Air/fuel supply system for use in a gas turbine engine
Fox, Timothy A; Schilp, Reinhard; Gambacorta, Domenico
2014-06-17
A fuel injector for use in a gas turbine engine combustor assembly. The fuel injector includes a main body and a fuel supply structure. The main body has an inlet end and an outlet end and defines a longitudinal axis extending between the outlet and inlet ends. The main body comprises a plurality of air/fuel passages extending therethrough, each air/fuel passage including an inlet that receives air from a source of air and an outlet. The fuel supply structure communicates with and supplies fuel to the air/fuel passages for providing an air/fuel mixture within each air/fuel passage. The air/fuel mixtures exit the main body through respective air/fuel passage outlets.
Axially staged combustion system for a gas turbine engine
Bland, Robert J [Oviedo, FL
2009-12-15
An axially staged combustion system is provided for a gas turbine engine comprising a main body structure having a plurality of first and second injectors. First structure provides fuel to at least one of the first injectors. The fuel provided to the one first injector is adapted to mix with air and ignite to produce a flame such that the flame associated with the one first injector defines a flame front having an average length when measured from a reference surface of the main body structure. Each of the second injectors comprising a section extending from the reference surface of the main body structure through the flame front and having a length greater than the average length of the flame front. Second structure provides fuel to at least one of the second injectors. The fuel passes through the one second injector and exits the one second injector at a location axially spaced from the flame front.
41. INTERIOR VIEW LOOKING NORTH ON THE MAIN POWER SHAFT/CAM ...
41. INTERIOR VIEW LOOKING NORTH ON THE MAIN POWER SHAFT/CAM LEVEL LOOKING TOWARD THE STAMP BATTERIES. NOTE THE UN-HEWN LUMBER SPANNING THE LARGE TIMBER FRAME STRUCTURAL MEMBERS, IT IS BELIEVED THESE WERE ADDED LATER TO ADD ADDITIONAL STABILITY TO THE STAMP BATTERIES. ALSO NOTE THE ORE BINS AND ROCK CRUSHER BEHIND THE BATTERIES. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA
Aerodynamic Design of Integrated Propulsion-Airframe Configuration of the Hybrid Wing-Body Aircraft
NASA Technical Reports Server (NTRS)
Liou, May-Fun; Kim, Hyoungjin; Lee, B. J.; Liou, Meng-Sing
2017-01-01
Hybrid Wing Body (HWB) aircraft is characterized by a flattened and airfoil-shaped body, which produces a substantial portion of the total lift. The body form is composed of distinct and separate wing structures, though the wings are smoothly blended into the body. This concept has been studied widely and results suggest remarkable performance improvements over the conventional tube and wing transport1,2. HWB incorporates design features from both a futuristic fuselage and flying wing design, which houses most of the crew, payload and equipment inside the main centerbody structure.
NASA Astrophysics Data System (ADS)
Michel, P.; Benz, W.; Richardson, D. C.
2005-08-01
Recent simulations of asteroid break-ups, including both the fragmentation of the parent body and the gravitational interactions of the fragments, have allowed to reproduced successfully the main properties of asteroid families formed in different regimes of impact energy. Here, using the same kind of simulations, we concentrate on a single regime of impact energy, the so-called catastrophic threshold usually designated by Qcrit, which results in the escape of half of the target's mass. Considering a wide range of diameter values and two kinds of internal structures of the parent body, monolithic and pre-shattered, we analyse their potential influences on the value of Qcrit and on the collisional outcome limited here to the fragment size and ejection speed distributions, which are the main outcome properties used by collisional models to study the evolutions of the different populations of small bodies. For all the considered diameters and the two internal structures of the parent body, we confirm that the process of gravitational reaccumulation is at the origin of the largest remnant's mass. We then find that, for a given diameter of the parent body, the impact energy corresponding to the catastrophic disruption threshold is highly dependent on the internal structure of the parent body. In particular, a pre-shattered parent body containing only damaged zones but no macroscopic voids is easier to disrupt than a monolithic parent body. Other kinds of internal properties that can also characterize small bodies in real populations will be investigated in a future work.
Pretorius, Thea; Lix, Lisa; Giesbrecht, Gordon
2011-03-01
Previous studies showed that core cooling rates are similar when only the head or only the body is cooled. Structural equation modeling was used on data from two cold water studies involving body-only, or whole body (including head) cooling. Exposure of both the body and head increased core cooling, while only body cooling elicited shivering. Body fat attenuates shivering and core cooling. It is postulated that this protection occurs mainly during body cooling where fat acts as insulation against cold. This explains why head cooling increases surface heat loss with only 11% while increasing core cooling by 39%. Copyright © 2011 Elsevier Ltd. All rights reserved.
49 CFR 176.120 - Lightning protection.
Code of Federal Regulations, 2012 CFR
2012-10-01
... or structure from its extremity and throughout to the main body of the hull structure. (Steel masts... grounded to the sea must be provided on any mast or similar structure on a vessel on which Class 1...
49 CFR 176.120 - Lightning protection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... or structure from its extremity and throughout to the main body of the hull structure. (Steel masts... grounded to the sea must be provided on any mast or similar structure on a vessel on which Class 1...
49 CFR 176.120 - Lightning protection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... or structure from its extremity and throughout to the main body of the hull structure. (Steel masts... grounded to the sea must be provided on any mast or similar structure on a vessel on which Class 1...
49 CFR 176.120 - Lightning protection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... or structure from its extremity and throughout to the main body of the hull structure. (Steel masts... grounded to the sea must be provided on any mast or similar structure on a vessel on which Class 1...
49 CFR 176.120 - Lightning protection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... or structure from its extremity and throughout to the main body of the hull structure. (Steel masts... grounded to the sea must be provided on any mast or similar structure on a vessel on which Class 1...
NASA Astrophysics Data System (ADS)
Michel, P.
Collisions are at the origin of catastrophic disruptions in the asteroid Main Belt. This is witnessed by the observation of asteroid families, each composed of asteroids which originated from a single parent body, broken-up by a collision with another asteroid. Understanding the collisional process and its outcome properties is not only necessary in order to study the collisional evolution of small body population or the planetary formation, it is also strongly required in the context of mitigation strategies aimed at deviating a threatening asteroid. In the last three years, for the first time we have successfully performed numerical simulations of high speed collisions between small bodies which account for the production of gravitationally reaccumulated bodies. More precisely, we have developped a procedure which divides the process into two phases. Using a 3D SPH hydrocode, the fragmentation of the solid target through crack propagation is first computed. Then the simulation of the gravitational evolution and possible piecewise reaccumulation of the parent body is performed using the parallel N-body code pkdgrav. Our first simulations using monolithic parent bodies have succeeded in reproducing fundamental properties of some well-identified asteroid families, showing that gravitational re-accumulations following disruptive collisions are the key process accounting for the existence of asteroid families. Then, we have investigated the effect of the internal structure of the parent body on the outcome properties. We have thus shown that family parent bodies are likely to have already been pre-shattered by small impacts before being disrupted by a major event. We then suggested that the most likely internal structure of large asteroids in the main belt is not monolithic but rather composed of macroscopic fractures and voids. We will make a review of these simulations in three different impact regimes, from highly catastrophic to barely disruptive. In particular we will show the sensitivity of the resulting family characteristics upon the internal structure of the parent body. According to our current understanding, most NEOs are certainly fragments of larger asteroids of the Main Belt, injected either directly or by diffusion into main resonances that transported them to Earth-crossing orbits. According to our simulations, most NEOs with diameter larger than several hundreds of meters should then correspond to gravitational aggregates. Given the crucial role of the internal structure on the impact outcome, this has important implications in the development of efficient mitigation strategies.
Structural Noise and Acoustic Characteristics Improvement of Transport Power Plants
NASA Astrophysics Data System (ADS)
Chaynov, N. D.; Markov, V. A.; Savastenko, A. A.
2018-03-01
Noise reduction generated during the operation of various machines and mechanisms is an urgent task with regard to the power plants and, in particular, to internal combustion engines. Sound emission from the surfaces vibration of body parts is one of the main noise manifestations of the running engine and it is called a structural noise. The vibration defining of the outer surfaces of complex body parts and the calculation of their acoustic characteristics are determined with numerical methods. At the same time, realization of finite and boundary elements methods combination turned out to be very effective. The finite element method is used in calculating the structural elements vibrations, and the boundary elements method is used in the structural noise calculation. The main conditions of the methodology and the results of the structural noise analysis applied to a number of automobile engines are shown.
The size and shape of Gum's nebula
NASA Technical Reports Server (NTRS)
Johnson, H. M.
1971-01-01
The ionizing light of the supernova which produced the Gum nebula is now fossilized in the still live, though failing, H II region. The main body of the nebula suggests a hollow center or shell form, with a characteristic radius of about half the distance to the outlying fragments. The edges of the main body patches are typically sharp and often bright. The structure of the Gum nebula appears to be dependent on the event of ionization and possibly on the details of heating. It is not now an unstructured ambient medium, as it may have been before the recent ionization. Several hypotheses are presented for a structured ambient medium.
78 FR 42900 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-18
... this AD to prevent cracking in the main wheel well pressure floor, which could result in reduced... pressure floor of the main wheel well could result in reduced structural integrity of the airplane, and...-related cracking of the main landing gear wheel well pressure floor adjacent to certain body stations, and...
Sarin, L Peter; Wright, Sam; Chen, Qing; Degerth, Linda H; Stuart, David I; Grimes, Jonathan M; Bamford, Dennis H; Poranen, Minna M
2012-10-10
Double-stranded RNA viruses encode a single protein species containing RNA-dependent RNA polymerase (RdRP) motifs. This protein is responsible for RNA transcription and replication. The architecture of viral RdRPs resembles that of a cupped right hand with fingers, palm and thumb domains. Those using de novo initiation have a flexible structural elaboration that constitutes the priming platform. Here we investigate the properties of the C-terminal priming domain of bacteriophage ϕ6 to get insights into the role of an extended loop connecting this domain to the main body of the polymerase. Proteolyzed ϕ6 RdRP that possesses a nick in the hinge region of this loop was better suited for de novo initiation. The clipped C-terminus remained associated with the main body of the polymerase via the anchor helix. The structurally flexible hinge region appeared to be involved in the control of priming platform movement. Moreover, we detected abortive initiation products for a bacteriophage RdRP. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Vidmachenko, A. P.; Delets, O. S.; Dlugach, J. M.; Zakhozhay, O. V.; Kostogryz, N. M.; Krushevska, V. M.; Kuznyetsova, Y. G.; Morozhenko, O. V.; Nevodovskyi, P. V.; Ovsak, O. S.; Rozenbush, O. E.; Romanyuk, Ya. O.; Shavlovskiy, V. I.; Yanovitskij, E. G.
2015-12-01
The history and main becoming stages of Planetary system physics Department of the Main astronomical observatory of National academy of Sciences of Ukraine are considered. Fundamental subjects of department researches and science achievements of employees are presented. Fields of theoretical and experimental researches are Solar system planets and their satellites; vertical structures of planet atmospheres; radiative transfer in planet atmospheres; exoplanet systems of Milky Way; stars having disc structures; astronomical engineering. Employees of the department carry out spectral, photometrical and polarimetrical observations of Solar system planets, exoplanet systems and stars with disc structures. 1. From the history of department 2. The main directions of department research 3. Scientific instrumentation 4. Telescopes and observation stations 5. Theoretical studies 6. The results of observations of planets and small Solar system bodies and their interpretation 7. The study of exoplanets around the stars of our galaxy 8. Spectral energy distribution of fragmenting protostellar disks 9. Cooperation with the National Technical University of Ukraine (KPI) and National University of Ukraine "Lviv Polytechnic" to study the impact of stratospheric aerosol changes on weather and climate of the Earth 10. International relations. Scientific and organizational work. Scientific conferences, congresses, symposia 11. The main achievements of the department 12. Current researches 13. Anniversaries and awards
Peanuts, brezels and bananas: food for thought on the orbital structure of the Galactic bulge
NASA Astrophysics Data System (ADS)
Portail, Matthieu; Wegg, Christopher; Gerhard, Ortwin
2015-06-01
Recent observations have discovered the presence of a box/peanut or X-shape structure in the Galactic bulge. Such box/peanut structures are common in external disc galaxies, and are well known in N-body simulations where they form following the buckling instability of a bar. From studies of analytical potentials and N-body models, it has been claimed in the past that box/peanut bulges are supported by `bananas', or x1v1 orbits. We present here a set of N-body models where instead the peanut bulge is mainly supported by brezel-like orbits, allowing strong peanuts to form with short extent relative to the bar length. This shows that stars in the X-shape do not necessarily stream along banana orbits which follow the arms of the X-shape. The brezel orbits are also found to be the main orbital component supporting the peanut shape in our recent made-to-measure dynamical models of the Galactic bulge. We also show that in these models the fraction of stellar orbits that contribute to the X-structure account for 40-45 per cent of the stellar mass.
The mammillary bodies and memory: more than a hippocampal relay
Vann, Seralynne D.; Nelson, Andrew J.D.
2015-01-01
Although the mammillary bodies were one of the first neural structures to be implicated in memory, it has long been assumed that their main function was to act primarily as a hippocampal relay, passing information on to the anterior thalamic nuclei and from there to the cingulate cortex. This view not only afforded the mammillary bodies no independent role in memory, it also neglected the potential significance of other, nonhippocampal, inputs to the mammillary bodies. Recent advances have transformed the picture, revealing that projections from the tegmental nuclei of Gudden, and not the hippocampal formation, are critical for sustaining mammillary body function. By uncovering a role for the mammillary bodies that is independent of its subicular inputs, this work signals the need to consider a wider network of structures that form the neural bases of episodic memory. PMID:26072239
24 CFR 3280.306 - Windstorm protection.
Code of Federal Regulations, 2011 CFR
2011-04-01
... URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Body and Frame Construction... frame structure to be used as the points for connection of diagonal ties, no specific connecting devices need be provided on the main frame structure. (b) Contents of instructions. (1) The manufacturer must...
24 CFR 3280.306 - Windstorm protection.
Code of Federal Regulations, 2010 CFR
2010-04-01
... URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Body and Frame Construction... frame structure to be used as the points for connection of diagonal ties, no specific connecting devices need be provided on the main frame structure. (b) Contents of instructions. (1) The manufacturer must...
NASA Astrophysics Data System (ADS)
Barkin, Yu. V.
2003-04-01
BELT-HIERARCHIC STRUCTURE OF THE RING, SATELLITE AND PLANET SYSTEMS: PREDICTION S/2001 U1 AND OTHERS OBJECTS IN SOLAR SYSTEM Yu.V.Barkin Sternberg Astronomical Institute, Moscow, Russia, barkin@sai.msu.ru Structure regularities of the planet and satellite systems have been studied. Statistic analysis of the distribution of the major semi-axes of the orbits of the planets, comets and centaurs of the Solar system, satellite and ring systems of Jupiter, Saturn, Neptune and Uran, exoplanet systems of the pulsars PSR 1257+12, PSR 1828-11 and of the main consequence star Ups And was fulfilled. The following empirical regularities were described [1]: 1) the bodies of systems are combined into hierarchic groups and main from them combine 5 companions; 2) differences of the major semi-axes of the neighboring orbits for bodies of every group are constant; 4) for main neighboring hierarchic group these distances are distinguished in 6 times increasing to external grope; 5) the filling of the gropes and some present changes in their structure are caused by the past catastrophes in corresponding systems. The special method of reconstruction of the catastrophes which had place in the life of the Solar system (SS) was developed. Suggested method has let us to explain uniformly observed values of the major semi-axes and average values of eccentricities of the planets. In particular the Pancul’s hypothesis about Jupiter formation from two giant protoplanets (Jupiter I and Jupiter II) was confirmed. The new empirical law of the filling of the orbits of the regular groups of the planets or satellites (or rings structures) of the hierarchic ordered systems of celestial bodies was established. It was shown that sum number of bodies is proportional to the value of catastrophic value of the eccentricities which are same for first, second ,.... and fifth orbits of all gropes. The theoretical numbers of bodies for pointed orbits practically coincide with their observed numbers in main gropes of the all considered systems of celestial bodies (in Solar system and also in exoplanets systems of the pulsars PSR 1257+12, PSR 1828-11 and Ups And). Established regularities of the orbit structures let us to predict some new objects in the Solar system and in exoplanet systems. Some from them have been predicted in last years. So the new satellite of Uran (S/2001 U 1) is characterized by major semi-axis in 8 570 000 km (Minor Planet Electronic Circular, Issued 2002 Sept. 30). This satellite was predicted earlier as satellite E1 (8 640 000 km) [1]. [1] Yu.V.Barkin (2001) Electronic journal «Studied in Russia», 161, pp.1821-1830. http: // zhurnal. ape. relarn.ru/articles/2001/161.pdf.
Geophysical survey of the proposed Tsenkher impact structure, Gobi Altai, Mongolia
NASA Astrophysics Data System (ADS)
Ormö, Jens; Gomez-Ortiz, David; Komatsu, Goro; Bayaraa, Togookhuu; Tserendug, Shoovdor
2010-03-01
We have performed forward magnetic and gravity modeling of data obtained during the 2007 expedition to the 3.7km in diameter, circular, Tsenkher structure, Mongolia, in order to evaluate the cause of its formation. Extensive occurrences of brecciated rocks, mainly in the form of an ejecta blanket outside the elevated rim of the structure, support an explosive origin (e.g., cosmic impact, explosive volcanism). The host rocks in the area are mainly weakly magnetic, silica-rich sandstones, and siltstones. A near absence of surface exposures of volcanic rocks makes any major volcanic structures (e.g., caldera) unlikely. Likewise, the magnetic models exclude any large, subsurface, intrusive body. This is supported by an 8mGal gravity low over the structure indicating a subsurface low density body. Instead, the best fit is achieved for a bowl-shaped structure with a slight central rise as expected for an impact crater of this size in mainly sedimentary target. The structure can be either root-less (i.e., impact crater) or rooted with a narrow feeder dyke with relatively higher magnetic susceptibility and density (i.e., volcanic maar crater). The geophysical signature, the solitary appearance, the predominantly sedimentary setting, and the comparably large size of the Tsenkher structure favor the impact crater alternative. However, until mineralogical/geochemical evidence for an impact is presented, the maar alternative remains plausible although exceptional as it would make the Tsenkher structure one of the largest in the world in an unusual setting for maar craters.
Marco, José H; Perpiñá, Conxa; Roncero, María; Botella, Cristina
2017-06-01
The main aim of this study was to confirm the factorial structure of the Spanish version of the Multidimensional Body-Self Relations Questionnaire-Appearance Scales in early adolescents from 12 to 14 years. The sample included 355 participants, 189 girls and 166 boys, with ages ranging from 12 to 14 years old. The original MBSRQ-AS 5-factor structure was confirmed, and the model showed a good fit to the data: Appearance Evaluation, Appearance Orientation, Body Areas Satisfaction, Overweight Preoccupation, and Self-Classified Weight. The internal consistency of the test scores was adequate. Girls had higher score s than boys on Appearance Orientation, Overweight Preoccupation, and Self-Classified Weight, and lower scores on Appearance Evaluation and Body Areas Satisfaction. This study confirms the factor structure of the MBSRQ-AS. Copyright © 2017 Elsevier Ltd. All rights reserved.
Purification and Characterization of the Bacterial Flagellar Basal Body from Salmonella enterica.
Aizawa, Shin-Ichi
2017-01-01
The bacterial flagellum is a motility organelle. The flagellum is composed of three main structures: the basal body as a rotary engine embedded in the cellular membranes and cell wall, the long external filament that acts as a propeller, and the hook acting as a universal joint that connects them. I describe protocols for the purification of the filament and hook-basal body from Salmonella enterica serovar Typhimurium.
2018-04-01
In the context of the White Book of Physical and Rehabilitation Medicine (PRM) in Europe, this paper addresses the structure, organization and activities of PRM bodies in Europe. There are four main bodies, the Section of Physical and Rehabilitation Medicine of the European Union of Medical Specialists (UEMS) very close to the European Union and is committed to define the professional competencies of PRM, the quality management and accreditation and with the Board the educational matters. The European College of PRM is served by the UEMS PRM Board and its main activities are analyzed below in the description of the Board of the UEMS PRM Section. The European Society of Physical and Rehabilitation Medicine (ESPRM) mainly dedicated to promoting research in rehabilitation and create a network of knowledge of PRM across the Europe. The European Academy of Rehabilitation Medicine mainly dedicated to defining the ethical issues in rehabilitation and finding strategies for better educational approaches in rehabilitation. There are 2 further bodies (the regional Fora) aimed to create bridges across the Mediterranean area (Mediterranean Forum of PRM) and across the northern Europe including the eastern countries such as Russia, Belarus and Ukraine (Baltic and North Sea Forum of PRM). To support the knowledge, we have in Europe 7 main journals dedicated to Rehabilitation with a growing impact factor. Last but not least the PRM bodies have an important role across the world with a connection with the International Society of PRM and WHO. The UEMS Section approved motion of international collaboration. In conclusion, PRM activity in Europe is not limited to the official border but in the network included eastern countries and Mediterranean area. The European extended network is strongly connected with the international PRM bodies, first of all the International Society of PRM.
Perspective of the human body in sasang constitutional medicine.
Lee, Junhee; Jung, Yongjae; Yoo, Junghee; Lee, Euiju; Koh, Byunghee
2009-09-01
The Sasang constitutional medicine (SCM), a medical tradition originating from Korea, is distinguished from the traditional Chinese medicine in its philosophical background, theoretical development and especially, the fundamental rationale that analyzes the structure and function of the human body within a quadrifocal scheme. In SCM, the structure of the body is comprehended within the Sasang quadrifocal scheme, and the function of the body is understood within the context of the energy-fluid metabolism and the water-food metabolism controlled by the four main organs (lung, spleen, liver and kidney). Also, the concept of Seong-Jeong is used to explain the structural and functional variations between different constitutional types that arise from the constitutional variations in organ system scheme, which are in turn caused by deviations in the constitutional Seong-Jeong. Therefore, understanding the SCM perspective of the human body is essential in order to fully appreciate the advantages of the constitutional typological system (which focuses on individual idiosyncrasies) found in SCM.
Perspective of the Human Body in Sasang Constitutional Medicine
Lee, Junhee; Jung, Yongjae; Yoo, Junghee; Lee, Euiju
2009-01-01
The Sasang constitutional medicine (SCM), a medical tradition originating from Korea, is distinguished from the traditional Chinese medicine in its philosophical background, theoretical development and especially, the fundamental rationale that analyzes the structure and function of the human body within a quadrifocal scheme. In SCM, the structure of the body is comprehended within the Sasang quadrifocal scheme, and the function of the body is understood within the context of the energy–fluid metabolism and the water–food metabolism controlled by the four main organs (lung, spleen, liver and kidney). Also, the concept of Seong–Jeong is used to explain the structural and functional variations between different constitutional types that arise from the constitutional variations in organ system scheme, which are in turn caused by deviations in the constitutional Seong–Jeong. Therefore, understanding the SCM perspective of the human body is essential in order to fully appreciate the advantages of the constitutional typological system (which focuses on individual idiosyncrasies) found in SCM. PMID:19745009
2004-03-12
KENNEDY SPACE CENTER, FLA. - The body flap is installed on the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
2004-03-12
KENNEDY SPACE CENTER, FLA. - The body flap is installed on the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
NASA Astrophysics Data System (ADS)
Kochemasov, Gennady G.
2010-05-01
The 100 km long flattened asteroid 21-Lutetia will be imaged by the "Rosetta' spacecraft in July 2010. Knowing that heavenly bodies are effectively structurized by warping inertia-gravity waves one might expect that Lutetia will not be an exclusion out of a row of bodies subjected to an action of these waves [1-9]. The elliptical keplerian orbits with periodically changing bodies' accelerations imply inertia-gravity forces applied to any body notwithstanding its size, mass, density, chemical composition, and physical state. These forces produce inertia-gravity waves having in rotating bodied standing character and four directions of propagation (orthogonal and diagonal). Interfering these waves produce in bodies three (five) kinds of tectonic blocks: uprising strongly and moderately (++, +), subsiding deeply and moderately (--, -), and neutral (0) where + and - are compensated. Lengths and amplitudes of warping waves form the harmonic sequence. The fundamental wave1 (long 2πR) makes ubiquitous tectonic dichotomy (two antipodean segments or hemispheres: one risen, another fallen). In small bodies this structurization is expressed in their convexo-concave shape: one hemisphere is bulged, another one pressed in. Bulging hemisphere is extended, pressed in hemisphere contracted. This wave shaping tends to transform a globular body into a tetrahedron - the essentially dichotomous simplest Plato's figure. In this polyhedron always there is an opposition of extension (a face) to contraction (a vertex). The first overtone wave2 (long πR) makes tectonic sectors, also risen and fallen, and regularly disposed on (and in) a globe. This regularity is expressed in an octahedron form. The octahedron (diamond) or its parts are often observed in shapes of small bodies with small gravities. Larger bodies with rather strong gravity tend to smooth polyhedron vertices and edges but a polyhedron structurization is always present inside their globes and is shown in their tectonics, geomorphology and geophysical fields. The shorter warping waves are also present but because of their comparatively small lengths and amplitudes they are not so important in distorting globes. The presented main harmonic row is complicated by superimposed individual waves lengths of which are inversely proportional to orbital frequencies: higher frequency - smaller wave, and, vice versa, lower frequency - larger wave. In the main asteroid belt the fundamental wave of the main sequence and the individual wave (also long 2πR) are in the strongest 1:1 resonance what prohibits an accretion of a real planet because of prevailing debris scattering. Thus, the Lutetia shape can support the main point of the wave planetology - «orbits make structures». [1] Kochemasov G.G. (1999) "Diamond" and "dumb-bells"-like shapes of celestial bodies induced by inertia-gravity waves // 30th Vernadsky-Brown microsymposium on comparative planetology, Abstracts, Moscow, Vernadsky Inst., 49-50. [2] -"- (1999) On convexo-concave shape of small celestial bodies // Asteroids, Comets, Meteors. Cornell Univ., July 26-30, 1999, Abstr. # 24.22. [3] -"- (2006) The wave planetology illustrated - I: dichotomy, sectoring // 44th Vernadsky-Brown microsymposium "Topics in Comparative Planetology", Oct. 9-11, 2006, Moscow, Vernadsky Inst., Abstr. m44_39, CD-ROM; [4] -"- (2006) Theorems of the wave planetology imprinted in small bodies // Geophys. Res. Abstracts, Vol. 8, EGU06-A-01098, CD-ROM. [5] -"- (2007) Plato's polyhedra in space // EPSC Abstracts, Vol. 2, EPSC2007-A-00014, 2007. [6] -"-(2007) Wave shaping of small saturnian satellites and wavy granulation of saturnian rings // Geophys. Res. Abstracts, Vol. 9, EGU2007-A-01594, CD-ROM. [7] -"- (2007) Plato's polyhedra as shapes of small satellites in the outer Solar system // New Concepts in Global Tectonics Newsletter, # 44, 43-45. [8] -"- (2008) Plato' polyhedra as shapes of small icy satellites // Geophys. Res. Abstracts, Vol. 10, EGU2008-A-01271, CD-ROM. [9] -"- (2008) A wave geometrization of small heavenly bodies // GRA, Vol. 10, EGU2008-A-01275, CD-ROM.
Three-body interactions in sociophysics and their role in coalition forming
NASA Astrophysics Data System (ADS)
Naumis, Gerardo G.; Samaniego-Steta, F.; del Castillo-Mussot, M.; Vázquez, G. J.
2007-06-01
An study of the effects of three-body interactions in the process of coalition formation is presented. In particular, we modify a spin glass model of bimodal propensities and also a Potts model in order to include a particular three-body Hamiltonian that reproduces the main features of the required interactions. The model can be used to study conflicts, political struggles, political parties, social networks, wars and organizational structures. As an application, we analyze a simplified model of the Iraq war.
Pain drawings and concepts of pain among patients with "half-body" complaints.
Löfvander, Monica; Lindström, Maria Alsén; Masich, Valentina
2007-06-01
To explore main features of pain drawings and concepts about illness in patients seeking help for "half-body" complaints at two primary health care centres in different parts of Sweden. A qualitative study of pain-drawings and tape-recorded semi-structured interviews analysed by qualitative methods in 20 patients (4 men, 16 women, aged 37-68 years) from five health centers. Three of them were native Swedes and 17 were foreign-born. All complained of pain in a left (three-fourth) or right (one-fourth) body-half, mainly in front. Some had general pain with a "worse side". Many said they had pain only on the "edges" and outlined the margins on the side of pain, but excluded the "face". Posterior drawings often received a line in the middle dividing the body in lateral halves. Pain was referred to as a "growing" thing - ("It") - that could spread ("jump") to the other side, grow and eventually paralyse them. "It" was believed as caused by body imbalance, natural factors or supernatural forces. "Half-body" pain was an expression that in main was used by middle-aged patients to denote an initially superficial and frontal one-sided pain that could spread and become dangerous to their health. Patients with half-body complaints should be taken seriously and met with respect by doctors and other health care personnel, particularly in cross-cultural consultations.
2004-03-12
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility help move the body flap into position on the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
2004-03-12
KENNEDY SPACE CENTER, FLA. - A worker on a ladder (lower left) observes installation of the body flap onto the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
2004-03-12
KENNEDY SPACE CENTER, FLA. - Workers on ladders (left and right) check installation of the body flap onto the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
2004-03-12
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the body flap for the orbiter Discovery is prepared for installation. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Workers on ladders (left and right) check installation of the body flap onto the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
Kurzydło, Wojciech; Stach, Beata; Bober, Aleksandra; Wodzińska, Mariola; Długosz, Mirosława M
2014-01-01
The main goal of this study was to asses the possibility of using mass production structured-light 3d scanner to asses human body posture. The study was conducted on a healthy 23 year old volunteer and a lay-figure. The experiment consisted of 28 3D scans, divided into three separate tests. The largest deviation observed in the first two trials was 24.42 mm. While the largest deviation observed in the third trial was 49.91 mm. Data obtained with the mass production structured-light 3d scanner may have comparable or better performance than commercially available systems for the assessment of BP.
Small-scale dust structures in Halley's coma. II. Disintegration of large dust bodies
NASA Astrophysics Data System (ADS)
Oberc, P.
2004-10-01
Small-scale dust structures, SDSs, altogether ˜35 events with extent ˜30-220 km, have been recognized owing to electric field records, mostly near the closest approach of Vega-2 to Halley's nucleus. Several (8-9) morphological forms of SDS have been identified, and all they make one family. Among the family members, the key form (with respect to which, all other forms can be regarded as degenerate) is a sequence of 3-5 dust clouds. The morphological forms represent various Vega-2 passes through SDSs at different stages of development. SDSs observable as the key form consisted of several fairly regularly spaced dust subpopulations, whose plane of symmetry was parallel to the comet orbit plane. That regularity together with specific features of morphological forms strongly constrain disintegration scenarios and dynamics of fragments, and allow to draw a number of conclusions, the main of which are: SDS parent bodies were ice-free dust aggregates lifted from the nucleus near the comet perihelion, whose masses were in the range ˜0.1-1 of the biggest emitted mass (mass of a body accelerated to the escape velocity, i.e., ˜300-1500 kg); the disintegration scenario comprised a few steps, and the first-step disintegration consisted mainly in consecutive detachments of biggest first-step fragments (BF-SFs) from the parent body; a SDS observable as the key form included the dust minitail of parent body and a few BF-SF minitails, the former one being longer than the latter ones; SDS parent bodies had a fractal-like internal structure, and the BF-SF mass was a few percent of the parent body mass; the thermal conductivity of SDS parent body was less than ˜0.4 W m -1 K -1 or so, while the latent heat of gluing organics was roughly 80 kJ mol -1; the disintegration mechanism was a combination of sintering and sublimation of organics. The multistep disintegration of SDS parent bodies can be reconciled with the basically one-step disintegration of aggregates responsible for the dust boundary (Oberc, P., Icarus 1996, 124, 195-208). The fractal-like structure and the relation between BF-SF mass and parent body mass are in agreement with predictions from the Weidenschilling model of comet formation. Large ice-free dust bodies, in particular SDS parent bodies, can be identified with refractory boulders postulated by some comet nucleus models.
Crash simulation of UNS electric vehicle under frontal front impact
NASA Astrophysics Data System (ADS)
Susilo, D. D.; Lukamana, N. I.; Budiana, E. P.; Tjahjana, D. D. D. P.
2016-03-01
Sebelas Maret University has been developing an Electric Vehicle namely SmarT-EV UNS. The main structure of the car are chasis and body. The chasis is made from steel and the body is made from fiberglass composite. To ensure the safety of the car, both static and dynamic tests were carried out to these structures, including their materials, like: tensile test, bending test, and impact test. Another test needed by this vehicle is crashworthiness test. To perform the test, it is needed complex equipments and it is quite expensive. Another way to obtain vehicle crashworthiness behaviour is by simulate it. The purpose of this study was to simulate the response of the Smart-EV UNS electric vehicle main structure when crashing rigid barrier from the front. The crash simulation was done in according to the NHTSA (National Highway Traffic Safety Administration) within the speed of the vehicle of 35 mph. The UNS Electric Vehicle was modelled using SolidWorks software, and the simulation process was done by finite element method using ANSYS software. The simulation result showed that the most internal impact energy was absorbed by chassis part. It absorbed 76.2% of impact energy, then the base absorbed 11.3 %, while the front body absorbed 2.5 %, and the rest was absorbed by fender, hood, and other parts.
Lebedeva, Elena R; Gurary, Natalia M; Gilev, Denis V; Olesen, Jes
2018-03-01
Introduction The International Classification of Headache Disorders 3rd edition beta (ICHD-3 beta) gave alternative diagnostic criteria for 1.2 migraine with aura (MA) and 1.2.1 migraine with typical aura (MTA) in the appendix. The latter were presumed to better differentiate transient ischemic attacks (TIA) from MA. The aim of the present study was to field test that. Methods Soon after admission, a neurologist interviewed 120 consecutive patients diagnosed with TIA after MRI or CT. Semi-structured interview forms addressed all details of the TIA episode and all information necessary to apply the ICHD-3beta diagnostic criteria for 1.2, 1.2.1, A1.2 and A1.2.1. Results Requiring at least one identical previous attack, the main body and the appendix criteria performed almost equally well. But requiring only one attack, more than a quarter of TIA patients also fulfilled the main body criteria for 1.2. Specificity was as follows for one attack: 1.2: 0.73, A1.2: 0.91, 1.2.1: 0.88 and A1.2.1: 1.0. Sensitivity when tested against ICHD-2 criteria were 100% for the main body criteria (because they were unchanged), 96% for A1.2 and 94% for A1.2.1. Conclusion The appendix criteria performed much better than the main body criteria for 1.2 MA and 1.2.1 MTA when diagnosing one attack (probable MA). We recommend that the appendix criteria should replace the main body criteria in the ICHD-3.
Ajoudani, Fardin; Jasemi, Madineh; Lotfi, Mojgan
2018-05-15
Psychosocial outcomes of burn survivors in the first year of rehabilitation are not well studied. Considering the interrelationships among psychosocial processes in burn survivors, we assessed three psychosocial variables (i.e., social support, social participation, and body image) simultaneously in a longitudinal study. This study aimed at identifying the developmental trajectory of the main study variables and also discovering the causal pathways between social support, body image, and social participation of burn survivors in the first year of rehabilitation. One hundred individuals were enrolled in the study. The analysis was based on three waves of data collected at the time of discharge, 6 months after discharge, and 12 months after discharge. We used MSPSS, SWAP, and the p-scale for measuring the variables social support, body image, and social participation, respectively. A repeated-measures analysis of variance (ANOVA) was performed to identify the major differences in the mean levels of the main study variables across the three evaluation times. A structural equation modeling (SEM) approach was implemented in four hypothesized cross-lagged models (M1, M2, M3, and M4) to evaluate the bidirectional relationships among the main variables. All hypothesized models were tested, and their goodness-of-fit indexes were compared to identify the best fitting model. All three main variables worsen during the first six months after burn and then do not return to their earlier level. The M4 (final model) chosen to represent the data showed the best goodness-of-fit indexes (χ 2 (9)=51.76, p<.01, RMSEA=0.060, IFI=0.97, and CFI=0.98) among all hypothesized models. The effect of social participation on body image, and vice versa, seems to be relatively constant and steady. Social support at the time of discharge predicted social participation at 12 months after burn, with the relationship mediated by body image at 6 months after burn. Our study findings suggest that persistent care should be provided for burn survivors even after discharge. Copyright © 2018 Elsevier Ltd and ISBI. All rights reserved.
2004-03-12
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility lean toward the body flap to be installed on the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
2004-03-12
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the body flap is moved into position for installation on the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
2004-03-12
KENNEDY SPACE CENTER, FLA. - A Hyster forklift in the Orbiter Processing Facility lifts the body flap to be installed on the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
2004-03-12
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility help prepare the body flap for lifting prior to installation on the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
2004-03-12
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the body flap is moved into position for installation on the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
2004-03-12
KENNEDY SPACE CENTER, FLA. - A Hyster forklift in the Orbiter Processing Facility moves the body flap toward the aft of the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
2004-03-12
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, A Hyster forklift supports the body flap as workers secure it to the orbiter Discovery. The body flap is an aluminum structure consisting of ribs, spars, skin panels and a trailing edge assembly. It thermally shields the three main engines during entry and provides pitch control trim during landing approach. Discovery is being processed for launch on the first Return to Flight mission, STS-114.
NASA Astrophysics Data System (ADS)
Araki, Katsuya; Yagi, Naoto; Ikemoto, Yuka; Yagi, Hisashi; Choong, Chi-Jing; Hayakawa, Hideki; Beck, Goichi; Sumi, Hisae; Fujimura, Harutoshi; Moriwaki, Taro; Nagai, Yoshitaka; Goto, Yuji; Mochizuki, Hideki
2015-12-01
Lewy bodies (LBs), which mainly consist of α-synuclein (α-syn), are neuropathological hallmarks of patients with Parkinson’s disease (PD). The fine structure of LBs is unknown, and LBs cannot be made artificially. Nevertheless, many studies have described fibrillisation using recombinant α-syn purified from E. coli. An extremely fundamental problem is whether the structure of LBs is the same as that of recombinant amyloid fibrils. Thus, we used synchrotron Fourier transform infrared micro-spectroscopy (FTIRM) to analyse the fine structure of LBs in the brain of PD patients. Our results showed a shift in the infrared spectrum that indicates abundance of a β-sheet-rich structure in LBs. Also, 2D infrared mapping of LBs revealed that the content of the β-sheet structure is higher in the halo than in the core, and the core contains a large amount of proteins and lipids.
Modeling of porous concrete elements under load
NASA Astrophysics Data System (ADS)
Demchyna, B. H.; Famuliak, Yu. Ye.; Demchyna, Kh. B.
2017-12-01
It is known that cell concretes are almost immediately destroyed under load, having reached certain critical stresses. Such kind of destruction is called a "catastrophic failure". Process of crack formation is one of the main factors, influencing process of concrete destruction. Modern theory of crack formation is mainly based on the Griffith theory of destruction. However, the mentioned theory does not completely correspond to the structure of cell concrete with its cell structure, because the theory is intended for a solid body. The article presents one of the possible variants of modelling of the structure of cell concrete and gives some assumptions concerning the process of crack formation in such hollow, not solid environment.
Oscillatory vortex formation behind a movable plat
NASA Astrophysics Data System (ADS)
Vukicevic, Marija; Pedrizzetti, Gianni
2010-11-01
INTRODUCTION: A wide spectra of application, from industrial to environmental and biological, involve fluid-structure interaction (FSI) at a fundamental level. We investigate a 2D FSI problem for a rigid structure hinged on a wall, freely rotating by the action of an oscillatory fluid flow. METHODS: The Navier-Stokes equations are solved simultaneously with the body dynamics. An accurate numerical solution is developed on the conformal map of the time-varying physical domain. RESULTS: The FSI is primarily influenced by the vortex formation process and by the interaction between vortices generated during the sequential flow oscillations. The emerging bodies can be arranged into a three main groups. The first, made of heavy bodies, terminates the motion during the first few oscillations with the impact of the body on the wall. On the other extreme, the third group made of relatively light bodies presents a flow-driven motion that oscillates periodically in time. In a wide intermediate range, the body oscillates in time presenting non periodic features. CONCLUSIONS: The process of oscillatory vortex formation in presence of fluid-structure interaction shows the emergence of various phenomena that were analyzed in details. In this specific application the results demonstrate that the FSI range from linear to chaotic interaction and finite-time collapse.
Geometric shapes inversion method of space targets by ISAR image segmentation
NASA Astrophysics Data System (ADS)
Huo, Chao-ying; Xing, Xiao-yu; Yin, Hong-cheng; Li, Chen-guang; Zeng, Xiang-yun; Xu, Gao-gui
2017-11-01
The geometric shape of target is an effective characteristic in the process of space targets recognition. This paper proposed a method of shape inversion of space target based on components segmentation from ISAR image. The Radon transformation, Hough transformation, K-means clustering, triangulation will be introduced into ISAR image processing. Firstly, we use Radon transformation and edge detection to extract space target's main body spindle and solar panel spindle from ISAR image. Then the targets' main body, solar panel, rectangular and circular antenna are segmented from ISAR image based on image detection theory. Finally, the sizes of every structural component are computed. The effectiveness of this method is verified using typical targets' simulation data.
Electron microscope study of the vitelline body of some spider oocytes.
SOTELO, J R; TRUJILLO-CENOZ, O
1957-03-25
THE STRUCTURE OF THE VITELLINE NUCLEI OF LYCOSIDAE AND THOMISIDAE WAS DESCRIBED AS FOLLOWS: Vitelline nuclei are constituted of two parts: (a) a peripheral layer (vitelline body cortex), and (b) a central core. The vitelline body cortex is demonstrated to be formed by many cisternae of the endoplasmic reticulum among which mitochondria and Golgi elements are intermingled. The central core is made up mainly of a special type of body described under the name of "capsulated body." Capsulated bodies comprise a capsular layer, limited by a membrane, and two central masses called "geminated masses," each one limited by a double membrane. Irregular masses of closely packed vesicles are found in some cases among the capsulated bodies and free vesicles are present in large numbers. The optical properties of the vitelline body cortex compared with the electron microscope findings lead us to the concept that this layer is a "composite body" according to Weiner's theory.
FINE STRUCTURE OF THE HUMAN OVUM IN THE PRONUCLEAR STAGE
Zamboni, Luciano; Mishell, Daniel R.; Bell, James H.; Baca, Manuel
1966-01-01
A penetrated ovum was recovered from the oviduct of a 33 year old surgical patient who had had sexual intercourse 26 hr before the operation. The ovum was in the pronuclear stage. The ooplasmic organelles were mainly represented by mitochondria, endoplasmic reticulum components, and Golgi elements. Small vesicles were found in the space between the two sheets of the pronuclear envelope. These vesicles appeared to be morphologically similar to the ER vesicles in the ooplasm and were considered to be involved in pronuclear development. Numerous annulate lamellae were seen in the ooplasm as well as in the pronuclei. Ooplasmic crystalloids were also observed. These were thought to represent cytoplasmic yolk. Remnants of the penetrating spermatozoon were found in close relation to one of the pronuclei. The fine structure of the first and second polar body is also described. The nuclear complement of the first polar body consisted of isolated chromosomes, whereas the second polar body contained a membrane-bounded nucleus. In consideration of the possibility that polar body fertilization may take place, these differences in nuclear organization could be of importance. Other recognizable differences between the two polar bodies were presence of dense cortical granules and microvilli in the first polar body, and absence of these structures in the second. These dissimilarities were considered to be related to the organization of the egg cytoplasm at the time of polar body separation. PMID:6008199
Crash simulation of UNS electric vehicle under frontal front impact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Susilo, D. D., E-mail: djoksus-2010@yahoo.com; Lukamana, N. I., E-mail: n.indra.lukmana@gmail.com; Budiana, E. P., E-mail: budiana.e@gmail.com
Sebelas Maret University has been developing an Electric Vehicle namely SmarT-EV UNS. The main structure of the car are chasis and body. The chasis is made from steel and the body is made from fiberglass composite. To ensure the safety of the car, both static and dynamic tests were carried out to these structures, including their materials, like: tensile test, bending test, and impact test. Another test needed by this vehicle is crashworthiness test. To perform the test, it is needed complex equipments and it is quite expensive. Another way to obtain vehicle crashworthiness behaviour is by simulate it. Themore » purpose of this study was to simulate the response of the Smart-EV UNS electric vehicle main structure when crashing rigid barrier from the front. The crash simulation was done in according to the NHTSA (National Highway Traffic Safety Administration) within the speed of the vehicle of 35 mph. The UNS Electric Vehicle was modelled using SolidWorks software, and the simulation process was done by finite element method using ANSYS software. The simulation result showed that the most internal impact energy was absorbed by chassis part. It absorbed 76.2% of impact energy, then the base absorbed 11.3 %, while the front body absorbed 2.5 %, and the rest was absorbed by fender, hood, and other parts.« less
Media ideals and early adolescents' body image: Selective avoidance or selective exposure?
Rousseau, Ann; Eggermont, Steven
2018-06-05
The present study combines selective exposure theory with body image coping literature to study effects of media internalization in early adolescence. The main objective was to explore how early adolescents selectively internalize media body ideals to manage their body image. To examine the role of media internalization in early adolescents' body image management, we used two-wave panel data (N Wave1 = 1986) gathered among 9- to 14-year-olds. Structural equation analyses indicated that media internalization (Wave 1) positively related to body surveillance (Wave 2). Body surveillance (Wave 2), in turn, was associated with more body image self-discrepancy (Wave 2). In addition, body image self-discrepancy (Wave 1) related to higher body surveillance (Wave 1). Body surveillance, in turn, related to more media internalization cross-sectionally, but less media internalization six months later. Taken together, these results suggest a role for media internalization in early adolescents' body image management. Theoretical and practical implications are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Benavidez, P. G.; Durda, D. D.; Enke, B.; Campo Bagatin, A.; Richardson, D. C.; Asphaug, E.; Bottke, W. F.
2018-04-01
In this work we extend the systematic investigation of impact outcomes of 100-km-diameter targets started by Durda et al. (2007) and Benavidez et al. (2012) to targets of D = 400 km using the same range of impact conditions and two internal structures: monolithic and rubble-pile. We performed a new set of simulations in the gravity regime for targets of 400 km in diameter using these same internal structures. This provides a large set of 600 simulations performed in a systematic way that permits a thorough analysis of the impact outcomes and evaluation of the main features of the size frequency distribution due mostly to self-gravity. In addition, we use the impact outcomes to attempt to constrain the impact conditions of the asteroid belt where known asteroid families with a large expected parent body were formed. We have found fairly good matches for the Eunomia and Hygiea families. In addition, we identified a potential acceptable match to the Vesta family from a monolithic parent body of 468 km. The impact conditions of the best matches suggest that these families were formed in a dynamically excited belt. The results also suggest that the parent body of the Eunomia family could be a monolithic body of 382 km diameter, while the one for Hygiea could have a rubble-pile internal structure of 416 km diameter.
The Origin of the Moon Within a Terrestrial Synestia
NASA Astrophysics Data System (ADS)
Lock, Simon J.; Stewart, Sarah T.; Petaev, Michail I.; Leinhardt, Zoë; Mace, Mia T.; Jacobsen, Stein B.; Cuk, Matija
2018-04-01
The giant impact hypothesis remains the leading theory for lunar origin. However, current models struggle to explain the Moon's composition and isotopic similarity with Earth. Here we present a new lunar origin model. High-energy, high-angular-momentum giant impacts can create a post-impact structure that exceeds the corotation limit, which defines the hottest thermal state and angular momentum possible for a corotating body. In a typical super-corotation-limit body, traditional definitions of mantle, atmosphere, and disk are not appropriate, and the body forms a new type of planetary structure, named a synestia. Using simulations of cooling synestias combined with dynamic, thermodynamic, and geochemical calculations, we show that satellite formation from a synestia can produce the main features of our Moon. We find that cooling drives mixing of the structure, and condensation generates moonlets that orbit within the synestia, surrounded by tens of bars of bulk silicate Earth vapor. The moonlets and growing moon are heated by the vapor until the first major element (Si) begins to vaporize and buffer the temperature. Moonlets equilibrate with bulk silicate Earth vapor at the temperature of silicate vaporization and the pressure of the structure, establishing the lunar isotopic composition and pattern of moderately volatile elements. Eventually, the cooling synestia recedes within the lunar orbit, terminating the main stage of lunar accretion. Our model shifts the paradigm for lunar origin from specifying a certain impact scenario to achieving a Moon-forming synestia. Giant impacts that produce potential Moon-forming synestias were common at the end of terrestrial planet formation.
Roncero, María; Perpiñá, Conxa; Marco, Jose H; Sánchez-Reales, Sergio
2015-06-01
The Multidimensional Body-Self Relations Questionnaire (MBSRQ) is the most comprehensive instrument to assess body image. The MBSRQ-Appearance Scales (MBSRQ-AS) is a reduced version that has been validated in other languages. The main aim of the present study was to confirm the factor structure of the Spanish version of the MBSRQ-AS and analyze its psychometric properties in 1041 nonclinical individuals. Confirmatory factor analysis showed excellent goodness of fit indices for the five-factor structure (Appearance Evaluation, Appearance Orientation, Body Areas Satisfaction, Overweight Preoccupation, and Self-Classified Weight). Factors possessed adequate scale score reliability indices. Some of the factors showed significant associations with the Eating Attitudes Test. Significant differences were found between boys/men and girls/women, and among age groups. The Spanish version of the MBSRQ-AS is a valid instrument for use in nonclinical population settings in people from 15 to 46 years old. Copyright © 2015 Elsevier Ltd. All rights reserved.
Determination of the neutralization depth of concrete under the aggressive environment influence
NASA Astrophysics Data System (ADS)
Morzhukhina, Anastasia; Nikitin, Stanislav; Akimova, Elena
2018-03-01
Aggressive environments have a significant impact on destruction of many reinforced concrete structures, such as high-rise constructions or chemical plants. For example, some high-rise constructions are equipped with a swimming pool, so they are exposed to chloride ions in the air. Penetration of aggressive chemical substances into the body of concrete contributes to acceleration of reinforced concrete structure corrosion that in turn leads to load bearing capacity loss and destruction of the building. The article considers and analyzes the main technologies for calculating penetration depth of various aggressive substances into the body of concrete. The calculation of corrosion depth was made for 50-year service life.
CAB-Align: A Flexible Protein Structure Alignment Method Based on the Residue-Residue Contact Area.
Terashi, Genki; Takeda-Shitaka, Mayuko
2015-01-01
Proteins are flexible, and this flexibility has an essential functional role. Flexibility can be observed in loop regions, rearrangements between secondary structure elements, and conformational changes between entire domains. However, most protein structure alignment methods treat protein structures as rigid bodies. Thus, these methods fail to identify the equivalences of residue pairs in regions with flexibility. In this study, we considered that the evolutionary relationship between proteins corresponds directly to the residue-residue physical contacts rather than the three-dimensional (3D) coordinates of proteins. Thus, we developed a new protein structure alignment method, contact area-based alignment (CAB-align), which uses the residue-residue contact area to identify regions of similarity. The main purpose of CAB-align is to identify homologous relationships at the residue level between related protein structures. The CAB-align procedure comprises two main steps: First, a rigid-body alignment method based on local and global 3D structure superposition is employed to generate a sufficient number of initial alignments. Then, iterative dynamic programming is executed to find the optimal alignment. We evaluated the performance and advantages of CAB-align based on four main points: (1) agreement with the gold standard alignment, (2) alignment quality based on an evolutionary relationship without 3D coordinate superposition, (3) consistency of the multiple alignments, and (4) classification agreement with the gold standard classification. Comparisons of CAB-align with other state-of-the-art protein structure alignment methods (TM-align, FATCAT, and DaliLite) using our benchmark dataset showed that CAB-align performed robustly in obtaining high-quality alignments and generating consistent multiple alignments with high coverage and accuracy rates, and it performed extremely well when discriminating between homologous and nonhomologous pairs of proteins in both single and multi-domain comparisons. The CAB-align software is freely available to academic users as stand-alone software at http://www.pharm.kitasato-u.ac.jp/bmd/bmd/Publications.html.
Pasini, Andrea; Manenti, Raoul; Rothbächer, Ute; Lemaire, Patrick
2012-01-01
Vertebrate embryos exploit the mutual inhibition between the RA and FGF signalling pathways to coordinate the proliferative elongation of the main body axis with the progressive patterning and differentiation of its neuroectodermal and paraxial mesodermal structures. The evolutionary history of this patterning system is still poorly understood. Here, we investigate the role played by the RA and FGF/MAPK signals during the development of the tail structures in the tunicate Ciona intestinalis, an invertebrate chordate belonging to the sister clade of vertebrates, in which the prototypical chordate body plan is established through very derived morphogenetic processes. Ciona embryos are constituted of few cells and develop according to a fixed lineage; elongation of the tail occurs largely by rearrangement of postmitotic cells; mesoderm segmentation and somitogenesis are absent. We show that in the Ciona embryo, the antagonism of the RA and FGF/MAPK signals is required to control the anteroposterior patterning of the tail epidermis. We also demonstrate that the RA, FGF/MAPK and canonical Wnt pathways control the anteroposterior patterning of the tail peripheral nervous system, and reveal the existence of distinct subpopulations of caudal epidermal neurons with different responsiveness to the RA, FGF/MAPK and canonical Wnt signals. Our data provide the first demonstration that the use of the antagonism between the RA and FGF signals to pattern the main body axis predates the emergence of vertebrates and highlight the evolutionary plasticity of this patterning strategy, showing that in different chordates it can be used to pattern different tissues within the same homologous body region.
Lutetia: an example of prediction of polyhedra in shapes of small cosmic bodies
NASA Astrophysics Data System (ADS)
Kochemasov, G. G.
2011-10-01
The following prediction based on rules of the wave planetology [1-12] was published before the Rosetta spacecraft imaged asteroid Lutetia [13]. "A 100 km long flattened asteroid 21-Lutetia will be imaged by the "Ros etta' s pacecraft in July 2010. Knowing that heavenly bodies are effectively structurized by warping inertia -gravity waves one might expect that Lutetia will not be an exclusion out of a row of bodies subjected to an action of these waves [1-9]. The elliptical keplerian orbits with periodically changing bodies 'accelerations imply inertia -gravity forces applied to any body notwithstanding its size, mass, density, chemical composition, and physical state. These forces produce inertia-gravity waves having in rotating bodied standing character and four direct ions of propagation (orthogonal and diagonal). Interfering these waves produce in bodies three (five) kinds of tectonic blocks: uprising s trongly and moderately (++, +), subsiding deeply and moderately (--, -), and neutral (0) where + and - are compensated. Lengths and amplitudes of warping waves form the harmonic sequence. The fundamental wave1 (long 2πR) ma kes ubiquitous tectonic dichotomy (two antipodean segments or hemispheres: one risen, another fallen). In small bodies this structurization is expressed in their convexo-concave shape: one hemisphere is bulged, another one pressed in. Bulging hemisphere is extended, pressed in hemisphere contracted. This wave shaping tends to transform a globular body into a tetrahedron - the ess entially dichotomous s imp les t Plato's figure. In this polyhedron always there is an oppos ition of extension (a face) to contraction (a vertex). The firs t overtone wave2 (long πR) ma kes tectonic s ectors , als o ris en and fallen, and regularly disposed on (and in) a globe. This regularity is expressed in an octahedron form. The octahedron (diamond) or its parts are often observed in shapes of small bodies with small gravities. Larger bodies with rather strong gravity tend to smooth polyhedron vertices and edges but a polyhedron structurization is always present inside their globes a nd is shown in their tectonics, geomorphology and geophysical fields. The shorter warping waves are also present but because of their comparatively small lengths and amplitudes they are not so important in distorting globes. The presented main harmonic row is complicated by superimposed individual waves lengths of which are inversely proportional to orbital frequencies: higher frequency - smaller wave, and, vice versa, lower frequency - larger wave. In the main asteroid belt the fundamental wave of the ma in s equence and the individual wave (a ls o long 2π R) a re in the s tron gest 1:1 resonance what prohibits an accretion of a real planet because of prevailing debris scattering. Thus, the Lutetia shape can support the main point of the wave planetology - "orbits make s tructures ." [13]. Below are some examples of cosmic polyhedra belonging to small bodies of various classes (asteroids, satellites, comets), s izes and compos itions . Thus , the prediction of Lutetia' s hape (s trengthened by the later Tempel's images ) was bas ed on rathe r representative observations.
NASA Astrophysics Data System (ADS)
Syracuse, E. M.; Zhang, H.; Maceira, M.
2017-10-01
We present a method for using any combination of body wave arrival time measurements, surface wave dispersion observations, and gravity data to simultaneously invert for three-dimensional P- and S-wave velocity models. The simultaneous use of disparate data types takes advantage of the differing sensitivities of each data type, resulting in a comprehensive and higher resolution three-dimensional geophysical model. In a case study for Utah, we combine body wave first arrivals mainly from the USArray Transportable Array, Rayleigh wave group and phase velocity dispersion data, and Bouguer gravity anomalies to invert for crustal and upper mantle structure of the region. Results show clear delineations, visible in both P- and S-wave velocities, between the three main tectonic provinces in the region. Without the inclusion of the surface wave and gravity constraints, these delineations are less clear, particularly for S-wave velocities. Indeed, checkerboard tests confirm that the inclusion of the additional datasets dramatically improves S-wave velocity recovery, with more subtle improvements to P-wave velocity recovery, demonstrating the strength of the method in successfully recovering seismic velocity structure from multiple types of constraints.
Liu, Xiaofei; Hermann, Jan; Tkatchenko, Alexandre
2016-12-28
Stimuli-responsive metal-organic frameworks (MOFs) and other framework materials exhibit a broad variety of useful properties, which mainly stem from an interplay of strong covalent bonds within the organic linkers with presumably weak van der Waals (vdW) interactions which determine the overall packing of the framework constituents. Using Ag 3 Co(CN) 6 as a fundamental test case-a system with a colossal positive and negative thermal expansion [A. L. Goodwin et al., Science 319, 794 (2008)]-we demonstrate that its structure, stability, dielectric, vibrational, and mechanical properties are critically influenced by many-body electronic correlation contributions to non-covalent vdW interactions. The Ag 3 Co(CN) 6 framework is a remarkable molecular crystal, being visibly stabilized, rather than destabilized, by many-body vdW correlations. A detailed comparison with H 3 Co(CN) 6 highlights the crucial role of strongly polarized metallophilic interactions in dictating the exceptional properties of denser MOFs. Beyond MOFs, our findings indicate that many-body electronic correlations can substantially stabilize polarizable materials, providing a novel mechanism for tuning the properties of nanomaterials with intricate structural motifs.
Multidirectional four-dimensional shape measurement system
NASA Astrophysics Data System (ADS)
Lenar, Janusz; Sitnik, Robert; Witkowski, Marcin
2012-03-01
Currently, a lot of different scanning techniques are used for 3D imaging of human body. Most of existing systems are based on static registration of internal structures using MRI or CT techniques as well as 3D scanning of outer surface of human body by laser triangulation or structured light methods. On the other hand there is an existing mature 4D method based on tracking in time the position of retro-reflective markers attached to human body. There are two main drawbacks of this solution: markers are attached to skin (no real skeleton movement is registered) and it gives (x, y, z, t) coordinates only in those points (not for the whole surface). In this paper we present a novel multidirectional structured light measurement system that is capable of measuring 3D shape of human body surface with frequency reaching 60Hz. The developed system consists of two spectrally separated and hardware-synchronized 4D measurement heads. The principle of the measurement is based on single frame analysis. Projected frame is composed from sine-modulated intensity pattern and a special stripe allowing absolute phase measurement. Several different geometrical set-ups will be proposed depending on type of movements that are to be registered.
Zhang, Jian-Hua; Yu, Na; Xu, Xi-Xia; Liu, Ze-Wen
2018-02-09
The endosymbionts play vital roles in growth, development and reproduction in insects. Yeast-like endosymbionts (YLSs) have been well studied in Nilaparvata lugens (N. lugens), but little is known about the tissue-specific bacterial microbiomes, especially on the microbial intersection among internal tissues. Here, the correlation of microbial composition, structure, dispersal ability and functional profiling were illuminated in two tissues, the fat body and ovary in N. lugens. A total of 11 phyla and 105 genera were captured from all samples; Firmicutes and Proteobacteria were the most predominant and accounted for more than 99% in all samples. However, the relative abundance of Firmicutes and Proteobacteria was significantly different in ovary and fat body through Fisher's Least Significant Difference test. Microbial diversity but not the richness index in the two tissues exhibited significant difference. Furthermore, the microbial community structure of the ovary and fat body were primarily determined by tissue quality. Firmicutes showed strong dispersal ability between ovary and fat body based on the quantitative null model assessing, indicating the frequent interaction of these microbiomes in the two tissues. In addition, the Kyoto Encyclopedia of Genes and Genomes pathways of microbial participation were delineated. The ten most abundant pathways counted for over 46% of the annotation and were shared between the two tissues, mainly containing Energy Metabolism and Amino Acid Metabolism/Biosynthesis. The results will provide insights into the correlation of microbial community structure between ovary and fat body of N. lugens. © 2018 Institute of Zoology, Chinese Academy of Sciences.
Bailey, K Alysse; Gammage, Kimberley L; van Ingen, Cathy; Ditor, David S
2016-01-01
Using modified constructivist grounded theory, the purpose of this study was to explore body image experiences in people with spinal cord injury. Nine participants (five women, four men) varying in age (21-63 years), type of injury (C3-T7; complete and incomplete), and years post-injury (4-36 years) took part in semi-structured in-depth interviews. The following main categories were found: appearance, weight concerns, negative functional features, impact of others, body disconnection, hygiene and incontinence, and self-presentation. Findings have implications for the health and well-being of those living with a spinal cord injury.
Srbecka, Kristyna; Michalova, Kvetoslava; Curcikova, Radmila; Michal, Michael; Dubova, Magdalena; Svajdler, Marian; Michal, Michal; Daum, Ondrej
2017-09-01
There is a group of lesions in the head and neck region derived from branchial arches and related structures which, when inflamed, are characterized by the formation of cysts lined by squamous or glandular epithelium and surrounded by a heavy inflammatory infiltrate rich in germinal centers. In the thyroid, the main source of various structures which may cause diagnostic dilemma is the ultimobranchial body. To investigate the spectrum of such thyroid lesions, the consultation files were reviewed for thyroid samples containing pathological structures regarded to arise from the ultimobranchial body. Positive reaction with antibodies against CK5/6, p63, galectin 3, and CEA, and negative reaction with antibodies against thyroglobulin, TTF-1, and calcitonin were used to confirm the diagnosis. The specific subtype of the ultimobranchial body-derived lesion was then determined based on histological examination of H&E-stained slides. Twenty-one cases of ultimobranchial body-derived lesions were retrieved from the consultation files, 20 of them along with clinical information (M/F = 6/14, mean age 55 years, range 36-68 years). Lesions derived from the ultimobranchial body were classified as follows: (hyperplastic) solid cell nests (nine cases), solid cell nests with focal cystic change (five cases), cystic solid cell nests (two cases), branchial cleft-like cyst (four cases), and finally a peculiar Warthin tumor-like lesion (one case). We suggest that the common denominator of these structures is that they all arise due to activation of inflammatory cells around the vestigial structures, which leads to cystic dilatation and proliferation of the epithelial component.
NASA Astrophysics Data System (ADS)
Savenkoff, Claude; Castonguay, Martin; Chabot, Denis; Hammill, Mike O.; Bourdages, Hugo; Morissette, Lyne
2007-07-01
Mass-balance models have been constructed using inverse methodology for the northern Gulf of St. Lawrence for the mid-1980s, the mid-1990s, and the early 2000s to describe ecosystem structure, trophic group interactions, and the effects of fishing and predation on the ecosystem for each time period. Our analyses indicate that the ecosystem structure shifted dramatically from one previously dominated by demersal (cod, redfish) and small-bodied forage (e.g., capelin, mackerel, herring, shrimp) species to one now dominated by small-bodied forage species. Overfishing removed a functional group in the late 1980s, large piscivorous fish (primarily cod and redfish), which has not recovered 14 years after the cessation of heavy fishing. This has left only marine mammals as top predators during the mid-1990s, and marine mammals and small Greenland halibut during the early 2000s. Predation by marine mammals on fish increased from the mid-1980s to the early 2000s while predation by large fish on fish decreased. Capelin and shrimp, the main prey in each period, showed an increase in biomass over the three periods. A switch in the main predators of capelin from cod to marine mammals occurred, while Greenland halibut progressively replaced cod as shrimp predators. Overfishing influenced community structure directly through preferential removal of larger-bodied fishes and indirectly through predation release because larger-bodied fishes exerted top-down control upon other community species or competed with other species for the same prey. Our modelling estimates showed that a change in predation structure or flows at the top of the trophic system led to changes in predation at all lower trophic levels in the northern Gulf of St. Lawrence. These changes represent a case of fishery-induced regime shift.
NASA Astrophysics Data System (ADS)
Houatmia, Faten; Khomsi, Sami; Bédir, Mourad
2015-11-01
The Sisseb El Alem-Enfidha basin is located in the northeastern Tunisia, It is borded by Nadhour - Saouaf syncline to the north, Kairouan plain to the south, the Mediterranean Sea to the east and Tunisian Atlassic "dorsale" to the west. Oligocene and Miocene deltaic deposits present the main potential deep aquifers in this basin with high porosity (25%-30%). The interpretation of twenty seismic reflection profiles, calibrated by wire line logging data of twelve oil wells, hydraulic wells and geologic field sections highlighted the impact of tectonics on the structuring geometry of Oligo-Miocene sandstones reservoirs and their distribution in raised structures and subsurface depressions. Miocene seismostratigraphy analysis from Ain Ghrab Formation (Langhian) to the Segui Formation (Quaternary) showed five third-order seismic sequence deposits and nine extended lenticular sandy bodies reservoirs limited by toplap and downlap surfaces unconformities, Oligocene deposits presented also five third- order seismic sequences with five extended lenticular sandy bodies reservoirs. The Depth and the thickness maps of these sequence reservoir packages exhibited the structuring of this basin in sub-basins characterized by important lateral and vertical geometric and thichness variations. Petroleum wells wire line logging correlation with clay volume calculation showed an heterogeneous multilayer reservoirs of Oligocene and Miocene formed by the arrangement of fourteen sandstone bodies being able to be good reservoirs, separated by impermeable clay packages and affected by faults. Reservoirs levels correspond mainly to the lower system tract (LST) of sequences. Intensive fracturing by deep seated faults bounding the different sub-basins play a great role for water surface recharge and inter-layer circulations between affected reservoirs. The total pore volume of the Oligo-Miocene reservoir sandy bodies in the study area, is estimated to about 4 × 1012 m3 and equivalent to 4 × 109 m3 of deep water reserves.
Zhao, Wei; Wang, Xiao-Hua; Li, Hong-Mei; Wang, Shi-Hua; Chen, Tao; Yuan, Zhan-Peng; Tang, Ya-Jie
2014-03-01
Fifty-two polysaccharides were isolated from the fermentation systems of Tuber melanosporum, Tuber indicum, Tuber sinense, Tuber aestivum and the fruiting bodies of Tuber indicum, Tuber himalayense, Tuber sinense by elution with an activated carbon column. Polysaccharides from Tuber fermentation system exhibited relatively higher in vitro antitumor activity against HepG2, A549, HCT-116, SK-BR-3, and HL-60 cells than those from Tuber fruiting bodies. All polysaccharides were mainly composed of D-mannose, D-glucose, and D-galactose, which suggested that the polysaccharides from Tuber fruiting bodies and fermentation system have identical chemical compositions. The results of antitumor activity and structural identification indicated that the polysaccharide fractions could promote antitumor activity. Tuber polysaccharides from Tuber fermentation system exhibited relatively higher than that from Tuber fruiting bodies. These results confirm the potential of Tuber fermentation mycelia for use as an alternative resource for its fruiting bodies.
Ferrante, Todd A.
1997-01-01
A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold.
Analyse et design aerodynamique haute-fidelite de l'integration moteur sur un avion BWB
NASA Astrophysics Data System (ADS)
Mirzaei Amirabad, Mojtaba
BWB (Blended Wing Body) is an innovative type of aircraft based on the flying wing concept. In this configuration, the wing and the fuselage are blended together smoothly. BWB offers economical and environmental advantages by reducing fuel consumption through improving aerodynamic performance. In this project, the goal is to improve the aerodynamic performance by optimizing the main body of BWB that comes from conceptual design. The high fidelity methods applied in this project have been less frequently addressed in the literature. This research develops an automatic optimization procedure in order to reduce the drag force on the main body. The optimization is carried out in two main stages: before and after engine installation. Our objective is to minimize the drag by taking into account several constraints in high fidelity optimization. The commercial software, Isight is chosen as an optimizer in which MATLAB software is called to start the optimization process. Geometry is generated using ANSYS-DesignModeler, unstructured mesh is created by ANSYS-Mesh and CFD calculations are done with the help of ANSYS-Fluent. All of these software are coupled together in ANSYS-Workbench environment which is called by MATLAB. The high fidelity methods are used during optimization by solving Navier-Stokes equations. For verifying the results, a finer structured mesh is created by ICEM software to be used in each stage of optimization. The first stage includes a 3D optimization on the surface of the main body, before adding the engine. The optimized case is then used as an input for the second stage in which the nacelle is added. It could be concluded that this study leads us to obtain appropriate reduction in drag coefficient for BWB without nacelle. In the second stage (adding the nacelle) a drag minimization is also achieved by performing a local optimization. Furthermore, the flow separation, created in the main body-nacelle zone, is reduced.
Are soil testate amoebae and diatoms useful for forensics?
Wanner, Manfred; Betker, Elisa; Shimano, Satoshi; Krawczynski, René
2018-05-28
Two of the main goals of forensic science are (1) to estimate the time since death, or post mortem interval (PMI) and (2) to find the site where a dead body was buried. Soil testate amoebae and diatoms may be useful indicators for these goals. However, the structure and patchiness of the habitat appears to be a main driver for the amoeba and diatom soil communities (e.g., individual density). In case the soil substrate is very dry and nutrient-poor (as in our study), the influence of a dead body on the soil microfaunal community may be superimposed by natural environmental heterogeneity, especially soil moisture content. Further studies are necessary to clarify if protist abundance data are helpful for forensic investigations. Copyright © 2018 Elsevier B.V. All rights reserved.
Searching for the elusive neural substrates of body part terms: a neuropsychological study.
Kemmerer, David; Tranel, Daniel
2008-06-01
Previous neuropsychological studies suggest that, compared to other categories of concrete entities, lexical and conceptual aspects of body part knowledge are frequently spared in brain-damaged patients. To further investigate this issue, we administered a battery of 12 tests assessing lexical and conceptual aspects of body part knowledge to 104 brain-damaged patients with lesions distributed throughout the telencephalon. There were two main outcomes. First, impaired oral naming of body parts, attributable to a disturbance of the mapping between lexical-semantic and lexical-phonological structures, was most reliably and specifically associated with lesions in the left frontal opercular and anterior/inferior parietal opercular cortices and in the white matter underlying these regions (8 patients). Also, 1 patient with body part anomia had a left occipital lesion that included the "extrastriate body area" (EBA). Second, knowledge of the meanings of body part terms was remarkably resistant to impairment, regardless of lesion site; in fact, we did not uncover a single patient who exhibited significantly impaired understanding of the meanings of these terms. In the 9 patients with body part anomia, oral naming of concrete entities was evaluated, and this revealed that 4 patients had disproportionately worse naming of body parts relative to other types of concrete entities. Taken together, these findings extend previous neuropsychological and functional neuroimaging studies of body part knowledge and add to our growing understanding of the nuances of how different linguistic and conceptual categories are operated by left frontal and parietal structures.
Searching for the Elusive Neural Substrates of Body Part Terms: A Neuropsychological Study
Kemmerer, David; Tranel, Daniel
2010-01-01
Previous neuropsychological studies suggest that, compared to other categories of concrete entities, lexical and conceptual aspects of body part knowledge are frequently spared in brain-damaged patients. To further investigate this issue, we administered a battery of 12 tests assessing lexical and conceptual aspects of body part knowledge to 104 brain-damaged patients with lesions distributed throughout the telencephalon. There were two main outcomes. First, impaired oral naming of body parts, attributable to a disturbance of the mapping between lexical-semantic and lexical-phonological structures, was most reliably and specifically associated with lesions in the left frontal opercular and anterior/inferior parietal opercular cortices, and in the white matter underlying these regions (8 patients). Also, one patient with body part anomia had a left occipital lesion that included the “extrastriate body area” (EBA). Second, knowledge of the meanings of body part terms was remarkably resistant to impairment, regardless of lesion site; in fact, we did not uncover a single patient who exhibited significantly impaired understanding of the meanings of these terms. In the 9 patients with body part anomia, oral naming of concrete entities was evaluated, and this revealed that 4 patients had disproportionately worse naming of body parts relative to other types of concrete entities. Taken together, these findings extend previous neuropsychological and functional neuroimaging studies of body part knowledge, and add to our growing understanding of the nuances of how different linguistic and conceptual categories are operated by left frontal and parietal structures. PMID:18608319
Definition of ground test for verification of large space structure control
NASA Technical Reports Server (NTRS)
Doane, G. B., III; Glaese, J. R.; Tollison, D. K.; Howsman, T. G.; Curtis, S. (Editor); Banks, B.
1984-01-01
Control theory and design, dynamic system modelling, and simulation of test scenarios are the main ideas discussed. The overall effort is the achievement at Marshall Space Flight Center of a successful ground test experiment of a large space structure. A simplified planar model of ground test experiment of a large space structure. A simplified planar model of ground test verification was developed. The elimination from that model of the uncontrollable rigid body modes was also examined. Also studied was the hardware/software of computation speed.
The dynamical environment of asteroid 21 Lutetia according to different internal models
NASA Astrophysics Data System (ADS)
Aljbaae, S.; Chanut, T. G. G.; Carruba, V.; Souchay, J.; Prado, A. F. B. A.; Amarante, A.
2017-01-01
One of the most accurate models currently used to represent the gravity field of irregular bodies is the polyhedral approach. In this model, the mass of the body is assumed to be homogeneous, which may not be true for a real object. The main goal of the this paper is to study the dynamical effects induced by three different internal structures (uniform, three- and four-layered) of asteroid (21) Lutetia, an object that recent results from space probe suggest being at least partially differentiated. The Mascon gravity approach used in the this work consists of dividing each tetrahedron into eight parts to calculate the gravitational field around the asteroid. The zero-velocity curves show that the greatest displacement of the equilibrium points occurs in the position of the E4 point for the four-layered structure and the smallest one occurs in the position of the E3 point for the three-layered structure. Moreover, stability against impact shows that the planar limit gets slightly closer to the body with the four-layered structure. We then investigated the stability of orbital motion in the equatorial plane of (21) Lutetia and propose numerical stability criteria to map the region of stable motions. Layered structures could stabilize orbits that were unstable in the homogeneous model.
Cagnin, Annachiara; Bandmann, Oliver; Venneri, Annalena
2017-01-01
Patients with Lewy body disease (LBD) frequently experience visual hallucinations (VH), well-formed images perceived without the presence of real stimuli. The structural and functional brain mechanisms underlying VH in LBD are still unclear. The present review summarises the current literature on the neural correlates of VH in LBD, namely Parkinson’s disease (PD), and dementia with Lewy bodies (DLB). Following a systematic literature search, 56 neuroimaging studies of VH in PD and DLB were critically reviewed and evaluated for quality assessment. The main structural neuroimaging results on VH in LBD revealed grey matter loss in frontal areas in patients with dementia, and parietal and occipito-temporal regions in PD without dementia. Parietal and temporal hypometabolism was also reported in hallucinating PD patients. Disrupted functional connectivity was detected especially in the default mode network and fronto-parietal regions. However, evidence on structural and functional connectivity is still limited and requires further investigation. The current literature is in line with integrative models of VH suggesting a role of attention and perception deficits in the development of VH. However, despite the close relationship between VH and cognitive impairment, its associations with brain structure and function have been explored only by a limited number of studies. PMID:28714891
Vieira, Tuane C R G; Costa-Filho, Adilson; Salgado, Norma C; Allodi, Silvana; Valente, Ana-Paula; Nasciutti, Luiz E; Silva, Luiz-Claudio F
2004-02-01
Acharan sulfate, a recently discovered glycosaminoglycan isolated from Achatina fulica, has a major disaccharide repeating unit of -->4)-2-acetyl,2-deoxy-alpha-d-glucopyranose(1-->4)-2-sulfo-alpha-l-idopyranosyluronic acid (1-->, making it structurally related to both heparin and heparan sulfate. It has been suggested that this glycosaminoglycan is polydisperse, with an average molecular mass of 29 kDa and known minor disaccharide sequence variants containing unsulfated iduronic acid. Acharan sulfate was found to be located in the body of this species using alcian blue staining and it was suggested to be the main constituent of the mucus. In the present work, we provide further information on the structure and compartmental distribution of acharan sulfate in the snail body. Different populations of acharan sulfate presenting charge and/or molecular mass heterogeneities were isolated from the whole body, as well as from mucus and from the organic shell matrix. A minor glycosaminoglycan fraction susceptible to degradation by nitrous acid was also purified from the snail body, suggesting the presence of N-sulfated glycosaminoglycan molecules. In addition, we demonstrate the in vivo metabolic labeling of acharan sulfate in the snail body after a meal supplemented with [35S]free sulfate. This simple approach might be applied to the study of acharan sulfate biosynthesis. Finally, we developed histochemical assays to localize acharan sulfate in the snail body by metachromatic staining and by histoautoradiography following metabolic radiolabeling with [35S]sulfate. Our results show that acharan sulfate is widely distributed among several organs.
NASA Astrophysics Data System (ADS)
Padrón, Eleazar; Padilla, Germán; Hernández, Pedro A.; Pérez, Nemesio M.; Calvo, David; Nolasco, Dácil; Barrancos, José; Melián, Gladys V.; Dionis, Samara; Rodríguez, Fátima
2013-01-01
We report herein the first results of an extensive soil gas survey performed on Timanfaya volcano on May 2011. Soil gas composition at Timanfaya volcano indicates a main atmospheric source, slightly enriched in CO2 and He. Soil CO2 concentration showed a very slight deep contribution of the Timanfaya volcanic system, with no clear relation to the main eruptive fissures of the studied area. The existence of soil helium enrichments in Timanfaya indicates a shallow degassing of crustal helium and other possible deeper sources probably form cooling magma bodies at depth. The main soil helium enrichments were observed in good agreement with the main eruptive fissures of the 1730-36 eruption, with the highest values located at those areas with a higher density of recent eruptive centers, indicating an important structural control for the leakage of helium at Timanfaya volcano. Atmospheric air slightly polluted by deep-seated helium emissions, CO2 degassed from a cooling magma body, and biogenic CO2, might be the most plausible explanation for the existence of soil gas. Helium is a deep-seated gas, exhibiting important emission rates along the main eruptive fissure of the 1730-36 eruption of Timanfaya volcano.
Collisional and dynamical processes in moon and planet formation
NASA Technical Reports Server (NTRS)
Chapman, C. R.; Davis, D. R.; Weidenschilling, S. J.; Hartmann, W. K.; Spaute, D.
1987-01-01
Research on a variety of dynamical processes relevant to the formation of planets, satellites and ring systems is discussed. The main focus is on studies of accretionary formation of early protoplanets using a numerical model, structures and evolution of ring systems and individual bodies within planetary rings, and theories of lunar origin.
Job Creation in Rural Areas: A Select Annotated Bibliography.
ERIC Educational Resources Information Center
Pankratz, John
1989-01-01
This annotated bibliography is designed to assist rural leaders seeking ways to effectively structure successful job development projects in their communities. The 120 entries are listed in the main body alphabetically by author, and are grouped in the index into categories reflecting Thomas's "seven hallmarks of successful rural development": (1)…
Body Structure and Physical Self-Concept in Early Adolescence
ERIC Educational Resources Information Center
Zsakai, Annamaria; Karkus, Zsolt; Utczas, Katinka; Bodzsar, Eva B.
2017-01-01
In adolescence, the complexity of human ontogenesis embraces biological growth and maturation as well as mental, affective, and cognitive progress, and adaptation to the requirements of society. To accept our morphological constellation as part of our gender may prove a problem even to a child of average rate of maturation. The main purposes of…
Interference between extrinsic and intrinsic losses in x-ray absorption fine structure
NASA Astrophysics Data System (ADS)
Campbell, L.; Hedin, L.; Rehr, J. J.; Bardyszewski, W.
2002-02-01
The interference between extrinsic and intrinsic losses in x-ray absorption fine structure (XAFS) is treated within a Green's-function formalism, without explicit reference to final states. The approach makes use of a quasiboson representation of excitations and perturbation theory in the interaction potential between electrons and quasibosons. These losses lead to an asymmetric broadening of the main quasiparticle peak plus an energy-dependent satellite in the spectral function. The x-ray absorption spectra (XAS) is then given by a convolution of an effective spectral function over a one-electron cross section. It is shown that extrinsic and intrinsic losses tend to cancel near excitation thresholds, and correspondingly, the strength in the main peak increases. At high energies, the theory crosses over to the sudden approximation. These results thus explain the observed weakness of multielectron excitations in XAS. The approach is applied to estimate the many-body corrections to XAFS, beyond the usual mean-free path, using a phasor summation over the spectral function. The asymmetry of the spectral function gives rise to an additional many-body phase shift in the XAFS formula.
Exceptional body sizes but typical trophic structure in a Pleistocene food web.
Segura, Angel M; Fariña, Richard A; Arim, Matías
2016-05-01
In this study, we focused on the exceptionally large mammals inhabiting the Americas during the Quaternary period and the paramount role of body size in species ecology. We evaluated two main features of Pleistocene food webs: the relationship between body size and (i) trophic position and (ii) vulnerability to predation. Despite the large range of species sizes, we found a hump-shaped relationship between trophic position and body size. We also found a negative trend in species vulnerability similar to that observed in modern faunas. The largest species lived near the boundary of energetic constraints, such that any shift in resource availability could drive these species to extinction. Our results reinforce several features of megafauna ecology: (i) the negative relationship between trophic position and body size implies that large-sized species were particularly vulnerable to changes in energetic support; (ii) living close to energetic imbalance could favour the incorporation of additional energy sources, for example, a transition from a herbivorous to a scavenging diet in the largest species (e.g. Megatherium) and (iii) the interactions and structure of Quaternary megafauna communities were shaped by similar forces to those shaping modern fauna communities. © 2016 The Author(s).
Floristic and vegetation successional processes within landslides in a Mediterranean environment.
Neto, Carlos; Cardigos, Patrícia; Oliveira, Sérgio Cruz; Zêzere, José Luís
2017-01-01
Floristic and vegetation analysis in seven Mediterranean landslides led to the understanding of the successional processes occurring in different landslide disturbed sectors. Our study showed that in landslides that occurred between 1996 and 2010 there is a clear differentiation between the three main landslide sectors (scarp, main body and foot) concerning floristic composition, vegetation structure, floristic richness, successional processes and plant functional type. Additional differences were found between landslide areas and undisturbed agricultural areas adjacent to landslides. In this study 48 floristic relevés were made using a stratified random sampling design. The main landslide body exhibits the highest floristic richness whereas the landslide scarp has the lowest coverage rate and the highest presence of characteristic species from ruderal and strongly perturbed habitats. Finally, the landslide foot shows a late stage in the succession (maquis or pre-forest stage) with a high dominance of vines. We further discuss the importance of landslides as reservoirs of biodiversity especially for Mediterranean orchids. Copyright © 2016 Elsevier B.V. All rights reserved.
Phenotypic factor analysis of psychopathology reveals a new body-related transdiagnostic factor.
Pezzoli, Patrizia; Antfolk, Jan; Santtila, Pekka
2017-01-01
Comorbidity challenges the notion of mental disorders as discrete categories. An increasing body of literature shows that symptoms cut across traditional diagnostic boundaries and interact in shaping the latent structure of psychopathology. Using exploratory and confirmatory factor analysis, we reveal the latent sources of covariation among nine measures of psychopathological functioning in a population-based sample of 13024 Finnish twins and their siblings. By implementing unidimensional, multidimensional, second-order, and bifactor models, we illustrate the relationships between observed variables, specific, and general latent factors. We also provide the first investigation to date of measurement invariance of the bifactor model of psychopathology across gender and age groups. Our main result is the identification of a distinct "Body" factor, alongside the previously identified Internalizing and Externalizing factors. We also report relevant cross-disorder associations, especially between body-related psychopathology and trait anger, as well as substantial sex and age differences in observed and latent means. The findings expand the meta-structure of psychopathology, with implications for empirical and clinical practice, and demonstrate shared mechanisms underlying attitudes towards nutrition, self-image, sexuality and anger, with gender- and age-specific features.
Bailey, K Alysse; Gammage, Kimberley L; van Ingen, Cathy; Ditor, David S
2016-01-01
Using modified constructivist grounded theory, the purpose of this study was to explore body image experiences in people with spinal cord injury. Nine participants (five women, four men) varying in age (21–63 years), type of injury (C3-T7; complete and incomplete), and years post-injury (4–36 years) took part in semi-structured in-depth interviews. The following main categories were found: appearance, weight concerns, negative functional features, impact of others, body disconnection, hygiene and incontinence, and self-presentation. Findings have implications for the health and well-being of those living with a spinal cord injury. PMID:28070405
Body-Mind Healing Strategies in Patients with Cancer: a Qualitative Content Analysis
Khoshnood, Zohreh; Iranmanesh, Sedigheh; Rayyani, Masoud; Dehghan, Mahlegha
2018-06-25
Background: Cancer is a major health problem around the world. The use of coping strategies among patients with cancer depends on several issues. This study was conducted to determine coping strategies used by patients with cancer in south-east Iran. Methods: This study is a conventional, qualitative content analysis with a descriptive explorative approach. Data saturation achieved after interviewing 13 participants in 15 interviews. Using an in-depth individual semi-structured approach the participants were asked to narrate their experiences of strategies that they used to cope with cancer. The following were considered: unit of analysis, meaning unit, condensation, code, sub-category, category, and main category. Results: Data analysis led to extraction of two main categories of body-mind healing strategies: being connected to the body and mindfully reconnected to the self. The first category was explained with reference to two sub-categories, being aware of intelligence and body nurturing. The second category was explained with the three sub-categories of using embodying knowledge, living for the moment, and being connected to nature. Conclusion: According to the results of this qualitative study, it is possible to form discussion groups with peers or to have self-reflective practice learning groups to reflect patients’ questions and strategies that they use for body-mind healing. Creative Commons Attribution License
CONSTRAINTS ON THE PHYSICAL PROPERTIES OF MAIN BELT COMET P/2013 R3 FROM ITS BREAKUP EVENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirabayashi, Masatoshi; Sánchez, Diego Paul; Gabriel, Travis
2014-07-01
Jewitt et al. recently reported that main belt comet P/2013 R3 experienced a breakup, probably due to rotational disruption, with its components separating on mutually hyperbolic orbits. We propose a technique for constraining physical properties of the proto-body, especially the initial spin period and cohesive strength, as a function of the body's estimated size and density. The breakup conditions are developed by combining mutual orbit dynamics of the smaller components and the failure condition of the proto-body. Given a proto-body with a bulk density ranging from 1000 kg m{sup –3} to 1500 kg m{sup –3} (a typical range of the bulk density of C-type asteroids),more » we obtain possible values of the cohesive strength (40-210 Pa) and the initial spin state (0.48-1.9 hr). From this result, we conclude that although the proto-body could have been a rubble pile, it was likely spinning beyond its gravitational binding limit and would have needed cohesive strength to hold itself together. Additional observations of P/2013 R3 will enable stronger constraints on this event, and the present technique will be able to give more precise estimates of its internal structure.« less
[Disability in the elderly owing to cerebrovascular diseases: the leading desadaptive syndromes].
Karol, E V; Каntemirova, R K
2017-01-01
The article presents data on the main desadaptive syndromes have disabilities due to cerebrovascular diseases in the elderly according to the results of analysis of medical expert documents the Bureau of medico-social examination of Saint-Petersburg in the period from 2010 to 2014. The characteristics of the level, structure, dynamics and distribution according to groups of disability due to cerebrovascular diseases in retirement were shown; clinical expert in the features of the population of older people with disabilities due to cerebrovascular diseases were analyzed. We revealed a consistent decrease in the number of persons with disabilities over 5 years, increase the proportion of persons with disabilities of group III and group I disabled. We have determined the structure of the main desadaptive syndromes in the structure of the cerebrovascular diseases, causing dysfunctions of the body and disability.
Syracuse, Ellen Marie; Zhang, Haijiang; Maceira, Monica
2017-07-11
Here, we present a method for using any combination of body wave arrival time measurements, surface wave dispersion observations, and gravity data to simultaneously invert for three-dimensional P- and S-wave velocity models. The simultaneous use of disparate data types takes advantage of the differing sensitivities of each data type, resulting in a comprehensive and higher resolution three-dimensional geophysical model. In a case study for Utah, we combine body waves first arrivals mainly from the USArray Transportable Array, Rayleigh wave group and phase velocity dispersion data, and Bouguer gravity anomalies to invert for crustal and upper mantle structure of the region.more » Results show clear delineations, visible in both P- and S-wave velocities, between the three main tectonic provinces in the region. In conclusion, without the inclusion of the surface wave and gravity constraints, these delineations are less clear, particularly for S-wave velocities. Indeed, checkerboard tests confirm that the inclusion of the additional datasets dramatically improves S-wave velocity recovery, with more subtle improvements to P-wave velocity recovery, demonstrating the strength of the method in successfully recovering seismic velocity structure from multiple types of constraints.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syracuse, Ellen Marie; Zhang, Haijiang; Maceira, Monica
Here, we present a method for using any combination of body wave arrival time measurements, surface wave dispersion observations, and gravity data to simultaneously invert for three-dimensional P- and S-wave velocity models. The simultaneous use of disparate data types takes advantage of the differing sensitivities of each data type, resulting in a comprehensive and higher resolution three-dimensional geophysical model. In a case study for Utah, we combine body waves first arrivals mainly from the USArray Transportable Array, Rayleigh wave group and phase velocity dispersion data, and Bouguer gravity anomalies to invert for crustal and upper mantle structure of the region.more » Results show clear delineations, visible in both P- and S-wave velocities, between the three main tectonic provinces in the region. In conclusion, without the inclusion of the surface wave and gravity constraints, these delineations are less clear, particularly for S-wave velocities. Indeed, checkerboard tests confirm that the inclusion of the additional datasets dramatically improves S-wave velocity recovery, with more subtle improvements to P-wave velocity recovery, demonstrating the strength of the method in successfully recovering seismic velocity structure from multiple types of constraints.« less
NASA Astrophysics Data System (ADS)
Dahdouh, S.; Varsier, N.; Serrurier, A.; De la Plata, J.-P.; Anquez, J.; Angelini, E. D.; Wiart, J.; Bloch, I.
2014-08-01
Fetal dosimetry studies require the development of accurate numerical 3D models of the pregnant woman and the fetus. This paper proposes a 3D articulated fetal growth model covering the main phases of pregnancy and a pregnant woman model combining the utero-fetal structures and a deformable non-pregnant woman body envelope. The structures of interest were automatically or semi-automatically (depending on the stage of pregnancy) segmented from a database of images and surface meshes were generated. By interpolating linearly between fetal structures, each one can be generated at any age and in any position. A method is also described to insert the utero-fetal structures in the maternal body. A validation of the fetal models is proposed, comparing a set of biometric measurements to medical reference charts. The usability of the pregnant woman model in dosimetry studies is also investigated, with respect to the influence of the abdominal fat layer.
NASA Astrophysics Data System (ADS)
Zinoviev, Sergei
2014-05-01
Kuznetsk-Altai region is a part of the Central Asian Orogenic Belt. The nature and formation mechanisms of the observed structure of Kuznetsk-Altai region are interpreted by the author as the consequence of convergence of Tuva-Mongolian and Junggar lithospheric block structures and energy of collision interaction between the blocks of crust in Late-Paleozoic-Mesozoic period. Tectonic zoning of Kuznetsk-Altai region is based on the principle of adequate description of geological medium (without methods of 'primary' state recovery). The initial indication of this convergence is the crust thickening in the zone of collision. On the surface the mechanisms of lateral compression form a regional elevation; with this elevation growth the 'mountain roots' start growing. With an approach of blocks an interblock elevation is divided into various fragments, and these fragments interact in the manner of collision. The physical expression of collision mechanisms are periodic pulses of seismic activity. The main tectonic consequence of the block convergence and collision of interblock units is formation of an ensemble of regional structures of the deformation type on the basis of previous 'pre-collision' geological substratum [Chikov et al., 2012]. This ensemble includes: 1) allochthonous and autochthonous blocks of weakly deformed substratum; 2) folded (folded-thrust) systems; 3) dynamic metamorphism zones of regional shears and main faults. Characteristic of the main structures includes: the position of sedimentary, magmatic and PT-metamorphic rocks, the degree of rock dynamometamorphism and variety rock body deformation, as well as the styles and concentrations of mechanic deformations. 1) block terranes have weakly elongated or isometric shape in plane, and they are the systems of block structures of pre-collision substratum separated by the younger zones of interblock deformations. They stand out among the main deformation systems, and the smallest are included into the deformation systems. 2) folded (folded-thrust) deformation systems combine deformation zones with relic lenses of Paleozoid substratum, and predominantly conform systems of the main faults. Despite a high degree of regional deformation the sedimentary-stratified and intrusive-contact relations of geological bodies are stored within the deformation systems, and this differs in the main the collision systems from zones of dynamic metamorphism. 3) regional zones of dynamic metamorphism of Kuznetsk-Altai region are the concentration belts of multiple mechanic deformations and contrast dynamometamorphism of complexes. The formational basis of dynamic metamorphism zones is tectonites of the collision stage. Zones of dynamic metamorphism attract special attention in the structural model of Kuznetsk-Altai region. They not only form the typical tectonic framework of collision sutures, but also contain the main part of ore deposits of this region. Pulse mode of structure formation of Kuznetsk-Altai region is detected. Major collision events in Kuznetsk-Altai region were in the late-Carboniferous-Triassic time (307-310, 295-285, 260-250 and 240-220 Ma). This study was supported by a grant of the Russian Foundation for Basic Research (project nos. 14-05-00117).
Modeling the human body/seat system in a vibration environment.
Rosen, Jacob; Arcan, Mircea
2003-04-01
The vibration environment is a common man-made artificial surrounding with which humans have a limited tolerance to cope due to their body dynamics. This research studied the dynamic characteristics of a seated human body/seat system in a vibration environment. The main result is a multi degrees of freedom lumped parameter model that synthesizes two basic dynamics: (i) global human dynamics, the apparent mass phenomenon, including a systematic set of the model parameters for simulating various conditions like body posture, backrest, footrest, muscle tension, and vibration directions, and (ii) the local human dynamics, represented by the human pelvis/vibrating seat contact, using a cushioning interface. The model and its selected parameters successfully described the main effects of the apparent mass phenomenon compared to experimental data documented in the literature. The model provided an analytical tool for human body dynamics research. It also enabled a primary tool for seat and cushioning design. The model was further used to develop design guidelines for a composite cushion using the principle of quasi-uniform body/seat contact force distribution. In terms of evenly distributing the contact forces, the best result for the different materials and cushion geometries simulated in the current study was achieved using a two layer shaped geometry cushion built from three materials. Combining the geometry and the mechanical characteristics of a structure under large deformation into a lumped parameter model enables successful analysis of the human/seat interface system and provides practical results for body protection in dynamic environment.
On enigmatic properties of the main belt asteroids
NASA Astrophysics Data System (ADS)
Kochemasov, G.
Two properties of the main belt asteroids still bother planetologists: why they are mainly of an oblong shape and why the larger bodies rotate faster than the smaller ones. According to the excepted impact theory constantly produced fragments should be rather more or less of equal dimensions. Larger bodies are more difficult to make rotating by hits than the smaller ones. The comparative wave planetology states that "orbits make structures". It means that as all celestial bodies move in non-round keplerian elliptic (and parabolic) orbits with periodically changing accelerations they are subjected to an action of inertia-gravity waves causing body warpings. These warpings in rotating bodies (but all celestial bodies rotate!) acquire stationary character and 4 ortho- and diagonal directions. An interference of these waves produces uprising (+), subsiding (-) and neutral (0) tectonic blocks size of which depends on the warping wavelengths. The fundamental wave 1 long 2πR makes one hemisphere to rise (bulge) and the opposite one to fall (press in) - this two-segment construction is the ubiquitous tectonic dichotomy. The first overtone wave 2 long πR is responsible for tectonic sectoring complicating the dichotomic segments. This already rather complicated structural picture is further complicated by a warping action of individual waves lengths of which are inversely proportional to orbital frequencies : higher frequency - smaller wave and , vice versa, lower frequency - larger waves. These waves produce tectonic granulation, granule size being a half of a wavelength. All terrestrial planets and the belt asteroids according to their orb. fr. are strictly arranged in the following row of granule sizes: Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1. The waves lengths and amplitudes increase with the solar distance, their warping action accordingly increases. If Mercury, Venus and Earth are more or less globular, Mars is already elliptical because two warping waves cannot be inscribed in a sphere otherwise than to stretch a body in one direction and to press it in the perpendicular one. Thus, an enigmatic shape of Mars is explained by this way. Asteroids are subjected to a warping action of the wave that bulges one hemisphere and presses the opposite one making convexo-concave bean shape [1]. This wave resonate (1 to 1) with the fundamental wave causing dichotomy of all celestial bodies . This very strong resonance enhances a warping action. That is why asteroids are flat, oblong and bean-shaped. The bulging hemisphere is always cracked, and this cracking sometimes is so strong that "saddles" appear sometimes cutting body into two or more pieces (binaries, satellites). Eros and the small Trojan satellite of Saturn Calypso (PIA07633) are very similar in this typical shape (convexo-concave shape and a "saddle") though they have different compositions, sizes and strengths. It was 1 shown earlier that degassing and rotations of terrestrial planets may be tied by redistribution of their angular momentum between a solid body and its gaseous envelope [2]. Bodies with higher orb. fr. and thus more finely granulated (Mercury, Venus) are more thoroughly wiped out of its volatiles and rotate slower because a significant part of their momenta gone with atmosphere (The Mercury's atmosphere was destroyed by the solar wind). The main asteroid belt rather stretched (2.2-3.2 a.u.) is composed of metallic, stone and carbonaceous bodies (judging by spectra and meteorites) , the first two dominating its inner part, the third -the outer one (similarity with the inner planets in respect of volatiles distribution). Less degassed asteroids keeping their original mass and "original" momentum (i.e.,the larger bodies) differ from the smaller ones having lost their original mass by degassing and spalling and shared their momenta with gone off parts. That is why the larger bodies are fast, the smaller ones slow rotating. References: [1] Kochemasov G.G. (1999) On convexo-concave shape of small celestial bodies // Asteroids, Comets, Meteors. Cornell Univ., July 26-30, 1999, Abstr. # 24.22; [2] Kochemasov G.G. (2003) Structures of the wave planetology and their projection onto the solar photosphere: why solar supergranules are 30000 km across. // Vernadsky-Brown microsymp. 38, Vernadsky Inst.,Moscow, Russia, Oct. 27-29, 2003, Abstr. (CD-ROM). 2
Thermal design and TDM test of the ETS-VI
NASA Astrophysics Data System (ADS)
Yoshinaka, T.; Kanamori, K.; Takenaka, N.; Kawashima, J.; Ido, Y.; Kuriyama, Y.
The Engineering Test Satellite-VI (ETS-VI) thermal design, thermal development model (TDM) test, and evaluation results are described. The allocation of the thermal control materials on the spacecraft is illustrated. The principal design approach is to minimize the interactions between the antenna tower module and the main body, and between the main body and the liquid apogee propulsion system by means of multilayer insulation blankets and low conductance graphite epoxy support structures. The TDM test shows that the thermal control subsystem is capable of maintaining the on-board components within specified temperature limits. The heat pipe network is confirmed to operate properly, and a uniform panel temperature distribution is accomplished. The thermal analytical model is experimentally verified. The validity of the thermal control subsystem design is confirmed by the modified on-orbit analytical model.
Seasonal carcass composition and energy balance of female black ducks in Maine
Reinecke, K.J.; Stone, T.L.; Owen, R.B.
1982-01-01
Female Black Ducks (Anas rubripes) collected in Maine during the summer, fall, and winter of 1974-1976 showed significant seasonal variation in body weight, nonfat dry weight, gizzard and pectoral muscle weight, and fat, moisture, and protein content. Variation of body weight within and among seasons was correlated more strongly with carcass protein content, and with fat content during seasons of heavy lipid deposition, than with three structural size variables (culmen, tarsus, and sternum). Regression equations including fat and protein as independent variables accounted for 80-90% of the annual and seasonal variation in body weight; structural size variables alone accounted for less than 30%. Immature females averaged 54 and 99 g lighter, and carried 54 and 59 g less fat than adults during the fall and winter. Ducks of both age classes lost weight in December and January. Adult and immature females metabolized 59 and 64 g of fat and 17 and 25 g of protein in winter compared with 46 g of fat during the nesting season. Nutrient reserves are thus equally as important for the winter survival of these birds as for successfurl eproduction. Seasonal changes in carcass composition suggest that (1) fat deposited in late fall provides an energy reserve during winter, (2) a reduction in lean weight during winter may lower daily energy requirements and increase the effective amount of energy reserves, and (3) declining body weights during late winter may be an endogenous rhythm that reflects a shift in the expected benefits of an energy reserve compared to the costs of carrying additional weight,
Damaske, D.; Läufer, A.L.; Goldmann, F.; Möller, H.-D.; Lisker, F.
2007-01-01
An aeromagnetic survey was flown over the offshore region northeast of Cape Adare and the magnetic anomalies compared to onshore structures between Pennell Coast and Tucker Glacier. The magnetic anomalies show two nearly orthogonal major trends. NNW-SSE trending anomalies northeast of Cape Adare represent seafloor spreading within the Adare Trough. A connection of these anomalies to the Northern Basin of the Ross Sea is not clear. Onshore faults are closely aligned to offshore anomalies. Main trends are NW-SE to NNW-SSE and NE-SW to NNESSW. NNW-SSE oriented dextral-transtensional to extensional faults parallel the Adare Peninsula and Adare Trough anomalies. NE-SW trending normal faults appear to segment the main Hallett volcanic bodies.
NASA Astrophysics Data System (ADS)
Savic, P.
The internal structure of Mercury, Venus, Mars, and Jupiter is considered in the framework of the Savic-Kasanin theory of the behavior of materials under high pressure. The main hypothesis underlying the theory is based on the deformation of the electron shells by the dislocation and ejection of electrons from atoms in a given material. This theory is discussed in relation to the spontaneous effect of gravitation and cooling on atoms in the material of a celestial body.
Lee, Yee-Ying; Tang, Teck-Kim; Phuah, Eng-Tong; Karim, Nur Azwani Abdul; Alitheen, Noorjahan Banu Mohamed; Tan, Chin-Ping; Razak, Intan Shameha Abdul; Lai, Oi-Ming
2018-01-01
Medium-and-Long Chain Triacylglycerol (MLCT) is a type of structured lipid that is made up of medium chain, MCFA (C8-C12) and long chain, LCFA (C16-C22) fatty acid. Studies claimed that consumption of MLCT has the potential in reducing visceral fat accumulation as compared to long chain triacylglycerol, LCT. This is mainly attributed to the rapid metabolism of MCFA as compared to LCFA. Our study was designed to compare the anti-obesity effects of a enzymatically interesterified MLCT (E-MLCT) with physical blend of palm kernel and palm oil (B-PKOPO) having similar fatty acid composition and a commercial MLCT (C-MLCT) made of rapeseed/soybean oil on Diet Induced Obesity (DIO) C57BL/6J mice for a period of four months in low fat, LF (7%) and high fat, HF (30%) diet. The main aim was to determine if the anti-obesity effect of MLCT was contributed solely by its triacylglycerol structure alone or its fatty acid composition or both. Out of the three types of MLCT, mice fed with Low Fat, LF (7%) E-MLCT had significantly (P<0.05) lower body weight gain (by ~30%), body fat accumulation (by ~37%) and hormone leptin level as compared to both the LF B-PKOPO and LF C-MLCT. Histological examination further revealed that dietary intake of E-MLCT inhibited hepatic lipid accumulation. Besides, analysis of serum profile also demonstrated that consumption of E-MLCT was better in regulating blood glucose compared to B-PKOPO and C-MLCT. Nevertheless, both B-PKO-PO and E-MLCT which contained higher level of myristic acid was found to be hypercholesterolemic compared to C-MLCT. In summary, our finding showed that triacylglycerol structure, fatty acid composition and fat dosage play a pivotal role in regulating visceral fat accumulation. Consumption of E-MLCT in low fat diet led to a significantly lesser body fat accumulation. It was postulated that the MLM/MLL/LMM/MML/LLM types of triacylglycerol and C8-C12 medium chain fatty acids were the main factors that contributed to the visceral fat suppressing effect of MLCT. Despite being able to reduce body fat, the so called healthful functional oil E-MLCT when taken in high amount do resulted in fat accumulation. In summary, E-MLCT when taken in moderation can be used to manage obesity issue. However, consumption of E-MLCT may lead to higher total cholesterol and LDL level. Copyright © 2017 Elsevier Ltd. All rights reserved.
System for tuning a combustor of a gas turbine
Hughes, Michael John
2016-12-27
A system for tuning a combustor of a gas turbine includes a flow sleeve having an annular main body. The main body includes an upstream end, a downstream end, an inner surface and an outer surface. A cooling channel extends along the inner surface of the main body. The cooling channel extends at least partially between the downstream end and the upstream end of the main body.
From video to computation of biological fluid-structure interaction problems
NASA Astrophysics Data System (ADS)
Dillard, Seth I.; Buchholz, James H. J.; Udaykumar, H. S.
2016-04-01
This work deals with the techniques necessary to obtain a purely Eulerian procedure to conduct CFD simulations of biological systems with moving boundary flow phenomena. Eulerian approaches obviate difficulties associated with mesh generation to describe or fit flow meshes to body surfaces. The challenges associated with constructing embedded boundary information, body motions and applying boundary conditions on the moving bodies for flow computation are addressed in the work. The overall approach is applied to the study of a fluid-structure interaction problem, i.e., the hydrodynamics of swimming of an American eel, where the motion of the eel is derived from video imaging. It is shown that some first-blush approaches do not work, and therefore, careful consideration of appropriate techniques to connect moving images to flow simulations is necessary and forms the main contribution of the paper. A combination of level set-based active contour segmentation with optical flow and image morphing is shown to enable the image-to-computation process.
NASA Astrophysics Data System (ADS)
Ventura, Daniele; Bonhomme, Vincent; Colangelo, Paolo; Bonifazi, Andrea; Jona Lasinio, Giovanna; Ardizzone, Giandomenico
2017-05-01
Feeding habits, diet overlap and morphological correlates of four juvenile species of the genus Diplodus were investigated during their settlement periods, along the Tyrrhenian coast. Stomach content analysis showed that the diets of D. sargus and D. puntazzo mainly comprised benthic prey such as harpacticoid copepods, amphipods and polychaetes. On the other hand, D. vulgaris and D. annularis fed mainly on planktonic prey such as ciclopoids, calanoids copepods and fish larvae. A biologically significant diet overlap, calculated using the Schoener index, was recorded between D. sargus and D. puntazzo and between D. vulgaris and D. annularis. Morphological characters related to feeding such as gape height and gut length with their relative growth patterns suggested that different trophic preferences have led to a morphological diversification of feeding structures. Therefore, a geometric morphometric outline method, namely Elliptic Fourier Analysis (EFA) was used to examine shape modification of the head and body regions. The multivariate analyses performed on shape descriptors demonstrated that the four species were morphologically distinct due to different feeding habits: the two species which feed mainly on benthic prey presented a discoidal shape, with broad profiles and rounded head; by contrast, the other two species which relied mostly on planktonic prey, presented a streamlined and more elongated body shape.
Ferrante, T.A.
1997-11-11
A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold. 12 figs.
Georgakarakos, E; Xenakis, A; Georgiadis, G S; Argyriou, C; Manopoulos, C; Tsangaris, S; Lazarides, M K
2014-10-01
The influence of the relative iliac limb length of an endograft (EG) on the displacements forces (DF) predisposing to adverse effects are under-appreciated in the literature. Therefore, we conducted a computational study to estimate the magnitude of the DF acting over an entire reconstructed EG and its counterparts for a range of main body-to-iliac limb length (L1/L2) ratios. A customary bifurcated 3D model was computationally created and meshed using the commercially available ANSYS ICEM (Ansys Inc., Canonsburg, PA, USA) software. Accordingly, Fluid Structure Interaction was used to estimate the DF. The total length of the EG was kept constant, while the L1/L2 ratio ranged from 0.3 to 1.5. The increase in L1/L2 slightly affected the DF on the EG (ranging from 3.8 to 4.1 N) and its bifurcation (4.0 to 4.6 N). However, the forces exerted at the iliac sites were strongly affected by the L1/L2 values (ranging from 0.9 to 2.2 N), showing a parabolic pattern with a minimum for 0.6 ratio. It is suggested that the hemodynamic effect of the relative limb lengths should not be considered negligible. A high main body-to-iliac limb length ratio seems to favor hemodynamically a low bifurcation but it attenuates the main body-iliac limbs modular stability. Further clinical studies should investigate the relevant value of these findings. The Bolton Treovance(®) device is presented as a representative, improved stent-graft design that takes into account these hemodynamic parameters in order to achieve a promising, improved clinical performance.
Revkova, Tatiana N
2017-11-07
Two new species of the family Microlaimidae Micoletzky, 1922 are described and illustrated from the Black Sea. Aponema pontica sp. n. is morphologically closest to A. torosum in the shape of the body and spicules, size of amphids, but differs in having small and triangular cardia, absence of constriction in head region, shape of gubernaculum apophyses, rounded and weakly sclerotised lumen of pharyngeal bulb and longer spicules. Microlaimus paraglobiceps sp. n. morphologically resembles M. globiceps de Man, 1880 in the shape of the body, structure of the male sexual organs and presence of precloacal pore, but the main difference is a shorter body, cuticle finely annulated all over the body and absence of sexual dimorphism in the size of amphideal fovea.
A qualitative study of body image and appearance among men of Chinese ancestry in Australia.
Watt, Merran; Ricciardelli, Lina A
2012-01-01
Little is known about the body image of non-White men living in Western countries, even though it has been suggested that they may be more at risk of body image concerns, especially if they internalize Western ideals. This study focused on identifying the main body image and appearance themes among 15 men of Chinese ancestry in Australia using semi-structured interviews and grounded theory. Moderate muscularity was the preferred ideal and height dissatisfaction was shown to be the primary concern. The majority was not invested in achieving muscularity and had a "holistic" approach to their body image that included concerns about hairstyling and clothing. In addition, the men were influenced by both Asian and Western ideals, and this included comparison targets with both Asian and Western men. Further studies are needed to assess the extent of men's body image and appearance concerns, and the role played by Asian and Western influences. Copyright © 2011 Elsevier Ltd. All rights reserved.
Measuring the X-shaped structures in edge-on galaxies
NASA Astrophysics Data System (ADS)
Savchenko, S. S.; Sotnikova, N. Ya.; Mosenkov, A. V.; Reshetnikov, V. P.; Bizyaev, D. V.
2017-11-01
We present a detailed photometric study of a sample of 22 edge-on galaxies with clearly visible X-shaped structures. We propose a novel method to derive geometrical parameters of these features, along with the parameters of their host galaxies based on the multi-component photometric decomposition of galactic images. To include the X-shaped structure into our photometric model, we use the imfit package, in which we implement a new component describing the X-shaped structure. This method is applied for a sample of galaxies with available Sloan Digital Sky Survey and Spitzer IRAC 3.6 μm observations. In order to explain our results, we perform realistic N-body simulations of a Milky Way-type galaxy and compare the observed and the model X-shaped structures. Our main conclusions are as follows: (1) galaxies with strong X-shaped structures reside in approximately the same local environments as field galaxies; (2) the characteristic size of the X-shaped structures is about 2/3 of the bar size; (3) there is a correlation between the X-shaped structure size and its observed flatness: the larger structures are more flattened; (4) our N-body simulations qualitatively confirm the observational results and support the bar-driven scenario for the X-shaped structure formation.
Wake states and forces associated with a cylinder rolling down an incline under gravity
NASA Astrophysics Data System (ADS)
Houdroge, Farah Yasmina; Thompson, Mark; Hourigan, Kerry; Leweke, Thomas
2014-11-01
The flow around a cylinder rolling along a wall at a constant velocity was recently investigated by Stewart et al. (JFM, 643, 648, 2010). They showed that the wake structure varies greatly as the Reynolds number was increased, and that the presence of the wall as well as the imposed motion of the body have a strong influence on the dominant wake structure and the wake transitions when the body is placed in free stream. In this work, attention is given to the flow dynamics and the fluid forces associated with a cylinder rolling down an incline under the influence of gravity. Increasing the inclination angle or the Reynolds number is shown to destabilize the wake flow. For a body close to neutrally buoyancy, the formation and shedding of vortices in its wake result in fluctuating forces and a final kinematic state in which the body's velocity is not constant. The non-dimensionalization of the main equations allows us to determine the essential parameters that govern the problem's dynamics. Furthermore, through numerical simulations we analyse in more detail the time-dependant fluid forces and the different structures of the wake in order to gain a better understanding of the physical mechanisms behind the motions of the fluid and the body. This research was supported by an Australian Research Council Discovery Project Grant DP130100822. We also acknowledge computing time support through National Computing Infrastructure projects D71 and N67.
Luo, Damin; Guo, Shulin; Fang, Wenzhen; Huang, Heqin
2004-06-01
During a helminthological examination of marine fishes from south of the Minnan-Taiwan Bank Fishing Ground, Taiwan Strait, Fujian, China, a new cucullanid nematode, Dichelyne (Cucullanellus) jialaris n. sp., was removed from the intestine of the red seabream, Pagrus major (Temminck & Schlegel, 1834). The new species differs from its congeners mainly in the following characters: body size medium but with relative long spicules of 1.01 mm (0.97-1.06) in length or 20.0% (18.21-21.8%) of the body length; proximal end of spicules somewhat expanded and distal end rounded; gubernaculum I-shaped, slightly narrow in the middle part, both ends rounded; both anterior and posterior cloaca lips round or oval, prominent and unequal in size. The anterior cloaca lip is at least 2 times larger than the posterior one. There is a conspicuous papilliform structure within the central of anterior and posterior cloacal lip. Vulva of female is not prominent, slightly postequatorial; distance from vulva to anterior end of body is 4.3 (3.0-5.5) mm or 58.0% (54.0-62.0%) of the body length. Considering the result of comparing the structure of so-called unpaired median papilla with the 10 pairs of caudal petiolated papillae in the body of the same individual. the papilliform structures are just a backstop for the cloacal lips, this new species represents the first record of a nematode of the Dichelyne, subgenus Cucullanellus in marine fishes of China Sea.
Advanced Key Technologies for Hot Control Surfaces in Space Re- Entry Vehicles
NASA Astrophysics Data System (ADS)
Dogigli, Michael; Pradier, Alain; Tumino, Giorgio
2002-01-01
(1)MAN Technologie AG, D- 86153 Augsburg, Germany (2,3) ESA, 2200 Noordwijk ZH, The Netherlands Current space re-entry vehicles (e.g. X-38 vehicle 201, the prototype of the International Space Station's Crew Return Vehicle (CRV)) require advanced control surfaces (so called body flaps). Such control surfaces allow the design of smaller and lighter vehicles as well as faster re-entries (compared to the US Shuttle). They are designed as light-weight structures that need no metallic parts, need no mass or volume consuming heat sinks to protect critical components (e.g. bearings) and that can be operated at temperatures of more than 1600 "C in air transferring high mechanical loads (dynamic 40 kN, static 70 kN) at the same time. Because there is a need for CRV and also for Reusable Launch Vehicles (RLV) in future, the European Space Agency (ESA) felt compelled to establish a "Future European Space Transportation and Investigation Program,, (FESTIP) and a "General Support for Technology Program,, (GSTP). One of the main goals of these programs was to develop and qualify key-technologies that are able to master the above mentioned challenging requirements for advanced hot control surfaces and that can be applied for different vehicles. In 1996 MAN Technologie has started the development of hot control surfaces for small lifting bodies in the national program "Heiü Strukturen,,. One of the main results of this program was that especially the following CMC (Ceramic Matrix Composite) key technologies need to be brought up to space flight standard: Complex CMC Structures, CMC Bearings, Metal-to-CMC Joining Technologies, CMC Fasteners, Oxidation Protection Systems and Static and Dynamic Seals. MAN Technologie was contracted by ESA to continue the development and qualification of these key technologies in the frame of the FESTIP and the GSTP program. Development and qualification have successfully been carried out. The key technologies have been applied for the X-38 vehicle 201 body flaps that have been designed, manufactured and qualified also by MAN Technologie in the frame of the national TETRA program ("Technologien fu zuku ftige Raum-Transportsysteme,,). A set of two body flaps will be delivered to NASA at the beginning of 2002 to be integrated into the vehicle 201. Based on development- and qualification tests, the paper describes main technical properties and features of these key technologies that at the same time represent the status of the art. In a qualification test (simultaneous application of thermal and mechanical loads with bearing movements in oxidising atmosphere) of a full scaled CMC bearing, five complete re-entries have been simulated successfully. The paper informs about applied mechanical load and temperature histories as well as about the number of intermittent bearing movements. The paper further informs about the complex CMC attachment structures (attachment of bearing into the body flap and load introduction) that have been qualified together with the CMC bearing. The attachment of the body flap to the vehicle's aft structure has also been qualified by tests in which also four re- entries have been simulated successfully. The attachment in principle is an interfacing structure between the "hot" (1600 "C) CMC body flap and the "cold,, (175 "C) metallic vehicle's aft structure that is able to transfer high me- chanical loads at high temperatures and minimise the heat flux through interfacing components in such way that the temperature difference of 1600 "C 175 "C = 1425 "C is brought down over a structure-length of only 200 mm. The paper informs about applied mechanical load and temperature histories and about the safety margins that have been demonstrated by rupture tests. Mechanical load carrying capacity and thermal resistance of ceramic fasteners have been demonstrated in several development tests which cover tension-, shear-, fatigue- and self locking-tests as well as tests with fastener assemblies representative for the body flaps. The reliability of these fasteners has also been demonstrated in the bearing and body flap qualification tests. In a comprehensive development test campaign, oxidation protection systems as well as repair methods have been developed and successfully applied for the body flap structure and components that reliably can be protected at least for four re-entries. The development of key technologies is continued in the national ASTRA program ("Basistechnologien fu keramische Hochtemperatur-Komponenten,,) and in international programs that among others focus on to improve the reusability of high temperature CMC components for RLVs.
NASA Astrophysics Data System (ADS)
Fanelli, Pierluigi; Biscarini, Chiara; Jannelli, Elio; Ubertini, Filippo; Ubertini, Stefano
2017-02-01
Various mechanical, ocean, aerospace and civil engineering problems involve solid bodies impacting the water surface and often result in complex coupled dynamics, characterized by impulsive loading conditions, high amplitude vibrations and large local deformations. Monitoring in such problems for purposes such as remaining fatigue life estimation and real time damage detection is a technical and scientific challenge of primary concern in this context. Open issues include the need for developing distributed sensing systems able to operate at very high acquisition frequencies, to be utilized to study rapidly varying strain fields, with high resolution and very low noise, while scientific challenges mostly relate to the definition of appropriate signal processing and modeling tools enabling the extraction of useful information from distributed sensing signals. Building on previous work by some of the authors, we propose an enhanced method for real time deformed shape reconstruction using distributed FBG strain measurements in curved bodies subjected to impulsive loading and we establish a new framework for applying this method for structural health monitoring purposes, as the main focus of the work. Experiments are carried out on a cylinder impacting the water at various speeds, proving improved performance in displacement reconstruction of the enhanced method compared to its previous version. A numerical study is then carried out considering the same physical problem with different delamination damages affecting the body. The potential for detecting, localizing and quantifying this damage using the reconstruction algorithm is thoroughly investigated. Overall, the results presented in the paper show the potential of distributed FBG strain measurements for real time structural health monitoring of curved bodies under impulsive hydrodynamic loading, defining damage sensitive features in terms of strain or displacement reconstruction errors at selected locations along the structure.
Yang, Zhi; Jiang, Hongyan; Zhao, Xin; Lu, Zhuoyue; Luo, Zhibing; Li, Xuebing; Zhao, Jing; Zhang, Yongjun
2017-02-01
The insect fungal pathogen Beauveria bassiana produces a number of distinct cell types that include aerial conidia, blastospores and haemolymph-derived cells, termed hyphal bodies, to adapt varied environment niches and within the host insect. These cells display distinct biochemical properties and surface structures, and a highly ordered outermost brush-like structure uniquely present on hyphal bodies, but not on any in vitro cells. Here, we found that the outermost structure on the hyphal bodies mainly consisted of proteins associated to structural wall components in that most of it could be removed by dithiothreitol (DTT) or proteinase K. DTT-treatment also caused delayed germination, decreased tolerance to ultraviolet irradiation and virulence of conidia or blastospores, with decreased adherence and alternated carbohydrate epitopes, suggesting involvement in fungal development, stress responses and virulence. To characterize these cell surface molecules, proteins were released from the living cells using DTT, and identified and quantitated using label-free quantitative mass spectrometry. Thereafter, a series of bioinformatics programs were used to predict cell surface-associated proteins (CSAPs), and 96, 166 and 54 CSAPs were predicted from the identified protein pools of conidia, blastospores and hyphal bodies, respectively, which were involved in utilization of carbohydrate, nitrogen, and lipid, detoxification, pathogen-host interaction, and likely other cellular processes. Thirteen, sixty-nine and six CSAPs were exclusive in conidia, blastospores and hyphal bodies, respectively, which were verified by eGFP-tagged proteins at their N-terminus. Our data provide a crucial cue to understand mechanism of B. bassiana to adapt to varied environment and interaction with insect host. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kamzolkin, Vladimir; Latyshev, Anton; Ivanov, Stanislav
2016-04-01
The Blyb metamorphic complex (BMC) of the Fore Range zone is one of the most high-grade metamorphosed element of the Great Caucasus fold belt. Determination of the timing and the mechanism of formation of the Fore Range fold-thrust structures are not possible without investigation of the BMC located at the basement of its section. At the same time, the conceptions about its structure and age are outdated and need revision. Somin (2011) determined the age of the protolith and metamorphism of the Blyb complex as the Late Devonian - Early Carboniferous. We have recently shown that the BMC has not the dome, as previously thought, but nappe structure (Vidjapin, Kamzolkin, 2015), and is metamorphically coherent with the peak metamorphism pressures up to 22 kbar (Kamzolkin et al., 2015; Konilov et al., 2013). Considering the age and structure of the Blyb complex it is necessary to revise the age of granitoid intrusions and their relations with gneisses and schists, which constitute the main part of the section of the complex. Most authors (Gamkrelidze, Shengelia, 2007; Lavrischev, 2002; Baranov, 1967) adheres to Early Paleozoic age of intrusives, which is doubtful, considering the younger age of metamorphic rocks. We suppose, that the intrusive bodies broke through a BMC nappe structure during the exhumation of the complex (Perchuk, 1991) at the Devonian - Carboniferous boundary. Seemingly, the massive monzodiorites body (Lavrischev, 2002), intruding garnet-muscovite schists and amphibolite gneisses of the Blyb complex and cut by the Main Caucasian fault (MCF), are younger. Given the timing of termination of the MCF movement activity as the Middle Jurassic (Greater Caucasus..., 2005), their age should be in the Early Carboniferous - Middle Jurassic interval. At the same time, on the modern geological map (Lavrischev, 2002) monzodiorites body is assigned to the Middle Paleozoic. The study of the BMC granitoids and monzodiorites will help in determining of the mechanism and age of exhumation of the Blyb metamorphic complex high-pressure rocks. The reported study was partially supported by RFBR, research projects No. 16-35-00571mol_a; 16-05-01012a
Elaborate horns in a giant rhinoceros beetle incur negligible aerodynamic costs.
McCullough, Erin L; Tobalske, Bret W
2013-05-07
Sexually selected ornaments and weapons are among nature's most extravagant morphologies. Both ornaments and weapons improve a male's reproductive success; yet, unlike ornaments that need only attract females, weapons must be robust and functional structures because they are frequently tested during male-male combat. Consequently, weapons are expected to be particularly costly to bear. Here, we tested the aerodynamic costs of horns in the giant rhinoceros beetle, Trypoxylus dichotomus. We predicted that the long, forked head horn would have three main effects on flight performance: increased body mass, an anterior shift in the centre of mass and increased body drag. We found that the horns were surprisingly lightweight, and therefore had a trivial effect on the male beetles' total mass and mass distribution. Furthermore, because beetles typically fly at slow speeds and high body angles, horns had little effect on total body drag. Together, the weight and the drag of horns increased the overall force required to fly by less than 3 per cent, even in the largest males. Because low-cost structures are expected to be highly evolutionarily labile, the fact that horns incur very minor flight costs may have permitted both the elaboration and diversification of rhinoceros beetle horns.
Elaborate horns in a giant rhinoceros beetle incur negligible aerodynamic costs
McCullough, Erin L.; Tobalske, Bret W.
2013-01-01
Sexually selected ornaments and weapons are among nature's most extravagant morphologies. Both ornaments and weapons improve a male's reproductive success; yet, unlike ornaments that need only attract females, weapons must be robust and functional structures because they are frequently tested during male–male combat. Consequently, weapons are expected to be particularly costly to bear. Here, we tested the aerodynamic costs of horns in the giant rhinoceros beetle, Trypoxylus dichotomus. We predicted that the long, forked head horn would have three main effects on flight performance: increased body mass, an anterior shift in the centre of mass and increased body drag. We found that the horns were surprisingly lightweight, and therefore had a trivial effect on the male beetles' total mass and mass distribution. Furthermore, because beetles typically fly at slow speeds and high body angles, horns had little effect on total body drag. Together, the weight and the drag of horns increased the overall force required to fly by less than 3 per cent, even in the largest males. Because low-cost structures are expected to be highly evolutionarily labile, the fact that horns incur very minor flight costs may have permitted both the elaboration and diversification of rhinoceros beetle horns. PMID:23486444
NASA Technical Reports Server (NTRS)
Banerdt, W. Bruce; Abercrombie, Rachel; Keddie, Susan; Mizutani, Hitoshi; Nagihara, Seiichi; Nakamura, Yosio; Pike, W. Thomas
1996-01-01
This report identifies two main themes to guide planetary science in the next two decades: understanding planetary origins, and understanding the constitution and fundamental processes of the planets themselves. Within the latter theme, four specific goals related to interior measurements addressing the theme. These are: (1) Understanding the internal structure and dynamics of at least one solid body, other than the Earth or Moon, that is actively convecting, (2) Determine the characteristics of the magnetic fields of Mercury and the outer planets to provide insight into the generation of planetary magnetic fields, (3) Specify the nature and sources of stress that are responsible for the global tectonics of Mars, Venus, and several icy satellites of the outer planets, and (4) Advance significantly our understanding of crust-mantle structure for all the solid planets. These goals can be addressed almost exclusively by measurements made on the surfaces of planetary bodies.
Scattering - a probe to Earth's small scale structure
NASA Astrophysics Data System (ADS)
Rost, S.; Earle, P.
2009-05-01
Much of the short-period teleseismic wavefield shows strong evidence for scattered waves in extended codas trailing the main arrivals predicted by ray theory. This energy mainly originates from high-frequency body waves interacting with fine-scale volumetric heterogeneities in the Earth. Studies of this energy revealed much of what we know about Earth's structure at scale lengths around 10 km throughout the Earth from crust to core. From these data we can gain important information about the mineral-physical and geochemical constitution of the Earth that is inaccessible to many other seismic imaging techniques. Previous studies used scattered energy related to PKP, PKiKP, and Pdiff to identify and map the small-scale structure of the mantle and core. We will present observations related to the core phases PKKP and P'P' to study fine-scale mantle heterogeneities. These phases are maximum travel-time phases with respect to perturbations at their reflection points. This allows observation of the scattered energy as precursors to the main phase avoiding common problems with traditional coda phases which arrive after the main pulse. The precursory arrival of the scattered energy allows the separation between deep Earth and crustal contributions to the scattered wavefield for certain source-receiver configurations. Using the information from these scattered phases we identify regions of the mantle that shows increased scattering potential likely linked to larger scale mantle structure identified in seismic tomography and geodynamical models.
NASA Astrophysics Data System (ADS)
Dvoretskaya, Olga A.; Kondratenko, Peter S.
2009-04-01
We study the transport of impurity particles on a comb structure in the presence of advection. The main body concentration and asymptotic concentration distributions are obtained. Seven different transport regimes occur on the comb structure with finite teeth: classical diffusion, advection, quasidiffusion, subdiffusion, slow classical diffusion, and two kinds of slow advection. Quasidiffusion deserves special attention. It is characterized by a linear growth of the mean-square displacement. However, quasidiffusion is an anomalous transport regime. We established that a change in transport regimes in time leads to a change in regimes in space. Concentration tails have a cascade structure, namely, consisting of several parts.
Comparative use of side and main channels by small-bodied fish in a large, unimpounded river
Reinhold, Ann Marie; Bramblett, Robert G.; Zale, Alexander V.; Roberts, David W.; Poole, Geoffrey C.
2016-01-01
Ecological theory and field studies suggest that lateral floodplain connectivity and habitat heterogeneity provided by side channels impart favourable habitat conditions for lotic fishes, especially fluvial fishes dependent on large patches of shallow, slow velocity habitats for some portion of their life cycle. However, anthropogenic modification of large, temperate floodplain rivers has led to extensive channel simplification and side-channel loss. Highly modified rivers consist of simplified channels in contracted, less dynamic floodplains.Most research examining the seasonal importance of side channels for fish assemblages in large rivers has been carried out in heavily modified rivers, where side-channel extents are substantially reduced from pre-settlement times, and has often overlooked small-bodied fishes. Inferences about the ecological importance of side channels for small-bodied fishes in large rivers can be ascertained only from investigations of large rivers with largely intact floodplains. The Yellowstone River, our study area, is a rare example of one such river.We targeted small-bodied fishes and compared their habitat use in side and main channels in two geomorphically distinct types of river bends during early and late snowmelt runoff, and autumn base flow. Species compositions of side and main channels differed throughout hydroperiods concurrent with the seasonal redistribution of the availability of shallow, slow current-velocity habitats. More species of fish used side channels than main channels during runoff. Additionally, catch rates of small fishes were generally greater in side channels than in main channels and quantitative assemblage compositions differed between channel types during runoff, but not during base flow. Presence of and access to diverse habitats facilitated the development and persistence of diverse fish assemblages in our study area.Physical dissimilarities between side and main channels may have differentially structured the side- and main-channel fish assemblages during runoff. Patches of shallow, slow current-velocity (SSCV) habitats in side channels were larger and had slightly slower water velocities than SSCV habitat patches in main channels during runoff, but not during base flow.Our findings establish a baseline importance of side channels to riverine fishes in a large, temperate river without heavy anthropogenic modification. Establishing this baseline contributes to basic fluvial ecology and provides empirical justification for restoration efforts that reconnect large rivers with their floodplains.
NASA Technical Reports Server (NTRS)
Steger, Joseph L.
1989-01-01
Hyperbolic grid generation procedures are described which have been used in external flow simulations about complex configurations. For many practical applications a single well-ordered (i.e., structured) grid can be used to mesh an entire configuration, in other problems, composite or unstructured grid procedures are needed. Although the hyperbolic partial differential equation grid generation procedure has mainly been utilized to generate structured grids, an extension of the procedure to semiunstructured grids is briefly described. Extensions of the methodology are also described using two-dimensional equations.
NASA Technical Reports Server (NTRS)
Steger, Joseph L.
1989-01-01
Hyperbolic grid generation procedures are described which have been used in external flow simulations about complex configurations. For many practical applications a single well-ordered (i.e., structured) grid can be used to mesh an entire configuration, in other problems, composite or unstructured grid procedures are needed. Although the hyperbolic partial differential equation grid generation procedure has mainly been utilized to generate structured grids, extension of the procedure to semiunstructured grids is briefly described. Extensions of the methodology are also described using two-dimensional equations.
Kang, Chang-ku; Moon, Jong-yeol; Lee, Sang-im; Jablonski, Piotr G.
2013-01-01
Many moths have wing patterns that resemble bark of trees on which they rest. The wing patterns help moths to become camouflaged and to avoid predation because the moths are able to assume specific body orientations that produce a very good match between the pattern on the bark and the pattern on the wings. Furthermore, after landing on a bark moths are able to perceive stimuli that correlate with their crypticity and are able to re-position their bodies to new more cryptic locations and body orientations. However, the proximate mechanisms, i.e. how a moth finds an appropriate resting position and orientation, are poorly studied. Here, we used a geometrid moth Jankowskia fuscaria to examine i) whether a choice of resting orientation by moths depends on the properties of natural background, and ii) what sensory cues moths use. We studied moths’ behavior on natural (a tree log) and artificial backgrounds, each of which was designed to mimic one of the hypothetical cues that moths may perceive on a tree trunk (visual pattern, directional furrow structure, and curvature). We found that moths mainly used structural cues from the background when choosing their resting position and orientation. Our findings highlight the possibility that moths use information from one type of sensory modality (structure of furrows is probably detected through tactile channel) to achieve crypticity in another sensory modality (visual). This study extends our knowledge of how behavior, sensory systems and morphology of animals interact to produce crypsis. PMID:24205118
Kang, Chang-Ku; Moon, Jong-Yeol; Lee, Sang-Im; Jablonski, Piotr G
2013-01-01
Many moths have wing patterns that resemble bark of trees on which they rest. The wing patterns help moths to become camouflaged and to avoid predation because the moths are able to assume specific body orientations that produce a very good match between the pattern on the bark and the pattern on the wings. Furthermore, after landing on a bark moths are able to perceive stimuli that correlate with their crypticity and are able to re-position their bodies to new more cryptic locations and body orientations. However, the proximate mechanisms, i.e. how a moth finds an appropriate resting position and orientation, are poorly studied. Here, we used a geometrid moth Jankowskia fuscaria to examine i) whether a choice of resting orientation by moths depends on the properties of natural background, and ii) what sensory cues moths use. We studied moths' behavior on natural (a tree log) and artificial backgrounds, each of which was designed to mimic one of the hypothetical cues that moths may perceive on a tree trunk (visual pattern, directional furrow structure, and curvature). We found that moths mainly used structural cues from the background when choosing their resting position and orientation. Our findings highlight the possibility that moths use information from one type of sensory modality (structure of furrows is probably detected through tactile channel) to achieve crypticity in another sensory modality (visual). This study extends our knowledge of how behavior, sensory systems and morphology of animals interact to produce crypsis.
Identification of the underlying factor structure of the Derriford Appearance Scale 24
Lawson, Victoria; White, Paul
2015-01-01
Background. The Derriford Appearance Scale24 (DAS24) is a widely used measure of distress and dysfunction in relation to self-consciousness of appearance. It has been used in clinical and research settings, and translated into numerous European and Asian languages. Hitherto, no study has conducted an analysis to determine the underlying factor structure of the scale. Methods. A large (n = 1,265) sample of community and hospital patients with a visible difference were recruited face to face or by post, and completed the DAS24. Results. A two factor solution was generated. An evaluation of the congruence of the factor solutions on each of the the hospital and the community samples using Tucker’s Coefficient of Congruence (rc = .979) and confirmatory factor analysis, which demonstrated a consistent factor structure. A main factor, general self consciousness (GSC), was represented by 18 items. Six items comprised a second factor, sexual and body self-consciousness (SBSC). The SBSC scale demonstrated greater sensitivity and specificity in identifying distress for sexually significant areas of the body. Discussion. The factor structure of the DAS24 facilitates a more nuanced interpretation of scores using this scale. Two conceptually and statistically coherent sub-scales were identified. The SBSC sub-scale offers a means of identifying distress and dysfunction around sexually significant areas of the body not previously possible with this scale. PMID:26157633
Identification of the underlying factor structure of the Derriford Appearance Scale 24.
Moss, Timothy P; Lawson, Victoria; White, Paul
2015-01-01
Background. The Derriford Appearance Scale24 (DAS24) is a widely used measure of distress and dysfunction in relation to self-consciousness of appearance. It has been used in clinical and research settings, and translated into numerous European and Asian languages. Hitherto, no study has conducted an analysis to determine the underlying factor structure of the scale. Methods. A large (n = 1,265) sample of community and hospital patients with a visible difference were recruited face to face or by post, and completed the DAS24. Results. A two factor solution was generated. An evaluation of the congruence of the factor solutions on each of the the hospital and the community samples using Tucker's Coefficient of Congruence (rc = .979) and confirmatory factor analysis, which demonstrated a consistent factor structure. A main factor, general self consciousness (GSC), was represented by 18 items. Six items comprised a second factor, sexual and body self-consciousness (SBSC). The SBSC scale demonstrated greater sensitivity and specificity in identifying distress for sexually significant areas of the body. Discussion. The factor structure of the DAS24 facilitates a more nuanced interpretation of scores using this scale. Two conceptually and statistically coherent sub-scales were identified. The SBSC sub-scale offers a means of identifying distress and dysfunction around sexually significant areas of the body not previously possible with this scale.
Methods of chemical and phase composition analysis of gallstones
NASA Astrophysics Data System (ADS)
Suvorova, E. I.; Pantushev, V. V.; Voloshin, A. E.
2017-11-01
This review presents the instrumental methods used for chemical and phase composition investigation of gallstones. A great body of data has been collected in the literature on the presence of elements and their concentrations, obtained by fluorescence microscopy, X-ray fluorescence spectroscopy, neutron activation analysis, proton (particle) induced X-ray emission, atomic absorption spectroscopy, high-resolution gamma-ray spectrometry, electron paramagnetic resonance. Structural methods—powder X-ray diffraction, infrared spectroscopy, Raman spectroscopy—provide information about organic and inorganic phases in gallstones. Stone morphology was studied at the macrolevel with optical microscopy. Results obtained by analytical scanning and transmission electron microscopy with X-ray energy dispersive spectrometry are discussed. The chemical composition and structure of gallstones determine the strategy of removing stone from the body and treatment of patients: surgery or dissolution in the body. Therefore one chapter of the review describes the potential of dissolution methods. Early diagnosis and appropriate treatment of the disease depend on the development of clinical methods for in vivo investigation, which gave grounds to present the main characteristics and potential of ultrasonography (ultrasound scanning), magnetic resonance imaging, and X-ray computed tomography.
A Soft Parallel Kinematic Mechanism.
White, Edward L; Case, Jennifer C; Kramer-Bottiglio, Rebecca
2018-02-01
In this article, we describe a novel holonomic soft robotic structure based on a parallel kinematic mechanism. The design is based on the Stewart platform, which uses six sensors and actuators to achieve full six-degree-of-freedom motion. Our design is much less complex than a traditional platform, since it replaces the 12 spherical and universal joints found in a traditional Stewart platform with a single highly deformable elastomer body and flexible actuators. This reduces the total number of parts in the system and simplifies the assembly process. Actuation is achieved through coiled-shape memory alloy actuators. State observation and feedback is accomplished through the use of capacitive elastomer strain gauges. The main structural element is an elastomer joint that provides antagonistic force. We report the response of the actuators and sensors individually, then report the response of the complete assembly. We show that the completed robotic system is able to achieve full position control, and we discuss the limitations associated with using responsive material actuators. We believe that control demonstrated on a single body in this work could be extended to chains of such bodies to create complex soft robots.
Electromagnetically driven peristaltic pump
Marshall, Douglas W.
2000-01-01
An electromagnetic peristaltic pump apparatus may comprise a main body section having an inlet end and an outlet end and a flexible membrane which divides the main body section into a first cavity and a second cavity. The first cavity is in fluid communication with the inlet and outlet ends of the main body section. The second cavity is not in fluid communication with the first cavity and contains an electrically conductive fluid. The second cavity includes a plurality of electrodes which are positioned within the second cavity generally adjacent the flexible membrane. A magnetic field generator produces a magnetic field having a plurality of flux lines at least some of which are contained within the second cavity of the main body section and which are oriented generally parallel to a flow direction in which a material flows between the inlet and outlet ends of the main body section. A control system selectively places a voltage potential across selected ones of the plurality of electrodes to deflect the flexible membrane in a wave-like manner to move material contained in the first cavity between the inlet and outlet ends of the main body section.
Jeong, J; Toida, T; Muneta, Y; Kosiishi, I; Imanari, T; Linhardt, R J; Choi, H S; Wu, S J; Kim, Y S
2001-12-01
Acharan sulfate is a glycosaminoglycan (GAG), having the structure -->4)-2-acetamido-2-deoxy-alpha-D-glucopyranose(1-->4)-2-sulfo-alpha-L-idopyranosyluronic acid (1-->, isolated from the body of the giant African snail Achatina fulica. This GAG represents 3-5% of the dry weight of this snail's soft body tissues. Frozen sections and polyester wax sections of the snail's body were stained by Alcian blue-periodic acid-Schiff's reagent (PAS) to localize acharan sulfate. Alcian blue staining indicated that GAG was mainly secreted into the outer surface of the body from internal granules. A highly mucous material was collected and treated and the acharan sulfate was recovered by ethanol and cetyl pyridinium chloride precipitation. Crude acharan sulfate was purified by DEAE-Sephacel ion-exchange chromatography. Depolymerization of intact mucus and purified acharan sulfate fractions by heparin lyase II (heparitinase I) from Flavobacterium heparinum produced an unsaturated disaccharide as a major product, establishing the repeating unit of acharan sulfate. These results demonstrate that mucus in the granule and secreted to the outside of the body is composed entirely of acharan sulfate.
Au, Catherine E; Hermo, Louis; Byrne, Elliot; Smirle, Jeffrey; Fazel, Ali; Kearney, Robert E; Smith, Charles E; Vali, Hojatollah; Fernandez-Rodriguez, Julia; Simon, Paul H G; Mandato, Craig; Nilsson, Tommy; Bergeron, John J M
2015-08-01
Discovered in 1909 by Retzius and described mainly by morphology, the cytoplasmic droplet of sperm (renamed here the Hermes body) is conserved among all mammalian species but largely undefined at the molecular level. Tandem mass spectrometry of the isolated Hermes body from rat epididymal sperm characterized 1511 proteins, 43 of which were localized to the structure in situ by light microscopy and two by quantitative electron microscopy localization. Glucose transporter 3 (GLUT-3) glycolytic enzymes, selected membrane traffic and cytoskeletal proteins were highly abundant and concentrated in the Hermes body. By electron microscope gold antibody labelling, the Golgi trafficking protein TMED7/p27 localized to unstacked flattened cisternae of the Hermes body, as did GLUT-3, the most abundant protein. Its biogenesis was deduced through the mapping of protein expression for all 43 proteins during male germ cell differentiation in the testis. It is at the terminal step 19 of spermiogenesis that the 43 characteristic proteins accumulated in the nascent Hermes body. © 2015 The Authors.
Strambi, Colette; Cayre, Myriam; Sattelle, David B.; Augier, Roger; Charpin, Pierre; Strambi, Alain
1998-01-01
The distribution of putative RDL-like GABA receptors and of γ-aminobutyric acid (GABA) in the brain of the adult house cricket Acheta domesticus was studied using specific antisera. Special attention was given to brain structures known to be related to learning and memory. The main immunostaining for the RDL-like GABA receptor was observed in mushroom bodies, in particular the upper part of mushroom body peduncle and the two arms of the posterior calyx. Weaker immunostaining was detected in the distal part of the peduncle and in the α and β lobes. The dorso- and ventrolateral protocerebrum neuropils appeared rich in RDL-like GABA receptors. Staining was also detected in the glomeruli of the antennal lobe, as well as in the ellipsoid body of the central complex. Many neurons clustered in groups exhibit GABA-like immunoreactivity. Tracts that were strongly immunostained innervated both the calyces and the lobes of mushroom bodies. The glomeruli of the antennal lobe, the ellipsoid body, as well as neuropils of the dorso- and ventrolateral protocerebrum were also rich in GABA-like immuno- reactivity. The data demonstrated a good correlation between the distribution of the GABA-like and of the RDL-like GABA receptor immunoreactivity. The prominent distribution of RDL-like GABA receptor subunits, in particular areas of mushroom bodies and antennal lobes, underlines the importance of inhibitory signals in information processing in these major integrative centers of the insect brain. PMID:10454373
3D WHOLE-PROMINENCE FINE STRUCTURE MODELING. II. PROMINENCE EVOLUTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunár, Stanislav; Mackay, Duncan H.
2015-10-20
We use the new three-dimensional (3D) whole-prominence fine structure model to study the evolution of prominences and their fine structures in response to changes in the underlying photospheric magnetic flux distribution. The applied model combines a detailed 3D prominence magnetic field configuration with a realistic description of the prominence plasma distributed along multiple fine structures. In addition, we utilize an approximate Hα visualization technique to study the evolution of the visible cool prominence plasma both in emission (prominence) and absorption (filament). We show that the initial magnetic field configuration of the modeled prominence is significantly disturbed by the changing positionmore » of a single polarity of a magnetic bipole as the bipole is advected toward the main body of the filament. This leads to the creation of a barb, which becomes the dominant feature visible in the synthetic Hα images of both the prominence and filament views. The evolution of the bipole also creates conditions that lead to the disappearance and reappearance of large portions of the main body. We also show that an arch-like region containing a dark void (a bubble) can be naturally produced in the synthetic prominence Hα images. While not visible in terms of the magnetic field lines, it is due to a lack of Hα emission from low-pressure, low-density plasma located in shallow magnetic dips lying along the lines of sight intersecting the dark void. In addition, a quasi-vertical small-scale feature consisting of short and deep dips, piled one above the other, is produced.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belsom, Keith Cletus; McMahan, Kevin Weston; Thomas, Larry Lou
A fuel nozzle for a gas turbine generally includes a main body having an upstream end axially separated from a downstream end. The main body at least partially defines a fuel supply passage that extends through the upstream end and at least partially through the main body. A fuel distribution manifold is disposed at the downstream end of the main body. The fuel distribution manifold includes a plurality of axially extending passages that extend through the fuel distribution manifold. A plurality of fuel injection ports defines a flow path between the fuel supply passage and each of the plurality ofmore » axially extending passages.« less
Effect of periodic fluctuation of soil particle rotation resistance on interface shear behaviour
NASA Astrophysics Data System (ADS)
Ebrahimian, Babak; Noorzad, Asadollah
2010-06-01
The interface behaviour between infinite extended narrow granular layer and bounding structure is numerically investigated using finite element method. The micro-polar (Cosserat) continuum approach within the framework of elasto-plasticity is employed to remove the numerical difficulties caused by strain-softening of materials in classical continuum mechanics. Mechanical properties of cohesionless granular soil are described with Lade's model enhanced with polar terms including Cosserat rotations, curvatures and couple stresses via mean grain diameter as the internal length. The main attention of paper is laid on the influence of spatial periodic fluctuation of rotation resistance of soil particles interlocked with the surface of bounding structure on evolution and location of shear band developed inside granular body. The finite element results demonstrate that the location and evolution of shear localization in granular body is strongly affected by prescribed non-uniform micro-polar kinematic boundary conditions along the interface.
Quantum chaos: an introduction via chains of interacting spins-1/2
NASA Astrophysics Data System (ADS)
Gubin, Aviva; Santos, Lea
2012-02-01
We discuss aspects of quantum chaos by focusing on spectral statistical properties and structures of eigenstates of quantum many-body systems. Quantum systems whose classical counterparts are chaotic have properties that differ from those of quantum systems whose classical counterparts are regular. One of the main signatures of what became known as quantum chaos is a spectrum showing repulsion of the energy levels. We show how level repulsion may develop in one-dimensional systems of interacting spins-1/2 which are devoid of random elements and involve only two-body interactions. We present a simple recipe to unfold the spectrum and emphasize the importance of taking into account the symmetries of the system. In addition to the statistics of eigenvalues, we analyze also how the structure of the eigenstates may indicate chaos. This is done by computing quantities that measure the level of delocalization of the eigenstates.
Premixed direct injection nozzle
Zuo, Baifang [Simpsonville, SC; Johnson, Thomas Edward [Greer, SC; Lacy, Benjamin Paul [Greer, SC; Ziminsky, Willy Steve [Simpsonville, SC
2011-02-15
An injection nozzle having a main body portion with an outer peripheral wall is disclosed. The nozzle includes a plurality of fuel/air mixing tubes disposed within the main body portion and a fuel flow passage fluidly connected to the plurality of fuel/air mixing tubes. Fuel and air are partially premixed inside the plurality of the tubes. A second body portion, having an outer peripheral wall extending between a first end and an opposite second end, is connected to the main body portion. The partially premixed fuel and air mixture from the first body portion gets further mixed inside the second body portion. The second body portion converges from the first end toward said second end. The second body portion also includes cooling passages that extend along all the walls around the second body to provide thermal damage resistance for occasional flame flash back into the second body.
The magmatism and metamorphism at the Malayer area, Western Iran
NASA Astrophysics Data System (ADS)
Ahadnejad, V.; Valizadeh, M. V.; Esmaeily, D.
2009-04-01
The Malayer area is located in the NW-SE aligned Sanandaj-Sirjan metamorphic belt, western Iran and consists mainly of Mesozoic schists so-called Hamadan Phyllites, Jurassic to Tertiary intrusive rocks and related contact metamorphic aureoles, aplites and pegmatites. The Sanandj-Sirjan Zone is produced by oblique collisional event between Arabian plate and Central Iran microcontinent. Highest level of regional metamorphism in the area is greenschist facies and injection of felsic magmas is caused contact metamorphism. Magmatism is consist of a general northwest trend large felsic to intermediate intrusive bodies. The main trend of structural features i.e. faults, fractures and other structural features is NW-SE. The Malayer granitoid complex is ellipsoid in shape and has NW-SE foliation especially at the corners of the intrusions. Petrography of the magmatic rocks revealed recrystallization of quartz and feldspars, bending of biotite, and aligment of minerals paralle to the main trend of magmatic and metamorphic country rocks. These indicated that intrusion of felsic magma is coincide to the regional metamorphism and is syn-tectoinc. Non-extensive contact metamorphism aureoles and rareness of pegmatite and aplite in the area are interpreted as injection of felsic magmas into the high-strain metamorphic zone. The regional metamorphic rocks mainly consist of meta-sandstone, slate, phyllite, schist. These gray to dark metasedimentary rocks are consist of quartz, muscovite, turmaline, epidote, biotite and chlorite. Sheeted minerals form extended schistosity and study of porphyroblast-matrix relationships shows that injection of granitic magma into the country rocks is syn to post-tectonic. Syn-tectonic indicating porphyroblast growth synchronous with the development of the external fabric. The thermal contact area of the granite can be observed in the contact margin of granite and regional metamorphic rocks, where it produced hornfelses, andalusit-garnet schists and local feldspatisation. Hornfels has surrounded the Malayer intrusive body in its southern, eastern and to some extent northeastern parts. It shows a rather sharp contact with the granodiorite. According to field and microscopic investigations, an original clay-sandstone has been converted into hornfels due to contact metamorphism. Some small highly altered granitic patches are seen in the hornfels unit, especially close to its contact with the Malayer intrusive body.
NASA Astrophysics Data System (ADS)
Khachay, Y.; Anfilogov, V.; Antipin, A.
2012-04-01
We suggested a new model for accumulation of planets of the Earth's group [1], which is based on the contemporary results of geochemical analyses, which allow to obtain the concentrations of short living radioactive isotopes of 26Al in the matter of the pre planet cloud [2]. With use of that data new estimations of temperature distribution into the growing planetary pre planetary bodies into the Earth's nebular zone had been obtained. For the further Earth's temperature evolution, as it had been showed by the results of numerical modeling, the main role belongs to the temperature distribution in the forming Earth's core and the existence of a dense and transparent atmosphere. The shadow influence of the initial atmosphere had been researched in the paper [3]. We shall give the main consideration to these problems in that paper. It had been shown in [1], that on the earliest accumulation stage the heat release by the decay of 26Al it is sufficient for forming a central melted area and solid relatively thin mainly silicate upper envelope in the pre planetary body, with dimensions, larger than (50-100) km. The impact velocities on that stage are yet not large, therefore by the bodies impact with these or near dimensions liquid and mainly iron their parts merge, but the masses of the pre planetary bodies are not sufficient to gravitational keeping of silicate parts of the cold solid envelope. On that stage they remain into the nebular zone of the proto planet and the mechanism of matter differentiation for the future core and mantle reservoirs realizes. The process takes place yet in small bodies and is in time to finish during less than 10 million years. The next forming of the core and mantle structure continues according to all known estimations about 100 million years. Because of the merging of inner liquid parts of impacting bodies occur due to inelastic impact, the main part of potential energy transforms into heat. That continues up to that time when the iron core mass increases to the main part of the contemporary mass. The silicate particles of different dimensions remain in the proto planet cloud and in the initial atmosphere, reducing it's transparency and release of the heat radiation. On the finishing stage of the core growing the mass of the pre planetary body is sufficient for keeping of the rising part of the silicate envelope of falling bodies. The matter of the growing planet enriches more and more with a touch of silicates. The impact process of accumulated bodies gradually converts to the mechanism of elastic impact, by which only a small part of kinetic energy transforms into the merging by the pre planet body heat. The atmosphere losses the silicate particles and it's transparency exceeds. It is forming either a non melted mantle, or a mantle with a rising melted layer. That results show that the existence of a dense, nontransparent atmosphere leads to temperature growing in the inner areas of the planet during it's accumulation process. 1.Anfilogov V.N., Khachay Yu.V. A possible variant of matter differentiation on the initial stage of Earth's forming. // DAN. 2005, V. 403, N. 6, 803-806. 2.Merk R.,Breuer D., Spohn T., 2002. Numerical modeling of 26Al - Induced radioactive melting of asteroids concerning accretion, Icarus, 159, 183-191. 3.Hayashi C., Nakazawa K., Mizuno H. Earth's melting due to the blanketing effect of primordial dense atmosphere. // Earth and Plenetary Science Letters. (1979). v. 43, 22-28
NASA Astrophysics Data System (ADS)
Yadav, Priya; Nautiyal, Shashank; Verma, U. P.
2018-04-01
Ternary skutterudites materials exhibit good electronic properties due to the unpaired d- and f- electrons of the transition and rare-earth metals, respectively. In this communication, we have performed the structural optimization of Pr-based filled skutterudite (PrCo4P12) for the first time and obtained the electronic band structure, density of states and magnetic moments by using the full-potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT). Our obtained magnetic moment of PrCo4P12 is ˜ 1.8 µB in which main contribution is due to Pr atom. Behavior of this material is metallic and it is most stable in body centered cubic (BCC) structure.
Control technology development
NASA Astrophysics Data System (ADS)
Schaechter, D. B.
1982-03-01
The main objectives of the control technology development task are given in the slide below. The first is to develop control design techniques based on flexible structural models, rather than simple rigid-body models. Since large space structures are distributed parameter systems, a new degree of freedom, that of sensor/actuator placement, may be exercised for improving control system performance. Another characteristic of large space structures is numerous oscillatory modes within the control bandwidth. Reduced-order controller design models must be developed which produce stable closed-loop systems when combined with the full-order system. Since the date of an actual large-space-structure flight is rapidly approaching, it is vitally important that theoretical developments are tested in actual hardware. Experimental verification is a vital counterpart of all current theoretical developments.
Mechanism of the calcium-regulation of muscle contraction--in pursuit of its structural basis.
Wakabayashi, Takeyuki
2015-01-01
The author reviewed the research that led to establish the structural basis for the mechanism of the calcium-regulation of the contraction of striated muscles. The target of calcium ions is troponin on the thin filaments, of which the main component is the double-stranded helix of actin. A model of thin filament was generated by adding tropomyosin and troponin. During the process to provide the structural evidence for the model, the troponin arm was found to protrude from the calcium-depleted troponin and binds to the carboxyl-terminal region of actin. As a result, the carboxyl-terminal region of tropomyosin shifts and covers the myosin-binding sites of actin to block the binding of myosin. At higher calcium concentrations, the troponin arm changes its partner from actin to the main body of calcium-loaded troponin. Then, tropomyosin shifts back to the position near the grooves of actin double helix, and the myosin-binding sites of actin becomes available to myosin resulting in force generation through actin-myosin interactions.
NASA Astrophysics Data System (ADS)
Wu, Cheng-Da; Tsai, Hsing-Wei
2018-06-01
The effect of temperature on the structural evolution of nanocrystalline (NC) and single-crystalline (SC) Au nanowires (NWs) under torsional deformation is studied using molecular dynamics simulations based on the many-body embedded-atom potential. The effect is investigated using common neighbor analysis and discussed in terms of shear strain distribution and atomic flow field. The simulation results show that deformation for NC NWs is mainly driven by the nucleation and propagation of dislocations and the gliding of grain boundaries (GBs) and that for SC NWs is mainly driven by dislocations and the formation of disordered structures. Dislocations for NC and SC NWs easily nucleate at GBs and free surfaces, respectively. For NC NWs, torsional buckling occurs easily at GBs with large gliding. SC NWs have a more uniform and larger elastic deformation under torsion compared to that for NC NWs due to the former's lack of grains. SC NWs have a long period of elastic deformation transforming into plastic deformation. Increasing temperature facilitates stress transmission throughout NWs.
Leonova, Olga G; Karajan, Bella P; Ivlev, Yuri F; Ivanova, Julia L; Skarlato, Sergei O; Popenko, Vladimir I
2013-01-01
We have earlier shown that the typical Didinium nasutum nucleolus is a complex convoluted branched domain, comprising a dense fibrillar component located at the periphery of the nucleolus and a granular component located in the central part. Here our main interest was to study quantitatively the spatial distribution of nucleolar chromatin structures in these convoluted nucleoli. There are no "classical" fibrillar centers in D.nasutum nucleoli. The spatial distribution of nucleolar chromatin bodies, which play the role of nucleolar organizers in the macronucleus of D.nasutum, was studied using 3D reconstructions based on serial ultrathin sections. The relative number of nucleolar chromatin bodies was determined in macronuclei of recently fed, starved D.nasutum cells and in resting cysts. This parameter is shown to correlate with the activity of the nucleolus. However, the relative number of nucleolar chromatin bodies in different regions of the same convoluted nucleolus is approximately the same. This finding suggests equal activity in different parts of the nucleolar domain and indicates the existence of some molecular mechanism enabling it to synchronize this activity in D. nasutum nucleoli. Our data show that D. nasutum nucleoli display bipartite structure. All nucleolar chromatin bodies are shown to be located outside of nucleoli, at the periphery of the fibrillar component.
Khalifa, Refaat M A; Mazen, Nawal A M; Marawan, Aziza M A; Thabit, Hasnaa T M
2011-08-01
Calcareous corpuscles were noticed by several previous workers to be present in larval and adult cestodes without knowing their function. However, nothing was mentioned in the available literature about distribution of these corpuscles and their density, structure and composition in different parts of the body of different cestodes. Hence, in the present work, a comparative study of their distribution, density, histochemical and ultrastructural characters in different parts of the body was performed in Taenia taeniaeformis and Dipylidium caninum. Due to the presence of the eggs in their gravid segments, their histochemical and ultrastructural characteristics were also studied. It was found that the size, location and density of the calcareous bodies were different in different body parts of the same and the other cestode. Histochemically, the main component of these corpuscles was calcium; while other constituents as polysaccharides, lipids, protrins and mucopolysaccharides were found in their outer rim. Ultrastructurally, they were quite similar in the two studied cestodes and different stages of their development were exhibited. Histochemically, the eggs of both cestodes were similar in their contents. However, some ultrastructural differences have been demonstrated particularly in relation to the size and shape of the rods in the embryophore and the structures in between the embryophore and onchosphere.
Improved image of intrusive bodies at Newberry Volcano, Oregon, based on 3D gravity modelling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonneville, Alain H.; Cladouhos, Trenton; Rose, Kelly K.
Beneath Newberry Volcano is one of the largest geothermal heat reservoirs in the western United States and it has been extensively studied for the last 40 years. Several magmatic intrusions have been recognized at depths between 2.5 and 8 km and some of them identified as suitable targets for enhanced geothermal energy and tested during two previous EGS campaigns. These subsurface structures have been intersected by three deep wells and imaged by various geophysical methods including seismic tomography and magnetotellurics. Although three high quality gravity surveys were completed between 2006 and 2010 as part of various projects, a complete synthesismore » and interpretation of the gravity data has not yet been performed. Regional gravity data also exist in the vicinity of the Newberry volcano and have been added to these surveys to constitute a dataset with a total of 1418 gravity measurements. When coupled with existing geologic and geophysical data and models, this new gravity dataset provides important constraints on the depth and contours of the magmatic bodies previously identified by other methods and thus greatly contributing to facilitate any future drilling and stimulation works. Using the initial structures discovered by seismic tomography, inversion of gravity data has been performed. Shape, density values and depths of various bodies were allowed to vary and three main bodies have been identified. Densities of the middle and lower intrusive bodies (~2.6-2.7 g/cm3) are consistent with rhyolite, basalt or granites. Modeled density of the near-surface caldera body match that of a low density tephra material and the density of the shallow ring structures contained in the upper kilometer correspond to that of welded tuff or low-density rhyolites. Modeled bodies are in reality a composite of thin layers; however, average densities of the modeled gravity bodies are in good agreement with the density log obtained in one well located on the western flank (well 55-29). Final gravity data residuals show that most of the observed gravity anomalies at the surface can be explained by the modeled gravity bodies and are consistent with other site characterization information.« less
Flow structure and unsteadiness in the supersonic wake of a generic space launcher
NASA Astrophysics Data System (ADS)
Schreyer, Anne-Marie; Stephan, Sören; Radespiel, Rolf
2015-11-01
At the junction between the rocket engine and the main body of a classical space launcher, a separation-dominated and highly unstable flow field develops and induces strong wall-pressure oscillations. These can excite structural vibrations detrimental to the launcher. It is desirable to minimize these effects, for which a better understanding of the flow field is required. We study the wake flow of a generic axisymmetric space-launcher model with and without propulsive jet (cold air). Experimental investigations are performed at Mach 2.9 and a Reynolds number ReD = 1 . 3 .106 based on model diameter D. The jet exits the nozzle at Mach 2.5. Velocity measurements by means of Particle Image Velocimetry and mean and unsteady wall-pressure measurements on the main-body base are performed simultaneously. Additionally, we performed hot-wire measurements at selected points in the wake. We can thus observe the evolution of the wake flow along with its spectral content. We describe the mean and turbulent flow topology and evolution of the structures in the wake flow and discuss the origin of characteristic frequencies observed in the pressure signal at the launcher base. The influence of a propulsive jet on the evolution and topology of the wake flow is discussed in detail. The German Research Foundation DFG is gratefully acknowledged for funding this research within the SFB-TR40 ``Technological foundations for the design of thermally and mechanically highly loaded components of future space transportation systems.''
Utilisation of drinking water treatment sludge for the manufacturing of ceramic products
NASA Astrophysics Data System (ADS)
Kizinievič, O.; Kizinievič, V.
2017-10-01
The influence of the additive of drinking water treatment sludge on the physical and mechanical properties, structural parameters, microstructure of the ceramic products is analysed in the research. Drinking water treatment sludge is renewable, environmentally-friendly, economical additive saving expensive natural raw materials when introduced into the ceramic products. The main drinking water treatment sludge component is amorphous Fe2O3 (70%). Formation masses are prepared by incorporating from 5 % to 60 % of drinking water treatment additive and by burning out at the temperature 1000 °C. Investigation showed that the physical and mechanical properties, microstructure of the ceramic bodies vary depending on the amount of drinking water treatment additive incorporated. In addition, drinking water treatment additive affects the ceramic body as a pigment that dyes the ceramic body in darker red colour.
Nuclear reactor downcomer flow deflector
Gilmore, Charles B [Greensburg, PA; Altman, David A [Pittsburgh, PA; Singleton, Norman R [Murrysville, PA
2011-02-15
A nuclear reactor having a coolant flow deflector secured to a reactor core barrel in line with a coolant inlet nozzle. The flow deflector redirects incoming coolant down an annulus between the core barrel and the reactor vessel. The deflector has a main body with a front side facing the fluid inlet nozzle and a rear side facing the core barrel. The rear side of the main body has at least one protrusion secured to the core barrel so that a gap exists between the rear side of the main body adjacent the protrusion and the core barrel. Preferably, the protrusion is a relief that circumscribes the rear side of the main body.
Airfoil for a turbine of a gas turbine engine
Liang, George
2010-12-21
An airfoil for a turbine of a gas turbine engine is provided. The airfoil comprises a main body comprising a wall structure defining an inner cavity adapted to receive a cooling air. The wall structure includes a first diffusion region and at least one first metering opening extending from the inner cavity to the first diffusion region. The wall structure further comprises at least one cooling circuit comprising a second diffusion region and at least one second metering opening extending from the first diffusion region to the second diffusion region. The at least one cooling circuit may further comprise at least one third metering opening, at least one third diffusion region and a fourth diffusion region.
A low-density M-type asteroid in the main belt.
Margot, J L; Brown, M E
2003-06-20
The orbital parameters of a satellite revolving around 22 Kalliope indicate that the bulk density of this main-belt asteroid is 2.37 +/- 0.4 grams per cubic centimeter. M-type asteroids such as Kalliope are thought to be the disrupted metallic cores of differentiated bodies. The low-density indicates that Kalliope cannot be predominantly composed of metal and may be composed of chondritic material with approximately 30% porosity. The satellite orbit is circular, suggesting that Kalliope and its satellite have different internal structures and tidal dissipation rates. The satellite may be an aggregate of impact ejecta from an earlier collision with Kalliope.
Synthetic biology meets tissue engineering
Davies, Jamie A.; Cachat, Elise
2016-01-01
Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the ‘embryological cycle’ of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. PMID:27284030
Worl, Ronald G.; Lewis, Reed S.
2001-01-01
Mineral deposits in the Croesus and Hailey gold belt mineralized areas in Blaine County, south-central Idaho, are preciousand base-metal quartz veins that are part of a family of vein deposits spatially and temporally associated with the Idaho batholith. Historic production from these veins has been mainly gold and silver. Host rocks are older border phase plutons of the Idaho batholith that are characterized by more potassium and less sodium as compared to rocks from the main body of the batholith to the west. Host structures are reverse faults that have moderate to shallow dips to the northeast and high-angle normal faults that also strike northwest. The veins are characterized by several generations of quartz and generally sparse sulfide minerals; gold is associated with late-stage comb quartz. The precious-metal ore bodies are in a series of shoots, each of which is as much as 8 ft in width, 400 ft in breadth, and 1,000 ft in pitch length.
How rheological heterogeneities control the internal deformation of salt giants.
NASA Astrophysics Data System (ADS)
Raith, Alexander; Urai, Janos L.
2017-04-01
Salt giants, like the North European Zechstein, consist of several evaporation cycles of different evaporites with highly diverse rheologies. Common Potassium and Magnesium (K-Mg) salt are typically 10 to 100 times less viscous as halite while stringers consisting of anhydrite and carbonates are about 100 times more viscous. In most parts, these mechanically layered bodies experienced complex deformation, resulting in large scale internal folding with ruptured stringers and shear zones, as observed in seismic images. Furthermore, locally varying evaporation history produced different mechanical stratigraphies across the salt basin. Although most of these extraordinary soft or strong layers are rather thin (<100 m) compared to the dominating halite, we propose they have first order control on the deformation and the resulting structures inside salt bodies. Numerical models representing different mechanical stratigraphies of hard and soft layers inside a salt body were performed to analyze their influence on the internal deformation during lateral salt flow. The results show that a continuous or fractured stringer is folded and thrusted during salt contraction while soft K-Mg salt layers act as internal décollement. Depending on the viscosity of the fractured stringers, the shortening is mostly compensated by either folding or thrusting. This folding has large control over the internal structure of the salt body imposing a dominating wavelength to the whole structure during early deformation. Beside strong stringers, K-Mg salt layers also influence the deformation and salt flow inside the salt pillow. Strain is accumulated in the soft layers leading to stronger salt flow near these layers and extensive deformation inside of them. Thus, if a soft layer is present near a stringer, it will experience more deformation. Additionally, the strong strain concentration in the soft layers could decouple parts of the salt body from the main deformation.
NASA Astrophysics Data System (ADS)
Rousell, Don H.; Fedorowich, John S.; Dressler, Burkhard O.
2003-02-01
The Sudbury Structure, formed by meteorite impact at 1850 Ma, consists of three major components: (1) the Sudbury Basin; (2) the Sudbury Igneous Complex, which surrounds the basin as an elliptical collar; and (3) breccia bodies in the footwall known as Sudbury Breccia. In general, the breccia consists of subrounded fragments set in a dark, fine-grained to aphanitic matrix. A comparison of the chemical composition of host rocks, clasts and matrices indicates that brecciation was essentially an in-situ process. Sudbury Breccia forms irregular-shaped bodies or dikes that range in size from mm to km scale. Contacts with the host rocks are commonly sharp. The aspect ratio of most clasts is approximately 2 with the long axes parallel to dike walls. The fractal dimension (Dr)=1.55. Although there appears to be some concentration of brecciation within concentric zones, small Sudbury Breccia bodies within and outside these zones have more or less random strikes and steep dips. Sudbury Breccia bodies near an embayment structure tend to be subparallel to the base of the Sudbury Igneous Complex. Sudbury Breccia occurs as much as 80 km from the outer margin of the Sudbury Igneous Complex. In an inner zone, 5 to 15 km wide, breccia comprises 5% of exposed bedrock with an increase in brecciation intensity in embayment structures. Sudbury Breccia may be classified into three types based on the nature of the matrix: clastic, pseudotachylite and microcrystalline. Clastic Sudbury Breccia, the dominant type in the Southern Province, is characterized by flow-surface structures. Possibly, a sudden rise in pore pressure caused explosive dilation and fragmentation, followed by fluidization and flowage into extension fractures. Pseudotachylite Sudbury Breccia, mainly confined to Archean rocks, apparently formed by comminution and frictional melting. Microcrystalline Sudbury Breccia formed as a result of the thermal metamorphism, of the North Range footwall, by the Sudbury Igneous Complex. This produced a zone, approximately 1.2 km wide, wherein the matrix of the breccia either recrystallized or, locally, melted. An overprint of regional metamorphism obliterated contact effects in the South Range footwall. The Ni-Cu-PGE magmatic sulphide deposits may be classified into four types based on structural setting: Sudbury Igneous Complex-footwall contact, footwall, offset, and sheared deposits. Sudbury Breccia is the main host for footwall deposits (e.g., McCreedy East, Victor, Lindsley). Sudbury Breccia locally hosts mineralization in radial (e.g., Parkin and Copper Cliff) and concentric (e.g., Frood-Stobie) offset dikes.
Choi, Kevin; Peters, Jaclyn; Tri, Andrew; Chapman, Elizabeth; Sasaki, Ayako; Ismail, Farooq; Boulias, Chris; Reid, Shannon
2017-01-01
Purpose: Goal Attainment Scaling (GAS) is used to assess functional gains in response to treatment. Specific characteristics of the functional goals set by individuals receiving botulinum toxin type A (BoNTA) injections for spasticity management are unknown. The primary objectives of this study were to describe the characteristics of the goals set by patients before receiving BoNTA injections using the International Classification of Functioning, Disability and Health (ICF) and to determine whether the pattern of spasticity distribution affected the goals set. Methods: A cross-sectional retrospective chart review was carried out in an outpatient spasticity-management clinic in Toronto. A total of 176 patients with a variety of neurological lesions attended the clinic to receive BoNTA injections and completed GAS from December 2012 to December 2013. The main outcome measures were the characteristics of the goals set by the participants on the basis of ICF categories (body functions and structures, activity and participation) and the spasticity distribution using Modified Ashworth Scale scores. Results: Of the patients, 73% set activity and participation goals, and 27% set body functions and structures goals (p<0.05). In the activity and participation category, 30% of patients set moving and walking goals, 28% set self-care and dressing goals, and 12% set changing and maintaining body position goals. In the body functions and structures category, 18% set neuromuscular and movement-related goals, and 8% set pain goals. The ICF goal categories were not related to the patterns of spasticity (upper limb vs. lower limb or unilateral vs. bilateral spasticity) or type of upper motor neuron (UMN) lesion (p>0.05). Conclusion: Our results show that patients receiving BoNTA treatment set a higher percentage of activity and participation goals than body functions and structures goals. Goal classification was not affected by type of spasticity distribution or type of UMN disorder. PMID:28539691
Jocque, M.; Graham, T.; Brendonck, L.
2007-01-01
We used three isolated clusters of small ephemeral rock pools on a sandstone flat in Utah to test the importance of local structuring processes on aquatic invertebrate communities. In the three clusters we characterized all ephemeral rock pools (total: 27) for their morphometry, and monitored their water quality, hydrology and community assemblage during a full hydrocycle. In each cluster we also sampled a set of more permanent interconnected freshwater systems positioned in a wash, draining the water from each cluster of rock pools. This design allowed additional testing for the potential role of more permanent water bodies in the region as source populations for the active dispersers and the effect on the community structure in the rock pools. Species richness and community composition in the rock pools correlated with level of permanence and the ammonia concentration. The length of the rock pool inundation cycle shaped community structure, most probably by inhibiting colonization by some taxa (e.g. tadpoles and insect larvae) through developmental constraints. The gradient in ammonia concentrations probably reflects differences in primary production. The more permanent water bodies in each wash differed both environmentally and in community composition from the connected set of rock pools. A limited set of active dispersers was observed in the rock pools. Our findings indicate that aquatic invertebrate communities in the ephemeral rock pools are mainly structured through habitat permanence, possibly linked with biotic interactions and primary production. ?? 2007 Springer Science+Business Media B.V.
Herpesvirus infections in psittacine birds in Japan.
Tsai, S S; Park, J H; Hirai, K; Itakura, C
1993-03-01
Herpesvirus infection was diagnosed histologically and electron microscopically in 21 out of 241 pet birds examined. The infected birds included 14 parakeets (Psittacula krameri manillensis) with respiratory infection and three parrots (Ama-zona aestiva aestiva), two cockatiels (Nymphicus hollandicus) and two rosellas (Platycercus emimius) with Pacheco's disease. The consistent lesions of respiratory herpesvirus infection were the formation of syncytial cells associated with the presence of intranuclear inclusion bodies, mainly in the lung and air sac. There was lack of an apparent cellular reaction in situ. The agent induced tubular structures containing a clear core in the nuclei of the affected cells. The present study indicated that it was a distinct entity from infectious laryngotracheitis based on tissue tropism, host reaction and morphology of the tubular structures. The striking lesions of Pacheco's disease consisted of syncytial cell formation with intranuclear inclusion bodies in various organs, especially the liver, parathyroid, ovary, bone marrow and intestine. This agent showed similar morphology to that of the respiratory herpesvirus infection, but was larger in size and had no tubular structure formation in the nuclei of affected cells.
NASA Astrophysics Data System (ADS)
Labate, Demetrio; Negi, Pooran; Ozcan, Burcin; Papadakis, Manos
2015-09-01
As advances in imaging technologies make more and more data available for biomedical applications, there is an increasing need to develop efficient quantitative algorithms for the analysis and processing of imaging data. In this paper, we introduce an innovative multiscale approach called Directional Ratio which is especially effective to distingush isotropic from anisotropic structures. This task is especially useful in the analysis of images of neurons, the main units of the nervous systems which consist of a main cell body called the soma and many elongated processes called neurites. We analyze the theoretical properties of our method on idealized models of neurons and develop a numerical implementation of this approach for analysis of fluorescent images of cultured neurons. We show that this algorithm is very effective for the detection of somas and the extraction of neurites in images of small circuits of neurons.
Mendoza, Guillermo; Suárez-Medellín, Jorge; Espinoza, César; Ramos-Ligonio, Angel; Fernández, José J; Norte, Manuel; Trigos, Ángel
2015-01-01
Various species of the genus Ganoderma have been used for centuries according to oriental tradition as a source of medicines and nutrients. A chemical study of the fruiting bodies and mycelial culture of G. oerstedii was carried out with the idea of isolating and characterizing active natural components present to make use of their potential pharmaceutical application in Mexico. The fruiting bodies and mycelial culture of G. oesrtedii were lyophylized and extracted one after the other with hexane, chloroform, and methanol. Following this process, each substance was extracted separately by using column chromatography. From fruiting bodies eight metabolites, five sterols (ergosta-7,22-dien-3β-ol, ergosterol peroxide, ergosterol, cerevisterol, and ergosta-7,22-dien-3-one) as well as three terpene compounds (ganodermanondiol, ganoderic acid Sz, and ganoderitriol M) were obtained from fruiting bodies. From the mycelial culture three metabolites, two sterols (ergosterol and cerevisterol), and a new terpene compound (ganoderic acetate from the acid) were obtained. These structures were established based on a spectroscopic analysis mainly using nuclear magnetic resonance and a comparison with data already established.
Miniature Autonomous Rocket Recovery System (MARRS)
2011-05-01
composed of approximately 4 to 6 cubic centimeters of FFFF black powder. C. Rocket System Structure The rocket body was an epoxy-laden phenolic ... Kevlar line upon which was the lower main parachute; a 50” Rocket Rage Parachute. The booster had a 70” Rocket Rage parachute. In order to protect...the parachutes from burns, the parachutes were wrapped in protective Kevlar cloth and a layer of flame-retardant cellulose was packed in between the
ERIC Educational Resources Information Center
Scaglione, Aldo
The major purpose of this study is the descriptive analysis of a large body of literature, mainly technical, which attempts to explain the structure of sentences and ordering of their elements, on the linguistic and artistic levels. It is hoped that this study helps to document the relevance of technical material for the proper understanding of…
Control and structural optimization for maneuvering large spacecraft
NASA Technical Reports Server (NTRS)
Chun, H. M.; Turner, J. D.; Yu, C. C.
1990-01-01
Presented here are the results of an advanced control design as well as a discussion of the requirements for automating both the structures and control design efforts for maneuvering a large spacecraft. The advanced control application addresses a general three dimensional slewing problem, and is applied to a large geostationary platform. The platform consists of two flexible antennas attached to the ends of a flexible truss. The control strategy involves an open-loop rigid body control profile which is derived from a nonlinear optimal control problem and provides the main control effort. A perturbation feedback control reduces the response due to the flexibility of the structure. Results are shown which demonstrate the usefulness of the approach. Software issues are considered for developing an integrated structures and control design environment.
49 CFR 229.141 - Body structure, MU locomotives.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Body structure, MU locomotives. 229.141 Section... Design Requirements § 229.141 Body structure, MU locomotives. (a) MU locomotives built new after April 1... body structure designed to meet or exceed the following minimum specifications: (1) The body structure...
A microtremor survey to define the subsoil structure in a mud volcano areas
NASA Astrophysics Data System (ADS)
Panzera, Francesco; D'Amico, Sebastiano; Lupi, Matteo; Karyono, Karyono; Mazzini, Adriano
2017-04-01
Mud erupting systems have been observed and studied in different localities on the planet. They are characterized by emissions of fluids and fragmented sedimentary rocks creating large structures with different morphologies. This is mainly due to the presence of clay-bearing strata that can be buoyant in the surrounding regions and over-pressured fluids that facilitate the formation of diapirs through sedimentary rocks. In this study, we investigate the Lusi mud erupting system mainly by using ambient vibration methods. In particular, thickness of the sediments and the body wave velocities have been investigated. Results are integrated with gravimetry and electrical resistivity data in order to locate the main geological discontinuities in the area as well as to reconstruct a 3D model of the buried structure. The approach commonly used for this type of studies is based on the ratio of the horizontal to vertical components of ground motion (HVSR) and on passive array techniques. The HVSR generally enables to recognize peaks that point out to the fundamental frequency of the site, which usually fit quite well the theoretical resonance curves. The combination of HVSR and shear wave velocity, coming from passive array techniques, enables to collect valuable information about the subsurface structures. Here we present new data collected at the mud volcano and sedimentary hosted hydrothermal system sites in order to investigate the depths of the main discontinuities and of the hypothesized hydrocarbon reservoirs. We present the case study of Salse di Nirano (northen Italy), Salinelle (Mt. Etna, Sicily) and Lusi hydrothermal systems (Indonesia). Our results indicate that the ambient vibrations study approach represents a swift and simplified methods that provides quick information on the shallow subsoil structure of the investigated areas.
NASA Astrophysics Data System (ADS)
Luan Truong, Xuan; Luong Le, Van; Quang Truong, Xuan
2015-04-01
Daksa gold deposit is the biggest gold deposits in Vietnam. The Daksa geological structure complicated, distributed mainly metamorphosed sedimentary NuiVu formation (PR3-?1nv2). The sulfide gold ore bodies distributed in quartz schist, quartz - biotite related to faut and distribution wing anticline. The gold ore bodies form circuits, network circuits, circuits lenses; fill the cup surface layer of the developing northeast - southwest; is the less than or west longitude north - SE. The results show that, Au and accompanying elements (Ag, Pb and Zn) have correlated pretty closely. All of its consistent with the logarithmic distribution standard, in accordance with the law of distribution of content mineral rare. The structure functions have nugget effect and spherical models with show that Au and accompanying elements special variation are changes. Au contents shown local anisotropy, no clearly anisotropy (K=1,17) and weakly anisotropy (K=1,4). Intensity mineralization of the ore bodies are quite high with demand spherical conversion coefficient ranging from 0.49 to 0.75 and from 0.66 to 0.97 (for other body). With nugget effects, ore bodies shown that it is consistent with mineralization in the ore bodies study, ore erasable, micro vein, infilling fractures in quartz vein. All of variogram presents local anisotropy, indicated gold mineralization at study area has least two-mineralization stages, consistent with the analysis of mineralography samples. By the results of the structure function study, the authors present the system optimization for exploration deposit and used to evaluate gold reserves by Ordinary Kriging. High accuracy of Kriging estimation results are expressed in the minimum Kriging variance, by compare the results calculated by some other methods (such as distance inverse weighting method, ..) and specially compare to the results of a some blocks have been exploited. Key words: Geostat and gold deposits VN. Daksa and gold mineralization. Geostat and gold mine Daksa.
Seed Structure Characteristics to Form Ultrahigh Oil Content in Rapeseed
Zhang, Liang; Deng, Lin-Bin; Wang, Xin-Fa; Liu, Gui-Hua; Hao, Wan-Jun; Wang, Han-Zhong
2013-01-01
Background Rapeseed (Brassica napus L.) is an important oil crop in the world, and increasing its oil content is a major breeding goal. The studies on seed structure and characteristics of different oil content rapeseed could help us to understand the biological mechanism of lipid accumulation, and be helpful for rapeseed breeding. Methodology/Principal Findings Here we report on the seed ultrastructure of an ultrahigh oil content rapeseed line YN171, whose oil content is 64.8%, and compared with other high and low oil content rapeseed lines. The results indicated that the cytoplasms of cotyledon, radicle, and aleuronic cells were completely filled with oil and protein bodies, and YN171 had a high oil body organelle to cell area ratio for all cell types. In the cotyledon cells, oil body organelles comprised 81% of the total cell area in YN171, but only 53 to 58% in three high oil content lines and 33 to 38% in three low oil content lines. The high oil body organelle to cotyledon cell area ratio and the cotyledon ratio in seed were the main reasons for the ultrahigh oil content of YN171. The correlation analysis indicated that oil content is significantly negatively correlated with protein content, but is not correlated with fatty acid composition. Conclusions/Significance Our results indicate that the oil content of YN171 could be enhanced by increasing the oil body organelle to cell ratio for some cell types. The oil body organelle to seed ratio significantly highly positively correlates with oil content, and could be used to predict seed oil content. Based on the structural analysis of different oil content rapeseed lines, we estimate the maximum of rapeseed oil content could reach 75%. Our results will help us to screen and identify high oil content lines in rapeseed breeding. PMID:23637973
Savastano, Luis E; Hollon, Todd C; Barkan, Ariel L; Sullivan, Stephen E
2018-06-01
Korsakoff syndrome is a chronic memory disorder caused by a severe deficiency of thiamine that is most commonly observed in alcoholics. However, some have proposed that focal structural lesions disrupting memory circuits-in particular, the mammillary bodies, the mammillothalamic tract, and the anterior thalamus-can give rise to this amnestic syndrome. Here, the authors present 4 patients with reversible Korsakoff syndromes caused by suprasellar retrochiasmatic lesions compressing the mammillary bodies and adjacent caudal hypothalamic structures. Three of the patients were found to have large pituitary macroadenomas in their workup for memory deficiency and cognitive decline with minimal visual symptoms. These tumors extended superiorly into the suprasellar region in a retrochiasmatic position and caused significant mass effect in the bilateral mammillary bodies in the base of the brain. These 3 patients had complete and rapid resolution of amnestic problems shortly after initiation of treatment, consisting of resection in 1 case of nonfunctioning pituitary adenoma or cabergoline therapy in 2 cases of prolactinoma. The fourth patient presented with bizarre and hostile behavior along with significant memory deficits and was found to have a large cystic craniopharyngioma filling the third ventricle and compressing the midline diencephalic structures. This patient underwent cyst fenestration and tumor debulking, with a rapid improvement in his mental status. The rapid and dramatic memory improvement observed in all of these cases is probably due to a reduction in the pressure imposed by the lesions on structures contiguous to the third ventricle, rather than a direct destructive effect of the tumor, and highlights the essential role of the caudal diencephalic structures-mainly the mammillary bodies-in memory function. In summary, large pituitary lesions with suprasellar retrochiasmatic extension and third ventricular craniopharyngiomas can cause severe Korsakoff-like amnestic syndromes, probably because of bilateral pressure on or damage to mammillary bodies, anterior thalamic nuclei, or their major connections. Neuropsychiatric symptoms may rapidly and completely reverse shortly after initiation of therapy via surgical decompression of tumors or pharmacological treatment of prolactinomas. Early identification of these lesions with timely treatment can lead to a favorable prognosis for this severe neuropsychiatric disorder.
Universal planetary tectonics (supertectonics)
NASA Astrophysics Data System (ADS)
Kochemasov, G. G.
2009-04-01
Universal planetary tectonics (supertectonics) G. Kochemasov IGEM of the Russian Academy of Sciences, Moscow, Russia, kochem.36@mail.ru The wave planetology [1-3 & others] proceeds from the following: "planetary structures are made by orbits and rotations". A uniform reason makes uniform structures. Inertia-gravity waves arising in planetary bodies due to their movements in Keplerian elliptical orbits with periodically changing accelerations warp these bodies in such way that they acquire polyhedron shapes (after interference of standing waves of four directions). Strong Newtonian gravity makes bodies larger than ~400 to 500 km in diameter globular and polyhedra are rarely seen. Only geomorphologic, geologic and geophysical mapping can develop these hidden structures. But small bodies, normally less than ~ 300 to 400 km in diameter, often show parts of the polyhedra, rarely fully developed forms (the asteroid Steins and satellite Amalthea present rather perfect forms of "diamond"). Depending on warping wavelengths (they make harmonics) various Plato's figures superimposed on each other can be distinguished. The fundamental wave 1 produces a tetrahedron, intrinsically dichotomic figure in which a vertex (contraction) always is opposed to a face (expansion). From the recent examples the best is the saturnian northern hexagon (a face) opposed to the southern hurricane (a vertex). The first overtone wave 2 is responsible for creation of structural octahedra. Whole ‘diamonds" and their parts are known [4, 5]. Other overtones produce less developed (because of smaller wave amplitudes) planetary shapes complicating main forms. Thus, the first common structural peculiarity of planetary bodies is their polyhedron nature. Not less important is the second common structural peculiarity. As all globular or smaller more or less isometric bodies rotate, they have an angular momentum. It is inevitably different in tropic and extra-tropic belts having uneven radii or distances to the rotation axe. But this unevenness is undesirable because it creates tectonic stresses and increases energetic status that is against the natural tendency to minimize these physical characteristics. So, a body tends to lower angular momentum of tropics and increase it in extra-tropics. With the same angular velocity it remains only mass and radius to play in this tendency. Tropical belt is destructed (for an example, the lithosphere disintegration in solid bodies), extra-tropical belts add dense material (plumes), expand - the constructive tendency [6]. Both tectonic peculiarities-polyhedrons and constructive - destructive tendencies - are common for celestial bodies of various classes. They are characteristic for our star, planets, satellites and small bodies. That is why a term "supertectonics" seems rather suitable. References: [1] Kochemasov G.G. Concerted wave supergranulation of the solar system bodies // 16th Russian-American microsymposium on planetology, Abstracts, Moscow, Vernadsky Inst. (GEOKHI), 1992, 36-37. [2] Kochemasov G.G. Tectonic dichotomy, sectoring and granulation of Earth and other celestial bodies // Proceedings of the International Symposium on New Concepts in Global Tectonics, "NCGT-98 TSUKUBA", Geological Survey of Japan, Tsukuba, Nov 20-23, 1998, p. 144-147. [3] Kochemasov G.G. Theorems of wave planetary tectonics // Geophys. Res. Abstr., 1999, V.1, №3, 700. [4] Kochemasov G.G. Plato' polyhedra as shapes of small icy satellites // Geophys. Res. Abstracts, Vol. 10, 2008, EGU2008-A-01271, CD-ROM; [5] Kochemasov G.G. (1999) "Diamond" and "dumb-bells"-like shapes of celestial bodies induced by inertia-gravity waves // 30th Vernadsky-Brown microsymposium on comparative planetology, Abstracts, Moscow, Vernadsky Inst.,, 49-50; [6] Kochemasov G.G. Tectonics of rotating celestial globes // Vernadsky-Brown microsymposium 48, 20-22 Oct. 2008, Moscow, Abstr. m48_20.
Nobis, Regina; Sandén, Inger
2008-06-01
Masculinity, in its hegemonic form, can have the effect that men avoid talking about health problems and do not consult health care, even when help is needed. This study had two aims: firstly to describe how young men relate to health, ill health, masculinity and their bodies, and secondly to investigate their abilities of self-care. Interviews with eleven men were conducted using a semi-structured approach. Qualitative content analysis was used to analyse the transcribed interviews. The findings revealed five main themes; 'body awareness', 'the creation of self-reliance', 'feelings of freedom', 'the process of self-care awareness' and, finally, 'feelings of vulnerability'. Hegemonic masculinity impacted greatly on the men in this study and could be traced in expressions of dependency, vulnerability, loss of freedom and an altered body image. These were viewed as health disadvantages due to the threat to hegemonic masculinity.
NASA Technical Reports Server (NTRS)
Thorpe, Douglas G.
1991-01-01
An operation and schedule enhancement is shown that replaces the four-body cluster (Space Shuttle Orbiter (SSO), external tank, and two solid rocket boosters) with a simpler two-body cluster (SSO and liquid rocket booster/external tank). At staging velocity, the booster unit (liquid-fueled booster engines and vehicle support structure) is jettisoned while the remaining SSO and supertank continues on to orbit. The simpler two-bodied cluster reduces the processing and stack time until SSO mate from 57 days (for the solid rocket booster) to 20 days (for the liquid rocket booster). The areas in which liquid booster systems are superior to solid rocket boosters are discussed. Alternative and future generation vehicles are reviewed to reveal greater performance and operations enhancements with more modifications to the current methods of propulsion design philosophy, e.g., combined cycle engines, and concentric propellant tanks.
NASA Astrophysics Data System (ADS)
Camacho, A. G.; Fernández, J.; Cannavò, F.
2018-02-01
We present a software package to carry out inversions of surface deformation data (any combination of InSAR, GPS, and terrestrial data, e.g., EDM, levelling) as produced by 3D free-geometry extended bodies with anomalous pressure changes. The anomalous structures are described as an aggregation of elementary cells (whose effects are estimated as coming from point sources) in an elastic half space. The linear inverse problem (considering some simple regularization conditions) is solved by means of an exploratory approach. This software represents the open implementation of a previously published methodology (Camacho et al., 2011). It can be freely used with large data sets (e.g. InSAR data sets) or with data coming from small control networks (e.g. GPS monitoring data), mainly in volcanic areas, to estimate the expected pressure bodies representing magmatic intrusions. Here, the software is applied to some real test cases.
Is Empiricism Empirically False? Lessons from Early Nervous Systems.
Miłkowski, Marcin
2017-01-01
Recent work on skin-brain thesis (de Wiljes et al. 2015; Keijzer 2015; Keijzer et al. 2013) suggests the possibility of empirical evidence that empiricism is false. It implies that early animals need no traditional sensory receptors to be engaged in cognitive activity. The neural structure required to coordinate extensive sheets of contractile tissue for motility provides the starting point for a new multicellular organized form of sensing. Moving a body by muscle contraction provides the basis for a multicellular organization that is sensitive to external surface structure at the scale of the animal body. In other words, the nervous system first evolved for action, not for receiving sensory input. Thus, sensory input is not required for minimal cognition; only action is. The whole body of an organism, in particular its highly specific animal sensorimotor organization, reflects the bodily and environmental spatiotemporal structure. The skin-brain thesis suggests that, in contrast to empiricist claims that cognition is constituted by sensory systems, cognition may be also constituted by action-oriented feedback mechanisms. Instead of positing the reflex arc as the elementary building block of nervous systems, it proposes that endogenous motor activity is crucial for cognitive processes. In the paper, I discuss the issue whether the skin-brain thesis and its supporting evidence can be really used to overthrow the main tenet of empiricism empirically, by pointing out to cognizing agents that fail to have any sensory apparatus.
Histopathological alterations after a growth promoter boldenone injection in rabbits.
Tousson, Ehab
2016-02-01
Boldenone (BOL) is a derivative of the testosterone that has dual effects on humans, both directly and indirectly; directly as injection to build muscles and indirectly as through consuming meat of animals that where treated with BOL. However, the action of these steroids on different body organs structures is still unclear; therefore, the aim of the present study was to investigate the effect of the intramuscular injection of BOL undecylenate on the different organ structures. A total of 10 adult New Zealand rabbits were divided into two main groups, the first group was the control group, which includes animals that were injected intramuscularly with olive oil and the second group included animals that received two intramuscular injections of 5 mg/kg body weight BOL dissected after 6 weeks. Our results showed that intramuscular injection of rabbits with BOL showed hypertrophy in both skeletal and cardiac muscles, disturbances of the hepatocytes radially arranged cords with multifocal hepatocellular vacuolations in the liver, glomerulus mass reduction with multifocal glomerular injury in the kidney, disturbances of the cycle of spermatogenesis in the testes. In conclusion, using BOL, while preparing for a young bodybuilding contest, may cause an alteration in the histological structure of most of the body organs; these findings suggested that especially young people who misuse anablic androgenic steroids should be careful if they want to use such steroids to enhance their strength and endurance. © The Author(s) 2013.
Thermal evolution of cometary nuclei
NASA Astrophysics Data System (ADS)
Prialnik, D.
2014-07-01
Thermal modeling of comet nuclei and similar objects involves the solution of conservation equations for energy and masses of the various components over time. For simplicity, the body is generally, but not necessarily, assumed to be of spherical shape. The processes included in such calculations are heat transfer, gas flow, dust drag, phase transitions, internal heating by various sources, internal structure alterations, surface sublimation. Physical properties --- such as the thermal conductivity, permeability, material strength, and porous structure --- are assumed, based on the best available estimates from laboratory experiments and space-mission results. Calculations employ various numerical procedures and require significant computational power, data analysis, and often sophisticated methods of graphical presentation. They start with a body of given size, mass, and composition, as well as a given orbit. The results yield properties and activity patterns that can be confronted with observations. Initial parameters may be adjusted until agreement is achieved. A glimpse into the internal structure of the object, which is inaccessible to direct observation, is thus obtained. The last decade, since the extensive overview of the subject was published (Modeling the structure and activity of comet nuclei, Prialnik, D.; Benkhoff, J.; Podolak, M., in Comets II, M. C. Festou, H. U. Keller, and H. A. Weaver, eds., University of Arizona Press, Tucson, p.359-387), thermal modeling has significantly advanced. This was prompted both by new properties and phenomena gleaned from observations, one example being main-belt comets, and the continual increase in computational power and performance. Progress was made on two fronts. On the computational side, multi-dimensional models have been developed, adaptive-grid and moving-boundaries techniques have been adopted, and long-term evolutionary calculations have become possible, even spanning the lifetime of the Solar System. On the chemo-physical side, additional chemical processes like serpentinization, and formation and decompositions of clathrates have been investigated. Special efforts have been devoted to related classes of objects: main-belt comets, Centaurs, Kuiper-belt objects and also to other ice-rich bodies, such as icy satellites. Since some of these objects are sufficiently large for hydrostatic pressure to become important, hydrostatic equilibrium was introduced into the modeling. This required the addition of an appropriate equation of state. Interesting new results have thus been obtained: retention of ice in the deep interior of main-belt comets over the age of the Solar System, differentiation between core and mantle in the larger Kuiper-belt objects, and complex patterns of outburst for active comets, simulating observed ones.
Upadhyay, Arun K.; Murmu, Aruna; Singh, Anupam; Panda, Amulya K.
2012-01-01
The objective of the research was to understand the structural determinants governing protein aggregation into inclusion bodies during expression of recombinant proteins in Escherichia coli. Recombinant human growth hormone (hGH) and asparaginase were expressed as inclusion bodies in E.coli and the kinetics of aggregate formation was analyzed in details. Asparaginase inclusion bodies were of smaller size (200 nm) and the size of the aggregates did not increase with induction time. In contrast, the seeding and growth behavior of hGH inclusion bodies were found to be sequential, kinetically stable and the aggregate size increased from 200 to 800 nm with induction time. Human growth hormone inclusion bodies showed higher resistance to denaturants and proteinase K degradation in comparison to those of asparaginase inclusion bodies. Asparaginase inclusion bodies were completely solubilized at 2–3 M urea concentration and could be refolded into active protein, whereas 7 M urea was required for complete solubilization of hGH inclusion bodies. Both hGH and asparaginase inclusion bodies showed binding with amyloid specific dyes. In spite of its low β-sheet content, binding with dyes was more prominent in case of hGH inclusion bodies than that of asparaginase. Arrangements of protein molecules present in the surface as well as in the core of inclusion bodies were similar. Hydrophobic interactions between partially folded amphiphillic and hydrophobic alpha-helices were found to be one of the main determinants of hGH inclusion body formation. Aggregation behavior of the protein molecules decides the nature and properties of inclusion bodies. PMID:22479486
A computational study of anion-modulated cation-π interactions.
Carrazana-García, Jorge A; Rodríguez-Otero, Jesús; Cabaleiro-Lago, Enrique M
2012-05-24
The interaction of anions with cation-π complexes formed by the guanidinium cation and benzene was thoroughly studied by means of computational methods. Potential energy surface scans were performed in order to evaluate the effect of the anion coming closer to the cation-π pair. Several structures of guanidinium-benzene complexes and anion approaching directions were examined. Supermolecule calculations were performed on ternary complexes formed by guanidinium, benzene, and one anion and the interaction energy was decomposed into its different two- and three-body contributions. The interaction energies were further dissected into their electrostatic, exchange, repulsion, polarization and dispersion contributions by means of local molecular orbital energy decomposition analysis. The results confirm that, besides the electrostatic cation-anion attraction, the effect of the anion over the cation-π interaction is mainly due to polarization and can be rationalized following the changes in the anion-π and the nonadditive (three-body) terms of the interaction. When the cation and the anion are on the same side of the π system, the three-body interaction is anticooperative, but when the anion and the cation are on opposite sides of the π system, the three-body interaction is cooperative. As far as we know, this is the first study where this kind of analysis is carried out with a structured cation as guanidinium with a significant biological interest.
Quentin, J C; Verdier, J M
1979-01-01
The life cycle of Maupasina weissi Seurat, 1913, the parasite of the elephant shrew, has been experimentally obtained from the intermediate host Locusta migratoria. The biology of this Nematoda is considered as being more primitive than the Subuluridae: -- egg maturation in external environment is in fact necessary to the Maupasina larvae to penetrate into the insect, -- The different localizations of the infective larvae, such as mesenteron regeneration crypta, fat body, demonstrate that the parasite is not completely adaptated to its intermediate host, -- the ontogenesis of cephalic structures is characterized by an hypertrophy of the archaic structures mainly from cuticular origin.
[The perichromatin compartment of the cell nucleus].
Bogoliubov, D S
2014-01-01
In this review, the data on the structure and composition of the perichromatin compartment, a special border area between the condensed chromatin and the interchromatin space of the cell nucleus, are discussed in the light of the concept of nuclear functions in complex nuclear architectonics. Morphological features, molecular composition and functions of main extrachromosomal structures of the perichromatin compartment, perichromatin fibrils (PFs) and perichromatin granules (PGs) including nuclear stress-bodies (nSBs) that are derivates of the PGs under heat shock, are presented. A special attention was paid to the features of the molecular compositions of PFs and PGs in different cell types and at different physiological conditions.
NASA Astrophysics Data System (ADS)
Peters, Meike; Hellmann, André; Meyer, Franz Michael
2013-04-01
The Siegerland district is located in the fold-and thrust-belt of the Rhenish Massif and hosts diverse syn-to late orogenic mineralization styles. Peak-metamorphism and deformation occurred at 312-316±10 Ma (Ahrendt et al., 1978) at temperature-pressure conditions of 280-320°C and 0.7-1.4 kbar (Hein, 1993). In addition to syn-orogenic siderite-quartz mineralization at least four different syn-to late orogenic mineralization stages are identified comprising Co-Ni-Cu-Au, Pb-Zn-Cu, Sb-Au, and hematite-digenite-bornite ores (Hellmann et al., 2012). The earliest type of syn-orogenic ore mineralization is formed by siderite-quartz veins, trending N-S, E-W and NE-SW. The vein systems are closely related to fold and reverse fault geometries (Hellmann et al., 2012). The most important structural feature is the first-order Siegen main reverse fault showing an offset into three major faults (Peters et al., 2012). The structural control on ore formation is demonstrated by the Co-Ni-Cu-Au mineralization generally hosted by NE-ENE trending reverse faults and associated imbrication zones that have reactivated the older siderite-quartz veins. In this study, we developed a 3-D model of the Alte Buntekuh ore bodies in the Siegerland district, using Datamine Studio3 to investigate the structural setting of Co-Ni-Cu-Au mineralization. The salient structural and spatial data for the 3-D model were taken from old mine level plans as well as from geological and topographical maps. The ore bodies are located immediately in the hanging wall of the southern branch of the Siegen main reverse fault (Peters et al., 2012). From the model it becomes obvious, that the earlier siderite-quartz veins, dipping steeply to the NW, are cross-cut and segmented by oppositely dipping oblique reverse faults. Individual ore body segments are rotated and displaced, showing a plunge direction to the SW. The 3-D model further reveals the presence of hook-like, folded vein arrays, highly enriched in cobalt mineralization. These vein-hooks are characterized by a dip direction to the W, which is opposite to the plunge of F1-folds. The vein-hooks are interpreted to have formed during oblique normal faulting. The compilation of historical mining and mineralogical information in combination with 3-D ore body modeling provides new insights into the structural evolution of mineralization and can be used to evaluate further mineral potential of the area, especially in currently non-explored depth levels. The 3-D ore body model is also vital for resource calculation and the design of a brown-fields drilling program. References Ahrendt, H., Hunziker, J.C. and Weber, K. (1978). Z. dt. geol. Ges. 129, 229-247 Hein, U.F. (1993). Min. Mag. 57, 451-476 Hellmann, A., Wagner, T. and Meyer, F.M. (2012). Conference proceedings GB 2012. http://www.geologicabelgica.be/PDF/GB/S13/S13_8_Hellmann.pdf Peters, M., Hellmann A. and Meyer, F.M. (2012). Conference proceedings GeoHannover 2012. Series of paper of the German Society of Geosciences, Vol. 80, 387.
Pascolo, Lorella; Borelli, Violetta; Canzonieri, Vincenzo; Gianoncelli, Alessandra; Birarda, Giovanni; Bedolla, Diana E.; Salomé, Murielle; Vaccari, Lisa; Calligaro, Carla; Cotte, Marine; Hesse, Bernhard; Luisi, Fernando; Zabucchi, Giuliano; Melato, Mauro; Rizzardi, Clara
2015-01-01
Environmental and occupational inhalants may induce a large number of pulmonary diseases, with asbestos exposure being the most risky. The mechanisms are clearly related to chemical composition and physical and surface properties of materials. A combination of X-ray fluorescence (μXRF) and Fourier Transform InfraRed (μFTIR) microscopy was used to chemically characterize and compare asbestos bodies versus environmental particulates (anthracosis) in lung tissues from asbestos exposed and control patients. μXRF analyses revealed heterogeneously aggregated particles in the anthracotic structures, containing mainly Si, K, Al and Fe. Both asbestos and particulates alter lung iron homeostasis, with a more marked effect in asbestos exposure. μFTIR analyses revealed abundant proteins on asbestos bodies but not on anthracotic particles. Most importantly, the analyses demonstrated that the asbestos coating proteins contain high levels of β-sheet structures. The occurrence of conformational changes in the proteic component of the asbestos coating provides new insights into long-term asbestos effects. PMID:26159651
NASA Astrophysics Data System (ADS)
Psilodimitrakopoulos, Sotiris; Santos, Susana; Amat-Roldan, Ivan; Mathew, Manoj; Thayil K. N., Anisha; Artigas, David; Loza-Alvarez, Pablo
2008-02-01
Second harmonic generation (SHG) imaging has emerged in recent years as an important laboratory imaging technique since it can provide unique structural information with submicron resolution. It enjoys the benefits of non-invasive interaction establishing this imaging modality as ideal for in vivo investigation of tissue architectures. In this study we present, polarization dependant high resolution SHG images of Caenorhabditis elegans muscles in vivo. We imaged a variety of muscular structures such as body walls, pharynx and vulva. By fitting the experimental data into a cylindrical symmetry spatial model we mapped the corresponding signal distribution of the χ (2) tensor and identified its main axis orientation for different sarcomeres of the earth worm. The cylindrical symmetry was considered to arise from the thick filaments architecture of the inside active volume. Moreover, our theoretical analysis allowed calculating the mean orientation of harmonophores (myosin helical pitch). Ultimately, we recorded and analysed vulvae muscle dynamics, where SHG signal decreased during in vivo contraction.
Bijak, Michal
2017-11-10
Milk thistle ( Silybum marianum ) is a medicinal plant that has been used for thousands of years as a remedy for a variety of ailments. The main component of S. marianum fruit extract (silymarin) is a flavonolignan called silybin, which is not only the major silymarin element but is also the most active ingredient of this extract, which has been confirmed in various studies. This compound belongs to the flavonoid group known as flavonolignans. Silybin's structure consists in two main units. The first is based on a taxifolin, the second a phenyllpropanoid unit, which in this case is conyferil alcohol. These two units are linked together into one structure by an oxeran ring. Since the 1970s, silybin has been regarded in official medicine as a substance with hepatoprotective properties. There is a large body of research that demonstrates silybin's many other healthy properties, but there are still a lack of papers focused on its molecular structure, chemistry, metabolism, and novel form of administration. Therefore, the aim of this paper is a literature review presenting and systematizing our knowledge of the silybin molecule, with particular emphasis on its structure, chemistry, bioavailability, and metabolism.
Repair of Bonded Primary Structure
1978-06-01
of the body 2. Operational Items a. lard Landings * Damage to the wheel well area and in proximity of’ the lanuing gear beams b. Foreign Object...their main problems with the C-1 30 are to the ramp hinge support bulkhead and landing gear wheel well area. Lockheed has repair kits for each of these...MAC). The wheel well area is quite .ttsceptible to damage from hard landings. E’xcess runway water causes damage to the wheel well doors. Other
Discovery and therapeutic promise of selective androgen receptor modulators.
Chen, Jiyun; Kim, Juhyun; Dalton, James T
2005-06-01
Androgens are essential for male development and the maintenance of male secondary characteristics, such as bone mass, muscle mass, body composition, and spermatogenesis. The main disadvantages of steroidal androgens are their undesirable physicochemical and pharmacokinetic properties. The recent discovery of nonsteroidal selective androgen receptor modulators (SARMs) provides a promising alternative for testosterone replacement therapies with advantages including oral bioavailability, flexibility of structural modification, androgen receptor specificity, tissue selectivity, and the lack of steroid-related side effects.
Discovery AND Therapeutic Promise OF Selective Androgen Receptor Modulators
Chen, Jiyun; Kim, Juhyun; Dalton, James T.
2007-01-01
Androgens are essential for male development and the maintenance of male secondary characteristics, such as bone mass, muscle mass, body composition, and spermatogenesis. The main disadvantages of steroidal androgens are their undesirable physicochemical and pharmacokinetic properties. The recent discovery of nonsteroidal selective androgen receptor modulators (SARMs) provides a promising alternative for testosterone replacement therapies with advantages including oral bioavailability, flexibility of structural modification, androgen receptor specificity, tissue selectivity, and the lack of steroid-related side effects. PMID:15994457
Seasonal Patterns of the Insect Community Structure in Urban Rain Pools of Temperate Argentina
Fontanarrosa, M. Soledad; Collantes, Marta B.; Bachmann, Axel O.
2009-01-01
Temporary aquatic environments are widespread in the world, and although there are considerable regional differences in their type and method of formation they have many physical, chemical and biological properties in common. With the aim to increase knowledge of urban temporary pool fauna, the objectives of this work were to assess the seasonal patterns of species composition, richness, and diversity of the aquatic insect community inhabiting rain pools in urban temperate Argentina, and to identify the environmental variables associated to these patterns. Four temporary pools of an urban green space in Buenos Aires City were studied throughout a 1-year period. Eleven flood cycles with very varied hydroperiods and dry periods, mainly associated with rainfall, were identified. Insect species richness in these temporary urban pools, 86 taxa were documented, was found to be within the range reported for wild temporary water bodies of other regions of the world. The present results provide evidence for the existence of a clear link between habitat and community variability. Hydroperiod and seasonality were the main environmental factors involved in structuring the insect communities of the studied water bodies. Urban pools in green spaces have the potential to act to its dwellers like corridors through the urban matrix. Taking into account these characteristics and their accessibility, urban temporary pools can be considered as promising habitats for the study of ecological processes involving the insect community. PMID:19611261
Mechanism of the calcium-regulation of muscle contraction — In pursuit of its structural basis —
WAKABAYASHI, Takeyuki
2015-01-01
The author reviewed the research that led to establish the structural basis for the mechanism of the calcium-regulation of the contraction of striated muscles. The target of calcium ions is troponin on the thin filaments, of which the main component is the double-stranded helix of actin. A model of thin filament was generated by adding tropomyosin and troponin. During the process to provide the structural evidence for the model, the troponin arm was found to protrude from the calcium-depleted troponin and binds to the carboxyl-terminal region of actin. As a result, the carboxyl-terminal region of tropomyosin shifts and covers the myosin-binding sites of actin to block the binding of myosin. At higher calcium concentrations, the troponin arm changes its partner from actin to the main body of calcium-loaded troponin. Then, tropomyosin shifts back to the position near the grooves of actin double helix, and the myosin-binding sites of actin becomes available to myosin resulting in force generation through actin-myosin interactions. PMID:26194856
A view from the bodies corporate. 5. Integrated dental holdings plc. Interview by F. Stuart-Wilson.
Hudaly, David
2003-01-11
My interview with David Hudaly, Chief Executive of IDH plc took place at their unassuming head office in Bolton. I make the mistake of assuming, like many, that IDH's operations are based mainly in the North. David Hudaly puts me right fairly early on in our interview. In fact IDH is not one, but two bodies corporate now with 146 practices across the UK, and incorporating the Whitecross and Petrie Tucker chains (although some of the Whitecross units have recently been sold). The business structure appears at first sight to be more complex than the other corporates I have encountered in this series; IDH floated in February 2002 and is now a plc.
Jiménez-García, Brian; Pons, Carles; Fernández-Recio, Juan
2013-07-01
pyDockWEB is a web server for the rigid-body docking prediction of protein-protein complex structures using a new version of the pyDock scoring algorithm. We use here a new custom parallel FTDock implementation, with adjusted grid size for optimal FFT calculations, and a new version of pyDock, which dramatically speeds up calculations while keeping the same predictive accuracy. Given the 3D coordinates of two interacting proteins, pyDockWEB returns the best docking orientations as scored mainly by electrostatics and desolvation energy. The server does not require registration by the user and is freely accessible for academics at http://life.bsc.es/servlet/pydock. Supplementary data are available at Bioinformatics online.
Rüthnick, Diana; Schiebel, Elmar
2018-05-10
The main microtubule organizing centre in the unicellular model organisms Saccharomyces cerevisiae and Schizosaccharomyces pompe is the spindle pole body (SPB). The SPB is a multilayer structure, which duplicates exactly once per cell cycle. Unlike higher eukaryotic cells, both yeast model organisms undergo mitosis without breakdown of the nuclear envelope (NE), a so-called closed mitosis. Therefore, in order to simultaneously nucleate nuclear and cytoplasmic MTs, it is vital to embed the SPB into the NE at least during mitosis, similarly to the nuclear pore complex (NPC). This review aims to embrace the current knowledge of the SPB duplication cycle with special emphasis on the critical step of the insertion of the new SPB into the NE.
Wong, Tsui-Yin; Peng, Hsin-Hsin; Wu, Cheng-Yeu; Martel, Jan; Ojcius, David M; Hsu, Fu-Yung; Young, John D
2015-01-01
Mineralo-organic nanoparticles (NPs) detected in biological fluids have been described as precursors of physiological and pathological calcifications in the body. Our main objective was to examine the early stages of mineral NP formation in body fluids. A nanomaterial approach based on atomic force microscopy, dynamic light scattering, electron microscopy and spectroscopy was used. The mineral particles, which contain the serum proteins albumin and fetuin-A, initially precipitate in the form of round amorphous NPs that gradually grow in size, aggregate and coalesce to form crystalline mineral films similar to the structures observed in calcified human arteries. Our study reveals the early stages of particle formation and provides a platform to analyze the role(s) of mineralo-organic NPs in human tissues.
[Bodies and pleasures in male homosocial circuits of downtown Rio de Janeiro].
Rios, Luis Felipe
2008-01-01
This paper presents the results of an ethnographic research investigating the cultural bases that guide the construction of corporeal events, especially those related to sex/eroticism, in the homosocial circuits of downtown Rio de Janeiro. Data were gathered by means of biographic narrative interviews, direct observations and research-interventions. The main argument presented in this paper is that the diverse corporeal events in the studied community are based on the same conceptual structure that focuses on transgression of the "body/flesh" in the sense of St. Paul's concept: an exaltation of forbidden 'tesão', erotic pleasure only admissible for the purpose of reproduction. 'Flesh' instead of sublimated being exalted, constantly inspired and attracted to more and more erotic pleasure.
Insulation assembly for electric machine
Rhoads, Frederick W.; Titmuss, David F.; Parish, Harold; Campbell, John D.
2013-10-15
An insulation assembly is provided that includes a generally annularly-shaped main body and at least two spaced-apart fingers extending radially inwards from the main body. The spaced-apart fingers define a gap between the fingers. A slot liner may be inserted within the gap. The main body may include a plurality of circumferentially distributed segments. Each one of the plurality of segments may be operatively connected to another of the plurality of segments to form the continuous main body. The slot liner may be formed as a single extruded piece defining a plurality of cavities. A plurality of conductors (extendable from the stator assembly) may be axially inserted within a respective one of the plurality of cavities. The insulation assembly electrically isolates the conductors in the electric motor from the stator stack and from other conductors.
Moravec, Frantisek; Barton, Diane P
2018-04-16
The following six species of the Philometridae (Nematoda: Dracunculoidea) were recorded from marine fishes off the northern coast of Australia in 2015 and 2016: Philometra arafurensis sp. n. and Philometra papillicaudata sp. n. from the ovary and the tissue behind the gills, respectively, of the emperor red snapper Lutjanus sebae (Cuvier); Philometra mawsonae sp. n. and Dentiphilometra malabarici sp. n. from the ovary and the tissue behind the gills, respectively, of the Malabar blood snapper Lutjanus malabaricus (Bloch et Schneider); Philometra sp. from the ovary of the goldbanded jobfish Pristipomoides multidens (Day) (Perciformes: all Lutjanidae); and Digitiphilometroides marinus (Moravec et de Buron, 2009) comb. n. from the body cavity of the cobia Rachycentron canadum (Linnaeus) (Perciformes: Rachycentridae). Digitiphilometroides gen. n. is established based on the presence of unique digital cuticular ornamentations on the female body. New gonad-infecting species, P. arafurensis and P. mawsonae, are characterised mainly by the length of spicules (252-264 µm and 351-435 µm, respectively) and the structure of the gubernaculum, whereas P. papillicaudata is characterised mainly by the body length (70 mm) of gravid female, extent of the oesophageal gland, size of caudal projections and the location in the host. Dentiphilometra malabarici differs from congeners mainly in the arrangement of circumoral teeth (in a single row), extent of the oesophageal gland and the absence of sclerotised teeth or protuberances on the oesophageal lobes in the mouth. Digitiphilometroides marinus has not previously been reported from fishes in Australian waters.
... level of blood sugar (glucose), your body's main energy source. Hypoglycemia is often related to the treatment of ... sugar molecules, including glucose. Glucose is the main energy source for your body, but it can't enter ...
Langenheim, Victoria; Jachens, Robert C.; Wentworth, Carl M.; McLaughlin, Robert J.
2013-01-01
Magnetic anomalies provide surprising structural detail within the previously undivided Coastal Belt, the westernmost, youngest, and least-metamorphosed part of the Franciscan Complex of northern California. Although the Coastal Belt consists almost entirely of arkosic graywacke and shale of mainly Eocene age, new detailed aeromagnetic data show that it is pervasively marked by long, narrow, and regularly spaced anomalies. These anomalies arise from relatively simple tabular bodies composed principally of magnetic basalt or graywacke confi ned mainly to the top couple of kilometers, even though metamorphic grade indicates that these rocks have been more deeply buried, at depths of 5–8 km. If true, this implies surprisingly uniform uplift of these rocks. The basalt (and associated Cretaceous limestone) occurs largely in the northern part of the Coastal Belt; the graywacke is recognized only in the southern Coastal Belt and is magnetic because it contains andesitic grains. The magnetic grains were not derived from the basalt, and thus require a separate source. The anomalies defi ne simple patterns that can be related to folding and faulting within the Coastal Belt. This apparent simplicity belies complex structure mapped at outcrop scale, which can be explained if the relatively simple tabular bodies are internally deformed, fault-bounded slabs. One mechanism that can explain the widespread lateral extent of the thin layers of basalt is peeling up of the uppermost part of the oceanic crust into the accretionary prism, controlled by porosity and permeability contrasts caused by alteration in the upper part of the subducting slab. It is not clear, however, how this mechanism might generate fault-bounded layers containing magnetic graywacke. We propose that structural domains defined by anomaly trend, wavelength, and source reflect imbrication and folding during the accretion process and local plate interactions as the Mendocino triple junction migrated north, a hypothesis that should be tested by more detailed structural studies.
Langenheim, V.E.; Jachens, R.C.; Wentworth, C.M.; McLaughlin, R.J.
2013-01-01
Magnetic anomalies provide surprising structural detail within the previously undivided Coastal Belt, the westernmost, youngest, and least-metamorphosed part of the Franciscan Complex of northern California. Although the Coastal Belt consists almost entirely of arkosic graywacke and shale of mainly Eocene age, new detailed aeromagnetic data show that it is pervasively marked by long, narrow, and regularly spaced anomalies. These anomalies arise from relatively simple tabular bodies composed principally of magnetic basalt or graywacke confined mainly to the top couple of kilometers, even though metamorphic grade indicates that these rocks have been more deeply buried, at depths of 5–8 km. If true, this implies surprisingly uniform uplift of these rocks. The basalt (and associated Cretaceous limestone) occurs largely in the northern part of the Coastal Belt; the graywacke is recognized only in the southern Coastal Belt and is magnetic because it contains andesitic grains. The magnetic grains were not derived from the basalt, and thus require a separate source. The anomalies define simple patterns that can be related to folding and faulting within the Coastal Belt. This apparent simplicity belies complex structure mapped at outcrop scale, which can be explained if the relatively simple tabular bodies are internally deformed, fault-bounded slabs. One mechanism that can explain the widespread lateral extent of the thin layers of basalt is peeling up of the uppermost part of the oceanic crust into the accretionary prism, controlled by porosity and permeability contrasts caused by alteration in the upper part of the subducting slab. It is not clear, however, how this mechanism might generate fault-bounded layers containing magnetic graywacke. We propose that structural domains defined by anomaly trend, wavelength, and source reflect imbrication and folding during the accretion process and local plate interactions as the Mendocino triple junction migrated north, a hypothesis that should be tested by more detailed structural studies.
Dietary fat intake predicts 1-year change in body fat in adolescent girls with type 1 diabetes.
Särnblad, Stefan; Ekelund, Ulf; Aman, Jan
2006-06-01
The purpose of this study was to determine whether objectively measured physical activity and dietary macronutrient intake differentially predict body fat in adolescent girls with type 1 diabetes and control girls. This study comprised 23 girls (12-19 years) with type 1 diabetes and 19 age-matched healthy control girls. At baseline, physical activity and energy intake were assessed for 7 consecutive days by accelerometry and a structured food diary, respectively. Body composition was measured by dual-energy X-ray absorptiometry at baseline and after 1 year. Fat intake was positively related to a 1-year change in percentage body fat (P = 0.006), after adjustment for total energy intake. No significant interaction was observed (case-control group x main exposure), indicating that the association between fat intake and gain in body fat was similar in both groups. Physical activity did not predict gain in body fat; however, total physical activity was positively associated with a gain in lean body mass (P < 0.01). Girls treated with six daily dosages of insulin increased their percentage of body fat significantly more than those treated with four daily injections (P < 0.05). In this prospective case-control study, we found that fat intake predicted gain in percentage of body fat in both adolescent girls with type 1 diabetes and healthy control girls. The number of daily insulin injections seems to influence the accumulation of body fat in girls with type 1 diabetes.
"When I feel the worst pain, I look like shit" - body image concerns in persistent pain.
Sündermann, Oliver; Rydberg, Karin; Linder, Ludwig; Linton, Steven James
2018-04-17
Persistent pain is a pervasive condition that is often associated with a distorted body image. Most research into pain and body image investigated neural or physiological correlates (e.g. phantom limb pain), and much less is known about the psychological experience of body image changes in response to pain such as appearance concerns. The aim was to examine body image concerns in people with persistent pain, in particular appearance concerns and related coping behaviours and appearance-related emotions such as anger and shame. Design was cross-sectional and data was collected through in-depth semi-structured interviews with people suffering from persistent musculoskeletal pain (n=7; six females; age=19-56), and analysed with inductive thematic analysis (TA). Two main themes were identified: "Relationship to the painful body" and "Dissatisfaction with the body", each containing three subthemes, along with the side-theme "Appearance concerns affected by pain and mood". All participants reported appearance concerns, predominantly about their weight and related coping behaviours such as avoidance of mirrors, exercising or dieting and pain-induced mood changes that were associated with a negative body image. People with persistent pain report appearance concerns, often related to pain-induced negative mood changes, and reduced functioning. It remains unclear to what extent attitudes towards the body change over time in accordance with pain. A wider concept of body image is required, including the perception of reduced functioning, related appraisals (e.g. "I look weak and old") and appearance investment.
NASA Astrophysics Data System (ADS)
Bahrudin, Nurul Fairuz Diyana Binti; Hamzah, Umar
2016-11-01
Magnetic data were processed to interpret the geology of Peninsular Malaysia especially in delineating the igneous bodies and structural lineament trends by potential field geophysical method. A total of about 32000 magnetic intensity data were obtained from Earth Magnetic Anomaly Grid (EMAG2) covering an area of East Sumatra to part of South China Sea within 99° E to 105° E Longitude and 1° N to 7°N Latitude. These data were used in several processing stages in generating the total magnetic intensity (TMI), reduce to equator (RTE), total horizontal derivative (THD) and total vertical derivative (TVD). Values of the possible surface and subsurface magnetic sources associated to the geological features of the study area. The magnetic properties are normally corresponding to features like igneous bodies and faults structures. The anomalies obtained were then compared to the geological features of the area. In general, the high magnetic anomalies of the TMI-RTE are closely matched with major igneous intrusion of Peninsular Malaysia such as the Main Range, Eastern Belt and the Mersing-Johor Bahru stretch. More dense lineaments of magnetic structures were observed in the THD and TVD results indicating the presence of more deep and shallow magnetic rich geological features. The positions of Bukit Tinggi, Mersing and Lepar faults are perfectly matched with the magnetic highs while the presence of Lebir and Bok Bak faults are not clearly observed in the magnetic results. The high magnetic values of igneous bodies may have concealed and obscured the magnetic values representing these faults.
Skin histology and its role in heat dissipation in three pinniped species
2012-01-01
Background Pinnipeds have a thick blubber layer and may have difficulty maintaining their body temperature during hot weather when on land. The skin is the main thermoregulatory conduit which emits excessive body heat. Methods Thorough evaluation of the skin histology in three pinniped species; the California sea lion-Zalophus californianus, the Pacific harbor seal-Phoca vitulina richardsi, and the Northern elephant seal-Mirounga angustirostris, was conducted to identify the presence, location and distribution of skin structures which contribute to thermoregulation. These structures included hair, adipose tissue, sweat glands, vasculature, and arteriovenous anastomoses (AVA). Thermal imaging was performed on live animals of the same species to correlate histological findings with thermal emission of the skin. Results The presence and distribution of skin structures directly relates to emissivity of the skin in all three species. Emissivity of skin in phocids (Pacific harbor and Northern elephant seals) follows a different pattern than skin in otariids (California sea lions). The flipper skin in phocids tends to be the most emissive region during hot weather and least emissive during cold weather. On the contrary in otariids, skin of the entire body has a tendency to be emissive during both hot and cold weather. Conclusion Heat dissipation of the skin directly relates to the presence and distribution of skin structures in all three species. Different skin thermal dissipation patterns were observed in phocid versus otariid seals. Observed thermal patterns can be used for proper understanding of optimum thermal needs of seals housed in research facilities, rescue centers and zoo exhibits. PMID:22889205
Liang, George
2010-10-26
A blade is provided for a gas turbine. The blade comprises a main body comprising a cooling fluid entrance channel; a cooling fluid collector in communication with the cooling fluid entrance channel; a plurality of side channels extending through an outer wall of the main body and communicating with the cooling fluid collector and a cooling fluid cavity; a cooling fluid exit channel communicating with the cooling fluid cavity; and a plurality of exit bores extending from the cooling fluid exit channel through the main body outer wall.
Lens fiber organization in four avian species: a scanning electron microscopic study.
Willekens, B; Vrensen, G
1985-01-01
The three-dimensional organization of the eye lenses of the chicken, the canary, the song-thrush and the kestrel was studied using light and scanning electron microscopy. The lenses of birds are characterized by the presence of two distinct compartments: the annular pad and the main lens body, separated by a cavum lenticuli. The annular pad fibers had a hexagonal circumference all contained a round nucleus and except for the canary were smooth-surfaced and lacking anchoring devices. In the canary, however, the annular pad fibers were studded with edge protrusions and ball-and-socket junctions. The semicircular main lens body fibers of all four species were studded with ball-and-socket junctions and edge protrusions. In contrast with mammals these anchoring devices were present throughout the lens up to the embryonal nucleus. Superficially the main lens body fibers were extremely flat. Additionally membrane elevations and depressions and globular elements were found on these central fibers in three species, the kestrel being the exception. At the transition between annular pad and main lens body the fibers turned their course and the nuclei became oval and disappeared in the deeper aspect of the main lens body. The cavum lenticuli was filled with globules tied off from the annular pad fibers. It seems attractive to assume that the presence of a separated annular pad, a cavum lenticuli filled with globular elements, the extreme flatness of the superficial central fibers and the studding of these central fibers with anchoring devices up to the embryonal nucleus are morphological expressions of the mouldability of the bird's eye lenses and consequently would explain their efficient accommodative mechanism including formation of a lenticonus. The presence of nuclei in the annular pad fibers and their typical change at the transitional zone between annular pad and main lens body are suggestive for a two-phased differentiation in bird's lens fibers: differentiation of the germinative epithelial cells to annular pad fibers which migrate to the main lens body after which they differentiate further to main lens body fibers.
Structural elucidation of a heteroglycan from the fruiting bodies of Agaricus blazei Murill.
Liu, Jicheng; Zhang, Chunjing; Wang, Yajun; Yu, Haitao; Liu, Han; Wang, Liping; Yang, Xiuzhen; Liu, Zhecheng; Wen, Xianchun; Sun, Yongxu; Yu, Chunlei; Liu, Lei
2011-11-01
One water-soluble polysaccharide (ABP-W1) was purified from the fruiting bodies of Agaricus blazei by DEAE Sepharose Fast Flow and Sepharose 6 Fast Flow column chromatography. Its molecular weight was about 3.9×10(2) kDa as determined by high-performance size-exclusion chromatography (HPSEC). The structural feature of ABP-W1 was investigated by a combination of chemical and instrumental analysis, including partial hydrolysis with acid, periodate oxidation-Smith degradation, acetylation, methylation analysis and nuclear magnetic resonance spectroscopy (NMR (1)H, (13)C). The results revealed that ABP-W1 had a backbone consisting of (1→6)-linked-α-D-galactopyranosyl and (1→2,6)-linked-α-D-glucopyranosyl, which was branched with one single terminal (1→)-α-D-glucopyranosyl at the O-2 position of (1→2,6)-linked-α-D-glucopyranosyl along the main chain in the ratio of 1:1:1. The observation of the complex-formation between ABP-W1 and Congo Red indicated that ABP-W1 probably existed in a triple-strand helical conformation in water. Based on the data obtained, ABP-W1 was composed of a repeating unit with a structure as below: [structure: see text]. Copyright © 2011 Elsevier B.V. All rights reserved.
Velocity Structure of the Iran Region Using Seismic and Gravity Observations
NASA Astrophysics Data System (ADS)
Syracuse, E. M.; Maceira, M.; Phillips, W. S.; Begnaud, M. L.; Nippress, S. E. J.; Bergman, E.; Zhang, H.
2015-12-01
We present a 3D Vp and Vs model of Iran generated using a joint inversion of body wave travel times, Rayleigh wave dispersion curves, and high-wavenumber filtered Bouguer gravity observations. Our work has two main goals: 1) To better understand the tectonics of a prominent example of continental collision, and 2) To assess the improvements in earthquake location possible as a result of joint inversion. The body wave dataset is mainly derived from previous work on location calibration and includes the first-arrival P and S phases of 2500 earthquakes whose initial locations qualify as GT25 or better. The surface wave dataset consists of Rayleigh wave group velocity measurements for regional earthquakes, which are inverted for a suite of period-dependent Rayleigh wave velocity maps prior to inclusion in the joint inversion for body wave velocities. We use gravity anomalies derived from the global gravity model EGM2008. To avoid mapping broad, possibly dynamic features in the gravity field intovariations in density and body wave velocity, we apply a high-pass wavenumber filter to the gravity measurements. We use a simple, approximate relationship between density and velocity so that the three datasets may be combined in a single inversion. The final optimized 3D Vp and Vs model allows us to explore how multi-parameter tomography addresses crustal heterogeneities in areas of limited coverage and improves travel time predictions. We compare earthquake locations from our models to independent locations obtained from InSAR analysis to assess the improvement in locations derived in a joint-inversion model in comparison to those derived in a more traditional body-wave-only velocity model.
Synthetic biology meets tissue engineering.
Davies, Jamie A; Cachat, Elise
2016-06-15
Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the 'embryological cycle' of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. © 2016 Authors; published by Portland Press Limited.
Dawn Arrives at Vesta: The Smallest Terrestrial Planet
NASA Astrophysics Data System (ADS)
Russell, C. T.; Raymond, C. A.; Coradini, A.; Nathues, A.; De Sanctis, M. C.; Prettyman, T. H.; Jaumann, R.; McSween, H. Y.; McCord, T. B.; Keller, H. U.; Rayman, M.
2011-12-01
The Dawn Mission is a revolutionary concept in planetary exploration. Within the cost cap of a low-cost Discovery mission, a spacecraft has been flown to the main asteroid belt and been put into orbit around its second most massive body, 4 Vesta. Vesta was clearly beginning its march to planet-hood when its accretion stopped, most probably by the formation of Jupiter. Dawn's exploration is enabled by an ion propulsion system that will not only allow Dawn to descend to 200 km altitude, but to leave Vesta, travel to and orbit 1 Ceres in 2015 and map this largest main belt asteroid, a dwarf planet. The initial images of the surface of Vesta have been astounding. They reveal the diverse geochemical processes driven by the internal heat of this 530 km diameter body and titanic forces that have battered Vesta for over 4.65 billion years. A large southern impact structure, troughs ringing the equator, striped craters, dark albedo features contrasting with very high albedo features and a richly colored surface distinguish this most unusual small world.
Using bacterial inclusion bodies to screen for amyloid aggregation inhibitors.
Villar-Piqué, Anna; Espargaró, Alba; Sabaté, Raimon; de Groot, Natalia S; Ventura, Salvador
2012-05-03
The amyloid-β peptide (Aβ42) is the main component of the inter-neuronal amyloid plaques characteristic of Alzheimer's disease (AD). The mechanism by which Aβ42 and other amyloid peptides assemble into insoluble neurotoxic deposits is still not completely understood and multiple factors have been reported to trigger their formation. In particular, the presence of endogenous metal ions has been linked to the pathogenesis of AD and other neurodegenerative disorders. Here we describe a rapid and high-throughput screening method to identify molecules able to modulate amyloid aggregation. The approach exploits the inclusion bodies (IBs) formed by Aβ42 when expressed in bacteria. We have shown previously that these aggregates retain amyloid structural and functional properties. In the present work, we demonstrate that their in vitro refolding is selectively sensitive to the presence of aggregation-promoting metal ions, allowing the detection of inhibitors of metal-promoted amyloid aggregation with potential therapeutic interest. Because IBs can be produced at high levels and easily purified, the method overcomes one of the main limitations in screens to detect amyloid modulators: the use of expensive and usually highly insoluble synthetic peptides.
NASA Astrophysics Data System (ADS)
Valentine, Greg A.; van Wyk de Vries, Benjamin
2014-03-01
A Miocene age volcanic-hypabyssal structure comprising volcaniclastic deposits and mafic intrusions is exposed with vertical relief of ˜110 m on the side of Gergovie Plateau (Auvergne, France). Three main volcaniclastic facies are: (1) Fluidal tuff breccia composed of juvenile basalt and sediment clasts with dominantly fluidal shapes, with several combinations of basalt and sediment within individual clasts. (2) Thickly bedded lapilli tuff composed of varying proportions of fine-grained sediment derived from Oligocene-Miocene lacustrine marls and mudstones and basaltic lapilli, blocks, and bombs. (3) Planar-bedded tuff forming thin beds of fine to coarse ash-size sedimentary material and basalt clasts. Intrusive bodies in the thickly bedded lapilli tuff range from irregularly shaped and anastomosing dikes and sills of meters to tens of meters in length, to a main feeder dike that is up to ˜20 m wide, and that flares into a spoon-shaped sill at ˜100 m in diameter and 10-20 m thick in the eastern part of the structure. Volcaniclastic deposits and structural features suggest that ascending magma entrained soft, saturated sediment host material into the feeder dike and erupted fluidal magma and wet sediment via weak, Strombolian-like explosions. Host sediment and erupted material subsided to replace the extracted sediments, producing the growth subsidence structure that is similar to upper diatreme facies in typical maar diatremes but lacks evidence for explosive disruption of diatreme fill. Irregularly shaped small intrusions extended from the main feeder dike into the diatreme, and many were disaggregated due to shifting and subsidence of diatreme fill and recycled via eruption. The Mardoux structure is an "unconventional" maar diatreme in that it was produced mainly by weak explosive activity rather than by violent phreatomagmatic explosions and is an example of complex coupling between soft sediment and ascending magma.
Deep Crustal Structure beneath Large Igneous Provinces and the Petrologic Evolution of Flood Basalts
NASA Astrophysics Data System (ADS)
Richards, Mark; Ridley, Victoria
2010-05-01
We present a review of seismological constraints on deep crustal structures underlying large igneous provinces (LIPs), largely from wide-angle seismic refraction surveys. The main purpose of this review is to ascertain whether this seismic evidence is consistent with, or contrary to, petrological models for the genesis of flood basalt lavas. Where high-quality data are available beneath continental flood basalt (CFB) provinces (Emeishan, Columbia River, Deccan, Siberia), high-velocity structures (Vp ~6.9-7.5 km/sec) are typically found immediately overlying the Moho in layers of order ~5-15 km thick. Oceanic plateau (OP) LIPs exhibit similar layers, with a conspicuous layer of very high crustal velocity (Vp~7.7 km/sec) beneath the enormous Ontong-Java plateau. These structures are similar to inferred ultramafic underplating structures seen beneath active hotspots such as Hawaii, the Marqueses, and La Reunion. Petrogenetic models for flood basalt volcanism based on hot plume melting beneath mature lithosphere suggest that these deep seismic structures may consist in large part of cumulate bodies of olivine and clinopyroxene which result from ponding and deep-crustal fractionation of ultramafic primary melts. Such fractionation is necessary to produce basalts with typical MgO contents of ~6-8%, as observed for the vast bulk of observed flood basalts, from primary melts with MgO contents of order ~15-18% (or greater) such as result from hot, deep melting beneath the lithosphere. The volumes of cumulate bodies and ultramafic intrusions in the lowermost crust, often described in the literature as "underplating," are comparable to those of the overlying basaltic formations, also consistent with petrological models. Further definition of the deep seismic structure beneath such prominent LIPs as the Ontong-Java Plateau could place better constraints on flood basalt petrogenesis by determining the relative volumes of ultramafic bodies and basaltic lavas, thereby better constraining the overall process of LIP emplacement.
Deep crustal structure beneath large igneous provinces and the petrologic evolution of flood basalts
NASA Astrophysics Data System (ADS)
Ridley, Victoria A.; Richards, Mark A.
2010-09-01
We present a review of seismological constraints on deep crustal structures underlying large igneous provinces (LIPs), largely from wide-angle seismic refraction surveys. The main purpose of this review is to ascertain whether this seismic evidence is consistent with, or contrary to, petrological models for the genesis of flood basalt lavas. Where high-quality data are available beneath continental flood basalt (CFB) provinces (Emeishan, Columbia River, Deccan, Siberia), high-velocity structures (Vp ˜ 6.9-7.5 km/sec) are typically found immediately overlying the Moho in layers of order ˜5-15 km thick. Oceanic plateau (OP) LIPs exhibit similar layers, with a conspicuous layer of very high crustal velocity (Vp ˜ 7.7 km/sec) beneath the enormous Ontong-Java plateau. These structures are similar to inferred ultramafic underplating structures seen beneath active hot spots such as Hawaii, the Marquesas, and La Reunion. Petrogenetic models for flood basalt volcanism based on hot plume melting beneath mature lithosphere suggest that these deep seismic structures may consist in large part of cumulate bodies of olivine and clinopyroxene which result from ponding and deep-crustal fractionation of ultramafic primary melts. Such fractionation is necessary to produce basalts with typical MgO contents of ˜6-8%, as observed for the vast bulk of observed flood basalts, from primary melts with MgO contents of order ˜15-18% (or greater) such as result from hot, deep melting beneath the lithosphere. The volumes of cumulate bodies and ultramafic intrusions in the lowermost crust, often described in the literature as "underplating," are comparable to those of the overlying basaltic formations, also consistent with petrological models. Further definition of the deep seismic structure beneath such prominent LIPs as the Ontong-Java Plateau could place better constraints on flood basalt petrogenesis by determining the relative volumes of ultramafic bodies and basaltic lavas, thereby better constraining the overall process of LIP emplacement.
Deep Crustal Structure beneath Large Igneous Provinces and the Petrologic Evolution of Flood Basalts
NASA Astrophysics Data System (ADS)
Richards, M. A.; Ridley, V. A.
2010-12-01
We present a review of seismological constraints on deep crustal structures underlying large igneous provinces (LIPs), largely from wide-angle seismic refraction surveys. The main purpose of this review is to ascertain whether this seismic evidence is consistent with, or contrary to, petrological models for the genesis of flood basalt lavas. Where high-quality data are available beneath continental flood basalt (CFB) provinces (Emeishan, Columbia River, Deccan, Siberia), high-velocity structures (Vp ~6.9-7.5 km/sec) are typically found immediately overlying the Moho in layers of order ~5-15 km thick. Oceanic plateau (OP) LIPs exhibit similar layers, with a conspicuous layer of very high crustal velocity (Vp~7.7 km/sec) beneath the enormous Ontong-Java plateau. These structures are similar to inferred ultramafic underplating structures seen beneath active hotspots such as Hawaii, the Marquesas, and La Reunion. Petrogenetic models for flood basalt volcanism based on hot plume melting beneath mature lithosphere suggest that these deep seismic structures may consist in large part of cumulate bodies of olivine and clinopyroxene which result from ponding and deep-crustal fractionation of ultramafic primary melts. Such fractionation is necessary to produce basalts with typical MgO contents of ~6-8%, as observed for the vast bulk of observed flood basalts, from primary melts with MgO contents of order ~15-18% (or greater) such as result from hot, deep melting beneath the lithosphere. The volumes of cumulate bodies and ultramafic intrusions in the lowermost crust, often described in the literature as “underplating,” are comparable to those of the overlying basaltic formations, also consistent with petrological models. Further definition of the deep seismic structure beneath such prominent LIPs as the Ontong-Java Plateau could place better constraints on flood basalt petrogenesis by determining the relative volumes of ultramafic bodies and basaltic lavas, thereby better constraining the overall process of LIP emplacement.
Blood sugar, or glucose, is the main sugar found in your blood. It comes from the food you eat, and is your body's main source of energy. Your blood carries glucose to all of your body's cells to use ...
The effect of photoelectrons on boom-satellite potential differences during electron beam ejection
NASA Technical Reports Server (NTRS)
Lai, Shu T.; Cohen, Herbert A.; Aggson, Thomas L.; Mcneil, William J.
1987-01-01
Data taken on the SCATHA satellite at geosynchronous altitudes during periods of electron beam ejection in sunlight showed that the potential difference between an electrically isolated boom and the satellite main body was a function of beam current, energy, and boom-sun angle. The potential difference decreased as the boom area illuminated by the sun increased; the maximum and minimum potential differences were measured when minimum and maximum boom areas, respectively, were exposed to the sun. It is shown that photoelectrons, created on the boom, could be engulfed in the electrostatic field of the highly charged satellite main body. Theoretical calculations made using a simple current balance model showed that these electrons could provide a substantial discharging current to the main body and cause the observed variations in the potential difference between the main body and the booms.
Preformed cell structure and cell heredity
2008-01-01
This review will first recall the phenomena of “cortical inheritance” observed and genetically demonstrated in Paramecium 40 years ago, and later in other ciliates (Tetrahymena, Oxytricha, Paraurostyla), and will analyze the deduced concept of “cytotaxis” or “structural memory.” The significance of these phenomena, all related (but not strictly restricted) to the properties of ciliary basal bodies and their mode of duplication, will be interpreted in the light of present knowledge on the mechanism and control of basal body/centriole duplication. Then other phenomena described in a variety of organisms will be analyzed or mentioned which show the relevance of the concept of cytotaxis to other cellular processes, mainly (1) cytoskeleton assembly and organization with examples on ciliates, trypanosome, mammalian cells and plants, and (2) transmission of polarities with examples on yeast, trypanosome and metazoa. Finally, I will discuss some aspects of this particular type of non-DNA inheritance: (1) why so few documented examples if structural memory is a basic parameter in cell heredity, and (2) how are these phenomena (which all rely on protein/protein interactions, and imply a formatting role of preexisting proteinic complexes on neo-formed proteins and their assembly) related to prions? PMID:19164887
Ultrastructure of the enteromonad flagellate Caviomonas mobilis.
Brugerolle, G; Regnault, J P
2001-08-01
Caviomonas mobilis was collected from the caecum of mice harbouring a controlled fauna. Phase contrast and immunofluorescence microscopy using an anti-tubulin antibody and electron microscopy demonstrated the presence of one basal body bearing a flagellum and a second barren basal body, both inserted in the face of two cup-like depressions in the nuclear surface, as in other enteromonad/diplomonad genera. Three microtubular fibres arise close to the main basal body: the first, composed of three microtubules cross-linked with a dense structure, lies within a groove above the nuclear surface; the second is oriented antero-dorsally and corresponds to the peristyle as observed by light microscopy; and the third is situated ventrally, below the proximal part of the recurrent flagellum, and corresponds to the funis. There is no mitochondrion, no Golgi body, the endoplasmic reticulum is reduced, there is no cytostome, the cell feeds by pinocytosis and phagocytosis and the division spindle is intranuclear. The cytological characters of Caviomonas are homologous to those of genera which comprise the enteromonad/diplomonad evolutionary lineage, as previously presumed.
A secreted antibacterial neuropeptide shapes the microbiome of Hydra.
Augustin, René; Schröder, Katja; Murillo Rincón, Andrea P; Fraune, Sebastian; Anton-Erxleben, Friederike; Herbst, Eva-Maria; Wittlieb, Jörg; Schwentner, Martin; Grötzinger, Joachim; Wassenaar, Trudy M; Bosch, Thomas C G
2017-09-26
Colonization of body epithelial surfaces with a highly specific microbial community is a fundamental feature of all animals, yet the underlying mechanisms by which these communities are selected and maintained are not well understood. Here, we show that sensory and ganglion neurons in the ectodermal epithelium of the model organism hydra (a member of the animal phylum Cnidaria) secrete neuropeptides with antibacterial activity that may shape the microbiome on the body surface. In particular, a specific neuropeptide, which we call NDA-1, contributes to the reduction of Gram-positive bacteria during early development and thus to a spatial distribution of the main colonizer, the Gram-negative Curvibacter sp., along the body axis. Our findings warrant further research to test whether neuropeptides secreted by nerve cells contribute to the spatial structure of microbial communities in other organisms.Certain neuropeptides, in addition to their neuromodulatory functions, display antibacterial activities of unclear significance. Here, the authors show that a secreted neuropeptide modulates the distribution of bacterial communities on the body surface during development of the model organism Hydra.
Initial growth of vertically aligned carbon nanofibers
NASA Astrophysics Data System (ADS)
Cui, Hongtao; Yang, Xiaojing; Simpson, Michael L.; Lowndes, Douglas H.; Varela, Maria
2004-05-01
Samples of vertically aligned carbon nanofibers (VACNFs) were viewed transverse to the growth direction and studied using both scanning and transmission electron microscopy. The VACNFs are composed of graphite layers nearly parallel to the substrate at their bottom end, gradually formed graphite "cups" in the main body, and a catalyst particle on the tip. The formation of such structure is due to the corresponding transformation of the shape of the catalyst particle during initial VACNF growth. A model for their initial growth is proposed.
Searching for orbits around the triple system 45 Eugenia
NASA Astrophysics Data System (ADS)
Mescolotti, B. Y. P. M.; Prado, A. F. B. A.; Chiaradia, A. P. M.; Gomes, V. M.
2017-10-01
Asteroids are small bodies that raises high interest, because they have unknown characteristics. The present research aims to study orbits for a spacecraft around the triple asteroid 45 Eugenia. The quality of the observations made by the spacecraft depends on the distance the spacecraft remains from the bodies of the system. It is used a semi-analytical model that is simple but able to represent the main characteristics of that system. This model is called “Precessing Inclined Bi-Elliptical Problem” (PIBEP). A reference system centered on the main body (Eugenia) and with the reference plane assumed to be in the orbital plane of the second more massive body, here called Petit-Prince, is used. The secondary bodies are assumed to be in elliptical orbits. In addition, it is assumed that the orbits of the smaller bodies are precessing due to the presence of the flattening of the main body (J2). This work analyzes orbits for the spacecraft with passages near Petit-Prince and Princesses, which are the two smaller bodies of the triple system.
Engineering craniofacial structures: facing the challenge.
Zaky, S H; Cancedda, R
2009-12-01
The human innate regenerative ability is known to be limited by the intensity of the insult together with the availability of progenitor cells, which may cause certain irreparable damage. It is only recently that the paradigm of tissue engineering found its way to the treatment of irreversibly affected body structures with the challenge of reconstructing the lost part. In the current review, we underline recent trials that target engineering of human craniofacial structures, mainly bone, cartilage, and teeth. We analyze the applied engineering strategies relative to the selection of cell types to lay down a specific targeted tissue, together with their association with an escorting scaffold for a particular engineered site, and discuss their necessity to be sustained by growth factors. Challenges and expectations for facial skeletal engineering are discussed in the context of future treatment.
[Body donation versus organ donation].
Reis, Ria
2010-01-01
There appears to be a discrepancy between the oversupply of donated bodies 'for science' in anatomical institutions in the Netherlands and the shortage of donated organs. However, organ donation is not as straightforward as it seems, mainly because of its strict conditions, e.g. with respect to age and the required hospital setting of the dying. Since Dutch body donors are mainly elderly men, their attitudes to their body, death and science should be explored from a generational perspective.
[Development and application of artificial vertebral body].
Liu, Jian-Tao; Zhang, Feng; Gao, Zheng-Chao; Niu, Bin-Bin; Li, Yu-Huan; He, Xi-Jing
2017-12-25
Artificial vertebral body has achieved good results in treating spinal tumors, tuberculosis, fracture and other diseases. Currently, artificial vertebral body with variety of kinds and pros and cons, is generally divided into two types: fusion type and movable type. The former according to whether the height could be adjusted and strength of self-stability is divided into three types: support-fixed type, adjust-fixed type and self-fixed type. Whether the height of self-fixed type could be adjusted is dependent on structure of collar thread rotation. The latter is due to mobile device of ball-and-socket joints or hollow structures instead of the disc which retains the activity of the spine to some extent. Materials of artificial vertebral body include metals, ceramics, biomaterials, polymer composites and other materials. Titanium with a dominant role in the metal has developed to the third generation, but there are still defects such as poor surface bioactivity; ceramics with the representative of hydroxyapatite composite, magnetic bioceramics, polycrystalline alumina ceramics and so on, which have the defects of processing complex and uneven mechanical properties; biological material is mainly dominated by xenogeneic bone, which is closest to human bone in structure and properties, but has defects of low toughness and complex production; polymer composites according to biological characteristics in general consists of biodegradable type and non-biodegradable type which are respectively represented by poly-lactide and polyethylene, each with advantages and disadvantages. Although the design and materials of prosthesis have made great progress, it is difficult to fully meet requirements of spinal implants and they need be further optimized. 3D printing technology makes process of the complex structure of prosthesis and individual customization possible and has broad development prospects. However, long production cycles and high cost of defect should be overcome. Although artificial vertebral body has achieved curative effect in treating spinal disease, there were reports of implant loosening or displacement. Combining with evaluation standards not unified, short follow-up time, its exact effect needs further observation. Copyright© 2017 by the China Journal of Orthopaedics and Traumatology Press.
NASA Astrophysics Data System (ADS)
Zhou, L.; Xiao, G.
2014-12-01
The engineering geological and hydrological conditions of current tunnels are more and more complicated, as the tunnels are elongated with deeper depth. In constructing these complicated tunnels, geological hazards prone to occur as induced by unfavorable geological bodies, such as fault zones, karst or hydrous structures, etc. The working emphasis and difficulty of the advanced geological exploration for complicated tunnels are mainly focused on the structure and water content of these unfavorable geological bodies. The technical aspects of my paper systematically studied the advanced geological exploration theory and application aspects for complicated tunnels, with discussion on the key technical points and useful conclusions. For the all-aroundness and accuracy of advanced geological exploration results, the objective of my paper is targeted on the comprehensive examination on the structure and hydrous characteristic of the unfavorable geological bodies in complicated tunnels. By the multi-component seismic modeling on a more real model containing the air medium, the wave field response characteristics of unfavorable geological bodies can be analyzed, thus providing theoretical foundation for the observation system layout, signal processing and interpretation of seismic methods. Based on the tomographic imaging theory of seismic and electromagnetic method, 2D integrated seismic and electromagnetic tomographic imaging and visualization software was designed and applied in the advanced drilling hole in the tunnel face, after validation of the forward and inverse modeling results on theoretical models. The transmission wave imaging technology introduced in my paper can be served as a new criterion for detection of unfavorable geological bodies. After careful study on the basic theory, data processing and interpretation, practical applications of TSP and ground penetrating radar (GPR) method, as well as serious examination on their application examples, my paper formulated a suite of comprehensive application system of seismic and electromagnetic methods for the advanced geological exploration of complicated tunnels. This research is funded by National Natural Science Foundation of China (Grant No. 41202223) .
Lacy, Benjamin Paul; Kraemer, Gilbert Otto; Yilmaz, Ertan; Melton, Patrick Benedict
2012-10-30
A turbomachine includes a compressor, a combustor operatively connected to the compressor, and an injection nozzle operatively connected to the combustor. The injection nozzle includes a main body having a first end section that extends to a second end section to define an inner flow path. The injection nozzle further includes an outlet arranged at the second end section of the main body, at least one passage that extends within the main body and is fluidly connected to the outlet, and at least one conduit extending between the inner flow path and the at least one passage.
Three-dimensional turbulent near-wall flows in streamwise corners: Current state and questions
NASA Astrophysics Data System (ADS)
Kornilov, V. I.
2017-10-01
Current advances in experimental and computational studies of three-dimensional (3-D) near-wall turbulent flows in streamwise corners (SC) including the boundary-layer transition are reviewed. The focus is the structure, properties and main regularities of such flows in a wide range of variable conditions and basic parameters. A variety of different kinds of near-wall streamwise corner flows is displayed. Analysis of approaches for modeling of the near-wall corner flow in laboratory experiment is given. The problem of simulation of such flows where some ambiguities remain is discussed. The main factors on the structure of the flow in streamwise corners are analyzed. Also, the effectiveness of flow control by streamwise vortices in the junction regions of aerodynamic surfaces is shown. Finally, some important properties of the modified near-wall turbulent corner flows which have been revealed experimentally, in particular, for the flow near the wing/body junction (WBJ), can be used as an attractive alternative for real applications.
Rincheval, Vincent; Lelek, Mickael; Gault, Elyanne; Bouillier, Camille; Sitterlin, Delphine; Blouquit-Laye, Sabine; Galloux, Marie; Zimmer, Christophe; Eleouet, Jean-François; Rameix-Welti, Marie-Anne
2017-09-15
Infection of cells by respiratory syncytial virus induces the formation of cytoplasmic inclusion bodies (IBs) where all the components of the viral RNA polymerase complex are concentrated. However, the exact organization and function of these IBs remain unclear. In this study, we use conventional and super-resolution imaging to dissect the internal structure of IBs. We observe that newly synthetized viral mRNA and the viral transcription anti-terminator M2-1 concentrate in IB sub-compartments, which we term "IB-associated granules" (IBAGs). In contrast, viral genomic RNA, the nucleoprotein, the L polymerase and its cofactor P are excluded from IBAGs. Live imaging reveals that IBAGs are highly dynamic structures. Our data show that IBs are the main site of viral RNA synthesis. They further suggest that shortly after synthesis in IBs, viral mRNAs and M2-1 transiently concentrate in IBAGs before reaching the cytosol and suggest a novel post-transcriptional function for M2-1.Respiratory syncytial virus (RSV) induces formation of inclusion bodies (IBs) sheltering viral RNA synthesis. Here, Rincheval et al. identify highly dynamic IB-associated granules (IBAGs) that accumulate newly synthetized viral mRNA and the viral M2-1 protein but exclude viral genomic RNA and RNA polymerase complexes.
Jupiter's ring system - New results on structure and particle properties
NASA Technical Reports Server (NTRS)
Showalter, Mark R.; Burns, Joseph A.; Cuzzi, Jeffrey N.; Pollack, James B.
1987-01-01
Jupiter's diffuse ring system is upon reexamination of Voyager images noted to be composed of a relatively bright narrow ring and an inner toroidal halo as well as the 'gossamer' exterior ring, while the previously suspected inner disk is missing. Several narrow, bright features are visible in the main ring, and are suggested to be related in some way to Adrastea and Metis. The smallest ring particles and the dark, rough, red largest bodies both have total optical depths of 1-6 x 10 to the -6th. After arising at the bright ring's inner boundary, the halo rapidly expands inward to a 20,000-km thickness, and disappears at a radius of 90,000 km halfway between the main ring and the planet's cloudtops.
Bajor, Grzegorz; Likus, Wirginia; Kuszewski, Piotr; Kostro, Karol; Łoś, Andrzej; Kłakus, Piotr
2015-01-01
The Conscious Body Donation Program conducted since 2003 by the Department of Human Anatomy, Medical University of Silesia in Katowice was the first innovative project aimed at obtaining informed donors' bodies for the purpose of teaching anatomy in Poland. The aim of this prospective study was to determine the declared donors' characteristics and to establish the possible motivation for body donation. A total of 244 application files were reviewed and the following information was analyzed: donor's age, age at which the decision to donate the body was made, donor's place of residence and declared nationality, family background, education and profession, family structure and religion. Our results showed that mainly elderly people decided to donate their bodies (68.5 ± 11.84 years), living mostly in large and medium-sized cities. Men--donors often lived in small towns. Most of the donors were of blue-collar parentage, completed secondary education and at the time of taking decision to donate where married and retired. Widows were more likely to make the decision to donate than widowers. Most of our donors were Catholic. Our analysis of the profile of Polish donors may be useful to understand better for which groups of people death is not to be perceived as the end, and may become a value, which can be beneficial to living people.
Ozel, Bora; Sezgin, Billur; Guney, Kirdar; Latifoglu, Osman; Celebi, Cemallettin
2015-02-01
Although aesthetic procedures are known to have a higher impact on women, men are becoming more inclined toward such procedures since the last decade. To determine the reason behind the increase in demand for male aesthetic procedures and to learn about the expectations and inquietude related to body contouring surgery, a prospective questionnaire study was conducted on 200 Turkish males from January 1, 2011-May 31, 2012. Demographic information, previous aesthetic procedures and thoughts on body contouring procedures with given reasons were questioned. The results of the study showed that 53 % of all participants considered undergoing body contouring surgery with the given reason that they believed their current body structure required it. For those who did not consider contouring operations, 92.5 % said they felt that they did not need such a procedure. The results of the statistical analysis showed that BMI was a significant factor in the decision making process for wanting to undergo body contouring procedures. The results of the study showed that men's consideration for aesthetic operations depends mainly on necessity and that the most considered region was the abdominal zone in regard to contouring. We can conclude that men are becoming more interested in body contouring operations and therefore different surgical procedures should be refined and re-defined according to the expectations of this new patient group.
NASA Astrophysics Data System (ADS)
Malouin, Marc-André.; Mousseau, Normand
2008-03-01
We present numerical models of chalcogenide glasses constructed using the effective two and three body interaction potential developed by Mauro and Varshneya [1] combined with the activation-relaxation technique (ART nouveau) [2]. Structures are prepared starting from a random distribution, avoiding biases and crystalline remnants. Structural properties are studied mainly via characteristic system measurements including partial and total radial distribution functions, bond angle distributions, mean coordinations and bonds population. Results are shown for GexSe1-x for various x concentrations and compared to both experimental measurements and ab initio simulation results. [1] J.C. Mauro and A.K. Varshneya, J. Am. Ceram. Soc., 89 [7] 2323-6 (2006). [2] R. Malek and N. Mousseau, Phys. Rev. E 62, 7723 (2000).
Body weight of hypersonic aircraft, part 1
NASA Technical Reports Server (NTRS)
Ardema, Mark D.
1988-01-01
The load bearing body weight of wing-body and all-body hypersonic aircraft is estimated for a wide variety of structural materials and geometries. Variations of weight with key design and configuration parameters are presented and discussed. Both hot and cool structure approaches are considered in isotropic, organic composite, and metal matrix composite materials; structural shells are sandwich or skin-stringer. Conformal and pillow-tank designs are investigated for the all-body shape. The results identify the most promising hypersonic aircraft body structure design approaches and their weight trends. Geometric definition of vehicle shapes and structural analysis methods are presented in appendices.
NASA Technical Reports Server (NTRS)
Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)
2011-01-01
A mobile robotic unit features a main body, a plurality of legs for supporting the main body on and moving the main body in forward and reverse directions about a base surface, and a drive assembly. According to an exemplary embodiment each leg includes a respective pivotal hip joint, a pivotal knee joint, and a wheeled foot adapted to roll along the base surface. Also according to an exemplary embodiments the drive assembly includes a motor operatively associated with the hip and knee joints and the wheeled foot for independently driving pivotal movement of the hip joint and the knee joint and rolling motion of the wheeled foot. The hip joint may include a ball-and-socket-type joint interconnecting top portion of the leg to the main body, such that the hip joint is adapted to pivot said leg in a direction transverse to a forward-and-reverse direction.
Liquid-Sensing Probe and Methods for Using the Same
NASA Technical Reports Server (NTRS)
Haberbusch, Mark S. (Inventor); Ickes, Jacob C. (Inventor); Thurn, Adam (Inventor); Lawless, Branden J. (Inventor)
2014-01-01
A sensor assembly includes a main body, a sensor, and a filler. The main body includes an outer surface having a continuously-variable radius of curvature in at least one portion. A sensor in thermal communication with a region of that surface having relatively low radius of curvature is disposed in the assembly recessed from the outer surface. Liquid droplets adhered to the outer surface in this region tend to migrate to a distant location having a higher radius of curvature. The main body has low thermal conductivity. The filler has a relatively higher thermal conductivity and, in embodiments, fills an opening in the outer surface of the main body, providing a thermally-conductive pathway between the sensor and the surrounding environment via the opening. A probe having a plurality of such sensors, and methods of detecting the presence of liquid and phase transitions in a predetermined space are also disclosed.
Johnson, Steve A.
1990-01-01
An arrangement especially suitable for use in a laser apparatus for converting a plurality of different input light beams, for example copper vapor laser beams, into a plurality of substantially identical light beams is disclosed herein. This arrangement utilizes an optical mixing bar which is preferably integrally formed as a single unit and which includes a main body for mixing light therein, a flat input surface on one end of the main body, and a multi-faceted output face on the opposite end of the main body. This arrangement also includes means for directing the plurality of different input light beams onto the input face of the mixing base, whereby to cause the different beams to mix within the main body of the mixing bar and exit the latter from its multi-faceted output face as the desired plurality of substantially identical output beams.
Biomechanical analysis and rehabilitation in athletes
Pastorelli, Francesca; Pasquetti, Pietro
2013-01-01
Summary Posture is defined as the position of the body at a given point in time. Incorrect relationship among different parts of body produces an higher tension on retaining structure that causes postural problems. Posturology is fundamental to recognize the relationship between postural attitude and some pathological conditions otherwise difficult to recognize. We can use force platform, baropodometric or dynamometric platform to analyze tonic postural system and to evaluate sensitive receptors. The main injuries in athletes are caused by cumulative trauma. Rehabilitation process is divided in three phases: an acute phase, a post-acute phase and a “return to play” phase. The goal of prevention and rehabilitation is to find and remove stress and pathologic agent, to reduce the limitation of the range of motion, control pain and come back to sport. PMID:24133525
Enterovirus Control of Translation and RNA Granule Stress Responses.
Lloyd, Richard E
2016-03-30
Enteroviruses such as poliovirus (PV) and coxsackievirus B3 (CVB3) have evolved several parallel strategies to regulate cellular gene expression and stress responses to ensure efficient expression of the viral genome. Enteroviruses utilize their encoded proteinases to take over the cellular translation apparatus and direct ribosomes to viral mRNAs. In addition, viral proteinases are used to control and repress the two main types of cytoplasmic RNA granules, stress granules (SGs) and processing bodies (P-bodies, PBs), which are stress-responsive dynamic structures involved in repression of gene expression. This review discusses these processes and the current understanding of the underlying mechanisms with respect to enterovirus infections. In addition, the review discusses accumulating data suggesting linkage exists between RNA granule formation and innate immune sensing and activation.
Signal Separation of Helicopter Radar Returns Using Wavelet-Based Sparse Signal Optimisation
2016-10-01
RR–0436 ABSTRACT A novel wavelet-based sparse signal representation technique is used to separate the main and tail rotor blade components of a...helicopter from the composite radar returns. The received signal consists of returns from the rotating main and tail rotor blades , the helicopter body...component signal com- prising of returns from the main body, the main and tail rotor hubs and blades . Temporal and Doppler characteristics of these
NASA Astrophysics Data System (ADS)
Yoshimura, Ryokei; Ogawa, Yasuo; Yukutake, Yohei; Kanda, Wataru; Komori, Shogo; Hase, Hideaki; Goto, Tada-nori; Honda, Ryou; Harada, Masatake; Yamazaki, Tomoya; Kamo, Masato; Kawasaki, Shingo; Higa, Tetsuya; Suzuki, Takeshi; Yasuda, Yojiro; Tani, Masanori; Usui, Yoshiya
2018-04-01
On 29 June 2015, a small phreatic eruption occurred at Hakone volcano, Central Japan, forming several vents in the Owakudani geothermal area on the northern slope of the central cones. Intense earthquake swarm activity and geodetic signals corresponding to the 2015 eruption were also observed within the Hakone caldera. To complement these observations and to characterise the shallow resistivity structure of Hakone caldera, we carried out a three-dimensional inversion of magnetotelluric measurement data acquired at 64 sites across the region. We utilised an unstructured tetrahedral mesh for the inversion code of the edge-based finite element method to account for the steep topography of the region during the inversion process. The main features of the best-fit three-dimensional model are a bell-shaped conductor, the bottom of which shows good agreement with the upper limit of seismicity, beneath the central cones and the Owakudani geothermal area, and several buried bowl-shaped conductive zones beneath the Gora and Kojiri areas. We infer that the main bell-shaped conductor represents a hydrothermally altered zone that acts as a cap or seal to resist the upwelling of volcanic fluids. Enhanced volcanic activity may cause volcanic fluids to pass through the resistive body surrounded by the altered zone and thus promote brittle failure within the resistive body. The overlapping locations of the bowl-shaped conductors, the buried caldera structures and the presence of sodium-chloride-rich hot springs indicate that the conductors represent porous media saturated by high-salinity hot spring waters. The linear clusters of earthquake swarms beneath the Kojiri area may indicate several weak zones that formed due to these structural contrasts.[Figure not available: see fulltext.
Railway vehicle body structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-01-01
The strength and durability of railway vehicle structures is a major topic of engineering research and design. To reflect this importance the Railway Division of the Institution of Mechanical Engineers organised a conference to discuss all matters relating to railway vehicle design. This book presents the papers discussed in that conference. The contents include: Vehicle body design and the UIC's international contribution; LUL prototype 1986 stock - body structure; vehicle structure for the intermediate capacity transmit system vehicles; car body technology of advanced light rapid transit vehicles; concepts, techniques and experience in the idealization of car body structures for finitemore » element analysis; Calcutta metropolitan railway; design for a lightweight diesel multiple unit body; the design of lightweight inter-city coal structures; the BREL international coach body shell structure; new concepts and design techniques versus material standards; structures of BR diesel electric freight locomotives; structural design philosophy for electric locomotives; suspension design for a locomotive with low structural frequencies; freight wagon structures; a finite element study of coal bodyside panels including the effects of joint flexibility; a fresh approach to the problem of car body design strength; energy absorption in automatic couplings and draw gear; passenger vehicle design loads and structural crashworthiness; design of the front part of railway vehicles (in case of frontal impact); the development of a theoretical technique for rail vehicle structural crashworthiness.« less
An efficient structural finite element for inextensible flexible risers
NASA Astrophysics Data System (ADS)
Papathanasiou, T. K.; Markolefas, S.; Khazaeinejad, P.; Bahai, H.
2017-12-01
A core part of all numerical models used for flexible riser analysis is the structural component representing the main body of the riser as a slender beam. Loads acting on this structural element are self-weight, buoyant and hydrodynamic forces, internal pressure and others. A structural finite element for an inextensible riser with a point-wise enforcement of the inextensibility constrain is presented. In particular, the inextensibility constraint is applied only at the nodes of the meshed arc length parameter. Among the virtues of the proposed approach is the flexibility in the application of boundary conditions and the easy incorporation of dissipative forces. Several attributes of the proposed finite element scheme are analysed and computation times for the solution of some simplified examples are discussed. Future developments aim at the appropriate implementation of material and geometric parameters for the beam model, i.e. flexural and torsional rigidity.
Structure elucidation of dimeric transmembrane domains of bitopic proteins.
Bocharov, Eduard V; Volynsky, Pavel E; Pavlov, Konstantin V; Efremov, Roman G; Arseniev, Alexander S
2010-01-01
The interaction between transmembrane helices is of great interest because it directly determines biological activity of a membrane protein. Either destroying or enhancing such interactions can result in many diseases related to dysfunction of different tissues in human body. One much studied form of membrane proteins known as bitopic protein is a dimer containing two membrane-spanning helices associating laterally. Establishing structure-function relationship as well as rational design of new types of drugs targeting membrane proteins requires precise structural information about this class of objects. At present time, to investigate spatial structure and internal dynamics of such transmembrane helical dimers, several strategies were developed based mainly on a combination of NMR spectroscopy, optical spectroscopy, protein engineering and molecular modeling. These approaches were successfully applied to homo- and heterodimeric transmembrane fragments of several bitopic proteins, which play important roles in normal and in pathological conditions of human organism.
Scheffers, Mia; van Duijn, Marijtje A. J.; Bosscher, Ruud J.; Wiersma, Durk; Schoevers, Robert A.; van Busschbach, Jooske T.
2017-01-01
Background Body image has implications for psychosocial functioning and quality of life and its disturbance is reported in a broad range of psychiatric disorders. In view of the lack of instruments in Dutch measuring body image as a broad concept, we set out to make an instrument available that reflects the multidimensional character of this construct by including more dimensions than physical appearance. The Dresden Körperbildfragebogen (DBIQ, Dresden Body Image Questionnaire) particularly served this purpose. The DBIQ consists of 35 items and five subscales: body acceptance, sexual fulfillment, physical contact, vitality, and self-aggrandizement. The main objective of the present study was to evaluate the psychometric properties of the Dutch translation of the Dresden Body Image Questionnaire (DBIQ-NL) in a non-clinical sample. Methods The psychometric properties of the DBIQ-NL were examined in a non-clinical sample of 988 respondents aged between 18 and 65. We investigated the subscales' internal consistency and test-retest reliability. In order to establish construct validity we evaluated the association with a related construct, body cathexis, and with indices of self-esteem and psychological wellbeing. The factor structure of the DBIQ-NL was examined via confirmatory factor analysis (CFA). The equivalence of the measurement model across sex and age was evaluated by multiplegroup confirmatory factor analyses. Results Confirmatory factor analyses showed a structure in accordance with the original scale, where model fit was improved significantly by moving one item to another subscale. Multiple group confirmatory factor analysis across sex and age demonstrated partial strong invariance. Internal consistency was good with little overlap between the subscales. Temporal reliability and construct validity were satisfactory. Conclusion Results indicate that the DBIQ-NL is a reliable and valid instrument for non-clinical subjects. This provides a sound basis for further investigation of the DBIQ-NL in a clinical sample. PMID:28746387
Factors that contribute to the body image concern of female college students.
Silva, Wanderson Roberto; Dias, Juliana Chioda Ribeiro; Maroco, João; Campos, Juliana Alvares Duarte Bonini
2015-01-01
To estimate the contribution of sociodemographic and labor variables and body mass index to body image concern. In order to estimate body image concern, the Body Shape Questionnaire (BSQ) and the Weight Concerns Scale (WCS) were applied. A confirmatory factor analysis of scales was carried out. The reason χ2 by degree of freedom ratio (χ2/df ), Comparative Fit Index (CFI), Normed Fit Index (NFI), and root mean square error of approximation (RMSEA) were used. Convergent validity was assessed through the average variance extracted and composed reliability and the internal consistency through standardized Cronbach's alpha coefficient (α). A structural model was developed, and the body image concern was the second-order main construct. The model appropriation was evaluated based on the goodness-of-fit indices. The z test was used to estimate the significance of trajectories (β) using a 5% significance level. Totally, 595 female college students participated in the study, with a mean age of 20.42 ± 2.44 years. The entire model, with the inclusion of all independent variables, showed unsatisfactory adjustment and was refined. The final model presented a satisfactory adjustment (χ2/df = 5.75; CFI = 0.87; NFI = 0.85; RMSEA = 0.09) with inclusion of medication use because of studies (β = 0.08; p = 0.04), academic performance (β = 0.09; p = 0.02), economic class (β = 0.08; p = 0.03), and body mass index (β = 0.44; p < 0.001). This model explained 22% of body image concern. Medication use due to studies, academic performance, economic class and body mass index significantly contribute to body image concern.
NASA Astrophysics Data System (ADS)
Tarighi Ahmadpour, Mahdi; Rostamnejadi, Ali; Hashemifar, S. Javad
2018-04-01
We study the electronic structure and optical properties of a body-centered tetragonal phase of carbon (bct-C4) within the framework of time-dependent density functional theory and Bethe-Salpeter equation. The results indicate that the optical properties of bct-C4 are strongly affected by the electron-hole interaction. It is demonstrated that the long-range corrected exchange-correlation kernels could fairly reproduce the Bethe-Salpeter equation results. The effective carrier number reveals that at energies above 30 eV, the excitonic effects are not dominant any more and that the optical transitions originate mainly from electronic excitations. The emerged peaks in the calculated electron energy loss spectra are discussed in terms of plasmon excitations and interband transitions. The results of the research indicate that bct-C4 is an indirect wide-band-gap semiconductor, which is transparent in the visible region and opaque in the ultraviolet spectral range.
Bound states of dipolar bosons in one-dimensional systems
NASA Astrophysics Data System (ADS)
Volosniev, A. G.; Armstrong, J. R.; Fedorov, D. V.; Jensen, A. S.; Valiente, M.; Zinner, N. T.
2013-04-01
We consider one-dimensional tubes containing bosonic polar molecules. The long-range dipole-dipole interactions act both within a single tube and between different tubes. We consider arbitrary values of the externally aligned dipole moments with respect to the symmetry axis of the tubes. The few-body structures in this geometry are determined as a function of polarization angles and dipole strength by using both essentially exact stochastic variational methods and the harmonic approximation. The main focus is on the three-, four- and five-body problems in two or more tubes. Our results indicate that in the weakly coupled limit the intertube interaction is similar to a zero-range term with a suitable rescaled strength. This allows us to address the corresponding many-body physics of the system by constructing a model where bound chains with one molecule in each tube are the effective degrees of freedom. This model can be mapped onto one-dimensional Hamiltonians for which exact solutions are known.
Research on the inspection robot for cable tunnel
NASA Astrophysics Data System (ADS)
Xin, Shihao
2017-03-01
Robot by mechanical obstacle, double end communication, remote control and monitoring software components. The mechanical obstacle part mainly uses the tracked mobile robot mechanism, in order to facilitate the design and installation of the robot, the other auxiliary swing arm; double side communication part used a combination of communication wire communication with wireless communication, great improve the communication range of the robot. When the robot is controlled by far detection range, using wired communication control, on the other hand, using wireless communication; remote control part mainly completes the inspection robot walking, navigation, positioning and identification of cloud platform control. In order to improve the reliability of its operation, the preliminary selection of IPC as the control core the movable body selection program hierarchical structure as a design basis; monitoring software part is the core part of the robot, which has a definite diagnosis Can be instead of manual simple fault judgment, instead the robot as a remote actuators, staff as long as the remote control can be, do not have to body at the scene. Four parts are independent of each other but are related to each other, the realization of the structure of independence and coherence, easy maintenance and coordination work. Robot with real-time positioning function and remote control function, greatly improves the IT operation. Robot remote monitor, to avoid the direct contact with the staff and line, thereby reducing the accident casualties, for the safety of the inspection work has far-reaching significance.
Wei, Yuchen; Yi, Zhongsheng; Xu, Jie; Yang, Wu; Yang, Lulu; Liu, Hongyan
2018-04-24
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) are a class of toxic environmental pollutants that are persistent, bioaccumulative, and difficult to degrade. Their structure is very similar to the thyroid hormone (T4) and uses the body's thyroid transporter (TTR) binding to interfere with the endocrine balance, disrupting the body's normal physiological activity. According to Fourier transform infrared spectroscopy and dynamics simulation of do_dssp module analysis, there are three kinds of OH-PBDEs that can induce TTR secondary structural changes. Fluorescence spectra and UV-Vis spectra show that for the three kinds of OH-PBDEs for TTR, the main methods of quenching are static quenching and non-radiative energy transfer. According to thermodynamic analysis, ΔG < 0, ΔH > 0, and ΔS > 0 combine to show that the hydrophobic interaction is the main driving force of the combination. From the molecular docking analysis, it was found that 4'-hydroxy-2,2',4,5'- tetrabromodiphenyl ether (4'-OH-BDE49) and 4 hydroxy-2,2',3,4',5,6,6'- heptabromodiphenyl ether (4-OH-BDE188) had a cationic-π interaction with TTR, whereas 4 hydroxy-2,2',3,4,5,5',6- heptabromodiphenyl ether (4-OH-BDE187) was bonded to TTR by hydrogen bonds to form stable complexes. In this paper, we highlight the consistency of spectroscopic experiments and computer simulations so as to provide a reliable analytical method for the toxicological properties of small molecule contaminants.
McDonough, Christine M.; Jette, Alan M.; Ni, Pengsheng; Bogusz, Kara; Marfeo, Elizabeth E; Brandt, Diane E; Chan, Leighton; Meterko, Mark; Haley, Stephen M.; Rasch, Elizabeth K.
2014-01-01
Objectives To build a comprehensive item pool representing work-relevant physical functioning and to test the factor structure of the item pool. These developmental steps represent initial outcomes of a broader project to develop instruments for the assessment of function within the context of Social Security Administration (SSA) disability programs. Design Comprehensive literature review; gap analysis; item generation with expert panel input; stakeholder interviews; cognitive interviews; cross-sectional survey administration; and exploratory and confirmatory factor analyses to assess item pool structure. Setting In-person and semi-structured interviews; internet and telephone surveys. Participants A sample of 1,017 SSA claimants, and a normative sample of 999 adults from the US general population. Interventions Not Applicable. Main Outcome Measure Model fit statistics Results The final item pool consisted of 139 items. Within the claimant sample 58.7% were white; 31.8% were black; 46.6% were female; and the mean age was 49.7 years. Initial factor analyses revealed a 4-factor solution which included more items and allowed separate characterization of: 1) Changing and Maintaining Body Position, 2) Whole Body Mobility, 3) Upper Body Function and 4) Upper Extremity Fine Motor. The final 4-factor model included 91 items. Confirmatory factor analyses for the 4-factor models for the claimant and the normative samples demonstrated very good fit. Fit statistics for claimant and normative samples respectively were: Comparative Fit Index = 0.93 and 0.98; Tucker-Lewis Index = 0.92 and 0.98; Root Mean Square Error Approximation = 0.05 and 0.04. Conclusions The factor structure of the Physical Function item pool closely resembled the hypothesized content model. The four scales relevant to work activities offer promise for providing reliable information about claimant physical functioning relevant to work disability. PMID:23542402
NASA Astrophysics Data System (ADS)
Neres, Marta; Terrinha, Pedro; Custódio, Susana; Noiva, João; Brito, Pedro; Santos, Joana; Carrilho, Fernando
2017-04-01
Long-lasting and widespread alkaline magmatism is recognized in the west Portuguese margin. Offshore, several volcanic seamounts punctuate the Tore-Madeira Rise and the Estremadura Spur, with known ages between 80 and 100 Ma. Onshore, the major events are the Monchique (69-73 Ma), Sines (75-77 Ma) and Sintra (75-82 Ma) plutons - whose location (aligned along 200 km) and age discrepancy inspired some geodynamic models for Iberia during the Cretaceous - and the Lisbon Volcanic Complex (90-100 Ma). Structural links between them have been proposed but no direct evidence was yet found for it. In this work we present new magnetic data from recent marine magnetic surveys (ROCHEL and MINEPLAT project) conducted off the west Portuguese coast on the continental shelf and slope. A total area of about 3000 km2 between Sintra and Sines was surveyed with line spacing of 1 mile. Very high-resolution multi-channel seismic profiles were simultaneously acquired with the magnetics covering an area of 400 km2 off Sines. Two main primary outcomes arise from these data. On one hand, higher-resolution mapping in regions where magnetic anomalies were already known allows a better understanding of the buried sub-volcanic system. On the other hand, previously unknown NNW-SSE aligned magnetic anomalies were identified along the coast off Sines, possibly corresponding to buried Late Cretaceous alkaline magmatic intrusives. The presence of magmatic bodies was up to now unknown in this region, and these findings reignite the discussion about a structural link connecting the three main on land intrusive complexes, Sintra, Sines and Monchique. In addition to the structural control of the magmatic complexes, seismicity is also an issue as a cluster of seismicity coincident with the Monchique complex has long been known. Smaller clusters coincide with the magnetic anomalies mapped during the ROCHEL and MINEPLAT surveys, as well. We interpret these results in the light of the tectono-magmatism of West Iberia during the Late Cretaceous and at Present, specifically: What was the tectonic control for the emplacement of these magmatic bodies emplaced on the rifted margin? Is the rheological contrast between magmatic bodies and host-rocks controlling the seismicity localization? Publication supported by FCT- project UID/GEO/50019/2013 - Instituto Dom Luiz.
Ludinsky, Maximilian; Christner, Sarah; Su, Nan; Taubitz, Tatjana; Tschulakow, Alexander; Biesemeier, Antje; Julien-Schraermeyer, Sylvie; Schraermeyer, Ulrich
2016-06-01
To investigate the effects of intravitreal ranibizumab (Lucentis®) and aflibercept (Eylea®) on the ciliary body and the iris of 12 cynomolgus monkeys with regard to the fenestrations of their blood vessels. Structural changes in the ciliary body and in the iris were investigated with light, fluorescent, and transmission electron microscopy (TEM). The latter was used to specifically quantify fenestrations of the endothelium of blood vessels after treatment with aflibercept and ranibizumab. Each of the two ciliary bodies treated with aflibercept and the two treated with ranibizumab and their controls were examined after 1 and 7 days respectively. Ophthalmological investigations including funduscopy and intraocular pressure measurements were also applied. Ophthalmological investigations did not reveal any changes within the groups. Both drugs reduced the VEGF concentration in the ciliary body pigmented epithelium. The structure of the ciliary body was not influenced, while the posterior pigmented epithelium of the iris showed vacuoles after aflibercept treatment. Ranibizumab was mainly concentrated on the surface layer of the ciliary epithelium, in the blood vessel walls and the lumen of some of the blood vessels, and in the cells of the epithelium of the ciliary body. Aflibercept was more concentrated in the stroma and not in the cells of the epithelium, but as with ranibizumab, also in the blood vessel walls and some of their lumina, and again on the surface layer of the epithelium. Both aflibercept-and ranibizumab-treated eyes showed a decreased number of fenestrations of the capillaries in the ciliary body compared to the untreated controls. On day 1 and day 7, aflibercept had fewer fenestrations than the ranibizumab samples of the same day. Both aflibercept and ranibizumab were found to reach the blood vessel walls of the ciliary body, and effectively reduced their fenestrations. Aflibercept might eliminate VEGF to a greater extent, possibly due to a higher elimination of fenestrations in a shorter time. Moreover, the vacuoles found in the iris need further research, in order to evaluate whether they carry a possible pathological potential.
The offshore Palos Verdes fault zone near San Pedro, Southern California
Fisher, M.A.; Normark, W.R.; Langenheim, V.E.; Calvert, A.J.; Sliter, R.
2004-01-01
High-resolution seismic-reflection data are combined with a variety of other geophysical and geological data to interpret the offshore structure and earthquake hazards of the San Pedro shelf, near Los Angeles, California. Prominent structures investigated include the Wilmington graben, the Palos Verdes fault zone, various faults below the west part of the San Pedro shelf and slope, and the deep-water San Pedro basin. The structure of the Palos Verdes fault zone changes markedly along strike southeastward across the San Pedro shelf and slope. Under the north part of the shelf, this fault zone includes several strands, with the main strand dipping west. Under the slope, the main fault strands exhibit normal separation and mostly dip east. To the southeast near Lasuen Knoll, the Palos Verdes fault zone locally is low angle, but elsewhere near this knoll, the fault dips steeply. Fresh seafloor scarps near Lasuen Knoll indicate recent fault movement. We explain the observed structural variation along the Palos Verdes fault zone as the result of changes in strike and fault geometry along a master right-lateral strike-slip fault at depth. Complicated movement along this deep fault zone is suggested by the possible wave-cut terraces on Lasuen Knoll, which indicate subaerial exposure during the last sea level lowstand and subsequent subsidence of the knoll. Modeling of aeromagnetic data indicates a large magnetic body under the west part of the San Pedro shelf and upper slope. We interpret this body to be thick basalt of probable Miocene age. This basalt mass appears to have affected the pattern of rock deformation, perhaps because the basalt was more competent during deformation than the sedimentary rocks that encased the basalt. West of the Palos Verdes fault zone, other northwest-striking faults deform the outer shelf and slope. Evidence for recent movement along these faults is equivocal, because we lack age dates on deformed or offset sediment.
Secular resonances with massive asteroids and their impact on the dynamics of small bodies
NASA Astrophysics Data System (ADS)
Tsirvoulis, Georgios; Novaković, Bojan; Djošović, Valdimir
2015-08-01
The quest for understanding the dynamical structure of the main belt has been a long-lasting endeavor. From the discovery of the Kirkwood gaps and the Hirayama families, to the more recent advances in secular perturbation theory, the refinement of the proper elements and the discovery of the three-body mean-motion resonances, only to name a few, the progress has been immense. Dynamical models coupled with the outbursts in computational power and observations have greatly improved our knowledge of the dynamical evolution of the small bodies in the Solar System.While our set of tools for studying the dynamical porperties of the main belt is believed to be sufficiently complete, our assumptions on how to use them seem to have hindered this effort.The concensus has been that, judging by their mass, only the planets, especially the giant ones, can act as efficient perturbers of the orbits of asteroids. Thus a lot of studies have been made on the locations and effects of secular resonances with the giant planets in different parts of the main belt, explaining among other things the presence of gaps in the distribution of asteroids, strange shapes of some asteroid families and transport mechanisms of asteroids to the near-Earth region.Our work is motivated by the first discovery that a secular resonance with the most massive asteroid, Ceres, is the dominant dynamical mechanism responsible for the post-impact evolution of the Hoffmeister family members. Thus the concensus is wrong. Knowing now, that secular resonances with massive asteroids can be effective on asteroid dynamics, we set out to construct a dynamical map of these resonances across the main belt.Our study is focused on the linear and degree four non-linear secular resonances with the two most massive asteroids (1) Ceres and (4) Vesta. First we determine the locations of these secular resonances in the proper elements space, acquiring an understanding of the potentially affected regions, and then we perform numerical simulations to investigate the importance of each secular resonance on the dynamical evolution of asteroid orbits in the different parts of the main belt.
Increasing Awareness and Acceptance Through Mindfulness and Somatic Education Movements.
Bloise, Paulo Vicente; Andrade, Mário César Rezende; Machado, Hans; Andreoli, Sérgio Baxter
2016-01-01
Context • The main feature of mindfulness-based interventions (MBI) is the encouragement of present moment awareness and of self-regulation, which are associated with health benefits. Meditating with the body in movement has been referred to as one of the most accessible ways of reaching such awareness. An MBI program, Mindfulness and Movements of Integration (MMI), has the same structure as mindfulness-based stress reduction (MBSR) but puts more emphasis on the body and uses somatic education (SE) movements instead of yoga postures. Objectives • The study aimed to explore and describe the implementation of an MMI group and evaluate the effects on the main skills of mindfulness (ie, present moment awareness and acceptance). Design • The study used a pretest-posttest design. Setting • The study took place at the clinic of the Department of Psychiatry at the Federal University of São Paulo in São Paulo, Brazil. Participants • Participants were individuals 18 y old or older living in the city of São Paulo, Brazil. Intervention • The intervention was structured to have 8 weekly sessions of 2.5 h each and a 1-d retreat. Participants were taught the formal meditation practices derived of MBSR: (1) the body scan and (2) awareness of different focuses-breathing, body sensations, sounds, thoughts, feelings, and open awareness. From the third session until the end of the study, 4 SE series of movements were added. Outcome Measures • The Brazilian adapted and validated versions of both the Mindful Attention Awareness Scale (MAAS) and the Philadelphia Mindfulness Scale (PHLMS) were used to assess present moment awareness, and acceptance was assessed using only the latter scale. Results • Significant improvements were observed in the mean score on the MAAS for present moment awareness (Cohen's d = 1.58). The PHLMS mean scores also showed significant improvements related to the Awareness (Cohen's d = 0.85) and Acceptance (Cohen's d = 0.63) subscales. However, the correlation between the changes in scores in those subscales was not significant (r = .29; P = .29). Conclusions • The results point to the MMI program as a potentially acceptable and useful MBI by increasing awareness and acceptance through mindfulness and SE movements.
Deciphering Debris Disk Structure with the Submillimeter Array
NASA Astrophysics Data System (ADS)
MacGregor, Meredith Ann
2018-01-01
More than 20% of nearby main sequence stars are surrounded by dusty disks continually replenished via the collisional erosion of planetesimals, larger bodies similar to asteroids and comets in our own Solar System. The material in these ‘debris disks’ is directly linked to the larger bodies such as planets in the system. As a result, the locations, morphologies, and physical properties of dust in these disks provide important probes of the processes of planet formation and subsequent dynamical evolution. Observations at millimeter wavelengths are especially critical to our understanding of these systems, since they are dominated by larger grains that do not travel far from their origin and therefore reliably trace the underlying planetesimal distribution. The Submillimeter Array (SMA) plays a key role in advancing our understanding of debris disks by providing sensitivity at the short baselines required to determine the structure of wide-field disks, such as the HR 8799 debris disk. Many of these wide-field disks are among the closest systems to us, and will serve as cornerstone templates for the interpretation of more distant, less accessible systems.
Fast Generation of Ensembles of Cosmological N-Body Simulations via Mode-Resampling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, M D; Cole, S; Frenk, C S
2011-02-14
We present an algorithm for quickly generating multiple realizations of N-body simulations to be used, for example, for cosmological parameter estimation from surveys of large-scale structure. Our algorithm uses a new method to resample the large-scale (Gaussian-distributed) Fourier modes in a periodic N-body simulation box in a manner that properly accounts for the nonlinear mode-coupling between large and small scales. We find that our method for adding new large-scale mode realizations recovers the nonlinear power spectrum to sub-percent accuracy on scales larger than about half the Nyquist frequency of the simulation box. Using 20 N-body simulations, we obtain a powermore » spectrum covariance matrix estimate that matches the estimator from Takahashi et al. (from 5000 simulations) with < 20% errors in all matrix elements. Comparing the rates of convergence, we determine that our algorithm requires {approx}8 times fewer simulations to achieve a given error tolerance in estimates of the power spectrum covariance matrix. The degree of success of our algorithm indicates that we understand the main physical processes that give rise to the correlations in the matter power spectrum. Namely, the large-scale Fourier modes modulate both the degree of structure growth through the variation in the effective local matter density and also the spatial frequency of small-scale perturbations through large-scale displacements. We expect our algorithm to be useful for noise modeling when constraining cosmological parameters from weak lensing (cosmic shear) and galaxy surveys, rescaling summary statistics of N-body simulations for new cosmological parameter values, and any applications where the influence of Fourier modes larger than the simulation size must be accounted for.« less
Baur, Heidi; Gatterer, Hannes; Hotter, Barbara; Kopp, Martin
2017-06-01
[Purpose] The aim of this study was to examine the influence of Structural Integration and Fascial Fitness, a new form of physical exercise, on body image and the perception of back pain. [Subjects and Methods] In total, 33 participants with non-specific back pain were split into two groups and performed three sessions of Structural Integration or Fascial Fitness within a 3-week period. Before and after the interventions, perception of back pain and body image were evaluated using standardized questionnaires. [Results] Structural Integration significantly decreased non-specified back pain and improved both "negative body image" and "vital body dynamics". Fascial Fitness led to a significant improvement on the "negative body image" subscale. Benefits of Structural Integration did not significantly vary in magnitude from those for fascial fitness. [Conclusion] Both Structural Integration and Fascial Fitness can lead to a more positive body image after only three sessions. Moreover, the therapeutic technique of Structural Integration can reduce back pain.
Tedeschi, Luis O; Fox, Danny G; Kononoff, Paul J
2013-04-01
The objective of this paper was to develop the structure and concepts of a dynamic model to simulate dry matter intake (DMI) pattern and the fluxes of fat and protein in the body reserves of cattle associated with changes in body condition score (BCS) for application within the structure of applied nutrition models. This model was developed to add the capability of evaluating the effects of factors affecting pre- and postcalving DMI, daily energy and protein balances, and changes in BCS over a reproductive cycle. Input variables are average DMI, diet metabolizable energy, and animal information (body weight, BCS, milk production, and calf birth body weight) from each diet fed over the reproductive cycle. Because the depletion and repletion of body reserves in cattle is a complex system of coordinated metabolic processes that reflect hormonal and physiological changes caused by negative or positive energy balances, the system dynamics modeling methodology was used to develop this model. The model was used to evaluate the effect of the dynamic interactions between dietary supply and animal requirements for energy and protein on the fluxes of body fat and body protein of dairy cows over the reproductive cycle and Monte Carlo simulations were used to assess the sensitivity of the parameters. The main long-term factor affecting DMI pattern was the growth of the gravid uterus causing an increase in the volume of abdominal organs and a compression of the rumen, consequentially reducing feed intake. Changes in body reserves (fat and protein) were computed based on metabolizable energy balance, assuming different efficiency of utilization coefficients for fat and protein during repletion and mobilization. The model was evaluated with data from 37 dairy cows individually fed 3 different diets over the lactation and dry periods. The model was successful in simulating the observed pattern of DMI (mean square error was 3.59, 3.97, and 3.66 for diets A, B, and C, respectively), but it tended to underpredict DMI during late lactation [around 200 to 285 d in milk (DIM)] for all diets, suggesting changes in the model structure might be needed. The predicted BCS pattern had a trend similar to the observed values. Assuming that observed BCS represents actual body fat, the model tended to overpredict observed BCS during early lactation (0.125 BCS for 0 to 120 DIM) and underpredict it during late lactation (0.06 BCS for 180 to 270 DIM). A long-term simulation (5 lactations and 4 dry periods) with diet A indicated that the cows on this diet would have a net loss of body fat if all conditions were constant. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Shirasaki, Masato; Yoshida, Naoki
2018-04-01
Weak lensing three-point statistics are powerful probes of the structure of dark matter haloes. We propose to use the correlation of the positions of galaxies with the shapes of background galaxy pairs, known as the halo-shear-shear correlation (HSSC), to measure the mean halo ellipticity and the abundance of subhaloes in a statistical manner. We run high-resolution cosmological N-body simulations and use the outputs to measure the HSSC for galaxy haloes and cluster haloes. Non-spherical haloes cause a characteristic azimuthal variation of the HSSC, and massive subhaloes in the outer region near the virial radius contribute to ˜ 10 per cent of the HSSC amplitude. Using the HSSC and its covariance estimated from our N-body simulations, we make forecast for constraining the internal structure of dark matter haloes with future galaxy surveys. With 1000 galaxy groups with mass greater than 1013.5 h-1M⊙, the average halo ellipticity can be measured with an accuracy of 10 percent. A spherical, smooth mass distribution can be ruled out at a ˜5σ significance level. The existence of subhaloes whose masses are in 1-10 percent of the main halo mass can be detected with ˜104 galaxies/clusters. We conclude that the HSSC provides valuable information on the structure of dark haloes and hence on the nature of dark matter.
The Joint Effects of Body Mass Index and MAOA Gene Polymorphism on Depressive Symptoms.
Liu, Yangyang
2015-07-01
The objective of the present study was to examine the joint effects of the body mass index and the MAOA gene polymorphism on depressive symptoms. In two independent Chinese samples, we measured adolescents' depressive symptoms and body mass index and collected their DNA. The results indicated that the main effects of the MAOA gene polymorphism on depressive symptoms were significant. However, the main effects of body mass index and the interaction of the MAOA gene polymorphism and body mass index on depressive symptoms were not significant. By using Chinese adolescents, this study confirmed that the MAOA gene polymorphism directly influenced adolescents' depressive symptoms.
Factor structure of the Body Appreciation Scale among Malaysian women.
Swami, Viren; Chamorro-Premuzic, Tomas
2008-12-01
The present study examined the factor structure of a Malay version of the Body Appreciation Scale (BAS), a recently developed scale for the assessment of positive body image that has been shown to have a unidimensional structure in Western settings. Results of exploratory and confirmatory factor analyses based on data from community sample of 591 women in Kuala Lumpur, Malaysia, failed to support a unidimensional structure for the Malay BAS. Results of a confirmatory factor analysis suggested two stable factors, which were labelled 'General Body Appreciation' and 'Body Image Investment'. Multi-group analysis showed that the two-factor structure was invariant for both Malaysian Malay and Chinese women, and that there were no significant ethnic differences on either factor. Results also showed that General Body Appreciation was significant negatively correlated with participants' body mass index. These results are discussed in relation to possible cross-cultural differences in positive body image.
Abdominal aortic aneurysm neck remodeling after Anaconda stent graft implantation.
Vukovic, Elisabeth; Czerny, Martin; Beyersdorf, Friedhelm; Wolkewitz, Martin; Berezowski, Mikolaj; Siepe, Matthias; Blanke, Philipp; Rylski, Bartosz
2018-05-24
The aim of this study was to define how the proximal landing zone changes geometrically after endovascular abdominal aortic aneurysm repair (EVAR) with the Anaconda (Vascutek, Inchinnan, United Kingdom) stent graft. Among 230 patients who underwent Anaconda stent graft implantation between 2005 and 2014, we included 126 with adequate computed tomography (CT) image quality and follow-up. CT analysis entailed the geometric changes in the main body, proximal rings, and proximal landing zone. The median CT follow-up was 2.0 years (345.8 patients-years). The proximal portion of the main body ring system flattened within the first year after EVAR, resulting in an up to 30° increase in the upper ring's angle in 40% patients and up to 40° increase in 24% patients. One year after EVAR, the upper ring angle increase slowed down. Aortic diameter measured at the level of the upper and lower ring expanded by 2 to 4 mm within 1 year, but remained unchanged afterward. The main body migrated continuously down toward the aortic bifurcation, attaining an average 6-mm increase in the distance between the superior mesenteric artery and main body within 4 years. Freedom from endoleak type IA was 95 ± 2% and 93 ± 3% after 1 and 4 years, respectively. The Anaconda main body ring system in its proximal portion flattens within the first year after EVAR, leading to an increase of 2 to 4 mm in the proximal landing zone's aortic diameter. The main body migrates slowly but continuously down toward the aortic bifurcation. Copyright © 2018 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
3D Gravity Inversion by Growing Bodies and Shaping Layers at Mt. Vesuvius (Southern Italy)
NASA Astrophysics Data System (ADS)
Berrino, Giovanna; Camacho, Antonio G.
2008-06-01
To improve our knowledge of the structural pattern of Mt. Vesuvius and its magmatic system, which represents one of the three volcanoes located in the Neapolitan area (together with Campi Flegrei and Ischia; southern Italy), we analyze here the Bouguer gravity map that is already available through its interpretation by means of 2.5-dimensional modelling. We have carried out a three-dimensional interpretation using a new and original algorithm, known as ‘Layers’, that has been especially processed for this purpose. Layers works in an automatic and non-subjective way, and allows the definition of the structural settings in terms of several layers, each representing a specific geological formation. The same data are also interpreted in terms of isolated and shallow anomalous density bodies using a well tested algorithm known as ‘Growth’. We focus our inversions on the Mt. Vesuvius volcano, while globally analyzing the entire Neapolitan area, in order to investigate the deep structures, and in particular the deep extended ‘sill’ that has been revealed by seismic tomography. The final models generally confirm the global setting of the area as outlined by previous investigations, mainly for the shape and depth of the carbonate basement below Mt. Vesuvius. The presence of lateral density contrasts inside the volcano edifice is also shown, which was only hypothesized in the 2.5-dimensional inversion. Moreover, the models allow us to note a high density body that rises from the top of the carbonate basement and further elongates above sea level. This probably represents an uprising of the same basement, which is just below the volcano and which coincides with the VP and VP/VS anomalies detected under the crater. The three-dimensional results also reveal that the two inversion methods provide very similar models, where the high density isolated body in the Growth model can be associated with the rising high density anomaly in the Layers model. Taking into account the density of these modelled bodies, we would also suggest that they represent solidified magma bodies, as suggested by other studies. Finally, we did not clearly detect any deep anomalous body that can be associated with the sill that was suggested by seismic tomography.
Epiplasmins and epiplasm in paramecium: the building of a submembraneous cytoskeleton.
Aubusson-Fleury, Anne; Bricheux, Geneviève; Damaj, Raghida; Lemullois, Michel; Coffe, Gérard; Donnadieu, Florence; Koll, France; Viguès, Bernard; Bouchard, Philippe
2013-07-01
In ciliates, basal bodies and associated appendages are bound to a submembrane cytoskeleton. In Paramecium, this cytoskeleton takes the form of a thin dense layer, the epiplasm, segmented into regular territories, the units where basal bodies are inserted. Epiplasmins, the main component of the epiplasm, constitute a large family of 51 proteins distributed in 5 phylogenetic groups, each characterized by a specific molecular design. By GFP-tagging, we analyzed their differential localisation and role in epiplasm building and demonstrated that: 1) The epiplasmins display a low turnover, in agreement with the maintenance of an epiplasm layer throughout the cell cycle; 2) Regionalisation of proteins from different groups allows us to define rim, core, ring and basal body epiplasmins in the interphase cell; 3) Their dynamics allows definition of early and late epiplasmins, detected early versus late in the duplication process of the units. Epiplasmins from each group exhibit a specific combination of properties. Core and rim epiplasmins are required to build a unit; ring and basal body epiplasmins seem more dispensable, suggesting that they are not required for basal body docking. We propose a model of epiplasm unit assembly highlighting its implication in structural heredity in agreement with the evolutionary history of epiplasmins. Copyright © 2013 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Vernisse, Y.; Riousset, J. A.; Motschmann, U.; Glassmeier, K.-H.
2017-03-01
Most planetary bodies are moving in the solar wind, in a stellar wind, or in a plasma flow within the magnetosphere of a planet. The interaction of the body with the flowing plasma provides us with various interaction types, which mainly depend on the flow speed, the magnetization of the body, its conductivity, the presence of an ionosphere, and the size of the body. We establish two cornerstones representing highly magnetized obstacles embedded in a super-Alfvénic and sub-Alfvénic plasma. Those two cornerstones complete the two cornerstones defined in our previous study on inert obstacles in super-Alfvénic and sub-Alfvénic regimes. Tracking the transitions between these cornerstones enable better understanding of the feedback of the obstacle onto the plasma flow. Each interaction is studied by means of the hybrid model simulation code AIKEF. The results are summarized in three dimensional diagrams showing the current structures, which serve as a basis for our descriptions. We identify the major currents such as telluric, magnetosonic, Chapman-Ferraro, and bow-shock currents as the signatures of the particular state of development of the interaction region. We show that each type of interactions can be identified by studying the shape and the magnitude of its specific currents.
Trojan Asteroid Lightcurves: Probing Internal Structure and the Origins
NASA Astrophysics Data System (ADS)
Ryan, E. L.
2017-12-01
Studies of the small bodies of the solar system reveal important clues about the condensation and formation of planetesimal bodies, and ultimately planets in planetary systems. Dynamics of small bodies have been utilized to model giant planet migration within our solar system, colors have been used to explore compositional gradients within the protoplanetary disk, & studies of the size-frequency distribution of main belt asteroids may reveal compositional dependences on planetesimal strength limiting models of planetary growth from collisional aggregration. Studies of the optical lightcurves of asteroids also yield important information on shape and potential binarity of asteroidal bodies. The K2 mission has allowed for the unprecedented collection of Trojan asteroid lightcurves on a 30 minute cadence for baselines of 10 days, in both the L4 and L5 Trojan clouds. Preliminary results from the K2 mission suggest that Trojan asteroids have bulk densities of 1 g/cc and a binary fraction ≤ 33 percent (Ryan et al., 2017, Astronomical Journal, 153, 116), however Trojan lightcurve data is actively being collected via the continued K2 mission. We will present updated results of bulk density and binary fraction of the Trojan asteroids and compare these results to other small body populations, including Hilda asteroids, transNeptunian objects and comet nuclei to test dynamical models of the origins of these populations.
Modes of interconnected lattice trusses using continuum models, part 1
NASA Technical Reports Server (NTRS)
Balakrishnan, A. V.
1991-01-01
This represents a continuing systematic attempt to explore the use of continuum models--in contrast to the Finite Element Models currently universally in use--to develop feedback control laws for stability enhancement of structures, particularly large structures, for deployment in space. We shall show that for the control objective, continuum models do offer unique advantages. It must be admitted of course that developing continuum models for arbitrary structures is no easy task. In this paper we take advantage of the special nature of current Large Space Structures--typified by the NASA-LaRC Evolutionary Model which will be our main concern--which consists of interconnected orthogonal lattice trusses each with identical bays. Using an equivalent one-dimensional Timoshenko beam model, we develop an almost complete continuum model for the evolutionary structure. We do this in stages, beginning only with the main bus as flexible and then going on to make all the appendages also flexible-except for the antenna structure. Based on these models we proceed to develop formulas for mode frequencies and shapes. These are shown to be the roots of the determinant of a matrix of small dimension compared with mode calculations using Finite Element Models, even though the matrix involves transcendental functions. The formulas allow us to study asymptotic properties of the modes and how they evolve as we increase the number of bodies which are treated as flexible. The asymptotics, in fact, become simpler.
Who donates their body to science? An international, multicenter, prospective study.
Cornwall, Jon; Perry, Gary F; Louw, Graham; Stringer, Mark D
2012-01-01
The altruistic act of body donation provides a precious resource for both teaching and researching human anatomy. However, relatively little is known about individuals who donate their bodies to science (donors), and in particular whether donors in different geographical locations share similar characteristics. A multicenter prospective survey of donors registering during 2010 in three different geographical locations, New Zealand, Ireland, and the Republic of South Africa, was conducted to identify donor characteristics. The 28-question survey included sections on body donation program awareness, reasons for donating, giving tendency, education, ethnicity, relationship status, occupation, religion, and political preference. Two hundred surveys (81%) were returned [New Zealand 123 (85% response rate), Republic of South Africa 41 (67%), and Ireland 36 (92%)]. Results indicate that donors share certain characteristics including reason for donating (80% cited a desire to aid medical science as the main reason for wishing to donate their body); family structure (most donors are or have been in long-term partnerships and ≥ 85% have siblings); and a higher proportion with no religious affiliation compared to their reference population. Some variations between locations were noted including donor age, the mode of program awareness, occupation, relationship status, political preference, organ donor status and with whom donors had discussed their decision to donate. This information could be important for assisting the identification of potential body donors in new and established bequest programs. Copyright © 2012 American Association of Anatomists.
Mechanics of the Delayed Fracture of Viscoelastic Bodies with Cracks: Theory and Experiment (Review)
NASA Astrophysics Data System (ADS)
Kaminsky, A. A.
2014-09-01
Theoretical and experimental studies on the deformation and delayed fracture of viscoelastic bodies due to slow subcritical crack growth are reviewed. The focus of this review is on studies of subcritical growth of cracks with well-developed fracture process zones, the conditions that lead to their critical development, and all stages of slow crack growth from initiation to the onset of catastrophic growth. Models, criteria, and methods used to study the delayed fracture of viscoelastic bodies with through and internal cracks are analyzed. Experimental studies of the fracture process zones in polymers using physical and mechanical methods as well as theoretical studies of these zones using fracture mesomechanics models that take into account the structural and rheological features of polymers are reviewed. Particular attention is given to crack growth in anisotropic media, the effect of the aging of viscoelastic materials on their delayed fracture, safe external loads that do not cause cracks to propagate, the mechanism of multiple-flaw fracture of viscoelastic bodies with several cracks and, especially, processes causing cracks to coalesce into a main crack, which may result in a break of the body. Methods and results of solving two- and three-dimensional problems of the mechanics of delayed fracture of aging and non-aging viscoelastic bodies with cracks under constant and variable external loads, wedging, and biaxial loads are given
[Pierre Bourdieu and health: a sociological analysis of Actes de la Recherche en Sciences Sociales].
Montagner, Miguel Angelo
2008-07-01
This study aimed to highlight, illustrate, describe, and comment on the presence of the health category in the work of Pierre Bourdieu, by underlining the themes traditionally related to the sociology of the body. After a systematic analysis of his work in the sociology of medicine and health, the article also addresses the main vehicle for his line of thought, namely Actes de la Recherche en Sciences Sociales, viewed here as the prime channel for most of the research taking Bourdieu's "genetic structuralism" as the main theoretical reference. We analyze the articles published from 1975 to 2001, from the thematic and theoretical/conceptual perspective, by comparing the changes appearing in this journal in opposition to the model previously adopted by the Revue Française de Sociologie.
Equine Cardiovascular Therapeutics.
Sleeper, Meg M
2017-04-01
Heart disease can be defined as any abnormality of the heart whether it is a cardiac dysrhythmia or structural heart disease, either congenital or acquired. Heart failure occurs when a cardiac abnormality results in the inability of the heart to pump enough blood to meet the body's needs. Heart disease can be present without leading to heart failure. Heart failure, however, is a consequence of heart disease. There are 4 main areas where the clinician can intervene to improve cardiac output with heart failure: preload, afterload, myocardial contractility, and heart rate. Copyright © 2016 Elsevier Inc. All rights reserved.
Interacting quantum walkers: two-body bosonic and fermionic bound states
NASA Astrophysics Data System (ADS)
Krapivsky, P. L.; Luck, J. M.; Mallick, K.
2015-11-01
We investigate the dynamics of bound states of two interacting particles, either bosons or fermions, performing a continuous-time quantum walk on a one-dimensional lattice. We consider the situation where the distance between both particles has a hard bound, and the richer situation where the particles are bound by a smooth confining potential. The main emphasis is on the velocity characterizing the ballistic spreading of these bound states, and on the structure of the asymptotic distribution profile of their center-of-mass coordinate. The latter profile generically exhibits many internal fronts.
NASA Astrophysics Data System (ADS)
Calvín, P.; Ruiz-Martínez, V. C.; Villalaín, J. J.; Casas-Sainz, A. M.; Moussaid, B.
2017-12-01
A paleomagnetic and magnetic fabric study is performed in Upper Jurassic gabbros of the central High Atlas (Morocco). These gabbros were emplaced in the core of preexisting structures developed during the extensional stage and linked to basement faults. These structures were reactivated as anticlines during the Cenozoic compressional inversion. Gabbros from 19 out of the 33 sampled sites show a stable characteristic magnetization, carried by magnetite, which has been interpreted as a primary component. This component shows an important dispersion due to postemplacement tectonic movements. The absence of paleoposition markers in these igneous rocks precludes direct restorations. A novel approach analyzing the orientation of the primary magnetization is used here to restore the magmatic bodies and to understand the deformational history recorded by these rocks. Paleomagnetic vectors are distributed along small circles with horizontal axes, indicating horizontal axis rotations of the gabbro bodies. These rotations are higher when the ratio between shales and gabbros in the core of the anticlines increases. Due to the uncertainties inherent to this work (the igneous bodies recording strong rotations), interpretations must be qualitative. The magnetic fabric is carried by ferromagnetic (s.s.) minerals mimicking the magmatic fabric. Anisotropy of magnetic susceptibility (AMS) axes, using the rotation routine inferred from paleomagnetic results, result in more tightly clustered magnetic lineations, which also become horizontal and are considered in terms of magma flow trend during its emplacement: NW-SE (parallel to the general extensional direction) in the western sector and NE-SW (parallel to the main faults) in the easternmost structures.
Clissmann, Fionn; Fiore-Donno, Anna Maria; Hoppe, Björn; Krüger, Dirk; Kahl, Tiemo; Unterseher, Martin; Schnittler, Martin
2015-06-01
Decaying wood hosts a large diversity of seldom investigated protists. Environmental sequencing offers novel insights into communities, but has rarely been applied to saproxylic protists. We investigated the diversity of bright-spored wood-inhabiting Myxomycetes by environmental sequencing. Myxomycetes have a complex life cycle culminating in the formation of mainly macroscopic fruiting bodies, highly variable in shape and colour that are often found on decaying logs. Our hypothesis was that diversity of bright-spored Myxomycetes would increase with decay. DNA was extracted from wood chips collected from 17 beech logs of varying decay stages from the Hainich-Dün region in Central Germany. We obtained 260 partial small subunit ribosomal RNA gene sequences of bright-spored Myxomycetes that were assembled into 29 OTUs, of which 65% were less than 98% similar to those in the existing database. The OTU richness revealed by molecular analysis surpassed that of a parallel inventory of fruiting bodies. We tested several environmental variables and identified pH, rather than decay stage, as the main structuring factor of myxomycete distribution. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Schirrer, A.; Westermayer, C.; Hemedi, M.; Kozek, M.
2013-12-01
This paper shows control design results, performance, and limitations of robust lateral control law designs based on the DGK-iteration mixed-μ-synthesis procedure for a large, flexible blended wing body (BWB) passenger aircraft. The aircraft dynamics is preshaped by a low-complexity inner loop control law providing stabilization, basic response shaping, and flexible mode damping. The μ controllers are designed to further improve vibration damping of the main flexible modes by exploiting the structure of the arising significant parameter-dependent plant variations. This is achieved by utilizing parameterized Linear Fractional Representations (LFR) of the aircraft rigid and flexible dynamics. Designs with various levels of LFR complexity are carried out and discussed, showing the achieved performance improvement over the initial controller and their robustness and complexity properties.
Zhou, Jin; Zhang, Ye; Lin, Qiuxia; Liu, Zhiqiang; Wang, Haibin; Duan, Cuimi; Wang, Yanmeng; Hao, Tong; Wu, Kuiwu; Wang, Changyong
2010-07-01
Embryonic stem (ES) cells have the potential to develop into any type of tissue and are considered as a promising source of seeding cells for tissue engineering and transplantation therapy. The main catalyst for ES cells differentiation is the growth into embryoid bodies (EBs), which are utilized widely as the trigger of in vitro differentiation. In this study, a novel method for generating EBs from mouse ES cells through culture in collagen/Matrigel scaffolds was successfully established. When single ES cells were seeded in three dimensional collagen/Matrigel scaffolds, they grew into aggregates gradually and formed simple EBs with circular structures. After 7 days' culture, they formed into cystic EBs that would eventually differentiate into the three embryonic germ layers. Evaluation of the EBs in terms of morphology and potential to differentiate indicated that they were typical in structure and could generate various cell types; they were also able to form into tissue-like structures. Moreover, with introduction of ascorbic acid, ES cells differentiated into cardiomyocytes efficiently and started contracting synchronously at day 19. The results demonstrated that collagen/Matrigel scaffolds supported EBs formation and their subsequent differentiation in a single three dimensional environment. Copyright 2010 Institute of Genetics and Developmental Biology and the Genetics Society of China. Published by Elsevier Ltd. All rights reserved.
Zannini, Emanuele; Waters, Deborah M; Coffey, Aidan; Arendt, Elke K
2016-02-01
Exopolysaccharides (EPS)-producing lactic acid bacteria (LAB) are industrially important microorganisms in the development of functional food products and are used as starter cultures or coadjutants to develop fermented foods. There is large variability in EPS production by LAB in terms of chemical composition, quantity, molecular size, charge, presence of side chains, and rigidity of the molecules. The main body of the review will cover practical aspects concerning the structural diversity structure of EPS, and their concrete application in food industries is reported in details. To strengthen the food application and process feasibility of LAB EPS at industrial level, a future academic research should be combined with industrial input to understand the technical shortfalls that EPS can address.
Simulation of Surface Pressure Induced by Vortex/Body Interaction
NASA Astrophysics Data System (ADS)
He, M.; Islam, M.; Veitch, B.; Bose, N.; Colbourne, M. B.; Liu, P.
When a strong vortical wake impacts a structure, the pressure on the impacted surface sees large variations in its amplitude. This pressure fluctuation is one of the main sources causing severe structural vibration and hydrodynamic noise. Economical and effective prediction methods of the fluctuating pressure are required by engineers in many fields. This paper presents a wake impingement model (WIM) that has been incorporated into a panel method code, Propella, and its applications in simulations of a podded propeller wake impacting on a strut. Simulated strut surface pressure distributions and variations are compared with experimental data in terms of time-averaged components and phase-averaged components. The pressure comparisons show that the calculated results are in a good agreement with experimental data.
A Model Based Approach to Increase the Part Accuracy in Robot Based Incremental Sheet Metal Forming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier, Horst; Laurischkat, Roman; Zhu Junhong
One main influence on the dimensional accuracy in robot based incremental sheet metal forming results from the compliance of the involved robot structures. Compared to conventional machine tools the low stiffness of the robot's kinematic results in a significant deviation of the planned tool path and therefore in a shape of insufficient quality. To predict and compensate these deviations offline, a model based approach, consisting of a finite element approach, to simulate the sheet forming, and a multi body system, modeling the compliant robot structure, has been developed. This paper describes the implementation and experimental verification of the multi bodymore » system model and its included compensation method.« less
Design and Control of Omnidirectional Unmanned Ground Vehicles for Rough Terrain
2012-08-29
company, Quantum Signal. This rigid body dynamics simulation, housed within the Autonomous Navigation and Virtual Environment Laboratory (ANVEL) software...72 Figure 22: PIC main code. Page 24 of 72 Figure 23: PIC interrupt code. 3.3 Central Body Embedded Electronics As described above...located on the main body of the vehicle. This section describes how the on-board electronics works. The outline of the code is presented as is how
Raschpichler, Matthias; Straatman, Kees; Schroeter, Matthias Leopold; Arelin, Katrin; Schlögl, Haiko; Fritzsch, Dominik; Mende, Meinhard; Pampel, André; Böttcher, Yvonne; Stumvoll, Michael; Villringer, Arno; Mueller, Karsten
2013-01-01
Objectives To investigate whether the metabolically important visceral adipose tissue (VAT) relates differently to structural and functional brain changes in comparison with body weight measured as body mass index (BMI). Moreover, we aimed to investigate whether these effects change with age. Design Cross-sectional, exploratory. Setting University Clinic, Integrative Research and Treatment Centre. Participants We included 100 (mean BMI=26.0 kg/m², 42 women) out of 202 volunteers randomly invited by the city's registration office, subdivided into two age groups: young-to-mid-age (n=51, 20–45 years of age, mean BMI=24.9, 24 women) versus old (n=49, 65–70 years of age, mean BMI=27.0, 18 women). Main outcome measures VAT, BMI, subcutaneous abdominal adipose tissue, brain structure (grey matter density), functional brain architecture (eigenvector centrality, EC). Results We discovered a loss of cerebellar structure with increasing VAT in the younger participants, most significantly in regions involved in motor processing. This negative correlation disappeared in the elderly. Investigating functional brain architecture showed again inverse VAT–cerebellum correlations, whereas now regions involved in cognitive and emotional processing were significant. Although we detected similar results for EC using BMI, significant age interaction for both brain structure and functional architecture was only found using VAT. Conclusions Visceral adiposity is associated with cerebellar changes of both structure and function, whereas the regions involved contribute to motor, cognitive and emotional processes. Furthermore, these associations seem to be age dependent, with younger adults’ brains being adversely affected. PMID:23355665
Body Satisfaction and Physical Appearance in Gender Dysphoria.
van de Grift, Tim C; Cohen-Kettenis, Peggy T; Steensma, Thomas D; De Cuypere, Griet; Richter-Appelt, Hertha; Haraldsen, Ira R H; Dikmans, Rieky E G; Cerwenka, Susanne C; Kreukels, Baudewijntje P C
2016-04-01
Gender dysphoria (GD) is often accompanied by dissatisfaction with physical appearance and body image problems. The aim of this study was to compare body satisfaction with perceived appearance by others in various GD subgroups. Data collection was part of the European Network for the Investigation of Gender Incongruence. Between 2007 and 2012, 660 adults who fulfilled the criteria of the DSM-IV gender identity disorder diagnosis (1.31:1 male-to-female [MtF]:female-to-male [FtM] ratio) were included into the study. Data were collected before the start of clinical gender-confirming interventions. Sexual orientation was measured via a semi-structured interview whereas onset age was based on clinician report. Body satisfaction was assessed using the Body Image Scale. Congruence of appearance with the experienced gender was measured by means of a clinician rating. Overall, FtMs had a more positive body image than MtFs. Besides genital dissatisfaction, problem areas for MtFs included posture, face, and hair, whereas FtMs were mainly dissatisfied with hip and chest regions. Clinicians evaluated the physical appearance to be more congruent with the experienced gender in FtMs than in MtFs. Within the MtF group, those with early onset GD and an androphilic sexual orientation had appearances more in line with their gender identity. In conclusion, body image problems in GD go beyond sex characteristics only. An incongruent physical appearance may result in more difficult psychological adaptation and in more exposure to discrimination and stigmatization.
Kuszewski, Piotr; Kostro, Karol; Łoś, Andrzej; Kłakus, Piotr
2015-01-01
The Conscious Body Donation Program conducted since 2003 by the Department of Human Anatomy, Medical University of Silesia in Katowice was the first innovative project aimed at obtaining informed donors' bodies for the purpose of teaching anatomy in Poland. The aim of this prospective study was to determine the declared donors' characteristics and to establish the possible motivation for body donation. A total of 244 application files were reviewed and the following information was analyzed: donor’s age, age at which the decision to donate the body was made, donor’s place of residence and declared nationality, family background, education and profession, family structure and religion. Our results showed that mainly elderly people decided to donate their bodies (68.5 ± 11.84 years), living mostly in large and medium-sized cities. Men - donors often lived in small towns. Most of the donors were of blue-collar parentage, completed secondary education and at the time of taking decision to donate where married and retired. Widows were more likely to make the decision to donate than widowers. Most of our donors were Catholic. Our analysis of the profile of Polish donors may be useful to understand better for which groups of people death is not to be perceived as the end, and may become a value, which can be beneficial to living people. PMID:25790303
Magnetic signature of the Sicily Channel volcanism
NASA Astrophysics Data System (ADS)
Lodolo, E.; Civile, D.; Zanolla, C.; Geletti, R.
2012-03-01
Widespread Late Miocene to Quaternary volcanic activity is know to have occurred in the Sicily Channel continuing up to historical time. New magnetic anomaly data acquired in the Pantelleria Graben, one of the three main tectonic depressions forming the WNW-trending Sicily Channel rift system, integrated with available profiles, are used to identify and map volcanic bodies in this sector of the northern African margin. Some of these manifestations, both outcropping at the sea-floor or buried beneath a variable thickness of Plio-Quaternary sedimentary cover, have been imaged by seismic reflection profiles. Three main positive magnetic anomalies have been found: to the S-E of the Pantelleria Island, the largest emerged caldera of the Sicily Channel, along the eastern margin of the Nameless Bank, and at the north-western termination of the Linosa Graben. Only the anomaly located off the south-eastern coast of the Pantelleria Island, associated with a large outcropping body gradually buried beneath a substantially undisturbed Upper Pliocene-Quaternary sediments, aligns with the trend of the tectonic depression. 2-D geophysical models produced along seismic transects perpendicularly crossing the Pantelleria Graben have allowed to derive its deep crustal structure, and detect the presence of buried magmatic bodies which generate the anomalies. Marginal faults seem to have played a major role in focussing magma emplacement in this sector of the Sicily Channel. The other anomalies represent off-axis volcanic episodes and generally do not show evident magmatic manifestations at the sea-floor. These magnetic maxima seem to follow a NNE-SSW-trending belt extending from Linosa Island to the Nameless Bank, where pre-existing crustal anisotropies may have conditioned magma emplacement both at deep and shallow crustal levels. In general, data analysis has shown that there is a structural control on magma emplacement, with the major magmatic features located in specific locations like boundary faults and transfer zones, in a manner similar to that found along several segments of the East African Rift system.
Tides in a body librating about a spin-orbit resonance: generalisation of the Darwin-Kaula theory
NASA Astrophysics Data System (ADS)
Frouard, Julien; Efroimsky, Michael
2017-09-01
The Darwin-Kaula theory of bodily tides is intended for celestial bodies rotating without libration. We demonstrate that this theory, in its customary form, is inapplicable to a librating body. Specifically, in the presence of libration in longitude, the actual spectrum of Fourier tidal modes differs from the conventional spectrum rendered by the Darwin-Kaula theory for a nonlibrating celestial object. This necessitates derivation of formulae for the tidal torque and the tidal heating rate, that are applicable under libration. We derive the tidal spectrum for longitudinal forced libration with one and two main frequencies, generalisation to more main frequencies being straightforward. (By main frequencies we understand those emerging due to the triaxiality of the librating body.) Separately, we consider a case of free libration at one frequency (once again, generalisation to more frequencies being straightforward). We also calculate the tidal torque. This torque provides correction to the triaxiality-caused physical libration. Our theory is not self-consistent: we assume that the tidal torque is much smaller than the permanent-triaxiality-caused torque, so the additional libration due to tides is much weaker than the main libration due to the permanent triaxiality. Finally, we calculate the tidal dissipation rate in a body experiencing forced libration at the main mode, or free libration at one frequency, or superimposed forced and free librations.
Pavot, Pierre; Carbognin, Elena; Martin, Jean-René
2015-01-01
The mushroom bodies (MBs), one of the main structures in the adult insect brain, play a critical role in olfactory learning and memory. Though historical genes such as dunce and rutabaga, which regulate the level of cAMP, were identified more than 30 years ago, their in vivo effects on cellular and physiological mechanisms and particularly on the Ca(2+)-responses still remain largely unknown. In this work, performed in Drosophila, we took advantage of in vivo bioluminescence imaging, which allowed real-time monitoring of the entire MBs (both the calyx/cell-bodies and the lobes) simultaneously. We imaged neuronal Ca(2+)-activity continuously, over a long time period, and characterized the nicotine-evoked Ca(2+)-response. Using both genetics and pharmacological approaches to interfere with different components of the cAMP signaling pathway, we first show that the Ca(2+)-response is proportional to the levels of cAMP. Second, we reveal that an acute change in cAMP levels is sufficient to trigger a Ca(2+)-response. Third, genetic manipulation of protein kinase A (PKA), a direct effector of cAMP, suggests that cAMP also has PKA-independent effects through the cyclic nucleotide-gated Ca(2+)-channel (CNG). Finally, the disruption of calmodulin, one of the main regulators of the rutabaga adenylate cyclase (AC), yields different effects in the calyx/cell-bodies and in the lobes, suggesting a differential and regionalized regulation of AC. Our results provide insights into the complex Ca(2+)-response in the MBs, leading to the conclusion that cAMP modulates the Ca(2+)-responses through both PKA-dependent and -independent mechanisms, the latter through CNG-channels.
[Environmental pollutants as adjuvant factors of immune system derived diseases].
Lehmann, Irina
2017-06-01
The main task of the immune system is to protect the body against invading pathogens. To be able to do so, immune cells must be able to recognize and combat exogenous challenges and at the same time tolerate body-borne structures. A complex regulatory network controls the sensitive balance between defense and tolerance. Perturbation of this network ultimately leads to the development of chronic inflammation, such as allergies, autoimmune reactions, and infections, because the immune system is no longer able to efficiently eliminate invading pathogens. Environmental pollutants can cause such perturbations by affecting the function of immune cells in such a way that they would react hypersensitively against allergens and the body's own structures, respectively, or that they would be no longer able to adequately combat pathogens. This indirect effect is also known as adjuvant effect. For pesticides, heavy metals, wood preservatives, or volatile organic compounds such adjuvant effects are well known. Examples of the mechanism by which environmental toxins contribute to chronic inflammatory diseases are manifold and will be discussed along asthma and allergies.While the immune system of healthy adults is typically well able to distinguish between foreign and endogenous substances even under adverse environmental conditions, that of children would react much more sensible upon comparable environmental challenges. To prevent priming for diseases by environmental cues during that highly sensitive period of early childhood children are to be particularly protected.
NASA Astrophysics Data System (ADS)
Sulong, Nurulsaidatulsyida; Rus, Anika Zafiah M.
2013-12-01
In recent years, biopolymers with controllable lifetimes have become increasingly important for many applications in the areas of agriculture, biomedical implants and drug release, forestry, wild life conservation and waste management. Natural oils are considered to be the most important class of renewable sources. They can be obtained from naturally occurring plants, such as sunflower, cotton, linseed and palm oil. In Malaysia, palm oil is an inexpensive and commodity material. Biopolymer produced from palm oil (Bio-VOP) is a naturally occurring biodegradable polymer and readily available from agriculture. For packaging use however, Bio-VOP is not thermoplastic and its granular form is unsuitable for most uses in the plastics industry, mainly due to processing difficulties during extrusion or injection moulding. Thus, research workers have developed several methods to blend Bio-VOP appropriately for industrial uses. In particular, injections moulding processes, graft copolymerisation, and preparation of blends with thermoplastic polymers have been studied to produce solid biodegradable shaped bodies. HDPE was chosen as commercial thermoplastic materials and was added with 10% Bio-VOP for the preparation of solid biodegradable shaped bodies named as HD-VOP. The UV light exposure of HD-VOP at 12 minutes upon gives the highest strength of this material that is 17.6 MPa. The morphological structure of HD-VOP shows dwi structure surface fracture which is brittle and ductile properties.
Three-dimensional structure of basal body triplet revealed by electron cryo-tomography
Li, Sam; Fernandez, Jose-Jesus; Marshall, Wallace F; Agard, David A
2012-01-01
Basal bodies and centrioles play central roles in microtubule (MT)-organizing centres within many eukaryotes. They share a barrel-shaped cylindrical structure composed of nine MT triplet blades. Here, we report the structure of the basal body triplet at 33 Å resolution obtained by electron cryo-tomography and 3D subtomogram averaging. By fitting the atomic structure of tubulin into the EM density, we built a pseudo-atomic model of the tubulin protofilaments at the core of the triplet. The 3D density map reveals additional densities that represent non-tubulin proteins attached to the triplet, including a large inner circular structure in the basal body lumen, which functions as a scaffold to stabilize the entire basal body barrel. We found clear longitudinal structural variations along the basal body, suggesting a sequential and coordinated assembly mechanism. We propose a model in which δ-tubulin and other components participate in the assembly of the basal body. PMID:22157822
NASA Astrophysics Data System (ADS)
Okada, Shigenori; Schraufnagel, Dean E.
2005-08-01
The mammalian tongue has evolved for specialized functions in different species. The structure of its papillae tells about the animal's diet, habit, and taxonomy. The opossum has four kinds of lingual papillae (filiform, conical, fungiform, vallate). Scanning electron microscopy of the external features, connective tissue cores, and corrosion casts of the microvasculature show the filiform papillae have a spearhead-like main process and spiny accessory processes around the apical part of the main process. The shape and number of both processes depend on their position on the tongue. On the apex, the main processes have shovel-like capillary networks and the accessory processes have small conical networks. On the lingual radix, the processes have small capillary loops. In the patch region, conical papillae have capillaries arranged as a full sail curving posteriorly. The fungiform papillae are scattered among the filiform papillae and have capillary baskets beneath each taste bud. Giant fungiform papillae on the tongue tip are three to four times larger than the ones on the lingual body. Capillaries of giant papillae form a fan-shaped network. The opossum has three vallate papillae arranged in a triangle. Their tops have secondary capillary loops but not their lateral surfaces. Mucosal folds on the posterolateral border have irregular, fingerlike projections with cylindrical capillary networks. These findings and the structure of the rest of the masticatory apparatus suggest the lingual papillae of opossum have kept their ancestral carnivorous features but also developed the herbivore characteristics of other marsupials.
Okada, Shigenori; Schraufnagel, Dean E
2005-08-01
The mammalian tongue has evolved for specialized functions in different species. The structure of its papillae tells about the animal's diet, habit, and taxonomy. The opossum has four kinds of lingual papillae (filiform, conical, fungiform, vallate). Scanning electron microscopy of the external features, connective tissue cores, and corrosion casts of the microvasculature show the filiform papillae have a spearhead-like main process and spiny accessory processes around the apical part of the main process. The shape and number of both processes depend on their position on the tongue. On the apex, the main processes have shovel-like capillary networks and the accessory processes have small conical networks. On the lingual radix, the processes have small capillary loops. In the patch region, conical papillae have capillaries arranged as a full sail curving posteriorly. The fungiform papillae are scattered among the filiform papillae and have capillary baskets beneath each taste bud. Giant fungiform papillae on the tongue tip are three to four times larger than the ones on the lingual body. Capillaries of giant papillae form a fan-shaped network. The opossum has three vallate papillae arranged in a triangle. Their tops have secondary capillary loops but not their lateral surfaces. Mucosal folds on the posterolateral border have irregular, fingerlike projections with cylindrical capillary networks. These findings and the structure of the rest of the masticatory apparatus suggest the lingual papillae of opossum have kept their ancestral carnivorous features but also developed the herbivore characteristics of other marsupials.
NASA Astrophysics Data System (ADS)
Wang, Xiaoyong; Guo, Chongling; Hu, Yongli; He, Hongyan
2017-11-01
The primary and secondary mirrors of onaxis three mirror anastigmatic (TMA) space camera are connected and supported by its front mirror-body structure, which affects both imaging performance and stability of the camera. In this paper, the carbon fiber reinforced plastics (CFRP) thin-walled cylinder and titanium alloy connecting rod have been used for the front mirror-body opto-mechanical structure of the long-focus on-axis and TMA space camera optical system. The front mirror-body component structure has then been optimized by finite element analysis (FEA) computing. Each performance of the front mirror-body structure has been tested by mechanics and vacuum experiments in order to verify the validity of such structure engineering design.
Lipids in the proximal convoluted tubule of the cat kidney and the reabsorption of cholesterol.
Bargmann, W; Krisch, B; Leonhardt, H
1977-02-14
Lipid deposits in the cat kidney are mainly located in the epithelium of the proximal tubuli contorti, particularly in the pars contorta. As the amount of fatty acids in the blood of renal arteries is higher than in renal veins, the lipid inclusions are likely to be formed in the proximal convoluted tubule. Whether fat occurring in the urine has been released from the nephron epithelium and the mode of this release remains obscure. The structural equivalent of lipid extrusion into the tubules has not been observed. Components of the tubular lipids include triglycerides, phosphoglycerides and cholesterol. The results of the digitonin-cholesterol reaction favour the assumption that cholesterol is eliminated in the glomeruli and pinocytotically reabsorbed by the brush border cells, this process possibly serving recycling of this compound. The dilated basal labyrinth and intercellular space contain perpendicularly oriented lipid accumulations that reach the basal lamina. The ultrastructure of the lipid storing cells of pars contorta reacting positively for phosphoglyceride and cholesterol is characterised mainly by bodies with marginal plates. As far as can be judged from their morphology, these bodies are interpreted as large peroxisomes. A special feature of the pars recta are dumbbell shaped bodies and elongated or cup-like mitochondria concentrically surrounding cytoplasmic areas, as well as a well-developed smooth ER. In what way the organelles of the brush border cells are involved in catabolic and anabolic processes as far as renal lipid metabolism is concerned remains to be answered.
NASA Astrophysics Data System (ADS)
Pechernikova, G. V.; Ruskol, E. L.
2017-05-01
An analytical review of the two contemporary models of the origin of the Earth-Moon system in the process of solid-body accretion is presented: socalled co-accretion model and as a result of a gigantic collision with a planetarysized body (i.e. a megaimpact model). The co-accretion model may be considered as a universal mechanism of the origin of planetary satellites, that accompanies the growth of planets. We consider the conditions of this process that secure the sufficient mass and angular momentum of the protolunar disk such as macroimpacts (collisions with the bodies of asteroidal size) into the mantle of the growing Earth, the role of an lunar embryo growing on the geocentric lunar orbit, its tidal interaction with the Earth. The most difficult remains the explanation of chemical composition of the Moon. Different scenarios of megaimpact are reviewed, in which the Earth's mantle is destroyed and the protosatellite disk is filled mainly by its fragments. There is evaluated amount of energy transferred to the Earth from the evolution of lunar orbit. It is an order of magnitude lower than three main sources of the Earth's interior heat, i.e. the heat of accretion, the energy of differentiation and the heat of radioactive sources. The tidal heating of the Venus's interiors could reach 1000K by slowing its axial initial rotation, in addition to three sources mentioned above in concern of the Earth.
NASA Astrophysics Data System (ADS)
Starikov, S. V.; Kolotova, L. N.; Kuksin, A. Yu.; Smirnova, D. E.; Tseplyaev, V. I.
2018-02-01
We studied structure and thermodynamic properties of cubic and tetragonal phases of pure uranium and U-Mo alloys using atomistic simulations: molecular dynamics and density functional theory. The main attention was paid to the metastable γ0 -phase that is formed in U-Mo alloys at low temperature. Structure of γ0 -phase is similar to body-centered tetragonal (bct) lattice with displacement of a central atom in the basic cell along [ 001 ] direction. Such displacements have opposite orientations for part of the neighbouring basic cells. In this case, such ordering of the displacements can be designated as antiferro-displacement. Formation of such complex structure may be interpreted through forming of short U-U bonds. At heating, the tetragonal structure transforms into cubic γs -phase, still showing ordering of central atom displacements. With rise in temperature, γs -phase transforms to γ-phase with a quasi body-centered cubic (q-bcc) lattice. The local positions of uranium atoms in γ-phase correspond to γs -phase, however, orientations of the central atom displacements become disordered. Transition from γ0 to γ can be considered as antiferro-to paraelastic transition of order-disorder type. This approach to the structure description of uranium alloy allows to explain a number of unusual features found in the experiments: anisotropy of lattice at low temperature; remarkably high self-diffusion mobility in γ-phase; decreasing of electrical resistivity at heating for some alloys. In addition, important part of this work is the development of new interatomic potential for U-Mo system made with taking into account details of studied structures.
Biophysical characterization of α-synuclein and its controversial structure
Alderson, T Reid; Markley, John L
2013-01-01
α-synuclein, a presynaptic protein of poorly defined function, constitutes the main component of Parkinson disease-associated Lewy bodies. Extensive biophysical investigations have provided evidence that isolated α-synuclein is an intrinsically disordered protein (IDP) in vitro. Subsequently serving as a model IDP in numerous studies, α-synuclein has aided in the development of many technologies used to characterize IDPs and arguably represents the most thoroughly analyzed IDP to date. Recent reports, however, have challenged the disordered nature of α-synuclein inside cells and have instead proposed a physiologically relevant helical tetramer. Despite α-synuclein’s rich biophysical history, a single coherent picture has not yet emerged concerning its in vivo structure, dynamics, and physiological role(s). We present herein a review of the biophysical discoveries, developments, and models pertinent to the characterization of α-synuclein’s structure and analysis of the native tetramer controversy. PMID:24634806
Electronic entanglement in late transition metal oxides.
Thunström, Patrik; Di Marco, Igor; Eriksson, Olle
2012-11-02
We present a study of the entanglement in the electronic structure of the late transition metal monoxides--MnO, FeO, CoO, and NiO--obtained by means of density-functional theory in the local density approximation combined with dynamical mean-field theory. The impurity problem is solved through exact diagonalization, which grants full access to the thermally mixed many-body ground state density operator. The quality of the electronic structure is affirmed through a direct comparison between the calculated electronic excitation spectrum and photoemission experiments. Our treatment allows for a quantitative investigation of the entanglement in the electronic structure. Two main sources of entanglement are explicitly resolved through the use of a fidelity based geometrical entanglement measure, and additional information is gained from a complementary entropic entanglement measure. We show that the interplay of crystal field effects and Coulomb interaction causes the entanglement in CoO to take a particularly intricate form.
[Ibogaine - structure, influence on human body, clinical relevance].
Zdrojewicz, Zygmunt; Kuszczak, Bartłomiej; Olszak, Natalia
2016-07-29
Ibogaine is a natural chemical compound, which belongs to the indole alkaloid family. It can be naturally found within the root bark of african plant Tabernanthe iboga. Ibogaine plays a significant role among tribal cultures. Ibogaine, in small amount, causes reduction of hunger, thirst and exhaustion. In bigger amount, however, it can cause intensive visions. Other effects include reduction or complete disappearance of absitnence symptoms visible in people addicted to the nicotine, alcohol, methamphetamine, cocaine or opioids, what has been scientifically proven after the tests on animals and small groups of people. After oral application, 80% of ibogaine is subjected to the Odemethylation into noribogaine; main catalyzing enzyme is cytochrome CYP2D6. Research suggests, that ibogaine acts in many places within central nervous system. NMDA receptors seem to play main role in its anti-addiction properties. It is important to mention the side effects of the compound, which are cardiotoxicity and neurotoxicity, what makes it harder to use its beneficial properties. Because of this, Ibogaine is included among the dangerous substance. However, there are a few clinics in the world which specializes in the use of the compound in order to interrupt the sypmtoms acute opioid withdrawal syndrome as well as a substance benficial in curing other addictions. There is more hope with synthetic derivatives of ibogaine, which although are less toxic still keep their anti-addiction properties. The aim is to collect the available knowledge related to the structure and effects on human body of alkaloid Tabernanthe iboga and consider the possibility of commercial medical use. © 2016 MEDPRESS.
Advances and challenges in periodic forcing of the turbulent boundary layer on a body of revolution
NASA Astrophysics Data System (ADS)
Kornilov, V. I.; Boiko, A. V.
2018-04-01
The effectiveness of local forcing by periodic blowing/suction through a thin transverse slot to alter the properties of an incompressible turbulent boundary layer is considered. In the first part of the review the effectiveness of the forcing through a single slot is discussed. Analysis of approaches for experimental modeling of the forcing, including those on flat plate, is given. Some ambiguities in simulating such flows are reviewed. The main factors affecting the structure of the forced flow are analyzed. In the second part the effectiveness of the forcing on a body of revolution by periodic blowing/suction through a series of transverse annular slots is discussed. The focus is the structure, properties, and main regularities of the forced flows in a wide range of variable conditions and basic parameters such as the Reynolds number, the dimensionless amplitude of the forced signal, and the frequency of the forced signal. The effect of the forcing on skin-friction in the turbulent boundary layer is clearly revealed. A phase synchronism of blowing/suction using an independent control of the forcing through the slots provides an additional skin friction reduction at distances up to 5-6 boundary layer displacement thicknesses upstream of an annular slot. The local skin friction reduction under the effect of periodic blowing/suction is stipulated by a dominating influence of an unsteady coherent vortex formed in the boundary layer, the vortex propagating downstream promoting a shift of low-velocity fluid further from the wall, a formation of a retarded region at the wall, and hence, a thickening of the viscous sublayer.
Water-soluble polysaccharides from Pleurotus ostreatus var. florida mycelial biomass.
Komura, Dirce L; Ruthes, Andrea C; Carbonero, Elaine R; Gorin, Philip A J; Iacomini, Marcello
2014-09-01
Pleurotus ostreatus var. florida known as Hiratake has a high nutritional value, presents medicinal and nutraceutical properties and it is one of the consumed mushrooms in Brazil. Thus, the aim of this study was to characterize the chemical structure of polysaccharides found in mycelial biomass produced by submerged culture of P. ostreatus var. florida in order to compare with those found in P. ostreatus var. florida fruit bodies. Aqueous and alkali extracts obtained from mycelial biomass were purified, 13C NMR, GC-MS and chemical techniques were used to characterize three polysaccharide structures: a mannogalactan (MG-PfM) with α-D-Galp and 3-O-Me-α-D-Galp units, both (1→6)-linked, highly substituted at O-2 by D-Manp, a glycogen-like polymer (GLY-PfM) with α-D-Glp (1→4)-linked main chain, partially substituted at O-6 by α-D-Glcp side chains and a (1→3), (1→6) β-D-glucan (βGLC-PfM) with a main chain of β-D-Glcp (1→3)-linked units, partially substituted at O-6 by side chains of 6-O-substituted β-D-glucopyranosyl units, on an average of one to every two residues of the backbone. These results show the possibility to obtain similar and also different molecules from those found in the fruiting body of the same mushroom species, therefore the submerged culture of mushroom is a promising way to give raise molecules of interest. Copyright © 2014. Published by Elsevier B.V.
Sensor mount assemblies and sensor assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, David H
2012-04-10
Sensor mount assemblies and sensor assemblies are provided. In an embodiment, by way of example only, a sensor mount assembly includes a busbar, a main body, a backing surface, and a first finger. The busbar has a first end and a second end. The main body is overmolded onto the busbar. The backing surface extends radially outwardly relative to the main body. The first finger extends axially from the backing surface, and the first finger has a first end, a second end, and a tooth. The first end of the first finger is disposed on the backing surface, and themore » tooth is formed on the second end of the first finger.« less
Determination of functions of controlling drives of main executive mechanisms of mining excavators
NASA Astrophysics Data System (ADS)
Lagunova, Yu A.; Komissarov, A. P.; Lukashuk, O. A.
2018-03-01
It is shown that a special shovel is a feature of the structure of the drives of the main mechanisms (mechanisms of lifting and pressure) of career excavators with working equipment, the presence in the transfer device of a two-crank-lever mechanism of working equipment that connects the main mechanisms with the working body (bucket). In this case, the transformation of the mechanical energy parameters of the motors into energy-force parameters realized at the cutting edge of the bucket (teeth) takes place depending on the type of the kinematic scheme of the two-link-lever mechanism. The concept of “control function” defining the relationship between the parameters characterizing the position of the bucket in the face (the coordinates of the tip of the cutting edge of the bucket, the digging speed) and the required control level are introduced. These are the values of the lifting and head speeds ensuring the bucket movement along a given trajectory.
ASTEROIDS: Living in the Kingdom of Chaos
NASA Astrophysics Data System (ADS)
Morbidelli, A.
2000-10-01
The existence of chaotic regions in the main asteroid belt, related with the lowest-order mean-motion and secular resonances, has long been known. However, only in the last decade have semi-analytic theories allowed a proper understanding of the chaotic behavior observed in numerical simulations which accurately incorporate the entire planetary system. The most spectacular result has been the discovery that the asteroids in some of these resonance may collide with the Sun on typical time scales of a few million year, their eccentricities being pumped to unity during their chaotic evolution. But the asteroid belt is not simply divided into violent chaotic zones and regular regions. It has been shown that the belt is criss-crossed by a large number of high-order mean-motion resonances with Jupiter or Mars, as well as by `three-body resonances' with Jupiter and Saturn. All these weak resonances cause the slow chaotic drift of the `proper' eccentricities and inclinations. The traces left by this evolution are visible, for example, in the structure of the Eos and Themis asteroid families. Weak chaos may also explain the anomalous dispersion of the eccentricities and inclinations observed in the Flora ``clan." Moreover, due to slow increases in their eccentricities, many asteroids start to cross the orbit of Mars, over a wide range of semimajor axes. The improved knowledge of the asteroid belt's chaotic structure provides, for the first time, an opportunity to build detailed quantitative models of the origin and the orbital distribution of Near-Earth Asteroids and meteorites. In turn, these models seem to imply that the semimajor axes of main-belt asteroids must also slowly evolve with time. For asteroids larger than about 20 km this is due mainly to encounters with Ceres, Pallas, and Vesta, while for smaller bodies the so-called Yarkovsky effect should dominate. Everything moves chaotically in the asteroid belt.
Linking body mass and group dynamics in an obligate cooperative breeder.
Ozgul, Arpat; Bateman, Andrew W; English, Sinead; Coulson, Tim; Clutton-Brock, Tim H
2014-11-01
Social and environmental factors influence key life-history processes and population dynamics by affecting fitness-related phenotypic traits such as body mass. The role of body mass is particularly pronounced in cooperative breeders due to variation in social status and consequent variation in access to resources. Investigating the mechanisms underlying variation in body mass and its demographic consequences can help elucidate how social and environmental factors affect the dynamics of cooperatively breeding populations. In this study, we present an analysis of the effect of individual variation in body mass on the temporal dynamics of group size and structure of a cooperatively breeding mongoose, the Kalahari meerkat, Suricata suricatta. First, we investigate how body mass interacts with social (dominance status and number of helpers) and environmental (rainfall and season) factors to influence key life-history processes (survival, growth, emigration and reproduction) in female meerkats. Next, using an individual-based population model, we show that the models explicitly including individual variation in body mass predict group dynamics better than those ignoring this morphological trait. Body mass influences group dynamics mainly through its effects on helper emigration and dominant reproduction. Rainfall has a trait-mediated, destabilizing effect on group dynamics, whereas the number of helpers has a direct and stabilizing effect. Counteracting effects of number of helpers on different demographic rates, despite generating temporal fluctuations, stabilizes group dynamics in the long term. Our study demonstrates that social and environmental factors interact to produce individual variation in body mass and accounting for this variation helps to explain group dynamics in this cooperatively breeding population. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
NASA Astrophysics Data System (ADS)
Qin, L.; Ben-Zion, Y.; Qiu, H.; Share, P.-E.; Ross, Z. E.; Vernon, F. L.
2018-04-01
We image the internal structure of the San Jacinto fault zone (SJFZ) in the trifurcation area southeast of Anza, California, with seismic records from dense linear and rectangular arrays. The examined data include recordings from more than 20 000 local earthquakes and nine teleseismic events. Automatic detection algorithms and visual inspection are used to identify P and S body waves, along with P- and S-types fault zone trapped waves (FZTW). The location at depth of the main branch of the SJFZ, the Clark fault, is identified from systematic waveform changes across lines of sensors within the dense rectangular array. Delay times of P arrivals from teleseismic and local events indicate damage asymmetry across the fault, with higher damage to the NE, producing a local reversal of the velocity contrast in the shallow crust with respect to the large-scale structure. A portion of the damage zone between the main fault and a second mapped surface trace to the NE generates P- and S-types FZTW. Inversions of high-quality S-type FZTW indicate that the most likely parameters of the trapping structure are width of ˜70 m, S-wave velocity reduction of 60 per cent, Q value of 60 and depth of ˜2 km. The local reversal of the shallow velocity contrast across the fault with respect to large-scale structure is consistent with preferred propagation of earthquake ruptures in the area to the NW.
SELENE Translunar Trajectory Reconfiguration Plan Provided for the Case of Main Engine Anomaly
NASA Technical Reports Server (NTRS)
Kawakatsu, Yasuhiro
2007-01-01
In this paper, the reconfiguration of translunar trajectory in case of main engine anomaly is investigated. The objectives of the trajectory design are to reduce the excessive velocity at the Lunar encounter as well as to reduce the total required Delta-v to complete the sequence. 3-impulse Hohmann transfer based trajectory is adopted and possible trajectories are categorized under 2-body approximation. The solutions obtained are applied to more sophisticated models (3-body approximation and 4-body) and yields feasible trajectory.
Push-To-Lock, Push-To-Release Mechanism
NASA Technical Reports Server (NTRS)
Lozano, Anselmo, Jr.
1991-01-01
Latch locked or unlocked with single motion of hand. No tools needed to operate it, and user easily opens or closes it with heavily gloved hand. When unlocked, stem free of main body. In locked state, dowel pins in main body hold stem. Latch equipped with lock and key so only authorized users operate it.
Porsgaard, Trine; Xu, Xuebing; Göttsche, Jesper; Mu, Huiling
2005-07-01
The fatty acid composition and intramolecular structure of dietary triacylglycerols (TAGs) influence their absorption. We compared the in vitro pancreatic lipase activity and the lymphatic transport in rats of fish oil and 2 enzymatically interesterified oils containing 10:0 and (n-3) PUFAs of marine origin to investigate whether the positional distribution of fatty acids influenced the overall bioavailability of (n-3) PUFAs in the body. The structured oils had the (n-3) PUFA either mainly at the sn-1,3 position (LML, M = medium-chain fatty acid, L = long-chain fatty acid) or mainly at the sn-2 position (MLM). Oils were administered to lymph-cannulated rats and lymph was collected for 24 h. The fatty acid composition as well as the lipid class distribution of lymph samples was determined. In vitro pancreatic lipase activity was greater when fish oil was the substrate than when the structured oils were the substrates (P < 0.001 at 40 min). This was consistent with a greater 8-h recovery of total fatty acids from fish oil compared with the 2 structured oils (P < 0.05). The absorption profiles of MLM and LML in rats and their in vitro rates of lipase activity did not differ. This indicates that the absorption rate is highly influenced by the lipase activity, which in turn is affected by the fatty acid composition and intramolecular structure. The lipid class distribution in lymph collected from the 3 groups of rats did not differ. In conclusion, the intramolecular structure did not affect the overall absorption of (n-3) PUFAs.
NASA Astrophysics Data System (ADS)
DeCelles, P. G.; Carrapa, B.; Gehrels, G. E.; Chakraborty, T.; Ghosh, P.
2016-12-01
The Himalaya consists of thrust sheets tectonically shingled together since 58 Ma as India collided with and slid beneath Asia. Major Himalayan structures, including the South Tibetan Detachment (STD), Main Central Thrust (MCT), Lesser Himalayan Duplex (LHD), Main Boundary Thrust (MBT), and Main Frontal Thrust (MFT), persist along strike from northwestern India to Arunachal Pradesh near the eastern end of the orogenic belt. Previous work suggests significant basement involvement and a kinematic history unique to the Arunachal Himalaya. We present new geologic and geochronologic data to support a regional structural cross section and kinematic restoration of the Arunachal Himalaya. Large Paleoproterozoic orthogneiss bodies (Bomdila Gneiss) previously interpreted as Indian basement have ages of 1774-1810 Ma, approximately 50 Ma younger than Lesser Himalayan strata into which their granitic protoliths intruded. Bomdila Gneiss is therefore part of the Lesser Himalayan cover sequence, and no evidence exists for basement involvement in the Arunachal Himalaya. Minimum shortening in rocks structurally beneath the STD is 421 km. The MCT was active during the early Miocene; STD extension overlapped MCT shortening and continued until approximately 15-12 Ma; and growth of the LHD began 11 Ma, followed by slip along the MBT (post-7.5 Ma) and MFT (post-1 Ma) systems. Earlier thrusting events involved long-distance transport of strong, low-taper thrust sheets, whereas events after 12-10 Ma stacked smaller, weaker thrust sheets into a steeply tapered orogenic wedge dominated by duplexing. A coeval kinematic transition is observed in other Himalayan regions, suggesting that orogenic wedge behavior was controlled by rock strength and erodibility.
Control-structure interaction in precision pointing servo loops
NASA Technical Reports Server (NTRS)
Spanos, John T.
1989-01-01
The control-structure interaction problem is addressed via stability analysis of a generic linear servo loop model. With the plant described by the rigid body mode and a single elastic mode, structural flexibility is categorized into one of three types: (1) appendage, (2) in-the-loop minimum phase, and (3) in-the-loop nonminimum phase. Closing the loop with proportional-derivative (PD) control action and introducing sensor roll-off dynamics in the feedback path, stability conditions are obtained. Trade studies are conducted with modal frequency, modal participation, modal damping, loop bandwidth, and sensor bandwidth treated as free parameters. Results indicate that appendage modes are most likely to produce instability if they are near the sensor rolloff, whereas in-the-loop modes are most dangerous near the loop bandwidth. The main goal of this paper is to provide a fundamental understanding of the control-structure interaction problem so that it may benefit the design of complex spacecraft and pointing system servo loops. In this framework, the JPL Pathfinder gimbal pointer is considered as an example.
Cloning, production, and purification of proteins for a medium-scale structural genomics project.
Quevillon-Cheruel, Sophie; Collinet, Bruno; Trésaugues, Lionel; Minard, Philippe; Henckes, Gilles; Aufrère, Robert; Blondeau, Karine; Zhou, Cong-Zhao; Liger, Dominique; Bettache, Nabila; Poupon, Anne; Aboulfath, Ilham; Leulliot, Nicolas; Janin, Joël; van Tilbeurgh, Herman
2007-01-01
The South-Paris Yeast Structural Genomics Pilot Project (http://www.genomics.eu.org) aims at systematically expressing, purifying, and determining the three-dimensional structures of Saccharomyces cerevisiae proteins. We have already cloned 240 yeast open reading frames in the Escherichia coli pET system. Eighty-two percent of the targets can be expressed in E. coli, and 61% yield soluble protein. We have currently purified 58 proteins. Twelve X-ray structures have been solved, six are in progress, and six other proteins gave crystals. In this chapter, we present the general experimental flowchart applied for this project. One of the main difficulties encountered in this pilot project was the low solubility of a great number of target proteins. We have developed parallel strategies to recover these proteins from inclusion bodies, including refolding, coexpression with chaperones, and an in vitro expression system. A limited proteolysis protocol, developed to localize flexible regions in proteins that could hinder crystallization, is also described.
NASA Astrophysics Data System (ADS)
Murasawa, Go; Yeduru, Srinivasa R.; Kohl, Manfred
2016-12-01
This study investigated macroscopic inhomogeneous deformation occurring in single-crystal Ni-Mn-Ga foils under uniaxial tensile loading. Two types of single-crystal Ni-Mn-Ga foil samples were examined as-received and after thermo-mechanical training. Local strain and the strain field were measured under tensile loading using laser speckle and digital image correlation. The as-received sample showed a strongly inhomogeneous strain field with intermittence under progressive deformation, but the trained sample result showed strain field homogeneity throughout the specimen surface. The as-received sample is a mainly polycrystalline-like state composed of the domain structure. The sample contains many domain boundaries and large domain structures in the body. Its structure would cause large local strain band nucleation with intermittence. However, the trained one is an ideal single-crystalline state with a transformation preferential orientation of variants after almost all domain boundary and large domain structures vanish during thermo-mechanical training. As a result, macroscopic homogeneous deformation occurs on the trained sample surface during deformation.
Circumstellar Material on and off the Main Sequence
NASA Astrophysics Data System (ADS)
Steele, Amy; Debes, John H.; Deming, Drake
2017-06-01
There is evidence of circumstellar material around main sequence, giant, and white dwarf stars that originates from the small-body population of planetary systems. These bodies tell us something about the chemistry and evolution of protoplanetary disks and the planetary systems they form. What happens to this material as its host star evolves off the main sequence, and how does that inform our understanding of the typical chemistry of rocky bodies in planetary systems? In this talk, I will discuss the composition(s) of circumstellar material on and off the main sequence to begin to answer the question, “Is Earth normal?” In particular, I look at three types of debris disks to understand the typical chemistry of planetary systems—young debris disks, debris disks around giant stars, and dust around white dwarfs. I will review the current understanding on how to infer dust composition for each class of disk, and present new work on constraining dust composition from infrared excesses around main sequence and giant stars. Finally, dusty and polluted white dwarfs hold a unique key to our understanding of the composition of rocky bodies around other stars. In particular, I will discuss WD1145+017, which has a transiting, disintegrating planetesimal. I will review what we know about this system through high speed photometry and spectroscopy and present new work on understanding the complex interplay of physics that creates white dwarf pollution from the disintegration of rocky bodies.
Wilsch-Bräuninger, Michaela; Schwarz, Heinz; Nüsslein-Volhard, Christiane
1997-01-01
Localization of maternally provided RNAs during oogenesis is required for formation of the antero–posterior axis of the Drosophila embryo. Here we describe a subcellular structure in nurse cells and oocytes which may function as an intracellular compartment for assembly and transport of maternal products involved in RNA localization. This structure, which we have termed “sponge body,” consists of ER-like cisternae, embedded in an amorphous electron-dense mass. It lacks a surrounding membrane and is frequently associated with mitochondria. The sponge bodies are not identical to the Golgi complexes. We suggest that the sponge bodies are homologous to the mitochondrial cloud in Xenopus oocytes, a granulo-fibrillar structure that contains RNAs involved in patterning of the embryo. Exuperantia protein, the earliest factor known to be required for the localization of bicoid mRNA to the anterior pole of the Drosophila oocyte, is highly enriched in the sponge bodies but not an essential structural component of these. RNA staining indicates that sponge bodies contain RNA. However, neither the intensity of this staining nor the accumulation of Exuperantia in the sponge bodies is dependent on the amount of bicoid mRNA present in the ovaries. Sponge bodies surround nuage, a possible polar granule precursor. Microtubules and microfilaments are not present in sponge bodies, although transport of the sponge bodies through the cells is implied by their presence in cytoplasmic bridges. We propose that the sponge bodies are structures that, by assembly and transport of included molecules or associated structures, are involved in localization of mRNAs in Drosophila oocytes. PMID:9348297
Towards revealing the structure of bacterial inclusion bodies
2009-01-01
Protein aggregation is a widely observed phenomenon in human diseases, biopharmaceutical production, and biological research. Protein aggregates are generally classified as highly ordered, such as amyloid fibrils, or amorphous, such as bacterial inclusion bodies. Amyloid fibrils are elongated filaments with diameters of 6–12 nm, they are comprised of residue-specific cross-β structure, and display characteristic properties, such as binding with amyloid-specific dyes. Amyloid fibrils are associated with dozens of human pathological conditions, including Alzheimer disease and prion diseases. Distinguished from amyloid fibrils, bacterial inclusion bodies display apparent amorphous morphology. Inclusion bodies are formed during high-level recombinant protein production, and formation of inclusion bodies is a major concern in biotechnology. Despite of the distinctive morphological difference, bacterial inclusion bodies have been found to have some amyloid-like properties, suggesting that they might contain structures similar to amyloid-like fibrils. Recent structural data further support this hypothesis, and this review summarizes the latest progress towards revealing the structural details of bacterial inclusion bodies. PMID:19806034
Towards revealing the structure of bacterial inclusion bodies.
Wang, Lei
2009-01-01
Protein aggregation is a widely observed phenomenon in human diseases, biopharmaceutical production, and biological research. Protein aggregates are generally classified as highly ordered, such as amyloid fibrils, or amorphous, such as bacterial inclusion bodies. Amyloid fibrils are elongated filaments with diameters of 6-12 nm, they are comprised of residue-specific cross-beta structure, and display characteristic properties, such as binding with amyloid-specific dyes. Amyloid fibrils are associated with dozens of human pathological conditions, including Alzheimer disease and prion diseases. Distinguished from amyloid fibrils, bacterial inclusion bodies display apparent amorphous morphology. Inclusion bodies are formed during high-level recombinant protein production, and formation of inclusion bodies is a major concern in biotechnology. Despite of the distinctive morphological difference, bacterial inclusion bodies have been found to have some amyloid-like properties, suggesting that they might contain structures similar to amyloid-like fibrils. Recent structural data further support this hypothesis, and this review summarizes the latest progress towards revealing the structural details of bacterial inclusion bodies.
Lai, Julian; Koh, Chuan Hock; Tjota, Monika; Pieuchot, Laurent; Raman, Vignesh; Chandrababu, Karthik Balakrishna; Yang, Daiwen; Wong, Limsoon; Jedd, Gregory
2012-09-25
Like animals and plants, multicellular fungi possess cell-to-cell channels (septal pores) that allow intercellular communication and transport. Here, using a combination of MS of Woronin body-associated proteins and a bioinformatics approach that identifies related proteins based on composition and character, we identify 17 septal pore-associated (SPA) proteins that localize to the septal pore in rings and pore-centered foci. SPA proteins are not homologous at the primary sequence level but share overall physical properties with intrinsically disordered proteins. Some SPA proteins form aggregates at the septal pore, and in vitro assembly assays suggest aggregation through a nonamyloidal mechanism involving mainly α-helical and disordered structures. SPA loss-of-function phenotypes include excessive septation, septal pore degeneration, and uncontrolled Woronin body activation. Together, our data identify the septal pore as a complex subcellular compartment and focal point for the assembly of unstructured proteins controlling diverse aspects of intercellular connectivity.
How well can ultracompact bodies imitate black hole ringdowns?
NASA Astrophysics Data System (ADS)
Glampedakis, Kostas; Pappas, George
2018-02-01
The ongoing observations of merging black holes by the instruments of the fledging gravitational wave astronomy has opened the way for testing the general-relativistic Kerr black hole metric and, at the same time, for probing the existence of more speculative horizonless ultracompact objects. In this paper we quantify the difference that these two classes of objects may exhibit in the post-merger ringdown signal. By considering rotating systems in general relativity and assuming an eikonal limit and a third-order Hartle-Thorne slow-rotation approximation, we provide the first calculation of the early ringdown frequency and damping time as a function of the body's multipolar structure. Using the example of a gravastar, we show that the main ringdown signal may differ by as much as a few percent with respect to that of a Kerr black hole, a deviation that could be probed by near-future Advanced LIGO/Virgo searches.
Universal fixture design for body mounted LED lights
NASA Astrophysics Data System (ADS)
Hajra, Debdyut
2017-09-01
Today LED headlamps, armbands and ankle-bands, shoe-lights etc. have become very popular. These find extensive use in search and rescue operations, mining, carving, etc. and are also used by individuals during hiking, trekking, running, etc. during dark hours. They serve two main purposes: they provide sufficient illumination in low light conditions and they are used to indicate the presence of a person after dark. These have the same basic requirements. They must produce sufficient light, have high durability, long battery life, must be light weight and energy efficient. This paper discusses possibilities of designing a universal LED fixture can be designed so that it meets the respective needs of everyone irrespective of their background and industry. It discusses the materials to be used for its different body parts, innovative clip design for attachment with support structures like head and armbands, helmets, shoes, etc.
The Effects of Immigration and Media Influence on Body Image Among Pakistani Men
Saghir, Sheeba; Hyland, Lynda
2017-01-01
This study examined the role of media influence and immigration on body image among Pakistani men. Attitudes toward the body were compared between those living in Pakistan (n = 56) and those who had immigrated to the United Arab Emirates (n = 58). Results of a factorial analysis of variance demonstrated a significant main effect of immigrant status. Pakistani men living in the United Arab Emirates displayed poorer body image than those in the Pakistan sample. Results also indicated a second main effect of media influence.Those highly influenced by the media displayed poorer body image. No interaction effect was observed between immigrant status and media influence on body image. These findings suggest that media influence and immigration are among important risk factors for the development of negative body image among non-Western men. Interventions designed to address the negative effects of the media and immigration may be effective at reducing body image disorders and other related health problems in this population. PMID:28625116
The Effects of Immigration and Media Influence on Body Image Among Pakistani Men.
Saghir, Sheeba; Hyland, Lynda
2017-07-01
This study examined the role of media influence and immigration on body image among Pakistani men. Attitudes toward the body were compared between those living in Pakistan ( n = 56) and those who had immigrated to the United Arab Emirates ( n = 58). Results of a factorial analysis of variance demonstrated a significant main effect of immigrant status. Pakistani men living in the United Arab Emirates displayed poorer body image than those in the Pakistan sample. Results also indicated a second main effect of media influence.Those highly influenced by the media displayed poorer body image. No interaction effect was observed between immigrant status and media influence on body image. These findings suggest that media influence and immigration are among important risk factors for the development of negative body image among non-Western men. Interventions designed to address the negative effects of the media and immigration may be effective at reducing body image disorders and other related health problems in this population.
Hyperfine structure and isotope shift analysis of singly ionized titanium
NASA Astrophysics Data System (ADS)
Bouazza, Safa
2013-04-01
The even-parity low configuration system of Ti II has been considered on the basis of the experimental data found in the literature, and its fine structure has been reanalyzed by simultaneous parameterization of one- and two-body interactions for the model space (3d + 4s)3. Furthermore, the main one-electron hyperfine structure parameters for these configurations have been evaluated. For instance, for 3d24s1, a_{3{\\rm{d}}}^{01} = - {\\rm{63}}.{\\rm{2}}\\left( {{\\rm{3}}.{\\rm{1}}} \\right)\\,{\\rm{MHz}} and a_{4{\\rm{s}}}^{10} = - {\\rm{984}}.{\\rm{1}}\\left( {{\\rm{7}}.{\\rm{1}}} \\right)\\,{\\rm{MHz}} . Field shifts (FS) and specific mass shifts (SMS) of the main Ti II configurations are deduced by means of ab initio estimates combined with a small quantity of experimental isotope shift data available in the literature: FS(3d3) = -63.3 MHz, FS(3d24p1) = -49.7 MHz, FS(3d14s2) = 98.2 MHz, FS(4s24P1) = 163.4 MHz and SMS(3d3) = 1453.3 MHz, SMS(3d14s2) = -2179.7 MHz, …, referred to 3d24s1 for the pair Ti46-Ti48.
Hierarchical control of two-dimensional gaze saccades
Optican, Lance M.; Blohm, Gunnar; Lefèvre, Philippe
2014-01-01
Coordinating the movements of different body parts is a challenging process for the central nervous system because of several problems. Four of these main difficulties are: first, moving one part can move others; second, the parts can have different dynamics; third, some parts can have different motor goals; and fourth, some parts may be perturbed by outside forces. Here, we propose a novel approach for the control of linked systems with feedback loops for each part. The proximal parts have separate goals, but critically the most distal part has only the common goal. We apply this new control policy to eye-head coordination in two-dimensions, specifically head-unrestrained gaze saccades. Paradoxically, the hierarchical structure has controllers for the gaze and the head, but not for the eye (the most distal part). Our simulations demonstrate that the proposed control structure reproduces much of the published empirical data about gaze movements, e.g., it compensates for perturbations, accurately reaches goals for gaze and head from arbitrary initial positions, simulates the nine relationships of the head-unrestrained main sequence, and reproduces observations from lesion and single-unit recording experiments. We conclude by showing how our model can be easily extended to control structures with more linked segments, such as the control of coordinated eye on head on trunk movements. PMID:24062206
Alteration and geochemical zoning in Bodie Bluff, Bodie mining district, eastern California
Herrera, P.A.; Closs, L.G.; Silberman, M.L.
1993-01-01
Banded, epithermal quartz-adularia veins have produced about 1.5 million ounces of gold and 7 million ounces of silver from the Bodie mining district, eastern California. The veins cut dacitic lava flows, pyroclastic rocks and intrusions. Sinter boulders occur in a graben structure at the top of Bodie Bluff and fragments of sinter and mineralized quartz veins occur in hydrothermal breccias nearby. Explosive venting evidently was part of the evolution of the ore-forming geothermal systems which, at one time, must had reached the paleosurface. Previous reconnaissance studies at Bodie Bluff suggested that the geometry of alteration mineral assemblages and distribution of some of the major and trace elements throughout the system correspond to those predicted by models of hot-spring, volcanic rock hosted precious metal deposits (Silberman, 1982; Silberman and Berger, 1985). The current study was undertaken to evaluate these sugestions further. About 500 samples of quartz veins and altered rocks, including sinter, collected over a vertical extent of 200 meters within Bodie Bluff were petrographically examined and chemically analyzed for trace elements by emission spectrographic and atomic absorption methods. Sixty-five samples were analyzed for major elements by X-ray fluorescence methods. The results of these analyses showed that, in general, alteration mineral assemblage and vertical geochemical zoning patterns follow those predicted for hot-spring deposits, but that geochemical zoning patterns for sinter and quartz veins (siliceous deposits), and altered wall rocks are not always similar. The predicted depth-concentration patterns for some elements, notably Au, Ag, Hg, and Tl in quartz veins, and Hg, As and Ag in wall rocks were not as expected, or were perturbed by the main ore producing zone. For both quartz veins and altered wall rocks, the main ore zone had elevated metal contents. Increased concentration of many of these elements could indicate proximity to this zone. However, irregularities in the distribution of some key elements, such as Au and Ag, relative to the predictive models suggest that a larger suite of elements be considered for exploration for ore zones within the district. ?? 1993.
Bon, Marta; Pori, Primoz; Sibila, Marko
2015-09-01
The study aimed to establish the main morphological characteristics of Slovenian junior and senior female national handball team players. Morphological characteristics of various player subgroups (goalkeepers, wings, back players and pivots) were also determined so as to establish whether they had distinct profiles. The subjects were 87 handball players who were members of the Slovenian junior and senior female national teams in the period from 2003 to 2009. A standardised anthropometric protocol was used to assess the subjects' morphological characteristics. The measurements included 23 different anthropometric measures. First, basic statistical characteristics of anthropometric measures were obtained for all subjects together and then for each group separately. Somatotypes were determined using Heath-Carter's method. Endomorphic, mesomorphic and ectomorphic components were calculated by computer on the basis of formulas. In order to determine differences in the body composition and anthropometric data of the subjects playing in different positions, a one-way analysis of variance was employed. The results show that, on average, the wings differed the most from the other player groups in terms of their morphological body characteristics. The wings differed most prominently from the other player groups in terms of their morphological body parameters as they were significantly smaller and had a statistically significantly lower body mass than the other groups. In terms of transversal measures of the skeleton and the circumferences, the wings significantly differed mainly from the pivots and goalkeepers and less from the backs. The goalkeepers were the tallest, with high values of body mass and low values of transversal measures compared to P. Their skin folds were the most pronounced among all the groups on average and their share of subcutaneous fat in total body mass was the highest. Consequently, their endomorphic component of the somatotype was pronounced. Players in the Pivot position were significantly taller than the Wplayers but were not significantly different from G and B. They had high values of body mass which were significantly higher than that of W but did not differ significantly from the body mass values of B and G. The average values of their circumferences were the highest among all the player groups and the same is true for transversal measures of the skeleton. It is very interesting that, compared to the players in other playing positions, they achieved low values of subcutaneous fat. Their values of the somatotype revealed an endo-mesomorphic somatotype, with a pronounced mesomorphic component. Back players were tall and had the lowest share of subcutaneous fat of all the player groups. Significant differences were established mainly in terms of the structure of the lower extremities. The values of the somato-type characteristics were very balanced between all three components. The results of our study confirm that groups of handball players occupying different positions differed amongst themselves in terms of many measurements. This is a result of the specific requirements of handball play which are to be met by particular players. The tallest players should thus be oriented to back player positions. As regards pivots, the coaches must, besides body height, consider robustness. For goal-keepers, body height is very important; however, the robustness criteria are slightly lower. For wings, body height is not a decisive factor and smaller players can also occupy this position. Both of the above (also taking other criteria into account) facilitate coaches' decisions when orienting players into their playing positions.
A structural design decomposition method utilizing substructuring
NASA Technical Reports Server (NTRS)
Scotti, Stephen J.
1994-01-01
A new method of design decomposition for structural analysis and optimization is described. For this method, the structure is divided into substructures where each substructure has its structural response described by a structural-response subproblem, and its structural sizing determined from a structural-sizing subproblem. The structural responses of substructures that have rigid body modes when separated from the remainder of the structure are further decomposed into displacements that have no rigid body components, and a set of rigid body modes. The structural-response subproblems are linked together through forces determined within a structural-sizing coordination subproblem which also determines the magnitude of any rigid body displacements. Structural-sizing subproblems having constraints local to the substructures are linked together through penalty terms that are determined by a structural-sizing coordination subproblem. All the substructure structural-response subproblems are totally decoupled from each other, as are all the substructure structural-sizing subproblems, thus there is significant potential for use of parallel solution methods for these subproblems.
Superconducting cable connections and methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
van der Laan, Daniel Cornelis
2017-09-05
Superconducting cable connector structures include a terminal body (or other structure) onto which the tapes from the superconducting cable extend. The terminal body (or other structure) has a diameter that is sufficiently larger than the diameter of the former of the superconducting cable, so that the tapes spread out over the outer surface of the terminal body. As a result, gaps are formed between tapes on the terminal body (or other structure). Those gaps are filled with solder (or other suitable flowable conductive material), to provide a current path of relatively high conductivity in the radial direction. Other connector structuresmore » omit the terminal body.« less
Micromégas: Altered Body-Environment Scaling in Literary Fiction.
Dieguez, Sebastian
2016-01-01
Architectonic embodiment postulates a bidirectional link between bodily awareness and the architectural environment. The standard size and features of the human body, for instance, are thought to influence the structure of interiors and buildings, as well as their perception and appreciation. Whereas architectural practice and theory, the visual arts and more recently the cognitive sciences have explored this relationship of humans with their crafted environments, many fictional literary works have long experimented with alterations of body-environment scaling. This so-called Gulliver theme - popular in the science-fiction genre but also in children's literature and philosophical satire - reveals, as a recurrent thought-experiment, our preoccupation with proportions and our fascination for the infinitely small and large. Here I provide an overview of the altered scaling theme in literature, including classics such as Voltaire's Micromégas, Swift's Gulliver's Travels, Caroll's Alice, and Matheson's The Shrinking man, closely examining issues relevant to architectonic embodiment such as: bodily, perceptual, cognitive, affective, and social changes related to alterations in body size relative to people, objects and architectural environments. I next provide a taxonomy of the Gulliver theme and highlight its main psychological features, and then proceed to review relevant work from cognitive science. Although fictional alterations of body-environment scaling far outreach current possibilities in experimental research, I argue that the peripetiae and morals outlined in the literary realm, as products of the human imagination, provide a unique window into the folk-psychology of body and space.
Zhao, Zenghui; Lv, Xianzhou; Wang, Weiming; Tan, Yunliang
2016-01-01
Considering the structure effect of tunnel stability in western mining of China, three typical kinds of numerical model were respectively built as follows based on the strain softening constitutive model and linear elastic-perfectly plastic model for soft rock and interface: R-M, R-C(s)-M and R-C(w)-M. Calculation results revealed that the stress-strain relation and failure characteristics of the three models vary between each other. The combination model without interface or with a strong interface presented continuous failure, while weak interface exhibited 'cut off' effect. Thus, conceptual models of bi-material model and bi-body model were established. Then numerical experiments of tri-axial compression were carried out for the two models. The relationships between stress evolution, failure zone and deformation rate fluctuations as well as the displacement of interface were detailed analyzed. Results show that two breakaway points of deformation rate actually demonstrate the starting and penetration of the main rupture, respectively. It is distinguishable due to the large fluctuation. The bi-material model shows general continuous failure while bi-body model shows 'V' type shear zone in weak body and failure in strong body near the interface due to the interface effect. With the increasing of confining pressure, the 'cut off' effect of weak interface is not obvious. These conclusions lay the theoretical foundation for further development of constitutive model for soft rock-coal combination body.
On the structure of self-affine convex bodies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voynov, A S
2013-08-31
We study the structure of convex bodies in R{sup d} that can be represented as a union of their affine images with no common interior points. Such bodies are called self-affine. Vallet's conjecture on the structure of self-affine bodies was proved for d = 2 by Richter in 2011. In the present paper we disprove the conjecture for all d≥3 and derive a detailed description of self-affine bodies in R{sup 3}. Also we consider the relation between properties of self-affine bodies and functional equations with a contraction of an argument. Bibliography: 10 titles.
Romero, María Del Mar; Roy, Stéphanie; Pouillot, Karl; Feito, Marisol; Esteve, Montserrat; Grasa, María Del Mar; Fernández-López, José-Antonio; Alemany, Marià; Remesar, Xavier
2014-01-01
Adipose tissue (AT) is distributed as large differentiated masses, and smaller depots covering vessels, and organs, as well as interspersed within them. The differences between types and size of cells makes AT one of the most disperse and complex organs. Lipid storage is partly shared by other tissues such as muscle and liver. We intended to obtain an approximate estimation of the size of lipid reserves stored outside the main fat depots. Both male and female rats were made overweight by 4-weeks feeding of a cafeteria diet. Total lipid content was analyzed in brain, liver, gastrocnemius muscle, four white AT sites: subcutaneous, perigonadal, retroperitoneal and mesenteric, two brown AT sites (interscapular and perirenal) and in a pool of the rest of organs and tissues (after discarding gut contents). Organ lipid content was estimated and tabulated for each individual rat. Food intake was measured daily. There was a surprisingly high proportion of lipid not accounted for by the main macroscopic AT sites, even when brain, liver and BAT main sites were discounted. Muscle contained about 8% of body lipids, liver 1-1.4%, four white AT sites lipid 28-63% of body lipid, and the rest of the body (including muscle) 38-44%. There was a good correlation between AT lipid and body lipid, but lipid in "other organs" was highly correlated too with body lipid. Brain lipid was not. Irrespective of dietary intake, accumulation of body fat was uniform both for the main lipid storage and handling organs: large masses of AT (but also liver, muscle), as well as in the "rest" of tissues. These storage sites, in specialized (adipose) or not-specialized (liver, muscle) tissues reacted in parallel against a hyperlipidic diet challenge. We postulate that body lipid stores are handled and regulated coordinately, with a more centralized and overall mechanisms than usually assumed.
Chavhan, Govind B; Alsabban, Zehour; Babyn, Paul S
2014-01-01
Diffusion-weighted (DW) imaging is an emerging technique in body imaging that provides indirect information about the microenvironment of tissues and lesions and helps detect, characterize, and follow up abnormalities. Two main challenges in the application of DW imaging to body imaging are the decreased signal-to-noise ratio of body tissues compared with neuronal tissues due to their shorter T2 relaxation time, and image degradation related to physiologic motion (eg, respiratory motion). Use of smaller b values and newer motion compensation techniques allow the evaluation of anatomic structures with DW imaging. DW imaging can be performed as a breath-hold sequence or a free-breathing sequence with or without respiratory triggering. Depending on the mobility of water molecules in their microenvironment, different normal tissues have different signals at DW imaging. Some normal tissues (eg, lymph nodes, spleen, ovarian and testicular parenchyma) are diffusion restricted, whereas others (eg, gallbladder, corpora cavernosa, endometrium, cartilage) show T2 shine-through. Epiphyses that contain fatty marrow and bone cortex appear dark on both DW images and apparent diffusion coefficient maps. Current and emerging applications of DW imaging in pediatric body imaging include tumor detection and characterization, assessment of therapy response and monitoring of tumors, noninvasive detection and grading of liver fibrosis and cirrhosis, detection of abscesses, and evaluation of inflammatory bowel disease. RSNA, 2014
Urban e-Mobility - Challenges and potential solutions using the example of the "E3W" concept vehicle
NASA Astrophysics Data System (ADS)
Perterer, M.; Martin, P.; Lochner, H.
2014-05-01
Due to the increasing number of people in urban areas, there is a need for affordable individual transportation. Limited space in cities together with the need for a significant reduction of pollution will lead to new mobility concepts in the near future. The aim of these concepts is not replacing the car itself, but to supply an additional personal transportation solution with local zero emission. Therefore, electrical powered vehicle concepts may be used. Due to the limited energy density and high cost of current Li-ion batteries, a significant weight reduction of the vehicle could lead to acceptable range and cost. In order to develop an affordable urban concept, the requirements for this kind of vehicle also have to be adjusted in comparison to conventional cars. This concept, the so called "E3W", combines the advantages of a two-wheeler with those of a four-wheeler, resulting in a lightweight and compact vehicle. This concept accommodates space for two persons with luggage and guarantees a high level of safety including wind and weather protection. The overall measures of this vehicle are smaller than current compact cars and allow therefore better use in cities. In order to fulfill technical and commercial requirements, a load carrying, short fiber reinforced thermoplastic body structure is chosen, combining good weight specific mechanical properties and low production costs. This highly integrated body structure also provides the body cover all in one. Pultruded glass fiber reinforced plastic (GFRP) beams are used as the backbone for the vehicle by carrying the main loads, the front crash structure and the rear swingarm. Finally, two prototypes are built to investigate the driving behavior, proof the concept and the suitability for daily use.
Chien, Chi-Sheng; Ko, Yu-Sheng; Kuo, Tsung-Yuan; Liao, Tze-Yuan; Lee, Tzer-Min; Hong, Ting-Fu
2014-04-01
To study the effect of titania (TiO2) addition on the surface microstructure and bioactivity of fluorapatite coatings, fluorapatite was mixed with TiO2 in 1:0.5 (FA + 0.5TiO2), 1:0.8 (FA + 0.8TiO2), and 1:1 (FA + TiO2) ratios (wt%) and clad on Ti-6Al-4V substrates using an Nd:YAG laser system. The experimental results show that the penetration depth of the weld decreases with increasing TiO2 content. Moreover, the subgrain structure of the coating layer changes from a fine cellular-like structure to a cellular-dendrite-like structure as the amount of TiO2 increases. Consequently, as the proportion of TiO2 decreases (increase in fluorapatite content), the Ca/P ratio of the coating layer also decreases. The immersion of specimens into simulated body fluid resulted in the formation of individual apatite. With a lower Ca/P ratio before immersion, the growth of the apatite was faster and then the coating layer provided a better bioactivity. X-ray diffraction analysis results show that prior to simulated body fluid immersion, the coating layer in all three specimens was composed mainly of fluorapatite, CaTiO3, and Al2O3 phases. Following simulated body fluid immersion, a peak corresponding to hydroxycarbonated apatite appeared after 2 days in the FA + 0.5TiO2 and FA + 0.8TiO2 specimens and after 7 days in the FA + TiO2 specimen. Overall, the results show that although the bioactivity of the coating layer tended to decrease with increasing TiO2 content, in accordance with the above-mentioned ratios, the bioactivity of all three specimens remained generally good.
Integrated piezoelectric actuators in deep drawing tools
NASA Astrophysics Data System (ADS)
Neugebauer, R.; Mainda, P.; Drossel, W.-G.; Kerschner, M.; Wolf, K.
2011-04-01
The production of car body panels are defective in succession of process fluctuations. Thus the produced car body panel can be precise or damaged. To reduce the error rate, an intelligent deep drawing tool was developed at the Fraunhofer Institute for Machine Tools and Forming Technology IWU in cooperation with Audi and Volkswagen. Mechatronic components in a closed-loop control is the main differentiating factor between an intelligent and a conventional deep drawing tool. In correlation with sensors for process monitoring, the intelligent tool consists of piezoelectric actuators to actuate the deep drawing process. By enabling the usage of sensors and actuators at the die, the forming tool transform to a smart structure. The interface between sensors and actuators will be realized with a closed-loop control. The content of this research will present the experimental results with the piezoelectric actuator. For the analysis a production-oriented forming tool with all automotive requirements were used. The disposed actuators are monolithic multilayer actuators of the piezo injector system. In order to achieve required force, the actuators are combined in a cluster. The cluster is redundant and economical. In addition to the detailed assembly structures, this research will highlight intensive analysis with the intelligent deep drawing tool.
A Lower Limb-Pelvis Finite Element Model with 3D Active Muscles.
Mo, Fuhao; Li, Fan; Behr, Michel; Xiao, Zhi; Zhang, Guanjun; Du, Xianping
2018-01-01
A lower limb-pelvis finite element (FE) model with active three-dimensional (3D) muscles was developed in this study for biomechanical analysis of human body. The model geometry was mainly reconstructed from a male volunteer close to the anthropometry of a 50th percentile Chinese male. Tissue materials and structural features were established based on the literature and new implemented experimental tests. In particular, the muscle was modeled with a combination of truss and hexahedral elements to define its passive and active properties as well as to follow the detailed anatomy structure. Both passive and active properties of the model were validated against the experiments of Post-Mortem Human Surrogate (PMHS) and volunteers, respectively. The model was then used to simulate driver's emergency braking during frontal crashes and investigate Knee-Thigh-Hip (KTH) injury mechanisms and tolerances of the human body. A significant force and bending moment variance was noted for the driver's femur due to the effects of active muscle forces during emergency braking. In summary, the present lower limb-pelvis model can be applied in various research fields to support expensive and complex physical tests or corresponding device design.
Steffeck, D.W.; Striegl, Robert G.
1989-01-01
Results of studies of the aquatic biology of the upper Illinois River basin provide a historical data source from which inferences can be made about changes in the quality of water in the main stem river and its tributaries. The results of biological investigations that have been conducted throughout the basin since 1900 are summarized and their relevance to stream-water-quality assessment is described, particularly their relevance to the upper Illinois River basin pilot project for the National Water Quality Assessment program. Four general categories of biological investigations were identified: Populations and community structure, chemical concentrations in tissue, organism health, and toxicity measurements. Biological investigations were identified by their location in the basin and by their relevance to each general investigation category. The most abundant literature was in the populations and community structure category. Tissue data were limited to polychlorinated biphenyls, organochlorine pesticides, dioxin, and several metals. The most cited measure of organism health was a condition factor for fish that associates body length with weight or body depth. Toxicity measurements included bioassays and the Ames Tests. The bioassays included several testing methods and test organism. (USGS)
Basal body structure and composition in the apicomplexans Toxoplasma and Plasmodium.
Francia, Maria E; Dubremetz, Jean-Francois; Morrissette, Naomi S
2015-01-01
The phylum Apicomplexa encompasses numerous important human and animal disease-causing parasites, including the Plasmodium species, and Toxoplasma gondii, causative agents of malaria and toxoplasmosis, respectively. Apicomplexans proliferate by asexual replication and can also undergo sexual recombination. Most life cycle stages of the parasite lack flagella; these structures only appear on male gametes. Although male gametes (microgametes) assemble a typical 9+2 axoneme, the structure of the templating basal body is poorly defined. Moreover, the relationship between asexual stage centrioles and microgamete basal bodies remains unclear. While asexual stages of Plasmodium lack defined centriole structures, the asexual stages of Toxoplasma and closely related coccidian apicomplexans contain centrioles that consist of nine singlet microtubules and a central tubule. There are relatively few ultra-structural images of Toxoplasma microgametes, which only develop in cat intestinal epithelium. Only a subset of these include sections through the basal body: to date, none have unambiguously captured organization of the basal body structure. Moreover, it is unclear whether this basal body is derived from pre-existing asexual stage centrioles or is synthesized de novo. Basal bodies in Plasmodium microgametes are thought to be synthesized de novo, and their assembly remains ill-defined. Apicomplexan genomes harbor genes encoding δ- and ε-tubulin homologs, potentially enabling these parasites to assemble a typical triplet basal body structure. Moreover, the UNIMOD components (SAS6, SAS4/CPAP, and BLD10/CEP135) are conserved in these organisms. However, other widely conserved basal body and flagellar biogenesis elements are missing from apicomplexan genomes. These differences may indicate variations in flagellar biogenesis pathways and in basal body arrangement within the phylum. As apicomplexan basal bodies are distinct from their metazoan counterparts, it may be possible to selectively target parasite structures in order to inhibit microgamete motility which drives generation of genetic diversity in Toxoplasma and transmission for Plasmodium.
Machado, Marcus Vinicius; Vieira, Aline Bomfim; da Conceição, Fabiana Gomes; Nascimento, Alessandro Rodrigues; da Nóbrega, Antonio Claudio Lucas; Tibirica, Eduardo
2017-12-01
What is the central question of this study? Regular exercise is recommended as a non-pharmacological approach for the prevention and treatment of metabolic syndrome. However, the impact of different combinations of intensity, duration and frequency of exercise on metabolic syndrome and microvascular density has not been reported. What is the main finding and its importance? We provide evidence on the impact of aerobic exercise dose on metabolic and microvascular alterations in an experimental model of metabolic syndrome induced by high-fat diet. We found that the exercise frequency and duration were the main factors affecting anthropometric and metabolic parameters and microvascular density in the skeletal muscle. Exercise intensity was related only to microvascular density in the heart. We evaluated the effect of the frequency, duration and intensity of exercise training on metabolic parameters and structural capillary density in obese rats with metabolic syndrome. Wistar-Kyoto rats were fed either a standard commercial diet (CON) or a high-fat diet (HFD). Animals that received the HFD were randomly separated into either a sedentary (SED) group or eight different exercise groups that varied according to the frequency, duration and intensity of training. After 12 weeks of aerobic exercise training, the body composition, aerobic capacity, haemodynamic variables, metabolic parameters and capillary density in the heart and skeletal muscle were evaluated. All the exercise training groups showed reduced resting systolic blood pressure and heart rate and normalized fasting glucose. The minimal amount of exercise (90 min per week) produced little effect on metabolic syndrome parameters. A moderate amount of exercise (150 min per week) was required to reduce body weight and improve capillary density. However, only the high amount of exercise (300 min per week) significantly reduced the amount of body fat depots. The three-way ANOVA showed a main effect of exercise frequency and duration for the improvement of metabolic syndrome and capillary density in skeletal muscle. Exercise intensity was a main factor in reversing microvascular rarefaction in the heart. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Selenium enrichment on Cordyceps militaris link and analysis on its main active components.
Dong, Jing Z; Lei, C; Ai, Xun R; Wang, Y
2012-03-01
To investigate the effects of selenium on the main active components of Cordyceps militaris fruit bodies, selenium-enriched cultivation of C. militaris and the main active components of the fruit bodies were studied. Superoxide dismutase (SOD) activity and contents of cordycepin, cordycepic acid, and organic selenium of fruit bodies were sodium selenite concentration dependent; contents of adenosine and cordycep polysaccharides were significantly enhanced by adding sodium selenite in the substrates, but not proportional to sodium selenite concentrations. In the cultivation of wheat substrate added with 18.0 ppm sodium selenite, SOD activity and contents of cordycepin, cordycepic acid, adenosine, cordycep polysaccharides, and total amino acids were enhanced by 121/145%, 124/74%, 325/520%, 130/284%, 121/145%, and 157/554%, respectively, compared to NS (non-selenium-cultivated) fruit bodies and wild Cordyceps sinensis; organic selenium contents of fruit bodies reached 6.49 mg/100 g. So selenium-enriched cultivation may be a potential way to produce more valuable medicinal food as a substitute for wild C. sinensis.
Seasonal carcass composition and energy balance of female black ducks in Maine
Kenneth J. Reinecke; Timothy L. Stone; Ray B., Jr. Owen
1982-01-01
Female Black Ducks (Anas rubripes) collected in Maine during the summer, fall, and winter of 1974-1976 showed significant seasonal variation in body weight, nonfat dry weight, gizzard and pectoral muscle weight, and fat, moisture, and protein content. Variation of body weight within and among seasons was correlated more strongly with carcass protein...
NASA Astrophysics Data System (ADS)
Athi, N.; Wylie, S. R.; Cullen, J. D.; Al-Jader, M.; Al-Shamma'a, A. I.; Shaw, A.
2009-07-01
Resistance spot welding is the main joining technique used for the fabrication of body-in-white structures in the automotive industry. The quality of the welds depends on the profile of the spot welding electrode cap. The increased use of zinc coated steel in the industry increases wear rate of the caps, making quality control more difficult. This paper presents a novel online real time ultrasonic NDE system for resistance spot welding which evaluates every weld as it is formed. SEM results are presented to show the alloying of the electrode caps.
An Anisotropic Multiphysics Model for Intervertebral Disk
Gao, Xin; Zhu, Qiaoqiao; Gu, Weiyong
2016-01-01
Intervertebral disk (IVD) is the largest avascular structure in human body, consisting of three types of charged hydrated soft tissues. Its mechanical behavior is nonlinear and anisotropic, due mainly to nonlinear interactions among different constituents within tissues. In this study, a more realistic anisotropic multiphysics model was developed based on the continuum mixture theory and employed to characterize the couplings of multiple physical fields in the IVD. Numerical simulations demonstrate that this model is capable of systematically predicting the mechanical and electrochemical signals within the disk under various loading conditions, which is essential in understanding the mechanobiology of IVD. PMID:27099402
Oxidative stress in β-thalassaemia and sickle cell disease
Voskou, S.; Aslan, M.; Fanis, P.; Phylactides, M.; Kleanthous, M.
2015-01-01
Sickle cell disease and β-thalassaemia are inherited haemoglobinopathies resulting in structural and quantitative changes in the β-globin chain. These changes lead to instability of the generated haemoglobin or to globin chain imbalance, which in turn impact the oxidative environment both intracellularly and extracellularly. The ensuing oxidative stress and the inability of the body to adequately overcome it are, to a large extent, responsible for the pathophysiology of these diseases. This article provides an overview of the main players and control mechanisms involved in the establishment of oxidative stress in these haemoglobinopathies. PMID:26285072
ER bodies in plants of the Brassicales order: biogenesis and association with innate immunity
Nakano, Ryohei T.; Yamada, Kenji; Bednarek, Paweł; Nishimura, Mikio; Hara-Nishimura, Ikuko
2014-01-01
The endoplasmic reticulum (ER) forms highly organized network structures composed of tubules and cisternae. Many plant species develop additional ER-derived structures, most of which are specific for certain groups of species. In particular, a rod-shaped structure designated as the ER body is produced by plants of the Brassicales order, which includes Arabidopsis thaliana. Genetic analyses and characterization of A. thaliana mutants possessing a disorganized ER morphology or lacking ER bodies have provided insights into the highly organized mechanisms responsible for the formation of these unique ER structures. The accumulation of proteins specific for the ER body within the ER plays an important role in the formation of ER bodies. However, a mutant that exhibits morphological defects of both the ER and ER bodies has not been identified. This suggests that plants in the Brassicales order have evolved novel mechanisms for the development of this unique organelle, which are distinct from those used to maintain generic ER structures. In A. thaliana, ER bodies are ubiquitous in seedlings and roots, but rare in rosette leaves. Wounding of rosette leaves induces de novo formation of ER bodies, suggesting that these structures are associated with resistance against pathogens and/or herbivores. ER bodies accumulate a large amount of β-glucosidases, which can produce substances that potentially protect against invading pests. Biochemical studies have determined that the enzymatic activities of these β-glucosidases are enhanced during cell collapse. These results suggest that ER bodies are involved in plant immunity, although there is no direct evidence of this. In this review, we provide recent perspectives of ER and ER body formation in A. thaliana, and discuss clues for the functions of ER bodies. We highlight defense strategies against biotic stress that are unique for the Brassicales order, and discuss how ER structures could contribute to these strategies. PMID:24653729
NASA Astrophysics Data System (ADS)
Chun, Byoungjin; Kwon, Ilyoung; Jung, Hyun Wook; Hyun, Jae Chun
2017-12-01
The shear-induced migration of concentrated non-Brownian monodisperse suspensions in combined plane Couette-Poiseuille (C-P) flows is studied using a lattice Boltzmann simulation. The simulations are mainly performed for a particle volume fraction of ϕbulk = 0.4 and H/a = 44.3, 23.3, where H and a denote the channel height and radius of suspended particles, respectively. The simulation method is validated in two simple flows, plane Poiseuille and plane Couette flows. In the Poiseuille flow, particles migrate to the mid-plane of the channel where the local concentration is close to the limit of random-close-packing, and a random structure is also observed at the plane. In the Couette flow, the particle distribution remains in the initial uniform distribution. In the combined C-P flows, the behaviors of migration are categorized into three groups, namely, Poiseuille-dominant, Couette-dominant, and intermediate regimes, based on the value of a characteristic force, G, where G denotes the relative magnitude of the body force (P) against the wall-driving force (C). With respect to the Poiseuille-dominant regime, the location of the maximum concentration is shifted from the mid-plane to the lower wall moving in the same direction as the external body force, when G decreases. With respect to the Couette-dominant regime, the behavior is similar to that of a simple shear flow with the exception that a slightly higher concentration of particles is observed near the lower wall. However, with respect to the intermediate value of G, several layers of highly ordered particles are unexpectedly observed near the lower wall where the plane of maximum concentration is located. The locally ordered structure is mainly due to the lateral migration of particles and wall confinement. The suspended particles migrate toward a vanishingly small shear rate at the wall, and they are consequently layered into highly ordered two-dimensional structures at the high local volume fraction.
NASA Astrophysics Data System (ADS)
Liu, Dongrun; Lu, Zhaijun; Zhong, Mu; Cao, Tianpei; Chen, Dong; Xiong, Yupu
2018-02-01
Assessment of the vibration of high-speed trains negotiating complex sections of terrain under strong wind conditions is very important for research into the operation safety and comfort of passengers on high-speed trains. To assess the vibration of high-speed trains negotiating complex sections of terrain under strong wind conditions, we performed a field measurement when the train passes through typical sections of complex terrain along the Lanzhou-Xinjiang high-speed railway in China. We selected the lateral vibration conditions, including the roll angle and lateral displacement of car-body gravity centre through two typical representative sections (embankment-tunnel-embankment and embankment-rectangular transition-cutting) for analysis. The results show that the severe car-swaying phenomenon occurs when the high-speed train moves through the test section, and the car-body lateral vibration characteristic is related significantly to the state of the terrain and topography along the railway. The main causes for this car-swaying phenomenon may be the transitions between different windproof structures, and the greater the scale of the transition region between different windproof structures or landform changes, the more obvious the car-swaying phenomenon becomes. The lateral vibration of the car-body is relatively steady when the train is running through terrain with minor changes in topography, such as the windbreak installed on the bridge and embankment, but the tail car sways more violently than the head car. When the vehicle runs from the windbreak installed on the embankment into the tunnel (or in the opposite direction), the tail car sways more intensely than the head car, and the head car runs relatively stable in the tunnel.
Design and Optimization of a Hybrid-Driven Waist Rehabilitation Robot
Zi, Bin; Yin, Guangcai; Zhang, Dan
2016-01-01
In this paper a waist rehabilitation robot driven by cables and pneumatic artificial muscles (PAMs) has been conceptualized and designed. In the process of mechanism design, the human body structure, the waist movement characteristics, and the actuators’ driving characteristics are the main considerable factors to make the hybrid-driven waist rehabilitation robot (HWRR) cost-effective, safe, flexible, and well-adapted. A variety of sensors are chosen to measure the position and orientation of the recovery patient to ensure patient safety at the same time as the structure design. According to the structure specialty and function, the HWRR is divided into two independent parallel robots: the waist twist device and the lower limb traction device. Then these two devices are analyzed and evaluated, respectively. Considering the characters of the human body in the HWRR, the inverse kinematics and statics are studied when the waist and the lower limb are considered as a spring and link, respectively. Based on the inverse kinematics and statics, the effect of the contraction parameter of the PAM is considered in the optimization of the waist twist device, and the lower limb traction device is optimized using particle swarm optimization (PSO) to minimize the global conditioning number over the feasible workspace. As a result of the optimization, an optimal rehabilitation robot design is obtained and the condition number of the Jacobian matrix over the feasible workspace is also calculated. PMID:27983626
Design and Optimization of a Hybrid-Driven Waist Rehabilitation Robot.
Zi, Bin; Yin, Guangcai; Zhang, Dan
2016-12-14
In this paper a waist rehabilitation robot driven by cables and pneumatic artificial muscles (PAMs) has been conceptualized and designed. In the process of mechanism design, the human body structure, the waist movement characteristics, and the actuators' driving characteristics are the main considerable factors to make the hybrid-driven waist rehabilitation robot (HWRR) cost-effective, safe, flexible, and well-adapted. A variety of sensors are chosen to measure the position and orientation of the recovery patient to ensure patient safety at the same time as the structure design. According to the structure specialty and function, the HWRR is divided into two independent parallel robots: the waist twist device and the lower limb traction device. Then these two devices are analyzed and evaluated, respectively. Considering the characters of the human body in the HWRR, the inverse kinematics and statics are studied when the waist and the lower limb are considered as a spring and link, respectively. Based on the inverse kinematics and statics, the effect of the contraction parameter of the PAM is considered in the optimization of the waist twist device, and the lower limb traction device is optimized using particle swarm optimization (PSO) to minimize the global conditioning number over the feasible workspace. As a result of the optimization, an optimal rehabilitation robot design is obtained and the condition number of the Jacobian matrix over the feasible workspace is also calculated.
NASA Astrophysics Data System (ADS)
Schmidt, B.; Dyl, K.
2014-07-01
The mid-outer main belt is rich in possible parent bodies for the water-bearing carbonaceous chondrites, given their dark surfaces and frequent presence of hydrated minerals (e.g., Feierberg et al. 1985). Ceres (Thomas et al. 2005) and Pallas (Schmidt et al. 2009) possess shapes that indicate that these bodies have achieved hydrostatic equilibrium and may be differentiated (rock from ice). Dynamical calculations suggest asteroids formed rapidly to large sizes to produce the size frequency distribution within today's main belt (e.g., Morbidelli et al. 2009). Water-ice bound to organics has now been detected on the surface of Themis (Rivkin and Emery 2009, Campins et al. 2009), and indirect evidence for ice on many of the remaining family members, including main-belt comets (Hsieh & Jewitt 2006, Castillo-Rogez & Schmidt 2010), supports the theory that the ''C-class'' asteroids formed early and ice-rich. The carbonaceous chondrites represent a rich history of the thermal and aqueous evolution of early planetesimals (e.g., McSween 1979, Bunch and Chang, 1980, Zolensky and McSween 1988, Clayton 1993, Rowe et al., 1994). The composition of these meteorites reflects the timing and duration of water flow, as well as subsequent mineral alteration and isotopic evolution that can constrain temperature and water-rock ratios in which these systematics were set (e.g., Young et al. 1999, Dyl et al. 2012). Debate exists as to how the chemical and thermal consequences of fluid flow on carbonaceous chondrite parent bodies relate to parent-body characteristics: small, static water bodies (e.g., McSween 1979); small, convecting but homogeneous bodies (e.g., Young et al. 1999, 2003); or larger convecting bodies (e.g., Grimm and McSween 1989, Palguta et al. 2010). Heterogeneous thermal and aqueous evolution on larger asteroids that suggests more than one class of carbonaceous chondrite may be produced on the same body (e.g., Castillo-Rogez & Schmidt 2010, Elkins-Tanton et al. 2011, Schmidt & Castillo-Rogez 2012) if the chemical consequences can be reconciled (e.g., Young 2001, Young et al. 2003). Both models (Schmidt and Castillo-Rogez 2012) and experiments (e.g., Hiroi et al. 1996) suggest that water loss from asteroids is an important factor in interpreting the connections between the C-class asteroids and meteorites. The arrival of the Dawn spacecraft to Ceres will determine its much-debated internal structure and finally answer the following question: did large, icy planetesimals form and thermally evolve in the inner solar system? Even if Ceres is not icy, Dawn observations will shed light on its surface composition, and by extension on the surfaces of objects with similar surface properties. This presentation will focus on tying the observational evidence for water on evolving and contemporary asteroids with detailed studies of the carbonaceous chondrites in an effort to synthesize physical and chemical realities with the observational record, bridging the gap between the asteroid and meteorite communities.
Polynomial equations for science orbits around Europa
NASA Astrophysics Data System (ADS)
Cinelli, Marco; Circi, Christian; Ortore, Emiliano
2015-07-01
In this paper, the design of science orbits for the observation of a celestial body has been carried out using polynomial equations. The effects related to the main zonal harmonics of the celestial body and the perturbation deriving from the presence of a third celestial body have been taken into account. The third body describes a circular and equatorial orbit with respect to the primary body and, for its disturbing potential, an expansion in Legendre polynomials up to the second order has been considered. These polynomial equations allow the determination of science orbits around Jupiter's satellite Europa, where the third body gravitational attraction represents one of the main forces influencing the motion of an orbiting probe. Thus, the retrieved relationships have been applied to this moon and periodic sun-synchronous and multi-sun-synchronous orbits have been determined. Finally, numerical simulations have been carried out to validate the analytical results.
Velocity and pressure fields associated with near-wall turbulence structures
NASA Technical Reports Server (NTRS)
Johansson, Arne V.; Alfredsson, P. Henrik; Kim, John
1990-01-01
Computer generated databases containing velocity and pressure fields in three-dimensional space at a sequence of time-steps, were used for the investigation of near-wall turbulence structures, their space-time evolution, and their associated pressure fields. The main body of the results were obtained from simulation data for turbulent channel flow at a Reynolds number of 180 (based on half-channel height and friction velocity) with a grid of 128 x 129 x and 128 points. The flow was followed over a total time of 141 viscous time units. Spanwise centering of the detected structures was found to be essential in order to obtain a correct magnitude of the associated Reynolds stress contribution. A positive wall-pressure peak is found immediately beneath the center of the structure. The maximum amplitude of the pressure pattern was, however, found in the buffer region at the center of the shear-layer. It was also found that these flow structures often reach a maximum strength in connection with an asymmetric spanwise motion, which motivated the construction of a conditional sampling scheme that preserved this asymmetry.
Bending continuous structures with SMAs: a novel robotic fish design.
Rossi, C; Colorado, J; Coral, W; Barrientos, A
2011-12-01
In this paper, we describe our research on bio-inspired locomotion systems using deformable structures and smart materials, concretely shape memory alloys (SMAs). These types of materials allow us to explore the possibility of building motor-less and gear-less robots. A swimming underwater fish-like robot has been developed whose movements are generated using SMAs. These actuators are suitable for bending the continuous backbone of the fish, which in turn causes a change in the curvature of the body. This type of structural arrangement is inspired by fish red muscles, which are mainly recruited during steady swimming for the bending of a flexible but nearly incompressible structure such as the fishbone. This paper reviews the design process of these bio-inspired structures, from the motivations and physiological inspiration to the mechatronics design, control and simulations, leading to actual experimental trials and results. The focus of this work is to present the mechanisms by which standard swimming patterns can be reproduced with the proposed design. Moreover, the performance of the SMA-based actuators' control in terms of actuation speed and position accuracy is also addressed.
Hu, Jun; Liu, Zi; Yu, Dong-Jun; Zhang, Yang
2018-02-15
Sequence-order independent structural comparison, also called structural alignment, of small ligand molecules is often needed for computer-aided virtual drug screening. Although many ligand structure alignment programs are proposed, most of them build the alignments based on rigid-body shape comparison which cannot provide atom-specific alignment information nor allow structural variation; both abilities are critical to efficient high-throughput virtual screening. We propose a novel ligand comparison algorithm, LS-align, to generate fast and accurate atom-level structural alignments of ligand molecules, through an iterative heuristic search of the target function that combines inter-atom distance with mass and chemical bond comparisons. LS-align contains two modules of Rigid-LS-align and Flexi-LS-align, designed for rigid-body and flexible alignments, respectively, where a ligand-size independent, statistics-based scoring function is developed to evaluate the similarity of ligand molecules relative to random ligand pairs. Large-scale benchmark tests are performed on prioritizing chemical ligands of 102 protein targets involving 1,415,871 candidate compounds from the DUD-E (Database of Useful Decoys: Enhanced) database, where LS-align achieves an average enrichment factor (EF) of 22.0 at the 1% cutoff and the AUC score of 0.75, which are significantly higher than other state-of-the-art methods. Detailed data analyses show that the advanced performance is mainly attributed to the design of the target function that combines structural and chemical information to enhance the sensitivity of recognizing subtle difference of ligand molecules and the introduces of structural flexibility that help capture the conformational changes induced by the ligand-receptor binding interactions. These data demonstrate a new avenue to improve the virtual screening efficiency through the development of sensitive ligand structural alignments. http://zhanglab.ccmb.med.umich.edu/LS-align/. njyudj@njust.edu.cn or zhng@umich.edu. Supplementary data are available at Bioinformatics online.
Flight dynamics simulation modeling and control of a large flexible tiltrotor aircraft
NASA Astrophysics Data System (ADS)
Juhasz, Ondrej
A high order rotorcraft mathematical model is developed and validated against the XV-15 and a Large Civil Tiltrotor (LCTR) concept. The mathematical model is generic and allows for any rotorcraft configuration, from single main rotor helicopters to coaxial and tiltrotor aircraft. Rigid-body and inflow states, as well as flexible wing and blade states are used in the analysis. The separate modeling of each rotorcraft component allows for structural flexibility to be included, which is important when modeling large aircraft where structural modes affect the flight dynamics frequency ranges of interest, generally 1 to 20 rad/sec. Details of the formulation of the mathematical model are given, including derivations of structural, aerodynamic, and inertial loads. The linking of the components of the aircraft is developed using an approach similar to multibody analyses by exploiting a tree topology, but without equations of constraints. Assessments of the effects of wing flexibility are given. Flexibility effects are evaluated by looking at the nature of the couplings between rigid-body modes and wing structural modes and vice versa. The effects of various different forms of structural feedback on aircraft dynamics are analyzed. A proportional-integral feedback on the structural acceleration is deemed to be most effective at both improving the damping and reducing the overall excitation of a structural mode. A model following control architecture is then implemented on full order flexible LCTR models. For this aircraft, the four lowest frequency structural modes are below 20 rad/sec, and are thus needed for control law development and analysis. The impact of structural feedback on both Attitude-Command, Attitude-Hold (ACAH) and Translational Rate Command (TRC) response types are investigated. A rigid aircraft model has optimistic performance characteristics, and a control system designed for a rigid aircraft could potentially destabilize a flexible one. The various control systems are flown in a fixed-base simulator. Pilot inputs and aircraft performance are recorded and analyzed.
Montalvão, Diogo; Alçada, Francisca Sena; Braz Fernandes, Francisco Manuel; de Vilaverde-Correia, Sancho
2014-01-01
The purpose of this study is to understand how the M-Wire alloy conditions the mechanical flexibility of endodontic rotary files at body temperature.Two different rotary instruments, a Profile GT 20/.06 and a Profile GT Series X 20/.06, were selected due to their geometrical similarity and their different constituent alloy. GT series X files are made from M-Wire, a Ni-Ti alloy allegedly having higher flexibility at body temperature. Both files were analysed by X-Ray Diffraction and Differential Scanning Calorimetry to investigate phase transformations and the effects of working temperature on these different alloys. Mechanical behaviour was assessed by means of static bending and torsional Finite Element simulations, taking into account the nonlinear superelastic behaviour of Ni-Ti materials. It was found that GT files present austenitic phase at body temperature, whereas GT series X present R-phase at temperatures under 40°C with a potential for larger flexibility. For the same load conditions, simulations showed that the slight geometrical differences between the two files do not introduce great disagreement in the instruments' mechanical response. It was confirmed that M-Wire increases the instrument's flexibility, mainly due to the presence of R-phase at body temperature. PMID:24574937
Montalvão, Diogo; Alçada, Francisca Sena; Braz Fernandes, Francisco Manuel; de Vilaverde-Correia, Sancho
2014-01-01
The purpose of this study is to understand how the M-Wire alloy conditions the mechanical flexibility of endodontic rotary files at body temperature.Two different rotary instruments, a Profile GT 20/.06 and a Profile GT Series X 20/.06, were selected due to their geometrical similarity and their different constituent alloy. GT series X files are made from M-Wire, a Ni-Ti alloy allegedly having higher flexibility at body temperature. Both files were analysed by X-Ray Diffraction and Differential Scanning Calorimetry to investigate phase transformations and the effects of working temperature on these different alloys. Mechanical behaviour was assessed by means of static bending and torsional Finite Element simulations, taking into account the nonlinear superelastic behaviour of Ni-Ti materials. It was found that GT files present austenitic phase at body temperature, whereas GT series X present R-phase at temperatures under 40 °C with a potential for larger flexibility. For the same load conditions, simulations showed that the slight geometrical differences between the two files do not introduce great disagreement in the instruments' mechanical response. It was confirmed that M-Wire increases the instrument's flexibility, mainly due to the presence of R-phase at body temperature.
Beydoun, Hind A.; Sicignano, Nicholas; Beydoun, May; Bocca, Silvina; Stadtmauer, Laurel; Oehninger, Sergio
2010-01-01
Objective To characterize pubertal development of the first generation of young adults born as a result of in-vitro fertilization (IVF). Demographic, clinical and body size characteristics were examined in relation to developmental milestones. Design Cross-sectional. Setting Academic center. Patients Young adults (18–26 years) conceived by IVF (no gamete/embryo manipulation), 1981–1990. Intervention Self-administered questionnaire. Main outcome measures Age at puberty onset, body size. Results Of 560 eligible young adults, 173 completed the survey (response rate=30.9%). We analyzed data on 166 respondents, 71 males and 95 females. No cases of delayed or precocious puberty were observed in the study sample. As expected, age at puberty onset was significantly higher (P < 0.0001) among males (12.3 years) compared to females (11.5 years). A few developmental milestones were predicted by maternal age and infertility diagnoses. For both genders, a direct association was noted between age at puberty onset and height achieved in young adulthood. Structural equations models suggested an inverse relationship of female gender with age at puberty onset and body mass index. Conclusions IVF-conceived young adults did not exhibit pubertal abnormalities. Female gender and age at puberty onset independently predicted body mass index of IVF offspring in young adulthood. PMID:20547390
Gregoric, Pavel; Lewis, Orly; Kuhar, Martin
2015-01-01
The aim of this paper is to depict the anatomical and physiological doctrines of the treatise entitled Περι πνευματος, or De spiritu. By closely examining the contents of the treatise on its own accord, rather than through its Aristotelian or Hellenistic contexts, we attempt to overcome the aporetic and often disconnected style of the author, and to present a coherent picture of his doctrine of pneuma, its roles in the body, the anatomical structures in which it acts, and its relation to the soul. We argue that the author envisions three main systems in the body: artēriai, by which external air is taken in, turned into pneuma and distributed to different parts of the body; phlebes, by which blood is produced and distributed; bones and neura, which support the body and effect locomotion. Pneuma is shown to run through the system of artēriai, whereby it performs vital activities such as thermoregulation, digestion and pulsation. It is also engaged in activities such as perception and locomotion, in the form of the "connate pneuma," which, we propose, is a component of bodily parts. The author connects pneuma very closely with soul, and although he is familiar with Aristotle's doctrine of the soul, he does not see to embrace it.
Design and analysis of truck body for increasing the payload capacity
NASA Astrophysics Data System (ADS)
Vamshi Krishna, K.; Yugandhar Reddy, K.; Venugopal, K.; Ravi, K.
2017-11-01
Truck industry is a major source of transportation in India. With an average truck travelling about 300 kilometers per day [1], every kilogram of truck weight is of concern to the industry in order to get the best out of the truck. The main objective of this project is to increase the payload capacity of automotive truck body. Every kilogram of increased vehicle weight will decrease the vehicle payload capacity in turn increasing the manufacturing cost and reducing the fuel economy by increase the fuel consumption. With the intension of weight reduction, standard truck body has been designed and analyzed in ANSYS software. C-cross section beams were used instead of conventional rectangular box sections to reduce the weight of the body. Light-weight Aluminum alloy Al 6061 T6 is used to increase the payload capacity. The strength of the Truck platform is monitored in terms of deformation and stress concentration. These parameters will be obtained in structural analysis test condition environment. For reducing the stress concentration the concept of beams of uniform strength is used. Accordingly necessary modifications are done so that the optimized model has a better stress distribution and much lesser weight compared to the conventional model. The results obtained by analyzing the modified model are compared with the standard model.
Effect of intense military training on body composition.
Malavolti, Marcella; Battistini, Nino C; Dugoni, Manfredo; Bagni, Bruno; Bagni, Ilaria; Pietrobelli, Angelo
2008-03-01
Individuals in a structural physical training program can show beneficial changes in body composition, such as body fat reduction and muscle mass increase. This study measured body composition changes by using 3 different techniques-skinfold thickness (SF) measurements, air displacement plethysmography (BOD-POD), and dual-energy x-ray absorptiometry (DXA)-during 9 months of intense training in healthy young men engaged in military training. Twenty-seven young men were recruited from a special faction of the Italian Navy. The program previewed three phases: ground combat, sea combat, and amphibious combat. Body composition was estimated at the beginning, in the middle, and at the end of the training. After the subjects performed the ground combat phase, body composition variables significantly decreased: body weight (P < 0.05), fat-free mass (FFM) (P < 0.001), and fat mass (FM) (P < 0.03). During the amphibious combat phase, body weight increased significantly (P < 0.01), mainly because of an increase in FFM (P < 0.001) and a smaller mean decrease in FM. There was a significant difference (P < 0.05) in circumferences and SF at various sites after starting the training course. Bland-Altman analysis did not show any systematic difference between FM and FFM measured with the 3 different techniques on any occasion. On any visit, FFM and FM correlation measured by BOD-POD (P = 0.90) and DXA was significantly greater than measured by SF. A significant difference was found in body mass index (BMI) measured during the study. BOD-POD and SF, compared with DXA, provide valid and reliable measurement of changes in body composition in healthy young men engaged in military training. In conclusion, the findings suggest that for young men of normal weight, changes in body weight alone and in BMI are not a good measure to assess the effectiveness of intense physical training programs, because lean mass gain can masquerade fat weight loss.
NASA Astrophysics Data System (ADS)
Awasthi, Saurabh; Sankaranarayanan, Kamatchi; Saraswathi, N. T.
2016-06-01
Glycation induced amyloid fibrillation is fundamental to the development of many neurodegenerative and cardiovascular complications. Excessive non-enzymatic glycation in conditions such as hyperglycaemia results in the increased accumulation of advanced glycation end products (AGEs). AGEs are highly reactive pro-oxidants, which can lead to the activation of inflammatory pathways and development of oxidative stress. Recently, the effect of non-enzymatic glycation on protein structure has been the major research area, but the role of specific AGEs in such structural alteration and induction of fibrillation remains undefined. In this study, we determined the specific AGEs mediated structural modifications in albumin mainly considering carboxymethyllysine (CML), carboxyethyllysine (CEL), and argpyrimidine (Arg-P) which are the major AGEs formed in the body. We studied the secondary structural changes based on circular dichroism (CD) and spectroscopic analysis. The AGEs induced fibrillation was determined by Congo red binding and examination of scanning and transmission electron micrographs. The amyloidogenic regions in the sequence of BSA were determined using FoldAmyloid. It was observed that CEL modification of BSA leads to the development of fibrillar structures, which was evident from both secondary structure changes and TEM analysis.
Reid, Mary L; Sekhon, Jagdeep K; LaFramboise, Lanielle M
2017-04-01
A high diversity of plant defenses may be a response to herbivore diversity or may be collectively more toxic than single compounds, either of which may be important for understanding insect-plant associations. Monoterpenes in conifers are particularly diverse. We tested the fumigant toxicity of four monoterpenes, alone and in combination, to mountain pine beetles, Dendroctonus ponderosae, in the context of the beetles' individual body traits. Chemical structures of tested monoterpene hydrocarbons had modest effects on beetle survival, mass loss, water content and fat content, with (R)-(+)-limonene tending to be more toxic than (-)-α-pinene, (-)-β-pinene, and (+)-3-carene. Monoterpene diversity (all qualitative combinations of one to four monoterpenes) did not affect toxicity. Concentration (0 to 1200 ppm) of individual monoterpenes was a strong determinant of toxicity. Beetle body size and body condition index strongly and positively affected survival during monoterpene treatments. Larger beetles in better condition lost proportionally less mass during exposure, where proportion mass loss negatively affected survivorship. Toxicity was much more associated with water loss than with fat loss, suggesting that a main cost of detoxification is excretion, a process that has received little attention. These results provide insight into the determinants of beetle success in historic and novel hosts that differ in monoterpene composition and concentration. We also suggest that water availability will affect beetle success directly through their ability to tolerate detoxification as well as indirectly through host responses to drought.
Sánchez, Juana; Priego, Teresa; García, Ana Paula; Llopis, Marina; Palou, Mariona; Picó, Catalina; Palou, Andreu
2012-11-01
This study investigates the lasting effects of maternal supplementation with different fat sources during pregnancy and lactation on feeding behavior and energy homeostasis of their offspring, and its relation to hypothetical effects in the development of main central structures involved in leptin signaling. Offspring of dams supplemented with olive oil, butter, or margarine during late pregnancy and lactation were fed with normal fat (NF) diet until 4-month-old, and then with NF or high fat (HF) diet until 6-month-old. Results showed that 21-day-old margarine group pups presented a higher cell number in the arcuate nucleus (ARC) (females) and higher hypothalamic ObRb/SOCS3 mRNA ratio (males). In adulthood, and under HF diet, they displayed a lower body weight (both genders) and body fat (males) than the butter group, a lower preference for fat food (both genders), and lower leptin levels than the olive oil (both genders) and butter (males) groups. Maternal supplementation with different fat sources during the perinatal period may affect the development of hypothalamic structures and hence predisposition to obesity. Margarine, compared with other fats, may program the offspring for increased leptin sensitivity and a lower preference for fat food, thus providing relative protection against body weight gain in adulthood, particularly under an obesogenic environment. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Miah, Khalid; Bellefleur, Gilles
2014-05-01
The global demand for base metals, uranium and precious metals has been pushing mineral explorations at greater depth. Seismic techniques and surveys have become essential in finding and extracting mineral rich ore bodies, especially for deep VMS mining camps. Geophysical parameters collected from borehole logs and laboratory measurements of core samples provide preliminary information about the nature and type of subsurface lithologic units. Alteration halos formed during the hydrothermal alteration process contain ore bodies, which are of primary interests among geologists and mining industries. It is known that the alteration halos are easier to detect than the ore bodies itself. Many 3D geological models are merely projection of 2D surface geology based on outcrop inspections and geochemical analysis of a small number of core samples collected from the area. Since a large scale 3D multicomponent seismic survey can be prohibitively expensive, performance analysis of such geological models can be helpful in reducing exploration costs. In this abstract, we discussed challenges and constraints encountered in geophysical modelling of ore bodies and surrounding geologic structures from the available coarse 3D geological models of the Lalor Lake mining camp, located in northern Manitoba, Canada. Ore bodies in the Lalor lake VMS camp are rich in gold, zinc, lead and copper, and have an approximate weight of 27 Mt. For better understanding of physical parameters of these known ore bodies and potentially unknown ones at greater depth, we constructed a fine resolution 3D seismic model with dimensions: 2000 m (width), 2000 m (height), and 1500 m (vertical depth). Seismic properties (P-wave, S-wave velocities, and density) were assigned based on a previous rock properties study of the same mining camp. 3D finite-difference elastic wave propagation simulation was performed in the model using appropriate parameters. The generated synthetic 3D seismic data was then compared to the 3D multicomponent field survey data. Main features of the geological models, especially boundaries of main ore bodies were comparable in both data sets. This shows that the 3D geophysical model based on local geology and limited core samples is in fair agreement with the lithologic units confirmed from the field seismic survey data.
[Remote sensing monitoring and screening for urban black and odorous water body: A review.
Shen, Qian; Zhu, Li; Cao, Hong Ye
2017-10-01
Continuous improvement of urban water environment and overall control of black and odorous water body are not merely national strategic needs with the action plan for prevention and treatment of water pollution, but also the hot issues attracting the attention of people. Most previous researches concentrated on the study of cause, evaluation and treatment measures of this phenomenon, and there are few researches on the monitoring using remote sensing, which is often a strain to meet the national needs of operational monitoring. This paper mainly summarized the urgent research problems, mainly including the identification and classification standard, research on the key technologies, and the frame of remote sensing screening systems for the urban black and odorous water body. The main key technologies were concluded too, including the high spatial resolution image preprocessing and extraction technique for black and odorous water body, the extraction of water information in city zones, the classification of the black and odorous water, and the identification and classification technique based on satellite-sky-ground remote sensing. This paper summarized the research progress and put forward research ideas of monitoring and screening urban black and odorous water body via high spatial resolution remote sensing technology, which would be beneficial to having an overall grasp of spatial distribution and improvement progress of black and odorous water body, and provide strong technical support for controlling urban black and odorous water body.
NASA Astrophysics Data System (ADS)
Ortega, L.; Millward, D.; Luque, F. J.; Barrenechea, J. F.; Beyssac, O.; Huizenga, J.-M.; Rodas, M.; Clarke, S. M.
2010-04-01
The volcanic-hosted graphite deposit at Borrowdale in Cumbria, UK, was formed through precipitation from C-O-H fluids. The δ 13C data indicate that carbon was incorporated into the mineralizing fluids by assimilation of carbonaceous metapelites of the Skiddaw Group by andesite magmas of the Borrowdale Volcanic Group. The graphite mineralization occurred as the fluids migrated upwards through normal conjugate fractures forming the main subvertical pipe-like bodies. The mineralizing fluids evolved from CO 2-CH 4-H 2O mixtures (XCO 2 = 0.6-0.8) to CH 4-H 2O mixtures. Coevally with graphite deposition, the andesite and dioritic wall rocks adjacent to the veins were intensely hydrothermally altered to a propylitic assemblage. The initial graphite precipitation was probably triggered by the earliest hydration reactions in the volcanic host rocks. During the main mineralization stage, graphite precipitated along the pipe-like bodies due to CO 2 → C + O 2. This agrees with the isotopic data which indicate that the first graphite morphologies crystallizing from the fluid (cryptocrystalline aggregates) are isotopically lighter than those crystallizing later (flakes). Late chlorite-graphite veins were formed from CH 4-enriched fluids following the reaction CH 4 + O 2 → C + 2H 2O, producing the successive precipitation of isotopically lighter graphite morphologies. Thus, as mineralization proceeded, water-generating reactions were involved in graphite precipitation, further favouring the propylitic alteration. The structural features of the pipe-like mineralized bodies as well as the isotopic homogeneity of graphite suggest that the mineralization occurred in a very short period of time.
[An interactive three-dimensional model of the human body].
Liem, S L
2009-01-01
Driven by advanced computer technology, it is now possible to show the human anatomy on a computer. On the internet, the Visible Body programme makes it possible to navigate in all directions through the anatomical structures of the human body, using mouse and keyboard. Visible Body is a wonderful tool to give insight in the human structures, body functions and organs.
7 CFR 29.1162 - Leaf (B Group).
Code of Federal Regulations, 2010 CFR
2010-01-01
... Specifications, and Tolerances B1L—Choice Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil... percent. B2L—Fine Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil, deep color.... B3L—Good Quality Lemon Leaf Ripe, firm leaf structure, medium body, oily, strong color intensity...
7 CFR 29.1162 - Leaf (B Group).
Code of Federal Regulations, 2011 CFR
2011-01-01
... Specifications, and Tolerances B1L—Choice Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil... percent. B2L—Fine Quality Lemon Leaf Ripe, firm leaf structure, medium body, rich in oil, deep color.... B3L—Good Quality Lemon Leaf Ripe, firm leaf structure, medium body, oily, strong color intensity...
Modeling, simulation and optimization approaches for design of lightweight car body structures
NASA Astrophysics Data System (ADS)
Kiani, Morteza
Simulation-based design optimization and finite element method are used in this research to investigate weight reduction of car body structures made of metallic and composite materials under different design criteria. Besides crashworthiness in full frontal, offset frontal, and side impact scenarios, vibration frequencies, static stiffness, and joint rigidity are also considered. Energy absorption at the component level is used to study the effectiveness of carbon fiber reinforced polymer (CFRP) composite material with consideration of different failure criteria. A global-local design strategy is introduced and applied to multi-objective optimization of car body structures with CFRP components. Multiple example problems involving the analysis of full-vehicle crash and body-in-white models are used to examine the effect of material substitution and the choice of design criteria on weight reduction. The results of this study show that car body structures that are optimized for crashworthiness alone may not meet the vibration criterion. Moreover, optimized car body structures with CFRP components can be lighter with superior crashworthiness than the baseline and optimized metallic structures.
54. INTERIOR VIEW LOOKING NORTH IN THE VANER ROOM. VANNER ...
54. INTERIOR VIEW LOOKING NORTH IN THE VANER ROOM. VANNER IN THE FOREGROUND IS INTACT BUT IS MISSING THE MAIN BELT SURFACE. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA
Wang, Qi; Shih, Chungkun; Ren, Dong
2013-01-01
Background Many extant male animals exhibit exaggerated body parts for display, defense or offence in sexual selection, such as male birds of paradise showing off colorful and elegant feathers and male moose and reindeers bearing large structured antlers. For insects, male rhinoceros and stag beetles have huge horn-like structure for fighting and competition and some male Leptopanorpa scorpionflies have very long abdominal terminal segments for sexual display and competition. Fossil records of insects having exaggerated body parts for sexual display are fairly rare. One example is two male holcorpids with elongate abdominal segments from sixth (A6) to eighth (A8) and enlarged male genitalia from Eocene, suggesting evolution of these characters occurred fairly late. Principal Findings We document two mecopterans with exaggerated male body parts from the late Middle Jurassic Jiulongshan Formation in northeastern China. Both have extremely extended abdominal segments from A6 to A8 and enlarged genitalia, which might have been used for sexual display and, to less extent, for fighting with other males in the competition for mates. Although Fortiholcorpa paradoxa gen. et sp. nov. and Miriholcorpa forcipata gen. et sp. nov. seem to have affinities with Holcorpidae, we deem both as Family Incertae sedis mainly due to significant differences in branching pattern of Media (M) veins and relative length of A8 for F. paradoxa, and indiscernible preservation of 5-branched M veins in hind wing for M. forcipata. Conclusions/Significance These two new taxa have extended the records of exaggerated male body parts of mecopterans for sexual display and/or selection from the Early Eocene to the late Middle Jurassic. The similar character present in some Leptopanorpa of Panorpidae suggests that the sexual display and/or sexual selection due to extremely elongated male abdominal and sexual organs outweigh the negative impact of bulky body and poor mobility in the evolutionary process. PMID:23977031
What explains health in persons with visual impairment?
2014-01-01
Background Visual impairment is associated with important limitations in functioning. The International Classification of Functioning, Disability and Health (ICF) adopted by the World Health Organisation (WHO) relies on a globally accepted framework for classifying problems in functioning and the influence of contextual factors. Its comprehensive perspective, including biological, individual and social aspects of health, enables the ICF to describe the whole health experience of persons with visual impairment. The objectives of this study are (1) to analyze whether the ICF can be used to comprehensively describe the problems in functioning of persons with visual impairment and the environmental factors that influence their lives and (2) to select the ICF categories that best capture self-perceived health of persons with visual impairment. Methods Data from 105 persons with visual impairment were collected, including socio-demographic data, vision-related data, the Extended ICF Checklist and the visual analogue scale of the EuroQoL-5D, to assess self-perceived health. Descriptive statistics and a Group Lasso regression were performed. The main outcome measures were functioning defined as impairments in Body functions and Body structures, limitations in Activities and restrictions in Participation, influencing Environmental factors and self-perceived health. Results In total, 120 ICF categories covering a broad range of Body functions, Body structures, aspects of Activities and Participation and Environmental factors were identified. Thirteen ICF categories that best capture self-perceived health were selected based on the Group Lasso regression. While Activities-and-Participation categories were selected most frequently, the greatest impact on self-perceived health was found in Body-functions categories. The ICF can be used as a framework to comprehensively describe the problems of persons with visual impairment and the Environmental factors which influence their lives. Conclusions There are plenty of ICF categories, Environmental-factors categories in particular, which are relevant to persons with visual impairment, but have hardly ever been taken into consideration in literature and visual impairment-specific patient-reported outcome measures. PMID:24886326
Using participant hedonic ratings of food images to construct data driven food groupings.
Johnson, Susan L; Boles, Richard E; Burger, Kyle S
2014-08-01
Little is known regarding how individuals' hedonic ratings of a variety of foods interrelate and how hedonic ratings correspond to habitual dietary intake. Participant ratings of food appeal of 104 food images were collected while participants were in a fed state (n = 129). Self-reported frequency of intake of the food items, perceived hunger, body mass index (BMI), and dietary restraint were also assessed. Principal components analysis (PCA) was employed to analyze hedonic ratings of the foods, to identify component structures and to reduce the number of variables. The resulting component structures comprised 63 images loading on seven components including Energy-Dense Main Courses, Light Main Courses and Seafood as well as components more analogous to traditional food groups (e.g., Fruits, Grains, Desserts, Meats). However, vegetables were not represented in a unique, independent component. All components were positively correlated with reported intake of the food items (r's = .26-.52, p <.05), except for the Light Main Course component (r = .10). BMI showed a small positive relation with aggregated food appeal ratings (r = .19; p <.05), which was largely driven by the relations between BMI and appeal ratings for Energy-Dense Main Courses (r = .24; p <.01) and Desserts (r = .27; p <.01). Dietary restraint showed a small significant negative relation to Energy-Dense Main Courses (r = -.21; p <.05), and Meats (r = -.18; p <.05). The present investigation provides novel evidence regarding how individuals' hedonic ratings of foods aggregate into food components and how these component ratings relate to dietary intake. The notable absence of a vegetable component suggests that individuals' liking for vegetables is highly variable and, from an empirical standpoint, not related to how they respond hedonically to other food categories. Copyright © 2014 Elsevier Ltd. All rights reserved.
Photometric Metallicities of the Small and Large Magellanic Clouds
NASA Astrophysics Data System (ADS)
Miller, Amy Elizabeth
2018-06-01
In the field of astronomy, the study of galaxies is vitally important to understanding the structure and evolution of the universe. Within the study of galaxies, of particular interest are the Small and Large Magellanic Clouds (SMC and LMC, respectively), two of the Milky Way’s closest and most massive satellite galaxies. Their close proximity make them ideal candidates for understanding astrophysical processes such as galaxy interactions. In order to fully understand the Magellanic Clouds, it is imperative that the metallicity of the clouds be mapped in detail. In order to accomplish this task, I will use data from the Survey of Magellanic Stellar History (SMASH) which is a deep, multi-band (ugriz) photometric survey of the Magellanic Clouds that contains approximately 400 million objects in 197 fully-calibrated fields. SMASH is an extensive and deep photometric data set that enables the full-scale study of the galactic structure in the Clouds. The SMASH u-band is sensitive to metallicity for main-sequence turn-off stars which we calibrate using SDSS spectroscopy in overlapping regions (mainly standard star fields). The final steps will be to make metallicity maps of the main bodies and peripheries of the LMC and SMC. Ultimately, these metallicity maps will help us trace out population gradients in the Clouds and uncover the origin of their very extended stellar peripheries.
[A review on fundamental studies of secondary forest management].
Zhu, Jiaojun
2002-12-01
Secondary forest is also called as natural secondary forest, which regenerates on native forest that has been disturbed by severe natural or anthropogenic disturbances. The structural and dynamic organizations, growth, productivity and stand environment of secondary forests are significantly different from those of natural and artificial forests. Such significant differences make secondary forests have their own special characteristics in forestry. Secondary forests are the main body of forests in China. Therefore, their management plays a very important role in the projects of natural forest conservation and the construction of ecological environment in China or in the world. Based on a wide range of literature collection on secondary forest research, the fundamental studies of secondary forest management were discussed. The major topics are as follows: 1) basic characteristics of secondary forest, 2) principles of secondary forest management, 3) types of secondary forest, 4) community structure and succession dynamics of secondary forest, including niches, biodiversity, succession and so on, 5) main ecological processes of secondary forest, including regeneration, forest soil and forest environment. Additionally, the research needs and tendency related to secondary forest in the future were also given, based on the analyses of the main results and the problems in current management of secondary forest. The review may be helpful to the research of secondary forest management, and to the projects of natural forest conservation in China.
Body image and body change: predictive factors in an Iranian population.
Garrusi, Behshid; Garousi, Saeide; Baneshi, Mohammad R
2013-08-01
Body concerns and its health consequences such as eating disorders and harmful body change activities are mentioned in Asian countries. This study evaluates factors contributing to body image/shape changes in an Iranian population. In this cross-sectional study we focused on four main body change activity (diet, exercise, substance use, and surgery) and their risk factors such as demographic variables, Body Mass Index (BMI), Media, Body-Esteem, Perceived Socio-cultural Pressure, Body dissatisfaction and, Self-Esteem. Approximately, 1,200 individuals between 14-55 years old participated in this study. We used a multistage sampling method. In each region, the first household was selected at random. The probability of outcomes was estimated from logistic models. About 54.3% of respondents were females. The mean (SD) of age was 31.06 (10.24) years. Variables such as gender, age, BMI, use of media and socio cultural factors as, body dissatisfaction, body-esteem and pressure by relatives were the main factors that influenced body change methods. In particular we have seen that male are 53% less likely to follow surgical treatments, but 125% were more likely to use substances. Investigation of body concern and its health related problem should be assessed in cultural context. For effectiveness of interventional programs and reducing harmful body image/shape changes activities, socio-cultural background should be noted.
Body Image and Body Change: Predictive Factors in an Iranian Population
Garrusi, Behshid; Garousi, Saeide; Baneshi, Mohammad R.
2013-01-01
Background: Body concerns and its health consequences such as eating disorders and harmful body change activities are mentioned in Asian countries. This study evaluates factors contributing to body image/shape changes in an Iranian population. Methods: In this cross-sectional study we focused on four main body change activity (diet, exercise, substance use, and surgery) and their risk factors such as demographic variables, Body Mass Index (BMI), Media, Body-Esteem, Perceived Socio-cultural Pressure, Body dissatisfaction and, Self-Esteem. Approximately, 1,200 individuals between 14-55 years old participated in this study. We used a multistage sampling method. In each region, the first household was selected at random. The probability of outcomes was estimated from logistic models. Results: About 54.3% of respondents were females. The mean (SD) of age was 31.06 (10.24) years. Variables such as gender, age, BMI, use of media and socio cultural factors as, body dissatisfaction, body-esteem and pressure by relatives were the main factors that influenced body change methods. In particular we have seen that male are 53% less likely to follow surgical treatments, but 125% were more likely to use substances. Conclusions: Investigation of body concern and its health related problem should be assessed in cultural context. For effectiveness of interventional programs and reducing harmful body image/shape changes activities, socio-cultural background should be noted. PMID:24049621
Rigid Body Modes Influence On Microvibration Analysis-Application To Swarm
NASA Astrophysics Data System (ADS)
Laduree, G.; Fransen, S.; Baldesi, G.; Pflieger, I.
2012-07-01
Microvibrations are defined as low level mechanical disturbances affecting payload performance, generated by mobile parts or mechanism operating on-board the spacecraft, like momentum or reaction wheels, pointing mechanism, cryo-coolers or thrusters. The disturbances caused by these sources are transmitted through the spacecraft structure and excite modes of that structure or elements of the payload impacting its performance (e.g. Line of sight rotations inducing some image quality degradation). The dynamic interaction between these three elements (noise source, spacecraft structure and sensitive receiver) makes the microvibration prediction a delicate problem. Microvibration sources are generally of concern in the frequency range from a few Hz to 1000 Hz. However, in some specific cases, high stability at lower frequencies might be requested. This is the case of the SWARM mission, whose objectives are to provide the best ever survey of the geomagnetic field and its temporal evolution as well as supplementary information for studying the interaction of the magnetic field with other physical quantities describing the Earth system (e.g. ocean circulation). Among its instruments, SWARM is embarking a very sensitive 6-axis accelerometer in the low frequency range (10-8 m/s2 or rad/s2 between 10-4 and 0.1 Hz) located at its Centre of Gravity and an Absolute Scalar Magnetometer located at the tip of a boom far from the spacecraft body. The ASM performs its measurements by rotating an alternative magnetic field around its main axis thanks to a piezo-electric motor. This repeated disturbance might generate some pollution of the accelerometer science data. The objective of this work is to focus on the interaction of the rigid body mode calculation method with the elastic contribution of the normal modes excited by the noise source frequency content. It has indeed been reported in the past that NASTRAN Lanczos rigid body modes may lead to inaccurate rigid-body accelerations affecting steady state responses due to numerical roundoffs coming from the coupled mode shape extraction method and from the associated non numerical zeros frequencies. Geometric rigid body modes are usually the preferred solution for dynamic transient analysis but are not retained by NASTRAN when the chosen eigensolver is Lanczos, even using a SUPORT card. The SWARM microvibration problem described above has been considered as a benchmark case for various codes (NASTRAN, PERMAS, DCAP - multi-body software) and methods (direct or modal transients). A specific DMAP in NASTRAN has been written to overcome the limitation imposed by the Lanczos method and considerations on the conditioning of the FEM are discussed. An assessment on the accuracy of the different rigid body modes calculation methods is finally proposed.
Dynamical evolution of V-type photometric candidates in the central and outer main belt asteroids
NASA Astrophysics Data System (ADS)
Carruba, V.; Huaman, M.
2014-07-01
V-type asteroids are associated with basaltic composition, and are supposed to be fragments of crust of differentiated objects. Most V-type asteroids in the main belt are found in the inner main belt, and are either current members of the Vesta dynamical family (Vestoids), or past members that drifted away. However, several V-type photometric candidates have been recently identified in the central and outer main belt. The origin of this large population of V-type objects is not well understood, since it seems unlikely that Vestoids crossing the 3:1 and 5:2 mean-motion resonance with Jupiter could account for the whole observed population. In this work, we investigated a possible origin of the bodies from local sources, such as the parent bodies of the Eunomia, Merxia, and Agnia asteroid families in the central main belt, and Dembowska, Eos and Magnya asteroid families in the outer main belt. Our results show that dynamical evolution from the parent bodies of the Eunomia and Merxia/Agnia families on timescales of 2 Gyr or more could be responsible for the current orbital location of most of the V-type photometric candidates in the central main belt. Studies for the outer main belt are currently in progress. by the FAPESP (grant 2011/19863-3) and CAPES (grant 15029-12-3) funding agencies.
Relationship of Heath and Carter's Second Component to Lean Body Mass and Height in College Women
ERIC Educational Resources Information Center
Slaughter, M. H.; And Others
1977-01-01
The Heath and Carter approach to determining somatotypes is less accurate than is regression analysis, mainly because of the lack of association between skeletal widths and lean body mass as measured by body density and whole-body fat percentage, holding constant muscle circumference. (Author)
Joining of porous silicon carbide bodies
Bates, Carl H.; Couhig, John T.; Pelletier, Paul J.
1990-05-01
A method of joining two porous bodies of silicon carbide is disclosed. It entails utilizing an aqueous slip of a similar silicon carbide as was used to form the porous bodies, including the sintering aids, and a binder to initially join the porous bodies together. Then the composite structure is subjected to cold isostatic pressing to form a joint having good handling strength. Then the composite structure is subjected to pressureless sintering to form the final strong bond. Optionally, after the sintering the structure is subjected to hot isostatic pressing to further improve the joint and densify the structure. The result is a composite structure in which the joint is almost indistinguishable from the silicon carbide pieces which it joins.
Rack assembly for mounting solar modules
Plaisted, Joshua Reed; West, Brian
2010-12-28
A rack assembly is provided for mounting solar modules over an underlying body. The rack assembly may include a plurality of rail structures that are arrangeable over the underlying body to form an overall perimeter for the rack assembly. One or more retention structures may be provided with the plurality of rail structures, where each retention structure is configured to support one or more solar modules at a given height above the underlying body. At least some of the plurality of rail structures are adapted to enable individual rail structures o be sealed over the underlying body so as to constrain air flow underneath the solar modules. Additionally, at least one of (i) one or more of the rail structures, or (ii) the one or more retention structures are adjustable so as to adapt the rack assembly to accommodate solar modules of varying forms or dimensions.
Rack assembly for mounting solar modules
Plaisted, Joshua Reed; West, Brian
2012-09-04
A rack assembly is provided for mounting solar modules over an underlying body. The rack assembly may include a plurality of rail structures that are arrangeable over the underlying body to form an overall perimeter for the rack assembly. One or more retention structures may be provided with the plurality of rail structures, where each retention structure is configured to support one or more solar modules at a given height above the underlying body. At least some of the plurality of rail structures are adapted to enable individual rail structures to be sealed over the underlying body so as to constrain air flow underneath the solar modules. Additionally, at least one of (i) one or more of the rail structures, or (ii) the one or more retention structures are adjustable so as to adapt the rack assembly to accommodate solar modules of varying forms or dimensions.
Rack assembly for mounting solar modules
Plaisted, Joshua Reed; West, Brian
2014-06-10
A rack assembly is provided for mounting solar modules over an underlying body. The rack assembly may include a plurality of rail structures that are arrangeable over the underlying body to form an overall perimeter for the rack assembly. One or more retention structures may be provided with the plurality of rail structures, where each retention structure is configured to support one or more solar modules at a given height above the underlying body. At least some of the plurality of rail structures are adapted to enable individual rail structures o be sealed over the underlying body so as to constrain air flow underneath the solar modules. Additionally, at least one of (i) one or more of the rail structures, or (ii) the one or more retention structures are adjustable so as to adapt the rack assembly to accommodate solar modules of varying forms or dimensions.
Method for fabricating beryllium structures
Hovis, Jr., Victor M.; Northcutt, Jr., Walter G.
1977-01-01
Thin-walled beryllium structures are prepared by plasma spraying a mixture of beryllium powder and about 2500 to 4000 ppm silicon powder onto a suitable substrate, removing the plasma-sprayed body from the substrate and placing it in a sizing die having a coefficient of thermal expansion similar to that of the beryllium, exposing the plasma-sprayed body to a moist atmosphere, outgassing the plasma-sprayed body, and then sintering the plasma-sprayed body in an inert atmosphere to form a dense, low-porosity beryllium structure of the desired thin-wall configuration. The addition of the silicon and the exposure of the plasma-sprayed body to the moist atmosphere greatly facilitate the preparation of the beryllium structure while minimizing the heretofore deleterious problems due to grain growth and grain orientation.
Small molecules for bone diseases.
Masuya, Keiichi; Teno, Naoki
2010-04-01
Bones play many roles in the body, providing structure, protecting organs, anchoring muscles and storing calcium. Over 100 million people worldwide suffer from bone diseases, mainly osteoporosis, cancer-related bone loss, osteoarthritis and inflammatory arthritis. Osteoporosis itself has no specific symptoms, and the main consequence is the increased risk of bone fractures. Therefore, the prevention of bone diseases is important to maintain the quality of life in the human society. However, treatment options are still insufficient. This review article gives a summary of the low molecular mass modulators of bone diseases targets disclosed in patent applications and articles, mainly during the last 5 years. Readers will rapidly gain an overview of these modulators not only for historical targets, but also of emerging and re-visited targets. Readers will also be able to see the current research trend and the main players in this field. Drug discovery for bone diseases has made progress in the last years. The research area has dynamically shifted from historical targets (bisphosphonate, parathyroid hormone and calcitonin) to newly confirmed targets or targets re-visited which were biologically validated in the past. Cathepsin K inhibitors should be very close to launching in the market.
Particle-Based Microfluidic Device for Providing High Magnetic Field Gradients
NASA Technical Reports Server (NTRS)
Wong, Tak S. (Inventor); Lin, Adam Y. (Inventor)
2013-01-01
A microfluidic device for manipulating particles in a fluid has a device body that defines a main channel therein, in which the main channel has an inlet and an outlet. The device body further defines a particulate diverting channel therein, the particulate diverting channel being in fluid connection with the main channel between the inlet and the outlet of the main channel and having a particulate outlet. The microfluidic device also has a plurality of microparticles arranged proximate or in the main channel between the inlet of the main channel and the fluid connection of the particulate diverting channel to the main channel. The plurality of microparticles each comprises a material in a composition thereof having a magnetic susceptibility suitable to cause concentration of magnetic field lines of an applied magnetic field while in operation. A microfluidic particle-manipulation system has a microfluidic particle-manipulation device and a magnet disposed proximate the microfluidic particle-manipulation device.
Implications of stillage land disposal: a critical review on the impacts of fertigation.
Fuess, Lucas Tadeu; Garcia, Marcelo Loureiro
2014-12-01
Stillage is the main wastewater from ethanol production, generated specifically in the step of distillation. Regardless the feedstock, stillage contains high concentrations of organic matter, potassium and sulfates, as well as acidic and corrosive characteristics. Currently almost the entire volume of stillage generated in Brazilian distilleries is directed to the fertigation of sugarcane fields, due to its fertilizer character. However, the polluting potential of stillage characterizes its land disposal as problematic, considering probable negative impacts on the soil structure and water resources in case of excessive dosages. Since the literature lacks critical content describing clearly the cons related to the reuse of stillage in agriculture in the long-term, this review aimed to assess the real polluting potential of stillage, and the implications of its land disposal and/or discharge into water bodies. Evidence from the literature indicate that the main obstacles to reuse stillage in natura include risks of soil salinization; clogging of pores, reduction in the microbial activity and the significant depletion of dissolved oxygen concentrations in water bodies; contamination per nitrates and eutrophication; soil structure destabilization due to high concentrations of potassium and sodium; and, possible acidification of soil and water resources, considering the low pH of stillage (∼4,5). Toxic metals, such as cadmium, lead, copper, chromium and nickel, were also identified in concentrations above the recommended limits in stillage samples, increasing risks to human health (e.g. carcinogenic potential) and to crops (e.g. productivity loss). In short, although some studies report benefits from the land application of stillage, its treatment prior to disposal is essential to make fertigation an environmentally suitable practice. Copyright © 2014 Elsevier Ltd. All rights reserved.
Saragiotto, Bruno Tirotti; Yamato, Tiê Parma; Lopes, Alexandre Dias
2014-10-01
Qualitative study based on semi-structured interviews. To describe the beliefs and opinions of runners about risk factors associated with running injuries. Despite the health benefits of running, a high prevalence of injury has been reported in runners. Preventive strategies for running injuries may be more successful with a better knowledge of runners' beliefs. A semi-structured interview of recreational runners was based on the question, "What do you think can cause injuries in runners?" Analysis of the interviews was performed in 3 steps: (1) organizing the data into thematic units, (2) reading and reorganizing the data according to frequency of citation, and (3) interpreting and summarizing the data. The runner interviews were continued until no new beliefs and opinions of runners regarding injuries were being added to the data, indicating saturation of the topic. A total of 95 recreational runners (65 men, 30 women) between the ages of 19 and 71 years were interviewed. Of those interviewed, the average running experience was 5.5 years and approximately 45% had experienced a running-related injury in the past. The factors suggested by the runners were divided into extrinsic and intrinsic factors. The most cited extrinsic factors were "not stretching," "excess of training," "not warming up," "lack of strength," and "wearing the wrong shoes." For the intrinsic factors, the main terms cited were "not respecting the body's limitations" and "foot-type changes." Recreational runners mainly attributed injury to factors related to training, running shoes, and exceeding the body's limits. Knowing the factors identified in this study may contribute to the development of better educational strategies to prevent running injuries, as some of the runners' beliefs are not supported by the research literature.
Optical radiation in modern medicine
Sowa, Paweł; Rutkowska-Talipska, Joanna; Rutkowski, Krzysztof; Kosztyła-Hojna, Bożena
2013-01-01
Optical radiation extends between microwaves and X-rays of the electromagnetic radiation and includes ultraviolet (UV), visible light (VL) and infrared (IR) components. The dose of radiation that reaches the skin is influenced by the ozone layer, position of the Sun, latitude, altitude, cloud cover and ground reflections. The photobiological effects of UV, VL and IR bands depend on their wavelength, frequency and mechanism of action. They are modified by the thickness, structure, vasculature and pigmentation of skin's stratum corneum, epidermis and dermis. Following absorption, IR affects the body mainly through transfer of thermal energy to tissues. Visible light and skin interact either thermally or photochemically, whereas UV acts mainly photochemically. Optical radiation in the form of sunlight therapy had been used already in ancient times. Nowadays IR, VL and UV are widely applied in the therapy of allergic, dermatological, cardiovascular, respiratory, rheumatic, neonatal, pediatric and psychiatric disorders. PMID:24278082
Building machine learning force fields for nanoclusters
NASA Astrophysics Data System (ADS)
Zeni, Claudio; Rossi, Kevin; Glielmo, Aldo; Fekete, Ádám; Gaston, Nicola; Baletto, Francesca; De Vita, Alessandro
2018-06-01
We assess Gaussian process (GP) regression as a technique to model interatomic forces in metal nanoclusters by analyzing the performance of 2-body, 3-body, and many-body kernel functions on a set of 19-atom Ni cluster structures. We find that 2-body GP kernels fail to provide faithful force estimates, despite succeeding in bulk Ni systems. However, both 3- and many-body kernels predict forces within an ˜0.1 eV/Å average error even for small training datasets and achieve high accuracy even on out-of-sample, high temperature structures. While training and testing on the same structure always provide satisfactory accuracy, cross-testing on dissimilar structures leads to higher prediction errors, posing an extrapolation problem. This can be cured using heterogeneous training on databases that contain more than one structure, which results in a good trade-off between versatility and overall accuracy. Starting from a 3-body kernel trained this way, we build an efficient non-parametric 3-body force field that allows accurate prediction of structural properties at finite temperatures, following a newly developed scheme [A. Glielmo et al., Phys. Rev. B 95, 214302 (2017)]. We use this to assess the thermal stability of Ni19 nanoclusters at a fractional cost of full ab initio calculations.
Thomas, Bradley G; Sanchez, Luis A; Geraghty, Patrick J; Rubin, Brian G; Money, Samuel R; Sicard, Gregorio A
2010-06-01
Proximal attachment failure, often leading to graft migration, is a severe complication of endovascular aneurysm repair (EVAR). Aortic cuffs have been used to treat proximal attachment failure with mixed results. The Zenith Renu AAA Ancillary Graft (Cook Inc, Bloomington, Ind) is available in two configurations: converter and main body extension. Both provide proximal extension with active fixation for the treatment of pre-existing endovascular grafts with failed or failing proximal fixation or seal in patients who are not surgical candidates. We prospectively compared the outcomes of patient treatment with these two device configurations. From September 2005 to May 2008, a prospective, nonrandomized, postmarket registry was conducted to collect data from 151 patients treated at 95 institutions for proximal aortic endovascular graft failure using the Renu graft. Treatment indications included inadequate proximal fixation or seal, for example, migration, and type I and III endoleak. A total of 136 patients (90%) had migration, 111 (74%) had endoleak, and 94 (62%) had endoleaks and graft migration. AneuRx grafts were present in 126 patients (83%), of which 89 (59%) were treated with a converter and 62 (41%) with a main body extension. Outcomes using converters vs main body extensions for endoleak rates, changes in aneurysm size, and ruptures were compared. Preprocedural demographics between the two groups did not differ significantly. Procedural success rates were 98% for the converter group and 100% for the main body extension group. At a mean follow-up of 12.8 +/- 7.5 months, no type III endoleaks (0%)were identified in the converter group, and five (8%) were identified in the main body extension group. There were no aneurysm ruptures in patients treated with converters (0%) and three ruptures (5%) in patients treated with main body extensions. Each patient with aneurysm rupture had been treated with a Renu main body extension, developed a type III endoleak, and underwent surgical conversion. Two of the three patients died postoperatively. Proximal attachment failure and graft migration are potentially lethal complications of EVAR. Proximal graft extension using an aortic cuff is the easiest technique for salvaging an endovascular graft. Unfortunately, it has a predictable failure mode (development of a type III endoleak due to component separation) and is associated with a significantly higher failure rate than with the use of a converter. EVAR salvage with a converter and a femorofemoral bypass is a more complex but superior option for endovascular graft salvage. Copyright (c) 2010 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gresse, Marceau; Vandemeulebrouck, Jean; Byrdina, Svetlana; Chiodini, Giovanni; Rinaldi, Antonio Pio; Johnson, Timothy C.; Ricci, Tullio; Petrillo, Zaccaria; Vilardo, Giuseppe; Lebourg, Thomas; Mangiacapra, Annarita
2017-04-01
Solfatara crater, located inside the Phlegrean Fields caldera, is showing a significant unrest activity since 10 years with a increase of ground deformation, degassing and heating. Electrical Resistivity Imaging was performed between 2012 and 2016 with the purpose of improving our knowledge of the shallow hydrothermal system. The complete dataset includes 43,432 D-C measurements inverted using the E4D code. This 3-D inversion was compared with the mappings of surface temperature, diffuse soil CO2 flux and self-potential in order to better constrain the interpretation of the observed resistivity structure in terms of lithological contrasts and hydrothermal signatures. For the first time, we highlighted in 3-D the main geological units: Monte Olibano lava dome and Solfatara crypto-dome appear as two relatively resistive bodies (50-100 Ω.m). Furthermore, the resistivity model clearly revealed the contrasting geometry of the hydrothermal circulation in the Solfatara crater. A channel-like conductive structure (7 Ω.m) represents the condensate that flows from the main fumarolic area down to the liquid-dominated Fangaia mud pool. This interpretation is consistent with the negative Self-Potential anomaly and with the surface observations. We imaged at a metric-resolution the two main fumaroles, Bocca Grande and Bocca Nuova, that have the following geochemical characteristics. Bocca Grande vent: 162°C, ˜150 t of CO2 released per day with a mass ratio CO2/H20 = 0.4 and Bocca Nuova vent: 148°C, ˜50 t of CO2 released per day with a mass ratio CO2/H20 = 0.45. The differences between these geochemical characteristics could lead one to believe that they are fed by two distinct sources at depth. On the contrary, our resistivity model shows that the two fumarolic vents are directly connected to a common resistive body (30-50 Ω.m) at a depth of 50 meters. This structure likely represents a single gas reservoir feeding the two fumaroles. Its depth corresponds indeed to a steam source at a pressure of 6 bar and at a temperature of least 165 °C. The geophysical images combined with the geochemical data allowed us to build up a multiphase fluid flow model of the Bocca Grande and and Bocca Nuova fumaroles using the TOUGH 2 code. Our results show that the distinct resistivity structure, temperature, and water content of the both fumaroles are due to the particular geometry of the condensate flow that intersects and contaminates the Bocca Nuova but not the Bocca Grande fumarole. These results indicate the necessity to combine geophysical and geochemical approaches in order to better apprehend the structure complexity and the dynamics of fumaroles and hydrothermal systems.
Day, Ryan; Joo, Hyun; Chavan, Archana; Lennox, Kristin P.; Chen, Ann; Dahl, David B.; Vannucci, Marina; Tsai, Jerry W.
2012-01-01
As an alternative to the common template based protein structure prediction methods based on main-chain position, a novel side-chain centric approach has been developed. Together with a Bayesian loop modeling procedure and a combination scoring function, the Stone Soup algorithm was applied to the CASP9 set of template based modeling targets. Although the method did not generate as large of perturbations to the template structures as necessary, the analysis of the results gives unique insights into the differences in packing between the target structures and their templates. Considerable variation in packing is found between target and template structures even when the structures are close, and this variation is found due to 2 and 3 body packing interactions. Outside the inherent restrictions in packing representation of the PDB, the first steps in correctly defining those regions of variable packing have been mapped primarily to local interactions, as the packing at the secondary and tertiary structure are largely conserved. Of the scoring functions used, a loop scoring function based on water structure exhibited some promise for discrimination. These results present a clear structural path for further development of a side-chain centered approach to template based modeling. PMID:23266765
Day, Ryan; Joo, Hyun; Chavan, Archana C; Lennox, Kristin P; Chen, Y Ann; Dahl, David B; Vannucci, Marina; Tsai, Jerry W
2013-02-01
As an alternative to the common template based protein structure prediction methods based on main-chain position, a novel side-chain centric approach has been developed. Together with a Bayesian loop modeling procedure and a combination scoring function, the Stone Soup algorithm was applied to the CASP9 set of template based modeling targets. Although the method did not generate as large of perturbations to the template structures as necessary, the analysis of the results gives unique insights into the differences in packing between the target structures and their templates. Considerable variation in packing is found between target and template structures even when the structures are close, and this variation is found due to 2 and 3 body packing interactions. Outside the inherent restrictions in packing representation of the PDB, the first steps in correctly defining those regions of variable packing have been mapped primarily to local interactions, as the packing at the secondary and tertiary structure are largely conserved. Of the scoring functions used, a loop scoring function based on water structure exhibited some promise for discrimination. These results present a clear structural path for further development of a side-chain centered approach to template based modeling. Copyright © 2012 Elsevier Ltd. All rights reserved.
The Symmetry and Packing Fraction of the Body Centered Tetragonal Structure
ERIC Educational Resources Information Center
Dunlap, Richard A.
2012-01-01
It is shown that for different ratios of lattice parameters, "c/a," the body centered tetragonal structure may be view as body centered tetragonal, body centered cubic, face centered cubic or hexagonal. This illustrates that the apparent symmetry of a lattice depends on the choice of the conventional unit cell.
Body Aesthetic Preference in Preschoolers and Attraction to Canons Violation: An Exploratory Study.
Di Dio, Cinzia; Berchio, Cristina; Massaro, Davide; Lombardi, Elisabetta; Gilli, Gabriella; Marchetti, Antonella
2017-01-01
Sensitivity to canons of beauty as represented in the human body-and as typically defined in the Western Culture-has been poorly studied in children. Current literature shows that infants as young as about three months are sensitive to the human body structure and its parts. Using a sample of 54 three- to five-year-old children, the present study investigated preference for drawings representing the "canonical" body structure, contrasting these with drawings showing the same bodies, but where the relation between trunk and legs was modified. It was hypothesized that preference for the canonical body structures would emerge as early as three years, increasing with age. Results only partially supported the hypothesis: while three-year-olds showed a significant preference for the canonical body structures as predicted, a significant preference reversal was found for the four-year-olds, with a tendency to return to preferring the canonical body at five years. The results are discussed in light of research findings associated with developmental theories hallmarking visual art perception in children.
Temperature alters food web body-size structure.
Gibert, Jean P; DeLong, John P
2014-08-01
The increased temperature associated with climate change may have important effects on body size and predator-prey interactions. The consequences of these effects for food web structure are unclear because the relationships between temperature and aspects of food web structure such as predator-prey body-size relationships are unknown. Here, we use the largest reported dataset for marine predator-prey interactions to assess how temperature affects predator-prey body-size relationships among different habitats ranging from the tropics to the poles. We found that prey size selection depends on predator body size, temperature and the interaction between the two. Our results indicate that (i) predator-prey body-size ratios decrease with predator size at below-average temperatures and increase with predator size at above-average temperatures, and (ii) that the effect of temperature on predator-prey body-size structure will be stronger at small and large body sizes and relatively weak at intermediate sizes. This systematic interaction may help to simplify forecasting the potentially complex consequences of warming on interaction strengths and food web stability. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Bräuer-Burchardt, Christian; Ölsner, Sandy; Kühmstedt, Peter; Notni, Gunther
2017-06-01
In this paper a new evaluation strategy for optical 3D scanners based on structured light projection is introduced. It can be used for the characterization of the expected measurement accuracy. Compared to the procedure proposed in the VDI/VDE guidelines for optical 3D measurement systems based on area scanning it requires less effort and provides more impartiality. The methodology is suitable for the evaluation of sets of calibration parameters, which mainly determine the quality of the measurement result. It was applied to several calibrations of a mobile stereo camera based optical 3D scanner. The performed calibrations followed different strategies regarding calibration bodies and arrangement of the observed scene. The results obtained by the different calibration strategies are discussed and suggestions concerning future work on this area are given.
Laidre, K.L.; Estes, J.A.; Tinker, M.T.; Bodkin, James L.; Monson, Daniel H.; Schneider, K.
2006-01-01
1. Growth models for body mass and length were fitted to data collected from 1842 sea otters Enhydra lutris shot or live-captured throughout south-west Alaska between 1967 and 2004. Growth curves were constructed for each of two main year groups: 1967–71 when the population was at or near carrying capacity and 1992–97 when the population was in steep decline. Analyses of data collected from animals caught during 2004, when the population density was very low, were precluded by a small sample size and consequently only examined incidentally to the main growth curves.2. Growth curves demonstrated a significant increase in body mass and body length at age in the 1990s. Asymptotic values of body mass were 12–18% higher in the 1990s than in the 1960s/70s, and asymptotic values for body length were 10–11% higher between the same periods. Data collected in 2004 suggest a continued increase in body size, with nearly all data points for mass and length falling significantly above the 1990s growth curves.3. In addition to larger asymptotic values for mass and length, the rate of growth towards asymptotic values was more rapid in the 1990s than in the 1960s/70s: sea otters reached 95% of asymptotic body mass and body length 1–2 years earlier in the 1990s.4. Body condition (as measured by the log mass/log length ratio) was significantly greater in males than in females. There was also an increasing trend from the 1960s/70s through 2004 despite much year-to-year variation.5. Population age structures differed significantly between the 1960s/70s and the 1990s with the latter distribution skewed toward younger age classes (indicating an altered lxfunction) suggesting almost complete relaxation of age-dependent mortality patterns (i.e. those typical of food-limited populations).6. This study spanned a period of time over which the population status of sea otters in the Aleutian archipelago declined precipitously from levels at or near equilibrium densities at some islands in the 1960s/70s to < 5% of estimated carrying capacity by the late 1990s. The results of this study indicate an improved overall health of sea otters over the period of decline and suggest that limited nutritional resources were not the cause of the observed reduced population abundance. Our findings are consistent with the hypothesis that the decline was caused by increased killer whale predation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Jose A.; Ivanova, Magdalena I.; Sawaya, Michael R.
We report that the protein α-synuclein is the main component of Lewy bodies, the neuron-associated aggregates seen in Parkinson disease and other neurodegenerative pathologies. An 11-residue segment, which we term NACore, appears to be responsible for amyloid formation and cytotoxicity of human α-synuclein. Here we describe crystals of NACore that have dimensions smaller than the wavelength of visible light and thus are invisible by optical microscopy. As the crystals are thousands of times too small for structure determination by synchrotron X-ray diffraction, we use micro-electron diffraction to determine the structure at atomic resolution. The 1.4 Å resolution structure demonstrates thatmore » this method can determine previously unknown protein structures and here yields, to our knowledge, the highest resolution achieved by any cryo-electron microscopy method to date. The structure exhibits protofibrils built of pairs of face-to-face β-sheets. X-ray fibre diffraction patterns show the similarity of NACore to toxic fibrils of full-length α-synuclein. Finally, the NACore structure, together with that of a second segment, inspires a model for most of the ordered portion of the toxic, full-length α-synuclein fibril, presenting opportunities for the design of inhibitors of α-synuclein fibrils.« less
NASA Astrophysics Data System (ADS)
Chavez, R. E.; Tejero, A.; Cifuentes, G.; HernaNdez-Quintero, J. E.; Garcia-Serrano, A.
2016-12-01
The well known Pyramid El Castillo, located in the archaeological site of Chichen Itza, in the Yucatan Peninsula is the emblematic structure of this archaeological site and elected as one of the man-made world seven wonders. The archaeological team that restored this structure during the 1920's discovered a smaller pyramid inside this prehispanic body, which corresponded to an older Mayan period. The possibility of finding other constructive periods inside this edifice should be important to reconstruct the Mayan history. Previous geophysical studies carried out by us in 2014, employed novel Electrical Resistivity Tomography (ERT) arrays that surrounded the pyramids surface with flat electrodes to obtain a 3D image of the subsoil. At that time, a low resistivity body was found beneath the pyramid, which was associated to a sinkhole filled with sweet water. Employing the same technique, a series of flat electrodes were deployed on each body conforming the pyramid, a total of 10 bodies were covered, employing a different number of electrodes trying to keep the distance between each electrode constant ( 3 m). Each body was treated as a single observation cube, where the apparent resistivity data measured was later inverted. A precise topographic control for each electrode was realized and introduced in the inversion process. 45,000 observation points within the pyramid were obtained. Initially, each working cube corresponding to a given pyramid's body was inverted. A composition of each inversion was assembled to form the resistivity distribution within the pyramid using a smooth interpolation method. A high resistivity anomaly was found towards the northern portion of the model that could be associated to the main stairway of the inner pyramid. The cavity detected during the 2014 survey was observed as a low resistivity anomaly found at the pyramid's base. At the moment, we are assembling the full observed resistivity data as a single file to compute an integrated geophysical model that could be inverted. We expect to compute such final model soon.
Ding, Xiang; Hou, Yi-ling; Hou, Wan-ru
2012-04-01
In this study, a novel heteropolysaccharide was isolated from the fruiting bodies of Boletus speciosus Forst through DEAE-cellulose column and Sephadex G-200 column. The Boletus speciosus Forst polysaccharide (BSFP-1) had a molecular weight of 1.33×10(4) Da and was mainly composed of l-Man and d-Gal which ratios were 2:1. Structural features of Boletus speciosus Forst polysaccharide (BSFP-1) were investigated by a combination of total hydrolysis, methylation analysis, gas chromatography-mass spectrometry (GC-MS), infrared (IR) spectra and nuclear magnetic resonance (NMR) spectroscopy. The results indicated that Boletus speciosus Forst polysaccharide (BSFP-1) had a backbone of (1→4)-α-l-mannopyranose residues which branches at O-6 based on the experimental results. The branches were mainly composed of one with →1)-α-d-galactopyranose residue. The antioxidant activity of BSFP-1 was evaluated with two biochemical methods, including 1,1-diphenyl-2-picrylhydrazyl (DPPH(-)) radical scavenging, scavenging activity of 2,2'-azino-bis(3-ethylbenzthiazoline-6-suphonic acid)diammonium (ABTS(+)) radical. The results indicated that BSFP-1 showed strong antioxidant. Copyright © 2012 Elsevier B.V. All rights reserved.
Design of Simple Landslide Monitoring System
NASA Astrophysics Data System (ADS)
Meng, Qingjia; Cai, Lingling
2018-01-01
The simple landslide monitoring system is mainly designed for slope, collapse body and surface crack. In the harsh environment, the dynamic displacement data of the disaster body is transmitted to the terminal acquisition system in real time. The main body of the system adopt is PIC32MX795F512. This chip is to realize low power design, wakes the system up through the clock chip, and turns on the switching power supply at set time, which makes the wireless transmission module running during the interval to ensure the maximum battery consumption, so that the system can be stable long term work.
Vibration energy absorption in the whole-body system of a tractor operator.
Szczepaniak, Jan; Tanaś, Wojciech; Kromulski, Jacek
2014-01-01
Many people are exposed to whole-body vibration (WBV) in their occupational lives, especially drivers of vehicles such as tractor and trucks. The main categories of effects from WBV are perception degraded comfort interference with activities-impaired health and occurrence of motion sickness. Absorbed power is defined as the power dissipated in a mechanical system as a result of an applied force. The vibration-induced injuries or disorders in a substructure of the human system are primarily associated with the vibration power absorption distributed in that substructure. The vibration power absorbed by the exposed body is a measure that combines both the vibration hazard and the biodynamic response of the body. The article presents measurement method for determining vibration power dissipated in the human whole body system called Vibration Energy Absorption (VEA). The vibration power is calculated from the real part of the force-velocity cross-spectrum. The absorbed power in the frequency domain can be obtained from the cross-spectrum of the force and velocity. In the context of the vibration energy transferred to a seated human body, the real component reflects the energy dissipated in the biological structure per unit of time, whereas the imaginary component reflects the energy stored/released by the system. The seated human is modeled as a series/parallel 4-DOF dynamic models. After introduction of the excitation, the response in particular segments of the model can be analyzed. As an example, the vibration power dissipated in an operator has been determined as a function of the agricultural combination operating speed 1.39 - 4.16 ms(-1).
Fisher, M.A.; Ratchkovski, N.A.; Nokleberg, W.J.; Pellerin, L.; Glen, J.M.G.
2004-01-01
Geophysical information, including deep-crustal seismic reflection, magnetotelluric (MT), gravity, and magnetic data, cross the aftershock zone of the 3 November 2002 Mw 7.9 Denali fault earthquake. These data and aftershock seismicity, jointly interpreted, reveal the crustal structure of the right-lateral-slip Denali fault and the eastern Alaska Range orogen, as well as the relationship between this structure and seismicity. North of the Denali fault, strong seismic reflections from within the Alaska Range orogen show features that dip as steeply as 25?? north and extend downward to depths between 20 and 25 km. These reflections reveal crustal structures, probably ductile shear zones, that most likely formed during the Late Cretaceous, but these structures appear to be inactive, having produced little seismicity during the past 20 years. Furthermore, seismic reflections mainly dip north, whereas alignments in aftershock hypocenters dip south. The Denali fault is nonreflective, but modeling of MT, gravity, and magnetic data suggests that the Denali fault dips steeply to vertically. However, in an alternative structural model, the Denali fault is defined by one of the reflection bands that dips to the north and flattens into the middle crust of the Alaska Range orogen. Modeling of MT data indicates a rock body, having low electrical resistivity (>10 ??-m), that lies mainly at depths greater than 10 km, directly beneath aftershocks of the Denali fault earthquake. The maximum depth of aftershocks along the Denali fault is 10 km. This shallow depth may arise from a higher-than-normal geothermal gradient. Alternatively, the low electrical resistivity of deep rocks along the Denali fault may be associated with fluids that have weakened the lower crust and helped determine the depth extent of the after-shock zone.
Studies on sperm storage in the vas deferens of the spinifex hopping mouse (Notomys alexis).
Peirce, E J; Moore, H D M; Leigh, C M; Breed, W G
2003-02-01
The cauda epididymidis, with its relatively cool temperature (32-35 degrees C), is considered to be the main site of sperm storage in male mammals. However, in the adult male spinifex hopping mouse, Notomys alexis, similar numbers of spermatozoa are found in the vas deferens to those in the cauda epididymidis. The present study shows that, unlike in the laboratory mouse in which spermatozoa of the vas deferens are found mainly in the epididymal region of the duct, spermatozoa in the hopping mouse are localized mainly to the middle and urethral regions of the vas deferens which lies in the inguinal and lower abdominal region of the body cavity. After ligation of the vas deferens close to its connection with the epididymis, many spermatozoa in the vas deferens retain the potential for motility for up to 2 weeks, indicating that the viability of spermatozoa is not compromised by being restricted to core body temperature. This urethral region of the vas deferens, in which spermatozoa reside, has a highly divergent structural organization compared with that of common laboratory rodents in which there is an expanded lumen with a network of epithelial folds. Ultrastructural observations of the cells lining the duct indicate that there are not any marked differences in morphology compared with the cells lining the duct in common laboratory murids, but the infoldings of the vas deferens of the hopping mouse are highly vascular which might facilitate supply of oxygen and nutrients to the spermatozoa residing in the lumen.
NASA Astrophysics Data System (ADS)
Amri, Dorra Tanfous; Dhahri, Ferid; Soussi, Mohamed; Gabtni, Hakim; Bédir, Mourad
2017-10-01
The Gafsa and Chotts intracratonic basins in south-central Tunisia are transitional zones between the Atlasic domain to the north and the Saharan platform to the south. The principal aim of this paper is to unravel the geodynamic evolution of these basins following an integrated approach including seismic, well log and gravity data. These data are used to highlight the tectonic control on the deposition of Jurassic and Lower Cretaceous series and to discuss the role of the main faults that controlled the basin architecture and Cretaceous-Tertiary inversion. The horizontal gravity gradient map of the study area highlights the pattern of discontinuities within the two basins and reveals the presence of deep E-W basement faults. Primary attention is given to the role played by the E-W faults system and that of the NW-SE Gafsa fault which was previously considered active since the Jurassic. Facies and thickness analyses based on new seismic interpretation and well data suggest that the E-W-oriented faults controlled the subsidence distribution especially during the Jurassic. The NW-SE faults seem to be key structures that controlled the basins paleogeography during Late Cretaceous-Cenozoic time. The upper Triassic evaporite bodies, which locally outline the main NW-SE Gafsa fault, are regarded as intrusive salt bodies rather than early diapiric extrusions as previously interpreted since they are rare and occurred only along main strike-slip faults. In addition, seismic lines show that Triassic rocks are deep and do not exhibit true diapiric features.
Deformation-induced structural transition in body-centred cubic molybdenum
Wang, S. J.; Wang, H.; Du, K.; Zhang, W.; Sui, M. L.; Mao, S. X.
2014-01-01
Molybdenum is a refractory metal that is stable in a body-centred cubic structure at all temperatures before melting. Plastic deformation via structural transitions has never been reported for pure molybdenum, while transformation coupled with plasticity is well known for many alloys and ceramics. Here we demonstrate a structural transformation accompanied by shear deformation from an original <001>-oriented body-centred cubic structure to a <110>-oriented face-centred cubic lattice, captured at crack tips during the straining of molybdenum inside a transmission electron microscope at room temperature. The face-centred cubic domains then revert into <111>-oriented body-centred cubic domains, equivalent to a lattice rotation of 54.7°, and ~15.4% tensile strain is reached. The face-centred cubic structure appears to be a well-defined metastable state, as evidenced by scanning transmission electron microscopy and nanodiffraction, the Nishiyama–Wassermann and Kurdjumov–Sachs relationships between the face-centred cubic and body-centred cubic structures and molecular dynamics simulations. Our findings reveal a deformation mechanism for elemental metals under high-stress deformation conditions. PMID:24603655
Promyelocytic Leukemia (Pml) Nuclear Bodies Are Protein Structures That Do Not Accumulate RNA
Boisvert, François-Michel; Hendzel, Michael J.; Bazett-Jones, David P.
2000-01-01
The promyelocytic leukemia (PML) nuclear body (also referred to as ND10, POD, and Kr body) is involved in oncogenesis and viral infection. This subnuclear domain has been reported to be rich in RNA and a site of nascent RNA synthesis, implicating its direct involvement in the regulation of gene expression. We used an analytical transmission electron microscopic method to determine the structure and composition of PML nuclear bodies and the surrounding nucleoplasm. Electron spectroscopic imaging (ESI) demonstrates that the core of the PML nuclear body is a dense, protein-based structure, 250 nm in diameter, which does not contain detectable nucleic acid. Although PML nuclear bodies contain neither chromatin nor nascent RNA, newly synthesized RNA is associated with the periphery of the PML nuclear body, and is found within the chromatin-depleted region of the nucleoplasm immediately surrounding the core of the PML nuclear body. We further show that the RNA does not accumulate in the protein core of the structure. Our results dismiss the hypothesis that the PML nuclear body is a site of transcription, but support the model in which the PML nuclear body may contribute to the formation of a favorable nuclear environment for the expression of specific genes. PMID:10648561
Maternal active smoking and newborn body composition.
Samper, M P; Jiménez-Muro, A; Nerín, I; Marqueta, A; Ventura, P; Rodríguez, G
2012-03-01
Maternal smoking during pregnancy is associated with a reduction in birth size but very few studies have collated changes in neonatal anthropometry. Our aims were both to assess body composition differences by anthropometry between new-borns from smoking mothers and those from non-smoking mothers, and to show whether these differences affect proportional body mass distribution. Caucasian mothers and their full term singleton new-borns (N=1216) were selected during 2009. A structured questionnaire was completed regarding obstetric and demographic data, as well as tobacco consumption. Women were categorized, according to their smoking habits, into a non-smoking group (never smoked or stopped smoking prior to pregnancy) and a smoking group (smoked throughout pregnancy). 22.1% of mothers smoked during pregnancy (median: 6 cigarettes/day, range: l-40). Smoking mothers were significantly younger than non-smoking mothers but there were no differences regarding other aspects which could affect infant weight. Infants from non-smoking mothers were heavier, longer, and body circumferences were all larger than those from smoking mothers (p<0.001), but the Ponderal Index showed no statistical differences. Skinfold thicknesses were significantly lower in new-borns from smoking mothers but these differences were less evident than those from body size. Subcutaneous fat distribution did not show statistical differences between the two groups. After gestational age, to smoke during gestation is the second main determinant of birth weight. Smoking during pregnancy involves a generalized reduction of most axiological parameters as a result of proportionate fetal growth impairment. In those infants born from mothers who smoked during gestation, neonatal lean body mass appears to be more affected than body fat, and distribution of subcutaneous fat is not different. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Stein, George Juraj; Múcka, Peter; Chmúrny, Rudolf; Hinz, Barbara; Blüthner, Ralph
2007-01-01
For modelling purposes and for evaluation of driver's seat performance in the vertical direction various mechano-mathematical models of the seated human body have been developed and standardized by the ISO. No such models exist hitherto for human body sitting in an upright position in a cushioned seat upper part, used in industrial environment, where the fore-and-aft vibrations play an important role. The interaction with the steering wheel has to be taken into consideration, as well as, the position of the human body upper torso with respect to the cushioned seat back as observed in real driving conditions. This complex problem has to be simplified first to arrive at manageable simpler models, which still reflect the main problem features. In a laboratory study accelerations and forces in x-direction were measured at the seat base during whole-body vibration in the fore-and-aft direction (random signal in the frequency range between 0.3 and 30 Hz, vibration magnitudes 0.28, 0.96, and 2.03 ms(-2) unweighted rms). Thirteen male subjects with body masses between 62.2 and 103.6 kg were chosen for the tests. They sat on a cushioned driver seat with hands on a support and backrest contact in the lumbar region only. Based on these laboratory measurements a linear model of the system-seated human body and cushioned seat in the fore-and-aft direction has been developed. The model accounts for the reaction from the steering wheel. Model parameters have been identified for each subject-measured apparent mass values (modulus and phase). The developed model structure and the averaged parameters can be used for further bio-dynamical research in this field.
Interactions of multi-scale heterogeneity in the lithosphere: Australia
NASA Astrophysics Data System (ADS)
Kennett, B. L. N.; Yoshizawa, K.; Furumura, T.
2017-10-01
Understanding the complex heterogeneity of the continental lithosphere involves a wide variety of spatial scales and the synthesis of multiple classes of information. Seismic surface waves and multiply reflected body waves provide the main constraints on broad-scale structure, and bounds on the extent of the lithosphere-asthenosphere transition (LAT) can be found from the vertical gradients of S wavespeed. Information on finer-scale structures comes through body wave studies, including detailed seismic tomography and P-wave reflectivity extracted from stacked autocorrelograms of continuous component records. With the inclusion of deterministic large-scale structure and realistic medium-scale stochastic features fine-scale variations are subdued. The resulting multi-scale heterogeneity model for the Australian region gives a good representation of the character of observed seismograms and their geographic variations and matches the observations of P-wave reflectivity. P reflections in the 0.5-3.0 Hz band in the uppermost mantle suggest variations on vertical scales of a few hundred metres with amplitudes of the order of 1%. Interference of waves reflected or converted at sequences of such modest variations in physical properties produce relatively simple behaviour for lower frequencies, which can suggest simpler structures than are actually present. Vertical changes in the character of fine-scale heterogeneity can produce apparent discontinuities. In Central Australia a 'mid-lithospheric discontinuity' can be tracked via changes in frequency content of station reflectivity, with links to the broad-scale pattern of wavespeed gradients and, in particular, the gradients of radial anisotropy. Comparisons with xenolith results from southeastern Australia indicate a strong tie between geochemical stratification and P-wave reflectivity.
Face-body integration of intense emotional expressions of victory and defeat.
Wang, Lili; Xia, Lisheng; Zhang, Dandan
2017-01-01
Human facial expressions can be recognized rapidly and effortlessly. However, for intense emotions from real life, positive and negative facial expressions are difficult to discriminate and the judgment of facial expressions is biased towards simultaneously perceived body expressions. This study employed event-related potentials (ERPs) to investigate the neural dynamics involved in the integration of emotional signals from facial and body expressions of victory and defeat. Emotional expressions of professional players were used to create pictures of face-body compounds, with either matched or mismatched emotional expressions in faces and bodies. Behavioral results showed that congruent emotional information of face and body facilitated the recognition of facial expressions. ERP data revealed larger P1 amplitudes for incongruent compared to congruent stimuli. Also, a main effect of body valence on the P1 was observed, with enhanced amplitudes for the stimuli with losing compared to winning bodies. The main effect of body expression was also observed in N170 and N2, with winning bodies producing larger N170/N2 amplitudes. In the later stage, a significant interaction of congruence by body valence was found on the P3 component. Winning bodies elicited lager P3 amplitudes than losing bodies did when face and body conveyed congruent emotional signals. Beyond the knowledge based on prototypical facial and body expressions, the results of this study facilitate us to understand the complexity of emotion evaluation and categorization out of laboratory.
Face-body integration of intense emotional expressions of victory and defeat
Wang, Lili; Xia, Lisheng; Zhang, Dandan
2017-01-01
Human facial expressions can be recognized rapidly and effortlessly. However, for intense emotions from real life, positive and negative facial expressions are difficult to discriminate and the judgment of facial expressions is biased towards simultaneously perceived body expressions. This study employed event-related potentials (ERPs) to investigate the neural dynamics involved in the integration of emotional signals from facial and body expressions of victory and defeat. Emotional expressions of professional players were used to create pictures of face-body compounds, with either matched or mismatched emotional expressions in faces and bodies. Behavioral results showed that congruent emotional information of face and body facilitated the recognition of facial expressions. ERP data revealed larger P1 amplitudes for incongruent compared to congruent stimuli. Also, a main effect of body valence on the P1 was observed, with enhanced amplitudes for the stimuli with losing compared to winning bodies. The main effect of body expression was also observed in N170 and N2, with winning bodies producing larger N170/N2 amplitudes. In the later stage, a significant interaction of congruence by body valence was found on the P3 component. Winning bodies elicited lager P3 amplitudes than losing bodies did when face and body conveyed congruent emotional signals. Beyond the knowledge based on prototypical facial and body expressions, the results of this study facilitate us to understand the complexity of emotion evaluation and categorization out of laboratory. PMID:28245245
Body Type and Sex of Receiver: Their Effects on Source Credibility.
ERIC Educational Resources Information Center
Eckman, Bruce K.; Rancer, Andrew S.
This study focused on whether actual or stereotypic associations with a speaker's body type would affect his or her credibility. Effects on the source-credibility ratings submitted by a total of 165 students were investigated for three different sources' body types. A significant main effect was found for body type but not for the blocked…
The Structure of Conscious Bodily Self-Perception during Full-Body Illusions
Dobricki, Martin; de la Rosa, Stephan
2013-01-01
Previous research suggests that bodily self-identification, bodily self-localization, agency, and the sense of being present in space are critical aspects of conscious full-body self-perception. However, none of the existing studies have investigated the relationship of these aspects to each other, i.e., whether they can be identified to be distinguishable components of the structure of conscious full-body self-perception. Therefore, the objective of the present investigation is to elucidate the structure of conscious full-body self-perception. We performed two studies in which we stroked the back of healthy individuals for three minutes while they watched the back of a distant virtual body being synchronously stroked with a virtual stick. After visuo-tactile stimulation, participants assessed changes in their bodily self-perception with a custom made self-report questionnaire. In the first study, we investigated the structure of conscious full-body self-perception by analyzing the responses to the questionnaire by means of multidimensional scaling combined with cluster analysis. In the second study, we then extended the questionnaire and validated the stability of the structure of conscious full-body self-perception found in the first study within a larger sample of individuals by performing a principle components analysis of the questionnaire responses. The results of the two studies converge in suggesting that the structure of conscious full-body self-perception consists of the following three distinct components: bodily self-identification, space-related self-perception (spatial presence), and agency. PMID:24376765
The structure of conscious bodily self-perception during full-body illusions.
Dobricki, Martin; de la Rosa, Stephan
2013-01-01
Previous research suggests that bodily self-identification, bodily self-localization, agency, and the sense of being present in space are critical aspects of conscious full-body self-perception. However, none of the existing studies have investigated the relationship of these aspects to each other, i.e., whether they can be identified to be distinguishable components of the structure of conscious full-body self-perception. Therefore, the objective of the present investigation is to elucidate the structure of conscious full-body self-perception. We performed two studies in which we stroked the back of healthy individuals for three minutes while they watched the back of a distant virtual body being synchronously stroked with a virtual stick. After visuo-tactile stimulation, participants assessed changes in their bodily self-perception with a custom made self-report questionnaire. In the first study, we investigated the structure of conscious full-body self-perception by analyzing the responses to the questionnaire by means of multidimensional scaling combined with cluster analysis. In the second study, we then extended the questionnaire and validated the stability of the structure of conscious full-body self-perception found in the first study within a larger sample of individuals by performing a principle components analysis of the questionnaire responses. The results of the two studies converge in suggesting that the structure of conscious full-body self-perception consists of the following three distinct components: bodily self-identification, space-related self-perception (spatial presence), and agency.
Influential sources affecting Bangkok adolescent body image perceptions.
Thianthai, Chulanee
2006-01-01
The study of body image-related problems in non-Western countries is still very limited. Thus, this study aims to identify the main influential sources and show how they affect the body image perceptions of Bangkok adolescents. The researcher recruited 400 Thai male and female adolescents in Bangkok, attending high school to freshmen level, ranging from 16-19 years, to participate in this study. Survey questionnaires were distributed to every student and follow-up interviews conducted with 40 students. The findings showed that there are eight main influential sources respectively ranked from the most influential to the least influential: magazines, television, peer group, familial, fashion trend, the opposite gender, self-realization and health knowledge. Similar to those studies conducted in Western countries, more than half of the total percentage was the influence of mass media and peer groups. Bangkok adolescents also internalized Western ideal beauty through these mass media channels. Alike studies conducted in the West, there was similarities in the process of how these influential sources affect Bangkok adolescent body image perception, with the exception of familial source. In conclusion, taking the approach of identifying the main influential sources and understanding how they affect adolescent body image perceptions can help prevent adolescents from having unhealthy views and taking risky measures toward their bodies. More studies conducted in non-Western countries are needed in order to build a cultural sensitive program, catered to the body image problems occurring in adolescents within that particular society.
Flow Sources of The Solar Wind Stream Structieres
NASA Astrophysics Data System (ADS)
Lotova, N. A.; Obridko, V. N.; Vladimirskii, K. V.
The large-scale stream structure of the solar wind flow was studied at the main acceler- ation area of 10 to 40 solar radii from the Sun. Three independent sets of experimental data were used: radio astronomy observations of radio wave scattering on near-solar plasmas (large radio telescopes of the P.N.Lebedev Physical Institute were used); mor- phology of the WLC as revealed by the SOHO optical solar corona observations; solar magnetic field strength and configuration computed using the Wilcox Solar Observa- tory data. Experimental data of 1997-1998 years on the position of the transition, tran- sonic region of the solar wind flow were used as a parameter reflecting the intensity of the solar plasmas acceleration process. Correlation studies of these data combined with the magnetic field strength at the solar corona level revealed several types of the solar wind streams differing in the final result, the velocity at large distances from the Sun. Besides of the well-known flows stemming from the polar coronal holes, high-speed streams were observed arising in lateral areas of the streamer structures in contrast to the main body of the streamers, being a known source of the slow solar wind. The slowest streams arise at areas of mixed magnetic field structure compris- ing both open and closed (loop-like) filed lines. In the white-light corona images this shows extensive areas of bright amorphous luminosity.
Ultrasonic Fingerprinting of Structural Materials: Spent Nuclear Fuel Containers Case-Study
NASA Astrophysics Data System (ADS)
Sednev, D.; Lider, A.; Demyanuk, D.; Kroening, M.; Salchak, Y.
Nowadays, NDT is mainly focused on safety purposes, but it seems possible to apply those methods to provide national and IAEA safeguards. The containment of spent fuel in storage casks could be dramatically improved in case of development of so-called "smart" spent fuel storage and transfer casks. Such casks would have tamper indicating and monitoring/tracking features integrated directly into the cask design. The microstructure of the containers material as well as of the dedicated weld seam is applied to the lid and the cask body and provides a unique fingerprint of the full container, which can be reproducibly scanned by using an appropriate technique. The echo-sounder technique, which is the most commonly used method for material inspection, was chosen for this project. The main measuring parameter is acoustic noise, reflected from material's artefacts. The purpose is to obtain structural fingerprinting. Reference measurement and additional measurement results were compared. Obtained results have verified the appliance of structural fingerprint and the chosen control method. The successful authentication demonstrates the levels of the feature points' compliance exceeding the given threshold which differs considerably from the percentage of the concurrent points during authentication from other points. Since reproduction or doubling of the proposed unique identification characteristics is impossible at the current state science and technology, application of this technique is considered to identify the interference into the nuclear materials displacement with high accuracy.
Thermal shock induced dynamics of a spacecraft with a flexible deploying boom
NASA Astrophysics Data System (ADS)
Shen, Zhenxing; Li, Huijian; Liu, Xiaoning; Hu, Gengkai
2017-12-01
The dynamics in the process of deployment of a flexible extendible boom as a deployable structure on the spacecraft is studied. For determining the thermally induced vibrations of the boom subjected to an incident solar heat flux, an axially moving thermal-dynamic beam element based on the absolute nodal coordinate formulation which is able to precisely describe the large displacement, rotation and deformation of flexible body is presented. For the elastic forces formulation of variable-length beam element, the enhanced continuum mechanics approach is adopted, which can eliminate the Poisson locking effect, and take into account the tension-bending-torsion coupling deformations. The main body of the spacecraft, modeled as a rigid body, is described using the natural coordinates method. In the derived nonlinear thermal-dynamic equations of rigid-flexible multibody system, the mass matrix is time-variant, and a pseudo damping matrix which is without actual energy dissipation, and a heat conduction matrix which is relative to the moving speed and the number of beam element are arisen. Numerical results give the dynamic and thermal responses of the nonrotating and spinning spacecraft, respectively, and show that thermal shock has a significant influence on the dynamics of spacecraft.
[The normative legal regulation of social protection of disabled persons of able-bodied age].
Medvedeva, O V; Afonina, N A; Draienkova, F R
2017-01-01
The article presents results of analysis of normative legal documents and basic laws relating to social protection of the disabled of able-bodied age and also to development ofpublic policy concerning the given category ofpopulation. The purpose of actual study is to analyze main normative legal documents in the field of investigation of social protection of the disabled of able-bodied age as applied to experience of the Riazanskaia oblast. The actuality of study is determined by problem of social legal defense of the disabled as one of the most complicated and requiring from society both understanding and participation in this process of many specialized institutions and structures. The analysis of study results permits to conclude that the regional legislation in its total with standards of the Federal legislation contains regulations reflecting fundamental principles and norms of the Convention of the rights of the disabled. On application of currently in force legislation and in the process of legislative activity the state and public institutions of the Riazanskaia oblast seek the possibly most broad implementation of the rights of the disabled and securing access to social, political, civil, cultural and other integration into society.
Application of a Smart Parachute Release Algorithm to the CPAS Test Architecture
NASA Technical Reports Server (NTRS)
Bledsoe, Kristin
2013-01-01
One of the primary test vehicles for the Capsule Parachute Assembly System (CPAS) is the Parachute Test Vehicle (PTV), a capsule shaped structure similar to the Orion design but truncated to fit in the cargo area of a C-17 aircraft. The PTV has a full Orion-like parachute compartment and similar aerodynamics; however, because of the single point attachment of the CPAS parachutes and the lack of Orion-like Reaction Control System (RCS), the PTV has the potential to reach significant body rates. High body rates at the time of the Drogue release may cause the PTV to flip while the parachutes deploy, which may result in the severing of the Pilot or Main risers. In order to prevent high rates at the time of Drogue release, a "smart release" algorithm was implemented in the PTV avionics system. This algorithm, which was developed for the Orion Flight system, triggers the Drogue parachute release when the body rates are near a minimum. This paper discusses the development and testing of the smart release algorithm; its implementation in the PTV avionics and the pretest simulation; and the results of its use on two CPAS tests.
A thin-plate spline analysis of the face and tongue in obstructive sleep apnea patients.
Pae, E K; Lowe, A A; Fleetham, J A
1997-12-01
The shape characteristics of the face and tongue in obstructive sleep apnea (OSA) patients were investigated using thin-plate (TP) splines. A relatively new analytic tool, the TP spline method, provides a means of size normalization and image analysis. When shape is one's main concern, various sizes of a biologic structure may be a source of statistical noise. More seriously, the strong size effect could mask underlying, actual attributes of the disease. A set of size normalized data in the form of coordinates was generated from cephalograms of 80 male subjects. The TP spline method envisioned the differences in the shape of the face and tongue between OSA patients and nonapneic subjects and those between the upright and supine body positions. In accordance with OSA severity, the hyoid bone and the submental region positioned inferiorly and the fourth vertebra relocated posteriorly with respect to the mandible. This caused a fanlike configuration of the lower part of the face and neck in the sagittal plane in both upright and supine body positions. TP splines revealed tongue deformations caused by a body position change. Overall, the new morphometric tool adopted here was found to be viable in the analysis of morphologic changes.
Jin, Fengliang; Sun, Qiang; Xu, Xiaoxia; Li, Linmiao; Gao, Gang; Xu, Yingjie; Yu, Xiaoqiang; Ren, Shunxiang
2012-10-01
Cecropins are linear cationic antibacterial peptides that have potent activities against microorganisms. In the present study, a 480bp full-length cDNA encoding diamondback moth (Plutella xylostella) cecropin 1 (designated as Px-cec1) was obtained using RT-PCR. A Northern blot analysis showed that the Px-cec1 transcript was predominantly expressed in fat bodies, hemocytes, midgut and epidermis with the highest expression level in fat bodies. The expression of Px-cec1 mRNA in fat bodies was significantly increased 24h after microbial challenge, with the highest induced expression by Staphylococcus aureus. A circular dichroism (CD) analysis revealed that the recombinant Px-cec1 mainly contained α-helixes. Antimicrobial assays demonstrated that recombinant Px-cec1 exhibited a broad spectrum of anti-microbial properties against fungi, Gram-positive and Gram-negative bacteria, but it did not exhibit hemolytic activity against human erythrocytes. Furthermore, Px-cec1 caused significant morphological alterations of S. aureus, as shown by scanning electron microscopy and transmission electron microscopy. These results demonstrated that Px-cec1 exerts its antibacterial activity by acting on the cell membrane to disrupt bacterial cell structures. Copyright © 2012 Elsevier Inc. All rights reserved.
A Comparison of Averaged and Full Models to Study the Third-Body Perturbation
Solórzano, Carlos Renato Huaura; Prado, Antonio Fernando Bertachini de Almeida
2013-01-01
The effects of a third-body travelling in a circular orbit around a main body on a massless satellite that is orbiting the same main body are studied under two averaged models, single and double, where expansions of the disturbing function are made, and the full restricted circular three-body problem. The goal is to compare the behavior of these two averaged models against the full problem for long-term effects, in order to have some knowledge of their differences. The single averaged model eliminates the terms due to the short period of the spacecraft. The double average is taken over the mean motion of the satellite and the mean motion of the disturbing body, so removing both short period terms. As an example of the methods, an artificial satellite around the Earth perturbed by the Moon is used. A detailed study of the effects of different initial conditions in the orbit of the spacecraft is made. PMID:24319348
A comparison of averaged and full models to study the third-body perturbation.
Solórzano, Carlos Renato Huaura; Prado, Antonio Fernando Bertachini de Almeida
2013-01-01
The effects of a third-body travelling in a circular orbit around a main body on a massless satellite that is orbiting the same main body are studied under two averaged models, single and double, where expansions of the disturbing function are made, and the full restricted circular three-body problem. The goal is to compare the behavior of these two averaged models against the full problem for long-term effects, in order to have some knowledge of their differences. The single averaged model eliminates the terms due to the short period of the spacecraft. The double average is taken over the mean motion of the satellite and the mean motion of the disturbing body, so removing both short period terms. As an example of the methods, an artificial satellite around the Earth perturbed by the Moon is used. A detailed study of the effects of different initial conditions in the orbit of the spacecraft is made.
A plea for the use of drawing in human anatomy teaching.
Clavert, Philippe; Bouchaïb, J; Duparc, F; Kahn, J L
2012-10-01
Descriptive human anatomy constitutes one of the main parts of the educational program of the first part of the medical studies. Professors of anatomy have to take into account the exponential evolution of the techniques of morphological and functional exploration of the patients, and the trend to open more and more the contents of the lectures of anatomy to clinical considerations. Basically, teaching requires a series of descriptive and educational media to set up, in front of the student, the studied structures and so to build the human body. More generally, lectures in morphological sciences try to develop three types of knowledge: declarative, procedural, and conditional. Traditionally in France "basic or first" anatomy is taught in amphitheater and in big groups by building each structure or region on a blackboard with colored chalk that allows a relief stake of certain structures and builds in two dimensions a three-dimensional organization. Actually, the blackboard is and stays for us an excellent media of non-verbal expression.
Domínguez-Gil, Teresa; Molina, Rafael; Alcorlo, Martín; Hermoso, Juan A
2016-09-01
Antimicrobial resistance is one of the most serious health threats. Cell-wall remodeling processes are tightly regulated to warrant bacterial survival and in some cases are directly linked to antibiotic resistance. Remodeling produces cell-wall fragments that are recycled but can also act as messengers for bacterial communication, as effector molecules in immune response and as signaling molecules triggering antibiotic resistance. This review is intended to provide state-of-the-art information about the molecular mechanisms governing this process and gather structural information of the different macromolecular machineries involved in peptidoglycan recycling in Gram-negative bacteria. The growing body of literature on the 3D structures of the corresponding macromolecules reveals an extraordinary complexity. Considering the increasing incidence and widespread emergence of Gram-negative multidrug-resistant pathogens in clinics, structural information on the main actors of the recycling process paves the way for designing novel antibiotics disrupting cellular communication in the recycling-resistance pathway. Copyright © 2016. Published by Elsevier Ltd.
Structural insights into RNA processing by the human RISC-loading complex.
Wang, Hong-Wei; Noland, Cameron; Siridechadilok, Bunpote; Taylor, David W; Ma, Enbo; Felderer, Karin; Doudna, Jennifer A; Nogales, Eva
2009-11-01
Targeted gene silencing by RNA interference (RNAi) requires loading of a short guide RNA (small interfering RNA (siRNA) or microRNA (miRNA)) onto an Argonaute protein to form the functional center of an RNA-induced silencing complex (RISC). In humans, Argonaute2 (AGO2) assembles with the guide RNA-generating enzyme Dicer and the RNA-binding protein TRBP to form a RISC-loading complex (RLC), which is necessary for efficient transfer of nascent siRNAs and miRNAs from Dicer to AGO2. Here, using single-particle EM analysis, we show that human Dicer has an L-shaped structure. The RLC Dicer's N-terminal DExH/D domain, located in a short 'base branch', interacts with TRBP, whereas its C-terminal catalytic domains in the main body are proximal to AGO2. A model generated by docking the available atomic structures of Dicer and Argonaute homologs into the RLC reconstruction suggests a mechanism for siRNA transfer from Dicer to AGO2.
NASA Astrophysics Data System (ADS)
Jaume-i-Capó, Antoni; Varona, Javier; González-Hidalgo, Manuel; Mas, Ramon; Perales, Francisco J.
2012-02-01
Human motion capture has a wide variety of applications, and in vision-based motion capture systems a major issue is the human body model and its initialization. We present a computer vision algorithm for building a human body model skeleton in an automatic way. The algorithm is based on the analysis of the human shape. We decompose the body into its main parts by computing the curvature of a B-spline parameterization of the human contour. This algorithm has been applied in a context where the user is standing in front of a camera stereo pair. The process is completed after the user assumes a predefined initial posture so as to identify the main joints and construct the human model. Using this model, the initialization problem of a vision-based markerless motion capture system of the human body is solved.
NASA Astrophysics Data System (ADS)
Díaz-Carrión, I.; Sastre-Merlín, A.; Martínez-Pérez, S.; Molina-Navarro, E.; Bienes-Allas, R.
2012-04-01
A limno-reservoir is a hydrologic infrastructure with the main goal of generating a body of water with a constant level in the riverine zone of a reservoir, building a dam that makes de limno-reservoir independent from the main body of water. This dam can be built in the main river supplying the reservoir or any tributary as well flowing into it. Despite its novel conception and design, around a dozen are already operative in some Spanish reservoirs. This infrastructure allows the new water body to be independent of the main reservoir management, so the water level stability is its main distinctive characteristic. It leads to the development of environmental, sports and cultural initiatives; which may be included in a touristic exploitation in a wide sense. An opinion poll was designed in 2009 to be carried out the Pareja Limno-reservoir (Entrepeñas reservoir area, Tajo River Basin, central Spain). The results showed that for both, Pareja inhabitants and occasional visitors, the limno-reservoir has become an important touristic resource, mainly demanded during summer season. The performance of leisure activities (especially swimming) are being the main brand of this novel hydraulic and environmental infrastructure, playing a role as corrective and/or compensatory action which is needed to apply in order to mitigate the environmental impacts of the large hydraulic constructions.
[IMMUNE SYSTEM INTERNSHIP WITH SYMBIOTIC MICROORGANISMS IN GNOTOBIOTIC ANIMAL'S INTESTINUM ILEUM].
Kochlamasashvili, B; Gogiashvili, L; Jandieri, K
2017-11-01
Structures, responsible for acceptive (comensaling relation) and protective (pathogenic defense) immunity, were studied and compared in small intestine - to ileum mucosa. Data shown, that main application of the both domains of immune system is to support the correlation between body and foreign microbes, but they response is different. Most significant differences are as follows: in acceptive reactions presented only in aseptic animals - gnotobionts, inflammatory changes absent, so immune reaction complex develops into physiological condition. Symbiotic reactions release in mucosa epithelial cells, also in cells, responsible for adaptive and congenital immune reactivity. Thus, acceptive immune reactions contribute symbiotic biocenosis versus elimination; which is function of protective immunity.
Recent advances of flexible hybrid perovskite solar cells
NASA Astrophysics Data System (ADS)
Shin, Dong Hee; Heo, Jin Hyuck; Im, Sang Hyuk
2017-11-01
Recently, hybrid perovskite solar cells have attracted great interest because they can be fabricated to low cost, flexible, and highly efficient solar cells. Here, we introduced recent advances of flexible hybrid perovskite solar cells. We introduced research background of flexible perovskite solar cells in introduction part. Then we composed the main body to i) structure and properties of hybrid perovskite solar cells, ii) why flexible hybrid perovskite solar cells are important?, iii) transparent conducting oxide (TCO) based flexible hybrid perovskite solar cells, and iv) TCO-free transparent conducting electrode (TCE) based flexible hybrid perovskite solar cells. Finally, we summarized research outlook of flexible hybrid perovskite solar cells.
Nerudová, Jana; Kovac, Damir; Tóthová, Andrea
2015-05-01
This is the first description of larva and puparium of Oplodontha rubrithorax (Macquart, 1838) from the Oriental Region. Larvae were found at a hot spring in North Thailand. The morphological features and cuticular structures of the larva are documented by drawings and SEM micrographs and the main characters are compared with the European O. viridula (Fabricius, 1775), the only described larva of this genus. Differences between larvae of both species were only found in pubescence. The characteristic, somewhat dilated and slightly clavate hairs on the dorsal surface of the body segments of O. viridula larva are apparently lacking in the larva of O. rubrithorax.
Kargacin, G J; Cooke, P H; Abramson, S B; Fay, F S
1989-04-01
To study the organization of the contractile apparatus in smooth muscle and its behavior during shortening, the movement of dense bodies in contracting saponin skinned, isolated cells was analyzed from digital images collected at fixed time intervals. These cells were optically lucent so that punctate structures, identified immunocytochemically as dense bodies, were visible in them with the phase contrast microscope. Methods were adapted and developed to track the bodies and to study their relative motion. Analysis of their tracks or trajectories indicated that the bodies did not move passively as cells shortened and that nearby bodies often had similar patterns of motion. Analysis of the relative motion of the bodies indicated that some bodies were structurally linked to one another or constrained so that the distance between them remained relatively constant during contraction. Such bodies tended to fall into laterally oriented, semirigid groups found at approximately 6-microns intervals along the cell axis. Other dense bodies moved rapidly toward one another axially during contraction. Such bodies were often members of separate semirigid groups. This suggests that the semirigid groups of dense bodies in smooth muscle cells may provide a framework for the attachment of the contractile structures to the cytoskeleton and the cell surface and indicates that smooth muscle may be more well-ordered than previously thought. The methods described here for the analysis of the motion of intracellular structures should be directly applicable to the study of motion in other cell types.
Kalisvaart, Hanneke; van Broeckhuysen, Saskia; Bühring, Martina; Kool, Marianne B; van Dulmen, Sandra; Geenen, Rinie
2012-01-01
How a patient is connected with one's body is core to rehabilitation of somatoform disorder but a common model to describe body-relatedness is missing. The aim of our study was to investigate the components and hierarchical structure of body-relatedness as perceived by patients with severe somatoform disorder and their therapists. Interviews with patients and therapists yielded statements about components of body-relatedness. Patients and therapists individually sorted these statements according to similarity. Hierarchical cluster analysis was applied to these sortings. Analysis of variance was used to compare the perceived importance of the statements between patients and therapists. The hierarchical structure included 71 characteristics of body-relatedness. It consisted of three levels with eight clusters at the lowest level: 1) understanding, 2) acceptance, 3) adjustment, 4) respect for the body, 5) regulation, 6) confidence, 7) self-esteem, and 8) autonomy. The cluster 'understanding' was considered most important by patients and therapists. Patients valued 'regulating the body' more than therapists. According to patients with somatoform disorders and their therapists, body-relatedness includes awareness of the body and self by understanding, accepting and adjusting to bodily signals, by respecting and regulating the body, by confiding and esteeming oneself and by being autonomous. This definition and structure of body-relatedness may help professionals to improve interdisciplinary communication, assessment, and treatment, and it may help patients to better understand their symptoms and treatment. (German language abstract, Abstract S1; Spanish language abstract, Abstract S2).
Harnroongroj, Thossart; Harnroongroj, Thos; Suntharapa, Thongchai; Arunakul, Marut
2016-10-01
The aim of this study was to develop a new calcaneal fracture classification system which will consider sustentacular fragment configuration and relation of posterior calcaneal facet to calcaneal body. The new classification system used sustentacular fragment configuration and relation of posterior calcaneal facet fracture with fracture components of calcaneal body as key aspects of main types and subtypes. Between 2000 and 2014, 126 intraarticular calcaneal fractures were classified according to the new classification system by using computed tomography images. The new classification system was studied in term of reliability, correlation to choices of treatment, implant fixation and quality of fracture reduction. Types of sustentacular fragment comprised type A, B and C. Type A sustentacular fragment included sustentacular tali containing middle calcaneal facet. In Type B and C fractures sustentacular fragment included medial aspect and entire posterior calcaneal facet as a single unit, respectively. The fractures with type A, B and C sustentacular fragments were classified as main type A, B and C intra-articular calcaneal fractures. The main type A and B comprised 4 subtypes. Subtypes A1, A3, B1, and B3 associated with avulsion and bending fragments of calcaneal body. Subtype A2, B2, and B4 associated with burst calcaneal body. Subtype B4 was not found in the study. Main type C had no subtype and associated with burst calcaneal body. The data showed good reliability. The study showed that our new intra-articular calcaneal fracture classification system correlates to choices of treatment, implant fixation and quality of fracture reduction. Level IV, Study of Diagnostic Test. Copyright © 2016 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.
Electrostatic Structure and Double-Probe Performance in Tenuous Plasmas
NASA Astrophysics Data System (ADS)
Cully, C. M.; Ergun, R. E.
2006-12-01
Many in-situ plasma instruments are affected by the local electrostatic structure surrounding the spacecraft. In order to better understand this structure, we have developed a fully 3-dimensional self-consistent model that uses realistic spacecraft geometry, including thin (<1 mm) wires and long (>100m) booms, with open boundary conditions. One of the more surprising results is that in tenuous plasmas, the charge on the booms can dominate over the charge on the spacecraft body. For instruments such as electric field double probes and boom-mounted low-energy particle detectors, this challenges the existing paradigm: long booms do not allow the probes to escape the spacecraft potential. Instead, the potential structure simply expands as the boom is deployed. We then apply our model to the double-probe Electric Field and Waves (EFW) instruments on Cluster, and predict the magnitudes of the main error sources. The overall error budget is consistent with experiment, and the model yields some additional interesting insights. We show that the charge in the photoelectron cloud is relatively unimportant, and that the spacecraft potential is typically underestimated by about 20% by double-probe experiments.
Development of new vibration energy flow analysis software and its applications to vehicle systems
NASA Astrophysics Data System (ADS)
Kim, D.-J.; Hong, S.-Y.; Park, Y.-H.
2005-09-01
The Energy flow analysis (EFA) offers very promising results in predicting the noise and vibration responses of system structures in medium-to-high frequency ranges. We have developed the Energy flow finite element method (EFFEM) based software, EFADSC++ R4, for the vibration analysis. The software can analyze the system structures composed of beam, plate, spring-damper, rigid body elements and many other components developed, and has many useful functions in analysis. For convenient use of the software, the main functions of the whole software are modularized into translator, model-converter, and solver. The translator module makes it possible to use finite element (FE) model for the vibration analysis. The model-converter module changes FE model into energy flow finite element (EFFE) model, and generates joint elements to cover the vibrational attenuation in the complex structures composed of various elements and can solve the joint element equations by using the wave tra! nsmission approach very quickly. The solver module supports the various direct and iterative solvers for multi-DOF structures. The predictions of vibration for real vehicles by using the developed software were performed successfully.
Study on the frame body structure of micro-electric vehicle based on frontal crash safety
NASA Astrophysics Data System (ADS)
Lu, Yaoquan; Zhang, Sanchuan
2017-08-01
In order to research the safety of skeleton type body of micro-electric vehicles in the frontal collision, the method of finite element modeling and simulation are used to analyze frame body that is fitted with the energy absorption structure, the simulation results show that On the basis of absorbing the most energy and the least of body acceleration, the absorbent structure parameters can be optimized, the optimized parameters are length 180 mm, wall thickness 3 mm and materials Q460.
... called the scrotum. The testicles produce sperm and testosterone . The testicles are located outside the body because ... the testicle are the body's main source of testosterone. Testosterone, the male sex hormone, is essential to ...
Lower body negative pressure chamber: Design and specifications for tilt-table mounting
NASA Technical Reports Server (NTRS)
Salamacha, Laura; Gundo, D.; Mulenburg, G. M.; Greenleaf, J. E.
1995-01-01
Specifications for a lower body negative pressure chamber for mounting on a tilting table are presented. The main plate is made from HEXEL honeycomb board 1.0 inch thick. The plate, supported at three edges, will be subjected to a uniform pressure differential of -4.7 lb/sq in. A semi-cylindrical Plexiglass top (chamber) is attached to the main plate; the pressure within the chamber will be about 10lb/sq in during operation. The stresses incurred by the main plate with this partial vacuum were calculated. All linear dimensions are in inches.
The Fossilized Size Distribution of the Main Asteroid Belt
NASA Astrophysics Data System (ADS)
Bottke, W. F.; Durda, D.; Nesvorny, D.; Jedicke, R.; Morbidelli, A.
2003-05-01
At present, we do not understand how the main asteroid belt evolved into its current state. During the planet formation epoch, the primordial main belt (PMB) contained several Earth masses of material, enough to allow the asteroids to accrete on relatively short timescales (e.g., Weidenschilling 1977). The present-day main belt, however, only contains 5e-4 Earth masses of material (Petit et al. 2002). Constraints on this evolution come from (i) the observed fragments of differentiated asteroids, (ii) meteorites collected from numerous differentiated parent bodies, (iii) the presence of ˜ 10 prominent asteroid families, (iv) the "wavy" size-frequency distribution of the main belt, which has been shown to be a by-product of substantial collisional evolution (e.g., Durda et al. 1997), and (v) the still-intact crust of (4) Vesta. To explain the contradictions in the above constraints, we suggest the PMB evolved in this fashion: Planetesimals and planetary embryos accreted (and differentiated) in the PMB during the first few Myr of the solar system. Gravitational perturbations from these embryos dynamically stirred the main belt, enough to initiate fragmentation. When Jupiter reached its full size, some 10 Myr after the solar system's birth, its perturbations, together with those of the embryos, dynamically depleted the main belt region of ˜ 99% of its bodies. Much of this material was sent to high (e,i) orbits, where it continued to pummel the surviving main belt bodies at high impact velocities for more than 100 Myr. While some differentiated bodies in the PMB were disrupted, most were instead scattered; only small fragments from this population remain. This period of comminution and dynamical evolution in the PMB created, among other things, the main belt's wavy size distribution, such that it can be considered a "fossil" from this violent early epoch. From this time forward, however, relatively little collisional evolution has taken place in the main belt, consistent with the surprising paucity of prominent asteroid families. Preliminary modeling results of this scenario and implications will be presented.
Schoborg, Todd; Rickels, Ryan; Barrios, Josh
2013-01-01
Chromatin insulators assist in the formation of higher-order chromatin structures by mediating long-range contacts between distant genomic sites. It has been suggested that insulators accomplish this task by forming dense nuclear foci termed insulator bodies that result from the coalescence of multiple protein-bound insulators. However, these structures remain poorly understood, particularly the mechanisms triggering body formation and their role in nuclear function. In this paper, we show that insulator proteins undergo a dramatic and dynamic spatial reorganization into insulator bodies during osmostress and cell death in a high osmolarity glycerol–p38 mitogen-activated protein kinase–independent manner, leading to a large reduction in DNA-bound insulator proteins that rapidly repopulate chromatin as the bodies disassemble upon return to isotonicity. These bodies occupy distinct nuclear territories and contain a defined structural arrangement of insulator proteins. Our findings suggest insulator bodies are novel nuclear stress foci that can be used as a proxy to monitor the chromatin-bound state of insulator proteins and provide new insights into the effects of osmostress on nuclear and genome organization. PMID:23878275
Munzhelele, Priscilla; Oguttu, James W; Fasina, Folorunso O
2016-05-12
The majority of small-holder pig farmers in Mpumalanga had between 1- and 10-sow herds. The main aim of this study is to evaluate the current government agricultural intervention (supply of 10 sows and a boar) in terms of technical and economic feasibilities and ascertain whether the small-scale pig value chain system alleviates poverty. Data were obtained from 220 randomly selected small-holder pig farmers using a semi-structured questionnaire. The results showed that 58% farrowed ≤ 10 piglets/born/sow/litter, 44.2% practiced no weaning method and many fed swill and leftovers alone (41.6%). Pair-wise association revealed that the feeding of commercial feeds had a relationship with pigs in relatively good to very good body condition. Pigs in poor body condition were positively correlated with the feeding of swill alone. The economic models for the 10-sow unit proved that pig farming is unprofitable if the current management and feeding systems that operate in the commercial industry are utilised. However, only through a combination of cooperative systems, benefits of economies of scale, reduction of preweaning mortalities and structured government inputs can pig production be profitable at this scale of production.
NASA Astrophysics Data System (ADS)
Bernard, Benjamin; van Wyk de Vries, Benjamin; Barba, Diego; Leyrit, Hervé; Robin, Claude; Alcaraz, Samantha; Samaniego, Pablo
2008-09-01
Chimborazo is a Late Pleistocene to Holocene stratovolcano located at the southwest end of the main Ecuadorian volcanic arc. It experienced a large sector collapse and debris avalanche (DA) of the initial edifice (CH-I). This left a 4 km wide scar, removing 8.0 ± 0.5 km 3 of the edifice. The debris avalanche deposit (DAD) is abundantly exposed throughout the Riobamba Basin to the Río Chambo, more than 35 km southeast of the volcano. The DAD averages a thickness of 40 m, covers about 280 km 2, and has a volume of > 11 km 3. Two main DAD facies are recognized: block and mixed facies. The block facies is derived predominantly from edifice lava and forms > 80 vol.% of the DAD, with a probable volume increase of 15-25 vol.%. The mixed facies was essentially created by mixing brecciated edifice rock with substratum and is found mainly in distal and marginal areas. The DAD has clear surface ridges and hummocks, and internal structures such as jigsaw cracks, injections, and shear-zone features are widespread. Structures such as stretched blocks along the base contact indicate high basal shear. Substratum incorporation is directly observed at the base and is inferred from the presence of substratum-derived material in the DAD body. Based on the facies and structural interpretation, we propose an emplacement model of a lava-rich avalanche strongly cataclased before and/or during failure initiation. The flow mobilises and incorporates significant substrata (10-14 vol.%) while developing a fine lubricating basal layer. The substrata-dominated mixed facies is transported to the DAD interior and top in dykes invading previously-formed fractures.
NASA Astrophysics Data System (ADS)
Aboud, Essam; El-shrief, Adel; Alqahtani, Faisal; Mogren, Saad
2017-04-01
On 19 May, 2009, an earthquake of magnitude (M=5.4) shocked the most volcanically active recent basaltic fields, Luynnier volcanic field, northwestern Saudi Arabia. This event was the largest recorded one since long time ago. Government evacuated the surrounding residents around the epicenter for over 3 months away from any future volcanic activity. The seismic event caused damages to buildings in the village around the epicenter and resulted in surface fissure trending in NNW-SSE direction with about 8 km length. Seismologists from Saudi Geological Survey (SGS) worked out on locating the epicenter and the cause of this earthquake. They collected seismic data from Saudi Geological Surveys Station Network as well as installed broadband seismic stations around the region of the earthquake. They finally concluded that the main cause of the M=5.4 event is dike intrusion at depth of about 5 km (not reached to the surface). In the present work, we carried out detailed ground/airborne gravity survey around the surficial fissure to image the subsurface volcanic structure where about 380 gravity stations were recorded covering the main fissure in an area of 600 km2. Gravity data was analyzed using CET edge detection tools and 3D inversion technique. The results revealed that, there is a magma chamber/body beneath the surface at 5-20 km depth and the main reason for the M=5.4 earthquake is tectonic settings of the Red Sea. Additionally, the area is characterized by set of faults trending in NW direction, parallel to the Red Sea, and most of the volcanic cones were located on faults/contacts implying that, they are structurally controlled. The 8-km surficial crack is extended SE underneath the surface.
... its own vascular system, called coronary circulation. The aorta (the main blood supplier to the body) branches ... blood to the rest of the body. Tags: aorta , arteries , blood , coronary arteries , coronary artery , coronary artery ...
Hadronic three-body decays of B mesons
NASA Astrophysics Data System (ADS)
Cheng, Hai-Yang
2016-04-01
Hadronic three-body decays of B mesons receive both resonant and nonresonant contributions. Dominant nonresonant contributions to tree-dominated three-body decays arise from the b → u tree transition which can be evaluated using heavy meson chiral perturbation theory valid in the soft meson limit. For penguin-dominated decays, nonresonant signals come mainly from the penguin amplitude governed by the matrix elements of scalar densities
NASA Technical Reports Server (NTRS)
Gray, N. C.; Senseny, R. M.; Bolton, P. N.
1980-01-01
A fire extinguishing apparatus for delivering an extinguishing agent through a tarrier surrounding a structure into its interior includes an elongated tubular nozzle body which has a pointed penetrating head carried on one end of the tubular body. A source of extinguishing agent coupled to the opposite end of the tubular body is fed through and passes through passages adjacent the head for delivering the extinguishing agent to the interior of the structure. A slidable mass is carried on the tubular body on a remote end of the tubular body from the penetrating head. By manipulating the slidable mass and bringing such in contact with an abutment the force imparted to the tubular body causes the head to penetrate the structure.
Analysis of asteroid (216) Kleopatra using dynamical and structural constraints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirabayashi, Masatoshi; Scheeres, Daniel J., E-mail: masatoshi.hirabayashi@colorado.edu
This paper evaluates a dynamically and structurally stable size for Asteroid (216) Kleopatra. In particular, we investigate two different failure modes: material shedding from the surface and structural failure of the internal body. We construct zero-velocity curves in the vicinity of this asteroid to determine surface shedding, while we utilize a limit analysis to calculate the lower and upper bounds of structural failure under the zero-cohesion assumption. Surface shedding does not occur at the current spin period (5.385 hr) and cannot directly initiate the formation of the satellites. On the other hand, this body may be close to structural failure;more » in particular, the neck may be situated near a plastic state. In addition, the neck's sensitivity to structural failure changes as the body size varies. We conclude that plastic deformation has probably occurred around the neck part in the past. If the true size of this body is established through additional measurements, this method will provide strong constraints on the current friction angle for the body.« less
The Development of Body Structure Knowledge in Infancy
Bhatt, Ramesh S.; Hock, Alyson; White, Hannah; Jubran, Rachel; Galati, Ashley
2016-01-01
Although we know much about the development of face processing, we know considerably less about the development of body knowledge—despite bodies also being significant sources of social information. One set of studies indicated that body structure knowledge is poor during the 1st year of life and spawned a model that posits that, unlike the development of face knowledge, which benefits from innate propensities and dedicated learning mechanisms, the development of body knowledge relies on general learning mechanisms and develops slowly. In this article, we review studies on infants’ knowledge about the structure of bodies and their processing of gender and emotion that paint a different picture. Although questions remain, a general social cognition system likely engenders similar trajectories of development of knowledge about faces and bodies, and may equip developing infants with the capacity to obtain socially critical information from many sources. PMID:28663770
Ng, Siu-Kuen; Barron, David; Swami, Viren
2015-03-01
Previous research has suggested that the factor structure of Body Appreciation Scale (BAS), a widely-used measure of positive body image, may not be cross-culturally equivalent. Here, we used confirmatory factor analysis to evaluate the conceptual equivalence of a Chinese (Cantonese) translation of the BAS among women (n=1319) and men (n=1084) in Hong Kong. Results showed that neither the one-dimensional nor proposed two-dimensional factor structures had adequate fit. Instead, a modified two-dimensional structure, which retained 9 of the 13 BAS items in two factors, had the best fit. However, only one of these factors, reflective of General Body Appreciation, had adequate internal consistency. This factor also had good patterns of construct validity, as indicated through significant correlations with participant body mass index, self-esteem, and (among women) actual-ideal weight discrepancy. The present results suggest that there may be cultural differences in the concept and experience of body appreciation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Archavlis, Eleftherios; Schwandt, Eike; Kosterhon, Michael; Gutenberg, Angelika; Ulrich, Peter; Nimer, Amr; Giese, Alf; Kantelhardt, Sven Rainer
2016-07-01
The main difficulties of transpedicular corpectomies are lack of space for vertebral body replacement in the neighborhood of critical structures, the necessity for sacrifice of nerve roots in the thoracic spine. and the extent of hemorrhage due to venous epidural bleeding. We present a modified technique of transpedicular corpectomy by using an endoscopic-assisted microsurgical technique performed through a single posterior approach. A 3-dimensional (3D) preoperative reconstruction could be helpful in the planning for this complex anatomic region. Surface and volume 3D reconstruction were performed by Amira or the Dextroscope. The clinical experience of this study includes 7 cases, 2 with an unstable burst fracture and 5 with metastatic destructive vertebral body disease, all with significant retropulsion and obstruction of the spinal canal. We performed a comparison with a conventional cohort of transpedicular thoracic corpectomies. Qualitative parameters of the 3D virtual reality planning included degree of bone removal and distance from critical structures such as myelon and implant diameter. Parameters were met in each case, with demonstration of optimal positioning of the implant without neurological complications. In all patients, the endoscope was a significant help in identifying the origins of active bleeding, residual tumor, extent of bone removal, facilitating cage insertion in a minimally invasive way, and helping to avoid root sacrifice on both sides. Microsurgical endoscopic-assisted transpedicular corpectomy may prove valuable in enhancing the safety of corpectomy in destructive vertebral body disease. The 3D virtual anatomic model greatly facilitated the preoperative planning. Copyright © 2016 Elsevier Inc. All rights reserved.
Lai, Julian; Koh, Chuan Hock; Tjota, Monika; Pieuchot, Laurent; Raman, Vignesh; Chandrababu, Karthik Balakrishna; Yang, Daiwen; Wong, Limsoon; Jedd, Gregory
2012-01-01
Like animals and plants, multicellular fungi possess cell-to-cell channels (septal pores) that allow intercellular communication and transport. Here, using a combination of MS of Woronin body-associated proteins and a bioinformatics approach that identifies related proteins based on composition and character, we identify 17 septal pore-associated (SPA) proteins that localize to the septal pore in rings and pore-centered foci. SPA proteins are not homologous at the primary sequence level but share overall physical properties with intrinsically disordered proteins. Some SPA proteins form aggregates at the septal pore, and in vitro assembly assays suggest aggregation through a nonamyloidal mechanism involving mainly α-helical and disordered structures. SPA loss-of-function phenotypes include excessive septation, septal pore degeneration, and uncontrolled Woronin body activation. Together, our data identify the septal pore as a complex subcellular compartment and focal point for the assembly of unstructured proteins controlling diverse aspects of intercellular connectivity. PMID:22955885
Validity of the Stokes-Einstein relation in liquids: simple rules from the excess entropy.
Pasturel, A; Jakse, N
2016-12-07
It is becoming common practice to consider that the Stokes-Einstein relation D/T~ η -1 usually works for liquids above their melting temperatures although there is also experimental evidence for its failure. Here we investigate numerically this commonly-invoked assumption for simple liquid metals as well as for their liquid alloys. Using ab initio molecular dynamics simulations we show how entropy scaling relationships developed by Rosenfeld can be used to predict the conditions for the validity of the Stokes-Einstein relation in the liquid phase. Specifically, we demonstrate the Stokes-Einstein relation may break down in the liquid phase of some liquid alloys mainly due to the presence of local structural ordering as evidenced in their partial two-body excess entropies. Our findings shed new light on the understanding of transport properties of liquid materials and will trigger more experimental and theoretical studies since excess entropy and its two-body approximation are readily obtainable from standard experiments and simulations.
The dynamics of food chains under climate change and nutrient enrichment.
Binzer, Amrei; Guill, Christian; Brose, Ulrich; Rall, Björn C
2012-11-05
Warming has profound effects on biological rates such as metabolism, growth, feeding and death of organisms, eventually affecting their ability to survive. Using a nonlinear bioenergetic population-dynamic model that accounts for temperature and body-mass dependencies of biological rates, we analysed the individual and interactive effects of increasing temperature and nutrient enrichment on the dynamics of a three-species food chain. At low temperatures, warming counteracts the destabilizing effects of enrichment by both bottom-up (via the carrying capacity) and top-down (via biological rates) mechanisms. Together with increasing consumer body masses, warming increases the system tolerance to fertilization. Simultaneously, warming increases the risk of starvation for large species in low-fertility systems. This effect can be counteracted by increased fertilization. In combination, therefore, two main drivers of global change and biodiversity loss can have positive and negative effects on food chain stability. Our model incorporates the most recent empirical data and may thus be used as the basis for more complex forecasting models incorporating food-web structure.
Suzuki, Naoki; Hattori, Asaki; Hayashibe, Mitsuhiro; Suzuki, Shigeyuki; Otake, Yoshito
2003-01-01
We have developed an imaging system for free and quantitative observation of human locomotion in a time-spatial domain by way of real time imaging. The system is equipped with 60 computer controlled video cameras to film human locomotion from all angles simultaneously. Images are installed into the main graphic workstation and translated into a 2D image matrix. Observation of the subject from optional directions is able to be performed by selecting the view point from the optimum image sequence in this image matrix. This system also possesses a function to reconstruct 4D models of the subject's moving human body by using 60 images taken from all directions at one particular time. And this system also has the capability to visualize inner structures such as the skeletal or muscular systems of the subject by compositing computer graphics reconstructed from the MRI data set. We are planning to apply this imaging system to clinical observation in the area of orthopedics, rehabilitation and sports science.
NASA Astrophysics Data System (ADS)
Westerhausen, Markus; Martin, Tanja; Kappel, Marcel; Hofmann, Boris
2018-02-01
We present a measurement setup consisting of two fluid-filled pressure chambers to mimic the mechanical stress likely to that of small body movements on biomedical flexible micro-electrode arrays for the analysis of various degradation mechanisms. Our main goal was the simulation of micro-motions in fluid conditions, while maintaining an electric access to the device. These micro-motions would be likely to those occurring in the human body caused by the intracranial pressure in magnitudes of 7-25 mmHg, which translates to a fluid pressure of 9-33 mbar. Furthermore, severe mechanical stress can be administered to the samples under the previously mentioned environment. Therefore, a flexible, polyimide-based sample with various metal test structures was fabricated and analyzed in the presented measurement setup. A comparison of the elongation of the sample's surface as a function of the applied hydrostatic pressure is given with computer simulations.
NASA Astrophysics Data System (ADS)
Acar, Cihan; Murakami, Toshiyuki
In this paper, a robust control of two-wheeled mobile manipulator with underactuated joint is considered. Two-wheeled mobile manipulators are dynamically balanced two-wheeled driven systems that do not have any caster or extra wheels to stabilize their body. Two-wheeled mobile manipulators mainly have an important feature that makes them more flexible and agile than the statically stable mobile manipulators. However, two-wheeled mobile manipulator is an underactuated system due to its two-wheeled structure. Therefore, it is required to stabilize the underactuated passive body and, at the same time, control the position of the center of gravity (CoG) of the manipulator in this system. To realize this, nonlinear backstepping based control method with virtual double inverted pendulum model is proposed in this paper. Backstepping is used with sliding mode to increase the robustness of the system against modeling errors and other perturbations. Then robust acceleration control is also achieved by utilizing disturbance observer. Performance of the proposed method is evaluated by several experiments.
Recent Progress on Piezoelectric and Triboelectric Energy Harvesters in Biomedical Systems
Zheng, Qiang; Shi, Bojing; Wang, Zhong Lin
2017-01-01
Implantable medical devices (IMDs) have become indispensable medical tools for improving the quality of life and prolonging the patient's lifespan. The minimization and extension of lifetime are main challenges for the development of IMDs. Current innovative research on this topic is focused on internal charging using the energy generated by the physiological environment or natural body activity. To harvest biomechanical energy efficiently, piezoelectric and triboelectric energy harvesters with sophisticated structural and material design have been developed. Energy from body movement, muscle contraction/relaxation, cardiac/lung motions, and blood circulation is captured and used for powering medical devices. Other recent progress in this field includes using PENGs and TENGs for our cognition of the biological processes by biological pressure/strain sensing, or direct intervention of them for some special self‐powered treatments. Future opportunities lie in the fabrication of intelligent, flexible, stretchable, and/or fully biodegradable self‐powered medical systems for monitoring biological signals and treatment of various diseases in vitro and in vivo. PMID:28725529
Kazakh Traditional Dance Gesture Recognition
NASA Astrophysics Data System (ADS)
Nussipbekov, A. K.; Amirgaliyev, E. N.; Hahn, Minsoo
2014-04-01
Full body gesture recognition is an important and interdisciplinary research field which is widely used in many application spheres including dance gesture recognition. The rapid growth of technology in recent years brought a lot of contribution in this domain. However it is still challenging task. In this paper we implement Kazakh traditional dance gesture recognition. We use Microsoft Kinect camera to obtain human skeleton and depth information. Then we apply tree-structured Bayesian network and Expectation Maximization algorithm with K-means clustering to calculate conditional linear Gaussians for classifying poses. And finally we use Hidden Markov Model to detect dance gestures. Our main contribution is that we extend Kinect skeleton by adding headwear as a new skeleton joint which is calculated from depth image. This novelty allows us to significantly improve the accuracy of head gesture recognition of a dancer which in turn plays considerable role in whole body gesture recognition. Experimental results show the efficiency of the proposed method and that its performance is comparable to the state-of-the-art system performances.
The Extrastriate Body Area Computes Desired Goal States during Action Planning123
2016-01-01
Abstract How do object perception and action interact at a neural level? Here we test the hypothesis that perceptual features, processed by the ventral visuoperceptual stream, are used as priors by the dorsal visuomotor stream to specify goal-directed grasping actions. We present three main findings, which were obtained by combining time-resolved transcranial magnetic stimulation and kinematic tracking of grasp-and-rotate object manipulations, in a group of healthy human participants (N = 22). First, the extrastriate body area (EBA), in the ventral stream, provides an initial structure to motor plans, based on current and desired states of a grasped object and of the grasping hand. Second, the contributions of EBA are earlier in time than those of a caudal intraparietal region known to specify the action plan. Third, the contributions of EBA are particularly important when desired and current object configurations differ, and multiple courses of actions are possible. These findings specify the temporal and functional characteristics for a mechanism that integrates perceptual processing with motor planning. PMID:27066535
Fast-response underwater TSP investigation of subcritical instabilities of a cylinder in crossflow
NASA Astrophysics Data System (ADS)
Capone, Alessandro; Klein, Christian; Di Felice, Fabio; Beifuss, Uwe; Miozzi, Massimo
2015-10-01
We investigate the classic cylinder in crossflow case to test the effectiveness of a fast-response underwater temperature-sensitive paint coating (TSP) in providing highly resolved spatial and time observations of the action of a flow over a bluff body surface. The flow is investigated at Reynolds number <190 k, before the onset of the drag-crisis state. The obtained TSP image sequences convey an accurate description of the evolution of the main features in the fluid-cylinder interaction, like the separation line position, the pattern of the large coherent structures acting on the cylinder's surface and the small-scale intermittent streamwise arrays of vortices. Ad hoc data management and features extraction techniques are proposed which allow extraction of quantitative data, such as separation line position and vortex-shedding frequency, and results are compared to the literature. Use of TSP for water applications introduces an interesting point of view about the fluid-body interactions by focusing directly on the effect of the flow on the model surface.
Fracture characteristics, microstructure, and tissue reaction of Ti-5Al-2.5Fe for orthopedic surgery
NASA Astrophysics Data System (ADS)
Niinomi, Mitsuo; Kobayashi, Toshiro; Toriyama, Osamu; Kawakami, Noriaki; Ishida, Yoshihito; Matsuyama, Yukihiro
1996-12-01
The microstructure of Ti-5Al-2.5Fe, which is expected to be used widely as an implant material not only for artificial hip joints but also for instrumentations of scoliosis surgery, was variously changed by heat treatments. The effect of the microstructure on mechanical properties, fracture toughness, and rotating-bending fatigue strength in the air and simulated body environment, that is, Ringer’s solution, was then investigated. Furthermore, the effect of the living body environment on mechanical properties and fracture toughness in Ti-5Al-2.5Fe were investigated on the specimens implanted into rabbit for about 11 months. The data of Ti-5Al-2.5Fe were compared with those of Ti-6Al-4V ELI, which has been used as an implant material mainly for artificial hip joints, and SUS 316L, which has been used as an implant material for many parts, including the instrumentation of scoliosis surgery. The equiaxed α structure, which is formed by annealing at a temperature below β transus, gives the best balance of strength and ductility in Ti-5Al-2.5Fe. The coarse Widmanstätten α structure, which is formed by solutionizing over β transus followed by air cooling and aging, gives the greatest fracture toughness in Ti-5Al-2.5Fe. This trend is similar to that reported in Ti-6Al-4V ELI. The rotating-bending fatigue strength is the greatest in the equiaxed α structure, which is formed by solutionizing below β transus followed by air cooling and aging in Ti-5Al-2.5Fe. Ti-5Al-2.5Fe exhibits much greater rotating-bending fatigue strength compared with SUS 316L, and equivalent rotating-bending fatigue strength to that of Ti-6Al-4V ELI in both the air and simulated body environments. The rotating-bending fatigue strength of SUS 316L is degraded in the simulated body environment. The corrosion fatigue, therefore, occurs in SUS 316L in the simulated body environment. Fatigue strength of Ti-5Al-2.5Fe in the simulated body environment is degraded by lowering oxygen content in the simulated body environment because the formability of oxide on the specimen surface is considered to be lowered comparing with that in air. The mechanical property and fracture toughness of Ti-5Al-2.5Fe and Ti-6Al-4V ELI are not changed in the living body environment. The hard-surface corrosion layer is, however, formed on the surface of SUS 316L in the living body environment. The C1 peak is detected from the hard-surface corrosion layer by energy-dispersive X-ray (EDX) analysis. These facts suggests a possibility for corrosion fatigue to occur in the living body environment when SUS 316L is used. The fibrous connective tissue and new bone formation are formed beside all metals. There is, however, no big difference between tissue morphology around each implant material.
2D Fast Vessel Visualization Using a Vessel Wall Mask Guiding Fine Vessel Detection
Raptis, Sotirios; Koutsouris, Dimitris
2010-01-01
The paper addresses the fine retinal-vessel's detection issue that is faced in diagnostic applications and aims at assisting in better recognizing fine vessel anomalies in 2D. Our innovation relies in separating key visual features vessels exhibit in order to make the diagnosis of eventual retinopathologies easier to detect. This allows focusing on vessel segments which present fine changes detectable at different sampling scales. We advocate that these changes can be addressed as subsequent stages of the same vessel detection procedure. We first carry out an initial estimate of the basic vessel-wall's network, define the main wall-body, and then try to approach the ridges and branches of the vasculature's using fine detection. Fine vessel screening looks into local structural inconsistencies in vessels properties, into noise, or into not expected intensity variations observed inside pre-known vessel-body areas. The vessels are first modelled sufficiently but not precisely by their walls with a tubular model-structure that is the result of an initial segmentation. This provides a chart of likely Vessel Wall Pixels (VWPs) yielding a form of a likelihood vessel map mainly based on gradient filter's intensity and spatial arrangement parameters (e.g., linear consistency). Specific vessel parameters (centerline, width, location, fall-away rate, main orientation) are post-computed by convolving the image with a set of pre-tuned spatial filters called Matched Filters (MFs). These are easily computed as Gaussian-like 2D forms that use a limited range sub-optimal parameters adjusted to the dominant vessel characteristics obtained by Spatial Grey Level Difference statistics limiting the range of search into vessel widths of 16, 32, and 64 pixels. Sparse pixels are effectively eliminated by applying a limited range Hough Transform (HT) or region growing. Major benefits are limiting the range of parameters, reducing the search-space for post-convolution to only masked regions, representing almost 2% of the 2D volume, good speed versus accuracy/time trade-off. Results show the potentials of our approach in terms of time for detection ROC analysis and accuracy of vessel pixel (VP) detection. PMID:20706682
Dirty snowball - now is too primitive for a scientific description of comets
NASA Astrophysics Data System (ADS)
Kochemasov, G.
Success of the "Deep Space 1" scientists which acquired excellent pictures of comet Borrelli, brings comets into the family of small celestial bodies with common regularities of shaping. Often attracted accidental impact process never can explain constantly repeated shapes of small bodies. Understanding their shaping is important in view of coming missions to small bodies. "Orbits make structures". This fundamental notion is unfolded into 4 theorems of planetary tectonics [1]: 1. Celestial bodies are dichotomic; 2. -" - are sectoral; 3. -"- are granular; 4. Angular momenta of different level blocks tend to be equal. All these general rules of shaping and structurization are a consequence of interferences of warping any body standing planetary waves due to inertia forces acting in any moving in non-circular orbit body. Dichotomy is the most global tectonic feature due to the fundamental waves (wave 1). It is typical to all planetary spheres. In Earth it is in the core, mantle, crust, atmosphere. At Venus it is very pronounced in the crust and in atmosphere: lying Y-feature and inverse C-feature in the cloud layer. Coherent martian lithosphere- atmosphere dichotomies are well known. In small bodies the dichotomy is specifically pronounced as ubiquitous convexo -concave shape. Most detailed studied at Eros this shape was also observed at comet Halley and recently at Borrelli. Borrelli's convex extended half is strongly jagged (not easy to find a place for landing!), the contracted concave half spits out tremendous tail. Surface areas around the tail outlets are whitish and lighter than surroundings. It seems that the gas-dust material squeezed out of interiors not only disappears in space but leaves traces on the concave surface. The concave hemisphere has shorter radius than the convex one and tends to compensate loosing angular momentum by denser material extracted from interiors (Theorem 4 [1];compare with the basaltic Pacific hemisphere opposed by the granitic continental one). The arctic-antarctic symptom - an opposition of sharp and blunt ends (Theorem 2) - is perfectly presented at Borrelli. It seems that the blunt end is rather smooth and whiter than the sharp end: again denser material from interiors tends to be on surface (compare basic Arctic and granitic Antarctic). This kind of cometary surfaces probably is m ore suitable for landing and sampling because of relative smoothness and the deeper material exposed on surface. A granular structurization (Theorem 3) is distinguished almost on the whole surface. Crossing lineaments marking rows of equidimensional dark and light spots ("craters") are distinct mainly on the darker areas. Ref.: [1] Kochemasov G. (1999) Geophys. Res. Abstr.,v.1, #3, 700.
NASA Astrophysics Data System (ADS)
Wongmanerod, S.; Holtz, P. O.; Reginski, K.; Bugaiski, M.; Monemar, B.
The influence of high Be-acceptor doping on the modulation-doped GaAs/Al0.3Ga0.7As quantum wells structures has been optically studied by using the low-temperature photoluminescence (PL) and photoluminescence excitation (PLE) techniques.The modulation doped samples were grown by the molecular-beam epitaxy technique with a varying Be acceptor concentration ranging from 1×1018 to 8×1018cm-3. Several novels physical effects were observed. The main effect is a significant shift of the main emission towards lower energies as the doping concentrations increase. There are two contradictory mechanisms, which determine the peak energy of the main emission; the shrinkage of the effective bandgap due to many body effects and the reduction of the exciton binding energy due to the carrier screening effect. We conclude that the first one is the dominating effect. At a sufficiently high doping concentration (roughly 2×1018cm-3), the lineshape of the main PL emission is modified, and a new feature, the so called Fermi-edge singularity (FES), appears on the high energy side of the PL emission and exhibits a blue-shift as a function of doping concentration. This feature has been found to be very sensitive to a temperature change, already in the range of 4.4-50K. In addition, PLE spectra with a suitable detection energy show that the absorption edge is blue-shifted with respect to the PL main emission. The resulting Stoke shift is due to phase-space-filling of the carriers, in agreement with the FES interpretation. Finally, we have found from the PLE spectra that the exciton quenching is initiated in the same doping regime. Compared to the exciton quenching in other p-type structures, the critical acceptor concentration required to quench the excitons is significantly lower than in the case of 2D structures with acceptor doping within the well, but larger than in the case of 3D bulk.
Structure of the toxic core of α-synuclein from invisible crystals
Rodriguez, Jose A.; Ivanova, Magdalena I.; Sawaya, Michael R.; ...
2015-09-09
We report that the protein α-synuclein is the main component of Lewy bodies, the neuron-associated aggregates seen in Parkinson disease and other neurodegenerative pathologies. An 11-residue segment, which we term NACore, appears to be responsible for amyloid formation and cytotoxicity of human α-synuclein. Here we describe crystals of NACore that have dimensions smaller than the wavelength of visible light and thus are invisible by optical microscopy. As the crystals are thousands of times too small for structure determination by synchrotron X-ray diffraction, we use micro-electron diffraction to determine the structure at atomic resolution. The 1.4 Å resolution structure demonstrates thatmore » this method can determine previously unknown protein structures and here yields, to our knowledge, the highest resolution achieved by any cryo-electron microscopy method to date. The structure exhibits protofibrils built of pairs of face-to-face β-sheets. X-ray fibre diffraction patterns show the similarity of NACore to toxic fibrils of full-length α-synuclein. Finally, the NACore structure, together with that of a second segment, inspires a model for most of the ordered portion of the toxic, full-length α-synuclein fibril, presenting opportunities for the design of inhibitors of α-synuclein fibrils.« less
Biomimetic multifunctional surfaces inspired from animals.
Han, Zhiwu; Mu, Zhengzhi; Yin, Wei; Li, Wen; Niu, Shichao; Zhang, Junqiu; Ren, Luquan
2016-08-01
Over millions of years, animals have evolved to a higher intelligent level for their environment. A large number of diverse surface structures on their bodies have been formed to adapt to the extremely harsh environment. Just like the structural diversity existed in plants, the same also applies true in animals. Firstly, this article provides an overview and discussion of the most common functional surface structures inspired from animals, such as drag reduction, noise reduction, anti-adhesion, anti-wear, anti-erosion, anti-fog, water capture, and optical surfaces. Then, some typical characteristics of morphologies, structures, and materials of the animal multifunctional surfaces were discussed. The adaptation of these surfaces to environmental conditions was also analyzed. It mainly focuses on the relationship between their surface functions and their surface structural characteristics. Afterwards, the multifunctional mechanisms or principles of these surfaces were discussed. Models of these structures were provided for the development of structure materials and machinery surfaces. At last, fabrication techniques and existing or potential technical applications inspired from biomimetic multifunctional surfaces in animals were also discussed. The application prospects of the biomimetic functional surfaces are very broad, such as civil field of self-cleaning textile fabrics and non-stick pots, ocean field of oil-water separation, sports field of swimming suits, space development field of lens arrays. Copyright © 2016 Elsevier B.V. All rights reserved.
Interspecific analysis of covariance structure in the masticatory apparatus of galagos.
Vinyard, Christopher J
2007-01-01
The primate masticatory apparatus (MA) is a functionally integrated set of features, each of which performs important functions in biting, ingestive, and chewing behaviors. A comparison of morphological covariance structure among species for these MA features will help us to further understand the evolutionary history of this region. In this exploratory analysis, the covariance structure of the MA is compared across seven galago species to investigate 1) whether there are differences in covariance structure in this region, and 2) if so, how has this covariation changed with respect to size, MA form, diet, and/or phylogeny? Ten measurements of the MA functionally related to bite force production and load resistance were obtained from 218 adults of seven galago species. Correlation matrices were generated for these 10 dimensions and compared among species via matrix correlations and Mantel tests. Subsequently, pairwise covariance disparity in the MA was estimated as a measure of difference in covariance structure between species. Covariance disparity estimates were correlated with pairwise distances related to differences in body size, MA size and shape, genetic distance (based on cytochrome-b sequences) and percentage of dietary foods to determine whether one or more of these factors is linked to differences in covariance structure. Galagos differ in MA covariance structure. Body size appears to be a major factor correlated with differences in covariance structure among galagos. The largest galago species, Otolemur crassicaudatus, exhibits large differences in body mass and covariance structure relative to other galagos, and thus plays a primary role in creating this association. MA size and shape do not correlate with covariance structure when body mass is held constant. Diet also shows no association. Genetic distance is significantly negatively correlated with covariance disparity when body mass is held constant, but this correlation appears to be a function of the small body size and large genetic distance for Galagoides demidoff. These exploratory results indicate that changing body size may have been a key factor in the evolution of the galago MA.
A users manual for the method of moments Aircraft Modeling Code (AMC), version 2
NASA Technical Reports Server (NTRS)
Peters, M. E.; Newman, E. H.
1994-01-01
This report serves as a user's manual for Version 2 of the 'Aircraft Modeling Code' or AMC. AMC is a user-oriented computer code, based on the method of moments (MM), for the analysis of the radiation and/or scattering from geometries consisting of a main body or fuselage shape with attached wings and fins. The shape of the main body is described by defining its cross section at several stations along its length. Wings, fins, rotor blades, and radiating monopoles can then be attached to the main body. Although AMC was specifically designed for aircraft or helicopter shapes, it can also be applied to missiles, ships, submarines, jet inlets, automobiles, spacecraft, etc. The problem geometry and run control parameters are specified via a two character command language input format. This report describes the input command language and also includes several examples which illustrate typical code inputs and outputs.
A user's manual for the method of moments Aircraft Modeling Code (AMC)
NASA Technical Reports Server (NTRS)
Peters, M. E.; Newman, E. H.
1989-01-01
This report serves as a user's manual for the Aircraft Modeling Code or AMC. AMC is a user-oriented computer code, based on the method of moments (MM), for the analysis of the radiation and/or scattering from geometries consisting of a main body or fuselage shape with attached wings and fins. The shape of the main body is described by defining its cross section at several stations along its length. Wings, fins, rotor blades, and radiating monopoles can then be attached to the main body. Although AMC was specifically designed for aircraft or helicopter shapes, it can also be applied to missiles, ships, submarines, jet inlets, automobiles, spacecraft, etc. The problem geometry and run control parameters are specified via a two character command language input format. The input command language is described and several examples which illustrate typical code inputs and outputs are also included.
Spoke permanent magnet machine with reduced torque ripple and method of manufacturing thereof
Reddy, Patel Bhageerath; EL-Refaie, Ayman Mohamed Fawzi; Huh, Kum-Kang; Alexander, James Pellegrino
2016-03-15
An internal permanent magnet machine includes a rotor assembly having a shaft comprising a plurality of protrusions extending radially outward from a main shaft body and being formed circumferentially about the main shaft body and along an axial length of the main shaft body. A plurality of stacks of laminations are arranged circumferentially about the shaft to receive the plurality of protrusions therein, with each stack of laminations including a plurality of lamination groups arranged axially along a length of the shaft and with permanent magnets being disposed between the stacks of laminations. Each of the laminations includes a shaft protrusion cut formed therein to receive a respective shaft protrusion and, for each of the stacks of laminations, the shaft protrusion cuts formed in the laminations of a respective lamination group are angularly offset from the shaft protrusion cuts formed in the laminations in an adjacent lamination group.
Transport properties and electronic structure of Na0.28PtSi
NASA Astrophysics Data System (ADS)
Itahara, Hiroshi; Suzumura, Akitoshi; Oh, Song-Yul
2017-07-01
We have investigated the electronic structure and properties of Na0.28PtSi, which is a Pt-based intermetallic compound with no reported physical properties. Na0.28PtSi powder with an average grain size of 15 µm was demonstrated to be stable in a strongly acidic aqueous solution. The ab initio calculations revealed that there is a band crossing the Fermi level and that the density of states (DOS) under the Fermi level mainly consists of d orbitals of Pt atoms. Here, we used the model of Na0.25PtSi with an approximately ordered structure (space group I4, full Na site occupation), which was set instead of the reported statistically disordered structure of Na0.28PtSi (I4/mcm, Na site occupancy: 0.258). The calculated electronic structure corresponded to the measured metallic properties of the Na0.28PtSi sintered body: i.e., the electrical resistivity of Na0.28PtSi was increased from 1.77 × 10-8 Ω m at 30 K to 2.67 × 10-7 Ω m at 300 K and the Seebeck coefficient was 0.11 µV K-1 at 300 K.
Amendola, Giorgio; Di Maio, Danilo; La Pietra, Valeria; Cosconati, Sandro
2016-09-01
SMO receptor is one of the main components of the Hedgehog biochemical pathway. In the last decades compelling body of evidence demonstrated that this receptor is a pertinent target for the treatment of various types of solid tumors. Recently, the X-ray determination of the three-dimensional structure of SMO in complex with different antagonists opened up the way for the structure-based design of new antagonists for this receptor that could possibly overcome the limitations connected with the induction of acquired tumor resistance. Herein, taking advantage of three different docking software (namely Glide, PLANTS, and Vina) and of the available SMO structures we set up a retrospective virtual screening (VS) protocol. A database, made up by known SMO antagonists and compounds with no alleged activity against the receptor was created and screened against the different SMO structures. To evaluate the performance of the ranking in VS calculations different statistical metrics (EF, AUAC and BEDROC) were employed allowing to identify the best performing VS docking protocol. Results of these studies will serve as a platform for the application of structure-based VS against the pharmaceutically relevant SMO receptor. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Iron meteorites as remnants of planetesimals formed in the terrestrial planet region.
Bottke, William F; Nesvorný, David; Grimm, Robert E; Morbidelli, Alessandro; O'Brien, David P
2006-02-16
Iron meteorites are core fragments from differentiated and subsequently disrupted planetesimals. The parent bodies are usually assumed to have formed in the main asteroid belt, which is the source of most meteorites. Observational evidence, however, does not indicate that differentiated bodies or their fragments were ever common there. This view is also difficult to reconcile with the fact that the parent bodies of iron meteorites were as small as 20 km in diameter and that they formed 1-2 Myr earlier than the parent bodies of the ordinary chondrites. Here we show that the iron-meteorite parent bodies most probably formed in the terrestrial planet region. Fast accretion times there allowed small planetesimals to melt early in Solar System history by the decay of short-lived radionuclides (such as 26Al, 60Fe). The protoplanets emerging from this population not only induced collisional evolution among the remaining planetesimals but also scattered some of the survivors into the main belt, where they stayed for billions of years before escaping via a combination of collisions, Yarkovsky thermal forces, and resonances. We predict that some asteroids are main-belt interlopers (such as (4) Vesta). A select few may even be remnants of the long-lost precursor material that formed the Earth.
Caers, Jelle; Janssen, Tom; Van Rompay, Liesbeth; Broeckx, Valérie; Van Den Abbeele, Jan; Gäde, Gerd; Schoofs, Liliane; Beets, Isabel
2016-03-01
Adipokinetic hormones (AKH) are well known regulators of energy metabolism in insects. These neuropeptides are produced in the corpora cardiaca and perform their hormonal function by interacting with specific G protein-coupled receptors (GPCRs) at the cell membranes of target tissues, mainly the fat body. Here, we investigated the sequences, spatial and temporal distributions, and pharmacology of AKH neuropeptides and receptors in the tsetse fly, Glossina morsitans morsitans. The open reading frames of two splice variants of the Glomo-akh receptor (Glomo-akhr) gene and of the AKH neuropeptide encoding genes, gmmhrth and gmmakh, were cloned. Both tsetse AKHR isoforms show strong sequence conservation when compared to other insect AKHRs. Glomo-AKH prepropeptides also have the typical architecture of AKH precursors. In an in vitro Ca(2+) mobilization assay, Glomo-AKH neuropeptides activated each receptor isoform up to nanomolar concentrations. We identified structural features of tsetse AKH neuropeptides essential for receptor activation in vitro. Gene expression profiles suggest a function for AKH signaling in regulating Glossina energy metabolism, where AKH peptides are released from the corpora cardiaca and activate receptors mainly expressed in the fat body. This analysis of the ligand-receptor coupling, expression, and pharmacology of the two Glomo-AKHR variants facilitates further elucidation of the function of AKH in G. m. morsitans. Copyright © 2015 Elsevier Ltd. All rights reserved.
... for Educators Search English Español How the Body Works Main Page EN ESPAÑOL Healthy Weight Movie About Us Contact Us Partners Editorial Policy Permissions Guidelines Privacy Policy & Terms of Use Notice ...
Verasdonck, Joeri; Bousset, Luc; Gath, Julia; Melki, Ronald; Böckmann, Anja; Meier, Beat H
2016-04-01
Polymorphism is a common and important phenomenon for protein fibrils which has been linked to the appearance of strains in prion and other neurodegenerative diseases. Parkinson disease is a frequently occurring neurodegenerative pathology, tightly associated with the formation of Lewy bodies. These deposits mainly consist of α-synuclein in fibrillar, β-sheet-rich form. α-synuclein is known to form numerous different polymorphs, which show distinct structural features. Here, we describe the chemical shift assignments, and derive the secondary structure, of a polymorph that was fibrillized at higher-than-physiological pH conditions. The fibrillar core contains residues 40-95, with both the C- and N-terminus not showing any ordered, rigid parts. The chemical shifts are similar to those recorded previously for an assigned polymorph that was fibrillized at neutral pH.
Brazaitis, Marius; Skurvydas, Albertas; Pukėnas, Kazimieras; Daniuseviciūtė, Laura; Mickevicienė, Dalia; Solianik, Rima
2012-11-01
In this study, we questioned whether local cooling of muscle or heating involving core and muscle temperatures are the main indicators for force variability. Ten volunteers performed a 2-min maximum voluntary contraction (MVC) of the knee extensors under control (CON) conditions after passive heating (HT) and cooling (CL) of the lower body. HT increased muscle and rectal temperatures, whereas CL lowered muscle temperature but did not affect rectal temperature. During 2-min MVC, peak force decreased to a lower level in HT compared with CON and CL experiments. Greater central fatigue was found in the HT experiment, and there was less in the CL experiment than in the CON experiment. Increased core and muscle temperature increased physiological tremor and the amount and structural complexity of force variability of the exercising muscles, whereas local muscle cooling decreased all force variability variables measured. Copyright © 2012 Wiley Periodicals, Inc.
Moravec, F; Scholz, T; Mendoza Franco, E
1995-01-01
Capillaria (Hepatocapillaria) cichlasomae sp. n., parasitic in the liver of the cichlid Cichlasoma urophthalmus (Günther) from a small freshwater lake ("aguada") Xpoc in Yucatan, Mexico, is described. The parasite is characterized mainly by its small body size (male 1.8 mm, female 4.5 mm), the structure of the stichosome (markedly short stichocytes in one row) and the male (the presence of a pair of small subventral postanal papillae) and female (anus distinctly subterminal) caudal ends, and by the size and structure of the spicule (spicule 0.068-0.085 mm long, with marked transverse grooves on surface) and eggs (size 0.053-0.058 x 0.023 mm, with protruding polar plugs). This is the second known Capillaria species from the liver of fish and the first one from the liver of a freshwater fish.
Yoshioka, N; Kurata, K; Takahashi, T; Ariizumi, M; Mori, T; Fujisawa, H; Kameyama, N; Okuyama, Y
2018-06-13
Body odor is mainly caused by secreted sweat. Although sweat is almost odorless immediately after secretion, decomposition or denaturation of components contained in sweat by bacteria on the skin surface contributes to unpleasant body odor. Body odor is due to various substances and aldehydes are primarily detected in body odor [1-4]. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Lin, Long-Hui; Qu, Yan-Fu; Li, Hong; Zhou, Kai-Ya; Ji, Xiang
2012-01-01
An understanding of population structure and genetic diversity is crucial for wildlife conservation and for determining the integrity of wildlife populations. The vulnerable Chinese cobra (Naja atra) has a distribution from the mouth of the Yangtze River down to northern Vietnam and Laos, within which several large mountain ranges and water bodies may influence population structure. We combined 12 microsatellite loci and 1117 bp of the mitochondrial cytochrome b gene to explore genetic structure and demographic history in this species, using 269 individuals from various localities in Mainland China and Vietnam. High levels of genetic variation were identified for both mtDNA and microsatellites. mtDNA data revealed two main (Vietnam + southern China + southwestern China; eastern + southeastern China) and one minor (comprising only two individuals from the westernmost site) clades. Microsatellite data divided the eastern + southeastern China clade further into two genetic clusters, which include individuals from the eastern and southeastern regions, respectively. The Luoxiao and Nanling Mountains may be important barriers affecting the diversification of lineages. In the haplotype network of cytchrome b, many haplotypes were represented within a "star" cluster and this and other tests suggest recent expansion. However, microsatellite analyses did not yield strong evidence for a recent bottleneck for any population or genetic cluster. The three main clusters identified here should be considered as independent management units for conservation purposes. The release of Chinese cobras into the wild should cease unless their origin can be determined, and this will avoid problems arising from unnatural homogenization.
Banana Resistant Starch and Its Effects on Constipation Model Mice
Wang, Juan; Huang, Ji Hong; Cheng, Yan Feng
2014-01-01
Abstract Banana resistant starch (BRS) was extracted to investigate the structural properties of BRS, its effects on the gastrointestinal transit, and dejecta of normal and experimentally constipated mice. The mouse constipation model was induced by diphenoxylate administration. The BRS administered mice were divided into three groups and gavaged with 1.0, 2.0, or 4.0 g/kg body weight BRS per day. The small intestinal movement, time of the first black dejecta, dejecta granules, weight and their moisture content, body weight, and food intake of mice were studied. Results showed that the BRS particles were oval and spindly and some light cracks and pits were in the surface. The degree of crystallinity of BRS was 23.13%; the main diffraction peaks were at 2θ 15.14, 17.38, 20.08, and 22.51. The degree of polymerization of BRS was 81.16 and the number-average molecular weight was 13147.92 Da, as determined by the reducing terminal method. In animal experiments, BRS at the dose of 4.0 g/kg body weight per day was able to increase the gastrointestinal propulsive rate, and BRS at the doses of 2.0 and 4.0 g/kg body weight per day was found to shorten the start time of defecation by observing the first black dejecta exhaust. However, there were no influences of BRS on the dejecta moisture content, the dejecta granules and their weight, body weight, or daily food intake in mice. BRS was effective in accelerating the movement of the small intestine and in shortening the start time of defecation, but did not impact body weight and food intake. Therefore, BRS had the potential to be useful for improving intestinal motility during constipation. PMID:25046686
Ward's area location, physical activity, and body composition in 8- and 9-year-old boys and girls.
Cardadeiro, Graça; Baptista, Fátima; Zymbal, Vera; Rodrigues, Luís A; Sardinha, Luís B
2010-11-01
Bone strength is the result of its material composition and structural design, particularly bone mass distribution. The purpose of this study was to analyze femoral neck bone mass distribution by Ward's area location and its relationship with physical activity (PA) and body composition in children 8 and 9 years of age. The proximal femur shape was defined by geometric morphometric analysis in 88 participants (48 boys and 40 girls). Using dual-energy X-ray absorptiometry (DXA) images, 18 landmarks were digitized to define the proximal femur shape and to identify Ward's area position. Body weight, lean and fat mass, and bone mineral were assessed by DXA, PA by accelerometry, and bone age by the Tanner-Whitehouse III method. Warps analysis with Thin-Plate Spline software showed that the first axis explained 63% of proximal femur shape variation in boys and 58% in girls. Most of this variation was associated with differences in Ward's area location, from the central zone to the superior aspect of the femoral neck in both genders. Regression analysis demonstrated that body composition explained 4% to 7% of the proximal femur shape variation in girls. In boys, body composition variables explained a similar amount of variance, but moderate plus vigorous PA (MVPA) also accounted for 6% of proximal femur shape variation. In conclusion, proximal femur shape variation in children ages 8 and 9 was due mainly to differences in Ward's area position determined, in part, by body composition in both genders and by MVPA in boys. These variables were positively associated with a central Ward's area and thus with a more balanced femoral neck bone mass distribution. © 2010 American Society for Bone and Mineral Research.
Quezada, Amado D; Macías-Waldman, Nayeli; Salmerón, Jorge; Swigart, Tessa; Gallegos-Carrillo, Katia
2017-11-17
Depression is a foremost cause of morbidity throughout the world and the prevalence of depression in women is about twice as high as men. Additionally, overweight and obesity are major global health concerns. We explored the relationship between depression and body fat, and the role of physical activity and diet as mediators of this relationship in a sample of 456 adult female Mexican health workers. Longitudinal and cross-sectional analyses using data from adult women of the Health Workers Cohort Study (HWCS) Measures of body fat mass (kg from DEXA), dietary intake (kcal from FFQ), leisure time activity (METs/wk) and depression (CES-D) were determined in two waves (2004-2006 and 2010-2011). We explored the interrelation between body fat, diet, leisure time, physical activity, and depression using a cross-lagged effects model fitted to longitudinal data. We also fitted a structural equations model to cross-sectional data with body fat as the main outcome, and dietary intake and physical activity from leisure time as mediators between depression and body fat. Baseline depression was significantly related to higher depression, higher calorie intake, and lower leisure time physical activity at follow-up. From our cross-sectional model, each standard deviation increase in the depression score was associated with an average increase of 751 ± 259 g (± standard error) in body fat through the mediating effects of calorie intake and physical activity. The results of this study show how depression may influence energy imbalance between calories consumed and calories expended, resulting in higher body fat among those with a greater depression score. Evaluating the role of mental conditions like depression in dietary and physical activity behaviors should be positioned as a key research goal for better designed and targeted public health interventions. The HealthWorkers Cohort Study (HWCS) has been approved by the Institutional IRB. Number: 2005-785-012.
Body size, performance and fitness in galapagos marine iguanas.
Wikelski, Martin; Romero, L Michael
2003-07-01
Complex organismal traits such as body size are influenced by innumerable selective pressures, making the prediction of evolutionary trajectories for those traits difficult. A potentially powerful way to predict fitness in natural systems is to study the composite response of individuals in terms of performance measures, such as foraging or reproductive performance. Once key performance measures are identified in this top-down approach, we can determine the underlying physiological mechanisms and gain predictive power over long-term evolutionary processes. Here we use marine iguanas as a model system where body size differs by more than one order of magnitude between island populations. We identified foraging efficiency as the main performance measure that constrains body size. Mechanistically, foraging performance is determined by food pasture height and the thermal environment, influencing intake and digestion. Stress hormones may be a flexible way of influencing an individual's response to low-food situations that may be caused by high population density, famines, or anthropogenic disturbances like oil spills. Reproductive performance, on the other hand, increases with body size and is mediated by higher survival of larger hatchlings from larger females and increased mating success of larger males. Reproductive performance of males may be adjusted via plastic hormonal feedback mechanisms that allow individuals to assess their social rank annually within the current population size structure. When integrated, these data suggest that reproductive performance favors increased body size (influenced by reproductive hormones), with an overall limit imposed by foraging performance (influenced by stress hormones). Based on our mechanistic understanding of individual performances we predicted an evolutionary increase in maximum body size caused by global warming trends. We support this prediction using specimens collected during 1905. We also show in a common-garden experiment that body size may have a genetic component in iguanids. This 'performance paradigm' allows predictions about adaptive evolution in natural populations.
... the body's main energy source: adenosine triphosphate, or ATP. Arrese works to identify, purify, and determine the ... of Health ( www.nih.gov ), for supplying this article. Measuring Cholesterol Levels Everyone age 20 and older ...
NASA Astrophysics Data System (ADS)
Xia, Zhihong
2008-09-01
The purpose of this note is to introduce some of the basic techniques in group theory to the study the symmetries of the Newtonian n-body problem. The main tool is the representations of finite groups.