Sample records for main engine number

  1. STS-26 Discovery, OV-103, SSME (2019) installed in position number one at KSC

    NASA Image and Video Library

    1988-01-10

    S88-29076 (10 Jan 1988) --- KSC employees work together to carefully guide a 7,000 pound main engine into the number one position in Discovery's aft compartment. Because of the engine's weight and size, special handling equipment is needed to perform the installation. Discovery is currently being prepared for the upcoming STS-26 mission in bay 1 of the Orbiter Processing Facility. This engine, 2019, arrived at KSC on Jan. 6 and was installed Jan. 10. The other two engines are scheduled to be installed later this month. The shuttle's three main liquid fueled engines provide the main propulsion for the orbiter vehicle. The cluster of three engines operate in parallel with the solid rocket boosters during the initial ascent.

  2. Distributed ignition method and apparatus for a combustion engine

    DOEpatents

    Willi, Martin L.; Bailey, Brett M.; Fiveland, Scott B.; Gong, Weidong

    2006-03-07

    A method and apparatus for operating an internal combustion engine is provided. The method comprises the steps of introducing a primary fuel into a main combustion chamber of the engine, introducing a pilot fuel into the main combustion chamber of the engine, determining an operating load of the engine, determining a desired spark plug ignition timing based on the engine operating load, and igniting the primary fuel and pilot fuel with a spark plug at the desired spark plug ignition timing. The method is characterized in that the octane number of the pilot fuel is lower than the octane number of the primary fuel.

  3. Emissions of NOx, particle mass and particle numbers from aircraft main engines, APU's and handling equipment at Copenhagen Airport

    NASA Astrophysics Data System (ADS)

    Winther, Morten; Kousgaard, Uffe; Ellermann, Thomas; Massling, Andreas; Nøjgaard, Jacob Klenø; Ketzel, Matthias

    2015-01-01

    This paper presents a detailed emission inventory for NOx, particle mass (PM) and particle numbers (PN) for aircraft main engines, APU's and handling equipment at Copenhagen Airport (CPH) based on time specific activity data and representative emission factors for the airport. The inventory has a high spatial resolution of 5 m × 5 m in order to be suited for further air quality dispersion calculations. Results are shown for the entire airport and for a section of the airport apron area ("inner apron") in focus. The methodology presented in this paper can be used to quantify the emissions from aircraft main engines, APU and handling equipment in other airports. For the entire airport, aircraft main engines is the largest source of fuel consumption (93%), NOx, (87%), PM (61%) and PN (95%). The calculated fuel consumption [NOx, PM, PN] shares for APU's and handling equipment are 5% [4%, 8%, 5%] and 2% [9%, 31%, 0%], respectively. At the inner apron area for handling equipment the share of fuel consumption [NOx, PM, PN] are 24% [63%, 75%, 2%], whereas APU and main engines shares are 43% [25%, 19%, 54%], and 33% [11%, 6%, 43%], respectively. The inner apron NOx and PM emission levels are high for handling equipment due to high emission factors for the diesel fuelled handling equipment and small for aircraft main engines due to small idle-power emission factors. Handling equipment is however a small PN source due to the low number based emission factors. Jet fuel sulphur-PM sensitivity calculations made in this study with the ICAO FOA3.0 method suggest that more than half of the PM emissions from aircraft main engines at CPH originate from the sulphur content of the fuel used at the airport. Aircraft main engine PN emissions are very sensitive to the underlying assumptions. Replacing this study's literature based average emission factors with "high" and "low" emission factors from the literature, the aircraft main engine PN emissions were estimated to change with a factor of 14.

  4. General view in the Horizontal Processing Area of the Space ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view in the Horizontal Processing Area of the Space Shuttle Main Engine (SSME) Processing Facility at Kennedy Space Center. This view is looking at SSME number 2048 mounted on an SSME engine Handler. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  5. Closeup view looking into the nozzle of the Space Shuttle ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view looking into the nozzle of the Space Shuttle Main Engine number 2061 looking at the cooling tubes along the nozzle wall and up towards the Main Combustion Chamber and Injector Plate - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  6. Closeup view of a Space Shuttle Main Engine (SSME) installed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of a Space Shuttle Main Engine (SSME) installed in position number one on the Orbiter Discovery. A ground-support mobile platform is in place below the engine to assist in technicians with the installation of the engine. This Photograph was taken in the Orbiter Processing Facility at the Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  7. KSC-95PC585

    NASA Image and Video Library

    1995-04-17

    KENNEDY SPACE CENTER, FLA. - A Space Shuttle Main Engine (SSME) hoist prepares to lift the first Block 1 engine to be installed in an orbiter into the number one position on Discovery while the spaceplane is being prepared for the STS-70 mission in the high bay of Orbiter Processing Facility 2. The new engine, SSME No. 2036, features a new high-pressure liquid oxygen turbopump, a two-duct powerhead, a baffleless main injector, a single-coil heat exchanger and start sequence modifications. The other two main engines to be used during the liftoff of the STS-70 mission are of the existing Phase II design.

  8. General view of the shop floor looking north in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the shop floor looking north in the Vertical Processing Area of the Space Shuttle Main Engine (SSME) Processing Facility at Kennedy Space Center. SSME number 2061 is in the foreground. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  9. Engineering education research in European Journal of Engineering Education and Journal of Engineering Education: citation and reference discipline analysis

    NASA Astrophysics Data System (ADS)

    Wankat, Phillip C.; Williams, Bill; Neto, Pedro

    2014-01-01

    The authors, citations and content of European Journal of Engineering Education (EJEE) and Journal of Engineering Education (JEE) in 1973 (JEE, 1975 EJEE), 1983, 1993, 2003, and available 2013 issues were analysed. Both journals transitioned from house organs to become engineering education research (EER) journals, although JEE transitioned first. In this process the number of citations rose, particularly of education and psychology sources; the percentage of research articles increased markedly as did the number of reference disciplines. The number of papers per issue, the number of single author papers, and the citations of science and engineering sources decreased. EJEE has a very broad geographic spread of authors while JEE authors are mainly US based. A 'silo' mentality where general engineering education researchers do not communicate with EER researchers in different engineering disciplines is evident. There is some danger that EER may develop into a silo that does not communicate with technically oriented engineering professors.

  10. 29. FLOOR PLAN OF WASTE CALCINATION FACILITY SHOWING MAIN ABOVEGRADE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. FLOOR PLAN OF WASTE CALCINATION FACILITY SHOWING MAIN ABOVE-GRADE FLOOR LEVEL. INEEL DRAWING NUMBER 200-0633-00-287-106354. FLUOR NUMBER 5775-CPP-633-A-4. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID

  11. SOUTH ELEVATION AND DETAILS OF MAIN PROCESSING BUILDING (CPP601). INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH ELEVATION AND DETAILS OF MAIN PROCESSING BUILDING (CPP-601). INL DRAWING NUMBER 200-0601-00-291-103082. ALTERNATE ID NUMBER 542-12-B-76. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  12. EAST AND WEST ELEVATIONS OF MAIN PROCESSING BUILDING (CPP601). INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST AND WEST ELEVATIONS OF MAIN PROCESSING BUILDING (CPP-601). INL DRAWING NUMBER 200-0601-00-291-103081. ALTERNATE ID NUMBER 542-11-B-75. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  13. BUILDING DETAILS AND SECTIONS OF MAIN PROCESSING BUILDING (CPP601). INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BUILDING DETAILS AND SECTIONS OF MAIN PROCESSING BUILDING (CPP-601). INL DRAWING NUMBER 200-0601-00-291-103080. ALTERNATE ID NUMBER 542-11-B-74. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  14. STRUCTURAL DETAILS AND SECTIONS OF MAIN PROCESSING BUILDING (CPP601). INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    STRUCTURAL DETAILS AND SECTIONS OF MAIN PROCESSING BUILDING (CPP-601). INL DRAWING NUMBER 200-0601-00-291-103079. ALTERNATE ID NUMBER 542-11-B-73. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  15. Prediction of the Main Engine Power of a New Container Ship at the Preliminary Design Stage

    NASA Astrophysics Data System (ADS)

    Cepowski, Tomasz

    2017-06-01

    The paper presents mathematical relationships that allow us to forecast the estimated main engine power of new container ships, based on data concerning vessels built in 2005-2015. The presented approximations allow us to estimate the engine power based on the length between perpendiculars and the number of containers the ship will carry. The approximations were developed using simple linear regression and multivariate linear regression analysis. The presented relations have practical application for estimation of container ship engine power needed in preliminary parametric design of the ship. It follows from the above that the use of multiple linear regression to predict the main engine power of a container ship brings more accurate solutions than simple linear regression.

  16. PLAN SECTIONS AND DETAILS OF CELL HATCHES MAIN PROCESSING BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PLAN SECTIONS AND DETAILS OF CELL HATCHES MAIN PROCESSING BUILDING (CPP-601). INL DRAWING NUMBER 200-0601-00-291-103256. ALTERNATE ID NUMBER 542-11-F-302. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  17. EQUIPMENT LAYOUT OF MAIN PROCESSING BUILDING (CPP601) LCELL PLAN AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EQUIPMENT LAYOUT OF MAIN PROCESSING BUILDING (CPP-601) L-CELL PLAN AND SECTION SHOWS COMPLEXITY OF CELLS. INL DRAWING NUMBER 200-0601-00-098-105687. ALTERNATE ID NUMBER 4289-20-301. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  18. General view of the shop floor looking north in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the shop floor looking north in the Vertical Processing Area of the Space Shuttle Main Engine (SSME) Processing Facility at Kennedy Space Center. SSME number 2061's nozzle is being inspected by an SSME technician in the foreground. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  19. FLOOR PLAN OF MAIN PROCESSING BUILDING (CPP601) BASEMENT SHOWING PROCESS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FLOOR PLAN OF MAIN PROCESSING BUILDING (CPP-601) BASEMENT SHOWING PROCESS CORRIDOR AND EIGHTEEN CELLS. TO LEFT IS LABORATORY BUILDING (CPP-602). INL DRAWING NUMBER 200-0601-00-706-051981. ALTERNATE ID NUMBER CPP-E-1981. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  20. Estimation of instantaneous heat transfer coefficients for a direct-injection stratified-charge rotary engine

    NASA Technical Reports Server (NTRS)

    Lee, C. M.; Addy, H. E.; Bond, T. H.; Chun, K. S.; Lu, C. Y.

    1987-01-01

    The main objective of this report was to derive equations to estimate heat transfer coefficients in both the combustion chamber and coolant pasage of a rotary engine. This was accomplished by making detailed temperature and pressure measurements in a direct-injection stratified-charge rotary engine under a range of conditions. For each sppecific measurement point, the local physical properties of the fluids were calculated. Then an empirical correlation of the coefficients was derived by using a multiple regression program. This correlation expresses the Nusselt number as a function of the Prandtl number and Reynolds number.

  1. Engineering Education and Students' Challenges: Strategies toward Enhancing the Educational Environment in Engineering Colleges

    ERIC Educational Resources Information Center

    Alkandari, Nabila Y.

    2014-01-01

    The main goal of this research is to gain an understanding of the challenges which have to be confronted by the engineering students at the College of Engineering and Petroleum at Kuwait University. The college has a large number of students, of which three hundred and eighty five were selected on a random basis for study purposes. The results…

  2. Reusability aspects for space transportation rocket engines: programmatic status and outlook

    NASA Astrophysics Data System (ADS)

    Preclik, D.; Strunz, R.; Hagemann, G.; Langel, G.

    2011-09-01

    Rocket propulsion systems belong to the most critical subsystems of a space launch vehicle, being illustrated in this paper by comparing different types of transportation systems. The aspect of reusability is firstly discussed for the space shuttle main engine, the only rocket engine in the world that has demonstrated multiple reuses. Initial projections are contrasted against final reusability achievements summarizing three decades of operating the space shuttle main engine. The discussion is then extended to engines employed on expendable launch vehicles with an operational life requirement typically specifying structural integrities up to 20 cycles (start-ups) and an accumulated burning time of about 6,000 s (Vulcain engine family). Today, this life potential substantially exceeds the duty cycle of an expendable engine. It is actually exploited only during the development and qualification phase of an engine when system reliability is demonstrated on ground test facilities with a reduced number of hardware sets that are subjected to an extended number of test cycles and operation time. The paper will finally evaluate the logic and effort necessary to qualify a reusable engine for a required reliability and put this result in context of possible cost savings realized from reuse operations over a time span of 25 years.

  3. Main propulsion system design recommendations for an advanced Orbit Transfer Vehicle

    NASA Technical Reports Server (NTRS)

    Redd, L.

    1985-01-01

    Various main propulsion system configurations of an advanced OTV are evaluated with respect to the probability of nonindependent failures, i.e., engine failures that disable the entire main propulsion system. Analysis of the life-cycle cost (LCC) indicates that LCC is sensitive to the main propulsion system reliability, vehicle dry weight, and propellant cost; it is relatively insensitive to the number of missions/overhaul, failures per mission, and EVA and IVA cost. In conclusion, two or three engines are recommended in view of their highest reliability, minimum life-cycle cost, and fail operational/fail safe capability.

  4. Engineering and Technical Education in Russia, in Numbers

    ERIC Educational Resources Information Center

    Aref'ev, A. L.; Aref'ev, M. A.

    2013-01-01

    An analysis of the main tendencies in the development of engineering and technical education in Russia during the last 100 years shows that earlier strengths have been lost, and that currently technical education in Russia is far behind modern world standards.

  5. CrossTalk: The Journal of Defense Software Engineering. Volume 18, Number 11

    DTIC Science & Technology

    2005-11-01

    languages. Our discipline of software engineering has really experienced phenomenal growth right before our eyes. A sign that software design has...approach on a high level of abstraction. The main emphasis is on the identification and allocation of a needed functionality (e.g., a target tracker ), rather...messaging software that is the backbone of teenage culture. As increasing security constraints will increase the cost of developing and main- taining any

  6. CONSTRUCTION VIEW OF MAIN PROCESSING BUILDING (CPP601) LOOKING NORTHWEST. INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION VIEW OF MAIN PROCESSING BUILDING (CPP-601) LOOKING NORTHWEST. INL PHOTO NUMBER NRTS-51-1390. Unknown Photographer, 1/31/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  7. CONSTRUCTION VIEW OF MAIN PROCESSING BUILDING (CPP601) LOOKING EAST. INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION VIEW OF MAIN PROCESSING BUILDING (CPP-601) LOOKING EAST. INL PHOTO NUMBER NRTS-51-1547. Unknown Photographer, 2/28/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  8. Orbiter Atlantis (STS-110) Launch With New Block II Engines

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Powered by three newly-enhanced Space Shuttle Maine Engines (SSMEs), called the Block II Maine Engines, the Space Shuttle Orbiter Atlantis lifted off from the Kennedy Space Center launch pad on April 8, 2002 for the STS-110 mission. The Block II Main Engines incorporate an improved fuel pump featuring fewer welds, a stronger integral shaft/disk, and more robust bearings, making them safer and more reliable, and potentially increasing the number of flights between major overhauls. NASA continues to increase the reliability and safety of Shuttle flights through a series of enhancements to the SSME. The engines were modified in 1988 and 1995. Developed in the 1970s and managed by the Space Shuttle Projects Office at the Marshall Space Flight Center, the SSME is the world's most sophisticated reusable rocket engine. The new turbopump made by Pratt and Whitney of West Palm Beach, Florida, was tested at NASA's Stennis Space Center in Mississippi. Boeing Rocketdyne in Canoga Park, California, manufactures the SSME. This image was extracted from engineering motion picture footage taken by a tracking camera.

  9. CONSTRUCTION PROGRESS PHOTO SHOWING EXCAVATION PIT FOR MAIN PROCESSING BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO SHOWING EXCAVATION PIT FOR MAIN PROCESSING BUILDING (CPP-601) LOOKING SOUTH. INL PHOTO NUMBER NRTS-50-693. Unknown Photographer, 1950 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  10. CONSTRUCTION PROGRESS PHOTO SHOWING MAIN PROCESSING BUILDING (CPP601) LOOKING NORTH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO SHOWING MAIN PROCESSING BUILDING (CPP-601) LOOKING NORTH. INL PHOTO NUMBER NRTS-51-1387. Unknown Photographer, 1/31/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  11. SOUTH ELEVATION OF MAIN PROCESSING BUILDING (CPP601) LOOKING NORTH. INL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH ELEVATION OF MAIN PROCESSING BUILDING (CPP-601) LOOKING NORTH. INL PHOTO NUMBER HD-22-5-3. Mike Crane, Photographer, 11/1998 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  12. Operationally efficient propulsion system study (OEPSS) data book. Volume 9; Preliminary Development Plan for an Integrated Booster Propulsion Module (BPM)

    NASA Technical Reports Server (NTRS)

    DiBlasi, Angelo G.

    1992-01-01

    A preliminary development plan for an integrated propulsion module (IPM) is described. The IPM, similar to the Space Transportation Main engine (STME) engine, is applicable to the Advanced Launch System (ALS) baseline vehicle. The same STME development program ground rules and time schedule were assumed for the IPM. However, the unique advantages of testing an integrated engine element, in terms of reduced number of hardware and number of system and reliability tests, compared to single standalone engine and MPTA, are highlighted. The potential ability of the IPM to meet the ALS program goals for robustness, operability and reliability is emphasized.

  13. 75 FR 354 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-05

    ..., 2009. Take notice that the Commission received the following electric rate filings: Docket Numbers...: Iberdrola Renewables, Inc et al. submit Original Sheet 1 to FERC Electric Tariff, Third Revised Volume 1... Maine Power Company. Description: Central Maine Power Company submits executed Engineering and...

  14. Plenary Round Table: The Main Challenges of Space Propulsion Industry for the Coming Ten Years

    NASA Technical Reports Server (NTRS)

    Wood, Byron K.; Hopson, George (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides limited information on the Space Shuttle Main Engine. Topics covered include reusability levels for individual parts, the relation between the number of certification tests and average risk factor for first flights.

  15. CONSTRUCTION PROGRESS PHOTO SHOWING EXCAVATION PIT FOR MAIN PROCESSING BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION PROGRESS PHOTO SHOWING EXCAVATION PIT FOR MAIN PROCESSING BUILDING (CPP-601) LOOKING NORTHWEST. INL PHOTO NUMBER NRTS-50-885. Unknown Photographer, 10/30/1950 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  16. AERIAL VIEW OF MAIN PROCESSING BUILDING SHOWING CONSTRUCTION PROGRESS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL VIEW OF MAIN PROCESSING BUILDING SHOWING CONSTRUCTION PROGRESS AND EXCAVATION FOR LABORATORY ON LEFT. INL PHOTO NUMBER NRTS-51-1759. Unknown Photographer, 3/28/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  17. 75 FR 17703 - Combined Notice of Filings # 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ...: Southwest Power Pool, Inc submits Substitute Sixth Revised Sheet 14 et al to its FERC Electric Tariff, Fifth...: Central Maine Power Company. Description: Central Maine Power Company submits Engineering and Procurement.... Docket Numbers: ER10-911-001. Applicants: Wisconsin Electric Power Company. Description: Wisconsin...

  18. Integrating Requirements Engineering, Modeling, and Verification Technologies into Software and Systems Engineering

    DTIC Science & Technology

    2007-10-28

    Software Engineering, FASE󈧉, volume 3442 of Lecture Notes in Computer Science, pages 175--189. Springer, 2005. Andreas Bauer, Martin Leucker, and Jonathan ...of Personnel receiving masters degrees NAME Markus Strohmeier Gerrit Hanselmann Jonathan Streit Ernst Sassen 4Total Number: Names of personnel...developed and documented mainly within the master thesis by Jonathan Streit [Str06]: • Jonathan Streit. Development of a programming language like tem

  19. CONSTRUCTION VIEW OF MAIN PROCESSING BUILDING (CPP601) ON THE RIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONSTRUCTION VIEW OF MAIN PROCESSING BUILDING (CPP-601) ON THE RIGHT AND LABORATORY (CPP-602) ON THE LEFT. INL PHOTO NUMBER NRTS-51-3373. Unknown Photographer, 9/28/1951 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  20. The Evolution of Utilizing Manual Throttles to Avoid Low LH2 NPSP at the SSME Inlet

    NASA Technical Reports Server (NTRS)

    Henfling, Rick

    2011-01-01

    Even before the first flight of the Space Shuttle, it was understood low liquid hydrogen (LH2) Net Positive Suction Pressure (NPSP) at the inlet to the Space Shuttle Main Engine (SSME) can have adverse effects on engine operation. A number of failures within both the External Tank (ET) and the Orbiter Main Propulsion System could result in a low LH2 NPSP condition. Operational workarounds were developed to take advantage of the onboard crew s ability to manually throttle down the SSMEs, which alleviated the low LH2 NPSP condition. A throttling down of the SSME resulted in an increase in NPSP, mainly due to the reduction in frictional flow losses while at a lower throttle setting. As engineers refined their understanding of the NPSP requirements for the SSME (through a robust testing program), the operational techniques evolved to take advantage of these additional capabilities. Currently the procedure, which for early Space Shuttle missions required a Return-to-Launch-Site abort, now would result in a nominal Main Engine Cut Off (MECO) and no loss of mission objectives.

  1. INTERIOR PHOTO OF MAIN PROCESSING BUILDING PROCESS MAKEUP AREA (CPP601) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR PHOTO OF MAIN PROCESSING BUILDING PROCESS MAKEUP AREA (CPP-601) LOOKING SOUTHWEST. PHOTO TAKEN FROM NORTHEAST CORNER. INL PHOTO NUMBER HD-50-4-2. Mike Crane, Photographer, 6/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  2. INTERIOR PHOTO OF MAIN PROCESSING BUILDING PROCESS MAKEUP AREA (CPP601) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR PHOTO OF MAIN PROCESSING BUILDING PROCESS MAKEUP AREA (CPP-601) LOOKING NORTH. PHOTO TAKEN FROM SOUTHWEST CORNER. INL PHOTO NUMBER HD-50-1-3. Mike Crane, Photographer, 6/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  3. INTERIOR PHOTO OF MAIN PROCESSING BUILDING (CPP601) PROCESS MAKEUP AREA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR PHOTO OF MAIN PROCESSING BUILDING (CPP-601) PROCESS MAKEUP AREA LOOKING SOUTH. PHOTO TAKEN FROM CENTER OF WEST WALL. INL PHOTO NUMBER HD-50-1-4. Mike Crane, Photographer, 6/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  4. EAST ELEVATION OF MAIN PROCESSING BUILDING (CPP601) LOOKING NORTHWEST. MAINTENANCE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION OF MAIN PROCESSING BUILDING (CPP-601) LOOKING NORTHWEST. MAINTENANCE SHOP AND OFFICE BUILDING (CPP-630) ON RIGHT IN PHOTO. INL PHOTO NUMBER HD-22-3-2. Mike Crane, Photographer, 11/1998 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  5. INTERIOR PHOTO OF MAIN PROCESSING BUILDING PROCESS MAKEUP AREA (CPP601) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR PHOTO OF MAIN PROCESSING BUILDING PROCESS MAKEUP AREA (CPP-601) LOOKING NORTHWEST. PHOTO TAKEN FROM MIDDLE OF CORRIDOR. INL PHOTO NUMBER HD-50-2-3. Mike Crane, Photographer, 6/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  6. INTERIOR PHOTO OF MAIN PROCESSING BUILDING PROCESS MAKEUP AREA (CPP601) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR PHOTO OF MAIN PROCESSING BUILDING PROCESS MAKEUP AREA (CPP-601) LOOKING SOUTH. PHOTO TAKEN FROM MIDDLE OF CORRIDOR. INL PHOTO NUMBER HD-50-3-2. Mike Crane, Photographer, 6/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  7. General view of the High Bay area of the Space ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the High Bay area of the Space Shuttle Main Engine (SSME) Processing Facility at Kennedy Space Center. This view shows the specially modified fork lift used for horizontal installation and removal of the SSMEs into and out of the Orbiters. SSME number 2059 is in the background and is in the process of being scanned with a high-definition laser scanner to acquire field documentation for the production of historic documentatin. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  8. High Velocity Jet Noise Source Location and Reduction. Task 6. Supplement. Computer Programs: Engineering Correlation (M*S) Jet Noise Prediction Method and Unified Aeroacoustic Prediction Model (M*G*B) for Nozzles of Arbitary Shape.

    DTIC Science & Technology

    1979-03-01

    LSPFIT 112 4.3.5 SLICE 112 4.3.6 CRD 113 4.3.7 OUTPUT 113 4.3.8 SHOCK 115 4.3.9 ATMOS 115 4.3.10 PNLC 115 4.4 Program Usage and Logic 116 4.5 Description...number MAIN, SLICE, OUTPUT F Intermediate variable LSPFIT FAC Intermediate variable PNLC FC Center frequency SLICE FIRSTU Flight velocity Ua MAIN, SLICE...Index CRD J211 Index CRD K Index, also wave number MAIN, SLICE, PNLC KN Surrounding boundary index MAIN KNCAS Case counter MAIN KNK Surrounding

  9. Staged direct injection diesel engine

    DOEpatents

    Baker, Quentin A.

    1985-01-01

    A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

  10. FLOOR PLAN OF MAIN PROCESSING BUILDING (CPP601), SECOND FLOOR SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FLOOR PLAN OF MAIN PROCESSING BUILDING (CPP-601), SECOND FLOOR SHOWING PROCESS MAKEUP AREA AND EIGHTEEN CELLS AND ADJOINING REMOTE ANALYTICAL FACILITY (CPP-627) SHOWING COLD LAB, DECONTAMINATION ROOM, MULTICURIE CELL ROOM, AND OFFICES. TO LEFT ARE LABORATORY BUILDING (CPP-602) AND MAINTENANCE BUILDING (CPP-630). INL DRAWING NUMBER 200-0601-00-706-051980. ALTERNATE ID NUMBER CPP-E-1980. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  11. FLOOR PLAN OF MAIN PROCESSING BUILDING (CPP601), FIRST FLOOR SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FLOOR PLAN OF MAIN PROCESSING BUILDING (CPP-601), FIRST FLOOR SHOWING SAMPLE CORRIDORS AND EIGHTEEN CELLS AND ADJOINING REMOTE ANALYTICAL FACILITY (CPP-627) SHOWING REMOTE ANALYTICAL FACILITIES LAB, DECONTAMINATION ROOM, AND MULTICURIE CELL ROOM. TO LEFT ARE LABORATORY BUILDING (CPP-602) AND MAINTENANCE BUILDING (CPP-630). INL DRAWING NUMBER 200-0601-00-706-051979. ALTERNATE ID NUMBER CPP-E-1979. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  12. Applied Induced Pluripotent Stem Cells in Combination With Biomaterials in Bone Tissue Engineering.

    PubMed

    Ardeshirylajimi, Abdolreza

    2017-10-01

    Due to increasing of the orthopedic lesions and fractures in the world and limitation of current treatment methods, researchers, and surgeons paid attention to the new treatment ways especially to tissue engineering and regenerative medicine. Innovation in stem cells and biomaterials accelerate during the last decade as two main important parts of the tissue engineering. Recently, induced pluripotent stem cells (iPSCs) introduced as cells with highly proliferation and differentiation potentials that hold great promising features for used in tissue engineering and regenerative medicine. As another main part of tissue engineering, synthetic, and natural polymers have been shown daily grow up in number to increase and improve the grade of biopolymers that could be used as scaffold with or without stem cells for implantation. One of the developed areas of tissue engineering is bone tissue engineering; the aim of this review is present studies were done in the field of bone tissue engineering while used iPSCs in combination with natural and synthetic biomaterials. J. Cell. Biochem. 118: 3034-3042, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Typology of engineering mathematics learners in a Singapore polytechnic: a socio-psychological perspective

    NASA Astrophysics Data System (ADS)

    Khiat, Henry

    2012-03-01

    This study aims to understand how engineering mathematics students form intentions in mathematics learning from a socio-psychological perspective. A grounded theory approach was adopted and 21 engineering students and six tutors participated in the study. The main findings in this study show that a student's intention in engineering mathematics learning is made up of a number of sequential components - their critical trigger, internalized significance, aim and perceived intention-related consequences in engineering mathematics learning. Accordingly, the participants may be broadly classified into five types of learners: idealistic learners, competitive learners, pragmatic learners, fatalistic learners and dissonant learners according to their intentions in engineering mathematics learning.

  14. Regulated and unregulated emissions from highway heavy-duty diesel engines complying with U.S. Environmental Protection Agency 2007 emissions standards.

    PubMed

    Khalek, Imad A; Bougher, Thomas L; Merritt, Patrick M; Zielinska, Barbara

    2011-04-01

    As part of the Advanced Collaborative Emissions Study (ACES), regulated and unregulated exhaust emissions from four different 2007 model year U.S. Environmental Protection Agency (EPA)-compliant heavy-duty highway diesel engines were measured on an engine dynamometer. The engines were equipped with exhaust high-efficiency catalyzed diesel particle filters (C-DPFs) that are actively regenerated or cleaned using the engine control module. Regulated emissions of carbon monoxide, nonmethane hydrocarbons, and particulate matter (PM) were on average 97, 89, and 86% lower than the 2007 EPA standard, respectively, and oxides of nitrogen (NOx) were on average 9% lower. Unregulated exhaust emissions of nitrogen dioxide (NO2) emissions were on, average 1.3 and 2.8 times higher than the NO, emissions reported in previous work using 1998- and 2004-technology engines, respectively. However, compared with other work performed on 1994- to 2004-technology engines, average emission reductions in the range of 71-99% were observed for a very comprehensive list of unregulated engine exhaust pollutants and air toxic contaminants that included metals and other elements, elemental carbon (EC), inorganic ions, and gas- and particle-phase volatile and semi-volatile organic carbon (OC) compounds. The low PM mass emitted from the 2007 technology ACES engines was composed mainly of sulfate (53%) and OC (30%), with a small fraction of EC (13%) and metals and other elements (4%). The fraction of EC is expected to remain small, regardless of engine operation, because of the presence of the high-efficiency C-DPF in the exhaust. This is different from typical PM composition of pre-2007 engines with EC in the range of 10-90%, depending on engine operation. Most of the particles emitted from the 2007 engines were mainly volatile nuclei mode in the sub-30-nm size range. An increase in volatile nanoparticles was observed during C-DPF active regeneration, during which the observed particle number was similar to that observed in emissions of pre-2007 engines. However, on average, when combining engine operation with and without active regeneration events, particle number emissions with the 2007 engines were 90% lower than the particle number emitted from a 2004-technology engine tested in an earlier program.

  15. PLAN SECTIONS AND ELEVATIONS OF VESSEL SAMPLING STATIONS "P", "Q", ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PLAN SECTIONS AND ELEVATIONS OF VESSEL SAMPLING STATIONS "P", "Q", "S" CELLS MAIN PROCESSING BUILDING (CPP-601). INL DRAWING NUMBER 200-0601-00-291-053694. ALTERNATE ID NUMBER CPP-E-1394. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  16. SOUTH SECTION OF WEST ELEVATION OF MAIN PROCESSING BUILDING (CPP601) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH SECTION OF WEST ELEVATION OF MAIN PROCESSING BUILDING (CPP-601) LOOKING EAST. HEADEND PLANT BUILDING (CPP-640) APPEARS ON LEFT IN PHOTO. INL PHOTO NUMBER HD-22-3-3. Mike Crane, Photographer, 11/1998 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  17. KSC-04pd1646

    NASA Image and Video Library

    2004-08-03

    KENNEDY SPACE CENTER, FLA. - In the Space Shuttle Main Engine (SSME) Processing Facility, Boeing-Rocketdyne crane operator Joe Ferrante (left) lowers SSME 2058, the first SSME fully assembled at KSC, onto an engine stand with the assistance of other technicians on his team. The engine is being moved from its vertical work stand into a horizontal position in preparation for shipment to NASA’s Stennis Space Center in Mississippi to undergo a hot fire acceptance test. It is the first of five engines to be fully assembled on site to reach the desired number of 15 engines ready for launch at any given time in the Space Shuttle program. A Space Shuttle has three reusable main engines. Each is 14 feet long, weighs about 7,800 pounds, is seven-and-a-half feet in diameter at the end of its nozzle, and generates almost 400,000 pounds of thrust. Historically, SSMEs were assembled in Canoga Park, Calif., with post-flight inspections performed at KSC. Both functions were consolidated in February 2002. The Rocketdyne Propulsion and Power division of The Boeing Co. manufactures the engines for NASA.

  18. KSC-04PD-1648

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In the Space Shuttle Main Engine (SSME) Processing Facility, Boeing-Rocketdyne quality inspector Nick Grimm (center) monitors the work of technicians on his team as they lower SSME 2058, the first SSME fully assembled at KSC, onto an engine stand. The engine is being placed into a horizontal position in preparation for shipment to NASAs Stennis Space Center in Mississippi to undergo a hot fire acceptance test. It is the first of five engines to be fully assembled on site to reach the desired number of 15 engines ready for launch at any given time in the Space Shuttle program. A Space Shuttle has three reusable main engines. Each is 14 feet long, weighs about 7,800 pounds, is seven-and-a-half feet in diameter at the end of its nozzle, and generates almost 400,000 pounds of thrust. Historically, SSMEs were assembled in Canoga Park, Calif., with post-flight inspections performed at KSC. Both functions were consolidated in February 2002. The Rocketdyne Propulsion and Power division of The Boeing Co. manufactures the engines for NASA.

  19. KSC-04pd1648

    NASA Image and Video Library

    2004-08-03

    KENNEDY SPACE CENTER, FLA. - In the Space Shuttle Main Engine (SSME) Processing Facility, Boeing-Rocketdyne quality inspector Nick Grimm (center) monitors the work of technicians on his team as they lower SSME 2058, the first SSME fully assembled at KSC, onto an engine stand. The engine is being placed into a horizontal position in preparation for shipment to NASA’s Stennis Space Center in Mississippi to undergo a hot fire acceptance test. It is the first of five engines to be fully assembled on site to reach the desired number of 15 engines ready for launch at any given time in the Space Shuttle program. A Space Shuttle has three reusable main engines. Each is 14 feet long, weighs about 7,800 pounds, is seven-and-a-half feet in diameter at the end of its nozzle, and generates almost 400,000 pounds of thrust. Historically, SSMEs were assembled in Canoga Park, Calif., with post-flight inspections performed at KSC. Both functions were consolidated in February 2002. The Rocketdyne Propulsion and Power division of The Boeing Co. manufactures the engines for NASA.

  20. How to Teach Residue Number System to Computer Scientists and Engineers

    ERIC Educational Resources Information Center

    Navi, K.; Molahosseini, A. S.; Esmaeildoust, M.

    2011-01-01

    The residue number system (RNS) has been an important research field in computer arithmetic for many decades, mainly because of its carry-free nature, which can provide high-performance computing architectures with superior delay specifications. Recently, research on RNS has found new directions that have resulted in the introduction of efficient…

  1. Closeup view of the aft fuselage of the Orbiter Discovery ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the aft fuselage of the Orbiter Discovery looking at the thrust structure that supports the Space Shuttle Main Engines (SSMEs). In this view, SSME number two position is on the left and SSME number three position is on the right. The thrust structure transfers the forces produce by the engines into and through the airframe of the orbiter. The thrust structure includes the SSMEs load reaction truss structure, engine interface fittings and the hydraulic-actuator support structure. The propellant feed lines are the plugged and capped orifices within the engine bays. Note that SSME position two is rotated ninety degrees from position three and one. This was needed to enable enough clearance for the engines to fit and gimbal. Note in engine bay three is a clear view of the actuators that control the gambling of that engine. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  2. Determination and Applications of Environmental Costs at Different Sized Airports: Aircraft Noise and Engine Emissions

    NASA Technical Reports Server (NTRS)

    Lu, Cherie; Lierens, Abigail

    2003-01-01

    With the increasing trend of charging for externalities and the aim of encouraging the sustainable development of the air transport industry, there is a need to evaluate the social costs of these undesirable side effects, mainly aircraft noise and engine emissions, for different airports. The aircraft noise and engine emissions social costs are calculated in monetary terms for five different airports, ranging from hub airports to small regional airports. The number of residences within different levels of airport noise contours and the aircraft noise classifications are the main determinants for accessing aircraft noise social costs. Whist, based on the damages of different engine pollutants on the human health, vegetation, materials, aquatic ecosystem and climate, the aircraft engine emissions social costs vary from engine types to aircraft categories. The results indicate that the relationship appears to be curvilinear between environmental costs and the traffic volume of an airport. The results and methodology of environmental cost calculation could input for to the proposed European wide harmonized noise charges as well as the social cost benefit analysis of airports.

  3. KSC-04pd1645

    NASA Image and Video Library

    2004-08-03

    KENNEDY SPACE CENTER, FLA. - In the Space Shuttle Main Engine (SSME) Processing Facility, Boeing-Rocketdyne crane operator Joe Ferrante (second from right) lifts SSME 2058, the first SSME fully assembled at KSC, with the assistance of other technicians on his team. The engine is being lifted from its vertical work stand into a horizontal position in preparation for shipment to NASA’s Stennis Space Center in Mississippi to undergo a hot fire acceptance test. It is the first of five engines to be fully assembled on site to reach the desired number of 15 engines ready for launch at any given time in the Space Shuttle program. A Space Shuttle has three reusable main engines. Each is 14 feet long, weighs about 7,800 pounds, is seven-and-a-half feet in diameter at the end of its nozzle, and generates almost 400,000 pounds of thrust. Historically, SSMEs were assembled in Canoga Park, Calif., with post-flight inspections performed at KSC. Both functions were consolidated in February 2002. The Rocketdyne Propulsion and Power division of The Boeing Co. manufactures the engines for NASA.

  4. FET. Control and equipment building, TAN630. Main floor plan. Control ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FET. Control and equipment building, TAN-630. Main floor plan. Control room. Room numbers and functions. Ralph M. Parsons. 1229-2-ANP/GE-5-630-A-2. Date: March 1957. Approved by INEEL Classification Office for public release. INEEL index code no. 036-0630-00-693-107081 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  5. Compendium of abstracts on statistical applications in geotechnical engineering

    NASA Astrophysics Data System (ADS)

    Hynes-Griffin, M. E.; Deer, G. W.

    1983-09-01

    The results of a literature search of geotechnical and statistical abstracts are presented in tables listing specific topics, title of the abstract, main author and the file number under which the abstract can be found.

  6. Studies and analyses of the Space Shuttle Main Engine: SSME failure data review, diagnostic survey and SSME diagnostic evaluation

    NASA Technical Reports Server (NTRS)

    Glover, R. C.; Kelley, B. A.; Tischer, A. E.

    1986-01-01

    The results of a review of the Space Shuttle Main Engine (SSME) failure data for the period 1980 through 1983 are presented. The data was collected, evaluated, and ranked according to procedures established during this study. A number of conclusions and recommendations are made based upon this failure data review. The results of a state-of-the-art diagnostic survey are also presented. This survey covered a broad range of diagnostic sensors and techniques and the findings were evaluated for application to the SSME. Finally, a discussion of the initial activities for the on-going SSME diagnostic evaluation is included.

  7. KSC-04pd1641

    NASA Image and Video Library

    2004-08-03

    KENNEDY SPACE CENTER, FLA. - In the Space Shuttle Main Engine (SSME) Processing Facility, Boeing-Rocketdyne technicians prepare to move SSME 2058, the first SSME fully assembled at KSC. Move conductor Bob Brackett (on ladder) supervises the placement of a sling around the engine with the assistance of crane operator Joe Ferrante (center) and a technician. The engine will be lifted from its vertical work stand into a horizontal position in preparation for shipment to NASA’s Stennis Space Center in Mississippi to undergo a hot fire acceptance test. It is the first of five engines to be fully assembled on site to reach the desired number of 15 engines ready for launch at any given time in the Space Shuttle program. A Space Shuttle has three reusable main engines. Each is 14 feet long, weighs about 7,800 pounds, is seven-and-a-half feet in diameter at the end of its nozzle, and generates almost 400,000 pounds of thrust. Historically, SSMEs were assembled in Canoga Park, Calif., with post-flight inspections performed at KSC. Both functions were consolidated in February 2002. The Rocketdyne Propulsion and Power division of The Boeing Co. manufactures the engines for NASA.

  8. Flow Distribution Around the SSME Main Injector Assembly Using Porosity Formulation

    NASA Technical Reports Server (NTRS)

    Cheng, Gary C.; Chen, Yen-Sen; Wang, Ten-See

    1995-01-01

    Hot gas turbulent flow distribution around the main injector assembly of the Space Shuttle Main Engine (SSME) and Liquid Oxidizer (LOX) flow distribution through the LOX posts have a great effect on the combustion phenomena inside the main combustion chamber. In order to design a CFD model to be an effective engineering analysis tool with good computational turn- around time (especially for 3-D flow problems) and still maintain good accuracy in describing the flow features, the concept of porosity was employed to describe the effects of blockage and drag force due to the presence of the LOX posts in the turbulent flow field around the main injector assembly of the SSME. 2-D numerical studies were conducted to identify the drag coefficients of the flows both through tube banks and around the shielded posts over a wide range of Reynolds numbers. Empirical, analytical expressions of the drag coefficient as a function of local flow Reynolds number were then deduced. The porosity model was applied to the turbulent flow around the main injector assembly of the SSME, and analyses were performed. The 3-D CFD analysis was divided into three parts, LOX dome, hot gas injector assembly, and hydrogen cavity. The numerical results indicate that the mixture ratio at the downstream of injector face was close to stoichiometric around baffle elements.

  9. Flow Distribution Around the SSME Main Injector Assembly Using Porosity Formulation

    NASA Technical Reports Server (NTRS)

    Cheng, Gary C.; Chen, Yen-Sen; Wang, Ten-See

    1995-01-01

    Hot gas turbulent flow distribution around the main injector assembly of the Space Shuttle Main Engine (SSME) and Liquid Oxidizer (LOX) flow distribution through the LOX posts have a great effect on the combustion phenomena inside the main combustion chamber. In order to design a CFD model to be an effective engineering analysis tool with good computational turn-around time (especially for 3-D flow problems) and still maintain good accuracy in describing the flow features, the concept of porosity was employed to describe the effects of blockage and drag force due to the presence of the LOX posts in the turbulent flow field around the main injector assembly of the SSME. 2-D numerical studies were conducted to identify the drag coefficients of the flows both through tube banks and around the shielded posts over a wide range of Reynolds numbers. Empirical, analytical expressions of the drag coefficient as a function of local flow Reynolds number were then deduced. The porosity model was applied to the turbulent flow around the main injector assembly of the SSME, and analyses were performed. The 3-D CFD analysis was divided into three parts, LOX dome, hot gas injector assembly, and hydrogen cavity. The numerical results indicate that the mixture ratio at the downstream of injector face was close to stoichiometric around baffle elements.

  10. Safety effects of low-cost engineering measures. An observational study in a Portuguese multilane road.

    PubMed

    Vieira Gomes, Sandra; Cardoso, João Lourenço

    2012-09-01

    Single carriageway multilane roads are not, in general, a very safe type of road, mainly because of the high number of seriously injured victims in head-on collisions, when compared with dual carriageway multilane roads, with a median barrier. In this paper the results of a study on the effect of the application of several low cost engineering measures, aimed at road infrastructure correction and road safety improvement on a multilane road (EN6), are presented. The study was developed by the National Laboratory of Civil Engineering (LNEC) for the Portuguese Road Administration and involved a comparison of selected aspects of motorized traffic behaviour (traffic volumes and speeds) measured in several sections of EN6, as well as monitoring of road safety developments in the same road. The applied low cost engineering measures allowed a reduction of 10% in the expected annual number of personal injury accidents and a 70% decrease in the expected annual number of head-on collisions; the expected annual frequency of accidents involving killed and seriously injured persons was reduced by 26%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. NORTH SECTION OF WEST ELEVATION OF MAIN PROCESSING BUILDING (CPP601) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH SECTION OF WEST ELEVATION OF MAIN PROCESSING BUILDING (CPP-601) LOOKING EAST. HOT PILOT PLANT BUILDING (CPP-640) APPEARS IN RIGHT OF PHOTO. THE REMOTE ANALYTICAL FACILITY (CPP-627) WAS LOCATED ON CONCRETE PAD IN FOREGROUND. INL PHOTO NUMBER HD-54-33-3. Mike Crane, Photographer, 7/2006 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  12. A Monte Carlo study of Weibull reliability analysis for space shuttle main engine components

    NASA Technical Reports Server (NTRS)

    Abernethy, K.

    1986-01-01

    The incorporation of a number of additional capabilities into an existing Weibull analysis computer program and the results of Monte Carlo computer simulation study to evaluate the usefulness of the Weibull methods using samples with a very small number of failures and extensive censoring are discussed. Since the censoring mechanism inherent in the Space Shuttle Main Engine (SSME) data is hard to analyze, it was decided to use a random censoring model, generating censoring times from a uniform probability distribution. Some of the statistical techniques and computer programs that are used in the SSME Weibull analysis are described. The methods documented in were supplemented by adding computer calculations of approximate (using iteractive methods) confidence intervals for several parameters of interest. These calculations are based on a likelihood ratio statistic which is asymptotically a chisquared statistic with one degree of freedom. The assumptions built into the computer simulations are described. The simulation program and the techniques used in it are described there also. Simulation results are tabulated for various combinations of Weibull shape parameters and the numbers of failures in the samples.

  13. Analytical Modelling of the Effects of Different Gas Turbine Cooling Techniques on Engine Performance =

    NASA Astrophysics Data System (ADS)

    Uysal, Selcuk Can

    In this research, MATLAB SimulinkRTM was used to develop a cooled engine model for industrial gas turbines and aero-engines. The model consists of uncooled on-design, mean-line turbomachinery design and a cooled off-design analysis in order to evaluate the engine performance parameters by using operating conditions, polytropic efficiencies, material information and cooling system details. The cooling analysis algorithm involves a 2nd law analysis to calculate losses from the cooling technique applied. The model is used in a sensitivity analysis that evaluates the impacts of variations in metal Biot number, thermal barrier coating Biot number, film cooling effectiveness, internal cooling effectiveness and maximum allowable blade temperature on main engine performance parameters of aero and industrial gas turbine engines. The model is subsequently used to analyze the relative performance impact of employing Anti-Vortex Film Cooling holes (AVH) by means of data obtained for these holes by Detached Eddy Simulation-CFD Techniques that are valid for engine-like turbulence intensity conditions. Cooled blade configurations with AVH and other different external cooling techniques were used in a performance comparison study. (Abstract shortened by ProQuest.).

  14. Interrogation of possible imaging conditions for radiation sensitive metal organic frameworks in transmission electron microscopes

    NASA Astrophysics Data System (ADS)

    Patel, Harinkumar Rajendrabhai

    One of the main area of research currently in air-breathing propulsion is increasing the fuel efficiency of engines. Increasing fuel efficiency of an air-breathing engine will be advantageous for civil transport as well as military aircraft. This objective can be achieved in several ways. Present design models are developed based on their uses: commercial transport, high range rescue aircraft, military aircraft. One of the main property of military aircraft is possessing high thrust but increasing fuel efficiency will also be advantageous resulting in more time in combat. Today's engine design operates best at their design point and has reduced thrust and high fuel consumption values in off-design. The adaptive cycle engine concept was introduced to overcome this problem. The adaptive cycle engine is a variable cycle engine concept equipped with an extra bypass (3rd bypass) stream. This engine varies the bypass ratio and the fan pressure ratio, the two main parameters affecting thrust and fuel consumption values of the engine. In cruise, more flow will flow through the third stream resulting in the high bypass engine giving lower fuel consumption. on the other hand, the engine will act as a low bypass engine producing more thrust by allowing more air to flow through core while in combat. The simulation of this engine was carried out using the Numerical Propulsion System Simulation (NPSS) software. The effect of the bypass ratio and the fan pressure ratio along with Mach number were studied. After the parametric variation study, the mixture configuration was also studied. Once the effect of the parameters were understood, the best design operating point configuration was selected and then the engine performance for off-design was calculated. Optimum values of bypass ratio and fan pressure ratio were also obtained for each altitude selected for off-design performance.

  15. An analysis of the booster plume impingement environment during the space shuttle nominal staging maneuver

    NASA Technical Reports Server (NTRS)

    Wojciechowski, C. J.; Penny, M. M.; Greenwood, T. F.; Fossler, I. H.

    1972-01-01

    An experimental study of the plume impingement heating on the space shuttle booster afterbody resulting from the space shuttle orbiter engine plumes was conducted. The 1/100-scale model tests consisted of one and two orbiter engine firings on a flat plate, a flat plate with a fin, and a cylinder model. The plume impingement heating rates on these surfaces were measured using thin film heat transfer gages. Results indicate the engine simulation is a reasonable approximation to the two engine configuration, but more tests are needed to verify the plume model of the main engine configuration. For impingment, results show models experienced laminar boundary layer convective heating. Therefore, tests at higher Reynolds numbers are needed to determine impingment heating.

  16. Space Shuttle Main Engine - The Relentless Pursuit of Improvement

    NASA Technical Reports Server (NTRS)

    VanHooser, Katherine P.; Bradley, Douglas P.

    2011-01-01

    The Space Shuttle Main Engine (SSME) is the only reusable large liquid rocket engine ever developed. The specific impulse delivered by the staged combustion cycle, substantially higher than previous rocket engines, minimized volume and weight for the integrated vehicle. The dual pre-burner configuration permitted precise mixture ratio and thrust control while the fully redundant controller and avionics provided a very high degree of system reliability and health diagnosis. The main engine controller design was the first rocket engine application to incorporate digital processing. The engine was required to operate at a high chamber pressure to minimize engine volume and weight. Power level throttling was required to minimize structural loads on the vehicle early in flight and acceleration levels on the crew late in ascent. Fatigue capability, strength, ease of assembly and disassembly, inspectability, and materials compatibility were all major considerations in achieving a fully reusable design. During the multi-decade program the design evolved substantially using a series of block upgrades. A number of materials and manufacturing challenges were encountered throughout SSME s history. Significant development was required for the final configuration of the high pressure turbopumps. Fracture control was implemented to assess life limits of critical materials and components. Survival in the hydrogen environment required assessment of hydrogen embrittlement. Instrumentation systems were a challenge due to the harsh thermal and dynamic environments within the engine. Extensive inspection procedures were developed to assess the engine components between flights. The Space Shuttle Main Engine achieved a remarkable flight performance record. All flights were successful with only one mission requiring an ascent abort condition, which still resulted in an acceptable orbit and mission. This was achieved in large part via extensive ground testing to fully characterize performance and to establish acceptable life limits. During the program over a million seconds of accumulated test and flight time was achieved. Post flight inspection and assessment was a key part of assuring proper performance of the flight hardware. By the end of the program the predicted reliability had improved by a factor of four. These unique challenges, evolution of the design, and the resulting reliability will be discussed in this paper.

  17. Structural Noise and Acoustic Characteristics Improvement of Transport Power Plants

    NASA Astrophysics Data System (ADS)

    Chaynov, N. D.; Markov, V. A.; Savastenko, A. A.

    2018-03-01

    Noise reduction generated during the operation of various machines and mechanisms is an urgent task with regard to the power plants and, in particular, to internal combustion engines. Sound emission from the surfaces vibration of body parts is one of the main noise manifestations of the running engine and it is called a structural noise. The vibration defining of the outer surfaces of complex body parts and the calculation of their acoustic characteristics are determined with numerical methods. At the same time, realization of finite and boundary elements methods combination turned out to be very effective. The finite element method is used in calculating the structural elements vibrations, and the boundary elements method is used in the structural noise calculation. The main conditions of the methodology and the results of the structural noise analysis applied to a number of automobile engines are shown.

  18. SSME testing technology at the John C. Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Kynard, Mike; Dill, Glenn

    1991-01-01

    An effective capability for testing the Space Shuttle Main Engine is described. The test complex utilizes a number of sophisticated test stands, test support facilities, and control centers to conduct development testing and flight acceptance testing at both nominal and off-nominal conditions.

  19. The use of genetically-engineered animals in science: perspectives of Canadian Animal Care Committee members.

    PubMed

    Ormandy, Elisabeth H; Dale, Julie; Griffin, Gilly

    2013-05-01

    The genetic engineering of animals for their use in science challenges the implementation of refinement and reduction in several areas, including the invasiveness of the procedures involved, unanticipated welfare concerns, and the numbers of animals required. Additionally, the creation of genetically-engineered animals raises problems with the Canadian system of reporting animal numbers per Category of Invasiveness, as well as raising issues of whether ethical limits can, or should, be placed on genetic engineering. A workshop was held with the aim of bringing together Canadian animal care committee members to discuss these issues, to reflect on progress that has been made in addressing them, and to propose ways of overcoming any challenges. Although previous literature has made recommendations with regard to refinement and reduction when creating new genetically-engineered animals, the perception of the workshop participants was that some key opportunities are being missed. The participants identified the main roadblocks to the implementation of refinement and reduction alternatives as confidentiality, cost and competition. If the scientific community is to make progress concerning the implementation of refinement and reduction, particularly in the creation and use of genetically-engineered animals, addressing these roadblocks needs to be a priority. 2013 FRAME.

  20. Applying Systems Engineering to Improve the Main Gas Turbine Exhaust System Maintenance Strategy for the CG-47 Ticonderoga Class Cruiser

    DTIC Science & Technology

    2015-09-01

    15 4. Commander, Naval Regional Maintenance Center .................. 15 5 . Private Ship Repair Industry...TURBINE EXHAUST SYSTEM MAINTENANCE STRATEGY FOR THE CG-47 TICONDEROGA CLASS CRUISER 5 . FUNDING NUMBERS 6. AUTHOR(S) Sparks, Robert D. 7. PERFORMING...condition-based maintenance, condition-directed, failure finding, fault tree analysis 15 . NUMBER OF PAGES 133 16. PRICE CODE 17. SECURITY

  1. Light Control and Image Transmission Through Photonic Lattices with Engineered Coupling

    DTIC Science & Technology

    2015-05-05

    HOLLOWAY AVE BUILDING NAD ROOM 358C SAN FRANCISCO, CA 941321722 US 8.  PERFORMING ORGANIZATION      REPORT NUMBER 9.  SPONSORING/MONITORING AGENCY NAME(S...include mainly beam control in engineered photonic lattices, Tamm and Shockley-like edge states and topological surface states in 2D honey- comb lattices...like edge states and topological surface states in 2D honey- comb lattices (“photonic graphene”), and light localization and transport in disordered

  2. Air Force Civil Engineer, Volume 9, Number 1, Spring 2001

    DTIC Science & Technology

    2001-01-01

    generated some important lessons learned. The Gulf War was a wakeup call for contingency training. When it began, many in CE had never trained on bare...square foot, corrosion control facility at Charleston Air Force Base, S.C. Construction is scheduled for comple- tion in early 2002. The facility is...Rhein Main Transition Program. This program, scheduled for completion in 2005, transfers operational capability from Rhein Main AB to Spangdahlem and

  3. Fast Fuzzy Arithmetic Operations

    NASA Technical Reports Server (NTRS)

    Hampton, Michael; Kosheleva, Olga

    1997-01-01

    In engineering applications of fuzzy logic, the main goal is not to simulate the way the experts really think, but to come up with a good engineering solution that would (ideally) be better than the expert's control, In such applications, it makes perfect sense to restrict ourselves to simplified approximate expressions for membership functions. If we need to perform arithmetic operations with the resulting fuzzy numbers, then we can use simple and fast algorithms that are known for operations with simple membership functions. In other applications, especially the ones that are related to humanities, simulating experts is one of the main goals. In such applications, we must use membership functions that capture every nuance of the expert's opinion; these functions are therefore complicated, and fuzzy arithmetic operations with the corresponding fuzzy numbers become a computational problem. In this paper, we design a new algorithm for performing such operations. This algorithm is applicable in the case when negative logarithms - log(u(x)) of membership functions u(x) are convex, and reduces computation time from O(n(exp 2))to O(n log(n)) (where n is the number of points x at which we know the membership functions u(x)).

  4. Innovation Research in E-Learning

    NASA Astrophysics Data System (ADS)

    Wu, Bing; Xu, WenXia; Ge, Jun

    This study is a productivity review on the literature gleaned from SSCI, SCIE databases concerning innovation research in E-Learning. The result indicates that the number of literature productions on innovation research in ELearning is still growing from 2005. The main research development country is England, and from the analysis of the publication year, the number of papers is increasing peaking in 25% of the total in 2010. Meanwhile the main source title is British Journal of Educational Technology. In addition the subject area concentrated on Education & Educational Research, Computer Science, Interdisciplinary Applications and Computer Science, Software Engineering. Moreover the research focuses on are mainly conceptual research and empirical research, which were used to explore E-Learning in respective of innovation diffusion theory, also the limitations and future research of these research were discussed for further research.

  5. A Graphical Teaching Tool for Understanding Two's Complement.

    ERIC Educational Resources Information Center

    Luck, Carlos L.

    As part of the Electrical Engineering program at the Univesity of Southern Maine, students are typically introduced to Two's Complement algebra and representation, a method to include negative numbers in the binary representation of integers that is widely used in microprocessors and related digital systems. The traditional, procedural method to…

  6. Branched-chain fatty acid methyl esters as cold flow improvers for biodiesel

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is an alternative diesel fuel derived mainly from the transesterification of plant oils with methanol or ethanol. This fuel is generally made from commodity oils such as canola, palm, or soybean and has a number of properties that make it compatible in compression-ignition engines. Despite...

  7. Building information modelling review with potential applications in tunnel engineering of China.

    PubMed

    Zhou, Weihong; Qin, Haiyang; Qiu, Junling; Fan, Haobo; Lai, Jinxing; Wang, Ke; Wang, Lixin

    2017-08-01

    Building information modelling (BIM) can be applied to tunnel engineering to address a number of problems, including complex structure, extensive design, long construction cycle and increased security risks. To promote the development of tunnel engineering in China, this paper combines actual cases, including the Xingu mountain tunnel and the Shigu Mountain tunnel, to systematically analyse BIM applications in tunnel engineering in China. The results indicate that BIM technology in tunnel engineering is currently mainly applied during the design stage rather than during construction and operation stages. The application of BIM technology in tunnel engineering covers many problems, such as a lack of standards, incompatibility of different software, disorganized management, complex combination with GIS (Geographic Information System), low utilization rate and poor awareness. In this study, through summary of related research results and engineering cases, suggestions are introduced and an outlook for the BIM application in tunnel engineering in China is presented, which provides guidance for design optimization, construction standards and later operation maintenance.

  8. Building information modelling review with potential applications in tunnel engineering of China

    PubMed Central

    Zhou, Weihong; Qin, Haiyang; Fan, Haobo; Lai, Jinxing; Wang, Ke; Wang, Lixin

    2017-01-01

    Building information modelling (BIM) can be applied to tunnel engineering to address a number of problems, including complex structure, extensive design, long construction cycle and increased security risks. To promote the development of tunnel engineering in China, this paper combines actual cases, including the Xingu mountain tunnel and the Shigu Mountain tunnel, to systematically analyse BIM applications in tunnel engineering in China. The results indicate that BIM technology in tunnel engineering is currently mainly applied during the design stage rather than during construction and operation stages. The application of BIM technology in tunnel engineering covers many problems, such as a lack of standards, incompatibility of different software, disorganized management, complex combination with GIS (Geographic Information System), low utilization rate and poor awareness. In this study, through summary of related research results and engineering cases, suggestions are introduced and an outlook for the BIM application in tunnel engineering in China is presented, which provides guidance for design optimization, construction standards and later operation maintenance. PMID:28878970

  9. Building information modelling review with potential applications in tunnel engineering of China

    NASA Astrophysics Data System (ADS)

    Zhou, Weihong; Qin, Haiyang; Qiu, Junling; Fan, Haobo; Lai, Jinxing; Wang, Ke; Wang, Lixin

    2017-08-01

    Building information modelling (BIM) can be applied to tunnel engineering to address a number of problems, including complex structure, extensive design, long construction cycle and increased security risks. To promote the development of tunnel engineering in China, this paper combines actual cases, including the Xingu mountain tunnel and the Shigu Mountain tunnel, to systematically analyse BIM applications in tunnel engineering in China. The results indicate that BIM technology in tunnel engineering is currently mainly applied during the design stage rather than during construction and operation stages. The application of BIM technology in tunnel engineering covers many problems, such as a lack of standards, incompatibility of different software, disorganized management, complex combination with GIS (Geographic Information System), low utilization rate and poor awareness. In this study, through summary of related research results and engineering cases, suggestions are introduced and an outlook for the BIM application in tunnel engineering in China is presented, which provides guidance for design optimization, construction standards and later operation maintenance.

  10. USSR and Eastern Europe Scientific Abstracts. Engineering and Equipment. Number 26

    DTIC Science & Technology

    1976-11-10

    harbor in- volves a sea sector and a river sector. The author indicates the hypotheses taken into consideration, including the number of berths in the...river and sea sectors, the arrivals of sea - and river-going ships, and ship operation time. Also indicated is the system of equations describing...diffusion for plastic deformation by torsion is greater than plastic deformation by tension. The main energy diffusion mechanism is microplastic

  11. Design verification test matrix development for the STME thrust chamber assembly

    NASA Technical Reports Server (NTRS)

    Dexter, Carol E.; Elam, Sandra K.; Sparks, David L.

    1993-01-01

    This report presents the results of the test matrix development for design verification at the component level for the National Launch System (NLS) space transportation main engine (STME) thrust chamber assembly (TCA) components including the following: injector, combustion chamber, and nozzle. A systematic approach was used in the development of the minimum recommended TCA matrix resulting in a minimum number of hardware units and a minimum number of hot fire tests.

  12. Services supporting collaborative alignment of engineering networks

    NASA Astrophysics Data System (ADS)

    Jansson, Kim; Uoti, Mikko; Karvonen, Iris

    2015-08-01

    Large-scale facilities such as power plants, process factories, ships and communication infrastructures are often engineered and delivered through geographically distributed operations. The competencies required are usually distributed across several contributing organisations. In these complicated projects, it is of key importance that all partners work coherently towards a common goal. VTT and a number of industrial organisations in the marine sector have participated in a national collaborative research programme addressing these needs. The main output of this programme was development of the Innovation and Engineering Maturity Model for Marine-Industry Networks. The recently completed European Union Framework Programme 7 project COIN developed innovative solutions and software services for enterprise collaboration and enterprise interoperability. One area of focus in that work was services for collaborative project management. This article first addresses a number of central underlying research themes and previous research results that have influenced the development work mentioned above. This article presents two approaches for the development of services that support distributed engineering work. Experience from use of the services is analysed, and potential for development is identified. This article concludes with a proposal for consolidation of the two above-mentioned methodologies. This article outlines the characteristics and requirements of future services supporting collaborative alignment of engineering networks.

  13. Space Transportation Main Engine

    NASA Technical Reports Server (NTRS)

    Monk, Jan C.

    1992-01-01

    The topics are presented in viewgraph form and include the following: Space Transportation Main Engine (STME) definition, design philosophy, robust design, maximum design condition, casting vs. machined and welded forgings, operability considerations, high reliability design philosophy, engine reliability enhancement, low cost design philosophy, engine systems requirements, STME schematic, fuel turbopump, liquid oxygen turbopump, main injector, and gas generator. The major engine components of the STME and the Space Shuttle Main Engine are compared.

  14. Velocimetry with refractive index matching for complex flow configurations, phase 1

    NASA Technical Reports Server (NTRS)

    Thompson, B. E.; Vafidis, C.; Whitelaw, J. H.

    1987-01-01

    The feasibility of obtaining detailed velocity field measurements in large Reynolds number flow of the Space Shuttle Main Engine (SSME) main injector bowl was demonstrated using laser velocimetry and the developed refractive-index-matching technique. An experimental system to provide appropriate flow rates and temperature control of refractive-index-matching fluid was designed and tested. Test results are presented to establish the feasibility of obtaining accurate velocity measurements that map the entire field including the flow through the LOX post bundles: sample mean velocity, turbulence intensity, and spectral results are presented. The results indicate that a suitable fluid and control system is feasible for the representation of complex rocket-engine configurations and that measurements of velocity characteristics can be obtained without the optical access restrictions normally associated with laser velocimetry. The refractive-index-matching technique considered needs to be further developed and extended to represent other rocket-engine flows where current methods either cannot measure with adequate accuracy or they fail.

  15. Lightning safety of animals.

    PubMed

    Gomes, Chandima

    2012-11-01

    This paper addresses a concurrent multidisciplinary problem: animal safety against lightning hazards. In regions where lightning is prevalent, either seasonally or throughout the year, a considerable number of wild, captive and tame animals are injured due to lightning generated effects. The paper discusses all possible injury mechanisms, focusing mainly on animals with commercial value. A large number of cases from several countries have been analyzed. Economically and practically viable engineering solutions are proposed to address the issues related to the lightning threats discussed.

  16. Subsonic longitudinal aerodynamic characteristics of a vectored-engine-over-wing configuration having spanwise leading-edge vortex enhancement

    NASA Technical Reports Server (NTRS)

    Huffman, J. K.; Fox, C. H., Jr.

    1977-01-01

    A configuration which integrates a close coupled canard wing combination, spanwise blowing for enhancement of the wing leading edge vortex, an engine-over-wing concept, and a wing trailing edge coanda-effect flap is studied. The data on the configuration are presented in tabular from without discussion. The investigation was conducted in the Langley 7- by 10-foot high speed tunnel at a Mach number of 0.166 through an angle-of-attack range from -2 to 22 deg. Rectangular main engine nozzles of aspect ratio 4, 6, and 8 were tested over a momentum coefficient range from 1.0 to 1.8.

  17. CASE: A Configurable Argumentation Support Engine

    ERIC Educational Resources Information Center

    Scheuer, O.; McLaren, B. M.

    2013-01-01

    One of the main challenges in tapping the full potential of modern educational software is to devise mechanisms to automatically analyze and adaptively support students' problem solving and learning. A number of such approaches have been developed to teach argumentation skills in domains as diverse as science, the Law, and ethics. Yet,…

  18. Service Modeling for Service Engineering

    NASA Astrophysics Data System (ADS)

    Shimomura, Yoshiki; Tomiyama, Tetsuo

    Intensification of service and knowledge contents within product life cycles is considered crucial for dematerialization, in particular, to design optimal product-service systems from the viewpoint of environmentally conscious design and manufacturing in advanced post industrial societies. In addition to the environmental limitations, we are facing social limitations which include limitations of markets to accept increasing numbers of mass-produced artifacts and such environmental and social limitations are restraining economic growth. To attack and remove these problems, we need to reconsider the current mass production paradigm and to make products have more added values largely from knowledge and service contents to compensate volume reduction under the concept of dematerialization. Namely, dematerialization of products needs to enrich service contents. However, service was mainly discussed within marketing and has been mostly neglected within traditional engineering. Therefore, we need new engineering methods to look at services, rather than just functions, called "Service Engineering." To establish service engineering, this paper proposes a modeling technique of service.

  19. The cost of performance - A comparison of the space transportation main engine and the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Barisa, B. B.; Flinchbaugh, G. D.; Zachary, A. T.

    1989-01-01

    This paper compares the cost of the Space Shuttle Main Engine (SSME) and the Space Transportation Main Engine (STME) proposed by the Advanced Launch System Program. A brief description of the SSME and STME engines is presented, followed by a comparison of these engines that illustrates the impact of focusing on acceptable performance at minimum cost (as for the STME) or on maximum performance (as for the SSME). Several examples of cost reduction methods are presented.

  20. STS-70 landing just before main gear touchdown

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Space Shuttle orbiter Discovery touches down on KSC's Runway 33, marking a successful conclusion to the STS-70 mission. Discovery landed on orbit 143, during the second opportunity of the day. Main gear touchdown was unofficially listed at 8:02 a.m. EDT on July 22, 1995. The orbiter traveled some 3.7 million statute miles during the nearly nine-day flight, which included a one-day extension because of fog and low visibility conditions at the KSC Shuttle Landing Facility. STS-70 was the 24th landing at KSC and the 70th Space Shuttle mission. The five-member crew deployed a Tracking and Data Relay Satellite-G (TDRS-G). Crew members were Commander Terence 'Tom' Henricks, Pilot Kevin R. Kregel, and Mission Specialists Nancy Jane Currie, Donald A. Thomas and Mary Ellen Weber. STS-70 also was the maiden flight of the new Block I orbiter main engine, which flew in the number one position. The other two engines were of the existing Phase II design.

  1. STS-70 landing main gear touchdown (side view)

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Space Shuttle orbiter Discovery touches down on KSC's Runway 33, marking a successful conclusion to the STS-70 mission. Discovery landed on orbit 143, during the second opportunity of the day. Main gear touchdown was unofficially listed at 8:02 a.m. EDT on July 22, 1995. The orbiter traveled some 3.7 million statute miles during the nearly nine-day flight, which included a one-day extension because of fog and low visibility conditions at the KSC Shuttle Landing Facility. STS-70 was the 24th landing at KSC and the 70th Space Shuttle mission. The five-member crew deployed a Tracking and Data Relay Satellite-G (TDRS-G). Crew members were Commander Terence 'Tom' Henricks, Pilot Kevin R. Kregel, and Mission Specialists Nancy Jane Currie, Donald A. Thomas and Mary Ellen Weber. STS-70 also was the maiden flight of the new Block I orbiter main engine, which flew in the number one position. The other two engines were of the existing Phase II design.

  2. Analysis of cavitation damage on the Space Shuttle main engine high pressure oxidizer turbopump

    NASA Technical Reports Server (NTRS)

    Stinebring, D. R.

    1985-01-01

    The performance of the Space Shuttle Main Engines (SSME) has met or exceeded specifications. However, the durability for selected components has not met the desired lifetime criteria. Thus, the High-Pressure Oxidizer Turbopump (HPOTP) has experienced cavitation erosion problems in a number of locations in the pump. An investigation was conducted, taking into account an analysis of the cavitation damage, the development of a flow model for the pump, and the recommendation of design changes which would increase the life expectancy of the unit. The present paper is concerned with the cavitation damage analysis. A model is presented which relates the heavy damage on the housing and over the inducer blades to unsteady blade surface cavitation. This cavitation occurs on the inducer blades in the wakes downstream of the pump inlet housing vanes.

  3. Floodplain Modeling in the Kansas River Basin Using Hydrologic Engineering Center (HEC) Models: Impacts of Urbanization and Wetlands for Mitigation

    EPA Science Inventory

    Flooding is a major natural hazard which every year impacts different regions across the world. Between 2000 and 2008, various types of natural hazards, mainly floods have affected the largest number of people worldwide, averaging 99 million people per year (WDR, 2010). In the U...

  4. Doubling the number of physics majors who teach

    NASA Astrophysics Data System (ADS)

    Marder, Michael

    2009-03-01

    The American Physical Society has adopted a doubling initiative to increase the number of physics majors. One of the main motivations is to increase the number of physics majors certified to teach secondary physics. I will review some of the possible strategies for reaching this goal, and discuss some of the steps we have taken with UTeach, the program for secondary science and mathematics teacher preparation at The University of Texas at Austin.I will discuss the roles of curriculum revision, financial support, and community support in convincing majors to teach. Finally, I will talk about the expansion of UTeach into engineering.

  5. Stennis certifies final shuttle engine

    NASA Image and Video Library

    2008-10-22

    Steam blasts out of the A-2 Test Stand at Stennis Space Center on Oct. 22 as engineers begin a certification test on engine 2061, the last space shuttle main flight engine scheduled to be built. Since 1975, Stennis has tested every space shuttle main engine used in the program - about 50 engines in all. Those engines have powered more than 120 shuttle missions - and no mission has failed as a result of engine malfunction. For the remainder of 2008 and throughout 2009, Stennis will continue testing of various space shuttle main engine components.

  6. Application of advanced coating techniques to rocket engine components

    NASA Technical Reports Server (NTRS)

    Verma, S. K.

    1988-01-01

    The materials problem in the space shuttle main engine (SSME) is reviewed. Potential coatings and the method of their application for improved life of SSME components are discussed. A number of advanced coatings for turbine blade components and disks are being developed and tested in a multispecimen thermal fatigue fluidized bed facility at IIT Research Institute. This facility is capable of producing severe strains of the degree present in blades and disk components of the SSME. The potential coating systems and current efforts at IITRI being taken for life extension of the SSME components are summarized.

  7. Characterization of real gas properties for space shuttle main engine fuel turbine and performance calculations

    NASA Technical Reports Server (NTRS)

    Harloff, G. J.

    1986-01-01

    Real thermodynamic and transport properties of hydrogen, steam, the SSME mixture, and air are developed. The SSME mixture properties are needed for the analysis of the space shuttle main engine fuel turbine. The mixture conditions for the gases, except air, are presented graphically over a temperature range from 800 to 1200 K, and a pressure range from 1 to 500 atm. Air properties are given over a temperature range of 320 to 500 K, which are within the bounds of the thermodynamics programs used, in order to provide mixture data which is more easily checked (than H2/H2O). The real gas property variation of the SSME mixture is quantified. Polynomial expressions, needed for future computer analysis, for viscosity, Prandtl number, and thermal conductivity are given for the H2/H2O SSME fuel turbine mixture at a pressure of 305 atm over a range of temperatures from 950 to 1140 K. These conditions are representative of the SSME turbine operation. Performance calculations are presented for the space shuttle main engine (SSME) fuel turbine. The calculations use the air equivalent concept. Progress towards obtaining the capability to evaluate the performance of the SSME fuel turbine, with the H2/H2O mixture, is described.

  8. Comparison of catalytic converter performance in internal combustion engine fueled with Ron 95 and Ron 97 gasoline

    NASA Astrophysics Data System (ADS)

    Leman, A. M.; Rahman, Fakhrurrazi; Jajuli, Afiqah; Feriyanto, Dafit; Zakaria, Supaat

    2017-09-01

    Generating ideal stability between engine performance, fuel consumption and emission is one of the main challenges in the automotive industry. The characteristics of engine combustion and creation of emission might simply change with different types of operating parameters. This study aims in investigating the relationship between two types of fuels on the performance and exhaust emission of internal combustion engine using ceramic and metallic catalytic converters. Experimental tests were performed on Mitsubishi 4G93 engine by applying several ranges of engine speeds to determine the conversion of pollutant gases released by the engine. The obtained results specify that the usage of RON 97 equipped with metallic converters might increase the conversion percentage of 1.31% for CO and 126 ppm of HC gases. The metallic converters can perform higher conversion compared to ceramic because in the high space velocities, metallic has higher surface geometry area and higher amount of transverse Peclet number (Pi). Ceramic converters achieved conversion at 2496 ppm of NOx gas, which is higher than the metallic converter.

  9. Study of emissions for a compression ignition engine fueled with a mix of DME and diesel

    NASA Astrophysics Data System (ADS)

    Jurchiş, Bogdan; Nicolae, Burnete; Călin, Iclodean; Nicolae Vlad, Burnete

    2017-10-01

    Currently, there is a growing demand for diesel engines, primarily due to the relatively low fuel consumption compared to spark-ignition engines. However, these engines have a great disadvantage in terms of pollution because they produce solid particles that ultimately form particulate matter (PM), which has harmful effects on human health and also on the environment. The toxic emissions from the diesel engine exhaust, like particulate matter (PM) and NOx, generated by the combustion of fossil fuels, lead to the necessity to develop green fuels which on one hand should be obtained from regenerative resources and on the other hand less polluting. In this paper, the authors focused on the amount of emissions produced by a diesel engine when running with a fuel mixture consisting of diesel and DME. Dimethyl ether (DME) is developed mainly by converting natural gas or biomass to synthesis gas (syngas). It is an extremely attractive resource for the future used in the transport industry, given that it can be obtained at low costs from renewable resources. Using DME mixed with diesel for the combustion process, besides the fact that it produces less smoke, the emission levels of particulate matter is reduced compared to diesel and in some situations, NOx emissions may decrease. DME has a high enough cetane number to perform well as a compression-ignition fuel but due to the poor lubrication and viscosity, it is difficult to be used as the main fuel for combustion

  10. Engine systems analysis results of the Space Shuttle Main Engine redesigned powerhead initial engine level testing

    NASA Technical Reports Server (NTRS)

    Sander, Erik J.; Gosdin, Dennis R.

    1992-01-01

    Engineers regularly analyze SSME ground test and flight data with respect to engine systems performance. Recently, a redesigned SSME powerhead was introduced to engine-level testing in part to increase engine operational margins through optimization of the engine internal environment. This paper presents an overview of the MSFC personnel engine systems analysis results and conclusions reached from initial engine level testing of the redesigned powerhead, and further redesigns incorporated to eliminate accelerated main injector baffle and main combustion chamber hot gas wall degradation. The conclusions are drawn from instrumented engine ground test data and hardware integrity analysis reports and address initial engine test results with respect to the apparent design change effects on engine system and component operation.

  11. 28. Main engine air pump located to port side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Main engine air pump located to port side of main engine cylinder beside engine bed. Dynamo lies aft of air pump (at right), pipe at extreme left of image carries lake water to condenser valves. - Steamboat TICONDEROGA, Shelburne Museum Route 7, Shelburne, Chittenden County, VT

  12. Failure Control Techniques for the SSME

    NASA Technical Reports Server (NTRS)

    Taniguchi, M. H.

    1987-01-01

    Since ground testing of the Space Shuttle Main Engine (SSME) began in 1975, the detection of engine anomalies and the prevention of major damage have been achieved by a multi-faceted detection/shutdown system. The system continues the monitoring task today and consists of the following: sensors, automatic redline and other limit logic, redundant sensors and controller voting logic, conditional decision logic, and human monitoring. Typically, on the order of 300 to 500 measurements are sensed and recorded for each test, while on the order of 100 are used for control and monitoring. Despite extensive monitoring by the current detection system, twenty-seven (27) major incidents have occurred. This number would appear insignificant compared with over 1200 hot-fire tests which have taken place since 1976. However, the number suggests the requirement for and future benefits of a more advanced failure detection system.

  13. An overview of the current technology relevant to the design and development of the Space Transportation Main Engine (STME)

    NASA Technical Reports Server (NTRS)

    Das, Digendra K.

    1991-01-01

    The objective of this project was to review the latest literature relevant to the Space Transportation Main Engine (STME). The search was focused on the following engine components: (1) gas generator; (2) hydrostatic/fluid bearings; (3) seals/clearances; (4) heat exchanges; (5) nozzles; (6) nozzle/main combustion chamber joint; (7) main injector face plate; and (8) rocket engine.

  14. Teaching as Coaching: A Case Study of Awareness and Learning in Engineering Education

    ERIC Educational Resources Information Center

    Gynnild, Vidar; Holstad, Anders; Myrhaug, Dag

    2007-01-01

    This paper presents a number of case studies in Oceanography, an optional module in the third/fourth year of a Master of Science programme at Norwegian University of Science and Technology. The main objective was to gain more thorough insights into student learning by examining two sets of individual oral examinations. In addition, all students…

  15. KSC-07pd1271

    NASA Image and Video Library

    2007-05-24

    KENNEDY SPACE CENTER, FLA. -- In Space Shuttle Maine Engine Shop, workers get ready to install an engine controller in one of the three main engines (behind them) of the orbiter Discovery. The controller is an electronics package mounted on each space shuttle main engine. It contains two digital computers and the associated electronics to control all main engine components and operations. The controller is attached to the main combustion chamber by shock-mounted fittings. Discovery is the designated orbiter for mission STS-120 to the International Space Station. It will carry a payload that includes the Node 2 module, named Harmony. Launch is targeted for no earlier than Oct. 20. Photo credit: NASA/Cory Huston

  16. KSC-07pd1272

    NASA Image and Video Library

    2007-05-24

    KENNEDY SPACE CENTER, FLA. -- In the Space Shuttle Maine Engine Shop, workers are installing an engine controller in one of the three main engines of the orbiter Discovery. The controller is an electronics package mounted on each space shuttle main engine. It contains two digital computers and the associated electronics to control all main engine components and operations. The controller is attached to the main combustion chamber by shock-mounted fittings. Discovery is the designated orbiter for mission STS-120 to the International Space Station. It will carry a payload that includes the Node 2 module, named Harmony. Launch is targeted for no earlier than Oct. 20. Photo credit: NASA/Cory Huston

  17. KSC-07pd1274

    NASA Image and Video Library

    2007-05-24

    KENNEDY SPACE CENTER, FLA. -- In the Space Shuttle Maine Engine Shop, workers check the installation of an engine controller in one of the three main engines of the orbiter Discovery. The controller is an electronics package mounted on each space shuttle main engine. It contains two digital computers and the associated electronics to control all main engine components and operations. The controller is attached to the main combustion chamber by shock-mounted fittings. Discovery is the designated orbiter for mission STS-120 to the International Space Station. It will carry a payload that includes the Node 2 module, named Harmony. Launch is targeted for no earlier than Oct. 20. Photo credit: NASA/Cory Huston

  18. KSC-07pd1273

    NASA Image and Video Library

    2007-05-24

    KENNEDY SPACE CENTER, FLA. -- In the Space Shuttle Maine Engine Shop, workers are installing an engine controller in one of the three main engines of the orbiter Discovery. The controller is an electronics package mounted on each space shuttle main engine. It contains two digital computers and the associated electronics to control all main engine components and operations. The controller is attached to the main combustion chamber by shock-mounted fittings. Discovery is the designated orbiter for mission STS-120 to the International Space Station. It will carry a payload that includes the Node 2 module, named Harmony. Launch is targeted for no earlier than Oct. 20. Photo credit: NASA/Cory Huston

  19. KSC-07pd1270

    NASA Image and Video Library

    2007-05-24

    KENNEDY SPACE CENTER, FLA. -- In the Space Shuttle Maine Engine Shop, workers get ready to install an engine controller in one of the three main engines of the orbiter Discovery. The controller is an electronics package mounted on each space shuttle main engine. It contains two digital computers and the associated electronics to control all main engine components and operations. The controller is attached to the main combustion chamber by shock-mounted fittings. Discovery is the designated orbiter for mission STS-120 to the International Space Station. It will carry a payload that includes the Node 2 module, named Harmony. Launch is targeted for no earlier than Oct. 20. Photo credit: NASA/Cory Huston

  20. Helicopter far-field acoustic levels as a function of reduced main-rotor advancing blade-tip Mach number

    NASA Technical Reports Server (NTRS)

    Mueller, Arnold W.; Smith, Charles D.; Lemasurier, Philip

    1990-01-01

    During the design of a helicopter, the weight, engine, rotor speed, and rotor geometry are given significant attention when considering the specific operations for which the helicopter will be used. However, the noise radiated from the helicopter and its relationship to the design variables is currently not well modeled with only a limited set of full-scale field test data to study. In general, limited field data have shown that reduced main-rotor advancing blade-tip Mach numbers result in reduced far-field noise levels. The status of a recent helicopter noise research project is reviewed. It is designed to provide flight experimental data which may be used to further understand helicopter main-rotor advancing blade-tip Mach number effects on far-field acoustic levels. Preliminary results are presented relative to tests conducted with a Sikorsky S-76A helicopter operating with both the rotor speed and the flight speed as the control variable. The rotor speed was operated within the range of 107 to 90 percent NR at nominal forward speeds of 35, 100, and 155 knots.

  1. Ethanol production by engineered thermophiles.

    PubMed

    Olson, Daniel G; Sparling, Richard; Lynd, Lee R

    2015-06-01

    We compare a number of different strategies that have been pursued to engineer thermophilic microorganisms for increased ethanol production. Ethanol production from pyruvate can proceed via one of four pathways, which are named by the key pyruvate dissimilating enzyme: pyruvate decarboxylase (PDC), pyruvate dehydrogenase (PDH), pyruvate formate lyase (PFL), and pyruvate ferredoxin oxidoreductase (PFOR). For each of these pathways except PFL, we see examples where ethanol production has been engineered with a yield of >90% of the theoretical maximum. In each of these cases, this engineering was achieved mainly by modulating expression of native genes. We have not found an example where a thermophilic ethanol production pathway has been transferred to a non-ethanol-producing organism to produce ethanol at high yield. A key reason for the lack of transferability of ethanol production pathways is the current lack of understanding of the enzymes involved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. A biased historical perspective of women in the engineering field at Dryden from 1946 to November 1992

    NASA Technical Reports Server (NTRS)

    Powers, Sheryll Goecke

    1994-01-01

    Being a woman in engineering, and in particular, being the woman with the dubious distinction of having the most years at Dryden, gives the author a long-term perspective on the women who worked in the engineering field and their working environment. The working environment for the women was influenced by two main factors. One factor was the Dryden's growth of 14 persons (2 of them women) at the end of 1946 to the present size. The other factor was the need for programming knowledge when the digital computers came into use. Women have been involved with flight research at Dryden since the days of the first transonic and supersonic airplanes. This paper uses available records, along with memory, to document the number of women in engineering at Dryden, to comment about observed trends, and to make personal observations.

  3. A model for the Space Shuttle Main Engine High Pressure Oxidizer Turbopump shaft seal system

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    1990-01-01

    A model of the High Pressure Oxidizer Turbopump (HPOTP) shaft seal system on the Space Shuttle Main Engine (SSME) is described. The model predicts the fluid properties and flow rates throughout this system for a number of conditions simulating failed seals. The results agree well with qualitative expectations and redline values but cannot be verified with actual data due to the lack thereof. The results indicate that each failure mode results in a unique distribution of properties throughout the seal system and can therefore be individually identified given the proper instrumentation. Furthermore, the detection process can be built on the principle of qualitative reasoning without the use of exact fluid property values. A simplified implementation of the model which does not include the slinger/labyrinth seal combination has been developed and will be useful for inclusion in a real-time diagnostic system.

  4. Closeup View of the Space Shuttle Main Engine (SSME) 2044 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up View of the Space Shuttle Main Engine (SSME) 2044 mounted in a SSME Engine Handler in the SSME processing Facility at Kennedy Space Center. This view shows SSME 2044 with its expansion nozzle removed and an Engine Leak-Test Plug is set in the throat of the Main Combustion Chamber in the approximate center of the image, the insulated, High-Pressure Fuel Turbopump sits below that and the Low Pressure Oxidizer Turbopump Discharge Duct sits towards the top of the engine assembly in this view. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  5. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 6: Primary nozzle diffuser analysis

    NASA Technical Reports Server (NTRS)

    Foley, Michael J.

    1989-01-01

    The primary nozzle diffuser routes fuel from the main fuel valve on the Space Shuttle Main Engine (SSME) to the nozzle coolant inlet mainfold, main combustion chamber coolant inlet mainfold, chamber coolant valve, and the augmented spark igniters. The diffuser also includes the fuel system purge check valve connection. A static stress analysis was performed on the diffuser because no detailed analysis was done on this part in the past. Structural concerns were in the area of the welds because approximately 10 percent are in areas inaccessible by X-ray testing devices. Flow dynamics and thermodynamics were not included in the analysis load case. Constant internal pressure at maximum SSME power was used instead. A three-dimensional, finite element method was generated using ANSYS version 4.3A on the Lockheed VAX 11/785 computer to perform the stress computations. IDEAS Supertab on a Sun 3/60 computer was used to create the finite element model. Rocketdyne drawing number RS009156 was used for the model interpretation. The flight diffuser is denoted as -101. A description of the model, boundary conditions/load case, material properties, structural analysis/results, and a summary are included for documentation.

  6. The use of optical pyrometers in axial flow turbines

    NASA Astrophysics Data System (ADS)

    Sellers, R. R.; Przirembel, H. R.; Clevenger, D. H.; Lang, J. L.

    1989-07-01

    An optical pyrometer system that can be used to measure metal temperatures over an extended range of temperature has been developed. Real-time flame discrimination permits accurate operation in the gas turbine environment with high flame content. This versatile capability has been used in a number of ways. In experimental engines, a fixed angle pyrometer has been used for turbine health monitoring for the automatic test stand abort system. Turbine blade creep capability has been improved by tailoring the burner profile based on measured blade temperatures. Fixed and traversing pyrometers were used extensively during engine development to map blade surface temperatures in order to assess cooling effectiveness and identify optimum configurations. Portable units have been used in turbine field inspections. A new low temperature pyrometer is being used as a diagnostic tool in the alternate turbopump design for the Space Shuttle main engine. Advanced engine designs will incorporate pyrometers in the engine control system to limit operation to safe temperatures.

  7. General view of a Space Shuttle Main Engine (SSME) mounted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of a Space Shuttle Main Engine (SSME) mounted on an SSME engine handler, taken in the SSME Processing Facility at Kennedy Space Center. The most prominent features of the engine assembly in this view are the Low-Pressure Fuel Turbopump Discharge Duct looping around the right side and underneath the assembly, the High-Pressure Fuel Turbopump located on the lower left portion of the assembly, the Engine Controller and Main Fuel Valve Hydraulic Actuator located on the upper portion of the assembly and the Low-Pressure Oxidizer Turbopump Discharge Duct at the top of the engine assembly in this view. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  8. Learning from real and tissue-engineered jellyfish: How to design and build a muscle-powered pump at intermediate Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Nawroth, Janna; Lee, Hyungsuk; Feinberg, Adam; Ripplinger, Crystal; McCain, Megan; Grosberg, Anna; Dabiri, John; Parker, Kit

    2012-11-01

    Tissue-engineered devices promise to advance medical implants, aquatic robots and experimental platforms for tissue-fluid interactions. The design, fabrication and systematic improvement of tissue constructs, however, is challenging because of the complex interactions of living cell, synthetic materials and their fluid environments. In a proof of concept study we have tissue-engineered a construct that mimics the swimming of a juvenile jellyfish, a simple model system for muscle-powered pumps at intermediate Reynolds numbers with quantifiable fluid dynamics and morphological properties. Optimally designed constructs achieved jellyfish-like swimming and generated biomimetic propulsion and feeding currents. Focusing on the fluid interactions, we discuss failed and successful designs and the lessons learned in the process. The main challenges were (1) to derive a body shape and deformation suitable for effective fluid transport under physiological fluid conditions, (2) to understand the mechanical properties of muscle and bell matrix and device a design capable of the desired deformation, (3) to establish adequate 3D kinematics of power and recovery stroke, and (4) to evaluate the performance of the design.

  9. Review on Enhanced Heat Transfer Techniques using Modern Technologies for 4S Air Cooled Engines

    NASA Astrophysics Data System (ADS)

    Ramasubramanian, S.; Bupesh Raja, V. K.

    2017-05-01

    Engine performance is a biggest challenge and a vital area of concern when it comes to automobiles. Researchers across the globe have been working decades together meticulously improvising the performance of engine in terms of efficiency. The durability of the engine components mainly depends on the thermal stress it undergoes over the period of operation. Air cooling of engine is the simplest and most desirous technique that has been adopted for ages. In this regard fins or extended surfaces are employed for effective cooling of the cylinder while in operation. The conductive and convective heat transfer rate from the cylinder to the fins and in turn from the fins to surrounding ambience determines the effective performance of the engine. In this paper an attempt is made to review and summarize the various researches that were conducted on the Fins in terms of profile geometry, number of fins, size, thickness factor, material used etc., and to bring about a long term solution with the modern technologies like nano coatings and nano materials.

  10. Efficient 3M PBS enhancing miniature projection optics

    NASA Astrophysics Data System (ADS)

    Yun, Zhisheng; Nevitt, Timothy; Willett, Stephen; Mortenson, Dave; Le, John; McDowell, Erin; Kent, Susan; Wong, Timothy; Beniot, Gilles J.; Ouderkirk, Andrew

    2016-09-01

    Over the past decade, 3M has developed a number of mobile projectors, with a goal towards providing the world's smallest, most efficient projection systems. Compact size and efficiency are required characteristics for projection systems used in mobile devices and more lately, in augmented reality systems. In this paper we summarize the main generations of 3M light engine optical designs. We present the optical architectures of four light engines, including the rationale behind the illumination designs and the projection systems. In particular, we describe various configurations relating to the 3M polarizing beam splitter (PBS) which is key to enhanced efficiency of the miniature projection systems.

  11. Pulsatile turbulent flow through pipe bends at high Dean and Womersley numbers

    NASA Astrophysics Data System (ADS)

    Kalpakli, Athanasia; Örlü, Ramis; Tillmark, Nils; Alfredsson, P. Henrik

    2011-12-01

    Turbulent pulsatile flows through pipe bends are prevalent in internal combustion engine components which consist of bent pipe sections and branching conduits. Nonetheless, most of the studies related to pulsatile flows in pipe bends focus on incompressible, low Womersley and low Dean number flows, primarily because they aim in modeling blood flow, while internal combustion engine related flows have mainly been addressed in terms of integral quantities and consist of single point measurements. The present study aims at bridging the gap between these two fields by means of time-resolved stereoscopic particle image velocimetry measurements in a pipe bend with conditions that are close to those encountered in exhaust manifolds. The time/phase-resolved three-dimensional cross-sectional flow-field 3 pipe diameters downstream the pipe bend is captured and the interplay between different secondary motions throughout a pulse cycle is discussed.

  12. Stem cells as biological heart pacemakers.

    PubMed

    Gepstein, Lior

    2005-12-01

    Abnormalities in the pacemaker function of the heart or in cardiac impulse conduction may result in the appearance of a slow heart rate, traditionally requiring the implantation of a permanent electronic pacemaker. In recent years, a number of experimental approaches have been developed in an attempt to generate biological alternatives to implantable electronic devices. These strategies include, initially, a number of gene therapy approaches (aiming to manipulate the expression of ionic currents or their modulators and thereby convert quiescent cardiomyocytes into pacemaking cells) and, more recently, the use of cell therapy and tissue engineering. The latter approach explored the possibility of grafting pacemaking cells, either derived directly during the differentiation of human embryonic stem cells or engineered from mesenchymal stem cells, into the myocardium. This review will describe each of these approaches, focusing mainly on the stem cell strategies, their possible advantages and shortcomings, as well as the avenues required to make biological pacemaking a clinical reality.

  13. Numerical investigation on nonlinear effect and vortex formation of oscillatory flow throughout a short tube in a thermoacoustic Stirling engine

    NASA Astrophysics Data System (ADS)

    Yang, Peng; Chen, Hui; Liu, Yingwen

    2017-06-01

    In this paper, a two-dimensional axisymmetric model of a thermoacoustic Stirling engine with a short tube where the cross section narrows has been developed. The transient streamlines and vortex formation through short tubes with different diameters in oscillatory flow have been investigated visually by computational fluid dynamics. Three dimensionless parameters, Reynolds number (Re), Keulegan-Carpenter number (KC), and Womersley number (Wo), are used to describe the flow regime and vortex characteristic throughout the short tube. High Re and Wo numbers indicate that the oscillatory flow develops into the turbulent flow through the short tube. The KC number has a direct effect on the transition of streamlines and the development of the vortex. For a small cross section where KC ≈ 1, streamlines rotate and the vortex forms at both sides of the short tube. The vortex stays in the main flow region, and intensity varies as streamlines are convected downstream. The velocity along the radius presents a Poiseuille profile within the influence of the vortex. For a large cross section where KC < 1, streamlines pass the short tube with little rotation and the vortex disappears in the main flow region and confines near the short tube. The velocity profile tends to be flat. The nonlinear effects including instantaneous pressure drop and power dissipation throughout the short tube are also discussed. It shows that the time averaged pressure drop is generated at the cost of power dissipation. Finally, the "effectiveness" is applied to evaluate the performance of the short tube. The results suggest that increasing the diameter of the short tube is in favor of reducing power dissipation, which is beneficial to improve "effectiveness."

  14. Misconceptions About Sound Among Engineering Students

    NASA Astrophysics Data System (ADS)

    Pejuan, Arcadi; Bohigas, Xavier; Jaén, Xavier; Periago, Cristina

    2012-12-01

    Our first objective was to detect misconceptions about the microscopic nature of sound among senior university students enrolled in different engineering programmes (from chemistry to telecommunications). We sought to determine how these misconceptions are expressed (qualitative aspect) and, only very secondarily, to gain a general idea of the extent to which they are held (quantitative aspect). Our second objective was to explore other misconceptions about wave aspects of sound. We have also considered the degree of consistency in the model of sound used by each student. Forty students answered a questionnaire including open-ended questions. Based on their free, spontaneous answers, the main results were as follows: a large majority of students answered most of the questions regarding the microscopic model of sound according to the scientifically accepted model; however, only a small number answered consistently. The main model misconception found was the notion that sound is propagated through the travelling of air particles, even in solids. Misconceptions and mental-model inconsistencies tended to depend on the engineering programme in which the student was enrolled. However, students in general were inconsistent also in applying their model of sound to individual sound properties. The main conclusion is that our students have not truly internalised the scientifically accepted model that they have allegedly learnt. This implies a need to design learning activities that take these findings into account in order to be truly efficient.

  15. An engine awaits processing in the new engine shop at KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Shuttle Main Engine Processing Facility (SSMEPF), a new Block 2A engine sits on the workstand as technicians process it. The engine is scheduled to fly on the Space Shuttle Endeavour during the STS-88 mission in December 1998. The SSMEPF officially opened on July 6, replacing the Shuttle Main Engine Shop.

  16. KSC-98pc786

    NASA Image and Video Library

    1998-07-06

    James W. Tibble (pointing at engine), an Engine Systems/Ground Support Equipment team manager for Rocketdyne, discusses the operation of a Space Shuttle Main Engine with Robert B. Sieck, director of Shuttle Processing; U.S. Congressman Dave Weldon; and KSC Center Director Roy D. Bridges Jr. Following the ribbon cutting ceremony for KSC's new 34,600-square-foot Space Shuttle Main Engine Processing Facility (SSMEPF), KSC employees and media explored the facility. A major addition to the existing Orbiter Processing Facility Bay 3, the SSMEPF replaces the Shuttle Main Engine Shop located in the Vehicle Assembly Building (VAB). The decision to move the shop out of the VAB was prompted by safety considerations and recent engine processing improvements. The first three main engines to be processed in the new facility will fly on Shuttle Endeavour's STS-88 mission in December 1998

  17. The SSMEPF opens with a ribbon-cutting ceremony

    NASA Technical Reports Server (NTRS)

    1998-01-01

    James W. Tibble (pointing at engine), an Engine Systems/Ground Support Equipment team manager for Rocketdyne, discusses the operation of a Space Shuttle Main Engine with Robert B. Sieck, director of Shuttle Processing; U.S. Congressman Dave Weldon; and KSC Center Director Roy D. Bridges Jr. Following the ribbon cutting ceremony for KSC's new 34,600-square-foot Space Shuttle Main Engine Processing Facility (SSMEPF), KSC employees and media explored the facility. A major addition to the existing Orbiter Processing Facility Bay 3, the SSMEPF replaces the Shuttle Main Engine Shop located in the Vehicle Assembly Building (VAB). The decision to move the shop out of the VAB was prompted by safety considerations and recent engine processing improvements. The first three main engines to be processed in the new facility will fly on Shuttle Endeavour's STS-88 mission in December 1998.

  18. Closeup side view of Space Shuttle Main Engine (SSME) 2059 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up side view of Space Shuttle Main Engine (SSME) 2059 mounted in a SSME Engine Handler near the Drying Area in the High Bay section of the SSME Processing Facility. The prominent features of the SSME in this view are the hot-gas expansion nozzle extending from the approximate image center toward the image right. The main-engine components extend from the approximate image center toward image right until it meets up with the mount for the SSME Engine Handler. The engine is rotated to a position where the major components in the view are the Low-Pressure Fuel Turbopump Discharge Duct with reflective foil insulation on the upper side of the engine, the Low-Pressure Oxidizer Turbopump and its Discharge Duct on the right side of the engine assembly extending itself down and wrapping under the bottom side of the assembly to the High-Pressure Oxidizer Turbopump pump. The High-Pressure Oxidizer Turbopump Discharge Duct exists the turbopump and extends up to the top side of the assembly where it enters the main oxidizer valve. The sphere on the lower side of the engine assembly is an accumulator that is part of the SSMEs POGO suppression system. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  19. An engine awaits processing in the new engine shop at KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Space Shuttle Main Engine Processing Facility (SSMEPF), a new Block 2A engine sits on the transport cradle before being moved to the workstand. The engine is scheduled to fly on the Space Shuttle Endeavour during the STS-88 mission in December 1998. The SSMEPF officially opened on July 6, replacing the Shuttle Main Engine Shop.

  20. Improving Legacy Aircraft Systems Through Condition-Based Maintenance: An H-60 Case Study

    DTIC Science & Technology

    2014-09-01

    level functions. These decompositions are equivalent to a detailed design effort in systems engineering. NAMPSOPs have a common architectural structure...Assembly Power Available Spindle Cables No.1 Engine Load Demand Spindle Control Cables Engine Pneumatic Starters Auxiliary Power Unit IRCM FLIR Mission...Analysis Fuel System Main Rotor Head Main Module Main Gear Box Radiator Engine Output Shaft Auxiliary Power Unit Flight Control Cables Tail Landing

  1. Case Study of Engineering Risk in Automotive Industry

    NASA Astrophysics Data System (ADS)

    Popa, Dan Mihai

    2018-03-01

    The primary objective of this paper is to show where the engineering of risk management is placed and how its implementation has been tried in multinational companies in automotive industry from Romania. A large number of companies don't use a strategy to avoid the engineering risk in their design products. The main reason is not because these companies haven't heard about standards for risk management such as ISO 31000; the problem is that the business units which were summed up, have just set up a risk list at the beginning of the project, without any follow up. The purpose of this article is to create an implementation risk tracking in automotive industry companies in Romania, due to a change request from customers according to supply companies within the quality process, in the research and development phase.

  2. General view of a Space Shuttle Main Engine (SSME) mounted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of a Space Shuttle Main Engine (SSME) mounted on an SSME engine handler, taken in the SSME Processing Facility at Kennedy Space Center. The most prominent features of the engine assembly in this view are the Low-Pressure Oxidizer Turbopump Discharge Duct looping around the right side of the engine assembly then turning in and connecting to the High-Pressure Oxidizer Turbopump. The sphere in the approximate center of the assembly is the POGO System Accumulator, the Engine Controller is located on the bottom and slightly left of the center of the Engine Assembly in this view. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  3. KENNEDY SPACE CENTER, FLA. - Boeing workers perform a 3D digital scan of the actuator on the table. At left is Dan Clark. At right are Alden Pitard (seated at computer) and John Macke, from Boeing, St. Louis. . There are two actuators per engine on the Shuttle, one for pitch motion and one for yaw motion. The Space Shuttle Main Engine hydraulic servoactuators are used to gimbal the main engine.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - Boeing workers perform a 3D digital scan of the actuator on the table. At left is Dan Clark. At right are Alden Pitard (seated at computer) and John Macke, from Boeing, St. Louis. . There are two actuators per engine on the Shuttle, one for pitch motion and one for yaw motion. The Space Shuttle Main Engine hydraulic servoactuators are used to gimbal the main engine.

  4. Zeroth-order design report for the next linear collider. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raubenheimer, T.O.

    1996-05-01

    This Zeroth Order Design Report (ZDR) for the Next Linear Collider (NLC) has been completed as a feasibility study for a TeV-scale linear collider that incorporates a room-temperature accelerator powered by rf microwaves at 11.424 GHz--similar to that presently used in the SLC, but at four times the rf frequency. The purpose of this study is to examine the complete systems of such a collider, to understand how the parts fit together, and to make certain that every required piece has been included. The design presented here is not fully engineered in any sense, but to be assured that themore » NLC can be built, attention has been given to a number of critical components and issues that present special challenges. More engineering and development of a number of mechanical and electrical systems remain to be done, but the conclusion of this study is that indeed the NLC is technically feasible and can be expected to reach the performance levels required to perform research at the TeV energy scale. Volume one covers the following: the introduction; electron source; positron source; NLC damping rings; bunch compressors and prelinac; low-frequency linacs and compressors; main linacs; design and dynamics; and RF systems for main linacs.« less

  5. Locomotive Emission and Engine Idle Reduction Technology Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John R. Archer

    2005-03-14

    In response to a United States Department of Energy (DOE) solicitation, the Maryland Energy Administration (MEA), in partnership with CSX Transportation, Inc. (CSXT), submitted a proposal to DOE to support the demonstration of Auxiliary Power Unit (APU) technology on fifty-six CSXT locomotives. The project purpose was to demonstrate the idle fuel savings, the Nitrous Oxide (NOX) emissions reduction and the noise reduction capabilities of the APU. Fifty-six CSXT Baltimore Division locomotives were equipped with APUs, Engine Run Managers (ERM) and communications equipment to permit GPS tracking and data collection from the locomotives. Throughout the report there is mention of themore » percent time spent in the State of Maryland. The fifty-six locomotives spent most of their time inside the borders of Maryland and some spent all their time inside the state borders. Usually when a locomotive traveled beyond the Maryland State border it was into an adjoining state. They were divided into four groups according to assignment: (1) Power Unit/Switcher Mate units, (2) Remote Control units, (3) SD50 Pusher units and (4) Other units. The primary data of interest were idle data plus the status of the locomotive--stationary or moving. Also collected were main engine off, idling or working. Idle data were collected by county location, by locomotive status (stationary or moving) and type of idle (Idle 1, main engine idling, APU off; Idle 2, main engine off, APU on; Idle 3, main engine off, APU off; Idle 4, main engine idle, APU on). Desirable main engine idle states are main engine off and APU off or main engine off and APU on. Measuring the time the main engine spends in these desirable states versus the total time it could spend in an engine idling state allows the calculation of Percent Idle Management Effectiveness (%IME). IME is the result of the operation of the APU plus the implementation of CSXT's Warm Weather Shutdown Policy. It is difficult to separate the two. The units demonstrated an IME of 64% at stationary idle for the test period. The data collected during calendar year 2004 demonstrated that 707,600 gallons of fuel were saved and 285 tons of NOX were not emitted as a result of idle management in stationary idle, which translates to 12,636 gallons and 5.1 tons of NOx per unit respectively. The noise reduction capabilities of the APU demonstrated that at 150 feet from the locomotive the loaded APU with the main engine shut down generated noise that was only marginally above ambient noise level.« less

  6. First-ever evening public engine test of a Space Shuttle Main Engine

    NASA Image and Video Library

    2001-04-21

    Thousands of people watch the first-ever evening public engine test of a Space Shuttle Main Engine at NASA's John C. Stennis Space Center. The spectacular test marked Stennis Space Center's 20th anniversary celebration of the first Space Shuttle mission.

  7. PREFACE: XVII International Scientific Conference ''RESHETNEV READINGS''

    NASA Astrophysics Data System (ADS)

    2015-01-01

    The International Scientific Conference ''RESHETNEV READINGS'' is dedicated to the memory of Mikhail Reshetnev, an outstanding scientist, chief-constructor of space-rocket systems and communication satellites. The current volume represents selected proceedings of the main conference materials which were published by XVII International Scientific Conference ''RESHETNEV READINGS'' held on November 12 - 14, 2013. Plenary sessions, round tables and forums will be attended by famous scientists, developers and designers representing the space technology sector, as well as professionals and experts in the IT industry. A number of outstanding academic figures expressed their interest in an event of such a level including Jaures Alferov, Vice-president of the Russian Academy of Sciences (RAS), Academician of RAS, Nobel laureate, Dirk Bochar, General Secretary of the European Federation of National Engineering Associates (FEANI), Prof. Yuri Gulyaev, Academician of RAS, Member of the Presidium of RAS, President of the International Union of Scientific and Engineering Associations, Director of the Institute of Radio Engineering and Electronics of RAS, as well as rectors of the largest universities in Russia, chief executives of well-known research enterprises and representatives of big businesses. We would like to thank our main sponsors such as JSC ''Reshetnev Information Satellite Systems'', JSC ''Krasnoyarsk Engineering Plant'', Central Design Bureau ''Geophysics'', Krasnoyarsk Region Authorities. These enterprises and companies are leading ones in the aerospace branch. It is a great pleasure to cooperate and train specialists for them.

  8. Turnaround Time Modeling for Conceptual Rocket Engines

    NASA Technical Reports Server (NTRS)

    Nix, Michael; Staton, Eric J.

    2004-01-01

    Recent years have brought about a paradigm shift within NASA and the Space Launch Community regarding the performance of conceptual design. Reliability, maintainability, supportability, and operability are no longer effects of design; they have moved to the forefront and are affecting design. A primary focus of this shift has been a planned decrease in vehicle turnaround time. Potentials for instituting this decrease include attacking the issues of removing, refurbishing, and replacing the engines after each flight. less, it is important to understand the operational affects of an engine on turnaround time, ground support personnel and equipment. One tool for visualizing this relationship involves the creation of a Discrete Event Simulation (DES). A DES model can be used to run a series of trade studies to determine if the engine is meeting its requirements, and, if not, what can be altered to bring it into compliance. Using DES, it is possible to look at the ways in which labor requirements, parallel maintenance versus serial maintenance, and maintenance scheduling affect the overall turnaround time. A detailed DES model of the Space Shuttle Main Engines (SSME) has been developed. Trades may be performed using the SSME Processing Model to see where maintenance bottlenecks occur, what the benefits (if any) are of increasing the numbers of personnel, or the number and location of facilities, in addition to trades previously mentioned, all with the goal of optimizing the operational turnaround time and minimizing operational cost. The SSME Processing Model was developed in such a way that it can easily be used as a foundation for developing DES models of other operational or developmental reusable engines. Performing a DES on a developmental engine during the conceptual phase makes it easier to affect the design and make changes to bring about a decrease in turnaround time and costs.

  9. Number crunching vs. number theory: computers and FLT, from Kummer to SWAC (1850-1960), and beyond

    NASA Astrophysics Data System (ADS)

    Corry, Leo

    2008-07-01

    The article discusses the computational tools (both conceptual and material) used in various attempts to deal with individual cases of FLT [Fermat's Last Theorem], as well as the changing historical contexts in which these tools were developed and used, and affected research. It also explores the changing conceptions about the role of computations within the overall disciplinary picture of number theory, how they influenced research on the theorem, and the kinds of general insights thus achieved. After an overview of Kummer's contributions and its immediate influence, the author presents work that favored intensive computations of particular cases of FLT as a legitimate, fruitful, and worth-pursuing number-theoretical endeavor, and that were part of a coherent and active, but essentially low-profile tradition within nineteenth century number theory. This work was related to table making activity that was encouraged by institutions and individuals whose motivations came mainly from applied mathematics, astronomy, and engineering, and seldom from number theory proper. A main section of the article is devoted to the fruitful collaboration between Harry S. Vandiver and Emma and Dick Lehmer. The author shows how their early work led to the hesitant introduction of electronic computers for research related with FLT. Their joint work became a milestone for computer-assisted activity in number theory at large.

  10. Summer Work Experience: Determining Methane Combustion Mechanisms and Sub-Scale Diffuser Properties for Space Transporation System Engine Testing

    NASA Technical Reports Server (NTRS)

    Williams, Powtawche N.

    1998-01-01

    To assess engine performance during the testing of Space Shuttle Main Engines (SSMEs), the design of an optimal altitude diffuser is studied for future Space Transportation Systems (STS). For other Space Transportation Systems, rocket propellant using kerosene is also studied. Methane and dodecane have similar reaction schemes as kerosene, and are used to simulate kerosene combustion processes at various temperatures. The equations for the methane combustion mechanism at high temperature are given, and engine combustion is simulated on the General Aerodynamic Simulation Program (GASP). The successful design of an altitude diffuser depends on the study of a sub-scaled diffuser model tested through two-dimensional (2-D) flow-techniques. Subroutines given calculate the static temperature and pressure at each Mach number within the diffuser flow. Implementing these subroutines into program code for the properties of 2-D compressible fluid flow determines all fluid characteristics, and will be used in the development of an optimal diffuser design.

  11. An energy management for series hybrid electric vehicle using improved dynamic programming

    NASA Astrophysics Data System (ADS)

    Peng, Hao; Yang, Yaoquan; Liu, Chunyu

    2018-02-01

    With the increasing numbers of hybrid electric vehicle (HEV), management for two energy sources, engine and battery, is more and more important to achieve the minimum fuel consumption. This paper introduces several working modes of series hybrid electric vehicle (SHEV) firstly and then describes the mathematical model of main relative components in SHEV. On the foundation of this model, dynamic programming is applied to distribute energy of engine and battery on the platform of matlab and acquires less fuel consumption compared with traditional control strategy. Besides, control rule recovering energy in brake profiles is added into dynamic programming, so shorter computing time is realized by improved dynamic programming and optimization on algorithm.

  12. A combined Eulerian-Lagrangian two-phase flow analysis of SSME HPOTP nozzle plug trajectories. II - Results

    NASA Technical Reports Server (NTRS)

    Mcconnaughey, P. K.; Garcia, R.; Dejong, F. J.; Sabnis, J. S.; Pribik, D. A.

    1989-01-01

    An analysis of Space Shuttle Main Engine high-pressure oxygen turbopump nozzle plug trajectories has been performed, using a Lagrangian method to track nozzle plug particles expelled from a turbine through a high Reynolds number flow in a turnaround duct with turning vanes. Axisymmetric and parametric analyses reveal that if nozzle plugs exited the turbine they would probably impact the LOX heat exchanger with impact velocities which are significantly less than the penetration velocity. The finding that only slight to moderate damage will result from nozzle plug failure in flight is supported by the results of a hot-fire engine test with induced nozzle plug failures.

  13. An engine awaits processing in the new engine shop at KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A new Block 2A engine awaits processing in the low bay of the Space Shuttle Main Engine Processing Facility (SSMEPF). Officially opened on July 6, the new facility replaces the Shuttle Main Engine Shop. The SSMEPF is an addition to the existing Orbiter Processing Facility Bay 3. The engine is scheduled to fly on the Space Shuttle Endeavour during the STS-88 mission in December 1998.

  14. Pulsations Induced by Vibrations in Aircraft Engine Two-Stage Pump

    NASA Astrophysics Data System (ADS)

    Gafurov, S. A.; Salmina, V. A.; Handroos, H.

    2018-01-01

    This paper describes a phenomenon of induced pressure pulsations inside a two-stage aircraft engine pump. A considered pumps consists of a screw-centrifugal and gear stages. The paper describes the cause of two-stage pump elements loading. A number of hypothesis of pressure pulsations generation inside a pump were considered. The main focus in this consideration is made on phenomena that are not related to pump mode of operation. Provided analysis has shown that pump vibrations as well as pump elements self-oscillations are the main causes that lead to trailing vortices generation. Analysis was conducted by means FEM and CFD simulations as well by means of experimental investigations to obtain natural frequencies and flow structure inside a screw-centrifugal stage. To perform accurate simulations adequate boundary conditions were considered. Cavitation and turbulence phenomena have been also taken into account. Obtained results have shown generated trailing vortices lead to high-frequency loading of the impeller of screw-centrifugal stage and can be a cause of the bearing damage.

  15. Calculation of flow about posts and powerhead model. [space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Anderson, P. G.; Farmer, R. C.

    1985-01-01

    A three dimensional analysis of the non-uniform flow around the liquid oxygen (LOX) posts in the Space Shuttle Main Engine (SSME) powerhead was performed to determine possible factors contributing to the failure of the posts. Also performed was three dimensional numerical fluid flow analysis of the high pressure fuel turbopump (HPFTP) exhaust system, consisting of the turnaround duct (TAD), two-duct hot gas manifold (HGM), and the Version B transfer ducts. The analysis was conducted in the following manner: (1) modeling the flow around a single and small clusters (2 to 10) of posts; (2) modeling the velocity field in the cross plane; and (3) modeling the entire flow region with a three dimensional network type model. Shear stress functions which will permit viscous analysis without requiring excessive numbers of computational grid points were developed. These wall functions, laminar and turbulent, have been compared to standard Blasius solutions and are directly applicable to the cylinder in cross flow class of problems to which the LOX post problem belongs.

  16. Analysis of the Magneto-Hydrodynamic (MHD) Energy Bypass Engine for High-Speed Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Riggins, David W.

    2002-01-01

    The performance of the MHD energy bypass air-breathing engine for high-speed propulsion is analyzed in this investigation. This engine is a specific type of the general class of inverse cycle engines. In this paper, the general relationship between engine performance (specific impulse and specific thrust) and the overall total pressure ratio through an engine (from inlet plane to exit plane) is first developed and illustrated. Engines with large total pressure decreases, regardless of cause or source, are seen to have exponentially decreasing performance. The ideal inverse cycle engine (of which the MHD engine is a sub-set) is then demonstrated to have a significant total pressure decrease across the engine; this total pressure decrease is cycle-driven, degrades rapidly with energy bypass ratio, and is independent of any irreversibility. The ideal MHD engine (inverse cycle engine with no irreversibility other than that inherent in the MHD work interaction processes) is next examined and is seen to have an additional large total pressure decrease due to MHD-generated irreversibility in the decelerator and the accelerator. This irreversibility mainly occurs in the deceleration process. Both inherent total pressure losses (inverse cycle and MHD irreversibility) result in a significant narrowing of the performance capability of the MHD bypass engine. The fundamental characteristics of MHD flow acceleration and flow deceleration from the standpoint of irreversibility and second-law constraints are next examined in order to clarify issues regarding flow losses and parameter selection in the MM modules. Severe constraints are seen to exist in the decelerator in terms of allowable deceleration Mach numbers and volumetric (length) required for meaningful energy bypass (work interaction). Considerable difficulties are also encountered and discussed due to thermal/work choking phenomena associated with the deceleration process. Lastly, full engine simulations utilizing inlet shock systems, finite-rate chemistry, wall cooling with thermally balanced engine (fuel heat sink), fuel injection and mixing, friction, etc. are shown and discussed for both the MHD engine and the conventional scramjet. The MHD bypass engine has significantly lower performance in all categories across the Mach number range (8 to 12.2). The lower performance is attributed to the combined effects of 1) additional irreversibility and cooling requirements associated with the MHD components and 2) the total pressure decrease associated with the inverse cycle itself.

  17. 5. ENGINE TEST CELL BUILDING INTERIOR. CENTRAL ROOM ON MAIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. ENGINE TEST CELL BUILDING INTERIOR. CENTRAL ROOM ON MAIN FLOOR. LOOKING NORTHWEST. - Fairchild Air Force Base, Engine Test Cell Building, Near intersection of Arnold Street & George Avenue, Spokane, Spokane County, WA

  18. Aft Engine shop worker removes a heat shield on Columbia's main engines

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Doug Buford (top), with the Aft Engine shop, along with another worker, removes a heat shield on one of Columbia's engines. After small cracks were discovered on the LH2 Main Propulsion System (MPS) flow liners in two other orbiters, program managers decided to move forward with inspections on Columbia before clearing it for flight on STS-107. After removal of the heat shields, the three main engines will be removed. Inspections of the flow liners will follow. The July 19 launch of Columbia on STS-107 has been delayed a few weeks

  19. General view of a Space Shuttle Main Engine (SSME) mounted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of a Space Shuttle Main Engine (SSME) mounted on an SSME engine handler, taken in the SSME Processing Facility at Kennedy Space Center. The most prominent features of the engine assembly in this view are the Low-Pressure Fuel Turbopump Discharge Duct looping diagonally across the top of the assembly and connecting to the High-Pressure Fuel Turbopump, the Low-Pressure Oxidizer Turbopump (LPOTP) located center right of the assembly and the LPOTP Discharge Duct looping around from the pump to the underside of the engine assembly in this view. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  20. Engineering redox homeostasis to develop efficient alcohol-producing microbial cell factories.

    PubMed

    Zhao, Chunhua; Zhao, Qiuwei; Li, Yin; Zhang, Yanping

    2017-06-24

    The biosynthetic pathways of most alcohols are linked to intracellular redox homeostasis, which is crucial for life. This crucial balance is primarily controlled by the generation of reducing equivalents, as well as the (reduction)-oxidation metabolic cycle and the thiol redox homeostasis system. As a main oxidation pathway of reducing equivalents, the biosynthesis of most alcohols includes redox reactions, which are dependent on cofactors such as NADH or NADPH. Thus, when engineering alcohol-producing strains, the availability of cofactors and redox homeostasis must be considered. In this review, recent advances on the engineering of cellular redox homeostasis systems to accelerate alcohol biosynthesis are summarized. Recent approaches include improving cofactor availability, manipulating the affinity of redox enzymes to specific cofactors, as well as globally controlling redox reactions, indicating the power of these approaches, and opening a path towards improving the production of a number of different industrially-relevant alcohols in the near future.

  1. Software for Estimating Costs of Testing Rocket Engines

    NASA Technical Reports Server (NTRS)

    Hines, Merlon M.

    2004-01-01

    A high-level parametric mathematical model for estimating the costs of testing rocket engines and components at Stennis Space Center has been implemented as a Microsoft Excel program that generates multiple spreadsheets. The model and the program are both denoted, simply, the Cost Estimating Model (CEM). The inputs to the CEM are the parameters that describe particular tests, including test types (component or engine test), numbers and duration of tests, thrust levels, and other parameters. The CEM estimates anticipated total project costs for a specific test. Estimates are broken down into testing categories based on a work-breakdown structure and a cost-element structure. A notable historical assumption incorporated into the CEM is that total labor times depend mainly on thrust levels. As a result of a recent modification of the CEM to increase the accuracy of predicted labor times, the dependence of labor time on thrust level is now embodied in third- and fourth-order polynomials.

  2. Software for Estimating Costs of Testing Rocket Engines

    NASA Technical Reports Server (NTRS)

    Hines, Merion M.

    2002-01-01

    A high-level parametric mathematical model for estimating the costs of testing rocket engines and components at Stennis Space Center has been implemented as a Microsoft Excel program that generates multiple spreadsheets. The model and the program are both denoted, simply, the Cost Estimating Model (CEM). The inputs to the CEM are the parameters that describe particular tests, including test types (component or engine test), numbers and duration of tests, thrust levels, and other parameters. The CEM estimates anticipated total project costs for a specific test. Estimates are broken down into testing categories based on a work-breakdown structure and a cost-element structure. A notable historical assumption incorporated into the CEM is that total labor times depend mainly on thrust levels. As a result of a recent modification of the CEM to increase the accuracy of predicted labor times, the dependence of labor time on thrust level is now embodied in third- and fourth-order polynomials.

  3. Software for Estimating Costs of Testing Rocket Engines

    NASA Technical Reports Server (NTRS)

    Hines, Merlon M.

    2003-01-01

    A high-level parametric mathematical model for estimating the costs of testing rocket engines and components at Stennis Space Center has been implemented as a Microsoft Excel program that generates multiple spreadsheets. The model and the program are both denoted, simply, the Cost Estimating Model (CEM). The inputs to the CEM are the parameters that describe particular tests, including test types (component or engine test), numbers and duration of tests, thrust levels, and other parameters. The CEM estimates anticipated total project costs for a specific test. Estimates are broken down into testing categories based on a work-breakdown structure and a cost-element structure. A notable historical assumption incorporated into the CEM is that total labor times depend mainly on thrust levels. As a result of a recent modification of the CEM to increase the accuracy of predicted labor times, the dependence of labor time on thrust level is now embodied in third- and fourth-order polynomials.

  4. Teaching Ethics to Engineers: A Socratic Experience.

    PubMed

    Génova, Gonzalo; González, M Rosario

    2016-04-01

    In this paper we present the authors' experience of teaching a course in Ethics for Engineers, which has been delivered four times in three different universities in Spain and Chile. We begin by presenting the material context of the course (its place within the university program, the number of students attending, its duration, etc.), and especially the intellectual background of the participating students, in terms of their previous understanding of philosophy in general, and of ethics in particular. Next we set out the objectives of the course and the main topics addressed, as well as the methodology and teaching resources employed to have students achieve a genuine philosophical reflection on the ethical aspects of the profession, starting from their own mindset as engineers. Finally we offer some results based on opinion surveys of the students, as well as a more personal assessment by the authors, recapitulating the most significant achievements of the course and indicating its underlying Socratic structure.

  5. Flow dynamic environment data base development for the SSME

    NASA Technical Reports Server (NTRS)

    Sundaram, C. V.

    1985-01-01

    The fluid flow-induced vibration of the Space Shuttle main engine (SSME) components are being studied with a view to correlating the frequency characteristics of the pressure fluctuations in a rocket engine to its operating conditions and geometry. An overview of the data base development for SSME test firing results and the interactive computer software used to access, retrieve, and plot or print the results selectively for given thrust levels, engine numbers, etc., is presented. The various statistical methods available in the computer code for data analysis are discussed. Plots of test data, nondimensionalized using parameters such as fluid flow velocities, densities, and pressures, are presented. Results are compared with those available in the literature. Correlations between the resonant peaks observed at higher frequencies in power spectral density plots with pump geometry and operating conditions are discussed. An overview of the status of the investigation is presented and future directions are discussed.

  6. Feasibility Investigation on the Development of a Structural Damage Diagnostic and Monitoring System for Rocket Engines

    NASA Technical Reports Server (NTRS)

    Shen, Ji Y.; Sharpe, Lonnie, Jr.

    1998-01-01

    The research activity for this project is mainly to investigate the necessity and feasibility to develop a structural health monitoring system for rocket engines, and to carry out a research plan for further development of the system. More than one hundred technical papers have been searched and reviewed during the period. We concluded after this investigation that adding a new module in NASA's existing automated diagnostic system to monitor the healthy condition of rocket engine structures is a crucial task, and it's possible to develop such a system based upon the vibrational-based nondestructive damage assessment techniques. A number of such techniques have been introduced. Their advantages and disadvantages are also discussed. A global research plan has been figured out. As the first step of the overall research plan, a proposal for the next fiscal year has been submitted.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szabó, R.; Sárneczky, K.; Szabó, Gy. M.

    Unlike NASA’s original Kepler Discovery Mission, the renewed K2 Mission will target the plane of the Ecliptic, observing each field for approximately 75 days. This will bring new opportunities and challenges, in particular the presence of a large number of main-belt asteroids that will contaminate the photometry. The large pixel size makes K2 data susceptible to the effects of apparent minor planet encounters. Here, we investigate the effects of asteroid encounters on photometric precision using a subsample of the K2 engineering data taken in 2014 February. We show examples of asteroid contamination to facilitate their recognition and distinguish these eventsmore » from other error sources. We conclude that main-belt asteroids will have considerable effects on K2 photometry of a large number of photometric targets during the Mission that will have to be taken into account. These results will be readily applicable for future space photometric missions applying large-format CCDs, such as TESS and PLATO.« less

  8. Investigation on cause of the elevator turbine wear

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Ouyang, W. P.; Xue, J. A.

    2018-03-01

    Elevator traction turbine is often worn for various reasons, causing serious safety hazard. It is explained the main causes of traction wheel wear in detail in combination with a large number of engineering experience. The effect of turbine wear on the actual operation of the elevator is verified by contrast experiment, which is helpful to identify risks early. It is put forward on some reasonable suggestions for elevator inspection, maintenance and management.

  9. High frequency data acquisition system for space shuttle main engine testing

    NASA Technical Reports Server (NTRS)

    Lewallen, Pat

    1987-01-01

    The high frequency data acquisition system developed for the Space Shuttle Main Engine (SSME) single engine test facility at the National Space Technology Laboratories is discussed. The real time system will provide engineering data for a complete set of SSME instrumentation (approx. 100 measurements) within 4 hours following engine cutoff, a decrease of over 48 hours from the previous analog tape based system.

  10. Xiaowen Chen | NREL

    Science.gov Websites

    Xiaowen Chen Photo of Xiaowen Chen Xiaowen Chen Researcher IV-Chemical Engineering Xiaowen.Chen Education Ph.D., Chemical Engineering, University of Maine, 2009 M.S., Chemical Engineering, University of Maine, 2005 B.S., Chemical Engineering in Polymer Science and Technology, Nanjing University of Science

  11. 76 FR 8321 - Special Conditions: Pratt and Whitney Canada Model PW210S Turboshaft Engine

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... contact Marc Bouthillier, ANE-111, Engine and Propeller Directorate, Aircraft Certification Service, 12... contact Vincent Bennett, ANE-7 Engine and Propeller Directorate, Aircraft Certification Service, 12 New... helicopter will incorporate a main rotor brake what will allow the engine main output shaft and power turbine...

  12. Field Tests of In-Service Modifications to Improve Performance of An Icebreaker Main Diesel Engine

    DOT National Transportation Integrated Search

    1977-08-01

    Field tests of in-service modifications to improve engine efficiency and lower the emissions were performed on the no. 3 main diesel engine of the USCGC Mackinaw (WAGB-83). This engine is a model 38D8-1/8 manufactured by Colt Industries, Fairbanks Mo...

  13. Diesel exhaust exposures in port workers.

    PubMed

    Debia, Maximilien; Neesham-Grenon, Eve; Mudaheranwa, Oliver C; Ragettli, Martina S

    2016-07-01

    Exposure to diesel engine exhaust has been linked to increased cancer risk and cardiopulmonary diseases. Diesel exhaust is a complex mixture of chemical substances, including a particulate fraction mainly composed of ultrafine particles, resulting from the incomplete combustion of fuel. Diesel trucks are known to be an important source of diesel-related air pollution, and areas with heavy truck traffic are associated with higher air pollution levels and increased public health problems. Several indicators have been proposed as surrogates for estimating exposures to diesel exhaust but very few studies have focused specifically on monitoring the ultrafine fraction through the measurement of particle number concentrations. The aim of this study is to assess occupational exposures of gate controllers at the port of Montreal, Canada, to diesel engine emissions from container trucks by measuring several surrogates through a multimetric approach which includes the assessment of both mass and number concentrations and the use of direct reading devices. A 10-day measurement campaign was carried out at two terminal checkpoints at the port of Montreal. Respirable elemental and organic carbon, PM1, PM2.5, PMresp (PM4), PM10, PMtot (inhalable fraction), particle number concentrations, particle size distributions, and gas concentrations (NO2, NO, CO) were monitored. Gate controllers were exposed to concentrations of contaminants associated with diesel engine exhaust (elemental carbon GM = 1.6 µg/m(3); GSD = 1.6) well below recommended occupational exposure limits. Average daily particle number concentrations ranged from 16,544-67,314 particles/cm³ (GM = 32,710 particles/cm³; GSD = 1.6). Significant Pearson correlation coefficients were found between daily elemental carbon, PM fractions and particle number concentrations, as well as between total carbon, PM fractions and particle number concentrations. Significant correlation coefficients were found between particle number concentrations and the number of trucks and wind speed (R(2) = 0.432; p < 0.01). The presence of trucks with cooling systems and older trucks with older exhaust systems was associated with peak concentrations on the direct reading instruments. The results highlight the relevance of direct reading instruments in helping to identify sources of exposure and suggest that monitoring particle number concentrations improves understanding of workers' exposures to diesel exhaust. This study, by quantifying workers' exposure levels through a multimetric approach, contributes to the further understanding of occupational exposures to diesel engine exhaust.

  14. Space shuttle three main engine return to launch site abort

    NASA Technical Reports Server (NTRS)

    Carter, J. F.; Bown, R. L.

    1975-01-01

    A Return-to-Launch-Site (RTLS) abort with three Space Shuttle Main Engines (SSME) operational was examined. The results are trajectories and main engine cutoff conditions that are approximately the same as for a two SSME case. Requiring the three SSME solution to match the two SSME abort eliminates additional crew training and is accomplished with negligible software impact.

  15. Fabrication of Flex Joint Utilizing Additively Manufactured Parts

    NASA Technical Reports Server (NTRS)

    Eddleman, David; Richard, Jim

    2015-01-01

    The Selective Laser Melting (SLM) manufacturing technique has been utilized in the manufacture of a flex joint typical of those found in rocket engine and main propulsion system ducting. The SLM process allowed for the combination of parts that are typically machined separately and welded together. This resulted in roughly a 65% reduction of the total number of parts, roughly 70% reduction in the total number of welds, and an estimated 60% reduction in the number of machining operations. The majority of the new design was in three SLM pieces. These pieces, as well as a few traditionally fabricated parts, were assembled into a complete unit, which has been pressure tested. The design and planned cryogenic testing of the unit will be presented.

  16. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 5: Main Injector LOX Inlet analysis

    NASA Technical Reports Server (NTRS)

    Violett, Rebeca S.

    1989-01-01

    The analysis performed on the Main Injector LOX Inlet Assembly located on the Space Shuttle Main Engine is summarized. An ANSYS finite element model of the inlet assemably was built and executed. Static stress analysis was also performed.

  17. Feasibility Study of SSTO Base Heating Simulation in Pulsed-Type Facilities

    NASA Technical Reports Server (NTRS)

    Park, Chung Sik; Sharma, Surendra; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    A laboratory simulation of the base heating environment of the proposed reusable Single-Stage-To-Orbit vehicle during its ascent flight was proposed. The rocket engine produces CO2 and H2, which are the main combustible components of the exhaust effluent. The burning of these species, known as afterburning, enhances the base region gas temperature as well as the base heating. To determine the heat flux on the SSTO vehicle, current simulation focuses on the thermochemistry of the afterburning, thermophysical properties of the base region gas, and ensuing radiation from the gas. By extrapolating from the Saturn flight data, the Damkohler number for the afterburning of SSTO vehicle is estimated to be of the order of 10. The limitations on the material strengths limit the laboratory simulation of the flight Damkohler number as well as other flow parameters. A plan is presented in impulse facilities using miniature rocket engines which generate the simulated rocket plume by electric ally-heating a H2/CO2 mixture.

  18. 2-D Air-Breathing Lightcraft Engine Experiments in Hypersonic Conditions

    NASA Astrophysics Data System (ADS)

    Salvador, Israel I.; Myrabo, Leik N.; Minucci, Marco A. S.; de Oliveira, Antonio C.; Toro, Paulo G. P.; Chanes, José B.; Rego, Israel S.

    2011-11-01

    Experiments were performed with a 2-D, repetitively-pulsed (RP) laser Lightcraft model in hypersonic flow conditions. The main objective was the feasibility analysis for impulse generation with repetitively-pulsed air-breathing laser Lightcraft engines at hypersonic speeds. The future application of interest for this basic research endeavor is the laser launch of pico-, nano-, and micro-satellites (i.e., 0.1-100 kg payloads) into Low-Earth-Orbit, at low-cost and on-demand. The laser propulsion experiments employed a Hypersonic Shock Tunnel integrated with twin gigawatt pulsed Lumonics 620-TEA CO2 lasers (˜ 1 μs pulses), to produce the required test conditions. This hypersonic campaign was carried out at nominal Mach numbers ranging from 6 to 10. Time-dependent surface pressure distributions were recorded together with Schlieren movies of the flow field structure resulting from laser energy deposition. Results indicated laser-induced pressure increases of 0.7-0.9 bar with laser pulse energies of ˜ 170 J, on off-shroud induced breakdown condition, and Mach number of 7.

  19. Hybrid and electric low-noise cars cause an increase in traffic accidents involving vulnerable road users in urban areas.

    PubMed

    Brand, Stephan; Petri, Maximilian; Haas, Philipp; Krettek, Christian; Haasper, Carl

    2013-01-01

    Due to resource scarcity, the number of low-noise and electric cars is expected to increase rapidly. The frequent use of these cars will lead to a significant reduction of traffic related noise and pollution. On the other hand, due to the adaption and conditioning of vulnerable road users the number of traffic accidents involving pedestrians and bicyclists is postulated to increase as well. Children, older people with reduced eyesight and the blind are especially reliant on a combination of acoustic and visual warning signals with approaching or accelerating vehicles. This is even more evident in urban areas where the engine sound is the dominating sound up to 30 kph (kilometres per hour). Above this, tyre-road interaction is the main cause of traffic noise. With the missing typical engine sound a new sound design is necessary to prevent traffic accidents in urban areas. Drivers should not be able to switch the sound generator off.

  20. Tripropellant engine study

    NASA Technical Reports Server (NTRS)

    Wheeler, D. B.

    1978-01-01

    Engine performance data, combustion gas thermodynamic properties, and turbine gas parameters were determined for various high power cycle engine configurations derived from the space shuttle main engine that will allow sequential burning of LOX/hydrocarbon and LOX/hydrogen fuels. Both stage combustion and gas generator pump power cycles were considered. Engine concepts were formulated for LOX/RP-1, LOX/CH4, and LOX/C3H8 propellants. Flowrates and operating conditions were established for this initial set of engine systems, and the adaptability of the major components of shuttle main engine was investigated.

  1. COBRA System Engineering Processes to Achieve SLI Strategic Goals

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2003-01-01

    The COBRA Prototype Main Engine Development Project was an endeavor conducted as a joint venture between Pratt & Whitney and Aerojet to conduct risk reduction in LOX/LH2 main engine technology for the NASA Space Launch Initiative (SLI). During the seventeen months of the project (April 2001 to September 2002), approximately seventy reviews were conducted, beginning with the Engine Systems Requirements Review (SRR) and ending with the Engine Systems Interim Design Review (IDR). This paper discusses some of the system engineering practices used to support the reviews and the overall engine development effort.

  2. Closeup view of the top of Space Shuttle Main Engine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the top of Space Shuttle Main Engine (SSME) 2057 mounted in a SSME Engine Handler in the Vertical Processing area of the SSME Processing Facility at Kennedy Space Center. The most prominent components in this view is the large Low-Pressure Oxidizer Turbopump (LPOTP) Discharge Duct wrapping itself around the right side of the engine assembly. The smaller tube to the left of LPOTP Discharge Duct is the High-Pressure Oxidizer Duct used to supply the turbine of the LPOTP. The other major feature in this view is the Low-Pressure Fuel Turbopump at the top of the engine assembly. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  3. Multiobjective Decision Analysis With Engineering and Business Applications

    NASA Astrophysics Data System (ADS)

    Wood, Eric

    The last 15 years have witnessed the development of a large number of multiobjective decision techniques. Applying these techniques to environmental, engineering, and business problems has become well accepted. Multiobjective Decision Analysis With Engineering and Business Applications attempts to cover the main multiobjective techniques both in their mathematical treatment and in their application to real-world problems.The book is divided into 12 chapters plus three appendices. The main portion of the book is represented by chapters 3-6, Where the various approaches are identified, classified, and reviewed. Chapter 3 covers methods for generating nondominated solutions; chapter 4, continuous methods with prior preference articulation; chapter 5, discrete methods with prior preference articulation; and chapter 6, methods of progressive articulation of preferences. In these four chapters, close to 20 techniques are discussed with over 20 illustrative examples. This is both a strength and a weakness; the breadth of techniques and examples provide comprehensive coverage, but it is in a style too mathematically compact for most readers. By my count, the presentation of the 20 techniques in chapters 3-6 covered 85 pages, an average of about 4.5 pages each; therefore, a sound basis in linear algebra and linear programing is required if the reader hopes to follow the material. Chapter 2, “Concepts in Multiobjective Analysis,” also assumes such a background.

  4. Experimental study on filtration and continuous regeneration of a particulate filter system for heavy-duty diesel engines.

    PubMed

    Tang, Tao; Zhang, Jun; Cao, Dongxiao; Shuai, Shijin; Zhao, Yanguang

    2014-12-01

    This study investigated the filtration and continuous regeneration of a particulate filter system on an engine test bench, consisting of a diesel oxidation catalyst (DOC) and a catalyzed diesel particulate filter (CDPF). Both the DOC and the CDPF led to a high conversion of NO to NO2 for continuous regeneration. The filtration efficiency on solid particle number (SPN) was close to 100%. The post-CDPF particles were mainly in accumulation mode. The downstream SPN was sensitively influenced by the variation of the soot loading. This phenomenon provides a method for determining the balance point temperature by measuring the trend of SPN concentration. Copyright © 2014. Published by Elsevier B.V.

  5. Neuromorphic sensory systems.

    PubMed

    Liu, Shih-Chii; Delbruck, Tobi

    2010-06-01

    Biology provides examples of efficient machines which greatly outperform conventional technology. Designers in neuromorphic engineering aim to construct electronic systems with the same efficient style of computation. This task requires a melding of novel engineering principles with knowledge gleaned from neuroscience. We discuss recent progress in realizing neuromorphic sensory systems which mimic the biological retina and cochlea, and subsequent sensor processing. The main trends are the increasing number of sensors and sensory systems that communicate through asynchronous digital signals analogous to neural spikes; the improved performance and usability of these sensors; and novel sensory processing methods which capitalize on the timing of spikes from these sensors. Experiments using these sensors can impact how we think the brain processes sensory information. 2010 Elsevier Ltd. All rights reserved.

  6. Performance Evaluation of Diesel Engine with Preheated Bio Diesel with Additives

    NASA Astrophysics Data System (ADS)

    Ram Vajja, Sai; Murali, R. B. V.

    2016-09-01

    This paper mainly reviews about the usage of preheated bio diesel added with 0.5% Etchant as an alternative fuel and evaluates its performance for various blends with different loads. Bio diesel is added with Etchant for rapid combustion as for the bio diesel, the cetane number is high that results in shorter delay of ignition and the mixture is preheated to raise its temperature to improve the combustion process. Analysis of the parameters required to define the combustion characteristics such as IP, BP, ηbth, ηm, ISFC, BSFC, IMEP, MFC, Exhaust Gas Temperature, Heat Release and heat balance is necessary as these values are significant to assess the performance of engine and its emissions of preheated bio diesel.

  7. Selection of a Prototype Engine Monitor for Coast Guard Main Diesel Propulsion

    DOT National Transportation Integrated Search

    1979-04-01

    A diesel engine monitor system has been synthesized from several parameter measurement subsystems which employ measurement techniques suitable for use on the main propulsion engines in U.S. Coast Cutters. The primary functions of the system are to mo...

  8. Design of Training Systems. Computerization of the Educational Technology Assessment Model (ETAM). Volume 2

    DTIC Science & Technology

    1977-05-01

    444 EN 2 31043 TEST UNIT INJECTORS AND/OR FUEL INJECTION NOZZLES 445 EN 2 31044 MAINTENANCE OF FUEL OIL INJECTORS 446 EN 2 31049 PREVENTION OF...OPERATIONAL MAINTENANCE OF DIESEL ENGINES OPERATE INTERNAL COMBUSTION ENGINES JACKING GEAR ON INTERNAL COMBUSTION ENGINES CARRYOUT TURNING OVER OF MAIN...ENGINES ALIGN LUBRICATING OIL SYSTEM USE OF STANDBY LUBRICATING OIL PUMPS PURGE DIESEL ENGINE FUEL INJECTION SYSTEM ENTRIES TO MAIN PROPULSION

  9. Comprehensive particle characterization of modern gasoline and diesel passenger cars at low ambient temperatures

    NASA Astrophysics Data System (ADS)

    Mathis, Urs; Mohr, Martin; Forss, Anna-Maria

    Particle measurements were performed in the exhaust of five light-duty vehicles (Euro-3) at +23, -7, and -20 °C ambient temperatures. The characterization included measurements of particle number, active surface area, number size distribution, and mass size distribution. We investigated two port-injection spark-ignition (PISI) vehicles, a direct-injection spark-ignition (DISI) vehicle, a compressed ignition (CI) vehicle with diesel particle filter (DPF), and a CI vehicle without DPF. To minimize sampling effects, particles were directly sampled from the tailpipe with a novel porous tube diluter at controlled sampling parameters. The diluted exhaust was split into two branches to measure either all or only non-volatile particles. Effect of ambient temperature was investigated on particle emission for cold and warmed-up engine. For the gasoline vehicles and the CI vehicle with DPF, the main portion of particle emission was found in the first minutes of the driving cycle at cold engine start. The particle emission of the CI vehicle without DPF was hardly affected by cold engine start. For the PISI vehicles, particle number emissions were superproportionally increased in the diameter size range from 0.1 to 0.3 μm during cold start at low ambient temperature. Based on the particle mass size distribution, the DPF removed smaller particles ( dp<0.5μm) more efficiently than larger particles ( dp>0.5μm). No significant effect of ambient temperature was observed when the engine was warmed up. Peak emission of volatile nanoparticles only took place at specific conditions and was poorly repeatable. Nucleation of particles was predominately observed during or after strong acceleration at high speed and during regeneration of the DPF.

  10. Space Shuttle Project

    NASA Image and Video Library

    1977-08-01

    A workman reams holes to the proper size and aligment in the Space Shuttle Main Engine's main injector body, through which propellants will pass through on their way into the engine's combustion chamber. Rockwell International's Rocketdyne Division plant produced the engines under contract to the Marshall Space Flight Center.

  11. Inspection of the advanced engineered lumber railroad ties at the New Meadows Bridge.

    DOT National Transportation Integrated Search

    2009-01-01

    In 2003, Engineered Materials of Maine (EMM, Bangor, Maine) fabricated forty-eight : (48) 8-inch wide, 10-inch deep, 12-foot long Advanced Engineered Lumber (AEL) mixed : hardwood glue-laminated (glulam) railroad bridge ties. Over a two day period in...

  12. Space Shuttle Main Engine: Thirty Years of Innovation

    NASA Technical Reports Server (NTRS)

    Jue, F. H.; Hopson, George (Technical Monitor)

    2002-01-01

    The Space Shuttle Main Engine (SSME) is the first reusable, liquid booster engine designed for human space flight. This paper chronicles the 30-year history and achievements of the SSME from authority to proceed up to the latest flight configuration - the Block 2 SSME.

  13. Closeup view of the bottom area of Space Shuttle Main ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the bottom area of Space Shuttle Main Engine (SSME) 2052 engine assembly mounted in a SSME Engine Handler in the Horizontal Processing area of the SSME Processing Facility at Kennedy Space Center. The most prominent features in this view are the Low-Pressure Oxidizer Discharge Duct toward the bottom of the assembly, the SSME Engine Controller and the Main Fuel Valve Hydraulic Actuator are in the approximate center of the assembly in this view, the Low-Pressure Fuel Turbopump (LPFTP), the LPFTP Discharge Duct are to the left on the assembly in this view and the High-Pressure Fuel Turbopump is located toward the top of the engine assembly in this view. The ring of tabs in the right side of the image, at the approximate location of the Nozzle and the Coolant Outlet Manifold interface is the Heat Shield Support Ring. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  14. General view of the Space Shuttle Main Engine (SSME) assembly ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the Space Shuttle Main Engine (SSME) assembly with the expansion nozzle removed and resting on a cushioned mat on the floor of the SSME Processing Facility. The most prominent features in this view are the Low-Pressure Fuel Turbopump (LPFTP) on the upper left of the engine assembly, the LPFTP Discharge Duct looping around the assembly, the Gimbal Bearing on the top center of the assembly, the Electrical Interface Panel sits just below the Gimbal Bearing and the Low-Pressure Oxidizer Turbopump is mounted on the top right of the engine assembly in this view. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  15. Space shuttle main engine anomaly data and inductive knowledge based systems: Automated corporate expertise

    NASA Technical Reports Server (NTRS)

    Modesitt, Kenneth L.

    1987-01-01

    Progress is reported on the development of SCOTTY, an expert knowledge-based system to automate the analysis procedure following test firings of the Space Shuttle Main Engine (SSME). The integration of a large-scale relational data base system, a computer graphics interface for experts and end-user engineers, potential extension of the system to flight engines, application of the system for training of newly-hired engineers, technology transfer to other engines, and the essential qualities of good software engineering practices for building expert knowledge-based systems are among the topics discussed.

  16. Preface - BraMat 2017

    NASA Astrophysics Data System (ADS)

    Munteanu, Daniel

    2018-04-01

    The main goal of the BraMat 2017 Conference was, as for the previous editions, to stimulate an international exchange of information in the field of materials science and engineering and to establish future research directions. The main topics of this edition included: ​Metallic materials (Section I), Biomaterials (Section II), Ceramics, polymers and composite materials (Section III), Surface engineering (Section IV), Nanomaterials (Section V), Welding engineering (Section VI), Safety engineering (Section VII), and Magnesium science and engineering (Section VIII).

  17. A Basic Comparison of the Space Shuttle Main Engine and the J-2X Engine

    NASA Technical Reports Server (NTRS)

    Ayer, Adam

    2007-01-01

    With the introduction of the new manned space effort through the Constellation Program, there is an interest to have a basic comparison of the current Space Shuttle Main Engine (SSME) to the J-2X engine used for the second stage of both the Ares I and Ares V rockets. This paper seeks to compare size, weight and thrust capabilities while drawing simple conclusions on differences between the two engines.

  18. 77 FR 42724 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... Nonroad Spark-Ignited Engines, New Nonroad Compression-Ignited Engines, and New On-Road Heavy Duty Engines... Compression-ignited Engines, and New On-road Heavy Duty Engines (Renewal). ICR numbers: EPA ICR No. 1852.05... engines, new nonroad compression-ignited engines, and new on- road heavy duty engines. Estimated Number of...

  19. Full Hybrid: Passing

    Science.gov Websites

    Main stage: See through car with battery, engine, generator, power split device, and electric motor the power split device to the front wheels. Main stage: See through car with battery, engine : See through car with battery, engine, generator, power split device, and electric motor visible while

  20. RADON REMOVAL BY POINT-OF-ENTRY GRANULAR ACTIVATED CARBON SYSTEMS: DESIGN PERFORMANCE AND COST

    EPA Science Inventory

    The report summarizes previous research conducted by Lowry Engineering, Inc. (LEI), the Maine Department of Human Services, Division of Health Engineering, and the University of Maine, Department of Civil Engineering, on the removal of Rn from drinking water supplies using granul...

  1. Thousands gather to watch a Space Shuttle Main Engine Test

    NASA Image and Video Library

    2001-04-21

    Approximately 13,000 people fill the grounds at NASA's John C. Stennis Space Center for the first-ever evening public engine test of a Space Shuttle Main Engine. The test marked Stennis Space Center's 20th anniversary celebration of the first Space Shuttle mission.

  2. Establishment of first engineering specifications for environmental modification to eliminate schistosomiasis epidemic foci in urban areas.

    PubMed

    Kong, Shibo; Tan, Xiaodong; Deng, Zhiqing; Xie, Yaofei; Yang, Fen; Zheng, Zengwang

    2017-08-01

    Snail control is a key link in schistosomiasis control, but no unified methods for eliminating snails have been produced to date. This study was conducted to explore an engineering method for eliminating Oncomelania hupensis applicable to urban areas. The engineering specifications were established using the Delphi method. An engineering project based on these specifications was conducted in Hankou marshland to eliminate snails, including the transformation of the beach surface and ditches. Molluscicide was used as a supplement. The snail control effect was evaluated by field investigation. The engineering results fulfilled the requirements of the design. The snail density decreased to 0/0.11m 2 , and the snail area dropped to 0m 2 after the project. There was a statistically significant difference in the number of frames with snails before and after the project (P<0.05). Snails were completely eliminated through one year of continuous monitoring, and no new snails were found after a flood disaster. This study demonstrates that engineering specifications for environmental modification were successfully established. Environmental modification, mainly through beach and ditch remediation, can completely change the environment of Oncomelania breeding. This method of environmental modification combined with mollusciciding was highly effective at eliminating snails. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Space Shuttle main engine product improvement

    NASA Technical Reports Server (NTRS)

    Lucci, A. D.; Klatt, F. P.

    1985-01-01

    The current design of the Space Shuttle Main Engine has passed 11 certification cycles, amassed approximately a quarter million seconds of engine test time in 1200 tests and successfully launched the Space Shuttle 17 times of 51 engine launches through May 1985. Building on this extensive background, two development programs are underway at Rocketdyne to improve the flow of hot gas through the powerhead and evaluate the changes to increase the performance margins in the engine. These two programs, called Phase II+ and Technology Test Bed Precursor program are described. Phase II+ develops a two-tube hot-gas manifold that improves the component environment. The Precursor program will evaluate a larger throat main combustion chamber, conduct combustion stability testing of a baffleless main injector, fabricate an experimental weld-free heat exchanger tube, fabricate and test a high pressure oxidizer turbopump with an improved inlet, and develop and test methods for reducing temperature transients at start and shutdown.

  4. Natural Origin Materials for Osteochondral Tissue Engineering.

    PubMed

    Bonani, Walter; Singhatanadgige, Weerasak; Pornanong, Aramwit; Motta, Antonella

    2018-01-01

    Materials selection is a critical aspect for the production of scaffolds for osteochondral tissue engineering. Synthetic materials are the result of man-made operations and have been investigated for a variety of tissue engineering applications. Instead, the products of physiological processes and the metabolic activity of living organisms are identified as natural materials. Over the recent decades, a number of natural materials, namely, biopolymers and bioceramics, have been proposed as the main constituent of osteochondral scaffolds, but also as cell carriers and signaling molecules. Overall, natural materials have been investigated both in the bone and in the cartilage compartment, sometimes alone, but often in combination with other biopolymers or synthetic materials. Biopolymers and bioceramics possess unique advantages over their synthetic counterparts due similarity with natural extracellular matrix, the presence of cell recognition sites and tunable chemistry. However, the characteristics of natural origin materials can vary considerably depending on the specific source and extraction process. A deeper understanding of the relationship between material variability and biological activity and the definition of standardized manufacturing procedures will be crucial for the future of natural materials in tissue engineering.

  5. Aft Engine shop worker removes a heat shield on Columbia's main engines

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - Doug Buford, with the Aft Engine shop, works at removing a heat shield on Columbia, in the Orbiter Processing Facility. After small cracks were discovered on the LH2 Main Propulsion System (MPS) flow liners in two other orbiters, program managers decided to move forward with inspections on Columbia before clearing it for flight on STS-107. After removal of the heat shields, the three main engines will be removed. Inspections of the flow liners will follow. The July 19 launch of Columbia on STS-107 has been delayed a few weeks

  6. Aft Engine shop worker removes a heat shield on Columbia's main engines

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- Doug Buford, with the Aft Engine shop, works at removing a heat shield on Columbia, in the Orbiter Processing Facility. After small cracks were discovered on the LH2 Main Propulsion System (MPS) flow liners in two other orbiters, program managers decided to move forward with inspections on Columbia before clearing it for flight on STS-107. After removal of the heat shields, the three main engines will be removed. Inspections of the flow liners will follow. The July 19 launch of Columbia on STS-107 has been delayed a few weeks

  7. Labour perspectives of engineering degrees in the European Higher Education Area (EHEA): a case of study in the University of Cordoba (Spain)

    NASA Astrophysics Data System (ADS)

    Taguas, E. V.; Redel, M. D.; Pérez, R.; Peña, A.

    2009-04-01

    The Bologna process is reaching its final stages and is causing controversy among students. The adaptation of European universities to the European Higher Education Area (EHEA) entails not only the modification of curricular programmes and the nomenclature and duration of degrees, but also the incorporation of new teaching strategies aimed at ensuring that students acquire transversal skills and aptitudes and at increasing student participation in the teaching-learning process. A number of surveys have been carried out during the last few courses among students doing degrees in engineering (Industrial Engineering, Agronomy Engineering and Forestry Engineering). These surveys include questions on their knowledge of Bologna process, its advantages and drawbacks, their opinion about optional masters or doctorate degrees, what perspectives their degrees have on the labour market and suggestions for improvement. Although the different degrees showed notable differences, the content of EHEA is well-known by less than 30% of students, while 40% of them state they know about their perspectives on the labour market. The main advantages of EHEA were related to the improvement of practical knowledge in the subjects, the recognition of degrees in Europe and wider working opportunities. The main drawbacks pointed out were worse and shorter training periods, higher costs and fiercer competition between different degrees. In addition, they suggested that the new degrees are better adjusted to the demands of the labour market. 60% and 40% of them, respectively, approved of Masters degrees and PhDs. These features should be taken into account to organize and improve the contents of the degrees as well as to involve the students in the future of University education.

  8. View forward in starboard engine room, compartment C1. Note starboard ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View forward in starboard engine room, compartment C-1. Note starboard engine thrust bearing in open housing at bottom center of photograph; note main circulation pump, main steam chest at top of photo. (065) - USS Olympia, Penn's Landing, 211 South Columbus Boulevard, Philadelphia, Philadelphia County, PA

  9. 22. Engine room, as seen from starboard side, forward corner. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Engine room, as seen from starboard side, forward corner. In left foreground is centrifugal water pump driven by a two-cylinder steam reciprocating engine to supply water to trim tanks. Center of view shows hot well for main engine, and at right is bottom of cylinder, condenser, and valve chest of main (walking beam) engine. X-braces in left side of image are stiffening trusses for the hull. - Steamboat TICONDEROGA, Shelburne Museum Route 7, Shelburne, Chittenden County, VT

  10. Genome engineering and gene expression control for bacterial strain development.

    PubMed

    Song, Chan Woo; Lee, Joungmin; Lee, Sang Yup

    2015-01-01

    In recent years, a number of techniques and tools have been developed for genome engineering and gene expression control to achieve desired phenotypes of various bacteria. Here we review and discuss the recent advances in bacterial genome manipulation and gene expression control techniques, and their actual uses with accompanying examples. Genome engineering has been commonly performed based on homologous recombination. During such genome manipulation, the counterselection systems employing SacB or nucleases have mainly been used for the efficient selection of desired engineered strains. The recombineering technology enables simple and more rapid manipulation of the bacterial genome. The group II intron-mediated genome engineering technology is another option for some bacteria that are difficult to be engineered by homologous recombination. Due to the increasing demands on high-throughput screening of bacterial strains having the desired phenotypes, several multiplex genome engineering techniques have recently been developed and validated in some bacteria. Another approach to achieve desired bacterial phenotypes is the repression of target gene expression without the modification of genome sequences. This can be performed by expressing antisense RNA, small regulatory RNA, or CRISPR RNA to repress target gene expression at the transcriptional or translational level. All of these techniques allow efficient and rapid development and screening of bacterial strains having desired phenotypes, and more advanced techniques are expected to be seen. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Engineering Irisin for Understanding Its Benefits to Obesity

    DTIC Science & Technology

    2016-08-01

    1 AWARD NUMBER: W81XWH-15-1-0196 TITLE: Engineering Irisin for Understanding Its Benefits to Obesity PRINCIPAL INVESTIGATOR: Yousong Ding...Engineering Irisin for Understanding Its Benefits to Obesity 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0196 5c. PROGRAM ELEMENT NUMBER 6...increasing energy expenditure. The overall objective of the proposed project is to engineer irisin for uncovering its signaling in obesity , with

  12. Studies and analyses of the space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Tischer, Alan E.; Glover, R. C.

    1987-01-01

    The primary objectives were to: evaluate ways to maximize the information yield from the current Space Shuttle Main Engine (SSME) condition monitoring sensors, identify additional sensors or monitoring capabilities which would significantly improve SSME data, and provide continuing support of the Main Engine Cost/Operations (MECO) model. In the area of SSME condition monitoring, the principal tasks were a review of selected SSME failure data, a general survey of condition monitoring, and an evaluation of the current engine monitoring system. A computerized data base was developed to assist in modeling engine failure information propagations. Each of the above items is discussed in detail. Also included is a brief discussion of the activities conducted in support of the MECO model.

  13. CARS temperature measurements in the fuel preburner of the Space Shuttle main engine: A feasibility study

    NASA Technical Reports Server (NTRS)

    Beiting, E. J.; Luthe, J. C.

    1983-01-01

    This report discusses the feasibility of making temperature profile measurements in the fuel preburner of the main engine of the space shuttle (SSME) using coherent anti-Stokes Raman spectroscopy (CARS). The principal thrust of the work is to identify problems associated with making CARS measurements in high temperature gas phase hydrogen at very high pressures (approx 400 atmospheres). To this end a theoretical study was made of the characteristics of the CAR spectra of H2 as a function of temperature and pressure and the accuracy with which temperatures can be extracted from this spectra. In addition the experimental problems associated with carrying out these measurements on a SSME at NSTL were identified. A conceptual design of a CARS system suitable for this work is included. Many of the results of the calculations made in this report are plotted as a function of temperature. In the course of presenting these results, it was necessary to decide whether the number of density or the pressure should be treated as a fixed parameter.

  14. RB-ARD: A proof of concept rule-based abort

    NASA Technical Reports Server (NTRS)

    Smith, Richard; Marinuzzi, John

    1987-01-01

    The Abort Region Determinator (ARD) is a console program in the space shuttle mission control center. During shuttle ascent, the Flight Dynamics Officer (FDO) uses the ARD to determine the possible abort modes and make abort calls for the crew. The goal of the Rule-based Abort region Determinator (RB/ARD) project was to test the concept of providing an onboard ARD for the shuttle or an automated ARD for the mission control center (MCC). A proof of concept rule-based system was developed on a LMI Lambda computer using PICON, a knowdedge-based system shell. Knowdedge derived from documented flight rules and ARD operation procedures was coded in PICON rules. These rules, in conjunction with modules of conventional code, enable the RB-ARD to carry out key parts of the ARD task. Current capabilities of the RB-ARD include: continuous updating of the available abort mode, recognition of a limited number of main engine faults and recommendation of safing actions. Safing actions recommended by the RB-ARD concern the Space Shuttle Main Engine (SSME) limit shutdown system and powerdown of the SSME Ac buses.

  15. XanoMatrix surfaces as scaffolds for mesenchymal stem cell culture and growth

    PubMed Central

    Bhardwaj, Garima; Webster, Thomas J

    2016-01-01

    Stem cells are being widely investigated for a wide variety of applications in tissue engineering due to their ability to differentiate into a number of cells such as neurons, osteoblasts, and fibroblasts. This ability of stem cells to differentiate into different types of cells is greatly based on mechanical and chemical cues received from their three-dimensional environments. All organs are formed by a number of cells linked together via an extracellular matrix (ECM). The ECM is a complex network of proteins and carbohydrates, which occupies intercellular spaces and regulates cellular activity by controlling cell adhesion, migration, proliferation, and differentiation. The ECM is composed of two main types of macromolecules, namely, polysaccharide glycosaminoglycans, which are covalently attached to proteins in the form of proteoglycans and fibrous proteins belonging to two functional groups, structural (collagen and elastin) and adhesive (fibronectin, laminin, vitronectin, etc). Tissue engineering is a multidisciplinary field that aims to develop biomimetic scaffolds that emulate properties of the ECM to help repair or regenerate diseased or damaged tissue. This study introduces one of these matrices, XanoMatrix, as an optimal scaffold for tissue engineering applications, in particular, for stem cell research, based on its composition, nanofibrous structure, and porosity. Results of this study suggest that XanoMatrix scaffolds are promising for stem cell tissue engineering applications and as improved cell culture inserts for studying stem cell functions (compared to traditional Corning and Falcon cell culture plates) and, thus, should be further studied. PMID:27354795

  16. The State of Software for Evolutionary Biology.

    PubMed

    Darriba, Diego; Flouri, Tomáš; Stamatakis, Alexandros

    2018-05-01

    With Next Generation Sequencing data being routinely used, evolutionary biology is transforming into a computational science. Thus, researchers have to rely on a growing number of increasingly complex software. All widely used core tools in the field have grown considerably, in terms of the number of features as well as lines of code and consequently, also with respect to software complexity. A topic that has received little attention is the software engineering quality of widely used core analysis tools. Software developers appear to rarely assess the quality of their code, and this can have potential negative consequences for end-users. To this end, we assessed the code quality of 16 highly cited and compute-intensive tools mainly written in C/C++ (e.g., MrBayes, MAFFT, SweepFinder, etc.) and JAVA (BEAST) from the broader area of evolutionary biology that are being routinely used in current data analysis pipelines. Because, the software engineering quality of the tools we analyzed is rather unsatisfying, we provide a list of best practices for improving the quality of existing tools and list techniques that can be deployed for developing reliable, high quality scientific software from scratch. Finally, we also discuss journal as well as science policy and, more importantly, funding issues that need to be addressed for improving software engineering quality as well as ensuring support for developing new and maintaining existing software. Our intention is to raise the awareness of the community regarding software engineering quality issues and to emphasize the substantial lack of funding for scientific software development.

  17. Accurate mobile malware detection and classification in the cloud.

    PubMed

    Wang, Xiaolei; Yang, Yuexiang; Zeng, Yingzhi

    2015-01-01

    As the dominator of the Smartphone operating system market, consequently android has attracted the attention of s malware authors and researcher alike. The number of types of android malware is increasing rapidly regardless of the considerable number of proposed malware analysis systems. In this paper, by taking advantages of low false-positive rate of misuse detection and the ability of anomaly detection to detect zero-day malware, we propose a novel hybrid detection system based on a new open-source framework CuckooDroid, which enables the use of Cuckoo Sandbox's features to analyze Android malware through dynamic and static analysis. Our proposed system mainly consists of two parts: anomaly detection engine performing abnormal apps detection through dynamic analysis; signature detection engine performing known malware detection and classification with the combination of static and dynamic analysis. We evaluate our system using 5560 malware samples and 6000 benign samples. Experiments show that our anomaly detection engine with dynamic analysis is capable of detecting zero-day malware with a low false negative rate (1.16 %) and acceptable false positive rate (1.30 %); it is worth noting that our signature detection engine with hybrid analysis can accurately classify malware samples with an average positive rate 98.94 %. Considering the intensive computing resources required by the static and dynamic analysis, our proposed detection system should be deployed off-device, such as in the Cloud. The app store markets and the ordinary users can access our detection system for malware detection through cloud service.

  18. PREFACE: 21th International Conference for Students and Young Scientists: Modern Technique and Technologies (MTT'2015)

    NASA Astrophysics Data System (ADS)

    2015-10-01

    Involving young researchers in the scientific process, and allowing them to gain scientific experience, are important issues for scientific development. The International Conference for Students and Young Scientists ''Modern Technique and Technologies'' is one of a number of scientific events, held at National Research Tomsk Polytechnic University aimed at training and forming the scientific elite. During previous years the conference established itself as a serious scientific event at an international level, attracting members which annually number about 400 students and young scientists from Russia and near and far abroad. An important indicator of this scientific event is the large number of scientific areas covered, such as power engineering, heat power engineering, electronic devices for monitoring and diagnostics, instrumentation, materials and technologies of new generations, methods of research and diagnostics of materials, automatic control and system engineering, physical methods science and engineering, design and artistic aspects of engineering, social and humanitarian aspects of engineering. The main issues, which are discussed at the conference by young researchers, are connected with analysis of contemporary problems, application of new techniques and technologies, and consideration of their relationship. Over the years, the conference committee has gained a lot of experience in organizing scientific meetings. There are all the necessary conditions: the staff of organizers includes employees of Tomsk Polytechnic University; the auditoriums are equipped with modern demonstration and office equipment; leading scientists are TPU professors; the status of the Tomsk Polytechnic University as a leading research university in Russia also plays an important role. All this allows collaboration between leading scientists from all around the world, who are annually invited to give lectures at the conference. The editorial board expresses gratitude to the Administration of Tomsk Polytechnic University (TPU Rector, Professor P.S. Chubik and Vice Rector for Research and Innovation, Professor A.N. Dyachenko) for financial support of the conference. Also, we heartily thank both chairmen of the conference sections and the organizing committee's members for the great, effective, creative work in organizing and developing the conference as well as a significant contribution to the safeguarding and replenishment of the intellectual potential of Russia.

  19. EOD and Engineers Close the Gap

    DTIC Science & Technology

    2005-03-01

    Engineers ’ Close the Gap ’ 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT...action to accomplish missions effectively in the COE. However, tomorrow’s construct will not only “ close the gap ” between EOD and engineers, it will close

  20. Seismic Stability Evaluation of Ririe Dam and Reservoir Project. Report 2. Stability Calculations, Analysis, and Evaluations. Volume 1. Main Text

    DTIC Science & Technology

    1991-09-01

    Army (i #Awleable) Engineer istrict. Walls Welli NPW-EN- GI _____________________ Bc DRSSW4~Sse.adZPa 10 SOURCE OF FUNDING NUMBERS Bldg. 602, City...cracks induced by ground motions. Z. Overtopping of dam due to seiches in reservoir. h. Overtopping of dam due to slides or rockfalls into reservoir. j...overtopping due to slides or rockfalls is not likely. Three potential modes of failure remain from the original list: (c) slope failures induced by

  1. Santa Ana River Main Stem Including Santiago Creek and Oak Street Drain. Phase I GDM (General Design Memorandum). Appendix G. Recreation.

    DTIC Science & Technology

    1980-09-01

    NUMBER(&) US ARMY CORPS OF ENGINEERS LOS ANGELES DISTRICT P.O. BOZ 2711, LOS ANGELES, CA 90053 s. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ...control purposes, and acquisitions or improvments required outside these limits will be the sole responsibility of the local entity. 2 PROJECTA ...natural heritage preserve area, with another $20 million dollars programmed over the next 5 years. More than one-half of the area is in slopes

  2. Development of a Predictive Model to Assess the Effects of Extended Season Navigation on Great Lakes Connecting Waters. User’s Manual. Prediction of Vessel Impacts in a Confined Waterway

    DTIC Science & Technology

    1986-10-17

    INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION U. S. Army (If applicable) Corps of Engineers NCE-IA-84-0127 Bc. ADDRESS (City, State, and ZIP Code) 10 SOURCE...Technological University CA Houghton, Michigan October 17, 1986 I I I I TABLE OF CONTENTSI Introduction ......................................... . Main...4 Option 2: Changes in Existing Cross-Section Data File . . .. 10 Option 3: Print Cross-Section Data ... .............. ... 15

  3. Industrial applications of enzyme biocatalysis: Current status and future aspects.

    PubMed

    Choi, Jung-Min; Han, Sang-Soo; Kim, Hak-Sung

    2015-11-15

    Enzymes are the most proficient catalysts, offering much more competitive processes compared to chemical catalysts. The number of industrial applications for enzymes has exploded in recent years, mainly owing to advances in protein engineering technology and environmental and economic necessities. Herein, we review recent progress in enzyme biocatalysis, and discuss the trends and strategies that are leading to broader industrial enzyme applications. The challenges and opportunities in developing biocatalytic processes are also discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Engine Tests Using High-Sulfur Diesel Fuel

    DTIC Science & Technology

    1980-09-01

    0.5 wt% sulfur because "too high a sulfur content results in excessive cylinder wear due to acid build-up in the lubricating oil" (Ref 1). Previous...that the addition of 0.3 vol% of an organo-zinc complex fuel additive (zinc naphthenate ) to high-sulfur diesel fuel was an effective means of...disulfide. Addition of 0.3 vol% zinc naphthenate to high- sulfur fuel increased the fuel ash to 0.035 wt% while the cetane number re- mained unchanged

  5. Air Force Civil Engineer, Volume 10, Number 1, Spring 2002

    DTIC Science & Technology

    2002-01-01

    gone into the 823rd Expeditionary RED HORSE Squadron�s military construction (MILCON) funded ramp project at Al Udeid Air Base, Qatar , and the main...AE W P ub lic A ff ai rs an Air Base RED HORSE builds MILCON project in Qatar SSgt Chuck Risinger, 823rd RHS, operates a slip form paver March 24...and were not designed to limit or contain the migration of lead into the environ- ment and sub-surface groundwater aquifers . An estimated 2,000

  6. Configuration evaluation and criteria plan. Volume 1: System trades study and design methodology plan (preliminary). Space Transportation Main Engine (STME) configuration study

    NASA Technical Reports Server (NTRS)

    Bair, E. K.

    1986-01-01

    The System Trades Study and Design Methodology Plan is used to conduct trade studies to define the combination of Space Shuttle Main Engine features that will optimize candidate engine configurations. This is accomplished by using vehicle sensitivities and engine parametric data to establish engine chamber pressure and area ratio design points for candidate engine configurations. Engineering analyses are to be conducted to refine and optimize the candidate configurations at their design points. The optimized engine data and characteristics are then evaluated and compared against other candidates being considered. The Evaluation Criteria Plan is then used to compare and rank the optimized engine configurations on the basis of cost.

  7. Space Shuttle Main Engine Liquid Air Insulation Redesign Lessons Learned

    NASA Technical Reports Server (NTRS)

    Gaddy, Darrell; Carroll, Paul; Head, Kenneth; Fasheh, John; Stuart, Jessica

    2010-01-01

    The Space Shuttle Main Engine Liquid Air Insulation redesign was required to prevent the reoccurance of the STS-111 High Pressure Speed Sensor In-Flight Anomaly. The STS-111 In-Flight Anomaly Failure Investigation Team's initial redesign of the High Pressure Fuel Turbopump Pump End Ball Bearing Liquid Air Insulation failed the certification test by producing Liquid Air. The certification test failure indicated not only the High Pressure Fuel Turbopump Liquid Air Insulation, but all other Space Shuttle Main Engine Liquid Air Insulation. This paper will document the original Space Shuttle Main Engine Liquid Air STS-111 In-Flight Anomaly investigation, the heritage Space Shuttle Main Engine Insulation certification testing faults, the techniques and instrumentation used to accurately test the Liquid Air Insulation systems on the Stennis Space Center SSME test stand, the analysis techniques used to identify the Liquid Air Insulation problem areas and the analytical verification of the redesign before entering certification testing, Trade study down selected to three potential design solutions, the results of the development testing which down selected the final Liquid Air Redesign are also documented within this paper.

  8. Software engineering and automatic continuous verification of scientific software

    NASA Astrophysics Data System (ADS)

    Piggott, M. D.; Hill, J.; Farrell, P. E.; Kramer, S. C.; Wilson, C. R.; Ham, D.; Gorman, G. J.; Bond, T.

    2011-12-01

    Software engineering of scientific code is challenging for a number of reasons including pressure to publish and a lack of awareness of the pitfalls of software engineering by scientists. The Applied Modelling and Computation Group at Imperial College is a diverse group of researchers that employ best practice software engineering methods whilst developing open source scientific software. Our main code is Fluidity - a multi-purpose computational fluid dynamics (CFD) code that can be used for a wide range of scientific applications from earth-scale mantle convection, through basin-scale ocean dynamics, to laboratory-scale classic CFD problems, and is coupled to a number of other codes including nuclear radiation and solid modelling. Our software development infrastructure consists of a number of free tools that could be employed by any group that develops scientific code and has been developed over a number of years with many lessons learnt. A single code base is developed by over 30 people for which we use bazaar for revision control, making good use of the strong branching and merging capabilities. Using features of Canonical's Launchpad platform, such as code review, blueprints for designing features and bug reporting gives the group, partners and other Fluidity uers an easy-to-use platform to collaborate and allows the induction of new members of the group into an environment where software development forms a central part of their work. The code repositoriy are coupled to an automated test and verification system which performs over 20,000 tests, including unit tests, short regression tests, code verification and large parallel tests. Included in these tests are build tests on HPC systems, including local and UK National HPC services. The testing of code in this manner leads to a continuous verification process; not a discrete event performed once development has ceased. Much of the code verification is done via the "gold standard" of comparisons to analytical solutions via the method of manufactured solutions. By developing and verifying code in tandem we avoid a number of pitfalls in scientific software development and advocate similar procedures for other scientific code applications.

  9. 12. VIEW AFT IN MAIN HOLD OF THE EVELINA M. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW AFT IN MAIN HOLD OF THE EVELINA M. GOULART. OPENING IN THE BULKHEAD WAS CUT TO IMPROVE ACCESS TO ENGINE ROOM SO THAT ENGINE COULD BE REMOVED. - Auxiliary Fishing Schooner "Evelina M. Goulart", Essex Shipbuilding Museum, 66 Main Street, Essex, Essex County, MA

  10. 76 FR 7191 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... Internal Combustion Engines (Renewal) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... Combustion Engines (Renewal) ICR Numbers: EPA ICR Number 2227.03, OMB Control Number 2060-0610. ICR Status... internal combustion engines. Estimated Number of Respondents: 17,052. Frequency of Response: Initially and...

  11. NASA Engineers Test Combustion Chamber to Advance 3-D Printed Rocket Engine Design

    NASA Image and Video Library

    2016-12-08

    A series of test firings like this one in late August brought a group of engineers at NASA's Marshall Space Flight Center in Huntsville, Alabama, a big step closer to their goal of a 100-percent 3-D printed rocket engine, said Andrew Hanks, test lead for the additively manufactured demonstration engine project. The main combustion chamber, fuel turbopump, fuel injector, valves and other components used in the tests were of the team's new design, and all major engine components except the main combustion chamber were 3-D printed. (NASA/MSFC)

  12. Shuttle Propulsion System Major Events and the Final 22 Flights

    NASA Technical Reports Server (NTRS)

    Owen, James W.

    2011-01-01

    Numerous lessons have been documented from the Space Shuttle Propulsion elements. Major events include loss of the Solid Rocket Boosters (SRB's) on STS-4 and shutdown of a Space Shuttle Main Engine (SSME) during ascent on STS-51F. On STS-112 only half the pyrotechnics fired during release of the vehicle from the launch pad, a testament for redundancy. STS-91 exhibited freezing of a main combustion chamber pressure measurement and on STS-93 nozzle tube ruptures necessitated a low liquid level oxygen cut off of the main engines. A number of on pad aborts were experienced during the early program resulting in delays. And the two accidents, STS-51L and STS-107, had unique heritage in history from early program decisions and vehicle configuration. Following STS-51L significant resources were invested in developing fundamental physical understanding of solid rocket motor environments and material system behavior. And following STS-107, the risk of ascent debris was better characterized and controlled. Situational awareness during all mission phases improved, and the management team instituted effective risk assessment practices. The last 22 flights of the Space Shuttle, following the Columbia accident, were characterized by remarkable improvement in safety and reliability. Numerous problems were solved in addition to reduction of the ascent debris hazard. The Shuttle system, though not as operable as envisioned in the 1970's, successfully assembled the International Space Station (ISS). By the end of the program, the remarkable Space Shuttle Propulsion system achieved very high performance, was largely reusable, exhibited high reliability, and was a heavy lift earth to orbit propulsion system. During the program a number of project management and engineering processes were implemented and improved. Technical performance, schedule accountability, cost control, and risk management were effectively managed and implemented. Award fee contracting was implemented to provide performance incentives. The Certification of Flight Readiness and Mission Management processes became very effective. A key to the success of the propulsion element projects was related to relationships between the MSFC project office and support organizations with their counterpart contractor organizations. The teams worked diligently to understand and satisfy requirements and achieve mission success.

  13. Primary School Students' Views about Science, Technology and Engineering

    ERIC Educational Resources Information Center

    Pekmez, Esin

    2018-01-01

    Some of the main goals of science education are to increase students' knowledge about the technology and engineering design process, and to train students as scientifically and technologically literate individuals. The main purpose of this study is to find out primary students' views about science, technology and engineering. For this aim and in…

  14. 46 CFR 11.901 - General provisions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... propulsion machinery of 3,000 kW [4,000 hp] of propulsion power or more. (v) Chief engineer officer of a... propulsion power. (vi) Second engineer officer of a seagoing vessel driven by main propulsion machinery of...) Chief engineer officer of a seagoing vessel driven by main propulsion machinery of 3,000 kW [4,000 hp...

  15. 46 CFR 11.901 - General provisions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... propulsion machinery of 3,000 kW [4,000 hp] of propulsion power or more. (v) Chief engineer officer of a... propulsion power. (vi) Second engineer officer of a seagoing vessel driven by main propulsion machinery of...) Chief engineer officer of a seagoing vessel driven by main propulsion machinery of 3,000 kW [4,000 hp...

  16. 46 CFR 11.901 - General provisions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... propulsion machinery of 3,000 kW [4,000 hp] of propulsion power or more. (v) Chief engineer officer of a... propulsion power. (vi) Second engineer officer of a seagoing vessel driven by main propulsion machinery of...) Chief engineer officer of a seagoing vessel driven by main propulsion machinery of 3,000 kW [4,000 hp...

  17. 40 CFR 91.803 - Manufacturer in-use testing program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES In-Use Testing and Recall... failing engine, two more engines shall be tested until the total number of engines equals ten (10). (2... the total number of engines equals ten (10). (3) If an engine family was certified using carry over...

  18. 76 FR 68636 - Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ... Airworthiness Directives; Thielert Aircraft Engines GmbH (TAE) Reciprocating Engines AGENCY: Federal Aviation... airworthiness directive (AD) for Thielert Aircraft Engines GmbH (TAE) Models TAE 125-01 and TAE 125- 02-99 reciprocating engines. That AD currently requires replacement of certain part numbers (P/Ns) and serial numbers...

  19. Advanced orbit transfer vehicle propulsion system study

    NASA Technical Reports Server (NTRS)

    Cathcart, J. A.; Cooper, T. W.; Corringrato, R. M.; Cronau, S. T.; Forgie, S. C.; Harder, M. J.; Mcallister, J. G.; Rudman, T. J.; Stoneback, V. W.

    1985-01-01

    A reuseable orbit transfer vehicle concept was defined and subsequent recommendations for the design criteria of an advanced LO2/LH2 engine were presented. The major characteristics of the vehicle preliminary design include a low lift to drag aerocapture capability, main propulsion system failure criteria of fail operational/fail safe, and either two main engines with an attitude control system for backup or three main engines to meet the failure criteria. A maintenance and servicing approach was also established for the advanced vehicle and engine concepts. Design tradeoff study conclusions were based on the consideration of reliability, performance, life cycle costs, and mission flexibility.

  20. Harbors.

    DTIC Science & Technology

    1981-07-01

    CONTRACT OR GRANT NUMBER(e) Naval Facilities Engineering Command 200 Stovall Street r Alexandria, VA 22332 (Code 0453) s. PERFORMING ORGANIZATION NAME...AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK • Naval Facilities Engineering Command AREA & WORK UNIT NUMBERS < 200 Stovall Street Engineering and...Design Alexandria, VA 22332 It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE ~ Naval Facilities Engineering Command (Code10432) July 1981 200

  1. 75 FR 74663 - Airworthiness Directives; The Boeing Company Model 747-400 and -400D Series Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-01

    ... number three engine pylons near the leading edge, and related investigative and corrective actions, if... routing of the wire bundles in the number two and number three engine pylons near the leading edge, and... routing of the wire bundles in the number two and number three engine pylons near the leading edge; and do...

  2. An Experimental Study of Vortex Flow Formation and Dynamics in Confined Microcavities

    NASA Astrophysics Data System (ADS)

    Khojah, Reem; di Carlo, Dino

    2017-11-01

    New engineering solutions for bioparticle separation invites revisiting classic fluid dynamics problems. Previous studies investigated cavity vortical flow that occurs in 2D with the formation of a material flux boundary or separatrix between the main flow and cavity flow. We demonstrate the concept of separatrix breakdown, in which the cavity flow becomes connected to the main flow, occurs as the cavity is confined in 3D, and is implicated in particle capture and rapid mass exchange in cavities. Understanding the convective flux between the channel and a side cavity provides insight into size-dependent particle capture and release from the cavity flow. The process of vortex formation and separatrix breakdown between the main channel to the side cavity is Reynolds number dependent and can be described by dissecting the flow streamlines from the main channel that enter and spiral out of the cavity. Laminar streamlines from incremented initial locations in the main flow are observed inside the cavity under different flow conditions. Experimentally, we provide the Reynolds number threshold to generate certain flow geometry. We found the optimal flow conditions that enable rapid convective transfer through the cavity flow and exposure and interaction between soluble factors with captured cells. By tuning which fraction of the main flow has solute, we can create a dynamic gate between the cavity and channel flow that potentially serves as a time-dependent fluid exchange approach for objects within the cavity.

  3. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 3A: High pressure oxidizer turbo-pump preburner pump housing stress analysis report

    NASA Technical Reports Server (NTRS)

    Shannon, Robert V., Jr.

    1989-01-01

    The model generation and structural analysis performed for the High Pressure Oxidizer Turbopump (HPOTP) preburner pump volute housing located on the main pump end of the HPOTP in the space shuttle main engine are summarized. An ANSYS finite element model of the volute housing was built and executed. A static structural analysis was performed on the Engineering Analysis and Data System (EADS) Cray-XMP supercomputer

  4. Summary of Results from Space Shuttle Main Engine Off-Nominal Testing

    NASA Technical Reports Server (NTRS)

    Horton, James F.; Megivern, Jeffrey M.; McNutt, Leslie M.

    2011-01-01

    This paper is a summary of Space Shuttle Main Engine (SSME) off-nominal testing that occurred during 2008 and 2009. During the last two years of planned SSME testing at Stennis Space Center, Pratt & Whitney Rocketdyne worked with their NASA MSFC customer to systematically identify, develop, assess, and implement challenging test objectives in order to expand the knowledge of one of the world s most reliable and highly tested large rocket engine. The objectives successfully investigated three main areas of interest expanding engine performance margins, demonstrating system operational capabilities, and establishing ground work for new rocket engine technology. The testing gave the Space Shuttle Program new options to safely fly out the flight manifest and provided Pratt & Whitney Rocketdyne and NASA new insight into the operational capabilities of the SSME, capabilities which can be used in assessing potential future applications of the RS-25 engine.

  5. Development of a new Clinical Engineering Management Tool & Information System (CLE-MANTIS).

    PubMed

    Panousis, S G; Malataras, P; Patelodimou, C; Kolitsi, Z; Pallikarakis, N

    1997-01-01

    The evolution of the field of biomedical technology has led to the diffusion of an impressive number of medical devices into healthcare institutions. In this environment, Clinical Engineering Departments (CEDs) are expanding their role in healthcare technology management, by changing their structure and introducing quality systems in order to improve their services and monitor the outcomes. In the framework of the national project BIOTECHNET II, a software tool for the management of biomedical technology, named CLE-MANTIS, has been developed, with the aim to assist CEDs in their tasks. CLE-MANTIS functions include the upkeep of an inventory, the support and monitoring of scheduled maintenance, corrective maintenance, vigilance, equipment acquisition and replacement, service contract management and user training. The system offers clinical engineers the possibility to monitor and evaluate the quality and cost-effectiveness of their departments through the monitoring of quality and cost indicators. This paper presents the main features and functions of the system.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The model is designed to enable decision makers to compare the economics of geothermal projects with the economics of alternative energy systems at an early stage in the decision process. The geothermal engineering and economic feasibility computer model (GEEF) is written in FORTRAN IV language and can be run on a mainframe or a mini-computer system. An abbreviated version of the model is being developed for usage in conjunction with a programmable desk calculator. The GEEF model has two main segments, namely (i) the engineering design/cost segment and (ii) the economic analysis segment. In the engineering segment, the model determinesmore » the numbers of production and injection wells, heat exchanger design, operating parameters for the system, requirement of supplementary system (to augment the working fluid temperature if the resource temperature is not sufficiently high), and the fluid flow rates. The model can handle single stage systems as well as two stage cascaded systems in which the second stage may involve a space heating application after a process heat application in the first stage.« less

  7. 1st SSME test of 2006

    NASA Image and Video Library

    2006-01-09

    Water vapor surges from the flame deflector of the A-2 Test Stand at NASA's Stennis Space Center on Jan. 9 during the first space shuttle main engine test of the year. The test was an engine acceptance test of flight engine 2058. It's the first space shuttle main engine to be completely assembled at Kennedy Space Center. Objectives also included first-time (green run) tests of a high-pressure oxidizer turbo pump and an Advanced Health System Monitor engine controller. The test ran for the planned duration of 520 seconds.

  8. Improvement of Space Shuttle Main Engine Low Frequency Acceleration Measurements

    NASA Technical Reports Server (NTRS)

    Stec, Robert C.

    1999-01-01

    The noise floor of low frequency acceleration data acquired on the Space Shuttle Main Engines is higher than desirable. Difficulties of acquiring high quality acceleration data on this engine are discussed. The approach presented in this paper for reducing the acceleration noise floor focuses on a search for an accelerometer more capable of measuring low frequency accelerations. An overview is given of the current measurement system used to acquire engine vibratory data. The severity of vibration, temperature, and moisture environments are considered. Vibratory measurements from both laboratory and rocket engine tests are presented.

  9. ARC-1980-AC80-0107-4

    NASA Image and Video Library

    1980-02-06

    Outfitting the Space Shuttle Orbiter Columbia with the three main rocket engines that will boost the 75 ton spacecraft into orbit on its first flight is completed with the installation of Engine #2007 (top). At liftoff, each engine will be producing about 375,000 pounds of thrust, or about 12 million horsepower each, and gulping down its liquid oxygen and liquid hydrogen propellants at a rate of about 1,100 pounts per second. The Shuttle's main engines, the most efficient rocket engines ever built, are reusable and designed t operate over a life span of 55 missions.

  10. The SSMEPF opens with a ribbon-cutting ceremony

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Participants in the ribbon cutting for KSC's new 34,600-square- foot Space Shuttle Main Engine Processing Facility (SSMEPF) pose in front of a Space Shuttle Main Engine on display for the ceremony. From left, they are Ed Adamek, vice president and associate program manager for Ground Operations of United Space Alliance; John Plowden, vice president of Rocketdyne; Donald R. McMonagle, manager of Launch Integration; U.S. Congressman Dave Weldon; KSC Center Director Roy D. Bridges Jr.; Wade Ivey of Ivey Construction, Inc.; and Robert B. Sieck, director of Shuttle Processing. A major addition to the existing Orbiter Processing Facility Bay 3, the SSMEPF replaces the Shuttle Main Engine Shop located in the Vehicle Assembly Building (VAB). The decision to move the shop out of the VAB was prompted by safety considerations and recent engine processing improvements. The first three main engines to be processed in the new facility will fly on Shuttle Endeavour's STS-88 mission in December 1998.

  11. Test Results of the Modified Space Shuttle Main Engine at the Marshall Space Flight Center Technology Test Bed Facility

    NASA Technical Reports Server (NTRS)

    Cook, J.; Dumbacher, D.; Ise, M.; Singer, C.

    1990-01-01

    A modified space shuttle main engine (SSME), which primarily includes an enlarged throat main combustion chamber with the acoustic cavities removed and a main injector with the stability control baffles removed, was tested. This one-of-a-kind engine's design changes are being evaluated for potential incorporation in the shuttle flight program in the mid-1990's. Engine testing was initiated on September 15, 1988 and has accumulated 1,915 seconds and 19 starts. Testing is being conducted to characterize the engine system performance, combustion stability with the baffle-less injector, and both low pressure oxidizer turbopump (LPOTP) and high pressure oxidizer turbopump (HPOTP) for suction performance. These test results are summarized and compared with the SSME flight configuration data base. Testing of this new generation SSME is the first product from the technology test bed (TTB). Figure test plans for the TTB include the highly instrumented flight configuration SSME and advanced liquid propulsion technology items.

  12. STS-55 Columbia, Orbiter Vehicle (OV) 102, SSME abort at KSC LC Pad 39A

    NASA Image and Video Library

    1993-03-22

    S93-31601 (March 1993) --- The second Space Shuttle launch attempt of 1993 comes to an abrupt halt when one of the three main engines on the orbiter Columbia shuts down at T -3 seconds, resulting in an on-the-pad abort of Mission STS-55. This was the first time in the post-Challenger era that a main engine shutdown has halted a Shuttle launch countdown, and only the third time in the history of the program. In 1984, STS-41D was scrubbed at T -4 seconds when the orbiter General Purpose Computer detected an anomaly in a main engine, and in 1985, STS-51F was halted at T -3 seconds due to a main engine malfunction that caused shutdown of all three engines. Columbia had been scheduled to lift off from Launch Pad 39B is the Space Shuttle Discovery, undergoing preparations for lift off on Mission STS-56.

  13. 48 CFR 9904.403-60 - Illustrations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... personnel, labor hours, payroll, number of hires. 2. Manufacturing policies, (quality control, industrial engineering, production, scheduling, tooling, inspection and testing, etc 2. Manufacturing cost input, manufacturing direct labor. 3. Engineering policies 3. Total engineering costs, engineering direct labor, number...

  14. 48 CFR 9904.403-60 - Illustrations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... personnel, labor hours, payroll, number of hires. 2. Manufacturing policies, (quality control, industrial engineering, production, scheduling, tooling, inspection and testing, etc 2. Manufacturing cost input, manufacturing direct labor. 3. Engineering policies 3. Total engineering costs, engineering direct labor, number...

  15. 48 CFR 9904.403-60 - Illustrations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... personnel, labor hours, payroll, number of hires. 2. Manufacturing policies, (quality control, industrial engineering, production, scheduling, tooling, inspection and testing, etc 2. Manufacturing cost input, manufacturing direct labor. 3. Engineering policies 3. Total engineering costs, engineering direct labor, number...

  16. General view in the Horizontal Processing Area of the Space ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view in the Horizontal Processing Area of the Space Shuttle Main Engine (SSME) Processing Facility at Kennedy Space Center. This view is looking at SSME 2052 and 2051 mounted on their SSME Engine Handlers. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  17. Lox/Gox related failures during Space Shuttle Main Engine development

    NASA Technical Reports Server (NTRS)

    Cataldo, C. E.

    1981-01-01

    Specific rocket engine hardware and test facility system failures are described which were caused by high pressure liquid and/or gaseous oxygen reactions. The failures were encountered during the development and testing of the space shuttle main engine. Failure mechanisms are discussed as well as corrective actions taken to prevent or reduce the potential of future failures.

  18. Methods of equipment choice in shotcreting

    NASA Astrophysics Data System (ADS)

    Sharapov, R. R.; Yadykina, V. V.; Stepanov, M. A.; Kitukov, B. A.

    2018-03-01

    Shotcrete is widely used in architecture, hydraulic engineering structures, finishing works in tunnels, arc covers and ceilings. The problem of the equipment choice in shotcreting is very important. The main issues influencing the equipment choice are quality improvement and intensification of shotcreting. Main parameters and rational limits of technological characteristic of machines used in solving different problems in shotcreting are described. It is suggested to take into account peculiarities of shotcrete mixing processes and peculiarities of applying these mixtures with compressed air kinetic energy. The described method suggests choosing a mixer with the account of energy capacity, Reynolds number and rotational frequency of the mixing drum. The suggested choice procedure of the equipment nomenclature allows decreasing exploitation costs, increasing the quality of shotcrete and shotcreting in general.

  19. Space Shuttle Project

    NASA Image and Video Library

    1981-01-01

    A Space Shuttle Main Engine undergoes test-firing at the National Space Technology Laboratories (now the Sternis Space Center) in Mississippi. The Marshall Space Flight Center had management responsibility of Space Shuttle propulsion elements, including the Main Engines.

  20. A Rainbow View of NASA's RS-25 Engine Test

    NASA Image and Video Library

    2017-02-22

    NASA engineers conducted their first RS-25 test of 2017 on the A-1 Test Stand at Stennis Space Center near Bay St. Louis, Mississippi, on Feb. 22, continuing to collect data on the performance of the rocket engine that will help power the new Space Launch System (SLS) rocket. Shown from the viewpoint of an overhead drone, the test of development engine No. 0528 ran the scheduled 380 seconds (six minutes and 20 seconds), allowing engineers to monitor various engine operating conditions. The test represents another step forward in development of the rocket that will launch humans aboard Orion deeper into space than ever before. Four RS-25 engines, together with a pair of solid rocket boosters, will power the SLS at launch on its deep-space missions. The engines for the first four SLS flights are former space shuttle main engines, which were tested extensively at Stennis and are some of the most proven engines in the world. Engineers are conducting an ongoing series of tests this year for SLS on both development and flight engines for future flights to ensure the engine, outfitted with a new controller, can perform at the higher level under a variety of conditions and situations. Stennis is also preparing its B-2 Test Stand to test the core stage for the first SLS flight with Orion, known as Exploration Mission-1. That testing will involve installing the flight stage on the stand and firing its four RS-25 engines simultaneously, just as during an actual launch. The Feb. 22 test was conducted by Aerojet Rocketdyne and Syncom Space Services engineers and operators. Aerojet Rocketdyne is the prime contractor for the RS-25 engines. Syncom Space Services is the prime contractor for Stennis facilities and operations. PAO Name:Kim Henry Phone Number:256-544-1899 Email Address: kimberly.m.henry@nasa.gov

  1. Advanced Health Management System for the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Davidson, Matt; Stephens, John

    2004-01-01

    Boeing-Canoga Park (BCP) and NASA-Marshall Space Flight Center (NASA-MSFC) are developing an Advanced Health Management System (AHMS) for use on the Space Shuttle Main Engine (SSME) that will improve Shuttle safety by reducing the probability of catastrophic engine failures during the powered ascent phase of a Shuttle mission. This is a phased approach that consists of an upgrade to the current Space Shuttle Main Engine Controller (SSMEC) to add turbomachinery synchronous vibration protection and addition of a separate Health Management Computer (HMC) that will utilize advanced algorithms to detect and mitigate predefined engine anomalies. The purpose of the Shuttle AHMS is twofold; one is to increase the probability of successfully placing the Orbiter into the intended orbit, and the other is to increase the probability of being able to safely execute an abort of a Space Transportation System (STS) launch. Both objectives are achieved by increasing the useful work envelope of a Space Shuttle Main Engine after it has developed anomalous performance during launch and the ascent phase of the mission. This increase in work envelope will be the result of two new anomaly mitigation options, in addition to existing engine shutdown, that were previously unavailable. The added anomaly mitigation options include engine throttle-down and performance correction (adjustment of engine oxidizer to fuel ratio), as well as enhanced sensor disqualification capability. The HMC is intended to provide the computing power necessary to diagnose selected anomalous engine behaviors and for making recommendations to the engine controller for anomaly mitigation. Independent auditors have assessed the reduction in Shuttle ascent risk to be on the order of 40% with the combined system and a three times improvement in mission success.

  2. 18. VIEW TOWARD MAIN ENTRANCE OF AMERICAN TOOL ENGINE LATHE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW TOWARD MAIN ENTRANCE OF AMERICAN TOOL ENGINE LATHE, JIB CRANE ABOVE-LOOKING NORTH. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA

  3. A gene network simulator to assess reverse engineering algorithms.

    PubMed

    Di Camillo, Barbara; Toffolo, Gianna; Cobelli, Claudio

    2009-03-01

    In the context of reverse engineering of biological networks, simulators are helpful to test and compare the accuracy of different reverse-engineering approaches in a variety of experimental conditions. A novel gene-network simulator is presented that resembles some of the main features of transcriptional regulatory networks related to topology, interaction among regulators of transcription, and expression dynamics. The simulator generates network topology according to the current knowledge of biological network organization, including scale-free distribution of the connectivity and clustering coefficient independent of the number of nodes in the network. It uses fuzzy logic to represent interactions among the regulators of each gene, integrated with differential equations to generate continuous data, comparable to real data for variety and dynamic complexity. Finally, the simulator accounts for saturation in the response to regulation and transcription activation thresholds and shows robustness to perturbations. It therefore provides a reliable and versatile test bed for reverse engineering algorithms applied to microarray data. Since the simulator describes regulatory interactions and expression dynamics as two distinct, although interconnected aspects of regulation, it can also be used to test reverse engineering approaches that use both microarray and protein-protein interaction data in the process of learning. A first software release is available at http://www.dei.unipd.it/~dicamill/software/netsim as an R programming language package.

  4. X-33 Attitude Control Using the XRS-2200 Linear Aerospike Engine

    NASA Technical Reports Server (NTRS)

    Hall, Charles E.; Panossian, Hagop V.

    1999-01-01

    The Vehicle Control Systems Team at Marshall Space Flight Center, Structures and Dynamics Laboratory, Guidance and Control Systems Division is designing, under a cooperative agreement with Lockheed Martin Skunkworks, the Ascent, Transition, and Entry flight attitude control systems for the X-33 experimental vehicle. Test flights, while suborbital, will achieve sufficient altitudes and Mach numbers to test Single Stage To Orbit, Reusable Launch Vehicle technologies. Ascent flight control phase, the focus of this paper, begins at liftoff and ends at linear aerospike main engine cutoff (MECO). The X-33 attitude control system design is confronted by a myriad of design challenges: a short design cycle, the X-33 incremental test philosophy, the concurrent design philosophy chosen for the X-33 program, and the fact that the attitude control system design is, as usual, closely linked to many other subsystems and must deal with constraints and requirements from these subsystems. Additionally, however, and of special interest, the use of the linear aerospike engine is a departure from the gimbaled engines traditionally used for thrust vector control (TVC) in launch vehicles and poses certain design challenges. This paper discusses the unique problem of designing the X-33 attitude control system with the linear aerospike engine, requirements development, modeling and analyses that verify the design.

  5. Optics in engineering education: stimulating the interest of first-year students

    NASA Astrophysics Data System (ADS)

    Blanco-García, Jesús; Vazquez-Dorrío, Benito

    2014-07-01

    The work here presented deals with stimulating the interest for optics in first-year students of an Engineering School, which are not specifically following Optical Engineering studies. Optic-based technologies are nowadays wide spread, and growing, in almost all the engineering fields (from non destructive testing or alignments to power laser applications, fiber optic communications, memory devices, etc.). In general, the first year curriculum doesn't allow a detailed review of the main light properties, least its technical applications. We present in this paper our experience in showing some basic optic concepts and related technologies to the students of our school. Based on the fact that they have a very basic training in this branch of physics, we have designed a series of experimental demonstrations with the dual purpose of making them understand the basic principles of these technologies, and to know the potential of applications to engineering they offer. We assembled these experiments in the laboratory and invited students to pass to get to know them, giving them an explanation in which we focused on the possible range of application of each technique. The response was very good, not only by the number of students who attended the invitation but also by the interest demonstrated by their questions and opinions.

  6. 40 CFR 86.096-24 - Test vehicles and engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... certification must be grouped based upon similar engine design and emission control system characteristics. Each... family will be divided into groups based upon their exhaust emission control systems. One engine of each... vehicle designs of equal number to the number of engine families within the engine family group, up to a...

  7. 40 CFR 86.096-24 - Test vehicles and engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... certification must be grouped based upon similar engine design and emission control system characteristics. Each... family will be divided into groups based upon their exhaust emission control systems. One engine of each... vehicle designs of equal number to the number of engine families within the engine family group, up to a...

  8. 40 CFR 86.096-24 - Test vehicles and engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... certification must be grouped based upon similar engine design and emission control system characteristics. Each... family will be divided into groups based upon their exhaust emission control systems. One engine of each... vehicle designs of equal number to the number of engine families within the engine family group, up to a...

  9. PICNIC Architecture.

    PubMed

    Saranummi, Niilo

    2005-01-01

    The PICNIC architecture aims at supporting inter-enterprise integration and the facilitation of collaboration between healthcare organisations. The concept of a Regional Health Economy (RHE) is introduced to illustrate the varying nature of inter-enterprise collaboration between healthcare organisations collaborating in providing health services to citizens and patients in a regional setting. The PICNIC architecture comprises a number of PICNIC IT Services, the interfaces between them and presents a way to assemble these into a functioning Regional Health Care Network meeting the needs and concerns of its stakeholders. The PICNIC architecture is presented through a number of views relevant to different stakeholder groups. The stakeholders of the first view are national and regional health authorities and policy makers. The view describes how the architecture enables the implementation of national and regional health policies, strategies and organisational structures. The stakeholders of the second view, the service viewpoint, are the care providers, health professionals, patients and citizens. The view describes how the architecture supports and enables regional care delivery and process management including continuity of care (shared care) and citizen-centred health services. The stakeholders of the third view, the engineering view, are those that design, build and implement the RHCN. The view comprises four sub views: software engineering, IT services engineering, security and data. The proposed architecture is founded into the main stream of how distributed computing environments are evolving. The architecture is realised using the web services approach. A number of well established technology platforms and generic standards exist that can be used to implement the software components. The software components that are specified in PICNIC are implemented in Open Source.

  10. General view looking down the approximate centerline of the expansion ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view looking down the approximate centerline of the expansion nozzle of a Space Shuttle Main Engine (SSME) mounted on a SSME Engine Handler in the SSME Processing Facility at Kennedy Space Center. This view shows the 1080 cooling tubes used to regeneratively cool the Nozzle and Combustion Chamber by circulating relatively low temperature fuel through the tubes and manifolds before being ignited in the Main Combustion Chamber. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  11. General view of the Space Shuttle Main Engine (SSME) assembly ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the Space Shuttle Main Engine (SSME) assembly with the expansion nozzle removed and resting on a cushioned mat on the floor of the SSME Processing Facility. The most prominent features in this view are the Low-pressure oxidizer Turbopump discharge Duct looping from the upper left side of the engine assembly to the lower left side of the assembly, the Low-Pressure Fuel Turbopump (LPFTP) is on the upper left of the assembly in this view and the LPFTP Discharge Duct loops from the upper left to upper right then turns back and down the assembly to the High-Pressure Fuel Turbopump on the lower right of the assembly. The Engine Controller and the Main fuel Valve Hydraulic Actuator are on the lower left portion of the assembly. The vertical rod that is in the approximate center of the engine assembly is a piece of ground support equipment call a Gimbal Actuator Replacement Strut which are used on the SSMEs when they are not installed in an orbiter. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawlowski, Alexander; Splitter, Derek A

    It is well known that spark ignited engine performance and efficiency is closely coupled to fuel octane number. The present work combines historical and recent trends in spark ignition engines to build a database of engine design, performance, and fuel octane requirements over the past 80 years. The database consists of engine compression ratio, required fuel octane number, peak mean effective pressure, specific output, and combined unadjusted fuel economy for passenger vehicles and light trucks. Recent trends in engine performance, efficiency, and fuel octane number requirement were used to develop correlations of fuel octane number utilization, performance, specific output. Themore » results show that historically, engine compression ratio and specific output have been strongly coupled to fuel octane number. However, over the last 15 years the sales weighted averages of compression ratios, specific output, and fuel economy have increased, while the fuel octane number requirement has remained largely unchanged. Using the developed correlations, 10-year-out projections of engine performance, design, and fuel economy are estimated for various fuel octane numbers, both with and without turbocharging. The 10-year-out projection shows that only by keeping power neutral while using 105 RON fuel will allow the vehicle fleet to meet CAFE targets if only the engine is relied upon to decrease fuel consumption. If 98 RON fuel is used, a power neutral fleet will have to reduce vehicle weight by 5%.« less

  13. Design and Fabrication of Oxygen/RP-2 Multi-Element Oxidizer-Rich Staged Combustion Thrust Chamber Injectors

    NASA Technical Reports Server (NTRS)

    Garcia, C. P.; Medina, C. R.; Protz, C. S.; Kenny, R. J.; Kelly, G. W.; Casiano, M. J.; Hulka, J. R.; Richardson, B. R.

    2016-01-01

    As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. On the current project, several configurations of new main injectors were considered for the thrust chamber assembly of the integrated test article. All the injector elements were of the gas-centered swirl coaxial type, similar to those used on the Russian oxidizer-rich staged-combustion rocket engines. In such elements, oxidizer-rich combustion products from the preburner/turbine exhaust flow through a straight tube, and fuel exiting from the combustion chamber and nozzle regenerative cooling circuits is injected near the exit of the oxidizer tube through tangentially oriented orifices that impart a swirl motion such that the fuel flows along the wall of the oxidizer tube in a thin film. In some elements there is an orifice at the inlet to the oxidizer tube, and in some elements there is a sleeve or "shield" inside the oxidizer tube where the fuel enters. In the current project, several variations of element geometries were created, including element size (i.e., number of elements or pattern density), the distance from the exit of the sleeve to the injector face, the width of the gap between the oxidizer tube inner wall and the outer wall of the sleeve, and excluding the sleeve entirely. This paper discusses the design rationale for each of these element variations, including hydraulic, structural, thermal, combustion performance, and combustion stability considerations. This paper also discusses the fabrication and assembly of the injector components, including the injector body/interpropellant plate, the additive manufactured GRCop-84 faceplate, and the pieces that make up the injector elements including the oxidizer tube, an inlet to the oxidizer tube, and a facenut that includes the fuel tangential inlets and forms the initial recessed volume where oxidizer and fuel first interact. Hot-fire test results of these main injector designs in an integrated test article that includes an oxidizer-rich preburner are described in companion papers at this JANNAF meeting.

  14. Delta II Mars Pathfinder

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Final preparations for lift off of the DELTA II Mars Pathfinder Rocket are shown. Activities include loading the liquid oxygen, completing the construction of the Rover, and placing the Rover into the Lander. After the countdown, important visual events include the launch of the Delta Rocket, burnout and separation of the three Solid Rocket Boosters, and the main engine cutoff. The cutoff of the main engine marks the beginning of the second stage engine. After the completion of the second stage, the third stage engine ignites and then cuts off. Once the third stage engine cuts off spacecraft separation occurs.

  15. Space Shuttle Main Engine Public Test Firing

    NASA Image and Video Library

    2000-07-25

    A new NASA Space Shuttle Main Engine (SSME) roars to the approval of more than 2,000 people who came to John C. Stennis Space Center in Hancock County, Miss., on July 25 for a flight-certification test of the SSME Block II configuration. The engine, a new and significantly upgraded shuttle engine, was delivered to NASA's Kennedy Space Center in Florida for use on future shuttle missions. Spectators were able to experience the 'shake, rattle and roar' of the engine, which ran for 520 seconds - the length of time it takes a shuttle to reach orbit.

  16. Space shuttle main engine controller

    NASA Technical Reports Server (NTRS)

    Mattox, R. M.; White, J. B.

    1981-01-01

    A technical description of the space shuttle main engine controller, which provides engine checkout prior to launch, engine control and monitoring during launch, and engine safety and monitoring in orbit, is presented. Each of the major controller subassemblies, the central processing unit, the computer interface electronics, the input electronics, the output electronics, and the power supplies are described and discussed in detail along with engine and orbiter interfaces and operational requirements. The controller represents a unique application of digital concepts, techniques, and technology in monitoring, managing, and controlling a high performance rocket engine propulsion system. The operational requirements placed on the controller, the extremely harsh operating environment to which it is exposed, and the reliability demanded, result in the most complex and rugged digital system ever designed, fabricated, and flown.

  17. Elevations, Major Component Isometric, Propellant Flow Schematic, and External Tank ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevations, Major Component Isometric, Propellant Flow Schematic, and External Tank Connection to Shuttle Main Engines - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  18. Reliability evaluation methodology for NASA applications

    NASA Technical Reports Server (NTRS)

    Taneja, Vidya S.

    1992-01-01

    Liquid rocket engine technology has been characterized by the development of complex systems containing large number of subsystems, components, and parts. The trend to even larger and more complex system is continuing. The liquid rocket engineers have been focusing mainly on performance driven designs to increase payload delivery of a launch vehicle for a given mission. In otherwords, although the failure of a single inexpensive part or component may cause the failure of the system, reliability in general has not been considered as one of the system parameters like cost or performance. Up till now, quantification of reliability has not been a consideration during system design and development in the liquid rocket industry. Engineers and managers have long been aware of the fact that the reliability of the system increases during development, but no serious attempts have been made to quantify reliability. As a result, a method to quantify reliability during design and development is needed. This includes application of probabilistic models which utilize both engineering analysis and test data. Classical methods require the use of operating data for reliability demonstration. In contrast, the method described in this paper is based on similarity, analysis, and testing combined with Bayesian statistical analysis.

  19. Effect of organometallic fuel additives on nanoparticle emissions from a gasoline passenger car.

    PubMed

    Gidney, Jeremy T; Twigg, Martyn V; Kittelson, David B

    2010-04-01

    Particle size measurements were performed on the exhaust of a car operating on a chassis dynamometer fueled with standard gasoline and gasoline containing low levels of Pb, Fe, and Mn organometallic additives. When additives were present there was a distinct nucleation mode consisting primarily of sub-10 nm nanoparticles. At equal molar dosing Mn and Fe gave similar nanoparticle concentrations at the tailpipe, whereas Pb gave a considerably lower concentration. A catalytic stripper was used to remove the organic component of these particles and revealed that they were mainly solid and, because of their association with inorganic additives, presumably inorganic. Solid nucleation mode nanoparticles of similar size and concentration to those observed here from a gasoline engine with Mn and Fe additives have also been observed from modern heavy-duty diesel engines without aftertreatment at idle, but these solid particles are a small fraction of the primarily volatile nucleation mode particles emitted. The solid nucleation mode particles emitted by the diesel engines are likely derived from metal compounds in the lubrication oil, although carbonaceous particles cannot be ruled out. Significantly, most of these solid nanoparticles emitted by both engine types fall below the 23 nm cutoff of the PMP number regulation.

  20. Heat exchanger development at Reaction Engines Ltd.

    NASA Astrophysics Data System (ADS)

    Varvill, Richard

    2010-05-01

    The SABRE engine for SKYLON has a sophisticated thermodynamic cycle with heat transfer between the fluid streams. The intake airflow is cooled in an efficient counterflow precooler, consisting of many thousand small bore thin wall tubes. Precooler manufacturing technology has been under investigation at REL for a number of years with the result that flightweight matrix modules can now be produced. A major difficulty with cooling the airflow to sub-zero temperatures at low altitude is the problem of frost formation. Frost control technology has been developed which enables steady state operation. The helium loop requires a top cycle heat exchanger (HX3) to deliver a constant inlet temperature to the main turbine. This is constructed in silicon carbide and the feasibility of manufacturing various matrix geometries has been investigated along with suitable joining techniques. A demonstration precooler will be made to run in front of a Viper jet engine at REL's B9 test facility in 2011. This precooler will incorporate full frost control and be built from full size SABRE engine modules. The facility will incorporate a high pressure helium loop that rejects the absorbed heat to a bath of liquid nitrogen.

  1. [Aviation fuels and aircraft emissions. A risk characterization for airport neighbors using Hamburg Airport as an example].

    PubMed

    Tesseraux, I; Mach, B; Koss, G

    1998-06-01

    Aviation fuels are well characterised regarding their physical and chemical properties. Health effects of fuel vapours and of liquid fuel are described after occupational exposure and in animal studies. Exposure of the general population (airport visitors and people living in the vicinity of airports) may occur during fuel supply particularly in warm summers (odour). Aircraft emissions vary with the engine type and the kind of fuel. Combustion of aviation fuel results in CO2, H2O, CO, C, NOx and a great number of organic compounds. Among the emitted polyaromatic hydrocarbons (PAH) no compound characteristic for jet engines (tracer) could be detected so far. Hardly any data exist on the toxicology of jet engine emissions. According to analyses of their chemical composition, however, they contain various toxicologically relevant compounds including carcinogenic substances. Measurements in ambient air around the Hamburg Airport show no elevated pollutant levels. However, no such data exist on aldehydes, black smoke or fine particles. Annoying odours have been stated in some areas around the airport, which were mainly attributed to the aircraft engine emissions rather than to fuel vapours.

  2. A Preliminary Study on Designing and Testing of an Absorption Refrigeration Cycle Powered by Exhaust Gas of Combustion Engine

    NASA Astrophysics Data System (ADS)

    Napitupulu, F. H.; Daulay, F. A.; Dedy, P. M.; Denis; Jecson

    2017-03-01

    In order to recover the waste heat from the exhaust gas of a combustion engine, an adsorption refrigeration cycle is proposed. This is a preliminary study on design and testing of a prototype of absorption refrigeration cycle powered by an internal combustion engine. The heat source of the cycle is a compression ignition engine which generates 122.36 W of heat in generator of the cycle. The pairs of absorbent and refrigerant are water and ammonia. Here the generator is made of a shell and tube heat exchanger with number of tube and its length are 20 and 0.69 m, respectively. In the experiments the exhaust gas, with a mass flow rate of 0.00016 kg/s, enters the generator at 110°C and leaves it at 72°C. Here, the solution is heated from 30°C to 90°C. In the evaporator, the lowest temperature can be reached is 17.9°C and COP of the system is 0.45. The main conclusion can be drawn here is that the proposed system can be used to recycle the waste heat and produced cooling. However, the COP is still low.

  3. Internal combustion engine

    DOEpatents

    Baker, Quentin A.; Mecredy, Henry E.; O'Neal, Glenn B.

    1991-01-01

    An improved engine is provided that more efficiently consumes difficult fuels such as coal slurries or powdered coal. The engine includes a precombustion chamber having a portion thereof formed by an ignition plug. The precombustion chamber is arranged so that when the piston is proximate the head, the precombustion chamber is sealed from the main cylinder or the main combustion chamber and when the piston is remote from the head, the precombustion chamber and main combustion chamber are in communication. The time for burning of fuel in the precombustion chamber can be regulated by the distance required to move the piston from the top dead center position to the position wherein the precombustion chamber and main combustion chamber are in communication.

  4. The State of Software for Evolutionary Biology

    PubMed Central

    Darriba, Diego; Flouri, Tomáš; Stamatakis, Alexandros

    2018-01-01

    Abstract With Next Generation Sequencing data being routinely used, evolutionary biology is transforming into a computational science. Thus, researchers have to rely on a growing number of increasingly complex software. All widely used core tools in the field have grown considerably, in terms of the number of features as well as lines of code and consequently, also with respect to software complexity. A topic that has received little attention is the software engineering quality of widely used core analysis tools. Software developers appear to rarely assess the quality of their code, and this can have potential negative consequences for end-users. To this end, we assessed the code quality of 16 highly cited and compute-intensive tools mainly written in C/C++ (e.g., MrBayes, MAFFT, SweepFinder, etc.) and JAVA (BEAST) from the broader area of evolutionary biology that are being routinely used in current data analysis pipelines. Because, the software engineering quality of the tools we analyzed is rather unsatisfying, we provide a list of best practices for improving the quality of existing tools and list techniques that can be deployed for developing reliable, high quality scientific software from scratch. Finally, we also discuss journal as well as science policy and, more importantly, funding issues that need to be addressed for improving software engineering quality as well as ensuring support for developing new and maintaining existing software. Our intention is to raise the awareness of the community regarding software engineering quality issues and to emphasize the substantial lack of funding for scientific software development. PMID:29385525

  5. Gasoline-related organics in Lake Tahoe before and after prohibition of carbureted two-stroke engines

    USGS Publications Warehouse

    Lico, M.S.

    2004-01-01

    On June 1, 1999, carbureted two-stroke engines were banned on waters within the Lake Tahoe Basin of California and Nevada. The main gasoline components MTBE (methyl tert-butyl ether) and BTEX (benzene, toluene, ethylbenzene, and xylenes) were present at detectable concentrations in all samples taken from Lake Tahoe during 1997-98 prior to the ban. Samples taken from 1999 through 2001 after the ban contained between 10 and 60 percent of the pre-ban concentrations of these compounds, with MTBE exhibiting the most dramatic change (a 90 percent decrease). MTBE and BTEX concentrations in water samples from Lake Tahoe and Lower Echo Lake were related to the amount of boat use at the sampling sites. Polycyclic aromatic hydrocarbon (PAH) compounds are produced by high-temperature pyrolytic reactions. They were sampled using semipermeable membrane sampling devices in Lake Tahoe and nearby Donner Lake, where carbureted two-stroke engines are legal. PAHs were detected in all samples taken from Lake Tahoe and Donner Lake. The number of PAH compounds and their concentrations are related to boat use. The highest concentrations of PAH were detected in samples from two heavily used boating areas, Tahoe Keys Marina and Donner Lake boat ramp. Other sources of PAH, such as atmospheric deposition, wood smoke, tributary streams, and automobile exhaust do not contribute large amounts of PAH to Lake Tahoe. Similar numbers of PAH compounds and concentrations were found in Lake Tahoe before and after the ban of carbureted two-stroke engines. ?? by the North American Lake Management Society 2004.

  6. Analysis of gas turbine engines using water and oxygen injection to achieve high Mach numbers and high thrust

    NASA Technical Reports Server (NTRS)

    Henneberry, Hugh M.; Snyder, Christopher A.

    1993-01-01

    An analysis of gas turbine engines using water and oxygen injection to enhance performance by increasing Mach number capability and by increasing thrust is described. The liquids are injected, either separately or together, into the subsonic diffuser ahead of the engine compressor. A turbojet engine and a mixed-flow turbofan engine (MFTF) are examined, and in pursuit of maximum thrust, both engines are fitted with afterburners. The results indicate that water injection alone can extend the performance envelope of both engine types by one and one-half Mach numbers at which point water-air ratios reach 17 or 18 percent and liquid specific impulse is reduced to some 390 to 470 seconds, a level about equal to the impulse of a high energy rocket engine. The envelope can be further extended, but only with increasing sacrifices in liquid specific impulse. Oxygen-airflow ratios as high as 15 percent were investigated for increasing thrust. Using 15 percent oxygen in combination with water injection at high supersonic Mach numbers resulted in thrust augmentation as high as 76 percent without any significant decrease in liquid specific impulse. The stoichiometric afterburner exit temperature increased with increasing oxygen flow, reaching 4822 deg R in the turbojet engine at a Mach number of 3.5. At the transonic Mach number of 0.95 where no water injection is needed, an oxygen-air ratio of 15 percent increased thrust by some 55 percent in both engines, along with a decrease in liquid specific impulse of 62 percent. Afterburner temperature was approximately 4700 deg R at this high thrust condition. Water and/or oxygen injection are simple and straightforward strategies to improve engine performance and they will add little to engine weight. However, if large Mach number and thrust increases are required, liquid flows become significant, so that operation at these conditions will necessarily be of short duration.

  7. Marine Hydrokinetic (MHK) Systems: A Systems Engineering Approach to Select Locations for the Practical Harvest of Electricity from Shallow Water Tidal Currents

    NASA Astrophysics Data System (ADS)

    Domenech, John

    Due to increasing atmospheric CO2 concentration and its effect on global climates, the United States Environmental Protection Agency (EPA) proposes a Clean Power Plan (CPP) mandating CO2 reductions which will likely force the early retirement of inefficient, aging power plants. Consequentially, removing these plants equates to a shortfall of approximately 66 GW of electricity. These factors add to the looming resource problems of choosing whether to build large replacement power plants or consider alternative energy sources as a means to help close the gap between electricity supply and demand in a given region. One energy source, shallow water tidal currents, represents opportunities to convert kinetic energy to mechanical forms and provide electricity to homes and businesses. Nearly 2,000 National Oceanic Atmospheric Administration (NOAA) tidal current data points from Maine to Texas are considered. This paper, based on systems engineering thinking, provides key attributes (e.g. turbine efficiency, array size, transmission losses) for consideration as decision makers seek to identify where to site Marine Hydrokinetic (MHK) systems and the number of homes powered by the practical harvest of electricity from tidal currents at those locations with given attributes. A systems engineering process model is proposed for consideration as is a regression based equation to estimate MHK machine parameters needed for power a given number of homes.

  8. Automatic generation of Web mining environments

    NASA Astrophysics Data System (ADS)

    Cibelli, Maurizio; Costagliola, Gennaro

    1999-02-01

    The main problem related to the retrieval of information from the world wide web is the enormous number of unstructured documents and resources, i.e., the difficulty of locating and tracking appropriate sources. This paper presents a web mining environment (WME), which is capable of finding, extracting and structuring information related to a particular domain from web documents, using general purpose indices. The WME architecture includes a web engine filter (WEF), to sort and reduce the answer set returned by a web engine, a data source pre-processor (DSP), which processes html layout cues in order to collect and qualify page segments, and a heuristic-based information extraction system (HIES), to finally retrieve the required data. Furthermore, we present a web mining environment generator, WMEG, that allows naive users to generate a WME specific to a given domain by providing a set of specifications.

  9. RIACS Workshop on the Verification and Validation of Autonomous and Adaptive Systems

    NASA Technical Reports Server (NTRS)

    Pecheur, Charles; Visser, Willem; Simmons, Reid

    2001-01-01

    The long-term future of space exploration at NASA is dependent on the full exploitation of autonomous and adaptive systems: careful monitoring of missions from earth, as is the norm now, will be infeasible due to the sheer number of proposed missions and the communication lag for deep-space missions. Mission managers are however worried about the reliability of these more intelligent systems. The main focus of the workshop was to address these worries and hence we invited NASA engineers working on autonomous and adaptive systems and researchers interested in the verification and validation (V&V) of software systems. The dual purpose of the meeting was to: (1) make NASA engineers aware of the V&V techniques they could be using; and (2) make the V&V community aware of the complexity of the systems NASA is developing.

  10. A human factors engineering paradigm for patient safety: designing to support the performance of the healthcare professional

    PubMed Central

    Karsh, B‐T; Holden, R J; Alper, S J; Or, C K L

    2006-01-01

    The goal of improving patient safety has led to a number of paradigms for directing improvement efforts. The main paradigms to date have focused on reducing injuries, reducing errors, or improving evidence based practice. In this paper a human factors engineering paradigm is proposed that focuses on designing systems to improve the performance of healthcare professionals and to reduce hazards. Both goals are necessary, but neither is sufficient to improve safety. We suggest that the road to patient and employee safety runs through the healthcare professional who delivers care. To that end, several arguments are provided to show that designing healthcare delivery systems to support healthcare professional performance and hazard reduction should yield significant patient safety benefits. The concepts of human performance and hazard reduction are explained. PMID:17142611

  11. A subscale facility for liquid rocket propulsion diagnostics at Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Raines, N. G.; Bircher, F. E.; Chenevert, D. J.

    1991-01-01

    The Diagnostics Testbed Facility (DTF) at NASA's John C. Stennis Space Center in Mississippi was designed to provide a testbed for the development of rocket engine exhaust plume diagnostics instrumentation. A 1200-lb thrust liquid oxygen/gaseous hydrogen thruster is used as the plume source for experimentation and instrument development. Theoretical comparative studies have been performed with aerothermodynamic codes to ensure that the DTF thruster (DTFT) has been optimized to produce a plume with pressure and temperature conditions as much like the plume of the Space Shuttle Main Engine as possible. Operation of the DTFT is controlled by an icon-driven software program using a series of soft switches. Data acquisition is performed using the same software program. A number of plume diagnostics experiments have utilized the unique capabilities of the DTF.

  12. Summer High School Apprenticeship Research Program (SHARP) of the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A total of 125 talented high school students had the opportunity to gain first hand experience about science and engineering careers by working directly with a NASA scientist or engineer during the summer. This marked the fifth year of operation for NASA's Summer High School Apprenticehsip Research Program (SHARP). Ferguson Bryan served as the SHARP contractor and worked closely with NASA staff at Headquarters and the eight participating sites to plan, implement, and evaluate the Program. The main objectives were to strengthen SHARP and expand the number of students in the Program. These eight sites participated in the Program: Ames Research Center North, Ames' Dryden Flight Research Facility, Goddard Space Flight Center, Goddard's Wallops Flight Facility, Kennedy Space Center, Langley Research Center, Lewis Research Center, and Marshall Space Flight Center.

  13. Probabilistic failure assessment with application to solid rocket motors

    NASA Technical Reports Server (NTRS)

    Jan, Darrell L.; Davidson, Barry D.; Moore, Nicholas R.

    1990-01-01

    A quantitative methodology is being developed for assessment of risk of failure of solid rocket motors. This probabilistic methodology employs best available engineering models and available information in a stochastic framework. The framework accounts for incomplete knowledge of governing parameters, intrinsic variability, and failure model specification error. Earlier case studies have been conducted on several failure modes of the Space Shuttle Main Engine. Work in progress on application of this probabilistic approach to large solid rocket boosters such as the Advanced Solid Rocket Motor for the Space Shuttle is described. Failure due to debonding has been selected as the first case study for large solid rocket motors (SRMs) since it accounts for a significant number of historical SRM failures. Impact of incomplete knowledge of governing parameters and failure model specification errors is expected to be important.

  14. General view of a Space Shuttle Main Engine (SSME) mounted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of a Space Shuttle Main Engine (SSME) mounted on an SSME engine handler, taken in the SSME Processing Facility at Kennedy Space Center. The most prominent feature in this view is the Expansion Nozzle . The rings that loop around the nozzle, vertically in this view, add structural stability to the nozzle walls and are referred to Hatbands. The ring on the left most edge of the nozzle is the Coolant Inlet Manifold. The tubes that branch off and connect to the manifold are Coolant Transfer Ducts and the tubes that terminate with a visible opening at the manifold are Drain Lines. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  15. Closeup view of a Space Shuttle Main Engine (SSME) mounted ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of a Space Shuttle Main Engine (SSME) mounted on an SSME engine handler, taken in the SSME Processing Facility at Kennedy Space Center. The most prominent feature in this view is the Expansion Nozzle . The rings that loop around the nozzle, vertically in this view, add structural stability to the nozzle walls and are referred to Hatbands. The ring on the left most edge of the nozzle is the Coolant Inlet Manifold. The tubes that branch off and connect to the manifold are Coolant Transfer Ducts and the tubes that terminate with a visible opening at the manifold are Drain Lines. - Space Transportation System, Space Shuttle Main Engine, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  16. KSC-2011-6515

    NASA Image and Video Library

    2011-08-18

    CAPE CANAVERAL, Fla. -- In the Engine Shop at NASA’s Kennedy Space Center in Florida, space shuttle main engine #2 sits on a transporter after technicians removed it from space shuttle Atlantis in Orbiter Processing Facility-2. All three main engines are being removed from Atlantis so that the vehicle can be decommissioned and prepared for eventual display at the Kennedy Space Center Visitor Complex in Florida. Photo credit: Frankie Martin

  17. Virtual and flexible digital signal processing system based on software PnP and component works

    NASA Astrophysics Data System (ADS)

    He, Tao; Wu, Qinghua; Zhong, Fei; Li, Wei

    2005-05-01

    An idea about software PnP (Plug & Play) is put forward according to the hardware PnP. And base on this idea, a virtual flexible digital signal processing system (FVDSPS) is carried out. FVDSPS is composed of a main control center, many sub-function modules and other hardware I/O modules. Main control center sends out commands to sub-function modules, and manages running orders, parameters and results of sub-functions. The software kernel of FVDSPS is DSP (Digital Signal Processing) module, which communicates with the main control center through some protocols, accept commands or send requirements. The data sharing and exchanging between the main control center and the DSP modules are carried out and managed by the files system of the Windows Operation System through the effective communication. FVDSPS real orients objects, orients engineers and orients engineering problems. With FVDSPS, users can freely plug and play, and fast reconfigure a signal process system according to engineering problems without programming. What you see is what you get. Thus, an engineer can orient engineering problems directly, pay more attention to engineering problems, and promote the flexibility, reliability and veracity of testing system. Because FVDSPS orients TCP/IP protocol, through Internet, testing engineers, technology experts can be connected freely without space. Engineering problems can be resolved fast and effectively. FVDSPS can be used in many fields such as instruments and meter, fault diagnosis, device maintenance and quality control.

  18. [Application of atomic absorption spectrometry in the engine knock detection].

    PubMed

    Chen, Li-Dan

    2013-02-01

    Because existing human experience diagnosis method and apparatus for auxiliary diagnosis method are difficult to diagnose quickly engine knock. Atomic absorption spectrometry was used to detect the automobile engine knock in in innovative way. After having determined Fe, Al, Cu, Cr and Pb content in the 35 groups of Audi A6 engine oil whose travel course is 2 000 -70 000 kilometers and whose sampling interval is 2 000 kilometers by atomic absorption spectrometry, the database of primary metal content in the same automobile engine at different mileage was established. The research shows that the main metal content fluctuates within a certain range. In practical engineering applications, after the determination of engine oil main metal content and comparison with its database value, it can not only help to diagnose the type and location of engine knock without the disintegration and reduce vehicle maintenance costs and improve the accuracy of engine knock fault diagnosis.

  19. High Fidelity Simulation of Atomization in Diesel Engine Sprays

    DTIC Science & Technology

    2015-09-01

    ARL-RP-0555 ● SEP 2015 US Army Research Laboratory High Fidelity Simulation of Atomization in Diesel Engine Sprays by L Bravo...ARL-RP-0555 ● SEP 2015 US Army Research Laboratory High Fidelity Simulation of Atomization in Diesel Engine Sprays by L...Simulation of Atomization in Diesel Engine Sprays 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) L Bravo, CB Ivey, D

  20. Coal gasification systems engineering and analysis. Appendix F: Critical technology items/issues

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Critical technology items and issues are defined in which there is a need for developmental research in order to assure technical and economic success for the state of the art of coal gasification in the United States. Technology development needs for the main processing units and the supporting units are discussed. While development needs are shown for a large number of systems, the most critical areas are associated with the gasifier itself and those systems which either feed the gasifier or directly receive products form the gasifier.

  1. Aerodynamic studies of delta-wing shuttle orbiters. Part 1: Low speed

    NASA Technical Reports Server (NTRS)

    Freeman, D. C., Jr.; Ellison, J. C.

    1972-01-01

    Numerous wind tunnel tests conducted on the evolving delta-wing orbiters have generated a fairly large aerodynamic data base over the entire entry operation range of these vehicles. A limited assessment is made of some of the aerodynamics of the current HO type orbiters, and several specific problem areas selected from the broad data base are discussed. These include, from a subsonic viewpoint, discussions of trim drag effect; effects of the installation of main rocket engine nozzles, OMS and RCS packages, Reynolds number effects, lateral-directional stability characteristics, and landing characteristics.

  2. Daily Flow Model of the Delaware River Basin. Main Report.

    DTIC Science & Technology

    1981-09-01

    DATE U.S. Army Engineer District, Philadelphia Sept. 1981 2nd & Chestnut Sts. 13. NUMBER OF PAGES Philadelphia, PA 19106 144 p . 14. MONITORING AGENCY...VOLMEI FOR I DEVELOPMENTE OF A AIYRFLOW MODEL ( O T1 I "I I I. ~ p ~ ---- I i I TABLE OF CONTENTS I Page No. LIST OF FIGURES iii LIST OF TABLES vi I...Sample Duration Table from Program A969 111-35 111-19 Sample Low Flow Table from Program A969 111-38 111-20 Sample Log- P .?arson Low Flow Frequency

  3. SSME 3-D Turnaround Duct flow analysis - CFD predictions

    NASA Technical Reports Server (NTRS)

    Brankovic, Andreja; Stowers, Steven T.; Mcconnaughey, Paul

    1988-01-01

    CFD analysis is presently employed to obtain an improved flowfield for an individual flowpath in the case of the Space Shuttle Main Engine's High Pressure Fuel Turbopump Turn-Around Duct (TAD), which conducts the flow exiting from the gas turbines into the fuel bowl. It is demonstrated that the application of CFD to TAD flow analysis, giving attention to the duct's configuration and to the number, shape, and alignment of the diffuser struts, can enhance understanding of flow physics and result in improved duct design and performance.

  4. Thermal Analysis on Plume Heating of the Main Engine on the Crew Exploration Vehicle Service Module

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Yuko, James R.

    2007-01-01

    The crew exploration vehicle (CEV) service module (SM) main engine plume heating is analyzed using multiple numerical tools. The chemical equilibrium compositions and applications (CEA) code is used to compute the flow field inside the engine nozzle. The plume expansion into ambient atmosphere is simulated using an axisymmetric space-time conservation element and solution element (CE/SE) Euler code, a computational fluid dynamics (CFD) software. The thermal analysis including both convection and radiation heat transfers from the hot gas inside the engine nozzle and gas radiation from the plume is performed using Thermal Desktop. Three SM configurations, Lockheed Martin (LM) designed 604, 605, and 606 configurations, are considered. Design of multilayer insulation (MLI) for the stowed solar arrays, which is subject to plume heating from the main engine, among the passive thermal control system (PTCS), are proposed and validated.

  5. 78 FR 68360 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-14

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... turbofan engines. The AD number is incorrect in the Regulatory text. This document corrects that error. In... turbofan engines. As published, the AD number 2013-19-17 under Sec. 39.13 [Amended], is incorrect. No other...

  6. 75 FR 37990 - Airworthiness Directives; Ontic Engineering and Manufacturing, Inc. Propeller Governors, Part...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ... Airworthiness Directives; Ontic Engineering and Manufacturing, Inc. Propeller Governors, Part Numbers C210776... Engineering and Manufacturing, Inc. propeller governors, part numbers (P/Ns) C210776, T210761, D210760, and... this AD from Ontic Engineering and Manufacturing, Inc., 20400 Plummer Sreet, Chatsworth, CA 91311, e...

  7. 12. VIEW FROM MAIN ENTRANCE OF STOVE, ENGINE LATHE, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW FROM MAIN ENTRANCE OF STOVE, ENGINE LATHE, AND GRINDER (L TO R) IN FOREGROUND, SHAFTING ABOVE LOOKING SOUTH. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA

  8. STS-1 Pogo analysis

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Some of the pogo related data from STS-1 are documented. The measurements and data reduction are described. In the data analysis reference is made to FRF and single engine test results. The measurements are classified under major project elements of the space shuttle main engine, the external tank, and the orbiter. The subsystems are structural dynamics and main propulsion. Data were recorded onboard the orbiter with a minimum response rate of 1.5 to 50 Hz. The wideband, 14 track recorder was used, and the data required demultiplexing before reduction. The flight phase of interest was from liftoff through main engine cutoff.

  9. STS-70 Crew in front of Discovery post landing

    NASA Technical Reports Server (NTRS)

    1995-01-01

    STS-70 crew members give a 'thumbs up' to press representatives and others waiting to greet them on Runway 33 of KSC's Shuttle Landing Facility after the conclusion of their successful flight on the Space Shuttle Discovery. From left, are Commander Terence 'Tom' Henricks, Mission Specialists Mary Ellen Weber, Nancy Jane Currie and Donald A. Thomas, and Pilot Kevin R. Kregel. Discovery landed on orbit 143. Main gear touchdown was unofficially listed at 8:02 a.m. EDT on July 22, 1995. Both opportunities for a KSC touchdown on the scheduled landing date, July 21, were waived off because of fog and low visibility conditions at the Shuttle Landing Facility. The first opportunity on July 22 at KSC also was waived off. STS-70 was the 24th landing at KSC and the 70th Space Shuttle mission. During the eight-day, 22-hour flight, the crew deployed a Tracking and Data Relay Satellite-G (TDRS-G) and performed many experiments. STS-70 also was the maiden flight of the new Block I orbiter main engine, which flew in the number one position. The other two engines were of the existing Phase II design.

  10. Infectious Disease Issues in Xenotransplantation

    PubMed Central

    Boneva, Roumiana S.; Folks, Thomas M.; Chapman, Louisa E.

    2001-01-01

    Xenotransplantation, the transplantation of living organs, tissues, or cells from one species to another, is viewed as a potential solution to the existing shortage of human organs for transplantation. While whole-organ xenotransplantation is still in the preclinical stage, cellular xenotransplantation and extracorporeal perfusion applications are showing promise in early clinical trials. Advances in immunosuppressive therapy, gene engineering, and cloning of animals bring a broader array of xenotransplantation protocols closer to clinical trials. Despite several potential advantages over allotransplantation, xenotransplantation encompasses a number of problems. Immunologic rejection remains the primary hindrance. The potential to introduce infections across species barriers, another major concern, is the main focus of this review. Nonhuman primates are unlikely to be a main source for xenotransplantation products despite their phylogenetic proximity to humans. Genetically engineered pigs, bred under special conditions, are currently envisaged as the major source. Thus far, there has been no evidence for human infections caused by pig xenotransplantation products. However, the existence of xenotropic endogenous retroviruses and the clinical evidence of long-lasting porcine cell microchimerism indicate the potential for xenogeneic infections. Thus, further trials should continue under regulatory oversight, with close clinical and laboratory monitoring for potential xenogeneic infections. PMID:11148000

  11. Iterative procedures for space shuttle main engine performance models

    NASA Technical Reports Server (NTRS)

    Santi, L. Michael

    1989-01-01

    Performance models of the Space Shuttle Main Engine (SSME) contain iterative strategies for determining approximate solutions to nonlinear equations reflecting fundamental mass, energy, and pressure balances within engine flow systems. Both univariate and multivariate Newton-Raphson algorithms are employed in the current version of the engine Test Information Program (TIP). Computational efficiency and reliability of these procedures is examined. A modified trust region form of the multivariate Newton-Raphson method is implemented and shown to be superior for off nominal engine performance predictions. A heuristic form of Broyden's Rank One method is also tested and favorable results based on this algorithm are presented.

  12. Systems Engineering Approach and Metrics for Evaluating Network-Centric Operations for U.S. Army Battle Command

    DTIC Science & Technology

    2013-07-01

    Systems Engineering Approach and Metrics for Evaluating Network-Centric Operations for U.S. Army Battle Command by Jock O. Grynovicki and...Battle Command Jock O. Grynovicki and Teresa A. Branscome Human Research and Engineering Directorate, ARL...NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jock O. Grynovicki and Teresa A. Branscome 5d. PROJECT NUMBER 622716H70 5e. TASK NUMBER

  13. SSME model, engine dynamic characteristics related to Pogo

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A linear model of the space shuttle main engine for use in Pogo studies was presented. A digital program is included from which engine transfer functions are determined relative to the engine operating level.

  14. Bulkhead insert for an internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maki, Clifford E.; Chottiner, Jeffrey Eliot; Williams, Rick L.

    An engine includes a cylinder block defining at least one main bearing bulkhead adjacent to a cylinder, and a crankshaft rotatably housed within the block by a main bearing. A bulkhead insert has a cap portion, and an insert portion provided within the bulkhead. The insert portion has having first and second end regions connected by first and second straps. Each strap having a flanged beam cross section. The first and second ends of the insert portion are configured to connect a main bearing cap column to a cylinder head column. Each of the first and second end regions definemore » at least one protrusion having a surface substantially normal to engine combustion and reactive loads. The cap portion is configured to mate with the first end region at the main bearing cap column and support the main bearing.« less

  15. Process for forming a long gas turbine engine blade having a main wall with a thin portion near a tip

    DOEpatents

    Campbell, Christian X; Thomaidis, Dimitrios

    2014-05-13

    A process is provided for forming an airfoil for a gas turbine engine involving: forming a casting of a gas turbine engine airfoil having a main wall and an interior cavity, the main wall having a wall thickness extending from an external surface of the outer wall to the interior cavity, an outer section of the main wall extending from a location between a base and a tip of the airfoil casting to the tip having a wall thickness greater than a final thickness. The process may further involve effecting movement, using a computer system, of a material removal apparatus and the casting relative to one another such that a layer of material is removed from the casting at one or more radial portions along the main wall of the casting.

  16. Structural dynamic analysis of the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Scott, L. P.; Jamison, G. T.; Mccutcheon, W. A.; Price, J. M.

    1981-01-01

    This structural dynamic analysis supports development of the SSME by evaluating components subjected to critical dynamic loads, identifying significant parameters, and evaluating solution methods. Engine operating parameters at both rated and full power levels are considered. Detailed structural dynamic analyses of operationally critical and life limited components support the assessment of engine design modifications and environmental changes. Engine system test results are utilized to verify analytic model simulations. The SSME main chamber injector assembly is an assembly of 600 injector elements which are called LOX posts. The overall LOX post analysis procedure is shown.

  17. 23. Engine room, as seen from starboard side near ladderway ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Engine room, as seen from starboard side near ladderway from main (promenade) deck. At left is hot well for main engine, at the sides of which are two reciprocating boiler feedwater pumps. Behind the hot well is the condenser and the foot of one of the legs supporting the walking beam A-frame. Hot well and condenser rest on a large bed (painted black) which runs the length of the engine. In the right foreground is water pump for trim tanks. - Steamboat TICONDEROGA, Shelburne Museum Route 7, Shelburne, Chittenden County, VT

  18. Engines-only flight control system

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W. (Inventor); Gilyard, Glenn B (Inventor); Conley, Joseph L. (Inventor); Stewart, James F. (Inventor); Fullerton, Charles G. (Inventor)

    1994-01-01

    A backup flight control system for controlling the flightpath of a multi-engine airplane using the main drive engines is introduced. The backup flight control system comprises an input device for generating a control command indicative of a desired flightpath, a feedback sensor for generating a feedback signal indicative of at least one of pitch rate, pitch attitude, roll rate and roll attitude, and a control device for changing the output power of at least one of the main drive engines on each side of the airplane in response to the control command and the feedback signal.

  19. Re-Engineering the Stomatopod Eye

    DTIC Science & Technology

    2016-09-21

    AFRL-AFOSR-VA-TR-2016-0325 Re- Engineering the Stomatopod Eye Thomas Cronin UNIVERSITY OF MARYLAND BALTIMORE COUNTY 1000 HILLTOP CIR BALTIMORE, MD...To) 15 Jun 2012 to 14 Jun 2016 4. TITLE AND SUBTITLE Re- engineering the Stomatopod Eye 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-12-1-0321 5c...AFOSR Award Number FA9550-12-1-0321 "Re- engineering the Stomatopod Eye" Thomas W. Cronin Department of Biological Sciences University of Maryland

  20. 3. ELEVATIONS, ADDITION TO POWER HOUSE. United Engineering Company Ltd., ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. ELEVATIONS, ADDITION TO POWER HOUSE. United Engineering Company Ltd., Alameda Shipyard. John Hudspeth, architect, foot of Main Street, Alameda, California. Sheet 4. Plan no. 10,548. Scale 1/4 inch to the foot, elevations, and one inch to the foot, sections and details. April 30, 1945, last revised 6/19/45. pencil on vellum - United Engineering Company Shipyard, Boiler House, 2900 Main Street, Alameda, Alameda County, CA

  1. [Particulate distribution characteristics of Chinese phrase V diesel engine based on butanol-diesel blends].

    PubMed

    Lou, Di-Ming; Xu, Ning; Fan, Wen-Jia; Zhang, Tao

    2014-02-01

    With a common rail diesel engine without any modification and the engine exhaust particle number and particle size analyzer EEPS, this study used the air-fuel ratio to investigate the particulate number concentration, mass concentration and number distribution characteristics of a diesel engine fueled with butanol-diesel blends (Bu10, Bu15, Bu20, Bu30 and Bu40) and petroleum diesel. The results show: for all test fuels, the particle number distributions turn to be unimodal. With the increasing of butanol, numbers of nucleation mode particles and small accumulation mode particle decrease. At low speed and low load conditions, the number of large accumulation mode particle increases slightly, but under higher speed and load conditions, the number does not increase. When the fuels contain butanol, the total particle number concentration and mass concentration in all conditions decrease and that is more obvious at high speed load.

  2. KSC-2011-6523

    NASA Image and Video Library

    2011-08-19

    CAPE CANAVERAL, Fla. -- In Orbiter Processing Facility-2 at NASA’s Kennedy Space Center in Florida, technicians monitor the progress as they use a Hyster forklift to position an engine removal device on Engine #3 on space shuttle Atlantis. Inside the aft section, a technician disconnects hydraulic, fluid and electrical lines. The forklift will be used to remove the engine and transport it to the Engine Shop for possible future use. Each of the three space shuttle main engines is 14 feet long and weighs 7,800 pounds. Removal of the space shuttle main engines is part of the Transition and Retirement work that is being performed in order to prepare Atlantis for eventual display at the Kennedy Space Center Visitor Complex in Florida. Photo credit: Frankie Martin

  3. 40 CFR 86.007-15 - NOX and particulate averaging, trading, and banking for heavy-duty engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... discount factor of 0.8 (0.9 × 0.888 = 0.8). (5) For diesel engine families, the combined number of engines... heavy-duty diesel engine families for that model year. (6) The FEL must be expressed to the same number... 2007 and later model year diesel engine families, or generated for 2008 and later model year Otto-cycle...

  4. Last SSME test on A-1

    NASA Image and Video Library

    2006-09-29

    The Stennis Space Center conducted the final space shuttle main engine test on its A-1 Test Stand Friday. The A-1 Test Stand was the site of the first test on a shuttle main engine in 1975. Stennis will continue testing shuttle main engines on its A-2 Test Stand through the end of the Space Shuttle Program in 2010. The A-1 stand begins a new chapter in its operational history in October. It will be temporarily decommissioned to convert it for testing the J-2X engine, which will power the upper stage of NASA's new crew launch vehicle, the Ares I. Although this ends the stand's work on the Space Shuttle Program, it will soon be used for the rocket that will carry America's next generation human spacecraft, Orion.

  5. The SSMEPF opens with a ribbon-cutting ceremony

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Participants in the ribbon cutting for KSC's new 34,600-square- foot Space Shuttle Main Engine Processing Facility (SSMEPF) gather to talk inside the facility following the ceremony. From left, they are Robert B. Sieck, director of Shuttle Processing; KSC Center Director Roy D. Bridges Jr.; U.S. Congressman Dave Weldon; John Plowden, vice president of Rocketdyne; and Donald R. McMonagle, manager of Launch Integration. A major addition to the existing Orbiter Processing Facility Bay 3, the SSMEPF replaces the Shuttle Main Engine Shop located in the Vehicle Assembly Building (VAB). The decision to move the shop out of the VAB was prompted by safety considerations and recent engine processing improvements. The first three main engines to be processed in the new facility will fly on Shuttle Endeavour's STS-88 mission in December 1998.

  6. BioCarian: search engine for exploratory searches in heterogeneous biological databases.

    PubMed

    Zaki, Nazar; Tennakoon, Chandana

    2017-10-02

    There are a large number of biological databases publicly available for scientists in the web. Also, there are many private databases generated in the course of research projects. These databases are in a wide variety of formats. Web standards have evolved in the recent times and semantic web technologies are now available to interconnect diverse and heterogeneous sources of data. Therefore, integration and querying of biological databases can be facilitated by techniques used in semantic web. Heterogeneous databases can be converted into Resource Description Format (RDF) and queried using SPARQL language. Searching for exact queries in these databases is trivial. However, exploratory searches need customized solutions, especially when multiple databases are involved. This process is cumbersome and time consuming for those without a sufficient background in computer science. In this context, a search engine facilitating exploratory searches of databases would be of great help to the scientific community. We present BioCarian, an efficient and user-friendly search engine for performing exploratory searches on biological databases. The search engine is an interface for SPARQL queries over RDF databases. We note that many of the databases can be converted to tabular form. We first convert the tabular databases to RDF. The search engine provides a graphical interface based on facets to explore the converted databases. The facet interface is more advanced than conventional facets. It allows complex queries to be constructed, and have additional features like ranking of facet values based on several criteria, visually indicating the relevance of a facet value and presenting the most important facet values when a large number of choices are available. For the advanced users, SPARQL queries can be run directly on the databases. Using this feature, users will be able to incorporate federated searches of SPARQL endpoints. We used the search engine to do an exploratory search on previously published viral integration data and were able to deduce the main conclusions of the original publication. BioCarian is accessible via http://www.biocarian.com . We have developed a search engine to explore RDF databases that can be used by both novice and advanced users.

  7. A Rocket Powered Single-Stage-to-Orbit Launch Vehicle With U.S. and Soviet Engineers

    NASA Technical Reports Server (NTRS)

    MacConochie, Ian O.; Stnaley, Douglas O.

    1991-01-01

    A single-stage-to-orbit launch vehicle is used to assess the applicability of Soviet Energia high-pressure-hydrocarbon engine to advanced U.S. manned space transportation systems. Two of the Soviet engines are used with three Space Shuttle Main Engines. When applied to a baseline vehicle that utilized advanced hydrocarbon engines, the higher weight of the Soviet engines resulted in a 20 percent loss of payload capability and necessitated a change in the crew compartment size and location from mid-body to forebody in order to balance the vehicle. Various combinations of Soviet and Shuttle engines were evaluated for comparison purposes, including an all hydrogen system using all Space Shuttle Main Engines. Operational aspects of the baseline vehicle are also discussed. A new mass properties program entitles Weights and Moments of Inertia (WAMI) is used in the study.

  8. 40 CFR 86.1112-87 - Determining the compliance level and reporting of test results.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... number of additional tests conducted shall be the difference between 24 and the number of engines or... ENGINES Nonconformance Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy-Duty Vehicles... compliance level for a pollutant for any engine or vehicle configuration by using the primary PCA sampling...

  9. 40 CFR 86.1905 - How does this program work?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... must test in-use engines from the families we select. We may select the following number of engine families for testing, except as specified in paragraph (b) of this section: (1) We may select up to 25 percent of your engine families in any calendar year, calculated by dividing the number of engine families...

  10. Modal analysis of an aircraft engine fan noise

    NASA Astrophysics Data System (ADS)

    Gorodkova, Natalia; Chursin, Valeriy; Bersenev, Yuliy; Burdakov, Ruslan; Siner, Aleksandr; Viskova, Tatiana

    2016-10-01

    The fan is one of the main noise sources of an aircraft engine. To reduce fan noise and provide liner optimization in the inlet it is necessary to research modal structure of the fan noise. The present paper contains results of acoustic tests on installation for mode generation that consists of 34-channel generator and the inlet updated for mounting of 100 microphones, the experiments were provided in new anechoic chamber of Perm National Research Polytechnic University, the engine with the same inlet was also tested in the open test bench conditions, and results of the fan noise modal structure are presented. For modal structure educting, all 100 channels were synchronously registered in a given frequency range. The measured data were analyzed with PULSE analyzer using fast Fourier transform with a frequency resolution 8..16 Hz. Single modes with numbers from 0 to 35 at frequencies 500; 630; 800; 1000; 1250; 1600 Hz and different combinations of modes at frequencies 1000, 1600, 2000, 2500 Hz were set during tests. Modes with small enough numbers are generated well on the laboratory installation, high-number modes generate additional modes caused by a complicated interference pattern of sound field in the inlet. Open test bench results showed that there are also a lot of harmonic components at frequencies lower than fan BPF. Under 0.65 of cut off there is only one distinct mode, other modes with close and less numbers appear from 0.7 of cut off and above. At power regimes 0.76 and 0.94 of cut off the highest mode also changes from positive to negative mode number area. Numbers of the highest modes change smoothly enough with the growth of power regime. At power regimes with Mach>1 (0.7 of cut off and above) on circumference of blade wheel there is a well-defined noise of shock waves at rotor frequency harmonics that appears at the range between the first rotor frequency and fan blade passing frequency (BPF). It is planned to continue researching of sound field modal structure with acoustic measurements in near and far field.

  11. The Evolution of Utilizing Manual Throttles to Avoid Excessively Low LH2 NPSP at the SSME Inlet

    NASA Technical Reports Server (NTRS)

    Henfling, Rick

    2011-01-01

    In the late 1970s, years before the Space Shuttle flew its maiden voyage, it was understood low liquid hydrogen (LH2) Net Positive Suction Pressure (NPSP) at the inlet to the Space Shuttle Main Engine (SSME) could have adverse effects on engine operation. A number of failures within both the External Tank (ET) and the Orbiter Main Propulsion System (MPS) could result in a low LH2 NPSP condition, which at extremely low levels can result in cavitation of SSME turbomachinery. Operational workarounds were developed to take advantage of the onboard crew s ability to manually throttle down the SSMEs (via the Pilot s Speedbrake/Throttle Controller), which alleviated the low LH2 NPSP condition. Manually throttling the SSME to a lower power level resulted in an increase in NPSP, mainly due to the reduction in frictional flow losses while at the lower throttle setting. Early in the Space Shuttle Program s history, the relevant Flight Rule for the Booster flight controllers in Mission Control did not distinguish between ET and Orbiter MPS failures and the same crew action was taken for both. However, after a review of all Booster operational techniques following the Challenger disaster in the late 1980s, it was determined manually throttling the SSME to a lower power was only effective for Orbiter MPS failures and the Flight Rule was updated to reflect this change. The Flight Rule and associated crew actions initially called for a single throttle step to minimum power level when a low threshold for NPSP was met. As engineers refined their understanding of the NPSP requirements for the SSME (through a robust testing program), the operational techniques evolved to take advantage of the additional capabilities. This paper will examine the evolution of the Flight rule and associated procedure and how increases in knowledge about the SSME and the Space Shuttle vehicle as a whole have helped shape their development. What once was a single throttle step when NPSP decreased to a certain threshold has now become three throttle steps, each occurring at a lower NPSP threshold. Additionally the procedure, which for early Space Shuttle missions required a Return-to-Launch-Site abort, now results in a nominal Main Engine Cut Off and no loss of mission objectives.

  12. The Evolution of Utilizing Manual Throttling to Avoid Excessively Low LH2 NPSP at the SSME Inlet

    NASA Technical Reports Server (NTRS)

    Henfling, Rick

    2010-01-01

    In the late 1970s, years before the Space Shuttle flew its maiden voyage, it was understood low liquid hydrogen (LH2) Net Positive Suction Pressure (NPSP) at the inlet to the Space Shuttle Main Engine (SSME) could have adverse effects on engine operation. A number of failures within both the External Tank (ET) and the Orbiter Main Propulsion System (MPS) could result in a low LH2 NPSP condition, which at extremely low levels can result in cavitation of SSME turbomachinery. Operational workarounds were developed to take advantage of the onboard crew s ability to manually throttle down the SSMEs (via the Pilot s Speedbrake/Throttle Controller), which alleviated the low LH2 NPSP condition. Manually throttling the SSME to a lower power level resulted in an increase in NPSP, mainly due to the reduction in frictional flow losses while at the lower throttle setting. Early in the Space Shuttle Program s history, the relevant Flight Rule for the Booster flight controller in Mission Control did not distinguish between ET and Orbiter MPS failures and the same crew action was taken for both. However, after a review of all Booster operational techniques following the Challenger disaster in the late 1980s, it was determined manually throttling the SSME to a lower power was only effective for Orbiter MPS failures and the Flight Rule was updated to reflect this change. The Flight Rule and associated crew actions initially called for a single throttle step to minimum power level when a low threshold for NPSP was met. As engineers refined their understanding of the NPSP requirements for the SSME (through a robust testing program), the operational techniques evolved to take advantage of the additional capabilities. This paper will examine the evolution of the Flight rule and associated procedure and how increases in knowledge about the SSME and the Space Shuttle vehicle as a whole have helped shape their development. What once was a single throttle step when NPSP decreased to a certain low threshold has now become three throttle steps, each occurring at a lower NPSP threshold. Additionally the procedure, which for early Space Shuttle missions required a Return-to-Launch-Site abort, now results in a nominal Main Engine Cut Off and no loss of mission objectives.

  13. Detonation Jet Engine. Part 2--Construction Features

    ERIC Educational Resources Information Center

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    We present the most relevant works on jet engine design that utilize thermodynamic cycle of detonative combustion. Detonation engines of various concepts, pulse detonation, rotational and engine with stationary detonation wave, are reviewed. Main trends in detonation engine development are discussed. The most important works that carried out…

  14. Analysis of turbojet combustion chamber performances based on flow field simplified mathematical model

    NASA Astrophysics Data System (ADS)

    Rotaru, Constantin

    2017-06-01

    In this paper are presented some results about the study of combustion chamber geometrical configurations that are found in aircraft gas turbine engines. The main focus of this paper consists in a study of a new configuration of the aircraft engine combustion chamber with an optimal distribution of gas velocity in front of the turbine. This constructive solution could allow a lower engine rotational speed, a lower temperature in front of the first stage of the turbine and the possibility to increase the turbine pressure ratio. The Arrhenius relationship, which describes the basic dependencies of the reaction rate on pressure, temperature and concentration has been used. and the CFD simulations were made with jet A fuel (which is presented in the Fluent software database) for an annular flame tube with 24 injectors. The temperature profile at the turbine inlet exhibits nonuniformity due to the number of fuel injectors used in the circumferential direction, the spatial nonuniformity in dilution air cooling and mixing characteristics as well as other secondary flow patterns and instabilities that are set up in the flame tube.

  15. Effort to Accelerate MBSE Adoption and Usage at JSC

    NASA Technical Reports Server (NTRS)

    Wang, Lui; Izygon, Michel; Okron, Shira; Garner, Larry; Wagner, Howard

    2016-01-01

    This paper describes the authors' experience in adopting Model Based System Engineering (MBSE) at the NASA/Johnson Space Center (JSC). Since 2009, NASA/JSC has been applying MBSE using the Systems Modeling Language (SysML) to a number of advanced projects. Models integrate views of the system from multiple perspectives, capturing the system design information for multiple stakeholders. This method has allowed engineers to better control changes, improve traceability from requirements to design and manage the numerous interactions between components. As the project progresses, the models become the official source of information and used by multiple stakeholders. Three major types of challenges that hamper the adoption of the MBSE technology are described. These challenges are addressed by a multipronged approach that includes educating the main stakeholders, implementing an organizational infrastructure that supports the adoption effort, defining a set of modeling guidelines to help engineers in their modeling effort, providing a toolset that support the generation of valuable products, and providing a library of reusable models. JSC project case studies are presented to illustrate how the proposed approach has been successfully applied.

  16. Materials for a Stirling engine heater head

    NASA Technical Reports Server (NTRS)

    Noble, J. E.; Lehmann, G. A.; Emigh, S. G.

    1990-01-01

    Work done on the 25-kW advanced Stirling conversion system (ASCS) terrestrial solar program in establishing criteria and selecting materials for the engine heater head and heater tubes is described. Various mechanisms contributing to incompatibility between materials are identified and discussed. Large thermal gradients, coupled with requirements for long life (60,000 h at temperature) and a large number of heatup and cooldown cycles (20,000) drive the design from a structural standpoint. The pressurized cylinder is checked for creep rupture, localized yielding, reverse plasticity, creep and fatigue damage, and creep ratcheting, in addition to the basic requirements for bust and proof pressure. In general, creep rupture and creep and fatigue interaction are the dominant factors in the design. A wide range of materials for the heater head and tubes was evaluated. Factors involved in the assessment were strength and effect on engine efficiency, reliability, and cost. A preliminary selection of Inconel 713LC for the heater head is based on acceptable structural properties but driven mainly by low cost. The criteria for failure, the structural analysis, and the material characteristics with basis for selection are discussed.

  17. 46 CFR 11.333 - Requirements to qualify for an STCW endorsement as second engineer officer on vessels powered by...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... second engineer officer on vessels powered by main propulsion machinery of 750kW/1,000 HP or more and less than 3,000 kW/4,000 HP propulsion power (management level). 11.333 Section 11.333 Shipping COAST... engineer officer on vessels powered by main propulsion machinery of 750kW/1,000 HP or more and less than 3...

  18. PRCC Aviation Students

    NASA Image and Video Library

    2007-01-26

    Pratt & Whitney Rocketdyne's Jeff Hansell, right, explains functions of a space shuttle main engine to Pearl River Community College Aviation Maintenance Technology Program students. Christopher Bryon, left, of Bay St. Louis, Ret Tolar of Kiln, Dan Holston of Baxterville and Billy Zugg of Long Beach took a recent tour of the SSME Processing Facility and the E-1 Test Complex at Stennis Space Center in South Mississippi. The students attend class adjacent to the Stennis International Airport tarmac in Kiln, where they get hands-on experience. PRCC's program prepares students to be responsible for the inspection, repair and maintenance of technologically advanced aircraft. A contractor to NASA, Pratt & Whitney Rocketdyne in Canoga Park, Calif., manufactures the space shuttle main engine and its high-pressure turbo pumps. SSC was established in the 1960s to test the huge engines for the Saturn V moon rockets. Now 40 years later, the center tests every main engine for the space shuttle, and is America's largest rocket engine test complex. SSC will soon begin testing the rocket engines that will power spacecraft carrying Americans back to the moon and on to Mars.

  19. PRCC Aviation Students

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Pratt & Whitney Rocketdyne's Jeff Hansell, right, explains functions of a space shuttle main engine to Pearl River Community College Aviation Maintenance Technology Program students. Christopher Bryon, left, of Bay St. Louis, Ret Tolar of Kiln, Dan Holston of Baxterville and Billy Zugg of Long Beach took a recent tour of the SSME Processing Facility and the E-1 Test Complex at Stennis Space Center in South Mississippi. The students attend class adjacent to the Stennis International Airport tarmac in Kiln, where they get hands-on experience. PRCC's program prepares students to be responsible for the inspection, repair and maintenance of technologically advanced aircraft. A contractor to NASA, Pratt & Whitney Rocketdyne in Canoga Park, Calif., manufactures the space shuttle main engine and its high-pressure turbo pumps. SSC was established in the 1960s to test the huge engines for the Saturn V moon rockets. Now 40 years later, the center tests every main engine for the space shuttle, and is America's largest rocket engine test complex. SSC will soon begin testing the rocket engines that will power spacecraft carrying Americans back to the moon and on to Mars.

  20. Engineering and Design: Rock Mass Classification Data Requirements for Rippability

    DTIC Science & Technology

    1983-06-30

    Engineering and Design ROCK MASS CLASSIFICATION DATA REQUIREMENTS FOR RIPPABILITY Distribution Restriction Statement Approved for public release...and Design: Rock Mass Classification Data Requirements for Rippability Contract Number Grant Number Program Element Number Author(s) Project...Technical Letter 1110-2-282 Engineering and Design ROCK MASS CLASSIFICATION DATA REQUIREMENTS FOR RIPPABILITY 1“ -“ This ETL contains information on data

  1. Protein consensus-based surface engineering (ProCoS): a computer-assisted method for directed protein evolution.

    PubMed

    Shivange, Amol V; Hoeffken, Hans Wolfgang; Haefner, Stefan; Schwaneberg, Ulrich

    2016-12-01

    Protein consensus-based surface engineering (ProCoS) is a simple and efficient method for directed protein evolution combining computational analysis and molecular biology tools to engineer protein surfaces. ProCoS is based on the hypothesis that conserved residues originated from a common ancestor and that these residues are crucial for the function of a protein, whereas highly variable regions (situated on the surface of a protein) can be targeted for surface engineering to maximize performance. ProCoS comprises four main steps: ( i ) identification of conserved and highly variable regions; ( ii ) protein sequence design by substituting residues in the highly variable regions, and gene synthesis; ( iii ) in vitro DNA recombination of synthetic genes; and ( iv ) screening for active variants. ProCoS is a simple method for surface mutagenesis in which multiple sequence alignment is used for selection of surface residues based on a structural model. To demonstrate the technique's utility for directed evolution, the surface of a phytase enzyme from Yersinia mollaretii (Ymphytase) was subjected to ProCoS. Screening just 1050 clones from ProCoS engineering-guided mutant libraries yielded an enzyme with 34 amino acid substitutions. The surface-engineered Ymphytase exhibited 3.8-fold higher pH stability (at pH 2.8 for 3 h) and retained 40% of the enzyme's specific activity (400 U/mg) compared with the wild-type Ymphytase. The pH stability might be attributed to a significantly increased (20 percentage points; from 9% to 29%) number of negatively charged amino acids on the surface of the engineered phytase.

  2. Quiet Clean Short-haul Experimental Engine (QCSEE) main reduction gears detailed design report

    NASA Technical Reports Server (NTRS)

    Defeo, A.; Kulina, M.

    1977-01-01

    Lightweight turbine engines with geared slower speed fans are considered. The design of two similar but different gear ratio, minimum weight, epicyclic star configuration main reduction gears for the under the wing (UTW) and over the wing (OTW) engines is discussed. The UTW engine reduction gear has a ratio of 2.465:1 and a 100% power design rating of 9885 kW (13,256 hp) at 3143 rpm fan speed. The OTW engine reduction gear has a ratio of 2.062:1 and a 100% power design rating of 12813 kW (17183 hp) at 3861 rpm fan speed. Details of configuration, stresses, deflections, and lubrication are presented.

  3. KSC-2009-6123

    NASA Image and Video Library

    2009-11-05

    CAPE CANAVERAL, Fla. – Pratt & Whitney Rocketdyne technicians install a space shuttle main engine on space shuttle Endeavour in Orbiter Processing Facility Bay 2 at NASA's Kennedy Space Center in Florida. The engine will fly on the shuttle's STS-130 mission to the International Space Station. Even though this engine weighs one-seventh as much as a locomotive engine, its high-pressure fuel pump alone delivers as much horsepower as 28 locomotives, while its high-pressure oxidizer pump delivers the equivalent horsepower of an additional 11 locomotives. The maximum equivalent horsepower developed by the shuttle's three main engines is more than 37 million horsepower. Endeavour is targeted to launch Feb. 4, 2010. Photo credit: NASA/Jim Grossmann

  4. KSC-2009-6125

    NASA Image and Video Library

    2009-11-05

    CAPE CANAVERAL, Fla. – A Pratt & Whitney Rocketdyne technician carefully maneuvers a space shuttle main engine into position on space shuttle Endeavour in Orbiter Processing Facility Bay 2 at NASA's Kennedy Space Center in Florida. The engine will fly on the shuttle's STS-130 mission to the International Space Station. Even though this engine weighs one-seventh as much as a locomotive engine, its high-pressure fuel pump alone delivers as much horsepower as 28 locomotives, while its high-pressure oxidizer pump delivers the equivalent horsepower of an additional 11 locomotives. The maximum equivalent horsepower developed by the shuttle's three main engines is more than 37 million horsepower. Endeavour is targeted to launch Feb. 4, 2010. Photo credit: NASA/Jim Grossmann

  5. KSC-2009-6124

    NASA Image and Video Library

    2009-11-05

    CAPE CANAVERAL, Fla. – A Pratt & Whitney Rocketdyne technician carefully maneuvers a space shuttle main engine into position on space shuttle Endeavour in Orbiter Processing Facility Bay 2 at NASA's Kennedy Space Center in Florida. The engine will fly on the shuttle's STS-130 mission to the International Space Station. Even though this engine weighs one-seventh as much as a locomotive engine, its high-pressure fuel pump alone delivers as much horsepower as 28 locomotives, while its high-pressure oxidizer pump delivers the equivalent horsepower of an additional 11 locomotives. The maximum equivalent horsepower developed by the shuttle's three main engines is more than 37 million horsepower. Endeavour is targeted to launch Feb. 4, 2010. Photo credit: NASA/Jim Grossmann

  6. Implementation of a model based fault detection and diagnosis for actuation faults of the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Duyar, A.; Guo, T.-H.; Merrill, W.; Musgrave, J.

    1992-01-01

    In a previous study, Guo, Merrill and Duyar, 1990, reported a conceptual development of a fault detection and diagnosis system for actuation faults of the space shuttle main engine. This study, which is a continuation of the previous work, implements the developed fault detection and diagnosis scheme for the real time actuation fault diagnosis of the space shuttle main engine. The scheme will be used as an integral part of an intelligent control system demonstration experiment at NASA Lewis. The diagnosis system utilizes a model based method with real time identification and hypothesis testing for actuation, sensor, and performance degradation faults.

  7. Space Shuttle Main Engine Debris Testing Methodology and Impact Tolerances

    NASA Technical Reports Server (NTRS)

    Gradl, Paul R.; Stephens, Walter

    2005-01-01

    In the wake of the Space Shuttle Columbia disaster every effort is being made to determine the susceptibility of Space Shuttle elements to debris impacts. Ice and frost debris is formed around the aft heat shield closure of the orbiter and liquid hydrogen feedlines. This debris has been observed to liberate upon lift-off of the shuttle and presents potentially dangerous conditions to the Space Shuttle Main Engine. This paper describes the testing done to determine the impact tolerance of the Space Shuttle Main Engine nozzle coolant tubes to ice strikes originating from the launch pad or other parts of the shuttle.

  8. Overview of rocket engine control

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Musgrave, Jeffrey L.

    1991-01-01

    The issues of Chemical Rocket Engine Control are broadly covered. The basic feedback information and control variables used in expendable and reusable rocket engines, such as Space Shuttle Main Engine, are discussed. The deficiencies of current approaches are considered and a brief introduction to Intelligent Control Systems for rocket engines (and vehicles) is presented.

  9. Development of Key Performance Indicators for the Engineering Technology Education Programs in Taiwan

    ERIC Educational Resources Information Center

    Lee, Lung-Sheng; Lai, Chun-Chin

    2004-01-01

    In comparison with engineering, engineering technology is more practical and purposeful. The engineering technology education programs in Taiwan have been mainly offered in 56 universities/colleges of technology (UTs/CTs) and are anticipated to continuously improve their performance to prepare quality engineering technologists. However, it is…

  10. 78 FR 19983 - Airworthiness Directives; General Electric Company Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... Airworthiness Directives; General Electric Company Turbofan Engines AGENCY: Federal Aviation Administration (FAA... Electric Company (GE) CF34-8C and CF34-8E turbofan engines with certain part numbers (P/N) of operability...-8E6, and CF34-8E6A1 turbofan engines, with an operability bleed valve (OBV) part number (P/N...

  11. Cloning of Plasmodium falciparum by single-cell sorting

    PubMed Central

    Miao, Jun; Li, Xiaolian; Cui, Liwang

    2010-01-01

    Malaria parasite cloning is traditionally carried out mainly by using the limiting dilution method, which is laborious, imprecise, and unable to distinguish multiply-infected RBCs. In this study, we used a parasite engineered to express green fluorescent protein (GFP) to evaluate a single-cell sorting method for rapidly cloning Plasmodium falciparum. By dividing a two dimensional scattergram from a cell sorter into 17 gates, we determined the parameters for isolating singly-infected erythrocytes and sorted them into individual cultures. Pre-gating of the engineered parasites for GFP allowed the isolation of almost 100% GFP-positive clones. Compared with the limiting dilution method, the number of parasite clones obtained by single-cell sorting was much higher. Molecular analyses showed that parasite isolates obtained by single-cell sorting were highly homogenous. This highly efficient single-cell sorting method should prove very useful for cloning both P. falciparum laboratory populations from genetic manipulation experiments and clinical samples. PMID:20435038

  12. Survey on effect of surface winds on aircraft design and operation and recommendations for needed wind research

    NASA Technical Reports Server (NTRS)

    Houbolt, J. C.

    1973-01-01

    A survey of the effect of environmental surface winds and gusts on aircraft design and operation is presented. A listing of the very large number of problems that are encountered is given. Attention is called to the many studies that have been made on surface winds and gusts, but development in the engineering application of these results to aeronautical problems is pointed out to be still in the embryonic stage. Control of the aircraft is of paramount concern. Mathematical models and their application in simulation studies of airplane operation and control are discussed, and an attempt is made to identify their main gaps or deficiencies. Key reference material is cited. The need for better exchange between the meteorologist and the aeronautical engineer is discussed. Suggestions for improvements in the wind and gust models are made.

  13. Implementation of Wireless and Intelligent Sensor Technologies in the Propulsion Test Environment

    NASA Technical Reports Server (NTRS)

    Solano, Wanda M.; Junell, Justin C.; Shumard, Kenneth

    2003-01-01

    From the first Saturn V rocket booster (S-II-T) testing in 1966 and the routine Space Shuttle Main Engine (SSME) testing beginning in 1975, to more recent test programs such as the X-33 Aerospike Engine, the Integrated Powerhead Development (IPD) program, and the Hybrid Sounding Rocket (HYSR), Stennis Space Center (SSC) continues to be a premier location for conducting large-scale propulsion testing. Central to each test program is the capability for sensor systems to deliver reliable measurements and high quality data, while also providing a means to monitor the test stand area to the highest degree of safety and sustainability. As part of an on-going effort to enhance the testing capabilities of Stennis Space Center, the Test Technology and Development group is developing and applying a number of wireless and intelligent sensor technologies in ways that are new to the test existing test environment.

  14. A new collection of real world applications of fractional calculus in science and engineering

    NASA Astrophysics Data System (ADS)

    Sun, HongGuang; Zhang, Yong; Baleanu, Dumitru; Chen, Wen; Chen, YangQuan

    2018-11-01

    Fractional calculus is at this stage an arena where many models are still to be introduced, discussed and applied to real world applications in many branches of science and engineering where nonlocality plays a crucial role. Although researchers have already reported many excellent results in several seminal monographs and review articles, there are still a large number of non-local phenomena unexplored and waiting to be discovered. Therefore, year by year, we can discover new aspects of the fractional modeling and applications. This review article aims to present some short summaries written by distinguished researchers in the field of fractional calculus. We believe this incomplete, but important, information will guide young researchers and help newcomers to see some of the main real-world applications and gain an understanding of this powerful mathematical tool. We expect this collection will also benefit our community.

  15. A designed repeat protein as an affinity capture reagent

    PubMed Central

    Speltz, Elizabeth B.; Brown, Rebecca S.H.; Hajare, Holly S.; Schlieker, Christian; Regan, Lynne

    2017-01-01

    Repeat proteins are an attractive target for protein engineering and design. We have focused our attention on the design and engineering of one particular class - tetratricopeptide repeat (TPR) proteins. In previous work we have shown that the structure and stability of TPR proteins can be manipulated in a rational fashion [Cortajarena 2011; Main 2003]. Building on those studies, we have designed and characterized a number of different peptide-binding TPR modules and we have also assembled these modules into supramolecular arrays [Cortajarena 2009; Cortajarena 2008; Jackrel 2009; Kajander 2007]. Here we focus on the development of one such TPR-peptide interaction for a practical application – affinity purification. We illustrate the general utility of our designed protein interaction. Furthermore, this example highlights how basic research on protein-peptide interactions can lead to the development of novel reagents with important practical applications. PMID:26517897

  16. Analysis of space shuttle main engine data using Beacon-based exception analysis for multi-missions

    NASA Technical Reports Server (NTRS)

    Park, H.; Mackey, R.; James, M.; Zak, M.; Kynard, M.; Sebghati, J.; Greene, W.

    2002-01-01

    This paper describes analysis of the Space Shuttle Main Engine (SSME) sensor data using Beacon-based exception analysis for multimissions (BEAM), a new technology developed for sensor analysis and diagnostics in autonomous space systems by the Jet Propulsion Laboratory (JPL).

  17. Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 5

    NASA Technical Reports Server (NTRS)

    Anderson, P. J.; Nussbaum, P.; Gustafson, G.

    1984-01-01

    Research concerning the development of pressure instrumentation for the space shuttle main engine is reported. The following specific topics were addressed: (1) transducer design and materials, (2) silicon piezoresistor characterization at cryogenic temperatures, (3) chip mounting characterization, and (4) frequency response optimization.

  18. Phase 1 Development Testing of the Advanced Manufacturing Demonstrator Engine

    NASA Technical Reports Server (NTRS)

    Case, Nicholas L.; Eddleman, David E.; Calvert, Marty R.; Bullard, David B.; Martin, Michael A.; Wall, Thomas R.

    2016-01-01

    The Additive Manufacturing Development Breadboard Engine (BBE) is a pressure-fed liquid oxygen/pump-fed liquid hydrogen (LOX/LH2) expander cycle engine that was built and operated by NASA at Marshall Space Flight Center's East Test Area. The breadboard engine was conceived as a technology demonstrator for the additive manufacturing technologies for an advanced upper stage prototype engine. The components tested on the breadboard engine included an ablative chamber, injector, main fuel valve, turbine bypass valve, a main oxidizer valve, a mixer and the fuel turbopump. All parts minus the ablative chamber were additively manufactured. The BBE was successfully hot fire tested seven times. Data collected from the test series will be used for follow on demonstration tests with a liquid oxygen turbopump and a regeneratively cooled chamber and nozzle.

  19. A data base and analysis program for shuttle main engine dynamic pressure measurements. Appendix B: Data base plots for SSME tests 901-290 through 901-414

    NASA Technical Reports Server (NTRS)

    Coffin, T.

    1986-01-01

    A dynamic pressure data base and data base management system developed to characterize the Space Shuttle Main Engine (SSME) dynamic pressure environment is described. The data base represents dynamic pressure measurements obtained during single engine hot firing tesets of the SSME. Software is provided to permit statistical evaluation of selected measurements under specified operating conditions. An interpolation scheme is also included to estimate spectral trends with SSME power level. Flow dynamic environments in high performance rocket engines are discussed.

  20. A data base and analysis program for shuttle main engine dynamic pressure measurements. Appendix C: Data base plots for SSME tests 902-214 through 902-314

    NASA Technical Reports Server (NTRS)

    Coffin, T.

    1986-01-01

    A dynamic pressure data base and data base management system developed to characterize the Space Shuttle Main Engine (SSME) dynamic pressure environment is reported. The data base represents dynamic pressure measurements obtained during single engine hot firing tests of the SSME. Software is provided to permit statistical evaluation of selected measurements under specified operating conditions. An interpolation scheme is included to estimate spectral trends with SSME power level. Flow Dynamic Environments in High Performance Rocket Engines are described.

  1. 46 CFR 11.327 - Requirements to qualify for an STCW endorsement as second engineer officer on vessels powered by...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... second engineer officer on vessels powered by main propulsion machinery of 3,000kW/4,000 HP propulsion... powered by main propulsion machinery of 3,000kW/4,000 HP propulsion power or more (management level). (a... evidence of not less than 12 months of service as OICEW on vessels powered by main propulsion machinery of...

  2. 46 CFR 11.325 - Requirements to qualify for an STCW endorsement as chief engineer officer on vessels powered by...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... engineer officer on vessels powered by main propulsion machinery of 3,000 kW/4,000 HP propulsion power or... main propulsion machinery of 3,000 kW/4,000 HP propulsion power or more (management level). (a) To... less than 36 months of service as OICEW on ships powered by main propulsion machinery of 750 kW/1,000...

  3. Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory

    PubMed Central

    Giechaskiel, Barouch

    2018-01-01

    Particulate matter (PM), and in particular ultrafine particles, have a negative impact on human health. The contribution of vehicle PM emissions to air pollution is typically quantified with emission inventories, which need vehicle emission factors as input. Heavy-duty vehicles, although they represent a small percentage of the vehicle population in nearly every major country, contribute the majority of the on-road PM emissions. However, the published data of modern heavy-duty vehicle emissions are scarce, and for the newest Euro VI technologies, almost non-existent. The main objective of this paper is to present Solid Particle Number (SPN) emission factors from Euro VI heavy-duty vehicles using diesel, Compressed Natural Gas (CNG), or Liquefied Natural Gas (LNG). Urban, rural and motorway (highway) emissions were determined on the road at various European cities using SPN Portable Emission Measurement Systems (PEMS). Additional tests on a heavy-duty chassis dynamometer showed that the solid sub-23 nm fraction, which is not covered at the moment in the European regulation, is high, especially for CNG engines. The significant contribution of regeneration events and the effect of ambient temperature and engine cold-start on particle emissions were also discussed. PMID:29425174

  4. Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory.

    PubMed

    Giechaskiel, Barouch

    2018-02-09

    Particulate matter (PM), and in particular ultrafine particles, have a negative impact on human health. The contribution of vehicle PM emissions to air pollution is typically quantified with emission inventories, which need vehicle emission factors as input. Heavy-duty vehicles, although they represent a small percentage of the vehicle population in nearly every major country, contribute the majority of the on-road PM emissions. However, the published data of modern heavy-duty vehicle emissions are scarce, and for the newest Euro VI technologies, almost non-existent. The main objective of this paper is to present Solid Particle Number (SPN) emission factors from Euro VI heavy-duty vehicles using diesel, Compressed Natural Gas (CNG), or Liquefied Natural Gas (LNG). Urban, rural and motorway (highway) emissions were determined on the road at various European cities using SPN Portable Emission Measurement Systems (PEMS). Additional tests on a heavy-duty chassis dynamometer showed that the solid sub-23 nm fraction, which is not covered at the moment in the European regulation, is high, especially for CNG engines. The significant contribution of regeneration events and the effect of ambient temperature and engine cold-start on particle emissions were also discussed.

  5. Cassini Orbit Trim Maneuvers at Saturn - Overview of Attitude Control Flight Operations

    NASA Technical Reports Server (NTRS)

    Burk, Thomas A.

    2011-01-01

    The Cassini spacecraft has been in orbit around Saturn since July 1, 2004. To remain on the planned trajectory which maximizes science data return, Cassini must perform orbit trim maneuvers using either its main engine or its reaction control system thrusters. Over 200 maneuvers have been executed on the spacecraft since arrival at Saturn. To improve performance and maintain spacecraft health, changes have been made in maneuver design command placement, in accelerometer scale factor, and in the pre-aim vector used to align the engine gimbal actuator prior to main engine burn ignition. These and other changes have improved maneuver performance execution errors significantly since 2004. A strategy has been developed to decide whether a main engine maneuver should be performed, or whether the maneuver can be executed using the reaction control system.

  6. KSC-99pp0515

    NASA Image and Video Library

    1999-05-12

    A hole, created by recent hail storms, is identified as number one on the surface of the external tank (ET) mated to Space Shuttle Discovery at Launch Pad 39B. Workers are investigating the damage and potential problems for launch posed by ice forming in the holes, which may number as many as 150 over the entire tank. The average size of the holes is one-half inch in diameter and one-tenth inch deep. The external tank contains the liquid hydrogen fuel and liquid oxygen oxidizer and supplies them under pressure to the three space shuttle main engines in the orbiter during liftoff and ascent. The ET thermal protection system consists of sprayed-on foam insulation. The Shuttle Discovery is targeted for launch of mission STS-96 on May 20 at 9:32 a.m

  7. KSC-99pp0516

    NASA Image and Video Library

    1999-05-12

    A hole, created by recent hail storms, is identified as number two on the surface of the external tank (ET) mated to Space Shuttle Discovery at Launch Pad 39B. Workers are investigating the damage and potential problems for launch posed by ice forming in the holes, which may number as many as 150 over the entire tank. The average size of the holes is one-half inch in diameter and one-tenth inch deep. The external tank contains the liquid hydrogen fuel and liquid oxygen oxidizer and supplies them under pressure to the three space shuttle main engines in the orbiter during liftoff and ascent. The ET thermal protection system consists of sprayed-on foam insulation. The Shuttle Discovery is targeted for launch of mission STS-96 on May 20 at 9:32 a.m

  8. Turbine Engine Flowpath Averaging Techniques

    DTIC Science & Technology

    1980-10-01

    u~%x AEDC- TMR- 8 I-G 1 • R. P TURBINE ENGINE FLOWPATH AVERAGING TECHNIQUES T. W. Skiles ARO, Inc. October 1980 Final Report for Period...COVERED 00-01-1980 to 00-10-1980 4. TITLE AND SUBTITLE Turbine Engine Flowpath Averaging Techniques 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...property for gas turbine engines were investigated. The investigation consisted of a literature review and review of turbine engine current flowpath

  9. Methods/Labor Standards Application Program - Phase IV

    DTIC Science & Technology

    1985-01-01

    Engine Platform a. Pressure switch b. Compressor motor c. Voltage regulator d. Open and clean generator exciter and main windings S3 . Main Collector...clean motors b. Slip rings Gantry #3 Annual: S2. Engine Platform a. Pressure switch b. Compressor motor Voltage regulator d. Open and clean generator...Travel Motors Open and clean motorsa. b. Slip rings Gantry #4 S2 . S3. S4 . S5 . Engine Platform a. Pressure switch b. Compressor motor Voltage regulator

  10. Coastal Engineering Studies in Support of Virginia Beach, Virginia, Beach Erosion Control and Hurricane Protection Project. Report 1. Physical Model Tests of Irregular Wave Overtopping and Pressure Measurements.

    DTIC Science & Technology

    1988-03-01

    distribution Zb DECLASSIFICATION/OOWNGRADING SCHEDULE unlimited. 4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S...Technical Report CERC-88-1. 6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION USAEWES, Coastal Engineering (if...FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION US Army (If applicable) Engineer District, Norfolk Intra

  11. Final Prep on SSME

    NASA Image and Video Library

    2005-10-25

    Alvin Pittman Sr., lead electronics technician with Pratt & Whitney Rocketdyne, and Janine Cuevas, a mechanical technician with PWR, perform final preparations on the space shuttle main engine tested Oct. 25, 2005, at NASA's Stennis Space Center. It was the first main engine test since Hurricane Katrina hit the Gulf Coast on Aug. 29.

  12. Final Prep on SSME

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Alvin Pittman Sr., lead electronics technician with Pratt & Whitney Rocketdyne, and Janine Cuevas, a mechanical technician with PWR, perform final preparations on the space shuttle main engine tested Oct. 25, 2005, at NASA's Stennis Space Center. It was the first main engine test since Hurricane Katrina hit the Gulf Coast on Aug. 29.

  13. Incipient failure detection of space shuttle main engine turbopump bearings using vibration envelope detection

    NASA Technical Reports Server (NTRS)

    Hopson, Charles B.

    1987-01-01

    The results of an analysis performed on seven successive Space Shuttle Main Engine (SSME) static test firings, utilizing envelope detection of external accelerometer data are discussed. The results clearly show the great potential for using envelope detection techniques in SSME incipient failure detection.

  14. 7. VIEW LOOKING AFT ON PORT SIDE OF MAIN DECK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW LOOKING AFT ON PORT SIDE OF MAIN DECK FROM POINT NEAR ENGINE ROOM SKYLIGHT. ENGINE ROOM SKYLIGHT IS AT EXTREME LEFT, FOLLOWED BY PILOTS' CABIN SKYLIGHT, AFT COMPANIONWAY AND STEERING GEAR BOX - Pilot Schooner "Alabama", Moored in harbor at Vineyard Haven, Vineyard Haven, Dukes County, MA

  15. Full Hybrid: Overview

    Science.gov Websites

    conditions. stage graphic: vertical blue rule Main stage: See through car with battery, engine, generator , power split device, and electric motor visible. The car is stopped at an intersection. Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. The car is

  16. Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 6

    NASA Technical Reports Server (NTRS)

    Anderson, P. J.; Johnson, R. L.

    1984-01-01

    Research concerning the utilization of silicon piezoresistive strain sensing technology for space shuttle main engine applications is reported. The following specific topics were addressed: (1) transducer design and materials, (2) silicon piezoresistor characterization at cryogenic temperatures, (3) chip mounting characterization, and (4) frequency response optimization.

  17. The DTIC Review. Volume 5, Number 3. Cybernetics: Enhancing Human Performance

    DTIC Science & Technology

    2001-03-01

    Human Factors Engineering 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON OF ABSTRACT OF PAGES Phyllis...2 AD Number: A382305 Corporate Author: Arizona University - Tucson Department of Electrical and Computer Engineering Tucson, AZ...Visualization Aids AD-A382305 Aug 2000 Arizona University - Tucson Department of Electrical and Computer Engineering Tucson, AZ 2 THIS PAGE INTENTIONALLY

  18. Fluid dynamics of acoustic and hydrodynamic cavitation in hydraulic power systems.

    PubMed

    Ferrari, A

    2017-03-01

    Cavitation is the transition from a liquid to a vapour phase, due to a drop in pressure to the level of the vapour tension of the fluid. Two kinds of cavitation have been reviewed here: acoustic cavitation and hydrodynamic cavitation. As acoustic cavitation in engineering systems is related to the propagation of waves through a region subjected to liquid vaporization, the available expressions of the sound speed are discussed. One of the main effects of hydrodynamic cavitation in the nozzles and orifices of hydraulic power systems is a reduction in flow permeability. Different discharge coefficient formulae are analysed in this paper: the Reynolds number and the cavitation number result to be the key fluid dynamical parameters for liquid and cavitating flows, respectively. The latest advances in the characterization of different cavitation regimes in a nozzle, as the cavitation number reduces, are presented. The physical cause of choked flows is explained, and an analogy between cavitation and supersonic aerodynamic flows is proposed. The main approaches to cavitation modelling in hydraulic power systems are also reviewed: these are divided into homogeneous-mixture and two-phase models. The homogeneous-mixture models are further subdivided into barotropic and baroclinic models. The advantages and disadvantages of an implementation of the complete Rayleigh-Plesset equation are examined.

  19. Fluid dynamics of acoustic and hydrodynamic cavitation in hydraulic power systems

    NASA Astrophysics Data System (ADS)

    Ferrari, A.

    2017-03-01

    Cavitation is the transition from a liquid to a vapour phase, due to a drop in pressure to the level of the vapour tension of the fluid. Two kinds of cavitation have been reviewed here: acoustic cavitation and hydrodynamic cavitation. As acoustic cavitation in engineering systems is related to the propagation of waves through a region subjected to liquid vaporization, the available expressions of the sound speed are discussed. One of the main effects of hydrodynamic cavitation in the nozzles and orifices of hydraulic power systems is a reduction in flow permeability. Different discharge coefficient formulae are analysed in this paper: the Reynolds number and the cavitation number result to be the key fluid dynamical parameters for liquid and cavitating flows, respectively. The latest advances in the characterization of different cavitation regimes in a nozzle, as the cavitation number reduces, are presented. The physical cause of choked flows is explained, and an analogy between cavitation and supersonic aerodynamic flows is proposed. The main approaches to cavitation modelling in hydraulic power systems are also reviewed: these are divided into homogeneous-mixture and two-phase models. The homogeneous-mixture models are further subdivided into barotropic and baroclinic models. The advantages and disadvantages of an implementation of the complete Rayleigh-Plesset equation are examined.

  20. Fluid dynamics of acoustic and hydrodynamic cavitation in hydraulic power systems

    PubMed Central

    2017-01-01

    Cavitation is the transition from a liquid to a vapour phase, due to a drop in pressure to the level of the vapour tension of the fluid. Two kinds of cavitation have been reviewed here: acoustic cavitation and hydrodynamic cavitation. As acoustic cavitation in engineering systems is related to the propagation of waves through a region subjected to liquid vaporization, the available expressions of the sound speed are discussed. One of the main effects of hydrodynamic cavitation in the nozzles and orifices of hydraulic power systems is a reduction in flow permeability. Different discharge coefficient formulae are analysed in this paper: the Reynolds number and the cavitation number result to be the key fluid dynamical parameters for liquid and cavitating flows, respectively. The latest advances in the characterization of different cavitation regimes in a nozzle, as the cavitation number reduces, are presented. The physical cause of choked flows is explained, and an analogy between cavitation and supersonic aerodynamic flows is proposed. The main approaches to cavitation modelling in hydraulic power systems are also reviewed: these are divided into homogeneous-mixture and two-phase models. The homogeneous-mixture models are further subdivided into barotropic and baroclinic models. The advantages and disadvantages of an implementation of the complete Rayleigh–Plesset equation are examined. PMID:28413332

  1. 14 CFR 33.74 - Continued rotation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.74 Continued rotation. If any of the engine main rotating systems continue to rotate after the engine is shutdown for any reason...

  2. 14 CFR 33.74 - Continued rotation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.74 Continued rotation. If any of the engine main rotating systems continue to rotate after the engine is shutdown for any reason...

  3. A PEMS study of the emissions of gaseous pollutants and ultrafine particles from gasoline- and diesel-fueled vehicles

    NASA Astrophysics Data System (ADS)

    Huang, Cheng; Lou, Diming; Hu, Zhiyuan; Feng, Qian; Chen, Yiran; Chen, Changhong; Tan, Piqiang; Yao, Di

    2013-10-01

    On-road emission measurements of gasoline- and diesel-fueled vehicles were conducted by a portable emission measurement system (PEMS) in Shanghai, China. Horiba OBS 2200 and TSI EEPS 3090 were employed to detect gaseous and ultrafine particle emissions during the tests. The driving-based emission factors of gaseous pollutants and particle mass and number were obtained on various road types. The average NOx emission factors of the diesel bus, diesel car, and gasoline car were 8.86, 0.68, and 0.17 g km-1, all of which were in excess of their emission limits. The particle number emission factors were 7.06 × 1014, 6.08 × 1014, and 1.57 × 1014 km-1, generally higher than the results for similar vehicle types reported in the previous studies. The size distributions of the particles emitted from the diesel vehicles were mainly concentrated in the accumulation mode, while those emitted from the gasoline car were mainly distributed in the nucleation mode. Both gaseous and particle emission rates exhibit significant correlations with the change in vehicle speed and power demand. The lowest emission rates for each vehicle type were produced during idling. The highest emission rates for each vehicle type were generally found in high-VSP bins. The particle number emission rates of the gasoline car show the strongest growth trend with increasing VSP and speed. The particle number emission for the gasoline car increased by 3 orders of magnitude from idling to the highest VSP and driving speed conditions. High engine power caused by aggressive driving or heavy loads is the main contributor to high emissions for these vehicles in real-world situations.

  4. PREFACE: Nanoscale Devices and System Integration Conference (NDSI-2004)

    NASA Astrophysics Data System (ADS)

    Khizroev, Sakhrat; Litvinov, Dmitri

    2004-10-01

    The inaugural conference on Nanoscale Devices and System Integration (NDSI-2004) was held in Miami, Florida, 15-19 February, 2004. The focus of the conference was `real-life' devices and systems that have recently emerged as a result of various nanotechnology initiatives in chemistry and chemical engineering, physics, electrical engineering, materials science and engineering, biomedical engineering, computer science, robotics, and environmental science. The conference had a single session all-invited speaker format, with the presenters making the `Who's Who in Nanotechnology' list. Contributed work was showcased at a special poster session. The conference, sponsored by the Institute of Electrical and Electronics Engineers (IEEE) and the US Air Force, and endorsed by Materials Research Society (MRS), drew more than 160 participants from fourteen countries. To strengthen the connection between fundamental research and `real-life' applications, the conference featured a large number of presenters from both academia and industry. Among the participating companies were NEC, IBM, Toshiba, AMD, Samsung, Seagate, and Veeco. Nanotechnology has triggered a new wave of research collaborations between researchers from academia and industry with a broad range of specializations. Such a global approach has resulted in a number of breakthrough accomplishments. One of the main goals of this conference was to identify these accomplishments and put the novel technology initiatives and the emerging research teams on the map. Among the key nanotechnology applications demonstrated at NDSI-2004 were carbon-nanotube-based transistors, quantum computing systems, nanophotonic devices, single-molecule electronic devices and biological magnetic sources. Due to the unprecedented success of the conference, the organizing committee of NDSI has unanimously chosen to turn NDSI into an annual international nanotechnology event. The next NDSI is scheduled for 4-6 April, 2005, in Houston, Texas. Details can be found on the conference web site at http://www.nanointernational.org. This special issue of Nanotechnology features selected papers from NDSI-2004.

  5. Development and Evaluation of an Undergraduate Multidisciplinary Project Activity in Engineering and Design

    ERIC Educational Resources Information Center

    Smith, David R.; Cole, Joanne

    2012-01-01

    The School of Engineering and Design Multidisciplinary Project (MDP) at Brunel University is a one week long project based activity involving first year undergraduate students from across the School subject areas of Electronic and Computer Engineering, Mechanical Engineering, Civil Engineering and Design. This paper describes the main aims of the…

  6. Advanced High Pressure O2/H2 Technology

    NASA Technical Reports Server (NTRS)

    Morea, S. F. (Editor); Wu, S. T. (Editor)

    1985-01-01

    Activities in the development of advanced high pressure oxygen-hydrogen stage combustion rocket engines are reported. Particular emphasis is given to the Space Shuttle main engine. The areas of engine technology discussed include fracture and fatigue in engine components, manufacturing and producibility engineering, materials, bearing technology, structure dynamics, fluid dynamics, and instrumentation technology.

  7. Civil Engineering Applications: Specific Properties of NiTi Thick Wires and Their Damping Capabilities, A Review

    NASA Astrophysics Data System (ADS)

    Torra, Vicenç; Martorell, Ferran; Lovey, Francisco C.; Sade, Marcos Leonel

    2017-12-01

    This study describes two investigations: first, the applicability of NiTi wires in the damping of oscillations induced by wind, rain, or traffic in cable-stayed bridges; and second, the characteristic properties of NiTi, i.e., the effects of wire diameter and particularly the effects of summer and winter temperatures and strain-aging actions on the hysteretic behavior. NiTi wires are mainly of interest because of their high number of available working cycles, reliable results, long service lifetime, and ease in obtaining sets of similar wires from the manufacturer.

  8. Vlsi implementation of flexible architecture for decision tree classification in data mining

    NASA Astrophysics Data System (ADS)

    Sharma, K. Venkatesh; Shewandagn, Behailu; Bhukya, Shankar Nayak

    2017-07-01

    The Data mining algorithms have become vital to researchers in science, engineering, medicine, business, search and security domains. In recent years, there has been a terrific raise in the size of the data being collected and analyzed. Classification is the main difficulty faced in data mining. In a number of the solutions developed for this problem, most accepted one is Decision Tree Classification (DTC) that gives high precision while handling very large amount of data. This paper presents VLSI implementation of flexible architecture for Decision Tree classification in data mining using c4.5 algorithm.

  9. Ultrafine particle emission characteristics of diesel engine by on-board and test bench measurement.

    PubMed

    Huang, Cheng; Lou, Diming; Hu, Zhiyuan; Tan, Piqiang; Yao, Di; Hu, Wei; Li, Peng; Ren, Jin; Chen, Changhong

    2012-01-01

    This study investigated the emission characteristics of ultrafine particles based on test bench and on-board measurements. The bench test results showed the ultrafine particle number concentration of the diesel engine to be in the range of (0.56-8.35) x 10(8) cm(-3). The on-board measurement results illustrated that the ultrafine particles were strongly correlated with changes in real-world driving cycles. The particle number concentration was down to 2.0 x 10(6) cm(-3) and 2.7 x 10(7) cm(-3) under decelerating and idling operations and as high as 5.0 x 10(8) cm(-3) under accelerating operation. It was also indicated that the particle number measured by the two methods increased with the growth of engine load at each engine speed in both cases. The particle number presented a "U" shaped distribution with changing speed at high engine load conditions, which implies that the particle number will reach its lowest level at medium engine speeds. The particle sizes of both measurements showed single mode distributions. The peak of particle size was located at about 50-80 nm in the accumulation mode particle range. Nucleation mode particles will significantly increase at low engine load operations like idling and decelerating caused by the high concentration of unburned organic compounds.

  10. Status on the Verification of Combustion Stability for the J-2X Engine Thrust Chamber Assembly

    NASA Technical Reports Server (NTRS)

    Casiano, Matthew; Hinerman, Tim; Kenny, R. Jeremy; Hulka, Jim; Barnett, Greg; Dodd, Fred; Martin, Tom

    2013-01-01

    Development is underway of the J -2X engine, a liquid oxygen/liquid hydrogen rocket engine for use on the Space Launch System. The Engine E10001 began hot fire testing in June 2011 and testing will continue with subsequent engines. The J -2X engine main combustion chamber contains both acoustic cavities and baffles. These stability aids are intended to dampen the acoustics in the main combustion chamber. Verification of the engine thrust chamber stability is determined primarily by examining experimental data using a dynamic stability rating technique; however, additional requirements were included to guard against any spontaneous instability or rough combustion. Startup and shutdown chug oscillations are also characterized for this engine. This paper details the stability requirements and verification including low and high frequency dynamics, a discussion on sensor selection and sensor port dynamics, and the process developed to assess combustion stability. A status on the stability results is also provided and discussed.

  11. Auxiliary propulsion technology for advanced Earth-to-orbit vehicles

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    1987-01-01

    The payload which can be delivered to orbit by advanced Earth-to-Orbit vehicles is significantly increased by advanced subsystem technology. Any weight which can be saved by advanced subsystem design can be converted to payload at Main Engine Cut Off (MECO) given the same launch vehicle performance. The auxiliary propulsion subsystem and the impetus for the current hydrogen/oxygen technology program is examined. A review of the auxiliary propulsion requirements of advanced Earth-to-Orbit (ETO) vehicles and their proposed missions is given first. Then the performance benefits of hydrogen/oxygen auxiliary propulsion are illustrated using current shuttle data. The proposed auxiliary propulsion subsystem implementation includes liquid hydrogen/liquid oxygen (LH2/LO2) primary Reaction Control System (RCS) engines and gaseous hydrogen/gaseous oxygen (GH2/GO2) vernier RCS engines. A distribution system for the liquid cryogens to the engines is outlined. The possibility of providing one dual-phase engine that can operate on either liquid or gaseous propellants is being explored, as well as the simultaneous firing of redundant primary RCS thrusters to provide Orbital Maneuvering System (OMS) level impulse. Scavenging of propellants from integral main engine tankage is proposed to utilize main engine tank residuals and to combine launch vehicle and subsystem reserves.

  12. Main Propulsion Test Article (MPTA)

    NASA Technical Reports Server (NTRS)

    Snoddy, Cynthia

    2010-01-01

    Scope: The Main Propulsion Test Article integrated the main propulsion subsystem with the clustered Space Shuttle Main Engines, the External Tank and associated GSE. The test program consisted of cryogenic tanking tests and short- and long duration static firings including gimbaling and throttling. The test program was conducted on the S1-C test stand (Position B-2) at the National Space Technology Laboratories (NSTL)/Stennis Space Center. 3 tanking tests and 20 hot fire tests conducted between December 21 1 1977 and December 17, 1980 Configuration: The main propulsion test article consisted of the three space shuttle main engines, flightweight external tank, flightweight aft fuselage, interface section and a boilerplate mid/fwd fuselage truss structure.

  13. KSC-95pc586

    NASA Image and Video Library

    1995-04-17

    KENNEDY SPACE CENTER, FLA. - Space Shuttle Main Engine (SSME) No. 2036, the first of the new Block 1 engines to fly, awaits installation into position one of the orbiter Discovery in Orbiter Processing Facility 2 during preparation of the spaceplane for the STS-70 mission. The advanced powerplant features a new high-pressure liquid oxygen turbopump, a two-duct powerhead, a baffleless main injector, a single-coil heat exchanger and start sequence modifications. These modifications are designed to improve both engine performance and safety.

  14. 8. SHEET 2, CONTROL HOUSE FOR DRY DOCK. United Engineering ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. SHEET 2, CONTROL HOUSE FOR DRY DOCK. United Engineering Company Ltd., Alameda Shipyard, Ship Repair Facilities, Office Building. John Hudspeth, Architect, at foot of Main Street, Alameda, Calif. Sheet no. 2 of 2 sheets, Plan no. 10,507. Various scales. January 4, 1943, last revised 1/19/43. U.S. Navy, Bureau of Yards & Docks, Contract no. bs 76. Approved for construction October 9, 1943. blueprint - United Engineering Company Shipyard, Control House for Dry Dock, 2900 Main Street, Alameda, Alameda County, CA

  15. A data base and analysis program for shuttle main engine dynamic pressure measurements. Appendix F: Data base plots for SSME tests 750-120 through 750-200

    NASA Technical Reports Server (NTRS)

    Coffin, T.

    1986-01-01

    A dynamic pressure data base and data base management system developed to characterize the Space Shuttle Main Engine (SSME) dynamic pressure environment is presented. The data base represents dynamic pressure measurements obtained during single engine hot firing tests of the SSME. Software is provided to permit statistical evaluation of selected measurements under specified operating conditions. An interpolation scheme is also included to estimate spectral trends with SSME power level.

  16. Sustainable Range Management of RDX and TNT by Phytoremediation with Engineered Plants

    DTIC Science & Technology

    2016-04-01

    FINAL REPORT Sustainable Range Management of RDX and TNT by Phytoremediation with Engineered Plants SERDP Project ER-1498 APRIL 2016...specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its...by Phyoremediation with Engineered Plants 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER ER-1498 Neil C

  17. Role of Air-Breathing Pulse Detonation Engines in High Speed Propulsion

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.; Lee, Jin-Ho; Anderberg, Michael O.

    2001-01-01

    In this paper, the effect of flight Mach number on the relative performance of pulse detonation engines and gas turbine engines is investigated. The effect of ram and mechanical compression on combustion inlet temperature and the subsequent sensible heat release is determined. Comparison of specific thrust, fuel consumption and impulse for the two engines show the relative benefits over the Mach number range.

  18. Combustion Stability Characteristics of the Project Morpheus Liquid Oxygen / Liquid Methane Main Engine

    NASA Technical Reports Server (NTRS)

    Melcher, John C.; Morehead, Robert L.

    2014-01-01

    The project Morpheus liquid oxygen (LOX) / liquid methane (LCH4) main engine is a Johnson Space Center (JSC) designed 5,000 lbf-thrust, 4:1 throttling, pressure-fed cryogenic engine using an impinging element injector design. The engine met or exceeded all performance requirements without experiencing any in- ight failures, but the engine exhibited acoustic-coupled combustion instabilities during sea-level ground-based testing. First tangential (1T), rst radial (1R), 1T1R, and higher order modes were triggered by conditions during the Morpheus vehicle derived low chamber pressure startup sequence. The instability was never observed to initiate during mainstage, even at low power levels. Ground-interaction acoustics aggravated the instability in vehicle tests. Analysis of more than 200 hot re tests on the Morpheus vehicle and Stennis Space Center (SSC) test stand showed a relationship between ignition stability and injector/chamber pressure. The instability had the distinct characteristic of initiating at high relative injection pressure drop at low chamber pressure during the start sequence. Data analysis suggests that the two-phase density during engine start results in a high injection velocity, possibly triggering the instabilities predicted by the Hewitt stability curves. Engine ignition instability was successfully mitigated via a higher-chamber pressure start sequence (e.g., 50% power level vs 30%) and operational propellant start temperature limits that maintained \\cold LOX" and \\warm methane" at the engine inlet. The main engine successfully demonstrated 4:1 throttling without chugging during mainstage, but chug instabilities were observed during some engine shutdown sequences at low injector pressure drop, especially during vehicle landing.

  19. An ontological case base engineering methodology for diabetes management.

    PubMed

    El-Sappagh, Shaker H; El-Masri, Samir; Elmogy, Mohammed; Riad, A M; Saddik, Basema

    2014-08-01

    Ontology engineering covers issues related to ontology development and use. In Case Based Reasoning (CBR) system, ontology plays two main roles; the first as case base and the second as domain ontology. However, the ontology engineering literature does not provide adequate guidance on how to build, evaluate, and maintain ontologies. This paper proposes an ontology engineering methodology to generate case bases in the medical domain. It mainly focuses on the research of case representation in the form of ontology to support the case semantic retrieval and enhance all knowledge intensive CBR processes. A case study on diabetes diagnosis case base will be provided to evaluate the proposed methodology.

  20. Development of a CFRP Engine Thrust Frame for the Next Generation Launchers

    NASA Astrophysics Data System (ADS)

    Fatemi, Javad; van der Bas, Finn; Cruijssen, Henk

    2012-07-01

    This paper addresses the activities related to the development of technologies for a composite Engine Thrust Frame (ETF) for the next generation launchers. In particular, the design and analyses of a full Carbon Fibre Reinforced Plastic (CFRP) engine thrust frame are presented in more detail. The ETF concept is composed of three main parts, i.e. an aluminium top-ring which connects the ETF to the upper-stage tank, a CFRP cone, and a CFRP cone-cap which connects the Vinci engine to the ETF. The main challenging requirements for development of a CFRP ETF are recalled. The ETF concept and its mechanical performances are assessed.

  1. KSC-2012-1025

    NASA Image and Video Library

    2012-01-12

    CAPE CANAVERAL, Fla. – In the Space Shuttle Main Engine Processing Facility at NASA’s Kennedy Space Center in Florida, a technician oversees the closure of a transportation canister containing a Pratt Whitney Rocketdyne space shuttle main engine (SSME). This is the second of the 15 engines used during the Space Shuttle Program to be prepared for transfer to NASA's Stennis Space Center in Mississippi. The engines will be stored at Stennis for future use on NASA's new heavy-lift rocket, the Space Launch System (SLS), which will carry NASA's new Orion spacecraft, cargo, equipment and science experiments to space. For more information, visit http://www.nasa.gov/shuttle. Photo credit: NASA/Gianni Woods

  2. 10. VIEW LOOKING FORWARD ON STARBOARD SIDE OF MAIN DECK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW LOOKING FORWARD ON STARBOARD SIDE OF MAIN DECK FROM POINT NEAR ENGINE CONTROL PANEL. DECKHOUSES, FROM LEFT TO RIGHT (STERN TO BOW), ARE AFT COMPANIONWAY, PILOTS' CABIN SKYLIGHT, ENGINE ROOM SKYLIGHT, AND GALLEY SKYLIGHT/COMPANIONWAY - Pilot Schooner "Alabama", Moored in harbor at Vineyard Haven, Vineyard Haven, Dukes County, MA

  3. Mixer Assembly for a Gas Turbine Engine

    NASA Technical Reports Server (NTRS)

    Smith, Lance L. (Inventor); Fotache, Catalin G. (Inventor); Dai, Zhongtao (Inventor); Cohen, Jeffrey M. (Inventor); Hautman, Donald J. (Inventor)

    2015-01-01

    A mixer assembly for a gas turbine engine is provided, including a main mixer with fuel injection holes located between at least one radial swirler and at least one axial swirler, wherein the fuel injected into the main mixer is atomized and dispersed by the air flowing through the radial swirler and the axial swirler.

  4. Mixer Assembly for a Gas Turbine Engine

    NASA Technical Reports Server (NTRS)

    Dai, Zhongtao (Inventor); Cohen, Jeffrey M. (Inventor); Fotache, Catalin G. (Inventor); Hautman, Donald J. (Inventor); Smith, Lance L. (Inventor)

    2018-01-01

    A mixer assembly for a gas turbine engine is provided, including a main mixer with fuel injection holes located between at least one radial swirler and at least one axial swirler, wherein the fuel injected into the main mixer is atomized and dispersed by the air flowing through the radial swirler and the axial swirler.

  5. Full Hybrid: Cruising

    Science.gov Websites

    for storage. Go back… stage graphic: vertical blue rule Main stage: See through car with battery , engine, generator, power split device, and electric motor visible. The car is moving. There are arrows flowing from the gasoline engine to the generator to the battery. Main stage: See through car with battery

  6. Hybrid: Braking

    Science.gov Websites

    automatically. Go back… stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric motor visible. The car is stopped at an intersection. Main stage: See through car with battery , engine, and electric motor visible. The car is stopped at an intersection. Battery: The battery stores

  7. Stop/Start: Overview

    Science.gov Websites

    : vertical blue rule Main stage: See through car with battery, engine, and electric starter/generator visible . The car is stopped at an intersection. Main stage: See through car with battery, engine, and electric starter/generator visible. The car is stopped at an intersection. Battery: The battery is used to store

  8. Full Hybrid: Braking

    Science.gov Websites

    : vertical blue rule Main stage: See through car with battery, engine, generator, power split device, and electric motor visible. The car is stopped at an intersection. Main stage: See through car with battery , engine, generator, power split device, and electric motor visible. The car is stopped at an intersection

  9. Space Shuttle Orbiter Main Engine Ignition Acoustic Pressure Loads Issue: Recent Actions to Install Wireless Instrumentation on STS-129

    NASA Technical Reports Server (NTRS)

    Wells, Nathan; Studor, George

    2009-01-01

    This slide presentation reviews the development and construction of the wireless acoustic instruments surrounding the space shuttle's main engines in preparation for STS-129. The presentation also includes information on end-of-life processing and the mounting procedure for the devices.

  10. Experimental uncertainty survey and assessment. [Space Shuttle Main Engine testing

    NASA Technical Reports Server (NTRS)

    Coleman, Hugh W.

    1992-01-01

    An uncertainty analysis and assessment of the specific impulse determination during Space Shuttle Main Engine testing is reported. It is concluded that in planning and designing tests and in interpreting the results of tests, the bias and precision components of experimental uncertainty should be considered separately. Recommendations for future research efforts are presented.

  11. MTR WING A, TRA604, INTERIOR. MAIN FLOOR. DETAIL VIEW INSIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR WING A, TRA-604, INTERIOR. MAIN FLOOR. DETAIL VIEW INSIDE LABORATORY 114. CAMERA FACING NORTH. DISPOSAL OF RADIOACTIVE MATERIALS IS UNDERWAY. INL NEGATIVE NO. HD46-12-4. Mike Crane, Photographer, 2/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  12. Main propulsion system test requirements for the two-engine Shuttle-C

    NASA Technical Reports Server (NTRS)

    Lynn, E. E.; Platt, G. K.

    1989-01-01

    The Shuttle-C is an unmanned cargo carrying derivative of the space shuttle with optional two or three space shuttle main engines (SSME's), whereas the shuttle has three SSME's. Design and operational differences between the Shuttle-C and shuttle were assessed to determine requirements for additional main propulsion system (MPS) verification testing. Also, reviews were made of the shuttle main propulsion test program objectives and test results and shuttle flight experience. It was concluded that, if significant MPS modifications are not made beyond those currently planned, then main propulsion system verification can be concluded with an on-pad flight readiness firing.

  13. PCACE- PERSONAL COMPUTER AIDED CABLING ENGINEERING

    NASA Technical Reports Server (NTRS)

    Billitti, J. W.

    1994-01-01

    A computerized interactive harness engineering program has been developed to provide an inexpensive, interactive system which is designed for learning and using an engineering approach to interconnection systems. PCACE is basically a database system that stores information as files of individual connectors and handles wiring information in circuit groups stored as records. This directly emulates the typical manual engineering methods of data handling, thus making the user interface to the program very natural. Data files can be created, viewed, manipulated, or printed in real time. The printed ouput is in a form ready for use by fabrication and engineering personnel. PCACE also contains a wide variety of error-checking routines including connector contact checks during hardcopy generation. The user may edit existing harness data files or create new files. In creating a new file, the user is given the opportunity to insert all the connector and harness boiler plate data which would be part of a normal connector wiring diagram. This data includes the following: 1) connector reference designator, 2) connector part number, 3) backshell part number, 4) cable reference designator, 5) cable part number, 6) drawing revision, 7) relevant notes, 8) standard wire gauge, and 9) maximum circuit count. Any item except the maximum circuit count may be left blank, and any item may be changed at a later time. Once a file is created and organized, the user is directed to the main menu and has access to the file boiler plate, the circuit wiring records, and the wiring records index list. The organization of a file is such that record zero contains the connector/cable boiler plate, and all other records contain circuit wiring data. Each wiring record will handle a circuit with as many as nine wires in the interface. The record stores the circuit name and wire count and the following data for each wire: 1) wire identifier, 2) contact, 3) splice, 4) wire gauge if different from standard, 5) wire/group type, 6) wire destination, and 7) note number. The PCACE record structure allows for a wide variety of wiring forms using splices and shields, yet retains sufficient structure to maintain ease of use. PCACE is written in TURBO Pascal 3.0 and has been implemented on IBM PC, XT, and AT systems under DOS 3.1 with a memory of 512K of 8 bit bytes, two floppy disk drives, an RGB monitor, and a printer with ASCII control characters. PCACE was originally developed in 1983, and the IBM version was released in 1986.

  14. Development of an HL7 interface engine, based on tree structure and streaming algorithm, for large-size messages which include image data.

    PubMed

    Um, Ki Sung; Kwak, Yun Sik; Cho, Hune; Kim, Il Kon

    2005-11-01

    A basic assumption of Health Level Seven (HL7) protocol is 'No limitation of message length'. However, most existing commercial HL7 interface engines do limit message length because they use the string array method, which is run in the main memory for the HL7 message parsing process. Specifically, messages with image and multi-media data create a long string array and thus cause the computer system to raise critical and fatal problem. Consequently, HL7 messages cannot handle the image and multi-media data necessary in modern medical records. This study aims to solve this problem with the 'streaming algorithm' method. This new method for HL7 message parsing applies the character-stream object which process character by character between the main memory and hard disk device with the consequence that the processing load on main memory could be alleviated. The main functions of this new engine are generating, parsing, validating, browsing, sending, and receiving HL7 messages. Also, the engine can parse and generate XML-formatted HL7 messages. This new HL7 engine successfully exchanged HL7 messages with 10 megabyte size images and discharge summary information between two university hospitals.

  15. Emissions factors for gaseous and particulate pollutants from offshore diesel engine vessels in China

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Chen, Y.; Tian, C.; Li, J.; Zhang, G.; Matthias, V.

    2015-09-01

    Shipping emissions have significant influence on atmospheric environment as well as human health, especially in coastal areas and the harbor districts. However, the contribution of shipping emissions on the environment in China still need to be clarified especially based on measurement data, with the large number ownership of vessels and the rapid developments of ports, international trade and shipbuilding industry. Pollutants in the gaseous phase (carbon monoxide, sulfur dioxide, nitrogen oxides, total volatile organic compounds) and particle phase (particulate matter, organic carbon, elemental carbon, sulfates, nitrate, ammonia, metals) in the exhaust from three different diesel engine power offshore vessels in China were measured in this study. Concentrations, fuel-based and power-based emissions factors for various operating modes as well as the impact of engine speed on emissions were determined. Observed concentrations and emissions factors for carbon monoxide, nitrogen oxides, total volatile organic compounds, and particulate matter were higher for the low engine power vessel than for the two higher engine power vessels. Fuel-based average emissions factors for all pollutants except sulfur dioxide in the low engine power engineering vessel were significantly higher than that of the previous studies, while for the two higher engine power vessels, the fuel-based average emissions factors for all pollutants were comparable to the results of the previous studies. The fuel-based average emissions factor for nitrogen oxides for the small engine power vessel was more than twice the International Maritime Organization standard, while those for the other two vessels were below the standard. Emissions factors for all three vessels were significantly different during different operating modes. Organic carbon and elemental carbon were the main components of particulate matter, while water-soluble ions and elements were present in trace amounts. Best-fit engine speeds during actual operation should be based on both emissions factors and economic costs.

  16. Hybrid: Starting

    Science.gov Websites

    : gray bar STARTING When the vehicle is started, the gasoline engine "warms up." If necessary assists the gasoline engine when additional power is needed. It also acts as a generator, converting also starts the gasoline engine instantly when needed. Main stage: See through car with battery, engine

  17. Hybrid: Braking

    Science.gov Websites

    Button Stopped button highlighted subbanner graphic: gray bar STOPPED When the vehicle is stopped engine when additional power is needed. It also acts as a generator, converting energy from the engine or engine instantly when needed. Main stage: See through car with battery, engine, and electric motor

  18. Propulsion System Advances that Enable a Reusable Liquid Fly Back Booster (LFBB)

    NASA Technical Reports Server (NTRS)

    Keith, Edward L.; Rothschild, William J.

    1998-01-01

    This paper provides an overview of the booster propulsion system for the Liquid Fly Back Booster (LFBB). This includes, system requirements, design approach, concept of operations, reliability, safety and cost assumptions. The paper summarizes the findings of the Boeing propulsion team that has been studying the LFBB feasibility as a booster replacement for the Space Shuttle. This paper will discuss recent advances including a new generation of kerosene and oxygen rich pre-burner staged combustion cycle main rocket engines. The engine reliability and safety is expected to be much higher than current standards by adding extra operating margins into the design and normally operating the engines at 75% of engine rated power. This allows for engine out capability. The new generation of main engines operates at significantly higher chamber pressure than the prior generation of gas generator cycle engines. The oxygen rich pre-burner engine cycle, unlike the fuel rich gas generator cycle, results in internally self-cleaning firings which facilitates reusability. Maintenance is further enhanced with integrated health monitoring to improve safety and turn-around efficiency. The maintainability of the LFBB LOX / kerosene engines is being improved by designing the vehicle/engine interfaces for easy access to key engine components.

  19. Propulsion system advances that enable a reusable Liquid Fly Back Booster (LFBB)

    NASA Technical Reports Server (NTRS)

    Keith, E. L.; Rothschild, W. J.

    1998-01-01

    This paper provides an overview of the booster propulsion system for the Liquid Fly Back Booster (LFBB). This includes, system requirements, design approach, concept of operations, reliability, safety and cost assumptions. The paper summarizes the findings of the Boeing propulsion team that has been studying the LFBB feasibility as a booster replacement for the Space Shuttle. This paper will discuss recent advances including a new generation of kerosene and oxygen rich pre-burner staged combustion cycle main rocket engines. The engine reliability and safety is expected to be much higher than current standards by adding extra operating margins into the design and normally operating the engines at 75% of engine rated power. This allows for engine out capability. The new generation of main engines operates at significantly higher chamber pressure than the prior generation of gas generator cycle engines. The oxygen rich pre-burner engine cycle, unlike the fuel rich gas generator cycle, results in internally self-cleaning firings which facilitates reusability. Maintenance is further enhanced with integrated health monitoring to improve safety and turn-around efficiency. The maintainability of the LFBB LOX/kerosene engines is being improved by designing the vehicle/engine interfaces for easy access to key engine components.

  20. Connecting Incoming Freshmen with Engineering through Hands-On Projects

    ERIC Educational Resources Information Center

    Cui, Suxia; Wang, Younhui; Yang, Yonggao; Nave, Felecia M.; Harris, Kendall T.

    2011-01-01

    Engineering programs suffer a high attrition rate, which causes the nation to graduate much less engineers. A survey of the literature reveals that the high attrition rate is due mainly to the fact that the first year of an engineering program is all fundamental theory and students don't see the connection to their future engineering careers. To…

  1. Development of the Junkers-diesel Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Gasterstadt,

    1930-01-01

    The working process of the Junkers engine has resulted from a series of attempts to attain high performance and to control the necessarily rapid and complete combustion at extremely high speeds. The two main problems of Diesel engines in aircraft are addressed; namely, incomplete combustion and the greater weight of Diesel engine parts compared to gasoline engines.

  2. 46 CFR 69.121 - Engine room deduction.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Engine room deduction. 69.121 Section 69.121 Shipping... MEASUREMENT OF VESSELS Standard Measurement System § 69.121 Engine room deduction. (a) General. The engine...) Space below the crown. The crown is the top of the main space of the engine room to which the heights of...

  3. 46 CFR 69.121 - Engine room deduction.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Engine room deduction. 69.121 Section 69.121 Shipping... MEASUREMENT OF VESSELS Standard Measurement System § 69.121 Engine room deduction. (a) General. The engine...) Space below the crown. The crown is the top of the main space of the engine room to which the heights of...

  4. Engineering Employment Characteristics. Engineering Education and Practice in the United States.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Engineering and Technical Systems.

    This panel report was prepared as part of the study of engineering education and practice conducted under the guidance of the National Research Council's Committee on the Education and Utilization of the Engineer. The panel's goal was to provide a data base that describes the engineering work force, its main activities, capabilities, and principal…

  5. 18. VIEW AFT INTO ENGINE ROOM AND UP INTO CAPTAIN'S ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW AFT INTO ENGINE ROOM AND UP INTO CAPTAIN'S CABIN. THE AFTER BULKHEAD OF THE ENGINE ROOM WAS REMOVED WHEN THE ENGINE WAS SALVAGED. ENGINE BED AND GEARBOX ARE REMNANTS OF THE ENGINE INSTALLATION. CABLES AND CHAINS ARE IN PLACE TO HELP STABILIZE THE HULL AND TRANSOM. - Auxiliary Fishing Schooner "Evelina M. Goulart", Essex Shipbuilding Museum, 66 Main Street, Essex, Essex County, MA

  6. 4. FRONT FACADE OF ENGINE TEST CELL BUILDING. DETAIL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. FRONT FACADE OF ENGINE TEST CELL BUILDING. DETAIL OF MAIN ENTRY. LOOKING NORTHWEST. - Fairchild Air Force Base, Engine Test Cell Building, Near intersection of Arnold Street & George Avenue, Spokane, Spokane County, WA

  7. Development of a helicopter rotor/propulsion system dynamics analysis

    NASA Technical Reports Server (NTRS)

    Warmbrodt, W.; Hull, R.

    1982-01-01

    A time-domain analysis of coupled engine/drive train/rotor dynamics of a twin-engine, single main rotor helicopter model has been performed. The analysis incorporates an existing helicopter model with nonlinear simulations of a helicopter turboshaft engine and its fuel controller. System dynamic behavior is studied using the resulting simulation which included representations for the two engines and their fuel controllers, drive system, main rotor, tail rotor, and aircraft rigid body motions. Time histories of engine and rotor RPM response to pilot control inputs are studied for a baseline rotor and propulsion system model. Sensitivity of rotor RPM droop to fuel controller gain changes and collective input feed-forward gain changes are studied. Torque-load-sharing between the two engines is investigated by making changes in the fuel controller feedback paths. A linear engine model is derived from the nonlinear engine simulation and used in the coupled system analysis. This four-state linear engine model is then reduced to a three-state model. The effect of this simplification on coupled system behavior is shown.

  8. 78 FR 58598 - Agency Information Collection Activities: Requests for Comments; Clearance of Renewed Approval of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... Operations (ETOPS) of Multi-Engine Airplanes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... Number: 2120-0718 Title: Extended Operations (ETOPS) of Multi-Engine Airplanes Form Numbers: There are no... operate two-engine airplanes over these long-range routes and extended the procedures for extended...

  9. 78 FR 23688 - Airworthiness Directives; Bell Helicopter Textron Canada Inc. Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-22

    ... would require replacing certain part-numbered engine auto-relight kit control boxes. This proposed AD is... range requirements, which could cause the control box to malfunction, disabling the engine auto-relight... helicopters with an engine auto-relight kit control box assembly (control box assembly) part number 206-375...

  10. Nuclear Engineering Enrollments and Degrees, 1982.

    ERIC Educational Resources Information Center

    Sweeney, Deborah H.; And Others

    This report presents data on the number of students enrolled and the number of bachelor's, master's, and doctoral degrees awarded in academic year 1981-82 from 72 United States institutions offering degree programs in nuclear engineering or nuclear options within other engineering fields. Presented as well are historical data for the last decade…

  11. Optimization of a Small-Scale Engine Using Plasma Enhanced Ignition

    DTIC Science & Technology

    2013-03-01

    PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 6. AUTHOR(S) 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT...systems were tested in the small engine and their effects on engine performance determined through comparison with a regular spark discharge (thermal...pulse plasma discharge system purchased from Plasmatronics LLC. Air fuel ratio (λ units are used in this report) sweeps were performed at several

  12. A Genetically Engineered Mouse Model of Neuroblastoma Driven by Mutated ALK and MYCN

    DTIC Science & Technology

    2014-09-01

    AWARD NUMBER: W81XWH-13-1-0220 TITLE: A Genetically Engineered Mouse Model of Neuroblastoma ...CONTRACT NUMBER A Genetically Engineered Mouse Model of Neuroblastoma Driven by Mutated ALK and MYCN 5b. GRANT NUMBER W81XWH-13-1-0220 5c...common ALK mutations in neuroblastoma , F1174L and R1275Q. We have determined that in tumors cells expressing mutated ALK, different downstream

  13. 77 FR 51786 - Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ... to increasing the number and quality of the nation's scientists and engineers. Application... Engineering, Biosciences, Chemical Engineering, Chemistry, Civil Engineering, Cognitive, Neural, and...

  14. Air Force Civil Engineer, Volume 12, Number 1, 2004

    DTIC Science & Technology

    2004-01-01

    Building the ARRK Volume 12 • No. 1 • 2004 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of...Air Force Civil Engineer, Volume 12 , Number 01, 2004) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12 . DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution

  15. Main Engine Prototype Development for 2nd Generation RLV RS-83

    NASA Technical Reports Server (NTRS)

    Vilja, John; Fisher, Mark; Lyles, Garry M. (Technical Monitor)

    2002-01-01

    This presentation reports on the NASA project to develop a prototype for RS-83 engine designed for use on reusable launch vehicles (RLV). Topics covered include: program objectives, overview schedule, organizational chart, integrated systems engineering processes, requirement analysis, catastrophic engine loss, maintainability analysis tools, and prototype design analysis.

  16. 2. ENGINE ROOM AND CHIPPY ENGINE ROOM OF THE DIAMOND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. ENGINE ROOM AND CHIPPY ENGINE ROOM OF THE DIAMOND MINE, LOOKING NORTH. THE MAIN HOIST USED A FLAT CABLE, WHICH WAS SCRAPPED IN THE 1950s. THE ORIGINAL DIXON CABLE STILL EXISTS IN THE CHIPPY HOIST HOUSE. - Butte Mineyards, Diamond Mine, Butte, Silver Bow County, MT

  17. An Exploratory Survey of Student Perspectives Regarding Search Engines

    ERIC Educational Resources Information Center

    Alshare, Khaled; Miller, Don; Wenger, James

    2005-01-01

    This study explored college students' perceptions regarding their use of search engines. The main objective was to determine how frequently students used various search engines, whether advanced search features were used, and how many search engines were used. Various factors that might influence student responses were examined. Results showed…

  18. Engine Performance Improvement for the 378-Foot High Endurance Cutter

    DOT National Transportation Integrated Search

    1978-06-01

    Methods for improving the performance of the main diesel engines : of the 378-foot Coast Guard High Endurance Cutter have been investgated. : These engines are models FM3W8-l-/8 rated for 3600hp at : 90QrDM. Present engine performance was evaluated t...

  19. Engineering Research in Irish Economic Development

    ERIC Educational Resources Information Center

    Kelly, John

    2011-01-01

    This article summarizes the main findings and recommendations of a report published in December 2010 by the Irish Academy of Engineering (IAE). The report, representing the views of a committee of distinguished Irish engineers from a wide range of disciplines, addresses the role of engineering research in Ireland's economic development and the…

  20. Naturally occurring minichromosome platforms in chromosome engineering: an overview.

    PubMed

    Raimondi, Elena

    2011-01-01

    Artificially modified chromosome vectors are non-integrating gene delivery platforms that can shuttle very large DNA fragments in various recipient cells: theoretically, no size limit exists for the chromosome segments that an engineered minichromosome can accommodate. Therefore, genetically manipulated chromosomes might be potentially ideal vector systems, especially when the complexity of higher eukaryotic genes is concerned. This review focuses on those chromosome vectors generated using spontaneously occurring small markers as starting material. The definition and manipulation of the centromere domain is one of the main obstacles in chromosome engineering: naturally occurring minichromosomes, due to their inherent small size, were helpful in defining some aspects of centromere function. In addition, several distinctive features of small marker chromosomes, like their appearance as supernumerary elements in otherwise normal karyotypes, have been successfully exploited to use them as gene delivery vectors. The key technologies employed for minichromosome engineering are: size reduction, gene targeting, and vector delivery in various recipient cells. In spite of the significant advances that have been recently achieved in all these fields, several unsolved problems limit the potential of artificially modified chromosomes. Still, these vector systems have been exploited in a number of applications where the investigation of the controlled expression of large DNA segments is needed. A typical example is the analysis of genes whose expression strictly depends on the chromosomal environment in which they are positioned, where engineered chromosomes can be envisaged as epigenetically regulated expression systems. A novel and exciting advance concerns the use of engineered minichromosomes to study the organization and dynamics of local chromatin structures.

  1. Engineered Proteins: Redox Properties and Their Applications

    PubMed Central

    Prabhulkar, Shradha; Tian, Hui; Wang, Xiaotang; Zhu, Jun-Jie

    2012-01-01

    Abstract Oxidoreductases and metalloproteins, representing more than one third of all known proteins, serve as significant catalysts for numerous biological processes that involve electron transfers such as photosynthesis, respiration, metabolism, and molecular signaling. The functional properties of the oxidoreductases/metalloproteins are determined by the nature of their redox centers. Protein engineering is a powerful approach that is used to incorporate biological and abiological redox cofactors as well as novel enzymes and redox proteins with predictable structures and desirable functions for important biological and chemical applications. The methods of protein engineering, mainly rational design, directed evolution, protein surface modifications, and domain shuffling, have allowed the creation and study of a number of redox proteins. This review presents a selection of engineered redox proteins achieved through these methods, resulting in a manipulation in redox potentials, an increase in electron-transfer efficiency, and an expansion of native proteins by de novo design. Such engineered/modified redox proteins with desired properties have led to a broad spectrum of practical applications, ranging from biosensors, biofuel cells, to pharmaceuticals and hybrid catalysis. Glucose biosensors are one of the most successful products in enzyme electrochemistry, with reconstituted glucose oxidase achieving effective electrical communication with the sensor electrode; direct electron-transfer-type biofuel cells are developed to avoid thermodynamic loss and mediator leakage; and fusion proteins of P450s and redox partners make the biocatalytic generation of drug metabolites possible. In summary, this review includes the properties and applications of the engineered redox proteins as well as their significance and great potential in the exploration of bioelectrochemical sensing devices. Antioxid. Redox Signal. 17, 1796–1822. PMID:22435347

  2. A study of power cycles using supercritical carbon dioxide as the working fluid

    NASA Astrophysics Data System (ADS)

    Schroder, Andrew Urban

    A real fluid heat engine power cycle analysis code has been developed for analyzing the zero dimensional performance of a general recuperated, recompression, precompression supercritical carbon dioxide power cycle with reheat and a unique shaft configuration. With the proposed shaft configuration, several smaller compressor-turbine pairs could be placed inside of a pressure vessel in order to avoid high speed, high pressure rotating seals. The small compressor-turbine pairs would share some resemblance with a turbocharger assembly. Variation in fluid properties within the heat exchangers is taken into account by discretizing zero dimensional heat exchangers. The cycle analysis code allows for multiple reheat stages, as well as an option for the main compressor to be powered by a dedicated turbine or an electrical motor. Variation in performance with respect to design heat exchanger pressure drops and minimum temperature differences, precompressor pressure ratio, main compressor pressure ratio, recompression mass fraction, main compressor inlet pressure, and low temperature recuperator mass fraction have been explored throughout a range of each design parameter. Turbomachinery isentropic efficiencies are implemented and the sensitivity of the cycle performance and the optimal design parameters is explored. Sensitivity of the cycle performance and optimal design parameters is studied with respect to the minimum heat rejection temperature and the maximum heat addition temperature. A hybrid stochastic and gradient based optimization technique has been used to optimize critical design parameters for maximum engine thermal efficiency. A parallel design exploration mode was also developed in order to rapidly conduct the parameter sweeps in this design space exploration. A cycle thermal efficiency of 49.6% is predicted with a 320K [47°C] minimum temperature and 923K [650°C] maximum temperature. The real fluid heat engine power cycle analysis code was expanded to study a theoretical recuperated Lenoir cycle using supercritical carbon dioxide as the working fluid. The real fluid cycle analysis code was also enhanced to study a combined cycle engine cascade. Two engine cascade configurations were studied. The first consisted of a traditional open loop gas turbine, coupled with a series of recuperated, recompression, precompression supercritical carbon dioxide power cycles, with a predicted combined cycle thermal efficiency of 65.0% using a peak temperature of 1,890K [1,617°C]. The second configuration consisted of a hybrid natural gas powered solid oxide fuel cell and gas turbine, coupled with a series of recuperated, recompression, precompression supercritical carbon dioxide power cycles, with a predicted combined cycle thermal efficiency of 73.1%. Both configurations had a minimum temperature of 306K [33°C]. The hybrid stochastic and gradient based optimization technique was used to optimize all engine design parameters for each engine in the cascade such that the entire engine cascade achieved the maximum thermal efficiency. The parallel design exploration mode was also utilized in order to understand the impact of different design parameters on the overall engine cascade thermal efficiency. Two dimensional conjugate heat transfer (CHT) numerical simulations of a straight, equal height channel heat exchanger using supercritical carbon dioxide were conducted at various Reynolds numbers and channel lengths.

  3. Inductive knowledge acquisition experience with commercial tools for space shuttle main engine testing

    NASA Technical Reports Server (NTRS)

    Modesitt, Kenneth L.

    1990-01-01

    Since 1984, an effort has been underway at Rocketdyne, manufacturer of the Space Shuttle Main Engine (SSME), to automate much of the analysis procedure conducted after engine test firings. Previously published articles at national and international conferences have contained the context of and justification for this effort. Here, progress is reported in building the full system, including the extensions of integrating large databases with the system, known as Scotty. Inductive knowledge acquisition has proven itself to be a key factor in the success of Scotty. The combination of a powerful inductive expert system building tool (ExTran), a relational data base management system (Reliance), and software engineering principles and Computer-Assisted Software Engineering (CASE) tools makes for a practical, useful and state-of-the-art application of an expert system.

  4. Possible ways of reducing the effect of thermal power facilities on the environment

    NASA Astrophysics Data System (ADS)

    Zroichikov, N. A.; Prokhorov, V. B.; Tupov, V. B.; Arkhipov, A. M.; Fomenko, M. V.

    2015-02-01

    The main trends in the integrated solution of thermal power engineering environmental problems are pointed out taking the Mosenergo power company as an example, and the data are given with respect to the structure of the power engineering equipment of the city of Moscow and its change, energy consumption, and generation of heat and electric energy. The dynamics of atmospheric air pollution of Moscow from 1990 to 2010, as well as the main measures on reducing the adverse effect of the power engineering equipment operation, is given. The results of original designs by the Department of Boiler Installations and Power Engineering Ecology (KU&EE) are given concerning the reduction of nitrogen oxides emissions and the decrease of the noise impact produced by the power engineering equipment.

  5. An Extended Combustion Model for the Aircraft Turbojet Engine

    NASA Astrophysics Data System (ADS)

    Rotaru, Constantin; Andres-Mihăilă, Mihai; Matei, Pericle Gabriel

    2014-08-01

    The paper consists in modelling and simulation of the combustion in a turbojet engine in order to find optimal characteristics of the burning process and the optimal shape of combustion chambers. The main focus of this paper is to find a new configuration of the aircraft engine combustion chambers, namely an engine with two main combustion chambers, one on the same position like in classical configuration, between compressor and turbine and the other, placed behind the turbine but not performing the role of the afterburning. This constructive solution could allow a lower engine rotational speed, a lower temperature in front of the first stage of the turbine and the possibility to increase the turbine pressure ratio by extracting the flow stream after turbine in the inner nozzle. Also, a higher thermodynamic cycle efficiency and thrust in comparison to traditional constant-pressure combustion gas turbine engines could be obtained.

  6. Space shuttle main engine computed tomography applications

    NASA Technical Reports Server (NTRS)

    Sporny, Richard F.

    1990-01-01

    For the past two years the potential applications of computed tomography to the fabrication and overhaul of the Space Shuttle Main Engine were evaluated. Application tests were performed at various government and manufacturer facilities with equipment produced by four different manufacturers. The hardware scanned varied in size and complexity from a small temperature sensor and turbine blades to an assembled heat exchanger and main injector oxidizer inlet manifold. The evaluation of capabilities included the ability to identify and locate internal flaws, measure the depth of surface cracks, measure wall thickness, compare manifold design contours to actual part contours, perform automatic dimensional inspections, generate 3D computer models of actual parts, and image the relationship of the details in a complex assembly. The capabilities evaluated, with the exception of measuring the depth of surface flaws, demonstrated the existing and potential ability to perform many beneficial Space Shuttle Main Engine applications.

  7. KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility insert the liquid oxygen feedline for the 17-inch disconnect in the orbiter Discovery. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

    NASA Image and Video Library

    2003-11-11

    KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility insert the liquid oxygen feedline for the 17-inch disconnect in the orbiter Discovery. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

  8. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers install the liquid oxygen feedline for the 17-inch disconnect on orbiter Discovery. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

    NASA Image and Video Library

    2003-11-11

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers install the liquid oxygen feedline for the 17-inch disconnect on orbiter Discovery. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

  9. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers raise the liquid oxygen feedline for the 17-inch disconnect toward orbiter Discovery for installation. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

    NASA Image and Video Library

    2003-11-11

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers raise the liquid oxygen feedline for the 17-inch disconnect toward orbiter Discovery for installation. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

  10. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers lift the liquid oxygen feedline for the 17-inch disconnect toward orbiter Discovery for installation. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

    NASA Image and Video Library

    2003-11-11

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers lift the liquid oxygen feedline for the 17-inch disconnect toward orbiter Discovery for installation. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

  11. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers move the liquid oxygen feedline for the 17-inch disconnect toward orbiter Discovery for installation. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

    NASA Image and Video Library

    2003-11-11

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers move the liquid oxygen feedline for the 17-inch disconnect toward orbiter Discovery for installation. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

  12. Photocopy of photograph (original print located at Engineering Management Building, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph (original print located at Engineering Management Building, Naval Shipyard, Long Beach). Navy Photograph, July 4, 1942, Photograph #2229. MAIN GATE 1, FROM OUTSIDE (NORTH) OF ENTRANCE, FACING SOUTHWEST (WITH BUILDING 40 IN BACKGROUND) - Roosevelt Base, Main Gate No. 1, Ocean Boulevard where Nevada & Maryland Street meet, Long Beach, Los Angeles County, CA

  13. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 3B: High pressure fuel turbo-pump preburner pump bearing assembly analysis

    NASA Technical Reports Server (NTRS)

    Power, Gloria B.; Violett, Rebeca S.

    1989-01-01

    The analysis performed on the High Pressure Oxidizer Turbopump (HPOTP) preburner pump bearing assembly located on the Space Shuttle Main Engine (SSME) is summarized. An ANSYS finite element model for the inlet assembly was built and executed. Thermal and static analyses were performed.

  14. Space Shuttle Main Engine structural analysis and data reduction/evaluation. Volume 4: High pressure fuel turbo-pump inlet housing analysis

    NASA Technical Reports Server (NTRS)

    Pool, Kirby V.

    1989-01-01

    The analysis performed on the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP) inlet housings is summarized. Three DIAL finite element models were build to aid in assessing the structural life of the welds and fillets at the vanes. Complete results are given.

  15. The Role of Environmental Engineering Education in Sustainable Development in Iran: AUT Experience

    ERIC Educational Resources Information Center

    Moghaddam, M. R. Alavi; Taher-shamsi, A.; Maknoun, R.

    2007-01-01

    Purpose: The aim of this paper is to explain the strategies and activities of a main technical University in Iran (Amirkabir University of Technology (AUT)) toward sustainable development goals. Design/methodology/approach: In this paper, three main strategies of AUT to achieve sustainable developments goals in engineering education are explained.…

  16. Vibration, acoustic, and shock design and test criteria for components on the Solid Rocket Boosters (SRB), Lightweight External Tank (LWT), and Space Shuttle Main Engines (SSME)

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The vibration, acoustics, and shock design and test criteria for components and subassemblies on the space shuttle solid rocket booster (SRB), lightweight tank (LWT), and main engines (SSME) are presented. Specifications for transportation, handling, and acceptance testing are also provided.

  17. Measurement uncertainty for the Uniform Engine Testing Program conducted at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Abdelwahab, Mahmood; Biesiadny, Thomas J.; Silver, Dean

    1987-01-01

    An uncertainty analysis was conducted to determine the bias and precision errors and total uncertainty of measured turbojet engine performance parameters. The engine tests were conducted as part of the Uniform Engine Test Program which was sponsored by the Advisory Group for Aerospace Research and Development (AGARD). With the same engines, support hardware, and instrumentation, performance parameters were measured twice, once during tests conducted in test cell number 3 and again during tests conducted in test cell number 4 of the NASA Lewis Propulsion Systems Laboratory. The analysis covers 15 engine parameters, including engine inlet airflow, engine net thrust, and engine specific fuel consumption measured at high rotor speed of 8875 rpm. Measurements were taken at three flight conditions defined by the following engine inlet pressure, engine inlet total temperature, and engine ram ratio: (1) 82.7 kPa, 288 K, 1.0, (2) 82.7 kPa, 288 K, 1.3, and (3) 20.7 kPa, 288 K, 1.3. In terms of bias, precision, and uncertainty magnitudes, there were no differences between most measurements made in test cells number 3 and 4. The magnitude of the errors increased for both test cells as engine pressure level decreased. Also, the level of the bias error was two to three times larger than that of the precision error.

  18. Integrated Main Propulsion System Performance Reconstruction Process/Models

    NASA Technical Reports Server (NTRS)

    Lopez, Eduardo; Elliott, Katie; Snell, Steven; Evans, Michael

    2013-01-01

    The Integrated Main Propulsion System (MPS) Performance Reconstruction process provides the MPS post-flight data files needed for postflight reporting to the project integration management and key customers to verify flight performance. This process/model was used as the baseline for the currently ongoing Space Launch System (SLS) work. The process utilizes several methodologies, including multiple software programs, to model integrated propulsion system performance through space shuttle ascent. It is used to evaluate integrated propulsion systems, including propellant tanks, feed systems, rocket engine, and pressurization systems performance throughout ascent based on flight pressure and temperature data. The latest revision incorporates new methods based on main engine power balance model updates to model higher mixture ratio operation at lower engine power levels.

  19. Sample Delivery and Computer Control Systems for Detecting Leaks in the Main Engines of the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Griffin, Timothy P.; Naylor, Guy R.; Hritz, Richard J.; Barrett, Carolyn A.

    1997-01-01

    The main engines of the Space Shuttle use hydrogen and oxygen as the fuel and oxidant. The explosive and fire hazards associated with these two components pose a serious danger to personnel and equipment. Therefore prior to use the main engines undergo extensive leak tests. Instead of using hazardous gases there tests utilize helium as the tracer element. This results in a need to monitor helium in the ppm level continuously for hours. The major challenge in developing such a low level gas monitor is the sample delivery system. This paper discuss a system developed to meet the requirements while also being mobile. Also shown is the calibration technique, stability, and accuracy results for the system.

  20. 77 FR 33560 - Woodland Rail, LLC-Acquisition and Operation Exemption-Line of Maine Central Railroad Co.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... United States. The end points of the Line are at engineering station 64+17 in Baileyville and engineering... Woodland Junction, Me., which is engineering station 363+45, and engineering station 393+37, and another spur track at St. Croix Junction, Me., which is engineering station 6817+12.\\1\\ \\1\\ In a related...

  1. Orbit transfer vehicle advanced expander cycle engine point design study. Volume 2: Study results

    NASA Technical Reports Server (NTRS)

    Diem, H. G.

    1980-01-01

    The design characteristics of the baseline engine configuration of the advanced expander cycle engine are described. Several aspects of engine optimization are considered which directly impact the design of the baseline thrust chamber. Four major areas of the power cycle optimization are emphasized: main turbine arrangement; cycle engine source; high pressure pump design; and boost pump drive.

  2. Performance Evaluation of the NEXT Ion Engine

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Domonkos, Matthew T.; Patterson, Michael J.

    2003-01-01

    The performance test results of three NEXT ion engines are presented. These ion engines exhibited peak specific impulse and thrust efficiency ranges of 4060 4090 s and 0.68 0.69, respectively, at the full power point of the NEXT throttle table. The performance of the ion engines satisfied all project requirements. Beam flatness parameters were significantly improved over the NSTAR ion engine, which is expected to improve accelerator grid service life. The results of engine inlet pressure and temperature measurements are also presented. Maximum main plenum, cathode, and neutralizer pressures were 12,000 Pa, 3110 Pa, and 8540 Pa, respectively, at the full power point of the NEXT throttle table. Main plenum and cathode inlet pressures required about 6 hours to increase to steady-state, while the neutralizer required only about 0.5 hour. Steady-state engine operating temperature ranges throughout the power throttling range examined were 179 303 C for the discharge chamber magnet rings and 132 213 C for the ion optics mounting ring.

  3. Development and applications of various optimization algorithms for diesel engine combustion and emissions optimization

    NASA Astrophysics Data System (ADS)

    Ogren, Ryan M.

    For this work, Hybrid PSO-GA and Artificial Bee Colony Optimization (ABC) algorithms are applied to the optimization of experimental diesel engine performance, to meet Environmental Protection Agency, off-road, diesel engine standards. This work is the first to apply ABC optimization to experimental engine testing. All trials were conducted at partial load on a four-cylinder, turbocharged, John Deere engine using neat-Biodiesel for PSO-GA and regular pump diesel for ABC. Key variables were altered throughout the experiments, including, fuel pressure, intake gas temperature, exhaust gas recirculation flow, fuel injection quantity for two injections, pilot injection timing and main injection timing. Both forms of optimization proved effective for optimizing engine operation. The PSO-GA hybrid was able to find a superior solution to that of ABC within fewer engine runs. Both solutions call for high exhaust gas recirculation to reduce oxide of nitrogen (NOx) emissions while also moving pilot and main fuel injections to near top dead center for improved tradeoffs between NOx and particulate matter.

  4. 27. VIEW FROM AFT OF MAIN HOISTING ENGINE WITH HOISTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. VIEW FROM AFT OF MAIN HOISTING ENGINE WITH HOISTING DRUM IN FOREGROUND. NOTE MAIN HOISTING DRUM IS A STEP DRUM, WITH TWO DIAMETERS ON DRUM. WHEN BUCKET IS IN WATER THE CABLE IS ON THE SMALLER STEP, AS PICTURED, GIVING MORE POWER TO THE LINE. THE CABLE STEPS TO LARGER DIAMETER WHEN BUCKET IS OUT OF WATER, WHERE SPEED IS MORE IMPORTANT THAN POWER. SMALLER BACKING DRUM IN BACKGROUND. - Dredge CINCINNATI, Docked on Ohio River at foot of Lighthill Street, Pittsburgh, Allegheny County, PA

  5. iPixel: a visual content-based and semantic search engine for retrieving digitized mammograms by using collective intelligence.

    PubMed

    Alor-Hernández, Giner; Pérez-Gallardo, Yuliana; Posada-Gómez, Rubén; Cortes-Robles, Guillermo; Rodríguez-González, Alejandro; Aguilar-Laserre, Alberto A

    2012-09-01

    Nowadays, traditional search engines such as Google, Yahoo and Bing facilitate the retrieval of information in the format of images, but the results are not always useful for the users. This is mainly due to two problems: (1) the semantic keywords are not taken into consideration and (2) it is not always possible to establish a query using the image features. This issue has been covered in different domains in order to develop content-based image retrieval (CBIR) systems. The expert community has focussed their attention on the healthcare domain, where a lot of visual information for medical analysis is available. This paper provides a solution called iPixel Visual Search Engine, which involves semantics and content issues in order to search for digitized mammograms. iPixel offers the possibility of retrieving mammogram features using collective intelligence and implementing a CBIR algorithm. Our proposal compares not only features with similar semantic meaning, but also visual features. In this sense, the comparisons are made in different ways: by the number of regions per image, by maximum and minimum size of regions per image and by average intensity level of each region. iPixel Visual Search Engine supports the medical community in differential diagnoses related to the diseases of the breast. The iPixel Visual Search Engine has been validated by experts in the healthcare domain, such as radiologists, in addition to experts in digital image analysis.

  6. The pond is wider than you think! Problems encountered when searching family practice literature.

    PubMed Central

    Rosser, W. W.; Starkey, C.; Shaughnessy, R.

    2000-01-01

    OBJECTIVE: To explain differences in the results of literature searches in British general practice and North American family practice or family medicine. DESIGN: Comparative literature search. SETTING: The Department of Family and Community Medicine at the University of Toronto in Ontario. METHOD: Literature searches on MEDLINE demonstrated that certain search strategies ignored certain key words, depending on the search engine and the search terms chosen. Literature searches using the key words "general practice," "family practice," and "family medicine" combined with the topics "depression" and then "otitis media" were conducted in MEDLINE using four different Web-based search engines: Ovid, HealthGate, PubMed, and Internet Grateful Med. MAIN OUTCOME MEASURES: The number of MEDLINE references retrieved for both topics when searched with each of the three key words, "general practice," "family practice," and "family medicine" using each of the four search engines. RESULTS: For each topic, each search yielded very different articles. Some search engines did a better job of matching the term "general practice" to the terms "family medicine" and "family practice," and thus improved retrieval. The problem of language use extends to the variable use of terminology and differences in spelling between British and American English. CONCLUSION: We need to heighten awareness of literature search problems and the potential for duplication of research effort when some of the literature is ignored, and to suggest ways to overcome the deficiencies of the various search engines. Images Figure 1 Figure 2 PMID:10660792

  7. Workshop on Two-Phase Fluid Behavior in a Space Environment

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D. (Editor); Juhasz, AL (Editor); Long, W. Russ (Editor); Ottenstein, Laura (Editor)

    1989-01-01

    The Workshop was successful in achieving its main objective of identifying a large number of technical issues relating to the design of two-phase systems for space applications. The principal concern expressed was the need for verified analytical tools that will allow an engineer to confidently design a system to a known degree of accuracy. New and improved materials, for such applications as thermal storage and as heat transfer fluids, were also identified as major needs. In addition to these research efforts, a number of specific hardware needs were identified which will require development. These include heat pumps, low weight radiators, advanced heat pipes, stability enhancement devices, high heat flux evaporators, and liquid/vapor separators. Also identified was the need for a centralized source of reliable, up-to-date information on two-phase flow in a space environment.

  8. EFRH-phage immunization of Alzheimer's disease animal model improves behavioral performance in Morris water maze trials.

    PubMed

    Lavie, Vered; Becker, Maria; Cohen-Kupiec, Rachel; Yacoby, Iftach; Koppel, Rela; Wedenig, Manuela; Hutter-Paier, Birgit; Solomon, Beka

    2004-01-01

    We have developed an immunization procedure for the production of effective anti-beta-amyloid (anti-Abeta) antibodies, using filamentous phage displaying only 4 amino acids. The EFRH sequence, encompassing amino acids 3-6 of the 42 residues of Abeta peptide, was found previously to be the main regulatory site for amyloid modulation and the epitope of anti-aggregating antibodies. Engineered filamentous phage enable the display of various numbers of EFRH copies on the phage and serve as potent carriers of antigens. In the present study we have found that phage displaying high EFRH copy number are effective in eliciting humoral response against the EFRH sequence, which in turn relieves the amyloid burden in the brains of amyloid precursor protein Tg mice and improves their ability to perform cognitive tasks. Copyright 2004 Humana Press Inc.

  9. An increasing citation black hole in ecology and evolution

    PubMed Central

    Rafferty, Anthony R; Wong, Bob B M; Chapple, David G

    2015-01-01

    Citations published in online supplementary material (OSM) are invisible to search engines used to calculate citation counts, potentially negatively impacting popular performance indices and journal rankings that rely on citation counts for quantification. To quantify the number of citations that are “lost” in OSM, we conducted a systematic survey of supplementary citation practices in four high-ranking, society-run journals from two geographical locations (Europe and North America). In 2012, 6% of all citations were only included in the OSM and were therefore not included in citation counts. We found a significant increase in the number of references invisible to citation counting services over the last two decades. A solution to this problem is urgently required and could include journal indexing of citations in OSM or the inclusion of all references in the main text. PMID:25628876

  10. Female Faculty in Male-Dominated Fields: Law, Medicine, and Engineering

    ERIC Educational Resources Information Center

    Ward, LaWanda

    2008-01-01

    Studies have documented the increased number of women faculty in the academy; however in areas that are historically male dominated--law, medicine, and engineering--the numbers remain dismal. This article describes the real situation of female professors in the academic disciplines of law, medicine, and engineering. This article also provides…

  11. 77 FR 52323 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-29

    ...- Ignition Engines (Renewal). ICR Numbers: EPA ICR No. 1695.10, OMB Control No. 2060-0338. ICR Status: This... Engines and Equipment, OMB Control Number 2060-0603) were incorporated into ICR 1695.10. This action was... Requirements for Nonroad Spark-Ignition Engines (Renewal) AGENCY: Environmental Protection Agency (EPA). ACTION...

  12. Design study of magnetic eddy-current vibration suppression dampers for application to cryogenic turbomachinery

    NASA Technical Reports Server (NTRS)

    Gunter, E. J.; Humphris, R. R.; Severson, S. J.

    1983-01-01

    Cryogenic turbomachinery used to pump high pressure fuel (liquid H2) and oxidizer (liquid O2) to the main engines of the Space Shuttle have experienced rotor instabilities. Subsynchronous whirl, an extremely destructive instability, has caused bearing failures and severe rubs in the seals. These failures have resulted in premature engine shutdowns or, in many instances, have limited the power level to which the turbopumps could be operated. The feasibility of using an eddy current type of damping mechanism for the Space Shuttle Main Engine is outlined.

  13. EXTERIOR ELEVATIONS. United Engineering Company Ltd., Alameda Shipyard, Ship Repair ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR ELEVATIONS. United Engineering Company Ltd., Alameda Shipyard, Ship Repair Facilities, Office Building. Includes lettering detail for front elevation. John Hudspeth, Architect, at foot of Main Street, Alameda, Calif. Sheet no. A3 of 8 sheets, Plan no. 10,007. Scale 1/8 inch to the foot. March 18, 1942, last revised 9/21/43. U.S. Navy, Bureau of Yards & Docks, Contract no. bs 76. Approved for construction October 9, 1943. blueprint - United Engineering Company Shipyard, Office Building No. 137, 2900 Main Street, Alameda, Alameda County, CA

  14. SECOND FLOOR AND ROOF PLANS. United Engineering Company Ltd., Alameda ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SECOND FLOOR AND ROOF PLANS. United Engineering Company Ltd., Alameda Shipyard, Ship Repair Facilities, Office Building. Second floor plan, and roof plan. John Hudspeth, Architect, at foot of Main Street, Alameda, Calif. Sheet no. A2 of 8 sheets, Plan no. 10,007. Scale 1/8 inch to the foot. March 18, 1942, last revised 9/22/43. U.S. Navy, Bureau of Yards & Docks, Contract no. bs 76. Approved for construction October 9, 1943. blueprint - United Engineering Company Shipyard, Office Building No. 137, 2900 Main Street, Alameda, Alameda County, CA

  15. 7. SHEET 1, CONTROL HOUSE FOR DRY DOCK. United Engineering ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. SHEET 1, CONTROL HOUSE FOR DRY DOCK. United Engineering Company Ltd., Alameda Shipyard, Ship Repair Facilities, Office Building. Plans, elevations, sections, details. John Hudspeth, Architect, at foot of Main Street, Alameda, Calif. Sheet no. 1 of 2 sheets, Plan no. 10,507. Various scales. January 4, 1943, last revised 1/28/43. U.S. Navy, Bureau of Yards & Docks, Contract no. bs 76. Approved for construction October 9, 1943. blueprint - United Engineering Company Shipyard, Control House for Dry Dock, 2900 Main Street, Alameda, Alameda County, CA

  16. Thin film heat flux sensor for Space Shuttle Main Engine turbine environment

    NASA Technical Reports Server (NTRS)

    Will, Herbert

    1991-01-01

    The Space Shuttle Main Engine (SSME) turbine environment stresses engine components to their design limits and beyond. The extremely high temperatures and rapid temperature cycling can easily cause parts to fail if they are not properly designed. Thin film heat flux sensors can provide heat loading information with almost no disturbance of gas flows or of the blade. These sensors can provide steady state and transient heat flux information. A thin film heat flux sensor is described which makes it easier to measure small temperature differences across very thin insulating layers.

  17. KSC-02pd1100

    NASA Image and Video Library

    2002-06-28

    KENNEDY SPACE CENTER, FLA. -- Doug Buford (top), with the Aft Engine shop, along with another worker, removes a heat shield on one of Columbia's engines. After small cracks were discovered on the LH2 Main Propulsion System (MPS) flow liners in two other orbiters, program managers decided to move forward with inspections on Columbia before clearing it for flight on STS-107. After removal of the heat shields, the three main engines will be removed. Inspections of the flow liners will follow. The July 19 launch of Columbia on STS-107 has been delayed a few weeks

  18. KSC-02pd1101

    NASA Image and Video Library

    2002-06-28

    KENNEDY SPACE CENTER, FLA. -- Doug Buford, with the Aft Engine shop, removes a heat shield on one of Columbia's engines. After small cracks were discovered on the LH2 Main Propulsion System (MPS) flow liners in two other orbiters, program managers decided to move forward with inspections on Columbia before clearing it for flight on STS-107. After removal of the heat shields, the three main engines will be removed. Inspections of the flow liners will follow. The July 19 launch of Columbia on STS-107 has been delayed a few weeks

  19. STS-107 Columbia's engine no. 2 removal for inspection

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, Columbia's engine no. 2 is about to be removed. After small cracks were discovered on the LH2 Main Propulsion System (MPS) flow liners in two other orbiters, program managers decided to move forward with inspections on Columbia before clearing it for flight on STS-107. The heat shields were removed, and after removing the three main engines, inspections of the flow liners will follow. The July 19 launch of Columbia on STS-107 has been delayed a few weeks

  20. Qualification Lab Testing on M1 Abrams Engine Oil Filters

    DTIC Science & Technology

    2016-11-01

    UNCLASSIFIED QUALIFICATION LAB TESTING ON M1 ABRAMS ENGINE OIL FILTERS FINAL REPORT TFLRF No. 483 by Kristi K. Rutta U.S...the originator. UNCLASSIFIED QUALIFICATION LAB TESTING ON M1 ABRAMS ENGINE OIL FILTERS FINAL REPORT TFLRF No. 483 by Kristi K...TITLE AND SUBTITLE Qualification Lab Testing on M1 Abrams Engine Oil Filter 5a. CONTRACT NUMBER W56HZV-15-C-0030 5b. GRANT NUMBER 5c. PROGRAM

  1. Space Shuttle Main Engine Joint Data List Applying Today's Desktop Technologies to Facilitate Engine Processing

    NASA Technical Reports Server (NTRS)

    Jacobs, Kenneth; Drobnick, John; Krell, Don; Neuhart, Terry; McCool, A. (Technical Monitor)

    2001-01-01

    Boeing-Rocketdyne's Space Shuttle Main Engine (SSME) is the world's first large reusable liquid rocket engine. The space shuttle propulsion system has three SSMEs, each weighing 7,400 lbs and providing 470,000 lbs of thrust at 100% rated power level. To ensure required safety and reliability levels are achieved with the reusable engines, each SSME is partially disassembled, inspected, reassembled, and retested at Kennedy Space Center between each flight. Maintenance processing must be performed very carefully to replace any suspect components, maintain proper engine configuration, and avoid introduction of contaminants that could affect performance and safety. The long service life, and number, complexity, and pedigree of SSME components makes logistics functions extremely critical. One SSME logistics challenge is documenting the assembly and disassembly of the complex joint configurations. This data (joint nomenclature, seal and fastener identification and orientation, assembly sequence, fastener torques, etc.) must be available to technicians and engineers during processing. Various assembly drawings and procedures contain this information, but in this format the required (practical) joint data can be hard to find, due to the continued use of archaic engineering drawings and microfilm for field site use. Additionally, the release system must traverse 2,500 miles between design center and field site, across three time zones, which adds communication challenges and time lags for critical engine configuration data. To aid in information accessibility, a Joint Data List (JDL) was developed that allows efficient access to practical joint data. The published JDL has been a very useful logistics product, providing illustrations and information on the latest SSME configuration. The JDL identifies over 3,350 unique parts across seven fluid systems, over 300 joints, times two distinct engine configurations. The JDL system was recently converted to a web-based, navigable electronic manual that contains all the required data and illustrations in expanded view format using standard PC products (Word, Excel, PDF, Photoshop). The logistics of accurately releasing this information to field personnel was greatly enhanced via the utilization of common office products to produce a more user-friendly format than was originally developed under contract to NASA. This was done without reinventing the system, which would be cost prohibitive on a program of this maturity. The brunt of the joint part tracking is done within the logistics organization and disseminated to all field sites, without duplicating effort at each site. The JDL is easily accessible across the country via the NASA intranet directly at the SSME workstand. The advent of this logistics data product has greatly enhanced the reliability of tracking dynamic changes to the SSME and greatly reduces engineering change turnaround time and potential for errors. Since the inception of the JDL system in 1997, no discrepant parts have propagated to engine assembly operations. This presentation focuses on the challenges overcome and the techniques used to apply today's desktop technologies to an existing logistics data source.

  2. Deep-level stereoscopic multiple traps of acoustic vortices

    NASA Astrophysics Data System (ADS)

    Li, Yuzhi; Guo, Gepu; Ma, Qingyu; Tu, Juan; Zhang, Dong

    2017-04-01

    Based on the radiation pattern of a planar piston transducer, the mechanisms underlying the generation of axially controllable deep-level stereoscopic multiple traps of acoustic vortices (AV) using sparse directional sources were proposed with explicit formulae. Numerical simulations for the axial and cross-sectional distributions of acoustic pressure and phase were conducted for various ka (product of the wave number and the radius of transducer) values at the frequency of 1 MHz. It was demonstrated that, for bigger ka, besides the main-AV (M-AV) generated by the main lobes of the sources, cone-shaped side-AV (S-AV) produced by the side lobes were closer to the source plane at a relatively lower pressure. Corresponding to the radiation angles of pressure nulls between the main lobe and the side lobes of the sources, vortex valleys with nearly pressure zero could be generated on the central axis to form multiple traps, based on Gor'kov potential theory. The number and locations of vortex valleys could be controlled accurately by the adjustment of ka. With the established eight-source AV generation system, the existence of the axially controllable multiple traps was verified by the measured M-AV and S-AVs as well as the corresponding vortex valleys. The favorable results provided the feasibility of deep-level stereoscopic control of AV and suggested potential application of multiple traps for particle manipulation in the area of biomedical engineering.

  3. Air Force Civil Engineer, Volume 12, Number 2, 2004

    DTIC Science & Technology

    2004-01-01

    Volume 12 • No. 2 • 2004 CIVIL ENGINEERAir Force Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection...Section: USAF Facility Energy Management Program. (Air Force Civil Engineer, Volume 12 , Number 02, 2004) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12 . DISTRIBUTION/AVAILABILITY STATEMENT

  4. Systems Engineering Technical Leadership Development Program

    DTIC Science & Technology

    2012-08-30

    technology-based competitive advantage can be part of firm’s business strategy.  Review the Porter Model . Return to Syllabus UNCLASSIFIED 66...Program 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7...PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Stevens Institute of Technology,Systems Engineering Research Center,Castle Point on the Hudson,Hoboken,NJ

  5. Navier-Stokes computations with finite-rate chemistry for LO2/LH2 rocket engine plume flow studies

    NASA Technical Reports Server (NTRS)

    Dougherty, N. Sam; Liu, Baw-Lin

    1991-01-01

    Computational fluid dynamics methods have been developed and applied to Space Shuttle Main Engine LO2/LH2 plume flow simulation/analysis of airloading and convective base heating effects on the vehicle at high flight velocities and altitudes. New methods are described which were applied to the simulation of a Return-to-Launch-Site abort where the vehicle would fly briefly at negative angles of attack into its own plume. A simplified two-perfect-gases-mixing approach is used where one gas is the plume and the other is air at 180-deg and 135-deg flight angle of attack. Related research has resulted in real gas multiple-plume interaction methods with finite-rate chemistry described herein which are applied to the same high-altitude-flight conditions of 0 deg angle of attack. Continuing research plans are to study Orbiter wake/plume flows at several Mach numbers and altitudes during ascent and then to merge this model with the Shuttle 'nose-to-tail' aerodynamic and SRB plume models for an overall 'nose-to-plume' capability. These new methods are also applicable to future launch vehicles using clustered-engine LO2/LH2 propulsion.

  6. Software Estimates Costs of Testing Rocket Engines

    NASA Technical Reports Server (NTRS)

    Smith, C. L.

    2003-01-01

    Simulation-Based Cost Model (SiCM), a discrete event simulation developed in Extend , simulates pertinent aspects of the testing of rocket propulsion test articles for the purpose of estimating the costs of such testing during time intervals specified by its users. A user enters input data for control of simulations; information on the nature of, and activity in, a given testing project; and information on resources. Simulation objects are created on the basis of this input. Costs of the engineering-design, construction, and testing phases of a given project are estimated from numbers and labor rates of engineers and technicians employed in each phase, the duration of each phase; costs of materials used in each phase; and, for the testing phase, the rate of maintenance of the testing facility. The three main outputs of SiCM are (1) a curve, updated at each iteration of the simulation, that shows overall expenditures vs. time during the interval specified by the user; (2) a histogram of the total costs from all iterations of the simulation; and (3) table displaying means and variances of cumulative costs for each phase from all iterations. Other outputs include spending curves for each phase.

  7. Opportunities and challenges for the sustainable production of structurally complex diterpenoids in recombinant microbial systems.

    PubMed

    Kemper, Katarina; Hirte, Max; Reinbold, Markus; Fuchs, Monika; Brück, Thomas

    2017-01-01

    With over 50.000 identified compounds terpenes are the largest and most structurally diverse group of natural products. They are ubiquitous in bacteria, plants, animals and fungi, conducting several biological functions such as cell wall components or defense mechanisms. Industrial applications entail among others pharmaceuticals, food additives, vitamins, fragrances, fuels and fuel additives. Central building blocks of all terpenes are the isoprenoid compounds isopentenyl diphosphate and dimethylallyl diphosphate. Bacteria like Escherichia coli harbor a native metabolic pathway for these isoprenoids that is quite amenable for genetic engineering. Together with recombinant terpene biosynthesis modules, they are very suitable hosts for heterologous production of high value terpenes. Yet, in contrast to the number of extracted and characterized terpenes, little is known about the specific biosynthetic enzymes that are involved especially in the formation of highly functionalized compounds. Novel approaches discussed in this review include metabolic engineering as well as site-directed mutagenesis to expand the natural terpene landscape. Focusing mainly on the validation of successful integration of engineered biosynthetic pathways into optimized terpene producing Escherichia coli , this review shall give an insight in recent progresses regarding manipulation of mostly diterpene synthases.

  8. Engineering Thermostable Microbial Xylanases Toward its Industrial Applications.

    PubMed

    Kumar, Vishal; Dangi, Arun Kumar; Shukla, Pratyoosh

    2018-03-01

    Xylanases are one of the important hydrolytic enzymes which hydrolyze the β-1, 4 xylosidic linkage of the backbone of the xylan polymeric chain which consists of xylose subunits. Xylanases are mainly found in plant cell walls and are produced by several kinds of microorganisms such as fungi, bacteria, yeast, and some protozoans. The fungi are considered as most potent xylanase producers than that of yeast and bacteria. There is a broad series of industrial applications for the thermostable xylanase as an industrial enzyme. Thermostable xylanases have been used in a number of industries such as paper and pulp industry, biofuel industry, food and feed industry, textile industry, etc. The present review explores xylanase-substrate interactions using gene-editing tools toward the comprehension in improvement in industrial stability of xylanases. The various protein-engineering and metabolic-engineering methods have also been explored to improve operational stability of xylanase. Thermostable xylanases have also been used for improvement in animal feed nutritional value. Furthermore, they have been used directly in bakery and breweries, including a major use in paper and pulp industry as a biobleaching agent. This present review envisages some of such applications of thermostable xylanases for their bioengineering.

  9. Evolution of Nickel-titanium Alloys in Endodontics.

    PubMed

    Ounsi, Hani F; Nassif, Wadih; Grandini, Simone; Salameh, Ziad; Neelakantan, Prasanna; Anil, Sukumaran

    2017-11-01

    To improve clinical use of nickel-titanium (NiTi) endodontic rotary instruments by better understanding the alloys that compose them. A large number of engine-driven NiTi shaping instruments already exists on the market and newer generations are being introduced regularly. While emphasis is being put on design and technique, manufacturers are more discreet about alloy characteristics that dictate instrument behavior. Along with design and technique, alloy characteristics of endodontic instruments is one of the main variables affecting clinical performance. Modification in NiTi alloys is numerous and may yield improvements, but also drawbacks. Martensitic instruments seem to display better cyclic fatigue properties at the expense of surface hardness, prompting the need for surface treatments. On the contrary, such surface treatments may improve cutting efficiency but are detrimental to the gain in cyclic fatigue resistance. Although the design of the instrument is vital, it should in no way cloud the importance of the properties of the alloy and how they influence the clinical behavior of NiTi instruments. Dentists are mostly clinicians rather than engineers. With the advances in instrumentation design and alloys, they have an obligation to deal more intimately with engineering consideration to not only take advantage of their possibilities but also acknowledge their limitations.

  10. Dual education and industrial cooperation in electrical engineering

    NASA Astrophysics Data System (ADS)

    Váradiné Szarka, A.

    2016-11-01

    Dual education in higher education is a new system in Hungary introduced by Mercedes Benz with cooperation of Kecskemet College. In the new system companies support certain number of students and provide them strong practical education in their field. Students applying successfully for dual education study together with non-dual students at the university, so they go through the same university courses as their non-dual colleagues, but while non-dual students’ academic year includes 2×14 weeks active semester and 2×6 weeks exam session, all over 40 weeks, dual students have 48 working weeks including study at the university and practicing at the company. The main question of the success which one is the most effective model to be applied. This paper summarises 2 models of dual education with their advantages and disadvantages and also it presents practical realization at the University of Debrecen with special attention to measurement and instrumentation. Dual education in BSc level electrical engineering course cooperates with 6 multinational companies of the region in four specialization. Dual education also has great impact to the modernisation of engineering education. Detailed study of dual education in field of instrumentation and measurement is provided in the paper.

  11. Introducing High School Students and Science Teachers to Chemical Engineering.

    ERIC Educational Resources Information Center

    Bayles, Taryn Melkus; Aguirre, Fernando J.

    1992-01-01

    Describes a summer institute for science teachers and their students in which the main goal was to increase enrollment in engineering and to encourage women and minority groups to increase their representation in the engineering workforce. Includes a description of typical chemical engineering jobs and general instruction in material balances,…

  12. 77 FR 33560 - Eastern Maine Railway Company-Trackage Rights Exemption-Woodland Rail, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... the Line within the United States. The end points of the Line are at engineering station 64+17 in Baileyville and engineering station 6978+84 in Calais, in Washington County, Me. The transaction includes a spur track between Woodland Junction, Me., which is engineering station 363+45, and engineering station...

  13. Propulsion and Energetics Panel Working Group 11 on Aircraft Fire Safety. Volume 2. Main Report

    DTIC Science & Technology

    1979-11-01

    which make burning metal particles a potent igni- tion source and extinguishment of bulk metal fires a difficult task. In the latter case, the difficulty...aircraft to fires induced by uncon- tained engine failures and internal engine metal fires . With respect to the uncontained engine failure current engine

  14. Committee on Women in Science, Engineering, and Medicine (CWSEM)

    Science.gov Websites

    Skip to Main Content Contact Us | Search: Search The National Academies of Sciences, Engineering and Medicine Committee on Women in Science, Engineering, and Medicine Committee on Women in Science , Engineering, and Medicine Policy and Global Affairs Home About Us Members Subscribe to CWSEM Alerts Resources

  15. 46 CFR 58.10-10 - Diesel engine installations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Diesel engine installations. 58.10-10 Section 58.10-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY... installations. (a) The requirements of § 58.10-5 (a), (c), and (d) shall apply to diesel engine installations...

  16. The Use of the Software MATLAB To Improve Chemical Engineering Education.

    ERIC Educational Resources Information Center

    Damatto, T.; Maegava, L. M.; Filho, R. Maciel

    In all the Brazilian Universities involved with the project "Prodenge-Reenge", the main objective is to improve teaching and learning procedures for the engineering disciplines. The Chemical Engineering College of Campinas State University focused its effort on the use of engineering softwares. The work developed by this project has…

  17. How to Develop an Engineering Design Task

    ERIC Educational Resources Information Center

    Dankenbring, Chelsey; Capobianco, Brenda M.; Eichinger, David

    2014-01-01

    In this article, the authors provide an overview of engineering and the engineering design process, and describe the steps they took to develop a fifth grade-level, standards-based engineering design task titled "Getting the Dirt on Decomposition." Their main goal was to focus more on modeling the discrete steps they took to create and…

  18. Recent developments in turbomachinery component materials and manufacturing challenges for aero engine applications

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Raghunandana, K.; Satish Shenoy, B.

    2018-02-01

    In the recent years the development of turbomachinery materials performance enhancement plays a vital role especially in aircraft air breathing engines like turbojet engine, turboprop engine, turboshaft engine and turbofan engines. Especially the transonic flow engines required highly sophisticated materials where it can sustain the entire thrust which can create by the engine. The main objective of this paper is to give an overview of the present cost-effective and technological capabilities process for turbomachinery component materials. Especially the main focus is given to study the Electro physical, Photonic additive removal process and Electro chemical process for turbomachinery parts manufacture. The aeronautical propulsion based technologies are reviewed thoroughly where in surface reliability, geometrical precession, and material removal and highly strengthened composite material deposition rates usually difficult to cut dedicated steels, Titanium and Nickel based alloys. In this paper the past aeronautical and propulsion mechanical based manufacturing technologies, current sophisticated technologies and also future challenging material processing techniques are covered. The paper also focuses on the brief description of turbomachinery components of shaping process and coating in aeromechanical applications.

  19. Large gas injection engine nearing completion in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, K.

    1994-04-01

    One of the world's largest diesel engines to be operated on methane gas under pressure injection is now nearing completion at the Chiba works of Mitsui, in Japan. The MAN B W-designed 12K80MC-GI-S engine - built by Mitsui Engineering and Shipbuilding Co., in Tamano, Japan - will develop a total of 40,680 kW when operating at 103.4 r/min. It will drive an electrical generator of 39,740 kW output to provide power to Mitsui's Chiba works. The arrangement will be such that excess electrical energy can be taken into the local electrical supply system. Since the engine will be operating inmore » an area of strict emission control, the exhaust gas from the engine will pass through a large SCR before reaching the main chimney. Low-sulfur diesel oil will be used as the pilot fuel, and will amount to only eight percent of the fuel charge at full load. The MC-GI series of engines can be used as main propulsion engines in LNG carriers or stationary power plants. 3 figs.« less

  20. Change is necessary in a biological engineering curriculum.

    PubMed

    Johnson, Arthur T; Montas, Hubert; Shirmohammadi, Adel; Wheaton, Fredrick W

    2006-01-01

    Success of a Biological Engineering undergraduate educational program can be measured in a number of ways, but however it is measured, a presently successful program can translate into an unsuccessful program if it cannot adjust to different conditions posed by technical advances, student characteristics, and academic pressures. Described in this paper is a Biological Engineering curriculum that has changed significantly since its transformation from Agricultural Engineering in 1993. As a result, student numbers have continued to climb, specific objectives have emerged, and unique courses have been developed. The Biological Resources Engineering program has evolved into a program that emphasizes breadth, fundamentals, communications skills, diversity, and practical engineering judgment.

Top