NASA Astrophysics Data System (ADS)
Zhang, Qianqian; Sun, Jichao; Liu, Jingtao; Huang, Guanxing; Lu, Chuan; Zhang, Yuxi
2015-11-01
Nitrate contamination of groundwater has become an environmental problem of widespread concern in China. We collected 899 groundwater samples from a rapidly urbanized area, in order to identify the main sources and driving mechanisms of groundwater nitrate contamination. The results showed that the land use has a significant effect on groundwater nitrate concentration (P < 0.001). Landfill leakage was an important source of nitrate in groundwater in the PRD (Pearl River Delta) region, since landfill yielded the highest nitrate concentration (38.14 mg/L) and the highest ratio of exceeded standard (42.50%). In this study, the driving mechanism of groundwater nitrate contamination was determined to be urban construction and the secondary and tertiary industrial development, and population growth. This study revealed that domestic wastewater and industrial wastewater were the main sources of groundwater nitrate pollution. Therefore, the priority method for relieving groundwater nitrate contamination is to control the random discharge of domestic and industrial wastewater in regions undergoing rapid urbanization. Capsule abstract. The main driving mechanism of groundwater nitrate contamination was determined to be urban construction and the secondary and tertiary industrial development, and population growth.
Zhang, Qianqian; Sun, Jichao; Liu, Jingtao; Huang, Guanxing; Lu, Chuan; Zhang, Yuxi
2015-11-01
Nitrate contamination of groundwater has become an environmental problem of widespread concern in China. We collected 899 groundwater samples from a rapidly urbanized area, in order to identify the main sources and driving mechanisms of groundwater nitrate contamination. The results showed that the land use has a significant effect on groundwater nitrate concentration (P<0.001). Landfill leakage was an important source of nitrate in groundwater in the PRD (Pearl River Delta) region, since landfill yielded the highest nitrate concentration (38.14 mg/L) and the highest ratio of exceeded standard (42.50%). In this study, the driving mechanism of groundwater nitrate contamination was determined to be urban construction and the secondary and tertiary industrial development, and population growth. This study revealed that domestic wastewater and industrial wastewater were the main sources of groundwater nitrate pollution. Therefore, the priority method for relieving groundwater nitrate contamination is to control the random discharge of domestic and industrial wastewater in regions undergoing rapid urbanization. Capsule abstract. The main driving mechanism of groundwater nitrate contamination was determined to be urban construction and the secondary and tertiary industrial development, and population growth. Copyright © 2015 Elsevier B.V. All rights reserved.
Egg Safety in the Realm of Preharvest Food Safety.
Singh, Manpreet; Brar, Jagpinder
2016-08-01
Eggs are nutritious, yet they are a highly perishable commodity like other protein sources such as meat. Even though steps are taken all along the production process of shell eggs, from farm to table, the potential for contamination of the shells and egg contents poses a high risk to consumers. The main sources of contamination can be categorized as vertical transmission, in which the layers can be carriers of pathogens and can pass them on during egg formation, and horizontal transmission, in which environmental factors such as water, feed, layer houses, and personnel are the main source of contamination. Ongoing preharvest practices might not be enough to completely eliminate pathogens from shell eggs; however, consistently following good practices along with proper handling during transportation and retail sale and by consumers can be significant in reducing the risk. This article discusses the various aspects of production practices, their potential for cross-contamination, and decontamination technologies for shell eggs.
Bajt, Oliver
2014-09-01
The Gulf of Trieste (northern Adriatic) is one of the most urbanized and industrialized areas in the northern Adriatic, with intense maritime traffic experienced at multiple ports. The impact of maritime traffic on contamination by hydrocarbons in this area was assessed. Concentrations of hydrocarbons were higher near the expected contamination sources and still elevated in the adjacent offshore areas. Aliphatic hydrocarbons were mainly of petrogenic origin, with some contribution of biogenic origin. A continuous contamination by aliphatic hydrocarbons and degradation processes were hypothesized. Concentrations of total polycyclic aromatic hydrocarbons (PAH) were generally greater near the contamination sources. Compared to the prevailing pyrolytic origin, the petrogenic PAH origin seemed to be less important, but not negligible. Results revealed that intensive maritime traffic is a probable source of contamination by hydrocarbons in the investigated area, which is largely limited to areas near the contamination sources.
Ferreira da Silva, Eduardo; Freire Ávila, Paula; Salgueiro, Ana Rita; Candeias, Carla; Garcia Pereira, Henrique
2013-11-01
Through the years, mining and beneficiation processes produces large amounts of As-rich mine wastes laid up in huge tailings and open-air impoundments (Barroca Grande and Rio tailings) that are the main source of pollution in the surrounding area once they are exposed to the weathering conditions leading to the formation of AMD and consequently to the contamination of the surrounding environments, in particularly soils. In order to investigate the environmental contamination impact on S. Francisco de Assis (village located between the two major impoundments and tailings) agricultural soils, a geochemical survey was undertaken to assess toxic metals associations, related levels and their spatial distribution, and to identify the possible contamination sources. According to the calculated contamination factor, As and Zn have a very high contamination factor giving rise to 65.4% of samples with a moderate to high pollution degree; 34.6% have been classified as nil to very low pollution degree. The contamination factor spatial distribution put in evidence the fact that As, Cd, Cu, Pb, and Zn soils contents, downstream Barroca Grande tailing, are increased when compared with the local Bk soils. The mechanical dispersion, due to erosion, is the main contamination source. The chemical extraction demonstrates that the trace metals distribution and accumulation in S. Francisco de Assis soils is related to sulfides, but also to amorphous or poorly crystalline iron oxide phases. The partitioning study allowed understanding the local chemical elements mobility and precipitation processes, giving rise to the contamination dispersion model of the study area. The wind and hydrological factors are responsible for the chemical elements transport mechanisms, the water being the main transporter medium and soils as one of the possible retention media.
Vukovic, Vladimir; Tabares-Velasco, Paulo Cesar; Srebric, Jelena
2010-09-01
A growing interest in security and occupant exposure to contaminants revealed a need for fast and reliable identification of contaminant sources during incidental situations. To determine potential contaminant source positions in outdoor environments, current state-of-the-art modeling methods use computational fluid dynamic simulations on parallel processors. In indoor environments, current tools match accidental contaminant distributions with cases from precomputed databases of possible concentration distributions. These methods require intensive computations in pre- and postprocessing. On the other hand, neural networks emerged as a tool for rapid concentration forecasting of outdoor environmental contaminants such as nitrogen oxides or sulfur dioxide. All of these modeling methods depend on the type of sensors used for real-time measurements of contaminant concentrations. A review of the existing sensor technologies revealed that no perfect sensor exists, but intensity of work in this area provides promising results in the near future. The main goal of the presented research study was to extend neural network modeling from the outdoor to the indoor identification of source positions, making this technology applicable to building indoor environments. The developed neural network Locator of Contaminant Sources was also used to optimize number and allocation of contaminant concentration sensors for real-time prediction of indoor contaminant source positions. Such prediction should take place within seconds after receiving real-time contaminant concentration sensor data. For the purpose of neural network training, a multizone program provided distributions of contaminant concentrations for known source positions throughout a test building. Trained networks had an output indicating contaminant source positions based on measured concentrations in different building zones. A validation case based on a real building layout and experimental data demonstrated the ability of this method to identify contaminant source positions. Future research intentions are focused on integration with real sensor networks and model improvements for much more complicated contamination scenarios.
Water quality and sources of fecal coliform bacteria in the Meduxnekeag River, Houlton, Maine
Culbertson, Charles W.; Huntington, Thomas G.; Stoeckel, Donald M.; Caldwell, James M.; O'Donnell, Cara
2014-01-01
In response to bacterial contamination in the Meduxnekeag River and the desire to manage the watershed to reduce contaminant sources, the Houlton Band of Maliseet Indians (HBMI) and the U.S. Geological Survey began a cooperative effort to establish a baseline of water-quality data that can be used in future studies and to indicate potential sources of nutrient and bacterial contamination. This study was conducted during the summer of 2005 in the Meduxnekeag River Basin near Houlton, Maine. Continuously recorded specific conductance can be a good indicator for water quality. Specific conductance increased downstream from the town of Houlton, between runoff events, and decreased sharply following major runoff events. Collections of discrete samples during the summer of 2005 indicated seasonal positive concentration-discharge relations for total phosphorus and total nitrogen; these results indicate that storm runoff may mobilize and transport these nutrients from the terrestrial environment to the river. Data collected by the HBMI on fecal coliform bacteria indicated that bacterial contamination enters the Meduxnekeag River from multiple paths including tributaries and surface drains (ditches) in developed areas in Houlton, Maine. The Houlton wastewater treatment discharge was not an important source of bacterial contamination. Bacteroidales-based tests for general fecal contamination (Bac32 marker) were predominantly positive in samples that had excessive fecal contamination as indicated by Enterococci density greater than 104 colony-forming units per 100 millilters. Of the 22 samples tested for Bacteroidales-based markers of human-associated fecal contamination (HF134 and HF183), 8 were positive. Of the 22 samples tested for Bacteroidales-based markers of ruminant-associated fecal contamination (CF128 and CF193), 7 were positive. Human fecal contamination was detected consistently at two sites (surface drains in urban areas in the town of Houlton) and occasionally detected at one site (Moose Brook) but was not detected at other sites. Fecal contamination (as indicated by fecal coliform density) apparently is localized under normal flow conditions with the highest levels restricted to drains in urban areas and to a lesser extent B Stream, Pearce Brook, and Big Brook, all tributaries to the main stem of the Meduxnekeag River. Coliphage were enumerated as an alternate indicator of fecal contamination with the intent of typing the virus into host-associated classes (human or ruminant), as was done for Enterococci; however, insufficient coliphage were isolated to provide more than preliminary indications. In spite of low coliphage enumeration, the preliminary results strengthen the conclusion that the Enterococci data correctly indicated the samples that contained human and ruminant fecal contamination. The finding that contamination was in many of the tributaries following storms in mid-July indicates that storm runoff likely carries fecal contaminants to more locations than runoff under lower flow conditions.
Castiglioni, Sara; Valsecchi, Sara; Polesello, Stefano; Rusconi, Marianna; Melis, Manuela; Palmiotto, Marinella; Manenti, Angela; Davoli, Enrico; Zuccato, Ettore
2015-01-23
Perfluorinated substances are listed among emerging contaminants because they are globally distributed, environmentally persistent, bioaccumulative and potentially harmful. In a three-year monitoring campaign (2010-2013) we investigated the occurrence, sources and fate of nine perfluoroalkylcarboxylic acids and three perfluoroalkylsulfonic acids, in the most industrialized region of Italy. Composite samples were collected in influents and effluents of wastewater treatment plants (WWTPs), in the main rivers flowing through the basin, and in raw groundwater and finished drinking water. Samples were analyzed by liquid chromatography tandem mass spectrometry. Perfluorinated substances were not removed in WWTPs and those receiving industrial wastes discharged up to 50 times the loads of WWTPs receiving municipal wastes. The mass balance of the emissions in the River Lambro basin showed continuously increasing contamination from north to south and differences in the composition of homologues in the west and east sides of the basin. Ground and drinking water were contaminated in industrial areas, but these substances were removed well in Milan. Contamination from industrial sources was prevalent over urban sources, contributing to 90% of the loads measured at the closure of the basin. The River Lambro was confirmed as one of the main sources of contamination in the Po River. Copyright © 2014 Elsevier B.V. All rights reserved.
Aconitum Alkaloid Poisoning Because of Contamination of Herbs by Aconite Roots.
Chan, Thomas Y K
2016-01-01
Aconitum alkaloid poisoning can occur after drinking decoction and soup made from non-toxic herbs contaminated by aconite roots. In the present review, the main objective is to describe the clinical features, investigations and possible sources of contamination. A combination of neurological, gastrointestinal and cardiovascular signs and symptoms was seen. Ventricular tachyarrhythmias could occur in 18% of subjects. Yunaconitine and crassicauline A, mainly found in certain aconite roots from Southwest China, are most commonly involved. Herbal residues and unused herbs should first be inspected for gross contamination. On-site inspection at the retailer should exclude accidental mix-up or cross-contamination when handling aconite roots. Samples of prescribed herbs are examined for gross contamination and analysed for the presence of Aconitum alkaloids. Samples of the implicated herb are also collected from the wholesaler for investigation. If post-import contamination is unlikely, the regulatory authorities of the exporting countries should be notified for follow-up actions. It is a challenging task to work out how non-toxic herbs become contaminated by aconite roots. The source control with good agricultural and collection practices and quality assurance must be enhanced. Copyright © 2015 John Wiley & Sons, Ltd.
Zheng, Na; Wang, Qichao; Liang, Zhongzhu; Zheng, Dongmei
2008-07-01
Wuli River, Cishan River, and Lianshan River are three freshwater rivers flowing through Huludao City, in a region of northeast China strongly affected by industrialization. Contamination assessment has never been conducted in a comprehensive way. For the first time, the contamination of three rivers impacted by different sources in the same city was compared. This work investigated the distribution and sources of Hg, Pb, Cd, Zn and Cu in the surface sediments of Wuli River, Cishan River, and Lianshan River, and assessed heavy metal toxicity risk with the application of two different sets of Sediment Quality Guideline (SQG) indices (effect range low/effect range median values, ERL/ERM; and threshold effect level/probable effect level, TEL/PEL). Furthermore, this study used a toxic unit approach to compare and gauge the individual and combined metal contamination for Hg, Pb, Cd, Zn and Cu. Results showed that Hg contamination in the sediments of Wuli River originated from previous sediment contamination of the chlor-alkali producing industry, and Pb, Cd, Zn and Cu contamination was mainly derived from atmospheric deposition and unknown small pollution sources. Heavy metal contamination to Cishan River sediments was mainly derived from Huludao Zinc Plant, while atmospheric deposition, sewage wastewater and unknown small pollution were the primary sources for Lianshan River. The potential acute toxicity in sediment of Wuli River may be primarily due to Hg contamination. Hg is the major toxicity contributor, accounting for 53.3-93.2%, 7.9-54.9% to total toxicity in Wuli River and Lianshan River, respectively, followed by Cd. In Cishan River, Cd is the major sediment toxicity contributor, however, accounting for 63.2-66.9% of total toxicity.
Metals and metalloids in atmospheric dust: Use of lead isotopic analysis for source apportionment
NASA Astrophysics Data System (ADS)
Felix Villar, Omar I.
Mining activities generate aerosol in a wide range of sizes. Smelting activities produce mainly fine particles (<1 microm). On the other hand, milling, crushing and refining processes, as well tailings management, are significant sources of coarse particles (> 1 microm). The adverse effects of aerosols on human health depend mainly on two key characteristics: size and chemical composition. One of the main objectives of this research is to analyze the size distribution of contaminants in aerosol produced by mining operations. For this purpose, a Micro-Orifice Uniform Deposit Impactor (MOUDI) was utilized. Results from the MOUDI samples show higher concentrations of the toxic elements like lead and arsenic in the fine fraction (<1 microm). Fine particles are more likely to be deposited in the deeper zones of the respiratory system; therefore, they are more dangerous than coarse particles that can be filtered out in the upper respiratory system. Unfortunately, knowing the total concentration of contaminants does not give us enough information to identify the source of contamination. For this reason, lead isotopes have been introduced as fingerprints for source apportionment. Each source of lead has specific isotopic ratios; by knowing these ratios sources can be identified. During this research, lead isotopic ratios were analyzed at different sites and for different aerosol sizes. From these analyses it can be concluded that lead isotopes are a powerful tool to identify sources of lead. Mitigation strategies could be developed if the source of contamination is well defined. Environmental conditions as wind speed, wind direction, relative humidity and precipitation have an important role in the concentration of atmospheric dust. Dry environments with low relative humidity are ideal for the transport of aerosols. Results obtained from this research show the relationship between dust concentrations and meteorological parameters. Dust concentrations are highly correlated with relative humidity and wind speed. With all the data collected on site and the analysis of the meteorological parameters, models can be develop to predict the transport of particles as well as the concentration of contaminants at a specific point. These models were developed and are part of the results shown in this dissertation.
Bacterial Contaminants of Poultry Meat: Sources, Species, and Dynamics
Rouger, Amélie; Zagorec, Monique
2017-01-01
With the constant increase in poultry meat consumption worldwide and the large variety of poultry meat products and consumer demand, ensuring the microbial safety of poultry carcasses and cuts is essential. In the present review, we address the bacterial contamination of poultry meat from the slaughtering steps to the use-by-date of the products. The different contamination sources are identified. The contaminants occurring in poultry meat cuts and their behavior toward sanitizing treatments or various storage conditions are discussed. A list of the main pathogenic bacteria of concern for the consumer and those responsible for spoilage and waste of poultry meat is established. PMID:28841156
Zhu, Jianting; Sun, Dongmin
2016-09-01
Groundwater flowing through residual nonaqueous phase liquid (NAPL) source zone will cause NAPL dissolution and generate large contaminant plume. The use of contaminant mass discharge (CMD) measurements in addition to NAPL aqueous phase concentration to characterize site conditions and assess remediation performance is becoming popular. In this study, we developed new and generic numerical models to investigate the significance of groundwater flux temporal variations on the NAPL source dynamics. The developed models can accommodate any temporal variations of groundwater flux in the source zone. We examined the various features of groundwater flux using a few selected functional forms of linear increase/decrease, gradual smooth increase/decrease, and periodic fluctuations with a general trend. Groundwater flux temporal variations have more pronounced effects on the contaminant mass discharge dynamics than the aqueous concentration. If the groundwater flux initially increases, then the reduction in contaminant mass discharge (CMDR) vs. NAPL mass reduction (MR) relationship is mainly downward concave. If the groundwater flux initially decreases, then CMDR vs. MR relationship is mainly upward convex. If the groundwater flux variations are periodic, the CMDR vs. MR relationship tends to also have periodic variations ranging from upward convex to downward concave. Eventually, however, the CMDR vs. MR relationship approaches 1:1 when majority of the NAPL mass becomes depleted. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Szymon Borkowski, Andrzej; Kwiatkowska-Malina, Jolanta
2016-04-01
Spatial disposition of chemical elements including heavy metals in the soil environment is a very important information during preparation of the thematic maps for the environmental protection and/or spatial planning. This knowledge is also essential for the earth's surface and soil's monitoring, designation of areas requiring improvement including remediation. The main source of anthropogenic pollution of soil with heavy metals are industry related to the mining coal and liquid fuels, mining and metallurgy, chemical industry, energy production, waste management, agriculture and transport. The geochemical maps as a kind of specific thematic maps made on the basis of datasets obtained from the Polish Geological Institute's resources allow to get to know the spatial distribution of different chemical elements including heavy metals in soil. The results of the research carried out by the Polish Geological Institute showed strong contamination in some regions in Poland mainly with arsenic, cadmium, lead and nickel. For this reason it was the point to prepare geochemical maps showing contamination of soil with heavy metals, and determine main sources of contamination and zones where heavy metals concentration was higher than acceptable contents. It was also presented a summary map of soil contamination with heavy metals. Additionally, location of highly contaminated zones was compiled with predominant in those areas types of arable soils and then results were thoroughly analyzed. This information can provide a base for further detailed studies on the soil contamination with heavy metals.
Castiglioni, Sara; Davoli, Enrico; Riva, Francesco; Palmiotto, Marinella; Camporini, Paolo; Manenti, Angela; Zuccato, Ettore
2017-12-22
The occurrence of several classes of emerging contaminants (ECs) was assessed in the River Lambro basin, one of the most urbanized and industrialized areas of Italy. The study aims were to identify the main sources of ECs, quantify their amounts circulating in the water cycle, and study their fate in the aquatic environment. More than 80 ECs were selected among pharmaceuticals (PHARM), personal care products (PCPs), disinfectants (DIS), illicit drugs (IDs), perfluorinated compounds (PERF), alkylphenols and bisphenol A (Alk-BPA), and anthropogenic markers (AM). Specific analytical methods were developed for quantitative analysis based on solid phase extraction and liquid chromatography tandem mass spectrometry. ECs were measured in rivers upstream and downstream of the main city (Milan), and in untreated and treated wastewater from Milan to assess the contribution to river contamination, and in superficial and deep groundwater in the city area to study the relationship between river and groundwater contamination. Samples were collected in a two-year monitoring campaign. Almost all ECs were ubiquitous in untreated wastewater, at concentrations up to the μg/L range, and the most abundant classes were PHARM and AM. Removals during different wastewater treatment processes were studied and the most stable substances were PHARM, PCPs and PERF. The mass loads increased for all the classes of ECs along the River Lambro basin. A mass balance was done in the river basin and allowed to identify the main sources of contamination, which were domestic, from treated or untreated wastewater, for PHARM, PCPs and IDs, mainly industrial for PERF, and both industrial and domestic for Alk-BPA. The study of AM helped to identify direct discharges of untreated wastewater. A substantial contribution of surface water to groundwater contamination was observed. This study improves the knowledge on occurrence, sources and fate of multiple classes of ECs in a highly urbanized area providing useful information to help the establishment of EU regulations for ECs. Copyright © 2017 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Consumption of contaminated poultry products is the main source of human campylobacteriosis, which Campylobacter jejuni is responsible for 90 percent of human cases. Although chickens are believed to be a main source of human exposure to C. jejuni, turkey also contributes to cases of human infection...
Venezuelan Caribbean Sea under the threat of TBT.
Paz-Villarraga, César Augusto; Castro, Ítalo B; Miloslavich, Patricia; Fillmann, Gilberto
2015-01-01
Although environmental tributyltin (TBT) contamination is considered a solved problem, imposex occurrence in Plicopurpura patula as well as butyltins (BTs) contamination in sediments and tissues were detected along 700 km of the Caribbean coastal shore. Areas under the influence of five main ports of Venezuela were covered, as well as large marinas and sites located away from expected sources. Marinas were the most contaminated areas, whilst imposex incidence and TBT levels were relatively low in areas nearby commercial harbors. Thus, it is evident that marinas have become the main source of fresh TBT to the region. This might explain why imposex incidence seems to be widely distributed along the Venezuelan coast, since leisure boats are circulating along the whole coastal region. In fact, this could be the pattern for other areas of the Caribbean Sea. Copyright © 2014 Elsevier Ltd. All rights reserved.
Groundwater Nitrate Contamination Risk Assessment in Canicattì area (Sicily)
NASA Astrophysics Data System (ADS)
Pisciotta, Antonino; Cusimano, Gioacchino; Favara, Rocco
2010-05-01
Groundwaters play a dominant role in the Sicily, because as most part of Mediterranean countries this island is interested by the phenomenon of desertification and the quality of the groundwater reservoir is one of the most important aim for the management policy strategies. During last decade most of the Italian regions the nitrate levels in river and groundwaters have increased gradually over mainly as a consequence of large-scale agricultural application of manure and fertilizers, thereby threatening drinking water quality. The excessive use of chemicals and fertilizers increases the risk to pollution of surface and groundwater from diffuse source, an important reflex to human health and the environment. The studied area is located in Canicattì (central Sicily, Italy), the current land use (grape, olive grove and almond) is the main source of groundwater pollution. In order to investigate the effect of the over farming on the groundwater quality we report the study on the potential risk of contamination from nitrate of agricultural origin through the join of the application of two parametric methods: the IPNOA method (the intrinsic nitrate contamination risk from Agricultural sources) applied to define the Nitrate Vulnerable Zones and the SINTACS method applied to determine the aquifer vulnerability to contamination.
Bioremediation of petroleum-contaminated soil: A Review
NASA Astrophysics Data System (ADS)
Yuniati, M. D.
2018-02-01
Petroleum is the major source of energy for various industries and daily life. Releasing petroleum into the environment whether accidentally or due to human activities is a main cause of soil pollution. Soil contaminated with petroleum has a serious hazard to human health and causes environmental problems as well. Petroleum pollutants, mainly hydrocarbon, are classified as priority pollutants. The application of microorganisms or microbial processes to remove or degrade contaminants from soil is called bioremediation. This microbiological decontamination is claimed to be an efficient, economic and versatile alternative to physicochemical treatment. This article presents an overview about bioremediation of petroleum-contaminated soil. It also includes an explanation about the types of bioremediation technologies as well as the processes.
Silano, Marco; Silano, Vittorio
2017-07-03
A priority of the European Union is the control of risks possibly associated with chemical contaminants in food and undesirable substances in feed. Following an initial chapter describing the main contaminants detected in food and undesirable substances in feed in the EU, their main sources and the factors which affect their occurrence, the present review focuses on the "continous call for data" procedure that is a very effective system in place at EFSA to make possible the exposure assessment of specific contaminants and undesirable substances. Risk assessment of contaminants in food atances in feed is carried currently in the European Union by the CONTAM Panel of EFSA according to well defined methodologies and in collaboration with competent international organizations and with Member States.
Sanitary survey of the drinking water supply of Kombinati suburb-Tirana, Albania.
Angjeli, V; Reme, B; Leno, L; Bukli, R; Bushati, G
2000-01-01
Microbiological pollution of drinking water is a major health problem in the suburbs of the Albanian capital. Intermittent supply and contamination, resulting in several gastrointestinal manifestations, are the main concerns for the population and health workers. The risk of outbreaks of water-borne diseases is high. Pollution originates from contamination of drinking water with domestic sewage. This research investigated the drinking water cycle from its natural source to the consumer, analysing samples and verifying pollution levels in the microbiological and chemical setting. The most important pollution sources were found in the distribution network, due to cross-contamination with sewers and illegal connections. The second pollution source was found around the extraction wells. This is related to abusive constructions within the sanitary zone around the wells and maybe the highly sewage-contaminated river water which feeds the aquifer.
Chemical contaminants in the Wadden Sea: Sources, transport, fate and effects
NASA Astrophysics Data System (ADS)
Laane, R. W. P. M.; Vethaak, A. D.; Gandrass, J.; Vorkamp, K.; Köhler, A.; Larsen, M. M.; Strand, J.
2013-09-01
The Wadden Sea receives contaminants from various sources and via various transport routes. The contaminants described in this overview are various metals (Cd, Cu, Hg, Pb and Zn) and various organic contaminants (polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and lindane (hexachlorocyclohexane, γ-HCH)). In addition, information is presented about other and emerging contaminants such as antifouling biocides (e.g. TBT and Irgarol), brominated flame retardants (BFRs), poly- and perfluorinated compounds (PFCs) and pharmaceutical and personal care products (PPCPs). Special attention is given to biogeochemical processes that contribute to the mobilization of contaminants in the surface sediments of the Wadden Sea. Finally, the effects on organisms of contaminants are reviewed and discussed. The main source of contaminants in the Wadden Sea are the rivers Rhine (via de Dutch coastal zone), Elbe and Weser. The Wadden Sea is not a sink for contaminants and adsorbed contaminants are transported from east to west. The surface sediments of the Wadden Sea are an important source for contaminants to the water above. The input and concentration of most contaminants have significantly decreased in water, sediments, organisms (e.g., mussel, flounder and bird eggs) in various parts of the Wadden Sea in the last three decades. Remarkably, the Cd concentration in mussels is increasing the last decades. In recent decades, the effects of contaminants on organisms (e.g., flounder, seal) have fallen markedly. Most of the affected populations have recovered, except for TBT induced effects in snails. Little is known about the concentration and effects of most emerging contaminants and the complex environmental mixtures of contaminants. It is recommended to install an international coordinated monitoring programme for contaminants and their effects in the whole Wadden Sea and to identify the chemical contaminants that really cause the effect.
Linked tectonic, geochemical, and biologic processes lead to natural arsenic contamination of groundwater in Holocene alluvial aquifers, which are the main threat to human health around the world. These groundwaters are commonly found a long distance from their ultimate source of...
Dudarev, Alexey A; Dushkina, Eugenia V; Sladkova, Yuliya N; Alloyarov, Pavel R; Chupakhin, Valery S; Dorofeyev, Vitaliy M; Kolesnikova, Tatjana A; Fridman, Kirill B; Evengard, Birgitta; Nilsson, Lena M
2013-01-01
Poor state of water supply systems, shortage of water purification facilities and disinfection systems, low quality of drinking water generally in Russia and particularly in the regions of the Russian Arctic, Siberia and Far East have been defined in the literature. However, no standard protocol of water security assessment has been used in the majority of studies. Uniform water security indicators collected from Russian official statistical sources for the period 2000-2011 were used for comparison for 18 selected regions in the Russian Arctic, Siberia and Far East. The following indicators of water security were analyzed: water consumption, chemical and biological contamination of water reservoirs of Categories I and II of water sources (centralized--underground and surface, and non-centralized) and of drinking water. Water consumption in selected regions fluctuated from 125 to 340 L/person/day. Centralized water sources (both underground and surface sources) are highly contaminated by chemicals (up to 40-80%) and biological agents (up to 55% in some regions), mainly due to surface water sources. Underground water sources show relatively low levels of biological contamination, while chemical contamination is high due to additional water contamination during water treatment and transportation in pipelines. Non-centralized water sources are highly contaminated (both chemically and biologically) in 32-90% of samples analyzed. Very high levels of chemical contamination of drinking water (up to 51%) were detected in many regions, mainly in the north-western part of the Russian Arctic. Biological contamination of drinking water was generally much lower (2.5-12%) everywhere except Evenki AO (27%), and general and thermotolerant coliform bacteria predominated in drinking water samples from all regions (up to 17.5 and 12.5%, correspondingly). The presence of other agents was much lower: Coliphages--0.2-2.7%, Clostridia spores, Giardia cysts, pathogenic bacteria, Rotavirus--up to 0.8%. Of a total of 56 chemical pollutants analyzed in water samples from centralized water supply systems, 32 pollutants were found to be in excess of hygienic limits, with the predominant pollutants being Fe (up to 55%), Cl (up to 57%), Al (up to 43%) and Mn (up to 45%). In 18 selected regions of the Russian Arctic, Siberia and Far East Category I and II water reservoirs, water sources (centralized--underground, surface; non-centralized) and drinking water are highly contaminated by chemical and biological agents. Full-scale reform of the Russian water industry and water security system is urgently needed, especially in selected regions.
NASA Astrophysics Data System (ADS)
Løgstrup Bjerg, Poul; Sonne, Anne T.; Rønde, Vinni; McKnight, Ursula S.
2016-04-01
Streams are impacted by significant contamination at the catchment scale, as they are often locations of multiple chemical stressor inputs. The European Water Framework Directive requires EU member states to ensure good chemical and ecological status of surface water bodies by 2027. This requires monitoring of stream water quality, comparison with environmental quality standards (EQS) and assessment of ecological status. However, the achievement of good status of stream water also requires a strong focus on contaminant sources, pathways and links to stream water impacts, so source management and remedial measures can be implemented. Fate and impacts of different contaminant groups are governed by different processes and are dependent on the origin (geogenic, anthropogenic), source type (point or diffuse) and pathway of the contaminant. To address this issue, we identified contaminant sources and chemical stressors on a groundwater-fed stream to quantify the contaminant discharges, link the chemical impact and stream water quality and assess the main chemical risk drivers in the stream system potentially driving ecological impact. The study was conducted in the 8 m wide Grindsted stream (Denmark) along a 16 km stream stretch that is potentially impacted by two contaminated sites (Grindsted Factory site, Grindsted Landfill), fish farms, waste water discharges, and diffuse sources from agriculture and urban areas. Water samples from the stream and the hyporheic zone as well as bed sediment samples were collected during three campaigns in 2012 and 2014. Data for xenobiotic organic groundwater contaminants, pesticides, heavy metals, general water chemistry, physical conditions and stream flow were collected. The measured chemical concentrations were converted to toxic units (TU) based on the 48h acute toxicity tests with D. magna. The results show a substantial impact of the Grindsted Factory site at a specific stretch of the stream. The groundwater plume caused elevated concentrations of chlorinated ethenes, benzene and site specific pharmaceuticals in both the hyporheic zone and the stream water. Observed stream water vinyl chloride concentrations (up to 6 μg/L) are far above the Danish EQS (0.05 μg/L) for several km downstream of the discharge area. For heavy metals, comparison with EQS in stream water, the hyporheic zone and streambed showed concentrations around or above the threshold values for barium, copper, lead, nickel and zinc. The calculated TU was generally similar along the stream, but for arsenic and nickel higher values were observed where the groundwater plume discharges into the stream. Also, log TU sum values for organic contaminants were elevated in both the hyporheic zone and stream. Thus, the overall chemical stress in the main discharge area is much higher than upstream, while it gradually decreases downstream. In conclusion, this work clearly shows that groundwater contaminant plumes can impact stream water quality significantly in discharge areas, and extend far downstream. A surprisingly high impact of heavy metals with diffuse and/or biogenic origin on stream quality was identified. This work highlights the importance of a holistic assessment of stream water quality to identify and quantify the main contaminant sources and resulting chemical stream stressors leading to potential ecological impacts.
Huang, Guanxing; Zhang, Ming; Liu, Chunyan; Li, Liangping; Chen, Zongyu
2018-09-01
Urbanization and industrialization have increased groundwater resource demands, and may drive the change of heavy metal(loid)s and organic chemicals in groundwater in the Pearl River Delta (PRD), southern China. Thus, a comprehensive understanding of the distributions, sources, and driving forces of heavy metal(loid)s and organic chemicals in groundwater in the PRD is vital for water resource management in this region. In this study, eight heavy metal(loid)s and fifty-five organic chemicals in groundwater across the PRD were investigated. The results show that undrinkable groundwater related to heavy metal(loid)s was mainly due to high concentrations of Fe (19.3%) and As (6.8%). Eighteen organic contaminants were detected in groundwater in the PRD, where the most frequently detected organic contaminant was naphthalene, and its detection rate was 2.51%. In 5.3% of all groundwater samples, one or more organic contaminants were found. All detected organic contaminants, except ones without allowable limits, in groundwater were at concentrations below allowable limits of China. The mean concentrations of heavy metal(loid)s in granular aquifers were higher than those in fissured and karst aquifers, especially for Fe and As. Except Se, the mean concentrations of other heavy metal(loid)s and the frequency of detection of organic contaminants in groundwater in urbanized and peri-urban areas were higher than those in non-urbanized areas, especially for Hg, Co, and organic contaminants. Fe, As, and Se in groundwater mainly originated from the release of Fe/As/Se rich sediments. The former two were driven by reduction reactions, while the latter was driven by oxidation resulting from the infiltration of NO 3 - . In contrast, other five heavy metal(loid)s and organic contaminants in groundwater mainly originated from the anthropogenic sources, such as the infiltration of industrial sewage. It is evident that urbanization and industrialization are two powerful driving forces for heavy metal(loid)s and organic contaminants in groundwater in the PRD. Copyright © 2018 Elsevier B.V. All rights reserved.
Ji, Zheng; Wang, Xiaochang C; Xu, Limei; Zhang, Chongmiao; Funamizu, Naoyuki; Okabe, Satoshi; Sano, Daisuke
2014-06-01
A polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) method was employed to estimate the contamination sources of human enteroviruses and understand how their dominant strains vary in a wastewater treatment and reclamation system consisting of sewage collection, wastewater treatment with membrane bioreactor and open lakes for reclaimed water storage and reuse. After PCR-DGGE using a selected primer set targeting enteroviruses, phylogenetic analysis of acquired enterovirus gene sequences was performed. Enteroviruses identified from the septic tank were much more diverse than those from grey water and kitchen wastewater. Several unique types of enterovirus different from those in wastewater samples were dominant in a biological wastewater treatment unit. Membrane filtration followed by chlorination was proved effective for physically eliminating enteroviruses; however, secondary contamination likely occurred as the reclaimed water was stored in artificial lakes. Enterovirus 71 (EV71), a hand-foot-and-mouth disease (HFMD) viral pathogen, was detected mainly from the artificial lakes, implying that wastewater effluent was not the contamination source of EV71 and that there were unidentified non-point sources of the contamination with the HFMD viral pathogen in the reclaimed water stored in the artificial lakes. The PCR-DGGE targeting enteroviruses provided robust evidence about viral contamination sources in the wastewater treatment and reclamation system.
Heavy Metal Contamination Assessment and Partition for Industrial and Mining Gathering Areas
Guan, Yang; Shao, Chaofeng; Ju, Meiting
2014-01-01
Industrial and mining activities have been recognized as the major sources of soil heavy metal contamination. This study introduced an improved Nemerow index method based on the Nemerow and geo-accumulation index. Taking a typical industrial and mining gathering area in Tianjin (China) as example, this study then analyzed the contamination sources as well as the ecological and integrated risks. The spatial distribution of the contamination level and ecological risk were determined using Geographic Information Systems. The results are as follows: (1) Zinc showed the highest contaminant level in the study area; the contamination levels of the other seven heavy metals assessed were relatively lower. (2) The combustion of fossil fuels and emissions from industrial and mining activities were the main sources of contamination in the study area. (3) The overall contamination level of heavy metals in the study area ranged from heavily contaminated to extremely contaminated and showed an uneven distribution. (4) The potential ecological risk showed an uneven distribution, and the overall ecological risk level ranged from low to moderate. This study also emphasized the importance of partition in industrial and mining areas, the extensive application of spatial analysis methods, and the consideration of human health risks in future studies. PMID:25032743
USDA-ARS?s Scientific Manuscript database
During traditional poultry processing, the two main sources of contamination of the broiler carcasses are (1) microorganisms on the exterior of the carcasses, that results in skin surface contamination and (2) microorganisms from the gastrointestinal contents of the carcass and subsequent cross cont...
Malina, Grzegorz
2004-12-15
The environmental problems related to the former chemical plant in Tarnowskie Gory, with respect to the Quaternary and Triassic groundwater as main receptors, are described and the eco-toxicological impact is discussed. The historical use of that site included industrial mining of ores (Ag, Pb, Zn) and use of Ba, B, Sr, Al, Cu during production of pigment. The majority of used and produced substances were toxic or hazardous. The applied technologies resulted in generation of waste which were mostly dumped without any elementary protection principles. Hydrodynamic modelling showed potential hazard to water-intakes. The variations of spatial distributions of selected contaminants within the Triassic carbonate series indicate that the chemical waste dumped in vicinity of the plant are the sources of groundwater contamination of boron. The results of soil and groundwater monitoring at the constructed landfill show significant contamination, mainly due to leaching from dumped waste, but also from infiltration of non-operating underground installations, and spills of toxic substances during the plant operation. The Quaternary aquifers are heavily contaminated due to the leaching out of chemical compounds from dumping sites. This is hazardous to the Triassic reservoirs--the main sources of potable water for the region. The characteristics of the key contaminants (As, B, Ba and Sr) are provided, including their transport, fate and toxicity. The spatial and temporal distribution of contaminants in groundwater is presented, and observed trends of groundwater quality decrease, mainly with respect to the Triassic aquifers, are discussed. The groundwater risk assessment being developed for the Tarnowskie Gory site should consider the present situation, and provide an approach towards evaluation and assessment of the required remediation measures.
Cheng, Xianfeng; Danek, Tomas; Drozdova, Jarmila; Huang, Qianrui; Qi, Wufu; Zou, Liling; Yang, Shuran; Zhao, Xinliang; Xiang, Yungang
2018-03-07
The environmental assessment and identification of sources of heavy metals in Zn-Pb ore deposits are important steps for the effective prevention of subsequent contamination and for the development of corrective measures. The concentrations of eight heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in soils from 40 sampling points around the Jinding Zn-Pb mine in Yunnan, China, were analyzed. An environmental quality assessment of the obtained data was performed using five different contamination and pollution indexes. Statistical analyses were performed to identify the relations among the heavy metals and the pH in soils and possible sources of pollution. The concentrations of As, Cd, Pb, and Zn were extremely high, and 23, 95, 25, and 35% of the samples, respectively, exceeded the heavy metal limits set in the Chinese Environmental Quality Standard for Soils (GB15618-1995, grade III). According to the contamination and pollution indexes, environmental risks in the area are high or extremely high. The highest risk is represented by Cd contamination, the median concentration of which exceeds the GB15618-1995 limit. Based on the combination of statistical analyses and geostatistical mapping, we identified three groups of heavy metals that originate from different sources. The main sources of As, Cd, Pb, Zn, and Cu are mining activities, airborne particulates from smelters, and the weathering of tailings. The main sources of Hg are dust fallout and gaseous emissions from smelters and tailing dams. Cr and Ni originate from lithogenic sources.
Identifying potential sources of Sudan I contamination in Capsicum fruits over its growth period.
Wu, Naiying; Gao, Wei; Zhou, Li; Lian, Yunhe; Li, Fengfei; Han, Wenjie
2015-04-15
Sudan dyes in spices are often assumed to arise from cross-contamination or malicious addition. Here, experiments were carried out to identify the potential source of Sudan I-IV in Capsicum fruits through investigation of their contents in native Capsicum tissues, soils and associated agronomic materials. Sudan II-IV was not detected in any of the tested samples. Sudan I was found in almost all samples except for the mulching film. Sudan I concentrations decreased from stems to leaves and then to fruits or roots. Sudan I levels in soils were significantly elevated by vegetation treatment. These results exclude the possibility of soil as the main source for Sudan I contamination in Capsicum fruits. Further study found out pesticide and fertilizer constitutes the major source of Sudan I contamination. This work represents a preliminary step for a detailed Sudan I assessment to support Capsicum management and protection in the studied region. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gateuille, David; Evrard, Olivier; Lefevre, Irène; Moreau-Guigon, Elodie; Alliot, Fabrice; Chevreuil, Marc; Mouchel, Jean-Marie
2014-06-01
Various sources supply PAHs that accumulate in soils. The methodology we developed provided an evaluation of the contribution of local sources (road traffic, local industries) versus remote sources (long range atmospheric transport, fallout and gaseous exchanges) to PAH stocks in two contrasting subcatchments (46-614 km²) of the Seine River basin (France). Soil samples (n = 336) were analysed to investigate the spatial pattern of soil contamination across the catchments and an original combination with radionuclide measurements provided new insights into the evolution of the contamination with depth. Relationships between PAH concentrations and the distance to the potential sources were modelled. Despite both subcatchments are mainly rural, roadside areas appeared to concentrate 20% of the contamination inside the catchment while a local industry was found to be responsible for up to 30% of the stocks. Those results have important implications for understanding and controlling PAH contamination in rural areas of early-industrialized regions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ye, Bixiong; Yang, Linsheng; Li, Yonghua; Wang, Wuyi; Li, Hairong
2013-01-01
Bacterial contamination of drinking water is a major public health problem in rural China. To explore bacterial contamination in rural areas of Beijing and identify possible causes of bacteria in drinking water samples, water samples were collected from wells in ten rural districts of Beijing, China. Total bacterial count, total coliforms and Escherichia coli in drinking water were then determined and water source and wellhead protection were investigated. The bacterial contamination in drinking water was serious in areas north of Beijing, with the total bacterial count, total coliforms and Escherichia coli in some water samples reaching 88,000 CFU/mL, 1,600 MPN/100 mL and 1,600 MPN/100 mL, respectively. Water source types, well depth, whether the well was adequately sealed and housed, and whether wellhead is above or below ground were the main factors influencing bacterial contamination levels in drinking water. The bacterial contamination was serious in the water of shallow wells and wells that were not closed, had no well housing or had a wellhead below ground level. The contamination sources around wells, including village dry toilets and livestock farms, were well correlated with bacterial contamination. Total bacterial counts were affected by proximity to sewage ditches and polluting industries, however, proximity to landfills did not influence the microbial indicators. PMID:23462436
Solar or UVA-Visible Photocatalytic Ozonation of Water Contaminants.
Beltrán, Fernando J; Rey, Ana
2017-07-14
An incipient advanced oxidation process, solar photocatalytic ozonation (SPO), is reviewed in this paper with the aim of clarifying the importance of this process as a more sustainable water technology to remove priority or emerging contaminants from water. The synergism between ozonation and photocatalytic oxidation is well known to increase the oxidation rate of water contaminants, but this has mainly been studied in photocatalytic ozonation systems with lamps of different radiation wavelength, especially of ultraviolet nature (UVC, UVB, UVA). Nowadays, process sustainability is critical in environmental technologies including water treatment and reuse; the application of SPO systems falls into this category, and contributes to saving energy and water. In this review, we summarized works published on photocatalytic ozonation where the radiation source is the Sun or simulated solar light, specifically, lamps emitting radiation to cover the UVA and visible light spectra. The main aspects of the review include photoreactors used and radiation sources applied, synthesis and characterization of catalysts applied, influence of main process variables (ozone, catalyst, and pollutant concentrations, light intensity), type of water, biodegradability and ecotoxicity, mechanism and kinetics, and finally catalyst activity and stability.
Review: Micro-organic contaminants in groundwater in China
NASA Astrophysics Data System (ADS)
Dong, Weihong; Xie, Wei; Su, Xiaosi; Wen, Chuanlei; Cao, Zhipeng; Wan, Yuyu
2018-03-01
Micro-organic contaminants (MOs) in groundwater, which may have adverse effects on human health and ecosystems worldwide, are gaining increased attention in China. A great deal of research has been conducted to investigate their sources, occurrences and behavior in aquifers. This paper reviews the main sources, distribution, concentrations and behavior of a wide range of MOs in groundwater in China. These MOs include well-established persistent organic pollutants—polycyclic aromatic hydrocarbons (PAHs), hexachlorocyclohexanes (HCHs), polychlorinated biphenyls (PCBs), endocrine disrupting chemicals (poly brominated diphenyl ethers (PBDEs), phthalic acid esters (PAEs), bisphenol A (BPA)—and some contaminants of emerging concern such as pharmaceutical and personal care products (antibiotics, caffeine, shampoos) and perfluorinated compounds (PFCs). The results reveal that the main MOs in groundwater are PAHs, organochlorine pesticides (OCPs), PBDEs, PAEs, and antibiotics. Moreover, some PFCs such as perfluorobutane sulfonic acid (PFBS), perfluorobutanoic acid (PFBA) and perfluorooctanoic acid (PFOA) have only recently been observed in groundwater as emerging organic contaminants. Additionally, most MOs are distributed in populated and industrialized areas such as the southeast coast of China. Finally, industrial emissions, wastewater treatment plant effluents and agricultural wastewater are found to be dominant sources of MOs in groundwater. Based on the existing pollution levels, regulation and amelioration of MOs are warranted.
NASA Astrophysics Data System (ADS)
Muñoz-Martín, Alfonso; Antón, Loreto; Granja, Jose Luis; Villarroya, Fermín; Montero, Esperanza; Rodríguez, Vanesa
2016-04-01
Soil contamination can come from diffuse sources (air deposition, agriculture, etc.) or local sources, these last being related to anthropogenic activities that are potentially soil contaminating activities. According to data from the EU, in Spain, and particularly for the Autonomous Community of Madrid, it can be considered that heavy metals, toxic organic compounds (including Non Aqueous Phases Liquids, NAPLs) and combinations of both are the main problem of point sources of soil contamination in our community. The five aspects that will be applied in Caresoil Program (S2013/MAE-2739) in the analysis and remediation of a local soil contamination are: 1) the location of the source of contamination and characterization of soil and aquifer concerned, 2) evaluation of the dispersion of the plume, 3) application of effective remediation techniques, 4) monitoring the evolution of the contaminated soil and 5) risk analysis throughout this process. These aspects involve advanced technologies (hydrogeology, geophysics, geochemistry,...) that require new developing of knowledge, being necessary the contribution of several researching groups specialized in the fields previously cited, as they are those integrating CARESOIL Program. Actually two cases concerning hydrocarbon spills, as representative examples of soil local contamination in Madrid area, are being studied. The first is being remediated and we are monitoring this process to evaluate its effectiveness. In the second location we are defining the extent of contamination in soil and aquifer to define the most effective remediation technique.
Acharyya, Subhrangsu K; Shah, Babar A
2007-10-01
Arsenic contamination in groundwater is pervasive within lowland organic-rich Bengal Delta and narrow entrenched channels in the Middle Ganga floodplains. Local areas of Damodar fan-delta and isolated areas within the Dongargarh Proterozoic rift-zone in central India are also contaminated. In this rift-zone, arsenic is enriched in felsic magmatic rocks and weathered rocks and soils from local areas are enriched further in arsenic and iron. Late Quaternary stratigraphy, geomorphology and sedimentation have influenced groundwater arsenic contamination in alluvium that aggraded during the Holocene sea-level rise. No specific source of arsenic could be identified, although Himalaya is the main provenance for the Ganga floodplain and the Bengal Delta. Gondwana coal seams and other Peninsular Indian rocks might be sources for arsenic in the Damodar fan-delta. As-bearing pyrite or any As-mineral is nearly absent in the aquifer sediments. Arsenic mainly occurs adsorbed on hydrated-iron-oxide (HFO), which coat sediment grains and minerals. Arsenic and iron are released to groundwater by bio-mediated reductive dissolution of HFO with corresponding oxidation of organic matter.
NASA Astrophysics Data System (ADS)
Sokolova, Ekaterina; Pettersson, Thomas J. R.; Bergstedt, Olof; Hermansson, Malte
2013-08-01
To mitigate the faecal contamination of drinking water sources and, consequently, to prevent waterborne disease outbreaks, an estimation of the contribution from different sources to the total faecal contamination at the raw water intake of a drinking water treatment plant is needed. The aim of this article was to estimate how much different sources contributed to the faecal contamination at the water intake in a drinking water source, Lake Rådasjön in Sweden. For this purpose, the fate and transport of faecal indicator Escherichia coli within Lake Rådasjön were simulated by a three-dimensional hydrodynamic model. The calibrated hydrodynamic model described the measured data on vertical temperature distribution in the lake well (the Pearson correlation coefficient was 0.99). The data on the E. coli load from the identified contamination sources were gathered and the fate and transport of E. coli released from these sources within the lake were simulated using the developed hydrodynamic model, taking the decay of the E. coli into account. The obtained modelling results were compared to the observed E. coli concentrations at the water intake. The results illustrated that the sources that contributed the most to the faecal contamination at the water intake in Lake Rådasjön were the discharges from the on-site sewers and the main inflow to the lake - the river Mölndalsån. Based on the modelling results recommendations for water producers were formulated. The study demonstrated that this modelling approach is a useful tool for estimating the contribution from different sources to the faecal contamination at the water intake of a drinking water treatment plant and provided decision-support information for the reduction of risks posed to the drinking water source.
Contaminant fate and transport in the Venice Lagoon: results from a multi-segment multimedia model.
Sommerfreund, J K; Gandhi, N; Diamond, M L; Mugnai, C; Frignani, M; Capodaglio, G; Gerino, M; Bellucci, L G; Giuliani, S
2010-03-01
Contaminant loadings to the Venice Lagoon peaked from 1950s-1980s and although they have since declined, contaminant concentrations remain elevated in sediment and seafood. In order to identify the relative importance of contaminant sources, inter-media exchange and removal pathways, a modified 10-segment fugacity/aquivalence-based model was developed for octachlorodibenzodioxin/furan (OCDD/F), PCB-180, Pb and Cu in the Venice Lagoon. Results showed that in-place pollution nearby the industrial area, current industrial discharges, and tributary loadings were the main sources of contaminants to the lagoon, with negligible contributions from the atmosphere. The fate of these contaminants was governed by sediment-water exchange with simultaneous advective transport by water circulation. Contaminants circulated amongst the northern and central basins with a small fraction reaching the far southern basin and the Chioggia inlet. As a consequence, we estimated limited contaminant transfer to the Adriatic Sea, trapping the majority of contaminants in the sediment in this "average" circulation scenario which does not account for periodic flooding events. (c) 2009 Elsevier Inc. All rights reserved.
Di Ciccio, Pierluigi; Meloni, Domenico; Festino, Anna Rita; Conter, Mauro; Zanardi, Emanuela; Ghidini, Sergio; Vergara, Alberto; Mazzette, Rina; Ianieri, Adriana
2012-08-01
The aim of the present study was to investigate the sources of Listeria monocytogenes contamination in a cold smoked salmon processing environment over a period of six years (2003-2008). A total of 170 samples of raw material, semi-processed, final product and processing surfaces at different production stages were tested for the presence of L. monocytogenes. The L. monocytogenes isolates were characterized by multiplex PCR for the analysis of virulence factors and for serogrouping. The routes of contamination over the six year period were traced by PFGE. L. monocytogenes was isolated from 24% of the raw salmon samples, 14% of the semi-processed products and 12% of the final products. Among the environmental samples, 16% were positive for L. monocytogenes. Serotyping yielded three serovars: 1/2a, 1/2b, 4b, with the majority belonging to serovars 1/2a (46%) and 1/2b (39%). PFGE yielded 14 profiles: two of them were repeatedly isolated in 2005-2006 and in 2007-2008 mainly from the processing environment and final products but also from raw materials. The results of this longitudinal study highlighted that contamination of smoked salmon occurs mainly during processing rather than originating from raw materials, even if raw fish can be a contamination source of the working environment. Molecular subtyping is critical for the identification of the contamination routes of L. monocytogenes and its niches into the production plant when control strategies must be implemented with the aim to reduce its prevalence during manufacturing. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pongmala, Khemngeun; Autixier, Laurène; Madoux-Humery, Anne-Sophie; Fuamba, Musandji; Galarneau, Martine; Sauvé, Sébastien; Prévost, Michèle; Dorner, Sarah
2015-12-01
Urban source water protection requires knowledge of sources of fecal contamination upstream of drinking water intakes. Combined and sanitary sewer overflows (CSOs and SSOs) are primary sources of microbiological contamination and wastewater micropollutants (WWMPs) in urban water supplies. To quantify the impact of sewer overflows, predictive simulation models are required and have not been widely applied for microbial contaminants such as fecal indicator bacteria and pathogens in urban drainage networks. The objective of this study was to apply a simulation model to estimate the dynamics of three contaminants in sewer overflows - total suspended solids, Escherichia coli (E. coli) and carbamazepine, a WWMP. A mixed combined and pseudo-sanitary drainage network in Québec, Canada was studied and modelled for a total of 7 events for which water quality data were available. Model results were significantly correlated with field water quality data. The model confirmed that the contributions of E. coli from runoff and sewer deposits were minor and their dominant source was from sewage. In contrast, the main sources of total suspended solids were stormwater runoff and sewer resuspension. Given that it is not present in stormwater, carbamazepine was found to be a useful stable tracer of sewage contributions to total contaminant loads and also provided an indication of the fraction of total suspended solids originating from sewer deposits because of its similar response to increasing flowrates.
Trace Pb concentrations in groundwater within glacial deposits across Maine fluctuate considerably. Deciphering the distribution and sources of naturally occurring Pb in groundwater with only the use of conventional anomaly identification techniques presents a challenge. In a rep...
Dudarev, Alexey A.; Dushkina, Eugenia V.; Sladkova, Yuliya N.; Alloyarov, Pavel R.; Chupakhin, Valery S.; Dorofeyev, Vitaliy M.; Kolesnikova, Tatjana A.; Fridman, Kirill B.; Evengard, Birgitta; Nilsson, Lena M.
2013-01-01
Background Poor state of water supply systems, shortage of water purification facilities and disinfection systems, low quality of drinking water generally in Russia and particularly in the regions of the Russian Arctic, Siberia and Far East have been defined in the literature. However, no standard protocol of water security assessment has been used in the majority of studies. Study design and methods Uniform water security indicators collected from Russian official statistical sources for the period 2000–2011 were used for comparison for 18 selected regions in the Russian Arctic, Siberia and Far East. The following indicators of water security were analyzed: water consumption, chemical and biological contamination of water reservoirs of Categories I and II of water sources (centralized – underground and surface, and non-centralized) and of drinking water. Results Water consumption in selected regions fluctuated from 125 to 340 L/person/day. Centralized water sources (both underground and surface sources) are highly contaminated by chemicals (up to 40–80%) and biological agents (up to 55% in some regions), mainly due to surface water sources. Underground water sources show relatively low levels of biological contamination, while chemical contamination is high due to additional water contamination during water treatment and transportation in pipelines. Non-centralized water sources are highly contaminated (both chemically and biologically) in 32–90% of samples analyzed. Very high levels of chemical contamination of drinking water (up to 51%) were detected in many regions, mainly in the north-western part of the Russian Arctic. Biological contamination of drinking water was generally much lower (2.5–12%) everywhere except Evenki AO (27%), and general and thermotolerant coliform bacteria predominated in drinking water samples from all regions (up to 17.5 and 12.5%, correspondingly). The presence of other agents was much lower: Coliphages – 0.2–2.7%, Clostridia spores, Giardia cysts, pathogenic bacteria, Rotavirus – up to 0.8%. Of a total of 56 chemical pollutants analyzed in water samples from centralized water supply systems, 32 pollutants were found to be in excess of hygienic limits, with the predominant pollutants being Fe (up to 55%), Cl (up to 57%), Al (up to 43%) and Mn (up to 45%). Conclusion In 18 selected regions of the Russian Arctic, Siberia and Far East Category I and II water reservoirs, water sources (centralized – underground, surface; non-centralized) and drinking water are highly contaminated by chemical and biological agents. Full-scale reform of the Russian water industry and water security system is urgently needed, especially in selected regions. PMID:24350065
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1999-08-03
The Rockwool Industries, Inc. (RWI) National Priorities List site is a 100 acre site one-mile east of downtown Belton in Bell County, Texas. The Facility manufactured two types of mineral wool insulation: Blow wool and batt wool. Three main contaminant source areas have been identified at the site. Source 1, in the middle portion of the site, includes contaminated soil associated with the South Shot Pile. Source 2, in the northern portion of the site, includes contaminated soils associated with the Cemetery Shot Pile. Source 3, in the northwest portion of the site includes contaminated soils associated with the Cemeterymore » Shot Pile. The primary waste types at the site include spent iron shot and baghouse dust. Secondary waste types include boiler blowdown water, stormwater runoff, recovered groundwater, and bricks. The Texas Department of Health (TDH) and the Agency for Toxic Substances and Disease Registry (ATSDR) evaluated the environmental information available for the site and identified several exposure situations for evaluation. These exposure situations include possible contact with site contaminants in the soil, surface water, sediment, and groundwater. The potential for exposure to site contaminants through the food chain was also examined. A brief review of the evaluation, organized by hazard category, is presented.« less
Laceby, J Patrick; Huon, Sylvain; Onda, Yuichi; Vaury, Veronique; Evrard, Olivier
2016-12-01
The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident resulted in radiocesium fallout contaminating coastal catchments of the Fukushima Prefecture. As the decontamination effort progresses, the potential downstream migration of radiocesium contaminated particulate matter from forests, which cover over 65% of the most contaminated region, requires investigation. Carbon and nitrogen elemental concentrations and stable isotope ratios are thus used to model the relative contributions of forest, cultivated and subsoil sources to deposited particulate matter in three contaminated coastal catchments. Samples were taken from the main identified sources: cultivated (n = 28), forest (n = 46), and subsoils (n = 25). Deposited particulate matter (n = 82) was sampled during four fieldwork campaigns from November 2012 to November 2014. A distribution modelling approach quantified relative source contributions with multiple combinations of element parameters (carbon only, nitrogen only, and four parameters) for two particle size fractions (<63 μm and <2 mm). Although there was significant particle size enrichment for the particulate matter parameters, these differences only resulted in a 6% (SD 3%) mean difference in relative source contributions. Further, the three different modelling approaches only resulted in a 4% (SD 3%) difference between relative source contributions. For each particulate matter sample, six models (i.e. <63 μm and <2 mm from the three modelling approaches) were used to incorporate a broader definition of potential uncertainty into model results. Forest sources were modelled to contribute 17% (SD 10%) of particulate matter indicating they present a long term potential source of radiocesium contaminated material in fallout impacted catchments. Subsoils contributed 45% (SD 26%) of particulate matter and cultivated sources contributed 38% (SD 19%). The reservoir of radiocesium in forested landscapes in the Fukushima region represents a potential long-term source of particulate contaminated matter that will require diligent management for the foreseeable future. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Pan; Hu, Rijun; Zhu, Longhai; Wang, Peng; Yin, Dongxiao; Zhang, Lianjie
2017-06-15
Heavy metals (Cu, Pb, Cr, Cd and As) contents in surface sediments from western Laizhou Bay were analysed to evaluate the spatial distribution pattern and their contamination level. As was mainly concentrated in the coastal area near the estuaries and the other metals were mainly concentrated in the central part of the study area. The heavy metals were present at unpolluted levels overall evaluated by the sediment quality guidelines and geoaccumulation index. Principal component analysis suggest that Cu, Pb and Cd were mainly sourced from natural processes and As was mainly derived from anthropogenic inputs. Meanwhile, Cr originated from both natural processes and anthropogenic contributions. Tidal currents, sediments and human activities were important factors affecting the distribution of heavy metals. The heavy metal environment was divided into four subareas to provide a reference for understanding the distribution and pollution of heavy metals in the estuary-bay system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effectiveness and mechanism of natural attenuation at a petroleum-hydrocarbon contaminated site.
Lv, Hang; Su, Xiaosi; Wang, Yan; Dai, Zhenxue; Liu, Mingyao
2018-05-07
This study applied an integrated method for evaluating the effectiveness and mechanism of natural attenuation (NA) of petroleum-hydrocarbon contaminated groundwater. Site groundwater and soil samples were analysed to characterize spatial and temporal variations in petroleum hydrocarbons, geochemical indicators, microbial diversity and isotopes. The results showed that the area of petroleum hydrocarbon contamination plume decreased almost 60% in four years, indicating the presence of natural attenuation. The 14 C content and sequence analysis indicate that there are more relatively 'old' HCO 3 - that have been produced from petroleum hydrocarbons in the upgradient portion of the contaminated plume, confirming that intrinsic biodegradation was the major factor limiting spread of the contaminated plume. The main degradation mechanisms were identified as sulfate reduction and methanogenesis based on the following: (1) more SO 4 2- have been consumed in the contamination source than downgradient, and the δ 34 S values in the resident SO 4 2- were also more enriched in the contamination source, (2) production of more CH 4 in the contamination source with the δ 13 C values for CH 4 was much lower than that of CO 2 , and the fractionation factor was 1.030-1.046. The results of this study provide significant insight for applying natural attenuation and enhanced bioremediation as alternative options for remediation of petroleum-hydrocarbon contaminated sites. Copyright © 2018 Elsevier Ltd. All rights reserved.
Nnane, Daniel Ekane
2011-11-15
Contamination of surface waters is a pervasive threat to human health, hence, the need to better understand the sources and spatio-temporal variations of contaminants within river catchments. River catchment managers are required to sustainably monitor and manage the quality of surface waters. Catchment managers therefore need cost-effective low-cost long-term sustainable water quality monitoring and management designs to proactively protect public health and aquatic ecosystems. Multivariate and phage-lysis techniques were used to investigate spatio-temporal variations of water quality, main polluting chemophysical and microbial parameters, faecal micro-organisms sources, and to establish 'sentry' sampling sites in the Ouse River catchment, southeast England, UK. 350 river water samples were analysed for fourteen chemophysical and microbial water quality parameters in conjunction with the novel human-specific phages of Bacteroides GB-124 (Bacteroides GB-124). Annual, autumn, spring, summer, and winter principal components (PCs) explained approximately 54%, 75%, 62%, 48%, and 60%, respectively, of the total variance present in the datasets. Significant loadings of Escherichia coli, intestinal enterococci, turbidity, and human-specific Bacteroides GB-124 were observed in all datasets. Cluster analysis successfully grouped sampling sites into five clusters. Importantly, multivariate and phage-lysis techniques were useful in determining the sources and spatial extent of water contamination in the catchment. Though human faecal contamination was significant during dry periods, the main source of contamination was non-human. Bacteroides GB-124 could potentially be used for catchment routine microbial water quality monitoring. For a cost-effective low-cost long-term sustainable water quality monitoring design, E. coli or intestinal enterococci, turbidity, and Bacteroides GB-124 should be monitored all-year round in this river catchment. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Harrault, Loïc; Jardé, Emilie; Jeanneau, Laurent; Petitjean, Patrice
2013-04-01
Runoff of cattle manures (cows, pigs, sheeps) or discharge of effluent from wastewater treatment plants (WWTP) into aquatic ecosystems can lead to microbiological contamination of waters and living organisms. In coastal ecosystems and particularly in shellfish harvesting areas, the presence of pathogen microorganisms in waters induces fecal contamination of filter feeding bivalves (oysters, mussels, scallops…), therefore leading to human health risks associated to the consumption of these contaminated organisms. Watershed management plans that aim at limiting these risks require the development of tools able to identify fecal contamination sources. The fecal indicator bacteria used in the regulations to determine fecal contamination are not source specific since they are found in the feces of most warm-blooded animals. Thus, microbiological biomarkers have been developed in association with chemical biomarkers as Microbial Source Tracking (MST) methods. Fecal stanols, by-products of sterols obtained by human and animal microbial gut flora, are found in considerable amounts in feces with different relative proportions depending on their animal or human source. Recently, in association with microbiological biomarkers, the stanol fingerprint of contaminated waters has been successfully used to determine the main source of fecal contamination (cow, pig or human sources) in rural watersheds (Brittany, France). Up to now, the use of the stanol fingerprint to track the fecal contamination in shellfish tissues, especially bivalves, has been limited to the analysis of coprostanol, a stanol commonly associated to human contamination. Therefore, whether the stanol fingerprint can be used as a MST method in bivalves or not is still unknown. The first aim of this study was to compare several organic extraction procedures of stanols in the oyster Crassostrea gigas to determine a reliable method for stanol fingerprint analysis in bivalves. Solvent extraction and purification steps have been carried out with attention as they are critical for stanol quantification. Secondly, the evolution of the stanol fingerprint of oysters with time was evaluated during 6 days by artificially contaminating microcosms with two concentrations of a WWTP effluent. In the microcosms, the fingerprint of stanols as a chemical biomarkers of fecal (human) contamination was compared to counts of Escherichia coli, a commonly used microbial indicator. In association with microbial markers, the method developed from the two previous steps will be applied at the watershed scale in order to identify sources of fecal contamination in Brittany and Normandy (France).
High concentrations of nutrients, fecal microorganisms, and sediments in surface waters can be a public health threat and can impact fringing coral reefs in Guánica Bay in southwestern Puerto Rico. Yet, the main factors and sources contributing to water quality degradation...
Spack, Lionel W; Leszczyk, Gabriela; Varela, Jesus; Simian, Hervé; Gude, Thomas; Stadler, Richard H
2017-06-01
The contamination of food by mineral oil hydrocarbons (MOHs) found in packaging is a long-running concern. A main source of MOHs in foods is the migration of mineral oil from recycled board into the packed food products. Consequently, the majority of food manufacturers have taken protective measures, e.g., by using virgin board instead of recycled fibres and, where feasible, introducing functional barriers to mitigate migration. Despite these protective measures, MOHs may still be observed in low amounts in certain food products, albeit due to different entry points across the food supply chain. In this study, we successfully apply gas chromatography coupled to mass spectrometry (GC-MS) to demonstrate, through marker compounds and the profile of the hydrocarbon response, the possible source of contamination using mainly chocolate and cereals as food matrices. The conventional liquid chromatography-one-dimensional GC coupled to a flame ionisation detector (LC-GC-FID) is a useful screening method, but in cases of positive samples it must be complemented by a confirmatory method such as, for example, GC-MS, allowing a verification of mineral oil contamination. The procedural approach proposed in this study entails profile analysis, marker identification, and interpretation and final quantification.
NASA Astrophysics Data System (ADS)
Laceby, J. Patrick; Huon Huon, Sylvain; Onda, Yuichi; Evrard, Olivier
2016-04-01
The Fukushima Dai-ichi Nuclear Power Plant accidental release of radioactive contaminants resulted in the significant fallout of radiocesium over several coastal catchments in the Fukushima Prefecture. Radiocesium, considered to be the greatest risk to the short and long term health of the local community, is rapidly bound to fine soil particles and thus is mobilized and transported during soil erosion and runoff processes. As there has been a broad-scale decontamination of rice paddy fields and rural residential areas in the contaminated region, one important long term question is whether there is, or may be, a downstream transfer of radiocesium from forests that covered over 65% of the most contaminated region. Accordingly, carbon and nitrogen elemental concentrations and stable isotope ratios are used to determine the relative contributions of forests and rice paddies to transported sediment in three contaminated coastal catchments. Samples were taken from the three main identified sources: cultivated soils (rice paddies and fields, n=30), forest soils (n=45), and subsoils (channel bank and decontaminated soils, n = 25). Lag deposit sediment samples were obtained from five sampling campaigns that targeted the main hydrological events from October 2011 to October 2014. In total, 86 samples of deposited sediment were analyzed for particulate organic matter elemental concentrations and isotope ratios, 24 from the Mano catchment, 44 from the Niida catchment, and 18 from the Ota catchment. Mann-Whitney U-tests were used to examine the source discrimination potential of this tracing suite and select the appropriate tracers for modelling. The discriminant tracers were modelled with a concentration-dependent distribution mixing model. Preliminary results indicate that cultivated sources (predominantly rice paddies) contribute disproportionately more sediment per unit area than forested regions in these contaminated catchments. Future research will examine if there are areas in particular where forest sources have elevated concentrations and may require some attention in the decontamination and monitoring of potential radiocesium downstream transfers.
Optical damage observed in the LHMEL II output coupler
NASA Astrophysics Data System (ADS)
Eric, John J.; Bagford, John O.; Devlin, Christie L. H.; Hull, Robert J.; Seibert, Daniel B.
2008-01-01
During the annual NIST calibration testing done at the LHMEL facility in FY06 on its high energy Carbon-Dioxide lasers, the LHMEL II device suffered severe damage to the internal surface of its ZnSe output coupler optics. The damage occurred during a high power, short duration run and it was believed to have been the result of a significant amount of surface contaminants interacting with the LHMEL cavity beam. Initial theories as to the source of the contamination led to the inspection of the vacuum grease that seals the piping that supplies the source gases to the laser cavity. Other contamination sources were considered, and analysis was conducted in an effort to identify the material found at the damage sites on the optic, but the tests were mainly inconclusive. Some procedure changes were initiated to identify possible contamination before high energy laser operation in an attempt to mitigate and possibly prevent the continued occurrence of damage to the output coupler window. This paper is to illustrate the type and extent of the damage encountered, highlight some of the theories as to the contamination source, and serve as a notice as to the severity and consequences of damage that is possible even due to small amounts of foreign material in a high energy laser environment.
Source tracking of leaky sewers: a novel approach combining fecal indicators in water and sediments.
Guérineau, Hélène; Dorner, Sarah; Carrière, Annie; McQuaid, Natasha; Sauvé, Sébastien; Aboulfadl, Khadija; Hajj-Mohamad, Mariam; Prévost, Michèle
2014-07-01
In highly urbanized areas, surface water and groundwater are particularly vulnerable to sewer exfiltration. In this study, as an alternative to Microbial Source Tracking (MST) methods, we propose a new method combining microbial and chemical fecal indicators (Escherichia coli (E. coli)) and wastewater micropollutants (WWMPs) analysis both in water and sediment samples and under different meteorological conditions. To illustrate the use of this method, wastewater exfiltration and subsequent infiltration were identified and quantified by a three-year field study in an urban canal. The gradients of concentrations observed suggest that several sources of fecal contamination of varying intensity may be present along the canal, including feces from resident animal populations, contaminated surface run-off along the banks and under bridge crossings, release from contaminated banks, entrainment of contaminated sediments, and most importantly sewage exfiltration. Calculated exfiltration-infiltration volumes varied between 0.6 and 15.7 m(3)/d per kilometer during dry weather, and between 1.1 and 19.5 m(3)/d per kilometer during wet weather. WWMPs were mainly diluted and degraded below detection limits in water. E. coli remains the best exfiltration indicator given a large volume of dilution and a high abundance in the wastewater source. WWMPs are effective for detecting cumulated contamination in sediments from a small volume source and are particularly important because E. coli on its own does not allow source tracking. Copyright © 2014 Elsevier Ltd. All rights reserved.
J series thruster isolator failure analysis
NASA Technical Reports Server (NTRS)
Campbell, J. W.; Bechtel, R. T.; Brophy, J. R.
1982-01-01
Three Hg propellant isolators (two cathode and one main) failed during testing in the Mission Profile Life Test. These failures involved contamination of the surface of the alumina insulating body which resulted in heating of the vaporizer by leakage current from the high voltage supply, with subsequent loss of propellant flow rate control. Failure analysis of the isolators showed the surface resistance was temperature dependent and that the alumina could be restored to its original insulating state by grit blasting the surface. The contaminant was identified as carbon and the most likely sources identified as ambient facility hydrocarbons, directed back-sputtered facility materials, and outgassing from organic insulating materials within the thruster envelope. Methods to eliminate contamination from each of these sources are described.
Changes in mercury exposure of marine birds breeding in the Gulf of Maine, 2008-2013.
Stenhouse, Iain J; Adams, Evan M; Goyette, Jennifer L; Regan, Kevin J; Goodale, M Wing; Evers, David C
2018-03-01
Mercury is a potent contaminant that can disrupt an organism's behavior and physiology, ultimately affecting reproductive success. Over the last 100 years, environmental deposition of anthropogenic sourced mercury has increased globally, particularly in the U.S. Northeast region. Marine birds are considered effective bioindicators of ecosystem health, including persistent marine contaminants. Goodale et al. (2008) found that mercury exposure exceeded adverse effects levels in some marine bird species breeding across the Gulf of Maine. We re-examined mercury contamination in four species identified as effective bioindicators. Compared with the previous sampling effort, inshore-feeding species showed significant increases in mercury exposure, while one pelagic-feeding species remained stable. This suggests that a major shift may have occurred in methylmercury availability in inshore waters of the Gulf of Maine. Understanding environmental mercury trends in the Gulf of Maine, and its significance to marine birds and other taxa will require a dedicated, standardized, long-term monitoring scheme. Copyright © 2018 Elsevier Ltd. All rights reserved.
Kaitantzian, Agavni; Kelepertzis, Efstratios; Kelepertsis, Akindynos
2013-07-01
Heavy metal concentrations were monitored in agricultural soils and irrigation groundwaters of Koropi-Markopoulo area, a representative agricultural suburb in Athens, Greece, aiming at the identification of the sources of contaminants. Multivariate analyses of geochemical data demonstrated that agricultural practices and industrial activities considerably affected the quality of both environmental compartments. The levels of Ni, Cr, Co, Mn and Fe in agricultural soils were associated with geological parent materials whereas Pb, Zn and Cu mainly originated from anthropic activities. Referring to groundwaters, individual major anions and cations (K⁺, Na⁺, Ca²⁺, Mg²⁺, NO₃⁻, SO₄²⁻, Cl⁻) were influenced by various natural and anthropogenic factors whereas Ni, Cr, Cu and Zn were controlled by industrial and agronomic activities. The identification of the sources of contaminants in soil and groundwater environments is a valuable basis for encouraging mitigation strategies preventing further quality degradation.
NASA Astrophysics Data System (ADS)
Hirayama, Hideo; Kondo, Kenjiro; Suzuki, Seishiro; Hamamoto, Shimpei; Iwanaga, Kohei
2017-09-01
Pulse height distributions were measured using a LaBr3 detector set in a 1 cm lead collimator to investigate main radiation source at the operation floor of Fukushima Daiichi Nuclear Power Station Unit 4. It was confirmed that main radiation source above the reactor well was Co-60 from the activated steam dryer in the DS pool (Dryer-Separator pool) and that at the standby area was Cs-134 and Cs-137 from contaminated buildings and debris at the lower floor. Full energy peak count rate of Co-60 was reduced about 1/3 by 12mm lead sheet placed on the floor of the fuel handling machine.
Prevalent organisms on ostrich carcasses found in a commercial abattoir.
Hoffman, L C; Britz, T J; Schnetler, D C
2010-09-01
The prevalent microbial growth on carcasses before and after overnight cooling in an ostrich abattoir and de-boning plant was investigated. The effect of warm or cold trimming of the carcasses was examined together with possible causes of contamination along the processing line. An attempt was made to link the prevalent microorganisms that were identified from carcasses to those from specific external contamination sources. Samples of carcasses and possible contaminants were collected in the plant, plated out and selected organisms were typed using a commercial rapid identification system. It was indicated that the cold trim (mainly of bruises) of carcasses was advantageous in terms of microbiological meat quality. Results indicated pooled water in the abattoir as the most hazardous vector for carcass contamination and that contaminants from this source are mostly Gram-negative pathogens. Pseudomonas and Shigella were frequently isolated from surface and air samples and indicated that the control of total plant hygiene is a requirement for producing ostrich meat that is safe to consume and has an acceptable shelf-life.
Geoelectrical mapping and groundwater contamination
NASA Astrophysics Data System (ADS)
Blum, Rainer
Specific electrical resistivity of near-surface materials is mainly controlled by the groundwater content and thus reacts extremely sensitive to any change in the ion content. Geoelectric mapping is a well-established, simple, and inexpensive technique for observing areal distributions of apparent specific electrical resistivities. These are a composite result of the true resistivities in the underground, and with some additional information the mapping of apparent resistivities can help to delineate low-resistivity groundwater contaminations, typically observed downstream from sanitary landfills and other waste sites. The presence of other good conductors close to the surface, mainly clays, is a serious noise source and has to be sorted out by supporting observations of conductivities in wells and geoelectric depth soundings. The method may be used to monitor the extent of groundwater contamination at a specific time as well as the change of a contamination plume with time, by carrying out repeated measurements. Examples for both are presented.
Mali, Matilda; Dell'Anna, Maria Michela; Notarnicola, Michele; Damiani, Leonardo; Mastrorilli, Piero
2017-10-01
Almost all marine coastal ecosystems possess complex structural and dynamic characteristics, which are influenced by anthropogenic causes and natural processes as well. Revealing the impact of sources and factors controlling the spatial distributions of contaminants within highly polluted areas is a fundamental propaedeutic step of their quality evaluation. Combination of different pattern recognition techniques, applied to one of the most polluted Mediterranean coastal basin, resulted in a more reliable hazard assessment. PCA/CA and factorial ANOVA were exploited as complementary techniques for apprehending the impact of multi-sources and multi-factors acting simultaneously and leading to similarities or differences in the spatial contamination pattern. The combination of PCA/CA and factorial ANOVA allowed, on one hand to determine the main processes and factors controlling the contamination trend within different layers and different basins, and, on the other hand, to ascertain possible synergistic effects. This approach showed the significance of a spatially representative overview given by the combination of PCA-CA/ANOVA in inferring the historical anthropogenic sources loading on the area. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mineral oil hydrocarbons in food - a review.
Grob, Koni
2018-06-12
Work on mineral oil hydrocarbons (MOH) contaminating food is reviewed up to about 2010, when the subject received broad publicity. It covers the period of the main discoveries and elimination or reduction of the dominant sources: release agents used in industrial bakeries, spraying of rice, additions to animal feed, contamination of edible oils from various sources and migration from paperboard packaging. In most cases highly refined ("white") oils were involved, but also technical oils, e.g. from the environment, and more or less crude oil fractions from jute and sisal bags. There were numerous unexpected sources, and there might still be more of those. The exposure of the consumers to MOH must have been markedly reduced in the meantime. Environmental influx may have become dominant, particularly when taking into account that these MOH go through several degradation processes which might enrich the species resisting metabolic elimination. Major gaps are in the systematic investigation of sources and the largely unavoidable levels from environmental contamination, but also in the toxicological evaluation of the various types of hydrocarbons. A regulation is overdue that avoids the present discrepancy between the low tolerance to MOH perceived as contaminants and the very high legal limits for some applications - the MOH are largely the same.
Environmental health aspects of drinking water-borne outbreak due to karst flooding: case study.
Dura, Gyula; Pándics, Tamás; Kádár, Mihály; Krisztalovics, Katalin; Kiss, Zoltánné; Bodnár, Judit; Asztalos, Agnes; Papp, Erzsébet
2010-09-01
Climate change may increase the incidence of waterborne diseases due to extreme rainfall events, and consequent microbiological contamination of the water source and supply. As a result of the complexity of the pathways from the surface to the consumer, it is difficult to detect an association between rainfall and human disease. The water supply of a Hungarian city, Miskolc (174,000 inhabitant), is mainly based on karstic water, a vulnerable underground water body. A large amount of precipitation fell on the catchment area of the karstic water source, causing an unusually strong karstic water flow and flooding, and subsequent microbiological contamination. The presence of several potential sources of contamination in the protective zone of the karstic water source should be emphasized. The water supplier was unprepared to treat the risk of waterborne outbreak caused by an extreme weather event. Public health intervention and hygienic measures were taken in line with epidemiological actions, focusing on the protection of consumers by providing safe drinking water. The contamination was identified, and measures were taken for risk reduction and prevention. This case study underlines the increasing importance of preparedness for extreme water events in order to protect the karstic water sources and to avoid waterborne outbreaks.
Source Water Assessment for the Las Vegas Valley Surface Waters
NASA Astrophysics Data System (ADS)
Albuquerque, S. P.; Piechota, T. C.
2003-12-01
The 1996 amendment to the Safe Drinking Water Act of 1974 created the Source Water Assessment Program (SWAP) with an objective to evaluate potential sources of contamination to drinking water intakes. The development of a Source Water Assessment Plan for Las Vegas Valley surface water runoff into Lake Mead is important since it will guide future work on source water protection of the main source of water. The first step was the identification of the watershed boundary and source water protection area. Two protection zones were delineated. Zone A extends 500 ft around water bodies, and Zone B extends 3000 ft from the boundaries of Zone A. These Zones extend upstream to the limits of dry weather flows in the storm channels within the Las Vegas Valley. After the protection areas were identified, the potential sources of contamination in the protection area were inventoried. Field work was conducted to identify possible sources of contamination. A GIS coverage obtained from local data sources was used to identify the septic tank locations. Finally, the National Pollutant Discharge Elimination System (NPDES) Permits were obtained from the State of Nevada, and included in the inventory. After the inventory was completed, a level of risk was assigned to each potential contaminating activity (PCA). The contaminants of concern were grouped into five categories: volatile organic compounds (VOCs), synthetic organic compounds (SOCs), inorganic compounds (IOCs), microbiological, and radionuclides. The vulnerability of the water intake to each of the PCAs was assigned based on these five categories, and also on three other factors: the physical barrier effectiveness, the risk potential, and the time of travel. The vulnerability analysis shows that the PCAs with the highest vulnerability rating include septic systems, golf courses/parks, storm channels, gas stations, auto repair shops, construction, and the wastewater treatment plant discharges. Based on the current water quality data (prior to treatment), the proximity of Las Vegas Wash to the intake, and the results of the vulnerability analysis of potential contaminating activities, it is determined that the drinking water intake is at a Moderate level of risk for VOC, SOC, and microbiological contaminants. The drinking water intake is at a High level of risk for IOC contaminants. Vulnerability to radiological contamination is Moderate. Source water protection in the Las Vegas Valley is strongly encouraged because of the documented influence of the Las Vegas Wash on the quality of the water at the intake.
Besner, Marie-Claude; Prévost, Michèle; Regli, Stig
2011-01-01
Low and negative pressure events in drinking water distribution systems have the potential to result in intrusion of pathogenic microorganisms if an external source of contamination is present (e.g., nearby leaking sewer main) and there is a pathway for contaminant entry (e.g., leaks in drinking water main). While the public health risk associated with such events is not well understood, quantitative microbial risk assessment can be used to estimate such risk. A conceptual model is provided and the state of knowledge, current assumptions, and challenges associated with the conceptual model parameters are presented. This review provides a characterization of the causes, magnitudes, durations and frequencies of low/negative pressure events; pathways for pathogen entry; pathogen occurrence in external sources of contamination; volumes of water that may enter through the different pathways; fate and transport of pathogens from the pathways of entry to customer taps; pathogen exposure to populations consuming the drinking water; and risk associated with pathogen exposure. Copyright © 2010 Elsevier Ltd. All rights reserved.
Li, Jinguo; Zheng, Yi; Luo, Xiaolin; Lin, Zhongrong; Zhang, Wei; Wang, Xuejun
2016-01-01
To improve its air quality, Beijing, the capital of China, has implemented high-cost pollution control measures mainly focused on shifting its energy mix. However, the effectiveness of these measures has long been questioned, especially given the recent problem of severe haze. The main study objectives are to achieve independent, although indirect, information on Beijing’s air pollution by measuring the level of polycyclic aromatic hydrocarbon (PAH) contamination in topsoil and to examine how soil contamination reflects energy consumption. Soil sampling data from two years, 2004 and 2013, were used. The key findings are as follows: 1) although the total PAH content in the topsoil did not significantly decrease from 2004 to 2013, the composition changed considerably; 2) as of 2013, vehicle emissions replaced coal combustion as the leading source of soil PAHs, which validates the existing policy measures regarding vehicle purchasing and traffic volume; 3) the regional transport of atmospheric pollutants, as indicated by the contribution of coking sources in 2013, is not negligible; and 4) appropriate policy measures are needed to control the growing practice of burning biomass. Overall, this study demonstrates that the PAH contamination in topsoil represents an informative indicator of Beijing’s energy consumption and overall environmental quality. PMID:27633056
Lin, Tian; Guo, Zhigang; Li, Yuanyuan; Nizzetto, Luca; Ma, Chuanliang; Chen, Yingjun
2015-05-05
Gaseous exchange fluxes of organochlorine pesticides (OCPs) across the air-water interface of the coastal East China Sea were determined in order to assess whether the contaminated plume of the Yangtze River could be an important regional source of OCPs to the atmosphere. Hexachlorocyclohexanes (HCHs), chlordane compounds (CHLs), and dichlorodiphenyltrichloroethanes (DDTs) were the most frequently detected OCPs in air and water. Air-water exchange was mainly characterized by net volatilization for all measured OCPs. The net gaseous exchange flux ranged 10-240 ng/(m2·day) for γ-HCH, 60-370 ng/(m2·day) for trans-CHL, 97-410 ng/(m2·day) for cis-CHL, and ∼0 (e.g., equilibrium) to 490 ng/(m2·day) for p,p'-DDE. We found that the plume of the large contaminated river can serve as a significant regional secondary atmospheric source of legacy contaminants released in the catchment. In particular, the sediment plume represented the relevant source of DDT compounds (especially p,p'-DDE) sustaining net degassing when clean air masses from the open ocean reached the plume area. In contrast, a mass balance showed that, for HCHs, contaminated river discharge (water and sediment) plumes were capable of sustaining volatilization throughout the year. These results demonstrate the inconsistencies in the fate of HCHs and DDTs in this large estuarine system with declining primary sources.
Wang, Min; Wang, Chuanyuan; Li, Yuanwei
2017-09-15
Aliphatic hydrocarbons (AHs), biomarker and polycyclic aromatic hydrocarbons (PAHs) concentrations of surface water and sediment samples collected from Yellow River Estuary and adjacent coastal area in China were measured to determine their spatial distributions, analyze their sources and evaluate the ecological risk of PAHs in the water-sediment system. The spatial distributions of n-alkane in sediments are mainly controlled by the mixing inputs of terrigenous and marine components. In comparison with AHs, the total concentrations of Σ16PAHs in surface sediments from a transect of the offshore area were noticeably higher than that of the riverine and estuary areas. Additionally, the AHs and total PAHs concentrations all indicated an overall pattern of a seaward decrease. The PAHs concentrations during the dry season (mainly in the form of dissolved phase) were higher than that of PAHs (mainly dissolved phase and particulate phase form) in the flooding season. In comparison with global concentration levels of PAHs, the level of PAHs in suspended particulate matter and sediments from the Yellow River Estuary was lower than those from other countries, while the concentration of PAHs in the dissolved phase were in the middle range. Petroleum contamination, mainly from oil exploration and discharge of pollutants from rivers, was the main source of n-alkanes. The PAHs in the river were mostly of petrogenic origin, while those in the estuarial and marine areas originated mainly from pyrogenic sources. The results of the toxicology assessment suggested that the PAHs in sediments from Yellow River Estuary and adjacent coastal area exhibited a low potential eco-toxicological contamination level. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pereira, Wilfred E.; Hostettler, Frances D.; Rapp, John B.
1992-01-01
An assessment was made in Suisun Bay, California, of the distributions of hydrocarbons in estuarine bed and suspended sediments and in the recently introduced asian clam, Potamocorbula amurensis. Sediments and clams were contaminated with hydrocarbons derived from petrogenic and pyrogenic sources. Distributions of alkanes and of hopane and sterane biomarkers in sediments and clams were similar, indicating that petroleum hydrocarbons associated with sediments are bioavailable to Potamocorbula amurensis. Polycyclic aromatic hydrocarbons in the sediments and clams were derived mainly from combustion sources. Potamocorbula amurensis is therefore a useful bioindicator of hydrocarbon contamination, and may be used as a biomonitor of hydrocarbon pollution in San Francisco Bay.
Mali, Matilda; Malcangio, Daniela; Dell' Anna, Maria Michela; Damiani, Leonardo; Mastrorilli, Piero
2018-01-01
The environmental quality of Torre a Mare port (Italy) was assessed evaluating on one side, the chemical concentration of nine metals and metalloids within bottom sediments and on the other one, by exploring the impact of hydrodynamic conditions in contaminant's transport within the most polluted basins. The investigated port was selected as case study because it resulted much more polluted than it was expected based on the touristic port activities and related stressors loading on it. In order to determine the origin and fate of contaminants in the port basin, 2D numerical simulations were carried out by MIKE21 software. The hydrodynamic module (HD) based on a rectangular grid was initially used to characterize the flow field into two domains that cover the inner and offshore harbor area. Then, advection-dispersion (AD) and water quality (WQ) modules were coupled in order to simulate the simultaneous processes of transport and dispersion of hypothetical pollutant sources. The dissolved/suspended sediment particulates (DSS) were selected as contaminant tracers. The comparative analysis between simulation responses and the real metal contaminant distribution showed high agreement, suggesting that contaminants mainly come from outside port and tend to accumulate in the inner basin. In fact, hydrodynamic circulations cause inflowing streams toward the harbor entrance and the particular port morphology hampers the exit of fine sediments from the inner basin, enhancing thus the accumulation of sediment-associated contaminants within the port area. The study confirms that the quality of touristic port areas strongly depends on both pollution sources located within and outside the port domain and it is controlled mainly by the hydrodynamic-driven processes.
A groundwater management plan for Stuttgart.
Vasin, Sandra; Carle, Achim; Lang, Ulrich; Kirchholtes, Hermann Josef
2016-09-01
In general, groundwater in urban areas is exposed to anthropogenic influence and suffers from concentrations of contaminants. Stuttgart, as a highly industrialized city, has more than 5000 contaminated sites which might influence the Stuttgart's mineral water quality. Despite tremendous efforts and intensive single site orientated remediation since 1984 in downtown, the mineral springs were still affected with chlorinated hydrocarbons at low concentrations. Therefore, the applied practices of environmental management and measures for mitigation of pollution sources were not sufficient and had to be adjusted. The main goal of this study is to define an integral remediation plan (a groundwater management plan), focusing on the key sources of chlorinated solvents which are relevant for the mineral springs. For the large-scale investigated area of 26.6km(2) and eight aquifers, an extensive investigation and characterization methods were used in order to delineate the contamination plumes. By means of a 3D numerical model, the prioritization of the contaminated sites could be performed. Five contaminated sites with high remediation priority and need for optimized or additional remediation efforts were determined. For those five contaminated sites feasibility studies were performed which resulted in recommendation of remediation measures with total costs of more than 12.5 million euros. The proposed strategy and approach are suitable for multiple sources of contamination. Only in this way, the contributions of single contaminated sites to the total groundwater contamination can be identified and local remediation measures with their spatial impact simulated. Due to very complex geological conditions, technically there is no alternative to this strategy in order to achieve the contamination reduction in groundwater. Copyright © 2015 Elsevier B.V. All rights reserved.
Impact of the Sun on Remote Sensing of Sea Surface Salinity from Space
NASA Technical Reports Server (NTRS)
LeVine, David M; Abraham, Saji; Wentz, F; Lagerloef, G S
2005-01-01
The sun is a sufficiently strong source of radiation at L-band to be an important source of interference for radiometers on future satellite missions such as SMOS, Aquarius, and Hydros designed to monitor soil moisture and sea surface salinity. Radiation from the sun can impact passive remote sensing systems in several ways, including line-of-sight radiation that comes directly from the sun and enters through antenna side lobes and radiation that is reflected from the surface to the radiometer. Examples are presented in the case of Aquarius, a pushbroom radiometer with three beams designed to monitor sea surface salinity. Near solar minimum, solar contamination is not a problem unless the sun enters near the main beam. But near solar maximum, contamination from the sun equivalent to a change of salinity on the order of 0.1 psu can occur even when the signal enters in sidelobes far from the main beam.
Assessment of Groundwater Vulnerability for Antropogenic and Geogenic Contaminants in Subwatershed
NASA Astrophysics Data System (ADS)
Ko, K.; Koh, D.; Chae, G.; Cheong, B.
2007-12-01
Groundwater is an important natural resource that providing drinking water to more than five million people in Korea. Nonpoint source nitrate was frequently observed contaminant and the investigation result for small potable water supply system that mainly consisted of 70 percent groundwater showed that about 5 percent of water samples exceeded potable water quality standards of Korea. The geogenic contanminants such as arsenic and fluoride also frequently observed contaminants in Korea. In order to protect groundwater and to supply safe water to public, we need to assess groundwater vulnerability and to know the cause of occurrence of contaminants. To achieve this goal, we executed groundwater investigation and assessment study for Keumsan subwatershed with 600km2 in Keum-river watershed. The geostatistical and GIS technique were applied to map the spatial distribution of each contaminants and to calculate vulnerability index. The results of logistic regression for nitrate indicated the close relationship with land use. The results of hydrogeochemical analyses showed that nitrates in groundwater are largely influenced by land use and had high values in granitic region with dense agricultural field and resident. The high nitrates are closely related to groundwater of greenhouse area where large amount of manure and fertilizer were usually introduced in cultural land. The soil in granitic region had high contents of permeable sand of weathered products of granite that play as a role of pathway of contaminants in agricultural land and resident area. The high values of bicarbonate are originated from two sources, limestone dissolution of Ogcheon belt and biodegradation organic pollutants from municipal wastes in granitic region with dense agriculture and residence. It is considered that the anomalous distribution of arsenic and fluoride is related to limestone and metasedimentry rock of Ogcheon belt with high contents of sulfide minerals and F bearing minerals. The ubiquitous old fluorite and coal mines in Ogcheon belt are considered the main source of arsenic and fluoride in groundwater.
Venkatramanan, Senapathi; Chung, Sang Yong; Selvam, Sekar; Lee, Seung Yeop; Elzain, Hussam Eldin
2017-10-01
The hydrogeochemical processes and fuzzy GIS techniques were used to evaluate the groundwater quality in the Yeonjegu district of Busan Metropolitan City, Korea. The highest concentrations of major ions were mainly related to the local geology. The seawater intrusion into the river water and municipal contaminants were secondary contamination sources of groundwater in the study area. Factor analysis represented the contamination sources of the mineral dissolution of the host rocks and domestic influences. The Gibbs plot exhibited that the major ions were derived from the rock weathering condition. Piper's trilinear diagram showed that the groundwater quality was classified into five types of CaHCO 3 , NaHCO 3 , NaCl, CaCl 2 , and CaSO 4 types in that order. The ionic relationship and the saturation mineral index of the ions indicated that the evaporation, dissolution, and precipitation processes controlled the groundwater chemistry. The fuzzy GIS map showed that highly contaminated groundwater occurred in the northeastern and the central parts and that the groundwater of medium quality appeared in most parts of the study area. It suggested that the groundwater quality of the study area was influenced by local geology, seawater intrusion, and municipal contaminants. This research clearly demonstrated that the geochemical analyses and fuzzy GIS method were very useful to identify the contaminant sources and the location of good groundwater quality.
Sun, Conghui; Wei, Qi; Ma, Lixia; Li, Li; Wu, Guanghong; Pan, Ling
2017-02-15
A tide gate was built in 2010 to prevent seawater from moving upstream into the Yongdingxin River estuary in Bohai Bay, Northern China. We analysed the concentrations of Hg, Cd, Pb, TOC, TN, δ 13 C and δ 15 N and studied their variations in the surface layer and vertical profiles of sediment cores collected from the Yongdingxin River estuary. Contamination factors and geo-accumulation indices were calculated for each metal, which revealed high levels of contamination for Hg and Cd in the sediments, likely from anthropogenic sources. δ 13 C and δ 15 N were used as natural tracers to determine the sources of TOC and TN. The results revealed that sewage was the main source of TOC, while TN may have more than one source in the Yongdingxin River estuary. Sewage dominated trace metal pollution in the Yongdingxin River estuary. Our results provide a baseline for trace metal contamination in an estuary facing a large water project. Copyright © 2016 Elsevier Ltd. All rights reserved.
Runoff of genotoxic compounds in river basin sediment under the influence of contaminated soils.
da Costa, Thatiana Cappi; de Brito, Kelly Cristina Tagliari; Rocha, Jocelita Aparecida Vaz; Leal, Karen Alam; Rodrigues, Maria Lucia Kolowski; Minella, Jean Paolo Gomes; Matsumoto, Silvia Tamie; Vargas, Vera Maria Ferrão
2012-01-01
Contaminated sites must be analyzed as a source of hazardous compounds in the ecosystem. Contaminant mobility in the environment may affect sources of surface and groundwater, elevating potential risks. This study looked at the genotoxic potential of samples from a contaminated site on the banks of the Taquari River, RS, Brazil, where potential environmental problems had been identified (pentachlorophenol, creosote and hydrosalt CCA). Samplers were installed at the site to investigate the drainage material (water and particulate soil matter) collected after significant rainfall events. Organic extracts of this drained material, sediment river samples of the Taquari River (interstitial water and sediment organic extracts) were evaluated by the Salmonella/microsome assay to detect mutagenicity and by Allium cepa bioassays (interstitial water and whole sediment samples) to detect chromosomal alterations. Positive mutagenicity results in the Salmonella/microsome assay of the material exported from the area indicate that contaminant mixtures may have drained into the Taquari River. This was confirmed by the similarity of mutagenic responses (frameshift indirect mutagens) of organic extracts from soil and river sediment exported from the main area under the influence of the contaminated site. The Allium cepa test showed significant results of cytotoxicity, mutagenic index and chromosome aberration in the area under the same influence. However, it also showed the same similarity in positive results at an upstream site, which probably meant different contaminants. Chemical compounds such as PAHs, PCF and chromium, copper and arsenic were present in the runoff of pollutants characteristically found in the area. The strategy employed using the Salmonella/microsome assay to evaluate effects of complex contaminant mixtures, together with information about the main groups of compounds present, allowed the detection of pollutant dispersion routes from the contaminated site to the Taquari River sediment. Copyright © 2011 Elsevier Inc. All rights reserved.
Karpuzcu, M Ekrem; Fairbairn, David; Arnold, William A; Barber, Brian L; Kaufenberg, Elizabeth; Koskinen, William C; Novak, Paige J; Rice, Pamela J; Swackhamer, Deborah L
2014-01-01
Principal components analysis (PCA) was used to identify sources of emerging organic contaminants in the Zumbro River watershed in Southeastern Minnesota. Two main principal components (PCs) were identified, which together explained more than 50% of the variance in the data. Principal Component 1 (PC1) was attributed to urban wastewater-derived sources, including municipal wastewater and residential septic tank effluents, while Principal Component 2 (PC2) was attributed to agricultural sources. The variances of the concentrations of cotinine, DEET and the prescription drugs carbamazepine, erythromycin and sulfamethoxazole were best explained by PC1, while the variances of the concentrations of the agricultural pesticides atrazine, metolachlor and acetochlor were best explained by PC2. Mixed use compounds carbaryl, iprodione and daidzein did not specifically group with either PC1 or PC2. Furthermore, despite the fact that caffeine and acetaminophen have been historically associated with human use, they could not be attributed to a single dominant land use category (e.g., urban/residential or agricultural). Contributions from septic systems did not clarify the source for these two compounds, suggesting that additional sources, such as runoff from biosolid-amended soils, may exist. Based on these results, PCA may be a useful way to broadly categorize the sources of new and previously uncharacterized emerging contaminants or may help to clarify transport pathways in a given area. Acetaminophen and caffeine were not ideal markers for urban/residential contamination sources in the study area and may need to be reconsidered as such in other areas as well.
[Mercury in ASGM and its impact on water resources used for domestic water supply].
Díaz-Arriaga, Farith A
2014-01-01
In regions affected by artisanal and small-scale gold mining (ASGM), the inhalation of mercury vapor and the ingestion of fish contaminated with this metal constitute the main sources of mercury contamination that affect human health. Nevertheless, according to the World Health Organization, another source of contamination is polluted water. Although mercury in freshwater is usually found in very low concentrations because it is swiftly consumed by aquatic microorganisms, evidence shows that under specific circumstances its concentration in water can reach high levels, even surpassing the 2.0 μg/L stipulated by Colombian legislation for use as a domestic water supply. Mercury concentrations above 3.0 μg/L have been found in some Colombian municipalities, and above 8.0 μg/L in other regions around the world. Even though mercury consumption via water is a minor concern, along with other alimentary sources this low mercury concentration contributes to the total burden that affects human health.
[Main indoor air pollutants and their health impacts].
Xu, Zhen; Jin, Yinlong
2003-05-01
The quality of indoor air is a very important factor that may directly affect human health. There are many sources as well as a variety of indoor air pollutants. Therefore, the health impact is complicated, affecting different organs and systems of human being such as respiratory and immune system. The main indoor air pollutants are the combustion products from smoking, cooking and heating, the chemical pollutants from renovation materials and the biological contaminants. The kinds, sources and health impacts of these pollutants that affect the indoor air quality are reviewed in this paper.
Edirisinghe, E A N V; Manthrithilake, H; Pitawala, H M T G A; Dharmagunawardhane, H A; Wijayawardane, R L
2018-06-01
Chronic kidney disease of unknown etiology (CKDu) is the main health issue in the dry zone of Sri Lanka. Despite many studies carried out, causative factors have not been identified yet clearly. According to the multidisciplinary researches carried out so far, potable water is considered as the main causative factor for CKDu. Hence, the present study was carried out with combined isotopic and chemical methods to understand possible relationships between groundwater; the main drinking water source, and CKDu in four endemic areas in the dry zone. Different water sources were evaluated isotopically ( 2 H, 3 H and 18 O) and chemically from 2013 to 2015. Results revealed that prevalence of CKDu is significantly low with the groundwater replenished by surface water inputs. It is significantly high with the groundwater stagnated as well as groundwater recharged from regional flow paths. Thus, the origin, recharge mechanism and flow pattern of groundwater, as well as geological conditions which would be responsible for natural contamination of groundwater appear as the main causative factors for CKDu. Therefore, detailed investigations should be made in order to identify the element(s) in groundwater contributing to CKDu. The study recommends providing drinking water to the affected zones using water sources associated with surface waters.
9,10-Anthraquinone deposit in tea plantation might be one of the reasons for contamination in tea.
Wang, Xuan; Zhou, Li; Luo, Fengjian; Zhang, Xinzhong; Sun, Hezhi; Yang, Mei; Lou, Zhengyun; Chen, Zongmao
2018-04-01
9,10-Anthraquinone (AQ) was a new contaminant, with unknown sources, occurred globally in tea. European Union (EU) fixed the maximum residue limit (MRL) of 0.02mg/kg. The pollution source of AQ in tea was traced from the view of AQ deposit on tea crop by simulation. The possible contamination pathway and main factors to decrease AQ were explored in tea cultivation- tea manufacture- tea infusion, on the basis of AQ analytical methods by using solvent extraction and gas chromatography-tandem mass spectrometry (GC-MS/MS) quantification. 58.8-84.6% of AQ degraded in tea processing, and drying played a key role to reduce the AQ contamination. Certain concentration of AQ deposited on tea shoots could resulted in AQ beyond the MRL of 0.02mg/kg in tea. AQ leaching into tea brew (about 10%) could lead to the possible health risk. AQ deposit on tea crop during the tea cultivation might cause the AQ contamination in tea. Copyright © 2017. Published by Elsevier Ltd.
Matiatos, Ioannis
2016-01-15
Nitrate (NO3) is one of the most common contaminants in aquatic environments and groundwater. Nitrate concentrations and environmental isotope data (δ(15)N-NO3 and δ(18)O-NO3) from groundwater of Asopos basin, which has different land-use types, i.e., a large number of industries (e.g., textile, metal processing, food, fertilizers, paint), urban and agricultural areas and livestock breeding facilities, were analyzed to identify the nitrate sources of water contamination and N-biogeochemical transformations. A Bayesian isotope mixing model (SIAR) and multivariate statistical analysis of hydrochemical data were used to estimate the proportional contribution of different NO3 sources and to identify the dominant factors controlling the nitrate content of the groundwater in the region. The comparison of SIAR and Principal Component Analysis showed that wastes originating from urban and industrial zones of the basin are mainly responsible for nitrate contamination of groundwater in these areas. Agricultural fertilizers and manure likely contribute to groundwater contamination away from urban fabric and industrial land-use areas. Soil contribution to nitrate contamination due to organic matter is higher in the south-western part of the area far from the industries and the urban settlements. The present study aims to highlight the use of environmental isotopes combined with multivariate statistical analysis in locating sources of nitrate contamination in groundwater leading to a more effective planning of environmental measures and remediation strategies in river basins and water bodies as defined by the European Water Frame Directive (Directive 2000/60/EC).
Assessing the sources of high fecal coliform levels at an urban tropical beach
Davino, Aline Mendonça Cavalcante; de Melo, Milena Bandeira; Caffaro, Roberto Augusto
2015-01-01
Recreational water quality is commonly assessed by microbial indicators such as fecal coliforms. Maceió is the capital of Alagoas state, located in tropical northeastern Brazil. Its beaches are considered as the most beautiful urban beaches in the country. Jatiúca Beach in Maceió was found to be unsuitable for bathing continuously during the year of 2011. The same level of contamination was not observed in surrounding beaches. The aim of this study was to initiate the search for the sources of these high coliform levels, so that contamination can be eventually mitigated. We performed a retrospective analysis of historical results of fecal coliform concentrations from 2006 to 2012 at five monitoring stations located in the study region. Results showed that Jatiúca Beach consistently presented the worst quality among the studied beaches. A field survey was conducted to identify existing point and non-point sources of pollution in the area. Monitoring in the vicinity of Jatiúca was spatially intensified. Fecal coliform concentrations were categorized according to tide range and tide stage. A storm drain located in northern Jatiúca was identified as the main point source of the contamination. However, fecal coliform concentrations at Jatiúca were high during high tides and spring tides even when this point source was inactive (no rainfall). We hypothesize that high fecal coliform levels in Jatiúca Beach may also be caused by aquifer contamination or, more likely, from tide washing of contaminated sand. Both of these hypotheses will be further investigated. PMID:26691459
Assessing the sources of high fecal coliform levels at an urban tropical beach.
Davino, Aline Mendonça Cavalcante; de Melo, Milena Bandeira; Caffaro Filho, Roberto Augusto
2015-01-01
Recreational water quality is commonly assessed by microbial indicators such as fecal coliforms. Maceió is the capital of Alagoas state, located in tropical northeastern Brazil. Its beaches are considered as the most beautiful urban beaches in the country. Jatiúca Beach in Maceió was found to be unsuitable for bathing continuously during the year of 2011. The same level of contamination was not observed in surrounding beaches. The aim of this study was to initiate the search for the sources of these high coliform levels, so that contamination can be eventually mitigated. We performed a retrospective analysis of historical results of fecal coliform concentrations from 2006 to 2012 at five monitoring stations located in the study region. Results showed that Jatiúca Beach consistently presented the worst quality among the studied beaches. A field survey was conducted to identify existing point and non-point sources of pollution in the area. Monitoring in the vicinity of Jatiúca was spatially intensified. Fecal coliform concentrations were categorized according to tide range and tide stage. A storm drain located in northern Jatiúca was identified as the main point source of the contamination. However, fecal coliform concentrations at Jatiúca were high during high tides and spring tides even when this point source was inactive (no rainfall). We hypothesize that high fecal coliform levels in Jatiúca Beach may also be caused by aquifer contamination or, more likely, from tide washing of contaminated sand. Both of these hypotheses will be further investigated.
Van Rensburg, S J; Kirsipuu, A; Coutinho, L P; Van Der Watt, J J
1975-05-24
The variable incidence of primary liver cancer has been shown to be related to the average daily intake of aflatoxin in various parts of the world. This study was made to detect and report strategic points of contamination of foodstuffs in the region with the highest known incidence of liver cancer. Methods of food production, harvesting, storage and preparation were examined, and defects which promote fungus growth on food were found at each stage. Most meals consisted of a single dish with three basic ingredients -- a protein, bulk carbohydrate and green vegetables. Groundnuts were the main source of protein, but were also the main cause of aflatoxin contamination, since casual traditional methods of agriculture are not suited to the production of this exotic crop. Aflatoxin production appears to occur in the main sources of carbohydrate, such as cassava and maize, during storage. Leaves of various kinds provide substitutes for green vegetables and common methods of handling the crop promote fungal growth. Western-type foods had a particularly low aflatoxin content, or were free of it. Education and economic opportunities external to the subsistence economy structure are contributing to the westerisation of some living habits, a process believed to be responsible for the observed decrease in the incidence of primary liver cancer. Current knowledge indicates that a pertinent but simple educational programme could further markedly reduce the incidence of the disease.
Identifying potential impact of lead contamination using a geographic information system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bocco, G.; Sanchez, R.
1997-01-01
The main objective of this research was to identify the potential hazards associated with lead contamination from fixed sources in the city of Tijuana. An exploratory model is presented that describes the potential polluting sources as well as the exposed universe. The results of the analysis provide a clear picture of the geographic distribution of hazards areas for potential lead pollution in Tijuana. The findings are indicative of the dramatic consequences of rapid industrialization and urbanization in a city where there have not been significant planning efforts to mitigate the negative effects of this growth. The approach followed helps tomore » narrow the universe of potential pollution sources, which can help to direct attention, research priorities, and resources to the most critical areas. 16 refs.« less
The influence of bottom boundary layer hydrodynamics on sediment focusing in a contaminated bay.
Graham, Neil D; Bouffard, Damien; Loizeau, Jean-Luc
2016-12-01
Understanding the dynamics and fate of particle bound contaminants is important for mitigating potential environmental, economic and health impacts linked to their presence. Vidy Bay, Lake Geneva (Switzerland), is contaminated due to the outfall and overflow from the wastewater treatment plant of the City of Lausanne. This study was designed to investigate the fate of particle-bound contaminants with the goal of providing a more complete picture of contaminant pathways within the bay and their potential spread to the main basin. This goal was achieved by investigating the sediment transport dynamics, using sediment traps and radionuclide tracers, and ascertaining how local bottom-boundary hydrodynamic conditions (temperature, turbidity, current velocity and direction) influence these dynamics. Results of the study indicated that sedimentation rates and lateral advections increased vertically with proximity to the lakebed and laterally with proximity to shore, indicating the presence of sediment focusing in the bay. Hydrodynamic measurements showed the persistent influence of a gyre within the bay, extending down to the lake bed, while just outside of the bay circulation was influenced by the seasonal patterns of the main basin. Calculated mean displacement distances in the bay indicated that suspended particles can travel ∼3 km per month, which is 1.7 times the width of the Vidy Bay gyre. This results in a residence time of approximately 21 days for suspended particles, which is much greater than previously modelled results. The calculated mobility Shield parameter never exceeded the threshold shear stress needed for resuspension in deeper parts of the bay. In such, increased lateral advections to the bay are not likely due to local resuspension but rather external particle sources, such as main basin or shallow, littoral resuspensions. These external sources coupled with an increased residence time and decreased current velocity within the bay are the precipitating factors in sediment focusing. While the spread of contaminants from the bay may occur through the transport of fine suspended sediments in shallower zones of the bay (<60 m) by longshore littoral currents, results suggest that particle-bound contaminants are likely to remain within the bay.
Bisphenol A in Edible Part of Seafood
Repossi, Adele; Farabegoli, Federica; Zironi, Elisa; Pagliuca, Giampiero
2016-01-01
Bisphenol A (BPA) is a man-made compound, mainly used as a monomer to produce polycarbonate (PC), epoxy resins, non-polymer additives to other plastics, which have many food related applications, such as food storage containers, tableware and internal coating of cans, as well as non-food applications such as electronic equipment, construction materials and medical devices. BPA exposure can occur when the residual monomer migrates into packaged food and beverages. Moreover, due to the ubiquitous presence of this compound, the general population can be exposed to environmental sources such as water, air and soil. Many studies have investigated the potential health hazards associated with BPA, which can elicit toxic and cancerogenic effects on humans. According to the European Food Safety Authority opinion, diet is considered to be the main source of exposure, especially canned food; moreover, among non-canned food, meat and fish products have the highest levels of BPA contamination. This review focuses on BPA contamination in seafood, analysing worldwide literature (from January 2010 to October 2015) on BPA contamination of edible parts. The authors try to identify differences between canned and non-canned seafood in literature, and gaps in the state of art. The data evaluated underline that all concentrations for both canned and non-canned seafood were below the specific migration limit set by the European Community Directive for BPA in food. Moreover, the canned seafood is more contaminated than the non-canned one. PMID:27800447
Dismantling of the PETRA glove box: tritium contamination and inventory assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, R.
2015-03-15
The PETRA facility is the first installation in which experiments with tritium were carried out at the Tritium Laboratory Karlsruhe. After completion of two main experimental programs, the decommissioning of PETRA was initiated with the aim to reuse the glove box and its main still valuable components. A decommissioning plan was engaged to: -) identify the source of tritium release in the glove box, -) clarify the status of the main components, -) assess residual tritium inventories, and -) de-tritiate the components to be disposed of as waste. Several analytical techniques - calorimetry on small solid samples, wipe test followedmore » by liquid scintillation counting for surface contamination assessment, gas chromatography on gaseous samples - were deployed and cross-checked to assess the remaining tritium inventories and initiate the decommissioning process. The methodology and the main outcomes of the numerous different tritium measurements are presented and discussed. (authors)« less
Drilling Fluid Contamination during Riser Drilling Quantified by Chemical and Molecular Tracers
NASA Astrophysics Data System (ADS)
Inagaki, F.; Lever, M. A.; Morono, Y.; Hoshino, T.
2012-12-01
Stringent contamination controls are essential to any type of microbiological investigation, and are particularly challenging in ocean drilling, where samples are retrieved from hundreds of meters below the seafloor. In summer 2012, Integrated Ocean Drilling Expedition 337 aboard the Japanese vessel Chikyu pioneered the use of chemical tracers in riser drilling while exploring the microbial ecosystem of coalbeds 2 km below the seafloor off Shimokita, Japan. Contamination tests involving a perfluorocarbon tracer that had been successfully used during past riserless drilling expeditions were complemented by DNA-based contamination tests. In the latter, likely microbial contaminants were targeted via quantitative polymerase chain reaction assays using newly designed, group-specific primers. Target groups included potential indicators of (a) drilling mud viscosifiers (Xanthomonas, Halomonas), (b) anthropogenic wastewater (Bifidobacterium, Blautia, Methanobrevibacter), and (c) surface seawater (SAR 11, Marine Group I Archaea). These target groups were selected based on past evidence suggesting viscosifiers, wastewater, and seawater as the main sources of microbial contamination in cores retrieved by ocean drilling. Analyses of chemical and molecular tracers are in good agreement, and indicate microorganisms associated with mud viscosifiers as the main contaminants during riser drilling. These same molecular analyses are then extended to subseafloor samples obtained during riserless drilling operations. General strategies to further reduce the risk of microbial contamination during riser and riserless drilling operations are discussed.
Aerogenic Dissemination of Aphtae Epizooticae
1980-03-14
animals, birds, insects, aerial dissemination in cattle purchasing centers, transport, and contaminated products such as milk and butter. Besides the above...enormous amounts of ephtose virus into the environment, whose main source is bladder epithelium along with lympy. saliva, milk , urine, excrement, and...opinion the proliferation of the aphtosa virus takes place mainly in the mucous membranes of the uppez respiratory tract, namely in the nasal mucus
NASA Astrophysics Data System (ADS)
Kim, Moon S.; Cho, Byoung-Kwan; Yang, Chun-Chieh; Chao, Kaunglin; Lefcourt, Alan M.; Chen, Yud-Ren
2006-10-01
We have developed nondestructive opto-electronic imaging techniques for rapid assessment of safety and wholesomeness of foods. A recently developed fast hyperspectral line-scan imaging system integrated with a commercial apple-sorting machine was evaluated for rapid detection of animal feces matter on apples. Apples obtained from a local orchard were artificially contaminated with cow feces. For the online trial, hyperspectral images with 60 spectral channels, reflectance in the visible to near infrared regions and fluorescence emissions with UV-A excitation, were acquired from apples moving at a processing sorting-line speed of three apples per second. Reflectance and fluorescence imaging required a passive light source, and each method used independent continuous wave (CW) light sources. In this paper, integration of the hyperspectral imaging system with the commercial applesorting machine and preliminary results for detection of fecal contamination on apples, mainly based on the fluorescence method, are presented.
Capelletti, Raquel Vannucci; Moraes, Ângela Maria
2016-02-01
Water is the main stimulus for the development of microorganisms, and its flow has an important role in the spreading of contaminants. In hospitals, the water distribution system requires special attention since it can be a source of pathogens, including those in the form of biofilms often correlated with resistance of microorganisms to various treatments. In this paper, information relevant to cases of nosocomial infections involving water circuits as a source of contaminants is compiled, with emphasis on the importance of microbiological control strategies to prevent the installation, spreading and growth of microorganisms in hospitals. An overview of the worldwide situation is provided, with emphasis on Brazilian hospitals. Different approaches normally used to control the occurrence of nosocomial infections due to waterborne contaminants are analyzed, and the use of the polysaccharide chitosan for this specific application is briefly discussed.
Safe drinking water and waterborne outbreaks.
Moreira, N A; Bondelind, M
2017-02-01
The present work compiles a review on drinking waterborne outbreaks, with the perspective of production and distribution of microbiologically safe water, during 2000-2014. The outbreaks are categorised in raw water contamination, treatment deficiencies and distribution network failure. The main causes for contamination were: for groundwater, intrusion of animal faeces or wastewater due to heavy rain; in surface water, discharge of wastewater into the water source and increased turbidity and colour; at treatment plants, malfunctioning of the disinfection equipment; and for distribution systems, cross-connections, pipe breaks and wastewater intrusion into the network. Pathogens causing the largest number of affected consumers were Cryptosporidium, norovirus, Giardia, Campylobacter, and rotavirus. The largest number of different pathogens was found for the treatment works and the distribution network. The largest number of affected consumers with gastrointestinal illness was for contamination events from a surface water source, while the largest number of individual events occurred for the distribution network.
Lazo, Pranvera; Steinnes, Eiliv; Qarri, Flora; Allajbeu, Shaniko; Kane, Sonila; Stafilov, Trajce; Frontasyeva, Marina V; Harmens, Harry
2018-01-01
This study presents the spatial distribution of 37 elements in 48 moss samples collected over the whole territory of Albania and provides information on sources and factors controlling the concentrations of elements in the moss. High variations of trace metals indicate that the concentrations of elements are affected by different factors. Relations between the elements in moss, geochemical interpretation of the data, and secondary effects such as redox conditions generated from local soil and/or long distance atmospheric transport of the pollutants are discussed. Zr normalized data, and the ratios of different elements are calculated to assess the origin of elements present in the current moss samples with respect to different geogenic and anthropogenic inputs. Factor analysis (FA) is used to identify the most probable sources of the elements. Four dominant factors are identified, i.e. natural contamination; dust emission from local mining operations; atmospheric transport of contaminants from local and long distance sources; and contributions from air borne marine salts. Mineral particle dust from local emission sources is classified as the most important factor affecting the atmospheric deposition of elements accumulated in the current moss samples. The open slag dumps of mining operation in Albania is probably the main factor contributing to high contents of Cr, Ni, Fe, Ti and Al in the moss. Enrichment factors (EF) were calculated to clarify whether the elements in the present moss samples mainly originate from atmospheric deposition and/or local substrate materials. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cheng, Q; Wang, W; Wang, H; Wang; Zhao, Z
2012-01-01
Heavy metal pollution in the sediment of the Yellow River draws wide attention in the recent years. The Yellow River Wetland Nature Reserve of Zhengzhou is one of the major wetlands of the river and located at the beginning of the lower reach. In this article, we aimed to investigate the degree and the sources of the metal pollution in the reserve. Metals as Cu, Pb, Cr, Cd and Mn in the sediment were monitored using flame atomic absorption spectrometry. The index of geo-accumulation (I(geo)) and the modified degree of contamination (mC(d)) were developed to evaluate individual metal pollution and overall enrichment impact of the elements. Compared with sediment quality guidelines, the effect of Cr and Pb are more serious than others. I(geo) values show Pb pollution are moderate at the Xinzhai, Langchenggang and Nansutan sites, and mC(d) analysis indicate the whole contamination at the Wantan, Langchenggang and Nansutan sites was low. Principal component analysis indicated that the first factor was Cu, Mn and Cd, mainly from soil erosion and the irrational use of phosphate fertilizers; the second Pb from fossil fuel burning; and the third Cr from weathering process. We conclude that Pb contamination is serious in the reserve, and the main sources of the metal are crude oil consumption and coal combustion of the brick kilns around. We also draw a conclusion that it is vital to evaluate contamination degree with both individual elements and overall average.
Cheng, Q; Wang, W; Wang, H; Wang; Zhao, Z
2012-01-01
Background Heavy metal pollution in the sediment of the Yellow River draws wide attention in the recent years. The Yellow River Wetland Nature Reserve of Zhengzhou is one of the major wetlands of the river and located at the beginning of the lower reach. In this article, we aimed to investigate the degree and the sources of the metal pollution in the reserve. Methods: Metals as Cu, Pb, Cr, Cd and Mn in the sediment were monitored using flame atomic absorption spectrometry. The index of geo-accumulation (Igeo) and the modified degree of contamination (mCd) were developed to evaluate individual metal pollution and overall enrichment impact of the elements. Results: Compared with sediment quality guidelines, the effect of Cr and Pb are more serious than others. Igeo values show Pb pollution are moderate at the Xinzhai, Langchenggang and Nansutan sites, and mCd analysis indicate the whole contamination at the Wantan, Langchenggang and Nansutan sites was low. Principal component analysis indicated that the first factor was Cu, Mn and Cd, mainly from soil erosion and the irrational use of phosphate fertilizers; the second Pb from fossil fuel burning; and the third Cr from weathering process. Conclusion: We conclude that Pb contamination is serious in the reserve, and the main sources of the metal are crude oil consumption and coal combustion of the brick kilns around. We also draw a conclusion that it is vital to evaluate contamination degree with both individual elements and overall average. PMID:23113147
NASA Astrophysics Data System (ADS)
Lee, S. S.; Lee, S. H.; Lee, K. K.
2014-12-01
The location of DNAPL source and distribution of contaminant plume at an industrial complex, Wonju, Korea, was examined based on the combined results of seasonal impact analysis, historical approach, radon tracer approach, and chemical fingerprinting conducted from 2009 to 2013 (Yang et al., 2013). With regard to the amount of contaminants discharged at this study site, there is no exact information on disposal. Therefore, various remediation technologies such as soil vapor extraction, soil flushing, biostimulation, and pump-and-treatment have been performed to eliminate the contaminant sources of trichloroethylene (TCE) and to prevent the migration of TCE plume from remediation target zones. Also, dissolved TCE concentration and mass of residual TCE in the initial stage of disposal were estimated to evaluate the efficiency of in situ remediation. The remediation efficiency according to the remediation actions was evaluated by tracing a time-series of plume evolution and estimating the temporal mass discharge at three transects (Source, Transec-1, Transect-2) which was assigned along the groundwater flow path. From results of periodically monitored TCE concentration at main source zone, the TCE level (15.74 mg/L) before the remediation dramatically decreased up to 0.56 mg/L at the end of year 2012 due to the effect of remediation. During the intensive remediation period from 2012 to 2013, the early average mass discharge (26.58 g/day) at source transect was decreased to average 4.99 g/day. Especially, in case of surfactant flushing test which was conducted to eliminate the residual TCE, the efficiency of surfactant flushing test was evaluated using the recovery rate of chloride ion which was used as tracer. The results for recovery rate of chloride ion show that test wells observed the slow recovery rate represented more effective dissolution of TCE than wells showing the rapid recovery rate. By using the source zone monitoring data and analytical solution, initial dissolved concentration and residual mass of TCE in late 1980s at the main source zone were roughly estimated 150 mg/L and 1000 kg, respectively. These values decreased to 0.45 mg/L and 33.07 kg direct after an intensive remedial action in 2013 and then it expected to be continuously decreased to 0.29 mg/L and 25.41 kg from the end of remedial actions to 2020.
NASA Astrophysics Data System (ADS)
Zirlewagen, Johannes; Hillebrand, Olav; Nödler, Karsten; Licha, Tobias; Schiperski, Ferry; Stange, Claudia; Tiehm, Andreas; Scheytt, Traugott
2015-04-01
Karst aquifers are important drinking water resources in many parts of the world, though they are well known for their high vulnerability to contamination. Rainfall and snowmelt often trigger temporary contamination of karst water resources. Free-range animal breeding and application of manure on the one hand and sewage leakage or spillage on the other hand are usually regarded as main sources for fecal contamination. But distinction of their respective contributions is difficult. This study investigates the feasibility to track the origin of fecal contamination from the occurrences of indicator bacteria and chemical source indicators in karst spring water. The study site is the 45 km² rural catchment of the perennial karst spring Gallusquelle in SW-Germany (mean discharge: 0.5 m³/s). Overflow events of a stormwater detention basin (combined sewer system) are known to impact water quality at the spring. There is no free-range animal breeding in the catchment but intense application of manure. Following two heavy rainfall events with overflow of the stormwater detention basin, spring water was sampled over several days. Samples were analysed for indicator bacteria (total Coliform, E. coli, Enterococci) and 57 micropollutants, among them cyclamate and metazachlor. For the Gallusquelle catchment the artificial sweetener cyclamate and the herbicide metazachlor have been established as source specific indicators, the former for the sewer system and the latter for cropland. Though recharge in the Gallusquelle catchment is predominantly diffuse, there is a significant portion of direct recharge reflected by distinct breakthrough curves for cyclamate and metazachlor. The breakthrough of indicator bacteria coincides very well with the occurrence of both, cyclamate and metazachlor. However, indicator bacteria cannot be unambiguously tracked back to a specific source.
NASA Astrophysics Data System (ADS)
Lee, Seong-Sun; Kaown, Dugin; Lee, Kang-Kun
2015-11-01
Chlorinated ethenes such as trichloroethylene (TCE) are common and persistent groundwater contaminants. If contaminated groundwater discharges to a stream, then stream water pollution near the contamination site also becomes a problem. In this respect, the fate and transport of chlorinated ethenes around a stream in an industrial complex were evaluated using the concentration of each component, and hydrogeochemical, microbial, and compound-specific carbon isotope data. Temporal and spatial monitoring reveal that a TCE plume originating from main and local source zones continues to be discharged to a stream. Groundwater geochemical data indicate that aerobic conditions prevail in the upgradient area of the studied aquifer, whereas conditions become anaerobic in the downgradient. The TCE molar fraction is high at the main and local source zones, ranging from 87.4 to 99.2% of the total volatile organic compounds (VOCs). An increasing trend in the molar fraction of cis-1, 2-Dichloroethene (cis-DCE) and vinyl chloride (VC) was observed in the downgradient zone of the study area. The enriched δ13C values of TCE and depleted values of cis-DCE in the stream zone, compared to those of the source zone, also suggest biodegradation of VOCs. Microbial community structures in monitoring wells adjacent to the stream zone in the downgradient area were analyzed using 16S rRNA gene-based pyrosequencing to identify the microorganisms responsible for biodegradation. This was attributed to the high relative abundance of dechlorinating bacteria in monitoring wells under anaerobic conditions farthest from the stream in the downgradient area. The multilateral approaches adopted in this study, combining hydrogeochemical and biomolecular methods with compound-specific analyses, indicate that contaminants around the stream were naturally attenuated by active anaerobic biotransformation processes.
Jinhui Li; Huabo Duan; Pixing Shi
2011-07-01
The dismantling and disposal of electronic waste (e-waste) in developing countries is causing increasing concern because of its impacts on the environment and risks to human health. Heavy-metal concentrations in the surface soils of Guiyu (Guangdong Province, China) were monitored to determine the status of heavy-metal contamination on e-waste dismantling area with a more than 20 years history. Two metalloids and nine metals were selected for investigation. This paper also attempts to compare the data among a variety of e-waste dismantling areas, after reviewing a number of heavy-metal contamination-related studies in such areas in China over the past decade. In addition, source apportionment of heavy metal in the surface soil of these areas has been analysed. Both the MSW open-burning sites probably contained invaluable e-waste and abandoned sites formerly involved in informal recycling activities are the new sources of soil-based environmental pollution in Guiyu. Although printed circuit board waste is thought to be the main source of heavy-metal emissions during e-waste processing, requirement is necessary to soundly manage the plastic separated from e-waste, which mostly contains heavy metals and other toxic substances.
NASA Astrophysics Data System (ADS)
Lee, S. S.; Kim, H. J.; Kim, M. O.; Lee, K.; Lee, K. K.
2016-12-01
A study finding evidence of remediation represented on monitoring data before and after in site intensive remedial action was performed with various quantitative evaluation methods such as mass discharge analysis, tracer data, statistical trend analysis, and analytical solutions at DNAPL contaminated site, Wonju, Korea. Remediation technologies such as soil vapor extraction, soil flushing, biostimulation, and pump-and-treat have been applied to eliminate the contaminant sources of trichloroethylene (TCE) and to prevent the migration of TCE plume from remediation target zones. Prior to the remediation action, the concentration and mass discharges of TCE at all transects were affected by seasonal recharge variation and residual DNAPLs sources. After the remediation, the effect of remediation took place clearly at the main source zone and industrial complex. By tracing a time-series of plume evolution, a greater variation in the TCE concentrations was detected at the plumes near the source zones compared to the relatively stable plumes in the downstream. The removal amount of the residual source mass during the intensive remedial action was estimated to evaluate the efficiency of the intensive remedial action using analytical solution. From results of quantitative evaluation using analytical solution, it is assessed that the intensive remedial action had effectively performed with removal efficiency of 70% for the residual source mass during the remediation period. Analytical solution which can consider and quantify the impacts of partial mass reduction have been proven to be useful tools for quantifying unknown contaminant source mass and verifying dissolved concentration at the DNAPL contaminated site and evaluating the efficiency of remediation using long-term monitoring data. Acknowledgement : This subject was supported by the Korea Ministry of Environment under "GAIA project (173-092-009) and (201400540010)", R&D Project on Enviornmental Management of Geologic CO2 storage" from the KEITI (Project number:2014001810003).
Goerlitz, D.F.; Troutman, D.E.; Godsy, E.M.; Franks, B.J.
1985-01-01
Operation of a wood-preserving facility for nearly 80 years at Pensacola, FL, contaminated the near-surface groundwater with creosote and pentachlorophenol. The major source of aquifer contamination was unlined surface impoundments that were in direct hydraulic contact with the groundwater. Episodes of overtopping the impoundments and overland flow of treatment liquor and waste were also significant to the migration and contamination of the groundwater. Solutes contaminating the ground-water are mainly naphthalene and substituted phenols. Sorption did not influence retardation of solutes in transport in the groundwater. Phenol and the mono substituted methylphenols appear to be undergoing bio-transformation. Pentachlorophenol (PCP) was not found in significant concentrations in the groundwater possibly because the solubility of PCP is approximately 5 mg/L at pH 6, near the average acidity for the groundwater.
Analysis of Pollution Hazard Intensity: A Spatial Epidemiology Case Study of Soil Pb Contamination
Ha, Hoehun; Rogerson, Peter A.; Olson, James R.; Han, Daikwon; Bian, Ling; Shao, Wanyun
2016-01-01
Heavy industrialization has resulted in the contamination of soil by metals from anthropogenic sources in Anniston, Alabama. This situation calls for increased public awareness of the soil contamination issue and better knowledge of the main factors contributing to the potential sources contaminating residential soil. The purpose of this spatial epidemiology research is to describe the effects of physical factors on the concentration of lead (Pb) in soil in Anniston AL, and to determine the socioeconomic and demographic characteristics of those residing in areas with higher soil contamination. Spatial regression models are used to account for spatial dependencies using these explanatory variables. After accounting for covariates and multicollinearity, results of the analysis indicate that lead concentration in soils varies markedly in the vicinity of a specific foundry (Foundry A), and that proximity to railroads explained a significant amount of spatial variation in soil lead concentration. Moreover, elevated soil lead levels were identified as a concern in industrial sites, neighborhoods with a high density of old housing, a high percentage of African American population, and a low percent of occupied housing units. The use of spatial modelling allows for better identification of significant factors that are correlated with soil lead concentrations. PMID:27649221
Penet, Laurent; Guyader, Sébastien; Pétro, Dalila; Salles, Michèle; Bussière, François
2014-01-01
Plant pathogens have evolved many dispersal mechanisms, using biotic or abiotic vectors or a combination of the two. Rain splash dispersal is known from a variety of fungi, and can be an efficient driver of crop epidemics, with infectious strains propagating rapidly among often genetically homogenous neighboring plants. Splashing is nevertheless a local dispersal process and spores taking the droplet ride seldom move farther than a few decimeters. In this study, we assessed rain splash dispersal of conidia of the yam anthracnose agent, Colletotrichum gloeosporioides, in an experimental setting using a rain simulator, with emphasis on the impact of soil contamination (i.e., effect of re-splashing events). Spores dispersed up to 50 cm from yam leaf inoculum sources, though with an exponential decrease with increasing distance. While few spores were dispersed via re-splash from spore-contaminated soil, the proportion deposited via this mechanism increased with increasing distance from the initial source. We found no soil contamination carryover from previous rains, suggesting that contamination via re-splashing from contaminated soils mainly occurred within single rains. We conclude that most dispersal occurs from direct splashing, with a weaker contribution of indirect dispersal via re-splash.
Penet, Laurent; Guyader, Sébastien; Pétro, Dalila; Salles, Michèle; Bussière, François
2014-01-01
Plant pathogens have evolved many dispersal mechanisms, using biotic or abiotic vectors or a combination of the two. Rain splash dispersal is known from a variety of fungi, and can be an efficient driver of crop epidemics, with infectious strains propagating rapidly among often genetically homogenous neighboring plants. Splashing is nevertheless a local dispersal process and spores taking the droplet ride seldom move farther than a few decimeters. In this study, we assessed rain splash dispersal of conidia of the yam anthracnose agent, Colletotrichum gloeosporioides, in an experimental setting using a rain simulator, with emphasis on the impact of soil contamination (i.e., effect of re-splashing events). Spores dispersed up to 50 cm from yam leaf inoculum sources, though with an exponential decrease with increasing distance. While few spores were dispersed via re-splash from spore-contaminated soil, the proportion deposited via this mechanism increased with increasing distance from the initial source. We found no soil contamination carryover from previous rains, suggesting that contamination via re-splashing from contaminated soils mainly occurred within single rains. We conclude that most dispersal occurs from direct splashing, with a weaker contribution of indirect dispersal via re-splash. PMID:25532124
Analysis of Pollution Hazard Intensity: A Spatial Epidemiology Case Study of Soil Pb Contamination.
Ha, Hoehun; Rogerson, Peter A; Olson, James R; Han, Daikwon; Bian, Ling; Shao, Wanyun
2016-09-14
Heavy industrialization has resulted in the contamination of soil by metals from anthropogenic sources in Anniston, Alabama. This situation calls for increased public awareness of the soil contamination issue and better knowledge of the main factors contributing to the potential sources contaminating residential soil. The purpose of this spatial epidemiology research is to describe the effects of physical factors on the concentration of lead (Pb) in soil in Anniston AL, and to determine the socioeconomic and demographic characteristics of those residing in areas with higher soil contamination. Spatial regression models are used to account for spatial dependencies using these explanatory variables. After accounting for covariates and multicollinearity, results of the analysis indicate that lead concentration in soils varies markedly in the vicinity of a specific foundry (Foundry A), and that proximity to railroads explained a significant amount of spatial variation in soil lead concentration. Moreover, elevated soil lead levels were identified as a concern in industrial sites, neighborhoods with a high density of old housing, a high percentage of African American population, and a low percent of occupied housing units. The use of spatial modelling allows for better identification of significant factors that are correlated with soil lead concentrations.
Piedade, Tales Campos; Melo, Vander Freitas; Souza, Luiz Cláudio Paula; Dieckow, Jeferson
2014-09-01
Monitoring of heavy metal contamination plume in soils can be helpful in establishing strategies to minimize its hazardous impacts to the environment. The objective of this study was to apply a new approach of visualization, based on tridimensional (3D) images, of pseudo-total (extracted with concentrated acids) and exchangeable (extracted with 0.5 mol L(-1) Ca(NO3)2) lead (Pb) concentrations in soils of a mining and metallurgy area to determine the spatial distribution of this pollutant and to estimate the most contaminated soil volumes. Tridimensional images were obtained after interpolation of Pb concentrations of 171 soil samples (57 points × 3 depths) with regularized spline with tension in a 3D function version. The tridimensional visualization showed great potential of use in environmental studies and allowed to determine the spatial 3D distribution of Pb contamination plume in the area and to establish relationships with soil characteristics, landscape, and pollution sources. The most contaminated soil volumes (10,001 to 52,000 mg Pb kg(-1)) occurred near the metallurgy factory. The main contamination sources were attributed to atmospheric emissions of particulate Pb through chimneys. The large soil volume estimated to be removed to industrial landfills or co-processing evidenced the difficulties related to this practice as a remediation strategy.
Kharaka, Yousif K.; Thordsen, James J.; Conaway, Christopher H.; Thomas, Randal B.
2013-01-01
Oil and natural gas have been the main sources of primary energy in the USA, providing 63% of the total energy consumption in 2011. Petroleum production, drilling operations, and improperly sealed abandoned wells have caused significant local groundwater contamination in many states, including at the USGS OSPER sites in Oklahoma. The potential for groundwater contamination is higher when producing natural gas and oil from unconventional sources of energy, including shale and tight sandstones. These reservoirs require horizontally-completed wells and massive hydraulic fracturing that injects large volumes (up to 50,000 m3/well) of high-pressured water with added proppant, and toxic organic and inorganic chemicals. Recent results show that flow back and produced waters from Haynesville (Texas) and Marcellus (Pennsylvania) Shale have high salinities (≥200,000 mg/L TDS) and high NORMs (up to 10,000 picocuries/L) concentrations. A major research effort is needed worldwide to minimize all potential environmental impacts, especially groundwater contamination and induced seismicity, when producing these extremely important new sources of energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFreniere, L. M.; Environmental Science Division
In 1997, low levels of carbon tetrachloride (below the maximum contaminant level [MCL] of 5 {micro}g/L) were detected in groundwater at Inman, Kansas, by the Kansas Department of Health and Environment (KDHE). The 1997 KDHE sampling was conducted under the U.S. Department of Agriculture (USDA) private well sampling program. The Commodity Credit Corporation (CCC), a USDA agency, operated a grain storage facility in Inman from 1954 to 1965. Carbon tetrachloride is the contaminant of primary concern at sites associated with former CCC/USDA grain storage operations. Inman is located in southwest McPherson County, approximately 10 mi southwest of the city ofmore » McPherson (Figure 1.1). To determine whether the former CCC/USDA facility at Inman is a potential contaminant source and its possible relationship to the contamination in groundwater, the CCC/USDA has agreed to conduct an investigation at Inman, in accordance with the Intergovernmental Agreement between the KDHE and the Farm Service Agency of the USDA. For this work plan, Argonne compiled historical data related to the previous investigations and grain storage operations at Inman. Through a review of documents acquired from all available sources, other potential contaminant source areas (in addition to the former CCC/USDA facility) have been identified as (1) the commercial grain storage structures northwest of Inman, along the railroad right-of-way, and (2) small former private grain storage facilities west of Main Street and near the former CCC/USDA facility at the southern edge of Inman (Figure 1.2). Previous investigations and the potential source areas are discussed in Section 2.« less
Gorecki, Sébastien; Bemrah, Nawel; Roudot, Alain-Claude; Marchioni, Eric; Le Bizec, Bruno; Faivre, Franck; Kadawathagedara, Manik; Botton, Jérémie; Rivière, Gilles
2017-12-01
Bisphenol A (BPA) is used in a wide variety of products and objects for consumers use (digital media such as CD's and DVD's, sport equipment, food and beverage containers, medical equipment). For humans, the main route of exposure to BPA is food. Based on previous estimates, almost 20% of the dietary exposure to BPA in the French population would be from food of animal origin. However, due to the use of composite samples, the source of the contamination had not been identified. Therefore, 322 individual samples of non-canned foods of animal origin were collected with the objectives of first updating the estimation of the exposure of the French population and second identifying the source of contamination of these foodstuffs using a specific analytical method. Compared to previous estimates in France, a decline in the contamination of the samples was observed, in particular with regard to meat. The estimated mean dietary exposures ranged from 0.048 to 0.050 μg (kg bw) -1 d -1 for 3-17 year children and adolescents, from 0.034 to 0.035 μg (kg bw) -1 d -1 for adults and from 0.047 to 0.049 μg (kg bw) -1 d -1 for pregnant women. The contribution of meat to total dietary exposure of pregnant women, adults and children was up to three times lower than the previous estimates. Despite this downward trend in contamination, the toxicological values were observed to have been exceeded for the population of pregnant women. With the aim of acquiring more knowledge about the origin the potential source(s) of contamination of non-canned foods of animal origin, a specific analytical method was developed to directly identify and quantify the presence of conjugated BPA (BPA-monoglucuronide, BPA-diglucuronide and sulphate forms) in 50 samples. No conjugated forms of BPAs were detected in the analysed samples, indicating clearly that BPA content in animal food was not due to metabolism but arise post mortem in food. This contamination may occur during food production. However, despite extensive sampling performed in several different shops (butcheries, supermarkets …. ) and in different conditions (fresh, prepared, frozen …), the source(s) of the contamination could not be specifically identified. Copyright © 2017 Elsevier Ltd. All rights reserved.
Grall, S; Roulland, C; Guillaumès, J; Manceau, C
2005-12-01
The spatial distribution of vine plants contaminated by Xylophilus ampelinus, the agent responsible for bacterial necrosis, was studied over a 5-year period within two vineyards in the Cognac area. Both vineyards were planted with Vitis vinifera cv. Ugni blanc but were different in age and agronomic location. The emission of X. ampelinus in contaminated bleeding sap was observed during vine sprouting. Contaminated bleeding sap is an important source of inoculum for external contamination due to the high susceptibility of young merging shoots to the pathogen. X. ampelinus emission by bleeding sap was not affected by the age of the plants or the location of the vineyards. However, its emission was irregular with time, and it varied between two fruit canes from individual plants and between plants as well as between years. Moreover, the two vineyards appeared to be entirely contaminated. Consequently, the behavior of the pathogen is not predictable. The distribution of the pathogen inside vine plant organs was analyzed through the four growing seasons. The old wood was contaminated throughout the year and constituted a stock inoculum for endophytic contamination of crude sap during the winter and the spring. Despite the fact that most of the young green shoots were contaminated in May, X.ampelinus was not found in green shoots in June and September, refuting the hypothesis of an epiphytic life of the pathogen under natural conditions. Although all plants were entirely contaminated in both vineyards, symptoms were rare and were observed on different plants each year.
Grall, S.; Roulland, C.; Guillaumès, J.; Manceau, C.
2005-01-01
The spatial distribution of vine plants contaminated by Xylophilus ampelinus, the agent responsible for bacterial necrosis, was studied over a 5-year period within two vineyards in the Cognac area. Both vineyards were planted with Vitis vinifera cv. Ugni blanc but were different in age and agronomic location. The emission of X. ampelinus in contaminated bleeding sap was observed during vine sprouting. Contaminated bleeding sap is an important source of inoculum for external contamination due to the high susceptibility of young merging shoots to the pathogen. X. ampelinus emission by bleeding sap was not affected by the age of the plants or the location of the vineyards. However, its emission was irregular with time, and it varied between two fruit canes from individual plants and between plants as well as between years. Moreover, the two vineyards appeared to be entirely contaminated. Consequently, the behavior of the pathogen is not predictable. The distribution of the pathogen inside vine plant organs was analyzed through the four growing seasons. The old wood was contaminated throughout the year and constituted a stock inoculum for endophytic contamination of crude sap during the winter and the spring. Despite the fact that most of the young green shoots were contaminated in May, X.ampelinus was not found in green shoots in June and September, refuting the hypothesis of an epiphytic life of the pathogen under natural conditions. Although all plants were entirely contaminated in both vineyards, symptoms were rare and were observed on different plants each year. PMID:16332815
Gambero, Maria Laura; Blarasin, Monica; Bettera, Susana; Giuliano Albo, Jesica
2017-10-01
The genetic characteristics among Escherichia coli strains can be grouped by origin of isolation. Then, it is possible to use the genotypes as a tool to determine the source of water contamination. The aim of this study was to define water aptitude for human consumption in a rural basin and to assess the diversity of E. coli water populations. Thus, it was possible to identify the main sources of fecal contamination and to explore linkages with the hydrogeological environment and land uses. The bacteriological analysis showed that more than 50% of samples were unfit for human consumption. DNA fingerprinting analysis by BOX-PCR indicated low genotypic diversity of E. coli isolates taken from surface water and groundwater. The results suggested the presence of a dominant source of fecal contamination. The relationship between low genotypic diversity and land use would prove that water contamination comes from livestock. The genetic diversity of E. coli isolated from surface water was less than that identified in groundwater because of the different hydraulic features of both environments. Furthermore, each one of the two big strain groups identified in this basin is located in different sub-basins, showing that hydrological dynamics exerts selective pressure on bacteria DNA.
VecScreen_plus_taxonomy: imposing a tax(onomy) increase on vector contamination screening.
Schäffer, Alejandro A; Nawrocki, Eric P; Choi, Yoon; Kitts, Paul A; Karsch-Mizrachi, Ilene; McVeigh, Richard
2018-03-01
Nucleic acid sequences in public databases should not contain vector contamination, but many sequences in GenBank do (or did) contain vectors. The National Center for Biotechnology Information uses the program VecScreen to screen submitted sequences for contamination. Additional tools are needed to distinguish true-positive (contamination) from false-positive (not contamination) VecScreen matches. A principal reason for false-positive VecScreen matches is that the sequence and the matching vector subsequence originate from closely related or identical organisms (for example, both originate in Escherichia coli). We collected information on the taxonomy of sources of vector segments in the UniVec database used by VecScreen. We used that information in two overlapping software pipelines for retrospective analysis of contamination in GenBank and for prospective analysis of contamination in new sequence submissions. Using the retrospective pipeline, we identified and corrected over 8000 contaminated sequences in the nonredundant nucleotide database. The prospective analysis pipeline has been in production use since April 2017 to evaluate some new GenBank submissions. Data on the sources of UniVec entries were included in release 10.0 (ftp://ftp.ncbi.nih.gov/pub/UniVec/). The main software is freely available at https://github.com/aaschaffer/vecscreen_plus_taxonomy. aschaffe@helix.nih.gov. Supplementary data are available at Bioinformatics online. Published by Oxford University Press 2017. This work is written by US Government employees and are in the public domain in the US.
Silage review: Foodborne pathogens in silage and their mitigation by silage additives.
Queiroz, O C M; Ogunade, I M; Weinberg, Z; Adesogan, A T
2018-05-01
Silage is one of the main ingredients in dairy cattle diets and it is an important source of nutrients, particularly energy and digestible fiber. Unlike properly made and managed silage, poorly made or contaminated silage can also be a source of pathogenic bacteria that may decrease dairy cow performance, reduce the safety and quality dairy products, and compromise animal and human health. Some of the pathogenic bacteria that are frequently or occasionally associated with silage are enterobacteria, Listeria, Bacillus spp., Clostridium spp., and Salmonella. The symptoms caused by these bacteria in dairy cows vary from mild diarrhea and reduced feed intake by Clostridium spp. to death and abortion by Listeria. Contamination of food products with pathogenic bacteria can cause losses of millions of dollars due to recalls of unsafe foods and decreases in the shelf life of dairy products. The presence of pathogenic bacteria in silage is usually due to contamination or poor management during the fermentation, aerobic exposure, or feed-out stages. Silage additives and inoculants can improve the safety of silage as well as the fermentation, nutrient recovery, quality, and shelf life. This review summarizes the literature on the main foodborne pathogens that occasionally infest silage and how additives can improve silage safety. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, Seong-Sun; Lee, Seung Hyun; Lee, Kang-Kun
2016-04-01
A research for the contamination of chlorinated ethenes such as trichloroethylene (TCE) at an industrial complex, Wonju, Korea, was carried out based on 17 rounds of groundwater quality data collection from 2009 to 2015. Remediation technologies such as soil vapor extraction, soil flushing, biostimulation, and pump-and-treat have been applied to eliminate the contaminant sources of trichloroethylene (TCE) and to prevent the migration of TCE plume from remediation target zones to groundwater discharge area like a stream. The remediation efficiency according to the remedial actions was evaluated by tracing a time-series of plume evaluation and temporal mass discharge at three transects (Source, Transect-1, Transect-2) which was assigned along the groundwater flow path. Also, based on long term monitoring data, dissolved TCE concentration and mass of residual TCE in the initial stage of disposal were estimated to evaluate the efficiency of in situ remediation. The results of temporal and spatial monitoring before remedial actions showed that a TCE plume originating from main and local source zones continues to be discharged to a stream. However, from the end of intensive remedial actions from 2012 to 2013, the aqueous concentrations of TCE plume present at and around the main source areas decreased significantly. Especially, during the intensive remediation period, the early average mass discharge (26.58 g/day) at source transect was decreased to average 4.99 g/day. Estimated initial dissolved concentration and residual mass of TCE in the initial stage of disposal decreased rapidly after an intensive remedial action in 2013 and it is expected to be continuously decreased from the end of remedial actions to 2020. This study demonstrates that long term monitoring data are useful in assessing the effectiveness of remedial actions at chlorinated ethenes contaminated site. Acknowledgements This project is supported by the Korea Ministry of Environment under "The GAIA Project (173-092-009)"and "R&D Project on Environmental Management of Geologic CO2 storage" from the KEITI (Project number:2014001810003).
Alberti, Luca; Colombo, Loris; Formentin, Giovanni
2018-04-15
The Lombardy Region in Italy is one of the most urbanized and industrialized areas in Europe. The presence of countless sources of groundwater pollution is therefore a matter of environmental concern. The sources of groundwater contamination can be classified into two different categories: 1) Point Sources (PS), which correspond to areas releasing plumes of high concentrations (i.e. hot-spots) and 2) Multiple-Point Sources (MPS) consisting in a series of unidentifiable small sources clustered within large areas, generating an anthropogenic diffuse contamination. The latter category frequently predominates in European Functional Urban Areas (FUA) and cannot be managed through standard remediation techniques, mainly because detecting the many different source areas releasing small contaminant mass in groundwater is unfeasible. A specific legislative action has been recently enacted at Regional level (DGR IX/3510-2012), in order to identify areas prone to anthropogenic diffuse pollution and their level of contamination. With a view to defining a management plan, it is necessary to find where MPS are most likely positioned. This paper describes a methodology devised to identify the areas with the highest likelihood to host potential MPS. A groundwater flow model was implemented for a pilot area located in the Milan FUA and through the PEST code, a Null-Space Monte Carlo method was applied in order to generate a suite of several hundred hydraulic conductivity field realizations, each maintaining the model in a calibrated state and each consistent with the modelers' expert-knowledge. Thereafter, the MODPATH code was applied to generate back-traced advective flowpaths for each of the models built using the conductivity field realizations. Maps were then created displaying the number of backtracked particles that crossed each model cell in each stochastic calibrated model. The result is considered to be representative of the FUAs areas with the highest likelihood to host MPS responsible for diffuse contamination. Copyright © 2017 Elsevier B.V. All rights reserved.
Aquifer susceptibility to perchlorate contamination in a highly urbanized environment
Woolfenden, Linda R.; Trefly, Michael G.
2007-01-01
Perchlorate contamination from anthropogenic sources has been released into the Rialto-Colton, California, USA, groundwater flow system since the 1940s during its production, distribution, storage, and use. Preliminary analysis of lithological, geophysical, and water-chemistry data provided new understanding of the pathways of perchlorate migration that aid in assessing the susceptibility of drinking-water supplies to contamination within the Rialto-Colton basin. Vertical migration of perchlorate into the main water-producing aquifers is restricted by an areally extensive old soil surface; however, perchlorate data indicate contamination below this soil surface. Possible pathways for the downward migration of the contaminated water include wellbore flow and discontinuities in the old soil surface. Horizontal migration of perchlorate is influenced by lithology and faults within the basin. The basin fill is a heterogeneous mixture of boulders, gravel, sand, silt, and clay, and internal faults may restrict perchlorate migration in some areas.
Sources and remediation techniques for mercury contaminated soil.
Xu, Jingying; Bravo, Andrea Garcia; Lagerkvist, Anders; Bertilsson, Stefan; Sjöblom, Rolf; Kumpiene, Jurate
2015-01-01
Mercury (Hg) in soils has increased by a factor of 3 to 10 in recent times mainly due to combustion of fossil fuels combined with long-range atmospheric transport processes. Other sources as chlor-alkali plants, gold mining and cement production can also be significant, at least locally. This paper summarizes the natural and anthropogenic sources that have contributed to the increase of Hg concentration in soil and reviews major remediation techniques and their applications to control soil Hg contamination. The focus is on soil washing, stabilisation/solidification, thermal treatment and biological techniques; but also the factors that influence Hg mobilisation in soil and therefore are crucial for evaluating and optimizing remediation techniques are discussed. Further research on bioremediation is encouraged and future study should focus on the implementation of different remediation techniques under field conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
THE IMPORTANCE OF EMISSIONS SPECIATION TO THE ATMOSPHERIC TRANSPORT AND DEPOSITION OF MERCURY
The atmospheric pathway of the global mercury cycle is believed to be the main source of mercury contamination to aquatic eco-systems throughout the United States and in most other nations where direct disposal of mercury to water has been largely eliminated. Although the spatia...
USDA-ARS?s Scientific Manuscript database
Non-typhoidal Salmonella are the main source of pathogenic bacterial contamination in the poultry industry. Recently, Salmonella enterica serovar Kentucky has been recognized as the most prominent serovar on carcasses in poultry processing plants. Previous studies showed that flagella are one of the...
Fumonisin biomarkers in maize eaters and implications for human disease
USDA-ARS?s Scientific Manuscript database
Maize is the predominant food source contaminated by fumonisins and this has particular health risks for communities consuming maize as a staple diet. The main biochemical effect of fumonisins is the inhibition of ceramide biosynthesis causing an increase in sphingoid bases and sphingoid base 1-pho...
USDA-ARS?s Scientific Manuscript database
Nontyphoidal Salmonella strains are the main source of pathogenic bacterial contamination in the poultry industry. Recently, Salmonella enterica serovar Kentucky has been recognized as the most prominent serovar on carcasses in poultry-processing plants. Previous studies showed that flagella are one...
Due to their extensive use, silver nanoparticles (Ag NPs) are likely to occur in drinking water sources. Once released into the environment they are considered an emerging contaminant in water and wastewater. The main objective of this research is to investigate the removal of di...
Inactivation of Salmonella in Organic Soil by Cinnamaldehyde, Eugenol, Ecotrol, and Sporan
USDA-ARS?s Scientific Manuscript database
Salmonella can survive in soil for months to years; consequently, soil can be a preharvest source of contamination of produce. Elimination of Salmonella with natural products and processes such as essential oils is important to prevent infection among consumers. Essential oils have been mainly eval...
Juracek, K E; Drake, K D
2016-10-01
Historical mining activity (1850-1970) in the now inactive Tri-State Mining District provided an ongoing source of lead and zinc to the environment including the US Environmental Protection Agency Superfund site located in Cherokee County, southeast Kansas, USA. The resultant contamination adversely affected biota and caused human health problems and risks. Remediation in the Superfund site requires an understanding of the magnitude and extent of contamination. To provide some of the required information, a series of sediment and soil investigations were conducted in and near the Superfund site to characterize lead and zinc contamination in the aquatic and floodplain environments along the main-stem Spring River and its major tributaries. In the Superfund site, the most pronounced lead and zinc contamination, with concentrations that far exceed sediment quality guidelines associated with potential adverse biological effects, was measured for streambed sediments and floodplain soils located within or downstream from the most intensive mining-affected areas. Tributary streambeds and floodplains in affected areas are heavily contaminated with some sites having lead and zinc concentrations that are an order of magnitude (or more) greater than the sediment quality guidelines. For the main-stem Spring River, the streambed is contaminated but the floodplain is mostly uncontaminated. Measured lead and zinc concentrations in streambed sediments, lakebed sediments, and floodplain soils documented a persistence of the post-mining contamination on a decadal timescale. These results provide a basis for the prioritization, development, and implementation of plans to remediate contamination in the affected aquatic and floodplain environments within the Superfund site.
NASA Astrophysics Data System (ADS)
Juracek, K. E.; Drake, K. D.
2016-10-01
Historical mining activity (1850-1970) in the now inactive Tri-State Mining District provided an ongoing source of lead and zinc to the environment including the US Environmental Protection Agency Superfund site located in Cherokee County, southeast Kansas, USA. The resultant contamination adversely affected biota and caused human health problems and risks. Remediation in the Superfund site requires an understanding of the magnitude and extent of contamination. To provide some of the required information, a series of sediment and soil investigations were conducted in and near the Superfund site to characterize lead and zinc contamination in the aquatic and floodplain environments along the main-stem Spring River and its major tributaries. In the Superfund site, the most pronounced lead and zinc contamination, with concentrations that far exceed sediment quality guidelines associated with potential adverse biological effects, was measured for streambed sediments and floodplain soils located within or downstream from the most intensive mining-affected areas. Tributary streambeds and floodplains in affected areas are heavily contaminated with some sites having lead and zinc concentrations that are an order of magnitude (or more) greater than the sediment quality guidelines. For the main-stem Spring River, the streambed is contaminated but the floodplain is mostly uncontaminated. Measured lead and zinc concentrations in streambed sediments, lakebed sediments, and floodplain soils documented a persistence of the post-mining contamination on a decadal timescale. These results provide a basis for the prioritization, development, and implementation of plans to remediate contamination in the affected aquatic and floodplain environments within the Superfund site.
Juracek, Kyle E.; Drake, K. D.
2016-01-01
Historical mining activity (1850–1970) in the now inactive Tri-State Mining District provided an ongoing source of lead and zinc to the environment including the US Environmental Protection Agency Superfund site located in Cherokee County, southeast Kansas, USA. The resultant contamination adversely affected biota and caused human health problems and risks. Remediation in the Superfund site requires an understanding of the magnitude and extent of contamination. To provide some of the required information, a series of sediment and soil investigations were conducted in and near the Superfund site to characterize lead and zinc contamination in the aquatic and floodplain environments along the main-stem Spring River and its major tributaries. In the Superfund site, the most pronounced lead and zinc contamination, with concentrations that far exceed sediment quality guidelines associated with potential adverse biological effects, was measured for streambed sediments and floodplain soils located within or downstream from the most intensive mining-affected areas. Tributary streambeds and floodplains in affected areas are heavily contaminated with some sites having lead and zinc concentrations that are an order of magnitude (or more) greater than the sediment quality guidelines. For the main-stem Spring River, the streambed is contaminated but the floodplain is mostly uncontaminated. Measured lead and zinc concentrations in streambed sediments, lakebed sediments, and floodplain soils documented a persistence of the post-mining contamination on a decadal timescale. These results provide a basis for the prioritization, development, and implementation of plans to remediate contamination in the affected aquatic and floodplain environments within the Superfund site.
Tracking the Sources of Fecal Contaminations: an Interdisciplinary Toolbox
NASA Astrophysics Data System (ADS)
Jeanneau, L.; Jarde, E.; Derrien, M.; Gruau, G.; Solecki, O.; Pourcher, A.; Marti, R.; Wéry, N.; Caprais, M.; Gourmelon, M.; Mieszkin, S.; Jadas-Hécart, A.; Communal, P.
2011-12-01
Fecal contaminations of inland and coastal waters induce risks to human health and economic losses. In order to improve water management, it is necessary to identify the sources of contamination, which implies the development of specific markers. In order to be considered as a valuable host-specific marker, one must (1) be source specific, (2) occur in high concentration in polluting matrices, (3) exhibit extra-intestinal persistence similar to fecal indicator bacteria (FIB) and (4) not grow out of the host. However, up to day no single marker has fulfilled all those criteria. Thus, it has been suggested to use a combination of markers in order to generate more reliable data. This has lead to the development of a Microbial Source Tracking (MST) toolbox including FIB and microbial and chemical specific markers in order to differentiate between human, bovine and porcine fecal contaminations. Those specific markers are, (1) genotypes of F-specific RNA bacteriophages, (2) bacterial markers belonging to the Bacteroidales (human-specific HF183, ruminant-specific Rum-2-Bac and pig-specific Pig-2-Bac markers), to the Bifidobacterium (Bifidobacterium adolescentis) and pig-specific Lactobacillus amylovorus, (3) fecal stanols and (4) caffeine. The development of this MST toolbox was composed of four steps, from the molecular scale to the watershed scale. At the molecular scale, the specificity and the concentration of those markers were studied in cattle and pig manures and in waste water treatment plant (WWTP) effluents and influents. At the microcosm scale, the transfer of bovine and porcine specific markers was investigated by rainfall simulations on agricultural plots amended with cattle or pig manure. Moreover, the relative persistence of FIB and human, porcine and bovine specific markers was investigated in freshwater and seawater microcosms inoculated with a WWTP influent, pig manure and cow manure. Finally, the aforementioned MST toolbox has been validated at the catchment scale by analysing three rivers impacted by fecal contaminations. The development and the application of this MST toolbox have highlighted (1) the specificity of the aforementioned markers, (2) their conservative transfer from soils to rivers and (3) their difference of persistence in seawater and in freshwater. Those results provide useful data in order to identify and manage fecal contaminations of superficial waters. In the case of single source contaminations, the markers provide coherent information: (1) the bovine or porcine markers were not detected in a river impacted by a WWTP effluent; (2) the occurrence of Rum-2-Bac and the distribution of stanols indicated a bovine contamination in a river flowing through cattle pasture. In the case of multiple source contaminations, the combination of markers is necessary to identify the main sources and the statistical treatment of the distribution of stanols could provide an approximation of their proportion.
NASA Astrophysics Data System (ADS)
Grassi, Sergio; Amadori, Michele; Pennisi, Maddalena; Cortecci, Gianni
2014-02-01
A study on the upper reaches of the Cecina River (Tuscany-Central Italy) and the associated unconfined aquifer was carried out from September 2007 to August 2008. The study aimed to identify the sources of B and As contamination in stream water and groundwater, and record contamination levels. The study area, which comprises a northern sector of the Larderello geothermal field, has in time been contaminated by both surface geothermal manifestations (now thought to have ceased) and anthropogenic activity. The latter refers to the disposal of spent geothermal fluids and borogypsum sludge, by-product of colemanite treatment with sulphuric acid, which until the late '70s were discharged in the Larderello area into the Possera Creek, a southern tributary of the Cecina River. A network of 22 stream sections and 9 observation wells was defined. Stream discharge (16 sites), well water levels and chemical concentrations (mainly B, As and anions) in water were measured monthly. Together, discharge and chemical concentrations were used to define the source of contamination by calculating the contaminant load in successive sections of the river network. Due to the stream's intermittent flow, only 50% of the performed monthly surveys could be used in comparing the contaminant load at different sections. Both contaminant loads (referring to median to high flow conditions) and chemical concentrations suggest that B mainly derives from the leakage of a concentrated Na-SO4 water rich in B, SO4, NO3 likely from a small aquitard located in the Larderello area. The B load from this area is about 2 kg/h and increases to approximately 2.7 kg/h in the final section of the study area, likely due to contribution of groundwater. As mainly derives from dissolution and adsorption-desorption processes involving water and As-rich stream bed sediments. Of the total 15 g/h As load measured at the end section, only about 3 g/h derive from the Larderello area. Further to stream bed, As-rich sediments are also found at shallow depths in the area of the Cecina-Possera confluence and in the upper part of the aquifer skeleton. These sediments contribute to increase up to about 76 μg/L the As content of groundwater of the Cecina-Possera confluence area which, draining water from the Possera Creek, represents the aquifer root zone. This zone determines the B and As contents of groundwater which flows more or less parallel to the Cecina River, undergoes progressive dilution during its westward flow and locally supplies the same river. Most of the study stream water and groundwater in the study area cannot be exploited because mean B and As contents (respectively in the range 1.2-15.6 mg/L and 1.1-75.9 μg/L), are often well above the permissible limits for drinking water (1 mg/L for B, 10 μg/L for As).
Flynt, Elizabeth; Dupuy, Aubry; Kennedy, Charles; Bennett, Shanda
2006-09-01
The rapid detection of contaminants in our nation's drinking water has become a top homeland security priority in this time of increased national vigilance. Real-time monitoring of drinking water for deliberate or accidental contamination is key to national security. One method that can be employed for the rapid screening of pollutants in water is solid-phase microextraction (SPME). SPME is a rapid, sensitive, solvent-free system that can be used to screen for contaminants that have been accidentally or intentionally introduced into a water system. A method using SPME has been developed and optimized for the detection of seven organophosphate pesticides in drinking water treatment facility source waters. The method is tested in source waters for drinking water treatment facilities in Mississippi and Alabama. Water is collected from a deepwater well at Stennis Space Center (SSC), MS, the drinking water source for SSC, and from the Converse Reservoir, the main drinking water supply for Mobile, AL. Also tested are samples of water collected from the Mobile Alabama Water and Sewer System drinking water treatment plant prior to chlorination. The method limits of detection for the seven organophosphates were comparable to those described in several Environmental Protection Agency standard methods. They range from 0.25 to 0.94 microg/L.
Nonpoint source contamination of the Mississippi river and its tributaries by herbicides
Pereira, W.E.; Hostettler, F.D.
1993-01-01
A study of the Mississippi River and its tributaries during July-August 1991, October-November 1991, and April-May 1992 has indicated that the entire navigable reach of the river is contaminated with a complex mixture of agrochemicals and their transformation products derived from nonpoint sources. Twenty-three compounds were identified, including triazine, chloroacetanilide, thiocarbamate, phenylurea, pyridazine, and organophosphorus pesticides. The upper and middle Mississippi River Basin farm lands are major sources of herbicides applied to corn, soybeans, and sorghum. Farm lands in the lower Mississippi River Basin are a major source of rice and cotton herbicides. Inputs of the five major herbicides atrazine, cyanazine, metolachlor, alachlor, and simazine to the Mississippi River are mainly from the Minnesota, Des Moines, Missouri, and Ohio Rivers. Ratios of desethylatrazine/atrazine potentially are useful indicators of groundwater and surface water interactions in the Mississippi River. These ratios suggested that during baseflow conditions, there is a significant groundwater contribution to the river. The Mississippi River thus serves as a drainage channel for pesticide-contaminated surface and groundwater from the midwestern United States. Conservative estimates of annual mass transport indicated that about 160 t of atrazine, 71 t of cyanazine, 56 t of metolachlor, and 18 t of alachlor were discharged into the Gulf of Mexico in 1991.
Tolosa, I; Mesa, M; Alonso-Hernandez, C M
2014-09-15
Analyses of faecal steroids in coastal sediments from Cienfuegos Bay Cuba indicate chronic sewage contamination at the main outfalls from the city, where concentrations of coprostanol up to 5400ngg(-)(1) (dry wt) were measured. In contrast, steroid concentrations and compositions from sites from the south part of the Bay are characteristic of uncontaminated sewage environments. The levels of coprostanol in the Cienfuegos sediments compares to the lower to mid-range of concentrations reported for coastal sediments on a world-wide basis, with sedimentary levels markedly below those previously reported for heavily impacted sites. This study delivers baseline data for further investigation of the effectiveness of the proposed sewerage plan promoted by the GEF project in Cienfuegos. Investigations on the correlations between faecal steroids and other organic contaminants confirmed that the major source of petroleum hydrocarbons within the bay was associated with the sewage effluents from the Cienfuegos city. Copyright © 2014 Elsevier Ltd. All rights reserved.
Baseline evaluation of sediment contamination in the shallow coastal areas of Saudi Arabian Red Sea.
Ruiz-Compean, Pedro; Ellis, Joanne; Cúrdia, João; Payumo, Richard; Langner, Ute; Jones, Burton; Carvalho, Susana
2017-10-15
Despite the growing recognition of the importance of water and sediment quality there is still limited information on contamination levels in many regions globally including the Red Sea. This study provides a comprehensive assessment of three classes of contaminants (Polycyclic Aromatic Hydrocarbons - PAH; metals; plastics) in coastal sediments along the Saudi Arabian Red Sea mainly collected using grabs. Background concentrations are provided for metals in the region. Concentrations of metals and PAH were generally low in comparison to international guidelines. A clear relationship between the concentration of metals and anthropogenic sources was not always apparent and dust and vegetation may be relevant players in the region. Microplastic items (mainly polyethylene) were abundant (reaching up to 1gm -2 and 160piecesm -2 ) and in general associated with areas of high human activity. This study provides critical information for future monitoring and the development of national policies within the Red Sea region. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pinfold, J. V.
1990-01-01
Most villagers in north-east Thailand carry water to their homes and store it in separate containers depending on its subsequent use. In one village, information on water use was collated with the bacteriological quality of stored water, water sources and fingertip-rinses. Stored water quality was a function of water-related activities rather than quality at source (P less than 0.0001). Specifically water used for toilet, washing dishes and cooking-related activities was much more contaminated with faecal bacteria than that used for drinking and cooking. Salmonella spp. was significantly more common in water used for washing dishes than drinking (P less than 0.05). Escherichia coli contamination of fingertip-rinses was strongly associated with the individual's activity prior to testing (P less than 0.0001); child care, food and water-related activities produced much higher levels of fingertip contamination than others. Dirty utensils used for cooking and eating were usually left to soak and faecal bacterial growth occurred in this grossly contaminated soak-water. Cross-contamination via water handling was the main mechanism of stored water pollution. These results were used to develop a hygiene intervention study presented in a companion paper. PMID:2209740
NASA Astrophysics Data System (ADS)
Shuler, Christopher K.; El-Kadi, Aly I.; Dulai, Henrietta; Glenn, Craig R.; Fackrell, Joseph
2017-12-01
This study presents a modeling framework for quantifying human impacts and for partitioning the sources of contamination related to water quality in the mixed-use landscape of a small tropical volcanic island. On Tutuila, the main island of American Samoa, production wells in the most populated region (the Tafuna-Leone Plain) produce most of the island's drinking water. However, much of this water has been deemed unsafe to drink since 2009. Tutuila has three predominant anthropogenic non-point-groundwater-pollution sources of concern: on-site disposal systems (OSDS), agricultural chemicals, and pig manure. These sources are broadly distributed throughout the landscape and are located near many drinking-water wells. Water quality analyses show a link between elevated levels of total dissolved groundwater nitrogen (TN) and areas with high non-point-source pollution density, suggesting that TN can be used as a tracer of groundwater contamination from these sources. The modeling framework used in this study integrates land-use information, hydrological data, and water quality analyses with nitrogen loading and transport models. The approach utilizes a numerical groundwater flow model, a nitrogen-loading model, and a multi-species contaminant transport model. Nitrogen from each source is modeled as an independent component in order to trace the impact from individual land-use activities. Model results are calibrated and validated with dissolved groundwater TN concentrations and inorganic δ15N values, respectively. Results indicate that OSDS contribute significantly more TN to Tutuila's aquifers than other sources, and thus should be prioritized in future water-quality management efforts.
Suzdalev, Sergej; Gulbinskas, Saulius; Blažauskas, Nerijus
2015-02-01
The current research paper presents the results of contamination by tributyltin (TBT) compounds in Klaipėda Port, which is situated in a unique marine-lagoon water interaction zone. One hundred fifty-four surface sediment samples have been taken along the whole transition path from lagoon to the sea and analysed in order to quantify the contamination rate in specific environment of high anthropogenic pressure. The detected TBT concentrations ranged from 1 to 5,200 ng Sn g(-1) of dry weight of sediment. The back-trace of horizontal distribution of TBT-contaminated sediments show obvious increase of tributyltin concentrations closer to port areas dealing with ship repair and places of dry-docking facilities. This is a clear indication that those activities are the main source of contamination in the study area. The estimated correlation of TBT concentration in sediments with total organic carbon and the amount of fine fraction (<0.063 mm) was significant for most of the stations. The TBT concentration in those sites varies from 1 to 100 ng Sn g(-1). This fact indicates that the most intensive accumulation of tributyltin is related to potential contamination source areas (ship repairing, dockyards) due to direct input of hazardous substances into the water.
Salgueiro-González, N; Concha-Graña, E; Turnes-Carou, I; Muniategui-Lorenzo, S; López-Mahía, P; Prada-Rodríguez, D
2012-11-15
Blank contamination is a notorious problem in the ultratrace analysis of alkylphenols and bisphenol A. The achievement of low detection limits is complicated due to the high background signals. Furthermore, overestimations and underestimations in the analytical results can occur when blank levels are not stable. Thus, a review of sources of blank contamination in this type of analysis was carried out. Several sources of contamination were identified and useful guidelines are proposed for the determination of these compounds in water samples by liquid chromatography coupled with mass spectrometry. The system contamination was maintained below 0.09 ng (reagent blank) for all compounds and below 0.003 μg L(-1) (procedure blank). The main improvement was obtained by using LC-MS grade solvent in the mobile phase and PTFE syringe filters for the filtration of the sample extracts. Sample handling aspects such as filtration and storage of the water samples were also considered. The filtration of the samples should be avoided because both contamination and adsorption problems were observed when different kinds of filters were assayed. The refrigerated storage of water samples should be limited to 5 days (without addition of methanol) or 8 days (with 5% methanol). Copyright © 2012 Elsevier B.V. All rights reserved.
Mass discharge assessment at a brominated DNAPL site: Effects of known DNAPL source mass removal
NASA Astrophysics Data System (ADS)
Johnston, C. D.; Davis, G. B.; Bastow, T. P.; Woodbury, R. J.; Rao, P. S. C.; Annable, M. D.; Rhodes, S.
2014-08-01
Management and closure of contaminated sites is increasingly being proposed on the basis of mass flux of dissolved contaminants in groundwater. Better understanding of the links between source mass removal and contaminant mass fluxes in groundwater would allow greater acceptance of this metric in dealing with contaminated sites. Our objectives here were to show how measurements of the distribution of contaminant mass flux and the overall mass discharge emanating from the source under undisturbed groundwater conditions could be related to the processes and extent of source mass depletion. In addition, these estimates of mass discharge were sought in the application of agreed remediation targets set in terms of pumped groundwater quality from offsite wells. Results are reported from field studies conducted over a 5-year period at a brominated DNAPL (tetrabromoethane, TBA; and tribromoethene, TriBE) site located in suburban Perth, Western Australia. Groundwater fluxes (qw; L3/L2/T) and mass fluxes (Jc; M/L2/T) of dissolved brominated compounds were simultaneously estimated by deploying Passive Flux Meters (PFMs) in wells in a heterogeneous layered aquifer. PFMs were deployed in control plane (CP) wells immediately down-gradient of the source zone, before (2006) and after (2011) 69-85% of the source mass was removed, mainly by groundwater pumping from the source zone. The high-resolution (26-cm depth interval) measures of qw and Jc along the source CP allowed investigation of the DNAPL source-zone architecture and impacts of source mass removal. Comparable estimates of total mass discharge (MD; M/T) across the source zone CP reduced from 104 g day- 1 to 24-31 g day- 1 (70-77% reductions). Importantly, this mass discharge reduction was consistent with the estimated proportion of source mass remaining at the site (15-31%). That is, a linear relationship between mass discharge and source mass is suggested. The spatial detail of groundwater and mass flux distributions also provided further evidence of the source zone architecture and DNAPL mass depletion processes. This was especially apparent in different mass-depletion rates from distinct parts of the CP. High mass fluxes and groundwater fluxes located near the base of the aquifer dominated in terms of the dissolved mass flux in the profile, although not in terms of concentrations. Reductions observed in Jc and MD were used to better target future remedial efforts. Integration of the observations from the PFM deployments and the source mass depletion provided a basis for establishing flux-based management criteria for the site.
Mass discharge assessment at a brominated DNAPL site: Effects of known DNAPL source mass removal.
Johnston, C D; Davis, G B; Bastow, T P; Woodbury, R J; Rao, P S C; Annable, M D; Rhodes, S
2014-08-01
Management and closure of contaminated sites is increasingly being proposed on the basis of mass flux of dissolved contaminants in groundwater. Better understanding of the links between source mass removal and contaminant mass fluxes in groundwater would allow greater acceptance of this metric in dealing with contaminated sites. Our objectives here were to show how measurements of the distribution of contaminant mass flux and the overall mass discharge emanating from the source under undisturbed groundwater conditions could be related to the processes and extent of source mass depletion. In addition, these estimates of mass discharge were sought in the application of agreed remediation targets set in terms of pumped groundwater quality from offsite wells. Results are reported from field studies conducted over a 5-year period at a brominated DNAPL (tetrabromoethane, TBA; and tribromoethene, TriBE) site located in suburban Perth, Western Australia. Groundwater fluxes (qw; L(3)/L(2)/T) and mass fluxes (Jc; M/L(2)/T) of dissolved brominated compounds were simultaneously estimated by deploying Passive Flux Meters (PFMs) in wells in a heterogeneous layered aquifer. PFMs were deployed in control plane (CP) wells immediately down-gradient of the source zone, before (2006) and after (2011) 69-85% of the source mass was removed, mainly by groundwater pumping from the source zone. The high-resolution (26-cm depth interval) measures of qw and Jc along the source CP allowed investigation of the DNAPL source-zone architecture and impacts of source mass removal. Comparable estimates of total mass discharge (MD; M/T) across the source zone CP reduced from 104gday(-1) to 24-31gday(-1) (70-77% reductions). Importantly, this mass discharge reduction was consistent with the estimated proportion of source mass remaining at the site (15-31%). That is, a linear relationship between mass discharge and source mass is suggested. The spatial detail of groundwater and mass flux distributions also provided further evidence of the source zone architecture and DNAPL mass depletion processes. This was especially apparent in different mass-depletion rates from distinct parts of the CP. High mass fluxes and groundwater fluxes located near the base of the aquifer dominated in terms of the dissolved mass flux in the profile, although not in terms of concentrations. Reductions observed in Jc and MD were used to better target future remedial efforts. Integration of the observations from the PFM deployments and the source mass depletion provided a basis for establishing flux-based management criteria for the site. Copyright © 2013 Elsevier B.V. All rights reserved.
Moranda, Arianna
2017-01-01
A procedure for assessing harbour pollution by heavy metals and PAH and the possible sources of contamination is proposed. The procedure is based on a ratio-matching method applied to the results of principal component analysis (PCA), and it allows discrimination between point and nonpoint sources. The approach can be adopted when many sources of pollution can contribute in a very narrow coastal ecosystem, both internal and outside but close to the harbour, and was used to identify the possible point sources of contamination in a Mediterranean Harbour (Port of Vado, Savona, Italy). 235 sediment samples were collected in 81 sampling points during four monitoring campaigns and 28 chemicals were searched for within the collected samples. PCA of total samples allowed the assessment of 8 main possible point sources, while the refining ratio-matching identified 1 sampling point as a possible PAH source, 2 sampling points as Cd point sources, and 3 sampling points as C > 12 point sources. By a map analysis it was possible to assess two internal sources of pollution directly related to terminals activity. The study is the prosecution of a previous work aimed at assessing Savona-Vado Harbour pollution levels and suggested strategies to regulate the harbour activities. PMID:29270328
Paladino, Ombretta; Moranda, Arianna; Seyedsalehi, Mahdi
2017-01-01
A procedure for assessing harbour pollution by heavy metals and PAH and the possible sources of contamination is proposed. The procedure is based on a ratio-matching method applied to the results of principal component analysis (PCA), and it allows discrimination between point and nonpoint sources. The approach can be adopted when many sources of pollution can contribute in a very narrow coastal ecosystem, both internal and outside but close to the harbour, and was used to identify the possible point sources of contamination in a Mediterranean Harbour (Port of Vado, Savona, Italy). 235 sediment samples were collected in 81 sampling points during four monitoring campaigns and 28 chemicals were searched for within the collected samples. PCA of total samples allowed the assessment of 8 main possible point sources, while the refining ratio-matching identified 1 sampling point as a possible PAH source, 2 sampling points as Cd point sources, and 3 sampling points as C > 12 point sources. By a map analysis it was possible to assess two internal sources of pollution directly related to terminals activity. The study is the prosecution of a previous work aimed at assessing Savona-Vado Harbour pollution levels and suggested strategies to regulate the harbour activities.
Nitrate contamination risk assessment in groundwater at regional scale
NASA Astrophysics Data System (ADS)
Daniela, Ducci
2016-04-01
Nitrate groundwater contamination is widespread in the world, due to the intensive use of fertilizers, to the leaking from the sewage network and to the presence of old septic systems. This research presents a methodology for groundwater contamination risk assessment using thematic maps derived mainly from the land-use map and from statistical data available at the national institutes of statistic (especially demographic and environmental data). The potential nitrate contamination is considered as deriving from three sources: agricultural, urban and periurban. The first one is related to the use of fertilizers. For this reason the land-use map is re-classified on the basis of the crop requirements in terms of fertilizers. The urban source is the possibility of leaks from the sewage network and, consequently, is linked to the anthropogenic pressure, expressed by the population density, weighted on the basis of the mapped urbanized areas of the municipality. The periurban sources include the un-sewered areas, especially present in the periurban context, where illegal sewage connections coexist with on-site sewage disposal (cesspools, septic tanks and pit latrines). The potential nitrate contamination map is produced by overlaying the agricultural, urban and periurban maps. The map combination process is very easy, being an algebraic combination: the output values are the arithmetic average of the input values. The groundwater vulnerability to contamination can be assessed using parametric methods, like DRASTIC or easier, like AVI (that involves a limited numbers of parameters). In most of cases, previous documents produced at regional level can be used. The pollution risk map is obtained by combining the thematic maps of the potential nitrate contamination map and the groundwater contamination vulnerability map. The criterion for the linkages of the different GIS layers is very easy, corresponding to an algebraic combination. The methodology has been successfully applied in a large flat area of southern Italy, with high concentrations in NO3.
Weissmannová, Helena Doležalová; Pavlovský, Jiří
2017-11-07
This article provides the assessment of heavy metal soil pollution with using the calculation of various pollution indices and contains also summarization of the sources of heavy metal soil pollution. Twenty described indices of the assessment of soil pollution consist of two groups: single indices and total complex indices of pollution or contamination with relevant classes of pollution. This minireview provides also the classification of pollution indices in terms of the complex assessment of soil quality. In addition, based on the comparison of metal concentrations in soil-selected sites of the world and used indices of pollution or contamination in soils, the concentration of heavy metal in contaminated soils varied widely, and pollution indices confirmed the significant contribution of soil pollution from anthropogenic activities mainly in urban and industrial areas.
Emerging technologies in bioremediation: constraints and opportunities.
Rayu, Smriti; Karpouzas, Dimitrios G; Singh, Brajesh K
2012-11-01
Intensive industrialisation, inadequate disposal, large-scale manufacturing activities and leaks of organic compounds have resulted in long-term persistent sources of contamination of soil and groundwater. This is a major environmental, policy and health issue because of adverse effects of contaminants on humans and ecosystems. Current technologies for remediation of contaminated sites include chemical and physical remediation, incineration and bioremediation. With recent advancements, bioremediation offers an environmentally friendly, economically viable and socially acceptable option to remove contaminants from the environment. Three main approaches of bioremediation include use of microbes, plants and enzymatic remediation. All three approaches have been used with some success but are limited by various confounding factors. In this paper, we provide a brief overview on the approaches, their limitations and highlights emerging technologies that have potential to revolutionise the enzymatic and plant-based bioremediation approaches.
Jardine, Timothy D; Kidd, Karen A; Rasmussen, Joseph B
2012-04-01
The relative contribution of aquatic vs. terrestrial organic matter to the diet of consumers in fluvial environments and its effects on bioaccumulation of contaminants such as mercury (Hg) remain poorly understood. We used stable isotopes of carbon and nitrogen in a gradient approach (consumer isotope ratio vs. periphyton isotope ratio) across temperate streams that range in their pH to assess consumer reliance on aquatic (periphyton) vs. terrestrial (riparian vegetation) organic matter, and whether Hg concentrations in fish and their prey were related to these energy sources. Taxa varied in their use of the two sources, with grazing mayflies (Heptageniidae), predatory stoneflies (Perlidae), one species of water strider (Metrobates hesperius), and the fish blacknose dace (Rhinichthys atratulus) showing strong connections to aquatic sources, while Aquarius remigis water striders and brook trout (Salvelinus fontinalis) showed a weak link to in-stream production. The aquatic food source for consumers, periphyton, had higher Hg concentrations in low-pH waters, and pH was a much better predictor of Hg in predatory invertebrates that relied mainly on this food source vs. those that used terrestrial C. These findings suggest that stream biota relying mainly on dietary inputs from the riparian zone will be partially insulated from the effects of water chemistry on Hg availability. This has implications for the development of a whole-system understanding of nutrient and material cycling in streams, the choice of taxa in contaminant monitoring studies, and in understanding the fate of Hg in stream food webs.
Li, Xiaojie; Rao, Zhu; Yang, Zhipeng; Guo, Xiaochen; Huang, Yi; Zhang, Jing; Guo, Feng; Liu, Chen
2015-12-18
The status of organic pollution in groundwater in eastern China along the Grand Canal from Hangzhou to Beijing was evaluated. Forty-two semi-volatile organic contaminants were analyzed, including 16 polycyclic aromatic hydrocarbons (PAHs), seven polychlorinated biphenyls (PCBs), 12 organochlorine pesticides (OCPs) and seven organophosphorus pesticides (OPPs). Among the detected contaminants, PAHs were the most widespread compounds. One PCB and six OCPs were detected in the groundwater samples, but none of the target OPPs was detected. The total concentration of the 16 PAHs ranged from 0.21 to 1006 ng/L, among which phenanthrene (271 ng/L) and fluoranthene (233 ng/L) were present at very high concentrations and naphthalene (32 positive detections in 50 samples) and fluorene (28 detections in 50 samples) were the most frequently detected. Benzo[a]pyrene equivalents indicated a high environmental risk related to PAHs in a few groundwater samples. To identify the possible sources of PAHs, three concentration ratios, low molecular weight PAHs/high molecular weight PAHs, anthracene/(anthracene + phenanthrene) and fluoranthene/(fluoranthene + pyrene), were determined, that indicated that the PAHs mainly originated from mixed sources: pyrolytic and petrogenic sources with different ratios at different sites.
Li, Xiaojie; Rao, Zhu; Yang, Zhipeng; Guo, Xiaochen; Huang, Yi; Zhang, Jing; Guo, Feng; Liu, Chen
2015-01-01
The status of organic pollution in groundwater in eastern China along the Grand Canal from Hangzhou to Beijing was evaluated. Forty-two semi-volatile organic contaminants were analyzed, including 16 polycyclic aromatic hydrocarbons (PAHs), seven polychlorinated biphenyls (PCBs), 12 organochlorine pesticides (OCPs) and seven organophosphorus pesticides (OPPs). Among the detected contaminants, PAHs were the most widespread compounds. One PCB and six OCPs were detected in the groundwater samples, but none of the target OPPs was detected. The total concentration of the 16 PAHs ranged from 0.21 to 1006 ng/L, among which phenanthrene (271 ng/L) and fluoranthene (233 ng/L) were present at very high concentrations and naphthalene (32 positive detections in 50 samples) and fluorene (28 detections in 50 samples) were the most frequently detected. Benzo[a]pyrene equivalents indicated a high environmental risk related to PAHs in a few groundwater samples. To identify the possible sources of PAHs, three concentration ratios, low molecular weight PAHs/high molecular weight PAHs, anthracene/(anthracene + phenanthrene) and fluoranthene/(fluoranthene + pyrene), were determined, that indicated that the PAHs mainly originated from mixed sources: pyrolytic and petrogenic sources with different ratios at different sites. PMID:26694442
Julien, Maxime; Nun, Pierrick; Höhener, Patrick; Parinet, Julien; Robins, Richard J; Remaud, Gérald S
2016-01-15
In forensic environmental investigations the main issue concerns the inference of the original source of the pollutant for determining the liable party. Isotope measurements in geochemistry, combined with complimentary techniques for contaminant identification, have contributed significantly to source determination at polluted sites. In this work we have determined the intramolecular (13)C profiles of several molecules well-known as pollutants. By giving additional analytical parameters, position-specific isotope analysis performed by isotope ratio monitoring by (13)C nuclear magnetic resonance (irm-(13)C NMR) spectrometry gives new information to help in answering the major question: what is the origin of the detected contaminant? We have shown that isotope profiling of the core of a molecule reveals both the raw materials and the process used in its manufacture. It also can reveal processes occurring between the contamination site 'source' and the sampling site. Thus, irm-(13)C NMR is shown to be a very good complement to compound-specific isotope analysis currently performed by mass spectrometry for assessing polluted sites involving substantial spills of pollutant. Copyright © 2015 Elsevier B.V. All rights reserved.
Peng, Feng-Jiao; Pan, Chang-Gui; Zhang, Min; Zhang, Nai-Sheng; Windfeld, Ronja; Salvito, Daniel; Selck, Henriette; Van den Brink, Paul J; Ying, Guang-Guo
2017-07-01
Urban rivers may receive contamination from various sources including point sources like domestic sewage and nonpoint sources (e.g., runoff), resulting in contamination with various chemicals. This study investigated the occurrence of emerging organic contaminants (3 endocrine disrupting compounds (EDCs), and 17 pharmaceuticals and personal care products (PPCPs)) in six urban rivers of a representative subtropical city, Guangzhou (southern China). Our results showed that EDCs and personal care products were frequently detected in the water phase and sediment phase. 4-nonylphenol (4-NP) was the most predominant compound with the highest concentration of 5050ng/L in the water phase and 14,400ng/g dry weight (dw) in the sediment. Generally, higher total concentrations of EDCs and PPCPs were detected in the four urban streams compared to the main stream Zhujiang River and the Liuxi River at the suburb area. A screening-level risk assessment showed that 4-nonylphenol and triclosan (TCS) pose potential risks to aquatic organisms in most sampling sites. For individual taxa, 4-NP may pose risks to various groups of aquatic organisms, while TCS only might pose high risks to algae. Higher contamination of EDCs and PPCPs was observed in rivers in urban area; 4-nonylphenol and triclosan showed RQs>1 in >70% of the reported area. Copyright © 2017 Elsevier B.V. All rights reserved.
Modeling of coastal water contamination in Fortaleza (Northeastern Brazil).
Pereira, S P; Rosman, P C C; Alvarez, C; Schetini, C A F; Souza, R O; Vieira, R H S F
2015-01-01
An important tool in environmental management projects and studies due to the complexity of environmental systems, environmental modeling makes it possible to integrate many variables and processes, thereby providing a dynamic view of systems. In this study the bacteriological quality of the coastal waters of Fortaleza (a state capital in Northeastern Brazil) was modeled considering multiple contamination sources. Using the software SisBaHiA, the dispersion of thermotolerant coliforms and Escherichia coli from three sources of contamination (local rivers, storm drains and submarine outfall) was analyzed. The models took into account variations in bacterial decay due to solar radiation and other environmental factors. Fecal pollution discharged from rivers and storm drains is transported westward by coastal currents, contaminating strips of beach water to the left of each storm drain or river. Exception to this condition only occurs on beaches protected by the breakwater of the harbor, where counterclockwise vortexes reverse this behavior. The results of the models were consistent with field measurements taken during the dry and the rainy season. Our results show that the submarine outfall plume was over 2 km from the nearest beach. The storm drains and the Maceió stream are the main factors responsible for the poor water quality on the waterfront of Fortaleza. The depollution of these sources would generate considerable social, health and economic gains for the region.
Johnson, L E; Bishop, T F A; Birch, G F
2017-11-15
The human population is increasing globally and land use is changing to accommodate for this growth. Soils within urban areas require closer attention as the higher population density increases the chance of human exposure to urban contaminants. One such example of an urban area undergoing an increase in population density is Sydney, Australia. The city also possesses a notable history of intense industrial activity. By integrating multiple soil surveys and covariates into a linear mixed model, it was possible to determine the main drivers and map the distribution of lead and zinc concentrations within the Sydney estuary catchment. The main drivers as derived from the model included elevation, distance to main roads, main road type, soil landscape, population density (lead only) and land use (zinc only). Lead concentrations predicted using the model exceeded the established guideline value of 300mgkg -1 over a large portion of the study area with concentrations exceeding 1000mgkg -1 in the south of the catchment. Predicted zinc did not exceed the established guideline value of 7400mgkg -1 ; however concentrations were higher to the south and west of the study area. Unlike many other studies we considered the prediction uncertainty when assessing the contamination risk. Although the predictions indicate contamination over a large area, the broadness of the prediction intervals suggests that in many of these areas we cannot be sure that the site is contaminated. More samples are required to determine the contaminant distribution with greater precision, especially in residential areas where contamination was highest. Managing sources and addressing areas of elevated lead and zinc concentrations in urban areas has the potential to reduce the impact of past human activities and improve the urban environment of the future. Copyright © 2017 Elsevier B.V. All rights reserved.
Miettinen, Hanna; Wirtanen, Gun
2006-11-01
This study focused on the ecology of Listeria monocytogenes in a fish farm by following the changes in its occurrence in different types of samples for a three year period. In addition, L. monocytogenes isolates from different seafood industry areas were compared with pulsed field gel electrophoresis (PFGE) typing to discover possible associations between primary production, further processing and final products. Weather conditions were found to have a strong influence on the probability of finding Listeria spp. in a fish farm environment. The number of samples contaminated with Listeria spp. was typically bigger after rainy periods. Brook and river waters as well as other runoff waters seemed to be the main contamination source at the farm studied. The farmed fish originally found to carry L. monocytogenes become gradually Listeria free. The time needed for the purification of the fish was several months. The sea bottom soil samples were the ones that preserved the L. monocytogenes contamination the longest time. It can be stated that the fish and fish farm equipment studied did not spread listeria contamination. On the contrary, they were found to suffer from listeria contamination coming from outside sources like the brook water. There was a wide range of different L. monocytogenes PFGE-pulsotypes (30) found at 15 Finnish fish farms and fish processing factories. L. monocytogenes isolates from the final products often belonged to the same pulsotypes as did the isolates from the processing environment as well as from the raw fish. This suggests that, in addition to the fish processing factory environment, the fish raw materials are important sources of L. monocytogenes contamination in final products.
USDA-ARS?s Scientific Manuscript database
Agriculture is one of the most important sources of nutrient contamination, mainly inorganic nitrogen (N) fertilization of intensive crops, such as corn (Zea mays L). Proper irrigation and nutrient management can reduce nutrient leaching while maintaining crop yield, which is critical in enhancing t...
Use of cyclodextrin-based polymer for patulin analysis in apple juice
USDA-ARS?s Scientific Manuscript database
Penicillium expansum, one of the patulin producing fungi that causes decay on apple, is recognized as the main source of patulin contamination on apple and apple products. The widely used method for patulin analysis in apple juice is liquid-liquid extraction with ethyl acetate followed by HPLC-UV or...
Benedetto, A; Brizio, P; Guaraldo, P; Stella, C; Cappa, C; Baioni, E; Spalenza, V; Nebbia, C; Abete, M C
2016-06-01
Products of animal origin represent the main route of human exposure to dioxins and dioxin-like PCBs (DL-compounds). Recently, concerns have been raised about ovine products, particularly the liver, in which relatively high levels of DL-compounds have been reported. We surveyed ovine and bovine livers in areas with no known sources of dioxin or DL-PCB contamination, in order to assess accumulation patterns for both DL-compounds and non-DL (NDL-) PCBs. None of the ovine and bovine samples exceeded the current Maximum Limits (MLs) for DL-compounds. Liver DL-compound TEQ concentrations were up to 5-fold higher in sheep than in cows. No statistically significant differences in total NDL-PCBs levels were found. The main contributors to TEQ levels were the Penta- and Hexa-chlorinated PCDFs and PCB 126. The results confirm the increased bioaccumulation in ovine liver towards specific DL-compounds even in ewes reared in areas with no known sources of PCDD/Fs or DL-PCBs contamination. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, J.C.; Hochreitner, J.J.
Investigations of potential sources of groundwater contamination conducted by various regulatory agencies and consultants at four industrial sites in Logan Township, New Jersey found groundwater contamination at all four sites and at properties adjoining two of the sites. The four sites directly overlie the Potomac-Raritan-Magothy aquifer system, the Township's sole source of potable water. One site was a waste-oil processing and storage facility. The major source of groundwater contamination at the site is a lagoon containing waste oil. Groundwater within 1,000 ft of the lagoon is contaminated. The second site is used to maintain, dispatch, and clean chemical-transportation tanks. Potentialmore » sources of groundwater contamination at the site include former wastewater lagoons, leaking storage drums, and leaking tank trucks. Groundwater at and immediately north of the property is contaminated. Organic compounds are manufactured at the third site. Potential sources of groundwater contamination at this site include landfilled industrial wastes. Groundwater underlying the property is contaminated, but there is no evidence of offsite groundwater contamination from this source. The fourth site is used to treat and dispose of hazardous wastes. The major source of groundwater contamination at this site is landfilled residue from waste-treatment processes. Groundwater underlying the property is contaminated, but there is no evidence of off-site groundwater contamination from this source.« less
2014-01-01
Background Coastal sediments in the northern Gulf of Mexico have a high potential of being contaminated by petroleum hydrocarbons, such as polycyclic aromatic hydrocarbons (PAHs), due to extensive petroleum exploration and transportation activities. In this study we evaluated the spatial distribution and contamination sources of PAHs, as well as the bioavailable fraction in the bulk PAH pool, in surface marsh and shelf sediments (top 5 cm) of the northern Gulf of Mexico. Results PAH concentrations in this region ranged from 100 to 856 ng g−1, with the highest concentrations in Mississippi River mouth sediments followed by marsh sediments and then the lowest concentrations in shelf sediments. The PAH concentrations correlated positively with atomic C/N ratios of sedimentary organic matter (OM), suggesting that terrestrial OM preferentially sorbs PAHs relative to marine OM. PAHs with 2 rings were more abundant than those with 5–6 rings in continental shelf sediments, while the opposite was found in marsh sediments. This distribution pattern suggests different contamination sources between shelf and marsh sediments. Based on diagnostic ratios of PAH isomers and principal component analysis, shelf sediment PAHs were petrogenic and those from marsh sediments were pyrogenic. The proportions of bioavailable PAHs in total PAHs were low, ranging from 0.02% to 0.06%, with higher fractions found in marsh than shelf sediments. Conclusion PAH distribution and composition differences between marsh and shelf sediments were influenced by grain size, contamination sources, and the types of organic matter associated with PAHs. Concentrations of PAHs in the study area were below effects low-range, suggesting a low risk to organisms and limited transfer of PAHs into food web. From the source analysis, PAHs in shelf sediments mainly originated from direct petroleum contamination, while those in marsh sediments were from combustion of fossil fuels. PMID:24641695
Contamination of soils with heavy metals and metalloids and its ecological hazard (analytic review)
NASA Astrophysics Data System (ADS)
Vodyanitskii, Yu. N.
2013-07-01
According to the present-day ecotoxicologic data, hazardous heavy metals/metalloids form the following sequence in the soil: Se > Tl > Sb > Cd > V > Hg > Ni > Cu > Cr > As > Ba. This sequence differs from the well-known series of the hazardous heavy elements, in which the danger of Pb and Zn is exaggerated, whereas that of V, Sb, and Ba, is underestimated. Tl also should be included in the list of hazardous elements in the soil. At present, the stress is made on the investigation of heavy metals/metalloids in agricultural soils rather than in urban soils, as the former produce contaminated products poisoning both animals and humans. The main sources of soil contamination with heavy metals are the following: aerial deposition from stationary and moving sources; hydrogenic contamination from the industrial sewage discharging into water bodies; sewage sediments; organic and mineral fertilizers and chemicals for plant protection, tailing dumps of ash, slag, ores, and sludge. In addition to the impact on plants and groundwater, heavy metals/metalloids exert a negative effect on the soil proper. Soil microorganisms appear to be very sensitive to the influence of heavy elements.
Sources of nitrate in the Arno River waters: Constraints from d15N and d18O
Nisi, Barbara; Vaselli, Orlando; Buccianti, Antonella; Silva, Steven R.
2005-01-01
Running waters in anthropogenically affected areas are susceptible to nitrate contamination. Source identification is a fundamental step for the development of effective remediation. Previous studies pointed to pollution by nitrogen-bearing contaminants in the Arno Basin. In this paper, eleven surface water samples have been analysed for main and trace components and 15N/14N and 18O/16O ratios, with the aim of identifying for the first time the origin of nitrate in the Arno River Basin so that further investigations can appropriately be designed. d18O(NO3)and d15N(NO3) values have allowed to hypothesise the main sources of nitrate, as follows: i) mineralized fertilizer, ii) soil-organic nitrogen, iii) manure and septic waste. The anomalously high d15N and d18O values in the Chiana (d15N=24.9‰ and d18O=15.5‰) and Usciana tributaries (d15N=30.1‰ and d18O=7.2‰) show a low probability of belonging to the same population as that of the other samples and can be related to denitrification process of nitrate from animal waste/sewage and/or an industrial process (e.g. tanneries).
Contaminated Coastal Sediments in the Northeastern United States: Changing Sources Over Time
NASA Astrophysics Data System (ADS)
Buchholtz ten Brink, M. R.; Bothner, M. H.; Mecray, E. L.
2001-05-01
Regional studies of coastal sediments in the northeastern United States, conducted by the U.S. Geological Survey, show that trace metal contamination from land-based activities has occurred near all major urban centers. Concentrations of metals, such as Cu, Pb, Zn, Hg, and Ag, are 2-5 times background levels in sediments of Boston Harbor, Long Island Sound (LIS), offshore of Gulf of Maine coastal cities, and in the New York Bight (NYB). Contaminant accumulations are strongly influenced by sediment lithology and sediment transport properties in local areas, in addition to proximity to pollutant sources. Inventories are greatest in muddy depo-centers of the NYB, western LIS, and Boston Harbor. Based on sediment cores, the onset of metal contamination in the northeast occurs in the mid-1800s, with inputs increasing in the mid-1900s and decreasing (20-50%) from the 1970s to present. The increases correlate with local population growth and abundance of a bacterial sewage indicator, Clostridium perfringens. Increases of N and Corg in cores also reflect population growth and changing wastewater treatment practices. Corg values reach a high of 6% in buried sediments near the NYB disposal sites. Cores from western LIS have increasing values of C, N, and P in the most recently deposited sediments, in contrast to metal concentrations that have decreased in recent years. Cessation of sludge disposal and reduction of chemical discharges have been effective at reducing inputs; however, contaminated sediment deposits remain in rivers (e.g., the Charles), floodplains (e.g., the Housatonic), and coastal sediments. In the future, high concentrations of metal contaminants stored in buried sediments of marine and fluvial systems are likely to be a lingering and significant source of pollution to coastal environments. Until more effective source-reduction occurs, land-use and industrial practices associated with population growth in the northeast will remain dominant factors for nutrient loading. A multi-disciplinary approach, including predictive models that include changing sources and physical, chemical, and biological transport processes, is required to estimate the long-term fate and effect of pollutants currently in coastal sediments.
Xue, Jian-long; Zhi, Yu-you; Yang, Li-ping; Shi, Jia-chun; Zeng, Ling-zao; Wu, Lao-sheng
2014-06-01
Chemical compositions of soil samples are multivariate in nature and provide datasets suitable for the application of multivariate factor analytical techniques. One of the analytical techniques, the positive matrix factorization (PMF), uses a weighted least square by fitting the data matrix to determine the weights of the sources based on the error estimates of each data point. In this research, PMF was employed to apportion the sources of heavy metals in 104 soil samples taken within a 1-km radius of a lead battery plant contaminated site in Changxing County, Zhejiang Province, China. The site is heavily contaminated with high concentrations of lead (Pb) and cadmium (Cd). PMF successfully partitioned the variances into sources related to soil background, agronomic practices, and the lead battery plants combined with a geostatistical approach. It was estimated that the lead battery plants and the agronomic practices contributed 55.37 and 29.28%, respectively, for soil Pb of the total source. Soil Cd mainly came from the lead battery plants (65.92%), followed by the agronomic practices (21.65%), and soil parent materials (12.43%). This research indicates that PMF combined with geostatistics is a useful tool for source identification and apportionment.
Lee, Seong-Sun; Kaown, Dugin; Lee, Kang-Kun
2015-11-01
Chlorinated ethenes such as trichloroethylene (TCE) are common and persistent groundwater contaminants. If contaminated groundwater discharges to a stream, then stream water pollution near the contamination site also becomes a problem. In this respect, the fate and transport of chlorinated ethenes around a stream in an industrial complex were evaluated using the concentration of each component, and hydrogeochemical, microbial, and compound-specific carbon isotope data. Temporal and spatial monitoring reveal that a TCE plume originating from main and local source zones continues to be discharged to a stream. Groundwater geochemical data indicate that aerobic conditions prevail in the upgradient area of the studied aquifer, whereas conditions become anaerobic in the downgradient. The TCE molar fraction is high at the main and local source zones, ranging from 87.4 to 99.2% of the total volatile organic compounds (VOCs). An increasing trend in the molar fraction of cis-1, 2-Dichloroethene (cis-DCE) and vinyl chloride (VC) was observed in the downgradient zone of the study area. The enriched δ(13)C values of TCE and depleted values of cis-DCE in the stream zone, compared to those of the source zone, also suggest biodegradation of VOCs. Microbial community structures in monitoring wells adjacent to the stream zone in the downgradient area were analyzed using 16S rRNA gene-based pyrosequencing to identify the microorganisms responsible for biodegradation. This was attributed to the high relative abundance of dechlorinating bacteria in monitoring wells under anaerobic conditions farthest from the stream in the downgradient area. The multilateral approaches adopted in this study, combining hydrogeochemical and biomolecular methods with compound-specific analyses, indicate that contaminants around the stream were naturally attenuated by active anaerobic biotransformation processes. Copyright © 2015 Elsevier B.V. All rights reserved.
Groundwater vulnerability in the District of Abidjan (Côte d'Ivoire)
NASA Astrophysics Data System (ADS)
Kouame, Agnes; Jaboyedoff, Michel; Derron, Marc-Henri; Tacher, Laurent
2014-05-01
The District of Abidjan, located on the coastal sedimentary basin south of Côte d'Ivoire (West Africa) covers an area of 2,1 km2. This sedimentary basin is composed of continuous groundwater aquifers in Quaternary, Tertiary and Upper Cretaceous rocks. Our study focuses on the unconfined Quaternary groundwater called the Continental Terminal which formations are composed mainly of lenticular stratification of coarse sands, clays, ferruginous sandstone and iron ore. This Continental Terminal aquifer is the main source of drinking water for the city of Abidjan. Indeed, the city of Abidjan is facing various pollution problems such as illegal dumping of household waste, waste oils garages, domestic and industrial wastewater, gas stations, public discharge Akouédo and the spill of approximately 500 tons of toxic waste from the ship "Probo Koala" the night of 19 August 2006. These toxic wastes have killed more than 10 people and several infections. The infiltration of these contaminants under the influence of rainwater in the basement is a serious threat to groundwater from the District of Abidjan especially as the rains are very strong in this part of the country. What would be the fate of pollutants such as organochlorines, hydrogen sulfide, sulfides and hydrocarbons contained in toxic waste, knowing that this aquifer is the main source of supply of drinking water to the city of Abidjan? It therefore seems necessary to study the vulnerability of groundwater of Abidjan District. The overall objective of this study is to assess the risk of groundwater contamination by organochlorines, sulfides, hydrogen sulfide and hydrocarbons. This project is to develop groundwater flow and contaminant transport models such as organochlorines models, hydrogen sulfide and sulfides with two digital codes, Visual Modflow and Feflow. Then several scenarios with different pollutants are finally made to realize maps of groundwater vulnerability from Abidjan to these contaminants.
NASA Astrophysics Data System (ADS)
Langner, H.; Young, M.; Staats, M. F.
2013-12-01
Methylmercury contamination in biota is a major factor diminishing the environmental quality of the Upper Clark Fork River (CFR), e.g. by triggering human consumption limits of fish. The CFR is subject to one of the largest Superfund cleanup projects in the US, but remediation and restoration is currently focused exclusively on other mining-related contaminants (As, Cu, Zn, Pb, Cd), which may be counterproductive with respect to the bio-availability of mercury, for example by creation of wetlands along mercury-contaminated reaches of the river. The identification and elimination of Hg sources is an essential step toward reducing the methylmercury exposure in the biota of the CFR watershed because a strong correlation exists between total mercury levels in river sediment and methylmercury levels in aquatic life. We analyzed duplicate samples from the top sediment layer of the main stem and significant tributaries to the Clark Fork River along a 240 km reach between Butte, MT and downstream of the Missoula Valley. Mercury concentrations were 1.3 × 1.6 (mean × SD, n = 35) in the main stem. Concentrations in tributaries varied widely (0.02 to 85 mg/kg) and seemed only loosely related to the number of historic precious metal mines in the watershed. In the upper reach of the CFR, elevated Hg levels are likely caused by residual contaminated sediments in the flood plain. Levels tend to decrease downstream until Drummond, MT, where Flint Creek contributes a significant amount of mercury, causing Hg levels in the main stem CFR to increase from 0.7 to 4 mg/kg. Levels continue to decrease downstream. Flint Creek is the single largest contributor of Hg to the CFR. Detailed sampling of the main stem Flint Creek and tributaries (26 sites) showed extremely high levels in two tributaries (22 to 85 mg/kg) where historic milling operations were located. Elimination of these point sources may be accomplished comparatively economically and may significantly reduce mercury levels in Flint Creek and the Clark Fork River basin.
NASA Astrophysics Data System (ADS)
Unlu, S.; Alpar, B.
2009-04-01
Under great anthropogenic pressure due to the substantial freshwater input from the surrounding industrial and agricultural areas, especially central and middle-Eastern Europe, the Black Sea basin is ranked among the most ecologically threatened water bodies of the world. Oil levels are unacceptable in many coastal areas perilously close to polluted harbors and many river mouths; the places presenting the highest levels of bio-diversity and having a high socio-economic importance due to human use of coastal resources. There are about sixty sources of pollution which resulted in "hot spots" having disastrous impacts on sensitive marine and coastal areas and needing immediate priorities for action. Beyond such land-based sources, trans-boundary pollution sources from Black Sea riparian countries, heavy maritime traffic, particularly involving petroleum transports and fishing boats, and the improper disposal of ballast and bilge waters and solid waste are also important marine sources of pollution. Found in fossil fuels such as Polycyclic Aromatic Hydrocarbons are generated by incomplete combustion of organic matter. In order to estimate their distribution in sediment and their sources, they were monitored from the bottom samples offshore the Zonguldak industry region, one of the most polluted spots in the Turkish Black Sea. There the budget of pollutants via rivers is not precisely known due to an evident lack of data on chemical and granulometric composition of the river runoff and their fluxes. Therefore the marine sediments, essential components of marine ecosystems, are very important in our estimating the degree of the damage given to the ecosystem by such inputs. Realization of the sources and transport of these contaminants will be a critical tool for future management of the Zonguldak industry region and its watershed. The sea bottom in study area is composed of mainly sand and silt mixtures with small amount of clay. Geochemical analyses have shown that oil contamination was dominated in near-shore sediments. Their spatial distributions over the shelf area make an estimation of possible pollution sources and their transportation routes possible. Sea port activities, industrial inputs and partly maritime petroleum transport are the main sources of pollutants. They are under the control of the longshore currents supplied with river alluvium and coastal abrasion material.
Hamilton, Matthew J; Yan, Tao; Sadowsky, Michael J
2006-06-01
The contamination of waterways with fecal material is a persistent threat to public health. Identification of the sources of fecal contamination is a vital component for abatement strategies and for determination of total maximum daily loads. While phenotypic and genotypic techniques have been used to determine potential sources of fecal bacteria in surface waters, most methods require construction of large known-source libraries, and they often fail to adequately differentiate among environmental isolates originating from different animal sources. In this study, we used pooled genomic tester and driver DNAs in suppression subtractive hybridizations to enrich for host source-specific DNA markers for Escherichia coli originating from locally isolated geese. Seven markers were identified. When used as probes in colony hybridization studies, the combined marker DNAs identified 76% of the goose isolates tested and cross-hybridized, on average, with 5% of the human E. coli strains and with less than 10% of the strains obtained from other animal hosts. In addition, the combined probes identified 73% of the duck isolates examined, suggesting that they may be useful for determining the contribution of waterfowl to fecal contamination. However, the hybridization probes reacted mainly with E. coli isolates obtained from geese in the upper midwestern United States, indicating that there is regional specificity of the markers identified. Coupled with high-throughput, automated macro- and microarray screening, these markers may provide a quantitative, cost-effective, and accurate library-independent method for determining the sources of genetically diverse E. coli strains for use in source-tracking studies. However, future efforts to generate DNA markers specific for E. coli must include isolates obtained from geographically diverse animal hosts.
NASA Astrophysics Data System (ADS)
Gesels, Julie; Orban, Philippe; Popescu, Cristina; Knöller, Kay; Brouyère, Serge
2014-05-01
The alluvial aquifer of the Meuse River is contaminated at regional scale in the urbanized and industrialized area of Liège in Belgium with different types of contaminants, in particular inorganics such as sulfate, nitrate and ammonium. The sources of those contaminants are numerous: brownfields, urban waste water, subsurface acid mine drainage from former coal mines, atmospheric deposits related to pollutants emissions in the atmosphere... Sulfate, nitrate and ammonium are both typical pollutants of the aquifer and tracers of the possible pollution sources. According to the European legislation on water, groundwater resources should reach a good quality status before 2015. However, an exemption can be obtained if it may be unfeasible or unreasonably expensive to achieve good status. In this case, groundwater quality objectives and management plans can be adapted to these specific conditions. To obtain such an exemption for the Meuse alluvial aquifer, it is required to demonstrate that the poor qualitative status is caused by acid mine drainage, or by widespread historical atmospheric deposition from industries, and not by recent anthropogenic contamination from the urban and industrial context. In this context, a detailed hydrogeochemical characterization of groundwater has been performed, with the aim of determining the origin of the inorganic contaminations and the main processes contributing to poor groundwater quality. A large hydrochemical sampling campaign was performed, based on 71 selected representative sampling locations, to better characterize the different vectors (end-members) of contamination of the alluvial aquifer and their respective contribution to groundwater contamination in the area. Groundwater samples were collected and analyzed for major and minor compounds and metallic trace elements. The analyses also include stable isotopes in water, sulfate, nitrate, ammonium, boron and strontium. Different hydrogeochemical approaches are combined to obtain a global understanding of the hydrogeochemical processes at regional scale. Hydrochemical interpretations are based on classical diagrams (e.g. Piper), spatial distribution maps, geochemical equations, multivariate statistics and isotopic analyses. With this combined approach, the location of the contaminant sources and most contaminated sectors of the alluvial aquifer together with a better understanding of geochemical processes involved are obtained.
A source of PCB contamination in modified high-volume air samplers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basu, I.; O'Dell, J.M.; Arnold, K.
2000-02-01
Modified Anderson High Volume (Hi-Vol) air samplers are widely used for the collection of semi-volatile organic compounds (such as PCBs) from air. The foam gasket near the main air flow path in these samplers can become contaminated with PCBs if the sampler or the gasket is stored at a location with high indoor air PCB levels. Once the gasket is contaminated, it releases PCBs back into the air stream during sampling, and as a result, incorrectly high air PCB concentrations are measured. This paper presents data demonstrating this contamination problem using measurements from two Integrated Atmospheric Deposition Network sites: onemore » at Sleeping Bear Dunes on Lake Michigan and the other at Point Petre on Lake Ontario. The authors recommend that these gaskets be replaced by Teflon tape and that the storage history of each sampler be carefully tracked.« less
Walden, Vivien Margaret; Lamond, Elizabeth-Anne; Field, Sally A
2005-09-01
Diarrhoea is one of the five major causes of death in an emergency setting and one of the three main causes of death in children (Curtis and Cairncross, 2003). In June 2004, an outbreak of shigellosis was confirmed in Abou Shouk camp in the Northern Darfur province of Sudan. As water testing showed no contamination, it was assumed that post-collection contamination was happening. The decision was taken to launch a programme of mass disinfection of all water containers in order to break the contamination cycle. Diarrhoea figures from the clinics showed a fall in cases following the cleaning campaign. It is extremely difficult to obtain good and statistically rigorous data in an emergency setting, the priority being to intervene rapidly to prevent further cases of diarrhoea. However, the results do appear to indicate that the disinfection programme has had an impact on the prevalence of bloody and watery diarrhoea.
Noh, Won; Kim, Jungmin; Lee, Sang-Jun; Ryu, Byung-Gon; Kang, Chang-Min
2018-02-01
Microalgae have been extensively studied for the production of various products. However, to date, microalgal biomass has not become economically feasible, mainly due to different issues such as contamination from various sources that occurs during downstream processes, and which leads to low quality biomass with limited application. In this study, to overcome contamination by flocculants and other microorganisms, the cationic biopolymer α-Poly-l-lysine (α-PLL) was applied. The cationic amine moiety and polymeric chain of α-PLL rendered microalgal harvesting efficient. With increasing α-PLL chain length, efficient dose- and time-dependent harvesting was achieved. In addition to efficient flocculation performance, biomass harvested using α-PLL showed suppressed biological contamination through the inherent antimicrobial activity of α-PLL. Thus, it is possible to upgrade the quality and storability of produced microalgal biomass using α-PLL-induced flocculation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cadastral valuation of lands polluted with radionuclides
NASA Astrophysics Data System (ADS)
Makarov, O. A.; Tsvetnov, E. V.; Shcheglov, A. I.; Romashkina, A. D.; Ermiyaev, Ya. R.
2016-11-01
The major method to correct the cadastral value of land for contamination with radionuclides is to reduce it by the sum of expenses necessary for land remediation and for special measures ensuring the obtaining of agricultural and forestry products satisfying safety norms. Lands contaminated with radionuclides and used in agriculture and forestry are often removed from the system of land taxation. In this case, their cadastral value becomes an excessive element of the state cadaster of real estate. An approach toward cadastral valuation of such lands suggested by the authors assumes the creation of a system of compensation payments as the main source of financing of land rehabilitation and soil conservation measures. An original system of calculation of such payments has been tested for radioactively contaminated lands in Plavsk district of Tula oblast. It is argued that compensation payments for radioactively contaminated agrocenoses should be higher than those for natural cenoses.
Cheng, Qingli; Wang, Ruiling; Huang, Wenhai; Wang, Wenlin; Li, Xudong
2015-06-01
The Yellow River Wetland National Nature Reserve (the Sanmenxia section) is an important area of the Yellow River for two important hydrologic gauging stations: the Sanmenxia reservoir and the Xiaolangdi reservoir. Seven sites along the section were selected: Jiziling, Dinghuwan, Houdi, Canglonghu, Shangcun, Wangguan, and Nancun. After the microwave digestion with aqua regia, concentrations of Cu, Pb, Cd, Cr, Zn, and Mn in the sediments were analyzed by flame atomic absorption spectrometry with air-acetylene flame. The results showed that all the concentrations of Cr detected were from the lithogenic source, and 63 % Mn, 48 % Pb, 41 % Cu, 20 % Cd, and 12 % Zn were from the anthropogenic source. The values of the index of geo-accumulation pointed out that there was moderate contamination of Mn at the Dinghuwan (1.04) and Houdi (1.00) sites (class 2), while the modified degree of contamination denoted that the contamination at the Houdi site (2.02) was moderate, nil to very low at the Nancun and Shangcun sites and low at the other sites, consisting with the tendency of pollution load index. For metal toxicity, the sediment pollution index indicated that the sediments of the Canglonghu site were low polluted, that of the Houdi site is nearly slightly contaminated, and those of others were natural and uncontaminated. It was vital to evaluate the degree of contamination with individual and overall elements and even with the metal toxicity. Cu, Pb, and Mn contaminations were aggravated in the Sanmenxia section, and there maybe was one of the main anthropogenic sources of these metals along the Yellow River. The findings were expected to update the current status of the heavy metal pollution in the Sanmenxia section as well as to create awareness concerning the sound condition of the whole reaches of the Yellow River.
Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal
Skoglund, Pontus; Northoff, Bernd H.; Shunkov, Michael V.; Derevianko, Anatoli P.; Pääbo, Svante; Krause, Johannes; Jakobsson, Mattias
2014-01-01
One of the main impediments for obtaining DNA sequences from ancient human skeletons is the presence of contaminating modern human DNA molecules in many fossil samples and laboratory reagents. However, DNA fragments isolated from ancient specimens show a characteristic DNA damage pattern caused by miscoding lesions that differs from present day DNA sequences. Here, we develop a framework for evaluating the likelihood of a sequence originating from a model with postmortem degradation—summarized in a postmortem degradation score—which allows the identification of DNA fragments that are unlikely to originate from present day sources. We apply this approach to a contaminated Neandertal specimen from Okladnikov Cave in Siberia to isolate its endogenous DNA from modern human contaminants and show that the reconstructed mitochondrial genome sequence is more closely related to the variation of Western Neandertals than what was discernible from previous analyses. Our method opens up the potential for genomic analysis of contaminated fossil material. PMID:24469802
Di Leonardo, Rossella; Mazzola, Antonio; Cundy, Andrew B; Tramati, Cecilia Doriana; Vizzini, Salvatrice
2017-01-01
Posidonia oceanica mat is considered a long-term bioindicator of contamination. Storage and sequestration of trace elements and organic carbon (C org ) were assessed in dead P. oceanica mat and bare sediments from a highly polluted coastal marine area (Augusta Bay, central Mediterranean). Sediment elemental composition and sources of organic matter have been altered since the 1950s. Dead P. oceanica mat displayed a greater ability to bury and store trace elements and C org than nearby bare sediments, acting as a long-term contaminant sink over the past 120 yr. Trace elements, probably associated with the mineral fraction, were stabilized and trapped despite die-off of the overlying P. oceanica meadow. Mat deposits registered historic contamination phases well, confirming their role as natural archives for recording trace element trends in marine coastal environments. This sediment typology is enriched with seagrass-derived refractory organic matter, which acts mainly as a diluent of trace elements. Bare sediments showed evidence of inwash of contaminated sediments via reworking; more rapid and irregular sediment accumulation; and, because of the high proportions of labile organic matter, a greater capacity to store trace elements. Through different processes, both sediment typologies represent a repository for chemicals and may pose a risk to the marine ecosystem as a secondary source of contaminants in the case of sediment dredging or erosion. Environ Toxicol Chem 2017;36:49-58. © 2016 SETAC. © 2016 SETAC.
Einoder, L D; MacLeod, C K; Coughanowr, C
2018-07-01
The Derwent estuary, in south east Tasmania, is highly contaminated with heavy metals, mainly due to past industrial pollution. This study sought to determine the extent of contamination, bioaccumulation, and biomagnification in the resident bird community and therefore to infer the potential for adverse effects in birds. Thirteen metals were measured from breast feathers (n = 51 individuals) of eight sympatric species of aquatic bird. Stable carbon (δ 13 C) and nitrogen (δ 15 N) isotopes were used to identify dietary sources of contaminants, trophic level, and potential biomagnification through food chains. Generalised linear models revealed that metal burdens were often poorly correlated with δ 13 C, indicating their uptake from a range of freshwater, brackish, and marine carbon sources-not surprising due to widespread contamination across the tidal estuary. Feather mercury increased significantly with trophic level (inferred from δ 15 N). White-bellied Sea-eagle Haliaeetus leucogaster samples contained 240 times more mercury than feral Goose Anser cygnoides. Feather arsenic and copper concentrations were significantly higher in birds feeding lower in the food chain. For several piscivorous species, both chick and adults were sampled revealing significantly higher feather mercury, zinc, and selenium in adults. Feathers from birds found dead along the banks of the estuary had significantly higher lead loads than from live birds, and numerous individuals had levels of mercury, zinc, and lead above toxic thresholds reported in other studies. These results highlight the need to include biota from higher trophic levels in contaminant monitoring programs to understand fully the fate and broader implications of contaminants in the environment.
USDA-ARS?s Scientific Manuscript database
Campylobacter jejuni is a major cause of human foodborne illness worldwide with contaminated poultry products serving as a main source of human infection. C. jejuni strain MTVDSCj20 was isolated from the cecal contents of a farm-raised chicken naturally colonized with Campylobacter. The complete,...
Gray, Angel; Litinas, Evangelos; Jeske, Walter; Fareed, Jawed; Hoppensteadt, Debra
2012-01-01
In 2008, oversulfated chondroitin sulfate (OSCS) was identified as the main contaminant in recalled heparin. Oversulfated chondroitin sulfate can be prepared from bovine (B), porcine (P), shark (Sh), or skate (S) origin and may produce changes in the antithrombotic, bleeding, and hemodynamic profile of heparins. This study examines the interactions of various OSCSs on heparin in animal models of thrombosis and bleeding, as well as on the anticoagulant and antiprotease effects in in vitro assays. Mixtures of 70% unfractionated heparin (UFH) with 30% OSCS from different sources were tested. In the in vitro activated partial thromboplastin time (aPTT) assay, all contaminant mixtures showed a decrease in clotting times. In addition, a significant increase in bleeding time compared to the control (UFH/saline) was observed. In the thrombosis model, no significant differences were observed. The OSCSs significantly increased anti-Xa activity in ex vivo blood samples. These results indicate that various sources of OSCS affect the hemostatic properties of heparin.
International Space Station External Contamination Status
NASA Technical Reports Server (NTRS)
Mikatarian, Ron; Soares, Carlos
2000-01-01
PResentation slides examine external contamination requirements; International Space Station (ISS) external contamination sources; ISS external contamination sensitive surfaces; external contamination control; external contamination control for pre-launch verification; flight experiments and observations; the Space Shuttle Orbiter waste water dump, materials outgassing, active vacuum vents; example of molecular column density profile, modeling and analysis tools; sources of outgassing induced contamination analyzed to date, quiescent sources, observations on optical degradation due to induced external contamination in LEO; examples of typical contaminant and depth profiles; and status of the ISS system, material outgassing, thruster plumes, and optical degradation.
Recurrent Aspergillus contamination in a biomedical research facility: a case study.
Cornelison, Christopher T; Stubblefield, Bryan; Gilbert, Eric; Crow, Sidney A
2012-02-01
Fungal contamination of biomedical processes and facilities can result in major revenue loss and product delay. A biomedical research facility (BRF) culturing human cell lines experienced recurring fungal contamination of clean room incubators over a 3-year period. In 2010, as part of the plan to mitigate contamination, 20 fungal specimens were isolated by air and swab samples at various locations within the BRF. Aspergillus niger and Aspergillus fumigatus were isolated from several clean-room incubators. A. niger and A. fumigatus were identified using sequence comparison of the 18S rRNA gene. To determine whether the contaminant strains isolated in 2010 were the same as or different from strains isolated between 2007 and 2009, a novel forensic approach to random amplified polymorphic DNA (RAPD) PCR was used. The phylogenetic relationship among isolates showed two main genotypic clusters, and indicated the continual presence of the same A. fumigatus strain in the clean room since 2007. Biofilms can serve as chronic sources of contamination; visual inspection of plugs within the incubators revealed fungal biofilms. Moreover, confocal microscopy imaging of flow cell-grown biofilms demonstrated that the strains isolated from the incubators formed dense biofilms relative to other environmental isolates from the BRF. Lastly, the efficacies of various disinfectants employed at the BRF were examined for their ability to prevent spore germination. Overall, the investigation found that the use of rubber plugs around thermometers in the tissue culture incubators provided a microenvironment where A. fumigatus could survive regular surface disinfection. A general lesson from this case study is that the presence of microenvironments harboring contaminants can undermine decontamination procedures and serve as a source of recurrent contamination.
Torres, João Paulo Machado; Leite, Claudio; Krauss, Thomas; Weber, Roland
2013-04-01
In 1997, the Polychlorinated dibenzo-para-dioxin (PCDD)/Polychlorinated dibenzofuran (PCDF) concentrations in dairy products in Germany and other European countries increased. The PCDD/PCDF source was contaminated lime used in Brazilian citrus pulp pellets. The contaminated lime was mined from an industrial dump site. However, the detailed origin of the PCDD/PCDFs in the lime was not revealed. This paper investigates the contamination origin and describes the link between lime milk from the dumpsite of a chlorine/organochlorine industry and the contaminated lime. The contaminated lime stem from mining at the corporate landfill of Solvay Indupa in Sao Paulo. The landfill was used for 40 years for deposition of production residues and closed in 1996. The factory operated/operates at least two processes with potentially high PCDD/PCDFs releases namely the oxychlorination process for production of ethylene dichloride (EDC) and the chlor-alkali process. The main landfilled waste was lime milk (1.4 million tons) from the vinyl chloride monomer production (via the acetylene process) along with residues from other processes. The PCDD/PCDF fingerprint revealed that most samples from the chemical landfill showed an EDC PCDD/PCDF pattern with a characteristic octachlorodibenzofuran dominance. The PCDD/PCDF pattern of a Rio Grande sediment samples downstream the facility showed a chlor-alkali pattern with a minor impact of the EDC pattern. The case highlights that PCDD/PCDF- and persistent organic pollutants-contaminated sites need to be identified in a comprehensive manner as required by the Stockholm Convention (article 6) and controlled for their impact on the environment and human health. Landfill mining and reuse of materials from contaminated deposits should be prohibited.
Han, D M; Tong, X X; Jin, M G; Hepburn, Emily; Tong, C S; Song, X F
2013-04-01
This paper investigates the organic pollution status of shallow aquifer sediments and groundwater around Zhoukou landfill. Chlorinated aliphatic hydrocarbons, monocylic aromatic hydrocarbons, halogenated aromatic hydrocarbons, organochlorine pesticides and other pesticides, and polycyclic aromatic hydrocarbons (PAHs) have been detected in some water samples. Among the detected eleven PAHs, phenanthrene, fluorine, and fluoranthene are the three dominant in most of the groundwater samples. Analysis of groundwater samples around the landfill revealed concentrations of PAHs ranging from not detected to 2.19 μg/L. The results show that sediments below the waste dump were low in pollution, and the shallow aquifer, at a depth of 18-30 m, was heavily contaminated, particularly during the wet season. An oval-shaped pollution halo has formed, spanning 3 km from west to east and 2 km from south to north, and mainly occurs in groundwater depths of 2-4 m. For PAH source identification, both diagnostic ratios of selected PAHs and principal component analysis were studied, suggesting mixed sources of pyro- and petrogenic derived PAHs in the Zhoukou landfill. Groundwater table fluctuations play an important role in the distribution of organic pollutants within the shallow aquifer. A conceptual model of leachate migration in the Quaternary aquifers surrounding the Zhoukou landfill has been developed to describe the contamination processes based on the major contaminant (PAHs). The groundwater zone contaminated by leachate has been identified surrounding the landfill.
Signes-Pastor, A J; Munera-Picazo, S; Burló, F; Cano-Lamadrid, M; Carbonell-Barrachina, A A
2015-06-01
Several agricultural fields show high contents of arsenic because of irrigation with arsenic-contaminated groundwater. Vegetables accumulate arsenic in their edible parts when grown in contaminated soils. Polluted vegetables are one of the main sources of arsenic in the food chain, especially for people living in rural arsenic endemic villages of India and Bangladesh. The aim of this study was to assess the feasibility of floriculture in the crop rotation system of arsenic endemic areas of the Bengal Delta. The effects of different arsenic concentrations (0, 0.5, 1.0, and 2.0 mg As L(-1)) and types of flowering plant (Gomphrena globosa and Zinnia elegans) on plant growth and arsenic accumulation were studied under hydroponic conditions. Total arsenic was quantified using atomic absorption spectrometer with hydride generation (HG-AAS). Arsenic was mainly accumulated in the roots (72 %), followed by leaves (12 %), stems (10 %), and flowers (<1 %). The flowering plants studied did not show as high phytoremediation capacities as other wild species, such as ferns. However, they behaved as arsenic tolerant plants and grew and bloomed well, without showing any phytotoxic signs. This study proves that floriculture could be included within the crop rotation system in arsenic-contaminated agricultural soils, in order to improve food safety and also food security by increasing farmer's revenue.
Rivas R, Edith; Barrios C, Sara; Dorner P, Anita; Osorio S, Ximena
2008-06-01
Indoor air pollution, is the main cause of population exposure to polluting agents. To establish an environmental profile of indoor contamination emission sources in families of children under 5 years that assist to kindergartens in Temuco and Padre Las Casas. To associate respiratory disease episodes in children with indoor contamination. Cross sectional analysis of 355 family groups subjected to questionnaires about indoor contamination and number of respiratory disease episodes. Forty six percent of mothers or caregivers smoked, 37% smoked at home and 93% smoked one to two cigarettes per day. There was a significant association between respiratory diseases in children and drying clothes in the kitchen, using firewood for heating and the presence of humidity in the dwelling. Mothers identified as indoor contaminants the use of braziers in 76% of cases and firewood stoves in 24%. Ninety seven percent considered that these appliances were detrimental for respiratory health. The lack of awareness about indoor contamination among subjects of low socioeconomic status should prompt educational campaigns to modify behaviors in their dwellings.
Wang, Ning; Li, Hong-Bo; Long, Jin-Lin; Cai, Chao; Dai, Jiu-Lan; Zhang, Juan; Wang, Ren-Qing
2012-12-01
Contamination by polycyclic aromatic hydrocarbons (PAHs) of historic wastewater-irrigated agricultural topsoil (0-5 cm) and the contribution of groundwater irrigation and atmospheric deposition to soil PAHs were studied in a typical agricultural region, i.e. Hunpu region, Liaoning, China. Concentrations of total PAHs ranged from 0.43 to 2.64 mg kg⁻¹ in topsoil, being lower than those found in other wastewater-irrigated areas. The levels of PAHs in soil declined as the distance from a water source increased. Concentrations of individual PAHs were generally higher in upland than in paddy topsoils. The calculated nemerow composite index showed that agricultural soil in the region was "polluted" by PAHs. A human health risk assessment based on the total toxic equivalent concentration showed that the presence of elevated concentrations of PAHs in the soil might pose a great threat to the health of local residents. Ratios of pairs of PAHs and principal component analysis (PCA) showed that pyrogenesis, such as coal combustion, was the main source of PAHs, while petroleum, to some extent, also had a strong influence on PAHs contamination in upland soil. The distribution patterns of individual PAHs and composition of PAHs differed between irrigation groundwater and topsoil, but were similar between atmospheric deposition and topsoil. There were significant linear correlations (r = 0.90; p < 0.01) between atmospheric deposition rates and average concentrations of the 16 individual PAHs in soils, while no significant relationships were observed between irrigation groundwater and topsoil in levels of PAHs. These suggested that PAHs in agricultural soils were mainly introduced from atmospheric deposition, rather than from groundwater irrigation after the phasing out of wastewater irrigation in the region since 2002. This study provides a reference to ensure agricultural product safety, pollution control, and proper soil management.
Yu, Xiuling; Lu, Shenggao
2016-12-01
Technogenic magnetic particles (TMPs) are carriers of heavy metals and organic contaminants, which derived from anthropogenic activities. However, little information on the relationship between heavy metals and TMP carrier phases at the micrometer scale is available. This study determined the distribution and association of heavy metals and magnetic phases in TMPs in three contaminated soils at the micrometer scale using micro-X-ray fluorescence (μ-XRF) and micro-X-ray absorption near-edge structure (μ-XANES) spectroscopy. Multiscale correlations of heavy metals in TMPs were elucidated using wavelet transform analysis. μ-XRF mapping showed that Fe was enriched and closely correlated with Co, Cr, and Pb in TMPs from steel industrial areas. Fluorescence mapping and wavelet analysis showed that ferroalloy was a major magnetic signature and heavy metal carrier in TMPs, because most heavy metals were highly associated with ferroalloy at all size scales. Multiscale analysis revealed that heavy metals in the TMPs were from multiple sources. Iron K-edge μ-XANES spectra revealed that metallic iron, ferroalloy, and magnetite were the main iron magnetic phases in the TMPs. The relative percentage of these magnetic phases depended on their emission sources. Heatmap analysis revealed that Co, Pb, Cu, Cr, and Ni were mainly derived from ferroalloy particles, while As was derived from both ferroalloy and metallic iron phases. Our results indicated the scale-dependent correlations of magnetic phases and heavy metals in TMPs. The combination of synchrotron based X-ray microprobe techniques and multiscale analysis provides a powerful tool for identifying the magnetic phases from different sources and quantifying the association of iron phases and heavy metals at micrometer scale. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Osher, L. J.; Leclerc, L.; Wiersma, G. B.; Hess, C. T.; Guiseppe, V. E.
2006-10-01
Concentrations of Cd, Cu, Pb and Zn in sediments of Egypt Bay in Hancock County, Maine, are elevated above background levels. The source of the contamination is Cu mining that occurred in the uplands adjacent to Egypt Stream between 1877 and 1885. Egypt Stream is a tributary to Egypt Bay. Egypt Bay is part of the Taunton Bay estuary system. The Hagan Mine was one of the mines extracting metals from the sulfide deposits in Downeast Maine north of Penobscot Bay. Metal concentrations were determined using ICP-AES after sample digestion with nitric acid. Soil collected from the coarse textured mine tailings pile contained elevated concentrations of Cd, Cu, Pb and Zn, but the majority of the surface soils at the Hagan Mine site were not contaminated. Estuary sediments from the surface to 100 cm depth were collected in four locations within Egypt Bay. Below 40 cm, metal concentrations in sediments were similar to those in uncontaminated upland soils. Metal concentrations in the estuary sediments between the surface and 26 cm were above background levels. According to 210Pb dating, the sediment at 26-34 cm depth was likely to have been deposited at the time the historic mines were in operation. Concentrations of Cd, Cu, Pb, and Zn in sediment from the 32-34 cm depth interval are similar to concentrations in the upland soil sample from the mine tailings pile. Elevated Pb concentrations in sediments from the surface to 24 cm are from atmospheric Pb deposition from anthropogenic sources. Sediment in the top 10 cm of the estuary has been mixed both by the polychaete worm Nereis virens and by those harvesting the worms for sale as fish bait.
Chen, Haiyang; Chen, Ruihui; Teng, Yanguo; Wu, Jin
2016-03-01
Recognizing the pollution characteristics of trace metals in river sediments and targeting their potential sources are of key importance for proposing effective strategies to protect watershed ecosystem health. In this study, a comprehensive investigation was conducted to identify the contamination and risk characteristics of trace metals in sediments of Le'an River which is a main tributary of the largest freshwater lake in China, Poyang Lake. To attain this objective, several tools and models were considered. Geoaccumulation index and enrichment factor were used to understand the general pollution characteristic of trace metals in sediments. Discriminant analysis was applied to identify the spatial variability of sediment metals. Sediment quality guidelines and potential ecological risk index were employed for ecological risk evaluation. Multivariate curve resolution-alternating least square was proposed to extract potential pollution sources, as well as the application of Monte-Carlo simulation for uncertainty analysis of source identification. Results suggested that the sediments in Le'an River were considerably polluted by the investigated trace metals (Cd, Cr, As, Hg, Pb, Cu, Zn and Ni). Sediment concentrations of these metals showed significant spatial variations. The potential ecological risk lay in high level. Comparatively speaking, the metals of Cd, Cu and Hg were likely to result in more harmful effects. Mining activities and the application of fertilizers and agrochemicals were identified as the main anthropogenic sources. To protect the ecological system of Le'an River and Poyang Lake watershed, industrial mining and agricultural activities in this area should to be strictly regulated. Copyright © 2015 Elsevier Inc. All rights reserved.
Development of Chemical Indicators of Groundwater Contamination Near the Carcass Burial Site
NASA Astrophysics Data System (ADS)
Kim, H.; Choi, J.; Kim, M.; Choi, J.; Lee, M.; Lee, H.; Jeon, S.; Bang, S.; Noh, H.; Yoo, J.; Park, S.; Kim, H.; Kim, D.; Lee, Y.; Han, J.
2011-12-01
A serious outbreak of foot and mouth disease (FMD) and avian influenza (AI) led to the culling of millions of livestock in South Korea from late 2010 to earlier 2011. Because of the scale of FMD and AI epidemic in Korea and rapid spread of the diseases, mass burial for the disposal of carcass was conducted to halt the outbreak. The improper construction of the burial site or inappropriate management of the carcass burial facility can cause the contamination of groundwater mainly due to the discharges of leachate through the base of disposal pit. The leachate from carcass burial contains by products of carcass decay such as amino acids, nitrate, ammonia and chloride. The presence of these chemical components in groundwater can be used as indicators demonstrating contamination of groundwater with leachate from carcass. The major concern about using these chemical indicators is that other sources including manures, fertilizers and waste waters from human or animal activities already exist in farming area. However, we lack the understanding of how groundwater contamination due to mass burial of carcass can be differentiated from the contamination due to livestock manures which shows similar chemical characteristics. The chemical compositions of the leachate from carcass burial site and the wastewater from livestock manure treatment facilities were compared. The chemical compositions considered include total organic carbon (TOC), total nitrogen (TN), nitrate, organic nitrogen (Organic nitrogen =TN-Ammonium Nitrogen- Nitrate nitrogen), ammonia, chloride, sodium, potassium and amino acids (20 analytes). The ratios of concentrations of the chemical compositions as indicators of contamination were determined to distinguish the sources of contamination in groundwater. Indicators which showed a linear relationship between two factors and revealed a distinct difference between the carcass leachate and livestock manure were chosen. In addition, the background level of the indicators in groundwater which was presumed not to be contaminated with the leachate was also considered. The indicators selected from these step were TN/nitrate nitrogen, organic nitrogen/TN, organic nitrogen/Cl and organic nitrogen/Na. In a similar manner, concentrations and peak pattern of amino acids with LC-MSMS as indicators were also selected. One more step added to identify the source of a contaminant release was the consideration of the transport of 20 amino acids in the subsurface which could significantly change the peak pattern among different amino acids. Six group of amino acid as indicators were chosen and they were Isoleucine/Valine, Leucine/Tryptophane, Valine/Tryptophane, Lysine/Leucine, Lysine/Isoleucine and Methionine/Lysine. The use of chemical indicators was attempted in this study to distinguish the sources of contamination by considering both the concentration of contaminants and the unique patterns of contamination.
NASA Astrophysics Data System (ADS)
Czekaj, Joanna; Jakóbczyk-Karpierz, Sabina; Rubin, Hanna; Sitek, Sławomir; Witkowski, Andrzej J.
2016-08-01
Goczałkowice dammed reservoir (area - 26 km2) is a strategic object for flood control in the Upper Vistula River catchment and one of the most important source of drinking water in the Upper Silesian Industrial Region (Southern Poland). Main aims of the investigation were identification of sources of nitrate and assessment of their significance in potential risk to groundwater quality. In the catchment area monitoring network of 22 piezometers, included 14 nested, have been installed. The significant spatial and seasonal differences in chemical composition between northern and southern part of the catchment were indicated based on the groundwater sampling conducted twice - in autumn 2011 and spring 2012. Maximum observed concentrations of nitrate were identified in northern part of the study area 255 mg/L as a results of inappropriate sewage management and agriculture activity. Results, based on the combines multi-scale hydrogeological and hydrochemical field studies, groundwater flow and transport modelling, dual stable isotope approach and geochemical modelling indicate mainly agriculture and inappropriate sewage water management as a sources of NO3- contamination of groundwater which moreover is affected by geochemical processes. In general, contaminated groundwater does not impact surface water quality. However, due to high concentration of nitrate in northern part a continues measurements of nitrogen compounds should be continued and used for reducing uncertainty of the predictive scenarios of the mass transport modelling in the study area.
Probabilistic Analysis of Earthquake-Led Water Contamination: A Case of Sichuan, China
NASA Astrophysics Data System (ADS)
Yang, Yan; Li, Lin; Benjamin Zhan, F.; Zhuang, Yanhua
2016-06-01
The objective of this paper is to evaluate seismic-led point source and non-point source water pollution, under the seismic hazard of 10 % probability of exceedance in 50 years, and with the minimum value of the water quality standard in Sichuan, China. The soil conservation service curve number method of calculating the runoff depth in the single rainfall event combined with the seismic damage index were applied to estimate the potential degree of non-point source water pollution. To estimate the potential impact of point source water pollution, a comprehensive water pollution evaluation framework is constructed using a combination of Water Quality Index and Seismic Damage Index methods. The four key findings of this paper are: (1) The water catchment that has the highest factory concentration does not have the highest risk of non-point source water contamination induced by the outbreak of potential earthquake. (2) The water catchment that has the highest numbers of cumulative water pollutants types are typically located in the south western parts of Sichuan where the main river basins in the regions flow through. (3) The most common pollutants in sample factories studied is COD and NH3-N which are found in all catchments. The least common pollutant is pathogen—found present in W1 catchment which has the best rating in the water quality index. (4) Using water quality index as a standardization parameter, parallel comparisons is made among the 16 water catchments. Only catchment W1 reaches level II water quality status which has the rating of moderately polluted in events of earthquake induced water contamination. All other areas suffer from severe water contamination with multiple pollution sources. The results from the data model are significant to urban planning commissions and businesses to strategically choose their factory locations in order to minimize potential hazardous impact during the outbreak of earthquake.
Campylobacteriosis - an overview.
Sarkar, S R; Hossain, M A; Paul, S K; Ray, N C; Sultana, S; Rahman, M M; Islam, A
2014-01-01
Campylobacteriosis is a collective term, used for infectious, emerging foodborne disease caused by Campylobacter species comprising Gram negative, curved, and microaerophilic pathogens. The true incidence of human campylobacteriosis is unknown for most countries of the world including Bangladesh. But campylobacteriosis is not uncommon in our country. Due to its increasing incidence in many countries of the world, it is an important issue now a day. Animals such as birds are the main sources of infection. Farm animals such as cattle, poultry are commonly infected from such sources and raw milk, undercooked or poorly handled meat becomes contaminated. Transmission of campylobacteriosis to human occurs through consumption of infected, unpasteurized animal milk and milk products, undercooked poultry and through contaminated drinking water. Contact with contaminated poultry, livestock or household pets, especially puppies, can also cause disease. Due to variability of clinical features and limited availability of laboratory facilities, the disease remains largely under-reported. Early and specific diagnosis is important to ensure a favourable outcome regarding this food borne disease. Antibiotic treatment is controversial, and has only a benefit on the duration of symptoms. Campylobacter infections can be prevented by some simple hygienic food handling practices.
Review of chemical and radiotoxicological properties of polonium for internal contamination purposes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ansoborlo, Eric; Berard, Philippe; Den Auwer, Christophe
2012-01-01
The discovery of polonium (Po) was first published in July 1898 by P. and M. Curie. It was the first element to be discovered by the radiochemical method. Polonium can be considered as a famous but neglected element: only a few studies of polonium chemistry have been published, mostly between 1950 and 1990. The recent (2006) event in which 2106 Po evidently was used as a poison to kill A. Litvinenko has raised new interest in polonium. 2011 being the 100th 8 anniversary of Marie Curie Nobel Prize in Chemistry, the aim of this paper is to review several aspectmore » of polonium linked to its chemical properties and its radiotoxicity, including : i) its radiochemistry and interaction with matter; ii) its main sources and uses; iii) its physico-chemical properties; iv) its main analytical methods; v) its background exposure risk in water, food, and other environmental media; vi) its biokinetics and distribution following inhalation, ingestion and wound contamination; vii) its dosimetry and viii) treatments available (decorporation) in case of internal contamination.« less
Ansoborlo, Eric; Berard, Philippe; Den Auwer, Christophe; Leggett, Rich; Menetrier, Florence; Younes, Ali; Montavon, Gilles; Moisy, Philippe
2012-08-20
The discovery of polonium (Po) was first published in July, 1898 by P. Curie and M. Curie. It was the first element to be discovered by the radiochemical method. Polonium can be considered as a famous but neglected element: only a few studies of polonium chemistry have been published, mostly between 1950 and 1990. The recent (2006) event in which (210)Po evidently was used as a poison to kill A. Litvinenko has raised new interest in polonium. 2011 being the 100th anniversary of the Marie Curie Nobel Prize in Chemistry, the aim of this review is to look at the several aspects of polonium linked to its chemical properties and its radiotoxicity, including (i) its radiochemistry and interaction with matter; (ii) its main sources and uses; (iii) its physicochemical properties; (iv) its main analytical methods; (v) its background exposure risk in water, food, and other environmental media; (vi) its biokinetics and distribution following inhalation, ingestion, and wound contamination; (vii) its dosimetry; and (viii) treatments available (decorporation) in case of internal contamination.
Contamination of soils and groundwater with new organic micropollutants: A review
NASA Astrophysics Data System (ADS)
Vodyanitskii, Yu. N.; Yakovlev, A. S.
2016-05-01
The input of organic micro- and nanopollutants to the environment has grown in recent years. This vast class of substances is referred to as emerging micropollutants, and includes organic chemicals of industrial, agricultural, and municipal provenance. There are three main sources of emerging pollutants coming to the environment, i.e., (1) upon soil fertilization with sewage and sewage sludge; (2) soil irrigation with reclaimed wastewater and (3) due to filtration from municipal landfills of solid wastes. These pollutants contaminate soil, affect its inhabitants; they are also consumed by plants and penetrate to the groundwater. The pharmaceuticals most strongly affect the biota (microorganisms, earthworms, etc.). The response of microorganisms in the contaminated soil is controlled not only by the composition and the number of emerging pollutants but also by the geochemical environment.
Attenuation of Selected Emerging Contaminants During River Transport
NASA Astrophysics Data System (ADS)
Reinhard, M.; Gross, B.; Hadeler, A.
2002-12-01
The ubiquitous occurrence of emerging (non-regulated) contaminants in the aquatic environment is of concern because some of these chemicals are biologically active at low concentrations and a potential threat to wildlife and human health.. Emerging contaminants include a diverse range of chemicals, including pharmaceuticals, natural and synthetic hormones and industrial surfactants, such as alkylphenol ethoxylates (APEO) and their metabolites. To address the ecotoxicological impact of these chemicals, it is necessary to know their sources, removal efficiencies during wastewater treatment, and their behavior in the environment. In this study, the fate of selected emerging contaminants in the Santa Ana River (SAR) in Southern California was investigated. The SAR originates in the San Bernardino Mountains and flows 80 miles into the Pacific Ocean. The SAR flow stems mainly from storm runoff, wastewater treatment effluents and several other minor sources. During the dry season, SAR flow is dominated by effluent from public wastewater treatment plants. Input into the SAR was studied by analyzing samples from four major treatment plants that employ different tertiary treatment processes. To assess the fate during river water transport and during wetland treatment, samples from six sites along the river were analyzed. Effluent samples were analyzed every two months, river water every four months. River samples were taken considering the flow velocity, which is approximately 1 mile per hour. The analytical method involves solid-phase extraction using C-18 cartridges and extraction of three fractions. Samples were analyzed with and without further derivatization using GC/MS and GC/MS/MS. Results indicate significant contaminant removal during river transport, presumably by photochemical oxidation. Within a distance of nine miles, pharmaceuticals, plasticizers, flame retardants, APEOs and metabolites were attenuated with removal rates ranging from 76% for a flame retardant to up to 97% for some APEO metabolites. The two pharmaceuticals gemfibrozil and ibuprofen were attenuated by more than 90%. Whether photochemical transformations are mainly responsible for the observed removals remains to be investigated.
Harkawy, Aleksander; Górny, Rafał L; Ogierman, Leonard; Wlazło, Agnieszka; Ławniczek-Wałczyk, Anna; Niesler, Anna
2011-01-01
The aim of this study was to check the degree and identify the sources of microbial contamination of the Jasna Gora (Bright Hill) monastery library 10 years after disinfection of the incunabula collection. The registered maximum viable indoor microbial concentrations were 1,875 and 7,100 cfu/m³ for stationary and personal measurements, whereas respective total concentrations were 71,000 and 100,000 counts/m3. There was no statistically significant difference between the concentrations of viable microorganisms measured in the stationary using Andersen, GSP, and Button samplers. Moreover, GSP and Button samplers can be interchangeably applied when viable or total microbial levels are stationary or personally measured. The culturable microorganisms constituted 0.5 - 3.9% of the total microflora only. Filamentous fungi were the most prevalent outdoors, whereas Gram-positive cocci and endospore forming Gram-positive rods dominated indoors in the air and settled dust, respectively. Hence, an unrestrained infiltration of ambient air through the draughtiness of the building envelope is probably the main process responsible for indoor fungal pollution, whereas bacterial contaminants have their major sources in the indoor environment. Moreover, even a chemically cleansed library collection, having a restricted personnel access, but under the influence of ambient air, can undergo microbial contamination and becomes an important microbial emission source.
Surface contamination to UV-curable acrylates in the furniture and parquet industry.
Surakka, J; Lindh, T; Rosén, G; Fischer, T
2001-03-01
Surface contamination to ultraviolet radiation curable coatings (UV coatings), used increasingly in the parquet and furniture industry, is a matter of concern as a source for skin contamination. UV coatings contain chemically and biologically reactive acrylates, well known as skin contact irritants and sensitizers. Surface contamination may spread secondarily to equipment and other unexpected areas even outside the workplace. Yet, studies concerning this type of contamination are lacking due to lack of suitable sampling methods. Surface contamination of the work environment with risk for skin exposure to UV coating was measured employing a quantitative adhesive tape sampling method developed for this purpose. A pilot study was first performed at three workplaces to evaluate the contamination. In the main study, we wanted to locate and identify in detail the surface contamination of areas where problems exist, and to determine the extent of the problem. Measurements were performed at seven workplaces on two separate workdays (round 1 and 2) within a six-month period. Samples were collected from the workplaces based on the video monitoring of skin contact frequency with the surfaces and categorized into three groups to analyze risk. The pilot study indicated that surface contamination to TPGDA containing UV coatings was common, found in 76 percent of the surfaces, and varied with a maximum of 909 microg TPGDA 10 cm(-2) sampling area. In the main study TPGDA was found in 153 out of 196 collected samples (78.1%); for round one 78.1 percent (82 out of 105 samples) and for round two 78.0 percent (71 out of 91 samples). The average TPGDA mass on positive surface samples was on the first round 2,247 +/- 7,462 microg, and on the second round 2,960 +/- 4,590 microg. We conclude that surface contamination to uncured UV coatings at UV-curing lines is common and this involves a risk for harmful, unintentional skin exposure to acrylates.
Arsenic and fluoride in the groundwater of Mexico.
Armienta, M A; Segovia, N
2008-08-01
Concentrations of arsenic and fluoride above Mexican drinking water standards have been detected in aquifers of various areas of Mexico. This contamination has been found to be mainly caused by natural sources. However, the specific processes releasing these toxic elements into groundwater have been determined in a few zones only. Many studies, focused on arsenic-related health effects, have been performed at Comarca Lagunera in northern México. High concentrations of fluoride in water were also found in this area. The origin of the arsenic there is still controversial. Groundwater in active mining areas has been polluted by both natural and anthropogenic sources. Arsenic-rich minerals contaminate the fractured limestone aquifer at Zimapán, Central México. Tailings and deposits smelter-rich fumes polluted the shallow granular aquifer. Arsenic contamination has also been reported in the San Antonio-El Triunfo mining zone, southern Baja California, and Santa María de la Paz, in San Luis Potosí state. Even in the absence of mining activities, hydrogeochemistry and statistical techniques showed that arsenopyrite oxidation may also contaminate water, as in the case of the Independencia aquifer in the Mexican Altiplano. High concentrations of arsenic have also been detected in geothermal areas like Los Azufres, Los Humeros, and Acoculco. Prevalence of dental fluorosis was revealed by epidemiological studies in Aguascalientes and San Luis Potosí states. Presence of fluoride in water results from dissolution of acid-volcanic rocks. In Mexico, groundwater supplies most drinking water. Current knowledge and the geology of Mexico indicate the need to include arsenic and fluoride determinations in groundwater on a routine basis, and to develop interdisciplinary studies to assess the contaminant's sources in all enriched areas.
Highway increases concentrations of toxic metals in giant panda habitat.
Zheng, Ying-Juan; Chen, Yi-Ping; Maltby, Lorraine; Jin, Xue-Lin
2016-11-01
The Qinling panda subspecies (Ailuropoda melanoleuca qinlingensis) is highly endangered with fewer than 350 individuals inhabiting the Qinling Mountains. Previous studies have indicated that giant pandas are exposed to heavy metals, and a possible source is vehicle emission. The concentrations of Cu, Zn, Mn, Pb, Cr, Ni, Cd, Hg, and As in soil samples collected from sites along a major highway bisecting the panda's habitat were analyzed to investigate whether the highway was an important source of metal contamination. There were 11 sites along a 30-km stretch of the 108th National Highway, and at each site, soil samples were taken at four distances from the highway (0, 50, 100, and 300 m) and at three soil depths (0, 5, 10 cm). Concentrations of all metals except As exceeded background levels, and concentrations of Cu, Zn, Mn, Pb, and Cd decreased significantly with increasing distance from the highway. Geo-accumulation index indicated that topsoil next to the highway was moderately contaminated with Pb and Zn, whereas topsoil up to 300 m away from the highway was extremely contaminated with Cd. The potential ecological risk index demonstrated that this area was in a high degree of ecological hazards, which were also due to serious Cd contamination. And, the hazard quotient indicated that Cd, Pb, and Mn especially Cd could pose the health risk to giant pandas. Multivariate analyses demonstrated that the highway was the main source of Cd, Pb, and Zn and also put some influence on Mn. The study has confirmed that traffic does contaminate roadside soils and poses a potential threat to the health of pandas. This should not be ignored when the conservation and management of pandas is considered.
Oren, O.; Yechieli, Y.; Böhlke, J.K.; Dody, A.
2004-01-01
The purpose of this study is to obtain a better understanding of groundwater contamination processes in an arid environment (precipitation of 50 mm/year) due to cultivation. Additional aims were to study the fate of N, K, and other ions along the whole hydrological system including the soil and vadose zone, and to compare groundwater in its natural state with contaminated groundwater (through the drilling of several wells).A combination of physical, chemical, and isotopic analyses was used to describe the hydrogeological system and the recharge trends of water and salts to the aquifers. The results indicate that intensive irrigation and fertilization substantially affected the quantity and quality of groundwater recharge. Low irrigation efficiency of about 50% contributes approximately 3.5–4 million m3/year to the hydrological system, which corresponds to 0.65 m per year of recharge in the irrigated area, by far the most significant recharge mechanism.Two main contamination processes were identified, both linked to human activity: (1) salinization due to circulation of dissolved salts in the irrigation water itself, mainly chloride, sulfate, sodium and calcium, and (2) direct input of nitrate and potassium mainly from fertilizers.The nitrate concentrations in a local shallow groundwater lens range between 100 and 300 mg/l and in the upper sub-aquifer are over 50 mg/l. A major source of nitrate is fertilizer N in the excess irrigation water. The isotopic compositions of δ15N–NO3 (range of 4.9–14.8‰) imply also possible contributions from nearby sewage ponds and/or manure. Other evidence of contamination of the local groundwater lens includes high concentrations of K (20–120 mg/l) and total organic carbon (about 10 mg/l).
Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils.
Park, Jin Hee; Lamb, Dane; Paneerselvam, Periyasamy; Choppala, Girish; Bolan, Nanthi; Chung, Jae-Woo
2011-01-30
As land application becomes one of the important waste utilization and disposal practices, soil is increasingly being seen as a major source of metal(loid)s reaching food chain, mainly through plant uptake and animal transfer. With greater public awareness of the implications of contaminated soils on human and animal health there has been increasing interest in developing technologies to remediate contaminated sites. Bioremediation is a natural process which relies on soil microorganisms and higher plants to alter metal(loid) bioavailability and can be enhanced by addition of organic amendments to soils. Large quantities of organic amendments, such as manure compost, biosolid and municipal solid wastes are used as a source of nutrients and also as a conditioner to improve the physical properties and fertility of soils. These organic amendments that are low in metal(loid)s can be used as a sink for reducing the bioavailability of metal(loid)s in contaminated soils and sediments through their effect on the adsorption, complexation, reduction and volatilization of metal(loid)s. This review examines the mechanisms for the enhanced bioremediation of metal(loid)s by organic amendments and discusses the practical implications in relation to sequestration and bioavailability of metal(loid)s in soils. Copyright © 2010 Elsevier B.V. All rights reserved.
Evaporation as the transport mechanism of metals in arid regions.
Lima, Ana T; Safar, Zeinab; Loch, J P Gustav
2014-09-01
Soils of arid regions are exposed to drought and drastic temperature oscillations throughout the year. Transport mechanisms in these soils are therefore very different from the ones in temperate regions, where rain dictates the fate of most elements in soils. Due to the low rainfall and high evaporation rates in arid regions, groundwater quality is not threatened and all soil contamination issues tend to be overlooked. But if soil contamination happens, where do contaminants go? This study tests the hypothesis of upward metal movement in soils when evaporation is the main transport mechanism. Laboratory evaporation tests were carried out with heavy metal spiked Saudi soil, using circulation of air as the driving force (Fig. 1). Main results show that loamy soil retains heavy metals quite well while evaporation drives heavy metals to the surface of a sandy soil. Evaporation transports heavy metals upward in sandy soils of arid regions, making them accumulate at the soil surface. Sand being the dominating type of soil in arid regions, soils can then be a potential source of contaminated aerosols and atmospheric pollution - a transboundary problem. Some other repercussions for this problem are foreseen, such as the public ingestion or inhalation of dust. Copyright © 2014 Elsevier Ltd. All rights reserved.
Xiao, Ran; Wang, Shuang; Li, Ronghua; Wang, Jim J; Zhang, Zengqiang
2017-07-01
Soil contamination with heavy metals due to mining activities poses risks to ecological safety and human well-being. Limited studies have investigated heavy metal pollution due to artisanal mining. The present study focused on soil contamination and the health risk in villages in China with historical artisanal mining activities. Heavy metal levels in soils, tailings, cereal and vegetable crops were analyzed and health risk assessed. Additionally, a botany investigation was conducted to identify potential plants for further phytoremediation. The results showed that soils were highly contaminated by residual tailings and previous mining activities. Hg and Cd were the main pollutants in soils. The Hg and Pb concentrations in grains and some vegetables exceeded tolerance limits. Moreover, heavy metal contents in wheat grains were higher than those in maize grains, and leafy vegetables had high concentrations of metals. Ingestion of local grain-based food was the main sources of Hg, Cd, and Pb intake. Local residents had high chronic risks due to the intake of Hg and Pb, while their carcinogenic risk associated with Cd through inhalation was low. Three plants (Erigeron canadensis L., Digitaria ciliaris (Retz.) Koel., and Solanum nigrum L.) were identified as suitable species for phytoremediation. Copyright © 2017. Published by Elsevier Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Looney, B.; Eddy-Dilek, C.; Amidon, M.
2011-05-31
The U. S. Department of Energy (DOE) is currently developing a Proposed Plan (PP) for remediation of designated sources of chlorinated solvents that contribute contamination to the Southwest (SW) Groundwater Plume at the Paducah Gaseous Diffusion Plant (PGDP), in Paducah, KY. The principal contaminants in the SW Plume are trichloroethene (TCE) and other volatile organic compounds (VOCs); these industrial solvents were used and disposed in various facilities and locations at PGDP. In the SW plume area, residual TCE sources are primarily in the fine-grained sediments of the Upper Continental Recharge System (UCRS), a partially saturated zone that delivers contaminants downwardmore » into the coarse-grained Regional Gravel Aquifer (RGA). The RGA serves as the significant lateral groundwater transport pathway for the plume. In the SW Plume area, the four main contributing TCE source units are: (1) Solid Waste Management Unit (SWMU) 1 / Oil Landfarm; (2) C-720 Building TCE Northeast Spill Site (SWMU 211A); (3) C-720 Building TCE Southeast Spill Site (SWMU 211B); and (4) C-747 Contaminated Burial Yard (SWMU 4). The PP presents the Preferred Alternatives for remediation of VOCs in the UCRS at the Oil Landfarm and the C-720 Building spill sites. The basis for the PP is documented in a Focused Feasibility Study (FFS) (DOE, 2011) and a Site Investigation Report (SI) (DOE, 2007). The SW plume is currently within the boundaries of PGDP (i.e., does not extend off-site). Nonetheless, reasonable mitigation of the multiple contaminant sources contributing to the SW plume is one of the necessary components identified in the PGDP End State Vision (DOE, 2005). Because of the importance of the proposed actions DOE assembled an Independent Technical Review (ITR) team to provide input and assistance in finalizing the PP.« less
Huston, R; Chan, Y C; Chapman, H; Gardner, T; Shaw, G
2012-03-15
Due to prolonged droughts in recent years, the use of rainwater tanks in urban areas has increased in Australia. In order to apportion sources of contribution to heavy metal and ionic contaminants in rainwater tanks in Brisbane, a subtropical urban area in Australia, monthly tank water samples (24 sites, 31 tanks) and concurrent bulk deposition samples (18 sites) were collected during mainly April 2007-March 2008. The samples were analysed for acid-soluble metals, soluble anions, total inorganic carbon and total organic carbon, and characteristics such as total solid and pH. The Positive Matrix Factorisation model, EPA PMF 3.0, was used to apportion sources of contribution to the contaminants. Four source factors were identified for the bulk deposition samples, including 'crustal matter/sea salt', 'car exhausts/road side dust', 'industrial dust' and 'aged sea salt/secondary aerosols'. For the tank water samples, apart from these atmospheric deposition related factors which contributed in total to 65% of the total contaminant concentration on average, another six rainwater collection system related factors were identified, including 'plumbing', 'building material', 'galvanizing', 'roofing', 'steel' and 'lead flashing/paint' (contributing in total to 35% of the total concentration on average). The Australian Drinking Water Guideline for lead was exceeded in 15% of the tank water samples. The collection system related factors, in particular the 'lead flashing/paint' factor, contributed to 79% of the lead in the tank water samples on average. The concentration of lead in tank water was found to vary with various environmental and collection system factors, in particular the presence of lead flashing on the roof. The results also indicated the important role of sludge dynamics inside the tank on the quality of tank water. Copyright © 2011 Elsevier Ltd. All rights reserved.
Wang, Lei; Chen, Guangjie; Kang, Wengang; Wang, Jiaoyuan; Liu, Yuanyuan; Chen, Li
2018-05-01
It has been well established that regional patterns of atmosphere-borne polycyclic aromatic hydrocarbons (PAHs) and trace metals were predominantly associated with the trajectory of socio-economic development; however, they could be potentially modulated by anthropogenic fingerprint of local sources such as industrial spill. Here, we established historical pollution data of both PAHs and trace metals from a well-dated sediment core from Yangzong Lake of Southwest China, which experienced a severe tailing leakage accident derived from a zinc concentrate smelting plant in 2007, aiming to evaluate the heterogeneity in their temporal trajectories and their sources of contamination in the context of regional deposition patterns. Sedimentary records show that the concentrations and fluxes of both PAHs and trace metals remained a consistently low level before the 1950s. An increasing trend and the synchronous changes of both PAHs and trace metals during ~ 1950-2002 were well consistent with the temporal pattern of socio-economic development in western China, with coal combustion and smelting industries as the main sources of contamination in this region. However, arsenic (As) and PAHs exhibited a concurrent spike for the period of ~ 2007-2013, contrasting strongly to the regional pattern of these contaminants. The modern concentrations of As revealed a 5- to 14-fold increase over the pre-1950 level, with the contemporary concentrations of PAHs rising by ~ 10-14 times. The sediment records reveal that local fingerprints of smelting activities in the catchment of Yangzong Lake have overridden the temporary pattern of regional atmosphere-borne As and PAHs over the last decade. This highlights the important role of local pollution sources in modulating or even overriding the regional pattern of anthropogenic contamination in highly impacted systems.
Trends in chlorinated hydrocarbon levels in Hudson River basin sediments.
Bopp, R F; Chillrud, S N; Shuster, E L; Simpson, H J; Estabrooks, F D
1998-08-01
Analysis of sections from dated sediment cores were used to establish geographic distributions and temporal trends of chlorinated hydrocarbon contaminant levels in sediments from natural waters of the Hudson River basin. Radiometric dating was based primarily on the depth distribution of 137(Cs) in the cores and on the occurrence of detectable levels of 7(Be) in surface sediment samples. Eighteen sampling sites included several along the main stem of the Hudson, its major tributaries, and components of the New York/New Jersey (NY/NJ) harbor complex. Drinking-water reservoirs were sampled to place upper limits on atmospheric inputs. Core sections were analyzed for polychlorinated biphenyls (PCBs), 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT)-derived compounds, chlordane, and dioxins. Sediment concentrations of most contaminants at most sites have decreased significantly since the mid-1960s. The data provide a basinwide perspective on major point-source inputs of PCBs to the upper Hudson River and of 2,3,7,8-tetrachlorodibenzo-p-dioxin and DDT to the lower Passaic River. Evidence was found for significant but poorly characterized sources of PCBs and chlordane to the western NY/NJ harbor, and of highly chlorinated dioxins to the upstream sites on the main stem of the Hudson. The results indicate that analysis of dated sediment samples is a most effective and efficient monitoring tool for the study of large-scale geographic and temporal trends in levels of particle-associated contaminants.
[Investigation of intestinal parasites in food workers in hospitals in Aydin, Turkey].
Yazici, Vesile; Siriken, Fatih; Ertabaklar, Hatice; Ertuğ, Sema
2007-01-01
Food workers are an important risk group for intestinal parasite contamination and dissemination. In the present study food workers, working in food preparation and distribution in the Adnan Menderes University Hospital, Aydin State Hospital and 82. Yil State Hospital, were screened for the presence of intestinal parasites. Out of 58 food workers 22 were females and 36 were males, and the age of workers ranged from 20 to 56. All workers included in the study answered a questionnaire concerned with their social demographic situation and hygiene habits. Stool specimens and cellophane tape specimens were taken from food workers and studied for the presence of parasites. Stool samples were studied using native Lugol, precipitation by formol ethyl acetate, trichrome and acid fast staining methods. Cellophane tape slides were examined for Enterobius vermicularis with the 10X objective. Out of 58 food workers investi-gated, 17 (29.31%) had at least one parasite; nine had Blastocystis hominis (15.51%), five had E. vermicularis (8.62%), one had Giardia intestinalis (1.72%), one had both Entamoeba histolytica/dispar and Entamoeba coli (1.72%), and one had both E. vermicularis and B. hominis (1.72%). All workers with parasites were treated and taken under surveillance. The oral-fecal route is the main source for intes-tinal parasite contamination. It should be considered that food workers may be the main source for the contamination of hospital workers as well as patients which may cause serious problems especially for the cases with immune deficiency.
This work presents the results of an international interlaboratory comparison on ex situ passive sampling in sediments. The main objectives were to map the state of the science in passively sampling sediments, identify sources of variability, provide recommendations and practica...
This work presents the results of an international interlaboratory comparison on ex situ passive sampling in sediments. The main objectives were to map the state of the science in passively sampling sediments, identify sources of variability, provide recommendations and practical...
Contamination sources, prevention, and research
USDA-ARS?s Scientific Manuscript database
Contamination is defined as anything other than cotton in cotton lint. Worldwide, contamination is on the rise and plastic contamination has increased at a faster rate than contamination overall. In the U.S., there are many sources of plastic contaminants, such as plastic trash that collects in cott...
Pollution assessment and source apportionment of heavy metals in contaminated site soils
NASA Astrophysics Data System (ADS)
Zheng, Hongbo; Ma, Yan
2018-03-01
Pollution characteristics of heavy metals in soil were analyzed with a typical contaminated site as the case area. The pollution degree of the element was evaluated by indexes of geoaccumulation (Igeo). The potential ecological risk of heavy metals was assessed with potential ecological risk index model. Principal component analysis (PCA) model was simultaneously carried out to identify the main sources of heavy metals in topsoils. The results indicated that: 1. Mean values of 11 kinds of metals in topsoils were greater than respective soil background values, following the order: Zn>Pb>V>Cr>Cu>Ni>Co>As>Sb>Cd>Hg. Heavy metals with a certain accumulation in the research area were significantly affected by external factors. 2. Igeo results showed that Cd and Zn reached strongly polluted degree, while Pb with moderately to strongly polluted, Sb and Hg with moderately polluted, Cu, Co, Ni and Cr with unpolluted to moderately polluted, V and As with un-polluted. 3. Potential ecological risk assessment showed the degree of ecological risk with Cd at very high risk, Hg at high risk, Pb at moderate risk and others at low risk. The comprehensive risk of all the metals was very high. 4. PCA got three main sources with contributions, including industrial activities (44.18%), traffic and burning dust (26.68%) and soil parent materials (12.20%).
Cidu, Rosa; Dore, Elisabetta; Biddau, Riccardo; Nordstrom, D. Kirk
2018-01-01
We investigated the fate of Sb and As downstream of the abandoned Su Suergiu mine (Sardinia, Italy) and surrounding areas. The mined area is a priority in the Sardinian remediation plan for contaminated sites due to the high concentrations of Sb and As in the mining-related wastes, which may impact the Flumendosa River that supplies water for agriculture and domestic uses. Hydrogeochemical surveys conducted from 2005 to 2015 produced time-series data and downstream profiles of water chemistry at 46 sites. Water was sampled at: springs and streams unaffected by mining; adits and streams in the mine area; drainage from the slag heaps; stream water downstream of the slag drainages; and the Flumendosa River downstream from the confluence of the contaminated waters. At specific sites, water sampling was repeated under different flow conditions, resulting in a total of 99 samples. The water samples were neutral to slightly alkaline. Elevated Sb (up to 30 mg L−1) and As (up to 16 mg L−1) concentrations were observed in water flowing from the slag materials from where the Sb ore was processed. These slag materials were the main Sb and As source at Su Suergiu. A strong base, Na-carbonate, from the foundry wastes, had a major influence on mobilizing Sb and As. Downstream contamination can be explained by considering that: (1) the predominant aqueous species, Sb(OH)6 − and HAsO4 −2, are not favored in sorption processes at the observed pH conditions; (2) precipitation of Sb- and As-bearing solid phases was not observed, which is consistent with modeling results indicating undersaturation; and (3) the main decrease in dissolved Sb and As concentrations was by dilution. Dissolved As concentrations in the Flumendosa River did not generally exceed the EU limit of 10 µg L−1, whereas dissolved Sb in the river downstream of the contamination source always exceeded the EU limit of 5 µg L−1. Recent actions aimed at retaining runoff from the slag heaps are apparently not sufficiently mitigating contamination in the Flumendosa River.
Gameiro, Paula Hauber; Pereira, Naiara Costa; Rocha, Jocelita Aparecida Vaz; Leal, Karen Alam; Vargas, Vera Maria Ferrão
2018-04-10
Soil contamination enters aquatic ecosystems affecting sediment quality. The region studied is the Taquari River, Brazil, close to a site contaminated by wood preservatives, with a runoff route into the river. The first stage of the remediation process (In this article, the terms intervention and remediation have been used with slightly different meanings. We consider intervention to be the first phase of the remediation process, which aims to remove active sources) was an intervention to remove the main active sources. The Salmonella/microsome assay and polycyclic aromatic hydrocarbons (PAHs) were used to assess sediment quality in organic extracts during different intervention phases. The strains used were TA98, TA97a, and TA100 with and without S9mix (±S9). The results indicated the presence of pro-mutagens at site Ta010 (closest to the contaminated site) in all samplings, and the highest result occurred before intervention for TA100 + S9 (1,672 ± 215.9 rev/g). These values decreased during (83 ± 23.6 rev/g) and after this process (403 ± 105.9 rev/g), although the PAHs concentrations increased. Samples from this site presented PAHs with a carcinogenic potential during the assessed periods. After intervention, Ta006 (4 km downstream from Ta010) showed the most significant mutagenesis for TA100 + S9 (764 ± 230.2 rev/g) and, although the total PAHs values were lower, the species considered carcinogenic had higher concentrations. Mutagenesis predicted values of PAHs confirmed that carcinogenic species were predominantly detected by TA100, and the other PAHs by TA97a strains. Marked contaminant release to the river was observed, mainly in Ta010 at different periods. Mutagenicity and PAHs values in an internal stream, upstream from Ta010, showed a dispersion route of these agents. Thus, contamination in Ta010 and possible contribution to Ta006, after intervention, provides a warning regarding environmental quality in the region. Environ. Mol. Mutagen., 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Selvam, S.; Antony Ravindran, A.; Venkatramanan, S.; Singaraja, C.
2017-05-01
Heavy metals and microbiological contamination were investigated in groundwater in the industrial and coastal city of Thoothukudi. The main sources of drinking water in this area are water bores which are dug up to the depth of 10-50 m in almost every house. A number of chemical and pharmaceutical industries have been established since past three decades. Effluents from these industries are reportedly being directly discharged onto surrounding land, irrigation fields and surface water bodies forming point and non-point sources of contamination for groundwater in the study area. The study consists of the determination of physico-chemical properties, trace metals, heavy metals and microbiological quality of drinking water. Heavy metals were analysed using Inductively Coupled Plasma Mass Spectrometry and compared with the (WHO in Guidelines for drinking water quality, 2004) standards. The organic contamination was detected in terms of most probable number (MPN) test in order to find out faecal coliforms that were identified through biochemical tests. A comparison of the results of groundwater samples with WHO guidelines reveals that most of the groundwater samples are heavily contaminated with heavy metals like arsenic, selenium, lead, boron, aluminium, iron and vanadium. The selenium level was higher than 0.01 mg/l in 82 % of the study area and the arsenic concentration exceeded 0.01 mg/l in 42 % of the area. The results reveal that heavy metal contamination in the area is mainly due to the discharge of effluents from copper industries, alkali chemical industry, fertiliser industry, thermal power plant and sea food industries. The results showed that there are pollutions for the groundwater, and the total Coliform means values ranged from 0.6-145 MPN ml-1, faecal Coliform ranged from 2.2-143 MPN ml-1, Escherichia coli ranged from 0.9 to 40 MPN ml-1 and faecal streptococci ranged from 10-9.20 × 102 CFU ml-1. The coastal regions are highly contaminated with total coliform bacteria, faecal coliform bacteria and E. coli. This might be due to the mixing of sewage from Thoothukudi town through the Buckle channel and fishing activity.
Tamminga, Matthias; Hengstmann, Elena; Fischer, Elke Kerstin
2018-03-01
Microplastic contamination in surface waters of the South Funen Archipelago in Denmark was assessed. Therefore, ten manta trawls were conducted in June 2015. Moreover, 31 low-volume bulk samples were taken to evaluate, whether consistent results in comparison to the net-based approach can be obtained. Microplastic contamination in the South Funen Archipelago (0.07 ± 0.02 particles/m3) is slightly below values reported before. The sheltered position of the study area, low population pressure on adjacent islands and the absence of any major potential point sources were identified as major factors explaining the low concentration of microplastics. Within the Archipelago, harbors or marinas and the associated vessel traffic are the most probable sources of microplastics. The concentration of microplastics in low-volume bulk samples is not comparable to manta trawl results. This is mainly due to insufficient representativeness of the bulk sample volumes.
Mestres, M; Sierra, J P; Mösso, C; Sánchez-Arcilla, A
2010-06-01
The proximity of commercial harbours to residential areas and the growing environmental awareness of society have led most port authorities to include environmental management within their administration plan. Regarding water quality, it is necessary to have the capacity and tools to deal with contamination episodes that may damage marine ecosystems and human health, but also affect the normal functioning of harbours. This paper presents a description of the main pollutant sources in Tarragona Harbour (Spain), and a numerical analysis of several pollution episodes based on the Port Authority's actual environmental concerns. The results show that pollution generated inside the harbour tends to remain confined within the port, whereas it is very likely that oil spills from a nearby monobuoy may affect the neighbouring beaches. The present combination of numerical models proves itself a useful tool to assess the environmental risk associated to harbour activities and potential pollution spills.
Recurrent recovery of Pseudomonas oryzihabitans strains in a karstified chalk aquifer.
Dussart-Baptista, L; Bodilis, J; Barray, S; Frébourg, N; Fournier, M; Dupont, J-P; Jouenne, T
2007-01-01
Pseudomonas oryzihabitans is an uncommon pathogen that may cause catheter-associated infections, particularly in immunocompromised patients. Although it has been isolated from environment, the source of human infection is not well documented. In the present study, 14 isolates of P. oryzihabitans were recovered over a 28-month period from a karstified chalk aquifer, allowing to advance that distributed natural water could be a source of contamination. Microbiological analyses showed that the bacterium was mainly associated with suspended particulate matters. To investigate the clonality of P. oryzihabitans environmental isolates, 16S rRNA gene sequencing, antibiogram and randomly amplified polymorphic DNA (RAPD) typings were performed. Results demonstrated (i) the presence of at least three clones within the aquifer and (ii) that the presence of the bacterium in groundwater is not only the result of a biofilm bloom but also of an exogenous contamination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szabó, R.; Sárneczky, K.; Szabó, Gy. M.
Unlike NASA’s original Kepler Discovery Mission, the renewed K2 Mission will target the plane of the Ecliptic, observing each field for approximately 75 days. This will bring new opportunities and challenges, in particular the presence of a large number of main-belt asteroids that will contaminate the photometry. The large pixel size makes K2 data susceptible to the effects of apparent minor planet encounters. Here, we investigate the effects of asteroid encounters on photometric precision using a subsample of the K2 engineering data taken in 2014 February. We show examples of asteroid contamination to facilitate their recognition and distinguish these eventsmore » from other error sources. We conclude that main-belt asteroids will have considerable effects on K2 photometry of a large number of photometric targets during the Mission that will have to be taken into account. These results will be readily applicable for future space photometric missions applying large-format CCDs, such as TESS and PLATO.« less
Postigo, Cristina; Barceló, Damià
2015-01-15
Groundwater constitutes the main source of public drinking water supply in many regions. Thus, the contamination of groundwater resources by organic chemicals is a matter of growing concern because of its potential effects on public health. The present manuscript compiles the most recent works related to the study of synthetic organic compounds (SOCs) in groundwater, with special focus on the occurrence of contaminants not or barely covered by previously published reviews, e.g., pesticide and pharmaceutical transformation products, lifestyle products, and industrial chemicals such as corrosion inhibitors, brominated and organophosphate flame retardants, plasticizers, volatile organic compounds (VOCs), and polycyclic aromatic hydrocarbons (PAHs). Moreover, the main challenges in managed aquifer recharge, i.e., reclaimed water injection and infiltration, and riverbank filtration, regarding natural attenuation of organic micropollutants are discussed, and insights into the future chemical quality of groundwater are provided. Copyright © 2014 Elsevier B.V. All rights reserved.
Barjhoux, Iris; Clérandeau, Christelle; Menach, Karyn Le; Anschutz, Pierre; Gonzalez, Patrice; Budzinski, Hélène; Morin, Bénédicte; Baudrimont, Magalie; Cachot, Jérôme
2017-08-01
Sediment compartment is a long term sink for pollutants and a secondary source of contamination for aquatic species. The abiotic factors controlling the bioavailability and thus the toxicity of complex mixtures of pollutants accumulated in sediments are poorly documented. To highlight the different factors influencing sediment toxicity, we identified and analyzed the physico-chemical properties, micro-pollutant contents, and toxicity level of six contrasted sediments in the Lot-Garonne continuum. Sediment toxicity was evaluated using the recently described Japanese medaka (Oryzias latipes) embryo-larval assay with direct exposure to whole sediment (MELAc). Multiple toxicity endpoints including embryotoxicity, developmental defects and DNA damage were analyzed in exposed embryos. Chemical analyses revealed significant variations in the nature and contamination profile of sediments, mainly impacted by metallic trace elements and, unexpectedly, polycyclic aromatic hydrocarbons. Exposure to sediments induced different toxic impacts on medaka early life stages when compared with the reference site. Principal component analysis showed that the toxic responses following exposure to sediments from the Lot River and its tributary were associated with micro-pollutant contamination: biometric measurements, hatching success, genotoxicity, craniofacial deformities and yolk sac malabsorption were specifically correlated to metallic and organic contaminants. Conversely, the main biological responses following exposure to the Garonne River sediments were more likely related to their physico-chemical properties than to their contamination level. Time to hatch, cardiovascular injuries and spinal deformities were correlated to organic matter content, fine particles and dissolved oxygen levels. These results emphasize the necessity of combining physico-chemical analysis of sediment with toxicity assessment to accurately evaluate the environmental risks associated with sediment contamination. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dauvalter, V.A.; Kashulin, N.A.; Lukin, A.A.
1996-12-31
The copper-nickel smelter complexes of Kola Peninsula are powerful sources of atmospheric contamination by heavy metals (Ni, Cu, Co, Cd, etc.) and acidic oxides (SO{sub 2}) deposited in precipitation and caused negative effects on local freshwater ecosystems. The rise of background levels occurs over large areas in the region. The aim of the investigations is to assess effects of the air contamination on lake ecosystems at different distances (from 15 to 120 km) from one of the main heavy metal pollution sources of the Kola Peninsula - smelters of the Pechenganickel Company. Negative effects of air pollution by the smeltersmore » on the freshwater ecosystems were recorded. Lake sediments accumulate very intensively heavy metals. Heavy metal contamination factors calculated as the quotient of concentration from the uppermost (0-1 cm) sediment to the mean preindustrial background value (concentrations from 20-30 cm sediment layers) for the investigated region reach up 120 for Ni and 76 for Cu in the lakes within a distance of 40 km from the smelters. The lakes in this region have very high contamination degree according classification by Hakanson (1980). Concentrations of Ni in organs and tissues of all studied fishes (whitefish, pike, perch, arctic char, brown trout) were considerably higher in the investigated lakes than in remote unpolluted lakes. There is tight positive correlation between Ni concentrations in surficial sediment (0-1 cm) and fish kidney (r = +0.854), as well as between values of contamination degree and Ni content in fish (r = +0.871).« less
Sedláček, Jan; Bábek, Ondřej; Nováková, Tereza
2017-01-01
While numerous studies of dam reservoirs contamination are reported world-wide, we present a missing link in the study of reservoirs sourced from multiple river catchments. In such reservoirs, different point sources of contaminants and variable composition of their sedimentary matrices add to extremely complex geochemical patterns. We studied a unique, step-wise filled Nové Mlýny dam reservoir, Czech Republic, which consists of three interconnected sub-basins. Their source areas are located in units with contrasting geology and different levels and sources of contamination. The aim of this study is to provide an insight into the provenance of the sediment, including lithogenic elements and anthropogenic pollutants, to investigate the sediment dispersal across the reservoir, and to assess the heavy metal pollution in each basin. The study is based on multi-proxy stratigraphic analysis and geochemistry of sediment cores. There is a considerable gradient in the sediment grain size, brightness, MS and geochemistry, which reflects changing hydrodynamic energy conditions and primary pelagic production of CaCO 3 . The thickness of sediments generally decreases from proximal to distal parts, but underwater currents can accumulate higher amounts of sediments in distal parts near the thalweg line. Average sedimentation rates vary over a wide range from 0.58cm/yr to 2.33cm/yr. In addition, the petrophysical patterns, concentrations of lithogenic elements and their ratios made it possible to identify two main provenance areas, the Dyje River catchment (upper basin) and the Svratka and Jihlava River catchments (middle and lower basin). Enrichment factors (EF) were used for distinguishing the anthropogenic element contribution from the local background levels. We found moderate Zn and Cu pollution (EF ~2 to 5) in the upper basin and Zn, Cu and Pb (EF ~2 to 4.5) in the middle basin with the peak contamination in the late 1980s, indicating that the two basins have different contamination histories. Copyright © 2016 Elsevier B.V. All rights reserved.
An assessment of air as a source of DNA contamination encountered when performing PCR.
Witt, Nina; Rodger, Gillian; Vandesompele, Jo; Benes, Vladimir; Zumla, Alimuddin; Rook, Graham A; Huggett, Jim F
2009-12-01
Sensitive molecular methods, such as the PCR, can detect low-level contamination, and careful technique is required to reduce the impact of contaminants. Yet, some assays that are designed to detect high copy-number target sequences appear to be impossible to perform without contamination, and frequently, personnel or laboratory environment are held responsible as the source. This complicates diagnostic and research analysis when using molecular methods. To investigate the air specifically as a source of contamination, which might occur during PCR setup, we exposed tubes of water to the air of a laboratory and clean hood for up to 24 h. To increase the chances of contamination, we also investigated a busy open-plan office in the same way. All of the experiments showed the presence of human and rodent DNA contamination. However, there was no accumulation of the contamination in any of the environments investigated, suggesting that the air was not the source of contamination. Even the air from a busy open-plan office was a poor source of contamination for all of the DNA sequences investigated (human, bacterial, fungal, and rodent). This demonstrates that the personnel and immediate laboratory environment are not necessarily to blame for the observed contamination.
Bordeleau, Geneviève; Savard, Martine M; Martel, Richard; Ampleman, Guy; Thiboutot, Sonia
2008-06-06
Nitrate is one of the most common contaminants in shallow groundwater, and many sources may contribute to the nitrate load within an aquifer. Groundwater nitrate plumes have been detected at several ammunition production sites. However, the presence of multiple potential sources and the lack of existing isotopic data concerning explosive degradation-induced nitrate constitute a limitation when it comes to linking both types of contaminants. On military training ranges, high nitrate concentrations in groundwater were reported for the first time as part of the hydrogeological characterization of the Cold Lake Air Weapons Range (CLAWR), Alberta, Canada. Explosives degradation is thought to be the main source of nitrate contamination at CLAWR, as no other major source is present. Isotopic analyses of N and O in nitrate were performed on groundwater samples from the unconfined and confined aquifers; the dual isotopic analysis approach was used in order to increase the chances of identifying the source of nitrate. The isotopic ratios for the groundwater samples with low nitrate concentration suggested a natural origin with a strong contribution of anthropogenic atmospheric NOx. For the samples with nitrate concentration above the expected background level the isotopic ratios did not correspond to any source documented in the literature. Dissolved RDX samples were degraded in the laboratory and results showed that all reproduced degradation processes released nitrate with a strong fractionation. Laboratory isotopic values for RDX-derived NO(3)(-) produced a trend of high delta(18)O-low delta(15)N to low delta(18)O-high delta(15)N, and groundwater samples with nitrate concentrations above the expected background level appeared along this trend. Our results thus point toward a characteristic field of isotopic ratios for nitrate being derived from the degradation of RDX.
Stoeckel, D.M.; Stelzer, E.A.; Stogner, R.W.; Mau, D.P.
2011-01-01
Protocols for microbial source tracking of fecal contamination generally are able to identify when a source of contamination is present, but thus far have been unable to evaluate what portion of fecal-indicator bacteria (FIB) came from various sources. A mathematical approach to estimate relative amounts of FIB, such as Escherichia coli, from various sources based on the concentration and distribution of microbial source tracking markers in feces was developed. The approach was tested using dilute fecal suspensions, then applied as part of an analytical suite to a contaminated headwater stream in the Rocky Mountains (Upper Fountain Creek, Colorado). In one single-source fecal suspension, a source that was not present could not be excluded because of incomplete marker specificity; however, human and ruminant sources were detected whenever they were present. In the mixed-feces suspension (pet and human), the minority contributor (human) was detected at a concentration low enough to preclude human contamination as the dominant source of E. coli to the sample. Without the semi-quantitative approach described, simple detects of human-associated marker in stream samples would have provided inaccurate evidence that human contamination was a major source of E. coli to the stream. In samples from Upper Fountain Creek the pattern of E. coli, general and host-associated microbial source tracking markers, nutrients, and wastewater-associated chemical detections-augmented with local observations and land-use patterns-indicated that, contrary to expectations, birds rather than humans or ruminants were the predominant source of fecal contamination to Upper Fountain Creek. This new approach to E. coli allocation, validated by a controlled study and tested by application in a relatively simple setting, represents a widely applicable step forward in the field of microbial source tracking of fecal contamination. ?? 2011 Elsevier Ltd.
Yttrium recovery from primary and secondary sources: A review of main hydrometallurgical processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Innocenzi, Valentina, E-mail: valentina.innocenzi1@univaq.it; De Michelis, Ida; Kopacek, Bernd
2014-07-15
Highlights: • Review of the main hydrometallurgical processes to recover yttrium. • Recovery of yttrium from primary sources. • Recovery of yttrium from e-waste and other types of waste. - Abstract: Yttrium is important rare earths (REs) used in numerous fields, mainly in the phosphor powders for low-energy lighting. The uses of these elements, especially for high-tech products are increased in recent years and combined with the scarcity of the resources and the environmental impact of the technologies to extract them from ores make the recycling waste, that contain Y and other RE, a priority. The present review summarized themore » main hydrometallurgical technologies to extract Y from ores, contaminated solutions, WEEE and generic wastes. Before to discuss the works about the treatment of wastes, the processes to retrieval Y from ores are discussed, since the processes are similar and derived from those already developed for the extraction from primary sources. Particular attention was given to the recovery of Y from WEEE because the recycle of them is important not only for economical point of view, considering its value, but also for environmental impact that this could be generated if not properly disposal.« less
NASA Astrophysics Data System (ADS)
Baram, S.; Ronen, Z.; Kurtzman, D.; Peeters, A.; Dahan, O.
2013-12-01
Land cultivation and dairy waste lagoons are considered to be nonpoint and point sources of groundwater contamination by chloride (Cl-) and nitrate (NO3-). The objective of this work is to introduce a methodology to assess the past and future impacts of such agricultural activities on regional groundwater quality. The method is based on mass balances and on spatial statistical analysis of Cl- and NO3-concentration distributions in the saturated and unsaturated zones. The method enables quantitative analysis of the relation between the locations of pollution point sources and the spatial variability in Cl- and NO3- concentrations in groundwater. The method was applied to the Beer-Tuvia region, Israel, where intensive dairy farming along with land cultivation has been practiced for over 50 years above the local phreatic aquifer. Mass balance calculations accounted for the various groundwater recharge and abstraction sources and sinks in the entire region. The mass balances showed that leachates from lagoons and the cultivated land have contributed 6.0 and 89.4 % of the total mass of Cl- added to the aquifer and 12.6 and 77.4 % of the total mass of NO3-. The chemical composition of the aquifer and vadose zone water suggested that irrigated agricultural activity in the region is the main contributor of Cl- and NO3- to the groundwater. A low spatial correlation between the Cl- and NO3- concentrations in the groundwater and the on-land location of the dairy farms strengthened this assumption, despite the dairy waste lagoon being a point source for groundwater contamination by Cl- and NO3-. Results demonstrate that analyzing vadose zone and groundwater data by spatial statistical analysis methods can significantly contribute to the understanding of the relations between groundwater contaminating sources, and to assessing appropriate remediation steps.
Gwenzi, Willis; Mangori, Lynda; Danha, Concilia; Chaukura, Nhamo; Dunjana, Nothando; Sanganyado, Edmond
2018-04-26
Recent studies show that high-technology rare earth elements (REEs) of anthropogenic origin occur in the environment including in aquatic systems, suggesting REEs are contaminants of emerging concern. However, compared to organic contaminants, there is a lack of comprehensive reviews on the anthropogenic sources, environmental behaviour, and public and ecological health risks of REEs. The current review aims to: (1) identify anthropogenic sources, transfer mechanisms, and environmental behaviour of REEs; (2) highlight the human and ecological health risks of REEs and propose mitigation measures; and (3) identify knowledge gaps and future research directions. Out of the 17 REEs, La, Gd, Ce and Eu are the most studied. The main sources of anthropogenic REE include; medical facilities, petroleum refining, mining and technology industries, fertilizers, livestock feeds, and electronic wastes and recycling plants. REEs are mobilized and transported in the environment by hydrological and wind-driven processes. Ecotoxicological effects include reduced plant growth, function and nutritional quality, genotoxicity and neurotoxicity in animals, trophic bioaccumulation, chronic and acute toxicities in soil organisms. Human exposure to REEs occurs via ingestion of contaminated water and food, inhalation, and direct intake during medical administration. REEs have been detected in human hair, nails, and biofluids. In humans, REEs cause nephrogenic systemic fibrosis and severe damage to nephrological systems associated with Gd-based contrast agents, dysfunctional neurological disorder, fibrotic tissue injury, oxidative stress, pneumoconiosis, cytotoxicity, anti-testicular effects, and male sterility. Barring REEs in medical devices, epidemiological evidence directly linking REEs in the environment to human health conditions remains weak. To minimize health risks, a conceptual framework and possible mitigation measures are highlighted. Future research is needed to better understand sources, environmental behaviour, ecotoxicology, and human epidemiology. Moreover, research on REEs in developing regions, including Africa, is needed given prevailing conditions predisposing humans to health risks (e.g., untreated drinking water). Copyright © 2018 Elsevier B.V. All rights reserved.
Baram, S; Kurtzman, D; Ronen, Z; Peeters, A; Dahan, O
2014-01-01
Dairy waste lagoons are considered to be point sources of groundwater contamination by chloride (Cl(-)), different nitrogen-species and pathogens/microorganisms. The objective of this work is to introduce a methodology to assess the past and future impacts of such lagoons on regional groundwater quality. The method is based on a spatial statistical analysis of Cl(-) and total nitrogen (TN) concentration distributions in the saturated and the vadose (unsaturated) zones. The method provides quantitative data on the relation between the locations of dairy lagoons and the spatial variability in Cl(-) and TN concentrations in groundwater. The method was applied to the Beer-Tuvia region, Israel, where intensive dairy farming has been practiced for over 50 years above the local phreatic aquifer. Mass balance calculations accounted for the various groundwater recharge and abstraction sources and sinks in the entire region. The mass balances showed that despite the small surface area covered by the dairy lagoons in this region (0.8%), leachates from lagoons have contributed 6.0% and 12.6% of the total mass of Cl(-) and TN (mainly as NO3(-)-N) added to the aquifer. The chemical composition of the aquifer and vadose zone water suggested that irrigated agricultural activity in the region is the main contributor of Cl(-) and TN to the groundwater. A low spatial correlation between the Cl(-) and NO3(-)-N concentrations in the groundwater and the on-land location of the dairy farms strengthened this assumption, despite the dairy waste lagoon being a point source for groundwater contamination by Cl(-) and NO3(-)-N. Mass balance calculations, for the vadose zone of the entire region, indicated that drying of the lagoons would decrease the regional groundwater salinization process (11% of the total Cl(-) load is stored under lagoons). A more considerable reduction in the groundwater contamination by NO3(-)-N is expected (25% of the NO3(-)-N load is stored under lagoons). Results demonstrate that analyzing vadose zone and groundwater data by spatial statistical analysis methods can significantly contribute to the understanding of the relations between groundwater contaminating sources, and to assessing appropriate remediation steps. Copyright © 2013 Elsevier Ltd. All rights reserved.
BioGeochemistry of antimony, Sources, Transfers, Impacts and Assessment
NASA Astrophysics Data System (ADS)
Le Roux, Gael; Pinelli, Eric; Hedde, Mickael; Guiresse, Maritxu; De Vleeschouwer, François; Silvestre, Jérôme; Enrico, Maxime; Gandois, Laure; Monna, Fabrice; Gers, Charles; Probst, Anne
2013-04-01
BioGeoSTIB is a project funded by ADEME (French Environmental Protection Agency). Its aim is to provide a better understanding of biogeochemical cycle disturbances of antimony by man. Specifically, it is focused on the atmosphere-soil-organism interfaces. Based on a multi-scale approach, the impact of antimony on organisms and organism communities and the factors of Sb dispersion in the environment aim to better characterized. This report gives the main results of 2 and 1 -2 years of research. Using peat bogs as environmental archives, we show that Sb contamination in soils date back to the beginning of the metallurgy. Atmospheric deposition of Sb largely increased by 100 times during the Industrial Revolution compared to natural levels (~0,001-0,01 mg m-2 an-1) estimated in the deepest peat layers. This disturbance in the antimony geochemical cycle modified its concentrations in soils. One main source of present Sb contamination is automotive traffic due to Sb in braking lines. This emerging contamination was characterized close to a roundabout. This additional source of Sb does not seem to impact soil fauna but Sb concentrations in soil solutions exceed 1 μg L-1. Genotoxicity tests have been performed on the model plant Vicia faba and show that antimony is genotoxic at its lowest concentrations and that there is a synergistic effect lead, a trace metal frequently found in association with antimony in the environment. It is a main issue to determine Sb critical loads in the environment but main identified lacks are thermodynamic data, which are not available yet, to model the behavior of Sb in soil solutions and the fact the antimony is always associated with other anthropogenic trace metals like lead. Critical thresholds of Sb have been determined for the first time based on genotoxicity experiment. Simulations show that these thresholds can be exceeded in the future, whereas present limits for invertebrates (US-EPA) are and will not be reached. However, scientific problems to complete the "critical load" approach are, as stated aabove, present lack of thermodynamic data on Sb to model its behavior in the soil solution and the fact the Sb is always linked to other trace metals, with potential ecological impacts too.
Decontamination of soils containing PAHs by electroremediation: a review.
Pazos, M; Rosales, E; Alcántara, T; Gómez, J; Sanromán, M A
2010-05-15
During the last years, the anthropogenic sources have contributed to organic compound penetration into the environment. One large group of persistent and toxic contaminants is the hydrophobic organic contaminants. Among them, polycyclic aromatic hydrocarbons (PAHs) have been recognized as a representative group of these pollutants with low solubility. In this paper, it is showed the electroremediation of soil contaminated with PAHs as an alternative, to organic compound removal. This technique, mainly used for heavy metal extraction, applies the electric current to promote the movement of contaminants. Nowadays the application of this technique alone or combined with other techniques as for example Fenton or bioremediation is taking fine results to PAHs removal. Although the PAHs soil decontamination by means of the electric field is in an initial stage, many researchers have demonstrated the treatment effectiveness. This paper describes the foremost principles to carry out the electroremediation of soils contaminated with PAHs, just like the different alternatives to improve the electroremediation of PAHs and also the new methodologies of PAHs removal by using hybrid technologies. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Johnston, Christopher; Byappanahalli, Muruleedhara N.; Gibson, Jacqueline MacDonald; Ufnar, Jennifer A.; Whitman, Richard L.; Stewart, Jill R.
2013-01-01
Microbial source tracking assays to identify sources of waterborne contamination typically target genetic markers of host-specific microorganisms. However, no bacterial marker has been shown to be 100% host-specific, and cross-reactivity has been noted in studies evaluating known source samples. Using 485 challenge samples from 20 different human and animal fecal sources, this study evaluated microbial source tracking markers including the Bacteroides HF183 16S rRNA, M. smithii nifH, and Enterococcus esp gene targets that have been proposed as potential indicators of human fecal contamination. Bayes' Theorem was used to calculate the conditional probability that these markers or a combination of markers can correctly identify human sources of fecal pollution. All three human-associated markers were detected in 100% of the sewage samples analyzed. Bacteroides HF183 was the most effective marker for determining whether contamination was specifically from a human source, and greater than 98% certainty that contamination was from a human source was shown when both Bacteroides HF183 and M. smithii nifH markers were present. A high degree of certainty was attained even in cases where the prior probability of human fecal contamination was as low as 8.5%. The combination of Bacteroides HF183 and M. smithii nifH source tracking markers can help identify surface waters impacted by human fecal contamination, information useful for prioritizing restoration activities or assessing health risks from exposure to contaminated waters.
Chen, Xiuduan; Lu, Xinwei
2018-04-30
As soil-extractable elements potentially pose ecological and health risks, identifying their contamination characteristics and sources is crucial. Therefore, to understand topsoil trace elements in the urban ring zone from the Second Ring Road to the Third Ring of Xi'an city in China, we determined the concentrations of Zn, Co, V, As, Cu, Mn, Ba, Ni and Pb, and analyzed the sources of the contamination. The results showed that the individual pollution indices of Pb, Co, Cu, Zn, Ba, Ni, Mn, As, and V were 1.79, 1.48, 1.41, 1.33, 1.20, 1.07, 1.04, 0.99, and 0.99, respectively. Evaluation with the aid of the pollution load index (PLI) indicated slight soil contamination by these elements in the study area. Using the positive matrix factorization (PMF) method, we identified four sources of contamination, namely (1) a natural source, (2) traffic emission source, (3) industrial emission source, and (4) mixed source. PMF is an effective tool for source apportionment of heavy metals in topsoil. The contribution rates of the natural source, traffic source, mixed source, and industrial source to the heavy metal contamination were specified as 25.04%, 24.71%, 24.99%, and 25.26%, respectively. Considering the above, any attempt to reduce the soil environmental cost of urban development, has to take into account the heavy metal contamination of the topsoil from industries, traffic, and other activities. Copyright © 2018 Elsevier Inc. All rights reserved.
Pan, Huiyun; Lu, Xinwei; Lei, Kai
2017-12-31
A detailed investigation was conducted to study heavy metal contamination in road dust from four regions of Xi'an, Northwest China. The concentrations of eight heavy metals Co, Cr, Cu, Mn, Ni, Pb, Zn and V were determined by X-Ray Fluorescence. The mean concentrations of these elements were: 30.9mgkg -1 Co, 145.0mgkg -1 Cr, 54.7mgkg -1 Cu, 510.5mgkg -1 Mn, 30.8mgkg -1 Ni, 124.5mgkg -1 Pb, 69.6mgkg -1 V and 268.6mgkg -1 Zn. There was significant enrichment of Pb, Zn, Co, Cu and Cr based on geo-accumulation index value. Multivariate statistical analysis showed that levels of Cu, Pb, Zn, Co and Cr were controlled by anthropogenic activities, while levels of Mn, Ni and V were associated with natural sources. Principle component analysis and multiple linear regression were applied to determine the source apportionment. The results showed that traffic was the main source with a percent contribution of 53.4%. Natural sources contributed 26.5%, and other anthropogenic pollution sources contributed 20.1%. Clear heavy metal pollution hotspots were identified by GIS mapping. The location of point pollution sources and prevailing wind direction were found to be important factors in the spatial distribution of heavy metals. Copyright © 2017 Elsevier B.V. All rights reserved.
Factors influencing the contamination rate of human organ-cultured corneas.
Röck, Daniel; Wude, Johanna; Bartz-Schmidt, Karl U; Yoeruek, Efdal; Thaler, Sebastian; Röck, Tobias
2017-12-01
To assess the influence of donor, environment and storage factors on the contamination rate of organ-cultured corneas, to consider the microbiological species causing corneal contamination and to investigate the corresponding sensitivities. Data from 1340 consecutive donor corneas were analysed retrospectively. Logistic regression analysis was used to assess the influence of different factors on the contamination rate of organ-cultured corneas for transplantation. The mean annual contamination rate was 1.8 ± 0.4% (range: 1.3-2.1%); 50% contaminations were of fungal origin with exclusively Candida species, and 50% contaminations were of bacterial origin with Staphylococcus species being predominant. The cause of donor death including infection and multiple organ dysfunction syndrome increased the risk of bacterial or fungal contamination during organ culture (p = 0.007 and p = 0.014, respectively). Differentiating between septic and aseptic donors showed an increased risk of contamination for septic donors (p = 0.0020). Mean monthly temperature including warmer months increased the risk of contamination significantly (p = 0.0031). Sex, donor age, death to enucleation, death to corneoscleral disc excision and storage time did not increase the risk of contamination significantly. The genesis of microbial contamination in organ-cultured donor corneas seems to be multifactorial. The main source of fungal or bacterial contamination could be resident species from the skin flora. The rate of microbial contamination in organ-cultured donor corneas seems to be dependent on the cause of donor death and mean monthly temperature. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Tholkappian, M; Ravisankar, R; Chandrasekaran, A; Jebakumar, J Prince Prakash; Kanagasabapathy, K V; Prasad, M V R; Satapathy, K K
2018-01-01
The concentration of some heavy metals: Al, Ca, K, Fe, Ti, Mg, Mn, V, Cr, Zn, Ni and Co in sediments from Pulicat Lake to Vadanemmeli along Chennai Coast, Tamil Nadu has been determined using EDXRF technique. The mean concentrations of Mg, Al, K, Ca, Ti, Fe, V, Cr, Mn, Co, Ni, and Zn were found to be 1918, 25436, 9832, 9859, 2109, 8209, 41.58, 34.14, 160.80, 2.85. 18.79 and 29.12 mg kg -1 respectively. These mean concentrations do not exceed the world crustal average. The level of pollution attributed to heavy metals was evaluated using several pollution indicators in order to determine anthropogenically derived contaminations. Enrichment Factor (EF), Geoaccumulation Index (I geo ), Contamination Factor (CF) and Pollution Load Index (PLI) were used in evaluating the contamination status of sediments. Enrichment Factors (EF) reveal the anthropogenic sources of V, Cr, Ni and Zn Geoaccumulation Index (I geo ) results reveal that the study area is not contaminated by the heavy metals. Similar results were also obtained by using pollution load index (PLI). The results of pollution indices indicates that most of the locations were not polluted by heavy metals. Multivariate statistical analysis performed using principal components and clustering techniques were used to identify the source of the heavy metals. The result of statistical procedures indicate that heavy metals in sediments are mainly of natural origin. This study provides a relatively novel technique for identifying and mapping the distribution of metal pollutants and their sources in sediment.
Yang, Jie; Teng, Yanguo; Song, Liuting; Zuo, Rui
2016-01-01
Road and foliar dust samples from four land-use districts of Panzhihua City, a famous V-Ti magnetite production area of China, were collected to investigate the sources and distribution characteristics of 9 heavy metals (V, Pb, Cd, Cu, Zn, Ni, Cr, Fe, and Mn). The results suggest that foliar samples had smaller particle size and higher heavy metal contents than road dusts. The contamination assessments of heavy metals were as follows: Pb and V (significant enrichment) > Zn, Ni, Cr, Fe, and Mn (moderate enrichment) > Cd and Ni (minimal enrichment). Statistical analyses showed Pb, as the primary pollution element, originated from waste incineration and lead-fuel combustion. The sources of Zn, Ni, Cr, Fe, V, and Mn were fugitive dust and traffic activities. Potential origins of Cu were corrosion of alloys used in vehicle components, vehicle covers, or other metallic surfaces and materials. The sources of Cd were different from any other heavy metals. Traffic and industrial activities were the main anthropogenic origins of heavy metals in dusts of Panzhihua, and more attention should be paid to heavy metal pollution in agricultural area. PMID:27992518
Yang, Jie; Teng, Yanguo; Song, Liuting; Zuo, Rui
2016-01-01
Road and foliar dust samples from four land-use districts of Panzhihua City, a famous V-Ti magnetite production area of China, were collected to investigate the sources and distribution characteristics of 9 heavy metals (V, Pb, Cd, Cu, Zn, Ni, Cr, Fe, and Mn). The results suggest that foliar samples had smaller particle size and higher heavy metal contents than road dusts. The contamination assessments of heavy metals were as follows: Pb and V (significant enrichment) > Zn, Ni, Cr, Fe, and Mn (moderate enrichment) > Cd and Ni (minimal enrichment). Statistical analyses showed Pb, as the primary pollution element, originated from waste incineration and lead-fuel combustion. The sources of Zn, Ni, Cr, Fe, V, and Mn were fugitive dust and traffic activities. Potential origins of Cu were corrosion of alloys used in vehicle components, vehicle covers, or other metallic surfaces and materials. The sources of Cd were different from any other heavy metals. Traffic and industrial activities were the main anthropogenic origins of heavy metals in dusts of Panzhihua, and more attention should be paid to heavy metal pollution in agricultural area.
Interactions between climate change and contaminants.
Schiedek, Doris; Sundelin, Brita; Readman, James W; Macdonald, Robie W
2007-12-01
There is now general consensus that climate change is a global threat and a challenge for the 21st century. More and more information is available demonstrating how increased temperature may affect aquatic ecosystems and living resources or how increased water levels may impact coastal zones and their management. Many ecosystems are also affected by human releases of contaminants, for example from land based sources or the atmosphere, which also may cause severe effects. So far these two important stresses on ecosystems have mainly been discussed independently. The present paper is intended to increase awareness among scientists, coastal zone managers and decision makers that climate change will affect contaminant exposure and toxic effects and that both forms of stress will impact aquatic ecosystems and biota. Based on examples from different ecosystems, we discuss risks anticipated from contaminants in a rapidly changing environment and the research required to understand and predict how on-going and future climate change may alter risks from chemical pollution.
Karan, Shivesh Kishore; Samadder, Sukha Ranjan
2016-09-15
It is reported that water-energy nexus composes two of the biggest development and human health challenges. In the present study we presented a Risk Potential Index (RPI) model which encapsulates Source, Vector (Transport), and Target risks for forecasting surface water contamination. The main aim of the model is to identify critical surface water risk zones for an open cast mining environment, taking Jharia Coalfield, India as the study area. The model also helps in feasible sampling design. Based on spatial analysis various risk zones were successfully delineated. Monthly RPI distribution revealed that the risk of surface water contamination was highest during the monsoon months. Surface water samples were analysed to validate the model. A GIS based alternative management option was proposed to reduce surface water contamination risk and observed 96% and 86% decrease in the spatial distribution of very high risk areas for the months June and July respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Boehm, Frederike Ricarda; Sandrini-Neto, Leonardo; Moens, Tom; da Cunha Lana, Paulo
2016-12-01
Mangrove forests are highly productive and play a major role in global carbon cycling. Their carbon accumulation can be influenced through the consumption of nutrient-poor leaves and propagules by herbivore crabs. Anthropogenic nutrient input from sewage contamination is widespread in these often naturally nutrient-limited ecosystems. We hypothesised that sewage-mediated nutrient input to mangrove stands of Paranaguá Bay (southern Brazil), would alter the nutrient sources available for crabs, e.g. through microphytobenthos increase, and that this would reflect in their feeding behaviour. We predicted that propagules of Rhizophora mangle in contaminated stands would experience lower grazing pressure from their two main local consumers (Ucides cordatus and Goniopsis cruentata). We compared herbivory rates on R. mangle propagules in sewage contaminated and uncontaminated mangrove stands. We found that herbivory rates were significantly lower in contaminated than uncontaminated forests, but this pattern could not be clearly attributed to increased nutrient availability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Solution to problems of bacterial impurity of heating systems
NASA Astrophysics Data System (ADS)
Sharapov, V. I.; Zamaleev, M. M.
2015-09-01
The article describes the problems of the operation of open and closed district heating systems related to the bacteriological contamination of heating-system water. It is noted that district heating systems are basically safe in sanitary epidemiological terms. Data on the dangers of sulfide contamination of heating systems are given. It is shown that the main causes of the development of sulfate-reducing and iron bacteria in heating systems are a significant biological contamination of source water to fuel heating systems, which is determined by water oxidizability, and a low velocity of the motion of heating-system water in the heating system elements. A case of sulfide contamination of a part of the outdoor heat-supply system of the city of Ulyanovsk is considered in detail. Measures for cleaning pipelines and heating system equipment from the waste products of sulfate-reducing bacteria and iron bacteria and for improving the quality of heating-system water by organizing the hydraulic and water-chemistry condition that makes it possible to avoid the bacteriological contamination of heating systems are proposed. The positive effect of sodium silicate on the prevention of sulfide contamination of heating systems is shown.
NASA Astrophysics Data System (ADS)
Dhivert, Elie; Grosbois, Cécile; Desmet, Marc; Curie, Florence; Moatar, Florentina; Meybeck, Michel; Bourrain, Xavier
2013-04-01
Since the early 19th century, important agricultural, mining and industrial development has been active in Western Europe. The Loire River Basin (117,800 km2, total population of 8.4 Mp) presents a long history of human pressures, reflecting temporal evolution of technological and urban activities (Grosbois et al, 2012). Hence, sediments of the Loire River and its tributaries have recorded partially and/or totally organic, nutrients and trace element contamination. Nowadays, can we determine history of metallic emissions in sediment records and what is the part of these past inputs relative to the actual contamination? Can we point out historical sources of contamination? To answer these questions, two approaches were used in this study. Firstly, in four coring sites in the Loire River Basin, a temporal re-enacting of metallic contamination trapped in sediments was carried out. Based on age-model and inter-element correlations in each core, trace element signals were deconvoluted and compared to actual and specific chemical signatures of anthropogenic inputs (300 bed sediment samples collected downstream of former and current industrial sites like mines, smelters, planting/coating plants, glassware and car industries, metal recycling plants and waste water treatment plants). The second approach was at a larger basin scale, comparing location of these former and actual contamination sources with explanatory factors such as geology, evolution of population density, of industrial activities and of land use. This was done in the main stream of the Loire River and its major tributaries and locally at a smaller scale (0-500 km²). All these approaches emphasized three temporal periods of metallic contamination: (i) the first period begins with the 20th century until 1950, it corresponds to the first increase of major contaminants like Ag, As, Cd, Cr, Hg, Pb, Sb, Sn and Zn; some trace elements like Hg and Sn seem to be present in the Loire sediments much earlier as they were already enriched before 1900.; (ii) the second one (1950-1980s) represents the highest level of contamination for the cited contaminants above; (iii) the last period is characterized by a large decrease of pollution from 1980s to nowadays when environmental policies and contaminant emission control started. At a spatial scale, small and medium-scale sub-basins, presenting numerous important mining sites and associated industrial plants, are specifically associated to local sources. In contrast, industrial and urban poles are related to polymetallic concentrated bed sediments.
NASA Astrophysics Data System (ADS)
VanDerslice, James; Briscoe, James
1993-07-01
Storing drinking water in the home is common in the developing world. Several studies have documented increased concentrations of fecal coliforms during household storage. This has led to the belief that in-house water contamination is an important transmission route for enteric pathogens and, moreover, that improving water source quality is not warranted until that quality can be maintained in the home. We contend that in-house water contamination does not pose a serious risk of diarrhea because family members would likely develop some level of immunity to pathogens commonly encountered in the household environment. Even when there is no such immunity, transmission of these pathogens via stored water may be inefficient relative to other household transmission routes, such as person-to-person contact or food contamination. A contaminated water source poses much more of a risk since it may introduce new pathogens into the household, The effects of water source and in-house contamination on diarrheal disease are estimated for 2355 Filipino infants. The results confirm our hypothesis: contaminated water sources pose a serious risk of diarrhea while contamination of drinking water in the home does not. Water boiling is shown to eliminate the risk of diarrhea due to water source contamination. The results imply that improvements in water source quality are more important than improving water storage practices.
NASA Astrophysics Data System (ADS)
Chartin, Caroline; Evrard, Olivier; Onda, Yuichi; Patin, Jeremy; Lefèvre, Irène; Ayrault, Sophie; Lepage, Hugo; Bonté, Philippe
2013-04-01
During the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, large quantities of radionuclides were released into the environment between 12 and 19 March 2011. Even though about 80% of these emissions were transported offshore and out over the Pacific Ocean, 20% were deposited as wet and dry deposits on soils of Fukushima Prefecture on 15-16 March. In particular, 6.4 PBq of Cs-137 were modeled to have deposited on Japanese soils over a distance of 70 km to the northwest of the Fukushima Dai-ichi nuclear power plant. As most radionuclides are strongly sorbed by fine particles, and their mineralogical clay and organic matter fractions, they are likely to be redistributed within the landscape in association with soil and sediment particles transported by erosion processes and runoff. Based on a spatial analysis of the gamma-emitting radionuclides present in the environment respectively eight and thirteen months after the accident, we aim to provide a radioactive tracer to investigate the temporal evolution of the contaminant dispersion across Fukushima Prefecture. For this purpose, sediments were collected along rivers draining the main contamination plume in Fukushima Prefecture (i.e, Rivers Kutchibuto, Mano, Nitta and Ota) in November 2011 and April 2012.These campaigns directly followed the main hydro-sedimentary events that occurred in this region, i.e., the typhoon season (July and September-October) and the snowmelt (March 2012). The river sediment activities in gamma-emitting radionuclides were then compared to the initial activities measured in soils provided by the Japanese Ministry of Education, Culture, Sport, Science and Technology (MEXT). The initial fallout patterns in 110mAg appeared to differ from those of the main contamination plume defined mainly by radiocaesium fallout (i.e., Cs-134+137). The Ag-110m:Cs-137 ratio was then used to trace the spatial origin of contaminated sediment collected in rivers. Sediments collected within the coastal plain in November 2011 were locally composed of 50 to 100% of particles originated from inland mountains ranges that were exposed to the highest initial radionuclide fallout. Typhoons of the summer 2011 have then largely contributed to the dispersion of the contamination. In addition, the spatial analysis of river sediment contamination in April 2012 demonstrates that the spring snowmelt amplified significantly the flush of sediment deposited on the riverbed after the summer typhoons. Consequently, export of contaminated particles appears to be particularly fast in those mountainous catchments submitted to a very erosive climate. Our results have then important implications suggesting that coastal rivers may have become a perennial source of radioactive contaminants to the Pacific Ocean off Fukushima Prefecture.
Occurrence of Surface Water Contaminations: An Overview
NASA Astrophysics Data System (ADS)
Shahabudin, M. M.; Musa, S.
2018-04-01
Water is a part of our life and needed by all organisms. As time goes by, the needs by human increased transforming water quality into bad conditions. Surface water contaminated in various ways which is pointed sources and non-pointed sources. Pointed sources means the source are distinguished from the source such from drains or factory but the non-pointed always occurred in mixed of elements of pollutants. This paper is reviewing the occurrence of the contaminations with effects that occurred around us. Pollutant factors from natural or anthropology factors such nutrients, pathogens, and chemical elements contributed to contaminations. Most of the effects from contaminated surface water contributed to the public health effects also to the environments.
Liang, Jie; Liu, Jiayu; Yuan, Xingzhong; Zeng, Guangming; Lai, Xu; Li, Xiaodong; Wu, Haipeng; Yuan, Yujie; Li, Fei
2015-01-01
Surface sediments of Dongting Lake wetland were collected from ten sites to investigate variation trend, risk and sources of heavy metal distribution in dry seasons of 2011∼2013. The three-year mean concentrations (mg/kg) of Cr, Cu, Pb, Cd, Hg and As were 91.33, 36.27, 54.82, 4.39, 0.19 and 25.67, respectively, which were all higher than the corresponding background values. Sediment quality guidelines (SQGs) and Geo-accumulation index (Igeo) were used for the assessment of pollution level of heavy metals. The pollution risk of Cd, Hg and As were great and that of Cr needed urgent attention because of its obvious increase. Pollution load index (PLI) and geographic information system (GIS) methods were conducted to assess spatial and temporal variation of heavy metal contamination. Results confirmed an increased contamination contribution inflow from Xiang River. Multivariate statistical analyses were applied to identify contribution sources of heavy metal, which showed anthropogenic origin mainly from mining, smelting, chemical industry and agricultural activity.
An Assessment of Air As a Source of DNA Contamination Encountered When Performing PCR
Witt, Nina; Rodger, Gillian; Vandesompele, Jo; Benes, Vladimir; Zumla, Alimuddin; Rook, Graham A.; Huggett, Jim F.
2009-01-01
Sensitive molecular methods, such as the PCR, can detect low-level contamination, and careful technique is required to reduce the impact of contaminants. Yet, some assays that are designed to detect high copy-number target sequences appear to be impossible to perform without contamination, and frequently, personnel or laboratory environment are held responsible as the source. This complicates diagnostic and research analysis when using molecular methods. To investigate the air specifically as a source of contamination, which might occur during PCR setup, we exposed tubes of water to the air of a laboratory and clean hood for up to 24 h. To increase the chances of contamination, we also investigated a busy open-plan office in the same way. All of the experiments showed the presence of human and rodent DNA contamination. However, there was no accumulation of the contamination in any of the environments investigated, suggesting that the air was not the source of contamination. Even the air from a busy open-plan office was a poor source of contamination for all of the DNA sequences investigated (human, bacterial, fungal, and rodent). This demonstrates that the personnel and immediate laboratory environment are not necessarily to blame for the observed contamination. PMID:19949694
NASA Astrophysics Data System (ADS)
Mathieu, Camoin
2015-04-01
Food safety is presently at the center of great part of scientific and political debates. This represents a field of study in its own right of health risks, including ingestion by humans of hazardous biological, physical, chemical or radiological substances, from contaminated foods during different stages of production. Plant cultivation step is often one of the main sources of contamination, whether of voluntary (pesticide application) or accidental (nuclear, industrial waste, etc.) origin. As a result, the plants growth in an contaminated environment may increase the risk of transfer within the plant, and finally the exposure of humans. Furthermore, pesticides are among the main contaminants investigated in the frame of human health risks resulting from food intakes. However, most of these scientific works focus mainly on their occurrence and persistence in water bodies, and few of them are interested in soil/plants transfer. In this context, the understanding of the processes governing transfers of pesticides in plants is become a necessity, in particular to prevent human risks linked the ingestion of food produced in contaminated environments. This objective can be reached by studying the pollutants behavior in soils/plants transfers, and using various substances/plants couples. In our study, we selected a salad/pesticide couple as our experimental model. Atrazine was chosen as model contaminant because of its problematic presence in a large amount of environmental compartments, its physico-chemical properties and because of its long-term toxicity. Lactuca sativa has been selected as model plant because of its importance in French agriculture, and specifically in Languedoc-Roussillon. Salad has been cultivated in peats and irrigated with an atrazine spiked water solution (concentrations from 10 to 100 μg/L). Plant growth in such conditions has been compared to a growth in clean condition (irrigation with non spiked water). Measurements of atrazine contents in different parts of the plant were performed by HPLC-MS after a specific extraction pretreatment. At the same time, atrazine evolution in soil has been also determined by chemical analyses after soil sampling all along the salad's development, and extraction by soxhlet.
Payload/orbiter contamination control assessment support
NASA Technical Reports Server (NTRS)
Rantanen, R. O.; Ress, E. B.
1975-01-01
The development and use is described of a basic contamination mathematical model of the shuttle orbiter which incorporates specific shuttle orbiter configurations and contamination sources. These configurations and sources were evaluated with respect to known shuttle orbiter operational surface characteristics and specific lines-of-sight which encompass the majority of viewing requirements for shuttle payloads. The results of these evaluations are presented as summary tables for each major source. In addition, contamination minimization studies were conducted and recommendations are made, where applicable, to support the shuttle orbiter design and operational planning for those sources which were identified to present a significant contamination threat.
40 CFR 144.12 - Prohibition of movement of fluid into underground sources of drinking water.
Code of Federal Regulations, 2010 CFR
2010-07-01
... other injection activity in a manner that allows the movement of fluid containing any contaminant into underground sources of drinking water, if the presence of that contaminant may cause a violation of any... source of drinking water indicates the movement of any contaminant into the underground source of...
Benson, Nsikak U.; Asuquo, Francis E.; Williams, Akan B.; Essien, Joseph P.; Ekong, Cyril I.; Akpabio, Otobong; Olajire, Abaas A.
2016-01-01
Trace metals (Cd, Cr, Cu, Ni and Pb) concentrations in benthic sediments were analyzed through multi-step fractionation scheme to assess the levels and sources of contamination in estuarine, riverine and freshwater ecosystems in Niger Delta (Nigeria). The degree of contamination was assessed using the individual contamination factors (ICF) and global contamination factor (GCF). Multivariate statistical approaches including principal component analysis (PCA), cluster analysis and correlation test were employed to evaluate the interrelationships and associated sources of contamination. The spatial distribution of metal concentrations followed the pattern Pb>Cu>Cr>Cd>Ni. Ecological risk index by ICF showed significant potential mobility and bioavailability for Cu, Cu and Ni. The ICF contamination trend in the benthic sediments at all studied sites was Cu>Cr>Ni>Cd>Pb. The principal component and agglomerative clustering analyses indicate that trace metals contamination in the ecosystems was influenced by multiple pollution sources. PMID:27257934
Brusseau, M. L.; Hatton, J.; DiGuiseppi, W.
2011-01-01
The long-term impact of source-zone remediation efforts was assessed for a large site contaminated by trichloroethene. The impact of the remediation efforts (soil vapor extraction and in-situ chemical oxidation) was assessed through analysis of plume-scale contaminant mass discharge, which was measured using a high-resolution data set obtained from 23 years of operation of a large pump-and-treat system. The initial contaminant mass discharge peaked at approximately 7 kg/d, and then declined to approximately 2 kg/d. This latter value was sustained for several years prior to the initiation of source-zone remediation efforts. The contaminant mass discharge in 2010, measured several years after completion of the two source-zone remediation actions, was approximately 0.2 kg/d, which is ten times lower than the value prior to source-zone remediation. The time-continuous contaminant mass discharge data can be used to evaluate the impact of the source-zone remediation efforts on reducing the time required to operate the pump-and-treat system, and to estimate the cost savings associated with the decreased operational period. While significant reductions have been achieved, it is evident that the remediation efforts have not completely eliminated contaminant mass discharge and associated risk. Remaining contaminant mass contributing to the current mass discharge is hypothesized to comprise poorly-accessible mass in the source zones, as well as aqueous (and sorbed) mass present in the extensive lower-permeability units located within and adjacent to the contaminant plume. The fate of these sources is an issue of critical import to the remediation of chlorinated-solvent contaminated sites, and development of methods to address these sources will be required to achieve successful long-term management of such sites and to ultimately transition them to closure. PMID:22115080
Particle transport in low-energy ventilation systems. Part 1: theory of steady states.
Bolster, D T; Linden, P F
2009-04-01
Many modern low-energy ventilation schemes, such as displacement or natural ventilation, take advantage of temperature stratification in a space, extracting the warmest air from the top of the room. The adoption of these energy-efficient ventilation systems still requires the provision of acceptable indoor air quality. In this work we study the steady state transport of particulate contaminants in a displacement-ventilated space. Representing heat sources as ideal sources of buoyancy, analytical models are developed that allow us to compare the average efficiency of contaminant removal between traditional and modern low-energy systems. We found that on average traditional and low-energy systems are similar in overall pollutant removal efficiency, although quite different vertical distributions of contaminant can exist, thus affecting individual exposure. While the main focus of this work is on particles where the dominant mode of deposition is by gravitational settling, we also discuss additional deposition mechanisms and show that the qualitative observations we make carry over to cases where such mechanisms must be included. We illustrate that while average concentration of particles for traditional mixing systems and low energy displacement systems are similar, local concentrations can vary significantly with displacement systems. Depending on the source of the particles this can be better or worse in terms of occupant exposure and engineers should take due diligence accordingly when designing ventilation systems.
Khairy, Mohammed A; Luek, Jenna L; Dickhut, Rebecca; Lohmann, Rainer
2016-09-01
The Antarctic continent is among the most pristine regions; yet various organic contaminants have been measured there routinely. Air and snow samples were collected during the austral spring (October-November, 2010) along the western Antarctic Peninsula and analyzed for organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) to assess the relative importance of long-range transport versus local primary or secondary emissions. Highest concentrations of PCBs, PBDEs and DDTs were observed in the glacier's snow sample, highlighting the importance of melting glaciers as a possible secondary source of legacy pollutants to the Antarctic. In the atmosphere, contaminants were mainly found in the vapor phase (>65%). Hexachlorobenzene (33.6 pg/m(3)), PCBs (11.6 pg/m(3)), heptachlor (5.64 pg/m(3)), PBDEs (4.22 pg/m(3)) and cis-chlordane (2.43 pg/m(3)) were the most abundant contaminants. In contrast to other compounds, PBDEs seem to have originated from local sources, possibly the research station itself. Gas-particle partitioning for analytes were better predicted using the adsorption partitioning model than an octanol-based absorption approach. Diffusive flux calculations indicated that net deposition is the dominant pathway for PBDEs and chlordanes, whereas re-volatilization from snow (during melting or metamorphosis) was observed for PCBs and some OCPs. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farooqi, A.; Masuda, H.; Siddiqui, R.
2009-05-15
Highly contaminated groundwater, with arsenic (As) and fluoride (F{sup -}) concentrations of up to 2.4 and 22.8 mg/L, respectively, has been traced to anthropogenic inputs to the soil. In the present study, samples collected from the soil surface and sediments from the most heavily polluted area of Punjab were analyzed to determine the F{sup -} and As distribution in the soil. The surface soils mainly comprise permeable aeolian sediment on a Pleistocene terrace and layers of sand and silt on an alluvial flood plain. Although the alluvial sediments contain low levels of F, the terrace soils contain high concentrations ofmore » soluble F{sup -} (maximum, 16 mg/kg; mean, 4 mg/kg; pH > 8.0). Three anthropogenic sources were identified as fertilizers, combusted coal, and industrial waste, with phosphate fertilizer being the most significance source of F{sup -} accumulated in the soil. The mean concentration of As in the surface soil samples was 10.2 mg/kg, with the highest concentration being 35 mg/kg. The presence of high levels of As in the surface soil implies the contribution of air pollutants derived from coal combustion and the use of fertilizers. Intensive mineral weathering under oxidizing conditions produces highly alkaline water that dissolves the F{sup -} and As adsorbed on the soil, thus releasing it into the local groundwater.« less
NASA Astrophysics Data System (ADS)
Kwon, E. H.; Park, J.; Chung, E.; Kang, B. R.; Park, W. B.; Woo, N. C.
2017-12-01
Groundwater is the sole-source of water supply in the volcanic island, Jeju-do, Korea. Since early 1990s, the nitrate contamination of groundwater has increased especially in the western part of the island. High level of nitrate in water can cause not only health risk to human body but also environmental side effect such as eutrophication and algal bloom in the coastal area. Several studies have done to estimate nitrate contamination in groundwater of local areas, but none of them dealt with nitrate movement with flow paths. So, this study aimed to determine the source and migration of nitrate in groundwater in the Gosan area, located in the western part of Jeju island through seasonal monitoring of hydrogeochemistry and stable isotope analyses from pumping and monitoring wells. Water samples including rainfall and groundwater are measured for major ions (Ca, Na, K, Mg, SO4, HCO3, NO3, Cl, etc.) and stable isotopes (i.e., δ2H, δ18O, δ18O-NO3, δ15N-NO3). From the monitoring data, we could evaluate hydrochemical change during nitrate contamination, and also could identify that groundwater in Gosan area is recharged mainly by regional flow from the high-altitude region. In future study, we will conduct additional seasonal monitoring from the multi-depth monitoring wells and will use statistical analysis to understand pollution sources and paths specifically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewy, Ann; Heim, Kenneth J.; McGonigal, Sean T.
A comparative groundwater hydrogeologic modeling analysis is presented herein to simulate potential contaminant migration pathways in a sole source aquifer in Nassau County, Long Island, New York. The source of contamination is related to historical operations at the Sylvania Corning Plant ('Site'), a 9.49- acre facility located at 70, 100 and 140 Cantiague Rock Road, Town of Oyster Bay in the westernmost portion of Hicksville, Long Island. The Site had historically been utilized as a nuclear materials manufacturing facility (e.g., cores, slug, and fuel elements) for reactors used in both research and electric power generation in early 1950's until latemore » 1960's. The Site is contaminated with various volatile organic and inorganic compounds, as well as radionuclides. The major contaminants of concern at the Site are tetrachloroethene (PCE), trichloroethene (TCE), nickel, uranium, and thorium. These compounds are present in soil and groundwater underlying the Site and have migrated off-site. The Site is currently being investigated as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). The main objective of the current study is to simulate the complex hydrogeologic features in the region, such as numerous current and historic production well fields; large, localized recharge basins; and, multiple aquifers, and to assess potential contaminant migration pathways originating from the Site. For this purpose, the focus of attention was given to the underlying Magothy formation, which has been impacted by the contaminants of concern. This aquifer provides more than 90% of potable water supply in the region. Nassau and Suffolk Counties jointly developed a three-dimensional regional groundwater flow model to help understand the factors affecting groundwater flow regime in the region, to determine adequate water supply for public consumption, to investigate salt water intrusion in localized areas, to evaluate the impacts of regional pumping activity, and to better understand the contaminant transport and fate mechanisms through the underlying aquifers. This regional model, developed for the N.Y. State Department of Environmental Conservation (NYSDEC) by Camp Dresser and McKee (CDM), uses the finite element model DYNFLOW developed by CDM, Cambridge, Massachusetts. The coarseness of the regional model, however, could not adequately capture the hydrogeologic heterogeneity of the aquifer. Specifically, the regional model did not adequately capture the interbedded nature of the Magothy aquifer and, as such, simulated particles tended to track down-gradient from the Site in relatively straight lines while the movement of groundwater in such a heterogeneous aquifer is expected to proceed along a more tortuous path. This paper presents a qualitative comparison of site-specific groundwater flow modeling results with results obtained from the regional model. In order to assess the potential contaminant migration pathways, a particle tracking method was employed. Available site-specific and regional hydraulic conductivity data measured in-situ with respect to depth and location were incorporated into the T-PROG module in GMS model to define statistical variation to better represent the actual stratigraphy and layer heterogeneity. The groundwater flow characteristics in the Magothy aquifer were simulated with the stochastic hydraulic conductivity variation as opposed to constant values as employed in the regional model. Contaminant sources and their exact locations have been fully delineated at the Site during the Remedial Investigation (RI) phase of the project. Contaminant migration pathways originating from these source locations at the Site are qualitatively traced within the sole source aquifer utilizing particles introduced at source locations. Contaminant transport mechanism modeled in the current study is based on pure advection (i.e., plug flow) and mechanical dispersion while molecular diffusion effects are neglected due to relatively high groundwater velocities encountered in the aquifer. In addition, fate of contaminants is ignored hereby to simulate the worst-case scenario, which considers the contaminants of concern as tracer-like compounds for modeling purposes. The results of the modeling analysis are qualitatively compared with the County's regional model, and patterns of contaminant migration in the region are presented. (authors)« less
Saqrane, Sana; Oudra, Brahim
2009-01-01
The world-wide occurrence of harmful cyanobacteria blooms “CyanoHAB” in fresh and brackish waters creates problems for all life forms. During CyanoHAB events, toxic cyanobacteria produce cyanotoxins at high levels that can cause chronic and sub-chronic toxicities to animals, plants and humans. Cyanotoxicity in eukaryotes has been mainly focused on animals, but during these last years, data, related to cyanotoxin (mainly microcystins, MCs) impact on both aquatic and terrestrials crop plants irrigated by water containing these toxins, have become more and more available. This last cited fact is gaining importance since plants could in a direct or indirect manner contribute to cyanotoxin transfer through the food chain, and thus constitute a potent health risk source. The use of this contaminated irrigation water can also have an economical impact which appears by a reduction of the germination rate of seeds, and alteration of the quality and the productivity of crop plants. The main objective of this work was to discuss the eventual phytotoxicity of cyanotoxins (microcystins) as the major agricultural impacts induced by the use of contaminated water for plant irrigation. These investigations confirm the harmful effects (ecological, eco-physiological, socio-economical and sanitary risk) of dissolved MCs on agricultural plants. Thus, cyanotoxin phytotoxicity strongly suggests a need for the surveillance of CyanoHAB and the monitoring of water irrigation quality as well as for drinking water. PMID:22069535
Aflatoxins in Iran: Nature, Hazards and Carcinogenicity
Khoshpey, B; Farhud, DD; Zaini, F
2011-01-01
Many studies have shown that mycotoxin contamination of agricultural products is a challenge for individual’s health especially in developing countries. Improper production and storage of foods, prepare conditions for aflatoxin production in crops, especially rice, wheat, pistachio, walnut, almond, etc which are the main sources of foods for people. Feeding livestock by contaminated bread is another way of human exposure to mycotoxins, especially aflatoxin and because of expensive methods for detecting and analyzing aflatoxin in laboratory; it is not measured in foods. This manuscript is a review of some Iranian and nonIranian reports about aflatoxin, its exposure ways, its adverse effect on human health and nutrition, as well as methods for reducing its exposure. Based on studies on foods, aflatoxin exposure is high in Iran. Since livestock feeding by contaminated bread is one of the potential ways for milk contamination, we should control and reduce aflatoxin contamination by improving production process, storage condition and livestock feeding as soon as possible. Pistachio is one of the most important exporting products of Iran and to maintain Iran’s position in exporting of this product, specific regulations on lowering its contamination with aflatoxin should be considered seriously. Finally, effective controlling of all food and feedstuffs which are vulnerable to aflatoxin contamination is necessary to prevent its effects. PMID:23113099
Legionella Contamination in Hot Water of Italian Hotels
Borella, Paola; Montagna, Maria Teresa; Stampi, Serena; Stancanelli, Giovanna; Romano-Spica, Vincenzo; Triassi, Maria; Marchesi, Isabella; Bargellini, Annalisa; Tatò, Daniela; Napoli, Christian; Zanetti, Franca; Leoni, Erica; Moro, Matteo; Scaltriti, Stefania; Ribera D'Alcalà, Gabriella; Santarpia, Rosalba; Boccia, Stefania
2005-01-01
A cross-sectional multicenter survey of Italian hotels was conducted to investigate Legionella spp. contamination of hot water. Chemical parameters (hardness, free chlorine concentration, and trace element concentrations), water systems, and building characteristics were evaluated to study risk factors for colonization. The hot water systems of Italian hotels were strongly colonized by Legionella; 75% of the buildings examined and 60% of the water samples were contaminated, mainly at levels of ≥103 CFU liter−1, and Legionella pneumophila was the most frequently isolated species (87%). L. pneumophila serogroup 1 was isolated from 45.8% of the contaminated sites and from 32.5% of the hotels examined. When a multivariate logistic model was used, only hotel age was associated with contamination, but the risk factors differed depending on the contaminating species and serogroup. Soft water with higher chlorine levels and higher temperatures were associated with L. pneumophila serogroup 1 colonization, whereas the opposite was observed for serogroups 2 to 14. In conclusion, Italian hotels, particularly those located in old buildings, represent a major source of risk for Legionnaires' disease due to the high frequency of Legionella contamination, high germ concentration, and major L. pneumophila serogroup 1 colonization. The possible role of chlorine in favoring the survival of Legionella species is discussed. PMID:16204491
Legionella contamination in hot water of Italian hotels.
Borella, Paola; Montagna, Maria Teresa; Stampi, Serena; Stancanelli, Giovanna; Romano-Spica, Vincenzo; Triassi, Maria; Marchesi, Isabella; Bargellini, Annalisa; Tatò, Daniela; Napoli, Christian; Zanetti, Franca; Leoni, Erica; Moro, Matteo; Scaltriti, Stefania; Ribera D'Alcalà, Gabriella; Santarpia, Rosalba; Boccia, Stefania
2005-10-01
A cross-sectional multicenter survey of Italian hotels was conducted to investigate Legionella spp. contamination of hot water. Chemical parameters (hardness, free chlorine concentration, and trace element concentrations), water systems, and building characteristics were evaluated to study risk factors for colonization. The hot water systems of Italian hotels were strongly colonized by Legionella; 75% of the buildings examined and 60% of the water samples were contaminated, mainly at levels of > or =10(3) CFU liter(-1), and Legionella pneumophila was the most frequently isolated species (87%). L. pneumophila serogroup 1 was isolated from 45.8% of the contaminated sites and from 32.5% of the hotels examined. When a multivariate logistic model was used, only hotel age was associated with contamination, but the risk factors differed depending on the contaminating species and serogroup. Soft water with higher chlorine levels and higher temperatures were associated with L. pneumophila serogroup 1 colonization, whereas the opposite was observed for serogroups 2 to 14. In conclusion, Italian hotels, particularly those located in old buildings, represent a major source of risk for Legionnaires' disease due to the high frequency of Legionella contamination, high germ concentration, and major L. pneumophila serogroup 1 colonization. The possible role of chlorine in favoring the survival of Legionella species is discussed.
Gallotta, Fabiana D C; Christensen, Jan H
2012-04-27
A chemometric method based on principal component analysis (PCA) of pre-processed and combined sections of selected ion chromatograms (SICs) is used to characterise the hydrocarbon profiles in soil and sediment from Araucária, Guajuvira, General Lúcio and Balsa Nova Municipalities (Iguaçu River Watershed, Paraná, Brazil) and to indicate the main sources of hydrocarbon pollution. The study includes 38 SICs of polycyclic aromatic compounds (PACs) and four of petroleum biomarkers in two separate analyses. The most contaminated samples are inside the Presidente Getúlio Vargas Refinery area. These samples represent a petrogenic pattern and different weathering degrees. Samples from outside the refinery area are either less or not contaminated, or contain mixtures of diagenetic, pyrogenic and petrogenic inputs where different proportions predominate. The locations farthest away from industrial activity (Balsa Nova) contains the lowest levels of PAC contamination. There are no evidences to conclude positive matches between the samples from outside the refinery area and the Cusiana spilled oil. Copyright © 2012 Elsevier B.V. All rights reserved.
Chien, Chih-Ching; Kao, Chih-Ming; Chen, De-Yu; Chen, Ssu Ching; Chen, Chien-Cheng
2014-05-01
The compound 2,4,6-trinitrotoluene (TNT) is a secondary explosive widely used worldwide for both military and civil purposes. As a result, residual TNT has been detected as an environmental pollutant in both soil and groundwater. The authors have isolated several microbial strains from soil contaminated with TNT by enrichment culture techniques using TNT as a carbon, nitrogen, and energy source. The contaminated soil contained approximately 1860 ppm TNT measured by high-performance liquid chromatography (HPLC). The initial identification of these isolates was determined by 16S rRNA gene comparison. The isolates mainly included species belonging to the genus Pseudomonas. Two strains (Pseudomonas putida strain TP1 and Pseudomonas aeruginosa strain TP6) were selected for further examination. Both strains demonstrated the ability to grow on the medium containing TNT as a carbon, energy, and nitrogen source and also clearly demonstrated the ability to degrade TNT. More than 90% of the TNT in the growth medium was degraded by both strains after 22 d incubation, as determined by HPLC. Additionally, the resting cells of P. putida TP1 and P. aeruginosa TP6 both significantly displayed the ability to transform (metabolize) TNT. © 2014 SETAC.
Groundwater vulnerability mapping of Qatar aquifers
NASA Astrophysics Data System (ADS)
Baalousha, Husam Musa
2016-12-01
Qatar is one of the most arid countries in the world with limited water resources. With little rainfall and no surface water, groundwater is the only natural source of fresh water in the country. Whilst the country relies mainly on desalination of seawater to secure water supply, groundwater has extensively been used for irrigation over the last three decades, which caused adverse environmental impact. Vulnerability assessment is a widely used tool for groundwater protection and land-use management. Aquifers in Qatar are carbonate with lots of fractures, depressions and cavities. Karst aquifers are generally more vulnerable to contamination than other aquifers as any anthropogenic-sourced contaminant, especially above a highly fractured zone, can infiltrate quickly into the aquifer and spread over a wide area. The vulnerability assessment method presented in this study is based on two approaches: DRASTIC and EPIK, within the framework of Geographical Information System (GIS). Results of this study show that DRASTIC vulnerability method suits Qatar hydrogeological settings more than EPIK. The produced vulnerability map using DRASTIC shows coastal and karst areas have the highest vulnerability class. The southern part of the country is located in the low vulnerability class due to occurrence of shale formation within aquifer media, which averts downward movement of contaminants.
Nachweis von Natural Attenuation mittels Isotopenuntersuchungen an einem ehemaligen Kokereistandort
NASA Astrophysics Data System (ADS)
Nagel, Aglaia; Strauss, Harald; Stephan, Manuel; Achten, Christine
2011-12-01
Natural attenuation of mono- (BTEX) and polycyclic aromatic hydrocarbons (PAHs) was studied in groundwater at a former gas plant site over a distance of about 500 m. The contamination source was located within a 4-6 m thick succession of interbedded silt and sand ( K f =1,4ṡ10-7 m/s) at a depth of about 5-6 m below the surface. Groundwater flow times between source and the receiving surface waters were determined on the order of a few hundred years. The main contaminants were found to be benzene and naphthalene with concentrations up to 200,000 and 8,500 μg/l, respectively. Over the past 9 years, concentrations within the contaminant plume have decreased and degradation of benzene was proven by compound specific carbon isotope analyses. In addition, sulphur isotope studies revealed that sulphate reduction has played a significant role. This was supported by ambient sulphate concentrations of 300-1,800 μg/l at the site that are sufficient to sustain a long-term perspective for this process. In agreement with these physico-chemical conditions, no transfer of BTEX or PAHs from the plume into the nearby river has been observed.
Pearson, Amber L.; Zwickle, Adam; Namanya, Judith; Rzotkiewicz, Amanda; Mwita, Emiliana
2016-01-01
Many water-related illnesses show an increase during the wet season. This is often due to fecal contamination from runoff, yet, it is unknown whether seasonal changes in water availability may also play a role in increased illness via changes in the type of primary water source used by households. Very little is known about the dynamic aspects of access to water and changes in source type across seasons, particularly in semi-arid regions with annual water scarcity. The research questions in this study were: (1) To what degree do households in Uganda (UG) and Tanzania (TZ) change primary water source type between wet and dry seasons?; and (2) How might seasonal changes relate to water quality and health? Using spatial survey data from 92 households each in UG and TZ this study found that, from wet to dry season, 26% (UG) and 9% (TZ) of households switched from a source with higher risk of contamination to a source with lower risk. By comparison, only 20% (UG) and 0% (TZ) of households switched from a source with lower risk of contamination to a source with higher risk of contamination. This research suggests that one pathway through which water-related disease prevalence may differ across seasons is the use of water sources with higher risk contamination, and that households with access to sources with lower risks of contamination sometimes choose to use more contaminated sources. PMID:26828507
Bacillus cereus, a serious cause of nosocomial infections: Epidemiologic and genetic survey.
Glasset, Benjamin; Herbin, Sabine; Granier, Sophie A; Cavalié, Laurent; Lafeuille, Emilie; Guérin, Cyprien; Ruimy, Raymond; Casagrande-Magne, Florence; Levast, Marion; Chautemps, Nathalie; Decousser, Jean-Winoc; Belotti, Laure; Pelloux, Isabelle; Robert, Jerôme; Brisabois, Anne; Ramarao, Nalini
2018-01-01
Bacillus cereus is the 2nd most frequent bacterial agent responsible for food-borne outbreaks in France and the 3rd in Europe. In addition, local and systemic infections have been reported, mainly describing individual cases or single hospital setting. The real incidence of such infection is unknown and information on genetic and phenotypic characteristics of the incriminated strains is generally scarce. We performed an extensive study of B. cereus strains isolated from patients and hospital environments from nine hospitals during a 5-year study, giving an overview of the consequences, sources and pathogenic patterns of B. cereus clinical infections. We demonstrated the occurrence of several hospital-cross-contaminations. Identical B. cereus strains were recovered from different patients and hospital environments for up to 2 years. We also clearly revealed the occurrence of inter hospital contaminations by the same strain. These cases represent the first documented events of nosocomial epidemy by B. cereus responsible for intra and inter hospitals contaminations. Indeed, contamination of different patients with the same strain of B. cereus was so far never shown. In addition, we propose a scheme for the characterization of B. cereus based on biochemical properties and genetic identification and highlight that main genetic signatures may carry a high pathogenic potential. Moreover, the characterization of antibiotic resistance shows an acquired resistance phenotype for rifampicin. This may provide indication to adjust the antibiotic treatment and care of patients.
Abandoned metal mines and their impact on receiving waters: A case study from Southwest England.
Beane, Steven J; Comber, Sean D W; Rieuwerts, John; Long, Peter
2016-06-01
Historic mine sites are a major source of contamination to terrestrial and river environments. To demonstrate the importance of determining the significance of point and diffuse metal contamination and the related bioavailability of the metals present from abandoned mines a case study has been carried out. The study provides a quantitative assessment of a historic mine site, Wheal Betsy, southwest England, and its contribution to non-compliance with Water Framework Directive (WFD) Environmental Quality Standards (EQS) for Cd, Cu, Pb and Zn. Surface water and sediment samples showed significant negative environmental impacts even taking account of the bioavailability of the metal present, with lead concentration in the stream sediment up to 76 times higher than the Canadian sediment guidelines 'Probable Effect Level'. Benthic invertebrates showed a decline in species richness adjacent to the mine site with lead and cadmium the main cause. The main mine drainage adit was the single most significant source of metal (typically 50% of metal load from the area, but 88% for Ni) but the mine spoil tips north and south of the adit input added together discharged roughly an equivalent loading of metal with the exception of Ni. The bioavailability of metal in the spoil tips exhibited differing spatial patterns owing to varying ambient soil physico-chemistry. The data collected is essential to provide a clear understanding of the contamination present as well as its mobility and bioavailability, in order to direct the decision making process regarding remediation options and their likely effectiveness. Copyright © 2016 Elsevier Ltd. All rights reserved.
Trends in chlorinated hydrocarbon levels in Hudson River basin sediments.
Bopp, R F; Chillrud, S N; Shuster, E L; Simpson, H J; Estabrooks, F D
1998-01-01
Analysis of sections from dated sediment cores were used to establish geographic distributions and temporal trends of chlorinated hydrocarbon contaminant levels in sediments from natural waters of the Hudson River basin. Radiometric dating was based primarily on the depth distribution of 137(Cs) in the cores and on the occurrence of detectable levels of 7(Be) in surface sediment samples. Eighteen sampling sites included several along the main stem of the Hudson, its major tributaries, and components of the New York/New Jersey (NY/NJ) harbor complex. Drinking-water reservoirs were sampled to place upper limits on atmospheric inputs. Core sections were analyzed for polychlorinated biphenyls (PCBs), 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT)-derived compounds, chlordane, and dioxins. Sediment concentrations of most contaminants at most sites have decreased significantly since the mid-1960s. The data provide a basinwide perspective on major point-source inputs of PCBs to the upper Hudson River and of 2,3,7,8-tetrachlorodibenzo-p-dioxin and DDT to the lower Passaic River. Evidence was found for significant but poorly characterized sources of PCBs and chlordane to the western NY/NJ harbor, and of highly chlorinated dioxins to the upstream sites on the main stem of the Hudson. The results indicate that analysis of dated sediment samples is a most effective and efficient monitoring tool for the study of large-scale geographic and temporal trends in levels of particle-associated contaminants. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:9703496
Wangkahad, Bencharong; Bosup, Suchada; Mongkolsuk, Skorn; Sirikanchana, Kwanrawee
2015-06-01
The co-residence of bacteriophages and their bacterial hosts in humans, animals, and environmental sources directed the use of bacteriophages to track the origins of the pathogenic bacteria that can be found in contaminated water. The objective of this study was to enumerate bacteriophages of Aeromonas caviae (AecaKS148), Enterobacter sp. (EnspKS513), and Klebsiella pneumoniae (KlpnKS648) in water and evaluate their association with contamination sources (human vs. animals). Bacterial host strains were isolated from untreated wastewater in Bangkok, Thailand. A double-layer agar technique was used to detect bacteriophages. All three bacteriophages were detected in polluted canal samples, with likely contamination from human wastewater, whereas none was found in non-polluted river samples. AecaKS148 was found to be associated with human fecal sources, while EnspKS513 and KlpnKS648 seemed to be equally prevalent in both human and animal fecal sources. Both bacteriophages were also present in polluted canals that could receive contamination from other fecal sources or the environment. In conclusion, all three bacteriophages were successfully monitored in Bangkok, Thailand. This study provided an example of bacteriophages for potential use as source identifiers of pathogen contamination. The results from this study will assist in controlling sources of pathogen contamination, especially in developing countries.
Oxidation of Ammonia in Source Water Using Biological Filtration (slides)
Drinking water utilities are challenged with a variety of contamination issues from both the source water and the distribution system. Source water issues include biological contaminants such as bacteria and viruses as well as inorganic contaminants such as arsenic, barium, and ...
Nixdorf, Erik; Sun, Yuanyuan; Lin, Mao; Kolditz, Olaf
2017-12-15
The main objective of this study is to quantify the groundwater contamination risk of Songhua River Basin by applying a novel approach of integrating public datasets, web services and numerical modelling techniques. To our knowledge, this study is the first to establish groundwater risk maps for the entire Songhua River Basin, one of the largest and most contamination-endangered river basins in China. Index-based groundwater risk maps were created with GIS tools at a spatial resolution of 30arc sec by combining the results of groundwater vulnerability and hazard assessment. Groundwater vulnerability was evaluated using the DRASTIC index method based on public datasets at the highest available resolution in combination with numerical groundwater modelling. As a novel approach to overcome data scarcity at large scales, a web mapping service based data query was applied to obtain an inventory for potential hazardous sites within the basin. The groundwater risk assessment demonstrated that <1% of Songhua River Basin is at high or very high contamination risk. These areas were mainly located in the vast plain areas with hotspots particularly in the Changchun metropolitan area. Moreover, groundwater levels and pollution point sources were found to play a significantly larger impact in assessing these areas than originally assumed by the index scheme. Moderate contamination risk was assigned to 27% of the aquifers, predominantly associated with less densely populated agricultural areas. However, the majority of aquifer area in the sparsely populated mountain ranges displayed low groundwater contamination risk. Sensitivity analysis demonstrated that this novel method is valid for regional assessments of groundwater contamination risk. Despite limitations in resolution and input data consistency, the obtained groundwater contamination risk maps will be beneficial for regional and local decision-making processes with regard to groundwater protection measures, particularly if other data availability is limited. Copyright © 2017 Elsevier B.V. All rights reserved.
Impacts by point and diffuse micropollutant sources on the stream water quality at catchment scale
NASA Astrophysics Data System (ADS)
Petersen, M. F.; Eriksson, E.; Binning, P. J.; Bjerg, P. L.
2012-04-01
The water quality of surface waters is threatened by multiple anthropogenic pollutants and the large variety of pollutants challenges the monitoring and assessment of the water quality. The aim of this study was to characterize and quantify both point and diffuse sources of micropollutants impacting the water quality of a stream at catchment scale. Grindsted stream in western Jutland, Denmark was used as a study site. The stream passes both urban and agricultural areas and is impacted by severe groundwater contamination in Grindsted city. Along a 12 km reach of Grindsted stream, the potential pollution sources were identified including a pharmaceutical factory site with a contaminated old drainage ditch, two waste deposits, a wastewater treatment plant, overflow structures, fish farms, industrial discharges and diffuse agricultural and urban sources. Six water samples were collected along the stream and analyzed for general water quality parameters, inorganic constituents, pesticides, sulfonamides, chlorinated solvents, BTEXs, and paracetamol and ibuprofen. The latter two groups were not detected. The general water quality showed typical conditions for a stream in western Jutland. Minor impacts by releases of organic matter and nutrients were found after the fish farms and the waste water treatment plant. Nickel was found at concentrations 5.8 - 8.8 μg/l. Nine pesticides and metabolites of both agricultural and urban use were detected along the stream; among these were the two most frequently detected and some rarely detected pesticides in Danish water courses. The concentrations were generally consistent with other findings in Danish streams and in the range 0.01 - 0.09 μg/l; except for metribuzin-diketo that showed high concentrations up to 0.74 μg/l. The groundwater contamination at the pharmaceutical factory site, the drainage ditch and the waste deposits is similar in composition containing among others sulfonamides and chlorinated solvents (including vinyl chloride). Vinyl chloride concentrations surpassed Danish stream water quality criteria with a factor 10. The largest chemical impact occurs at the reach downstream Grindsted city revealing that the main contaminant groundwater discharge zones are found here. The contaminant plume from the factory site north of the stream is known to impact the stream whereas the impact by the old landfill south of the stream remains to be assessed. A conceptual model of the chemical impacts by the identified sources was made, and high impact was assigned to the contaminant plume from the factory site and to the diffuse sources of urban-use and agricultural pesticides. The next step will be a quantification of the sources, which will be presented at the conference.
Origin of VC-only plumes from naturally enhanced dechlorination in a peat-rich hydrogeologic setting
NASA Astrophysics Data System (ADS)
Filippini, Maria; Amorosi, Alessandro; Campo, Bruno; Herrero-Martìn, Sara; Nijenhuis, Ivonne; Parker, Beth L.; Gargini, Alessandro
2016-09-01
The occurrence of vinyl chloride (VC) is often a main concern at sites contaminated with chlorinated solvents due to its high degree of toxicity and carcinogenicity. VC occurrence in aquifers is most often related to the degradation of higher chlorinated ethenes or ethanes and it is generally detected in plumes along with parent contaminants. However, specific combination of stratigraphic, hydrogeologic and geochemical conditions can enhance the degradation of parents and lead to the formation of plumes almost entirely composed of VC (i.e. VC-only plumes). This paper investigates the causes of VC-only plumes in the aquifers below the city of Ferrara (northern Italy) by combining multiple lines of evidence. The City of Ferrara is located on an alluvial lowland, built by the River Po, and is made up of alternating unconsolidated sandy aquifer and silt-clay aquitard deposits of fluvial origin. This region has been strongly impacted by prior industrial activities, with the occurrence of chlorinated compounds at several sites. VC-only plumes with uncertain source location were found at two contaminated sites. The source zone of a third plume composed of chloroethenes from PCE to VC was investigated for high resolution depositional facies architecture and contaminant distribution (contaminant concentration and Compound Specific Isotope Analysis - CSIA). The investigation suggested that degradation of PCE and TCE takes place during contaminant migration through peat-rich (swamp) layers related to the Holocene transgression, which locally act as a ;reactor; for stimulating degradation with the accumulation of VC in the strongly reducing environment of the peat. Regional-scale stratigraphic architecture showed the ubiquitous occurrence of swamp layers at distinct stratigraphic levels in the investigated system and their apparent linkage to the in situ creation of the VC-only plumes.
Tatti, Fabio; Papini, Marco Petrangeli; Sappa, Giuseppe; Raboni, Massimo; Arjmand, Firoozeh; Viotti, Paolo
2018-05-01
Low-permeability lenses represent potential sources of long-term release when filled from contaminant solute through direct contact with dissolved plumes. The redistribution of contaminant from low to high permeability aquifer zones (Back-Diffusion) was studied. Redistribution causes a long plume tail, commonly regarded as one of the main obstacles to effective groundwater remediation. Laboratory tests were performed to reproduce the redistribution process and to investigate the effect of pumping water on the remediation time of these contaminated low-permeability lenses. The test section used is representative of clay/silt lenses (k≈1∗10 -10 m/s/k≈1∗10 -7 m/s) in a sand aquifer (k≈1∗10 -3 m/s). Hence, an image analysis procedure was used to estimate the diffusive flux of contaminant released by these low-permeability zones. The proposed technique was validated performing a mass balance of a lens saturated by a known quantity of tracer. For each test, performed using a different groundwater velocity, the diffusive fluxes of contaminant released by lenses were compared and the remediation times of the low-permeability zones calculated. For each lens, the obtained remediation timeframes were used to define an analytical relation vs groundwater velocity and the coefficients of these relations were matched to grain size of the low-permeability lenses. Results show that an increase of the velocity field is not useful to diminish the total depletion times as the process mainly diffusive. This is significant when the remediation approach relies on pumping technology. Copyright © 2017 Elsevier B.V. All rights reserved.
We need techniques that verify that groundwater is not contaminated from hydraulic fracturing. Groundwater contamination can come from sources which may carry a fingerprint that identifies the source, or the process which led to the contamination.
Stoeckel, Donald M; Stelzer, Erin A; Stogner, Robert W; Mau, David P
2011-05-01
Protocols for microbial source tracking of fecal contamination generally are able to identify when a source of contamination is present, but thus far have been unable to evaluate what portion of fecal-indicator bacteria (FIB) came from various sources. A mathematical approach to estimate relative amounts of FIB, such as Escherichia coli, from various sources based on the concentration and distribution of microbial source tracking markers in feces was developed. The approach was tested using dilute fecal suspensions, then applied as part of an analytical suite to a contaminated headwater stream in the Rocky Mountains (Upper Fountain Creek, Colorado). In one single-source fecal suspension, a source that was not present could not be excluded because of incomplete marker specificity; however, human and ruminant sources were detected whenever they were present. In the mixed-feces suspension (pet and human), the minority contributor (human) was detected at a concentration low enough to preclude human contamination as the dominant source of E. coli to the sample. Without the semi-quantitative approach described, simple detects of human-associated marker in stream samples would have provided inaccurate evidence that human contamination was a major source of E. coli to the stream. In samples from Upper Fountain Creek the pattern of E. coli, general and host-associated microbial source tracking markers, nutrients, and wastewater-associated chemical detections--augmented with local observations and land-use patterns--indicated that, contrary to expectations, birds rather than humans or ruminants were the predominant source of fecal contamination to Upper Fountain Creek. This new approach to E. coli allocation, validated by a controlled study and tested by application in a relatively simple setting, represents a widely applicable step forward in the field of microbial source tracking of fecal contamination. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ran, Jing; Wang, Dejian; Wang, Can; Zhang, Gang; Yao, Lipeng
2014-08-01
Portable X-ray fluorescence (PXRF) spectrometry may be very suitable for a fast and effective environmental assessment and source identification of trace metals in soils. In this study, topsoils (0-10 cm) at 139 sites were in situ scanned for total trace metals (Cr, Cu, Ni, Pb and Zn) and arsenic concentrations by PXRF in a typical town in Yangtze Delta region of Jiangsu province, China. To validate the utility of PXRF, 53 samples were collected from the scanning sites for the determination of selected trace metals using conventional methods. Based on trace metal concentrations detected by in situ PXRF, the contamination extent and sources of trace metals were studied via geo-accumulation index, multivariate analysis and geostatistics. The trace metal concentrations determined by PXRF were similar to those obtained via conventional chemical analysis. The median concentration of As, Cr, Cu, Ni, Pb and Zn in soils were 10.8, 56.4, 41.5, 43.5, 33.5, and 77.7 mg kg(-1), respectively. The distribution patterns of Cr, Cu, Ni, Pb, and Zn were mostly affected by anthropogenic sources, while As was mainly derived from lithogenic sources. Overall, PXRF has been successfully applied to contamination assessment and source identification of trace metals in soils.
Hirotani, Hiroshi; Yu, Ma; Yamada, Takeshi
2013-01-01
Fluctuation of bacteriophage and Escherichia coli densities in naturally developed riverbed biofilms were investigated for a 1-year period. E. coli ranged from 1,500 to 15,500 most probable number (MPN)/100 mL and from 580 to 18,500 MPN/cm(2) in the main channel in the river water and biofilms, respectively. However, the fluctuations were much greater in the tributary, ranging from 0.8 to 100 MPN/100 mL and from 0.3 to 185 MPN/cm(2) in water and biofilms, respectively. The fluctuations of coliphages were also greater in the tributary than in the main channel. FRNA phage serotyping results indicated no significant differences in the source type of the fecal contamination in the main channel and tributary sampling stations. Significant correlations between phage groups in biofilms and water were found at both main channel and tributary. It was assumed that natural biofilms developed in the streambed captured and retained somatic phages in the biofilms for a certain period of time in the main channel site. At the location receiving constant and heavy contamination, the usage of phage indicators may provide additional information on the presence of viruses. In the small tributary it may be possible to estimate the virus concentration by monitoring the E. coli indicator.
We investigated the geophysical response to subsurface hydrocarbon contamination source removal. Source removal by natural attenuation or by engineered bioremediation is expected to change the biological, chemical, and physical environment associated with the contaminated matrix....
Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants
NASA Technical Reports Server (NTRS)
Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.
1998-01-01
Control of air contaminants is a crucial factor in the safety considerations of crewed space flight. Indoor air quality needs to be closely monitored during long range missions such as a Mars mission, and also on large complex space structures such as the International Space Station. This work mainly pertains to the detection and simulation of air contaminants in the space station, though much of the work is easily extended to buildings, and issues of ventilation systems. Here we propose a method with which to track the presence of contaminants using an accurate physical model, and also develop a robust procedure that would raise alarms when certain tolerance levels are exceeded. A part of this research concerns the modeling of air flow inside a spacecraft, and the consequent dispersal pattern of contaminants. Our objective is to also monitor the contaminants on-line, so we develop a state estimation procedure that makes use of the measurements from a sensor system and determines an optimal estimate of the contamination in the system as a function of time and space. The real-time optimal estimates in turn are used to detect faults in the system and also offer diagnoses as to their sources. This work is concerned with the monitoring of air contaminants aboard future generation spacecraft and seeks to satisfy NASA's requirements as outlined in their Strategic Plan document (Technology Development Requirements, 1996).
Standring, W J F; Stepanets, O; Brown, J E; Dowdall, M; Borisov, A; Nikitin, A
2008-04-01
The Ob and Yenisey rivers are major contributors to total riverine discharge to the Arctic Ocean. Several large nuclear facilities discharge into these rivers, which could affect actual and potential discharges of radionuclides to the Arctic region. This article presents new radionuclide concentration and grain-size data resulting from analyses of several sediment samples collected during research cruises in the Ob and Yenisey estuaries and adjacent areas during 2000 and 2001. Results indicate that discharges from the main nuclear facilities do not constitute a major contribution to the level of radioactive contamination in the marine areas studied, though Co-60 was detected at low concentrations in some sediment horizons. However, the aggregate contamination from different sources is not radioecologically significant in sediments within the study area, maximum Cs-137 levels being approximately 80 Bq kg(-1) dry weight.
Minet, E P; Goodhue, R; Meier-Augenstein, W; Kalin, R M; Fenton, O; Richards, K G; Coxon, C E
2017-11-01
Excessive nitrate (NO 3 - ) concentration in groundwater raises health and environmental issues that must be addressed by all European Union (EU) member states under the Nitrates Directive and the Water Framework Directive. The identification of NO 3 - sources is critical to efficiently control or reverse NO 3 - contamination that affects many aquifers. In that respect, the use of stable isotope ratios 15 N/ 14 N and 18 O/ 16 O in NO 3 - (expressed as δ 15 N-NO 3 - and δ 18 O-NO 3 - , respectively) has long shown its value. However, limitations exist in complex environments where multiple nitrogen (N) sources coexist. This two-year study explores a method for improved NO 3 - source investigation in a shallow unconfined aquifer with mixed N inputs and a long established NO 3 - problem. In this tillage-dominated area of free-draining soil and subsoil, suspected NO 3 - sources were diffuse applications of artificial fertiliser and organic point sources (septic tanks and farmyards). Bearing in mind that artificial diffuse sources were ubiquitous, groundwater samples were first classified according to a combination of two indicators relevant of point source contamination: presence/absence of organic point sources (i.e. septic tank and/or farmyard) near sampling wells and exceedance/non-exceedance of a contamination threshold value for sodium (Na + ) in groundwater. This classification identified three contamination groups: agricultural diffuse source but no point source (D+P-), agricultural diffuse and point source (D+P+) and agricultural diffuse but point source occurrence ambiguous (D+P±). Thereafter δ 15 N-NO 3 - and δ 18 O-NO 3 - data were superimposed on the classification. As δ 15 N-NO 3 - was plotted against δ 18 O-NO 3 - , comparisons were made between the different contamination groups. Overall, both δ variables were significantly and positively correlated (p < 0.0001, r s = 0.599, slope of 0.5), which was indicative of denitrification. An inspection of the contamination groups revealed that denitrification did not occur in the absence of point source contamination (group D+P-). In fact, strong significant denitrification lines occurred only in the D+P+ and D+P± groups (p < 0.0001, r s > 0.6, 0.53 ≤ slope ≤ 0.76), i.e. where point source contamination was characterised or suspected. These lines originated from the 2-6‰ range for δ 15 N-NO 3 - , which suggests that i) NO 3 - contamination was dominated by an agricultural diffuse N source (most likely the large organic matter pool that has incorporated 15 N-depleted nitrogen from artificial fertiliser in agricultural soils and whose nitrification is stimulated by ploughing and fertilisation) rather than point sources and ii) denitrification was possibly favoured by high dissolved organic content (DOC) from point sources. Combining contamination indicators and a large stable isotope dataset collected over a large study area could therefore improve our understanding of the NO 3 - contamination processes in groundwater for better land use management. We hypothesise that in future research, additional contamination indicators (e.g. pharmaceutical molecules) could also be combined to disentangle NO 3 - contamination from animal and human wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Escherichia coli O157:H7 is a major food safety concern for the beef industry. Several studies have provided evidence that cattle hides are the main source of beef carcass contamination during processing and that reductions in the E. coli O157:H7 load on the hides of cattle entering processing faci...
Hazardous Waste Minimization Assessment: Fort Ord, CA
1991-06-01
on microorganisms ( bacteria , fungi, etc.) to decompose and/or bioaccumulate the contaminants in wastes. As a HAZMIN technique, treatment, unlike source...washer X San Jose, CA manufacturer Kinsbursky Bros. Supply (714) 738-8516 North Lemon Street Recycler, Spent batteries x Anaheim. CA 92801 Lubrication Co...0863 2190 Main Street Processor X X San Diego, CA 92113 Pepper Oil Company. Inc. (619) 477-9336 2300 Tidelands Avenue Processor X X National City, CA
Battaglin, William A.; Ulery, Randy L.; Winterstein, Thomas; Welborn, Toby
2003-01-01
In the State of Texas, surface water (streams, canals, and reservoirs) and ground water are used as sources of public water supply. Surface-water sources of public water supply are susceptible to contamination from point and nonpoint sources. To help protect sources of drinking water and to aid water managers in designing protective yet cost-effective and risk-mitigated monitoring strategies, the Texas Commission on Environmental Quality and the U.S. Geological Survey developed procedures to assess the susceptibility of public water-supply source waters in Texas to the occurrence of 227 contaminants. One component of the assessments is the determination of susceptibility of surface-water sources to nonpoint-source contamination. To accomplish this, water-quality data at 323 monitoring sites were matched with geographic information system-derived watershed- characteristic data for the watersheds upstream from the sites. Logistic regression models then were developed to estimate the probability that a particular contaminant will exceed a threshold concentration specified by the Texas Commission on Environmental Quality. Logistic regression models were developed for 63 of the 227 contaminants. Of the remaining contaminants, 106 were not modeled because monitoring data were available at less than 10 percent of the monitoring sites; 29 were not modeled because there were less than 15 percent detections of the contaminant in the monitoring data; 27 were not modeled because of the lack of any monitoring data; and 2 were not modeled because threshold values were not specified.
Singh, Shubhra; Raju, N Janardhana; Nazneen, Sadaf
2015-06-01
This study assessed soil pollution in the Varanasi environs of Uttar Pradesh in India. Assessing the concentration of potentially harmful heavy metals in the soils is imperative in order to evaluate the potential risks to human. To identify the concentration and sources of heavy metals and assess the soil environmental quality, 23 samples were collected from different locations covering dumping, road and agricultural area. The average concentrations of the heavy metals were all below the permissible limits according to soil quality guidelines except Cu (copper) and Pb (lead) in dumping and road soils. Soil heavy metal contamination was assessed on the basis of geoaccumulation index (Igeo), pollution index (PI) and integrated pollution index (IPI). The IPI of the metals ranged from 0.59 to 9.94, with the highest IPI observed in the dumping and road soils. A very significant correlation was found between Pb and Cu. The result of principal component analysis suggested that PC1 was mainly affected by the use of agrochemicals, PC2 was affected by vehicular emission and PC3 was affected by dumping waste. Meanwhile, PC4 was mainly controlled by parent material along with anthropogenic activities. Appropriate measures should be taken to minimize the heavy metal levels in soils and thus protect human health.
Chandrasekaran, A; Ravisankar, R; Harikrishnan, N; Satapathy, K K; Prasad, M V R; Kanagasabapathy, K V
2015-02-25
Anthropogenic activities increase the accumulation of heavy metals in the soil environment. Soil pollution significantly reduces environmental quality and affects the human health. In the present study soil samples were collected at different locations of Yelagiri Hills, Tamilnadu, India for heavy metal analysis. The samples were analyzed for twelve selected heavy metals (Mg, Al, K, Ca, Ti, Fe, V, Cr, Mn, Co, Ni and Zn) using energy dispersive X-ray fluorescence (EDXRF) spectroscopy. Heavy metals concentration in soil were investigated using enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (CF) and pollution load index (PLI) to determine metal accumulation, distribution and its pollution status. Heavy metal toxicity risk was assessed using soil quality guidelines (SQGs) given by target and intervention values of Dutch soil standards. The concentration of Ni, Co, Zn, Cr, Mn, Fe, Ti, K, Al, Mg were mainly controlled by natural sources. Multivariate statistical methods such as correlation matrix, principal component analysis and cluster analysis were applied for the identification of heavy metal sources (anthropogenic/natural origin). Geo-statistical methods such as kirging identified hot spots of metal contamination in road areas influenced mainly by presence of natural rocks. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul L. Wichlacz
2003-09-01
This source-term summary document is intended to describe the current understanding of contaminant source terms and the conceptual model for potential source-term release to the environment at the Idaho National Engineering and Environmental Laboratory (INEEL), as presented in published INEEL reports. The document presents a generalized conceptual model of the sources of contamination and describes the general categories of source terms, primary waste forms, and factors that affect the release of contaminants from the waste form into the vadose zone and Snake River Plain Aquifer. Where the information has previously been published and is readily available, summaries of the inventorymore » of contaminants are also included. Uncertainties that affect the estimation of the source term release are also discussed where they have been identified by the Source Term Technical Advisory Group. Areas in which additional information are needed (i.e., research needs) are also identified.« less
Griffin, Dale W.; Stokes, Rodger; Rose, J.B.; Paul, J.H.
2000-01-01
A microbiological water quality study of Homosassa Springs State Wildlife Park (HSSWP) and surrounding areas was undertaken. Samples were collected in November of 1997 (seven sites) and again in November of 1998 (nine sites). Fecal bacterial concentrations (total and fecal coliforms, Clostridium perfringens, and enterococci) were measured as relative indicators of fecal contamination. F+-specific coliphage genotyping was performed to determine the source of fecal contamination at the study sites. Bacterial levels were considerably higher at most sites in the 1997 sampling compared to the 1998 sampling, probably because of the greater rainfall that year. In November of 1997, 2 of the 7 sites were in violation of all indicator standards and guidance levels. In November of 1998, 1 of 9 sites was in violation of all indicator standard and guidance levels. The highest concentrations of all fecal indicators were found at a station downstream of the animal holding pens in HSSWP. The lowest levels of indicators were found at the Homosassa Main Spring vent. Levels of fecal indicators downstream of HSSWP (near the point of confluence with the river) were equivalent to those found in the Southeastern Fork and areas upstream of the park influences. F+ specific RNA coliphage analysis indicated that fecal contamination at all sites that tested positive was from animal sources (mammals and birds). These results suggest that animal (indigenous and those in HSSWP) and not human sources influenced microbial water quality in the area of Homosassa River covered by this study.
Borneff, J; Hassinger, R; Wittig, J; Edenharder, R
1988-03-01
The very high morbidity rates of Enteritis infectiosa diseases demand improved prophylactic measures. An important indication of the source of these illnesses is the fact that infections in private households are about three times more frequent than in canteens. Indeed, the rise in morbidity is undoubtedly caused by inadequate treatment of raw products, of meal rests and by insufficient heating processes. Furthermore, in household kitchens no efforts are made to interrupt infection chains, and disinfections are considered as superfluous and housewives are content if their kitchens appear to be clean. The aim of our study performed in a normal household kitchen, was to investigate cross-contamination caused by pathogens, introduced into the kitchen from outdoors. A further aim was to establish the main sources of contamination in order to be able to recommend practical disinfection procedures. The main fields of contamination discovered when 55 meals prepared were: a) working surfaces (including boards of wood and plastics) b) kitchen- and cutting-machines. The amount of test organisms (Sarcinae), introduced into the kitchen (unbeknown to the housewives) by experimentally contaminated minced meat was only reduced by common cleaning procedures, in sofar as nearly half of the original contaminations could be demonstrated to be still present. However, when the normal cleanser was replaced by one containing hypochlorite, and with retention of the same working routines, about 90% bacteriologically clean surfaces were determined. In this way it could be demonstrated that infection chains can be interrupted. It is, however, not correct to compare the efficiency of these procedures with the efficiency of disinfection, according to the Federal Infectious Diseases Act (Bundesseuchengesetz). On practical application of these experiences it must be borne in mind that housewives should not be forced to apply medical disinfection procedures: indeed, traditional and practised cleaning methods should be retained, as far as possible. We recommend therefore that manufacturers supply household cleansers with an anti-bacterial additive, after its application in the kitchens working surfaces and machines are bacteriologically clean. Additionally housewives should be appropriately informed about the necessity of these manipulations. We consider minimization of toxicity and a thorough environmental compatibility of formulations to be self-evident.
Delineating Landfill Leachate Discharge To An Arsenic Contaminated Waterway
Discharge of contaminated ground water may serve as a primary and on-going source of contamination to surface water. A field investigation was conducted at a Superfund site in Massachusetts, USA to define the locus of contaminant flux and support source identification for arseni...
NASA Astrophysics Data System (ADS)
Costa, D.; Burlando, P.; Liong, S. Y.
2015-12-01
Recent observations in the shallow aquifer of Jakarta show a rise in nitrate (NO3-) levels. Groundwater is extensively used in the city to compensate for the limited public water supply network and therefore the risk to public health from a rise in NO3- concentration is high. NO3- has been identified as a cofactor for methemoglobinemia in infants, a disease which can lead to death in extreme cases. The NO3- levels detected are still below regulatory limits for drinking purposes but strategies are necessary to contain the growing problem. To this end, the main sources and pathways of inorganic compounds containing nitrogen (N) - i.e. nitrate, nitrite (NO2-) and ammonium (NH4+) - were investigated. We combined 3 years of field measurements in the Ciliwung River, the major river flowing through Jakarta, with a distributed river-aquifer interaction model to characterize the N-cycle in both systems and quantify the contribution of river infiltration in the overall groundwater N budget. The computed infiltration fluxes were compared to estimates of leaks from poorly maintained septic tanks, which are extensively used in the city, to identify the main source of groundwater contamination. Observations show a strong and interdependent spatial and seasonal variability in the levels of NO3-, NO2- and NH4+ in the river, which is caused by changes in nitrification/denitrification rates due to variations in dissolved oxygen concentrations. Simulation results suggest that such dynamics in the river cause river to aquifer contamination patterns to likewise change over space and time, which leads to heterogeneous vulnerability distributions. The estimated contribution of river-N infiltration to the observed NO3- groundwater levels is small if compared to that originating from all leaking septic tanks inside Jakarta. However, in the vicinity of the Ciliwung, river to groundwater N-loading can play an important role in the local NO3- groundwater levels because it is highly concentrated.
Leterme, Bertrand; Blanc, Philippe; Jacques, Diederik
2014-11-01
Soil systems are a common receptor of anthropogenic mercury (Hg) contamination. Soils play an important role in the containment or dispersion of pollution to surface water, groundwater or the atmosphere. A one-dimensional model for simulating Hg fate and transport for variably saturated and transient flow conditions is presented. The model is developed using the HP1 code, which couples HYDRUS-1D for the water flow and solute transport to PHREEQC for geochemical reactions. The main processes included are Hg aqueous speciation and complexation, sorption to soil organic matter, dissolution of cinnabar and liquid Hg, and Hg reduction and volatilization. Processes such as atmospheric wet and dry deposition, vegetation litter fall and uptake are neglected because they are less relevant in the case of high Hg concentrations resulting from anthropogenic activities. A test case is presented, assuming a hypothetical sandy soil profile and a simulation time frame of 50 years of daily atmospheric inputs. Mercury fate and transport are simulated for three different sources of Hg (cinnabar, residual liquid mercury or aqueous mercuric chloride), as well as for combinations of these sources. Results are presented and discussed with focus on Hg volatilization to the atmosphere, Hg leaching at the bottom of the soil profile and the remaining Hg in or below the initially contaminated soil layer. In the test case, Hg volatilization was negligible because the reduction of Hg(2+) to Hg(0) was inhibited by the low concentration of dissolved Hg. Hg leaching was mainly caused by complexation of Hg(2+) with thiol groups of dissolved organic matter, because in the geochemical model used, this reaction only had a higher equilibrium constant than the sorption reactions. Immobilization of Hg in the initially polluted horizon was enhanced by Hg(2+) sorption onto humic and fulvic acids (which are more abundant than thiols). Potential benefits of the model for risk management and remediation of contaminated sites are discussed.
POP-contaminated sites from HCH production in Sabiñánigo, Spain.
Fernández, J; Arjol, M A; Cacho, C
2013-04-01
In 2009, hexachlorocyclohexane (HCH) isomers (α-HCH, β-HCH, and γ-HCH [lindane]) were listed as persistent organic pollutants (POP) in the Stockholm Convention. Accordingly, the legacy of HCH/lindane production with the associated large HCH waste deposits has become recognized as an issue of global concern and is addressed in the implementation of the Convention. The current paper gives an overview of the major contaminated sites from lindane production of the INQUINOSA Company. This company operated from 1975 to 1988 in the city of Sabiñánigo, Spain. HCH production resulted in the production of approximately 115,000 tonnes of waste isomers which were mainly dumped in two unlined landfills. These two landfill sites, together with the former production site, are recognized sources of environmental pollution. Assessment and remediation activities at these sites are described. A dense nonaqueous phase liquid (DNAPL) contaminated inter alia with HCH isomers, benzene, chlorobenzenes, and chlorophenols as the main contaminants and an associated contaminated groundwater plume have been discovered at both landfill/dumpsites and at the former production site. The approximately 4,000 t of DNAPLs constitute a serious risk for the environment due to the proximity of the Gállego River. Since 2004, more than 20 tonnes of this DNAPL has been extracted using "pump and treat" techniques. The Aragon Regional Government and the Spanish Environmental Ministry are taking action, focusing on the treatment of DNAPL and on the transfer of the large quantities of solid POP wastes to a new landfill. A range of laboratory tests has been performed in order to plan the aquifer remediation.
Typhoid fever: A report on a point-source outbreak of 69 cases in Cape Town.
Popkiss, M E
1980-03-01
In 1978, after a party in a Cape Town suburb attended by several hundred people, 69 persons were treated for typhoid fever. The precise source of the infection could not be traced, although it is reasonable to suppose that food eaten at the party had been contaminated by the main caterer. All 57 cultures of Salmonella typhi phage-typed were of phage type 46, including that obtained from the stool of the main caterer, who was asymptomatic. An epidemiological profile of the cases and an account of the management of the outbreak is given. There were no deaths and no patient became a carrier. Although the outbreak was contained, certain problems relating thereto are aired, including in particular the potential hazard of food-borne disease wherever housing and environmental standards are low.
NASA Astrophysics Data System (ADS)
Shukla, Dericks Praise; Dubey, C. S.; Singh, Ningthoujam P.; Tajbakhsh, M.; Chaudhry, M.
2010-12-01
SummaryA high concentration of Arsenic (As) contamination in ground water has been reported in the village of Kaudikasa in Rajnandgaon district, wherein around 10% of the population is suffering from As-borne diseases. The region does not share any demographic or geological similarity with the sedimentary aquifers of the Bengal Delta Plain in Eastern India, but represents an igneous terrain with elevated As concentrations in groundwater. There is limited information about the source of As in groundwater and its mobility constraints. In this area, almost all the wells are located in the granitic terrain with pegmatitic intrusions. Most of these wells are characterized by As concentration above the World Health Organization ( WHO, 1999) and the BIS (Bureau of Indian Standards) standards, with the highest being found in a well with more than 250 μg/L of As. Here we report petrographic studies of the granitic host rock and X-ray diffraction results that indicate that altered realgar (α-As 4S 4), para realgar (AsS), and/or tennantite (Cu 12As 4S 13), are the main mineral that contain As. This element is leached during the weathering and water-rock interactions. Microprobe analysis of the altered realgar grains of in pegmatitic intrusions of the host granite indicate 23-27 wt.% As. Remote sensing is useful to delineate the source of this contaminant, which appears to lie at the intersection of a mineralized NW-SE and N-S lineaments associated with the Kotri rift zone. These lineaments are structurally controlled as rifting followed by thrusting and other types of faulting caused left-lateral displacement of N-S Kotri lineament along a NW-SE fault plane showing sinistral shearing. This process caused water drainage in the areas to flow along these highly mineralized weak zones. Thus, the water becomes highly contaminated due to leaching of minerals at the intersection of these lineaments, clearly visible at two areas of high contamination that lie very near to this intersection over granitic rock. The source of As affecting the Rajnandgaon district is located in granites that have pegmatitic intrusions likely generated by hydrothermal activity.
Spacecraft contamination issues from LDEF: Issues for design
NASA Technical Reports Server (NTRS)
Pippin, Gary; Crutcher, Russ
1993-01-01
Many contamination sources have been identified on the Long Duration Exposure Facility (LDEF). Effects of contamination from these sources are being quantified and have been reported on in several papers. For a designer, the essential question is how much contamination from all sources can be tolerated without causing a given spacecraft system to degrade below a critical performance level, or fail altogether. Even a rudimentary knowledge of the mechanisms by which molecular and particulate contamination can occur will allow simple design options to be chosen to circumvent potential contamination problems and reduce contamination levels. Because of the varied nature and condition of hardware used on LDEF experiments, examples of many types of contamination were seen and these provide a useful guide to expected performance of many types of materials in space environments.
Tracking sources of Staphylococcus aureus hand contamination in food handlers by spa typing.
Ho, Jeffery; Boost, Maureen V; O'Donoghue, Margaret M
2015-07-01
We aimed to identify the source of Staphylococcus aureus contaminating hands of food handlers. Nasal samples and direct fingertip imprints were collected on 2 occasions from food handlers and characterized to determine likely sources of hand contamination. Most hand contamination was attributable to nasal isolates of persistently colonized coworkers who had presumably contaminated the environment. Regular handwashing should be supplemented by effective environmental disinfection. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hynds, Paul D.; Misstear, Bruce D.; Gill, Laurence W.
2012-12-01
Groundwater quality analyses were carried out on samples from 262 private sources in the Republic of Ireland during the period from April 2008 to November 2010, with microbial quality assessed by thermotolerant coliform (TTC) presence. Assessment of potential microbial contamination risk factors was undertaken at all sources, and local meteorological data were also acquired. Overall, 28.9% of wells tested positive for TTC, with risk analysis indicating that source type (i.e., borehole or hand-dug well), local bedrock type, local subsoil type, groundwater vulnerability, septic tank setback distance, and 48 h antecedent precipitation were all significantly associated with TTC presence (p < 0.05). A number of source-specific design parameters were also significantly associated with bacterial presence. Hierarchical logistic regression with stepwise parameter entry was used to develop a private well susceptibility model, with the final model exhibiting a mean predictive accuracy of >80% (TTC present or absent) when compared to an independent validation data set. Model hierarchies of primary significance are source design (20%), septic tank location (11%), hydrogeological setting (10%), and antecedent 120 h precipitation (2%). Sensitivity analysis shows that the probability of contamination is highly sensitive to septic tank setback distance, with probability increasing linearly with decreases in setback distance. Likewise, contamination probability was shown to increase with increasing antecedent precipitation. Results show that while groundwater vulnerability category is a useful indicator of aquifer susceptibility to contamination, its suitability with regard to source contamination is less clear. The final model illustrates that both localized (well-specific) and generalized (aquifer-specific) contamination mechanisms are involved in contamination events, with localized bypass mechanisms dominant. The susceptibility model developed here could be employed in the appropriate location, design, construction, and operation of private groundwater wells, thereby decreasing the contamination risk, and hence health risk, associated with these sources.
Senior, Lisa A.; Goode, Daniel J.
2017-06-06
A previously developed regional groundwater flow model was used to simulate the effects of changes in pumping rates on groundwater-flow paths and extent of recharge discharging to wells for a contaminated fractured bedrock aquifer in southeastern Pennsylvania. Groundwater in the vicinity of the North Penn Area 7 Superfund site, Montgomery County, Pennsylvania, was found to be contaminated with organic compounds, such as trichloroethylene (TCE), in 1979. At the time contamination was discovered, groundwater from the underlying fractured bedrock (shale) aquifer was the main source of supply for public drinking water and industrial use. As part of technical support to the U.S. Environmental Protection Agency (EPA) during the Remedial Investigation of the North Penn Area 7 Superfund site from 2000 to 2005, the U.S. Geological Survey (USGS) developed a model of regional groundwater flow to describe changes in groundwater flow and contaminant directions as a result of changes in pumping. Subsequently, large decreases in TCE concentrations (as much as 400 micrograms per liter) were measured in groundwater samples collected by the EPA from selected wells in 2010 compared to 2005‒06 concentrations.To provide insight on the fate of potentially contaminated groundwater during the period of generally decreasing pumping rates from 1990 to 2010, steady-state simulations were run using the previously developed groundwater-flow model for two conditions prior to extensive remediation, 1990 and 2000, two conditions subsequent to some remediation 2005 and 2010, and a No Pumping case, representing pre-development or cessation of pumping conditions. The model was used to (1) quantify the amount of recharge, including potentially contaminated recharge from sources near the land surface, that discharged to wells or streams and (2) delineate the areas contributing recharge that discharged to wells or streams for the five conditions.In all simulations, groundwater divides differed from surface-water divides, partly because of differences in stream elevations and because of geologic structure and pumping. In the 1990 and 2000 simulations, all recharge in and near the vicinity of North Penn Area 7 discharged to wells, but in the 2005 and 2010 simulations some recharge in this area discharged to streams, indicating possible discharge of contaminated groundwater from North Penn Area 7 sources to streams. As the amount of groundwater withdrawals by wells has declined since 1990, the area contributing recharge to wells in the vicinity of North Penn Area 7 has decreased.To determine the effect of changes in pumping on flow paths and possible flow-path-related contributions to the observed changes in spatial distribution of contaminants in groundwater from 2005 to 2010, the USGS conducted simulations using the previously developed regional groundwater-flow model using reported pumping and estimated recharge rates for 2005 and 2010. Flow paths from recharge at known contaminant source areas to discharge locations at wells or streams were simulated under steady-state conditions for the two periods. Simulated groundwater-flow paths shifted only slightly from 2005 to 2010 as a result of changes in pumping rates. These slight changes in groundwater-flow paths from known sources of contamination are not coincident with the spatial distribution of observed changes in TCE concentrations from 2005 to 2010, indicating that the decreases of TCE concentrations may be a result of other processes, such as source removal or degradation. Results of the simulations and the absence of increases in TCE-degradation-product concentrations indicate that the decreases of TCE concentrations observed in 2010 may be at least partly related to contaminant-source removal by soil excavation completed in 2005, although additional data would be needed to confirm this preliminary explanation.
Liu, Hang; Yu, Xiaolu; Liu, Zirui; Sun, Ying
2018-05-04
This study investigated the occurrence and sources of polycyclic aromatic hydrocarbons (PAHs) from arable soils in Beijing and compared them with 4 other types of soils: soil from uncultivated land, an incineration plant, a suburb and a woodland. The total concentrations of PAHs ranged from 189.3 to 888.7 μg/kg (mean: 518.2 μg/kg for greenhouses and 455.2 μg/kg for fields). The seven carcinogenic PAHs accounted for 11.2-81.3% of Σ15PAHs in arable soils. Benzo[a]pyrene toxic equivalent (BaP eq ) concentrations were 82.8 μg/kg and 85.4 μg/kg in greenhouses and fields, respectively. Greenhouses and fields were both dominated by PAHs with 3 and 4 rings. Acenaphthene (ACE), indeno[1,2,3-cd] pyrene (IcdP) and benzo[ghi]perylene (BghiP) were the major compounds. These results showed that there was insignificant difference between the soil from greenhouses and fields and both had low carcinogenic potential risk. The diagnostic ratios suggested that the arable soils were mainly contaminated by coal/biomass combustion. Based on a positive matrix factorization (PMF) model, six sources were identified including coal combustion, waste incineration, tar, diesel combustion, biomass burning and gasoline combustion. Coal and gasoline combustion contributed over 40% of the measured PAHs in arable soils. Diesel combustion, tar and waste incineration were the main sources of pollution for soil from the uncultivated land, woodland and incineration plant/suburban. It was concluded that PMF was effective in determining the source apportionment. Urbanization and the evolution of human activities have caused PAH sources to become more complicated in industrial areas compared to regions with little human disturbance. Because of this, various factors need to be considered to control the PAH contamination in arable soils. Copyright © 2018 Elsevier Inc. All rights reserved.
Herbal Medicines Induced Anticholinergic Poisoning in Hong Kong
Chan, Thomas Y. K.
2016-01-01
In the present review, the main objective was to report the incidence and causes of herbal medicines induced anticholinergic poisoning in Hong Kong during 1989–2012 and to emphasize the importance of pharmacovigilance, investigations and preventive measures. Relevant papers, official figures and unpublished data were obtained from Medline search, the Department of Health and the Drug and Poisons Information Bureau. In the New Territories East (where ~20% of the Hong Kong population lived), the incidence of herbal medicines induced anticholinergic poisoning during 1989–1993 was 0.09 per 100,000 population. There were no confirmed cases during 1994–1996. In the whole of Hong Kong, the incidence during 2000–June 2005 was 0.03 per 100,000 population. Contamination of Rhizoma Atractylodis (50%) and erroneous substitution (42%) were the main causes. The incidence during 2008–2012 was 0.06 per 100,000 population. Contamination of non-toxic herbs (50%) and erroneous substitution (41%) were the main causes. In Hong Kong, contamination of non-toxic herbs by tropane alkaloids and substitution of Flos Campsis by toxic Flos Daturae Metelis were the predominant causes of herbal medicines induced anticholinergic poisoning. Systematic studies along the supply chain are necessary to identify the likely sources of contamination. If erroneous substitution of Flos Campsis by Flos Daturae Metelis could be prevented, 40% of herbal medicines induced anticholinergic poisoning would not have occurred. Regular inspection of the retailer, continuing education for the staff in the herbal trade and repeated publicity measures will also be required. Pharmacovigilance of herbal medicines should help determine the incidence and causes of adverse reactions and monitor the effectiveness of preventive measures. PMID:26999208
NASA Astrophysics Data System (ADS)
Andreu, Vicente; Gimeno-García, Eugenia; Pascual, Juan Antonio; Picó, Yolanda
2016-04-01
Rivers are sink structures receiving diffuse contamination mainly from agricultural practices. Hydrological dynamics of these watercourses favour, by one hand, the transport of contaminants (dissolved, complexed or adsorbed to suspended particles) and, by the other, their accumulation in sediments. These circumstances affect at different scales the quality of soils, waters, and the entire riverine ecosystems. In this work, 7 heavy metals and 50 pesticides were monitored in riverine soils of the Turia River catchment. From the source to the mounth, along the entiere river, 22 sampling points were selected for sampling according different lithologies, land uses, population size and the proximity to waste waters treatment plants (WWTPs). Cd, Co, Cr, Cu, Pb, Ni and Zn were analysed to determine its total and extractable contents in soils. Total content of metals was established by microwave acid digestion and the extractable fraction in soils and sediments by treatment with EDTA. Atomic Absorption Spectrometry, using graphite furnace when necessary, was used for the determination of the selected metals. Pesticide residues were extracted from the soil samples using the QuEchERS method and determined by Liquid Chromatograph-tandem Mass Spectrometry (LC-MS/MS). Recoveries ranged from 40 to 105 %. The limits of quantification ranged from 0.1 to 5.0 ng g-1. The higest levels of total and extractable Cd, Co, Cr and Ni were determined near the Benageber reservoir, located in the middle course of the river, where an important forest fires occurred a year ago. High levels of metals, mainly Cr and Zn, appeared headwaters in the Alfambra tributary. This deserves special mention because it was selected as a little impacted area that could serve as non-contaminated reference for the river. From the 50 pesticides condsidered, 26 were detected, with the highest levels for acetochlor (290.00 ng g-1) and a degradation product of terbutyazine - terbuthylazine deethyl - (234.75 ng g-1). The pesticides detected with higher frequency were diazinon, chlorpyriphos, buprofezin and imazalil. An average of 9 pesticides were detected, being source and mounth those with higher incidence of these compounds with 19, 17 and 17, respectively. It is remarkable that the area of hedwaters of the river where lower contamination levels should be expected is contrarily one of the most contaminated. The organic matter content of soils is the parameter most strongly related with all the forms of metals, mainly for Cu, Ni, Pb and Zn, and many of the pesticides and is a key factor for their availability. The textural distribution of the soils, particularly the clay content, also influences this last factor in the case of Ni. A clear trend towards enrichment in heavy metals is observed in the Turia River from the headwater to the stuary, with the exception of the possible existence of a contamination source in the headwaters. Acknowledgements This work has been supported by the Spanish Ministry of Science and Innovation and the European Regional Development Funds (ERDF) through the coordinating project MEFTURIA (CGL2011-29703-C02-00), and its subprojects EFAMED (CGL2011-29703-C02-01) and EMEFOR (CGL2011-29703-C02-02).
Sirsat, Sujata A; Kim, Kawon; Gibson, Kristen E; Crandall, Phillip G; Ricke, Steven C; Neal, Jack A
2014-03-05
Cross contamination of foodborne pathogens in the retail environment is a significant public health issue contributing to an increased risk for foodborne illness. Ready-to-eat (RTE) processed foods such as deli meats, cheese, and in some cases fresh produce, have been involved in foodborne disease outbreaks due to contamination with pathogens such as Listeria monocytogenes. With respect to L. monocytogenes, deli slicers are often the main source of cross contamination. The goal of this study was to use a fluorescent compound to simulate bacterial contamination and track this contamination in a retail setting. A mock deli kitchen was designed to simulate the retail environment. Deli meat was inoculated with the fluorescent compound and volunteers were recruited to complete a set of tasks similar to those expected of a food retail employee. The volunteers were instructed to slice, package, and store the meat in a deli refrigerator. The potential cross contamination was tracked in the mock retail environment by swabbing specific areas and measuring the optical density of the swabbed area with a spectrophotometer. The results indicated that the refrigerator (i.e. deli case) grip and various areas on the slicer had the highest risk for cross contamination. The results of this study may be used to develop more focused training material for retail employees. In addition, similar methodologies could also be used to track microbial contamination in food production environments (e.g. small farms), hospitals, nursing homes, cruise ships, and hotels.
Noise properties and task-based evaluation of diffraction-enhanced imaging
Brankov, Jovan G.; Saiz-Herranz, Alejandro; Wernick, Miles N.
2014-01-01
Abstract. Diffraction-enhanced imaging (DEI) is an emerging x-ray imaging method that simultaneously yields x-ray attenuation and refraction images and holds great promise for soft-tissue imaging. The DEI has been mainly studied using synchrotron sources, but efforts have been made to transition the technology to more practical implementations using conventional x-ray sources. The main technical challenge of this transition lies in the relatively lower x-ray flux obtained from conventional sources, leading to photon-limited data contaminated by Poisson noise. Several issues that must be understood in order to design and optimize DEI imaging systems with respect to noise performance are addressed. Specifically, we: (a) develop equations describing the noise properties of DEI images, (b) derive the conditions under which the DEI algorithm is statistically optimal, (c) characterize the imaging performance that can be obtained as measured by task-based metrics, and (d) consider image-processing steps that may be employed to mitigate noise effects. PMID:26158056
Rogers, Karyne M; Nicolini, Eric; Gauthier, Virginie
2012-09-01
Nitrate concentrations, water isotopes (δ(2)H and δ(18)O(water)) and associated nitrate isotopes (δ(15)N(nitrate) and δ(18)O(nitrate)) from 10 drinking water wells, 5 fresh water springs and the discharge from 3 wastewater treatment stations in Réunion Island, located in the Indian Ocean, were analysed. We used a multi isotopic approach to investigate the extent of nitrate contamination, nitrate formation altitude and source of nitrates in Réunion Island's principal aquifer. Water from these study sites contained between 0.1 and 85.3 mg/L nitrate. δ(15)N(nitrate) values between +6 and +14‰ suggested the main sources of contamination were animal and/or human waste, rather than inorganic (synthetic) fertilisers, infiltrating through the subsurface into the saturated zone, due to rainfall leaching of the unsaturated zone at various altitudes of precipitation. Based on δ(15)N(nitrate) values alone, it was not possible to distinguish between animal and human activities responsible for the contamination of each specific catchment. However, using a multi isotope approach (δ(18)O(water) and δ(15)N(nitrate)), it was possible to relate the average altitude of rainfall infiltration (δ(18)O(water)) associated with the nitrate contamination (δ(18)O(nitrate)). This relationship between land use, rainfall recharge altitude and isotopic composition (δ(15)N(nitrate) and δ(18)O(water)) discriminated between the influences of human waste at lower (below 600 m elevation) or animal derived contamination (at elevations between 600 and 1300 m). By further comparing the theoretical altitude of nitrate formation calculated by the δ(18)O(nitrate), it was possible to determine that only 5 out of 15 fresh water wells and springs followed the conservative nitrate formation mechanism of 2/3δ(18)O(water)+1/3δ(18)O(air), to give nitrate formation altitudes which corresponded to land use activities. Copyright © 2012 Elsevier B.V. All rights reserved.
Perone, A; Cocozza, C; Cherubini, P; Bachmann, O; Guillong, M; Lasserre, B; Marchetti, M; Tognetti, R
2018-02-01
Monitoring atmospheric pollution in industrial areas near urban center is essential to infer past levels of contamination and to evaluate the impact for environmental health and safety. The main aim of this study was to understand if the chemical composition of tree-ring wood can be used for monitoring spatial-temporal variability of pollutants in Terni, Central Italy, one of the most polluted towns in Italy. Tree cores were taken from 32 downy oaks (Quercus pubescens) located at different distances from several pollutant sources, including a large steel factory. Trace element (Cr, Co, Cu, Pb, Hg, Mo, Ni, Tl, W, U, V, and Zn) index in tree-ring wood was determined using high-resolution laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). We hypothesized that the presence of contaminants detected in tree-rings reflected industrial activities over time. The accumulation of contaminants in tree-rings was affected by anthropogenic activities in the period 1958-2009, though signals varied in intensity with the distance of trees from the industrial plant. A stronger limitation of tree growth was observed in the proximity of the industrial plant in comparison with other pollutant sources. Levels of Cr, Ni, Mo, V, U and W increased in tree-ring profiles of trees close to the steel factory, especially during the 80's and 90's, in correspondence to a peak of pollution in this period, as recorded by air quality monitoring stations. Uranium contents in our tree-rings were difficult to explain, while the higher contents of Cu, Hg, Pb, and Tl could be related to the contaminants released from an incinerator located close to the industrial plant. The accumulation of contaminants in tree-rings reflected the historical variation of environmental pollution in the considered urban context. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ma, Jing-Yun; Quan, Xian-Chun; Xiong, Wei-Cong
2010-11-01
This study investigated the changes of the morphology, structure, and capability of removing the target contamination of the aerobic granules pre-cultured with mixed substrates of glucose and 2,4-dichlorophenoxyacetic acid (2,4-D) in a long-time running sequence batch reactor (SBR), when the carbon source transformed into the sole carbon source of 2,4-D. Results showed that when the substrate turned to the sole carbon source of 2,4-D, the aerobic granules still maintained a strong degradation ability to the target contamination; a 2,4-D removal percentage of 99.2% -100% and an average COD removal rate of 85.6% were achieved at the initial 2,4-D concentration of 361-564 mg/L. Carbon source transformation caused certain damages to the original aerobic granule structure, made some parts of granules disintegrated, and led to granule size decline from 513 microm to 302 microm. However, those granules maintained the main body, re-aggregated and grew after a period of adaptation due to their strong resistance to toxicity. Aerobic granules capable of utilizing 2,4-D as the sole carbon source with a good settling ability (SYI 20-40 mL/g) and a mean diameter of 489 microm were finally obtained in this study. Scanning electron microscope (SEM) observation showed that the diversity of granule microbial species was declined when turned to the sole carbon source.
Conditioning and Repackaging of Spent Radioactive Cs-137 and Co-60 Sealed Sources in Egypt - 13490
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, M.A.; Selim, Y.T.; El-Zakla, T.
2013-07-01
Radioactive Sealed sources (RSSs) are widely use all over the world in medicine, agriculture, industry, research, etc. The accidental misuse and exposure to RSSs has caused significant environmental contamination, serious injuries and many deaths. The high specific activity of the materials in many RSSs means that the spread of as little as microgram quantities can generate significant risk to human health and inhibit the use of buildings and land. Conditioning of such sources is a must to protect humans and environment from the hazard of ionizing radiation and contamination. Conditioning is also increase the security of these sources by decreasingmore » the probability of stolen and/or use in terrorist attacks. According to the law No.7/2010, Egyptian atomic energy authority represented in the hot laboratories and waste management center (centralized waste facility, HLWMC) has the responsibility of collecting, conditioning, storing and management of all types of radioactive waste from all Egyptian territory including spent radioactive sealed sources (SRSSs). This paper explains the conditioning procedures for two of the most common SRSSs, Cs{sup 137} and Co{sup 60} sources which make up more than 90% of the total spent radioactive sealed sources stored in our centralized waste facility as one of the major activities of hot laboratories and waste management center. Conditioning has to meet three main objectives, be acceptable for storage, enable their safe transport, and comply with disposal requirements. (authors)« less
Employing ASHRAE Standard 62-1989 in urban building environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meckler, M.
1991-01-01
Indoor air quality (IAQ) is a result of a complex relationship between the contamination sources in a building, the ventilation rate, and the dilution of the indoor air contaminant concentrations with outdoor air. This complex relationship is further complicated by outdoor sources used for dilution air and pollution sinks in a building which may modify or remove contaminants. This paper reports that the factors influencing IAQ in a building are: emissions from indoor contamination sources, dilution rate of outdoor ventilation air, quality of the outdoor dilution air, and systems and materials in a building that change the concentrations of contaminants.more » Emissions from contaminant sources in a building are the primary determinant of IAQ. They include building materials, consumer products, cleaners, furnishings, combustion appliances and processes, biological growth from standing water and damp surfaces and building occupants. These factors combined with the emissions from indoor air contamination sources such as synthetic building materials, modern office equipment, and cleaning and biological agents are believed to increase the levels of indoor air contamination. The physiological reactions to these contaminants, coupled with the psychosocial stresses of the modern office environment, and the wide range of human susceptibility to indoor air contaminants led to the classification of acute building sicknesses: sick building syndrome (SBS), building-related illness (BRI), and multiple chemical sensitivity (MCS).« less
A content analysis of Internet resources about the risks of seafood consumption.
Henderson, Heather C; Hong, Jie; Friedman, Daniela B; Porter, Dwayne E; Halfacre, Angela C; Scott, Geoffrey I; Lead, Jamie R
2016-08-01
Seafood consumption is a main source of human exposure to certain environmental contaminants. Therefore, it is valuable to assess the online health risk messages focused on this topic, as people in the US are increasingly accessing the Internet for health-related information. Previous research indicates that online health information tends to be written at a reading level that is more advanced than ability of the general population. The purpose of this research was to examine the content and readability of Internet resources targeted toward consumers in the US regarding the health risks from consumption of contaminated seafood. Sources for analysis were gathered through a targeted search of state and national government websites, as well as through a Google search. The overall mean readability level was Grade 9.21, which is slightly above the average reading level of US adults. Future research should evaluate the accuracy of the health risk messages, as well as consumer perceptions of risk.
Azoury, S; Tronczyński, J; Chiffoleau, J-F; Cossa, D; Nakhlé, K; Schmidt, S; Khalaf, G
2013-07-02
Depth profiles of mercury, lead and its stable isotopes, and polycyclic aromatic hydrocarbons were determined in a dated sediment core from the Levantine basin. Sedimentary records show that preindustrial fluxes and levels of Hg, Pb, and PAHs remained generally constant in the region before 1850. An almost concurrent uniform increase of both metals and PAHs deposition occurring at the beginning of the Industrial Revolution suggests coal combustion as a main source of these contaminants in the Levantine basin after the 1850s. However, none of the contaminant profiles indicates a decline after 1950-60, the characteristic period of coal use reduction. The modern fluxes of Hg and Pb reveal a 3- to 5-fold increase over preindustrial loads, while the contemporaneous flux of PAHs rises by 4-7 times. On the whole, records in the Eastern Mediterranean suggest atmospheric inputs from relatively distant sources, likely from Central and Eastern Europe.
Bioremediation of a Large Chlorinated Solvent Plume, Dover AFB, DE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloom, Aleisa C
2015-01-01
Bioremediation of a Large Chlorinated Solvent Plume, Dover AFB, DE Aleisa Bloom, (Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA) Robert Lyon (bob.lyon@aecom.com), Laurie Stenberg, and Holly Brown (AECOM, Germantown, Maryland, USA) ABSTRACT: Past disposal practices at Dover Air Force Base (AFB), Delaware, created a large solvent plume called Area 6 (about 1 mile long, 2,000 feet wide, and 345 acres). The main contaminants are PCE, TCE, and their degradation products. The remedy is in-situ accelerated anaerobic bioremediation (AAB). AAB started in 2006 and is focusing on source areas and downgradient plume cores. Direct-push injections occurred in source areas wheremore » contamination is typically between 5 and 20 feet below ground surface. Lower concentration dissolved-phased contamination is present downgradient at 35 and 50 feet below ground surface. Here, permanent injection/extraction wells installed in transects perpendicular to the flow of groundwater are used to apply AAB. The AAB substrate is a mix of sodium lactate, emulsified vegetable oil, and nutrients. After eight years, dissolved contaminant mass within the main 80-acre treatment area has been reduced by over 98 percent. This successful application of AAB has stopped the flux of contaminants to the more distal portions of the plume. While more time is needed for effects to be seen in the distal plume, AAB injections will soon cease, and the remedy will transition to natural attenuation. INTRODUCTION Oak Ridge National Laboratory Environmental Science Division (ORNL) and AECOM (formerly URS Corporation) have successfully implemented in situ accelerated anaerobic bioremediation (AAB) to remediate chlorinated solvent contamination in a large, multi-sourced groundwater plume at Dover Air Force Base (AFB). AAB has resulted in significant reductions of dissolved phase chlorinated solvent concentrations. This plume, called Area 6, was originally over 1 mile in length and over 2,000 feet wide (Figure 1). It originated from at least four separate source areas that comingled in the subsurface to form the large plume. The major contaminants of concern (COCs) are tetrachloroethene (PCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1-TCA), which were historically used for degreasing operations in the maintenance of aircraft and support vehicles. Relatively small areas of elevated PCE, TCE, and 1,1,1-TCA were delineated in the shallow portion of the water table aquifer by direct-push groundwater sampling. Focused direct-push AAB treatment occurred in March 2006 at these source areas (Figure 1). Downgradient of the these areas and deeper in the aquifer, AAB treatment was implemented using rows of extraction/injection wells oriented perpendicular to groundwater flow to create multiple reductive zones across the plume cores, defined as areas where more than 1,000 micrograms per liter (ug/L) total solvent concentrations were present. Initial indications of successful degradation were observed within 6 months of starting injections. FIGURE 1. Dover AFB Area 6 plume. This paper describes the AAB implementation and progress of remediation after 8 years of treatment and periodic groundwater monitoring. SITE LITHOLOGY Contamination at the site is limited to the surficial aquifer, which consists of 35 to 50 feet (ft) (11 to 15 meters [m]) of unconsolidated Pleistocene deposits of the Columbia Formation. The Columbia Formation consists of fine to coarse sand with silt and clay lenses and less common gravel lenses. Silts and silty sands are generally encountered to a depth of 10 to 12 ft (3.05 to 3.65 m) below ground surface (bgs) and grade to medium- and coarse-grained sands to a depth of 35 to 50 ft (11 to 15 m) bgs. There is a clay and silt unit (part of the Calvert Formation) below the surficial aquifer that acts as an aquitard to the downward migration of contaminants. The depth to the water table varies across the site but usually ranges from 8 to 15 ft (2.4 to 4.5 m) bgs in the treatment area. REMEDIAL APPROACH AND OPERATIONS Because the Columbia Aquifer is used as a source of potable water off base, the remedial goal is to restore the aquifer to usable condition, i.e., reduce all chemicals of concern to below drinking water maximum contaminant levels (MCLs). To achieve this goal, AAB was selected as the best remedial alternative to reduce the solvent contamination. Source areas with high solvent concentrations were present in the shallow portion of the aquifer. From the source areas, dissolved solvents migrated downgradient and deeper in the aquifer with the flow of groundwater. In the deeper portion of the aquifer, the individual plumes comingle to form the larger Area 6 Plume, which covers approximately 345 acres. Types of Substrate. Previous AAB pilot tests at Dover AFB used either sodium lactate or emulsified vegetable oil (EVO) as substrates to stimulate microbial growth. The best results were obtained with...« less
Dudarev, Alexey A.
2012-01-01
Objectives The general aim was to assess dietary exposure to selected persistent organic pollutants (POPs) and metals among Eskimo (Inuit) and Chukchi of the Chukotka Peninsula of the Russian Arctic, and to establish recommendations for exposure risk reduction. Study design A cross-sectional evaluation of nutritional patterns of coastal and inland indigenous peoples of the Chukotka Autonomous Okrug (in 2001–2003); assessment of the levels of persistent toxic substances (PTSs) in traditional foods and their comparison to Russian food safety limits; the identification of local sources of food contamination; and the recommendation and implementation of risk management measures. Methods Community-based dietary survey of self reported food frequencies (453 persons), chemical analyses (POPs and metals) of local foods and indoor matters (397 samples), substantiation of recommendations for daily (weekly, monthly) intakes of traditional food. Results POPs in traditional food items are generally below the Russian food safety limits except marine mammal fat, while Hg and Cd are high mainly in mammal viscera. Lead is relatively low in tissues of all animals studied. For the Chukotka coastal communities, seals constitute the principal source of the whole suite of PTSs considered. Consumption restrictions are recommended for marine and freshwater fish, some wild meats (waterfowl and seal), fats (whale and seal), liver (most animals) and kidney (reindeer, walrus and seal). Evidence is presented that contamination of foodstuffs may be significantly increased during storing/processing/cooking of food due to indoor and outdoor environmental conditions. Conclusions Based on the analytical findings and the local PTSs sources identified, guidelines on food safety are suggested, as well as measures to reduce food contamination and domestic and local sources. Important and urgent remedial actions are recommended to minimize PTSs environmental and domestic contamination. Waste clean-up activities started in coastal Chukotka in 2007. PMID:22789517
Engineered and subsequent intrinsic in situ bioremediation of a diesel fuel contaminated aquifer
NASA Astrophysics Data System (ADS)
Hunkeler, Daniel; Höhener, Patrick; Zeyer, Josef
2002-12-01
A diesel fuel contaminated aquifer in Menziken, Switzerland was treated for 4.5 years by injecting aerated groundwater, supplemented with KNO 3 and NH 4H 2PO 4 to stimulate indigenous populations of petroleum hydrocarbon (PHC) degrading microorganisms. After dissolved PHC concentrations had stabilized at a low level, engineered in situ bioremediation was terminated. The main objective of this study was to evaluate the efficacy of intrinsic in situ bioremediation as a follow-up measure to remove PHC remaining in the aquifer after terminating engineered in situ bioremediation. In the first 7 months of intrinsic in situ bioremediation, redox conditions in the source area became more reducing as indicated by lower concentrations of SO 42- and higher concentrations of Fe(II) and CH 4. In the core of the source area, strongly reducing conditions prevailed during the remaining study period (3 years) and dissolved PHC concentrations were higher than during engineered in situ bioremediation. This suggests that biodegradation in the core zone was limited by the availability of oxidants. In lateral zones of the source area, however, gradually more oxidized conditions were reestablished again, suggesting that PHC availability increasingly limited biodegradation. The total DIC production rate in the aquifer decreased within 2 years to about 25% of that during engineered in situ bioremediation and remained at that level. Stable carbon isotope analysis confirmed that the produced DIC mainly originated from PHC mineralization. The total rate of DIC and CH 4 production in the source area was more than 300 times larger than the rate of PHC elution. This indicates that biodegradation coupled to consumption of naturally occurring oxidants was an important process for removal of PHC which remained in the aquifer after terminating engineered measures.
Microbial cross-contamination by airborne dispersion and contagion during defeathering of poultry.
Allen, V M; Hinton, M H; Tinker, D B; Gibson, C; Mead, G C; Wathes, C M
2003-09-01
1. A readily identifiable strain of Escherichia coli K12 was used as a 'marker' organism to determine the sources, routes and patterns of microbial cross-contamination during mechanical defeathering of broiler chicken carcases. 2. Inoculation of scald water with the marker organism led to a relatively even pattern of carcase contamination during subsequent defeathering. Microbial cross-contamination was greater by this route of inoculation than by either surface inoculation of a 'seeder' carcase or oral inoculation of a live bird one day before slaughter. 3. Dispersal of the marker organism was strongly influenced by the mechanical action of the defeathering machines. Forward transmission of the marker occurred by aerosol or large airborne droplets and particulates such as feathers. Moving carcases through the defeathering machines when these were non-operational clearly reduced backward transmission of the marker. 4. Although microbial dispersal was unaffected by increasing the spacing between individual carcases or installing a water curtain at the entry and exit of the defeathering machines, shielding of carcases with aluminium baffles reduced counts of the marker organism from contaminated carcases by > 90%. 5. The results imply that microbial cross-contamination of broiler chicken carcases during defeathering occurs mainly via the airborne route, which could be contained by physical means.
Kozar, Mark D.; Paybins, Katherine S.
2016-08-30
Groundwater public-supply systems in areas of high intrinsic susceptibility and with a large number of potential contaminant sources within the recharge or source-water-protection area of individual wells or well fields are potentially vulnerable to contamination and probably warrant further evaluation as potential SWIGS. However, measures can be taken to educate the local population and initiate safety protocols and protective strategies to appropriately manage contaminant sources to prevent release of contaminants to the aquifer, therefore, reducing vulnerability of these systems to contamination. However, each public groundwater supply source needs to be assessed on an individual basis. Data presented in this report can be used to categorize and prioritize wells and springs that have a high potential for intrinsic susceptibility or vulnerability to contamination.
Qiao, Min; Cai, Chao; Huang, Yizong; Liu, Yunxia; Lin, Aijun; Zheng, Yuanming
2011-01-01
Soil in metropolitan region suffers great contamination risk due to the rapid urbanization especially in developing countries. Beijing and Tianjin, together with their surrounding regions, form a mega-metropolitan region in northern China. To assess the soil environmental quality, a total of 458 surface soil samples were collected from this area. Concentrations of Cr, Cu, Pb, Zn, As, Cd, and Hg were analyzed and compared to the Chinese environmental quality standards for soil. Multivariate analysis was carried out to identify the possible sources and Geographic Information Systems techniques were applied to visualize the spatial data. It was found that the primary inputs of As were due to pedogenic sources, whereas Hg was mainly of anthropogenic source. Other elements including Cr, Cu, Pb, Zn, and Cd were from both lithogenic and anthropogenic origins. Health risk assessment based on the maximum heavy metal concentration indicated that As derived from sewage irrigation area can result in carcinogenic lifetime risk due to ingestion and/or dermal contact of soil. The potential non-carcinogenic risk for children is significant for Pb and the cumulative effect of multiple metals is of concern for children in the vicinity of mining site. The results increased our knowledge for understanding natural and anthropogenic sources as well as health risk for metals in metropolitan soil.
The Faintest WISE Debris Disks: Enhanced Methods for Detection and Verification
NASA Astrophysics Data System (ADS)
Patel, Rahul I.; Metchev, Stanimir A.; Heinze, Aren; Trollo, Joseph
2017-02-01
In an earlier study, we reported nearly 100 previously unknown dusty debris disks around Hipparcos main-sequence stars within 75 pc by selecting stars with excesses in individual WISE colors. Here, we further scrutinize the Hipparcos 75 pc sample to (1) gain sensitivity to previously undetected, fainter mid-IR excesses and (2) remove spurious excesses contaminated by previously unidentified blended sources. We improve on our previous method by adopting a more accurate measure of the confidence threshold for excess detection and by adding an optimally weighted color average that incorporates all shorter-wavelength WISE photometry, rather than using only individual WISE colors. The latter is equivalent to spectral energy distribution fitting, but only over WISE bandpasses. In addition, we leverage the higher-resolution WISE images available through the unWISE.me image service to identify contaminated WISE excesses based on photocenter offsets among the W3- and W4-band images. Altogether, we identify 19 previously unreported candidate debris disks. Combined with the results from our earlier study, we have found a total of 107 new debris disks around 75 pc Hipparcos main-sequence stars using precisely calibrated WISE photometry. This expands the 75 pc debris disk sample by 22% around Hipparcos main-sequence stars and by 20% overall (including non-main-sequence and non-Hipparcos stars).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Rahul I.; Metchev, Stanimir A.; Trollo, Joseph
In an earlier study, we reported nearly 100 previously unknown dusty debris disks around Hipparcos main-sequence stars within 75 pc by selecting stars with excesses in individual WISE colors. Here, we further scrutinize the Hipparcos 75 pc sample to (1) gain sensitivity to previously undetected, fainter mid-IR excesses and (2) remove spurious excesses contaminated by previously unidentified blended sources. We improve on our previous method by adopting a more accurate measure of the confidence threshold for excess detection and by adding an optimally weighted color average that incorporates all shorter-wavelength WISE photometry, rather than using only individual WISE colors. Themore » latter is equivalent to spectral energy distribution fitting, but only over WISE bandpasses. In addition, we leverage the higher-resolution WISE images available through the unWISE.me image service to identify contaminated WISE excesses based on photocenter offsets among the W 3- and W 4-band images. Altogether, we identify 19 previously unreported candidate debris disks. Combined with the results from our earlier study, we have found a total of 107 new debris disks around 75 pc Hipparcos main-sequence stars using precisely calibrated WISE photometry. This expands the 75 pc debris disk sample by 22% around Hipparcos main-sequence stars and by 20% overall (including non-main-sequence and non- Hipparcos stars).« less
Microscope sterility during spine surgery.
Bible, Jesse E; O'Neill, Kevin R; Crosby, Colin G; Schoenecker, Jonathan G; McGirt, Matthew J; Devin, Clinton J
2012-04-01
Prospective study. Assess the contamination rates of sterile microscope drapes after spine surgery. The use of the operating microscope has become more prevalent in certain spine procedures, providing superior magnification, visualization, and illumination of the operative field. However, it may represent an additional source of bacterial contamination and increase the risk of developing a postoperative infection. This study included 25 surgical spine cases performed by a single spine surgeon that required the use of the operative microscope. Sterile culture swabs were used to obtain samples from 7 defined locations on the microscope drape after its use during the operation. The undraped technician's console was sampled in each case as a positive control, and an additional 25 microscope drapes were swabbed immediately after they were applied to the microscope to obtain negative controls. Swab samples were assessed for bacterial growth on 5% sheep blood Columbia agar plates using a semiquantitative technique. No growth was observed on any of the 25 negative control drapes. In contrast, 100% of preoperative and 96% of postoperative positive controls demonstrated obvious contamination. In the postoperative group, all 7 sites of evaluation were found to be contaminated with rates of 12% to 44%. Four of the 7 evaluated locations were found to have significant contamination rates compared with negative controls, including the shafts of the optic eyepieces on the main surgeon side (24%, P = 0.022), "forehead" portion on both the main surgeon (24%, P = 0.022) and assistant sides (28%, P = 0.010), and "overhead" portion of the drape (44%, P = 0.0002). Bacterial contamination of the operative microscope was found to be significant after spine surgery. Contamination was more common around the optic eyepieces, likely due to inadvertent touching of unsterile portions. Similarly, all regions above the eyepieces also have a propensity for contamination because of unknown contact with unsterile parts of the surgeon. Therefore, we believe that changing gloves after making adjustments to the optic eyepieces and avoid handling any portion of the drape above the eyepieces may decrease the risks of intraoperative contamination and possibly postoperative infection as well.
NASA Astrophysics Data System (ADS)
Hiebert, R. S.; Bekker, A.; Houlé, M. G.; Wing, B. A.; Rouxel, O. J.
2016-10-01
Assimilation by mafic to ultramafic magmas of sulfur-bearing country rocks is considered an important contributing factor to reach sulfide saturation and form magmatic Ni-Cu-platinum group element (PGE) sulfide deposits. Sulfur-bearing sedimentary rocks in the Archean are generally characterized by mass-independent fractionation of sulfur isotopes that is a result of atmospheric photochemical reactions, which produces isotopically distinct pools of sulfur. Likewise, low-temperature processing of iron, through biological and abiotic redox cycling, produces a range of Fe isotope values in Archean sedimentary rocks that is distinct from the range of the mantle and magmatic Fe isotope values. Both of these signals can be used to identify potential country rock assimilants and their contribution to magmatic sulfide deposits. We use multiple S and Fe isotopes to characterize the composition of the potential iron and sulfur sources for the sulfide liquids that formed the Hart deposit in the Shaw Dome area within the Abitibi greenstone belt in Ontario (Canada). The Hart deposit is composed of two zones with komatiite-associated Ni-Cu-PGE mineralization; the main zone consists of a massive sulfide deposit at the base of the basal flow in the komatiite sequence, whereas the eastern extension consists of a semi-massive sulfide zone located 12 to 25 m above the base of the second flow in the komatiite sequence. Low δ56Fe values and non-zero δ34S and Δ33S values of the komatiitic rocks and associated mineralization at the Hart deposit is best explained by mixing and isotope exchange with crustal materials, such as exhalite and graphitic argillite, rather than intrinsic fractionation within the komatiite. This approach allows tracing the extent of crustal contamination away from the deposit and the degree of mixing between the sulfide and komatiite melts. The exhalite and graphitic argillite were the dominant contaminants for the main zone of mineralization and the eastern extension zone of the Hart deposit, respectively. Critically, the extent of contamination, as revealed by multiple S and Fe isotope systematics, is greatest within the deposit and decreases away from it within the komatiite flow. This pattern points to a local source of crustal contamination for the mantle-derived komatiitic melt and a low degree of homogenization between the mineralization and the surrounding lava flow. Coupled S and Fe isotope patterns like those identified at the Hart deposit may provide a useful tool for assessing the potential of a komatiitic sequence to host Ni-Cu-(PGE).
Gohar, Maha Kamal; Atta, Amal Hassan
2016-01-01
Fecal contamination of drinking water is a major health problem which accounts for many cases of diarrhea mainly in infants and foreigners. This contamination is a complex interaction of many parameters. Antibiotic resistance among bacterial isolates complicates the problem. The study was done to identify fecal contamination of drinking water by Diarrheagenic Antibiotic-Resistant Escherichia coli in Zagazig city and to trace reasons for such contamination, three hundred potable water samples were investigated for E. coli existence. Locations of E. coli positive samples were investigated in relation to population density, water source, and type of water pipe. Sixteen E. coli strains were isolated. Antibiotic sensitivity was done and enterotoxigenic, enteropathogenic, and enterohaemorrhagic virulence genes were investigated by PCR. Probability of fecal contamination correlated with higher population density, with increased distance from Zagazig water plant, and with asbestos cement water pipes. Resistance to at least one antimicrobial drug was found in all isolates. Virulence genes were detected in a rate of 26.27%, 13.13%, 20%, 6.67%, and 33.33% for LT, ST, stx1, stx2, and eae genes, respectively. This relatively high frequency of fecal contamination points towards the high risk of developing diarrhea by antibiotic resistant DEC in low socioeconomic communities particularly with old fashion distribution systems. PMID:27725834
Overview of the Texas Source Water Assessment Project
Ulery, Randy L.
2000-01-01
The 1996 Amendments to the Safe Drinking Water Act require, for the first time, that each state prepare a source water assessment for all PWS. Previously, Federal regulations focused on sampling and enforcement with emphasis on the quality of delivered water. These Amendments emphasize the importance of protecting the source water. States are required to determine the drinking-water source, the origin of contaminants monitored or the potential contaminants to be monitored, and the intrinsic susceptibility of the source water. Under the amendments to the Act, States must create SWAP Programs. The programs must include an individual source water assessment for each public water system regulated by the State. These assessments will determine whether an individual drinking water source is susceptible to contamination. During 1997?99, TNRCC and USGS staff met as subject-matter working groups to develop an approach to conducting Source Water Susceptibility Assessments (SWSA) and a draft workplan. The draft workplan was then presented to and reviewed by various stakeholder and technical advisory groups. Comments and suggestions from these groups were considered, and a final workplan was produced and presented to the EPA. After EPA approval, work formally began on the Texas SWAP Project. The project has an expected completion date of September 2002. At that time, initial SWSA of all Texas public water supplies should be complete. Ground-water supplies can be considered susceptible if a possible source of contamination (PSOC) exists in the contributing area for the public-supply well field or spring, the contaminant travel time to the well field or spring is short, and the soil zone, vadose zone, and aquifer-matrix materials are unlikely to adequately attenuate the contaminants associated with the PSOC. In addition, particular types of land use/cover within the contributing area may cause the supply to be deemed more susceptible to contamination. Finally, detection of various classes of constituents in water from wells in the vicinity of a public supply well may indicate susceptibility of the public-supply well even though there may be no identifiable PSOC or land use activity. Surface-water supplies are by nature susceptible to contamination from both point and non-point sources. The degree of susceptibility of a PWS to contamination can vary and is a function of the environmental setting, water and wastewater management practices, and land use/cover within a water supply's contributing watershed area. For example, a PWS intake downstream from extensive urban development may be more susceptible to non-point source contamination than a PWS intake downstream from a forested, relatively undeveloped watershed. Surface-water supplies are also susceptible to contamination from point sources, which may include permitted discharges, as well as accidental spills or other introduction of contaminants.
Xia, Dunsheng; Wang, Bo; Yu, Ye; Jia, Jia; Nie, Yan; Wang, Xin; Xu, Shujing
2014-07-01
Various industrial processes and vehicular traffic result in harmful emissions containing both magnetic minerals and heavy metals. In this study, we investigated the levels of magnetic and heavy metal contamination of topsoils from Yinchuan city in northwestern China. The results demonstrate that magnetic mineral assemblages in the topsoil are dominated by pseudo-single domain (PSD) and multi-domain (MD) magnetite. The concentrations of anthropogenic heavy metals (Cr, Cu, Pb and Zn) and the magnetic properties of χlf, SIRM, χARM, and 'SOFT' and 'HARD' remanence are significantly correlated, suggesting that the magnetic minerals and heavy metals have common sources. Combined use of principal components and fuzzy cluster analysis of the magnetic and chemical data set indicates that the magnetic and geochemical properties of the particulates emitted from different sources vary significantly. Samples from university campus and residential areas are mainly affected by crustal material, with low concentrations of magnetic minerals and heavy metals, while industrial pollution sources are characterized by high concentrations of coarse magnetite and Cr, Cu, Pb and Zn. Traffic pollution is characterized by Pb and Zn, and magnetite. Magnetic measurements of soils are capable of differentiating sources of magnetic minerals and heavy metals from industrial processes, vehicle fleets and soil parent material. Copyright © 2014 Elsevier B.V. All rights reserved.
Campylobacteriosis: the role of poultry meat.
Skarp, C P A; Hänninen, M-L; Rautelin, H I K
2016-02-01
The incidence of human infections caused by Campylobacter jejuni and Campylobacter coli, the main bacterial agents of gastrointestinal disease, has been increasing worldwide. Here, we review the role of poultry as a source and reservoir for Campylobacter. Contamination and subsequent colonization of broiler flocks at the farm level often lead to transmission of Campylobacter along the poultry production chain and contamination of poultry meat at retail. Yet Campylobacter prevalence in poultry, as well as the contamination level of poultry products, vary greatly between different countries so there are differences in the intervention strategies that need to be applied. Temporal patterns in poultry do not always coincide with those found in human infections. Studies in rural and urban areas have revealed differences in Campylobacter infections attributed to poultry, as poultry seems to be the predominant reservoir in urban, but not necessarily in rural, settings. Furthermore, foreign travel is considered a major risk factor in acquiring the disease, especially for individuals living in the northern European countries. Intervention strategies aimed at reducing Campylobacter colonization in poultry and focused at the farm level have been successful in reducing the number of Campylobacter cases in several countries. Increasing farm biosecurity and education of consumers are likely to limit the risk of infection. Overall, poultry is an important reservoir and source of human campylobacteriosis, although the contribution of other sources, reservoirs and transmission warrants more research. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Veršilovskis, Aleksandrs; Bartkevičs, Vadims
2012-05-01
Sterigmatocystin (STC) is a carcinogenic and mutagenic mycotoxin produced by fungi of many Aspergillus species. The aim of this research was to test the stability of STC during the bread making process and to check bread samples from the Latvian market for STC contamination, using a previously developed electrospray positive ionisation (ESI(+)) liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Wheat grain naturally contaminated with STC was used for bread baking. STC was found to be stable during the bread-making process. In the food survey 17% of the analysed breads were positive for STC, with concentration levels of 2-7 μg kg(-1). One out of six rye bread samples, one out of nine rye-wheat bread samples and three out of 14 wheat bread samples were contaminated with STC. Four out of five contaminated samples contained whole grains as the main ingredient. We conclude that whole grain bread may be a possible source of STC, although even STC-positive bread samples identified in this study contained quite low toxin levels.
Sources and Practices Contributing to Soil Contamination
A.S. Knox; A.P. Gamerdinger; D.C. Adriano; R.K. Kolka; D.I. Kaplan
1999-01-01
The term soil contamination can have different connotations because anthropogehic sources of contaminants have affected virtually every natural ecosystem in the world; a commonly held view is that contamination occurs when the soil composition deiiates from the normal composition (Adriano et al., 1997). Other specialists have defined soil pollution as the presence of...
Hanning, Irene B; Nutt, J D; Ricke, Steven C
2009-01-01
Foodborne Salmonella spp. is a leading cause of foodborne illness in the United States each year. Traditionally, most cases of salmonellosis were thought to originate from meat and poultry products. However, an increasing number of salmonellosis outbreaks are occurring as a result of contaminated produce. Several produce items specifically have been identified in outbreaks, and the ability of Salmonella to attach or internalize into vegetables and fruits may be factors that make these produce items more likely to be sources of Salmonella. In addition, environmental factors including contaminated water sources used to irrigate and wash produce crops have been implicated in a large number of outbreaks. Salmonella is carried by both domesticated and wild animals and can contaminate freshwater by direct or indirect contact. In some cases, direct contact of produce or seeds with contaminated manure or animal wastes can lead to contaminated crops. This review examines outbreaks of Salmonella due to contaminated produce, the potential sources of Salmonella, and possible control measures to prevent contamination of produce.
NASA Astrophysics Data System (ADS)
Le Guern, Cecile; Baudouin, Vivien; Conil, Pierre
2017-04-01
Recently, European cities have faced several changes including deindustrialization and population increase. To limit urban sprawl, urban densification is preferred. It conducts to (re)develop available areas such as brownfields. Although these areas can be attractive for housing due to their location (in proximity to the city centre or to a riverside), their soils and subsoils are often contaminated. They are therefore potentially harmful for human health and the environment, and potentially costly to remediate. Currently, in case of contamination suspicion, depth geochemical characterization of urban soil and subsoil are carried out at site scale. Nevertheless, large redevelopment project occur at quarter to city scale. It appears therefore useful to acquire the preliminary knowledge on the structure and quality of soil and subsoils, as well as on the potential sources of contamination at quarter to city scale. In the frame of the Ile de Nantes (France) redevelopment project, we considered more particularly anthropogenic deposits and former industrial activities as main sources of contamination linked to human activities. To face the low traceability of the use of anthropogenic deposits and the lack of synthesis of former industrial activities, we carried out a historical study, synthetizing the information spread in numerous archive documents to spatialize the extent of the deposits and of the former activities. In addition we developed a typology of made grounds according to their contamination potential to build a 3D geological model with a geochemical coherence. In this frame, we valorized existing borehole descriptions coming mainly from pollution diagnosis and geotechnical studies. We also developed a methodology to define urban baseline compatibility levels using the existing analytical data at depth from pollution diagnosis. These data were previously gathered in a local geodatabase towards with borehole descriptions (more than 2000 borehole descriptions, more than 1800 analyzed samples, almost 100 000 analyzed parameters). The potential quality of soil and subsoil was spatialized in 2D and 3D on the basis of anthropogenic deposits structure and typology as well as of the potential sources of contamination linked to former industrial activities. Volumes were also calculated to help the developer anticipating the management of excavated materials. Comparison with effective soil and subsoil quality (existing chemical data) shows fairly good anticipation of contamination problems, confirming the interest of spatializing the historical anthropogenic activities to anticipate the quality of urban soil and subsoil and guide city scale mapping. Urban geochemical compatibility levels will be used operationally to enhance the reuse of excavated materials. A better knowledge of soils and subsoils at depth is very useful to optimize urban redevelopment projects, anticipating contamination problems, and managing excavated materials (e.g. local reuse possibilities, disposal costs etc.). The potential economic, environmental and social consequences render it essential for urban sustainable development. 3D geochemical characterization of soil and subsoil for urban (re)development is an ambitious task. Rarely carried out until now, it needs improved development of acquisition, management, visualisation and use of data.
NASA Astrophysics Data System (ADS)
Bondu, Raphaël; Cloutier, Vincent; Rosa, Eric
2018-04-01
Nineteen private wells were investigated in order to evaluate the groundwater quality and the issues associated with well water use in a fractured metasedimentary aquifer of the Canadian Shield, in western Quebec (Canada). Groundwater sampling and analysis reveal that the quality of well water is both a potential aesthetic and health concern for the residents. Aesthetic problems are mainly related to the high levels of hardness and dissolved iron and manganese. Potential health risks are associated with the occurrence of brackish groundwater, high manganese concentrations, and arsenic concentrations exceeding the Canadian guideline value of 10 μg/l. Brackish groundwater is suspected to be derived from the mixing of fresh groundwaters with deep calcium-sodium-chloride brines of the Canadian Shield. The occurrences of iron, manganese and arsenic, primarily derived from the natural weathering of bedrock, are highly dependent on the geochemical conditions in groundwater, particularly the redox potential. Arsenic occurs mainly as arsenite (As(III)) and is thought to be released by the dissolution of iron and manganese oxyhydroxides under reducing conditions. Information obtained from well owners indicates that most households use ion exchange water softeners to minimize aesthetic problems of excessive hardness and dissolved iron and manganese concentrations. Homeowners generally take protective measures to reduce their exposure to arsenic when they are aware of the contamination. The exposure to arsenic and manganese may pose health risks for residents that do not take protective measures. The quality of well water is of paramount importance for human health in rural areas. Information on the contaminant sources and individual mitigation measures is essential to assess the health risks associated with groundwater consumption and to ensure the protection of public health.
NASA Astrophysics Data System (ADS)
Mohammed, Nabaz; Celle-Jeanton, Hélène; Batisson, Isabelle; Bardot, Corinne; Colombet, Jonathan; Huneau, Frédéric; Le Coustumer, Philippe; Clauzet, Marie-Laure; Lavastre, Véronique
2013-04-01
Hydrogeology is an intrinsically multi-disciplinary field because of the critical role water plays in both human health and natural ecosystems. The NAA (Nappe Alluviale de l'Allier) project proposes an integrated research (hydrodynamic, hydrochemistry and biology) on the shallow aquifer of the Allier River (one of the main tributaries of the Loire River). This aquifer plays an important role in the regional water supply for it represents more than 60% of the total water abstraction. As an example, the sampling site, located near the city of Clermont-Ferrand (France) constitutes the major source of drinking water supply for more than 100 000 inhabitants and then plays a major role on the local socio-economy. A biweekly following sampling, that concerns hydrodynamical parameters, major ions and isotopes (oxygen-18, deuterium and carbon-13), has been achieved during two years on 2 rivers, 1 pond, 2 springs and 17 boreholes with the aim of defining the functioning of the aquifer in terms of quality and quantity of the water resources and then on the main processes that governs hydrodynamic and hydrochemistry. Preliminary results allowed discriminating different origins of groundwater with a part due to surface waters/groundwater interactions and a secondary origin that implies water circulating from the surrounding hills. A monthly following sampling of pesticides, pharmaceuticals and traces ions provides information on contaminants sources. In parallel, the dynamics of the microbial communities (bacteria, pico-cyanobacteria and pico-eukaryotes) was followed by flow cytometer. The bacterial diversity has been measured through PCR-DGGE analysis in order to evaluate the impact of the occurrence of contaminants.
David, J M; Pollari, F; Pintar, K D M; Nesbitt, A; Butler, A J; Ravel, A
2017-11-01
Campylobacteriosis, the most frequent bacterial enteric disease, shows a clear yet unexplained seasonality. The study purpose was to explore the influence of seasonal fluctuation in the contamination of and in the behaviour exposures to two important sources of Campylobacter on the seasonality of campylobacteriosis. Time series analyses were applied to data collected through an integrated surveillance system in Canada in 2005-2010. Data included sporadic, domestically-acquired cases of Campylobacter jejuni infection, contamination of retail chicken meat and of surface water by C. jejuni, and exposure to each source through barbequing and swimming in natural waters. Seasonal patterns were evident for all variables with a peak in summer for human cases and for both exposures, in fall for chicken meat contamination, and in late fall for water contamination. Time series analyses showed that the observed campylobacteriosis summer peak could only be significantly linked to behaviour exposures rather than sources contamination (swimming rather than water contamination and barbequing rather than chicken meat contamination). The results indicate that the observed summer increase in human cases may be more the result of amplification through more frequent risky exposures rather than the result of an increase of the Campylobacter source contamination.
External Contamination Control of Attached Payloads on the International Space Station
NASA Technical Reports Server (NTRS)
Soares, Carlos E.; Mikatarian, Ronald R.; Olsen, Randy L.; Huang, Alvin Y.; Steagall, Courtney A.; Schmidl, William D.; Wright, Bruce D.; Koontz, Steven
2012-01-01
The International Space Station (ISS) is an on-orbit platform for science utilization in low Earth orbit with multiple sites for external payloads with exposure to the natural and induced environments. Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle. This paper describes the external contamination control requirements and integration process for externally mounted payloads on the ISS. The external contamination control requirements are summarized and a description of the integration and verification process is detailed to guide payload developers in the certification process of attached payloads on the vehicle. A description of the required data certification deliverables covers the characterization of contamination sources. Such characterization includes identification, usage and operational data for each class of contamination source. Classes of external contamination sources covered are vacuum exposed materials, sources of leakage, vacuum venting and thrusters. ISS system level analyses are conducted by the ISS Space Environments Team to certify compliance with external contamination control requirements. This paper also addresses the ISS induced contamination environment at attached payload sites, both at the requirements level as well as measurements made on ISS.
Zohar, I; Bookman, R; Levin, N; de Stigter, H; Teutsch, N
2014-12-02
Pollution history of Pb and other trace metals was reconstructed for the first time for the Eastern Mediterranean, from a small urban winter pond (Dora, Netanya), located at the densely populated coastal plain of Israel. An integrated approach including geochemical, sedimentological, and historical analyses was employed to study sediments from the center of the pond. Profiles of metal concentrations (Pb, Zn, V, Ni, Cu, Cr, Co, Cd, and Hg) and Pb isotopic composition denote two main eras of pre- and post-19th century. The deeper sediment is characterized by low concentrations and relatively constant 206Pb/207Pb (around 1.20), similar to natural Pb sources, with slight indications of ancient anthropogenic activity. The upper sediment displays an upward increase in trace metal concentrations, with the highest enrichment factor for Pb (18.4). Lead fluxes and isotopic composition point to national/regional petrol-Pb emissions as the major contributor to Pb contamination, overwhelming other potential local and transboundary sources. Traffic-related metals are correlated with Pb, emphasizing the polluting inputs of traffic. The Hg profile, however, implies global pollution rather than local sources.
Ge, Zhongfu; Whitman, Richard L.; Nevers, Meredith B.; Phanikumar, Mantha S.; Byappanahalli, Muruleedhara N.
2012-01-01
Numerical simulations of the transport and fate of Escherichia coli were conducted at Chicago’s 63rd Street Beach, an embayed beach that had the highest mean E. coli concentration among 23 similar Lake Michigan beaches during summer months of 2000-2005, in order to find the cause for the high bacterial contamination. The numerical model was based on the transport of E. coli by current circulation patterns in the embayment driven by longshore main currents and the loss of E. coli in the water column, taking settling as well as bacterial dark- and solar-related decay into account. Two E. coli loading scenarios were considered: one from the open boundary north of the embayment and the other from the shallow water near the beachfront. Simulations showed that the embayed beach behaves as a sink for E. coli in that it generally receives E. coli more efficiently than it releases them. This is a result of the significantly different hydrodynamic forcing factors between the inside of the embayment and the main coastal flow outside. The settled E. coli inside the embayment can be a potential source of contamination during subsequent sediment resuspension events, suggesting that deposition-resuspension cycles of E. coli have resulted in excessive bacterial contamination of beach water. A further hypothetical case with a breakwater shortened to half its original length, which was anticipated to enhance the current circulation in the embayment, showed a reduction in E. coli concentrations of nearly 20%.
Ge, Zhongfu; Whitman, Richard L.; Nevers, Meredith B.; Phanikumar, Mantha S.; Byappanahalli, Muruleedhara N.
2012-01-01
Numerical simulations of the transport and fate of Escherichia coli were conducted at Chicago's 63rd Street Beach, an embayed beach that had the highest mean E. coli concentration among 23 similar Lake Michigan beaches during summer months of 2000-2005, in order to find the cause for the high bacterial contamination. The numerical model was based on the transport of E. coli by current circulation patterns in the embayment driven by longshore main currents and the loss of E. coli in the water column, taking settling as well as bacterial dark- and solar-related decay into account. Two E. coli loading scenarios were considered: one from the open boundary north of the embayment and the other from the shallow water near the beachfront. Simulations showed that the embayed beach behaves as a sink for E. coli in that it generally receives E. coli more efficiently than it releases them. This is a result of the significantly different hydrodynamic forcing factors between the inside of the embayment and the main coastal flow outside. The settled E. coli inside the embayment can be a potential source of contamination during subsequent sediment resuspension events, suggesting that deposition-resuspension cycles of E. coli have resulted in excessive bacterial contamination of beach water. A further hypothetical case with a breakwater shortened to half its original length, which was anticipated to enhance the current circulation in the embayment, showed a reduction in E. coli concentrations of nearly 20%.
MANAGING MICROBIAL CONTAMINATION IN URBAN WATERSHEDS
This paper presents different approaches for controlling pathogen contamination in urban watersheds for contamination resulting from point and diffuse sources. Point sources of pathogens can be treated by a disinfection technology of known effectiveness, and a desired reduction ...
MANAGING MICROBIAL CONTAMINATION IN URBAN WATERSHEDS
This paper presents different approaches for controlling pathogen contamination in urban watersheds for contamination resulting from point and diffuses sources. Point sources of pathogens can be treated by a disinfection technology of known effectiveness, and a desired reduction ...
Fecal contamination of drinking water within peri-urban households, Lima, Peru.
Oswald, William E; Lescano, Andrés G; Bern, Caryn; Calderon, Maritza M; Cabrera, Lilia; Gilman, Robert H
2007-10-01
We assessed fecal contamination of drinking water in households in 2 peri-urban communities of Lima, Peru. We measured Escherichia coli counts in municipal source water and, within households, water from principal storage containers, stored boiled drinking water, and water in a serving cup. Source water was microbiologically clean, but 26 (28%) of 93 samples of water stored for cooking had fecal contamination. Twenty-seven (30%) of 91 stored boiled drinking water samples grew E. coli. Boiled water was more frequently contaminated when served in a drinking cup than when stored (P < 0.01). Post-source contamination increased successively through the steps of usage from source water to the point of consumption. Boiling failed to ensure safe drinking water at the point of consumption because of easily contaminated containers and poor domestic hygiene. Hygiene education, better point-of-use treatment and storage options, and in-house water connections are urgently needed.
Sihota, Natasha J; Singurindy, Olga; Mayer, K Ulrich
2011-01-15
In order to gain regulatory approval for source zone natural attenuation (SZNA) at hydrocarbon-contaminated sites, knowledge regarding the extent of the contamination, its tendency to spread, and its longevity is required. However, reliable quantification of biodegradation rates, an important component of SZNA, remains a challenge. If the rate of CO(2) gas generation associated with contaminant degradation can be determined, it may be used as a proxy for the overall rate of subsurface biodegradation. Here, the CO(2)-efflux at the ground surface is measured using a dynamic closed chamber (DCC) method to evaluate whether this technique can be used to assess the areal extent of the contaminant source zone and the depth-integrated rate of contaminant mineralization. To this end, a field test was conducted at the Bemidji, MN, crude oil spill site. Results indicate that at the Bemidji site the CO(2)-efflux method is able to both delineate the source zone and distinguish between the rates of natural soil respiration and contaminant mineralization. The average CO(2)-efflux associated with contaminant degradation in the source zone is estimated at 2.6 μmol m(-2) s(-1), corresponding to a total petroleum hydrocarbon mineralization rate (expressed as C(10)H(22)) of 3.3 g m(-2) day(-1).
NASA Astrophysics Data System (ADS)
Liang, Jie; Shi, Chen-hao; Zeng, Guang-ming; Zhong, Min-zhou; Yuan, Yu-jie
2017-07-01
In recent years, heavy metal contamination in the environment has been attracted worldwide attention due to their toxicity, persistence,extensive sources and non-biodegradable properties. We herein investigate variation trend and risk of heavy metal and radiation distribution in the former mine stope, former mineral ore stockyard, and mine road with surface soils of a retired uranium mine in the mid-south of China. The mean concentrations (mg/kg) of Pb,Cd,Cu,Zn,As,Hg,Cr,Mn,Ni,U, and 232Th were analyzed according to the corresponding background values in Hunan, China. The Geo-accumulation index (Igeo ) were used for the assessment of pollution level of heavy metals and the radioactive elements of U and 232Th. Then, Pollution load index (PLI) and GIS techniquewere integrated to assess spatial distribution of heavy metal contamination and radioactive contamination. Results confirmed that three areas in the retired uranium mine was a primary source of pollution, which showed anthropogenic origin mainly from agricultural runoff, hydrometallurgy from chemical industries, radioactive tailings, and electroplating industriesfinally drained into Zishui River and Xiangjiang River. Based on the actual situation, some suggestions were put forward for the treatment of the retired uranium mine in conclusion.
Adikaram, Madurya; Pitawala, Amarasooriya; Ishiga, Hiroaki; Jayawardana, Daham
2017-01-01
The present paper is the first documentation of distribution and contamination status of environmentally important elements of superficial sediments in the Batticaloa lagoon that is connected to the largest bay of the world. Surface sediment samples were collected from 34 sites covering all over the lagoon. Concentrations of elements such as As, Cr, Cu, Fe, Nb, Ni, Pb, Sc, Sr, Th, V, Y, Zn, and Zr were measured by X-ray florescence analysis. Geochemically, the lagoon has three different zones that were influenced mainly by fresh water sources, marine fronts, and intermediate mixing zones. The marine sediment quality standards indicate that Zr and Th values are exceeded throughout the lagoon. According to the freshwater sediment quality standards, Cr levels of all sampling sites exceed the threshold effect level (TEL) and 17 % of them are even above the probable effect level (PEL). Most sampling sites of the channel discharging areas show minor enrichment of Cu, Ni, and Zn with respect to the TEL. Contamination indices show that the lagoon mouth area is enriched with As. Statistical analysis implies that discharges from agricultural channel and marine fluxes of the lagoon effects on the spatial distribution of measured elements. Further research is required to understand the rate of contamination in the studied marine system.
Groundwater Pollution Sources Apportionment in the Ghaen Plain, Iran.
Vesali Naseh, Mohammad Reza; Noori, Roohollah; Berndtsson, Ronny; Adamowski, Jan; Sadatipour, Elaheh
2018-01-22
Although Iran's Ghaen Plain provides saffron to much of the world, no regional groundwater quality (GQ) assessment has yet been undertaken. Given the region's potential for saltwater intrusion and heavy metal contamination, it is important to assess the GQ and determine its main probable source of pollution (MPSP). Such knowledge would allow for informed mitigation or elimination of the potential adverse health effects of this groundwater through its use as drinking water, or indirectly as a result of the consumption of groundwater-irrigated crops. Total dissolved solids, sodium, and chloride in the water of the majority of 16 wells sampled within the region exceeded World Health Organization and Iranian permissible standards for drinking water. The groundwater proved to only be suitable for irrigating salt tolerant crops under good drainage conditions. Due to the precipitation of calcium carbonate in the water supply facilities, the water from all wells was deemed unsuitable for industrial purposes. Heavy metal pollution and contamination indices showed no groundwater contamination. Analysis of ionic ratios and the application of principal components analysis indicated the MPSP to be saltwater intrusion, with the geology subtending the plain, and to a lesser extent, anthropogenic activities. Reducing groundwater withdrawals, particularly those for agricultural production by using high performance irrigation methods could reduce saltwater intrusion and improve GQ in the Ghaen Plain.
Origin and spatial-temporal distribution of faecal bacteria in a bay of Lake Geneva, Switzerland.
Poté, John; Goldscheider, Nico; Haller, Laurence; Zopfi, Jakob; Khajehnouri, Fereidoun; Wildi, Walter
2009-07-01
The origin and distribution of microbial contamination in Lake Geneva's most polluted bay were assessed using faecal indicator bacteria (FIB). The lake is used as drinking water, for recreation and fishing. During 1 year, water samples were taken at 23 points in the bay and three contamination sources: a wastewater treatment plant (WWTP), a river and a storm water outlet. Analyses included Escherichia coli, enterococci (ENT), total coliforms (TC), and heterotrophic plate counts (HPC). E. coli input flux rates from the WWTP can reach 2.5 x 10(10) CFU/s; those from the river are one to three orders of magnitude lower. Different pathogenic Salmonella serotypes were identified in water from these sources. FIB levels in the bay are highly variable. Results demonstrate that (1) the WWTP outlet at 30 m depth impacts near-surface water quality during holomixis in winter; (2) when the lake is stratified, the effluent water is generally trapped below the thermocline; (3) during major floods, upwelling across the thermocline may occur; (4) the river permanently contributes to contamination, mainly near the river mouth and during floods, when the storm water outlet contributes additionally; (5) the lowest FIB levels in the near-surface water occur during low-flow periods in the bathing season.
A hospital outbreak of Legionella from a contaminated water supply.
Tercelj-Zorman, Marjeta; Seljak, Marija; Stare, Janez; Mencinger, Joze; Rakovec, Joze; Rylander, Ragnar; Strle, Franc
2004-03-01
The authors performed a cross-sectional epidemiological survey to investigate the source of a hospital Legionella outbreak originating in contaminated water. Water temperature and air humidity were measured around possible contamination sources. A dead-end pipe was found to contain Legionella pneumophila serogroup 1. All individuals who acquired legionellosis had spent at least 30 min within 2 m of the contamination source. Among staff, 41 of 71 were exposed, and 31 of these fell ill. All 7 patients exposed to the contaminated water acquired legionellosis. None of the 94 bed-ridden patients from the same units developed the disease. An aerosol with 60% relative air humidity was formed near the suspect water faucets, but the humidity fell rapidly farther from the water source, suggesting that desiccation decreased the risk of infection. The healthy personnel and patients closest to the source acquired legionellosis, suggesting that risk was related less to compromised patients than to exposure.
Copeland, Curtis C; Beers, Benjamin B; Thompson, Meghan R; Fitzgerald, Relana P; Barrett, Leah J; Sevilleja, Jesus E; Alencar, Sayonara; Lima, Aldo A M; Guerrant, Richard L
2009-06-01
Worldwide, contaminated drinking water poses a major health threat, particularly to child development. Diarrhoea represents a large part of the water-related disease burden and enteric infections have been linked to nutritional and growth shortfalls as well as long-term physical and cognitive impairment in children. Previous studies detailed the frequency of infection and the consequences for child health in a shanty town in north-east Brazil. To determine the frequency of contaminated water, we measured faecal contamination in primary drinking water samples from 231 randomly selected households. Risk for contamination was compared across source and storage types. Nearly a third of the study households (70/231: 30.3%) had contaminated drinking water; the source with the highest frequency of contamination was well water (23/24: 95.8%). For tap water, the type of storage had a significant effect on the susceptibility to contamination (chi(2) = 12.090; p = 0.007). The observed pattern of contamination demonstrated the relative potential contributions of both source and storage. With evidence that supports the inclusion of source and storage in water quality surveys, this study, like others, suggests that contaminated drinking water in storage vessels may be an important factor for the documented diarrhoea disease burden in the Brazilian shanty town.
Matthieu, D.E.; Carroll, K.C.; Mainhagu, J.; Morrison, C.; McMillan, A.; Russo, A.; Plaschke, M.
2013-01-01
The objective of this study was to characterize the temporal behavior of contaminant mass discharge, and the relationship between reductions in contaminant mass discharge and reductions in contaminant mass, for a very heterogeneous, highly contaminated source-zone field site. Trichloroethene is the primary contaminant of concern, and several lines of evidence indicate the presence of organic liquid in the subsurface. The site is undergoing groundwater extraction for source control, and contaminant mass discharge has been monitored since system startup. The results show a significant reduction in contaminant mass discharge with time, decreasing from approximately 1 to 0.15 kg/d. Two methods were used to estimate the mass of contaminant present in the source area at the initiation of the remediation project. One was based on a comparison of two sets of core data, collected 3.5 years apart, which suggests that a significant (~80%) reduction in aggregate sediment-phase TCE concentrations occurred between sampling events. The second method was based on fitting the temporal contaminant mass discharge data with a simple exponential source-depletion function. Relatively similar estimates, 784 and 993 kg, respectively, were obtained with the two methods. These data were used to characterize the relationship between reductions in contaminant mass discharge (CMDR) and reductions in contaminant mass (MR). The observed curvilinear relationship exhibits a reduction in contaminant mass discharge essentially immediately upon initiation of mass reduction. This behavior is consistent with a system wherein significant quantities of mass are present in hydraulically poorly accessible domains for which mass removal is influenced by rate-limited mass transfer. The results obtained from the present study are compared to those obtained from other field studies to evaluate the impact of system properties and conditions on mass-discharge and mass-removal behavior. The results indicated that factors such as domain scale, hydraulic-gradient status (induced or natural), and flushing-solution composition had insignificant impact on the CMDR-MR profiles and thus on underlying mass-removal behavior. Conversely, source-zone age, through its impact on contaminant distribution and accessibility, was implicated as a critical factor influencing the nature of the CMDR-MR relationship. PMID:23528743
Gross, Sherilyn A; Avens, Heather J; Banducci, Amber M; Sahmel, Jennifer; Panko, Julie M; Tvermoes, Brooke E
2013-04-01
Concerns have arisen among the public regarding the potentialfor drinking-water contamination from the migration of methane gas and hazardous chemicals associated with hydraulic fracturing and horizontal drilling. However, little attention has been paid to the potentialfor groundwater contamination resulting from surface spills from storage and production facilities at active well sites. We performed a search for publically available data regarding groundwater contamination from spills at ULS. drilling sites. The Colorado Oil and Gas Conservation Commission (COGCC) database was selected for further analysis because it was the most detailed. The majority ofspills were in Weld County, Colorado, which has the highest density of wells that used hydraulic fracturing for completion, many producing both methane gas and crude oil. We analyzed publically available data reported by operators to the COGCC regarding surface spills that impacted groundwater From July 2010 to July 2011, we noted 77 reported surface spills impacting the groundwater in Weld County, which resulted in surface spills associated with less than 0.5% of the active wells. The reported data included groundwater samples that were analyzed for benzene, toluene, ethylbenzene, andxylene (BTEX) components of crude oil. For groundwater samples taken both within the spill excavation area and on the first reported date of sampling, the BTEX measurements exceeded National Drinking Water maximum contaminant levels (MCLs) in 90, 30, 12, and 8% of the samples, respectively. However, actions taken to remediate the spills were effective at reducing BJTEX levels, with at least 84% of the spills reportedly achieving remediation as of May 2012. Our analysis demonstrates that surface spills are an important route of potential groundwater contamination from hydraulic fracturing activities and should be a focus of programs to protect groundwater While benzene can occur naturally in groundwater sources, spills and migration of chemicals used for hydraulic fracturing activities have recently been thought to be a main source of benzene contamination in groundwater. However, there is little scientific literature to support that claim. Therefore, we accessed a publically available database and tracked the number of reported surface spills with potential groundwater impact over a 1-year period. Although the number of surface spills was minimal, our analysis provides scientific evidence that benzene can contaminate groundwater sources following surface spills at active well sites.
Nijsse, Rolf; Mughini-Gras, Lapo; Wagenaar, Jaap A; Franssen, Frits; Ploeger, Harm W
2015-07-28
Environmental contamination with Toxocara eggs is considered the main source of human toxocariasis. The contribution of different groups of hosts to this contamination is largely unknown. Current deworming advices focus mainly on dogs. However, controversy exists about blind deworming regimens for >6-month-old dogs, as most of them do not actually shed Toxocara eggs. We aim to estimate the contribution of different non-juvenile hosts to the environmental Toxocara egg contamination and to assess the effects of different Toxocara-reducing interventions for dogs. A stochastic model was developed to quantify the relative contribution to the environmental contamination with Toxocara eggs of household dogs, household cats, stray cats, and foxes, all older than 6 months in areas with varying urbanization degrees. The model was built upon an existing model developed by Morgan et al. (2013). We used both original and published data on host density, prevalence and intensity of infection, coprophagic behaviour, faeces disposal by owners, and cats' outdoor access. Scenario analyses were performed to assess the expected reduction in dogs' egg output according to different deworming regimens and faeces clean-up compliances. Estimates referred to the Netherlands, a country free of stray dogs. Household dogs accounted for 39% of the overall egg output of >6-month-old hosts in the Netherlands, followed by stray cats (27%), household cats (19%), and foxes (15%). In urban areas, egg output was dominated by stray cats (81%). Intervention scenarios revealed that only with a high compliance (90%) to the four times a year deworming advice, dogs' contribution would drop from 39 to 28%. Alternatively, when 50% of owners would always remove their dogs' faeces, dogs' contribution would drop to 20%. Among final hosts of Toxocara older than 6 months, dogs are the main contributors to the environmental egg contamination, though cats in total (i.e. both owned and stray) transcend this contribution. A higher than expected compliance to deworming advice is necessary to reduce dogs' egg output meaningfully. Actions focusing solely on household dogs and cats are unlikely to sufficiently reduce environmental contamination with eggs, as stray cats and foxes are also important contributors.
Rooftop Runoff as a Source of Contamination: A Review
Scientific reports concerning chemical and microbiological contaminant levels of rainwater runoff from rooftop collection in both urban and rural areas are reviewed. This alternative source of water has been documented to often contain substantial amounts of contaminants. Studi...
Nigro, Giovanni; Bottone, Gabriella; Maiorani, Daniela; Trombatore, Fabiana; Falasca, Silvana; Bruno, Gianfranco
2016-05-06
A Salmonella enterica epidemic occurred in children of the area of L'Aquila (Central Italy, Abruzzo region) between June 2013 and October 2014, four years after the catastrophic earthquake of 6 April 2009. Clinical and laboratory data were collected from hospitalized and ambulatory children. Routine investigations for Salmonella infection were carried out on numerous alimentary matrices of animal origin and sampling sources for drinking water of the L'Aquila district, including pickup points of the two main aqueducts. Salmonella infection occurred in 155 children (83 females: 53%), aged 1 to 15 years (mean 2.10). Of these, 44 children (28.4%) were hospitalized because of severe dehydration, electrolyte abnormalities, and fever resistant to oral antipyretic and antibiotic drugs. Three children (1.9%) were reinfected within four months after primary infection by the same Salmonella strain. Four children (2.6%), aged one to two years, were coinfected by rotavirus. A seven-year old child had a concomitant right hip joint arthritis. The isolated strains, as confirmed in about the half of cases or probable/possible in the remaining ones, were identified as S. enterica serovar Typhimurium [4,5:i:-], monophasic variant. Aterno river, bordering the L'Aquila district, was recognized as the main responsible source for the contamination of local crops and vegetables derived from polluted crops. The high rate of hospitalized children underlines the emergence of a highly pathogenic S. enterica strain probably subsequent to the contamination of the spring water sources after geological changes occurred during the catastrophic earthquake.
Quality of groundwater resources in Afghanistan.
Hayat, Ehsanullah; Baba, Alper
2017-07-01
Water is the main source of energy production and economy in Afghanistan where agriculture accounts for more than 50% of the country's gross domestic product (GDP). Access to safe drinking water is still a problem in the country, which has caused different health issues and even child mortality especially in rural areas. Groundwater is the main source of drinking water in the country. However, little knowledge is available about the quality of groundwater throughout the entire country, and its quality has not been investigated extensively yet like in other countries in the world. While most people think that consuming groundwater is a reliable and safe source of drinking water for health, the United Nations (UN) agencies report various kinds of waterborne diseases and even child mortalities due to drinking water quality in the country. In this article, significant geogenic and anthropogenic factors that play a vital role in groundwater contamination of the country are identified and explained. Different geogenic contaminations such as arsenic, fluoride, sulfate, and boron occur in several areas of Afghanistan that have a direct effect on human health. The water quality mapping for Afghanistan is completed for half of the country, which shows that groundwater is plagued by high levels of fluoride and arsenic in some areas. The water quality mapping of the other half of the country cannot be completed due to security concerns currently. Also, there are different kinds of waterborne diseases such as diarrhea, cholera, and dysentery that can be seen in different parts of the country because of anthropogenic activities which continuously deteriorate groundwater.
Luo, Xiaojun; Mai, Bixian; Yang, Qingshu; Fu, Jiamo; Sheng, Guoying; Wang, Zhishi
2004-06-01
Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) were measured in suspended particles and dissolved phase from the Baiertang water column and the Macao water column samples as collected from the Guangzhou channel of the Pearl River and the Macao harbor, where the sediments were heavily contaminated with organic pollutants. Total OCPs concentration varies from 23.4 to 61.7 ng/l in Baiertang water column and from 25.2 to 67.8 ng/l in Macao column, while total PAHs concentration varies from 987.1 to 2878.5 ng/l in the Baiertang water column and from 944.0 to 6654.6 ng/l in the Macao column. The vertical distribution profiles of pollutants and the partition of pollutants between particles and dissolved phases indicate that the sediments in Baiertang act as an important source of selected pollutants, and the pollutants in water of this region were mainly originated from the release and re-suspension of contaminants residing in the sediments. The sediments in Macao harbor act as a reservoir for organochlorine pesticides, such as DDTs mainly introduced by river inflow from Xijiang and PAHs input by brackish water from the Lingdingyang estuary. Combustion of fossil fuels and petroleum input are the main sources of PAHs in the Macao water column, while combustion of fossil fuels and coal is responsible for the PAHs in the Baiertang water column. The ratios of DDT/(DDD+DDE) for the Macao water column samples demonstrate that such chemicals were input into this region in recent times.
Tavakoly Sany, Seyedeh Belin; Hashim, Rosli; Salleh, Aishah; Rezayi, Majid; Mehdinia, Ali; Safari, Omid
2014-01-01
Concentration, source, and ecological risk of polycyclic aromatic hydrocarbons (PAHs) were investigated in 22 stations from surface sediments in the areas of anthropogenic pollution in the Klang Strait (Malaysia). The total PAH level in the Klang Strait sediment was 994.02±918.1 µg/kg dw. The highest concentration was observed in stations near the coastline and mouth of the Klang River. These locations were dominated by high molecular weight PAHs. The results showed both pyrogenic and petrogenic sources are main sources of PAHs. Further analyses indicated that PAHs primarily originated from pyrogenic sources (coal combustion and vehicular emissions), with significant contribution from petroleum inputs. Regarding ecological risk estimation, only station 13 was moderately polluted, the rest of the stations suffered rare or slight adverse biological effects with PAH exposure in surface sediment, suggesting that PAHs are not considered as contaminants of concern in the Klang Strait. PMID:24747349
NASA Astrophysics Data System (ADS)
Falta, R. W.
2004-05-01
Analytical solutions are developed that relate changes in the contaminant mass in a source area to the behavior of biologically reactive dissolved contaminant groundwater plumes. Based on data from field experiments, laboratory experiments, numerical streamtube models, and numerical multiphase flow models, the chemical discharge from a source region is assumed to be a nonlinear power function of the fraction of contaminant mass removed from the source zone. This function can approximately represent source zone mass discharge behavior over a wide range of site conditions ranging from simple homogeneous systems, to complex heterogeneous systems. A mass balance on the source zone with advective transport and first order decay leads to a nonlinear differential equation that is solved analytically to provide a prediction of the time-dependent contaminant mass discharge leaving the source zone. The solution for source zone mass discharge is coupled semi-analytically with a modified version of the Domenico (1987) analytical solution for three-dimensional reactive advective and dispersive transport in groundwater. The semi-analytical model then employs the BIOCHLOR (Aziz et al., 2000; Sun et al., 1999) transformations to model sequential first order parent-daughter biological decay reactions of chlorinated ethenes and ethanes in the groundwater plume. The resulting semi-analytic model thus allows for transient simulation of complex source zone behavior that is fully coupled to a dissolved contaminant plume undergoing sequential biological reactions. Analyses of several realistic scenarios show that substantial changes in the ground water plume can result from the partial removal of contaminant mass from the source zone. These results, however, are sensitive to the nature of the source mass reduction-source discharge reduction curve, and to the rates of degradation of the primary contaminant and its daughter products in the ground water plume. Aziz, C.E., C.J. Newell, J.R. Gonzales, P. Haas, T.P. Clement, and Y. Sun, 2000, BIOCHLOR Natural Attenuation Decision Support System User's Manual Version 1.0, US EPA Report EPA/600/R-00/008 Domenico, P.A., 1987, An analytical model for multidimensional transport of a decaying contaminant species, J. Hydrol., 91: 49-58. Sun, Y., J.N. Petersen, T.P. Clement, and R.S. Skeen, 1999, A new analytical solution for multi-species transport equations with serial and parallel reactions, Water Resour. Res., 35(1): 185-190.
Evaluation of Long-term Performance of Enhanced Anaerobic Source Zone Bioremediation using mass flux
NASA Astrophysics Data System (ADS)
Haluska, A.; Cho, J.; Hatzinger, P.; Annable, M. D.
2017-12-01
Chlorinated ethene DNAPL source zones in groundwater act as potential long term sources of contamination as they dissolve yielding concentrations well above MCLs, posing an on-going public health risk. Enhanced bioremediation has been applied to treat many source zones with significant promise, but long-term sustainability of this technology has not been thoroughly assessed. This study evaluated the long-term effectiveness of enhanced anaerobic source zone bioremediation at chloroethene contaminated sites to determine if the treatment prevented contaminant rebound and removed NAPL from the source zone. Long-term performance was evaluated based on achieving MCL-based contaminant mass fluxes in parent compound concentrations during different monitoring periods. Groundwater concertation versus time data was compiled for 6-sites and post-remedial contaminant mass flux data was then measured using passive flux meters at wells both within and down-gradient of the source zone. Post-remedial mass flux data was then combined with pre-remedial water quality data to estimate pre-remedial mass flux. This information was used to characterize a DNAPL dissolution source strength function, such as the Power Law Model and the Equilibrium Stream tube model. The six-sites characterized for this study were (1) Former Charleston Air Force Base, Charleston, SC; (2) Dover Air Force Base, Dover, DE; (3) Treasure Island Naval Station, San Francisco, CA; (4) Former Raritan Arsenal, Edison, NJ; (5) Naval Air Station, Jacksonville, FL; and, (6) Former Naval Air Station, Alameda, CA. Contaminant mass fluxes decreased for all the sites by the end of the post-treatment monitoring period and rebound was limited within the source zone. Post remedial source strength function estimates suggest that decreases in contaminant mass flux will continue to occur at these sites, but a mass flux based on MCL levels may never be exceeded. Thus, site clean-up goals should be evaluated as order-of-magnitude reductions. Additionally, sites may require monitoring for a minimum of 5-years in order to sufficiently evaluate remedial performance. The study shows that enhanced anaerobic source zone bioremediation contributed to a modest reduction of source zone contaminant mass discharge and appears to have mitigated rebound of chlorinated ethenes.
Contaminants and drinking-water sources in 2001; recent findings of the U. S. Geological Survey
Patterson, G.G.; Focazio, M.J.
2000-01-01
As the Nation's principal earth-science agency, the U.S. Geological Survey (USGS) studies numerous issues related to contamination of drinking-water sources. The work includes monitoring to determine the spatial and temporal distribution of contaminants; research to determine sources, transport, transformations, and fate of contaminants, and assessments of vulnerability. Much of the work is conducted in cooperation with the U.S. Environmental Protection Agency and other Federal, State, Tribal, and local governments, to help provide a scientific basis for resource management and regulation. Examples of recent results are presented for two broad categories of drinking-water projects: occurrence studies, and source-water assessments.
NASA Astrophysics Data System (ADS)
Nijenhuis, Ivonne; Schmidt, Marie; Pellegatti, Eleonora; Paramatti, Enrico; Richnow, Hans Hermann; Gargini, Alessandro
2013-10-01
The stable carbon isotope composition of chlorinated aliphatic compounds such as chlorinated methanes, ethanes and ethenes was examined as an intrinsic fingerprint for apportionment of sources. A complex field site located in Ferrara (Italy), with more than 50 years history of use of chlorinated aliphatic compounds, was investigated in order to assess contamination sources. Several contamination plumes were found in a complex alluvial sandy multi-aquifer system close to the river Po; sources are represented by uncontained former industrial and municipal dump sites as well as by spills at industrial areas. The carbon stable isotope signature allowed distinguishing 2 major sources of contaminants. One source of chlorinated aliphatic contaminants was strongly depleted in 13C (<-60‰) suggesting production lines which have used depleted methane for synthesis. The other source had typical carbon isotope compositions of >-40‰ which is commonly observed in recent production of chlorinated solvents. The degradation processes in the plumes could be traced interpreting the isotope enrichment and depletion of parent and daughter compounds, respectively. We demonstrate that, under specific production conditions, namely when highly chlorinated ethenes are produced as by-product during chloromethanes production, 13C depleted fingerprinting of contaminants can be obtained and this can be used to track sources and address the responsible party of the pollution in urban areas.
Nijenhuis, Ivonne; Schmidt, Marie; Pellegatti, Eleonora; Paramatti, Enrico; Richnow, Hans Hermann; Gargini, Alessandro
2013-10-01
The stable carbon isotope composition of chlorinated aliphatic compounds such as chlorinated methanes, ethanes and ethenes was examined as an intrinsic fingerprint for apportionment of sources. A complex field site located in Ferrara (Italy), with more than 50years history of use of chlorinated aliphatic compounds, was investigated in order to assess contamination sources. Several contamination plumes were found in a complex alluvial sandy multi-aquifer system close to the river Po; sources are represented by uncontained former industrial and municipal dump sites as well as by spills at industrial areas. The carbon stable isotope signature allowed distinguishing 2 major sources of contaminants. One source of chlorinated aliphatic contaminants was strongly depleted in ¹³C (<-60‰) suggesting production lines which have used depleted methane for synthesis. The other source had typical carbon isotope compositions of >-40‰ which is commonly observed in recent production of chlorinated solvents. The degradation processes in the plumes could be traced interpreting the isotope enrichment and depletion of parent and daughter compounds, respectively. We demonstrate that, under specific production conditions, namely when highly chlorinated ethenes are produced as by-product during chloromethanes production, ¹³C depleted fingerprinting of contaminants can be obtained and this can be used to track sources and address the responsible party of the pollution in urban areas. © 2013 Elsevier B.V. All rights reserved.
Linking metatranscriptomic to bioremediation processes of oil contaminated marine sediments
NASA Astrophysics Data System (ADS)
Cuny, P.; Atkinson, A.; Léa, S.; Guasco, S.; Jezequel, R.; Armougom, F.; Michotey, V.; Bonin, P.; Militon, C.
2016-02-01
Oil-derived hydrocarbons are one major source of pollution of marine ecosystems. In coastal marine areas they tend to accumulate in the sediment where they can impact the benthic communities. Oil hydrocarbons biodegradation by microorganisms is known to be one of the prevalent processes acting in the removal of these contaminants from sediments. The redox oscillation regimes generated by bioturbation, and the efficiency of metabolic coupling between functional groups associated to these specific redox regimes, are probably determinant factors controlling hydrocarbon biodegradation. Metatranscriptomic analysis appears like a promising approach to shed new light on the metabolic processes involved in the response of microbial communities to oil contamination in such oxic/anoxic oscillating environments. In the framework of the DECAPAGE project (ANR CESA-2011-006 01), funded by the French National Agency for Research, the metatranscriptomes (RNA-seq) of oil contaminated or not (Ural blend crude oil, 5 000 ppm) and bioturbated or not (addition of the common burrowing organism Hediste diversicolor, 1000 ind/m2) mudflat sediments, incubated in microcosms during 4 months at 19±1°C, were compared. The analysis of active microbial communities by SSU rRNA barcoding shows that the main observable changes are due to the presence of H. diversicolor. On the contrary, oil addition is the main factor explaining the observed changes in the genes expression patterns with 1949 genes specifically up or down-regulated (which is the case of only 245 genes when only H. diversicolor worms are added). In particular, the oil contamination leads to a marked overexpression (i) of benzyl- and alkylsuccinate synthase genes (ass and bss) that are involved in the anaerobic metabolism of aromatics (toluene) and alkanes, respectively and, (ii) of genes coding for nucleotide excision repair exonucleases indicating that DNA repair processes are also activated.
Wang, Ai-Jun; Kawser, Ahmed; Xu, Yong-Hang; Ye, Xiang; Rani, Seema; Chen, Ke-Liang
2016-01-01
Heavy metal contamination of aquatic environment has attracted global attention owing to its abundance, persistence, and environmental toxicity, especially in developing countries like Bangladesh. Five heavy metals, namely chromium (Cr), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) were investigated in surface and core sediments of the Karnaphuli River (KR) estuary in Chittagong, Bangladesh, in order to reveal the heavy metal contamination history in estuarine sediments and its response to catastrophic events and human activities. The surface sediment was predominantly composed of silt and sand, and the surface sediment was contaminated with Cr and Pb. Based on the 210 Pb chronology, the sedimentation rate in the inter-tidal zone of KR estuary was 1.02 cm/a before 2007, and 1.14 cm/a after 2008. The core sediment collected from 8 to 20 cm below the surface mainly originated from terrestrial materials induced by catastrophic events such as cyclone, heavy rainfall and landslides in 2007 and 2008. The values of contamination factor ( CF ) showed that the sediment became moderately contaminated with Cr and Pb in the last 30 years. The variation and accumulation of heavy metals in core sediment before 2000 was mainly related to natural variations in sediment sources; however, in subsequent years, the anthropogenic inputs of heavy metals have increased due to rapid physical growth of urban and industrial areas in the Chittagong city. In general, the accumulation pattern of heavy metals after normalization to Aluminum in sediments of KR estuary indicated an accelerated rate of urbanization and industrialization in the last 30 years, and also suggested the influence of natural catastrophic event on estuarine environment.
Field based plastic contamination sensing
USDA-ARS?s Scientific Manuscript database
The United States has a long-held reputation of being a dependable source of high quality, contaminant-free cotton. Recently, increased incidence of plastic contamination from sources such as shopping bags, vegetable mulch, surface irrigation tubing, and module covers has threatened the reputation o...
DEVELOPMENT OF A DATA EVALUATION/DECISION SUPPORT SYSTEM FOR REMEDIATION OF SUBSURFACE CONTAMINATION
Subsurface contamination frequently originates from spatially distributed sources of multi-component nonaqueous phase liquids (NAPLs). Such chemicals are typically persistent sources of ground-water contamination that are difficult to characterize. This work addresses the feasi...
PRIORITIZATION OF GROUND WATER CONTAMINANTS AND SOURCES
The objective of this research was to identify chemical, physical, bacteriological, and viral contaminants, and their sources, which present the greatest health threat in public ground water supplies in the USA; and to classify (prioritize) such contaminants and relative to their...
Bahreyni Toossi, M T; Khajetash, B; Ghorbani, M
2018-03-01
One of the main causes of induction of secondary cancer in radiation therapy is neutron contamination received by patients during treatment. Objective: In the present study the impact of wedge and block on neutron contamination production is investigated. The evaluations are conducted for a 15 MV Siemens Primus linear accelerator. Simulations were performed using MCNPX Monte Carlo code. 30˚, 45˚ and 60˚ wedges and a cerrobend block with dimensions of 1.5 × 1.5 × 7 cm 3 were simulated. The investigation were performed in the 10 × 10 cm 2 field size at source to surface distance of 100 cm for depth of 0.5, 2, 3 and 4 cm in a water phantom. Neutron dose was calculated using F4 tally with flux to dose conversion factors and F6 tally. Results showed that the presence of wedge increases the neutron contamination when the wedge factor was considered. In addition, 45˚ wedge produced the most amount of neutron contamination. If the block is in the center of the field, the cerrobend block caused less neutron contamination than the open field due to absorption of neutrons and photon attenuation. The results showed that neutron contamination is less in steeper depths. The results for two tallies showed practically equivalent results. Wedge causes neutron contamination hence should be considered in therapeutic protocols in which wedge is used. In terms of clinical aspects, the results of this study show that superficial tissues such as skin will tolerate more neutron contamination than the deep tissues.
Caldron For High-Temperature Alloys
NASA Technical Reports Server (NTRS)
Geringer, Henry J.
1989-01-01
Induction-heated caldron melts high-temperature alloys. Prevents sort of contamination of melts occurring during arc melting in ceramic crucibles. Liquefies 200 grams of solid metal components of alloy like niobium aluminum and makes alloy homogeneous in less than 3 minutes. Plugged sleeve constitutes main body of caldron. Coolant flows through sleeve to prevent it from melting. Mandrel-wound induction coils adjusted to tune source of power. Also serves as mold for casting alloys into such shapes as bars.
Li, Wenzan; Li, Xuyong; Su, Jingjun; Zhao, Hongtao
2014-04-01
Many rivers in China and other newly industrialized countries have suffered from severe degradation of water quality in the context of rapid economic growth. An accounting method was developed to investigate the source and mass fluxes of the main contaminants in the Ziya River, a severely polluted and heavily modified river in a semiarid area of the North China Plain, where chemical oxygen demand (COD) and ammonia nitrogen (NH4-N) were the most important indicators of pollution. The results showed that the urban sewage with high concentration of COD and NH4-N dominated the streams, contributing to 80.7 % of the streamflow, 92.2 % of COD, and 94.5 % of NH4-N. The concentrations of COD and NH4-N in streams varied from 24.0-195.0 to 5.8-43.8 mg/L, respectively. Mass fluxes of COD and NH4-N of all pathways were quantified. Much of the polluted water was diverted to irrigation, and some eventually flowed into the Bohai Sea. Installation of adequate wastewater treatment facilities and making strict discharge standards can help improve the water quality. Our findings imply that a simple accounting method provides an extremely well-documented example for load estimation and can be useful for intervention strategies in heavily polluted and modified rivers in newly industrialized countries.
Harte, Philip T.
2015-01-01
The distributional pattern of dissolved arsenic concentrations from landfill plumes can provide clues to the source of arsenic contamination. Under simple idealized conditions, arsenic concentrations along flow paths in aquifers proximal to a landfill will decrease under anthropogenic sources but potentially increase under in situ sources. This paper presents several conceptual distributional patterns of arsenic in groundwater based on the arsenic source under idealized conditions. An example of advanced subsurface mapping of dissolved arsenic with geophysical surveys, chemical monitoring, and redox fingerprinting is presented for a landfill site in New Hampshire with a complex flow pattern. Tools to assist in the mapping of arsenic in groundwater ultimately provide information on the source of contamination. Once an understanding of the arsenic contamination is achieved, appropriate remedial strategies can then be formulated.
A Nondestructive Method to Identify POP Contamination Sources in Omnivorous Seabirds.
Michielsen, Rosanne J; Shamoun-Baranes, Judy; Parsons, John R; Kraak, Michiel H S
2018-03-13
Persistent organic pollutants (POPs) are present in almost all environments due to their high bioaccumulation potential. Especially species that adapted to human activities, like gulls, might be exposed to harmful concentrations of these chemicals. The nature and degree of the exposure to POPs greatly vary between individual gulls, due to their diverse foraging behavior and specialization in certain foraging tactics. Therefore, in order clarify the effect of POP-contaminated areas on gull populations, it is important to identify the sources of POP contamination in individual gulls. Conventional sampling methods applied when studying POP contamination are destructive and ethically undesired. The aim of this literature review was to evaluate the potential of using feathers as a nondestructive method to determine sources of POP contamination in individual gulls. The reviewed data showed that high concentrations of PCBs and PBDEs in feathers together with a large proportion of less bioaccumulative congeners may indicate that the contamination originates from landfills. Low PCB and PBDE concentrations in feathers and a large proportion of more bioaccumulative congeners could indicate that the contamination originates from marine prey. We propose a nondestructive approach to identify the source of contamination in individual gulls based on individual contamination levels and PCB and PBDE congener profiles in feathers. Despite some uncertainties that might be reduced by future research, we conclude that especially when integrated with other methods like GPS tracking and the analysis of stable isotopic signatures, identifying the source of POP contamination based on congener profiles in feathers could become a powerful nondestructive method.
Riedel, Timothy E; Thulsiraj, Vanessa; Zimmer-Faust, Amity G; Dagit, Rosi; Krug, Jenna; Hanley, Kaitlyn T; Adamek, Krista; Ebentier, Darcy L; Torres, Robert; Cobian, Uriel; Peterson, Sophie; Jay, Jennifer A
2015-03-15
Elevated levels of fecal indicator bacteria (FIB) have been observed at Topanga Beach, CA, USA. To identify the FIB sources, a microbial source tracking study using a dog-, a gull- and two human-associated molecular markers was conducted at 10 sites over 21 months. Historical data suggest that episodic discharge from the lagoon at the mouth of Topanga Creek is the main source of bacteria to the beach. A decline in creek FIB/markers downstream from upper watershed development and a sharp increase in FIB/markers at the lagoon sites suggest sources are local to the lagoon. At the lagoon and beach, human markers are detected sporadically, dog marker peaks in abundance mid-winter, and gull marker is chronically elevated. Varied seasonal patterns of FIB and source markers were identified showing the importance of applying a suite of markers over long-term spatial and temporal sampling to identify a complex combination of sources of contamination. Copyright © 2014 Elsevier Ltd. All rights reserved.
THE IMPACT OF PARTIAL DNAPL SOURCE ZONE REMEDIATION
Dense non-aqueous phase liquids (DNAPL) constitute a long-term source of groundwater contamination and a significant effort is usually required to treat these contaminated waters and bring them back to maximum contaminant level (MCL) required by the regulatory authorities.
Fi...
Molecular Microbial Ecology of a Full-Scale Biologically Active Filter
Drinking water utilities are challenged with a variety of contamination issues both from the source water and in the distribution system. Source water issues include inorganic contaminants such as arsenic, barium, iron, and biological contaminants such as bacteria and viruses. ...
Characterization and Remediation of Contaminated Sites:Modeling, Measurement and Assessment
NASA Astrophysics Data System (ADS)
Basu, N. B.; Rao, P. C.; Poyer, I. C.; Christ, J. A.; Zhang, C. Y.; Jawitz, J. W.; Werth, C. J.; Annable, M. D.; Hatfield, K.
2008-05-01
The complexity of natural systems makes it impossible to estimate parameters at the required level of spatial and temporal detail. Thus, it becomes necessary to transition from spatially distributed parameters to spatially integrated parameters that are capable of adequately capturing the system dynamics, without always accounting for local process behavior. Contaminant flux across the source control plane is proposed as an integrated metric that captures source behavior and links it to plume dynamics. Contaminant fluxes were measured using an innovative technology, the passive flux meter at field sites contaminated with dense non-aqueous phase liquids or DNAPLs in the US and Australia. Flux distributions were observed to be positively or negatively correlated with the conductivity distribution, depending on the source characteristics of the site. The impact of partial source depletion on the mean contaminant flux and flux architecture was investigated in three-dimensional complex heterogeneous settings using the multiphase transport code UTCHEM and the reactive transport code ISCO3D. Source mass depletion reduced the mean contaminant flux approximately linearly, while the contaminant flux standard deviation reduced proportionally with the mean (i.e., coefficient of variation of flux distribution is constant with time). Similar analysis was performed using data from field sites, and the results confirmed the numerical simulations. The linearity of the mass depletion-flux reduction relationship indicates the ability to design remediation systems that deplete mass to achieve target reduction in source strength. Stability of the flux distribution indicates the ability to characterize the distributions in time once the initial distribution is known. Lagrangian techniques were used to predict contaminant flux behavior during source depletion in terms of the statistics of the hydrodynamic and DNAPL distribution. The advantage of the Lagrangian techniques lies in their small computation time and their inclusion of spatially integrated parameters that can be measured in the field using tracer tests. Analytical models that couple source depletion to plume transport were used for optimization of source and plume treatment. These models are being used for the development of decision and management tools (for DNAPL sites) that consider uncertainty assessments as an integral part of the decision-making process for contaminated site remediation.
Shields, Katherine F; Bain, Robert E S; Cronk, Ryan; Wright, Jim A; Bartram, Jamie
2015-12-01
Access to safe drinking water is essential for health. Monitoring access to drinking water focuses on water supply type at the source, but there is limited evidence on whether quality differences at the source persist in water stored in the household. We assessed the extent of fecal contamination at the source and in household stored water (HSW) and explored the relationship between contamination at each sampling point and water supply type. We performed a bivariate random-effects meta-analysis of 45 studies, identified through a systematic review, that reported either the proportion of samples free of fecal indicator bacteria and/or individual sample bacteria counts for source and HSW, disaggregated by supply type. Water quality deteriorated substantially between source and stored water. The mean percentage of contaminated samples (noncompliance) at the source was 46% (95% CI: 33, 60%), whereas mean noncompliance in HSW was 75% (95% CI: 64, 84%). Water supply type was significantly associated with noncompliance at the source (p < 0.001) and in HSW (p = 0.03). Source water (OR = 0.2; 95% CI: 0.1, 0.5) and HSW (OR = 0.3; 95% CI: 0.2, 0.8) from piped supplies had significantly lower odds of contamination compared with non-piped water, potentially due to residual chlorine. Piped water is less likely to be contaminated compared with other water supply types at both the source and in HSW. A focus on upgrading water services to piped supplies may help improve safety, including for those drinking stored water.
Bain, Robert E.S.; Cronk, Ryan; Wright, Jim A.; Bartram, Jamie
2015-01-01
Background Access to safe drinking water is essential for health. Monitoring access to drinking water focuses on water supply type at the source, but there is limited evidence on whether quality differences at the source persist in water stored in the household. Objectives We assessed the extent of fecal contamination at the source and in household stored water (HSW) and explored the relationship between contamination at each sampling point and water supply type. Methods We performed a bivariate random-effects meta-analysis of 45 studies, identified through a systematic review, that reported either the proportion of samples free of fecal indicator bacteria and/or individual sample bacteria counts for source and HSW, disaggregated by supply type. Results Water quality deteriorated substantially between source and stored water. The mean percentage of contaminated samples (noncompliance) at the source was 46% (95% CI: 33, 60%), whereas mean noncompliance in HSW was 75% (95% CI: 64, 84%). Water supply type was significantly associated with noncompliance at the source (p < 0.001) and in HSW (p = 0.03). Source water (OR = 0.2; 95% CI: 0.1, 0.5) and HSW (OR = 0.3; 95% CI: 0.2, 0.8) from piped supplies had significantly lower odds of contamination compared with non-piped water, potentially due to residual chlorine. Conclusions Piped water is less likely to be contaminated compared with other water supply types at both the source and in HSW. A focus on upgrading water services to piped supplies may help improve safety, including for those drinking stored water. Citation Shields KF, Bain RE, Cronk R, Wright JA, Bartram J. 2015. Association of supply type with fecal contamination of source water and household stored drinking water in developing countries: a bivariate meta-analysis. Environ Health Perspect 123:1222–1231; http://dx.doi.org/10.1289/ehp.1409002 PMID:25956006
NASA Astrophysics Data System (ADS)
Walker, Mark J.; Montemagno, Carlo D.; Jenkins, Michael B.
1998-12-01
Amendments to the Safe Drinking Water Act (PL-930123) in 1996 required that public water supply managers identify potential sources of contamination within contributing areas. Nonpoint sources of acutely toxic microbial contaminants, such as Cryptosporidium parvum, challenge current approaches to source identification and management as a first step toward developing management plans for public water supply protection. Little may be known about survival and transport in the field environment, prescribed practices may not be designed to manage such substances, and infective stages may be present in vast numbers and may resist water treatment and disinfection processes. This review summarizes research related to survival and transport of C. parvum oocysts, as an example of an acutely toxic contaminant with nonpoint sources in animal agriculture. It discusses ∥1) significance of infected domesticated animals as potential sources of C. parvum, (2) laboratory and field studies of survival and transport, and (3) approaches to source control in the context of public health protection.
Lead contamination around secondary smelters: estimation of dispersal and accumulation by humans.
Roberts, T M; Hutchinson, T C; Paciga, J; Chattopadhyay, A; Jervis, R E; VanLoon, J; Parkinson, D K
1974-12-20
A high rate of lead fallout around two secondary lead smelters originated mainly from episodal large-particulate emissions from low-level fugitive sources rather than from stack fumes. The lead content of dustfall, and consequently of soil, vegetation, and outdoor dust, decreased exponentially with distance from the two smelters. Between 13 and 30 percent of the children living in the contaminated areas had absorbed excessive amounts of lead (more than 40 micrograms per 100 milliliters of blood and more than 100 micrograms per gram of hair) as compared with less than 1 percent in a control group. A relationship between blood and hair was established which indicated that the absorption was fairly constant for most children examined. It seemned that the ingestion of contaminated dirt and dusts rather than "paint pica" was the major route of lead intake. Metabolic changes were found in most of 21 children selected from those with excessive lead absorption; 10 to 15 percent of this group showed subtle neurological dysfunctions and minor psychomotor abnormalities.
Piacentini, Karim C; Rocha, Liliana O; Fontes, Lívia C; Carnielli, Lorena; Reis, Tatiana A; Corrêa, Benedito
2017-03-01
Worldwide, barley is the main source of carbohydrate in the brewing process. However, corn is often used as an adjunct to improve and accelerate the fermentation process. Considering that, these two substrates are susceptible to fungal contamination as well as mycotoxins. The objective of the current study is to determine the incidence of the mycotoxins deoxynivalenol (DON) and fumonisin B 1 (FB 1 ) in industrial beers. The method applied for mycotoxin analyses included high performance liquid chromatography . The mean levels for recovery experiments were 89.6% for DON and 93.3% for FB 1 . DON was not detected in any of the analyzed samples whereas FB 1 was found in 49% of the 114 samples. The current survey demonstrated levels of FB 1 contamination in industrial beer, possibly due to the addition of contaminated adjuncts. It is necessary to establish maximum levels of mycotoxins in beer in Brazil and other countries in order to reduce health risks. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-09-30
Fields Brook is located in the City of Ashtabula, Ohio and drains a 5.6-square mile watershed (defined as the 'site'). The 3.5 mile main channel of Fields Brook flows through an industrial area that is one of the largest and most diversified concentrations of chemical plants in Ohio. Industrial sources have contaminated the sediment in Fields Brook with a variety of organic and heavy metal pollutants, including TCE, PCE, chlorobenzene, vinyl chloride, arsenic, zinc, mercury and chromium. Base-neutral compounds including hexachloroethane, toluenediamine and toluene diisocyanate also were detected in Fields Brook sediments. Sediments taken from the Ashtabula River in themore » vicinity of Fields Brook are contaminated with PCBs. The U.S. EPA believes that the amount of contamination entering the brook at this time has been substantially reduced due to the recent development of pollution control laws and discharge-permitting requirements.« less
Staley, Zachery R; Grabuski, Josey; Sverko, Ed; Edge, Thomas A
2016-11-01
Storm water runoff is a major source of pollution, and understanding the components of storm water discharge is essential to remediation efforts and proper assessment of risks to human and ecosystem health. In this study, culturable Escherichia coli and ampicillin-resistant E. coli levels were quantified and microbial source tracking (MST) markers (including markers for general Bacteroidales spp., human, ruminant/cow, gull, and dog) were detected in storm water outfalls and sites along the Humber River in Toronto, Ontario, Canada, and enumerated via endpoint PCR and quantitative PCR (qPCR). Additionally, chemical source tracking (CST) markers specific for human wastewater (caffeine, carbamazepine, codeine, cotinine, acetaminophen, and acesulfame) were quantified. Human and gull fecal sources were detected at all sites, although concentrations of the human fecal marker were higher, particularly in outfalls (mean outfall concentrations of 4.22 log 10 copies, expressed as copy numbers [CN]/100 milliliters for human and 0.46 log 10 CN/100 milliliters for gull). Higher concentrations of caffeine, acetaminophen, acesulfame, E. coli, and the human fecal marker were indicative of greater raw sewage contamination at several sites (maximum concentrations of 34,800 ng/liter, 5,120 ng/liter, 9,720 ng/liter, 5.26 log 10 CFU/100 ml, and 7.65 log 10 CN/100 ml, respectively). These results indicate pervasive sewage contamination at storm water outfalls and throughout the Humber River, with multiple lines of evidence identifying Black Creek and two storm water outfalls with prominent sewage cross-connection problems requiring remediation. Limited data are available on specific sources of pollution in storm water, though our results indicate the value of using both MST and CST methodologies to more reliably assess sewage contamination in impacted watersheds. Storm water runoff is one of the most prominent non-point sources of biological and chemical contaminants which can potentially degrade water quality and pose risks to human and ecosystem health. Therefore, identifying fecal contamination in storm water runoff and outfalls is essential for remediation efforts to reduce risks to public health. This study employed multiple methods of identifying levels and sources of fecal contamination in both river and storm water outfall sites, evaluating the efficacy of using culture-based enumeration of E. coli, molecular methods of determining the source(s) of contamination, and CST markers as indicators of fecal contamination. The results identified pervasive human sewage contamination in storm water outfalls and throughout an urban watershed and highlight the utility of using both MST and CST to identify raw sewage contamination. © Crown copyright 2016.
Grabuski, Josey; Sverko, Ed; Edge, Thomas A.
2016-01-01
ABSTRACT Storm water runoff is a major source of pollution, and understanding the components of storm water discharge is essential to remediation efforts and proper assessment of risks to human and ecosystem health. In this study, culturable Escherichia coli and ampicillin-resistant E. coli levels were quantified and microbial source tracking (MST) markers (including markers for general Bacteroidales spp., human, ruminant/cow, gull, and dog) were detected in storm water outfalls and sites along the Humber River in Toronto, Ontario, Canada, and enumerated via endpoint PCR and quantitative PCR (qPCR). Additionally, chemical source tracking (CST) markers specific for human wastewater (caffeine, carbamazepine, codeine, cotinine, acetaminophen, and acesulfame) were quantified. Human and gull fecal sources were detected at all sites, although concentrations of the human fecal marker were higher, particularly in outfalls (mean outfall concentrations of 4.22 log10 copies, expressed as copy numbers [CN]/100 milliliters for human and 0.46 log10 CN/100 milliliters for gull). Higher concentrations of caffeine, acetaminophen, acesulfame, E. coli, and the human fecal marker were indicative of greater raw sewage contamination at several sites (maximum concentrations of 34,800 ng/liter, 5,120 ng/liter, 9,720 ng/liter, 5.26 log10 CFU/100 ml, and 7.65 log10 CN/100 ml, respectively). These results indicate pervasive sewage contamination at storm water outfalls and throughout the Humber River, with multiple lines of evidence identifying Black Creek and two storm water outfalls with prominent sewage cross-connection problems requiring remediation. Limited data are available on specific sources of pollution in storm water, though our results indicate the value of using both MST and CST methodologies to more reliably assess sewage contamination in impacted watersheds. IMPORTANCE Storm water runoff is one of the most prominent non-point sources of biological and chemical contaminants which can potentially degrade water quality and pose risks to human and ecosystem health. Therefore, identifying fecal contamination in storm water runoff and outfalls is essential for remediation efforts to reduce risks to public health. This study employed multiple methods of identifying levels and sources of fecal contamination in both river and storm water outfall sites, evaluating the efficacy of using culture-based enumeration of E. coli, molecular methods of determining the source(s) of contamination, and CST markers as indicators of fecal contamination. The results identified pervasive human sewage contamination in storm water outfalls and throughout an urban watershed and highlight the utility of using both MST and CST to identify raw sewage contamination. PMID:27542934
Organic contaminants in onsite wastewater treatment systems
Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Brown, G.K.
2007-01-01
Wastewater from thirty onsite wastewater treatment systems was sampled during a reconnaissance field study to quantify bulk parameters and the occurrence of organic wastewater contaminants including endocrine disrupting compounds in treatment systems representing a variety of wastewater sources and treatment processes and their receiving environments. Bulk parameters ranged in concentrations representative of the wide variety of wastewater sources (residential vs. non-residential). Organic contaminants such as sterols, surfactant metabolites, antimicrobial agents, stimulants, metal-chelating agents, and other consumer product chemicals, measured by gas chromatography/mass spectrometry were detected frequently in onsite system wastewater. Wastewater composition was unique between source type likely due to differences in source water and chemical usage. Removal efficiencies varied by engineered treatment type and physicochemical properties of the contaminant, resulting in discharge to the soil treatment unit at ecotoxicologically-relevant concentrations. Organic wastewater contaminants were detected less frequently and at lower concentrations in onsite system receiving environments. Understanding the occurrence and fate of organic wastewater contaminants in onsite wastewater treatment systems will aid in minimizing risk to ecological and human health.
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; deGroh, Kim K.; Baney-Barton, Elyse; Sechkar, Edward A.; Hunt, Patricia K.; Willoughby, Alan; Bemer, Meagan; Hope, Stephanie; Koo, Julie; Kaminski, Carolyn;
1999-01-01
A low Earth orbital space experiment entitled, "Polymers Erosion And Contamination Experiment", (PEACE) has been designed as a Get-Away Special (GAS Can) experiment to be accommodated as a Shuttle in-bay environmental exposure experiment. The first objective is to measure the atomic oxygen erosion yields of approximately 40 different polymeric materials by mass loss and erosion measurements using atomic force microscopy. The second objective is to evaluate the capability of identifying sources of silicone contamination through the use of a pin-hole contamination camera which utilizes environmental atomic oxygen to produce a contaminant source image on an optical substrate.
Modelling Urban diffuse pollution in groundwater
NASA Astrophysics Data System (ADS)
Jato, Musa; Smith, Martin; Cundy, Andrew
2017-04-01
Diffuse urban pollution of surface and ground waters is a growing concern in many cities and towns. Traffic-derived pollutants such as salts, heavy metals and polycyclic aromatic hydrocarbons (PAHs) may wash off road surfaces in soluble or particulate forms which later drain through soils and drainage systems into surface waters and groundwater. In Brighton, about 90% of drinking water supply comes from groundwater (derived from the Brighton Chalk block). In common with many groundwater sources the Chalk aquifer has been relatively extensively monitored and assessed for diffuse rural contaminants such as nitrate, but knowledge on the extent of contamination from road run-off is currently lacking. This project examines the transfer of traffic-derived contaminants from the road surface to the Chalk aquifer, via urban drainage systems. A transect of five boreholes have been sampled on a monthly basis and groundwater samples analysed to examine the concentrations of key, mainly road run-off derived, hydrocarbon and heavy metal contaminants in groundwater across the Brighton area. Trace concentrations of heavy metals and phenols have been observed in groundwater. Electrical conductivity changes in groundwater have also been used to assess local changes in ionic strength which may be associated with road-derived contaminants. This has been supplemented by systematic water and sediment sampling from urban gully pots, with further sampling planned from drainage and settlement ponds adjacent to major roads, to examine initial road to drainage system transport of major contaminants.
History of metal contamination in Lake Illawarra, NSW, Australia.
Schneider, Larissa; Maher, William; Potts, Jaimie; Batley, Graeme; Taylor, Anne; Krikowa, Frank; Chariton, Anthony; Zawadzki, Atun; Heijnis, Henk; Gruber, Bernd
2015-01-01
Lake Illawarra has a long history of sediment contamination, particularly by metals, as a result of past and current industrial operations and land uses within the catchment. In this study, we examined the history of metal contamination in sediments using metal analysis and (210)Pb and (137)Cs dating. The distributions of copper, zinc, arsenic, selenium, cadmium and lead concentrations within sediment cores were in agreement with historical events in the lake, and indicated that metal contamination had been occurring since the start of industrial activities in Port Kembla in the late 1800 s. Most metal contamination, however, has occurred since the 1960s. Sedimentation rates were found to be 0.2 cm year(-1) in Griffins Bay and 0.3 cm year(-1) in the centre of the lake. Inputs from creeks bringing metals from Port Kembla in the northeast of the lake and a copper slag emplacement from a former copper refinery on the Windang Peninsula were the main sources of metal inputs to Lake Illawarra. The metals of highest concern were zinc and copper, which exceeded the Australian and New Zealand sediment quality guideline values at some sites. Results showed that while historical contamination persists, current management practices have resulted in reduced metal concentrations in surface sediments in the depositional zones in the centre of the lake. Copyright © 2014 Elsevier Ltd. All rights reserved.
Alegbeleye, Oluwadara Oluwaseun; Singleton, Ian; Sant'Ana, Anderson S
2018-08-01
Foodborne illness resulting from the consumption of contaminated fresh produce is a common phenomenon and has severe effects on human health together with severe economic and social impacts. The implications of foodborne diseases associated with fresh produce have urged research into the numerous ways and mechanisms through which pathogens may gain access to produce, thereby compromising microbiological safety. This review provides a background on the various sources and pathways through which pathogenic bacteria contaminate fresh produce; the survival and proliferation of pathogens on fresh produce while growing and potential methods to reduce microbial contamination before harvest. Some of the established bacterial contamination sources include contaminated manure, irrigation water, soil, livestock/ wildlife, and numerous factors influence the incidence, fate, transport, survival and proliferation of pathogens in the wide variety of sources where they are found. Once pathogenic bacteria have been introduced into the growing environment, they can colonize and persist on fresh produce using a variety of mechanisms. Overall, microbiological hazards are significant; therefore, ways to reduce sources of contamination and a deeper understanding of pathogen survival and growth on fresh produce in the field are required to reduce risk to human health and the associated economic consequences. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kopka, Piotr; Wawrzynczak, Anna; Borysiewicz, Mieczyslaw
2016-11-01
In this paper the Bayesian methodology, known as Approximate Bayesian Computation (ABC), is applied to the problem of the atmospheric contamination source identification. The algorithm input data are on-line arriving concentrations of the released substance registered by the distributed sensors network. This paper presents the Sequential ABC algorithm in detail and tests its efficiency in estimation of probabilistic distributions of atmospheric release parameters of a mobile contamination source. The developed algorithms are tested using the data from Over-Land Atmospheric Diffusion (OLAD) field tracer experiment. The paper demonstrates estimation of seven parameters characterizing the contamination source, i.e.: contamination source starting position (x,y), the direction of the motion of the source (d), its velocity (v), release rate (q), start time of release (ts) and its duration (td). The online-arriving new concentrations dynamically update the probability distributions of search parameters. The atmospheric dispersion Second-order Closure Integrated PUFF (SCIPUFF) Model is used as the forward model to predict the concentrations at the sensors locations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crecelius, E.A.; Fortman, T.J.; Kiesser, S.L.
1989-07-01
Concentrations of Cu, Pb, Zn, PAH's, TBT and FC bacteria were measured in surface sediment, sediment-trap, and water-column samples at two marinas in Puget Sound during summer of 1988. Levels of contaminants inside the marinas were compared with levels outside. TBT had greatest elevation in marina sediments compared to reference sediments. Few of sediments exceeded Puget Sound AET sediment quality values but most did exceed PSDDA screening levels for in-water disposal of dredged sediment. All marinas estimated to contribute less than one percent of total mass loading of Cu, Pb and Zn to main basin of Puget Sound. Contribution ofmore » TBT may be much more significant if antifouling paints are the major source for Puget Sound.« less
Santiago, Igor U; Molisani, Mauricio M; Nudi, Adriana H; Scofield, Artur L; Wagener, Angela de L R; Limaverde Filho, Aricelso M
2016-02-15
Concentrations of PAHs and metals were obtained from mussels collected in beaches, coastal island and estuary of the Macaé coast, the main operational basin for offshore oil exploration in Brazil. This survey provides reference levels for scenarios of increasing exploration, as well as for other areas of the coast undergoing urbanization to support exploration. As expected, urban areas such as the Macaé river estuary presented high concentrations of PAHs, although unsuspected sites such the island also presented signs of contamination. PAH in mussels originated from pyrolytic and petrogenic sources. Metals were typical of non-contaminated coastal environments, although Cr concentrations were above Brazilian Reference Levels. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pakhomova, A A; Aksel'-Rubinshteĭn, V Z; Mikos, K N; Nikitin, E I
2009-01-01
Analysis of experimental data about the quantitative and qualitative chemical make-up of air in the orbital station Mir and International space station (ISS) showed a permanent presence of silicon. The main source of silicon contaminants seems to be a variety of polymethyl siloxane liquids and siloxane coating of electronics. The article describes the volatile silicon contaminants detected in space stations air. To control concentrations of silicon, the existing air purification system needs to be augmented with carbons having the micropore entrance larger than diameters of silicon-containing molecules. It is also important to elaborate the technology of polymethyl siloxane liquids synthesis so as to reduce the amount of volatile admixtures emission and to observe rigorously the pre-flight off-gassing requirements with special concern about silicon coatings.
Characterization and identification of Na-Cl sources in ground water
Panno, S.V.; Hackley, Keith C.; Hwang, H.-H.; Greenberg, S.E.; Krapac, I.G.; Landsberger, S.; O'Kelly, D. J.
2006-01-01
Elevated concentrations of sodium (Na+) and chloride (Cl -) in surface and ground water are common in the United States and other countries, and can serve as indicators of, or may constitute, a water quality problem. We have characterized the most prevalent natural and anthropogenic sources of Na+ and Cl- in ground water, primarily in Illinois, and explored techniques that could be used to identify their source. We considered seven potential sources that included agricultural chemicals, septic effluent, animal waste, municipal landfill leachate, sea water, basin brines, and road deicers. The halides Cl-, bromide (Br-), and iodide (I-) were useful indicators of the sources of Na+-Cl- contamination. Iodide enrichment (relative to Cl-) was greatest in precipitation, followed by uncontaminated soil water and ground water, and landfill leachate. The mass ratios of the halides among themselves, with total nitrogen (N), and with Na+ provided diagnostic methods for graphically distinguishing among sources of Na+ and Cl- in contaminated water. Cl/Br ratios relative to Cl- revealed a clear, although overlapping, separation of sample groups. Samples of landfill leachate and ground water known to be contaminated by leachate were enriched in I- and Br-; this provided an excellent fingerprint for identifying leachate contamination. In addition, total N, when plotted against Cl/Br ratios, successfully separated water contaminated by road salt from water contaminated by other sources. Copyright ?? 2005 National Ground Water Association.
Kephart, Christopher M.; Bushon, Rebecca N.
2010-01-01
An influx of concentrated animal feeding operations in northwest Ohio has prompted local agencies to examine the effects of these industrial farms on water quality in the upper Portage River watershed. The utility of microbial source-tracking (MST) tools as a means of characterizing sources of fecal contamination in the watershed was evaluated. From 2007 to 2008, scientists with the U.S. Geological Survey, Bowling Green State University, and the Wood County Health Department collected and analyzed 17 environmental samples and 13 fecal source samples for Bacteroides-based host-associated DNA markers. At many of the environmental sites tested, MST marker results corroborated the presumptive fecal contamination sources. Results from this demonstration study support the utility of using MST with host-specific molecular markers to characterize the sources of fecal contamination in the Portage River watershed.
Heavy metals in surface lake sediments on the Kola Penninsula as an index of air quality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dauvalter, V.
1996-12-31
The investigations of heavy metal (Ni, Cu, Co, Zn, Pb, Cd, Hg) distribution in sediments of more than 100 lakes were carried out between 1989 and 1994. The study lakes are situated at different distances from two main heavy metal pollution sources of the Kola Peninsula-smelters of the Pechenganickel and Severonickel Companies. To assess the pollution extent of investigated lakes, values of factor and degree of contamination were calculated according to the method suggested by Hakanson (1980). Heavy metal contamination factor (C{sub f}) for each heavy metal was calculated as the quotient of concentration from the uppermost (0-1 cm) sedimentmore » to the mean preindustrial background value (concentrations from 20-30 cm sediment layers) for the investigated region. Degree of contamination (C{sub d}) was defined as the sum of all contamination factors for studied heavy metals. To quantitatively express the potential ecological risk of given contaminants created for ecosystems, risk factor (Er) for each heavy metal has been calculated. Er takes into account the toxicity of a heavy metal and bioproduction index (BPI) of a lake. Risk index (RI) was determined as the sum of all ecological risk factor for studied heavy metals.« less
Leite, Laura; Jude-Lemeilleur, Florence; Raymond, Natalie; Henriques, Isabel; Garabetian, Frédéric; Alves, Artur
2017-09-01
According to the hologenome theory, the microbiota contributes to the fitness of the holobiont having an important role in its adaptation, survival, development, health, and evolution. Environmental stress also affects the microbiota and its capability to assist the holobiont in coping with stress factors. Here, we analyzed the diversity of cultivable bacteria associated with Manila clam tissues (mantle, gills, hemolymph) in two non-contaminated sites (Portugal and France) and one metal-contaminated site (Portugal). A total of 240 isolates were obtained. Representative isolates (n = 198) of the overall diversity were identified by 16S rDNA sequencing and subjected to functional characterization. Isolates affiliated with Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes. Proteobacteria (mostly Pseudoalteromonadaceae and Vibrionaceae) were dominant in non-contaminated sites while Actinobacteria (mostly Microbacteriaceae) dominated in the metal-contaminated site. The main factor affecting the microbiota composition was contamination. No significant differences were observed between clam tissues and geographic regions. Several isolates tested positive for antibacterial activity, biofilm formation, protease, and siderophore production. The results show that the Manila clam harbors a diverse microbiota that may contribute to clam protection and overall fitness, as well as to its adaptation to stressful environments. In addition, the Manila clam microbiota is revealed as a promising source of novel probiotics with potential application in aquaculture.
[Groundwater organic pollution source identification technology system research and application].
Wang, Xiao-Hong; Wei, Jia-Hua; Cheng, Zhi-Neng; Liu, Pei-Bin; Ji, Yi-Qun; Zhang, Gan
2013-02-01
Groundwater organic pollutions are found in large amount of locations, and the pollutions are widely spread once onset; which is hard to identify and control. The key process to control and govern groundwater pollution is how to control the sources of pollution and reduce the danger to groundwater. This paper introduced typical contaminated sites as an example; then carried out the source identification studies and established groundwater organic pollution source identification system, finally applied the system to the identification of typical contaminated sites. First, grasp the basis of the contaminated sites of geological and hydrogeological conditions; determine the contaminated sites characteristics of pollutants as carbon tetrachloride, from the large numbers of groundwater analysis and test data; then find the solute transport model of contaminated sites and compound-specific isotope techniques. At last, through groundwater solute transport model and compound-specific isotope technology, determine the distribution of the typical site of organic sources of pollution and pollution status; invest identified potential sources of pollution and sample the soil to analysis. It turns out that the results of two identified historical pollution sources and pollutant concentration distribution are reliable. The results provided the basis for treatment of groundwater pollution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmeide, Matthias; Kondratenko, Serguei
2011-01-07
Fluorine implantation process purity was considered on different types of high current implanters. It was found that implanters equipped with an indirectly heated cathode ion source show an enhanced deep boron contamination compared to a high current implanter using a cold RF-driven multicusp ion source when boron trifluoride is used for fluorine implantations. This contamination is directly related to the source technology and thus, should be considered potentially for any implanter design using hot cathode/hot filament ion source, independently of the manufacturer.The boron contamination results from the generation of double charged boron ions in the arc chamber and the subsequentmore » charge exchange reaction to single charged boron ions taking place between the arc chamber and the extraction electrode. The generation of the double charged boron ions depends mostly on the source parameters, whereas the pressure in the region between the arc chamber and the extraction electrode is mostly responsible for the charge exchange from double charged to single charged ions. The apparent mass covers a wide range, starting at mass 11. A portion of boron ions with energies of (19/11) times higher than fluorine energy has the same magnetic rigidity as fluorine beam and cannot be separated by the analyzer magnet. The earlier described charge exchange effects between the extraction electrode and the entrance to the analyzer magnet, however, generates boron beam with a higher magnetic rigidity compared to fluorine beam and cannot cause boron contamination after mass-separation.The energetic boron contamination was studied as a function of the ion source parameters, such as gas flow, arc voltage, and source magnet settings, as well as analyzing magnet aperture resolution. This allows process optimization reducing boron contamination to the level acceptable for device performance.« less
Derrien, M; Jardé, E; Gruau, G; Pourcher, A M; Gourmelon, M; Jadas-Hécart, A; Pierson Wickmann, A C
2012-09-01
Improving the microbiological quality of coastal and river waters relies on the development of reliable markers that are capable of determining sources of fecal pollution. Recently, a principal component analysis (PCA) method based on six stanol compounds (i.e. 5β-cholestan-3β-ol (coprostanol), 5β-cholestan-3α-ol (epicoprostanol), 24-methyl-5α-cholestan-3β-ol (campestanol), 24-ethyl-5α-cholestan-3β-ol (sitostanol), 24-ethyl-5β-cholestan-3β-ol (24-ethylcoprostanol) and 24-ethyl-5β-cholestan-3α-ol (24-ethylepicoprostanol)) was shown to be suitable for distinguishing between porcine and bovine feces. In this study, we tested if this PCA method, using the above six stanols, could be used as a tool in "Microbial Source Tracking (MST)" methods in water from areas of intensive agriculture where diffuse fecal contamination is often marked by the co-existence of human and animal sources. In particular, well-defined and stable clusters were found in PCA score plots clustering samples of "pure" human, bovine and porcine feces along with runoff and diluted waters in which the source of contamination is known. A good consistency was also observed between the source assignments made by the 6-stanol-based PCA method and the microbial markers for river waters contaminated by fecal matter of unknown origin. More generally, the tests conducted in this study argue for the addition of the PCA method based on six stanols in the MST toolbox to help identify fecal contamination sources. The data presented in this study show that this addition would improve the determination of fecal contamination sources when the contamination levels are low to moderate. Copyright © 2012 Elsevier Ltd. All rights reserved.
Washburn, Spencer J; Blum, Joel D; Demers, Jason D; Kurz, Aaron Y; Landis, Richard C
2017-10-03
Historic point source mercury (Hg) contamination from industrial processes on the South River (Waynesboro, Virginia) ended decades ago, but elevated Hg concentrations persist in the river system. In an effort to better understand Hg sources, mobility, and transport in the South River, we analyzed total Hg (THg) concentrations and Hg stable isotope compositions of streambed sediments, stream bank soils, suspended particles, and filtered surface waters. Samples were collected along a longitudinal transect of the South River, starting upstream of the historic Hg contamination point-source and extending downstream to the confluence with the South Fork Shenandoah River. Analysis of the THg concentration and Hg isotopic composition of these environmental samples indicates that the regional background Hg source is isotopically distinct in both Δ 199 Hg and δ 202 Hg from Hg derived from the original source of contamination, allowing the tracing of contamination-sourced Hg throughout the study reach. Three distinct end-members are required to explain the Hg isotopic and concentration variation observed in the South River. A consistent negative offset in δ 202 Hg values (∼0.28‰) was observed between Hg in the suspended particulate and dissolved phases, and this fractionation provides insight into the processes governing partitioning and transport of Hg in this contaminated river system.
Zhou, Yongqiang; Jeppesen, Erik; Zhang, Yunlin; Shi, Kun; Liu, Xiaohan; Zhu, Guangwei
2016-02-01
Surface drinking water sources have been threatened globally and there have been few attempts to detect point-source contamination in these waters using chromophoric dissolved organic matter (CDOM) fluorescence. To determine the optimal wavelength derived from CDOM fluorescence as an indicator of point-source contamination in drinking waters, a combination of field campaigns in Lake Qiandao and a laboratory wastewater addition experiment was used. Parallel factor (PARAFAC) analysis identified six components, including three humic-like, two tryptophan-like, and one tyrosine-like component. All metrics showed strong correlation with wastewater addition (r(2) > 0.90, p < 0.0001). Both the field campaigns and the laboratory contamination experiment revealed that CDOM fluorescence at 275/342 nm was the most responsive wavelength to the point-source contamination in the lake. Our results suggest that pollutants in Lake Qiandao had the highest concentrations in the river mouths of upstream inflow tributaries and the single wavelength at 275/342 nm may be adapted for online or in situ fluorescence measurements as an early warning of contamination events. This study demonstrates the potential utility of CDOM fluorescence to monitor water quality in surface drinking water sources. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lorenz, D.L.; Stark, J.R.
1990-01-01
Model simulations also indicated that drawdown caused by pumping two wells, each pumping at 75 gallons per minute and located about 1 mile southeast of the source of contamination, would be effective in controlling movement and volume of contaminated ground water in the immediate area of the source of contamination. Some contamination may already have moved beyond the influence of these wells, however, because of a complex set of hydraulic conditions.
Distribution and Source Identification of Pb Contamination in industrial soil
NASA Astrophysics Data System (ADS)
Ko, M. S.
2017-12-01
INTRODUCTION Lead (Pb) is toxic element that induce neurotoxic effect to human, because competition of Pb and Ca in nerve system. Lead is classified as a chalophile element and galena (PbS) is the major mineral. Although the Pb is not an abundant element in nature, various anthropogenic source has been enhanced Pb enrichment in the environment after the Industrial Revolution. The representative anthropogenic sources are batteries, paint, mining, smelting, and combustion of fossil fuel. Isotope analysis widely used to identify the Pb contamination source. The Pb has four stable isotopes that are 208Pb, 207Pb, 206Pb, and 204Pb in natural. The Pb is stable isotope and the ratios maintain during physical and chemical fractionation. Therefore, variations of Pb isotope abundance and relative ratios could imply the certain Pb contamination source. In this study, distributions and isotope ratios of Pb in industrial soil were used to identify the Pb contamination source and dispersion pathways. MATERIALS AND METHODS Soil samples were collected at depth 0-6 m from an industrial area in Korea. The collected soil samples were dried and sieved under 2 mm. Soil pH, aqua-regia digestion and TCLP carried out using sieved soil sample. The isotope analysis was carried out to determine the abundance of Pb isotope. RESULTS AND DISCUSSION The study area was developed land for promotion of industrial facilities. The study area was forest in 1980, and the satellite image show the alterations of land use with time. The variations of land use imply the possibilities of bringing in external contaminated soil. The Pb concentrations in core samples revealed higher in lower soil compare with top soil. Especially, 4 m soil sample show highest Pb concentrations that are approximately 1500 mg/kg. This result indicated that certain Pb source existed at 4 m depth. CONCLUSIONS This study investigated the distribution and source identification of Pb in industrial soil. The land use and Pb concentration at depth indicated elusive contamination event or contamination sources. In order to identify the contamination source clearly, isotope and Pb compound/mineralogy analysis are necessary.
Myint, Su Latt Tun; Myint, Thuzar; Aung, Wah Wah; Wai, Khin Thet
2015-01-01
A major health consequence of rapid population growth in urban areas is the increased pressure on existing overstretched water and sanitation services. This study of an expanding periurban neighbourhood of Yangon Region, Myanmar, aimed to ascertain the prevalence of acute diarrhoea in children under 5 years; to identify household sources of drinking-water; to describe purification and storage practices; and to assess drinking-water contamination at point-of-use. A survey of the prevalence of acute diarrhoea in children under 5 years was done in 211 households in February 2013; demographic data were also collected, along with data and details of sources of drinking water, water purification, storage practices and waste disposal. During March-August, a subset of 112 households was revisited to collect drinking water samples. The samples were analysed by the multiple tube fermentation method to count thermotolerant (faecal) coliforms and there was a qualitative determination of the presence of Escherichia coli. Acute diarrhoea in children under 5 years was reported in 4.74% (10/211, 95% CI: 3.0-9.0) of households within the past two weeks. More than half of the households used insanitary pit latrines and 36% disposed of their waste into nearby streams and ponds. Improved sources of drinking water were used, mainly the unchlorinated ward reservoir, a chlorinated tube well or purified bottled water. Nearly a quarter of households never used any method for drinking-water purification. Ninety-four per cent (105/112) of water samples were contaminated with thermotolerant (faecal) coliforms, ranging from 2.2 colony-forming units (CFU)/100 mL (21.4%) to more than 1000 CFU/100 mL (60.7%). Of faecal (thermotolerant)-coliform-positive water samples, 70% (47/68) grew E. coli. The prevalence of acute diarrhoea reported for children under 5 years was high and a high level of drinking-water contamination was detected, though it was unclear whether this was due to contamination at source or at point-of-use. Maintenance of drinking-water quality in study households is complex. Further research is crucial to prove the cost effectiveness in quality improvement of drinking water at point-of-use in resource-limited settings. In addition, empowerment of householders to use measures of treating water by boiling, filtration or chlorination, and safe storage with proper handling is essential.
A one-dimensional diffusion model was used to investigate the effects of dense non-aqueous phase liquid (DNAPL) source zone dissolution and remediation on the storage and release of contaminants from aquitards. Source zone dissolution was represented by a power-law source depleti...
Airborne bacterial contaminations in typical Chinese wet market with live poultry trade.
Gao, Xin-Lei; Shao, Ming-Fei; Luo, Yi; Dong, Yu-Fang; Ouyang, Feng; Dong, Wen-Yi; Li, Ji
2016-12-01
Chinese wet markets with live poultry trade have been considered as major sources of pathogen dissemination, and sites for horizontal transfer of bacterial and viral pathogens. In this study, the pathogenic bacteria and antibiotic resistant genes (ARGs) in air samples collected at a typical Chinese wet market had been analysis and quantified. Corynebacterium minutissimum and other pathogenic bacteria accounted for 0.81-8.02% of the whole microbial community in different air samples. The four ARGs quantified in this study showed a comparable relative concentration (copies/ng_DNA) with municipal wastewater. Poultry manures were demonstrated to be important microbial contamination source in wet market, which was supported by both microbial composition based source tracking and the quantification of airborne microbial density. A series of Firmicutes and Bacteroidetes indicators of poultry area contamination were successfully screened, which will be useful for the more convenient monitoring of airborne poultry area contamination. Our results indicate bioaerosols acted as important route for the transmissions of pathogens and ARGs. Continued surveillance of airborne microbial contamination is required in poultry trade wet market. Urban live poultry markets are important sources of pathogen dissemination, and sites for horizontal transfer of viral and bacterial pathogens. In the present field-study, pathogenic bacteria and antibiotic resistance genes were focused to provide quantitative information on the levels of microbial contaminations at the indoor air of wet markets. Results demonstrated that poultry manures were important microbial contamination source in wet market, and in the meanwhile bioaerosols were identified as important route for the transmissions of microbial contaminants. A series of Firmicutes and Bacteroidetes indicators of poultry area contamination were successfully screened, which will be useful for the more convenient monitoring of airborne poultry area contamination. Copyright © 2016 Elsevier B.V. All rights reserved.
Fractionation of heavy metals and assessment of contamination of the sediments of Lake Titicaca.
Cáceres Choque, Luis Fernando; Ramos Ramos, Oswaldo E; Valdez Castro, Sulema N; Choque Aspiazu, Rigoberto R; Choque Mamani, Rocío G; Fernández Alcazar, Samuel G; Sracek, Ondra; Bhattacharya, Prosun
2013-12-01
Chemical weathering is one of the major geochemical processes that control the mobilization of heavy metals. The present study provides the first report on heavy metal fractionation in sediments (8-156 m) of Lake Titicaca (3,820 m a.s.l.), which is shared by the Republic of Peru and the Plurinational State of Bolivia. Both contents of total Cu, Fe, Ni, Co, Mn, Cd, Pb, and Zn and also the fractionation of these heavy metals associated with four different fractions have been determined following the BCR scheme. The principal component analysis suggests that Co, Ni, and Cd can be attributed to natural sources related to the mineralized geological formations. Moreover, the sources of Cu, Fe, and Mn are effluents and wastes generated from mining activities, while Pb and Zn also suggest that their common source is associated to mining activities. According to the Risk Assessment Code, there is a moderate to high risk related to Zn, Pb, Cd, Mn, Co, and Ni mobilization and/or remobilization from the bottom sediment to the water column. Furthermore, the Geoaccumulation Index and the Enrichment Factor reveal that Zn, Pb, and Cd are enriched in the sediments. The results suggest that the effluents from various traditional mining waste sites in both countries are the main source of heavy metal contamination in the sediments of Lake Titicaca.
Wu, Jun; Lu, Jian; Li, Leiming; Min, Xiuyun; Luo, Yongming
2018-06-01
The Qinghai-Tibet Plateau, especially the northeastern region, is not a pure land any more due to recently increasing anthropogenic activities. This study collected soil samples from 70 sites of the northeastern Qinghai-Tibet Plateau to evaluate pollution, ecological-health risks, and possible pollution sources of heavy metals. The concentrations of heavy metals in soil were relatively high. Values of geo-accumulation index exhibited that Hg pollution was the most serious meanwhile Hg possessed the strongest enrichment feature based on enrichment factor values. The modified degrees of contamination showed that about 54.3% and 17.1% of sampling sites were at moderate and high contamination degree while pollution load indexes illustrated that 72.9% and 27.1% of sampling sites possessed moderate and high contamination level, respectively. Ecological risk indexes of heavy metals in soil ranged from 234.6 to 3759.0, suggesting that most of sites were under considerable/very high risks. Cancer risks for adults and children were determined as high and high-very high levels while non-cancer risks for children were high although those for adults were low. Industrial source contributed to the main fraction of ecological and health risks. Summarily speaking, heavy metals in soil of the study area has caused significantly serious pollution and exerted high potential ecological and health risks, especially for children who are more susceptible to hurt from pollutants. Therefore, more efficient and strict pollution control and management in study area should be put out as soon as possible. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Zhiqiang; Hong, Chen; Xing, Yi; Wang, Kang; Li, Yifei; Feng, Lihui; Ma, Silu
2018-06-15
The characterization of the content and source of heavy metals are essential to assess the potential threat of metals to human health. The present study collected 140 topsoil samples around a Cu-Mo mine (Wunugetushan, China) and investigated the concentrations and spatial distribution pattern of Cr, Ni, Zn, Cu, Mo and Cd in soil using multivariate and geostatistical analytical methods. Results indicated that the average concentrations of six heavy metals, especially Cu and Mo, were obviously higher than the local background values. Correlation analysis and principal component analysis divided these metals into three groups, including Cr and Ni, Cu and Mo, Zn and Cd. Meanwhile, the spatial distribution maps of heavy metals indicated that Cr and Ni in soil were no notable anthropogenic inputs and mainly controlled by natural factors because their spatial maps exhibited non-point source contamination. The concentrations of Cu and Mo gradually decreased with distance away from the mine area, suggesting that human mining activities may be crucial in the spreading of contaminants. Soil contamination of Zn were associated with livestock manure produced from grazing. In addition, the environmental risk of heavy metal pollution was assessed by geo-accumulation index. All the results revealed that the spatial distribution of heavy metals in soil were in agreement with the local human activities. Investigating and identifying the origin of heavy metals in pasture soil will lay the foundation for taking effective measures to preserve soil from the long-term accumulation of heavy metals. Copyright © 2018 Elsevier Inc. All rights reserved.
Wu, Yang; Yang, Jun; Zhou, Xiao-yong; Lei, Mei; Gao, Ding; Qiao, Peng-wei; Du, Guo-dong
2015-08-01
For a comprehensive understanding of the pollution characteristics and ecological risk of heavy metals of farmland soil in Du'an Autonomous County of Guangxi Zhuang Autonomous Region, China, this study evaluated the cadmium (Cd), arsenic (As), nickel (Ni), zinc (Zn), chromium (Cr), antimony (Sb), copper (Cu) and lead ( Pb) pollution situation using the single factor index, the Nemerow pollution index and the Hakanson ecological risk index. The results showed that heavy-metal pollution of farmland soil in Du'an County was serious. 74.6% of the soil samples had heavy metals concentrations higher than the Grade II of National Soil Environmental Quality Standard (GB 15618-1995). The over standard rates of Cd, As, Ni, Zn, Cr, Sb, Cu, Pb were 70.6%, 42.9%, 34.9%, 19.8%, 19.6%, 2.94%, 1.59%, 0.79%, respectively. Cd and As were the main contaminants in Du'an County, the pollution was far more serious than those of the national and Guangxi Zhuang Autonomous Region. In terms of the ecological risk, heavy metals of farmland soil in Du'an County showed a "middle" ecological risk, with Cd accounting for 88% of the total ecological risk. The north-west of Jiudu Town and the zone between Bao'an Town and Dongmiao Town were two areas with high ecological risk in Du'an County. The contamination of farmland soils in Du'an County was caused by two main sources, whereas the pollution of As and Sb of farmland soils near Diaojiang River was mainly caused by the upstream mining industry.
Mullaney, John R.; Varekamp, J.C.; MCElroy, A.E.; Brsslin, V.T.
2014-01-01
The main rivers that discharge into LIS are the East River in the west, the Housatonic and Connecticut rivers on the north, and the Thames River at the northeastern end of LIS, with the Quinnipiac and several other smaller rivers also coming in from Connecticut. The East River is a tidal strait that connects LIS with New York Harbor through the heart of the New York City metropolitan region. The Housatonic, Quinnipiac, Connecticut and Thames river basins drain agricultural, urban and industrial lands in a watershed that extends from Connecticut north to Canada. The Sound receives contaminants from many sources within and outside its contributing watershed, including direct discharges from coastal industries, wastewater treatment plants (WWTP), urban runoff, and atmospheric deposition. New England has a long history of industrial activity, with factories that once crowded its riverbanks and shores now having succumbed to economic forces that drove manufacturing overseas. Relict deposits with legacy pollutants in upland sediments persist and combine with modern runoff sources from an increasingly densely populated watershed, and continue to be a source of contaminants for LIS. While toxic exposure from legacy and active sources has diminished over the years as wastewater treatment has improved and industries closed or moved away, pockets of contamination still have consequences for many embayments and coves, particularly near urbanized areas of western LIS. Loading of nutrients and carbon have been of recent concern in LIS because of the extensive impacts observed since the mid-1980s. Excess nutrients not only create inhospitable conditions for higher forms of aquatic life through reduced oxygen levels and disrupting trophic dynamics, but also by altering the local biogeochemistry. As a result, the release of toxic substances into the water column may be enhanced in hypoxic waters, thus exerting a toxic effect or enhancing incorporation of toxic pollutants into the food we
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wickliff, D.S.; Solomon, D.K.; Farrow, N.D.
Solid Waste Storage Area (SWSA) 5 is known to be a significant source of contaminants, especially tritium ({sup 3}H), to the White Oak Creek (WOC) watershed. For example, Solomon et al. (1991) estimated the total {sup 3}H discharge in Melton Branch (most of which originates in SWSA 5) for the 1988 water year to be 1210 Ci. A critical issue for making decisions concerning remedial actions at SWSA 5 is knowing whether the annual contaminant discharge is increasing or decreasing. Because (1) the magnitude of the annual contaminant discharge is highly correlated to the amount of annual precipitation (Solomon etmore » al., 1991) and (2) a significant lag may exist between the time of peak contaminant release from primary sources (i.e., waste trenches) and the time of peak discharge into streams, short-term stream monitoring by itself is not sufficient for predicting future contaminant discharges. In this study we use {sup 3}H to examine the link between contaminant release from primary waste sources and contaminant discharge into streams. By understanding and quantifying subsurface transport processes, realistic predictions of future contaminant discharge, along with an evaluation of the effectiveness of remedial action alternatives, will be possible. The objectives of this study are (1) to characterize the subsurface movement of contaminants (primarily {sup 3}H) with an emphasis on the effects of matrix diffusion; (2) to determine the relative strength of primary vs secondary sources; and (3) to establish a methodology capable of determining whether the {sup 3}H discharge from SWSA 5 to streams is increasing or decreasing.« less
Preliminary investigation of processes that affect source term identification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wickliff, D.S.; Solomon, D.K.; Farrow, N.D.
Solid Waste Storage Area (SWSA) 5 is known to be a significant source of contaminants, especially tritium ({sup 3}H), to the White Oak Creek (WOC) watershed. For example, Solomon et al. (1991) estimated the total {sup 3}H discharge in Melton Branch (most of which originates in SWSA 5) for the 1988 water year to be 1210 Ci. A critical issue for making decisions concerning remedial actions at SWSA 5 is knowing whether the annual contaminant discharge is increasing or decreasing. Because (1) the magnitude of the annual contaminant discharge is highly correlated to the amount of annual precipitation (Solomon etmore » al., 1991) and (2) a significant lag may exist between the time of peak contaminant release from primary sources (i.e., waste trenches) and the time of peak discharge into streams, short-term stream monitoring by itself is not sufficient for predicting future contaminant discharges. In this study we use {sup 3}H to examine the link between contaminant release from primary waste sources and contaminant discharge into streams. By understanding and quantifying subsurface transport processes, realistic predictions of future contaminant discharge, along with an evaluation of the effectiveness of remedial action alternatives, will be possible. The objectives of this study are (1) to characterize the subsurface movement of contaminants (primarily {sup 3}H) with an emphasis on the effects of matrix diffusion; (2) to determine the relative strength of primary vs secondary sources; and (3) to establish a methodology capable of determining whether the {sup 3}H discharge from SWSA 5 to streams is increasing or decreasing.« less
Identification of a new source of reticle contamination
NASA Astrophysics Data System (ADS)
Grenon, Brian J.; Brinkley, David
2016-10-01
Since the introduction of 248 and 193 nm lithography sub-pellicle contamination has been a significant problem and a major contributor to reticle costs and semiconductor yield losses. The most common contaminant identified has been ammonium sulfate commonly called haze, however there have been many other contaminants identified and grouped in the category as haze. In attempts to mitigate the cause of this problem various processes and manufacturing protocols have been put in place to either prevent the problem or identify the source of the problem before there is a negative impact in the wafer fab. In spite of efforts to manage the effects of sub-pellicle contamination in the wafer fab, the problem continues to exist. Over the years we have identified many of the compounds and their sources that exist on the sub-pellicle surface, however one has been elusive. This paper will provide both the identification of this compound and its source.
Method for the removal and recovery of mercury
Easterly, Clay E.; Vass, Arpad A.; Tyndall, Richard L.
1997-01-01
The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.
Method for the removal and recovery of mercury
Easterly, C.E.; Vass, A.A.; Tyndall, R.L.
1997-01-28
The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.
Status of metal levels and their potential sources of contamination in Southeast Asian rivers.
Chanpiwat, Penradee; Sthiannopkao, Suthipong
2014-01-01
To assess the concentration and status of metal contaminants in four major Southeast Asian river systems, water were collected from the Tonle Sap-Bassac Rivers (Cambodia), Citarum River (Indonesia), lower Chao Phraya River (Thailand), and Saigon River (Vietnam) in both dry and wet seasons. The target elements were Be, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, Ba, Tl, and Pb and the concentrations exceeded the background metal concentrations by 1- to 88-fold. This distinctly indicates enrichment by human urban area activities. The results of a normalization technique used to distinguish natural from enriched metal concentrations confirmed contamination by Al, Cd, Co, Mn, Ni, Pb, and Zn. Cluster analysis revealed the probable source of metals contamination in most sampling sites on all rivers studied to be anthropogenic, including industrial, commercial, and residential activities. Stable lead isotopes analyses applied to track the sources and pathways of anthropogenic lead furthermore confirmed that anthropogenic sources of metal contaminated these rivers. Discharges of wastewater from both industrial and household activities were major contributors of Pb into the rivers. Non-point sources, especially road runoff and street dust, also contributed contamination from Pb and other metals.
Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China.
Horvat, Milena; Nolde, Natasa; Fajon, Vesna; Jereb, Vesna; Logar, Martina; Lojen, Sonja; Jacimovic, Radojko; Falnoga, Ingrid; Liya, Qu; Faganeli, Jadran; Drobne, Damjana
2003-03-20
The province of Guizhou in Southwestern China is currently one of the world's most important mercury production areas. Emissions of mercury from the province to the global atmosphere have been estimated to be approximately 12% of the world total anthropogenic emissions. The main objective of this study was to assess the level of contamination with Hg in two geographical areas of Guizhou province. Mercury pollution in the areas concerned originates from mercury mining and ore processing in the area of Wanshan, while in the area of Quingzhen mercury pollution originates from the chemical industry discharging Hg through wastewaters and emissions to the atmosphere due to coal burning for electricity production. The results of this study confirmed high contamination with Hg in soil, sediments and rice in the Hg mining area in Wanshan. High levels of Hg in soil and rice were also found in the vicinity of the chemical plant in Quingzhen. The concentrations of Hg decreased with distance from the main sources of pollution considerably. The general conclusion is that Hg contamination in Wanshan is geographically more widespread, due to deposition and scavenging of Hg from contaminated air and deposition on land. In Quingzhen Hg contamination of soil is very high close to the chemical plant but the levels reach background concentrations at a distance of several km. Even though the major source of Hg in both areas is inorganic Hg, it was observed that active transformation of inorganic Hg to organic Hg species (MeHg) takes place in water, sediments and soils. The concentration of Hg in rice grains can reach up to 569 microg/kg of total Hg of which 145 microg/kg was in MeHg form. The percentage of Hg as MeHg varied from 5 to 83%. The concentrations of selenium can reach up to 16 mg/kg in soil and up to 1 mg/g in rice. A correlation exists between the concentration of Se in soil and rice, indicating that a portion of Se is bioavailable to plants. No correlation between Hg and Se in rice was found. Exposure of the local population to Hg may occur due to inhalation of Hg present in air (in particular in Hg mining area) and consumption of Hg contaminated food (in particular rice and fish) and water. Comparison of intake through these different routes showed that the values of Hg considerably exceed the USA EPA Reference Concentration (RfC) for chronic Hg exposure (RfC is 0.0004 mg/m(3)) close to the emission sources. Intake of Hg through food consumption, particularly rice and fish, is also an important route of Hg exposure in study area. In general, it can be concluded that the population mostly at risk is located in the vicinity of smelting facilities, mining activities and close to the waste disposal sites in the wider area of Wanshan. In order to assess the real level of contamination in the local population, it is recommended that biomonitoring should be performed, including Hg and MeHg measurements in hair, blood and urine samples.
Rapid Assessment of Contaminants and Interferences in Mass Spectrometry Data Using Skyline
NASA Astrophysics Data System (ADS)
Rardin, Matthew J.
2018-04-01
Proper sample preparation in proteomic workflows is essential to the success of modern mass spectrometry experiments. Complex workflows often require reagents which are incompatible with MS analysis (e.g., detergents) necessitating a variety of sample cleanup procedures. Efforts to understand and mitigate sample contamination are a continual source of disruption with respect to both time and resources. To improve the ability to rapidly assess sample contamination from a diverse array of sources, I developed a molecular library in Skyline for rapid extraction of contaminant precursor signals using MS1 filtering. This contaminant template library is easily managed and can be modified for a diverse array of mass spectrometry sample preparation workflows. Utilization of this template allows rapid assessment of sample integrity and indicates potential sources of contamination. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Khrushchinskii, A. A.; Kuten', S. A.; Budevich, N. M.; Minenko, V. F.; Zhukova, O. M.; Luk'yanov, N. K.
2007-11-01
Measurements of the beta-activity of milk, serving as the main source of information on the radioactive contamination of the environment by the iodine isotope 131I, carried out on a DP-100 radiometer in the early post-Chernobyl period (1986) in Belarus, have been mathematically simulated. The results obtained allow the conclusion that the indicated measurements should be analyzed again with consideration for all of the nuclides present in milk.
Bacteriophages and dairy fermentations
Marcó, Mariángeles Briggiler; Moineau, Sylvain; Quiberoni, Andrea
2012-01-01
This review highlights the main strategies available to control phage infection during large-scale milk fermentation by lactic acid bacteria. The topics that are emphasized include the factors influencing bacterial activities, the sources of phage contamination, the methods available to detect and quantify phages, as well as practical solutions to limit phage dispersion through an adapted factory design, the control of air flow, the use of adequate sanitizers, the restricted used of recycled products, and the selection and growth of bacterial cultures. PMID:23275866
A search for debris disks in the Herschel-ATLAS
NASA Astrophysics Data System (ADS)
Thompson, M. A.; Smith, D. J. B.; Stevens, J. A.; Jarvis, M. J.; Vidal Perez, E.; Marshall, J.; Dunne, L.; Eales, S.; White, G. J.; Leeuw, L.; Sibthorpe, B.; Baes, M.; González-Solares, E.; Scott, D.; Vieiria, J.; Amblard, A.; Auld, R.; Bonfield, D. G.; Burgarella, D.; Buttiglione, S.; Cava, A.; Clements, D. L.; Cooray, A.; Dariush, A.; de Zotti, G.; Dye, S.; Eales, S.; Frayer, D.; Fritz, J.; Gonzalez-Nuevo, J.; Herranz, D.; Ibar, E.; Ivison, R. J.; Lagache, G.; Lopez-Caniego, M.; Maddox, S.; Negrello, M.; Pascale, E.; Pohlen, M.; Rigby, E.; Rodighiero, G.; Samui, S.; Serjeant, S.; Temi, P.; Valtchanov, I.; Verma, A.
2010-07-01
Aims: We aim to demonstrate that the Herschel-ATLAS (H-ATLAS) is suitable for a blind and unbiased survey for debris disks by identifying candidate debris disks associated with main sequence stars in the initial science demonstration field of the survey. We show that H-ATLAS reveals a population of far-infrared/sub-mm sources that are associated with stars or star-like objects on the SDSS main-sequence locus. We validate our approach by comparing the properties of the most likely candidate disks to those of the known population. Methods: We use a photometric selection technique to identify main sequence stars in the SDSS DR7 catalogue and a Bayesian Likelihood Ratio method to identify H-ATLAS catalogue sources associated with these main sequence stars. Following this photometric selection we apply distance cuts to identify the most likely candidate debris disks and rule out the presence of contaminating galaxies using UKIDSS LAS K-band images. Results: We identify 78 H-ATLAS sources associated with SDSS point sources on the main-sequence locus, of which two are the most likely debris disk candidates: H-ATLAS J090315.8 and H-ATLAS J090240.2. We show that they are plausible candidates by comparing their properties to the known population of debris disks. Our initial results indicate that bright debris disks are rare, with only 2 candidates identified in a search sample of 851 stars. We also show that H-ATLAS can derive useful upper limits for debris disks associated with Hipparcos stars in the field and outline the future prospects for our debris disk search programme. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Considerable emphasis has been placed on developing watershed-based strategies with the potential to reduce non-point-source fecal contamination. Molecular methods applied used 16S-ribosomal-deoxyribonucleic-acid (rDNA) to try to determine sources of fecal contamination. Objectiv...
Identifying Sources of Fecal Contamination in Streams Associated with Chicken Farms
Poultry is responsible for 44% of the total feces production in the U.S., followed by cattle and swine. The large U.S. production of feces poses a contamination risk for affected watersheds across the country. To aid in the identification of the sources of contamination, many D...
Zhang, Ling; Shi, Zhen; Zhang, Jingping; Jiang, Zhijian; Wang, Fei; Huang, Xiaoping
2016-05-01
Heavy metal concentrations and distribution were studied in sediments, seawater, and molluscs, and the possible heavy metal sources in the coastal waters of Guangdong Province, South China were discussed. The results showed that the concentrations of Cu, Pb, Zn, and Cr in sediments in eastern coastal waters were generally higher than those in the western coastal waters. However, concentrations of most metals in seawater and molluscs in western waters were higher than in the eastern waters, which was tightly related to the local economics and urbanization development, especially, the different industrial structure in two regions. The main heavy metal sources were attributed to the industrial and agricultural effluent, domestic sewage, and even waste gas. Furthermore, heavy metal contamination assessment indicated that high contamination levels of Cd, Zn, and Pb occurred in sediments in local areas, especially in the bays and harbors. The metal accumulation levels by molluscs ranked following the order of Cd > Cu > As > Zn > Pb > Cr, and the ecological risks introduced by heavy metals in different areas were in the order of Zhanjiang > Yangmao > Shantou > Shanhui.
Jani, Zvinji Tella; Maponga, Charles Chiedza; Mudzengi, Josephine; Morse, Gene D.; Nhachi, Charles Fungai Brian
2016-01-01
Labeling information and quality of marketed Moringa oleifera products were assessed. Personnel in 60 pharmacies and 11 herbal shops were interviewed about the sources, dosages, indications and counseling information of Moringa oleifera products. Content analysis of written information provided on Moringa oleifera products was also done. Three samples of Moringa from popular sources were acquired to determine heavy metal content and microbial contamination. The results were compared to specified limits in the European and Chinese pharmacopeia, World Health Organization guidelines and Bureau of Indian Standards. Moringa was available as capsules or powder in 73% of the premises. Moringa was recommended for seven different disease conditions. Four different dosage regimens were prescribed. The main references cited for the counseling information were unscientific literature (62%). The selected Moringa samples were contaminated with bacteria and fungi above the European Pharmacopeia specified limits. Escherichia coli and Salmonella species were present in all three samples. All three samples contained arsenic, nickel and cadmium above the permissible limits. Moringa oleifera with variable labeling information and poor microbial and heavy metal quality is widely available in Zimbabwe. PMID:28239441
Monera-Penduka, Tsitsi Grace; Jani, Zvinji Tella; Maponga, Charles Chiedza; Mudzengi, Josephine; Morse, Gene D; Nhachi, Charles Fungai Brian
2016-12-31
Labeling information and quality of marketed Moringa oleifera products were assessed. Personnel in 60 pharmacies and 11 herbal shops were interviewed about the sources, dosages, indications and counseling information of Moringa oleifera products. Content analysis of written information provided on Moringa oleifera products was also done. Three samples of Moringa from popular sources were acquired to determine heavy metal content and microbial contamination. The results were compared to specified limits in the European and Chinese pharmacopeia, World Health Organization guidelines and Bureau of Indian Standards. Moringa was available as capsules or powder in 73% of the premises. Moringa was recommended for seven different disease conditions. Four different dosage regimens were prescribed. The main references cited for the counseling information were unscientific literature (62%). The selected Moringa samples were contaminated with bacteria and fungi above the European Pharmacopeia specified limits. Escherichia coli and Salmonella species were present in all three samples. All three samples contained arsenic, nickel and cadmium above the permissible limits. Moringa oleifera with variable labeling information and poor microbial and heavy metal quality is widely available in Zimbabwe.
Ünlü, Selma; Alpar, Bedri
2017-05-15
The concentrations and distribution of monoaromatic hydrocarbons (benzene, toluene, ethyl benzene and the sum of m-, p- and o-, xylenes) were determined in the sediments of coastal lagoons of the Gulf of Saros, using a static headspace GC-MS. The total concentrations of BTEX compounds ranged from 368.5 to below detection limit 0.6μgkg -1 dw, with a mean value of 61.5μgkg -1 dw. The light aromatic fraction of m-, p-xylene was the most abundant compound (57.1% in average), and followed by toluene (38.1%)>ethylbenzene (4.1%)>o-xylene (2.5%)>benzene (1.1%). The factor analysis indicated that the levels and distribution of BTEX compounds depend on the type of contaminant source (mobile/point), absorbance of compounds in sediment, and mobility of benzene compound and degradation processes. Point sources are mainly related to agricultural facilities and port activities while the dispersion of compounds are related with their solubility, volatility and effect of sea/saline waters on lagoons. Copyright © 2017. Published by Elsevier Ltd.
Arruda-Santos, Roxanny Helen de; Schettini, Carlos Augusto França; Yogui, Gilvan Takeshi; Maciel, Daniele Claudino; Zanardi-Lamardo, Eliete
2018-05-15
Goiana estuary is a well preserved marine protected area (MPA) located on the northeastern coast of Brazil. Despite its current state, human activities in the watershed represent a potential threat to long term local preservation. Dissolved/dispersed aromatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) were investigated in water and sediments across the estuarine salt gradient. Concentration of aromatic hydrocarbons was low in all samples. According to results, aromatic hydrocarbons are associated to suspended particulate matter (SPM) carried to the estuary by river waters. An estuarine turbidity maximum (ETM) was identified in the upper estuary, indicating that both sediments and contaminants are trapped prior to an occasional export to the adjacent sea. PAHs distribution in sediments were associated with organic matter and mud content. Diagnostic ratios indicated pyrolytic processes as the main local source of PAHs that are probably associated with sugarcane burning and combustion engines. Low PAH concentrations probably do not cause adverse biological effects to the local biota although their presence indicate anthropogenic contamination and pressure on the Goiana estuary MPA. Copyright © 2017 Elsevier B.V. All rights reserved.
Concentrations of selected contaminants in cabin air of airbus aircrafts.
Dechow, M; Sohn, H; Steinhanses, J
1997-07-01
The concentrations of selected air quality parameters in aircraft cabins were investigated including particle numbers in cabin air compared to fresh air and recirculation air, the microbiological contamination and the concentration of volatile organic compounds (VOC). The Airbus types A310 of Swissair and A340 of Lufthansa were used for measurements. The particles were found to be mainly emitted by the passengers, especially by smokers. Depending on recirculation filter efficiency the recirculation air contained a lower or equal amount of particles compared to the fresh air, whereas the amount of bacteria exceeded reported concentrations within other indoor spaces. The detected species were mainly non-pathogenic, with droplet infection over short distances identified as the only health risk. The concentration of volatile organic compounds (VOC) were well below threshold values. Ethanol was identified as the compound with the highest amount in cabin air. Further organics were emitted by the passengers--as metabolic products or by smoking--and on ground as engine exhaust (bad airport air quality). Cleaning agents may be the source of further compounds.
Occurrence and distribution of antifouling biocide Irgarol-1051 in coral reef ecosystems, Zanzibar.
Sheikh, Mohammed A; Juma, Fatma S; Staehr, Peter; Dahl, Karsten; Rashid, Rashid J; Mohammed, Mohammed S; Ussi, Ali M; Ali, Hassan R
2016-08-15
2-methythiol-4-tert-butylamino-6-cyclopropylamino-s-triazine (Irgarol-1051) has been widely used as effective alternative antifouling paint in marine structures including ships. However, it has been causing deleterious effects to marine organisms including reef building corals. The main objective of this study was to establish baseline levels of Irgarol-1051 around coral reefs and nearby ecosystems along coastline of Zanzibar Island. The levels of Irgarol-1051 ranged from 1.35ng/L around coral reefs to 15.44ng/L around harbor with average concentration of 4.11 (mean)±0.57 (SD) ng/L. This is below Environmental Risk Limit of 24ng/L as proposed by Dutch Authorities which suggests that the contamination is not alarming especially for coral reef ecosystem health. The main possible sources of the contamination are from shipping activities. This paper provides important baseline information of Irgarol-1051 around the coral reef ecosystems within the Western Indian Ocean (WIO) region and may be useful for formulation of marine conservation strategies and policies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Christ, John A.; Ramsburg, C. Andrew; Abriola, Linda M.; Pennell, Kurt D.; Löffler, Frank E.
2005-01-01
The infiltration of dense non-aqueous-phase liquids (DNAPLs) into the saturated subsurface typically produces a highly contaminated zone that serves as a long-term source of dissolved-phase groundwater contamination. Applications of aggressive physical–chemical technologies to such source zones may remove > 90% of the contaminant mass under favorable conditions. The remaining contaminant mass, however, can create a rebounding of aqueous-phase concentrations within the treated zone. Stimulation of microbial reductive dechlorination within the source zone after aggressive mass removal has recently been proposed as a promising staged-treatment remediation technology for transforming the remaining contaminant mass. This article reviews available laboratory and field evidence that supports the development of a treatment strategy that combines aggressive source-zone removal technologies with subsequent promotion of sustained microbial reductive dechlorination. Physical–chemical source-zone treatment technologies compatible with posttreatment stimulation of microbial activity are identified, and studies examining the requirements and controls (i.e., limits) of reductive dechlorination of chlorinated ethenes are investigated. Illustrative calculations are presented to explore the potential effects of source-zone management alternatives. Results suggest that, for the favorable conditions assumed in these calculations (i.e., statistical homogeneity of aquifer properties, known source-zone DNAPL distribution, and successful bioenhancement in the source zone), source longevity may be reduced by as much as an order of magnitude when physical–chemical source-zone treatment is coupled with reductive dechlorination. PMID:15811838
Walters, David M.; Otter, Ryan R.; Kraus, Johanna M.; Mills, Marc A.
2018-01-01
We investigated PCB contamination at the Ashtabula River Area of Concern (AOC) following remedial dredging using araneid and tetragnathid spiders. PCB concentrations remain elevated in the AOC compared to reference conditions. Patterns of contamination were strikingly similar between taxa, but were higher in tetragnathids at the most contaminated sites. Spider PCB homolog distributions identified two PCB sources to the AOC. Based on these findings, we recommend situations where these taxa can be used singularly, in concert, or combined into a composite “spider” sample to assess environmental contamination.
Quality of Source Water from Public-Supply Wells in the United States, 1993-2007
Toccalino, Patricia L.; Norman, Julia E.; Hitt, Kerie J.
2010-01-01
More than one-third of the Nation's population receives their drinking water from public water systems that use groundwater as their source. The U.S. Geological Survey (USGS) sampled untreated source water from 932 public-supply wells, hereafter referred to as public wells, as part of multiple groundwater assessments conducted across the Nation during 1993-2007. The objectives of this study were to evaluate (1) contaminant occurrence in source water from public wells and the potential significance of contaminant concentrations to human health, (2) national and regional distributions of groundwater quality, and (3) the occurrence and characteristics of contaminant mixtures. Treated finished water was not sampled. The 932 public wells are widely distributed nationally and include wells in selected parts of 41 states and withdraw water from parts of 30 regionally extensive aquifers used for public water supply. These wells are distributed among 629 unique public water systems-less than 1 percent of all groundwater-supplied public water systems in the United States-but the wells were randomly selected within the sampled hydrogeologic settings to represent typical aquifer conditions. Samples from the 629 systems represent source water used by one-quarter of the U.S. population served by groundwater-supplied public water systems, or about 9 percent of the entire U.S. population in 2008. One groundwater sample was collected prior to treatment or blending from each of the 932 public wells and analyzed for as many as six water-quality properties and 215 contaminants. Consistent with the terminology used in the Safe Drinking Water Act (SDWA), all constituents analyzed in water samples in this study are referred to as 'contaminants'. More contaminant groups were assessed in this study than in any previous national study of public wells and included major ions, nutrients, radionuclides, trace elements, pesticide compounds, volatile organic compounds (VOCs), and fecal-indicator microorganisms. Contaminant mixtures were assessed in subsets of samples in which most contaminants were analyzed. Contaminant concentrations were compared to human-health benchmarks-regulatory U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Levels (MCLs) for contaminants regulated in drinking water under the SDWA or non-regulatory USGS Health-Based Screening Levels (HBSLs) for unregulated contaminants, when available. Nearly three-quarters of the contaminants assessed in this study are unregulated in drinking water, and the USEPA uses USGS data on the occurrence of unregulated contaminants in water resources to fulfill part of the SDWA requirements for determining whether specific contaminants should be regulated in drinking water in the future. More than one in five (22 percent) source-water samples from public wells contained one or more naturally occurring or man-made contaminants at concentrations greater than human-health benchmarks, and 80 percent of samples contained one or more contaminants at concentrations greater than one-tenth of benchmarks. Most individual contaminant detections, however, were less than one-tenth of human-health benchmarks. Public wells yielding water with contaminant concentrations greater than benchmarks, as well as those with concentrations greater than one-tenth of benchmarks, were distributed throughout the United States and included wells that withdraw water from all principal aquifer rock types included in this study. Ten contaminants individually were detected at concentrations greater than human-health benchmarks in at least 1 percent of source-water samples and collectively accounted for most concentrations greater than benchmarks. Seven of these 10 contaminants occur naturally, including three radionuclides (radon, radium, and gross alpha-particle radioactivity) and four trace elements (arsenic, manganese, strontium, and boron); three of these 10 contaminants (dieldrin, nitrate, and perchl
Khani, Rouhollah; Moudi, Maryam; Khojeh, Vahid
2017-02-01
There are great concentrations of toxic metallic and metalloid elements such as lead, arsenic, mercury, cadmium or silver in many species of mushrooms comparative to other fruits and vegetables. In this study, contamination with heavy and toxic metallic and metalloid elements in the cultivated mushroom of (Pleurotus florida (Mont.) Singer) is investigated. P. florida was cultivated on different substrates; wheat straw (as blank), wheat straw + pine cone, wheat straw + soybean straw and wheat straw + urea and the effects of these substrates on contamination levels of Mn, Fe, Cu, Zn, As, Cd, and Pb were analyzed. The results showed that the concentrations of essential elements (Mn, Fe, Cu, and Zn) in the target mushroom are at the typical levels. The estimated daily intakes of studied metallic and metalloid elements were below their oral reference dosage mentioned by the international regulatory bodies. Health risk index (HRI) was calculated to evaluate the consumer's health risk assessment from the metal intake that contaminated in the cultivated mushroom of P. florida on the different nutrient sources. In this study, the individual HRIs were less than 1, which indicates insignificant potential health risk associated with the consumption of target mushroom from the studied substrates. Based on the HRIs values among the toxic metallic and metalloid elements, As in the target mushroom in the substrate of the wheat straw + pine cone is the main sources of risk, and it may cause severe health problems. Thus, this study suggests that the concentrations of heavy and toxic elements should be periodically monitored in cultivated mushrooms.
Drinking water decontamination by biological denitrification using fresh bamboo as inoculum source.
Bucco, Samuel; Padoin, Natan; Netto, Willibaldo Schmidell; Soares, Hugo Moreira
2014-10-01
Groundwater contamination is becoming a serious problem in many Brazilian regions. European countries started to deal with this issue in the 1980s, mainly caused by the extensive usage of nitrogenous fertilizers and the absence of domestic wastewater treatment. Due to its high solubility, nitrate readily passes through the soil and reaches the aquifer. Thereafter, this ion moves, following groundwater flow, and can be found several kilometers from the area where the pollution occurred. Concern about nitrate contamination is due to the link found between this contaminant and various human health diseases, such as methemoglobin and cancer. Studies carried out in France enabled the design and implementation of several biological denitrification plants throughout the country, in order to remove nitrate from its contaminated groundwater. Heterotrophic denitrification facilities shown to be adequate to treat high water flows with satisfactory nitrate removal efficiency, especially when static media supports are employed. The objective of this research was to evaluate the existence of denitrifying microorganisms in bamboo (Bambusa tuldóides) and verify the feasibility of their use to inoculate a pilot-scale fixed-bed bioreactor. The support material selected to fill the bioreactor bed was commercial polypropylene Pall rings, since such support has a high porosity associated with a wide superficial area. The bioreactor was able to produce and retain a large amount of cells. Using ethanol as carbon source, nitrate (N-NO3(-)) removal efficiency of the bioreactor stood around 80 % for a maximum nitrogen loading rate of approximately 6.5 mg N-NO3 (-) L(-1) h(-1).
Li, Xinyu; Li, Zhonggen; Lin, Che-Jen; Bi, Xiangyang; Liu, Jinling; Feng, Xinbin; Zhang, Hua; Chen, Ji; Wu, Tingting
2018-06-04
Smelting of nonferrous metals is an important source of heavy metals in surface soil. The crops/vegetables grown on contaminated soil potentially impose adverse effects on human health. In this study, the contamination level of five heavy metals (Hg, Pb, Zn, Cd and Cu) in ten types of vegetables grown nearby a large scale Pb/Zn smelter in Hunan Province, China and the health risk associated with their consumption are assessed. Based on the data obtained from 52 samples, we find that Pb and Cd contributed to the greatest health risk and leafy vegetables tend to be more contaminated than non-leafy vegetables. Within 4 km radius of the smelter, over 75% of vegetable samples exceeded the national food standard for Pb; over 47% exceeded the Cd standard; and 7% exceeded the Hg standard. Heavy metal concentrations in vegetables measured within the 4 km radius are on average three times more elevated compared to those found at the control area 15 km away. Heavy metals in vegetables have dual sources of root absorption from soil and leaf adsorption from atmosphere. Health risk in terms of the hazard index (HI) at contaminated areas are 3.66 and 3.14 for adults and children, respectively, suggesting adverse health effects would occur. HI for both groups are mainly contributed by Pb (48%) and Cd (40%). Fortunately, vegetable samples collected at the control area are considered safe to consume. Copyright © 2018 Elsevier Inc. All rights reserved.
Outbreak of acute renal failure in Panama in 2006: a case-control study.
Rentz, E Danielle; Lewis, Lauren; Mujica, Oscar J; Barr, Dana B; Schier, Joshua G; Weerasekera, Gayanga; Kuklenyik, Peter; McGeehin, Michael; Osterloh, John; Wamsley, Jacob; Lum, Washington; Alleyne, Camilo; Sosa, Nestor; Motta, Jorge; Rubin, Carol
2008-10-01
In September 2006, a Panamanian physician reported an unusual number of patients with unexplained acute renal failure frequently accompanied by severe neurological dysfunction. Twelve (57%) of 21 patients had died of the illness. This paper describes the investigation into the cause of the illness and the source of the outbreak. Case-control and laboratory investigations were implemented. Case patients (with acute renal failure of unknown etiology and serum creatinine > 2 mg/dl) were individually matched to hospitalized controls for age (+/- 5 years), sex and admission date (< 2 days before the case patient). Questionnaire and biological data were collected. The main outcome measure was the odds of ingesting prescription cough syrup in cases and controls. Forty-two case patients and 140 control patients participated. The median age of cases was 68 years (range: 25-91 years); 64% were male. After controlling for pre-existing hypertension and renal disease and the use of angiotensin-converting enzyme inhibitors, a significant association was found between ingestion of prescription cough syrup and illness onset (adjusted odds ratio: 31.0, 95% confidence interval: 6.93-138). Laboratory analyses confirmed the presence of diethylene glycol (DEG) in biological samples from case patients, 8% DEG contamination in cough syrup samples and 22% contamination in the glycerin used to prepare the cough syrup. The source of the outbreak was DEG-contaminated cough syrup. This investigation led to the recall of approximately 60 000 bottles of contaminated cough syrup, widespread screening of potentially exposed consumers and treatment of over 100 affected patients.
Rivoal, K.; Ragimbeau, C.; Salvat, G.; Colin, P.; Ermel, G.
2005-01-01
In many industrialized countries, the incidence of campylobacteriosis exceeds that of salmonellosis. Campylobacter bacteria are transmitted to humans mainly in food, especially poultry meat products. Total prevention of Campylobacter colonization in broiler flocks is the best way to reduce (or eliminate) the contamination of poultry products. The aim of this study was to establish the sources and routes of contamination of broilers at the farm level. Molecular typing methods (DNA macrorestriction pulsed-field gel electrophoresis and analysis of gene polymorphism by PCR-restriction fragment length polymorphism) were used to characterize isolates collected from seven broiler farms. The relative genomic diversity of Campylobacter coli and Campylobacter jejuni was determined. Analysis of the similarity among 116 defined genotypes was used to determine clusters within the two species. Furthermore, evidence of recombination suggested that there were genomic rearrangements within the Campylobacter populations. Recovery of related clusters from different broiler farms showed that some Campylobacter strains might be specifically adapted to poultry. Analysis of the Campylobacter cluster distribution on three broiler farms showed that soil in the area around the poultry house was a potential source of Campylobacter contamination. The broilers were infected by Campylobacter spp. between days 15 and 36 during rearing, and the type of contamination changed during the rearing period. A study of the effect of sanitary barriers showed that the chickens stayed Campylobacter spp. free until they had access to the open area. They were then rapidly colonized by the Campylobacter strains isolated from the soil. PMID:16204541
Chobtang, Jeerasak; de Boer, Imke J. M.; Hoogenboom, Ron L. A. P.; Haasnoot, Willem; Kijlstra, Aize; Meerburg, Bastiaan G.
2011-01-01
Dioxins and dioxin-like polychlorinated biphenyls (DL-PCBs) are hazardous toxic, ubiquitous and persistent chemical compounds, which can enter the food chain and accumulate up to higher trophic levels. Their determination requires sophisticated methods, expensive facilities and instruments, well-trained personnel and expensive chemical reagents. Ideally, real-time monitoring using rapid detection methods should be applied to detect possible contamination along the food chain in order to prevent human exposure. Sensor technology may be promising in this respect. This review gives the state of the art for detecting possible contamination with dioxins and DL-PCBs along the food chain of animal-source foods. The main detection methods applied (i.e., high resolution gas-chromatography combined with high resolution mass-spectrometry (HRGC/HRMS) and the chemical activated luciferase gene expression method (CALUX bioassay)), each have their limitations. Biosensors for detecting dioxins and related compounds, although still under development, show potential to overcome these limitations. Immunosensors and biomimetic-based biosensors potentially offer increased selectivity and sensitivity for dioxin and DL-PCB detection, while whole cell-based biosensors present interpretable biological results. The main shortcoming of current biosensors, however, is their detection level: this may be insufficient as limits for dioxins and DL-PCBs for food and feedstuffs are in pg per gram level. In addition, these contaminants are normally present in fat, a difficult matrix for biosensor detection. Therefore, simple and efficient extraction and clean-up procedures are required which may enable biosensors to detect dioxins and DL-PCBs contamination along the food chain. PMID:22247688
Chobtang, Jeerasak; de Boer, Imke J M; Hoogenboom, Ron L A P; Haasnoot, Willem; Kijlstra, Aize; Meerburg, Bastiaan G
2011-01-01
Dioxins and dioxin-like polychlorinated biphenyls (DL-PCBs) are hazardous toxic, ubiquitous and persistent chemical compounds, which can enter the food chain and accumulate up to higher trophic levels. Their determination requires sophisticated methods, expensive facilities and instruments, well-trained personnel and expensive chemical reagents. Ideally, real-time monitoring using rapid detection methods should be applied to detect possible contamination along the food chain in order to prevent human exposure. Sensor technology may be promising in this respect. This review gives the state of the art for detecting possible contamination with dioxins and DL-PCBs along the food chain of animal-source foods. The main detection methods applied (i.e., high resolution gas-chromatography combined with high resolution mass-spectrometry (HRGC/HRMS) and the chemical activated luciferase gene expression method (CALUX bioassay)), each have their limitations. Biosensors for detecting dioxins and related compounds, although still under development, show potential to overcome these limitations. Immunosensors and biomimetic-based biosensors potentially offer increased selectivity and sensitivity for dioxin and DL-PCB detection, while whole cell-based biosensors present interpretable biological results. The main shortcoming of current biosensors, however, is their detection level: this may be insufficient as limits for dioxins and DL-PCBs for food and feedstuffs are in pg per gram level. In addition, these contaminants are normally present in fat, a difficult matrix for biosensor detection. Therefore, simple and efficient extraction and clean-up procedures are required which may enable biosensors to detect dioxins and DL-PCBs contamination along the food chain.
Into the deep: Evaluation of SourceTracker for assessment of faecal contamination of coastal waters.
Henry, Rebekah; Schang, Christelle; Coutts, Scott; Kolotelo, Peter; Prosser, Toby; Crosbie, Nick; Grant, Trish; Cottam, Darren; O'Brien, Peter; Deletic, Ana; McCarthy, David
2016-04-15
Faecal contamination of recreational waters is an increasing global health concern. Tracing the source of the contaminant is a vital step towards mitigation and disease prevention. Total 16S rRNA amplicon data for a specific environment (faeces, water, soil) and computational tools such as the Markov-Chain Monte Carlo based SourceTracker can be applied to microbial source tracking (MST) and attribution studies. The current study applied artificial and in-laboratory derived bacterial communities to define the potential and limitations associated with the use of SourceTracker, prior to its application for faecal source tracking at three recreational beaches near Port Phillip Bay (Victoria, Australia). The results demonstrated that at minimum multiple model runs of the SourceTracker modelling tool (i.e. technical replicates) were required to identify potential false positive predictions. The calculation of relative standard deviations (RSDs) for each attributed source improved overall predictive confidence in the results. In general, default parameter settings provided high sensitivity, specificity, accuracy and precision. Application of SourceTracker to recreational beach samples identified treated effluent as major source of human-derived faecal contamination, present in 69% of samples. Site-specific sources, such as raw sewage, stormwater and bacterial populations associated with the Yarra River estuary were also identified. Rainfall and associated sand resuspension at each location correlated with observed human faecal indicators. The results of the optimised SourceTracker analysis suggests that local sources of contamination have the greatest effect on recreational coastal water quality. Copyright © 2016 Elsevier Ltd. All rights reserved.
Le Coq, M; Simon, I; Sire, C; Tissot-Guerraz, F; Fournier, L; Aho, S; Noblot, G; Reverdy, M E; Françoise, M
2001-02-01
Methicillin-resistant Staphylococcus aureus (MRSA) nosocomial infections frequently occur in the hospital environment, but their incidence is less often observed in neonates. In the present investigation, seventeen cases were recorded over a nine-week period (two cases per week). Pulsed field gradient gel electrophoresis confirmed the clonal character of the strain. The hypothesis of manually-transmitted infection due to contamination from multiple sources was reinforced by the fact the epidemic persisted in spite of the elimination of the main human infectious source and an absence of risk factors determined by the case-control study. The role of environmental factors in the persistence of this outbreak of MRSA infection has been considered.
Photoacoustic spectroscopy-based analysis of gas samples in a bus station
NASA Astrophysics Data System (ADS)
Sthel, M. S.; Schramm, D. U.; Faria, R. T., Jr.; Castro, M. P. P.; Carneiro, L. O.; Ribeiro, W. S.; Vargas, H.
2005-06-01
In Campos dos Goytacazes is a city located in the Northern region of Rio de Janeiro State, Brazil, the main source of air pollution are exhaust from vehicle engines powered by diesel oil, such as buses and trucks. It is known that the combustion of diesel oil is source of many contaminant gases such as: nitrogen oxides, SO2, CO and hydrocarbons. At this work, we use a SO2laser photoacoustic spectrometer to analyze gas samples collected in a bus characterized by an intense traffic. After this study, some gas species of environmental interest, such as SO2 and NO2, were detected and identified in the collected samples, at level of ppm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hillesheim, M.; Mosey, G.
2014-11-01
The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response, in accordance with the RE-Powering America's Lands initiative, engaged the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to conduct feasibility studies to assess the viability of developing renewable energy generating facilities on contaminated sites. Portsmouth Naval Shipyard (PNSY) is a United States Navy facility located on a series of conjoined islands in the Piscataqua River between Kittery, ME and Portsmouth, NH. EPA engaged NREL to conduct a study to determine technical feasibility of deploying ground-source heat pump systems to help PNSY achieve energy reductionmore » goals.« less
Vapor Intrusion Estimation Tool for Unsaturated Zone Contaminant Sources. User’s Guide
2016-08-30
324449 Page Intentionally Left Blank iii Executive Summary Soil vapor extraction (SVE) is a prevalent remediation approach for volatile contaminants...strength and location, vadose zone transport, and a model for estimating movement of soil -gas vapor contamination into buildings. The tool may be...framework for estimating the impact of a vadose zone contaminant source on soil gas concentrations and vapor intrusion into a building
Identification of fecal contamination sources in water using host-associated markers.
Krentz, Corinne A; Prystajecky, Natalie; Isaac-Renton, Judith
2013-03-01
In British Columbia, Canada, drinking water is tested for total coliforms and Escherichia coli, but there is currently no routine follow-up testing to investigate fecal contamination sources in samples that test positive for indicator bacteria. Reliable microbial source tracking (MST) tools to rapidly test water samples for multiple fecal contamination markers simultaneously are currently lacking. The objectives of this study were (i) to develop a qualitative MST tool to identify fecal contamination from different host groups, and (ii) to evaluate the MST tool using water samples with evidence of fecal contamination. Singleplex and multiplex polymerase chain reaction (PCR) were used to test (i) water from polluted sites and (ii) raw and drinking water samples for presence of bacterial genetic markers associated with feces from humans, cattle, seagulls, pigs, chickens, and geese. The multiplex MST assay correctly identified suspected contamination sources in contaminated waterways, demonstrating that this test may have utility for heavily contaminated sites. Most raw and drinking water samples analyzed using singleplex PCR contained at least one host-associated marker. Singleplex PCR was capable of detecting host-associated markers in small sample volumes and is therefore a promising tool to further analyze water samples submitted for routine testing and provide information useful for water quality management.
Too, Johana Kiplagat; Kipkemboi Sang, Willy; Ng'ang'a, Zipporah; Ngayo, Musa Otieno
2016-08-01
Inadequate protection of water sources, and poor household hygienic and handling practices have exacerbated fecal water contamination in Kenya. This study evaluated the rate and correlates of thermotolerant coliform (TTC) household water contamination in Kericho District, Western Kenya. Culture and multiplex polymerase chain reaction (PCR) techniques were used to characterize TTCs. The disk diffusion method was used for antibiotic susceptibility profiling of pathogenic Escherichia coli. Out of the 103 households surveyed, 48 (46.6%) had TTC contaminated drinking water (TTC levels of >10 cfu/100 mL). Five of these households were contaminated with pathogenic E. coli, including 40% enteroaggregative E. coli, 40% enterotoxigenic E. coli, and 20% enteropathogenic E. coli. All these pathogenic E. coli strains were multidrug resistant to sulfamethoxazole/trimethoprim, ampicillin, tetracycline and ampicillin/sulbactam. Rural household locality, drinking water hand contact, water storage container cleaning practice, hand washing before water withdrawal, water source total coliforms <10 cfu/100 mL, temperature, and free chlorine levels were associated with TTC contamination of household drinking water. Significant proportions of household drinking water in Kericho District are contaminated with TTCs including with pathogenic multidrug-resistant E. coli. Source and household hygiene and practices contribute significantly to drinking water contamination.
Zhong, Taiyang; Chen, Dongmei; Zhang, Xiuying
2016-11-09
Identification of the sources of soil mercury (Hg) on the provincial scale is helpful for enacting effective policies to prevent further contamination and take reclamation measurements. The natural and anthropogenic sources and their contributions of Hg in Chinese farmland soil were identified based on a decision tree method. The results showed that the concentrations of Hg in parent materials were most strongly associated with the general spatial distribution pattern of Hg concentration on a provincial scale. The decision tree analysis gained an 89.70% total accuracy in simulating the influence of human activities on the additions of Hg in farmland soil. Human activities-for example, the production of coke, application of fertilizers, discharge of wastewater, discharge of solid waste, and the production of non-ferrous metals-were the main external sources of a large amount of Hg in the farmland soil.
Zhong, Taiyang; Chen, Dongmei; Zhang, Xiuying
2016-01-01
Identification of the sources of soil mercury (Hg) on the provincial scale is helpful for enacting effective policies to prevent further contamination and take reclamation measurements. The natural and anthropogenic sources and their contributions of Hg in Chinese farmland soil were identified based on a decision tree method. The results showed that the concentrations of Hg in parent materials were most strongly associated with the general spatial distribution pattern of Hg concentration on a provincial scale. The decision tree analysis gained an 89.70% total accuracy in simulating the influence of human activities on the additions of Hg in farmland soil. Human activities—for example, the production of coke, application of fertilizers, discharge of wastewater, discharge of solid waste, and the production of non-ferrous metals—were the main external sources of a large amount of Hg in the farmland soil. PMID:27834884
NASA Astrophysics Data System (ADS)
Bigalke, Moritz; Weyer, Stefan; Kobza, Jozef; Wilcke, Wolfgang
2010-12-01
Copper and Zn metals are produced in large quantities for different applications. During Cu production, large amounts of Cu and Zn can be released to the environment. Therefore, the surroundings of Cu smelters are frequently metal-polluted. We determined Cu and Zn concentrations and Cu and Zn stable isotope ratios (δ 65Cu, δ 66Zn) in three soils at distances of 1.1, 3.8, and 5.3 km from a Slovak Cu smelter and in smelter wastes (slag, sludge, ash) to trace sources and transport of Cu and Zn in soils. Stable isotope ratios were measured by multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) in total digests. Soils were heavily contaminated with concentrations up to 8087 μg g -1 Cu and 2084 μg g -1 Zn in the organic horizons. The δ 65Cu values varied little (-0.12‰ to 0.36‰) in soils and most wastes and therefore no source identification was possible. In soils, Cu became isotopically lighter with increasing depth down to 0.4 m, likely because of equilibrium reactions between dissolved and adsorbed Cu species during transport of smelter-derived Cu through the soil. The δ 66Zn IRMM values were isotopically lighter in ash (-0.41‰) and organic horizons (-0.85‰ to -0.47‰) than in bedrock (-0.28‰) and slag (0.18‰) likely mainly because of kinetic fractionation during evaporation and thus allowed for separation of smelter-Zn from native Zn in soil. In particular in the organic horizons large variations in δ 66Zn values occur, probably caused by biogeochemical fractionation in the soil-plant system. In the mineral horizons, Zn isotopes showed only minor shifts to heavier δ 66Zn values with depth mainly because of the mixing of smelter-derived Zn and native Zn in the soils. In contrast to Cu, Zn isotope fractionation between dissolved and adsorbed species was probably only a minor driver in producing the observed variations in δ 66Zn values. Our results demonstrate that metal stable isotope ratios may serve as tracer of sources, vertical dislocation, and biogeochemical behavior in contaminated soil.
1993-09-01
CONTAMINANT TRANSPORT IS AFFECTED BY RATE-LIMITED SORPTION AND DESORPTION IgIntroduction Groundwater is the source of drinking water for...depend upon groundwater as their drinking water source [Wentz, 1989:271] . Historically, groundwater has been considered an unlimited and safe source...of drinking water. However, the widespread contamination of groundwater due to years of accidental or deliberate dumping of various synthetic organic
In situ remediation of contaminated marinesediment: an overview.
Lofrano, G; Libralato, G; Minetto, D; De Gisi, S; Todaro, F; Conte, B; Calabrò, D; Quatraro, L; Notarnicola, M
2017-02-01
Sediment tends to accumulate inorganic and persistent hydrophobic organic contaminants representing one of the main sinks and sources of pollution. Generally, contaminated sediment poses medium- and long-term risks to humans and ecosystem health; dredging activities or natural resuspension phenomena (i.e., strongly adverse weather conditions) can remobilize pollution releasing it into the water column. Thus, ex situ traditional remediation activities (i.e., dredging) can be hazardous compared to in situ techniques that try to keep to a minimum sediment mobilization, unless dredging is compulsory to reach a desired bathymetric level. We reviewed in situ physico-chemical (i.e., active mixing and thin capping, solidification/stabilization, chemical oxidation, dechlorination, electrokinetic separation, and sediment flushing) and bio-assisted treatments, including hybrid solutions (i.e., nanocomposite reactive capping, bioreactive capping, microbial electrochemical technologies). We found that significant gaps still remain into the knowledge about the application of in situ contaminated sediment remediation techniques from the technical and the practical viewpoint. Only activated carbon-based technologies are well developed and currently applied with several available case studies. The environmental implication of in situ remediation technologies was only shortly investigated on a long-term basis after its application, so it is not clear how they can really perform.
Instruction manual, Optical Effects Module, Model OEM
NASA Technical Reports Server (NTRS)
1975-01-01
The Optical Effects Module Model OEM-1, a laboratory prototype instrument designed for the automated measurement of radiation transmission and scattering through optical samples, is described. The system comprises two main components: the Optical Effects Module Enclosure (OEME) and the Optical Effects Module Electronic Controller and Processor (OEMCP). The OEM is designed for operation in the near UV at approximately 2540A, corresponding to the most intense spectral line activated by the mercury discharge lamp used for illumination. The radiation from this source is detected in transmission and reflection through a number of selectable samples. The basic objective of this operation is to monitor in real time the accretion of possible contamination on the surface of these samples. The optical samples are exposed outside of the OEME proper to define exposure conditions and to separate exposure and measurement environments. Changes in the transmissivity of the sample are attributable to surface contamination or to bulk effects due to radiation. Surface contamination will increase radiation scattering due to Rayleigh-Gans effect or to other phenomena, depending on the characteristics size of the particulate contaminants. Thus, also scattering from the samples becomes a part of the measurement program.
Barium as a potential indicator of phosphorus in agricultural runoff.
Ahlgren, Joakim; Djodjic, Faruk; Wallin, Mats
2012-01-01
In many catchments, anthropogenic input of contaminants, and in particular phosphorus (P), into surface water is a mixture of agricultural and sewage runoff. Knowledge about the relative contribution from each of these sources is vital for mitigation of major environmental problems such as eutrophication. In this study, we investigated whether the distribution of trace elements in surface waters can be used to trace the contamination source. Water from three groups of streams was investigated: streams influenced only by agricultural runoff, streams influenced mainly by sewage runoff, and reference streams. Samples were collected at different flow regimes and times of year and analyzed for 62 elements using ICP-MS. Our results show that there are significant differences between the anthropogenic sources affecting the streams in terms of total element composition and individual elements, indicating that the method has the potential to trace anthropogenic impact on surface waters. The elements that show significant differences between sources are strontium (p < 0.001), calcium (p < 0.004), potassium (p < 0.001), magnesium (p < 0.001), boron (p < 0.001), rhodium (p = 0.001), and barium (p < 0.001). According to this study, barium shows the greatest potential as a tracer for an individual source of anthropogenic input to surface waters. We observed a strong relationship between barium and total P in the investigated samples (R(2) = 0.78), which could potentially be used to apportion anthropogenic sources of P and thereby facilitate targeting of mitigation practices. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Determination of bioavailable contaminants in the lower Missouri River following the flood of 1993
Petty, J.D.; Poulton, B.C.; Charbonneau, C.S.; Huckins, J.N.; Jones, S.B.; Cameron, J.T.; Prest, H.F.
1998-01-01
The semipermeable membrane device (SPMD) technology was employed to determine the presence of bioavailable organochlorine pesticides (OCs), polychlorinated biphenyls (PCBs), and polyaromatic hydrocarbons (PAHs)in the water of the main stem of the lower Missouri River and three of its tributaries. The SPMDs were deployed in 1994 following the extensive flood of 1993. Specifically, the SPMDs were deployed for 28 days at Wilson State Park, IA; Nebraska City, NE; Parkville, MO; the Kansas River in Kansas City, KS; Napoleon, MO; the Grand River; Glasgow, MO; the Missouri River upstream from the confluence of the Gasconade River; the Gasconade River, and Hermann, MO. Contaminant residues were found at all sites and at higher concentrations than found in the earlier pre-flood sampling. For example, in the present study, dieldrin was found to range from a low of 110 ng/sample in the Gasconade River to a high of 2000 ng/sample at Glasgow, while in the pre- flood sampling, dieldrin ranged from a low of 64 ng/sample at Sioux City to a high of 800 ng/sample at Glasgow. In contrast to the 1992 sampling, residues of PCBs were found at all 1994 sampling sites except the Gasconade River. Samples from Wilson State Park and the Grand River had 3100 and 2700 ng of PCBs/sample, respectively. These two concentrations are about an order of magnitude higher than the older sites and are likely indicative of point source inputs. PAHs were present in SPMD samples from three sites near Kansas City. The contaminant residues sequestered by the SPMDs represent an estimation of the bioavailable (via respiration) contaminants present in the main stem of the lower Missouri River and three of its major tributaries following an extensive flood event.The semipermeable membrane device (SPMD) technology was employed to determine the presence of bioavailable organochlorine pesticides, polychlorinated biphenyls, and polyaromatic hydrocarbons in the water of the main stem of the lower Missouri River and three of its tributaries. The SPMD were deployed in 1994 following an extensive flood in 1993. Contaminants residues were found at all sites and at higher concentrations than found in the earlier pre-flood sampling.
Mechanisms of post-supply contamination of drinking water in Bagamoyo, Tanzania.
Harris, Angela R; Davis, Jennifer; Boehm, Alexandria B
2013-09-01
Access to household water connections remains low in sub-Saharan Africa, representing a public health concern. Previous studies have shown water stored in the home to be more contaminated than water at the source; however, the mechanisms of post-supply contamination remain unclear. Using water quality measurements and structured observations of households in Bagamoyo, Tanzania, this study elucidates the causal mechanisms of the microbial contamination of drinking water after collection from a communal water source. The study identifies statistically significant loadings of fecal indicator bacteria (FIB) occurring immediately after filling the storage container at the source and after extraction of the water from the container in the home. Statistically significant loadings of FIB also occur with various water extraction methods, including decanting from the container and use of a cup or ladle. Additionally, pathogenic genes of Escherichia coli were detected in stored drinking water but not in the source from which it was collected, highlighting the potential health risks of post-supply contamination. The results of the study confirm that storage containers and extraction utensils introduce microbial contamination into stored drinking water, and suggest that further research is needed to identify methods of water extraction that prevent microbial contamination of drinking water.
Organic contaminant transport and fate in the subsurface: Evolution of knowledge and understanding
NASA Astrophysics Data System (ADS)
Essaid, Hedeff I.; Bekins, Barbara A.; Cozzarelli, Isabelle M.
2015-07-01
Toxic organic contaminants may enter the subsurface as slightly soluble and volatile nonaqueous phase liquids (NAPLs) or as dissolved solutes resulting in contaminant plumes emanating from the source zone. A large body of research published in Water Resources Research has been devoted to characterizing and understanding processes controlling the transport and fate of these organic contaminants and the effectiveness of natural attenuation, bioremediation, and other remedial technologies. These contributions include studies of NAPL flow, entrapment, and interphase mass transfer that have advanced from the analysis of simple systems with uniform properties and equilibrium contaminant phase partitioning to complex systems with pore-scale and macroscale heterogeneity and rate-limited interphase mass transfer. Understanding of the fate of dissolved organic plumes has advanced from when biodegradation was thought to require oxygen to recognition of the importance of anaerobic biodegradation, multiple redox zones, microbial enzyme kinetics, and mixing of organic contaminants and electron acceptors at plume fringes. Challenges remain in understanding the impacts of physical, chemical, biological, and hydrogeological heterogeneity, pore-scale interactions, and mixing on the fate of organic contaminants. Further effort is needed to successfully incorporate these processes into field-scale predictions of transport and fate. Regulations have greatly reduced the frequency of new point-source contamination problems; however, remediation at many legacy plumes remains challenging. A number of fields of current relevance are benefiting from research advances from point-source contaminant research. These include geologic carbon sequestration, nonpoint-source contamination, aquifer storage and recovery, the fate of contaminants from oil and gas development, and enhanced bioremediation.
Organic contaminant transport and fate in the subsurface: evolution of knowledge and understanding
Essaid, Hedeff I.; Bekins, Barbara A.; Cozzarelli, Isabelle M.
2015-01-01
Toxic organic contaminants may enter the subsurface as slightly soluble and volatile nonaqueous phase liquids (NAPLs) or as dissolved solutes resulting in contaminant plumes emanating from the source zone. A large body of research published in Water Resources Research has been devoted to characterizing and understanding processes controlling the transport and fate of these organic contaminants and the effectiveness of natural attenuation, bioremediation, and other remedial technologies. These contributions include studies of NAPL flow, entrapment, and interphase mass transfer that have advanced from the analysis of simple systems with uniform properties and equilibrium contaminant phase partitioning to complex systems with pore-scale and macroscale heterogeneity and rate-limited interphase mass transfer. Understanding of the fate of dissolved organic plumes has advanced from when biodegradation was thought to require oxygen to recognition of the importance of anaerobic biodegradation, multiple redox zones, microbial enzyme kinetics, and mixing of organic contaminants and electron acceptors at plume fringes. Challenges remain in understanding the impacts of physical, chemical, biological, and hydrogeological heterogeneity, pore-scale interactions, and mixing on the fate of organic contaminants. Further effort is needed to successfully incorporate these processes into field-scale predictions of transport and fate. Regulations have greatly reduced the frequency of new point-source contamination problems; however, remediation at many legacy plumes remains challenging. A number of fields of current relevance are benefiting from research advances from point-source contaminant research. These include geologic carbon sequestration, nonpoint-source contamination, aquifer storage and recovery, the fate of contaminants from oil and gas development, and enhanced bioremediation.
Pereira, R Calvelo; Monterroso, C; Macías, F; Camps-Arbestain, M
2008-09-01
This study focuses on the main routes of distribution and accumulation of different hexachlorocyclohexane (HCH) isomers (mainly alpha-, beta-, gamma- and delta-HCH) in a soil-plant-air system. A field assay was carried out with two plant species, Cynara scolymus L. and Erica sp., which were planted either: (i) directly in the HCH-contaminated soil; or (ii) in pots filled with uncontaminated soil, which were placed in the HCH-contaminated soil. Both plant species accumulated HCH in their tissues, with relatively higher accumulation in above-ground biomass than in roots. The beta-HCH isomer was the main isomer in all plant tissues. Adsorption of HCH by the roots from contaminated soil (soil-->root pathway) and adsorption through the aerial biomass from either the surrounding air, following volatilization of the contaminant (soil-->air-->shoot pathway), and/or contact with air-suspended particles contaminated with HCH (soil particles-->shoot pathway) were the main mechanisms of accumulation. These results may have important implications for the use of plants for reducing the transfer of contaminants via the atmosphere.
Mansur, Abdulatif A; Adetutu, Eric M; Kadali, Krishna K; Morrison, Paul D; Nurulita, Yuana; Ball, Andrew S
2014-09-01
The disposal of hazardous crude oil tank bottom sludge (COTBS) represents a significant waste management burden for South Mediterranean countries. Currently, the application of biological systems (bioremediation) for the treatment of COTBS is not widely practiced in these countries. Therefore, this study aims to develop the potential for bioremediation in this region through assessment of the abilities of indigenous hydrocarbonoclastic microorganisms from Libyan Hamada COTBS for the biotreatment of Libyan COTBS-contaminated environments. Bacteria were isolated from COTBS, COTBS-contaminated soil, treated COTBS-contaminated soil, and uncontaminated soil using Bushnell Hass medium amended with Hamada crude oil (1 %) as the main carbon source. Overall, 49 bacterial phenotypes were detected, and their individual abilities to degrade Hamada crude and selected COBTS fractions (naphthalene, phenanthrene, eicosane, octadecane and hexane) were evaluated using MT2 Biolog plates. Analyses using average well colour development showed that ~90 % of bacterial isolates were capable of utilizing representative aromatic fractions compared to 51 % utilization of representative aliphatics. Interestingly, more hydrocarbonoclastic isolates were obtained from treated contaminated soils (42.9 %) than from COTBS (26.5 %) or COTBS-contaminated (30.6 %) and control (0 %) soils. Hierarchical cluster analysis (HCA) separated the isolates into two clusters with microorganisms in cluster 2 being 1.7- to 5-fold better at hydrocarbon degradation than those in cluster 1. Cluster 2 isolates belonged to the putative hydrocarbon-degrading genera; Pseudomonas, Bacillus, Arthrobacter and Brevundimonas with 57 % of these isolates being obtained from treated COTBS-contaminated soil. Overall, this study demonstrates that the potential for PAH degradation exists for the bioremediation of Hamada COTBS-contaminated environments in Libya. This represents the first report on the isolation of hydrocarbonoclastic bacteria from Libyan COTBS and COTBS-contaminated soil.
Source-water susceptibility assessment in Texas—Approach and methodology
Ulery, Randy L.; Meyer, John E.; Andren, Robert W.; Newson, Jeremy K.
2011-01-01
Public water systems provide potable water for the public's use. The Safe Drinking Water Act amendments of 1996 required States to prepare a source-water susceptibility assessment (SWSA) for each public water system (PWS). States were required to determine the source of water for each PWS, the origin of any contaminant of concern (COC) monitored or to be monitored, and the susceptibility of the public water system to COC exposure, to protect public water supplies from contamination. In Texas, the Texas Commission on Environmental Quality (TCEQ) was responsible for preparing SWSAs for the more than 6,000 public water systems, representing more than 18,000 surface-water intakes or groundwater wells. The U.S. Geological Survey (USGS) worked in cooperation with TCEQ to develop the Source Water Assessment Program (SWAP) approach and methodology. Texas' SWAP meets all requirements of the Safe Drinking Water Act and ultimately provides the TCEQ with a comprehensive tool for protection of public water systems from contamination by up to 247 individual COCs. TCEQ staff identified both the list of contaminants to be assessed and contaminant threshold values (THR) to be applied. COCs were chosen because they were regulated contaminants, were expected to become regulated contaminants in the near future, or were unregulated but thought to represent long-term health concerns. THRs were based on maximum contaminant levels from U.S. Environmental Protection Agency (EPA)'s National Primary Drinking Water Regulations. For reporting purposes, COCs were grouped into seven contaminant groups: inorganic compounds, volatile organic compounds, synthetic organic compounds, radiochemicals, disinfection byproducts, microbial organisms, and physical properties. Expanding on the TCEQ's definition of susceptibility, subject-matter expert working groups formulated the SWSA approach based on assumptions that natural processes and human activities contribute COCs in quantities that vary in space and time; that increased levels of COC-producing activities within a source area may increase susceptibility to COC exposure; and that natural and manmade conditions within the source area may increase, decrease, or have no observable effect on susceptibility to COC exposure. Incorporating these assumptions, eight SWSA components were defined: identification, delineation, intrinsic susceptibility, point- and nonpoint-source susceptibility, contaminant occurrence, area-of-primary influence, and summary components. Spatial datasets were prepared to represent approximately 170 attributes or indicators used in the assessment process. These primarily were static datasets (approximately 46 gigabytes (GB) in size). Selected datasets such as PWS surface-water-intake or groundwater-well locations and potential source of contamination (PSOC) locations were updated weekly. Completed assessments were archived, and that database is approximately 10 GB in size. SWSA components currently (2011) are implemented in the Source Water Assessment Program-Decision Support System (SWAP-DSS) computer software, specifically developed to produce SWSAs. On execution of the software, the components work to identify the source of water for the well or intake, assess intrinsic susceptibility of the water- supply source, assess susceptibility to contamination with COCs from point and nonpoint sources, identify any previous detections of COCs from existing water-quality databases, and summarize the results. Each water-supply source's susceptibility is assessed, source results are weighted by source capacity (when a PWS has multiple sources), and results are combined into a single SWSA for the PWS.'SWSA reports are generated using the software; during 2003, more than 6,000 reports were provided to PWS operators and the public. The ability to produce detailed or summary reports for individual sources, and detailed or summary reports for a PWS, by COC or COC group was a unique capability of SWAP-DSS. In 2004, the TCEQ began a rotating schedule for SWSA wherein one-third of PWSs statewide would be assessed annually, or sooner if protection-program activities deemed it necessary, and that schedule has continued to the present. Cooperative efforts by the TCEQ and the USGS for SWAP software maintenance and enhancements ended in 2011 with the TCEQ assuming responsibility for all tasks.
Quality of Water from Public-Supply Wells in the United States, 1993-2007Overview of Major Findings
Toccalino, Patricia L.; Hopple, Jessica A.
2010-01-01
Summary of Major Findings and Implications About 105 million people in the United States-more than one-third of the Nation's population-receive their drinking water from about 140,000 public water systems that use groundwater as their source. Although the quality of finished drinking water (after treatment and before distribution) from these public water systems is regulated by the U.S. Environmental Protection Agency (USEPA) under the Safe Drinking Water Act (SDWA), long-term protection and management of groundwater, a vital source of drinking water, requires an understanding of the occurrence of contaminants in untreated source water. Sources of drinking water are potentially vulnerable to a wide range of man-made and naturally occurring contaminants, including many that are not regulated in drinking water under the SDWA. In this study by the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS), chemical water-quality conditions were assessed in source (untreated) groundwater from 932 public-supply wells, hereafter referred to as public wells, and in source and finished water from a subset of 94 wells. The public wells are located in selected parts of 41 states and withdraw water from parts of 30 regionally extensive water-supply aquifers, which constitute about one-half of the principal aquifers in the United States. Although the wells sampled in this study represent less than 1 percent of all groundwater-supplied public water systems in the United States, they are widely distributed nationally and were randomly selected within the sampled hydrogeologic settings to represent typical aquifer conditions. All source-water samples were collected prior to any treatment or blending that potentially could alter contaminant concentrations. As a result, the sampled groundwater represents the quality of the source water and not necessarily the quality of finished water ingested by the people served by these public wells. A greater number of chemical contaminants-as many as 337-both naturally occurring and man-made, were assessed in this study than in any previous national study of public wells (Appendixes 1 and 2). Consistent with the terminology used in the SDWA, all constituents analyzed in water samples in this study are referred to as 'contaminants,' regardless of their source, concentration, or potential for health effects (see sidebar on page 3). Eighty-three percent (279) of the contaminants analyzed in this study are not regulated in drinking water under the SDWA. The USEPA uses USGS data on the occurrence of unregulated contaminants to fulfill part of the SDWA requirements for determining whether specific contaminants should be regulated in drinking water in the future. By focusing primarily on source-water quality, and by analyzing many contaminants that are not regulated in drinking water by USEPA, this study complements the extensive sampling of public water systems that is routinely conducted for the purposes of regulatory compliance monitoring by federal, state, and local drinking-water programs. The objectives of this study were to evaluate (1) the occurrence of contaminants in source water from public wells and their potential significance to human health, (2) whether contaminants that occur in source water also occur in finished water after treatment, and (3) the occurrence and characteristics of contaminant mixtures. To evaluate the potential significance of contaminant occurrence to human health, contaminant concentrations were compared to regulatory Maximum Contaminant Levels (MCLs) or non-regulatory Health-Based Screening Levels (HBSLs)-collectively referred to as human-health benchmarks in this study (see sidebars on pages 4 and 19). The major findings and implications of this study are summarized below and the results are described in greater detail in the remainder of the report. These findings build upon water-quality data from previous public-well studies and
NASA Astrophysics Data System (ADS)
Guillon, Sophie; Agrinier, Pierre; Pili, Éric
2015-04-01
CO2 stable carbon isotopes are very attractive in environmental research to investigate both natural and anthropogenic carbon sources. Laser-based isotope ratio infrared spectrometers (IRIS) allow in situ continuous monitoring of CO2 isotopes, and therefore they have a potential for unprecedented understanding of carbon sources and dynamics with a high temporal resolution. Here we present the performance assessment of a commercial IRIS analyzer, including the measurement setup and the data processing scheme that we used. Even if the analyzer performs 1-Hz measurements, an integration time of the order of 1 h is commonly needed to obtain acceptable precision for δ13C. The main sources of uncertainty on δ13C come from the concentration dependence and from the temporal instability of the analyzer. The method is applied to the in situ monitoring of the CO2 carbon isotopes in an underground cavity (Roselend Natural Laboratory, France) during several months. On a weekly timescale, the temporal variability of CO2 is dominated by transient contamination by human breath. Discarding these anthropogenic contaminations, CO2 and δ13C backgrounds do not show diurnal or seasonal fluctuations. A CO2 flux released into the tunnel by the surrounding rocks is measured. The carbon isotope composition of this CO2, identified with a Keeling plot, is consistent with a main production by microbial respiration and a minor production from weathering of carbonate minerals. The presented instrument and application study are relevant to cave monitoring, whether to understand CO2 dynamics in visited and/or painted caves for preservation purposes or to understand paleoclimate recording in speleothems.
Yan, Geng; Mao, Lingchen; Liu, Shuoxun; Mao, Yu; Ye, Hua; Huang, Tianshu; Li, Feipeng; Chen, Ling
2018-08-01
The road traffic has become one of the main sources of urban pollution and could directly affect roadside soils. To understand the level of contamination and potential sources of trace metals in roadside soils of Shanghai, 10 trace metals (Sb, Cr, Co, Ni, Cu, Cd, Pb, Hg, Mn and Zn) from two urban/rural roads (Hutai Road and Wunign-Caoan Road) were analyzed in this study. Antimony, Ni, Cu, Cd, Pb, Hg and Zn concentrations were higher than that of soil background values of Shanghai, whereas accumulation of Cr, Co and Mn were minimal. Significantly higher Sb, Cd, Pb contents were found in samples from urban areas than those from suburban area, suggesting the impact from urbanization. The concentrations of Sb and Cd in older road (Hutai) were higher than that in younger road (Wunign-Caoan). Multivariate statistical analysis revealed that Sb, Cu, Cd, Pb and Zn were mainly controlled by traffic activities (e.g. brake wear, tire wear, automobile exhaust) with high contamination levels found near traffic-intensive areas; Cr, Co, Ni and Mn derived primarily from soil parent materials; Hg was related to industrial activities. Besides, the enrichment of Sb, Cd, Cu, Pb and Zn showed a decreasing trend with distance to the road edges. According to the enrichment factors (EF s ), 78.5% of Sb, Cu, Cd, Pb and Zn were in moderate or significant pollution, indicating considerable traffic contribution. In particular, recently introduced in automotive technology, accumulation of Sb has been recognized in 42.9% samples of both roads. The accumulation of these traffic-derived metals causes potential negative impact to human health and ecological environment and should be concerned, especially the emerging trace elements like Sb. Copyright © 2018 Elsevier B.V. All rights reserved.
Estimation of Total and Inorganic Arsenic Intake from the Diet in Korean Adults.
Seo, Mi-Na; Lee, Seul-Gi; Eom, Sang-Yong; Kim, Jeongseon; Oh, Se-Young; Kwon, Ho-Jang; Kim, Heon; Choi, Byung-Sun; Yu, Il-Je; Park, Jung-Duck
2016-05-01
Arsenic (As) is a major environmental pollutant and a known human carcinogen that is widely distributed in the air, soil, and water. General population is mainly exposed to As through drinking water and food from the contaminated water and soil. Arsenic in drinking water is generally well controlled now. This study was performed to estimate total and inorganic As intake and to determine the major contributing source in the Korean adult diet. The study subjects were 2117 healthy adults (922 males and 1195 females) who had not been occupationally exposed to As. Total dietary intake was studied using the 24-h recall method, which included 138 specific food items. The estimates of total As and inorganic As intake were based on total and inorganic As contents in each food item consumed during the last 24 h. Daily dietary intake was estimated to be 1373.6 g. Total As intake was estimated to be 145.4 µg As/day. Total dietary As intake was correlated with consumption of fish/shellfish, seaweeds, and grains. Approximately 87% of total dietary As intake was attributed to seafood, such as 105.5 µg As/day from fish/shellfish and 20.5 µg As/day from seaweeds. Inorganic As intake was estimated to be 10.4 µg As per day. Inorganic As intake was mainly provided by grains (6.4 µg As/day), followed by seaweeds and fish/shellfish. Our results indicate that seafood and grains are the main As dietary sources in Korean adults and that dietary As exposure may be associated with individual dietary habits and environmental As contamination among countries.
Irrigation Water Quality for Leafy Crops: A Perspective of Risks and Potential Solutions
Allende, Ana; Monaghan, James
2015-01-01
There is increasing evidence of the contribution of irrigation water in the contamination of produce leading to subsequent outbreaks of foodborne illness. This is a particular risk in the production of leafy vegetables that will be eaten raw without cooking. Retailers selling leafy vegetables are increasingly targeting zero-risk production systems and the associated requirements for irrigation water quality have become more stringent in regulations and quality assurance schemes (QAS) followed by growers. Growers can identify water sources that are contaminated with potential pathogens through a monitoring regime and only use water free of pathogens, but the low prevalence of pathogens makes the use of faecal indicators, particularly E. coli, a more practical approach. Where growers have to utilise water sources of moderate quality, they can reduce the risk of contamination of the edible portion of the crop (i.e., the leaves) by treating irrigation water before use through physical or chemical disinfection systems, or avoid contact between the leaves and irrigation water through the use of drip or furrow irrigation, or the use of hydroponic growing systems. This study gives an overview of the main problems in the production of leafy vegetables associated with irrigation water, including microbial risk and difficulties in water monitoring, compliance with evolving regulations and quality standards, and summarises the current alternatives available for growers to reduce microbial risks. PMID:26151764
Irrigation Water Quality for Leafy Crops: A Perspective of Risks and Potential Solutions.
Allende, Ana; Monaghan, James
2015-07-03
There is increasing evidence of the contribution of irrigation water in the contamination of produce leading to subsequent outbreaks of foodborne illness. This is a particular risk in the production of leafy vegetables that will be eaten raw without cooking. Retailers selling leafy vegetables are increasingly targeting zero-risk production systems and the associated requirements for irrigation water quality have become more stringent in regulations and quality assurance schemes (QAS) followed by growers. Growers can identify water sources that are contaminated with potential pathogens through a monitoring regime and only use water free of pathogens, but the low prevalence of pathogens makes the use of faecal indicators, particularly E. coli, a more practical approach. Where growers have to utilise water sources of moderate quality, they can reduce the risk of contamination of the edible portion of the crop (i.e., the leaves) by treating irrigation water before use through physical or chemical disinfection systems, or avoid contact between the leaves and irrigation water through the use of drip or furrow irrigation, or the use of hydroponic growing systems. This study gives an overview of the main problems in the production of leafy vegetables associated with irrigation water, including microbial risk and difficulties in water monitoring, compliance with evolving regulations and quality standards, and summarises the current alternatives available for growers to reduce microbial risks.
Groundwater Pollution Sources Apportionment in the Ghaen Plain, Iran
Berndtsson, Ronny; Adamowski, Jan; Sadatipour, Elaheh
2018-01-01
Although Iran’s Ghaen Plain provides saffron to much of the world, no regional groundwater quality (GQ) assessment has yet been undertaken. Given the region’s potential for saltwater intrusion and heavy metal contamination, it is important to assess the GQ and determine its main probable source of pollution (MPSP). Such knowledge would allow for informed mitigation or elimination of the potential adverse health effects of this groundwater through its use as drinking water, or indirectly as a result of the consumption of groundwater-irrigated crops. Total dissolved solids, sodium, and chloride in the water of the majority of 16 wells sampled within the region exceeded World Health Organization and Iranian permissible standards for drinking water. The groundwater proved to only be suitable for irrigating salt tolerant crops under good drainage conditions. Due to the precipitation of calcium carbonate in the water supply facilities, the water from all wells was deemed unsuitable for industrial purposes. Heavy metal pollution and contamination indices showed no groundwater contamination. Analysis of ionic ratios and the application of principal components analysis indicated the MPSP to be saltwater intrusion, with the geology subtending the plain, and to a lesser extent, anthropogenic activities. Reducing groundwater withdrawals, particularly those for agricultural production by using high performance irrigation methods could reduce saltwater intrusion and improve GQ in the Ghaen Plain. PMID:29361791
Kistemann, T; Dangendorf, F; Exner, M
2001-03-01
The main tributaries of three drinking water reservoirs of Northrhine-Westfalia (Germany) were monitored within a 14-month period mainly for bacterial and parasitic contamination. In this context a detailed geo-ecological characterisation within the differing catchment areas was carried out to reveal a reliable informational basis for tracing back the origin of microbial loads present in the watercourses. To realise a microbial risk assessing geo-ecological information system (MRA-GIS), a Geographical Information System (GIS) has been implemented for the study areas. The results of the microbiological investigations of the watercourses showed an input of pathogens into all three of the tributaries. It could be demonstrated that the use of MRA-GIS database and some GIS-techniques substantially support the spatial analysis of the microbial contamination patterns. From the hygienic point of view, it is of the utmost importance to protect catchment areas of surface water reservoirs from microbial contamination stemming from human activities and animal sources. This constitutes essential part of the multi-barrier concept which stresses the importance of reducing diffuse and point pollution in catchment areas of water resources intended for human consumption. MRA-GIS proves to be helpful to manage multi-barrier water protection in catchment areas and ideally assists the application of the HACCP concept on drinking water production.
Monitoring bacterial contamination of piped water supply in rural coastal Bangladesh.
Ahsan, Md Sabbir; Akber, Md Ali; Islam, Md Atikul; Kabir, Md Pervez; Hoque, Md Ikramul
2017-10-31
Safe drinking water is scarce in southwest coastal Bangladesh because of unavailability of fresh water. Given the high salinity of both groundwater and surface water in this area, harvested rainwater and rain-fed pond water became the main sources of drinking water. Both the government and non-government organizations have recently introduced pipe water supply in the rural coastal areas to ensure safe drinking water. We assessed the bacteriological quality of water at different points along the piped water distribution system (i.e., the source, treatment plant, household taps, street hydrants, and household storage containers) of Mongla municipality under Mongla Upazila in Bagerhat district. Water samples were collected at 2-month interval from May 2014 to March 2015. Median E. coli and total coliform counts at source, treatment plant, household taps, street hydrants, and household storage containers were respectively 225, 4, 7, 7, and 15 cfu/100 ml and 42,000, 545, 5000, 6150, and 18,800 cfu/100 ml. Concentrations of both of the indicator bacteria reduced after treatment, although it did not satisfy the WHO drinking water standards. However, re-contamination in distribution systems and household storage containers indicate improper maintenance of distribution system and lack of personal hygiene.
Analysis of heavy metal sources in soil using kriging interpolation on principal components.
Ha, Hoehun; Olson, James R; Bian, Ling; Rogerson, Peter A
2014-05-06
Anniston, Alabama has a long history of operation of foundries and other heavy industry. We assessed the extent of heavy metal contamination in soils by determining the concentrations of 11 heavy metals (Pb, As, Cd, Cr, Co, Cu, Mn, Hg, Ni, V, and Zn) based on 2046 soil samples collected from 595 industrial and residential sites. Principal Component Analysis (PCA) was adopted to characterize the distribution of heavy metals in soil in this region. In addition, a geostatistical technique (kriging) was used to create regional distribution maps for the interpolation of nonpoint sources of heavy metal contamination using geographical information system (GIS) techniques. There were significant differences found between sampling zones in the concentrations of heavy metals, with the exception of the levels of Ni. Three main components explaining the heavy metal variability in soils were identified. The results suggest that Pb, Cd, Cu, and Zn were associated with anthropogenic activities, such as the operations of some foundries and major railroads, which released these heavy metals, whereas the presence of Co, Mn, and V were controlled by natural sources, such as soil texture, pedogenesis, and soil hydrology. In general terms, the soil levels of heavy metals analyzed in this study were higher than those reported in previous studies in other industrial and residential communities.
Meunier, M; Guyard-Nicodème, M; Dory, D; Chemaly, M
2016-05-01
Campylobacteriosis is the most prevalent bacterial foodborne gastroenteritis affecting humans in the European Union, and ranks second in the United States only behind salmonellosis. In Europe, there are about nine million cases of campylobacteriosis every year, making the disease a major public health issue. Human cases are mainly caused by the zoonotic pathogen Campylobacter jejuni. The main source of contamination is handling or consumption of poultry meat. Poultry constitutes the main reservoir of Campylobacter, substantial quantities of which are found in the intestines following rapid, intense colonization. Reducing Campylobacter levels in the poultry chain would decrease the incidence of human campylobacteriosis. As primary production is a crucial step in Campylobacter poultry contamination, controlling the infection at this level could impact the following links along the food chain (slaughter, retail and consumption). This review describes the control strategies implemented during the past few decades in primary poultry production, including the most recent studies. In fact, the implementation of biosecurity and hygiene measures is described, as well as the immune strategy with passive immunization and vaccination trials and the nutritional strategy with the administration of organic and fatty acids, essential oil and plant-derived compound, probiotics, bacteriocins and bacteriophages. © 2015 The Society for Applied Microbiology.
Ferraro, Vincenza; Piccirillo, Clara; Tomlins, Keith; Pintado, Manuela E
2016-12-09
Cassava (Manihot esculenta Crantz) and yam (Dioscorea spp.) are tropical crops consumed by ca. 2 billion people and represent the main source of carbohydrate and energy for the approximately 700 million people living in the tropical and sub-tropical areas. They are a guarantee of food security for developing countries. The production of these crops and the transformation into food-derived commodities is increasing, it represents a profitable business and farmers generate substantial income from their market. However, there are some important concerns related to the food safety and food security. The high post-harvest losses, mainly for yam, the contamination by endogenous toxic compounds, mainly for cassava, and the contamination by external agents (such as micotoxins, pesticides, and heavy metal) represent a depletion of economic value and income. The loss in the raw crops or the impossibility to market the derived foodstuffs, due to incompliance with food regulations, can seriously limit all yam tubers and the cassava roots processors, from farmers to household, from small-medium to large enterprises. One of the greatest challenges to overcome those concerns is the transformation of traditional or indigenous processing methods into modern industrial operations, from the crop storage to the adequate package of each derived foodstuff.
Durigan, Mauricio; Abreu, Aluana Gonçalves; Zucchi, Maria Imaculada; Franco, Regina Maura Bueno; de Souza, Anete Pereira
2014-01-01
Background Giardia duodenalis is a flagellate protozoan that parasitizes humans and several other mammals. Protozoan contamination has been regularly documented at important environmental sites, although most of these studies were performed at the species level. There is a lack of studies that correlate environmental contamination and clinical infections in the same region. The aim of this study is to evaluate the genetic diversity of a set of clinical and environmental samples and to use the obtained data to characterize the genetic profile of the distribution of G. duodenalis and the potential for zoonotic transmission in a metropolitan region of Brazil. Methodology/Principal Findings The genetic assemblages and subtypes of G. duodenalis isolates obtained from hospitals, a veterinary clinic, a day-care center and important environmental sites were determined via multilocus sequence-based genotyping using three unlinked gene loci. Cysts of Giardia were detected at all of the environmental sites. Mixed assemblages were detected in 25% of the total samples, and an elevated number of haplotypes was identified. The main haplotypes were shared among the groups, and new subtypes were identified at all loci. Ten multilocus genotypes were identified: 7 for assemblage A and 3 for assemblage B. Conclusions/Significance There is persistent G. duodenalis contamination at important environmental sites in the city. The identified mixed assemblages likely represent mixed infections, suggesting high endemicity of Giardia in these hosts. Most Giardia isolates obtained in this study displayed zoonotic potential. The high degree of genetic diversity in the isolates obtained from both clinical and environmental samples suggests that multiple sources of infection are likely responsible for the detected contamination events. The finding that many multilocus genotypes (MLGs) and haplotypes are shared by different groups suggests that these sources of infection may be related and indicates that there is a notable risk of human infection caused by Giardia in this region. PMID:25536055
CULTURE-INDEPENDENT MOLECULAR METHODS FOR FECAL SOURCE IDENTIFICATION
Fecal contamination is widespread in the waterways of the United States. Both to correct the problem, and to estimate public health risk, it is necessary to identify the source of the contamination. Several culture-independent molecular methods for fecal source identification hav...
IMPACTS OF DNAPL SOURCE TREATMENT ON CONTAMINANT MASS FLUX
Current remedial techniques are unable to completely eliminate all dense nonaqueous phase liquid (DNAPL) from source zone areas at most sites, and conflicting views on the benefits of partial DNAPL source zone remediation exist in the literature. A comparison of contaminant flux...
PROVIDING SAFE WATER TO RURAL NEPAL: A NOVEL WATER FILTRATION SYSTEM
The quality of Nepalese water sources is often compromised by pathogen contamination resulting from inadequate wastewater management, and arsenic contamination from natural and anthropogenic sources. The primary source of Nepal’s arsenic problem is suspected to arise fro...
Ribolzi, Olivier; Evrard, Olivier; Huon, Sylvain; Rochelle-Newall, Emma; Henri-des-Tureaux, Thierry; Silvera, Norbert; Thammahacksac, Chanthamousone; Sengtaheuanghoung, Oloth
2016-02-01
Consumption of water polluted by faecal contaminants is responsible for 2 million deaths annually, most of which occur in developing countries without adequate sanitation. In tropical aquatic systems, streambeds can be reservoirs of persistent pathogenic bacteria and high rainfall can lead to contaminated soils entering streams and to the resuspension of sediment-bound microbes in the streambed. Here, we present a novel method using fallout radionuclides ((7)Be and (210)Pbxs) to estimate the proportions of Escherichia coli, an indicator of faecal contamination, associated with recently eroded soil particles and with the resuspension of streambed sediments. We show that using these radionuclides and hydrograph separations we are able to characterize the proportion of particles originating from highly contaminated soils and that from the resuspension of particle-attached bacteria within the streambed. We also found that although overland flow represented just over one tenth of the total flood volume, it was responsible for more than two thirds of the downstream transfer of E. coli. We propose that data obtained using this method can be used to understand the dynamics of faecal indicator bacteria (FIB) in streams thereby providing information for adapted management plans that reduce the health risks to local populations. Graphical Abstract Graphical abstract showing (1) the main water flow processes (i.e. overland flow, groundwater return flow, blue arrows) and sediment flow components (i.e. resuspension and soil erosion, black arrows) during floods in the Houay Pano catchment; (2) the general principle of the method using fallout radionuclide markers (i.e. (7)Be and (210)Pbxs) to estimate E. coli load from the two main sources (i.e. streambed resuspension vs soil surface washoff); and 3) the main results obtained during the 15 May 2012 storm event (i.e. relative percentage contribution of each process to the total streamflow, values in parentheses).
NASA Astrophysics Data System (ADS)
Gopalakrishnan, G.
2014-12-01
Brownfields or urban sites that have been contaminated as a result of historic practices are present throughout the world. In the United States alone, the National Research Council has estimated that there are approximately 300,000 to 400,000 sites which have been contaminated by improper use and disposal of chemicals (NRC 1993). The land available at these sites is estimated at several million acres; however, the presence of high levels of contamination in the soil and groundwater makes it difficult to utilize these sites for traditional purposes such as agriculture. Further, the time required to remediate these contaminants to regulated levels is in the order of decades, which often results in long-term economic consequences for the areas near these sites. There has been significant interest in developing these sites as potential sources of renewable energy production in order to increase the economic viability of these sites and to provide alternative land resources for renewable energy production (EPA 2012). Solar energy, wind energy, and bioenergy from lignocellulosic biomass production have been identified as the main sources of renewable energy that can be produced at these locations. However, the environmental impacts of such a policy and the implications for greenhouse gas emissions, particularly resulting from changes in land-use impacting the biogeochemical cycle at these sites, have not been studied extensively to date. This study uses the biogeochemical process-based model DNDC to simulate carbon sequestration, nitrous oxide emissions and methane emissions from typical urban brownfield systems in the United States, when renewable energy systems are deployed. Photovoltaic solar energy and lignocellulosic biomass energy systems are evaluated here. Plants modeled include those most widely used for both bioenergy and remediation such as woody trees. Model sensitivity to soil conditions, contaminant levels and local weather data and the resulting impacts on greenhouse gas emissions are explored. Tradeoffs between renewable energy production,contaminant removal, and mitigation of greenhouse gases are also evaluated. Results indicate that a decrease in greenhouse gas emissions of 29-43% is possible, together with an estimated increase in renewable energy production of 7-22%.
Chrastný, Vladislav; Vaněk, Aleš; Teper, Leslaw; Cabala, Jerzy; Procházka, Jan; Pechar, Libor; Drahota, Petr; Penížek, Vít; Komárek, Michael; Novák, Martin
2012-04-01
The soils adjacent to an area of historical mining, ore processing and smelting activities reflects the historical background and a mixing of recent contamination sources. The main anthropogenic sources of metals can be connected with historical and recent mine wastes, direct atmospheric deposition from mining and smelting processes and dust particles originating from open tailings ponds. Contaminated agriculture and forest soil samples with mining and smelting related pollutants were collected at different distances from the source of emission in the Pb-Zn-Ag mining area near Olkusz, Upper Silesia to (a) compare the chemical speciation of metals in agriculture and forest soils situated at the same distance from the point source of pollution (paired sampling design), (b) to evaluate the relationship between the distance from the polluter and the retention of the metals in the soil, (c) to describe mineralogy transformation of anthropogenic soil particles in the soils, and (d) to assess the effect of deposited fly ash vs. dumped mining/smelting waste on the mobility and bioavailability of metals in the soil. Forest soils are much more affected with smelting processes than agriculture soils. However, agriculture soils suffer from the downward metal migration more than the forest soils. The maximum concentrations of Pb, Zn, and Cd were detected in a forest soil profile near the smelter and reached about 25 g kg(- 1), 20 g kg(- 1) and 200 mg kg(- 1) for Pb, Zn and Cd, respectively. The metal pollutants from smelting processes are less stable under slightly alkaline soil pH then acidic due to the metal carbonates precipitation. Metal mobility ranges in the studied forest soils are as follows: Pb > Zn ≈ Cd for relatively circum-neutral soil pH (near the smelter), Cd > Zn > Pb for acidic soils (further from the smelter). Under relatively comparable pH conditions, the main soil properties influencing metal migration are total organic carbon and cation exchange capacity. The mobilization of Pb, Zn and Cd in soils depends on the persistence of the metal-containing particles in the atmosphere; the longer the time, the more abundant the stable forms. The dumped mining/smelting waste is less risk of easily mobilizable metal forms, however, downward metal migration especially due to the periodical leaching of the waste was observed.
USDA-ARS?s Scientific Manuscript database
The occurrence of pharmaceuticals, antibiotics, hormones, and other contaminants of emerging concern (CEC) in surface waters, nationally and internationally, raises questions of their source, fate, and potential ecological and human health effects. A number of CECs have been shown to disrupt the nor...
A national-scale survey of 247 contaminants of emerging concern (CECs), including organic and inorganic chemical compounds, and microbial contaminants, was conducted in source and treated drinking water samples from 25 treatment plants across the United States. Multiple methods w...
A Handbook for Determining the Sources of PCB Contamination in Sediments
2012-10-01
identifying sources for initial source control to later use for remedial cost apportionment . Often, forensic investigations are successfully used to...alteration processes, source apportionment can be difficult. For instance, one can easily imagine an onshore spill or source of PCB oil that results in a...the use of Aroclor analyses for identifying contamination sources to only fresh samples (for example, PCB oils or soils with freshly spilled PCB
Kandel, Pragya; Kunwar, Ritu; Lamichhane, Prabhat; Karki, Surendra
2017-02-08
Water sources classified as "improved" may not necessarily provide safe drinking water for householders. We analyzed data from Nepal Multiple Indicator Cluster Survey 2014 to explore the extent of fecal contamination of household drinking water. Fecal contamination was detected in 81.2% (95% confidence interval [CI]: 77.9-84.2) household drinking water from improved sources and 89.6% (95% CI: 80.4-94.7) in water samples from unimproved sources. In adjusted analysis, there was no difference in odds of fecal contamination of household drinking water between improved and unimproved sources. We observed significantly lower odds of fecal contamination of drinking water in households in higher wealth quintiles, where soap and water were available for handwashing and in households employing water treatment. The extent of contamination of drinking water as observed in this study highlights the huge amount of effort required to ensure the provision of safely managed water in Nepal by 2030 as aimed in sustainable development goals. © The American Society of Tropical Medicine and Hygiene.
NASA Astrophysics Data System (ADS)
Pujiwati, Arie; Nakamura, K.; Watanabe, N.; Komai, T.
2018-02-01
Multivariate analysis is applied to investigate geochemistry of several trace elements in top soils and their relation with the contamination source as the influence of coal mines in Jorong, South Kalimantan. Total concentration of Cd, V, Co, Ni, Cr, Zn, As, Pb, Sb, Cu and Ba was determined in 20 soil samples by the bulk analysis. Pearson correlation is applied to specify the linear correlation among the elements. Principal Component Analysis (PCA) and Cluster Analysis (CA) were applied to observe the classification of trace elements and contamination sources. The results suggest that contamination loading is contributed by Cr, Cu, Ni, Zn, As, and Pb. The elemental loading mostly affects the non-coal mining area, for instances the area near settlement and agricultural land use. Moreover, the contamination source is classified into the areas that are influenced by the coal mining activity, the agricultural types, and the river mixing zone. Multivariate analysis could elucidate the elemental loading and the contamination sources of trace elements in the vicinity of coal mine area.
Kandel, Pragya; Kunwar, Ritu; Lamichhane, Prabhat; Karki, Surendra
2017-01-01
Water sources classified as “improved” may not necessarily provide safe drinking water for householders. We analyzed data from Nepal Multiple Indicator Cluster Survey 2014 to explore the extent of fecal contamination of household drinking water. Fecal contamination was detected in 81.2% (95% confidence interval [CI]: 77.9–84.2) household drinking water from improved sources and 89.6% (95% CI: 80.4–94.7) in water samples from unimproved sources. In adjusted analysis, there was no difference in odds of fecal contamination of household drinking water between improved and unimproved sources. We observed significantly lower odds of fecal contamination of drinking water in households in higher wealth quintiles, where soap and water were available for handwashing and in households employing water treatment. The extent of contamination of drinking water as observed in this study highlights the huge amount of effort required to ensure the provision of safely managed water in Nepal by 2030 as aimed in sustainable development goals. PMID:27821687
Kostyla, Caroline; Bain, Rob; Cronk, Ryan; Bartram, Jamie
2015-05-01
Accounting for fecal contamination of drinking water sources is an important step in improving monitoring of global access to safe drinking water. Fecal contamination varies with time while its monitoring is often infrequent. We sought to understand seasonal trends in fecal contamination to guide best practices to capture seasonal variation and ascertain the extent to which the results of a single sample may overestimate compliance with health guidelines. The findings from 22 studies from developing countries written in English and identified through a systematic review were analyzed. Fecal contamination in improved drinking water sources was shown to follow a statistically significant seasonal trend of greater contamination during the wet season (p<0.001). This trend was consistent across fecal indicator bacteria, five source types, twelve Köppen-Geiger climate zones, and across both rural and urban areas. Guidance on seasonally representative water quality monitoring by the World Health Organization and national water quality agencies could lead to improved assessments of access to safe drinking water. Copyright © 2015 Elsevier B.V. All rights reserved.
Relationships between groundwater contamination and major-ion chemistry in a karst aquifer
NASA Astrophysics Data System (ADS)
Scanlon, B. R.
1990-11-01
Groundwater contamination was examined within a rural setting of the Inner Bluegrass Karst Region of central Kentucky where potential contaminant sources include soil-organic matter, organic and inorganic fertilizer, and septic-tank effluent. To evaluate controls on groundwater contamination, data on nitrate concentrations and indicator bacteria in water from wells and springs were compared with physical and chemical attributes of the groundwater system. Bacterial densities greater than the recommended limit were found in all springs and approximately half of the wells, whereas nitrate concentrations >45 mg l -1 were restricted to 20% of the springs and 10% of the wells. Nitrate concentrations varied markedly in closely spaced wells and springs, which indicates that land use is not the primary control on groundwater contamination. Groundwater contamination is related to the distribution of chemical water types in the study area. All Ca subtype water was contaminated with nitrate and bacteria. Ca subtype water occurs in the shallow, rapidly circulating groundwater zone, which is most susceptible to contamination. The similarity in nitrate concentrations between local springs, major springs, and wells that contain Ca subtype water indicates that the occurrence of large conduits is not the main control on nitrate and bacterial contamination of groundwater. Temporal fluctuations in nitrate concentrations of Ca subtype water are attributed to seasonal fluctuations in recharge and in plant growth. Ca-Mg water subtype was generally not contaminated, and Na-HCO 3 and Na-Cl water types were not contaminated. Ca-Mg water subtype, and Na-HCO 3 and Na-Cl water types are associated with longer residence times and reducing conditions, which allow bacterial die-off and denitrification, respectively. Differences in residence time and reducing conditions among the chemical water types and subtypes are attributed to variations in rock permeability and to the occurrence of horizontal shales that control the rate and depth of active groundwater circulation. This relationship between chemical water types and contaminant concentrations is important for groundwater monitoring programs and the siting of waste-disposal facilities.
Ground-water movement and nitrate in ground water, East Erda area, Tooele County, Utah, 1997-2000
Susong, D.D.
2005-01-01
Nitrate was discovered in ground water in the east Erda area of Tooele County, Utah, in 1994. The U.S. Geological Survey, in cooperation with Tooele County, investigated the ground-water flow system and water quality in the eastern part of Tooele Valley to determine (1) the vertical and horizontal distribution of nitrate, (2) the direction of movement of the nitrate contamination, and (3) the source of the nitrate. The potentiometric surface of the upper part of the basin-fill aquifer indicates that the general direction of ground-water flow is to the northwest, the flow system is complex, and there is a ground-water mound probably associated with springs. The spatial distribution of nitrate reflects the flow system with the nitrate contamination split into a north and south part by the ground-water mound. The distribution of dissolved solids and sulfate in ground water varies spatially. Vertical profiles of nitrate in water from selected wells indicate that nitrate contamination generally is in the upper part of the saturated zone and in some wells has moved downward. Septic systems, mining and smelting, agriculture, and natural sources were considered to be possible sources of nitrate contamination in the east Erda area. Septic systems are not the source of nitrate because water from wells drilled upgradient of all septic systems in the area had elevated nitrate concentrations. Mining and smelting activity are a possible source of nitrate contamination but few data are available to link nitrate contamination with mining sites. Natural and agricultural sources of nitrate are present east of the Erda area but few data are available about these sources. The source(s) of nitrate in the east Erda area could not be clearly delineated in spite of considerable effort and expenditure of resources.
Schriewer, Alexander; Odagiri, Mitsunori; Wuertz, Stefan; Misra, Pravas R.; Panigrahi, Pinaki; Clasen, Thomas; Jenkins, Marion W.
2015-01-01
We examined pathways of exposure to fecal contamination of human and animal origin in 24 villages in Odisha, India. In a cross-sectional study during the monsoon season, fecal exposure via community water sources (N = 123) and in the home (N = 137) was assessed using human- and nonhuman-associated Bacteroidales microbial source tracking (MST) markers and fecal coliforms (FCs). Detection rates and marker concentrations were examined to pinpoint pathways of human fecal exposure in the public and domestic domains of disease transmission in study communities. Human fecal markers were detected much more frequently in the domestic domain (45% of households) than in public domain sources (8% of ponds; 4% of groundwater drinking sources). Animal fecal markers were widely detected in both domains (74% of ponds, 96% of households, 10% of groundwater drinking sources), indicating ubiquitous risks of exposure to animal feces and zoonotic pathogens. This study confirms an often suggested contamination link from hands to stored water in the home in developing countries separately for mothers' and children's hands and both human and animal fecal contamination. In contrast to MST markers, FCs provided a poor metric to assess risks of exposure to fecal contamination of human origin in this rural setting. PMID:26149868
Bain, Robert; Cronk, Ryan; Wright, Jim; Yang, Hong; Slaymaker, Tom; Bartram, Jamie
2014-05-01
Access to safe drinking-water is a fundamental requirement for good health and is also a human right. Global access to safe drinking-water is monitored by WHO and UNICEF using as an indicator "use of an improved source," which does not account for water quality measurements. Our objectives were to determine whether water from "improved" sources is less likely to contain fecal contamination than "unimproved" sources and to assess the extent to which contamination varies by source type and setting. Studies in Chinese, English, French, Portuguese, and Spanish were identified from online databases, including PubMed and Web of Science, and grey literature. Studies in low- and middle-income countries published between 1990 and August 2013 that assessed drinking-water for the presence of Escherichia coli or thermotolerant coliforms (TTC) were included provided they associated results with a particular source type. In total 319 studies were included, reporting on 96,737 water samples. The odds of contamination within a given study were considerably lower for "improved" sources than "unimproved" sources (odds ratio [OR] = 0.15 [0.10-0.21], I2 = 80.3% [72.9-85.6]). However over a quarter of samples from improved sources contained fecal contamination in 38% of 191 studies. Water sources in low-income countries (OR = 2.37 [1.52-3.71]; p<0.001) and rural areas (OR = 2.37 [1.47-3.81] p<0.001) were more likely to be contaminated. Studies rarely reported stored water quality or sanitary risks and few achieved robust random selection. Safety may be overestimated due to infrequent water sampling and deterioration in quality prior to consumption. Access to an "improved source" provides a measure of sanitary protection but does not ensure water is free of fecal contamination nor is it consistent between source types or settings. International estimates therefore greatly overstate use of safe drinking-water and do not fully reflect disparities in access. An enhanced monitoring strategy would combine indicators of sanitary protection with measures of water quality.
Overview of on-farm bioremediation systems to reduce the occurrence of point source contamination.
De Wilde, Tineke; Spanoghe, Pieter; Debaer, Christof; Ryckeboer, Jaak; Springael, Dirk; Jaeken, Peter
2007-02-01
Contamination of ground and surface water puts pressure on the use of pesticides. Pesticide contamination of water can often be linked to point sources rather than to diffuse sources. Examples of such point sources are areas on farms where pesticides are handled and filled into sprayers, and where sprayers are cleaned. To reduce contamination from these point sources, different kinds of bioremediation system are being researched in various member states of the EU. Bioremediation is the use of living organisms, primarily microorganisms, to degrade the environmental contaminants into less toxic forms. The systems available for biocleaning of pesticides vary according to their shape and design. Up till now, three systems have been extensively described and reported: the biobed, the Phytobac and the biofilter. Most of these constructions are excavations or different sizes of container filled with biological material. Typical overall clean-up efficiency exceeds 95%, realising even more than 99% in many cases. This paper provides an overview of the state of the art of these bioremediation systems and discusses their construction, efficiency and drawbacks.
Effects of Contaminated Site Age on Dissolution Dynamics
NASA Astrophysics Data System (ADS)
Jawitz, J. W.
2004-12-01
This work presents a streamtube-based analytical approach to evaluate reduction in groundwater contaminant flux resulting from partial mass reduction in a nonaqueous phase liquid (NAPL) source zone. The reduction in contaminant flux, Rj, discharged from the source zone is a remediation performance metric that has a direct effect on the fundamental drivers of remediation: protection of human health risks and the environment. Spatial variability is described within a Lagrangian framework where aquifer hydrodynamic heterogeneities are characterized using nonreactive travel time distributions, while NAPL spatial distribution heterogeneity can be similarly described using reactive travel time distributions. The combined statistics of these distributions are used to evaluate the relationship between reduction in contaminant mass, Rm, and Rj. A portion of the contaminant mass in the source zone is assumed to be removed via in-situ flushing remediation, with the initial and final conditions defined as steady-state natural-gradient groundwater flow through the contaminant source zone. The combined effect of aquifer and NAPL heterogeneities are shown to be captured in a single parameter, reactive travel time variability, that was determined to be the most important factor controlling the relationship between Rm and Rj. Increased values of the following parameters are shown to result in more favorable contaminant elution dynamics (i.e., greater flux reduction for a given reduction in mass): aquifer hydrodynamic heterogeneity, NAPL source zone heterogeneity, positive correlation between travel time and NAPL content, and time since the contamination event. Less favorable elution behavior is shown to result from negative correlations between travel time and NAPL content and rate-limited dissolution. The specific emphasis of this presentation is on the effects of the length of time that has elapsed since the contamination event (site age) on the dissolution dynamics.
NASA Astrophysics Data System (ADS)
Brusseau, M. L.; Carroll, K. C.; Baker, J. B.; Allen, T.; DiGuiseppi, W.; Hatton, J.; Morrison, C.; Russo, A. E.; Berkompas, J. L.
2011-12-01
A large-scale permanganate-based in-situ chemical oxidation (ISCO) effort has been conducted over the past ten years at a federal Superfund site in Tucson, AZ, for which trichloroethene (TCE) is the primary contaminant of concern. Remediation performance was assessed by examining the impact of treatment on contaminant mass discharge, an approach that has been used for only a very few prior ISCO projects. Contaminant mass discharge tests were conducted before and after permanganate injection to measure the impact at the source-zone scale. The results indicate that ISCO caused a significant reduction in mass discharge (approximately 75%). The standard approach of characterizing discharge at the source-zone scale was supplemented with additional characterization at the plume scale, which was evaluated by examining the change in contaminant mass discharge associated with the pump-and-treat system. The integrated contaminant mass discharge decreased by approximately 70%, consistent with the source-zone-scale measurements. The integrated mass discharge rebounded from 0.1 to 0.2 Kg/d within one year after cessation of permanganate injections, after which it has been stable for several years. Collection of the integrated contaminant mass discharge data throughout the ISCO treatment period provided a high-resolution, real-time analysis of the site-wide impact of ISCO, thereby linking source-zone remediation to impacts on overall risk. The results indicate that ISCO was successful in reducing contaminant mass discharge at this site, which comprises a highly heterogeneous subsurface environment. Analysis of TCE sediment concentration data for core material collected before and after ISCO supports the hypothesis that the remaining mass discharge is associated in part with poorly-accessible contaminant mass residing within lower-permeability zones.