentin is a biomimetic approach, mediated by bioactive agents, to enhance and reinforce the dentin by locally altering the biochemistry and biomechanical properties. This review provides an overview of key dentin matrix components, targeting effects of biomodification strategies, the chemistry of renewable natural sources, and current research on their potential clinical applications. Methods The PubMed database and collected literature were used as a resource for peer-reviewed articles to highlight the topics of dentin hierarchical structure, biomodification agents, and laboratorial investigations of their clinical applications. In addition, new data is presented on laboratorial methods for the standardization of proanthocyanidin-rich preparations as a renewable source of plant-derived biomodification agents. Results Biomodification agents can be categorized as physical methods and chemical agents. Synthetic and naturally occurring chemical strategies present distinctive mechanism of interaction with the tissue. Initially thought to be driven only by inter- or intra-molecular collagen induced non-enzymatic collagen cross-linking, multiple interactions with other dentin components are fundamental for the long-term biomechanics and biostability of the tissue. Oligomeric proanthocyanidins show promising bioactivity, and their chemical complexity requires systematic evaluation of the active compounds to produce a fully standardized intervention material from renewable resource, prior to their detailed clinical evaluation. Significance Understanding the hierarchical structure of dentin and the targeting effect of the bioactive compounds will establish their use in both dentin-biomaterials interface and caries management. PMID:24309436

  16. Separation of Biologically Active Compounds by Membrane Operations.

    PubMed

    Zhu, Xiaoying; Bai, Renbi

    2017-01-01

    Bioactive compounds from various natural sources have been attracting more and more attention, owing to their broad diversity of functionalities and availabilities. However, many of the bioactive compounds often exist at an extremely low concentration in a mixture so that massive harvesting is needed to obtain sufficient amounts for their practical usage. Thus, effective fractionation or separation technologies are essential for the screening and production of the bioactive compound products. The applicatons of conventional processes such as extraction, distillation and lyophilisation, etc. may be tedious, have high energy consumption or cause denature or degradation of the bioactive compounds. Membrane separation processes operate at ambient temperature, without the need for heating and therefore with less energy consumption. The "cold" separation technology also prevents the possible degradation of the bioactive compounds. The separation process is mainly physical and both fractions (permeate and retentate) of the membrane processes may be recovered. Thus, using membrane separation technology is a promising approach to concentrate and separate bioactive compounds. A comprehensive survey of membrane operations used for the separation of bioactive compounds is conducted. The available and established membrane separation processes are introduced and reviewed. The most frequently used membrane processes are the pressure driven ones, including microfiltration (MF), ultrafiltration (UF) and nanofiltration (NF). They are applied either individually as a single sieve or in combination as an integrated membrane array to meet the different requirements in the separation of bioactive compounds. Other new membrane processes with multiple functions have also been developed and employed for the separation or fractionation of bioactive compounds. The hybrid electrodialysis (ED)-UF membrane process, for example has been used to provide a solution for the separation of biomolecules with similar molecular weights but different surface electrical properties. In contrast, the affinity membrane technology is shown to have the advantages of increasing the separation efficiency at low operational pressures through selectively adsorbing bioactive compounds during the filtration process. Individual membranes or membrane arrays are effectively used to separate bioactive compounds or achieve multiple fractionation of them with different molecule weights or sizes. Pressure driven membrane processes are highly efficient and widely used. Membrane fouling, especially irreversible organic and biological fouling, is the inevitable problem. Multifunctional membranes and affinity membranes provide the possibility of effectively separating bioactive compounds that are similar in sizes but different in other physical and chemical properties. Surface modification methods are of great potential to increase membrane separation efficiency as well as reduce the problem of membrane fouling. Developing membranes and optimizing the operational parameters specifically for the applications of separation of various bioactive compounds should be taken as an important part of ongoing or future membrane research in this field. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Micro-structural evolution and biomineralization behavior of carbon nanofiber/bioactive glass composites induced by precursor aging time.

    PubMed

    Jia, Xiaolong; Tang, Tianhong; Cheng, Dan; Zhang, Cuihua; Zhang, Ran; Cai, Qing; Yang, Xiaoping

    2015-12-01

    Bioactive glass (BG)-containing carbon nanofibers (CNFs) are promising orthopaedic biomaterials. Herein, CNF composites were produced from electrospinning of polyacrylonitrile (PAN)/BG sol-gel precursor solution, followed by carbonization. Choosing 58S-type BG (mol%: 58.0% SiO2-26.3% CaO-15.7% P2O5) as the model, micro-structural evolution of CNF/BG composites was systematically evaluated in relating to aging times of BG precursor solution. With aging time prolonging, BG precursors underwent morphological changes from small sol clusters with loosely and randomly branched structure to highly crosslinked Si-network structure, showing continuous increase in solution viscosity. BG precursor solution with low viscosity could mix well with PAN solution, resulting in CNF composite with homogeneously distributed BG component. Whereas, BG precursor gel with densely crosslinked Si-network structure led to uneven distribution of BG component along final CNFs due to its significant phase separation from PAN component. Meanwhile, BG nanoparticles in CNFs demonstrated micro-structural evolution that they transited from weak to strong crystal state along with longer aging time. Biomineralization in simulated body fluid and in vitro osteoblasts proliferation were then applied to determine the bioactivity of CNF/BG composites. CNF/BG composites prepared from shorter aging time could induce both faster apatite deposition and cell proliferation rate. It was suggested weakly crystallized BG nanoparticles along CNFs dissolved fast and was able to provide numerous nucleation sites for apatite deposition, which also favored the proliferation of osteoblasts cells. Aging time could thus be a useful tool to regulate the biological features of CNF/BG composites. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Antioxidant activity of Sicilian pistachio (Pistacia vera L. var. Bronte) nut extract and its bioactive components.

    PubMed

    Gentile, Carla; Tesoriere, Luisa; Butera, Daniela; Fazzari, Marco; Monastero, Massimo; Allegra, Mario; Livrea, Maria A

    2007-02-07

    Pistacia vera L. is the only species of Pistacia genus producing edible nuts. This paper investigates the antioxidant potential of a Sicilian variety of pistachio nut by chemical as well as biological assays and measured antioxidant vitamins and a number of antioxidant polyphenols in either the hydrophilic and/or the lipophilic nut extract. In accordance with the majority of foods, the total antioxidant activity, measured as a TAA test, was much higher (50-fold) in the hydrophilic than in the lipophilic extract. Substantial amounts of total phenols were measured. The hydrophilic extract inhibited dose-dependently both the metal-dependent and -independent lipid oxidation of bovine liver microsomes, and the Cu+2-induced oxidation of human low-density lipoprotein (LDL). Peroxyl radical-scavenging as well as chelating activity of nut components may be suggested to explain the observed inhibition patterns. Among tocopherols, gamma-tocopherol was the only vitamin E isomer found in the lipophilic extract that did not contain any carotenoid. Vitamin C was found only in a modest amount. The hydrophilic extract was a source of polyphenol compounds among which trans-resveratrol, proanthocyanidins, and a remarkable amount of the isoflavones daidzein and genistein, 3.68 and 3.40 mg per 100 g of edible nut, respectively, were evaluated. With the exception of isoflavones that appeared unmodified, the amounts of other bioactive molecules were remarkably reduced in the pistachio nut after roasting, and the total antioxidant activity decreased by about 60%. Collectively, our findings provide evidence that the Sicilian pistachio nut may be considered for its bioactive components and can effectively contribute to a healthy status.

  19. Simultaneous determination of six bioactive compounds in Evodiae Fructus by high-performance liquid chromatography with diode array detection.

    PubMed

    Tang, Xiaolong; Huang, Zhifang; Chen, Yan; Liu, Yunhua; Liu, Yuhong; Zhao, Junning; Yi, Jinhai

    2014-02-01

    A simple and reliable high-performance liquid chromatography method with diode array detection (HPLC-DAD) was developed and validated for the simultaneous determination of six bioactive components, rutaevine, limonin, evodiamine, rutaecarpine, N-formyldihydrorutaecarpine and dihydroevocarpine, in the traditional Chinese medicine Evodiae Fructus (Wuzhuyu in Chinese). HPLC separation was conducted on an Agilent Eclipse C18 column (4.6 × 150 mm, 5 µm) at 35°C with a mixture of mobile phase A [tetrahydrofuran-0.02% phosphoric acid (16 : 35)] and mobile phase B (acetonitrile) (gradient elution as follows: 0 min, 22% B; 23 min, 22% B; 24 min, 75% B) at a flow rate of 1 mL/min, and the DAD detection wavelength was set at 220 nm. A linear relationship within the range of investigated concentrations was observed for the six compounds, with correlation coefficients greater than 0.999. The average recovery yields of the six compounds ranged from 98.39 to 104.96%. The HPLC-DAD method was validated by its repeatability [relative standard deviation (RSD) < 2.0%] and intra-day and inter-day precision (RSD < 2.0%). The method was successfully applied to the simultaneous determination of the six previously mentioned components in Evodiae Fructus. It is the first report of a simultaneous qualitative and quantitative analysis for three classes of bioactive components in Wuzhuyu, including the indolequinazoline alkaloids, quinolone alkaloid and limonoids. Based on these results, it is suggested, for possible future revision of the Chinese Pharmacopoeia, that the total contents of evodiamine and rutaecarpine are not less than 0.15% and the total contents of rutaevine and limonin are not less than 0.50%.

  20. Enhancement of nutritional and bioactive compounds by in vitro culture of wild Fragaria vesca L. vegetative parts.

    PubMed

    Dias, Maria Inês; Barros, Lillian; Sousa, Maria João; Oliveira, M Beatriz P P; Santos-Buelga, Celestino; Ferreira, Isabel C F R

    2017-11-15

    In vitro culture emerges as a sustainable way to produce bioactives for further applicability in the food industry. Herein, vegetative parts of Fragaria vesca L. (wild strawberry) obtained by in vitro culture were analyzed regarding nutritional and phytochemical compounds, as well as antioxidant activity. These samples proved to have higher content of protein, polyunsaturated fatty acids, soluble sugars, organic acids (including ascorbic acid) and tocopherols (mainly α-tocopherol) than wild grown F. vesca, as well as containing additional phenolic compounds. The antioxidant activity of hydromethanolic extracts could be correlated with the content of different phenolic groups and other compounds (sugars and organic acids). It was demonstrated that in vitro culture could enhance nutritional and bioactive compounds of Fragaria vesca L. plants, providing a very interesting biotechnological tool for potential food applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Development of a bioactive glass-polymer composite for wound healing applications.

    PubMed

    Moura, D; Souza, M T; Liverani, L; Rella, G; Luz, G M; Mano, J F; Boccaccini, A R

    2017-07-01

    This study reports the production and characterization of a composite material for wound healing applications. A bioactive glass obtained by sol-gel process and doped with two different metal ions was investigated. Silver (Ag) and cobalt (Co) were chosen due to their antibacterial and angiogenic properties, respectively, very beneficial in the wound healing process. Poly(ε-caprolactone) (PCL) fibers were produced by electrospinning (ES) from a polymeric solution using acetone as a solvent. After optimization of the ES parameters, two main suspensions were prepared, namely: PCL containing bioactive glass nanoparticles (BG-NP) and PCL with Ag 2 O and CoO doped BG-NP (DP BG-NP), which were processed with different concentrations of BG-NP (0.25%, 0.5% and 0.75wt%). The composite membranes were characterized in terms of morphology, fiber diameter, weight loss, mineralization potential and mechanical performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Peanuts as functional food: a review.

    PubMed

    Arya, Shalini S; Salve, Akshata R; Chauhan, S

    2016-01-01

    Peanut is an important crop grown worldwide. Commercially it is used mainly for oil production but apart from oil, the by-products of peanut contains many other functional compounds like proteins, fibers, polyphenols, antioxidants, vitamins and minerals which can be added as a functional ingredient into many processed foods. Recently it has also revealed that peanuts are excellent source of compounds like resveratrol, phenolic acids, flavonoids and phytosterols that block the absorption of cholesterol from diet. It is also a good source of Co-enzyme Q10 and contains all the 20 amino acids with highest amount of arginine. These bioactive compounds have been recognized for having disease preventive properties and are thought to promote longevity. The processing methods like roasting and boiling have shown increase in the concentration of these bioactive compounds. In the present paper an overview on peanut bioactive constituents and their health benefits are presented.

  3. Bioactivities and extraction optimization of crude polysaccharides from the fruits and leaves of Rubus chingii Hu.

    PubMed

    Zhang, Tian-Tian; Lu, Chuan-Li; Jiang, Jian-Guo; Wang, Min; Wang, Dong-Mei; Zhu, Wei

    2015-10-05

    Polysaccharides of Rubus chingii Hu fruit and leaf were extracted to compare their antioxidant, anti-inflammatory, and anticancer activities against breast cancer cells MCF-7 and liver cancer cells Bel-7402. Results showed that all the tested bioactivities of polysaccharides from leaf (L-Ps) were better than those of polysaccharides from fruit (F-Ps). Response surface methodology was then used to optimize the extraction conditions of polysaccharides from leaf. Additionally, polysaccharides from fruit and leaf were characterized and their contents of total sugars, proteins and uronic acid were compared. It was found that polysaccharides from fruit and leaf were similar in IR and UV absorption, but significantly different in contents of total sugars, protein and uronic acid. Their elution profiles of DEAE-Sepharose fast flow column were different too. The main peak of polysaccharides from fruit was eluted with 0.3 mol/l NaCl solution and the main peak of polysaccharides from leaf was eluted with deionized water. The differences between the two polysaccharides may be responsible for their differences in bioactivities. Further studies are required to explore their complete structural characteristics, structure-activity relationship and the mechanism of their activities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Antioxidant and Antitumor Activity of a Bioactive Polyphenolic Fraction Isolated from the Brewing Process

    NASA Astrophysics Data System (ADS)

    Tatullo, Marco; Simone, Grazia Maria; Tarullo, Franco; Irlandese, Gianfranco; Vito, Danila De; Marrelli, Massimo; Santacroce, Luigi; Cocco, Tiziana; Ballini, Andrea; Scacco, Salvatore

    2016-10-01

    There is increasing interest in identifying natural bioactive compounds that can improve mitochondrial functionality and regulate apoptosis. The brewery industry generates wastewater that could yield a natural extract containing bioactive phenolic compounds. Polyphenols act as antioxidants and have been documented to protect the human body from degenerative diseases such as cardiovascular diseases or cancer. The main aims of our research were to determine the phenolic profile of a crude extract obtained (at pilot scale) from a brewery waste stream and to evaluate the biochemical activity of this extract on the mitochondrial function of a cancer cell line (SH-SY5Y). This work is a basic translational pilot study. The total phenolic content was determined by the Folin-Ciocalteu assay, which revealed that 2.30% of the extract consisted of phenolic compounds. The polyphenols, identified and quantified by reverse-phase-high-performance liquid chromatography and mass spectrometry (RP-HPLC/MS), were mainly flavonoids. After cell culture, the tumoral cells treated with the polyphenolic extract showed enhanced mitochondrial oxidative function, which is likely related to a decrease in oxidative stress and an increase in mitochondrial biogenesis. This type of brewery waste stream, properly treated, may be a promising source of natural antioxidants to replace the synthetic antioxidants currently used in the food industry.

  5. Antioxidant and Antitumor Activity of a Bioactive Polyphenolic Fraction Isolated from the Brewing Process

    PubMed Central

    Tatullo, Marco; Simone, Grazia Maria; Tarullo, Franco; Irlandese, Gianfranco; Vito, Danila De; Marrelli, Massimo; Santacroce, Luigi; Cocco, Tiziana; Ballini, Andrea; Scacco, Salvatore

    2016-01-01

    There is increasing interest in identifying natural bioactive compounds that can improve mitochondrial functionality and regulate apoptosis. The brewery industry generates wastewater that could yield a natural extract containing bioactive phenolic compounds. Polyphenols act as antioxidants and have been documented to protect the human body from degenerative diseases such as cardiovascular diseases or cancer. The main aims of our research were to determine the phenolic profile of a crude extract obtained (at pilot scale) from a brewery waste stream and to evaluate the biochemical activity of this extract on the mitochondrial function of a cancer cell line (SH-SY5Y). This work is a basic translational pilot study. The total phenolic content was determined by the Folin–Ciocalteu assay, which revealed that 2.30% of the extract consisted of phenolic compounds. The polyphenols, identified and quantified by reverse-phase-high-performance liquid chromatography and mass spectrometry (RP-HPLC/MS), were mainly flavonoids. After cell culture, the tumoral cells treated with the polyphenolic extract showed enhanced mitochondrial oxidative function, which is likely related to a decrease in oxidative stress and an increase in mitochondrial biogenesis. This type of brewery waste stream, properly treated, may be a promising source of natural antioxidants to replace the synthetic antioxidants currently used in the food industry. PMID:27786308

  6. Metabolomics-Driven Nutraceutical Evaluation of Diverse Green Tea Cultivars

    PubMed Central

    Ida, Megumi; Kosaka, Reia; Miura, Daisuke; Wariishi, Hiroyuki; Maeda-Yamamoto, Mari; Nesumi, Atsushi; Saito, Takeshi; Kanda, Tomomasa; Yamada, Koji; Tachibana, Hirofumi

    2011-01-01

    Background Green tea has various health promotion effects. Although there are numerous tea cultivars, little is known about the differences in their nutraceutical properties. Metabolic profiling techniques can provide information on the relationship between the metabolome and factors such as phenotype or quality. Here, we performed metabolomic analyses to explore the relationship between the metabolome and health-promoting attributes (bioactivity) of diverse Japanese green tea cultivars. Methodology/Principal Findings We investigated the ability of leaf extracts from 43 Japanese green tea cultivars to inhibit thrombin-induced phosphorylation of myosin regulatory light chain (MRLC) in human umbilical vein endothelial cells (HUVECs). This thrombin-induced phosphorylation is a potential hallmark of vascular endothelial dysfunction. Among the tested cultivars, Cha Chuukanbohon Nou-6 (Nou-6) and Sunrouge (SR) strongly inhibited MRLC phosphorylation. To evaluate the bioactivity of green tea cultivars using a metabolomics approach, the metabolite profiles of all tea extracts were determined by high-performance liquid chromatography-mass spectrometry (LC-MS). Multivariate statistical analyses, principal component analysis (PCA) and orthogonal partial least-squares-discriminant analysis (OPLS-DA), revealed differences among green tea cultivars with respect to their ability to inhibit MRLC phosphorylation. In the SR cultivar, polyphenols were associated with its unique metabolic profile and its bioactivity. In addition, using partial least-squares (PLS) regression analysis, we succeeded in constructing a reliable bioactivity-prediction model to predict the inhibitory effect of tea cultivars based on their metabolome. This model was based on certain identified metabolites that were associated with bioactivity. When added to an extract from the non-bioactive cultivar Yabukita, several metabolites enriched in SR were able to transform the extract into a bioactive extract. Conclusions/Significance Our findings suggest that metabolic profiling is a useful approach for nutraceutical evaluation of the health promotion effects of diverse tea cultivars. This may propose a novel strategy for functional food design. PMID:21853132

  7. Bio-active molecules modified surfaces enhanced mesenchymal stem cell adhesion and proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mobasseri, Rezvan; Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, 117576; Tian, Lingling

    Surface modification of the substrate as a component of in vitro cell culture and tissue engineering, using bio-active molecules including extracellular matrix (ECM) proteins or peptides derived ECM proteins can modulate the surface properties and thereby induce the desired signaling pathways in cells. The aim of this study was to evaluate the behavior of human bone marrow mesenchymal stem cells (hBM-MSCs) on glass substrates modified with fibronectin (Fn), collagen (Coll), RGD peptides (RGD) and designed peptide (R-pept) as bio-active molecules. The glass coverslips were coated with fibronectin, collagen, RGD peptide and R-peptide. Bone marrow mesenchymal stem cells were cultured on differentmore » substrates and the adhesion behavior in early incubation times was investigated using scanning electron microscopy (SEM) and confocal microscopy. The MTT assay was performed to evaluate the effect of different bio-active molecules on MSCs proliferation rate during 24 and 72 h. Formation of filopodia and focal adhesion (FA) complexes, two steps of cell adhesion process, were observed in MSCs cultured on bio-active molecules modified coverslips, specifically in Fn coated and R-pept coated groups. SEM image showed well adhesion pattern for MSCs cultured on Fn and R-pept after 2 h incubation, while the shape of cells cultured on Coll and RGD substrates indicated that they might experience stress condition in early hours of culture. Investigation of adhesion behavior, as well as proliferation pattern, suggests R-peptide as a promising bio-active molecule to be used for surface modification of substrate in supporting and inducing cell adhesion and proliferation. - Highlights: • Bioactive molecules modified surface is a strategy to design biomimicry scaffold. • Bi-functional Tat-derived peptide (R-pept) enhanced MSCs adhesion and proliferation. • R-pept showed similar influences to fibronectin on FA formation and attachment.« less

  8. At-line nanofractionation with parallel mass spectrometry and bioactivity assessment for the rapid screening of thrombin and factor Xa inhibitors in snake venoms.

    PubMed

    Mladic, Marija; Zietek, Barbara M; Iyer, Janaki Krishnamoorthy; Hermarij, Philip; Niessen, Wilfried M A; Somsen, Govert W; Kini, R Manjunatha; Kool, Jeroen

    2016-02-01

    Snake venoms comprise complex mixtures of peptides and proteins causing modulation of diverse physiological functions upon envenomation of the prey organism. The components of snake venoms are studied as research tools and as potential drug candidates. However, the bioactivity determination with subsequent identification and purification of the bioactive compounds is a demanding and often laborious effort involving different analytical and pharmacological techniques. This study describes the development and optimization of an integrated analytical approach for activity profiling and identification of venom constituents targeting the cardiovascular system, thrombin and factor Xa enzymes in particular. The approach developed encompasses reversed-phase liquid chromatography (RPLC) analysis of a crude snake venom with parallel mass spectrometry (MS) and bioactivity analysis. The analytical and pharmacological part in this approach are linked using at-line nanofractionation. This implies that the bioactivity is assessed after high-resolution nanofractionation (6 s/well) onto high-density 384-well microtiter plates and subsequent freeze drying of the plates. The nanofractionation and bioassay conditions were optimized for maintaining LC resolution and achieving good bioassay sensitivity. The developed integrated analytical approach was successfully applied for the fast screening of snake venoms for compounds affecting thrombin and factor Xa activity. Parallel accurate MS measurements provided correlation of observed bioactivity to peptide/protein masses. This resulted in identification of a few interesting peptides with activity towards the drug target factor Xa from a screening campaign involving venoms of 39 snake species. Besides this, many positive protease activity peaks were observed in most venoms analysed. These protease fingerprint chromatograms were found to be similar for evolutionary closely related species and as such might serve as generic snake protease bioactivity fingerprints in biological studies on venoms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Clinical applications of bioactive milk components

    PubMed Central

    Newburg, David S.

    2015-01-01

    Milk represents a unique resource for translational medicine: It contains a rich pool of biologically active molecules with demonstrated clinical benefits. The ongoing characterization of the mechanistic process through which milk components promote development and immunity has revealed numerous milk-derived compounds with potential applications as clinical therapies in infectious and inflammatory disease, cancer, and other conditions. Lactoferrin is an effective antimicrobial and antiviral agent in high-risk patient populations and a potentially potent adjuvant to chemotherapy in lung cancer. Enteric nutrition formulas supplemented with transforming growth factor β, a milk cytokine, have been shown to promote remission in pediatric Crohn's disease. A number of milk glycans, including human milk oligosaccharides, show promise in preclinical studies as antimicrobial and anti-inflammatory agents. While active preclinical investigations of human milk may soon result in large-scale production of human milk molecules, bovine milk components in many instances represent a practical source of bioactive milk compounds for use in clinical trials. This review summarizes current efforts to translate the compounds derived from human and bovine milk into effective clinical therapies. These efforts suggest a common pathway for the translation of milk-derived compounds into clinical applications. PMID:26011900

  10. Combinations of Ashwagandha Leaf Extracts Protect Brain-Derived Cells against Oxidative Stress and Induce Differentiation

    PubMed Central

    Shah, Navjot; Singh, Rumani; Sarangi, Upasana; Saxena, Nishant; Chaudhary, Anupama; Kaur, Gurcharan; Kaul, Sunil C.; Wadhwa, Renu

    2015-01-01

    Background Ashwagandha, a traditional Indian herb, has been known for its variety of therapeutic activities. We earlier demonstrated anticancer activities in the alcoholic and water extracts of the leaves that were mediated by activation of tumor suppressor functions and oxidative stress in cancer cells. Low doses of these extracts were shown to possess neuroprotective activities in vitro and in vivo assays. Methodology/Principal Findings We used cultured glioblastoma and neuroblastoma cells to examine the effect of extracts (alcoholic and water) as well as their bioactive components for neuroprotective activities against oxidative stress. Various biochemical and imaging assays on the marker proteins of glial and neuronal cells were performed along with their survival profiles in control, stressed and recovered conditions. We found that the extracts and one of the purified components, withanone, when used at a low dose, protected the glial and neuronal cells from oxidative as well as glutamate insult, and induced their differentiation per se. Furthermore, the combinations of extracts and active component were highly potent endorsing the therapeutic merit of the combinational approach. Conclusion Ashwagandha leaf derived bioactive compounds have neuroprotective potential and may serve as supplement for brain health. PMID:25789768

  11. Targeting the Epigenome with Bioactive Food Components for Cancer Prevention

    PubMed Central

    Ong, Thomas Prates; Moreno, Fernando Salvador; Ross, Sharon Ann

    2012-01-01

    Epigenetic processes participate in cancer development and likely influence cancer prevention. Global DNA hypomethylation, gene promoter hypermethylation and aberrant histone post-translational modifications are hallmarks of neoplastic cells which have been associated with genomic instability and altered gene expression. Because epigenetic deregulation occurs early in carcinogenesis and is potentially reversible, intervention strategies targeting the epigenome have been proposed for cancer prevention. Bioactive food components (BFCs) with anticancer potential, including folate, polyphenols, selenium, retinoids, fatty acids, isothiocyanates and allyl compounds, influence DNA methylation and histone modification processes. Such activities have been shown to affect the expression of genes involved in cell proliferation, death and differentiation that are frequently altered in cancer. Although the epigenome represents a promising target for cancer prevention with BFCs, few studies have addressed the influence of dietary components on these mechanisms in vivo, particularly on the phenotype of humans, and thus the exact mechanisms whereby diet mediates an effect on cancer prevention remains unclear. Primary factors that should be elucidated include the effective doses and dose timing of BFCs to attain epigenetic effects. Because diet-epigenome interactions are likely to occur in utero, the impact of early-life nutrition on cancer risk programming should be further investigated. PMID:22353664

  12. Clinical applications of bioactive milk components.

    PubMed

    Hill, David R; Newburg, David S

    2015-07-01

    Milk represents a unique resource for translational medicine: It contains a rich pool of biologically active molecules with demonstrated clinical benefits. The ongoing characterization of the mechanistic process through which milk components promote development and immunity has revealed numerous milk-derived compounds with potential applications as clinical therapies in infectious and inflammatory disease, cancer, and other conditions. Lactoferrin is an effective antimicrobial and antiviral agent in high-risk patient populations and a potentially potent adjuvant to chemotherapy in lung cancer. Enteric nutrition formulas supplemented with transforming growth factor β, a milk cytokine, have been shown to promote remission in pediatric Crohn's disease. A number of milk glycans, including human milk oligosaccharides, show promise in preclinical studies as antimicrobial and anti-inflammatory agents. While active preclinical investigations of human milk may soon result in large-scale production of human milk molecules, bovine milk components in many instances represent a practical source of bioactive milk compounds for use in clinical trials. This review summarizes current efforts to translate the compounds derived from human and bovine milk into effective clinical therapies. These efforts suggest a common pathway for the translation of milk-derived compounds into clinical applications.

  13. Phytochemicals, Monosaccharides and Elemental Composition of the Non-Pomace Constituent of Organic and Conventional Grape Juices (Vitis labrusca L.): Effect of Drying on the Bioactive Content.

    PubMed

    Haas, Isabel Cristina da Silva; Toaldo, Isabela Maia; de Gois, Jefferson Santos; Borges, Daniel L G; Petkowicz, Carmen Lúcia de Oliveira; Bordignon-Luiz, Marilde T

    2016-12-01

    Grape and grape derivatives contain a variety of antioxidants that have gain increasing interest for functional foods applications. The chemical composition of grapes is mainly related to grape variety and cultivation factors, and each grape constituent exhib its unique characteristics regarding its bioactive properties. This study investigated the chemical composition and the effect of drying on the bioactive content of the non-pomace constituent obtained in the processing of organic and conventional grape juices from V. labrusca L. The non-pomace samples were analyzed for polyphenols, monosaccharides, antioxidant activity and elemental composition and the effect of drying on the bioactive composition was evaluated in samples subjected to lyophilization and drying with air circulation. The analyses revealed high concentrations of proanthocyanidins, flavanols and anthocyanins, and high antioxidant capacity of the organic and conventional samples. The drying processes reduced significantly (P < 0.05) the total phenolic content that ranged from 13.23 to 36.36 g/kg. Glucose, xylose, and mannose were the predominant monosaccharides, whereas K, Ca and Mg were the most abundant minerals. Variations in the chemical composition of organic and conventional samples were associated with cultivation factors. Nevertheless, this non-pomace constituent is a promising source of nutrients and polyphenols with bioactive potential.

  14. Improving In Vivo Efficacy of Bioactive Molecules: An Overview of Potentially Antitumor Phytochemicals and Currently Available Lipid-Based Delivery Systems

    PubMed Central

    Torres, Carlos; Vázquez, Luis; Reglero, Guillermo; Fornari, Tiziana

    2017-01-01

    Cancer is among the leading causes of morbidity and mortality worldwide. Many of the chemotherapeutic agents used in cancer treatment exhibit cell toxicity and display teratogenic effect on nontumor cells. Therefore, the search for alternative compounds which are effective against tumor cells but reduce toxicity against nontumor ones is of great importance in the progress or development of cancer treatments. In this sense, scientific knowledge about relevant aspects of nutrition intimately involved in the development and progression of cancer progresses rapidly. Phytochemicals, considered as bioactive ingredients present in plant products, have shown promising effects as potential therapeutic/preventive agents on cancer in several in vitro and in vivo assays. However, despite their bioactive properties, phytochemicals are still not commonly used in clinical practice due to several reasons, mainly attributed to their poor bioavailability. In this sense, new formulation strategies are proposed as carriers to improve their bioefficacy, highlighting the use of lipid-based delivery systems. Here, we review the potential antitumoral activity of the bioactive compounds derived from plants and the current studies carried out in animal and human models. Furthermore, their association with lipids as a formulation strategy to enhance their efficacy in vivo is also reported. The development of high effective bioactive supplements for cancer treatment based on the improvement of their bioavailability goes through this association. PMID:28555156

  15. A new methodology for the determination of enzyme activity based on carbon nanotubes and glucose oxidase.

    PubMed

    Yeşiller, Gülden; Sezgintürk, Mustafa Kemal

    2015-11-10

    In this research, a novel enzyme activity analysis methodology is introduced as a new perspective for this area. The activity of elastase enzyme, which is a digestive enzyme mostly of found in the digestive system of vertebrates, was determined by an electrochemical device composed of carbon nanotubes and a second enzyme, glucose oxidase, which was used as a signal generator enzyme. In this novel methodology, a complex bioactive layer was constructed by using carbon nanotubes, glucose oxidase and a supporting protein, gelatin on a solid, conductive substrate. The activity of elastase was determined by monitoring the hydrolysis rate of elastase enzyme in the bioactive layer. As a result of this hydrolysis of elastase, glucose oxidase was dissociated from the bioactive layer, and following this the electrochemical signal due to glucose oxidase was decreased. The progressive elastase-catalyzed digestion of the bioactive layer containing glucose oxidase decreased the layer's enzymatic efficiency, resulting in a decrease of the glucose oxidation current as a function of the enzyme activity. The ratio of the decrease was correlated to elastase activity level. In this study, optimization experiments of bioactive components and characterization of the resulting new electrochemical device were carried out. A linear calibration range from 0.0303U/mL to 0.0729U/mL of elastase was reported. Real sample analyses were also carried out by the new electrochemical device. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Separation and characterization of polyphenolics from underutilized byproducts of fruit production (Choerospondias axillaris peels): inhibitory activity of proanthocyanidins against glycolysis enzymes.

    PubMed

    Li, Qian; Chen, Jun; Li, Ti; Liu, Chengmei; Zhai, Yuxin; McClements, David Julian; Liu, Jiyan

    2015-12-01

    Bioactive proanthocyanidins were isolated from the peel of Choerospondias axillaris fruit, which is a waste product of the food processing industry. Compositional analysis indicated that the proanthocyanidins had extension units mainly consisting of epicatechin gallate or epicatechin, and terminal units mainly consisting of catechin. Numerous polymeric forms of the molecules were detected, including monomers, dimers, and trimers. Certain fractions exhibited strong α-amylase or α-glucosidase inhibition in a dose-dependent manner. Furthermore, their inhibitory activities depended on their degree of polymerization and galloylation. For example, the most bioactive fraction had α-amylase and α-glucosidase inhibitory activities (IC50 values) of 541 and 3.1 μg mL(-1), respectively. This study demonstrates that proanthocyanidins from C. axillaris peels can inhibit carbohydrate digestive enzymes in vitro and may therefore serve as antidiabetic ingredients in functional or medical foods.

  17. Plant nutraceuticals as antimicrobial agents in food preservation: terpenoids, polyphenols and thiols.

    PubMed

    Gutiérrez-Del-Río, Ignacio; Fernández, Javier; Lombó, Felipe

    2018-05-16

    Synthetic food additives generate a negative perception in consumers. Therefore, food manufacturers search for safer natural alternatives as those involving phytochemicals and plant essential oils. These bioactives have antimicrobial activities widely proved in in vitro tests. Foodborne diseases cause thousands of deaths and millions of infections every year, mainly due to pathogenic bacteria as Salmonella spp., Campylobacter spp., Escherichia coli, Bacillus cereus, Listeria monocytogenes or Staphylococcus aureus. This review summarizes industrially interesting antimicrobial bioactivities, as well as their mechanisms of action, for three main types of plant nutraceuticals, terpenoids (as carnosic acid), polyphenols (as quercetin) and thiols (as allicin), which are important constituents of plant essential oils with a broad range of antimicrobial effects. These phytochemicals are widely distributed in fruits and vegetables and are really useful in food preservation as they inhibit microbial growth. Copyright © 2018. Published by Elsevier B.V.

  18. Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves.

    PubMed

    Ferracane, Rosalia; Graziani, Giulia; Gallo, Monica; Fogliano, Vincenzo; Ritieni, Alberto

    2010-01-20

    In this work the bioactive metabolic profile, the antioxidant activity and total phenolic content of burdock (Arctium lappa) seeds, leaves and roots were obtained. TEAC values and total phenolic content for hydro-alcoholic extracts of burdock ranged from 67.39 to 1.63 micromol Trolox equivalent/100g dry weight (DW), and from 2.87 to 45 g of gallic acid equivalent/100g DW, respectively. Phytochemical compounds were analyzed by liquid chromatography coupled to electrospray tandem mass spectrometry (LC/MS/MS) in negative mode. The main compounds of burdock extracts were caffeoylquinic acid derivatives, lignans (mainly arctiin) and various flavonoids. The occurrence of some phenolic acids (caffeic acid, chlorogenic acid and cynarin) in burdock seeds; arctiin, luteolin and quercetin rhamnoside in burdock roots; phenolic acids, quercetin, quercitrin and luteolin in burdock leaves was reported for the first time.

  19. Rapid evaluation and comparison of natural products and antioxidant activity in calendula, feverfew, and German chamomile extracts.

    PubMed

    Agatonovic-Kustrin, Snezana; Babazadeh Ortakand, Davoud; Morton, David W; Yusof, Ahmad P

    2015-03-13

    The present study describes a simple high performance thin layer chromatographic (HPTLC) method for the simultaneous quantification of apigenin, chamazulene, bisabolol and the use of DPPH free radical as a post-chromatographic derivatization agent to compare the free radical scavenging activities of these components in leaf and flower head extracts from feverfew, German chamomile and marigold from the Asteraceae family. Feverfew (Tanacetum parthenium) leaves have been traditionally used in the treatment of migraine with parthenolide being the main bioactive compound. However, due to similar flowers, feverfew is sometimes mistaken for the German chamomile (Matricaria recutita). Bisabolol and chamazulene are the main components in chamomile essential oil. Marigold (Calendula officinalis) was included in the study for comparison, as it belongs to the same family. Parthenolide was found to be present in all leaf extracts but was not detected in calendula flower extract. Chamazulene and bisabolol were found to be present in higher concentrations in chamomile and Calendula flowers. Apigenin was detected and quantified only in chamomile extracts (highest concentration in flower head extracts). Antioxidant activity in sample extracts was compared by superimposing the chromatograms obtained after post-chromatographic derivatization with DPPH and post-chromatographic derivatization with anisaldehyde. It was found that extracts from chamomile flower heads and leaves have the most prominent antioxidant activity, with bisabolol and chamazulene being the most effective antioxidants. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  20. Saffron: a natural product with potential pharmaceutical applications.

    PubMed

    Christodoulou, Eirini; Kadoglou, Nikolaos P E; Kostomitsopoulos, Nikolaos; Valsami, Georgia

    2015-12-01

    Recently, a great deal of interest has been developed to isolate and investigate novel bioactive components from natural resources with health beneficial effects. Saffron is the dried stigma of Crocus sativus L. and has been used for centuries in traditional medicine mainly for its healing properties, as well as for the treatment of various pathological conditions. Objectives of the present review are to unravel its therapeutic properties and investigate the potential applications of saffron in contemporary therapy of a wide spectrum of diseases and summarize previous and current evidence regarding the biological/pharmacological activities of saffron and its active ingredients and their possible therapeutic uses. Recent phytochemistry and pharmacological experiments have indicated that crocin and safranal, the major active ingredients of saffron, exert important actions, such as antioxidant, anti-tumor, anti-diabetic, anti-inflammatory and anti-atherosclerotic. Unfortunately, the vast majority of those data derive from in vitro studies, whereas a limited number of in vivo experiments support the aforementioned effects. In addition to studies with mechanistic implications, very few clinical trials provide preliminary evidence of saffron potentiality to alleviate depression and increase cognitive function in patients with Alzheimer's disease. The history and structural features of saffron constituents are given in the first part of the review, followed by a comprehensive and critical presentation of the published preclinical and clinical studies and review papers on the pharmacology and possible therapeutic uses of saffron and its main active components crocin and safranal. © 2015 Royal Pharmaceutical Society.

  1. Identification and analysis of chemical constituents and rat serum metabolites in Suan-Zao-Ren granule using ultra high performance liquid chromatography quadrupole time-of-flight mass spectrometry combined with multiple data processing approaches.

    PubMed

    Du, Yiyang; He, Bosai; Li, Qing; He, Jiao; Wang, Di; Bi, Kaishun

    2017-07-01

    Suan-Zao-Ren granule is widely used to treat insomnia in China. However, because of the complexity and diversity of the chemical compositions in traditional Chinese medicine formula, the comprehensive analysis of constituents in vitro and in vivo is rather difficult. In our study, an ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry and the PeakView® software, which uses multiple data processing approaches including product ion filter, neutral loss filter, and mass defect filter, method was developed to characterize the ingredients and rat serum metabolites in Suan-Zao-Ren granule. A total of 101 constituents were detected in vitro. Under the same analysis conditions, 68 constituents were characterized in rat serum, including 35 prototype components and 33 metabolites. The metabolic pathways of main components were also illustrated. Among them, the metabolic pathways of timosaponin AI were firstly revealed. The bioactive compounds mainly underwent the phase I metabolic pathways including hydroxylation, oxidation, hydrolysis, and phase II metabolic pathways including sulfate conjugation, glucuronide conjugation, cysteine conjugation, acetycysteine conjugation, and glutathione conjugation. In conclusion, our results showed that this analysis approach was extremely useful for the in-depth pharmacological research of Suan-Zao-Ren granule and provided a chemical basis for its rational. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Lavandula angustifolia and Lavandula latifolia Essential Oils from Spain: Aromatic Profile and Bioactivities.

    PubMed

    Carrasco, Alejandro; Martinez-Gutierrez, Ramiro; Tomas, Virginia; Tudela, Jose

    2016-01-01

    Compositions of true lavender (Lavandula angustifolia) and spike lavender (Lavandula latifolia) essential oils, cultivated and extracted in the Southeast of Spain, were determined by gas chromatography coupled with mass spectrometry detection, obtaining both relative (peak area) and absolute (using standard curves) concentrations. Linalool (37-54 %), linalyl acetate (21-36 %) and (E)-β-caryophyllene (1-3 %) were the most abundant components for L. angustifolia. Linalool (35-51 %), eucalyptol (26-32 %), camphor (10-18 %), α-pinene (1-2 %), α-terpineol (1-2 %) and α-bisabolene (1-2 %) were the most abundant components for L. latifolia. The characterization was completed with enantioselective gas chromatography, in which the determined main molecules were (-)-linalool, (-)-linalyl acetate and (+)-camphor. (S)-(-)-camphene, (R)-(+)-limonene, (1R, 9S)-(-)-(E)-β-caryophyllene and (1R, 4R, 6R, 10S)-(-)-caryophyllene oxide were found in this study as the predominant enantiomers in Spanish L. angustifolia. The characterised essential oils were tested for their antioxidant activity against free radicals ABTS, DPPH, ORAC, chelating, and reducing power. Inhibitory activity on lipoxygenase was observed indicating a possible anti-inflammatory activity, mainly due to linalool, camphor, p-cymene and limonene. These results can be the starting point for a future study of the potential use of L. angustifolia and L. latifolia essential oils as natural cosmetic and natural pharmaceutical ingredients for several skin diseases. Georg Thieme Verlag KG Stuttgart · New York.

  3. Identification of Bioactivity, Volatile and Fatty Acid Profile in Supercritical Fluid Extracts of Mexican arnica.

    PubMed

    García-Pérez, J Saúl; Cuéllar-Bermúdez, Sara P; Arévalo-Gallegos, Alejandra; Rodríguez-Rodríguez, José; Iqbal, Hafiz M N; Parra-Saldivar, Roberto

    2016-09-12

    Supercritical fluid extraction (SFE) is a sustainable technique used for the extraction of lipophilic metabolites such as pigments and fatty acids. Arnica plant is considered a potential candidate material with high antioxidant and antimicrobial activities. Therefore, in this study, a locally available Heterotheca inuloides, also known as Mexican arnica, was analyzed for the extraction of high-value compounds. Based on different pressure (P), temperature (T), and co-solvent (CoS), four treatments (T) were prepared. A maximum 7.13% yield was recovered from T2 (T = 60 °C, P = 10 MPa, CoS = 8 g/min), followed by 6.69% from T4 (T = 60 °C, P = 30 MPa, CoS = 4 g/min). Some bioactive sesquiterpenoids such as 7-hydroxycadalene, caryophyllene and δ-cadinene were identified in the extracts by GC/MS. The fatty acid profile revealed that the main components were palmitic acid (C16:0), followed by linoleic acid (C18:2ω6c), α-linolenic acid (C18:3ω3) and stearic acid (C18:0) differing in percent yield per treatment. Antibacterial activities were determined by the agar diffusion method, indicating that all the treatments exerted strong antibacterial activity against S. aureus, C. albicans, and E. coli strains. The antioxidant capacity of the extracts was also measured by three in vitro assays, DPPH, TEAC and FRAP, using Trolox as a standard. Results showed high antioxidant capacity enabling pharmaceutical applications of Mexican arnica.

  4. Identification of Bioactivity, Volatile and Fatty Acid Profile in Supercritical Fluid Extracts of Mexican arnica

    PubMed Central

    García-Pérez, J. Saúl; Cuéllar-Bermúdez, Sara P.; Arévalo-Gallegos, Alejandra; Rodríguez-Rodríguez, José; Iqbal, Hafiz M. N.; Parra-Saldivar, Roberto

    2016-01-01

    Supercritical fluid extraction (SFE) is a sustainable technique used for the extraction of lipophilic metabolites such as pigments and fatty acids. Arnica plant is considered a potential candidate material with high antioxidant and antimicrobial activities. Therefore, in this study, a locally available Heterotheca inuloides, also known as Mexican arnica, was analyzed for the extraction of high-value compounds. Based on different pressure (P), temperature (T), and co-solvent (CoS), four treatments (T) were prepared. A maximum 7.13% yield was recovered from T2 (T = 60 °C, P = 10 MPa, CoS = 8 g/min), followed by 6.69% from T4 (T = 60 °C, P = 30 MPa, CoS = 4 g/min). Some bioactive sesquiterpenoids such as 7-hydroxycadalene, caryophyllene and δ-cadinene were identified in the extracts by GC/MS. The fatty acid profile revealed that the main components were palmitic acid (C16:0), followed by linoleic acid (C18:2ω6c), α-linolenic acid (C18:3ω3) and stearic acid (C18:0) differing in percent yield per treatment. Antibacterial activities were determined by the agar diffusion method, indicating that all the treatments exerted strong antibacterial activity against S. aureus, C. albicans, and E. coli strains. The antioxidant capacity of the extracts was also measured by three in vitro assays, DPPH, TEAC and FRAP, using Trolox as a standard. Results showed high antioxidant capacity enabling pharmaceutical applications of Mexican arnica. PMID:27626416

  5. Preparation, characterization and bioavailability by oral administration of O/W curcumin nanoemulsions stabilized with lysophosphatidylcholine.

    PubMed

    Chávez-Zamudio, Rubi; Ochoa-Flores, Angélica A; Soto-Rodríguez, Ida; Garcia-Varela, Rebeca; García, Hugo Sergio

    2017-09-20

    Curcumin is the main and most abundant bioactive component in Curcuma longa L. with documented properties in the prevention and treatment of chronic degenerative and infectious diseases. However, curcumin has low solubility in aqueous media, hence low bioavailability when administered orally. The use of nanoemulsions as carriers can provide a partial solution to bioavailability restrictions. In our study, O/W nanoemulsions of curcumin were prepared using lysophosphatidylcholine, a phospholipid with proven emulsification capacity; nevertheless, such qualities have not been previously reported in the preparation of nanoemulsions. Lysophosphatidylcholine was obtained by enzymatic removal of one fatty acid residue from phosphatidylcholine. The objective of our work was to formulate stable curcumin nanoemulsions and evaluate their bioavailability in BALB/c mice plasma after oral administration. Formulated nanoemulsions had a droplet size mean of 154.32 ± 3.10 nm, a polydispersity index of 0.34 ± 0.07 and zeta potential of -10.43 ± 1.10 mV; stability was monitored for 12 weeks. Lastly, in vivo pharmacokinetic parameters, using BALB/c mice, were obtained; namely, C max of 610 ± 65.0 μg mL -1 and T max of 2 h. Pharmacokinetic data revealed a higher bioavailability of emulsified as opposed to free curcumin. Research regarding other potential emulsifiers that may provide better health benefits and carry nano-encapsulated bioactive compounds more effectively, is necessary. This study provides important data on the preparation and design of nanoencapsulated Curcumin using lysophosphatidylcholine as an emulsifier.

  6. Oral administration of Nitraria retusa ethanolic extract enhances hepatic lipid metabolism in db/db mice model 'BKS.Cg-Dock7(m)+/+ Lepr(db/)J' through the modulation of lipogenesis-lipolysis balance.

    PubMed

    Zar Kalai, Feten; Han, Junkyu; Ksouri, Riadh; Abdelly, Chedly; Isoda, Hiroko

    2014-10-01

    The medicinal plants can be used in the prevention or treatment of many diseases. Several studies concerning the potential of bioactive components in plants and food products and their link to obesity and related metabolic disorders, have been gaining big interest. Diabetes is a serious metabolic syndrome. Searching for alternative natural bioactive molecules is considered main strategy to manage diabetes through weight management. In the present study, an edible halophyte Nitraria retusa was selected and in vivo experiment was conducted using db/db model mice. We orally administrated its ethanol extract (NRE) to BKS.Cg-Dock7(m)+/+ Lepr(db/)J mice model for a period of 4 weeks. The effect was evaluated on the body weight and adiposity changes and on the biochemical parameters of db/db NRE-treated mice. The molecular mechanism underlying the anti-obesity effect was investigated by testing the gene expression related to hepatic lipid metabolism. NRE was found to significantly supress increases in body and fat mass weight, decreases triglycerides and LDL-cholesterol levels and enhances gene expression related to lipid homeostasis in liver showing anti-obesity actions. Our findings, indicate that NRE possesses potential anti-obesity effects in BKS.Cg-Dock7(m)+/+ Lepr(db/)J model mice and may relieve obesity-related symptoms including hyperlipidemia through modulating the lipolysis-lipogenesis balance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Traditional and Modern Biomedical Prospecting: Part I—the History

    PubMed Central

    2004-01-01

    Nature, especially the marine environment, provides the most effective drugs used in human therapy. Among the metazoans, the marine sponges (phylum Porifera), which are sessile filter feeders, produce the most potent and highly selective bioactive secondary metabolites. These animals (or their associated symbiotic microorganisms) synthesize secondary metabolites whose activity and selectivity has developed during their long evolutionary history (evochemistry). The exploitation of these resources has become possible due to the progress in molecular and cell biology. BIOTECmarin, the German Center of Excellence follows this rationale. In the past, these animals have been successfully and extensively utilized to isolate bioactive compounds and biomaterials for human benefit. Pharmaceuticals prepared from marine animals, primarily sponges, have been applied since ancient times (Hippocrates, Aristotle and later Plinius). It has been reported that extracts and/or components from sponges can be used for the treatment of specific diseases. For a systematic and applied-oriented exploitation, the successful development of effective compounds largely depends on quality of the institutional infrastructure of marine stations and more so on the biodiversity. The Center for Marine Research in Rovinj (Croatia) fulfils these prerequisites. Founded in 1891, this institute has to its credit major discoveries related to exploitation of secondary metabolites/biomaterials from sponges for therapeutical application and to obtain biomaterials for general wellbeing. This is the first part of a review focusing on biomedical prospecting. Here, we have mainly described the historic background. The details of techniques, substances, approaches and outlooks will be discussed in the second part. PMID:15257328

  8. Coffee, but not caffeine, has positive effects on cognition and psychomotor behavior in aging.

    PubMed

    Shukitt-Hale, Barbara; Miller, Marshall G; Chu, Yi-Fang; Lyle, Barbara J; Joseph, James A

    2013-12-01

    The complex mixture of phytochemicals in fruits and vegetables provides protective health benefits, mainly through additive and/or synergistic effects. The presence of several bioactive compounds, such as polyphenols and caffeine, implicates coffee as a potential nutritional therapeutic in aging. Moderate (three to five cups a day) coffee consumption in humans is associated with a significant decrease in the risk of developing certain chronic diseases. However, the ability of coffee supplementation to improve cognitive function in aged individuals and the effect of the individual components in coffee, such as caffeine, have not been fully evaluated. We fed aged rats (19 months) one of five coffee-supplemented diets (0, 0.165, 0.275, 0.55, and 0.825% of the diet) for 8 weeks prior to motor and cognitive behavior assessment. Aged rats supplemented with a 0.55% coffee diet, equivalent to ten cups of coffee, performed better in psychomotor testing (rotarod) and in a working memory task (Morris water maze) compared to aged rats fed a control diet. A diet with 0.55% coffee appeared to be optimal. The 0.165% coffee-supplemented group (three cups) showed some improvement in reference memory performance in the Morris water maze. In a subsequent study, the effects of caffeine alone did not account for the performance improvements, showing that the neuroprotective benefits of coffee are not due to caffeine alone, but rather to other bioactive compounds in coffee. Therefore, coffee, in achievable amounts, may reduce both motor and cognitive deficits in aging.

  9. Characterization of Metabolic Pathways and Absorption of Sea Cucumber Saponins, Holothurin A and Echinoside A, in Vitro and in Vivo.

    PubMed

    Song, Shanshan; Zhang, Lingyu; Cao, Jian; Xiang, Gao; Cong, Peixu; Dong, Ping; Li, Zhaojie; Xue, Changhu; Xue, Yong; Wang, Yuming

    2017-08-01

    Sea cucumber saponins (SCSs) exhibit a wide spectrum of bioactivities, but their metabolic characteristics are not well elucidated. In this study, the metabolism of holothurin A (HA) and echinoside A (EA), 2 major saponins in sea cucumber, by gut microflora were investigated. First, we conducted an in vitro study, where in the SCSs were incubated with intestinal microflora and the metabolites were detected by high pressure liquid chromatography-high resolution mass spectrometry. We also conducted an in vivo study on rats, where in the intestinal contents, serum, urine, and feces were collected and evaluated after oral administration of SCSs. In the in vitro study, we identified 6 deglycosylated metabolites of HA and EA, assigned M1-M6. In the in vivo study, we found all the deglycosylated metabolites in the intestinal contents after oral administration, and both the metabolites and their prototype components could be absorbed. Four metabolites were identified in the serum, 6 in the urine, and 4 in the feces. The saponins with different structures showed different absorption characteristics in rats. According to our results, deglycosylation is the main intestinal microflora-mediated metabolic pathway for SCSs, and both the SCSs and deglycosylated metabolites can be absorbed by intestine. This study improves the understanding of the metabolism of HA and EA by gut flora, which will be useful for further analysis of the bioactivity mechanism of SCSs. © 2017 Institute of Food Technologists®.

  10. Non-isoflavone phytochemicals in soy and their health effects

    USDA-ARS?s Scientific Manuscript database

    Epidemiological and clinical studies have linked consumption of soy foods with low incidences of a number of chronic diseases; such as cardiovascular diseases, cancer, and osteoporosis. Over the past few decades, enormous research efforts have been made on identifying bioactive components in soy. Is...

  11. An effective vacuum assisted extraction method for the optimization of labdane diterpenoids from Andrographis paniculata by response surface methodology.

    PubMed

    Wang, Ya-Qi; Wu, Zhen-Feng; Ke, Gang; Yang, Ming

    2014-12-31

    An effective vacuum assisted extraction (VAE) technique was proposed for the first time and applied to extract bioactive components from Andrographis paniculata. The process was carefully optimized by response surface methodology (RSM). Under the optimized experimental conditions, the best results were obtained using a boiling temperature of 65 °C, 50% ethanol concentration, 16 min of extraction time, one extraction cycles and a 12:1 liquid-solid ratio. Compared with conventional ultrasonic assisted extraction and heat reflux extraction, the VAE technique gave shorter extraction times and remarkable higher extraction efficiency, which indicated that a certain degree of vacuum gave the solvent a better penetration of the solvent into the pores and between the matrix particles, and enhanced the process of mass transfer. The present results demonstrated that VAE is an efficient, simple and fast method for extracting bioactive components from A. paniculata, which shows great potential for becoming an alternative technique for industrial scale-up applications.

  12. The bioactive acidic serine- and aspartate-rich motif peptide.

    PubMed

    Minamizaki, Tomoko; Yoshiko, Yuji

    2015-01-01

    The organic component of the bone matrix comprises 40% dry weight of bone. The organic component is mostly composed of type I collagen and small amounts of non-collagenous proteins (NCPs) (10-15% of the total bone protein content). The small integrin-binding ligand N-linked glycoprotein (SIBLING) family, a NCP, is considered to play a key role in bone mineralization. SIBLING family of proteins share common structural features and includes the arginine-glycine-aspartic acid (RGD) motif and acidic serine- and aspartic acid-rich motif (ASARM). Clinical manifestations of gene mutations and/or genetically modified mice indicate that SIBLINGs play diverse roles in bone and extraskeletal tissues. ASARM peptides might not be primary responsible for the functional diversity of SIBLINGs, but this motif is suggested to be a key domain of SIBLINGs. However, the exact function of ASARM peptides is poorly understood. In this article, we discuss the considerable progress made in understanding the role of ASARM as a bioactive peptide.

  13. Effects of Vegetables on Cardiovascular Diseases and Related Mechanisms

    PubMed Central

    Tang, Guo-Yi; Meng, Xiao; Li, Ya; Zhao, Cai-Ning; Liu, Qing

    2017-01-01

    Epidemiological studies have shown that vegetable consumption is inversely related to the risk of cardiovascular diseases. Moreover, research has indicated that many vegetables like potatoes, soybeans, sesame, tomatoes, dioscorea, onions, celery, broccoli, lettuce and asparagus showed great potential in preventing and treating cardiovascular diseases, and vitamins, essential elements, dietary fibers, botanic proteins and phytochemicals were bioactive components. The cardioprotective effects of vegetables might involve antioxidation; anti-inflammation; anti-platelet; regulating blood pressure, blood glucose, and lipid profile; attenuating myocardial damage; and modulating relevant enzyme activities, gene expression, and signaling pathways as well as some other biomarkers associated to cardiovascular diseases. In addition, several vegetables and their bioactive components have been proven to protect against cardiovascular diseases in clinical trials. In this review, we analyze and summarize the effects of vegetables on cardiovascular diseases based on epidemiological studies, experimental research, and clinical trials, which are significant to the application of vegetables in prevention and treatment of cardiovascular diseases. PMID:28796173

  14. Comparative Effects of Two Gingerol-Containing Zingiber officinale Extracts on Experimental Rheumatoid Arthritis1

    PubMed Central

    Funk, Janet L.; Frye, Jennifer B.; Oyarzo, Janice N.; Timmermann, Barbara N.

    2009-01-01

    Ginger (Zingiber officinale) supplements are being promoted for arthritis treatment in western societies based on ginger’s traditional use as an anti-inflammatory in Chinese and Ayurvedic medicine. However, scientific evidence of ginger’s antiarthritic effects is sparse, and its bioactive joint-protective components have not been identified. Therefore, the ability of a well-characterized crude ginger extract to inhibit joint swelling in an animal model of rheumatoid arthritis, streptococcal cell wall (SCW)-induced arthritis, was compared to that of a fraction containing only gingerols and their derivatives. Both extracts were efficacious in preventing joint inflammation. However, the crude dichloromethane extract, which also contained essential oils and more polar compounds, was more efficacious (when normalized to gingerol content) in preventing both joint inflammation and destruction. In conclusion, these data document a very significant joint-protective effect of these ginger samples, and suggest that non-gingerol components are bioactive and can enhance the antiarthritic effects of the more widely studied gingerols. PMID:19216559

  15. UHPLC/PDA-ESI/MS analysis of the main berry and leaf flavonol glycosides from different Carpathian Hippophaë rhamnoides L. varieties.

    PubMed

    Pop, Raluca Maria; Socaciu, Carmen; Pintea, Adela; Buzoianu, Anca Dana; Sanders, Mark Gerardus; Gruppen, Harry; Vincken, Jean-Paul

    2013-01-01

    Sea buckthorn (Hippophaë rhamnoides L.) is known to be rich in many bioactive compounds (such as vitamins, phenolics, carotenoids) important for human health and nutrition. Among the phenolics, berries and leaves contain a wide range of flavonols that are good quality and authenticity biomarkers. To compare the composition of the main flavonols of Romanian sea buckthorn berry and leaf varieties and to identify the specific biomarkers that contribute to sample differentiation among varieties. Six varieties of cultivated sea buckthorn (ssp. Carpatica) berries and leaves were analysed by UHPLC/PDA-ESI/MS. Berries and leaves contained mainly isorhamnetin (I) glycosides in different ratios. Whereas I-3-neohesperidoside, I-3-glucoside, I-3-rhamnosylglucoside, I-3-sophoroside-7-rhamnoside and free isorhamnetin were predominant for berries (out of 17 compounds identified), I-3-rhamnosylglucoside, I-3-neohesperidoside, I-3-glucoside, quercetin-3-pentoside, kaempferol-3-rutinoside, and quercetin-3-glucoside were predominant in leaves (out of 19 compounds identified). Berries contained, on average, 917 mg/100 g DW flavonol glycosides. Leaves had higher content of flavonol glycosides than berries, on average 1118 mg/100 g DW. The variation of the quantitative dataset analysed using principal component analysis accounted for 91% of the total variance in the case of berries and 73% in case of leaves, demonstrating a good discrimination among samples. Based on quantitative analysis, by principal component analysis, the flavonol derivatives can be considered as biomarkers to discriminate among varieties and to recognise specifically the berry versus leaf composition. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Comparison of sterols and fatty acids in two species of Ganoderma

    PubMed Central

    2012-01-01

    Background Two species of Ganoderma, G. sinense and G. lucidum, are used as Lingzhi in China. Howerver, the content of triterpenoids and polysaccharides, main actives compounds, are significant different, though the extracts of both G. lucidum and G. sinense have antitumoral proliferation effect. It is suspected that other compounds contribute to their antitumoral activity. Sterols and fatty acids have obvious bioactivity. Therefore, determination and comparison of sterols and fatty acids is helpful to elucidate the active components of Lingzhi. Results Ergosterol, a specific component of fungal cell membrane, was rich in G. lucidum and G. sinense. But its content in G. lucidum (median content 705.0 μg·g-1, range 189.1-1453.3 μg·g-1, n = 19) was much higher than that in G. sinense (median content 80.1 μg·g-1, range 16.0-409.8 μg·g-1, n = 13). Hierarchical clustering analysis based on the content of ergosterol showed that 32 tested samples of Ganoderma were grouped into two main clusters, G. lucidum and G. sinense. Hierarchical clustering analysis based on the contents of ten fatty acids showed that two species of Ganoderma had no significant difference though two groups were also obtained. The similarity of two species of Ganoderma in fatty acids may be related to their antitumoral proliferation effect. Conclusions The content of ergosterol is much higher in G. lucidum than in G. sinense. Palmitic acid, linoleic acid, oleic acid, stearic acid are main fatty acids in Ganoderma and their content had no significant difference between G. lucidum and G. sinense, which may contribute to their antitumoral proliferation effect. PMID:22293530

  17. Bioactive comparison of main components from unripe fruits of Rubus chingii Hu and identification of the effective component.

    PubMed

    Zhang, Tian-Tian; Yang, Li; Jiang, Jian-Guo

    2015-07-01

    Dried and unripe fruit of Rubus chingii Hu, known as "Fu-pen-zi" in Chinese, has been used as a food and tonic in China for a long time. In order to analyze its effective ingredients, polysaccharides, flavonoids, saponins and alkaloids were extracted from the unripe fruits and their contents were determined. The in vitro antioxidant, anticomplementary and anticancer activities against human lung adenocarcinoma A549 cells of the four major constituents were investigated. Results showed that total flavonoids exhibited an obvious antioxidant activity, which was very close to ascorbic acid. The anticomplementary and anticancer activities of flavonoids were also the best among the four chemical compositions. Therefore, extraction process optimization of flavonoids was conducted using response surface methodology. The optimal conditions were as follows: extraction temperature 72.8 °C, ethanol concentration 30.67%, extraction time 2.66 h, and a liquid/solid ratio of 19.54 : 1. In addition, total flavonoids were subsequently separated by column chromatography and the major flavonoid was identified as tiliroside. Further experimental data revealed that tiliroside treatment could suppress the proliferation and induced the apoptosis of A549 cells.

  18. Characterization and quantification of phenolic compounds in four tomato (Lycopersicon esculentum L.) farmers' varieties in northeastern Portugal homegardens.

    PubMed

    Barros, Lillian; Dueñas, Montserrat; Pinela, José; Carvalho, Ana Maria; Buelga, Celestino Santos; Ferreira, Isabel C F R

    2012-09-01

    Tomato (Lycopersicon esculentum L.) is one of the most widely consumed fresh and processed vegetables in the world, and contains bioactive key components. Phenolic compounds are one of those components and, according to the present study, farmers' varieties of tomato cultivated in homegardens from the northeastern Portuguese region are a source of phenolic compounds, mainly phenolic acid derivatives. Using HPLC-DAD-ESI/MS, it was concluded that a cis p-coumaric acid derivative was the most abundant compound in yellow (Amarelo) and round (Batateiro) tomato varieties, while 4-O-caffeolyquinic acid was the most abundant in long (Comprido) and heart (Coração) varieties. The most abundant flavonoid was quercetin pentosylrutinoside in the four tomato varieties. Yellow tomato presented the highest levels of phenolic compounds (54.23 μg/g fw), including phenolic acids (43.30 μg/g fw) and flavonoids (10.93 μg/g fw). The phenolic compounds profile obtained for the studied varieties is different from other tomato varieties available in different countries, which is certainly related to genetic features, cultivation conditions, and handling and storage methods associated to each sample.

  19. Determination of fructooligosaccharides in burdock using HPLC and microwave-assisted extraction.

    PubMed

    Li, Jing; Liu, Xiaomei; Zhou, Bin; Zhao, Jing; Li, Shaoping

    2013-06-19

    The root of burdock ( Arctium lappa L.) is a commonly used vegetable in Asia. Fructooligosaccharides (FOS) are usually considered as its main bioactive components. Thus, quantitative analysis of these components is very important for the quality control of burdock. In this study, an HPLC-ELSD and microwave-assisted extraction method was developed for the simultaneous determination of seven FOS with degrees of polymerization (DP) between 3 and 9, as well as fructose, glucose, and sucrose in burdock from different regions. The separation was performed on a Waters XBridge Amide column (4.6 × 250 mm i.d., 3.5 μm) with gradient elution. All calibration curves for investigated analytes showed good linear regression (r > 0.9990). Their LODs and LOQs were lower than 3.63 and 24.82 μg/mL, respectively. The recoveries ranged from 99.2 to 102.6%. The developed method was successfully applied to determination of ten sugars in burdock from different locations of Asia. The results showed that the contents of FOS in different samples of burdock collected at appropriate times were similar, and the developed HPLC-ELSD with microwave-assisted extraction method is helpful to control the quality of burdock.

  20. A Review of the Botany, Phytochemistry, Pharmacology and Toxicology of Rubiae Radix et Rhizoma.

    PubMed

    Shan, Mingqiu; Yu, Sheng; Yan, Hui; Chen, Peidong; Zhang, Li; Ding, Anwei

    2016-12-20

    Rubia cordifolia Linn (Rubiaceae) is a climbing perennial herbal plant, which is widely distributed in China and India. Its root and rhizome, Rubiae Radix et Rhizoma (called Qiancao in China and Indian madder in India), is a well known phytomedicine used for hematemesis, epistaxis, flooding, spotting, traumatic bleeding, amenorrhea caused by obstruction, joint impediment pain, swelling and pain caused by injuries from falls. In addition, it is a kind of pigment utilized as a food additive and a dye for wool or fiber. This review mainly concentrates on studies of the botany, phytochemistry, pharmacology and toxicology of this Traditional Chinese Medicine. The phytochemical evidences indicated that over a hundred chemical components have been found and isolated from the medicine, such as anthraquinones, naphthoquinones, triterpenoids, cyclic hexapeptides and others. These components are considered responsible for the various bioactivities of the herbal drug, including anti-oxidation, anti-inflammation, immunomodulation, antitumor, effects on coagulation-fibrinolysis system, neuroprotection and other effects. Additionally, based on these existing results, we also propose some interesting future research directions. Consequently, this review should help us to more comprehensively understand and to more fully utilize the herbal medicine Rubiae Radix et Rhizoma.

  1. Dietary Bioactive Diallyl Trisulfide in Cancer Prevention and Treatment.

    PubMed

    Puccinelli, Michael T; Stan, Silvia D

    2017-07-28

    Bioactive dietary agents have been shown to regulate multiple cancer hallmark pathways. Epidemiologic studies have linked consumption of Allium vegetables, such as garlic and onions, to decreased incidence of cancer. Diallyl trisulfide (DATS), a bioactive compound derived from Allium vegetables, has been investigated as an anti-cancer and chemopreventive agent. Preclinical studies provide ample evidence that DATS regulates multiple cancer hallmark pathways including cell cycle, apoptosis, angiogenesis, invasion, and metastasis. DATS has been shown to arrest cancer cells at multiple stages of the cell cycle with the G2/M arrest being the most widely reported. Additionally, increased pro-apoptotic capacity as a result of regulating intrinsic and extrinsic apoptotic pathway components has been widely reported following DATS treatment. Invasion, migration, and angiogenesis represent emerging targets of DATS and support its anti-cancer properties. This review summarizes DATS mechanisms of action as an anti-cancer and chemopreventive agent. These studies provide rationale for future investigation into its use as a cancer chemopreventive agent.

  2. A Phytochemical-Sensing Strategy Based on Mass Spectrometry Imaging and Metabolic Profiling for Understanding the Functionality of the Medicinal Herb Green Tea.

    PubMed

    Fujimura, Yoshinori; Miura, Daisuke; Tachibana, Hirofumi

    2017-09-27

    Low-molecular-weight phytochemicals have health benefits and reduce the risk of diseases, but the mechanisms underlying their activities have remained elusive because of the lack of a methodology that can easily visualize the exact behavior of such small molecules. Recently, we developed an in situ label-free imaging technique, called mass spectrometry imaging, for visualizing spatially-resolved biotransformations based on simultaneous mapping of the major bioactive green tea polyphenol and its phase II metabolites. In addition, we established a mass spectrometry-based metabolic profiling technique capable of evaluating the bioactivities of diverse green tea extracts, which contain multiple phytochemicals, by focusing on their compositional balances. This methodology allowed us to simultaneously evaluate the relative contributions of the multiple compounds present in a multicomponent system to its bioactivity. This review highlights small molecule-sensing techniques for visualizing the complex behaviors of herbal components and linking such information to an enhanced understanding of the functionalities of multicomponent medicinal herbs.

  3. Metabolomic-Guided Isolation of Bioactive Natural Products from Curvularia sp., an Endophytic Fungus of Terminalia laxiflora.

    PubMed

    Tawfike, Ahmed F; Abbott, Grainne; Young, Louise; Edrada-Ebel, RuAngelie

    2018-02-01

    Endophytic fungi associated with medicinal plants are a potential source of novel chemistry and biology. Metabolomic tools were successfully employed to compare the metabolite fingerprints of solid and liquid culture extracts of endophyte Curvularia sp. isolated from the leaves of Terminalia laxiflora . Natural product databases were used to dereplicate metabolites in order to determine known compounds and the presence of new natural products. Multivariate analysis highlighted the putative metabolites responsible for the bioactivity of the fungal extract and its fractions on NF- κ B and the myelogenous leukemia cell line K562. Metabolomic tools and dereplication studies using high-resolution electrospray ionization mass spectrometry directed the fractionation and isolation of the bioactive components from the fungal extracts. This resulted in the isolation of N -acetylphenylalanine (1: ) and two linear peptide congeners of 1: : dipeptide N -acetylphenylalanyl-L-phenylalanine (2: ) and tripeptide N -acetylphenylalanyl-L-phenylalanyl-L-leucine (3: ). Georg Thieme Verlag KG Stuttgart · New York.

  4. Dietary Bioactive Diallyl Trisulfide in Cancer Prevention and Treatment

    PubMed Central

    Puccinelli, Michael T.; Stan, Silvia D.

    2017-01-01

    Bioactive dietary agents have been shown to regulate multiple cancer hallmark pathways. Epidemiologic studies have linked consumption of Allium vegetables, such as garlic and onions, to decreased incidence of cancer. Diallyl trisulfide (DATS), a bioactive compound derived from Allium vegetables, has been investigated as an anti-cancer and chemopreventive agent. Preclinical studies provide ample evidence that DATS regulates multiple cancer hallmark pathways including cell cycle, apoptosis, angiogenesis, invasion, and metastasis. DATS has been shown to arrest cancer cells at multiple stages of the cell cycle with the G2/M arrest being the most widely reported. Additionally, increased pro-apoptotic capacity as a result of regulating intrinsic and extrinsic apoptotic pathway components has been widely reported following DATS treatment. Invasion, migration, and angiogenesis represent emerging targets of DATS and support its anti-cancer properties. This review summarizes DATS mechanisms of action as an anti-cancer and chemopreventive agent. These studies provide rationale for future investigation into its use as a cancer chemopreventive agent. PMID:28788092

  5. Separation, Identification, and Bioactivities of the Main Gallotannins of Red Sword Bean (Canavalia gladiata) Coats

    NASA Astrophysics Data System (ADS)

    Gan, Ren-You; Kong, Kin-Weng; Li, Hua-Bin; Wu, Kao; Ge, Ying-Ying; Chan, Chak-Lun; Shi, Xian-Ming; Corke, Harold

    2018-02-01

    The red sword bean (Canavalia gladiata) is an underutilized edible bean cultivated in China. It was previously found to have the highest content of antioxidant polyphenols among 42 edible beans, mainly gallic acid and gallotannins in its red bean coat, an apparently unique characteristic among edible beans. In this study, the main phenolic compounds in red sword bean coats were further separated by Sephadex LH-20 column chromatography, and identified by LC-MS/MS. Furthermore, the FRAP and ABTS antioxidant activities and antibacterial activity (diameter of inhibition zone, DIZ) of main gallotannin-rich fractions were tested. Our results showed that gallotannins of red sword bean coats were mainly comprised of nonogalloyl to hexagalloyl hexosides. Interestingly, tetragalloyl, pentagalloyl, and hexagalloyl hexosides were identified as the main candidates responsible for the red color of the coats. On the other hand, gallotannin-rich fractions exhibited diverse antioxidant and antibacterial activities, and tetragalloyl hexoside overall had the highest free radical scavenging and antibacterial activities. The degree of galloylation did not completely explain the structure-function relationship of gallotannins isolated from red sword bean coats, as there should exist other factors affecting their bioactivities. In conclusion, red sword bean coats are excellent natural sources of gallotannins, and their gallotannin-rich extracts can be utilized as natural antioxidant and antibacterial agents with potential health benefits as well as application in food industry.

  6. Exopolysaccharides from yeast: insight into optimal conditions for biosynthesis, chemical composition and functional properties - review.

    PubMed

    Gientka, Iwona; Błażejak, Stanisław; Stasiak-Różańska, Lidia; Chlebowska-Śmigiel, Anna

    2015-01-01

    xopolysaccharides (EPS) are not a well-established group of metabolites. An industrial scale    of this EPS production is limited mainly by low yield biosynthesis. Until now, enzymes and biosynthesis pathways, as well as the role of regulatory genes, have not been described. Some of yeast EPS show antitumor, immunostimulatory and antioxidant activity. Others, absorb heavy metals and can function as bioactive components of food. Also, the potential of yeast EPS as thickeners or stabilizers can be found. Optimal conditions for the biosynthesis of yeast exopolysaccharides require strong oxygenation and low temperature of the culture, due to the physiology of the producer strains. The medium should contain sucrose as a carbon source and ammonium sulfate as inorganic nitrogen source, wherein the C:N ratio in the substrate should be 15:1. The cultures are long and the largest accumulation of polymers is observed after 4 or 5 days of culturing. The structure of yeast EPS is complex which affects the strain and culture condition. The EPS from yeast are linear mannans, pullulan, glucooligosaccharides, galactooligosaccharides and other heteropolysaccharides containing α-1,2; α-1,3; α-1,6; β-1,3; β-1,4 bonds. Mannose and glucose have the largest participation of carbohydrates for. t exopolysaccharides (EPS) are not a well-established group of metabolites. An industrial scale    of this EPS production is limited mainly by low yield biosynthesis. Until now, enzymes and biosynthesis pathways, as well as the role of regulatory genes, have not been described. Some of yeast EPS show antitumor, immunostimulatory and antioxidant activity. Others, absorb heavy metals and can function as bioactive components of food. Also, the potential of yeast EPS as thickeners or stabilizers can be found. Optimal conditions for the biosynthesis of yeast exopolysaccharides require strong oxygenation and low temperature of the culture, due to the physiology of the producer strains. The medium should contain sucrose as a carbon source and ammonium sulfate as inorganic nitrogen source, wherein the C:N ratio in the substrate should be 15:1. The cultures are long and the largest accumulation of polymers is observed after 4 or 5 days of culturing. The structure of yeast EPS is complex which affects the strain and culture condition. The EPS from yeast are linear mannans, pullulan, glucooligosaccharides, galactooligosaccharides and other heteropolysaccharides containing α-1,2; α-1,3; α-1,6; β-1,3; β-1,4 bonds. Mannose and glucose have the largest participation of carbohydrates formin. t exopolysaccharides (EPS) are not a well-established group of metabolites. An industrial scale    of this EPS production is limited mainly by low yield biosynthesis. Until now, enzymes and biosynthesis pathways, as well as the role of regulatory genes, have not been described. Some of yeast EPS show antitumor, immunostimulatory and antioxidant activity. Others, absorb heavy metals and can function as bioactive components of food. Also, the potential of yeast EPS as thickeners or stabilizers can be found. Optimal conditions for the biosynthesis of yeast exopolysaccharides require strong oxygenation and low temperature of the culture, due to the physiology of the producer strains. The medium should contain sucrose as a carbon source and ammonium sulfate as inorganic nitrogen source, wherein the C:N ratio in the substrate should be 15:1. The cultures are long and the largest accumulation of polymers is observed after 4 or 5 days of culturing. The structure of yeast EPS is complex which affects the strain and culture condition. The EPS from yeast are linear mannans, pullulan, glucooligosaccharides, galactooligosaccharides and other heteropolysaccharides containing α-1,2; α-1,3; α-1,6; β-1,3; β-1,4 bonds. Mannose and glucose have the largest participation of carbohydrates forming EPS.

  7. Proton Environments in Biomimetic Calcium Phosphates Formed from Mesoporous Bioactive CaO-SiO2-P2O5 Glasses in Vitro: Insights from Solid-State NMR.

    PubMed

    Mathew, Renny; Turdean-Ionescu, Claudia; Yu, Yang; Stevensson, Baltzar; Izquierdo-Barba, Isabel; García, Ana; Arcos, Daniel; Vallet-Regí, María; Edén, Mattias

    2017-06-22

    When exposed to body fluids, mesoporous bioactive glasses (MBGs) of the CaO-SiO 2 -P 2 O 5 system develop a bone-bonding surface layer that initially consists of amorphous calcium phosphate (ACP), which transforms into hydroxy-carbonate apatite (HCA) with a very similar composition as bone/dentin mineral. Information from various 1 H-based solid-state nuclear magnetic resonance (NMR) experiments was combined to elucidate the evolution of the proton speciations both at the MBG surface and within each ACP/HCA constituent of the biomimetic phosphate layer formed when each of three MBGs with distinct Ca, Si, and P contents was immersed in a simulated body fluid (SBF) for variable periods between 15 min and 30 days. Directly excited magic-angle-spinning (MAS) 1 H NMR spectra mainly reflect the MBG component, whose surface is rich in water and silanol (SiOH) moieties. Double-quantum-single-quantum correlation 1 H NMR experimentation at fast MAS revealed their interatomic proximities. The comparatively minor H species of each ACP and HCA component were probed selectively by heteronuclear 1 H- 31 P NMR experimentation. The initially prevailing ACP phase comprises H 2 O and "nonapatitic" HPO 4 2- /PO 4 3- groups, whereas for prolonged MBG soaking over days, a well-progressed ACP → HCA transformation was evidenced by a dominating O 1 H resonance from HCA. We show that 1 H-detected 1 H → 31 P cross-polarization NMR is markedly more sensitive than utilizing powder X-ray diffraction or 31 P NMR for detecting the onset of HCA formation, notably so for P-bearing (M)BGs. In relation to the long-standing controversy as to whether bone mineral comprises ACP and/or forms via an ACP precursor, we discuss a recently accepted structural core-shell picture of both synthetic and biological HCA, highlighting the close relationship between the disordered surface layer and ACP.

  8. The Pocket-4-Life project, bioavailability and beneficial properties of the bioactive compounds of espresso coffee and cocoa-based confectionery containing coffee: study protocol for a randomized cross-over trial.

    PubMed

    Mena, Pedro; Tassotti, Michele; Martini, Daniela; Rosi, Alice; Brighenti, Furio; Del Rio, Daniele

    2017-11-09

    Coffee is an important source of bioactive compounds, including caffeine, phenolic compounds (mainly chlorogenic acids), trigonelline, and diterpenes. Several studies have highlighted the preventive effects of coffee consumption on major cardiometabolic diseases, but the impact of coffee dosage on markers of cardiometabolic risk is not well understood. Moreover, the pool of coffee-derived circulating metabolites and the contribution of each metabolite to disease prevention still need to be evaluated in real-life settings. The aim of this study will be to define the bioavailability and beneficial properties of coffee bioactive compounds on the basis of different levels of consumption, by using an innovative experimental design. The contribution of cocoa-based products containing coffee to the pool of circulating metabolites and their putative bioactivity will also be investigated. A three-arm, crossover, randomized trial will be conducted. Twenty-one volunteers will be randomly assigned to consume three treatments in a random order for 1 month: 1 cup of espresso coffee/day, 3 cups of espresso coffee/day, and 1 cup of espresso coffee plus 2 cocoa-based products containing coffee twice per day. The last day of each treatment, blood and urine samples will be collected at specific time points, up to 24 hours following the consumption of the first product. At the end of each treatment the same protocol will be repeated, switching the allocation group. Besides the bioavailability of the coffee/cocoa bioactive compounds, the effect of the coffee/cocoa consumption on several cardiometabolic risk factors (anthropometric measures, blood pressure, inflammatory markers, trimethylamine N-oxide, nitric oxide, blood lipids, fasting indices of glucose/insulin metabolism, DNA damage, eicosanoids, and nutri-metabolomics) will be investigated. Results will provide information on the bioavailability of the main groups of phytochemicals in coffee and on their modulation by the level of consumption. Findings will also show the circulating metabolites and their bioactivity when coffee consumption is substituted with the intake of cocoa-based products containing coffee. Finally, the effect of different levels of 1-month coffee consumption on cardiometabolic risk factors will be elucidated, likely providing additional insights on the role of coffee in the protection against chronic diseases. ClinicalTrials.gov, NCT03166540 . Registered on May 21, 2017.

  9. Bioactive Compounds and Antioxidant Capacity of Camarosa and Selva Strawberries (Fragaria x ananassa Duch.).

    PubMed

    Van De Velde, Franco; Tarola, Anna M; Güemes, Daniel; Pirovani, María E

    2013-03-25

    Strawberries represent an important source of bioactive compounds due to their vitamin C and phenolic compound levels, which present high antioxidant effects, beneficial for the maintenance of consumer's health. Argentina is the second largest strawberry producer in The Common Market of the Southern Cone (MERCOSUR), covering the main export destinations of Argentinian strawberries, i.e. , Canada, United States, and European Union. Information about the bioactive compound occurrence and antioxidant capacity of these fruits is scarce or not available. Health related compounds of strawberry cultivars ( Camarosa and Selva ) from different zones of Argentina were investigated. Vitamin C content was in the same range for both studied cultivars. However, Camarosa strawberries, which are the most cultivated, consumed, and exported berries in Argentina, presented higher total phenolic and anthocyanins content, and consequently better in vitro antioxidant capacity. Moreover, there were differences in the occurrence and concentration in the phenolic compound profiles for both cultivars. Camarosa cultivar presented higher content of anthocyanidins, and Selva showed higher total ellagic acid content. The research shows that Argentina's strawberries are an interesting source of bioactive compounds comparable to those in other parts of the world.

  10. Controlled release properties of zein-fatty acid blend films for multiple bioactive compounds.

    PubMed

    Arcan, Iskender; Yemenicioğlu, Ahmet

    2014-08-13

    To develop edible films having controlled release properties for multiple bioactive compounds, hydrophobicity and morphology of zein films were modified by blending zein with oleic (C18:1)Δ⁹, linoleic (C18:2)Δ(9,12), or lauric (C₁₂) acids in the presence of lecithin. The blend zein films showed 2-8.5- and 1.6-2.9-fold lower initial release rates for the model active compounds, lysozyme (LYS) and (+)-catechin (CAT), than the zein control films, respectively. The change of fatty acid chain length affected both CAT and LYS release rates while the change of fatty acid double bond number affected only the CAT release rate. The film morphologies suggested that the blend films owe their controlled release properties mainly to the microspheres formed within their matrix and encapsulation of active compounds. The blend films showed antilisterial activity and antioxidant activity up to 81 μmol Trolox/cm². The controlled release of multiple bioactive compounds from a single film showed the possibility of combining application of active and bioactive packaging technologies and improving not only safety and quality but also health benefits of packed food.

  11. Flavonoid consumption and esophageal cancer among Black and White men in the United States

    USDA-ARS?s Scientific Manuscript database

    Flavonoids and proanthocyanidins are bioactive polyphenolic components of fruits and vegetables that may account for part of the protective effect of raw fruit and vegetable consumption in esophageal cancer. We studied the relationship between esophageal cancer and dietary proanthocyanidins, flavon...

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pecheva, E.; Fingarova, D.; Pramatarova, L.

    Polycrystalline silicon (poly-Si) layers were functionalized through the growth of biomimetic hydroxyapatite (HA) on their surface. HA is the mineral component of bones and teeth and thus possesses excellent bioactivity and biocompatibility. MG-63 osteoblast-like cells were cultured on both HA-coated and un-coated poly-Si surfaces for 1, 3, 5 and 7 days and toxicity, proliferation and cell morphology were investigated. The results revealed that the poly-Si layers were bioactive and compatible with the osteoblast-like cells. Nevertheless, the HA coating improved the cell interactions with the poly-Si surfaces based on the cell affinity to the specific chemical composition of the bone-like HAmore » and/or to the higher HA roughness.« less

  13. Polycrystalline Silicon: a Biocompatibility Assay

    NASA Astrophysics Data System (ADS)

    Pecheva, E.; Laquerriere, P.; Bouthors, Sylvie; Fingarova, D.; Pramatarova, L.; Hikov, T.; Dimova-Malinovska, D.; Montgomery, P.

    2010-01-01

    Polycrystalline silicon (poly-Si) layers were functionalized through the growth of biomimetic hydroxyapatite (HA) on their surface. HA is the mineral component of bones and teeth and thus possesses excellent bioactivity and biocompatibility. MG-63 osteoblast-like cells were cultured on both HA-coated and un-coated poly-Si surfaces for 1, 3, 5 and 7 days and toxicity, proliferation and cell morphology were investigated. The results revealed that the poly-Si layers were bioactive and compatible with the osteoblast-like cells. Nevertheless, the HA coating improved the cell interactions with the poly-Si surfaces based on the cell affinity to the specific chemical composition of the bone-like HA and/or to the higher HA roughness.

  14. In vitro studies on the relationship between the antioxidant activities of some berry extracts and their binding properties to serum albumin.

    PubMed

    Namiesnik, Jacek; Vearasilp, Kann; Nemirovski, Alina; Leontowicz, Hanna; Leontowicz, Maria; Pasko, Pawel; Martinez-Ayala, Alma Leticia; González-Aguilar, Gustavo A; Suhaj, Milan; Gorinstein, Shela

    2014-03-01

    The aim of this study was to investigate the possibility to use the bioactive components from cape gooseberry (Physalis peruviana), blueberry (Vaccinium corymbosum), and cranberry (Vaccinium macrocarpon) extracts as a novel source against oxidation in food supplementation. The quantitative analysis of bioactive compounds (polyphenols, flavonoids, flavanols, carotenoids, and chlorophyll) was based on radical scavenging spectrophometric assays and mass spectrometry. The total phenolic content was the highest (P < 0.05) in water extract of blueberries (46.6 ± 4.2 mg GAE/g DW). The highest antioxidant activities by 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay and Cupric reducing antioxidant capacity were in water extracts of blueberries, showing 108.1 ± 7.2 and 131.1 ± 9.6 μMTE/g DW with correlation coefficients of 0.9918 and 0.9925, and by β-carotene linoleate assay at 80.1 ± 6.6 % with correlation coefficient of 0.9909, respectively. The water extracts of berries exhibited high binding properties with human serum albumin in comparison with quercetin. In conclusion, the bioactive compounds from a relatively new source of gooseberries in comparison with blueberries and cranberries have the potential as food supplementation for human health. The antioxidant and binding activities of berries depend on their bioactive compounds.

  15. Effects of boiling on chlorogenic acid and the liver protective effects of its main products against CCl₄-induced toxicity in vitro.

    PubMed

    Kan, Shidong; Cheung, Matt Wan Man; Zhou, Yanling; Ho, Wing Shing

    2014-02-01

    Chlorogenic acid (3-O-caffeoylquinic acid, CA) is the active component in several botanical beverage, vegetables, fruits, and herbal drugs. The effect of water boiling on the bioactivity of CA was studied. CA could be isomerized to 4-O-caffeoylquinic acid (4-O-CA) and 5-O-caffeoylquinic acid (5-O-CA) in decoctive extraction, and each of the isomers occupied about one-third of the total caffeoylquinic acids. A novel method, using water elution of microsphere resin, was used to purify CA and its 2 isomers. The yield of CA, 4-O-CA, and 5-O-CA was 82%, 5.6%, and 50%, with the purity of 98%, 97%, and 99%, respectively. The DPPH radical scavenging assay showed that 4-O-CA, 5-O-CA, and CA exhibited similar activity. However, there was no significant difference between 4-O-CA and 5-O-CA when used against CCl₄-induced toxicity in hepG2 cells. Our studies show that isomerization is the main transformation of CA in boiling, and the decoction could not decrease the anti-oxidant activity of CA. © 2014 Institute of Food Technologists®

  16. Roasting has a distinct effect on the antimutagenic activity of coffee varieties.

    PubMed

    Priftis, Alexandros; Mitsiou, Dimitra; Halabalaki, Maria; Ntasi, Georgia; Stagos, Dimitrios; Skaltsounis, Leandros A; Kouretas, Demetrios

    Coffee is a highly consumed beverage throughout the world. Its popularity derives from its organoleptic properties that are a result of the roasting process. Roasting greatly alters a coffee bean's composition and possibly its bioactivity. In the current study, green as well as roasted extracts from both Coffea arabica (Brazil and Decaf) and Coffea canephora (Robusta) species were tested for their antimutagenic activity using the Ames test. In addition, a compositional analysis was conducted to identify the main components, mainly Chlorogenic acid isomers (CGA) and derivatives present in the extracts using UHPLC-ESI(±) and HRMS/MS methods According to the results, all extracts exhibited strong antimutagenic activity against the oxidizing factor tert-Butyl hydroperoxide, a Reactive Oxygen Species-producing compound. Roasting had a distinct effect on the antimutagenic activity of coffee, enhancing it in the Brazil variety and having no effect in the Decaf and Robusta varieties. In addition, all coffee extracts exhibited reducing activity as well as the ability to scavenge (albeit differentially) both the superoxide and hydroxyl radicals, implying that their potential antimutagenic effect can be partially attributed to their free radical scavenging activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Metabolite Profiling of 14 Wuyi Rock Tea Cultivars Using UPLC-QTOF MS and UPLC-QqQ MS Combined with Chemometrics.

    PubMed

    Chen, Si; Li, Meihong; Zheng, Gongyu; Wang, Tingting; Lin, Jun; Wang, Shanshan; Wang, Xiaxia; Chao, Qianlin; Cao, Shixian; Yang, Zhenbiao; Yu, Xiaomin

    2018-01-24

    Wuyi Rock tea, well-recognized for rich flavor and long-lasting fragrance, is a premium subcategory of oolong tea mainly produced in Wuyi Mountain and nearby regions of China. The quality of tea is mainly determined by the chemical constituents in the tea leaves. However, this remains underexplored for Wuyi Rock tea cultivars. In this study, we investigated the leaf metabolite profiles of 14 major Wuyi Rock tea cultivars grown in the same producing region using UPLC-QTOF MS and UPLC-QqQ MS with data processing via principal component analysis and cluster analysis. Relative quantitation of 49 major metabolites including flavan-3-ols, proanthocyanidins, flavonol glycosides, flavone glycosides, flavonone glycosides, phenolic acid derivatives, hydrolysable tannins, alkaloids and amino acids revealed clear variations between tea cultivars. In particular, catechins, kaempferol and quercetin derivatives were key metabolites responsible for cultivar discrimination. Information on the varietal differences in the levels of bioactive/functional metabolites, such as methylated catechins, flavonol glycosides and theanine, offers valuable insights to further explore the nutritional values and sensory qualities of Wuyi Rock tea. It also provides potential markers for tea plant fingerprinting and cultivar identification.

  18. Analysis of E. rutaecarpa Alkaloids Constituents In Vitro and In Vivo by UPLC-Q-TOF-MS Combined with Diagnostic Fragment

    PubMed Central

    Yang, Shenshen; Tian, Meng; Yuan, Lei; Deng, Haoyue; Wang, Lei; Li, Aizhu; Hou, Zhiguo; Li, Yubo

    2016-01-01

    Evodia rutaecarpa (Juss.) Benth. (Rutaceae) dried ripe fruit is used for dispelling colds, soothing liver, and analgesia. Pharmacological research has proved that alkaloids are the main active ingredients of E. rutaecarpa. This study aimed to rapidly classify and identify the alkaloids constituents of E. rutaecarpa by using UPLC-Q-TOF-MS coupled with diagnostic fragments. Furthermore, the effects of the material base of E. rutaecarpa bioactive ingredients in vivo were examined such that the transitional components in the blood of rats intragastrically given E. rutaecarpa were analyzed and identified. In this study, the type of alcohol extraction of E. rutaecarpa and the corresponding blood sample were used for the analysis by UPLC-Q-TOF-MS in positive ion mode. After reviewing much of the literature and collected information on the fragments, we obtained some diagnostic fragments of the alkaloids. Combining the diagnostic fragments with the technology of UPLC-Q-TOF-MS, we identified the compounds of E. rutaecarpa and blood samples and compared the ion fragment information with that of the alkaloids in E. rutaecarpa. A total of 17 alkaloids components and 6 blood components were identified. The proposed method was rapid, accurate, and sensitive. Therefore, this technique can reliably and practically analyze the chemical constituents in traditional Chinese medicine (TCM). PMID:27446630

  19. Untargeted MS-based small metabolite identification from the plant leaves and stems of Impatiens balsamina.

    PubMed

    Chua, Lee Suan

    2016-09-01

    The identification of plant metabolites is very important for the understanding of plant physiology including plant growth, development and defense mechanism, particularly for herbal medicinal plants. The metabolite profile could possibly be used for future drug discovery since the pharmacological activities of the indigenous herbs have been proven for centuries. An untargeted mass spectrometric approach was used to identify metabolites from the leaves and stems of Impatiens balsamina using LC-DAD-MS/MS. The putative compounds are mostly from the groups of phenolic, organic and amino acids which are essential for plant growth and as intermediates for other compounds. Alanine appeared to be the main amino acid in the plant because many alanine derived metabolites were detected. There are also several secondary metabolites from the groups of benzopyrones, benzofuranones, naphthoquinones, alkaloids and flavonoids. The widely reported bioactive components such as kaempferol, quercetin and their glycosylated, lawsone and its derivatives were detected in this study. The results also revealed that aqueous methanol could extract flavonoids better than water, and mostly, flavonoids were detected from the leaf samples. The score plots of component analysis show that there is a minor variance in the metabolite profiles of water and aqueous methanolic extracts with 21.5 and 30.5% of the total variance for the first principal component at the positive and negative ion modes, respectively. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Synthesis and evaluation of bioceramics for orthopedics and tissue culture applications

    NASA Astrophysics Data System (ADS)

    Demirkiran, Hande

    Hydroxyapatite is the most well known phosphate in the biologically active phosphate ceramic family by virtue of its similarity to natural bone mineral. Among all bioglass compositions BioglassRTM45S5 is one of the most bioactive glasses. This study initially started by adding different amounts (1, 2.5, 5, 10, and 25 wt.%) of BioglassRTM45S5 to synthetic hydroxyapatite in order to improve the bioactivity of these bioceramics. The chemistries formed by sintering and their effect on different material properties including bioactivity were identified by using various techniques, such as powder and thin film x-ray diffraction, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, X-ray absorption near edge spectroscopy, compression test, and nano indentation. All the results demonstrated that 10 and 25 wt.% BioglassRTM45S5 addition to hydroxyapatite and sintering at 1200°C for 4 hours yield new compositions with main Ca 5(PO4)2SiO4 and Na3Ca 6(PO4)5 crystalline phases dispersed in silicate glassy matrices, respectively. In addition, in vitro bioactivity tests such as bone like apatite formation in simulated body fluid and bone marrow stromal cell culture have shown that the crystalline and amorphous phases have an important role on improving bioactivity of these bioceramic compositions. Besides, compression test and nano indentation has given important information on compression strength and nano structure properties of these newly composed bioceramic materials and the bone like apatite layers formed on them, respectively. Finally, the effect of silicate addition on both formation and bioactivity of Na3Ca6(PO4)5 bioceramics were shown. These findings and different techniques used assisted to develop a phenomenological approach to demonstrate how the novel bioceramic compositions were composed and aid improving bioactivity of known bioceramic materials.

  1. A Review Study on Macrolides Isolated from Cyanobacteria.

    PubMed

    Wang, Mengchuan; Zhang, Jinrong; He, Shan; Yan, Xiaojun

    2017-04-26

    Cyanobacteria are rich sources of structurally-diverse molecules with promising pharmacological activities. Marine cyanobacteria have been proven to be true producers of some significant bioactive metabolites from marine invertebrates. Macrolides are a class of bioactive compounds isolated from marine organisms, including marine microorganisms in particular. The structural characteristics of macrolides from cyanobacteria mainly manifest in the diversity of carbon skeletons, complexes of chlorinated thiazole-containing molecules and complex spatial configuration. In the present work, we systematically reviewed the structures and pharmacological activities of macrolides from cyanobacteria. Our data would help establish an effective support system for the discovery and development of cyanobacterium-derived macrolides.

  2. Chemical Biology Probes from Advanced DNA-encoded Libraries.

    PubMed

    Salamon, Hazem; Klika Škopić, Mateja; Jung, Kathrin; Bugain, Olivia; Brunschweiger, Andreas

    2016-02-19

    The identification of bioactive compounds is a crucial step toward development of probes for chemical biology studies. Screening of DNA-encoded small molecule libraries (DELs) has emerged as a validated technology to interrogate vast chemical space. DELs consist of chimeric molecules composed of a low-molecular weight compound that is conjugated to a DNA identifier tag. They are screened as pooled libraries using selection to identify "hits." Screening of DELs has identified numerous bioactive compounds. Some of these molecules were instrumental in gaining a deeper understanding of biological systems. One of the main challenges in the field is the development of synthesis methodology for DELs.

  3. Soy and gut microbiota: interaction and implication for human health

    USDA-ARS?s Scientific Manuscript database

    Soy (Glycine max) is a major commodity in the U.S. and soy foods are gaining popularity due to its reported health promoting effects. In the past two decades, soy and soy bioactive components have been studied for their health promoting/disease preventing activities and potential mechanism of action...

  4. Rhamnogalacturonan I containing homogalacturonan inhibits colon cancer cell proliferation by decreasing ICAM1 expression

    USDA-ARS?s Scientific Manuscript database

    Pectin modified with pH, heat or enzymes, has previously been shown to exhibit anti-cancer activity. However, the structural requirements for bioactive modified pectins have rarely been addressed. In this study several pectin extracts representing different structural components of pectin were asses...

  5. Cannabinoids and Symptomatic Bradycardia.

    PubMed

    Heckle, Mark R; Nayyar, Mannu; Sinclair, Scott E; Weber, Karl T

    2018-01-01

    Cannabinoids, the bioactive components of marijuana, have adverse cardiovascular consequences, including symptomatic sinus bradycardia, sinus arrest and ventricular asystole. Physicians should be aware of these deleterious consequences which can appear in otherwise healthy persons who are chronic marijuana users. Copyright © 2018 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  6. AMPK activation by pterostilbene contributes to suppression of hepatic gluconeogenic gene expression and glucose production in H4IIE cells

    USDA-ARS?s Scientific Manuscript database

    Pterostilbene, a bioactive component of blueberries and grapes, shows structural similarity to resveratrol, and exhibits antioxidant, anti-inflammatory, anti-cancer, hypoglycemic, and cholesterol lowering effects. This study examined potential mechanisms that may contribute to its lipid- and glucose...

  7. Current update in methodologies for extraction and analysis of isoflvones and proteins

    USDA-ARS?s Scientific Manuscript database

    Soy foods are traditional culinary staples for a significant proportion of the Asian population. In the past several decades, soy and its food products have become popular globally because of their valuable health benefits. There are many recent reports on bioactive components, largely isoflavones t...

  8. Metabolomic and Functional Genomic Analyses Reveal Varietal Differences in Bioactive Compounds of Cooked Rice

    PubMed Central

    Heuberger, Adam L.; Lewis, Matthew R.; Chen, Ming-Hsuan; Brick, Mark A.; Leach, Jan E.; Ryan, Elizabeth P.

    2010-01-01

    Emerging evidence supports that cooked rice (Oryza sativa L.) contains metabolites with biomedical activities, yet little is known about the genetic diversity that is responsible for metabolite variation and differences in health traits. Metabolites from ten diverse varieties of cooked rice were detected using ultra performance liquid chromatography coupled to mass spectrometry. A total of 3,097 compounds were detected, of which 25% differed among the ten varieties. Multivariate analyses of the metabolite profiles showed that the chemical diversity among the varieties cluster according to their defined subspecies classifications: indica, japonica, and aus. Metabolite-specific genetic diversity in rice was investigated by analyzing a collection of single nucleotide polymorphisms (SNPs) in genes from biochemical pathways of nutritional importance. Two classes of bioactive compounds, phenolics and vitamin E, contained nonsynonymous SNPs and SNPs in the 5′ and 3′ untranslated regions for genes in their biosynthesis pathways. Total phenolics and tocopherol concentrations were determined to examine the effect of the genetic diversity among the ten varieties. Per gram of cooked rice, total phenolics ranged from 113.7 to 392.6 µg (gallic acid equivalents), and total tocopherols ranged between 7.2 and 20.9 µg. The variation in the cooked rice metabolome and quantities of bioactive components supports that the SNP-based genetic diversity influenced nutritional components in rice, and that this approach may guide rice improvement strategies for plant and human health. PMID:20886119

  9. Development of polymethacrylate nanospheres as targeted delivery systems for catechin within the gastrointestinal tract

    NASA Astrophysics Data System (ADS)

    Pool, Hector; Luna-Barcenas, Gabriel; McClements, David Julian; Mendoza, Sandra

    2017-09-01

    In this study, pH-sensitive nanospheres were fabricated using a polymethacrylate-based copolymer to encapsulate, protect, and release catechin, and thereby overcome its poor water solubility and low oral bioaccessibility. The polymer used was a polymethacrylic acid-co-ethyl acrylate 1:1 copolymer that dissolves above pH 5.5, and so can be used to retain and protect bioactives within the stomach but releases them in the small intestine. Catechin-loaded nanospheres were fabricated using the solvent displacement method. Physicochemical characterization of the nanospheres indicated that they were relatively small ( d = 160 nm) and had a high negative charge ( ζ = - 36 mV), which meant that they had good stability to aggregation under physiological conditions (pH 7.2). Catechin was trapped within the nanospheres at an encapsulation efficiency of about 51% in an amorphous state. A simulated gastrointestinal study showed that catechin was slowly released under gastric conditions (pH 2.5), but rapidly released under small intestine conditions (pH 7.2). The observed improvement in the antioxidant activity and bioaccessibility of catechin after encapsulation was attributed to the fact that it was in an amorphous state and had good water dispersibility. This study provides useful information for the formulation of novel delivery systems to improve the dispersibility, bioaccessibility, and bioactivity of catechin and potentially other active components. These delivery systems could be used to improve the efficacy of bioactive components in foods, supplements, and pharmaceutical products.

  10. The major bioactive components of seaweeds and their mosquitocidal potential.

    PubMed

    Yu, Ke-Xin; Jantan, Ibrahim; Ahmad, Rohani; Wong, Ching-Lee

    2014-09-01

    Seaweeds are one of the most widely studied natural resources for their biological activities. Novel seaweed compounds with unique chemical structures have been reported for their pharmacological properties. The urge to search for novel insecticidal compound with a new mode of action for development of botanical insecticides supports the relevant scientific research on discovering the bioactive compounds in seaweeds. The mosquitocidal potential of seaweed extracts and their isolated compounds are documented in this review paper, along with the discussion on bioactivities of the major components of seaweeds such as polysaccharides, phenolics, proteins, terpenes, lipids, and halogenated compounds. The effects of seaweed extracts and compounds toward different life stages of mosquito (egg, larva, pupa, and adult), its growth, development, and reproduction are elaborated. The structure-activity relationships of mosquitocidal compounds are discussed to extrapolate the possible chemical characteristics of seaweed compounds responsible for insecticidal properties. Furthermore, the possible target sites and mode of actions of the mosquitocidal seaweed compounds are included in this paper. The potential synergistic effects between seaweeds and commercial insecticides as well as the toxic effects of seaweed extracts and compounds toward other insects and non-target organisms in the same habitat are also described. On top of that, various factors that influence the mosquitocidal potential of seaweeds, such as abiotic and biotic variables, sample preparation, test procedures, and considerations for a precise experimental design are discussed. The potential of active seaweed extracts and compounds in the development of effective bioinsecticide are also discussed.

  11. Neurotoxicity fingerprinting of venoms using on-line microfluidic AChBP profiling.

    PubMed

    Slagboom, Julien; Otvos, Reka A; Cardoso, Fernanda C; Iyer, Janaki; Visser, Jeroen C; van Doodewaerd, Bjorn R; McCleary, Ryan J R; Niessen, Wilfried M A; Somsen, Govert W; Lewis, Richard J; Kini, R Manjunatha; Smit, August B; Casewell, Nicholas R; Kool, Jeroen

    2018-06-15

    Venoms from snakes are rich sources of highly active proteins with potent affinity towards a variety of enzymes and receptors. Of the many distinct toxicities caused by envenomation, neurotoxicity plays an important role in the paralysis of prey by snakes as well as by venomous sea snails and insects. In order to improve the analytical discovery component of venom toxicity profiling, this paper describes the implementation of microfluidic high-resolution screening (HRS) to obtain neurotoxicity fingerprints from venoms that facilitates identification of the neurotoxic components of envenomation. To demonstrate this workflow, 47 snake venoms were profiled using the acetylcholine binding protein (AChBP) to mimic the target of neurotoxic proteins, in particular nicotinic acetylcholine receptors (nAChRs). In the microfluidic HRS system, nanoliquid chromatographic (nanoLC) separations were on-line connected to both AChBP profiling and parallel mass spectrometry (MS). For virtually all neurotoxic elapid snake venoms tested, we obtained bioactivity fingerprints showing major and minor bioactive zones containing masses consistent with three-finger toxins (3FTxs), whereas, viperid and colubrid venoms showed little or no detectable bioactivity. Our findings demonstrate that venom interactions with AChBP correlate with the severity of neurotoxicity observed following human envenoming by different snake species. We further, as proof of principle, characterized bioactive venom peptides from a viperid (Daboia russelli) and an elapid (Aspidelaps scutatus scutatus) snake by nanoLC-MS/MS, revealing that different toxin classes interact with the AChBP, and that this binding correlates with the inhibition of α7-nAChR in calcium-flux cell-based assays. The on-line post-column binding assay and subsequent toxin characterization methodologies described here provide a new in vitro analytic platform for rapidly investigating neurotoxic snake venom proteins. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  12. Bioactive hydrogel-nanosilica hybrid materials: a potential injectable scaffold for bone tissue engineering.

    PubMed

    Lewandowska-Łańcucka, Joanna; Fiejdasz, Sylwia; Rodzik, Łucja; Kozieł, Marcin; Nowakowska, Maria

    2015-02-10

    Novel bioactive organic-inorganic hybrid materials that can serve as injectable hydrogel systems for bone tissue regeneration were obtained. The silica nanoparticles (SiNP) prepared in situ by the Stöber method were dispersed in collagen, collagen-chitosan or chitosan sols, which were then subsequently crosslinked. Laser scanning confocal microscopy studies, in which fluorescent SiNP were applied, and SEM images indicated that the nanosilica particles were distributed in the whole volume of the hydrogel matrix. In vitro studies on fibroblast cell viability indicated that the hybrid materials are biocompatible. The silica nanoparticles dispersed in the biopolymer matrix had a positive effect on cell viability. Studies on the mineralization process under simulated body fluid (SBF) conditions confirmed the bioactivity of prepared materials. SEM images revealed mineral phase formation in the majority of the hybrid materials developed. EDS analysis indicated that these mineral phases are mainly composed of calcium and phosphorus. The XRD studies confirmed that mineral phases formed during SBF incubation of hybrid materials based on collagen are bone-like apatite minerals. The silica nanoparticles added to the hydrogel at the stage of synthesis induced the occurrence of mineralization. This process occurs not only at the surface of the material but in its entire volume, which is important for the preparation of scaffolds for bone tissue engineering. The ability of these materials to undergo in situ gelation under physiological temperature and their bioactivity as well as biocompatibility make them interesting candidates for bioactive injectable systems.

  13. Effect of ZrO(2) additions on the crystallization, mechanical and biological properties of MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) bioactive glass-ceramics.

    PubMed

    Li, H C; Wang, D G; Meng, X G; Chen, C Z

    2014-06-01

    A series of ZrO(2) doped MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) bioactive glass-ceramics were obtained by sintering method. The crystallization behavior, phase composition, morphology and structure of glass-ceramics were characterized. The bending strength, elastic modulus, fracture toughness, micro-hardness and thermal expansion coefficient (TEC) of glass-ceramics were investigated. The in vitro bioactivity and cytotoxicity tests were used to evaluate the bioactivity and biocompatibility of glass-ceramics. The sedimentation mechanism and growth process of apatites on sample surface were discussed. The results showed that the mainly crystalline phases of glass-ceramics were Ca(5)(PO4)3F (fluorapatite) and β-CaSiO(3). (β-wollastonite). m-ZrO(2) (monoclinic zirconia) declined the crystallization temperatures of glasses. t-ZrO(2) (tetragonal zirconia) increased the crystallization temperature of Ca(5)(PO4)(3)F and declined the crystallization temperature of β-CaSiO(3). t-ZrO(2) greatly increased the fracture toughness, bending strength and micro-hardness of glass-ceramics. The nanometer apatites were induced on the surface of glass-ceramic after soaking 28 days in SBF (simulated body fluid), indicating the glass-ceramic has good bioactivity. The in vitro cytotoxicity test demonstrated the glass-ceramic has no toxicity to cell. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. In vivo digestomics of milk proteins in human milk and infant formula using a suckling rat pup model.

    PubMed

    Wada, Yasuaki; Phinney, Brett S; Weber, Darren; Lönnerdal, Bo

    2017-02-01

    Human milk is the optimal mode of infant feeding for the first several months of life, and infant formulas serve as an alternative when breast-feeding is not possible. Milk proteins have a balanced amino acid composition and some of them provide beneficial bioactivities in their intact forms. They also encrypt a variety of bioactive peptides, possibly contributing to infant health and growth. However, there is limited knowledge of how milk proteins are digested in the gastrointestinal tract and bioactive peptides are released in infants. A peptidomic analysis was conducted to identify peptides released from milk proteins in human milk and infant formula, using a suckling rat pup model. Among the major milk proteins targeted, α-lactalbumin and β-casein in human milk, and β-lactoglobulin and β-casein in infant formula were the main sources of peptides, and these peptides covered large parts of the parental proteins' sequences. Release of peptides was concentrated to specific regions, such as residues 70-92 of β-casein in human milk, residues 39-55 of β-lactoglobulin in infant formula, and residues 57-96 and 145-161 of β-CN in infant formula, where resistance to gastrointestinal digestion was suggested. In the context of bioactive peptides, release of fragments containing known bioactive peptides was confirmed, such as β-CN-derived opioid and antihypertensive peptides. It is therefore likely that these fragments are of biological significance in neonatal health and development. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Drug and bioactive molecule screening based on a bioelectrical impedance cell culture platform

    PubMed Central

    Ramasamy, Sakthivel; Bennet, Devasier; Kim, Sanghyo

    2014-01-01

    This review will present a brief discussion on the recent advancements of bioelectrical impedance cell-based biosensors, especially the electric cell-substrate impedance sensing (ECIS) system for screening of various bioactive molecules. The different technical integrations of various chip types, working principles, measurement systems, and applications for drug targeting of molecules in cells are highlighted in this paper. Screening of bioactive molecules based on electric cell-substrate impedance sensing is a trial-and-error process toward the development of therapeutically active agents for drug discovery and therapeutics. In general, bioactive molecule screening can be used to identify active molecular targets for various diseases and toxicity at the cellular level with nanoscale resolution. In the innovation and screening of new drugs or bioactive molecules, the activeness, the efficacy of the compound, and safety in biological systems are the main concerns on which determination of drug candidates is based. Further, drug discovery and screening of compounds are often performed in cell-based test systems in order to reduce costs and save time. Moreover, this system can provide more relevant results in in vivo studies, as well as high-throughput drug screening for various diseases during the early stages of drug discovery. Recently, MEMS technologies and integration with image detection techniques have been employed successfully. These new technologies and their possible ongoing transformations are addressed. Select reports are outlined, and not all the work that has been performed in the field of drug screening and development is covered. PMID:25525360

  16. Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering.

    PubMed

    Kolan, Krishna C R; Leu, Ming C; Hilmas, Gregory E; Brown, Roger F; Velez, Mariano

    2011-06-01

    Bioactive glasses are promising materials for bone scaffolds due to their ability to assist in tissue regeneration. When implanted in vivo, bioactive glasses can convert into hydroxyapatite, the main mineral constituent of human bone, and form a strong bond with the surrounding tissues, thus providing an advantage over polymer scaffold materials. Bone scaffold fabrication using additive manufacturing techniques can provide control over pore interconnectivity during fabrication of the scaffold, which helps in mimicking human trabecular bone. 13-93 glass, a third-generation bioactive material designed to accelerate the body's natural ability to heal itself, was used in the research described herein to fabricate bone scaffolds using the selective laser sintering (SLS) process. 13-93 glass mixed with stearic acid (as the polymer binder) by ball milling was used as the powder feedstock for the SLS machine. The fabricated green scaffolds underwent binder burnout to remove the stearic acid binder and were then sintered at temperatures between 675 °C and 695 °C. The sintered scaffolds had pore sizes ranging from 300 to 800 µm with 50% apparent porosity and an average compressive strength of 20.4 MPa, which is excellent for non-load bearing applications and among the highest reported for an interconnected porous scaffold fabricated with bioactive glasses using the SLS process. The MTT labeling experiment and measurements of MTT formazan formation are evidence that the rough surface of SLS scaffolds provides a cell-friendly surface capable of supporting robust cell growth.

  17. Study on the Absorbed Fingerprint-Efficacy of Yuanhu Zhitong Tablet Based on Chemical Analysis, Vasorelaxation Evaluation and Data Mining

    PubMed Central

    Chen, Yanjun; Zhang, Yingchun; Tang, Shihuan; Wang, Shanshan; Shen, Dan; Wang, Xuguang; Lei, Yun; Li, Defeng; Zhang, Yi; Jin, Lan; Yang, Hongjun; Huang, Luqi

    2013-01-01

    Yuanhu Zhitong Tablet (YZT) is an example of a typical and relatively simple clinical herb formula that is widely used in clinics. It is generally believed that YZT play a therapeutical effect in vivo by the synergism of multiple constituents. Thus, it is necessary to build the relationship between the absorbed fingerprints and bioactivity so as to ensure the quality, safety and efficacy. In this study, a new combinative method, an intestinal absorption test coupled with a vasorelaxation bioactivity experiment in vitro, was a simple, sensitive, and feasible technique to study on the absorbed fingerprint-efficacy of YZT based on chemical analysis, vasorelaxation evaluation and data mining. As part of this method, an everted intestinal sac method was performed to determine the intestinal absorption of YZT solutions. YZT were dissolved in solution (n = 12), and the portion of the solution that was absorbed into intestinal sacs was analyzed using rapid-resolution liquid chromatography coupled with quadruple time-of-flight mass spectrometry (RRLC-Q-TOF/MS). Semi-quantitative analysis indicated the presence of 34 compounds. The effect of the intestinally absorbed solution on vasorelaxation of rat aortic rings with endothelium attached was then evaluated in vitro. The results showed that samples grouped by HCA from chemical profiles have similar bioactivity while samples in different groups displayed very different. Moreover, it established a relationship between the absorbed fingerprints and their bioactivity to identify important components by grey relational analysis, which could predict bioactive values based on chemical profiles and provide an evidence for the quantification of multi-constituents. PMID:24339904

  18. Effect of UV-C radiation on bioactive compounds of pineapple (Ananas comosus L. Merr.) by-products.

    PubMed

    Freitas, Ana; Moldão-Martins, Margarida; Costa, Helena S; Albuquerque, Tânia G; Valente, Ana; Sanches-Silva, Ana

    2015-01-01

    The industrial processing of pineapple generates a high quantity of by-products. To reduce the environmental impact of these by-products and the inherent cost of their treatment, it is important to characterise and valorise these products, converting them into high added value products. Ultra-violet radiation is one of the main sustainable sanitation techniques for fruits. Since this radiation can induce plant stress which can promote the biosynthesis of bioactive compounds, it is important to evaluate its effect in fruits. The amounts of vitamins (C and E) and carotenoids (α-carotene, β-carotene, β-cryptoxanthin, lutein, lycopene, neoxanthin, violaxanthin and zeaxanthin) in pineapple by-products (core and rind) were analysed before and after treatment with UV radiation. All treated and untreated pineapple by-products contained β-carotene as the main carotenoid (rind, 2537-3225 µg; and core, 960-994 µg 100 g(-1) DW). Pineapple rind also contained lutein (288-297 µg 100 g(-1) DW) and α-carotene (89-126 µg 100 g(-1) DW). The results provide evidence of the potential of pineapple by-products as a source of bioactive compounds with antioxidant activity, which can be used by pharmaceutical, cosmetics and food industries. In addition, UV-C was shown to be a treatment that can add nutritional value to pineapple by-products. © 2014 Society of Chemical Industry.

  19. Separation, Identification, and Bioactivities of the Main Gallotannins of Red Sword Bean (Canavalia gladiata) Coats.

    PubMed

    Gan, Ren-You; Kong, Kin-Weng; Li, Hua-Bin; Wu, Kao; Ge, Ying-Ying; Chan, Chak-Lun; Shi, Xian-Ming; Corke, Harold

    2018-01-01

    The red sword bean ( Canavalia gladiata ) is an underutilized edible bean cultivated in China. It was previously found to have the highest content of antioxidant polyphenols among 42 edible beans, mainly gallic acid, and gallotannins in its red bean coat, an apparently unique characteristic among edible beans. In this study, the main phenolic compounds in red sword bean coats were further separated by Sephadex LH-20 column chromatography, and identified by LC-MS/MS. Furthermore, the FRAP and ABTS antioxidant activities and antibacterial activity (diameter of inhibition zone, DIZ) of main gallotannin-rich fractions were tested. Our results showed that gallotannins of red sword bean coats were mainly comprised of monogalloyl to hexagalloyl hexosides. Interestingly, tetragalloyl, pentagalloyl, and hexagalloyl hexosides were identified as the possible candidates responsible for the red color of the coats. On the other hand, gallotannin-rich fractions exhibited diverse antioxidant and antibacterial activities, and tetragalloyl hexoside overall had the highest free radical scavenging and antibacterial activities. The degree of galloylation did not completely explain the structure-function relationship of gallotannins isolated from red sword bean coats, as there should exist other factors affecting their bioactivities. In conclusion, red sword bean coats are excellent natural sources of gallotannins, and their gallotannin-rich extracts can be utilized as natural antioxidant and antibacterial agents with potential health benefits as well as application in food industry.

  20. Flower morphology and development in Artemisia annua, a medicinal plant used as a treatment against malaria

    USDA-ARS?s Scientific Manuscript database

    Artemisia annua produces a wide spectrum of bioactive phytochemicals that possess pharmacological properties including antimalarial, antitumor, anti-inflammatory, and anthelmintic activities. The main active ingredient, artemisinin, is extremely effective against multi-drug resistant Plasmodium fal...

  1. The Influence of Aconitum carmichaelii Debx. on the Pharmacokinetic Characteristics of Main Components in Rheum palmatum L.

    PubMed

    Li, Yun-xia; Gong, Xiao-hong; Li, Yan; Zhang, Ruo-qi; Yuan, An; Zhao, Meng-jie; Zeng, Dai-wen; Peng, Cheng

    2015-08-01

    Rhei Radix et Rhizoma was one of the commonly used traditional Chinese medicines, and the compatibility of Rhei Radix et Rhizoma and Aconiti Lateralis Radix Praeparata was the basic herb pair applied in many Chinese traditional prescription. Rhubarb anthraquinones were the main bioactive materials of Rhei Radix et Rhizoma. To elucidate the compatibility of Rhei Radix et Rhizoma and Aconiti Lateralis Radix Praeparata, the pharmacokinetics of rhubarb anthraquinones as the main marker constituents were investigated. In the present study, pharmacokinetic differences of rhubarb anthraquinones were detected after oral administration of extract of Rheum palmatum L. and compatibility with Aconitum carmichaelii Debx. After oral administration, no difference of peak time can be found for anthraquinones between rhubarb group and compatibility group. But Cmax and area under the curve of aloe-emodin, emodin and chrysophanol in compatibility group were significantly higher than that in rhubarb group. Although the Cmax of rhein in compatibility group was much lower than that in rhubarb group, the area under the curve value was similar in two groups. The clearance and t1/2 of rhubarb anthraquinone were also changed after compatibility. The change of pharmacokinetics characteristics of rhubarb anthraquinone after compatibility may be caused by the drug-drug interaction medicated by chemical reaction and cytochromes P450. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Fermentation and dry fractionation increase bioactivity of cloudberry (Rubus chamaemorus).

    PubMed

    Puupponen-Pimiä, Riitta; Nohynek, Liisa; Juvonen, Riikka; Kössö, Tuija; Truchado, Pilar; Westerlund-Wikström, Benita; Leppänen, Tiina; Moilanen, Eeva; Oksman-Caldentey, Kirsi-Marja

    2016-04-15

    Phenolic composition and bioactivity of cloudberry was modified by bioprocessing, and highly bioactive fractions were produced by dry fractionation of the press cake. During fermentation polymeric ellagitannins were partly degraded into ellagic acid derivatives. Phenolic compounds were differentially distributed in seed coarse and fine fractions after dry fractionation process. Tannins concentrated in fine fraction, and flavonol derivatives were mainly found in coarse fraction. Ellagic acid derivatives were equally distributed between the dry fractions. Fermentation and dry fractionation increased statistically significantly anti-adhesion and anti-inflammatory activity of cloudberry. The seed fine fraction showed significant inhibition of P fimbria-mediated haemagglutination assay of uropathogenic Escherichia coli. The seed coarse fraction significantly reduced NO and IL-6 production and iNOS expression in activated macrophages. Fermentation did not affect antimicrobial activity, but slight increase in activity was detected in dry fractions. The results indicate the potential of cloudberry in pharma or health food applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Antimicrobial potential of macro and microalgae against pathogenic and spoilage microorganisms in food.

    PubMed

    Pina-Pérez, M C; Rivas, A; Martínez, A; Rodrigo, D

    2017-11-15

    Algae are a valuable and never-failing source of bioactive compounds. The increasing efforts to use ingredients that are as natural as possible in the formulation of innovative products has given rise to the introduction of macro and microalgae in food industry. To date, scarce information has been published about algae ingredients as antimicrobials in food. The antimicrobial potential of algae is highly dependent on: (i) type, brown algae being the most effective against foodborne bacteria; (ii) the solvent used in the extraction of bioactive compounds, ethanolic and methanolic extracts being highly effective against Gram-positive and Gram-negative bacteria; and (iii) the concentration of the extract. The present paper reviews the main antimicrobial potential of algal species and their bioactive compounds in reference and real food matrices. The validation of the algae antimicrobial potential in real food matrices is still a research niche, being meat and bakery products the most studied substrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Study on chemical, bioactive and food preserving properties of Laetiporus sulphureus (Bull.: Fr.) Murr.

    PubMed

    Petrović, Jovana; Stojković, Dejan; Reis, Filipa S; Barros, Lillian; Glamočlija, Jasmina; Ćirić, Ana; Ferreira, Isabel C F R; Soković, Marina

    2014-07-25

    Laetiporus sulphureus (Bull.: Fr.) Murr. was studied to determine the nutritional value, bioactive compounds, in vitro antioxidants, and antimicrobial and antitumor activities. The studied mushroom is a rich source of carbohydrates and proteins. Mannitol and trehalose were the main free sugars. In addition, the polyunsaturated fatty acids α-, γ- and δ-tocopherols were found. Oxalic and citric acids were the most abundant organic acids; cinnamic and p-hydroxybenzoic acids were quantified in the methanolic extract and could be related to the antioxidant properties. It was the polysaccharidic extract that exhibited higher antioxidant and antimicrobial activities, indicating that the compounds present in this extract possess stronger bioactivity. Only the polysaccharidic extract revealed antiproliferative activity in human tumor cell lines. In addition, a suitable model system with chicken pâté was developed to test the antimicrobial preserving properties of L. sulphureus. The methanolic extract was used to examine in situ preserving properties against Aspergillus flavus and demonstrated excellent preserving potential.

  5. Challenges in Analyzing the Biological Effects of Resveratrol

    PubMed Central

    Erdogan, Cihan Suleyman; Vang, Ole

    2016-01-01

    The suggested health effects (e.g., disease prevention) of dietary bioactive compounds such as resveratrol are challenging to prove in comparison to man-made drugs developed for therapeutic purposes. Dietary bioactive compounds have multiple cellular targets and therefore have a variety of biological effects. Extrapolating the biological effects of dietary compounds from in vitro and in vivo animal experiments to humans may lead to over- or under-estimation of the effect and role of these compounds. The present paper will discuss a few of these challenges and suggest directions for future research. Questions we address include: (1) Is the combinatorial effect of resveratrol and other compounds real? (2) What are the real and relevant doses of resveratrol after administration? and (3) Is it possible to estimate the preventive effect of resveratrol by clinical trials using standard experimental designs? The examples concerning resveratrol taken from the scientific literature are mainly from 2010 and later. The challenges pointed out in this review are similar to most naturally occurring bioactive compounds. PMID:27294953

  6. Feasibility in multispectral imaging for predicting the content of bioactive compounds in intact tomato fruit.

    PubMed

    Liu, Changhong; Liu, Wei; Chen, Wei; Yang, Jianbo; Zheng, Lei

    2015-04-15

    Tomato is an important health-stimulating fruit because of the antioxidant properties of its main bioactive compounds, dominantly lycopene and phenolic compounds. Nowadays, product differentiation in the fruit market requires an accurate evaluation of these value-added compounds. An experiment was conducted to simultaneously and non-destructively measure lycopene and phenolic compounds content in intact tomatoes using multispectral imaging combined with chemometric methods. Partial least squares (PLS), least squares-support vector machines (LS-SVM) and back propagation neural network (BPNN) were applied to develop quantitative models. Compared with PLS and LS-SVM, BPNN model considerably improved the performance with coefficient of determination in prediction (RP(2))=0.938 and 0.965, residual predictive deviation (RPD)=4.590 and 9.335 for lycopene and total phenolics content prediction, respectively. It is concluded that multispectral imaging is an attractive alternative to the standard methods for determination of bioactive compounds content in intact tomatoes, providing a useful platform for infield fruit sorting/grading. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Efficient dehydration of 6-gingerol to 6-shogaol catalyzed by an acidic ionic liquid under ultrasound irradiation.

    PubMed

    Kou, Xingran; Li, Xingze; Rahman, Md Ramim Tanver; Yan, Minming; Huang, Huanhuan; Wang, Hongxin; Su, Yihai

    2017-01-15

    6-Gingerol and 6-shogaol are the main bioactive compounds in ginger. Although 6-shogaol has more and better bioactivities than its precursor 6-gingerol, the low content of 6-shogaol in ginger restricts its bioactive effects in functional foods. The traditional preparation methods of 6-shogaol are defective because of the environmental hazards and low efficiency of the processes. In this study, an efficient, easy and eco-friendly dehydration conversion of 6-gingerol to 6-shogaol is presented using an acidic ionic liquid 1-butyl-3-methylimidazolium hydrosulfate ([Bmim]HSO4) under ultrasound irradiation. The key parameters, including reaction temperature, reaction time, mass ratio of catalyst to substrate and ultrasonic power in each reaction process, were investigated. The yield of 6-shogaol reached as high as 97.16% under optimized condition. The catalyst could be separated from the reaction mixture and reused five times with only a slight loss of activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Permeation of bioactive constituents from Arnica montana preparations through human skin in-vitro.

    PubMed

    Tekko, I A; Bonner, M C; Bowen, R D; Williams, A C

    2006-09-01

    This study investigated and characterised transdermal permeation of bioactive agents from a topically applied Arnica montana tincture. Permeation experiments conducted over 48 h used polydimethylsiloxane (silastic) and human epidermal membranes mounted in Franz-type diffusion cells with a methanol-water (50:50 v/v) receptor fluid. A commercially available tincture of A. montana L. derived from dried Spanish flower heads was a donor solution. Further donor solutions prepared from this stock tincture concentrated the tincture constituents 1, 2 and 10 fold and its sesquiterpene lactones 10 fold. Permeants were assayed using a high-performance liquid chromatography method. Five components permeated through silastic membranes providing peaks with relative retention factors to an internal standard (santonin) of 0.28, 1.18, 1.45, 1.98 and 2.76, respectively. No permeant was detected within 12 h of applying the Arnica tincture onto human epidermal membranes. However, after 12 h, the first two of these components were detected. These were shown by Zimmermann reagent reaction to be sesquiterpene lactones and liquid chromatography/diode array detection/mass spectrometry indicated that these two permeants were 11,13-dihydrohelenalin (DH) analogues (methacrylate and tiglate esters). The same two components were also detected within 3 h of topical application of the 10-fold concentrated tincture and the concentrated sesquiterpene lactone extract.

  9. Quality Evaluation and Chemical Markers Screening of Salvia miltiorrhiza Bge. (Danshen) Based on HPLC Fingerprints and HPLC-MSn Coupled with Chemometrics.

    PubMed

    Liang, Wenyi; Chen, Wenjing; Wu, Lingfang; Li, Shi; Qi, Qi; Cui, Yaping; Liang, Linjin; Ye, Ting; Zhang, Lanzhen

    2017-03-17

    Danshen, the dried root of Salvia miltiorrhiza Bge., is a widely used commercially available herbal drug, and unstable quality of different samples is a current issue. This study focused on a comprehensive and systematic method combining fingerprints and chemical identification with chemometrics for discrimination and quality assessment of Danshen samples. Twenty-five samples were analyzed by HPLC-PAD and HPLC-MS n . Forty-nine components were identified and characteristic fragmentation regularities were summarized for further interpretation of bioactive components. Chemometric analysis was employed to differentiate samples and clarify the quality differences of Danshen including hierarchical cluster analysis, principal component analysis, and partial least squares discriminant analysis. Consistent results were that the samples were divided into three categories which reflected the difference in quality of Danshen samples. By analyzing the reasons for sample classification, it was revealed that the processing method had a more obvious impact on sample classification than the geographical origin, it induced the different content of bioactive compounds and finally lead to different qualities. Cryptotanshinone, trijuganone B, and 15,16-dihydrotanshinone I were screened out as markers to distinguish samples by different processing methods. The developed strategy could provide a reference for evaluation and discrimination of other traditional herbal medicines.

  10. Determination of bioactive components in Chinese herbal formulae and pharmacokinetics of rhein in rats by UPLC-MS/MS.

    PubMed

    Hou, Mei-Ling; Chang, Li-Wen; Lin, Chi-Hung; Lin, Lie-Chwen; Tsai, Tung-Hu

    2014-04-02

    Rhein (4,5-dihydroxy-9,10-dioxoanthracene-2-carboxylic acid, cassic acid) is a pharmacological active component found in Rheum palmatum L. the major herb of San-Huang-Xie-Xin-Tang (SHXXT), a medicinal herbal product used as a remedy for constipation. Here we have determined multiple bioactive components in SHXXT and investigated the comparative pharmacokinetics of rhein in rats. A sensitive and specific method combining liquid chromatography with electrospray ionization tandem mass spectrometry has been developed and validated to simultaneously quantify six active compounds in the pharmaceutical herbal product SHXXT to further study their pharmacokinetics in rats. Multiple reaction monitoring (MRM) was employed for quantification with switching electrospray ion source polarity between positive and negative modes in a single run. There were no significant matrix effects in the quantitative analysis and the mean recovery for rhein in rat plasma was 91.6%±3.4%. The pharmacokinetic data of rhein demonstrate that the herbal formulae or the single herbal extract provide significantly higher absorption rate than the pure compound. This phenomenon suggests that the other herbal ingredients of SHXXT and rhubarb extract significantly enhance the absorption of rhein in rats. In conclusion, the herbal formulae (SHXXT) are more efficient than the single herb (rhubarb) or the pure compound (rhein) in rhein absorption.

  11. An endophytic Coniochaeta velutina producing broad spectrum antimycotics.

    PubMed

    Xie, Jie; Strobel, Gary A; Feng, Tao; Ren, Huishuang; Mends, Morgan T; Zhou, Zeyang; Geary, Brad

    2015-06-01

    An endophyte (PC27-5) was isolated from stem tissue of Western hemlock (Tsuga heterophylla) in a Pacific Northwest temperate rainforest. Phylogenetic analyses, based on ITS-5.8S rDNA and 18S rDNA sequence data, combined with cultural and morphological analysis showed that endophyte PC27-5 exhibited all characteristics of a fungus identical to Coniochaeta velutina. Furthermore, wide spectrum antimycotics were produced by this endophyte that were active against such plant pathogens as Sclerotinia sclerotiorum, Pythium ultimum, and Verticillium dahliae and lethal to Phythophthora cinnamomi, Pythium ultimum, and Phytophthora palmivora in plate tests. The bioactive components were purified through organic solvent extraction, followed by silica column chromatography, and finally preparative HPLC. The minimum inhibitory concentration of the active fraction to Pythium ultimum, which was gained from preparative HPLC, was 11 μg/ml. UPLC-HRMS analysis showed there were two similar components in the antimycotic fraction. Their molecular formulae were established as C30H22O11 (compound I) and C30H22O10 (compound II) respectively, and preliminary spectral results indicate that they are anthroquinone glycosides. Other non-biologically active compounds were identified in culture fluids of this fungus by spectral means as emodin and chrysophanol--anthroquinone derivatives. This is the first report that Coniochaeta velutina as an endophyte produces bioactive antifungal components.

  12. Safety evaluation of some wild plants in the New Nordic Diet.

    PubMed

    Mithril, Charlotte; Dragsted, Lars Ove

    2012-12-01

    One of the dietary components in the New Nordic Diet, is plants from the wild countryside. However, these may have a high content of bioactive components, some of which could be toxic in larger quantities. The objective of this paper is to outline a strategy for safety evaluation of wild plants not covered in current food compositional databases and to apply the method for selected plants used in the New Nordic Diet recipes. Four examples of typical wild edible plants were evaluated (stinging nettle, sorrel, chickweed and common lambsquarters), and based on substantial equivalence with known food plants the majority of the bioactive components reported were within the range experienced when eating or drinking typical food stuffs. For most compounds the hazards could be evaluated as minor. The only precaution found was for common lambsquarters because of its presumed high level of oxalic acid. It is concluded that a substance-by-substance evaluation of intake by equivalence to common foods is a useful and efficient strategy to evaluate the safety of newly introduced wild edible plants. Further evaluation and better compositional analyses are warranted before a daily consumption of significant amounts of wild edible plants can be generally regarded as safe. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Microwave and micronization treatments affect dehulling characteristics and bioactive contents of dry beans (Phaseolus vulgaris L.).

    PubMed

    Oomah, B Dave; Kotzeva, Lily; Allen, Meghan; Bassinello, Priscila Zaczuk

    2014-05-01

    Heat pretreatment is considered the first step in grain milling. This study therefore evaluated microwave and micronization heat treatments in improving the dehulling characteristics, phenolic composition and antioxidant and α-amylase activities of bean cultivars from three market classes. Heat treatments improved dehulling characteristics (hull yield, rate coefficient and reduced abrasive hardness index) depending on bean cultivar, whereas treatment effects increased with dehulling time. Micronization increased minor phenolic components (tartaric esters, flavonols and anthocyanins) of all beans but had variable effects on total phenolic content depending on market class. Microwave treatment increased α-amylase inhibitor concentration, activity and potency, which were strongly correlated (r²  = 0.71, P < 0.0001) with the flavonol content of beans. Heat treatment had variable effects on the phenolic composition of bean hulls obtained by abrasive dehulling without significantly altering the antioxidant activity of black and pinto bean hulls. Principal component analysis on 22 constituents analyzed in this study demonstrated the differences in dehulling characteristics and phenolic components of beans and hulls as major factors in segregating the beneficial heat treatment effects. Heat treatment may be useful in developing novel dietary fibers from beans with variable composition and bioactivity with a considerable range of applications as functional food ingredients. © 2013 Society of Chemical Industry.

  14. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.

    PubMed

    Lu, Helen H; El-Amin, Saadiq F; Scott, Kimberli D; Laurencin, Cato T

    2003-03-01

    In the past decade, tissue engineering-based bone grafting has emerged as a viable alternative to biological and synthetic grafts. The biomaterial component is a critical determinant of the ultimate success of the tissue-engineered graft. Because no single existing material possesses all the necessary properties required in an ideal bone graft, our approach has been to develop a three dimensional (3-D), porous composite of polylactide-co-glycolide (PLAGA) and 45S5 bioactive glass (BG) that is biodegradable, bioactive, and suitable as a scaffold for bone tissue engineering (PLAGA-BG composite). The objectives of this study were to examine the mechanical properties of a PLAGA-BG matrix, to evaluate the response of human osteoblast-like cells to the PLAGA-BG composite, and to evaluate the ability of the composite to form a surface calcium phosphate layer in vitro. Structural and mechanical properties of PLAGA-BG were measured, and the formation of a surface calcium phosphate layer was evaluated by surface analysis methods. The growth and differentiation of human osteoblast-like cells on PLAGA-BG were also examined. A hypothesis was that the combination of PLAGA with BG would result in a biocompatible and bioactive composite, capable of supporting osteoblast adhesion, growth and differentiation, with mechanical properties superior to PLAGA alone. The addition of bioactive glass granules to the PLAGA matrix resulted in a structure with higher compressive modulus than PLAGA alone. Moreover, the PLAGA-BA composite was found to be a bioactive material, as it formed surface calcium phosphate deposits in a simulated body fluid (SBF), and in the presence of cells and serum proteins. The composite supported osteoblast-like morphology, stained positively for alkaline phosphatase, and supported higher levels of Type I collagen synthesis than tissue culture polystyrene controls. We have successfully developed a degradable, porous, polymer bioactive glass composite possessing improved mechanical properties and osteointegrative potential compared to degradable polymers of poly(lactic acid-glycolic acid) alone. Future work will focus on the optimization of the composite scaffold for bone tissue-engineering applications and the evaluation of the 3-D composite in an in vivo model. Copyright 2003 Wiley Periodicals, Inc.

  15. A close collaboration of chitosan with lipid colloidal carriers for drug delivery applications.

    PubMed

    Bugnicourt, Loïc; Ladavière, Catherine

    2017-06-28

    Chitosan and lipid colloids have separately shown a growing interest in the field of drug delivery applications. Their success is mainly due to their interesting physicochemical behaviors, as well as their biological properties such as bioactivity and biocompatibility. While chitosan is a well-known cationic polysaccharide with the ability to strongly interact with drugs and biological matrices through mainly electrostatic interactions, lipid colloids are carriers particularly recognized for the drug vectorization. In recent years, the combination of both entities has been considered because it offers new systems which gather the advantages of each of them to efficiently deliver various types of bioactive species. The purpose of this review is to describe these associations between chemically-unmodified chitosan chains (solubilized or dispersed) and lipid colloids (as nanoparticles or organized in lipid layers), as well as their potential in the drug delivery area so far. Three assemblies have mainly been reported in the literature: i) lipid nanoparticles (solid lipid nanoparticles or nanostructured lipid carriers) coated with chitosan chains, ii) lipid vesicles covered with chitosan chains, and iii) chitosan chains structured in nanoparticles with a lipid coating. Their elaboration processes, their physicochemical characterization, and their biological studies are detailed and discussed herein. The different bioactive species (drugs and bio(macro)molecules) incorporated in these assemblies, their maximal incorporation efficiency, and their loading capacity are also presented. This review reveals the versatility of these assemblies. Depending on the organization of lipids (i.e., nanoparticles or vesicles) and the state of polymer chains (i.e., solubilized or dispersed under the form of nanoparticles), a large variety of drugs can be successfully incorporated, and various routes of administration can be considered. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Engineering bioactive polymers for the next generation of bone repair

    NASA Astrophysics Data System (ADS)

    Ho, Emily Y.

    Bone disease is a serious health condition among the aged population. In some cases of bone damage it becomes necessary to replace, recontour, and assist in the healing of the bone. Many materials have been proposed as useful replacements but none have been proven to be ideal. In this thesis, two bioactive composites were investigated for bone replacements. First reported material is a hydroxyapatite (HA) particle reinforced polymethylmethacrylate (PMMA) composite treated with a co-polymer coupling agent for mandible augmentations. The influence of the coupling agent on the local mechanical properties of the system before and after simulated biological conditions was determined by applying nano-indentation at the cross-sectional HA/PMMA interface. The local interfacial results were indicative of the global quasi static compression test results. While the coupling agent improved the interfacial and global mechanical properties before and after 24 hours in vitro immersion, it did not affect the surface bioactivity of the system. However, the addition of coupling agent did not provide long term in vitro improvement of both local and global mechanical properties of the composite. An alternative approach of combining a bioactive phase into polymer matrix was developed. The second analyzed material is an injectable composite with osteoconductivity and ideal mechanical biocompatibility for vertebral fracture fixations which we formulated and fabricated. A bioactive component was engineered into the macromolecular structure to facilitate the formation of apatite nucleation sites on a thermo-sensitive polymer, poly(N-isopropylacryamide)-co-poly(ethyleneglycol) dimethacrylate (PNIPAAm-PEGDM), through incorporation of tri-methacryloxypropyltrimethoxysilane (MPS). PNIPAAm-PEGDM is capable of liquid to solid phase transformation at 32°C. In this study, the phase transformation temperature (LCSTs), the in vitro mechanical properties, swelling characteristics and bioactivity of the polymers were evaluated. The addition of NIPS to the polymer encouraged apatite formation and increased its compressive modulus while its LCST remained unchanged. The challenge of this material system is to balance the network-forming and bioactivity inducing MPS with the gain in elastic recovery induced by PEGDM addition to the PNIPAAm base, all while maintaining an injectable material system. This material platform offers a family of polymers that have a range of mechanical properties for various tissue replacements.

  17. Biologically active components and nutraceuticals in the Monascus-fermented rice: a review.

    PubMed

    Lin, Yii-Lih; Wang, Teng-Hsu; Lee, Min-Hsiung; Su, Nan-Wei

    2008-01-01

    Monascus-fermented rice has traditionally been used as a natural food colorant and food preservative of meat and fish for centuries. It has recently become a popular dietary supplement because of many of its bioactive constituents being discovered, including a series of active drug compounds, monacolins, indicated as the 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors for reducing serum cholesterol level. The controversy of its safety has been provoked because a mycotoxin, citrinin, is also produced along with the Monascus secondary metabolites by certain strains or under certain cultivation conditions. This review introduces the basic production process and addresses on the compounds with bioactive functions. Current advances in avoiding the harmful ingredient citrinin are also discussed.

  18. High-Molecular-Weight Proanthocyanidins in Foods: Overcoming Analytical Challenges in Pursuit of Novel Dietary Bioactive Components.

    PubMed

    Neilson, Andrew P; O'Keefe, Sean F; Bolling, Bradley W

    2016-01-01

    Proanthocyanidins (PACs) are an abundant but complex class of polyphenols found in foods and botanicals. PACs are polymeric flavanols with a variety of linkages and subunits. Connectivity and degree of polymerization (DP) determine PAC bioavailability and bioactivity. Current quantitative and qualitative methods may ignore a large percentage of dietary PACs. Subsequent correlations between intake and activity are hindered by a lack of understanding of the true PAC complexity in many foods. Additionally, estimates of dietary intakes are likely inaccurate, as nutrient databank values are largely based on standards from cocoa (monomers to decamers) and blueberries (mean DP of 36). Improved analytical methodologies are needed to increase our understanding of the biological roles of these complex compounds.

  19. Cocoa Bioactive Compounds: Significance and Potential for the Maintenance of Skin Health

    PubMed Central

    Scapagnini, Giovanni; Davinelli, Sergio; Di Renzo, Laura; De Lorenzo, Antonino; Olarte, Hector Hugo; Micali, Giuseppe; Cicero, Arrigo F.; Gonzalez, Salvador

    2014-01-01

    Cocoa has a rich history in human use. Skin is prone to the development of several diseases, and the mechanisms in the pathogenesis of aged skin are still poorly understood. However, a growing body of evidence from clinical and bench research has begun to provide scientific validation for the use of cocoa-derived phytochemicals as an effective approach for skin protection. Although the specific molecular and cellular mechanisms of the beneficial actions of cocoa phytochemicals remain to be elucidated, this review will provide an overview of the current literature emphasizing potential cytoprotective pathways modulated by cocoa and its polyphenolic components. Moreover, we will summarize in vivo studies showing that bioactive compounds of cocoa may have a positive impact on skin health. PMID:25116848

  20. Marine bioactive compounds: stereospecific anti-inflammatory activity of natural and synthetic cordiachromene A.

    PubMed

    Benslimane, A F; Pouchus, Y F; Verbist, J F; Petit, J Y; Khettab, E N; Welin, L; Brion, J D

    1992-01-01

    A new synthesis is proposed for cordiachromene A (CCA), a bioactive component of the ascidian Aplidium antillense Gravier, using a method producing a racemic mixture. The anti-inflammatory activities of a natural extract and a chemically synthetic form of CCA were assessed in vivo by carrageenan-induced rat-paw edema. The activity of synthetic CCA was confirmed by a test on kaolin-induced granuloma in the rat. Strong activities were measured for both CCA, but comparison of results of the first test suggests that only the natural optically active isomer has an anti-inflammatory effect. CCA is similar to indomethacin in its effect on carrageenan-induced rat-paw edema and ten times as active as phenylbutazone.

  1. Bioactive compounds in cereal grains - occurrence, structure, technological significance and nutritional benefits - a review.

    PubMed

    Bartłomiej, Siurek; Justyna, Rosicka-Kaczmarek; Ewa, Nebesny

    2012-12-01

    This review presents current information about principal, biologically active compounds contained in grains of cereals that are most popular in Europe (wheat, rye, barley and oat). The tendency to provide consumers with safe foods, which promote their health and are based on cereal grains and/or their components with the high nutritive value, has been recently observed. The intake of protective substances contained in whole grains and their fractions contributes to a decreased risk of food-dependent diseases like the coronary heart disease and insulin-dependent diabetes. This study describes the structure, occurrence in cereal grains, technological importance and beneficial influence on human health of bioactive substances such as arabinoxylans, β-glucans, alkylresorcinols, tocols and phytosterols.

  2. Composition, antimicrobial, antioxidant, and antiproliferative activity of Origanum dictamnus (dittany) essential oil

    PubMed Central

    Mitropoulou, Gregoria; Fitsiou, Eleni; Stavropoulou, Elisavet; Papavassilopoulou, Eleni; Vamvakias, Manolis; Pappa, Aglaia; Oreopoulou, Antigoni; Kourkoutas, Yiannis

    2015-01-01

    Background Nowadays, there has been an increased interest in essential oils from various plant origins as potential antimicrobial, antioxidant, and antiproliferative agents. This trend can be mainly attributed to the rising number and severity of food poisoning outbreaks worldwide along with the recent negative consumer perception against artificial food additives and the demand for novel functional foods with possible health benefits. Origanum dictamnus (dittany) is an aromatic, tender perennial plant that only grows wild on the mountainsides and gorges of the island of Crete in Greece. Objective The aim of the present study was to investigate the antimicrobial, antioxidant, and antiproliferative properties of O. dictamnus essential oil and its main components and assess its commercial potential in the food industry. Design O. dictamnus essential oil was initially analyzed by gas chromatography–mass spectrometry (GC–MS) to determine semi-quantitative chemical composition of the essential oils. Subsequently, the antimicrobial properties were assayed and the minimum inhibitory and non-inhibitory concentration values were determined. The antioxidant activity and cytotoxic action against the hepatoma adenocarcinoma cell line HepG2 of the essential oil and its main components were further evaluated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and by the sulforhodamine B (SRB) assay, respectively. Results The main constituents of O. dictamnus essential oil identified by GC–MS analysis were carvacrol (52.2%), γ-terpinene (8.4%), p-cymene (6.1%), linalool (1.4%), and caryophyllene (1.3%). O. dictamnus essential oil and its main components were effective against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Listeria monocytogenes, Salmonella Enteritidis, Salmonella typhimurium, Saccharomyces cerevisiae, and Aspergillus niger. In addition, the estimated IC50 value for the DPPH radical scavenging activity for O. dictamnus essential oil was 0.045±0.0042% (v/v) and was mainly attributed to carvacrol. The EC50 value for the essential oil in the 72h SRB assay in HepG2 cells was estimated to be 0.0069±0.00014% (v/v). Among the individual constituents tested, carvacrol was the most bioactive compound and accounted for the observed antiproliferative activity of the essential oil. Conclusions The results revealed that O. dictamnus essential oil is a noteworthy growth inhibitor against the microbes studied. It also possesses significant antioxidant activity and demonstrated excellent cytotoxicity against HepG2 cells. Taken together, O. dictamnus essential oil may represent an effective and inexpensive source of potent natural antimicrobial agents with health-promoting properties, which may be incorporated in food systems. PMID:25952773

  3. Composition, antimicrobial, antioxidant, and antiproliferative activity of Origanum dictamnus (dittany) essential oil.

    PubMed

    Mitropoulou, Gregoria; Fitsiou, Eleni; Stavropoulou, Elisavet; Papavassilopoulou, Eleni; Vamvakias, Manolis; Pappa, Aglaia; Oreopoulou, Antigoni; Kourkoutas, Yiannis

    2015-01-01

    Nowadays, there has been an increased interest in essential oils from various plant origins as potential antimicrobial, antioxidant, and antiproliferative agents. This trend can be mainly attributed to the rising number and severity of food poisoning outbreaks worldwide along with the recent negative consumer perception against artificial food additives and the demand for novel functional foods with possible health benefits. Origanum dictamnus (dittany) is an aromatic, tender perennial plant that only grows wild on the mountainsides and gorges of the island of Crete in Greece. The aim of the present study was to investigate the antimicrobial, antioxidant, and antiproliferative properties of O. dictamnus essential oil and its main components and assess its commercial potential in the food industry. O. dictamnus essential oil was initially analyzed by gas chromatography-mass spectrometry (GC-MS) to determine semi-quantitative chemical composition of the essential oils. Subsequently, the antimicrobial properties were assayed and the minimum inhibitory and non-inhibitory concentration values were determined. The antioxidant activity and cytotoxic action against the hepatoma adenocarcinoma cell line HepG2 of the essential oil and its main components were further evaluated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and by the sulforhodamine B (SRB) assay, respectively. The main constituents of O. dictamnus essential oil identified by GC-MS analysis were carvacrol (52.2%), γ-terpinene (8.4%), p-cymene (6.1%), linalool (1.4%), and caryophyllene (1.3%). O. dictamnus essential oil and its main components were effective against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Listeria monocytogenes, Salmonella Enteritidis, Salmonella typhimurium, Saccharomyces cerevisiae, and Aspergillus niger. In addition, the estimated IC50 value for the DPPH radical scavenging activity for O. dictamnus essential oil was 0.045±0.0042% (v/v) and was mainly attributed to carvacrol. The EC50 value for the essential oil in the 72h SRB assay in HepG2 cells was estimated to be 0.0069±0.00014% (v/v). Among the individual constituents tested, carvacrol was the most bioactive compound and accounted for the observed antiproliferative activity of the essential oil. The results revealed that O. dictamnus essential oil is a noteworthy growth inhibitor against the microbes studied. It also possesses significant antioxidant activity and demonstrated excellent cytotoxicity against HepG2 cells. Taken together, O. dictamnus essential oil may represent an effective and inexpensive source of potent natural antimicrobial agents with health-promoting properties, which may be incorporated in food systems.

  4. The first report on transcriptome analysis of the venom gland of Iranian scorpion, Hemiscorpius lepturus.

    PubMed

    Kazemi-Lomedasht, Fatemeh; Khalaj, Vahid; Bagheri, Kamran Pooshang; Behdani, Mahdi; Shahbazzadeh, Delavar

    2017-01-01

    Hemiscorpius lepturus scorpion is one of the most venomous members of the Hemiscorpiidae family. H. lepturus is distributed in Iran, Iraq and Yemen. The prevalence and severity of scorpionism is high and health services are not able to control it. Scorpionism in Iran especially in the southern regions (Khuzestan, Sistan and Baluchestan, Hormozgan, Ilam) is one of the main health challenges. Due to the medical and health importance of scorpionism, the focus of various studies has been on the identification of H. lepturus venom components. Nevertheless, until now, only a few percent of H. lepturus venom components have been identified and there is no complete information about the venom components of H. lepturus. The current study reports transcriptome analysis of the venom gland of H. lepturus scorpion. Illumina Next Generation Sequencing results identified venom components of H. lepturus. When compared with other scorpion's venom, the venom of H. lepturus consists of mixtures of peptides, proteins and enzymes such as; phospholipases, metalloproteases, hyaluronidases, potassium channel toxins, calcium channel toxins, antimicrobial peptides (AMPs), venom proteins, venom toxins, allergens, La1-like peptides, proteases and scorpine-like peptides. Comparison of identified components of H. lepturus venom was carried out with venom components of reported scorpions and various identities and similarities between them were observed. With transcriptome analysis of H. lepturus venom unique sequences, coding venom components were investigated. Moreover, our study confirmed transcript expression of previously reported peptides; Hemitoxin, Hemicalcin and Hemilipin. The gene sequences of venom components were investigated employing transcriptome analysis of venom gland of H. lepturus. In summary, new bioactive molecules identified in this study, provide basis for venomics studies of scorpions of Hemiscorpiidae family and promises development of novel biotherapeutics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Analysis of commercial and public bioactivity databases.

    PubMed

    Tiikkainen, Pekka; Franke, Lutz

    2012-02-27

    Activity data for small molecules are invaluable in chemoinformatics. Various bioactivity databases exist containing detailed information of target proteins and quantitative binding data for small molecules extracted from journals and patents. In the current work, we have merged several public and commercial bioactivity databases into one bioactivity metabase. The molecular presentation, target information, and activity data of the vendor databases were standardized. The main motivation of the work was to create a single relational database which allows fast and simple data retrieval by in-house scientists. Second, we wanted to know the amount of overlap between databases by commercial and public vendors to see whether the former contain data complementing the latter. Third, we quantified the degree of inconsistency between data sources by comparing data points derived from the same scientific article cited by more than one vendor. We found that each data source contains unique data which is due to different scientific articles cited by the vendors. When comparing data derived from the same article we found that inconsistencies between the vendors are common. In conclusion, using databases of different vendors is still useful since the data overlap is not complete. It should be noted that this can be partially explained by the inconsistencies and errors in the source data.

  6. Novel bio-active lipid nanocarriers for the stabilization and sustained release of sitosterol

    NASA Astrophysics Data System (ADS)

    Lacatusu, I.; Badea, N.; Stan, R.; Meghea, A.

    2012-11-01

    In this work, new stable and efficiently bio-active lipid nanocarriers (NLCs) with antioxidant properties have been developed for the transport of active ingredients in food. The novel NLCs loaded with β-sitosterol/β-sitosterol and green tea extract (GTE) and prepared by a combination of natural oils (grape seed oil, fish oil and squalene) and biological lipids with food grade surfactants, were physico-chemically examined by DLS, TEM, electrokinetic potential, DSC and HPLC and found to have main diameters less than 200 nm, a spherical morphology, excellent physical stability, an imperfect crystalline lattice and high entrapment efficiency. The novel loaded-NLCs have demonstrated the potential to develop a high blocking action of chain reactions, trapping up to 92% of the free-oxygen radicals, as compared to the native β-sitosterol (AA%=36.5). Another advantage of this study is associated with the quality of bio-active NLCs based on grape seed oil and squalene to manifest a better sitosterol—sustained release behaviour as compared to their related nanoemulsions. By coupling both in vitro results, i.e. the enhanced antioxidant activity and superior release properties, this study emphasizes the sustainability of novel bio-active nanocarriers to gain specific bio-food features for development of functional foods with a high applicability spectrum.

  7. Impact of Cultivation Conditions, Ethylene Treatment, and Postharvest Storage on Selected Quality and Bioactivity Parameters of Kiwifruit "Hayward" Evaluated by Analytical and Chemometric Methods.

    PubMed

    Park, Yong Seo; Polovka, Martin; Ham, Kyung-Sik Ham; Park, Yang-Kyun; Vearasilp, Suchada; Namieśnik, Jacek; Toledo, Fernando; Arancibia-Avila, Patricia; Gorinstein, Shela

    2016-09-01

    Organic, semiorganic, and conventional "Hayward" kiwifruits, treated with ethylene for 24 h and stored during 10 days, were assessed by UV spectrometry, fluorometry, and chemometrical analysis for changes in selected characteristics of quality (firmness, dry matter and soluble solid contents, pH, and acidity) and bioactivity (concentration of polyphenols via Folin-Ciocalteu and p-hydroxybenzoic acid assays). All of the monitored qualitative parameters and characteristics related to bioactivity were affected either by cultivation practices or by ethylene treatment and storage. Results obtained, supported by statistical evaluation (Friedman two-way ANOVA) and chemometric analysis, clearly proved that the most significant impact on the majority of the evaluated parameters of quality and bioactivity of "Hayward" kiwifruit had the ethylene treatment followed by the cultivation practices and the postharvest storage. Total concentration of polyphenols expressed via p-hydroxybenzoic acid assay exhibited the most significant sensitivity to all three evaluated parameters, reaching a 16.5% increase for fresh organic compared to a conventional control sample. As a result of postharvest storage coupled with ethylene treatment, the difference increased to 26.3%. Three-dimensional fluorescence showed differences in the position of the main peaks and their fluorescence intensity for conventional, semiorganic, and organic kiwifruits in comparison with ethylene nontreated samples.

  8. The In Vitro Bioactivity, Degradation, and Cytotoxicity of Polymer-Derived Wollastonite-Diopside Glass-Ceramics

    PubMed Central

    Juraski, Amanda De Castro; Dorion Rodas, Andrea Cecilia; Elsayed, Hamada; Bernardo, Enrico; Oliveira Soares, Viviane; Daguano, Juliana

    2017-01-01

    Ca-Mg silicates are receiving a growing interest in the field of bioceramics. In a previous study, wollastonite-diopside (WD) glass-ceramics were successfully prepared by a new processing route, consisting of the heat treatment of a silicone resin embedding reactive oxide particles and a Ca/Mg-rich glass. The in vitro degradation, bioactivity, and cell response of these new WD glass-ceramics, fired at 900–1100 °C for 1 h, as a function of the Ca/Mg-rich glass content, are the aim of this investigation The results showed that WD glass-ceramics from formulations comprising different glass contents (70–100% at 900 °C, 30% at 1100 °C) exhibit the formation of an apatite-like layer on their surface after immersion in SBF for seven days, thus confirming their surface bioactivity. The XRD results showed that these samples crystallized, mainly forming wollastonite (CaSiO3) and diopside (CaMgSi2O6), but combeite (Na2Ca2Si3O9) crystalline phase was also detected. Besides in vitro bioactivity, cytotoxicity and osteoblast adhesion and proliferation tests were applied after all characterizations, and the formulation comprising 70% glass was demonstrated to be promising for further in vivo studies. PMID:28772783

  9. Scrubchem: Building Bioactivity Datasets from Pubchem ...

    EPA Pesticide Factsheets

    The PubChem Bioassay database is a non-curated public repository with data from 64 sources, including: ChEMBL, BindingDb, DrugBank, EPA Tox21, NIH Molecular Libraries Screening Program, and various other academic, government, and industrial contributors. Methods for extracting this public data into quality datasets, useable for analytical research, presents several big-data challenges for which we have designed manageable solutions. According to our preliminary work, there are approximately 549 million bioactivity values and related meta-data within PubChem that can be mapped to over 10,000 biological targets. However, this data is not ready for use in data-driven research, mainly due to lack of structured annotations.We used a pragmatic approach that provides increasing access to bioactivity values in the PubChem Bioassay database. This included restructuring of individual PubChem Bioassay files into a relational database (ScrubChem). ScrubChem contains all primary PubChem Bioassay data that was: reparsed; error-corrected (when applicable); enriched with additional data links from other NCBI databases; and improved by adding key biological and assay annotations derived from logic-based language processing rules. The utility of ScrubChem and the curation process were illustrated using an example bioactivity dataset for the androgen receptor protein. This initial work serves as a trial ground for establishing the technical framework for accessing, integrating, cu

  10. Mineralization behavior and interface properties of BG-PVA/bone composite implants in simulated body fluid.

    PubMed

    Ma, Yanxuan; Zheng, Yudong; Huang, Xiaoshan; Xi, Tingfei; Lin, Xiaodan; Han, Dongfei; Song, Wenhui

    2010-04-01

    Due to the non-bioactivity and poor conjunction performance of present cartilage prostheses, the main work here is to develop the bioactive glass-polyvinyl alcohol hydrogel articular cartilage/bone (BG-PVA/bone) composite implants. The essential criterion for a biomaterial to bond with living bone is well-matched mechanical properties as well as biocompatibility and bioactivity. In vitro studies on the formation of a surface layer of carbonate hydroxyl apatite (HCA) and the corresponding variation of the properties of biomaterials are imperative for their clinical application. In this paper, the mineralization behavior and variation of the interface properties of BG-PVA/bone composites were studied in vitro by using simulated body fluid (SBF). The mineralization and HCA layer formed on the interface between the BG-PVA hydrogel and bone in SBF could provide the composites with bioactivity and firmer combination. The compression property, shear strength and interface morphology of BG-PVA/bone composite implants varying with the immersion time in SBF were characterized. Also, the influence laws of the immersion time, content of BG in the composites and aperture of bones to the mineralization behavior and interface properties were investigated. The good mineralization behavior and enhanced conjunction performance of BG-PVA/bone composites demonstrated that this kind of composite implant might be more appropriate cartilage replacements.

  11. Characterisation of Aronia powders obtained by different drying processes.

    PubMed

    Horszwald, Anna; Julien, Heritier; Andlauer, Wilfried

    2013-12-01

    Nowadays, food industry is facing challenges connected with the preservation of the highest possible quality of fruit products obtained after processing. Attention has been drawn to Aronia fruits due to numerous health promoting properties of their products. However, processing of Aronia, like other berries, leads to difficulties that stem from the preparation process, as well as changes in the composition of bioactive compounds. Consequently, in this study, Aronia commercial juice was subjected to different drying techniques: spray drying, freeze drying and vacuum drying with the temperature range of 40-80 °C. All powders obtained had a high content of total polyphenols. Powders gained by spray drying had the highest values which corresponded to a high content of total flavonoids, total monomeric anthocyanins, cyaniding-3-glucoside and total proanthocyanidins. Analysis of the results exhibited a correlation between selected bioactive compounds and their antioxidant capacity. In conclusion, drying techniques have an impact on selected quality parameters, and different drying techniques cause changes in the content of bioactives analysed. Spray drying can be recommended for preservation of bioactives in Aronia products. Powder quality depends mainly on the process applied and parameters chosen. Therefore, Aronia powders production should be adapted to the requirements and design of the final product. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Antimicrobial activities of natural antimicrobial compounds against susceptible and antibiotic-resistant pathogens in the absence and presence of food

    USDA-ARS?s Scientific Manuscript database

    In an effort to improve microbial food safety, we are studying the antimicrobial activities of different classes of natural compounds including plant essential oils, apple, grape, olive, and tea extracts, bioactive components, and seashell-derived chitosans against multiple foodborne pathogens in cu...

  13. Accounting for structural compliance in nanoindentation measurements of bioceramic bone scaffolds

    Treesearch

    Juan Vivanco; Joseph E. Jakes; Josh Slane; Heidi-Lynn Ploeg

    2014-01-01

    Structural properties have been shown to be critical in the osteoconductive capacity and strength of bioactive ceramic bone scaffolds. Given the cellular foam-like structure of bone scaffolds, nanoindentation has been used as a technique to assess the mechanical properties of individual components of the scaffolds. Nevertheless, nanoindents placed on scaffolds may...

  14. Optimization of mechanical extraction conditions for producing grape seed oil

    USDA-ARS?s Scientific Manuscript database

    In the United States, over 150 thousand metric tons of dried grape seeds containing 13-19% of oil are produced every year, as a byproduct from processing of about 5.8 million metric tons of grapes. The health promoting properties of grape seed oil is due to the presence of many bioactive components ...

  15. Kunitz trypsin inhibitor in addition to Bowman-Birk inhibitor influence stability of lunasin against pepsin-pancreatin hydrolysis

    USDA-ARS?s Scientific Manuscript database

    Soybean contains several biologically active components and one of this belongs to the bioactive peptide group. The objectives of this study were to produce different lunasin-enriched preparations (LEP) and determine the effect of Bowman-Birk inhibitor and Kunitz trypsin concentrations on the stabil...

  16. Online Series presents Cancer Prevention Through Immunomodulation. Does Diet Play a Role? | Division of Cancer Prevention

    Cancer.gov

    Scientists are increasingly harnessing the power of the immune system to prevent cancer. Nutrition provides an opportunity for a generalized immune activation and reduction of cancer risk in certain populations. Research on several foods and bioactive food components as immunologic modulators is showing promising results. |

  17. Human Exposure Estimates and Oral Equivalents of In Vitro Bioactivity for Prioritizing, Monitoring and Testing of Environmental Chemicals

    EPA Science Inventory

    High-throughput, lower-cost, in vitro toxicity testing is currently being evaluated for use in prioritization and eventually for predicting in vivo toxicity. Interpreting in vitro data in the context of in vivo human relevance remains a formidable challenge. A key component in us...

  18. Anti-inflammatory effects of alpinone 3-acetate from Alpinia japonica seeds.

    PubMed

    Kakegawa, Tomohito; Miyazaki, Aya; Yasukawa, Ken

    2016-07-01

    We aimed to investigate the bioactive components of Alpinia japonica as anti-inflammatory compounds using searches of the Alpinia genus, and subsequently demonstrated that alpinone 3-acetate markedly inhibits 12-O-tetradecanoyiphorbol 13-acetate-induced inflammation in a mouse model of ear edema. To assess other bioactivities of alpinone 3-acetate, we performed translatome analyses and compared them with those of hydrocortisone. Polysome-associated mRNAs were prepared from alpinone 3-acetate- or hydrocortisone-treated and control cells from 12-O-tetradecanoyiphorbol 13-acetate-induced THP-1-derived macrophages cultured in the presence of Escherichia coli O-111 lipopolysaccharide. Subsequent microarray analysis revealed that alpinone 3-acetate and hydrocortisone upregulated and downregulated the same 155 and 41 genes, respectively. Moreover, direct comparisons of translationally regulated genes indicated 5 and 10 gene probes that were upregulated and downregulated by alpinone 3-acetate and hydrocortisone, respectively. In conclusion, assays of 12-O-tetradecanoyiphorbol 13-acetate-induced inflammation ear edema in mice and polysome profiling of alpinone 3-acetate bioactivities indicated similar medicinal possibilities to those of hydrocortisone.

  19. Effects of industrial canning on the proximate composition, bioactive compounds contents and nutritional profile of two Spanish common dry beans (Phaseolus vulgaris L.).

    PubMed

    Pedrosa, Mercedes M; Cuadrado, Carmen; Burbano, Carmen; Muzquiz, Mercedes; Cabellos, Blanca; Olmedilla-Alonso, Begoña; Asensio-Vegas, Carmen

    2015-01-01

    This study investigated the changes produced by canning in the proximate composition and in the bioactive constituents of two "ready to eat" Spanish beans. The foremost difference in the raw beans corresponded to the lectin: a higher content was found in raw Curruquilla beans (16.50 mg 100 mg(-1)) compared with raw Almonga beans (0.6 mg 100 mg(-1)). In general, industrial canning significantly increased the protein (>7%) and dietary fibre (>5%) contents of both beans varieties. However, the minerals, total α-galactosides and inositol phosphates contents were reduced (>25%) in both canned seeds. The trypsin inhibitors content was almost abolished by canning, and no lectins were found in either of the canned samples. Canned Curruquilla showed a decrease (38%) of their antioxidant activity. These "ready to eat" beans exhibited adequate nutritive profiles according to the USDA dietary recommendations. Furthermore, they had bioactive components content that are suitable for establishing a healthy lifestyle. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Integrating Dynamic Positron Emission Tomography and Conventional Pharmacokinetic Studies to Delineate Plasma and Tumor Pharmacokinetics of FAU, a Prodrug Bioactivated by Thymidylate Synthase.

    PubMed

    Li, Jing; Kim, Seongho; Shields, Anthony F; Douglas, Kirk A; McHugh, Christopher I; Lawhorn-Crews, Jawana M; Wu, Jianmei; Mangner, Thomas J; LoRusso, Patricia M

    2016-11-01

    FAU, a pyrimidine nucleotide analogue, is a prodrug bioactivated by intracellular thymidylate synthase to form FMAU, which is incorporated into DNA, causing cell death. This study presents a model-based approach to integrating dynamic positron emission tomography (PET) and conventional plasma pharmacokinetic studies to characterize the plasma and tissue pharmacokinetics of FAU and FMAU. Twelve cancer patients were enrolled into a phase 1 study, where conventional plasma pharmacokinetic evaluation of therapeutic FAU (50-1600 mg/m 2 ) and dynamic PET assessment of 18 F-FAU were performed. A parent-metabolite population pharmacokinetic model was developed to simultaneously fit PET-derived tissue data and conventional plasma pharmacokinetic data. The developed model enabled separation of PET-derived total tissue concentrations into the parent drug and metabolite components. The model provides quantitative, mechanistic insights into the bioactivation of FAU and retention of FMAU in normal and tumor tissues and has potential utility to predict tumor responsiveness to FAU treatment. © 2016, The American College of Clinical Pharmacology.

  1. Chemical characterization and bioactive properties of two aromatic plants: Calendula officinalis L. (flowers) and Mentha cervina L. (leaves).

    PubMed

    Miguel, María; Barros, Lillian; Pereira, Carla; Calhelha, Ricardo C; Garcia, Pablo A; Castro, MaÁngeles; Santos-Buelga, Celestino; Ferreira, Isabel C F R

    2016-05-18

    The chemical composition and bioactive properties of two plants (Calendula officinalis L. and Mentha cervina L.) were studied. Their nutritional value revealed a high content of carbohydrates and low fat levels, and very similar energy values. However, they presented different profiles in phenolic compounds and fatty acids; C. officinalis presented mainly glycosylated flavonols and saturated fatty acids, while M. cervina presented mainly caffeoyl derivatives and polyunsaturated fatty acids. M. cervina showed the highest concentration of phenolic compounds while C. officinalis presented higher amounts of sugars, organic acids and tocopherols. The highest antioxidant and cytotoxic activities were obtained for the hydromethanolic extract of M. cervina, which presented the lowest values of EC50 and exhibited cytotoxicity against the four tumor cell lines tested. Infusions showed no cytotoxicity for the tumor cell lines, and none of the extracts showed toxicity against non-tumor cells. This study contributes to expand the knowledge on both natural sources and therefore their use.

  2. Effect of different drying procedures on the bioactive polysaccharide acemannan from Aloe vera (Aloe barbadensis Miller).

    PubMed

    Minjares-Fuentes, Rafael; Rodríguez-González, Víctor Manuel; González-Laredo, Rubén Francisco; Eim, Valeria; González-Centeno, María Reyes; Femenia, Antoni

    2017-07-15

    The main effects of different drying procedures: spray-, industrial freeze-, refractance window- and radiant zone-drying, on acemannan, the main bioactive polysaccharide from Aloe vera gel, were investigated. All the drying procedures caused a considerable decrease in the acemannan yield (∼40%). Degradation affected not only the backbone, as indicated by the important losses of (1→4)-linked mannose units, but also the side-chains formed by galactose. In addition, methylation analysis suggested the deacetylation of mannose units (>60%), which was confirmed by 1 H NMR analysis. Interestingly, all these changes were reflected in the functional properties which were severely affected. Thus, water retention capacity values from processed samples decreased ∼50%, and a reduction greater than 80% was determined in swelling and fat adsorption capacity values. Therefore, these important modifications should be taken into consideration, since not only the functionality but also the physiological effects attributed to many Aloe vera-based products could also be affected. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Juçara fruit (Euterpe edulis Mart.): Sustainable exploitation of a source of bioactive compounds.

    PubMed

    Schulz, Mayara; da Silva Campelo Borges, Graciele; Gonzaga, Luciano Valdemiro; Oliveira Costa, Ana Carolina; Fett, Roseane

    2016-11-01

    Juçara (Euterpe edulis Martius) is a palm tree widely distributed in the Atlantic Forest, which produces round fruits that recently gained worldwide attention, mainly for its resemblance to fruits of Euterpe oleracea and Euterpe precatoria Martius used to produce açaí. Juçara fruits stand out for their high nutritional value, which contain different kinds of nutrients, including fatty acids, protein, fibers, minerals and vitamins, and bioactive compounds such as anthocyanins, non-anthocyanin flavonoids and phenolic acids, which are associated with potent biological activities. The main objective of this work is to present the available compositional data regarding juçara fruits to produce a comprehensive source of recent information on important chemical constituents and the potential health benefits of these fruits in reference to the species E. oleracea and E. precatoria. In addition, information on botanical aspects, production chain and markets are presented. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The investigation of some bioactive compounds and antioxidant properties of hawthorn (Crataegus monogyna subsp. monogyna Jacq)

    PubMed Central

    Keser, Serhat; Celik, Sait; Turkoglu, Semra; Yilmaz, Ökkes; Turkoglu, Ismail

    2014-01-01

    Aim: The antioxidant and pharmacological effects of hawthorn have mainly been attributed to the polyphenolic contents. The aim of this research is to determine some bioactive compounds and antioxidant properties of hawthorn aqueous and ethanol extracts of leaves, flowers, and ripened fruits. Materials and Methods: For this purpose, antioxidant activities of extracts were assessed on DPPH•, ABTS•+, superoxide scavenging, reducing power and ferrous metal chelating activity assays and phenolic content of extracts was determined by Folin—Cioacalteu’s reagent. Results: The flavonoids including rutin, apigenin, myricetin, quercetin, naringenin and kaempferol, were identified by high-performance liquid chromatography in the hawthorn extract. Conclusion: It was observed the aqueous and ethanol extracts of Crataegus monogyna subsp. monogyna fruits showed the highest activity in reducing power and metal chelating activity assays. In addition, it was determined that the aqueous flower extract showed higher flavonoid content than aqueous leaves extract. The antioxidant and pharmacological effects of hawthorn have mainly been attributed to the polyphenolic contents. PMID:26401347

  5. The investigation of some bioactive compounds and antioxidant properties of hawthorn (Crataegus monogyna subsp. monogyna Jacq).

    PubMed

    Keser, Serhat; Celik, Sait; Turkoglu, Semra; Yilmaz, Ökkes; Turkoglu, Ismail

    2014-01-01

    The antioxidant and pharmacological effects of hawthorn have mainly been attributed to the polyphenolic contents. The aim of this research is to determine some bioactive compounds and antioxidant properties of hawthorn aqueous and ethanol extracts of leaves, flowers, and ripened fruits. For this purpose, antioxidant activities of extracts were assessed on DPPH•, ABTS•+, superoxide scavenging, reducing power and ferrous metal chelating activity assays and phenolic content of extracts was determined by Folin-Cioacalteu's reagent. The flavonoids including rutin, apigenin, myricetin, quercetin, naringenin and kaempferol, were identified by high-performance liquid chromatography in the hawthorn extract. It was observed the aqueous and ethanol extracts of Crataegus monogyna subsp. monogyna fruits showed the highest activity in reducing power and metal chelating activity assays. In addition, it was determined that the aqueous flower extract showed higher flavonoid content than aqueous leaves extract. The antioxidant and pharmacological effects of hawthorn have mainly been attributed to the polyphenolic contents.

  6. Impact of Marine Drugs on Animal Reproductive Processes

    PubMed Central

    Silvestre, Francesco; Tosti, Elisabetta

    2009-01-01

    The discovery and description of bioactive substances from natural sources has been a research topic for the last 50 years. In this respect, marine animals have been used to extract many new compounds exerting different actions. Reproduction is a complex process whose main steps are the production and maturation of gametes, their activation, the fertilisation and the beginning of development. In the literature it has been shown that many substances extracted from marine organisms may have profound influence on the reproductive behaviour, function and reproductive strategies and survival of species. However, despite the central importance of reproduction and thus the maintenance of species, there are still few studies on how reproductive mechanisms are impacted by marine bioactive drugs. At present, studies in either marine and terrestrial animals have been particularly important in identifying what specific fine reproductive mechanisms are affected by marine-derived substances. In this review we describe the main steps of the biology of reproduction and the impact of substances from marine environment and organisms on the reproductive processes. PMID:20098597

  7. Simultaneous determination of bioactive components of Radix Angelicae Sinensis-Radix Paeoniae Alba herb couple in rat plasma and tissues by UPLC-MS/MS and its application to pharmacokinetics and tissue distribution.

    PubMed

    Luo, Niancui; Li, Zhenhao; Qian, Dawei; Qian, Yefei; Guo, Jianming; Duan, Jin-Ao; Zhu, Min

    2014-07-15

    A highly sensitive and rapid ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) has been developed and validated for simultaneous quantification of seven components in rat plasma and five components in rat tissues after oral administration of the extracts of different combination Radix Angelicae Sinensis-Radix Paeoniae Alba herb couple and has been applied to compare the different pharmacokinetics and tissue distribution properties of these bioactive components. The extracts of Radix Angelicae Sinensis (RAS), Radix Paeoniae Alba (RPA) and Radix Angelicae Sinensis-Radix Paeoniae Alba herb couple (RRHC) were orally administrated to rats, respectively. The concentrations of ferulic acid, caffeic acid, vanillic acid, ligustilide, paeoniflorin, albiflorin and oxypaeoniflorin in rat plasma and the concentrations of ferulic acid, vanillic acid, paeoniflorin, albiflorin and oxypaeoniflorin in tissues were determined by UPLC-MS/MS. The plasma samples were pretreated by protein precipitation with methanol and the tissue samples were homogenated with water and pretreated by protein precipitation with methanol. Chromatographic separation was performed on a C18 column using 0.1% formic acid-acetonitrile as mobile phase for gradient elution. A triple quadrupole (TQ) tandem mass spectrometry equipped with an electrospray ionization source was used as detector operating both in positive and negative ionization mode and operated by multiple-reaction monitoring (MRM) scanning. Noncompartmental pharmacokinetic parameters were calculated by DAS 2.0 program. The differences between each group were compared by SPSS 16.0 with Independent-Samples T-test. The pharmacokinetic parameters (such as Cmax, Tmax, T1/2, AUC0-T, MRT0-T, Vz/F or CLz/F) of all the detected components between the single herb (RAS or RPA) and herb pair (RRHP) showed significant differences (P<0.05). It indicated that the compatibility of RAS and RPA could alter the pharmacokinetics features of each component. Tissue distribution results showed that ferulic acid, vanillic acid, paeoniflorin, albiflorin and oxypaeoniflorin mostly distributed in liver and kidney both in herb couple and single herb distributed most in liver and kidney. Compared with single herb, RRHC could increase or decrease the concentrations of five components at different time points compared with the sing herb. The results indicated the method was successfully applied to the comparative study on pharmacokinetics and tissue distribution of different combination of RRHC in rats. The compatibility of two Chinese herbs could alter the pharmacokinetics and tissue distribution properties of major bio-active components in the single herb. The results might be helpful for further investigation of compatibility mechanism of RRHC. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Biological activities of red propolis: a rewiew

    PubMed

    de Figueiredo, Sonia M; de Freitas, Marcia Christina Dornelas; de Oliveira, Daiana Teixeira; de Miranda, Marina Barcelos; Vieira-Filho, Sidney Augusto; Caligiorne, Rachel Basques

    2018-02-23

    • Background: The red propolis (RdProp) is a resin produced by Apis mellifera bees, which collect the reddish exudate on the surface of its botanic source, the species Dalbergiae castophyllum, popularly known in Brazil as "rabo de bugio". Considered as the 13th type of Brazilian propolis, this resin has been gaining prominence due to its natural composition, rich in bioactive substances not found in other types of propolis. • Objective: This review aims to address the most important characteristics of PV, its botanical origin, the main constituents, its biological properties and the patents related to this natural product. • Method: By means of the SciFinder, Google Patents, Patus® and Spacenet, scientific articles and patents involving the term "red propolis" were searched until August 2017 • Results: A number of biological properties, including antimicrobial, anti-inflammatory, antiparasitic, antitumor, antioxidant, metabolic and nutraceutical activities are attributed to RdProp, demonstrating the great potential of its use in the food, pharmaceutical and cosmetics industries. • Conclusion: The available papers are associated to pharmacological potential of RdProp, but the molecular mechanisms or bioactive compounds responsible for each activity have not yet been fully elucidated. The RdProp patents currently found are directed to components for the pharmaceutical industry (EP2070543A1; WO2014186851A1; FR3006589A1; CN1775277A; CN105797149A; CN1879859A), cosmetic (JP6012138B2; JP2008247830A; JP6012138B2) and food (JP5478392B2; CN101380052A; WO2006038690A1). Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Dietary S-methylmethionine, a component of foods, has choline-sparing activity in chickens.

    PubMed

    Augspurger, Nathan R; Scherer, Colleen S; Garrow, Timothy A; Baker, David H

    2005-07-01

    Acid hydrolysis of dehulled soybean meal (SBM) and corn gluten meal (CGM) followed by chromatographic amino acid analysis (ninhydrin detection) revealed substantial quantities of S-methylmethionine (SMM) in both ingredients (1.65 g SMM/kg SBM; 0.5 g SMM/kg CGM). Young chicks were used to quantify the methionine- (Met) and choline-sparing bioactivity of crystalline L-SMM, relative to L-Met and choline chloride standards in 3 assays. A soy isolate basal diet was developed that could be made markedly deficient in Met, choline, or both. When singly deficient in choline or in both choline and Met, dietary SMM addition produced a significant (P < 0.01) growth response. In Assay 2, dietary SMM did not affect (P > 0.10) growth of chicks fed a Met-deficient, choline-adequate diet. A standard-curve growth assay revealed choline bioactivity values (wt:wt) of 14.2 +/- 0.8 and 25.9 +/- 5.1 g/100 g SMM based on weight gain and gain:food responses, respectively. A fourth assay, using standard-curve procedures, showed choline bioactivity values of 20.1 +/- 1.1 and 22.9 +/- 1.7 g/100 g SMM based on weight gain and gain:food responses, respectively. It is apparent that SMM in foods and feeds has methylation bioactivity, and this has implications for proper assessment of dietary Met and choline requirements as well as their bioavailability in foods and feeds.

  10. Determination of Optimal Harvest Time of Chuchung Variety Green Rice® (Oryza sativa L.) with High Contents of GABA, γ-Oryzanol, and α-Tocopherol

    PubMed Central

    Kim, Hoon; Kim, Oui-Woung; Ha, Ae Wha; Park, Soojin

    2016-01-01

    In our previous study, an early-maturing variety of rice (Oryza sativa L.), Jinbu can have feature with unique green color, various phytochemicals as well as nutritive components by the optimal early harvesting, called Green Rice® (GR). The aims of the present field experiments were to evaluate the changes in the weight of 1,000 kernels, yield, and contents of proximate and bioactive compounds in Chuchung, a mid-late maturing variety, during the pre-harvest maturation of rough rice and to research the appropriate harvest time and potent bioactivity of Chuchung GR. The weights of 1,000 kernels of Chuchung GR dramatically increased until 27 days after heading (DAH). The yields of Chuchung GR declined after 27 DAH and significantly declined to 0.0% after 45 DAH. The caloric value and total mineral contents were higher in the GR than in the full ripe stage, the brown rice (BR). In the GR, the contents of bioactive compounds, such as γ-aminobutyric acid, γ-oryzanol, and α-tocopherol, were much higher (P<0.05) than those in the BR, specifically during 24~27 DAH. Therefore, bioactive Chuchung GR can be produced with a reasonable yield at 24~27 DAH and it could be useful for applications in various nutritive and functional food products. PMID:27390725

  11. Electrophoretic co-deposition of polyvinyl alcohol (PVA) reinforced alginate-Bioglass® composite coating on stainless steel: mechanical properties and in-vitro bioactivity assessment.

    PubMed

    Chen, Qiang; Cabanas-Polo, Sandra; Goudouri, Ourania-Menti; Boccaccini, Aldo R

    2014-07-01

    PVA reinforced alginate-bioactive glass (BG) composite coatings were produced on stainless steel by a single step electrophoretic deposition (EPD) process. The present paper discusses the co-deposition mechanism of the three components and presents a summary of the relevant properties of the composite coatings deposited from suspensions with different PVA concentrations. Homogeneous composite coatings with compact microstructure and increased thickness, i.e. as high as 10 μm, were observed by scanning electron microscopy (SEM). The surface roughness of coatings with different PVA contents was slightly increased, while a significant increase of water contact angles due to PVA addition was detected and discussed. Improved adhesion strength of coatings containing different amounts of PVA was quantitatively and qualitatively confirmed by pull-off adhesion and cycled bending tests, respectively. In-vitro bioactivity tests were performed in simulated body fluid (SBF) for 0.5, 1, 2, 4, 7, and 14 days, respectively. The decomposition rate of the coatings was reduced with PVA content, and rapid hydroxyapatite forming ability of the composite coatings in SBF was confirmed by FTIR and XRD analyses. According to the results of this study, composite alginate-Bioglass® bioactive coatings combined with PVA are proposed as promising candidates for dental and orthopedic applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Determination of Optimal Harvest Time of Chuchung Variety Green Rice(®) (Oryza sativa L.) with High Contents of GABA, γ-Oryzanol, and α-Tocopherol.

    PubMed

    Kim, Hoon; Kim, Oui-Woung; Ha, Ae Wha; Park, Soojin

    2016-06-01

    In our previous study, an early-maturing variety of rice (Oryza sativa L.), Jinbu can have feature with unique green color, various phytochemicals as well as nutritive components by the optimal early harvesting, called Green Rice(®) (GR). The aims of the present field experiments were to evaluate the changes in the weight of 1,000 kernels, yield, and contents of proximate and bioactive compounds in Chuchung, a mid-late maturing variety, during the pre-harvest maturation of rough rice and to research the appropriate harvest time and potent bioactivity of Chuchung GR. The weights of 1,000 kernels of Chuchung GR dramatically increased until 27 days after heading (DAH). The yields of Chuchung GR declined after 27 DAH and significantly declined to 0.0% after 45 DAH. The caloric value and total mineral contents were higher in the GR than in the full ripe stage, the brown rice (BR). In the GR, the contents of bioactive compounds, such as γ-aminobutyric acid, γ-oryzanol, and α-tocopherol, were much higher (P<0.05) than those in the BR, specifically during 24~27 DAH. Therefore, bioactive Chuchung GR can be produced with a reasonable yield at 24~27 DAH and it could be useful for applications in various nutritive and functional food products.

  13. Response surface modeling and optimization of ultrasound-assisted extraction of three flavonoids from tartary buckwheat (Fagopyrum tataricum)

    PubMed Central

    Peng, Lian-Xin; Zou, Liang; Zhao, Jiang-Lin; Xiang, Da-Bing; Zhu, Peng; Zhao, Gang

    2013-01-01

    Background: Buckwheat (Fagopyrum spp., Polygonaceae) is a widely planted food crop. Flavonoids, including quercetin, rutin, and kaempferol, are the main bioactive components in tartary buckwheat (Fagopyrum tataricum (L.) Gaertn). From the nutriological and pharmacological perspectives, flavonoids have great value in controlling blood glucose and blood pressure levels, and they also have antioxidant properties. Objective: To optimize the conditions for extraction of quercetin, rutin, and kaempferol from F. tataricum. Materials and Methods: A combination of ultrasound-assisted extraction (UAE) and response surface methodology (RSM) was used for flavonoid extraction and yield assessment. The RSM was based on a three-level, three-variable Box-Behnken design. Results: Flavonoids were optimally extracted from F. tataricum by using 72% methanol, at 60°C, for 21 minutes. Under these conditions, the obtained extraction yield of the total flavonoids was 3.94%. Conclusion: The results indicated that the UAE method was effective for extraction of flavonoids from tartary buckwheat. PMID:23930003

  14. Comparison of microwave-assisted and conventional extraction of mangiferin from mango (Mangifera indica L.) leaves.

    PubMed

    Zou, Tangbin; Wu, Hongfu; Li, Huawen; Jia, Qing; Song, Gang

    2013-10-01

    Mangiferin is the main bioactive component in mango leaves, which possesses anti-inflammatory, antioxidative, antidiabetic, immunomodulatory, and antitumor activities. In the present study, a microwave-assisted extraction method was developed for the extraction of mangiferin from mango leaves. Some parameters such as ethanol concentration, liquid-to-solid ratio, microwave power, and extraction time were optimized by single-factor experiments and response surface methodology. The optimal extraction conditions were 45% ethanol, liquid-to-solid ratio of 30:1 (mL/g), and extraction time of 123 s under microwave irradiation of 474 W. Under optimal conditions, the yield of mangiferin was 36.10 ± 0.72 mg/g, significantly higher than that of conventional extraction. The results obtained are beneficial for the full utilization of mango leaves and also indicate that microwave-assisted extraction is a very useful method for extracting mangiferin from plant materials. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Polysaccharides from the Marine Environment with Pharmacological, Cosmeceutical and Nutraceutical Potential.

    PubMed

    Ruocco, Nadia; Costantini, Susan; Guariniello, Stefano; Costantini, Maria

    2016-04-27

    Carbohydrates, also called saccharides, are molecules composed of carbon, hydrogen, and oxygen. They are the most abundant biomolecules and essential components of many natural products and have attracted the attention of researchers because of their numerous human health benefits. Among carbohydrates the polysaccharides represent some of the most abundant bioactive substances in marine organisms. In fact, many marine macro- and microorganisms are good resources of carbohydrates with diverse applications due to their biofunctional properties. By acting on cell proliferation and cycle, and by modulating different metabolic pathways, marine polysaccharides (including mainly chitin, chitosan, fucoidan, carrageenan and alginate) also have numerous pharmaceutical activities, such as antioxidative, antibacterial, antiviral, immuno-stimulatory, anticoagulant and anticancer effects. Moreover, these polysaccharides have many general beneficial effects for human health, and have therefore been developed into potential cosmeceuticals and nutraceuticals. In this review we describe current advances in the development of marine polysaccharides for nutraceutical, cosmeceutical and pharmacological applications. Research in this field is opening new doors for harnessing the potential of marine natural products.

  16. Bioactivity of Ruta graveolens and Satureja montana Essential Oils on Solanum tuberosum Hairy Roots and Solanum tuberosum Hairy Roots with Meloidogyne chitwoodi Co-cultures.

    PubMed

    Faria, Jorge M S; Rodrigues, Ana M; Sena, Inês; Moiteiro, Cristina; Bennett, Richard N; Mota, Manuel; Figueiredo, A Cristina

    2016-10-12

    As a nematotoxics screening biotechnological system, Solanum tuberosum hairy roots (StHR) and S. tuberosum hairy roots with Meloidogyne chitwoodi co-cultures (StHR/CRKN) were evaluated, with and without the addition of the essential oils (EOs) of Satureja montana and Ruta graveolens. EOs nematotoxic and phytotoxic effects were followed weekly by evaluating nematode population density in the co-cultures as well as growth and volatile profiles of both in vitro cultures types. Growth, measured by the dissimilation method and by fresh and dry weight determination, was inhibited after EO addition. Nematode population increased in control cultures, while in EO-added cultures numbers were kept stable. In addition to each of the EOs main components, and in vitro cultures constitutive volatiles, new volatiles were detected by gas chromatography and gas chromatography coupled to mass spectrometry in both culture types. StHR with CRKN co-cultures showed to be suitable for preliminary assessment of nematotoxic EOs.

  17. A review on phytochemistry and medicinal properties of the genus Achillea

    PubMed Central

    Saeidnia, S.; Gohari, AR.; Mokhber-Dezfuli, N.; Kiuchi, F.

    2011-01-01

    Achillea L. (Compositae or Asteraceae) is a widely distributed medicinal plant throughout the world and has been used since ancient time. Popular indications of the several species of this genus include treatment of wounds, bleedings, headache, inflammation, pains, spasmodic diseases, flatulence and dyspepsia. Phytochemical investigations of Achillea species have revealed that many components from this genus are highly bioactive. There are many reports on the mentioned folk and traditional effects. Although, the medicinal properties of Achillea plants are recognized worldwide, there are only one review article mainly about the structures of the phytochemical constituents of Achillea. The present paper reviews the medicinal properties of various species of Achillea, which have been examined on the basis of the scientific in vitro, in vivo or clinical evaluations. Various effects of these plants may be due to the presence of a broad range of secondary active metabolites such as flavonoids, phenolic acids, coumarins, terpenoids (monoterpenes, sesquiterpenes, diterpenes, triterpenes) and sterols which have been frequently reported from Achillea species. PMID:22615655

  18. An Ultrahigh-Performance Liquid Chromatography-Time-of-Flight Mass Spectrometry Metabolomic Approach to Studying the Impact of Moderate Red-Wine Consumption on Urinary Metabolome.

    PubMed

    Esteban-Fernández, Adelaida; Ibañez, Clara; Simó, Carolina; Bartolomé, Begoña; Moreno-Arribas, M Victoria

    2018-04-06

    Moderate red-wine consumption has been widely described to exert several benefits in human health. This is mainly due to its unique content of bioactive polyphenols, which suffer several modifications along their pass through the digestive system, including microbial transformation in the colon and phase-II metabolism, until they are finally excreted in urine and feces. To determine the impact of moderate wine consumption in the overall urinary metabolome of healthy volunteers ( n = 41), samples from a red-wine interventional study (250 mL/day, 28 days) were investigated. Urine (24 h) was collected before and after intervention and analyzed by an untargeted ultrahigh-performance liquid chromatography-time-of-flight mass spectrometry metabolomics approach. 94 compounds linked to wine consumption, including specific wine components (tartaric acid), microbial-derived phenolic metabolites (5-(dihydroxyphenyl)-γ-valerolactones and 4-hydroxyl-5-(phenyl)-valeric acids), and endogenous compounds were identified. Also, some relationships between parallel fecal and urinary metabolomes are discussed.

  19. Cannabis in cancer care.

    PubMed

    Abrams, D I; Guzman, M

    2015-06-01

    Cannabis has been used in medicine for thousands of years prior to achieving its current illicit substance status. Cannabinoids, the active components of Cannabis sativa, mimic the effects of the endogenous cannabinoids (endocannabinoids), activating specific cannabinoid receptors, particularly CB1 found predominantly in the central nervous system and CB2 found predominantly in cells involved with immune function. Delta-9-tetrahydrocannabinol, the main bioactive cannabinoid in the plant, has been available as a prescription medication approved for treatment of cancer chemotherapy-induced nausea and vomiting and anorexia associated with the AIDS wasting syndrome. Cannabinoids may be of benefit in the treatment of cancer-related pain, possibly synergistic with opioid analgesics. Cannabinoids have been shown to be of benefit in the treatment of HIV-related peripheral neuropathy, suggesting that they may be worthy of study in patients with other neuropathic symptoms. Cannabinoids have a favorable drug safety profile, but their medical use is predominantly limited by their psychoactive effects and their limited bioavailability. © 2015 American Society for Clinical Pharmacology and Therapeutics.

  20. Optimisation of pressurised liquid extraction of antioxidants from black bamboo leaves.

    PubMed

    Shang, Ya Fang; Kim, Sang Min; Um, Byung-Hun

    2014-07-01

    To develop an efficient green extraction approach for recovering bioactive compounds from natural plants, the potential of using pressurised liquid extraction (PLE) was examined on black bamboo (Phyllostachys nigra) leaves, with ethanol/water as solvents. The superheated PLE process showed a higher recovery of most constituents and antioxidative activity, compared to reflux extraction, with a significantly improved recovery of the total phenolic (TP) and flavonoid (TF) content and DPPH radical scavenging ability. For a broad range of ethanol aqueous solutions and temperatures, 50% EtOH and 200°C (static time: 25min) gave the best performance, in terms of the TP and TF (75% EtOH) content yield and DPPH scavenging ability (25% EtOH). Under the optimised extraction conditions, eight main antioxidative compounds were isolated and identified with HPLC-ABTS(+) assay guidance and assessed for radical scavenging activity. The superheated extraction process for black bamboo leaves enhanced the antioxidant properties by increasing the extraction of the phenolic components. Copyright © 2013 Elsevier Ltd. All rights reserved.

Top